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P R E F A C E  

An Internat ional  Summer Ins t i tu te  and Logic Colloquium (ISILC) was held in K ie l ,  

Federal Republic of Germany from Wednesday, 17th July to Saturday, 3rd August 1974. 

The conference was organized by the Deutsche Vereinigung fur mathematische Logik und 

Grundlagenforschung der exakten Wissenschaften and was sponsored by the Association 

for Symbolic Logic as the European Summer meeting of the ASL. The congress received 

f inancia l  support from: The Internat ional  Union for  History and Philosophy of Sci--  

ence/Division for Logic, Methodology and Philosophy of Science, from the Deutsche 

Forschungsgemeinschaft, from the Land Schleswig-Holstein, from the City of K ie l ,  and 

from the firms Siemens AG and AEG-Telefunken. A part of the conference was financed 

as "Tagung Uber Modelltheorie" by the St i f tung Volkswagenwerk. The University of Kiel 

provided the lecture hal l  and supported the conference in other helpful ways. 

182 people from 17 countries took part in the conference. The Organizing Committee 

consisted of the undersigned from Heidelberg (G. H. M.) and Kiel (A. O. and K. P.). 

The Summer Ins t i tu te  (17th July to 31st July) was mainly devoted to series of lec- 

tures, the Logic Colloquium (1st August to 3rd August) was devoted to inv i ted lec- 

tures and contributed papers. S. Kochen dedicated his course to the memory of A. Ro- 

binson. The fo l lowing courses were given during the Summer Ins t i tu te  (the f i r s t  six 

courses were 8 hours each, the last  two were 4-hour courses): 

W. Boos (Iowa Ci ty) :  An out l ine of the theory of large cardinals. 

J. Flum (Freiburg): F i rs t  order logic and i ts  extensions. 

S. Kochen (Princeton): The model theory of local f ie lds .  

D. Prawitz (Oslo): General proof theory of f i r s t  and higher order systems: Normal- 

izat ion of proofs. 

W. Richter (Minneapolis): Inductive de f in i t ions .  

D. Scott (Oxford): Lambda calculus: Models and appl icat ions. 

J. E. Fenstad (Oslo): Computation theories: An axiomatic approach to recursion on 

general structures. 

R. B. Jensen (Bonn): The solut ion of the gap-2 case of the two cardinal problems. 

During the Summer Ins t i tu te  and the Logic Colloquium there were inv i ted lectures by 

W. W. Boone (Urbana), W. Boos (Iowa Ci ty ) ,  F. Drake (Leeds), K. Gloede (Heidelberg), 

S. Gr igor ie f f  (Paris),  C. Imbert (Paris),  P. Krauss (New Pal tz) ,  F. von Kutschera 

(Regensburg), A. Mostowski (Warszawa), H. Rasiowa (Warszawa), and E. Specker (ZUrich). 



IV 

On Friday, 2nd August, there was a symposium on proof theory organized by J. D i l l e r  

(MUnster) to honour Kurt SchUtte on the occasion of his 65th bir thday with lectures 

by J. D i l l e r  (MUnster), H. Luckhardt (Frankfur t ) ,  D. Prawitz (Oslo) and G. Takeuti 

(Urbana). In addi t ion 28 papers were contr ibuted to the congress, some of them are 

included in th is  volume (Adamowicz, B~rger, Flannagan, F i t t l e r ) .  

These proceedings contain lecture notes of courses and inv i ted  and contr ibuted papers 

as they were made avai lab le  by the authors. Jensen and Richter decided to subst i tu te  

another paper for  the one actua l ly  read at the conference, The paper of Devlin is 

included since he o r i g i n a l l y  agreed to give an inv i ted  lecture but f i n a l l y  was not 

able to attend the congress. 

Papers on proof theory dedicated to Kurt SchUtte are published as a separate volume 

of these proceedings edited by J. D i l l e r  and G. H. MUller. 

G. H. MUller 

A. Oberschelp 

K. Pot thof f  

The f i r s t  inv i ted  lecture of the Logic Colloquium was ~iven by professor Mostowski, 

president of the Division for  Logic, Methodology and philosophy of Science. When the 

ed i t o r i a l  work on th is  volume was almost f in ished,  the edi tors  were dismayed to hear 

of the sudden and untimely death of Professor Mostowski. We want to express how deep- 

ly  we admired and respected Professor Mostowski, both as a man and as a scholar who 

st imulated the science of log ic  fo r  decades and who made so many deep contr ibut ions 

to i t .  
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An observation on the product 

of Silver's forcing 

Zofia Adamowicz, Warszawa 

It can be shown that if ~ is the Sacks notion of forcing, 

is a countable standard model of ZF + V = L and G is generic over 

x ~ and M, then 

it is well known that if G is generic over ~ and M then 

i.e., there is a miniaal degree of constructibility in MgG]. 

So forcing with the product ~ x ~ gives the following image 

of the degrees of constructibility: 

(note that G I, G 2 are generic over ~ ). 

A natural question that arises is whether for any ~ giving a 

mlnizal degree of constructibility it is true that ~ x ~ gives the 

above image. 

This paper gives a partial solution of this problem. It is shown 

that the product of Silver's forcing does not give the above image 

even if only the degrees of constructibility of reals are considered. 

But Silver's forcing does not satisfy the whole assumption; it 

is known only that it gives a minimal degree in the sense of ~sals, 

i.e., 

for a generic G. 
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Thus the hypothesis in question, weakened to the case of real 

numbers, is not true. 

Let 

F 

be Silver's notion of forcing, i.e~, 

~o~ ~ ~C0 ~ c0- ~o~o~ is infinite 

L c L c_p 

We shall define an element ~ of M ~-~ (the Scott boolean model where 

the boolean completion ~ x ~ of ~ x ~ is taken as the algebra) 

such that for any G generic over M and ~ x ~ the following holds 

in MLG]: 

To show (~) it is enough to show 

because if we had iG(x)~ LEG2] , then we would obtain G2~ LfiG(X) ] 

by the properties of Silver's forcing. 

In order to define x_~ let us introduce the following definitions: 

Def. I. 

We shall define a subset A n of 2 n x 2 n. Let ~s, t~ ~ A n < > 

I) ~ s(m) is even 
m~ n 

or 2) t (n- I) = I. 

Def. 2. 

Let s E 2 n- Then s E ~ 

Let p ~ ~ . Let Ps = p ^ s, where A denotes the greatest 

lower bound in ~ . Let ~ , G, GI, ~2' ~ be element of M ~ ~ with 

the usual meaning. 

Let @ be the least element in ~x ~ . Sometimes it will 
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denote a least element added to~ . 

Def. 3~ 

Let x ~ M be defined as follows: 

dom ~= n : n~LD 

~s, t~ ~ Ant 4 

where ~ denotes the boolean union in ~ x ~ (assume ~ x ~  ~• 

Remark. 

Let G be generic over ~, ~ x ~ . Assume that G is an ultra- 

filter in ~ x ~ , according to the boolean symbolism. 

Let 

tG1 = ~n~O~ : (Ep)GI (p(n) = 1)~ 

tG2 = ~ n~O0 : (Eq)G2 (q(n) = I)~ . 

Consider i G (x_) 

iG(x)_ = ~n~00 : (E~s,t~'JAn+1 ( ~s,t~ ~ G) . 

Notice that: 

~s,t~ G and ~s,t~ ~ An+ I 

< > ( ~ s(m) is even or t(n) = I) and ~s,t~ E G. 
m~ n+1 

% the number of m's belonging to n+1 such that s(m) = I is even 

or t(n) -- I and ~s,t~ G 

~ the number of m's belongii~g to n+1 such that s(m) = S is even 

or t(n) = I and s E G I and t ~ G 2 

~ the number of m's less than n+S belongin@ to ~GI is even or n 

belongs to tG2. 

So iG(x _) = tG2 ~J ~n " (n+1) ~ tGs is sven~ 

tG2 plus "every second element of tG1". 

Now we shall prove two lemmas, leading to the proof that 
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i~(~) r s [%~. 

Lemma I. 

For any ~p,q~ in ~ x ~ there are such n ~CO and s', t I, 

and that t 2 ~ 2 n+1 that Ps ' qt1' qt2 ~ 0 and t I ~ n = t2 ~n 

<s',tl~ ~ An+ 1 < > <s l,t2~ ~ An+ l- 

Proof. 

Let m, n be such that m ~ domp and n ~ domq and m ~ n+1. Let s, 

t be such that s G 2n+I - ~m}, t ~ 2 n, p A s ~ , qt ~ ~ * Then 

S'0 = Z s ( ~ ' )  ,s ~ ~ ~ = 7 4 ( m ' ) - ~  ,~ o 4 4  

Thke the value which is odd. Let it be S o . Now take s lE 2 n+l such 

that, for m I =~ m, s I (m I) = s(m ~) and s I (m) = O. Then ~ s~(m) is 

odd. 

Consider t I, t 2 such that t ~ t I ~ t 2 and t 1(n) = 0 and 

t2(n) = 1. 

Then <s ~ ,t1~ ~ An+ 1 <---> ~s~,t2~ ~ An+ 1 and Ps ' qt1' qt2 # (D , 

Q.e.d. 

Lemma 2 .  

Let ~ ~ ~ P~ be such that 

which means that ~ satisfies in ~ the formula "to be FZ[w~" 

with the parameters ~ and G~ substituted for z and w respectively, 

where F is GSdel's enumeration of constructible stes. Then for any 

in ~> and for any n 

and 
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Proof. 

Assume that ~P'q1> l~ ~ ~ ~ and take an arbitrary G generic 

over ~ • such that ~P'q2~ ~ G. 

that G I : G I and ~P'q1> ~ G'. Then 

So n ~ F~ [GI]. Thus we have 

r~ s ~ n ~ F~ C G ]  i . e . ,  

IV1 EG-] ~- ~ ~ c G. ( '~)-  

To prove the second equivalence and the inverse implication use the 

same argument. 

Lemma 3. 

For any generic G 

1'4 EG]  ~ ~16- (~-) ~ L CG~I 

Proof. 

We shall show that the set 

Take another generic G such 

is dense for any ~ in On ~ M where ~ is the same as in Lemma 2. 

Let us take an arbitrary ~p,q~. Now take n, s I, ~1, 4 2 as in 

Lemma 1. Then we have 

or conversely. Assume that the above statement is true. Then the 

following is possible: 
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o~ 

or 

In each case there is an r ~ ~ps~q~1 ~ such that r I~- n C- ~ or 

there is an r ~ps ~ , qt2 ~ such that r ~ n ~ 6 Y . This r is 

stronger than ~p,q~ and belongs to D E . So far any 

for any ~ . Q.e.d. 

Now she shall prove two analogous lemmas leading to the proof 

that G 2 ~ L JiG(x=)3 . 

Lamina 4. 

For any ~p,q> there are n, s;, tl, t 2 ~ 2 n+ll such that 

P8 ' qt1' qt2 ~ G and <s ~,t1~ ~ An+ I and <s ~ ,t2>~An+ ~ and 

tl ~n = t2~n and t 1(n) ~ ~2(n). 

Proof. 

%~e take m, n, s, t in the same way as in Lemma I. Let So, S I 

mean the same as in Lemma ~. Now we take the value which is even. 

Let is be S I. 

Let us now take s i ~ 2 n+1 such that, for m ~ ~ m, s I (m ~) = s(m') 

and s I(m) = I. 

Then 7- s ~ (m t) is even. 

m t~ n+1 

Consider tl, t 2 such that t C t I /~ t 2 and %1(n) = 0 and t2(n) = I; 

then 

~s,tlb E An+ I and <s,t2~ ~ An+ I . 
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L emrn8 5e 

Let Z g R~ ~J-~ be such that 

Then the following holds: 

for any ~p,q> , if s ~ , t 1, t 2 are as in Lemma 4, then for any m 

Proof. 

Assume ~Ps 'qt1~ IF ~n 6 Z. 

Take an arbitrary generic G such that 

Now consider an automorphism ~ of ~• ~efined as follows: 

where domq ~ = domq and for m ~ domq, m ~ ~, 

ql(m) -- q(m) 

and ql (n) = 1-q(n) if n ~ domq. Then 

~( < P s , , q t l " # ) =  <ps,,qt2b 

Taken an ultrafilter G t in ~• containing ~'+(G ~ ~I~ ). 

I . 
Then G is generic. 

We shall show that iGt (x) = iG(x_~. Indeed 

v G ~ x(m) ~ ~ <s,t~ ~ G' 

for some <s,t~ belonging to Am+ I. 

i G ~ ~s, t~ But <p~,qt1~ ~ G, and so x(m v) ~ ~--~ ~s,t~G ~ 

belonging to Am+ 1 and such that s ~ s I or s ~ ~ s and t ~ t I or 

t I ~ t (otherwise <Ps ~ ,qtl~ A ~s,t~ = (~). 

But <s,t~ ~ G' 4r-~ ~-~ ~s,t~)= <s,t'~ ~ G. Now 

notice that t and t' differ at most at n, and s ~ n+~ = sl' and 

s +(m ~) is even, and, for any m, ~ s(m ~) is the same for 
m ~ ~ net m~E m 
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So we haMe 

Thus 

<s,t~ and 

Z. Adamowicz 

~s,t~> �9 

<s,t~ ~ Am§ I ~ ~s,t~ ~ Am+ I . 

~ps,,qt1~l~ ~ ~ ~we infer that 

for an arbitrary G containing ~ps~,~t2 ~ . 

v 
m % y and the inverse implication 

~(~) 4 G' 4-~ x(~) ~ G. 

Hence iGl (x) = iG(x) .  

From the assumption 

m ~ iG~ (V). 

so ~ ~ ~ [~(_x)] 

Thus <Ps' 'qt2> I~ m ~ Z. 

The case where <Ps''qtl~ (~- 

is treated similarly. Q.e.d. 

Lemma 6. 

Por any generic G, 

M[G~ ~ G 2 ~ L JiG(x) ~ . 

Proof. 

We shall proceed as in Lemma 3. Let 

where ~is such that M ~ ~= F~ 

the real tG 2. We shall show that D E 

Let ~ p , q >  ~ ~ 

Take n, s I, tl, t 2 as in Lemma 4. 

Then we have 

C ~] and tG2 is the "name"for 

is dense. 

The following is possible: 
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or 

or 

I) <Par ,qt1~ I~ 

2) < PS' 'qt1> {~- 

3] <Ps' 'qt1> 

In each case there is an r 

there is an r ~ ~Ps''qt2 

< z ana <Ps ,qt2J I~- ~ ~ Z 

n ~ ~[ and <Ps' '~t2> ~ n ~ ~[" 

<<Ps''qt1> such thatrl~ ~Zo= 

such that r I~- n ~ ~.. Consequently, 

r ~< <p,r an~ r ~ o~. So for an~ E 

~P,q> = <P,q> I~ tG 2 + ~ 

is dense. Thus m [Q] ~ Q2 r ~ [-i~(~_)]. Q.e.d. 



RECURSIVELY UNSOLVABLE ALGORITHMIC PROBLEMS AND 

RELATED QUESTIONS REEXAMINED 

Egon B~rger 
Istituto di Scienze dell'Informazione 

Universit~ di Salerno 

Salerno / ITALY 

Introduction. This paper starts by defining inductively a particular 

kind of formal systems M (see RSdding C1968:200-2023 ) and then shows how 

these systems represent frequently used combinatorial systems such as register 

machines (as introduced by Minsky [19612 and Shepherdson and Sturgis C1962~), 

Semi-Thue, Thue, Post normal systems and Markov algorithms (see Malcew [19743 ) 

when interpreted in a natural and straight-forward way avoiding any compli- 

cated gSdelizations or simulation tricks as still used in the literature on 

this subject. The intention is that the proofs should be elementary, short and 

at the same time complete, and it seems that without proving really anything 

at all which would not be trivial or immedeately clear (when adequately formu- 

lated), one gets from only basic facts about the class of partial recursive 

functions a) the equivalence between partial recursive and register machine 

computable functions, Kleenes normal form theorem and some characterizations 

of the class of partial recursive functions by a simple basis and closure 

Operations of the type proposed in Eilenberg and Elgot E 19702 , b) Minsky's 

C19612 theorem about universal 2-register machines, c) the creativity of 

the general (and the special) word and halting problem for (some) 2-register 

machines, Semi-Thue and Thue systems, Markov algorithms (without concluding 

rules) and Post normal systems and finally the creativity of (the class of all 

formulas derivable in) classical first order logic with equality (using only 

a small portion of some correct axiomatization of it.) In the meaning of the 

author the method gives strong evidence of the fruitfulness of inductively 

defined computing devices with only a few closure operations such as concate- 

nation, case and while operations, at least with regard to theoretical questions 

about computability. 
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@I. Re6ister machines and recur sire functions 

Let us start by defining, following RSdding [1968: 200-202] , [1972] 

n-register operators inductively by a. resp. s. ( +I resp. ~I in regi- 
S J 

ster j ), M I M 2 (apply first M I and then M 2 to the result of M I ) and 

iteration (M) . of M until the register j has become empty, where I~ j~ n. 
J 

For technical reasons we follow the approach advocated in Eilenberg and Elgot 

[ 1970] and take the n-register operators as partial functions from n-tuples 

of numbers into n-tuples of numbers, i.e. strictly speaking the n-register 

operators form the smallest class of functions which contains the initial func- 

.. , ~x I. .Xn(X I ,xj~1 ,x n) for tions aj:= ~x I .Xn(Xl,...,xj+1 ...,x n) , sj:= �9 ,... ,... 

I~ j~ n and is closed with respect to the substitution gf of a function g 

into another f and to the iteration of a function until the first component 

becomes 0 . But we recommend the reader to think about these operators as 

computing devices which transform the content of their registers (i.e. their 

arguments) in the indicated way (into their values). The intuitive background 

of (and the jargon about) computing machines makes it extremly easy to grasp 

the simple ideas underlying the following constructions. (In particular we make 

free use of the usual terminology about register machines.) 

Lemma I. One can construct to every n-register operator 

operator M "simulating" it by 

(xl,...,x n) ~ (yl,...,yn) iff 
M 

and the stop condition: 

.. ~ Stop (Xl,...,Xn) ~ Stop iff <Xl,. ,Xn>,O,O 
M 

for all numbers 

M a 3-register 

<xl . . . . .  xn>'O'O ~ <Yl . . . . .  Yn > ' ~ 1 7 6  

xl,...,Xn,Yl,...,y n . 

( <Xl,...,Xn> denotes the codification of the n-tuple Xl,...,x n 

into a number with (<xl,...,Xn>)i = xi+ I for 02 i< n . Let us take for ex. 

the usual prime number codification.) For the proof of Lemma I one defines 

for every number k the 3-register operators: 

Mult [k] := (s I a~) I (s 2 al) 2 ("multiply the first register by k ") 

Div [k] := (s~ a2) I (s 2 al) 2 ("divide the first register by k ") 
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f x,O,1 if k divides x 
Test [k] with: x,O,O ~ ~x,O,O otherwise 

Now one defines M by induction on M with 

~ :: Mult [Pj_1] , ~ := Test [Pj_l] (s 3 Div [pj i] )3 M1M2:= M1 M2 3 J - , , 

(M-~j := Test [Pj_l] (s 3 M Test [Pj-1] )3 . The following 3-register operator 

Test [k] is due to my student G.d'Amico and improves an own construction with 

4 registers. The idea is to calculate the difference d between the number 

x in the first register and the smallest number bigger than or equal to x 

and divisible by k: x 0 0 ~ 0 x x ~ x+d O x ~ d x 0 ~ d x I ~O x 1 if klx 

[ O x O else 

k k 
Test [k] := (s I a 2 a3) 1 (s 2 al) 2 (s I s 3 a2) 3 a 3 (s 3 Sl) 1 (s 2 al) 2 

(In the appendix is shown that reduction to 2-register operators is no more 

possible.) 

Corollary 1. The class of register operator computable functions 

coincides with the class of partial recursive functions. 

Proof. To show the register operator computability of all partial re- 

cursive functions is just an easy exercise. For the other direction it is con- 

venient to use the inductively defined structure of register operators (see 

Cohors-Fresenborg [1973] ). By lemma 1 it is sufficient to define for every 

3-register operator M a partial recursive function fM such that M(x,y,z)= 

=(a,b,c) iff fM(<X,y,z>)=<a,b,c> for all x,y,z,a,b,c , because then every 

function g computable by a register operator M in the sense of 

Xl,.-.,Xn,O,...,O g(xl,...,Xn),Xl,...,Xn,O,...,O admits the partial recur- 
M 

sire description 

g(x I ..... x n) = ((f~(<<x I ..... Xn)>))o) o 

Observe that every 3-register operator can be obtained from a=a I , 

s=s I and p:=kxyz(y,z,x) by composition and iteration (M)=(M) I restricted 

to the first register. Define therefore inductively the partial recursive func- 

tion fM by: 

fa(U):= <(U)o+1,(u) I,(u)2> 
fs(U) := <(U)o~1,(u)1, (u)2) 

(1) f (u):= < (u ) l , (u )2 , (u )  > p o 

fMN(u):= fN(fM(u)) 
u if (u) =0 

o 

f(M) (u):= f(M)(fM(u)) otherwise 
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(The last equation could be described more explicitely as substitution 

' of fM defined by f~(u,O):=u , of the P-operator into the iteration fM 

f~(u,n+l):= fM(f~(u,n)) and f(M)(U) = f~(u,Py(f~(u,Y))o=0 ). ) 

From Kleene's first recursion theorem it is clear that the equations (I) 

define a universal partial recursive function f = ~Mu fM(u) of two arguments 

so that one has obtained a normal form theorem. But this can be shown from more 

elementary facts about partial recursive functions without using the recursion 

theorem. Since every 3-register operator M can be decomposed uniquely into 

a finite sequence M = e ...e of symbols (elementary operators) from (,),a, 
o n 

s,p , g~delize ~:= ~o ..... ~n ~ with ~:= 2 , ~:= 3 , ~:= 5 , ~:= 7 , ~:= 11 

and define two primitive recursive functions f and e such that for all 3-re- 

gister operators M and all u,y one has: 

f(M,u,y) = (codification of the) result of y steps of computation 

by M started with input (codificated by) u 

e(M,u,y) = (GSdel number of) that elementary operator in M which 

will be executed in step y of the computation by M 

started with input u 

One can define f and e by a straightforward simultaneous recursion, without 

any need to analyse register operators as register machines as defined originally 

in Minsky [1961] by program tables of elementary instructions (see RSdding 

[ 1972a] ): 
f(k,u,O) = u , e(k,u,O) = (k) 

o 

f q ' ( f ( k , u , y ) )  i f  e ( k , u , y )  = A  ~ ( A , a , a }  

f(k,u,y+1) = f(k,u,y) else 

with a primitive recursive q' such that q'(<a,b,c~) = <q(a,b,c)) . For the 

description of the correct transfer from the zero test by a left parenthesis 

"("to the corresponding right one")" and vice versa in case the first register 

is resp. is not empty, one needs to look only at the next corresponding paren- 

thesis to the right resp. to the left such that between these two, the number 

of occurences of "("equals that of")". So introduce the primitive recursive 

auxiliary functions L(M~j,z) = number of occurences of "("in M between (~)j 

z 
and (~)z (if j~z) = ( H (~)i)o and the same for R(M,j,z) with right 

i=j 
(M).=2 
-- i 

parenthesis and define: 
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(k)r+ 

e(k,u,y+l)=l(k)l+ 1 
L ( k ) j + l  

if e(k,u,y)=(k)j=~, (f(k,u,Y))o=O and r=pz(L(k,j,z)=R(k,j,z)) 
j~k 

if e(k,u,y)=(k)j=~,(f(k,u,Y))o~O and l=maxz(L(k,z,j)=R(k,z,j)) 
zsj 

if e(k,u,y)=(k) . else 
3 

Therefore every partial recursive g admits the description g(x) = (f(M,x, 

py e(M,x,y)=O)) ~ for a 3-register operator M computing it, so we have proved 

the existence of a universal 3-register operator (computing f) in the form of: 

Corollary 1'. Kleenes normal form theorem. 

(For another interesting way of transforming equations (1) into a partial 

recursive scheme to obtain Kleenes normal form theorem see Ottmann [1974] �9 

See also Cohors-Fresenborg [1974: 75-77] �9 ) 

By lemma 1, every partial reeursive function f(n) is computable by a 

n+2 -register operator M which transforms an arbitrary input (Xl,...,XnO,O) 

into the output (f(xl,...,Xn),O,...) if any - by making intermediate cal- 

culations using its auxiliary registers Rn+ I and Rn+ 2 . Obviously this could 

be analysed in the algebraic fashion as introduced by Eilenberg and Elgot [1970]: 

the function 0 without arguments and constant value zero describes the intro- 

duction of a new (auxiliary) empty register, whereas to apply the left projection 

function L with L(x,y) = x corresponds to the inverse operation of throwing 

away one register (with arbitrary context x, but used essentially only for x=O ); 

the fact that an elementary register operator operates only locally, that is to 

say on one or only a few (adjacent) registers is reflected by considering opera- 

,, cf = tions of '[left cylindrificatlon = idxf and "right cylindrification" fc 
CCC CC 

= fxid of a given function f. For example the 6-register operator a4= a 
CCCCC 

the 7-register operator s2=Cs with a and s here and in the following or 

taken as i-register operators. In presence of the operations of cylindrification 

we use p for the permutation p(x,y) = (y,x) and Perm to denote an arbitrary 

permutation function (which one could always be reconstructed from the conte:t 

but this isn't of any interest, as it is of no interest to indicate always the 

correct number and types of cylindrifications.) 

Now Lemma I expr@sses clearly some characterization of the class of all 

partial recursive functions by means of a small (finite) basis and a few closure 

operations including Minsky's [1961: Theorem ll.a] ; using the language intro- 

duced above Lemma I reads now: 

Corollary 2. The class of all partial recursive functions is characte- 

rized by the basis a,s,p and the closure against substitution, cylindrification 

and iteration ( ) restricted to the first argument. 
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Indeed one has to check only that coding and decoding can be realized 

with 3-register operators, just another trivial exercise in programming: for 

every k , the 3-register operator E [k] does y,O,x ~ y'(kx),o,o with 

E[k] := (s 3 Mult [k] )3 ' and D [k] computes kx,O,O ~ O,O,x by 

D [k]:= s I (a I Div [k] a 3 sl) I . The rest is Perm. 

As one sees here, treatment in terms of machines may cut down long chains 

of algebraically expressed complicated equations to a few simple programming 

tasks. For another such immediate application of lemma 1 consider the following 

variants of the "repetition operation" ( ) : (M)', (M)'' and (M)''' ask to 

repeat application of M until the first argument becomes zero and then to 

cancel this argument resp. until the first two arguments become equal resp. 

this followed by cancellation of those two arguments. If C is a class of func- 

tions, denote by C ~ , C' etc. the closure of C against composition, cylindri- 

fication and iteration ( ) resp. ( )' etc. . One can now reformulate corolla- 

ry 2 in these terms obtaining the theorem of Germano and Maggiolo-Schettini 

[ 1973] as 

Corollary 2'. The class of all partial recursive functions is contained 

in the classes {a,s,O,L} 0 , {a,s,O}' , {a,O,L}'' and {a,O}''' 

Indeed the only thing to verify is that a,s,p and ( ) can be ob- 

tained. (Remember that 0 provides for a new empty register whereas L elimi- 

nates one.) In the first case, one has to program p: xy ~ yx : create a new 

third register, put x into the third one and eliminate the now empty first 

register, i.e. p = cc0 (s I a3) I L c . Since L is used here only to eliminate 

empty registers, it can be dispensed with in presence of the modified iteration 

( )' , and this concludes already the second case because (M) can clearly be 

simulated with ( )' by providing for a new empty register (untouched by (M)' 

via cylindrification) in substitution of the one lost at the end of the iteration. 

In the third class one starts with an obvious program for p : create a new first 

and fourth register, then add to those until the first two become equal and 

finally eliminate the first two, i.e. x y ~ 0 x y 0 ~ x x y x ~ y x ; 

00 (ala4)" LL 

for s , compute ~0 00 if x=O 
x ~ 0 x 0 ~ ~ ~ ~ x~1 and finally [ oo (a1(ala3)")" x x x~1 if O~x LL 

(M) can be simulated canonically by the computation x... ~ Ox... ~ ~ 00 
0 (LMO)" --- 

(M)(x...) . As L has been used again only for empty registers, once more 
L 

one can define p and s in the fourth class as before with ( )''' instead 

of ( )'' and without L , and for (M) one can write the obvious program 
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0 ( ~(a)~''M 0 )'''0 computing x... ~ 0 x.~ 0 0 x... 
0 0 

x... ~ M(x...) etc. 
(al)''' M 

w 2-resister machines and symbol manipulating systems. 

In this paragraph we want to show how the actions of register operators 

can be viewed in a natural way as symbol manipulations of standard combinatorial 

systems. To get an intellectually and technically most economical presentation 

of this it is convenient to make a detour by first simulating arbitrary register 

operators as in lemma 1 with 2-register machines in the sense of Minsky [1961]. 

A 2-register machine is a program table of a finite number of instructions 

i o i Pi qi with instruction numbers O~ i,Pi,qi~ (some) r and elementary ope- 

rations ois lal,a2,sl,s2,stop} , interpreted by: in state i , do o i and 

then go to instruction Pi ' if the register considered was not yet empty, other- 

wise go to qi " We assume without loss os generality that the zero test is 

done only in s-instructions (i.e. ~ = al'a2 ~ Pi = qi )' that stop-instructions 

have the form i stop i i and that the initial instruction is the one with 

number 0 . 

By lemma 1 it is sufficient to define for k= 2,3,5 a 2-register ma- 

chine Test [k] (just another exercise!) to have proved the existence of a 

universal 2-register machine, which we state here as 

Corollary 3- Minsky's [1961] theorem on the universality os 2-register 

machines for the class of all partial recursive functions. 

(A program for Test[~ is given for ex. by 0 s I I 4 , I a 2 2 2 , 

2 s I 3 5 , 3 a 2 0 0 , 4: (s 2 al) 2 a 2 stop , 5: (s 2 al) 2 stop �9 Of course we 

have used the abbreviating operator notation where possible, but as shown in 

the appendix, not the whole Test[k] could be written as 2-register operator. 

So the conditioned jump abilities of 2-register machines used in instruction 

2 of the above program are crucial for the reduction to 2 registers.) 

But now look what 2-register machine programs M are! M is a set of 

instructions (an algorithm) where each single instruction I. indicates how 
l 

one should transform a given M-configuration word + p i q + representing 

"internal state" i and contents p and q of the first resp. second register 

( + is an endmarker), eventually telling to stop. Taking numbers n as written 

down in the form I n of n consecutive occurences of the symbol I one sees 

that M is (and operates like) a semi-Thue system; to visualize this point just 

rewrite every I i with oi= a I as "rule" i ~I P• and every I i with oi= s I 
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as two rules li ~ Pi ' + i ~ + qi ' symmetrically for oi= a2,s 2 , cancel all 

stop-instructions and call M , when interpreted in this way, SM.S M is related 

to M by 

(2) + p i q + ~ + r j s + iff +i p il q + ~ +~r j is + 

M S M 

and there is nothing to prove because the two sides of the equivalence (2) only 

formulate from two apparently different points of view the same thing. By the 

way, S M is also a Markov algorithm - write M M instead of SM when thinking 

in these terms - related to M by (2) in the same way as S M , because M is 

deterministic and so at most one rule of S M can be applied to a configuration 

word +I p il q + , and if so then in only one place; by the way M M has no con- 

cluding rules. If you prefer to think in terms of Post normal canonical systems, 

just look at S M in this way adding the obvious two frame rules + ~ + , I ~ 

- call this System PM - and you will see immedeately that PM does really the 

same as M in the sense of (2), it only achieves it in a (microscopically) 

slightly different way. 

We conclude that by a close but natural inspection of what does mean 

the universality of 2-register machines achieved in corollary 3 one can obtain 

without effort - using eventually Church's thesis - a lot of the normal form 

and reduction theorems for semi-Thue, Post canonical systems and Markov algo- 

rithms which can be found in the literature (see for ex. Hermes [1965] , Mar- 

kov [19611 , Minsky [1967] , Post [1943] , Priese [1971] ). We limit our- 

selves to reformulate here corollary 3 in terms of combinatorial Systems: 

Corollary 3'. Semi-Thue systems, Post normal canonical systems and Mar- 

kov algorithms are universal. 

This contains in particular the recursive unsolvability of the general 

(and some special) word problems for (some of) the combinatorial systems men- 

tioned (read: of the halting problems of 2-register machines). Aiming at an 

application to the decision problem of first order predicate logic we extend 

' ' ' be SM' MM' PM this by a standard argument to Thue systems. Let SM ' MM ' PM 

resp. with the additional cancellation rules li ~ i , + i I ~ + i , + i + ~ + 

for every stop-instruction i stop i i of M and define the Thue system T M 

as S~ expanded by all inverse rules W k ~ V k of rules V k ~ W k in S~ . 

One now shows for every system QM in {S~,M~,P~,TM} : 

(3) @ p 0 q§ Stop iff +I p ol q + ~ + 

M QM 

Proof. For QM = S~, M~, P~ there is nothing to show by (2). For the 
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same reason for QM = T M there is nothing to show in the direction from left to 

right. For the remaining assume without loss of generality that the initial state 

cannot be reached from any state in the program of M (i.e. O occurs only in 

the instruction Io and po,qo # O ). Then if there exists a deduction from 

+I p OI q + to + in T M with at least one application of a rule from T M- S M , 

then there is one such deduction of the form Ao,...,An_I,An,...,A m with Aj# + 

for j< m and a maximal final part An,...,A m without application of (back- 

' Then one can shorten this deduction eliminating one ward) rules from T M- S M . 

application of a backward rule without affecting A ~ and A m in the following 

way: by the maximality of the final part, A must have been obtained from 
n 

An_ I by application of a backward rule W k ~ V k of a (forward) rule V k ~ W k 

in S M' . Since every Aj with j < m contains exactly one state symbol of M, 

A n must contain such a state symbol i introduced into it by W k ~ V k and 

An_ 1 the corresponding successor state symbol Pi or qi occuring in W k . 

Consequently one must have produced An+ 1 from A n by an application of the 

forward rule V k ~ W k because some forward rule has been applied (one is in 

r final part), at most one is applicable (by the monogenicity of the forward 

rules system S~ on configuration words) and V k ~ W k can be applied to A n 

as the inverse of the production W k ~ V k applied in going from An_ 1 to A n 

Therefore An_l = An+ I and the derivation Ao,...,An_1,An+2,...,Am derives + 

from +I p OI q + with one application of a backward rule less than in the ori- 

ginally given deduction. This procedure transforms a derivation of + from 

+I p OI q + in T M into a derivation in S~ , so that + p O q + ~ Stop by (2). 
M 

(3) being proved, one has: 

Corollary 4. There are Thue systems, Post normal canonical systems and 

Markov algorithms with creative word problem. 

Corollary 5- Church's [1936] and Turing's [ 1936] theorem about the 

creativity of the decision problem of first order predicate logic PL with equa- 

lity. 

It is indeed sufficient (see Rogers [1967: w Th.V(b)] ) to m-reduce 

the creative set K = {x I x~ Wx} to these problems: x~ K iff + 2 x O + ~ Stop 

(with a 2-register machine M enumerating K from corollary 3) iff + 12 x O + 

+ (by (3)) if~ the first order formula A ~ ~ ((u'v)'w= u'(v'w))^ A Vk= Wk-~ 
T M u v w k~l 
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-~ + 12x 0 + = + is derivable in PL, where Vk= W k (ks l) are all the defining 

relations of T M , �9 is a binary function symbol and the letters of the alphabet 

of T M are individual constants. The idea of this last equivalence is taken 

2 x 
from Malcew [1974: w : + I 0 + ~ + means that in every semigroup with 

T M 

a generator for every letter of the alphabet of T M and all the defining re- 

2 x 
lations of T M one can derive the identity of + and + I 0 + , and this is 

equivalent to the deducibility in PL of the above formula by the completeness 

theorem for PL. (But use of the completeness theorem could be avoided by proving 

by direct inspection (and constructively) the required equivalence between 

T M 

and ~ . Note that this very short and simple argument for corollary 5 needs 
PL 

only minimal knowledge about predicate logic, i.e. the fact that PL can be axio- 

matized correctly providing for some elementary laws about equality and sub- 

stitution. Surprisingly enough one needs not even Skolem's theorems on normal 

form and canonical term models as applied for the first time by B~chi [1962] 

and later in a still more simplified form by Aanderaa ~1971] and BSrger 

[1971] .) 

Appendix. 

For sake of motivation we want to indicate here why lemma I does not 

hold any more for 2-register operators. Define the depth of register operators 

by: d(ai)= d(si)= 0 , d(MN)= max(d(M),d(N~,d((M)i)= d(M)+1 . Without loss of 

generality assume for reason of short formulation that every M has only one 

stop-instruction, namely I 
r 

Lemma2. For every positive natural number n and every 2-register 

operator M of depth n there exist k,l,m such that either for all x,y,a,b 

holds 
x O y ~ a r b ~ as m.(x+y), b= k 

M 

or for all x,y,a,b holds 

x 0 y ~ a r b ~ a= k, bs m.(x+y) 
M 

Proof by induction on n . For n= 1 show the assertion first for ite- 

ration operators M = (N) because the general assertion then follows trivially - j 

by induction on the length m of the concatenation MI...M m of elementary or 

iteration operators M i of depth I. Rearrange N in such a way that N ~ N I N 2 
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with N. consisting only of a. and / or s. (suboperators a.s. can be 
i 1 1 ii 

eliminated). Then one needs considering only N 5 s T s~ a2 for j: I or 

N ~ s~ a T s~ for j = 2 with 0 < p (otherwise set k = O, m= I), where one can 

set k= O, m= s . In the inductive step again it is sufficient to prove the asser 

tion for iteration operators M ~ (N) of depth n+1 . Case I: j = I. If the 
J 

first clause of lemma 2 holds for N , then M(x,y) is either undefined or 

equal (O,y) if x= O and (O,k) if O < x . If the second clause of lemma 2 

holds for N , then M(x,y) is either undefined or with first register = O 

and second register = y if x = O or ~ m.(x+y) else. In both cases therefore 

lemma 2 holds for M . Case 2: j = 2 is symmetric to case I. 

Remember that ~Apg~MHb[1963] has established the impossibility of 

calculating all partial recursive functions f by 2-register machines M with- 

out some codification in the sense of x,O ~ f(x),O if f(x) is defined and 
M 

M(x,O) undefined else. 2-register machines are universal only modulo some co- 

dification of input and output of the type obtained in corollary 3 (2 x ~ 2f(x)). 

The limitations expressed for 2-register operators by lemma 2 should therefore 

give no argument against the normalization imposed on register machine programs 

in restricting attention to the special ones defining operators, because in so 

far as one is concerned with computability without non linear coding, the two 

concepts of register machines and of register operators coincide extensionally 

by lemma I, especially corollary I. 

We want to conclude by demonstrating the flexibility of the register 

operator concept still from another point of view which may interest if one 

does not wish to abandon the concept of Turing machine computability as excellent 

motivation for the Thesis of Church. It is indeed possible to show that all 

Turing computable functions are partial recursive without being condemned to 

the introduction of complicated gSdelizations of Turing tables and tape trans- 

formation functions (see for ex. Yasuhara [1971: 5.3-] or R~dding [1972.a: 

45-49 ] ) by gSdelizing only the Turing tapes f in a natural way by two numbers 

if, rf representing the left and right part of the tape (determined by the 

position of the scanned cell) and then performing the operations of a Turing 

machine M on f by a corresponding register operator M on if, rf . The 

proof outlined here is an adaptation of the idea introduced in R~dding [1972.a: 

Satz 6.3.] for simulation of arbitrary register machines by register operators. 

To be explicit, code a tape f= ...a a .... a a .... a. a ... by 
o ip --I O 3o jq o 

if: = <i O ..... ip> and rf:= <Jo ..... jq> and code for an arbitrary Turing ma- 

chine M with alphabet ao,...,a n and instructions i k oi, k j 40 ~ i,j ~ r) 

for some number s (to be specified) an M-configuration (i,f) of internal 

state i and tape f by the register constellation 
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(i,f)':= if,rf,O,...,O,1,0,...,O,1,0,...,O 

of a s+5+r-register operator with the first indicated copy of I in register 

Rs+ 4 and the second in Rs+5+ i . The register operator computability of Turing 

computable functions follows from the following 

Lemma 3. For every Turing machine M with r+1 states one can con- 

st~uct a number s and a s+5+r -register operator M such that for all M-con- 

figurations (i,f), (j,g) holds: 

(i,f) ~ (j,g) iff (i,f)' ~ (j,g)' 
M 

and 

(i,f) ~ stopconfiguration with tape g iff M((i,f)') = 1 ,rg,O... 
M g 

Proof. Let M be as above with elementary operations Oi,kS {right, 

left, print al,stop} and without loss of generality stop state r (i.e. "stop" 

occurs in the whole instruction sequence r k Or, k r of the internal state r 

with ks n and only there). The simulation of M by M is done step by step, 

so we define for is r an iteration operator M i= (M[)s+5+ i such that for 

i< r: (i,f) ~ (j,g) by one step iff M ((i,f)') = (j,g)' and for i= r: 
M i 

Mr((r,f)') = If,rf,O,...,O, because then one can define M by 

M:= as+ 4 as+ 5 (Mo'''Mr)s+ 4 

Define Mr:= (Ss+ 4 Ss+5+r)s+5+ r . In M!l for i< r one has first to 

calculate from R I which letter a k M is scanning at this moment by putting 

I into Rk~4(with RI,...,Rn+ I empty). Then the correct one of the subopera- 

tore M~ M~ of M' namely M k I "'" i I ' i ' is put into action simulating the tape 

transformation oi, k and the call of the successive state j by M . One needs 

5 auxiliary register operators C,D,m,~,L having the following effect: 

x,O .... ~ <x>,O .... ("Coder") 
C 

x,O .... ~ X,(X)o,O ,... ("Decoder") 
D 

x,y,O,... = x.y,O,... ("multiplier") 
m 

<x I ..... Xn>,O .... ~ <O,x I .... Xn>,O .... ("set free the component 0") 

<y,x I ..... Xn>,O .... ~ <x I ..... Xn>,O .... ("eliminate the left component0 
L 

Such operators do exist because they compute some particular recursive function 

(see corollary 1). Now define s as maximum of n+1 and of the number of re- 

gisters used by these five operators and define M!l by: clean Re+5+ i , store 
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away rf from R 2 into Rs+ 2 , calculate k (by D) and store it in Rs+ 3 , 

store if from R 1 into Rs+ 1 ; now using the information k in Rs+ 3 add 

M~ . Mn written down in formu- I to Rk+ 1 cleaning Rs+ 3 and then apply I "" i ' 

= )s+5+i ! of the following operators: lae M i (M~ with the concatenation M l 

Us+5+ i (s 2 as+2) 2 D (s 2 as+3) 2 (s I as+l) 1 

a I (Us+ 3 s I a 2 (Us+ 3 s 2 a 3 (-''(Us+ 3 s n an+l)s+3"'')s+3)s+3)s+3 

M? ... MV 
1 I 

There remains the construction of M k (N~)k+ 1 to describe the operation o. 
i = z,k 

of M on the tape if,rf and its call of the successive state j of instruc- 

tion i k oi, k j . Case I. oi, k = a I : Clean Rk+ I , bring the left half of the 

tape <k .... > from Rs+ I back to RI, compute <k,..~ ~ <...> ~ <0 .... >,0... 
L 

<0 .... >,21,0,,, ~ <I .... > and then bring back the unchanged right half of 
m 

the tape from Rs+ 2 into R 2 and call for the successive state j by as+5+ j 

21 
i.e. Nk.= ( a I L ~ a 2 

i" Sk+l Ss+1 )s+1 m (Us+ 2 a2)s+ 2 as+5+ j 

Case 2. oi, k= left: clean Rk+ I , bring the right half <...>= rf of the tape 

from Rs+ 2 to R I , compute <...> ~ <0 .... > ~ <0 .... >,2k,o .... m~ <k .... > ,01-.. 

store the resulting right half of the new tape g from R I back into Rs+ 2 , 

call if = <k .... > from Rs+ I to R I , compute <k .... > ~ <... > , bring the 
L 

new r back into R 2 and call for j, i.e. 
g 

2 k 
N k ( a I @Za 2 m (s I a I L a i = Sk+1 Us+2 )s+2 as+2)1 (Ss+l )s+1 (Us+2 a2)s+2 s+5+~ 

Case 3. oi, k= right : clean Rk+ I , take rf into R 1 , calculate the index 

of the left most letter say a I in rf by D and store it away in Rs+ 3 . Now 

transform rf= <l,...> into rg= <...> by L and store rg for the moment 

away into Rs+ 2 . Change 1 in Rs+ 3 into 21 , recall lf= <...> from Rs+ I 

into R I and transform it into <0 .... > by ~, then into <l .... > by m 

with 21 from Rs+ 3 . Finally bring back also Rs+ 2 into R 2 and call for j . 

Lemma 3 is proved, therefoze by corollary I all Turing computable 

functions are shown to be partial recursive. The inverse is very readily estab- 

lished if one simulates a,s,p , concatenation and ( )1 by Turing "operators" 

applying corollary~.So we have given a complete proof for 
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Corollar~ 6. The classes of Turing computable and of partial recursive 

functions coincide. 
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The natural office and s spiration of thought is to 

understand; but a reality that is infinite is neces- 

sarily unintelligible. "For want of having contem- 

plated these infinities, men have set forth rashly 

upon the investigation of nature, as if there were 

some proportion between it and them." But after 

they have once truly faced the immensity of even the 

physical world, they must inevitably be plunged into 

"an eternal despair of ever knowing either the begin- 

ning or the end of things;" they will be certain only 

that no. . assurance, no solid knowledge is attainable 

by them through the use of their natural intellectual 

powers .... 

- Pascal, paraphrased by Arthur Lovejoy 

L'$ternel silence de ces espaces infinis m'effraie. 

- Pascal 
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0. Introduction 

This introductory section provides a brief sketch of the minimal 

theory of 'small' large cardinals ( inaccessible cardinals, Mahlo 
1 �9 cardinals, ordinal ~l-lndescrlbable cardinals ) needed for sections 

i - 6 to be self-contained. Thorough expositions of this quite ex- 

tensive theory appear both in the monograph of Devlin in this volume 

( to which these notes can be read as a sequel ), and in the recent 

book of Drake [~r ~ . Unless otherwise noted, we work in ZFC. 

0.1. If ~ is any limit ordinal, C~ ~ is closed iff ~(~C)E C for 

each limit ~< ~ ; C is unbounded ( sometimes cofinal ) in ~ iff 

~C = ~. We will often abbreviate "closed (and) unbounded" by c.u. 

A~ ~ is stationary in ~ iff A~C # 0 for each c.u. C~ ~. The 

cofinality of 7 , cf ~ , is the least ordinal y such that there is a 

1-1 increasing function f: y >~ whose range is cofinal in ~ ( we 

can assume the range of f is closed, too, if we wish ). 

is regular if cf V = ~' singular if cf ~ < ~ . 

is a cardinal iff it is an initial ordinal, i. e., there is no 

(I-i) function f from any Y< ~ onto ~. 

0.2 Proposition t (i) A regular ordinal is a cardinal. 

(2) cf ~ is always regular. 

(~) If cf ~ = ~, every unbounded subset of ~ of order-type ~ is closed, 

and a subset of ~ is stationary in ~ iff it includes a terminal seg- 

ment, i. e., the set of all ordinals < ~ above a given one. 

(4) If cf~ = ~ >~, the collection~of closed unbounded subsets of 

forms a ~-complete filterbase, i. e., whenever C a is in ~ for each 

a<~<M, so is /Aa<~ C~_. 

Proof of (i). Immediate from the definitionS. 

Proof of (2). If not, the composition of suitably chosen f: cf(cf 9) 

= 6 > cf~ and g: cf~ ~ 7 would give cf~ 6< cf~. 

Proof of (~). For each ~ = ~J~< ~ and unbounded X~_ ~ of type ~, 

LJ(~X) is the largest element of X<~. A set S intersects every 

closed unbounded set iff it intersects every cofinal set ( of type ~). 

Proof of (4). We do the limit case of the induction over ~< ~. Suppose 

~a<g Ca is c. u. for each sequence <Cal a< ~> of length <~. Given 

< Cal~<~ > and arbitrary yo < ~, choose y~ ~ ~-J~u such that 

Y~ ~ a<~Ca. Then for each ~< ~ , ~ u [ ~ > a}~ C a. so y= 

U6~ ~ Y~ is an element of C a, so F ~ #'~,~C a = C. C is closed, 

since if ('~a<~Ca is unbounded in ~ = L_J~ , so is each Ca. 
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0.~. Notational convention. A filter ~ S( K ) over infinite cardinal 

K ( cf., e. ~., [~&-/~a, p. 164 ff.~ ) will always be assumed to be 

uniform ( every element of ~ has power ~ ), and nonprineipal ( no 

singleton {a} is in ~ ), unless stated otherwise, and J will always 

denote the ideal dual to ~ . Thus we might have ~,~, ~*, ~*, etc. 

0.4. Some of the following definitions are repeated in 1.5 of section 

i. If X is a set of ordinals, f: X ) On is regressive iff f(~)<a for 

each aE X. If K is an uncountable regular cardinal, a filter 

~ S(K ) is normal iff whenever X~( sometimes, in English, "X has 

positive ~-measure" ) and f: X �9 is regressive, there is a Y~X 

such that Y ~  and f ~ Y is constant. ~ is K-complete iff 

~<~X E ~ for each ~< K and each sequence ~ X~i~<~ > of elements of 

~. If X aC K for each ~< K, the dia~onal intersection /~ <KX_of 

the X's is [ ~I~ ~ X a for all ~<~ } a 

0. 5 Theorem ( Fodor ). Assume K is an uncountable regular cardinal 

and ~ is a filter on K Then 

(i) ~ is normal iff ~ is closed under dia~onal intersections, i__ a. e__a., 

whenever each X a~ ~ for a < ~, so is /ka< K Xa~ 

(2) The closed unbounded filter ( i__ a. e__~., the K-complete filter 

~enerated by the filterbase of closed unbounded subsets of g ) is 

normal. 

Proof of (i). ( >). If Aa< ~ X a = X 4~, its complement Y in 

is not in J, and f'~l �9 ( least a<~ such that ~X a ) is regressive 

on Y, so there is a Z ~ Y with Z ~ J7 and an a < K such that f"Z = {~} , 

but then Z~X = 0, so Xa6 4. 

(< ). If f: X. ) K is such that each f-l( {a} ) = X a e~, and 

Y = K- X , each Y~E~, so /k <KY ~ = Y is too, but since f(a)>_~ 

for each aE Y, either X is disjoint from Y ( and so in ~ ), or f is 

not regressive on X. 

Proof of (2). We assume Cmis closed and unbounded for each ~< K , and 

c = A c. 

C is unbounded. Let a ~ be arbitrary, and choose ~n+l inductively such 

that an+l~ /~:~nC~ and an+l~n. Then ~ : L_Jn<~ a n is in C, for if 

~<~, ~< someam, ~o {anln>m}C_C ~, so ~=U{anln>~}~ C~ as 
well. 

C is closed. If CAB is unbounded in ~ = U~, and a<~, 

{Y~ cla<y<~}~c ~, so ~c a. 

0.6. ~: is a weak limit cardinal iff K = ,~ and ~ = U~ i__~. e__~., 

whenever I< K , so is 1 +" 
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is a strong limit cardinal iff ~ = ~ and ~ = LJ~, i__:. e__~., whenever 

I < ~ , so is 2 A . 

~< is inaccessible iff ~< is a regular weak limit cardinal. 

�9 ~ is strongly inaccessible iff ~< is a regular strong limit cardinal. 

K is weakly inaccessible iff *~ is inaccessible but not strongly 

inaccessible, i__ u. e__~., 2 A >_ < for some 14 ~ . 

is i - Mahlo, or just Mahlo iff {l<~ | I regular } is stationary 

in •. 

K is G-Mahlo for ~ >I iff for each ~< G ~ I<~ I i is ~ - Mahlo } is 

stationary in ~ . 
1 1 

J< is ordinall ~o (/71) indescribable iff whenever AC_ /< and a first- 

order (~)~ are given such that < *: ,& ,A >~ ~ , there is a A < 

such that <~ ,e, A~X> ~ 9 ' 

g is weakly compact iff ~< is strongly inaccessible and ordinal ~- 

indescribable ( this is not the original definition, but is known to be 

equivalent to it; cf. [~9e3, ~3] and [xg~ , Theorem 10.2.13 ). 

i . 0.7 Theorem. (i) ~< is ordinal /~0-1ndescrlbable iff J< is regular. 

(2) If ~ is Mahlo, { l<~ I I inaccessible} is stationary in K. 
1 

(3) If *~ is ordinal ~l-indescribable, ~ is ~-Mahlo for all ~< ~, 

{ A< ~ I l is ~-Mahlo for all ~< A } is stationary in K, etc. In 

fact, whenever ~ is /ql I, A~ ~ and ~ ~ ,e,A> ~ ~ , 

{A< K I ( A , , ,AfAA > ~ ~ } is stationary in K �9 

Proof of (i). We sketch the basic ideas. 

(" ) ). If K is not regular, let f be a i-i increasing function from 

cf K = I--~ which witnesses this. Then <~, & , i, the graph of f> 

satisfies ( the domain of f is cofinal in A ), but no 

< ~ , E ,l , f~(g • 7 ) > can satisfy this. ( The use of the binary 

relation is permissible; see the remarks i.i0 below, and 2.1 and 2.2 

of Devlin's monograph in this volume ). 

(< ). If ~ is regular and <~ ,~ ,A > ~ ~ , let(Bo,~ ,A~B> be an 

elementary submodel of (K ,~ ,A > such that (Bo)--< ~, and let 

~Bn+l,~ ,A~Bn+I> for n<~, be the smallest elementary submodel of 

< ~< , & ,A > such that ~JB nC Bn+ I. If B = ~ n ~  Bn' B is an ordinal 

~<K and (~,~ ,AI~ > ~ ~ . 

Proof of (2). *~ is itself inaccessible, for any singular ordinal 6 

has a closed cofinal subset of singular ordinals ( choose any increasing 

sequence <~ a< cf6> of ordinals with range cofinal in 6 such that 

7omCf6' and ~o and each ~+i are singular ), and { 7 J ~ ~ A } is 

such a set if ~ is I +. Thus ~A< ~ I I is a cardinal } is unbounded 

in ,~ , so {A< ~ I A = ~l } is a c.u. subset of K, which must 
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contain a regular and thus inaccessible ~ . 
i 

Proof of (3). Note that ( I am inaccessible ) is ~i' as by induction 

are ( I am ~ - Mahlo ) ( in the parameter a ), and ( I am ~ - Mahlo for 

all ~<me ), so it suffices to prove the last sentence. If C is c.u. u 

and <k ,E ,A,C > ~ ( ~ and C is unbounded in me ), so does 

<~ , G ,A~A ,C~ ) for some M < ~, in C since (J(~C) = ~ . 

0.8. Throughout the remainder of the notes, g, A , ~ and Vwill be 

arbitrary infinite cardinals in the sense of some transitive model 

or interpretation of ZFC. 
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i. Subtlety 

i.i Definition ( Jensen, Kunen, Baumgartner ). If K is any uncountable 

cardinal, X~ ~ = ~X is subtle / almost ineffable / ineffable iff 

whenever C is a closed unbounded subset of ~ and (Asl sE X) is such 

that A C_~ for all s6 X, there is a(n) unordered pair Y~C~X / 

unbounded Y~C~X / stationary Y~C~X such that Y is homogeneous for 

Asl se X) , where this means that A s = A~As for all ~, $ in Y. 

1.2. If in i.i one replaces "As_ ~ ~'' with "As_C~ and ( A s )= = ~", 

"homogeneous" with "weakly homogeneous" and "As = A~ s" with 

"( As~A~ )= = ~", one has a definition of X is weakly subtle / 

weakly almost ineffable / weakly ineffable. 

K is a subtle, weakly subtle ( etc. ) cardinal iff K is a subtle, 

weakly subtle ( etc. ) subset of itself iff there is some unbounded 

subtle, weakly subtle ( etc. ) subset of K. 

1.3 Definition ( Baumgartner, Ketonen ). If K is any uncountable 

cardinal, the ( weakly ) subtle / ( weakly ) almost ineffable / 

( weakly ) ineffable filter Sz c S(K) is the collection of all 

complements of non-(weakly) subtle / non- ( weakly ) almost ineffable / 

non- ( weakly ) ineffable subsets X of K = UX. 

Notice that if K is not ( say ) subtle, the subtle filter on K is 

the trivial one S(K ). 

Jensen and Kunen independently defined ineffable cardinals and 

proved a number of results about them in [Ken i]. Ketonen later defined 

weakly subtle cardinals, which he called "ethereal", and showed in [Ke] tha 

several results from the theory of subtlety and ineffability have con- 

ceptually pleasant 'weak' variants. Without directly naming it he also 

defined the weakly subtle filter in order to prove 1.7 below. Indepen- 

dently, Baumgartner observed that a wide range of large cardinal defin- 

itions generate corresponding normal filters, and used these filters to 

study what he wryly abstained from calling "subtle properties of cardi- 

nals." We give a sample of the structure theory that has accumulated. 

1.4 Proposition. (i) A weakly subtle cardinal is inaccessible. 

(2) A subtle cardinal is strongly inaccessible. 

(3) A strongly inaccessible, weakly subtle ( weakly almost ineffable, 

weakly ineffable ) cardinal is subtle ( almost ineffable, ineffable ). 

Proof of (i). If ~ is singular, let C be a closed unbounded subset of 

cardinals ~< ~ of order-type I = cf K . If <~l ~< A > 
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enumerates O, let ~ = {~# x #~ for a<k, and let A~ = 

j"~ be the image of under G~del's pairing function j ( the 

class of ordinals closed under j is closed and unbounded in each 

uncountable cardinal ). A~ then violates weak subtlety of K. 

If K = k +, we define a sequence (f~l ~<k> of functions f~: k > k 

whose graphs G are almost disjoint, i. e., (G ~G~)~k for ~ # ~<k + 

Then if A s = J"G for ~ED = { ordinals< ~closed under j }, 

< A I ~eD > contradicts weak subtlety of K. Let f be the constant 

function ~ for ~<k; if <f~l ~< ~ is defined for ~< k +, choose a 

i-i map q'from k onto ~ , and define f7 (~) = the least ordinal not 

in { f T( ) (6) I Y,6~ }. For every ~< ~ , f7 ( ~ ) ~ f~ ( ~ ) for all 
> ~ -,(~. 

Proof of (2). If K~ 2 k for some k< K, any enumeration of K 

distinct subsets of k violates subtlety. 

Proof of (3). If ~ is strongly inaccessible, there is a bijection 

F: R(~ ) ~K and a closed unbounded subset D of ~ consisting of 

cardinals k such that (R(k) ) = ~k = k and F ~R(k) maps R(X) onto k. 

If <A~I ~ C > is given, let ~k for k~ C~D be the characteristic 
@ 

function of Ak, and A k = ~F( ~k~ ~) I ~ k } . If YCC~D is weakly 
@ 

homogeneous for <A k i k~ C~D ), Y is homogeneous for ~Akl k ~ C~D >. 

1. 5 Recall from 0.4 that a (nonprincipal) filter ~ on an uncountable 

regular cardinal K is normal iff for every X not in the ideal J~ 

dual to ~ and regressive f from X into K, there exists a subset Y of 

X, also not in ~, such that f ~Y is constant. Note that a normal 

filter on K must be ~-complete. 

1.6 Theorem. ( Ketonen~ Baumgartner ) 

The ( weakly ) subtle / ( weakly ) almost ineffable / (weakly) inef- 

fable filter on a ( weakly ) subtle / ( weakl# ) almost ineffable / 

( weakly ) ineffable cardinal K is normal. 

Proof. We carry out the argument for weak subtlety. The others are 

parallel. Suppose X ~ ~ is weakly subtle, f: X > K is regressive, 

and C a closed unbounded set of ordinals< ~ closed under j. X~C 

is weakly subtle ( immediate from the definition ), and we show there 

is a weakly subtle S~XghC on which f is constant. If not, then 

for each ~ K, X~ = f-t({~})~C is not weakly subtle; let c.u. Da 

and <A~ } ~ D~> witness this. If D = Z~ <K D is the diagonal 

intersection of the D~'s, D is closed unbounded by 0.5(2), so W = 

X~CAD is weakly~ subtle. If <Y~I ~ W) is now defined by Y~ = 

j"( {f(8)} • A~ (~)) for ~s W, weak subtlety of W gives that there 
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are y, 8~W such that 7<~ and ( Yy/AY6 )= = ~. Then f(y) = f(6) = ~, 

say, for if f(y) and f(6) were different, Yy and Y6 would be disjoint. 

) SO = " ~ ) and Y6 J ''( {~} • ' But then Yy j ( {~] • Ay = 
( ~ ~ 

Ay~A 6 )= = y, contrary to the assumption on <A~ I ~ D >. 

1.7 Corollary ( Ketonen, Baumgartner ). If M is weakl[ subtle, 

K is ~ - Mahlo for all ~< ~ . 

Proof. We show first that ~ is ~ahlo, in fact more, that R = 

{M< ~ I ~ inaccessible } is in the weakly subtle filter. If not, 

the set A of cardinals in ~ - R is weakly subtle, since we already 

know K is inaccessible. The cofinality function is regressive on 

A, so there is a A< K such that {~< K I cf ~ = A } = B is weakly 

subtle. Let S~ be closed unbounded in # of order-type ~ for each 

~ B, and let ~ = j"{ (u ~)I Y~ S~ and ~< u . Since S ~  is 

bounded in ~ for ~,~B with ~<~ , ~fl ~E B> violates weak 

subtlety of B~ 

We show how to proceed through successor stages of the otherwise 

easy induction over ~< K which completes the proof. Let 

)~: S(K ) ~S(K) be the Mahlo thinning-operation )~(A) = { ~ < K I 

A~ is stationary in ~ } . We show that if A is in the weakly subtle 

filter, so is ~(A). Suppose not. Then ~ - )~(A) is weakly subtle. 

is in K - ~(A) iff there is a C ~  disjoint from k. 

A~( K )~(A) )/% {A< < [ I inaccessible } is weakly subtle, since 

E4(A) is, and A and {I< ~ I I inaccessible } are in the weakly 

subtle filter. Then there are inaccessible ~ s A~( M - )~(A) ) such 

that i<~ and ( CAF~C~ )= = A , so I 6 A/%CI~ , which contradicts 

the assumption that C~ is disjoint from A. 

1.8 Remark. The weakly subtle filter on a weakly subtle cardinal 

properly extends the closed unbounded filter on ~; for any regular 

cardinal ~ < ~ , the set of cardinals #< ~ such that cf ~ = ~ is 

stationary but not weakly subtle. 

1.9 ( cf. 0.6 ). If K is any uncountable cardinal, X~ ~ = ~Jx is 

ordinal ~nm :indescribable- for integers n, m~l iff whenever ~ is 

~n, p~, and <~,e , P)~ ~ , there is a ~e X such that 

<A , ~ , PI-~ ~ ~ ~ . Again ~ is ordinal /~n m- indescribable as a suo- 

set Of itself iff it contains some unbounded ordinal ~m" indescribable 

subset. Such a K must be weakly /~,~ - compact ( cf., e. g.,[~o 3), 

and inaccessible and ~ - Mahlo for all ~<K by 0.7(3), but various assump- 

tions allow for ~ to be below the continuum ( cf. ~/~z] and ~ /{o ~ ). 
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If ~ is strongly inaccessible and X ~_ K = UX is ordinal ~n-indes- 

cribable, it is not hard to prove X is ~n-indescribable, where this 

means whenever ~ is ~n p C R(K) ( this is the essential difference ) 

and <R(K), E , P>~ F ' so does <R(A ), E , P/TR(X )> for some 

E X ( to verify the equivalence, use the bijection F of the proof of 

0.4.3 ). For readers of [L~ ], it may be helpful to remark that "X is 
n. . UX" an ordinal F]m-mndescrmbable subset of K = expressed in the language 

of [/-~ ] and [/9~ , Chapter 9.2] is " ~( - X is not ~]n-enforceable at 

K";"X is fin . . UX .... m-lndesorlbable subset of K = is K - X is not weakly 
n 

~m-enforceable at ;<." 

i.i0. More generally, if X~ K = ~)X and ~],0, X is ( ordinal } 

- indescribable iff whenever ~ is first-order, P~ R(K) ( P ~ m), 

a n d  <R(~+ ~),E> ~ ~[K, P] , < R(/+ ~),E> ~ ~[A , PfAR(A )3 

for some A E X. If ~ > K, we will usually write "X is ( ordinal ) 

invisible in R(~}" instead of "X is ( ordinal ) a - indescribable". 

Thus K is ( ordinal ) invisible in R(~) iff whenever ~ is first- 

order, PC_R(K) ( PC_ K ), and <R(=),e>~ F[g' P]' 
< R(~), E > ~ ~ [I , P/hR(A )3 for some A< ~ , so invisibility 

of ~ in R(~) means R(~) cannot discern what K is unless it is given 

enough information so that the recognition is trivial. An obvious totum 

simul of these notions is the following, which must be phrased in a meta- 

theory for ZFC such as Morse -- Kelley set theory with choice for sets 

( which is essentially second-order ZFC ), in which a satisfaction 

predicate is definable for V. 

XC_ K = [_]X is ( ordinal ) invisible iff whenever f is first-order, 

P~R(K ) ( P~M ) and ~( K , P ), there is some I<K such that 

~( ~ , P~R(~ ) ). 

Perhaps the word "ineffable" should have been held in reserve for this 

latter notion, which is not unlike the Hanf number in its resemblance 

to the Cheshire Cat's smile. We will quickly see that there are many 

invisible ( in R(~) )) cardinals below the least subtle cardinal K 

( for each ~ ~ K ). 

Each of the above notions, defined and studied by Hanf, Scott, 

L6vy, Silver, Jensen and others, can be given a speciously stronger 

definition in which the 'thin' structures <R(~), E , P~ and <K,E , P~ 

are replaced by arbitrary finitary structures with universe R( K ) and 

( we have already r~ferred to this in the proof 
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of 0.7 ). ~ore importantly, each generates a corresponding normal 

filter, where the elements of the shrdlu filter once again are the 

complements of non - shrdlu sets ( and the elements of the ordinal 

~- indescribable / ~n_ indescribable filter are the sets ~n_ enforce- 
m m 

able / weakly enforceable at ~ ). 

i.ii Theorem ( L6vy, Baumgartner ). The ( ordinal ) ~-indescribable / 

( ordinal ) ~ - indescribable / ( ordinal ) invisible ( in R(~) ) 

filter on a(n) ( ordinal ) ~n_ indescribable / ( ordinal ) ~ - indes- 
m 

cribable / ( ordinal ) invisible ( in R(~) ) cardinal m is a normal 

filter for all m~ l~<n, m< ~ , ~< ~ and 8 ~ m. 

n Proof. We sketch /~m-Ordlnal indescribability~ the other arguments are 

parallel. Suppose AC_ a , f: A ~ is regressive, and no A = f-l(~) 

is /Tnm indescribable. Let K~_C ~ and ~ witness this for ~< ~, so 

that <K,& ,K > ~ ~a, but <~,~,K FA~z ~ ~ for each ordinal ~ A  

Using Godel's pairing function j, the binary relation K = ( <~,~) { 

~ K ) and a T which encodes a truth definition over the right sorts of 

models, we can find a /qn such that for all cardinals ~< 

< ~,E ,j[~,K{~, T[~ >~ ~ iff for all y~ ~ <~,E, Ky!~)~y. Then 

< K,E , j, K,T ) b ~ , but <~,~ ,Kf(~)n~>b -1~f(~), and thus 

<8, & ,jI~,KIS,TI~ }~ ~ for each 8e A, so A is not ~n indescribable. 

,, I <~ e ) , and " ,< is almost ineffable" is ,( is subtle" is ~i over 

~i, so it follows from the next result that the least subtle cardinal 

is less than the least almost ineffable, which in turn is less than the 

least ineffable. 

1.12 Theorem ( Jensen, Kunen ~. Let X~ ~ = LJX. Then 

(i) If X is almost ineffable~ X is ~i indescribable. 

(2) If X is ineffable, X is ~21 indescribable. 

01 Proof of (i). Suppose we have a ~7 ~, a subset B of • and A_ 

such that for all cardinals AeX ~A = <A,~ ,A/,BKAA >~ 

Working again with some fixed arithmetization of the first-order language 

involved, let YI C_ A code the elementary diagram of ~A , and let Z l 

be the image under the pairing function j of <AA ,YA ). By almost 

ineffability let W be such that for all A ,~ in W C_ X Z A = Z~/% A. 

Then by elementarity <K, 6, A, B > ~ ~, where 

A = [JA~wAA. 

Proof of (2). Suppose we have ~,BC K and A ~ a as above, but now 

such that for all le X (?[A : <A,E ,AA ,B/%A> ~ VY-~f. If S~ X 

is a stationary homogeneous set for <A 1 IIE X >, and 
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A = L.JA~sA A (~,e ,A,B >~ VY~. For if for some D ~  

<~ , ~ ,A,B,D >~ ~ , there is a closed unbounded C~ ~ such that for 

every A~ C/AS, < ~ ,Dr-~l~ ~ , which contradicts for all 

I verified the following ( with "unbounded" rather than "in the 

subtle filter" ) in my thesis in order to generalize a method of Solovay 

for obtaining infinitary compactness below the continuum. The argument 

is quite simple, and parallels, as it turns out, the proof of a lemma in 

1.13 Theorem. (i) If ~ is subtle and ~ is any ordinal ~ ~ , 

~< ~ I A is invisible in R(~) } is in the subtle filter. (2) (NKC) 

If ~ is subtle, ~I<~ I A is invisible } is in the subtle filter. 

Proof. Suppose not. Let S be the subtle set of cardinals A< K visible 

in R(~), and let < ~nln< ~) enumerate the formulas in the language of 

first-order set theory in two free variables. Let F: R(K) >K and 

D be as in the proof of 1.4(3). If A is in the subtle set S~D and 

X~ R(A ), let X'C_ ~ be (F"XF~(A-~))u {3nlnEF"X~h ~}u {3n+l l 

assumption we have A~ R(A ) for each ~ ~ S~D such that for all ~,~ 

in S~D with A< ~ , A'A@ A~/%I, a contradiction. The modification 

needed for (2) is clear. 

Since any element of the subtle filter on K is stationary, and any 

invisible in R(~) is ~-Mahlo for all ~ A , the last result provides 

another way to see that a subtle K is a-mahlo for all ~< K. 

Not only are there many invisible A below a subtle ~ , there are, 

given a closed unbounded C~ ~ and (A~L ~C) , with A ~ ~ for ~EC, 

many invisible X~C A = hJXA which are homogeneous for <A~I~C ) as 

well. The following was proved and applied extensively by Baumgartner 

in Eg~ 3 

1.14 Theorem ( Baumgartner; cf. 4.1 of [ ~ ] ). 

Suppose K is subtle, D is a subtle subset of ~ , <Aml~m D> is such 

that A ~ ~ for every ~ D, and ~ is any ordinal ~ ~. Then if 

D* = # A< ~ I there is an X A~ A which is both invisible in R(~) and 

homogeneous for <A~I~D >} ,D-D* is not subtle. ( Instead of invisible 
| . 

in R($), Baumgartner has ~m-lndescrzbable for each m< ~; the proof is 

the same ). 

Proof. If not, let S be a subtle set of cardinals AE D such that 
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every subset of I homogeneous for <A~i~eD> is visible in R($). 

Per /E S let B A = {~E SAAI A : AA~ }o Since BI[.) ~A] is 

homogeneous for < A I ~ED ) , each B A is visible in R(~ ) . Let K A ~_ R(A) 

and ~A for AE S be such that <R(~),&> ~ ~l [ A , K A ] , but not 

~A[ ~ ,KIgA ~(7)] for any ~EB A Let F, D and __* be as in the proof 

of 1.4(3). Then ~H i [ I E S~C > , where HA~ A is the image under 

the pairing function of <A A ,KA* > , contradicts subtlety of S~C; for 

if A ,/~. are.in S/%C with i<# and A A = A/~ /% I , AEB/~ , which contra- 

dicts K i = K#mA. 

1.14 of course also establishes rather overwhelmingly that if A 

is subtle, any <A~I~EA> has homogeneous sets of all order-types 

1.15. Definition. Two filters ~ and ~' on an infinite cardinal 

are coherent iff the least filter on ~ including both of them is not 

trivial, i_~. e., all of S(~). 

1.16 Theorem ( Baum6artner ).Let K be an infinite cardinal. Then 

(1) A~ K is (almost) ineffable iff AgeD is ~ (~i) indescribable 

for each D in the subtle filter, 
1 1 

(2) ~ is (almost) ineffable iff the subtle and ~2 (~]l) indescribable 

filters are coherent. 

Proof of (i)( >): If A is (almost) ineffable, D is in the subtle 

l)-indescribable, A is partitioned into filter and D~A is not ~]i 2 ( F] I 

a nonsubtle set ( A-D ) and a non-N 1 ( N I) -indescribable set ( A D ) 

impossible, since one of the two must be (almost) ineffable, thus both 
l . subtle and ~21 (~l)-indescrlbable, by 1.12. 

(< 4): Suppose < S~I~(A) is given with S C ~ for each ~A. A is 

subtle since it intersects every D in the subtle filter, so by 1.14 

there is an A'C_ A such that A-A* is not subtle ( so A* = AghD for D 

= A*U(m-A ) in the subtle filter ), and each Ae A* has a station- 

ary subset KA ~ i homogeneous for <S I ~EA ~. The datum "there is 

a stationary ( unbounded ) set homogeneous for<S l~e A> " is 

~i (~i I) and valid over <A , E  ,A t%A,  {(~,~) [ ~E S } > for each 

.~ A*, and by ~21 (~]l) indescribability of A*, therefore, valid over 

as well. 

Proof of (2) from (1). ~ is (almost) ineffable iff every element of 

subtle filter is /~l (~l I) indescribable, i.e., no A in the subtle 

filter is disjoint from any B in the ~71 ( ~]i I) indescribable filter. 

1 irides- Note that there are many A's which are both subtle and ~2 
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cribable below the least almost ineffable ~. For { A < ~ I i is 

invisible in R(~)} is in the subtle filter on K, and ~ A< ~ I A is 

} is in the N I indescribable filter since " I is subtle" is subtle 

i' 

We close this section with partition-theoretic characterizations 

of subtlety/almost ineffability/ineffability, and some problems. 

1.17 Definition. If A is a set of ordinals, [A] ~ is the set of in- 

creasing n-sequences of elements of A. 

f: [A] n > K is re~ressive iff f(~)< x ~ for all ~ in [A~ n 

B~ A is homogeneous for f iff f ~ [ B In is constant. 

The ineffability-case of the following, due to Kunen, was among the 

earliest results about ineffability. 

1.18 ( Kunen, Baumgartner ). If A is an unbounded subset of an infin- 

ite regular cardinal K , A is (i) subtle /(2) almost ineffable / (~) 

ineffable iff each regressive f: [A] 2 �9 K has a homogeneous set X~A 

which is (i) of order-type ~ 3/(2) unbounded in ~ / (3) stationary 

in K. 

Proof. We do the "if" (< ) direction of all three cases together. 

Suppose A is not subtle ( almost ineffable, ineffable ). Let 

< A ISEA> witness this, where we assume without loss of generality 

that 0 ~ A, s for SEA, and that A is a stationary set of limit ordinals 

closed under the pairing function; ( if A were nonstationary, there 

would be a i--i regressive f: A ~M by Fodor's theorem ). Define 

regressive f: [A] 2 ) K by f(s,~) = j ( Y ,2) or j(y,l) if there is a 

least y< s in ( A s uA 8 ) - ( AsiA ~ ), j(y ,2 ) if ME A~, j( Y ,i) if 

YEA~; and f(s,$) = 0 if there is no such y , i__ u. e., if A s = AS~ G. 

There is an X C_ ,< homogeneous for f where X is of order-type ~3 

( unbounded, stationary ). In each case f( IX] 2) # {0} , by the 

hypothesis on A, so f( IX] 2) = {j(u for some i<2 and y~ 0. 

But then we can derive a contradiction from (X)=~ 3. For suppose 

~,8, 6 are distinct elements of X, with ~< ~ ~ ; then ~" ( ( A~ - A m ) 

( A~-A~ ) or YE ( A s -A8 )~( A~ -A~), both absurdities. 

Proof of (i) and (2), ( ~). Let f: [A] 2 > K be regressive, where 

A is a subtle set of cardinals < M, and define S~ for ~EA by 

S/~ = {(A ,-~)IA,~E~ChA and f(A,~) = V-}. By 1.14, if A* = { /a E AI 

there is a stationary h(~ ~ ~ A which is homogeneous for <T~I~EA > = 

< j"S~l ~6A >}, A - A* is not subtle. For ~ in A*, define 
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A stationary H~ C # such that g~ is constant on H~ is homogeneous 

for f. 

If A is actually almost ineffable, so is A* ( if A - A* is not subtle, 

neither is it almost ineffable ), so there is a D _C A* such that for 

all #,~Dwith #<~, ~# = ~#, so that 

H : ~JHs H~ is homogeneous for f. 

Proof of (])( >). If A is ineffable and fz [A]2 > K is regressive, 

let <T~ [ ~ E A > be defined as the proof of (i) and (2)( >), and 

let K C A be a stationary homogeneous set for <T~I ~E A > . If 

g~ K �9 ~ is defined by g(A ) = f( A , ~ ) for some (any) ~ >A in K, 

g is constant on a stationary HC K, which is then homogeneous for f. 

1.19 Remarks. (i__J) We have actually established that A G ~ is subtle 

iff for each regressive f: [A] 2___+ ~, there is a stationary set of 

regular cardinals I<K which have stationary subsets homogeneous for f. 

(2) Kunen actually proved the following refinement of 1.18(3). We 

include the proof for completeness though it is already available in 

1.20 Theorem ( Kunen ). A is ineffable iff every f: [A]2-----~ 2 has a 

stationary homogeneous set. 

Proof. Only (< ) remains to be proved. Suppose <A~I ~ E A > is such 

that Am~ - m for mE A. Define f: [A] 2 > 2 by f(a,~) = 0 iff 

A = A~ /-~ ~, or the least F< ~ in the symmetric difference of A m and 

A~ is in A~. Let B be stationary such that f ~ [B] 2 is constant. For 

each ~ there is a ~ ~ q such that for all ~ >~ in B, A~K-h q = 

AT 7 ~ q ( Argue by induction on ~. Limit stages are automatic; 

at a successor stage 7 + i, homogeneity of B for f determines whether 

is in, or out of, every A~ for ~ in a terminal segment of B ). 

Then C = { ~ I ~< ~----~7< ~ ~ is closed unbounded in K, since K is 

regular ( in fact weakly compact ), which makes B /-h C a stationary set 

homogeneous for < A~ [ ~EA >. 

1.21 Problems. How much of 1.12 1.19, if any, carries over to weak 

subtlety/almost ineffability/ineffability? 

The preceding exposition has been thin on examples of weakly subtle/ 

almost ineffable~ineffable cardinals. Ketonen in [A~] showed that a 

K with a nontrivial, K -complete, A -saturated filter for ~< K 

( more about this later ) is weakly subtle. Find others. 
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2. Partitions 

2.1. If X is linearly ordered by -< and ~ is any ordinal; [X~ ~ 

( Ix3 <~) is the set of all subsets of X of ~-order-type a (<~). 

In the next three definitions, X is any set of ordinals, well-ordered 

by the membership relation. 

2.2. X >(~)~ (X >(~)~) means that for each f. CX] <~ "~ I , 

t h e r e  i s  an  ~ ~ I X ]  ~ s u c h  t h a t  f I' [ ~ 3 n  i s  o o n s t a n t  f o r  e a o h  n ( f o r  

n = m ). H is called a homogeneous set or set of indiscernibles, for f. 

X > [ <~ m > I , there ~]A-- (X >[~]I~ means that for each f" IX] <m 

is an~[x] ~ such that f"[~]<~ ( f.[~] m) ~sa proper subset 

of i. 

4,</~_ ( X >[~3 ~)means that for each f: IX] <~ > ~ , 

there is an H E[X] ~ such that (f" [HI <~ )=<~ ( ( f"CH]m)=<# ). 

<" m 
X ~(~)<~ (X >(~)m) abbreviates X >(~)2 ( X >(~)2 ) 

If ~S(K ) is an arbitrary collection of subsets of /< , we can gener- 

alize each of the above notions by requiring the homogeneous set H to 

be in ~, obtaining K > (~')~ , K �9 (~')~_, K > [J3~, ~ etc. 

2.3. The ~th Erd6s cardinal, Ks, for limit ~>~, is the least < such 

that ~ >(~)<~ 

K is Jonsson iff K > EK] ~ 
k: 

is /A-Rowbottom iff K > [~]X,<t ~ for all A< ~ . 

~< is Ramsey iff K >(K )<~ . 

A ~ -Rowbottom cardinal, for any ~< ~ , is obviously Jonsson. 

A Rowbottom cardinal is an ~;-Rowbottom cardinal. 

Each of these notions is often extended to filters ~C 5(K ); thus 

~C_ S(~) is Jonsson iff K ~[~3~ , etc. A few judicious cases 

of K > (~)~ are theorems of ZFC, such as, Ramsey's theorem 

�9 (,_,)z), and the well-known and useful ErdSs-Rado theorem 

(~n ( K ))+ > ( K+~n+l ~( ~< ,~ , where ) is the nth 'relative beth cardi- 

nal' after K( of [X~, 7.2.4 ] and [X9r and 3.213 ). 

One infinitary generalization of Ramsey~s theorem ( m ) (K)2) is 

equivalent to weak compactness ( of [~e , 10.2.1] and [~9e3,3.243 ). 

2.4. There are concomitant model-theoretic definitions of the <~ 

versions of these notions, which require some more nomenclature. Suppose 

6~ is some structure for a countable first-order language including a 

relation .< which linearly orders some subset X of the universe A of ~. 

Then HGX is a homogeneous set, or set of indiscernibles, for 0/ iff 
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for each n and ~, ~ ~ [HI n, <~,~) ~ <~z~ ,~> . Ehrenfeacht and ~os- 

towski [~-Y}~ showed essentially that one can graft indiscernibles 

onto models of any theory by a compactness argument. If one can invari- 

ably assume they are already there, large-cardinal properties arise. 

2.5. (~ ,A ) ~(~,<~ ) iff every structure <~, U> for a countable 

first-order language with (A): = m, ~ unary and ( U)= = A has an 

elementary substructure <~*, ~*> such that (A*) = ~ and (~*)=< ~-. 

Changes Conjecture is the assertion that (~, ~ ) ~(~ ,<~I). 

2.6. Theorem ( Rowbottom ). (i) #< ~(~)<~ iff whenever <~,-<> 

is a structure for a countable first-order lan6uage in which -< well- 

orders some subset X of A in type ~ ~, <6//,-<> has a homogeneous set 

HCX of order-type ~o 

(2) K is Jonsson iff every structure ~ for a countable first-order 

language such that (A) = = K has a proper elementary substructure 6~ ~ 

such that (A*) = = K . 

(3) ~( is ~-Rowbottom iff (~ ,i ) ~(~ ,<~ ) for each ,~< •. 

(.4) If ~ is Ramsey, < is Rowbottom. 

Proof of (1). Enumerate the countably many formulae of the language 

by < ~nln<~) such that at most v 0, .... Vn_ 1 are free in ~n' and let 

X'CX have -~-type K �9 Define f: [X'] <~ > 2 by f(<x0~..,Xn_l> ) = i 

iff < 6~, -< > ~ ~n [ x0 ..... Xn_l] . Any H homogeneous for f is homo- 

geneous in the other sense for < ~f, < > . 

If f: [~]<'' > 2 is given, any H homogeneous for ~ = 

< K ,( , <f ~ [K]nl n<~)) is homogeneous for f. 

Proof of (2). ( >) Suppose ~ > [K3~ ~ and ~ is given with 

A = K . Let ~ = {fnln< ~} be a set of Skolem functions for 

which is closed under composition and enumerated with the aid of dummy 

variables so that each fa is ~-ary. Let f(~) = f~(~) for n<m and 

in [Kin. If H C_ ~( is such that f"[H]< ~ is a proper subset of 

K , the restriction 0/* of 6~ to A* -- f" [H] <~ is a proper elementary 

submodel of ~,T �9 

(< ) Apply the assumption to ~ = <K,~ , <f ~ [~] nln< ,~,~ to 

obtain a proper elementary substructure 6~* such that (A*) = = K and 

f" [A*]<" c_ A* ~ ~. 

Proof of (3). Essentially the same as (2). For ( >) suppose 

K > [ K ]  < ~  A , and <~/[,6(} is given with A = K and ((~)==i( 

Form ~ as in (2), and set f(~) = fn (x) if R ( [m]n and fn(~)~ U; 

otherwise f(~) = 0. By h~pothesis, there is an H such that 

(f"[H] <" )=<jU If A* = f"gH] <~ , and <A*,~*> is the restric- 

tion of <C4,~> to A*, (A*) = = K and ( &(*)=< ~ . 
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For (< ), let f, [K] <~ ~ i be given, and form 4~, ~> : 

< K , <f ~ [K~n[n<m> ,A> o By hypothesis, there is an <~*, ~*>< 

<~ ,~> such that CA*) = = K and (U*)=< ~ . Since f"[A*]<mC ~*, 

(f,, [A.]<~) = ~< ( ~*)=< ~ 

Proof of 44). Suppose f: [~ < ~ >~i' and H is a set of indiscern- 

ibles for < K , 6 , <f ~ [a]nln< ~ >> . (x) = f(y) for each n<~ and 

x,y in [H3n, since otherwise a sequence <x~l~< K> with max (~)< 

min(~, ) for all ~<~'< ~ would yield K elements of ~I " But then 

f" [HI <~ = < Zn[ n< ~} , where Yn is the oomraon value of each f(~) 

for xe [ Kin, is a countable subset of ~i" 

A very good journal reference for most of the theory of partition 

cardinals, including independence results, is E ~z ff ] �9 In the 

remainder of this section we survey most of what is known to be provable 

about Erd6s, Jonsson, Rowbottom and Ramsey cardinals in ZFC in the light 

of section l, then give in @3 a pr$cis of Silver's theorem on the un- 

intelligibility of K~r in L. Several of the basic results on Erd~s 

cardinals appeared in the unpublished original of Silver~ thesis, and 

are due to Silver and Reinhardt. The exposition given here follows in 

part unpublished lectures of Jensen [~/~n 7] 

2.7. Theorem. Suppose A <K~ and E~.'__[K~ <~ > 2 for each 9< ~. 

Then there is an H e [~(~ which is homogeneous for each ff.__ 

Proof. Suppose g: [A~ <~ > 2 has no homogeneous set, 

= <K, E , < g ~ [A]n[n< ~>, <{ (~,~)If~(~) = l,n<~ and 

? E EKe3 n } > > , and H is a set of indiscernibles for ~ of order- 

type ~. We prove H is homogeneous for f~ by showing for ~ < ~ , 

n<m and 9,9 in [HI n with 9< ~ (u that f/(~) = f~(~). If 

this fails for some ~ and n, fix the least such n, and let ~(~ ,~) = 

the least ~<A such that for some ( and therefore all, by indiscerni- 

bility of H in ~ ) ~,~ in [HI n with 9< ~, f~(?) # f (-). ~>~ For 

each ~, y~ ~' from H with ~< ~ < ~ ' < ~ ' ,  ~(~,~) {~ } ~ (? ' ,~ ' ) .  
> would give an infinite descending E-chain. < would give an increas- 

ing sequence <T~[ ~ <A> , "P~ = ~(~,~) for each ~< I , whose range 

would be a subset of ~ and homogeneous for g, since $(--,--) is 

definable in ~ . Equality doesn't work, for then if ~ were the common 

value of all g ( ? , ~ ) for ?, ~ in [H ] n, we would have 

f~(?) # f~(~) for all ? ,~ in'[HI n, contradicting ff(~) = 1 iff 

f$(~) = i, required by the model-theoretic homogeneity of H in ~. 

Since each alternative is impossible ~(--,--) does not exist, and we 

are done. 

2.8 Corollary. (i) K~ > (~)2A for all A<K~. 
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(2) Wh~never<~,~> is a structure for a first-order language of power< 

K~. in which-< orders X in type~Ka,~> has a homogeneous set H of type 

(3) If ~<P, K~< K~. 

(4) K~ is strongly inaccessible for each ~. 

Proof of (i). If f: [ Km] <~ > 2 1 , let f~(X) = 1 if ~f(X)] (~) = 

1 for ~< A, 0 otherwise. An H homogeneous for each f~ is homogeneous 

for f. 

Proof of (2). Define f: [ K~D < ~ > S ( the language of ~ ) by f(x) = 

the n-type of X = { ~ I ~ ~[X] } for n>~ and X ~ EX] m o An H 

homogeneous for f is homogeneous for ~ . 

Proof of (3). If not, for each Y< K~ let fu : [y3<~ > 2 have 

no homogeneous set of type ~. Define g: [K~ < ~ > 2 by 

g( < x ~ ..... Xn> ) = fxm ( < x 0 ..... Xn_l> ) for n ~ i and ~ in [ K~] n+l 

If H has type ~ and is homogeneous for g, H g~y is homogeneous for fy 

for each WE H. But then H~y has type < ~ for each y in H, contra- 

dicting the assumption that H has type ~>~. 

Proof of (4). This is actually subsumed in 2.9(1) below, since we prove 

that from scratch. 

KG must be a strong limit cardinal, for I < K~ and 2 A ~ ~ would 

(~) K~ contradict K /> < ~ 

If of ~ = I< K~ and < ~BI~<A > is an increasing sequence of cardi- 

nals cofinal in K~, there are g~: E ~3 < ~ ~ 2 without homogeneous 

sets for each ~<A o If H is homogeneous of type ~ for 

= <~e, <~I~<l>, < g#l~< ~>> , H ~  must hold for the least 

<A such that H#~ @ O by model-theoretic homogeneity of H for ~, 

contradicting the assumption about g~. 

Though he had not yet isolated the definition of subtlety, Jansen 

effectively proved the following in ~/znl~ 

2.9 Theorem ( Jensen ). (i) Each Ks is subtle. 

(2) A Ramsey cardinal is almost ineffable. 

Proof. We do both cases at once. Suppose a closed unbounded C~= K~ 

is given such that A ~  for each ~E C. If ~< #c let g~: [~] < ~ 2 

have no homogeneous set of type ~ for each ~ < K s, and 

{ <f,Y> I Y~C and~Ay } > 
If ~ = K ,i.e., ~ is Ramsay, let 0/" = <~,E , {<~,Y> I ]/6 C and 

~e Ay } > . In either case let H be a minimal set of indiscernibles 

for (~ , that is a set of indiscernibles such that /~H is least possible. 
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(a) H~ C. If not let f(y) = Q_J(C/-~Y )<Z for y in H. 

f(Y) ~ f(~ ) for Z< S in H. > would yield a descending m -chain. 

would contradict the minimality of H, for f is definable in ~, and 

{ f(Y )I Y in H } would be a set of indiscernibles for ~ of order type 

a. If equality holds, let T= f(Y ) for each y in H, and d(Y) = 

/-h(C - y ). Then ~< 6(y) for each ~ u  in H. If ~ is the common 

value of the 6(Y )'s for y& H, H remains homogeneous for <~,~) and 

H{~, contradicting the assumption that type H = ~ if m is Ramsey, and 

the assumption on g~ if not. We finish by showing 

(b) A~ = Ay~ ~ for all ~,u in H. 

If not, let ~(~, Y ) be the least element of ~ in the symmetric differ- 

ence of A~ and Au for ~,u in H with ~<Y . Again ~(~, Y ) ~> ~(~', Y') 

for all ~< y < ~'< Z' in Ho > would yield a descending ~ -chain; < 

would violate minimality of H, for ~(-- ,--) is definable over ~ and so 

the range of an ascending a-sequence of ~(~, y )'s would be homogenous 

for ~ . But equality is impossible too, since if ~< y<~ in H and 

I(8, y)= ~(y,~) = Z, either $~ (Az-As)~ (A~-Ay) or 

J~ (A~ - A z) ~ (Au 

2.10 Remarks. (!) The least Ramsey cardinal is not ineffable, since 

"I am Ramsey" is ~i 
2" 

(2___) One can use (b) above to show each member of H is invisible in 

R(Ka) ( this is the lenuna of [ Je~J alluded to just before 1.13 ), 

and (a) to show {~< K~I A invisible in R(K~) }is stationary in ~a 

This was Jensen's line of argument on pp. 105 - ll2 of [ jan 43 �9 

2.11 Theorem ( Silver, Reinhardt, Jensen ). __K~ exceeds the least 

ineffable cardinal. 

Proof. We give the traditional proof of this, essentially due to Silver 

and Reinhardt. A sharper argument constructed along the lines of 2.9 

and 2.10 would yield the stronger conclusion that { A < K~ IA ineffable} 

is stationary in each K~. 

Suppose K = K~, ~ = <R(~ ),g> . and H = { Ynln< ~} is a set of 

indiscernibles of ~ of type ~, enumerated in increasing order, and let 

~* be the Skolem hull of H in ~ . ( cf ~d&- ~, pp. 141-2J). The 

function from H into H which maps each Yn to Yn+l can be exteded 

canonically to an elementary embedding i:~* >~*. If ~* is the 

transitive collapse of ~*, write ~ for the image of x E ~* under the 

collapse, ~ for the collapsed counterpart of i, and ~ for the image of 

L~* under ~. We will show that if ~ is the least ordinal in ~* such 

that ~(A )>A ( so ~(X)fAl = X for each XC~ in ~* ), ~ is ineffable 

in ~*, and so if A = ~ , ~ is ineffable in 6;~* and therefore in6~. 
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Suppose is a A-sequence in ~* such that X(~)~ ~ for each ~ < ~ �9 

Then i(X)(~) ~ ~ for each ~<A(I ) in B. Let Y~ A be i(X)( ~ ) 

and Z = f~<l I Y ~  = X(~)} in ~*. Then Z is a homogeneous set for 

< X(~)I~< I > which is stationary in ~ in ~* For if C &A* is a 

closed unbounded subset of ~ in ~*, ~& ~(Z)/'A ~(C) in B, so Z and 

C cannot be disjoint in ~*. 

By contrast with 2.9 and 2.11, little is yet known about the "size" 

of Jonsson and Rowbottom cardinals, though we will see in the next 

section that L thinks they are enormous, to the extent it thinks about 

them at allo It is not yet known whether a regular Rowbottom cardinal 

must be Mahlo ( there is a singular Rowbottom cardinal in a generic 

extension of a universe with a measurable cardinal by a theorem of 

Prikry [ P~ ~ ), or whether ~ can be Jonsson. What follows is 

virtually all that is known to be provable in ZFC. 

2.12 Theorem. !i) ~o is not Jonsson; if K is not Jonsson, neither 

is ~+. 

(2) If ~ is A -Rowbottom, either ~ is inaccessible, or cf ~ 

(3) ( Kleinber~ ) If ~---~f~]~ , ~ >~K]~ for some ~< ~<. 

(4) ( Kleinber~ ) If ~ >[~]<i~ and ~ / >~131 ~ , 

>~3 <~ i,~A -- 
(5) ( Kleinber~ ) The least Jonsson cardinal is i-Rowbottom, where 

A is the least cardina I , by (3), such that ~ ----> [~]A �9 

Proof of (i). < ~ , E , f> , where f(n) = n - i is a Jonsson model. 
<&J 

If ~ />[~]~ , let fa witness ~--/-~[ ~]~ for each ~ with 

I<4~< ~+. Then f: ~i >fx~ ( <Xo ..... Xn-l> ) for n~ and 

~ [K+] n+l witnesses K + / .~[K+] ~ For if ~< *<+ and ~<+ �9 

~<~ = [_]~ < kf +, there is ~ [~]<~ with ~ = fs(~) = f(y, ~). 

Proof of (2). If K = ~+ and f~: ~ for ~ < ~ ,  let R(~,~,y) 

iff f~(~) -- Y. If <B,E , B ~  , RI~ >~<~,~ ,~, R> and ~E~ 
tt 

has ~ predecessors in B, f (these predecessors)~ Bfh~ and has cardi- 

nality ~ Note that this argument actually gives ~4- / ~ ~+ 2 3~, <p �9 

Similarly, if ef ~ = ~[< ~ , and <7"~I $ < A > is cofinal in ~< , 

f' ~I >(the least $ such that ~<'~ ) witnesses ~g />[~]~,<l 
Proof of (3). If f : [*~]<~----~ witnesses ~--/--~[<3~ ~ for ~<K, 

f: xl >fx ( <Xl ..... Xn-l> ) witnesses K / )-~3~ ~ , for if ~< ~, 

~<~oe Xe~ ~ and X' = {x&XIX>~o} . ~ = f%(~) = f(<ao' ~> ) 

for some ~ [ X'] <&~ The least such ~ is a cardinal, for if ~ = 

~{<~, let k : ~ '-~>I Then whenever f: [~<~ ~A, there is an 
o.+o 
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x~ [ ~ U  K such that ( k o f ) "  E x ] < ~  ~ s, so f" E x O < ~ 4 .  
Proof of (4). Suppose (~ , A ) /~(~ , < A ) and f: [4]<~ > 

witnesses 1 /> ~i~ ~ . Then any ~ = < ~ . & ,  A, <~[i]nln<~>> 

with (B) = = K has B/-~A = A, which violates K > [~3 < ~ A , by an 

argument like that for 2.6(2)( >). For (B/hA)= = A , so any ~< I 

is f(~) for some ~ [BKAA 3<~ 

Proof of (5). Immediate from (4). 

2.13 Conjecture. A regular Rowbottom cardinal is weakly subtle. 

The last result of this section will contrast sharply with those 

of the next. 

2.14 Theorem ( Jensen, Kunen; Silver, Reinhardt ). 

(i) Subtlety, almost ineffability and ineffability of K all relativize 

to k 
i 

(2) ~ > (s) <~ relativizes to L if s< ~i_ L. 

Proof of (I). Subtlety is trivial. Suppose K is (almost) ineffable, 

C E L, and <As[sE C >E i is such that A s~ s for s E C, and let A be 

such that for a stationary ( unbounded ) subset X of ~ , A/As = A s 

iff sEX. The datum " I am a constructible subset of my supremum " 
1 

is codable by a ~i formula ( see, e__~ ~. [i~3, Lemma 2.9 ~ , and since 

it_Tie true of each A K-~s = A s for s~ C, it is true of A as well by the 

I I~ indescribability of ~ . X of course is in L too, since it is 

definable from <As[sE C > and A. Finally note that the ~ definition 

of "I am stationary" gives ( X is stationary ) >( X is stationary )i . 

Proof of (2). Suppose f: [~]< ~ > 2 is constructible and g ~ 

maps ~ !--I onto ~. Let ~ be the set of all finite order-isomorphisms 

"f" from some <g"n,E> into <~ ,E > such that the range of T is 

homogeneous for f~ ~ is constructible, and it should be clear that 

< > (s) ~ just in case <~ , 2> is not well-founded. But any 

constructible partial order is well-founded iff ( it is well-founded ~. 

For suppose <~,~ > is such a constructible partial order, and 

<(~ ,~> is well-founded, i" ~., there exists no infinite descending 

-chain of elements of ~. Then there is none in ~ either, so 

( <~,~> is well-founded )L . 

On the other hand ( and this is the direction we need ), suppose 

<(~,~> is not well-founded, so that there is no order-preserving map 

6 from <~,~> into the ordinals. Then there is none in L either, 

so ( <~,~ > is not well-founded )i . 

2.15. With this result we leave the meadow of moderately large cardinals 

( defined as those whose definitions relativize to L ), and enter the 
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tulgey wood of large cardinals, which make L look rather like an 

extension by definitions of <On, E > It would be interesting to find 

more examples of properties in between ( for one such, see [~ , 

pp. 255-6] ). 
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3. 

In this section, we study the effects of certain partition proper- 

ties on inner models L(a). 

3.1. For the following, let a be a set of ordinals, fixed until further 

notice, and let b +, for any set b of ordinals be max(~l,(~Jb)+). 

~a is the language obtained by adjoining constants a for a and ~ for 

a~ ~a to the language of ZF, ~ is the associated Skolem expansion 

( again, cf. [~-Ka, pp. 141-2]), and we assume fixed some unnamed 

coding apparatus for representing each ~a uniformly by a set of ordi- 

nals < a +. If ~ is a structure for ~a' and H~M, SH(H,~) is the 

Skolem hull of H in ~. 

3.2. Then a# exists iff a certain definable closed unbounded class of 

ordinals, H ( whose defining formula ~H will be derived; this is not 

an assertion of class theory ), has the following properties, for each 
+ 

K ~ a : 

(1) ~E H (2) H ~  is unbounded in K and homogeneous for ~K(a) = 

L~(a),E , a, (~I~E Ua)), and the Skolem hull of H ~  in ~(a) 

is L~(a). a# itself is then the set of (codes of) formulas ~a 

satisfied by E~ [Hr~ n for any n<~ and K ~ a +. 

Note that a# is well-defined and independent of the exact choice of 

~H' so long as H satisfies (1) and (2), since then a# is the set of 

formulas satisfied in ~(a) at some x E[K ]<~ , where K CH con- 
t 

sists of the first ~ cardinals ~ a , and K = UK. 

Call a# the Ehrenfeucht - Mostowski ( E - M ) theory 

of H in L(a). 

3.3. More generally, let ~ =~M, E, a, <~l~a)~ be a ( not neces- 

sarily well-founded ) set-model of ZFC- ( ZFC minus the power - set 

axiom ) + V = L(a) such that a u{a~CM. Then ~ is a ~Y, T, a> - 

model ( <y, T> - model when a is clear from context, as here ) iff 

there exists an H~On M of type Y = U y> Ua such that 3~ holds 

with ~ (a) replaced by~ and H#~ by H, and T is the set of for- 

mulas of ~a true of increasing finite sequences of elements of H. 

Call T, similarly, the Ehrenfeucht - Mostowski ( E- M ) theory of 

( H in ) ~. Thus 3.2(2) says ~K(a) is a (~ , a#> - model for 
+ 

each K ~ a 

3.4. A ~Y, T, a>-model ~ is called remarkable and T_ a remarkable 

E - M theory iff 

(1) ~<y >t(E)~y ( in the definable "well"-ordering < of M ), and 



48 W. Boos 

(2.) t(~,y)<y o > [t(~,~) = t(~,Z) for all ~ >x] for all Skolem 

tel~mS t, k, n<~ , X ~ [H~ k and yE [H~n~ here ~<y means 

Xk-l< YO' and t(~,~V) is always written with the understanding that ~< y. 

3.5 Theorem ( Ehrenfeuoht, Mostowski ) 

(i) If ~ is a (remarkable) ~p,T> -model and y is any other ordinal 

> k_2a, there is a (remarkable) < Z ,T > -model }~. 

(2) If y,~,)~ and )~ are as in (T), any order-embeddin~ of ~ into )i 

( or )z into ~ ) can be extended canonically to an elementary embedding 

from )~[ into ~ ( ~ into ~ ). 

13) A <)Z,T > -model is unique up to isomorphism. 

Proof of (1). If H is the set of indiscernibles in ~ and )/< p, we let 

be the Skolem hull of the first Y members of H. If y~ P, we use a 

compactness argument. Let ~. be the following set of sentences in ~a 

augmented by new constant c 7 for ~<y: { ZFC - the power-set axiom } 

~{~< _c~l ~<~ <~}u {c~>~a~_~ _ ~<~}u{ T(c 0~ ..... C~n_l) l 
f f  ~ T A ~ ~ [ W ~ < ~ }  U ~f(c~0 . . . . .  On_ 1 ) I 
~ T and ~e <Y3<~]. Every finite suoset 

/"~_~- has a model, namely ~, with members of H interpreting the c~'s 

mentioned by P. If ~* ~ ~- , H* = {c7 I < u }, and ~ is SH(H*, )Z*), 

is a <y,T>-model, and if the remarkability conditions are in T, 

is remarkable too. 

Proof of (2). Extend the order-embedding to ~ by induction over the 

Skolem terms. 

Proof of (3). The canonical elementary embedding from (2) must be 

onto. 

At this point, we identify what remarkability is good for. 

~.6 Theorem ( Silver ). SuDDose )~ is a remarkable (p,T> -model for 

= k2p > %#a, generated by a set of indiscernibles H of type p which 

witnesses this, and let -~ be the canonical "well"-orderin6" of )~. 

Then (1) H is cofinal in <~,-<~} . 

(2) <~f,~> is an end extension of < SH( g~,~ ) ,~ > : 

< ~, ~ } for any ~ = ~a < P, where H a = { first a elements of H } . 

Proof of (i). If xs M, x = t(~) for some Skolem term t, and ~ [H 3 <~ . 

By (1) of remarkability, whenever z~H and ~< z, x = t(~)<~ z. 

Proof of (2). ~ is a remarkable <a,T )-model, so H a is cofinal in 

<~,-~> by (1). If h is the ath element of H, we show every element 

y of )4~ ~h is in ~ . By (2) of remarkability, y = t(~,V)~h, where 
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< h and V ~ h, so t(~,W) = t(~,W') for all 9, W' with ~ �9 Since 

= L./~, there is such a ~<a, so y = t(~,W)E ~. 

~.7 Definition ( scheme ) ( Gloede [ ~L ] ). Let k;~ be a transitive 

model for ZFC ( set or class ), and ~,~ ~M. Then K m >(~)~ means 

each function f in M from [K~<~into A has a homogeneous H, not neces- 

sarily in ~4, of order-type ~. 

We state Silver's theorem on t~existence of indiscernibles for 

L(a) in stages below. Silver actually proved a general model-theoretic 

theorem in his thesis [5~ I~ about elementary towers of well-ordered 

models, from the assumption that K~j exists; the conclusions about the 

existence of indiscernibles for inner models /(a) then follow as a 

corollary. Solovay defined "0#" = (~)# in [So1~ and showed it is a 

Z~ real (subset of ~) to which every other real is many-one reducible 

( cf. e,g. Devlin's exposition in [~a & , pp. 197-8]). We prove a 

version of the result whose sufficient condition is also necessary, 

following Jensen gJe. ~ ] and Gloede g~Z ] o 

3.8 Theorem ( Silver, as modified in [J~n ~3 and [~ 3 ~. 

a # exists iff some ~(a) for K ~ I = a + has a set of indiscernible ~ 

of type ~A iff K Z-(a~(l )2 for some K ~l. In detail,__ 

(i___) If for some K ~ A = a +, K ~(a~ (i ~2 ~, there exists a set of 

indiscernibles H for ~K(a) of type A �9 

(2__) If for some K ~ I the conclusion of (i) holds, there is a set of 

indiscernibles H of type ~ for )~A(a) such that SH(H, ~l(a)) = )~A(a). 

(3__/) If H is as in (2) and T is its E-M theory, )~A (a) is a remark- 

able well-founded ~i ,T> -model. 

(4) If there is a well-founded remarkable ~ , T> -model, or if there 

are well-founded remarkable (~,T> -models for all limit ~ with 

Q# a<~< ~, then all the remarkable g~,T> -models for 

well-founded. 

(5__/) If the conclusion of (3) holds, a# exists 

and is equal to T. 

(6__) If a # exists, A i(a$(1)<w. 

7> ~a are 

Proof of (i). Trace through the arguments of 2.6(i), 2.7, and 2.8(i), 

(2), keeping in mind that the partitions must be in L(a), though the 

homogeneous sets need not be. Everything carries over. 

Proof of (2). Suppose K is the least ordinal such that there is a 

homogeneous set H* of type ~ for )~f~(a). We prove (2) in three stages 

(a) There is a homogeneous set H of type A for )4fK(a) whose Skolem 

hull in )#f~(a) is ~(a). For if O/= SH(H*, )4~(a)), ~is isomorphic 
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by the transitive collapse ~ to some ~B(a) ( see the remarks on rela- 

tive constructibility in 5.6 ), but B must be K by minimality. Set 

H = ~ "H*. 

(b) ~JH = K . If LJH< u K, Y : t(~) for some Skolem term t and 

e [H3 <~ , but then H' = { 7 e H I 7 ~ ~ } is homogeneous for }~u 

contradicting the minimality of K. 

(e) I = K. If not, there exists a limit B with A~ B < K, ~J(H#A~ ) = 

B, and (Hfh~)=< A, so there is an ~< B not in the Skolem hull of 

HA~ in )/@K(a). If ~ = t(~,~) for some Skolem term t, x< ~ and 

7 ~ ~, let 70 be such that 2,7< ~o 6 HghS. Then since ~ is not in the 

Skolem hull of H#-~, t(~,V) # t(~,W) for all ~,V with ~<V,W<B, and 

therefore for all V with u<v, so an increasing < V~ I ~ < I > with 

%<V~, for all ~ < ~'< i gives a homogeneous I = {t(~,V~) I @ < ~ } 

for ~9o(a), ~gain contradicting minimality of K ( I is a subse~ of 

L ~o (a), since ~ = t(~,~) ~ d~o(a)). 
I 

Proof of (~). We have actually just done the work of this~in (3)(b) 
I 

( for clause (i) of 3.4 ) and (3)(c) ( for clause (2) ). 

(i): Suppose t(~)~ y for some (all) x<y in H. Then H C t(x), which 

contradicts the assumption that I H I = A. 

(2): Suppose t(~,~ )< Y0' and t(~,~) ~ t(~,~) for some, and therefore 

all, ~, ~ with x<y, z. Then let < W~ I ~ <A > be an increasing sequence 

, has first of elements of [ H] n, where n = lh ~ such that each W 

element Y0 ' and t(~, ~ ) ~ t(~, ~B ) for all ~<~< A . > would yield an 

infinite descending chain, and < would contradict the assumption that 

I H I = X. 

Proof of (4). If ~Ja<~ < I , the well-foundedness of the <B,T> 

model )~ follows by 3.5(2), since an elementary submodel of a well-founded 

model is well-founded. If B ~A and <shin< ~> is an infinite descen- 

ding chain, each s n is tn(Z n) for Skolem terms t n and ~ns [ K ]< ~ , 

where K is the set of indiscernibles witnessing that the model ~ is a 

remarkable B-model. If ~ is the Skolem hull of K' = k_]~ ~n in 

~4~ , I K'I = ~ for some ~<A , so ~ is well-founded by the first part 

of the proof, contradicting the fact that the terms of the descending 

chain are all in ~. Similarly, the equivalence mentioned in passing in 

the statement of (4) follows from the fact that a descending chain in a 

< I ,~> -model with indiscernibles H would have to be in the B-model 

generated by some initial part of H of type ~<A , since A = a + is 

regular. 

Proof of (5). We now have a hierarchy of models )9~, one for each un- 

countable cardinal ~ I , each of which is a well-founded remarkable 

< ~ ,T> model with indiscernibles H~ ~ On ~ of type ~ such that 

SH(H# , )4~ ) = M~ and T the theory of the H obtained in (2). Without 
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loss of generality, we can assume by 3.5(2) that H~ C H~,,, in fact by 

3.5(2) and 3.6(2) that H~,, end extends Hy , <~4/~,,-<h~,> end- 

extends <~ ,~M > for each ~< #' ( a recursive definition of a 

class-function which does this provides the formula ~H promised in 

3.2 ) , and by 3.6(1) and cardinality considerations ( i.e., that 

(L y (a))= = ~ for each Y~I ), that each ~}~ is actually ~(a), 

and ~ = [-~i )~ is <n(a), & , a, <~l~& ~Ja)> Then 

the union H of the H~ 's for ~ is a class of indiscer- 

nibles satisfying the conditions of 3.2. (1) and (2) are immediate. H 

is closed by (2) of remarkability and 3.6(2). 

Proof of (6). If f: [A~<~ > 2 is in L(a) and H is as in the defini- 

tion of a# , f = t(~) for some ~ ~ [ H g hA + ] n where Xo<... x k< ~ 

x k +i < ...<Xn_ 1 . Then { ye H I x k < Y < ~ } 
has type ~ and is homogeneous for f. 

It is customary at this point to enumerate some of the sad illusions 

imposed on L(a) by the existence of a#. 

3.9 Theorem. Suppose H is the closed unbounded class of indiscernibles 

which witnesses that a # exists, enumerated as .{_Yal~>0) . Then 

(I) ~yG(a) ~y~(a) for each ~,~ with ~ ~<~. Therefore any element 

x of L(a) definable from { a~ u { ~I ~6~ja>} and ordinals<y~ is in 

~y~ .(a). 
(2) There is a satisfaction relation for ~L(a),E, a, <~ I ~s ~Ja> >. 

!3) Any y~ H is ineffable and invisible in L(a), and there are many 

< #~H which are ineffable and invisible in L(a). 

(4) There is an L-~eneric set G~P for each notion of forcing ~ = 

~P,~) which is ( pointwise ) definable in <L,6, <~I ~< ~i>> 

The situation can be paraphrased for a = ~ by saying that L is a 

'countable model of set theory' ( cf. (i), (2), (4)) which includes all 

the ordinals. 

Proof of'(1). Since L (a) is the Skolem hull of H#A~, and Ls(a) of 

Hfm~. 

Proof of (2). From the fact that L(a) = ~J~ HL (a), and ~ya(a)< 

7~y~ (a) for each ~, 8 with ~<~. 

Proof of (~). If i = a +, say, define an elementary embedding i from 

L(a) into L(a) by setting i(y~) = y~ for ~<~ , i( y~+n ) = YA§ 

for c~>~. Then (A is ineffable) L(a) for n< ~, and i( yA +~ ) = Yl§ 

follows as in the last part of the proof of 2.11. The same elementary 

embedding yields invisibility. If ( ~(l , A) )L(a), (~(i(l), i(A)) L(a), 

since A = t(~) for some ~>i(A ), but i(A)/~/ = A, so ( there is a 

~< i(l ) such that ~(~, i(A)/~ ))L(a) so there is a ~<~ such 
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that . ~(~, A,~j~)L(~? The existence of ~'s< f-~H which are ineffable 

and invisible in L(a) follows by similar arguments. 

P r o o f  o f  ( 4 ) .  ( S ( P ) ~ T , ( a ) )  = = ~  = A~.  
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4. Iterated Ultrapowers 

4.1 Definition ( Kunen ). If 2/4= (N,e ~ is a transitive model of 

ZFC ( set or class ), and I& N is uncountable in )~f, ~ is an ~f-ultra- 

filter ( sometimes: ~f-measure ) on I iff 

4.2 Proposition. 

(i) ~is a (proper) subset of S(1)~ M which contains no singletons. 

(2) If x, y are in S(I)fh M, xE N and x c y, y ~ ~. 

(3) For each xES(I)~M, either x or I - x is in ~. 

(4) If ~< (I) =N, -~ ~ (x I~< ~>e N, and each x ~ ~, so is / ~  ~ x~. 

(5) If <x~l~<(I)- ) , so is {~ Ix~e ~} �9 

If there exists an ~-ultrafilter on Is and 

= (I) =M, ( ~ is weakly compact )~.. 

Proof. We modify slightly the usual proof that a ~ which satisfies the 

ultrafilter property is weakly compact. See, for example, ~%~r , Lemmas 

8 and 9 and Theorem 17] . ( ~ is regular )N follows from 4.1(4). 

Suppose ( ~ < K and there is an embedding i: I ~2 )N define ]/" on 

~2 by Y ~ If iff i-l(Y ) * ~. Let ~y = that element of 2 such that 

{ f ~ 2 1  f( Y ) = i y } = A y e If. Checking that ~iy I Y < ~ > and thus 

<AyI Y< ~> are in M by 4.1(5), we apply 4.1(4) to get ~u Ay = 

{ < iy I u ~ >}e~, contradicting (1). We verify the tree property 

( cf. [~e3, 3.5 ] ). Suppose we have a tree <K,~ > of height and width 

K in N, and we transfer ~ to ~ . Let b = ~ y l the set of ~-succes- 

sots of y is in ~ }. b&M by 4.1(5), and b has elements at every level, 

which are all compatible with each other, so b is a branch. 

In general this is the most that can be said, since whenever 

( K is weakly compact )L and ( S(~ )~ L )= = l~o ( think of 0# ), 

~6 = ~ J n  is an L- ultrafilter, where (fn I n<~) enumerates 

(KS(K))L and for all n<~ ( ~Jn is a nonprincipal ~-complete 

ultrafilter in the K- field generated by ~{ran f~l ~n })L. 

4.3 Definition. K is measurable iff there is a V-ultrafilter on K �9 

4.4 Notation. (i) If ~ is an M-ultrafilter on IEM, V*i ~(i) means 

{ i I ~(i)} e ~. Likewise ~(i) holds a. e. ( almost everywhere ). 

We use s, t to denote ordinal-indexed sequences, sometimes 6, 

if they are sequences of ordinals. We more often write x, ~ as before 

for finite sequences <Xo''''' xk> ' (So .... '~k > " The length k will be 

appropriate to the context. <s,t> is the concatenation of s and t. 

(3) If X is a set of sequences of length ~ + ~, f a function with 

domain ~ + ~, and s a sequence of length ~,X(s)_= ~ B-sequences t I 

< s, t> ~ X }; f(s~ is the function with domain ~ such that 
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f(s)(t) = f(s, t). 

4.5. If ~ is an M-ultrafilter on me M, we define the Rowbottom M-ultr~ 

filter on <n, ~nL a s follows, for l~n< m. ~i = ~; ~n+l for n ~ 

is the set of all X C Kn such that ~*~X(a )E ~n. 

If the inductive definition is unravelled, one has X ( ~n+l iff 

~*~0 V*~l "'" ~*~n < ao ..... an> & x. Similarly one has the following. 

4.6 Lemma. (i) For each n <m, ~n is an Z-ultrafilter on ~n& Z. 

If X( ~, xn~ 

(2) For any m, n< ~ with m<n, and order-embedding j:m----~n, X( ~m 

iff J*n (x)( ~n ' where j,n(X) = { ( ~0 ..... an-l-> [ 

-\ 4----aj(O) .... aj(m-1) ~ "~ ~m§ X(s)~ (3) For all X~ mm, n i f f  V*s 7#.~n/- 

Proof of (i). By induction over n. 3.1(1) - (4) are easy. We check (51 

Suppose <X~ I ~< < > & M, where each X~cKn+~ Then <X~(~) I ~, ~ < K > 

is in M as well ( use the pairing function ), and so therefore by the 

inductive hypothesis is <A a I a < ~ > , where A a = {~ I X (~)~ Nn} . 
Then { ~ [ X e ~n+l] = { ~ I A s& ~ } E M, 

For the second sentence, show by induction on n that { a I A(~) s = 

x~. 

Proof of (2). If n>l, j: m >n, X ~ ,  ~ = j.n(X) and the conclusion 

holds for all ~: ~ >~ < n and ~C_ <m {a [ ~(a) ~ kn-i } 

is either K or { ~ I X(~)( ~m-l] 6 ~, by the inductive hypothesis 

on X(a ) and ~: m-i >n-i defined for t<m-i by ~(t) = j(t+l). 

Proof of (3). This is (2) for j = the inclusion map: m ~ �9 m + n. 

The next series of definitions, slightly condensed from [ K u l ~ ,  give~ 

Kunen's formulation of the notion of ~he ~th iterated ultrapower 

UIt~(M, ~) of M by the )~-ultrafilter ~ on some K~ M. This 

construction generalizes an earlier one due to Gaifman[~3, and is 

unusually efficacious in that it unifies arguments about such apparantl 2 

diverse phenomena as the existence of indiscernibles of L, and the theory 

of a very stable inner model for the existence of a measurable cardinal, 

To define an 'ultrapower' of some kind, one needs a class of function 

and some sort of reasonable approximation to an ultrafilter on their 

common domain. For the ~th iterated ultrapower Ulta(M , ~), the class of 

functions below is Fn(a, < , M ), the common domain is ( Ma)~ and 

the 'ultrafilter' is ~a~S( a, < , M ) C(S( ~a)).Y~ 

4.7. If ~ is an M-ultrafilter on ~ M and a~l, Fn( ~, K , M ) is the 
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set of all f: ~ >~ such that for some 1.<n< ~, order embedding 
j:n >~ and ?: a n -~M. 

f(<~I ~<~>): ~(<~j(0) ..... ~j(~-l) >)" 
Call j a support of f. Note that Fn( n, < , M ) = ~Kn for l_<n< ~, 

and that the correspondence ~I ~ f is an embeddin ~ ~. : Fn( n, ~ , M ) 

~Fn( ~, ~ , ~ ). 

Similarly, for ~, M and ~ as above and ~ any ordinal ~i, let 

S( ~, K~ ~ ) be the set of all XC K s such that for some l~n<~, 

order-embedding j: n >~ and ~ ~n, < ~-~ ] ~< ~ >g X iff 

< Tj(O) ..... ~'P~(n-l)>E~' Once again ~_is called a support of X; for 

l~<n<m, S( n, ~ , ~ ) = S(~<n), and the correspondence X[ >X 

determines an embedding, also calledj.~, from S( n, *~ , ~ ) into 

s(~,~,~). 

We identify <~> and ~, and thus Fn( l, ~, ~ ) with ~ and 

S (  1 ,  ~ , l~I ) w i t h  S ( ~ :  ) .  

4.8. Now define___~ .~S( ~, • , M ) for i~ as follows. For l~<n<~J, 

~n is the ~n defined above. For ~ ~ ~ , set XE ~_ iff for some 

l~<n~, support j" n ~ ~ and XE ~, X = j.~(X), i__:. e., 

< ~'8 I ~<~ >E X iff <~'j(0) . . . . .  ~(n-l)> E ~" 

4.9, Divide out Fn( ~, m , M ) by ~ to obtain Ulte( M, ~ ) = }~ = 

<___N , E ~_~ , for ~>/i, as follows. 

For f, g in Fn ( a, K , M ) set f ~a g iff ~s If(s) : g(s) } , which 

is already in S( ~, ~ , M ), is in ~ . 

From the Scott equivalence classes If]a-- = [g of minimal rank ~ f }, 

and set__N -- { [f]~ I fE Fn( ~, < , M )} . For f, g in N 

[f]EaE6]iff { s L f(s)E g(s)} , also in S( a, < , M )~ is in ~ . 

If ~ is well-founded, let MM_be the transitive collapse of N a, and 

set ~ = < M ,E >. 

For any ~, 8 with a<~ and order-embedding j: ~ >~ we can define 

~: ~----+ ~_much as the finite j.~ was defined above. First define 

j.~ : Fn( a, K , M ) >Fn( ~, ~ , ~ ) by setting ~(f) = g, where 

g(<~l ~< ~)) = f(<~j(~)i~< ~> ~. 
Then pass j.~ over the equivalence relations by setting j.~ ([f~) = 

[ ~ (f) ] ~. 

If j: ~ > ~ is the inclusion map, call jwB __!i ~_. 

The following lemma is lifted from Lemma 4.6 by means of arguments 

with finite supports. 

4.10 Lemma. (i) If j: a >8 is an order-embedding and XES( a, K, M), 

X~ ~ iff j,5(X)~ 2g~.__ 
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(2) If X( S( ~ + ~, m , ~ ), X(~a+~ iff {s ( K~[ X(s)& ~(~ }E ~(q~_ 

Proof of (i). Let k: n ~ be a finite support of X, so that X = 

k .~(Y ) for some YC_C~] n. Then j . k is a finite support of j*~(X), 

and YE N n iff k.~(Y) = XE ~ iff ( jo k ).$(Y) = j.~(X)( ~. 

Proof of (2). As in 4.6, this is the special case j.~ = i~, j = the 

inclusion map: ~ > ~ + ~. 

4.11 Lemma. (i) For each ~, ( ~( [ f ]a, "'" ' [ fn-~--~ ) ) }fo" iff 

{ s & K~I ( f( f0(s ) . . . . .  fn_l(S)) )2X }(2{~- 
(2) For each order-embedding j: ~ ~ j.~ is an elementary embeddin 6" 

(3) If ~ is limit ordinal~ ~a is isomorphic to the direct limit of the 

elementary direct system << ~I ~<~>,<i~y.l ~<Y< ~ >} �9 

(4) (ZFC) 2[~ for each ~. 

Proofs (i), (2), and (4). One uses finite supports to apply the usual az 

ments for Log's theorem. Notice that (4) for limit ~ also follows 

from (4) for ~< ~ and (3), since the direct limit of an elementary direcl 

system is an elementary extension of each of the factors ( cf. [ ~, 

theorem 10.1] ). 

Proof of ()). By verifying the usual arrow-theoretic characterization 
! of the direct limit ( again, see [Sa , theorem 10.2]). The i~ s for 

~<~ give the required embeddings; if }~* is such that there are elemen- 

ts for ~ < u tary embeddings k~: ~ ~-7~-~ 2[* commuting with the i~u 

~ deflned by k( If] the mapping k: ~a * " ) = kn( lion )' where 

~E Fn( n, K , M ) and finite support j: n > a are such that 

J*~( [~]n ) = [f]~, does what is required. 

4.12. Define ~(~) = { If] I {s If(s)E ~( }E ~( }. Note that if 

2g were an element of M ( making ~ measurable in M ), then ~) 

would be ioe(~ ): also that If] is in ~(~) iff the graph of f is in 

~+I" 
The following lemma is quite useful for handwaving, since it often 

reduces arguments about Ult ( M, Z( ) and ~(~) to parallel arguments 

about ~ and ~(. In its simplest special case it says there is an iso- 

morphism ell: Ult2( M, 2/ ) ~ Ultl ( N1 ' ~( 1 )). 

4.1~ Lemma. If )~. is well-founded, then: 

(i) ~(~) is an N -ultrafilter on i0~(~) 

(2) For any ~t there is an isomorphism e ~: ~ +-~--~ UI.t.~)Y~,__~" ~'(~)); 
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e~9 ~osmutes nicely in that if i(0~ ) is the embedding: ~ ) 

Ul%( ~, ~(~)) i(o~) , = e~9 o 1 ,~+9" 

Proof of (i). For finite ~ = n<~, this follows from the corresponding 

result for ~n+l in 4o6(1). 
For infinite ~, argue with finite supports. 

E__z. s for 4.1 (5), suppose If] : ion(K) ~S(ion(K)) is in 
UIt ( M, ~), and f = j.~( f' ) for some f's Fn( n, K, M ), let 

C f ' ]  (9) ~ ~(n)} g( Fn( n, ~, M ) be such that [g~ n = {~{ iOn(K ) , 

Then [ j.~(g) ] ~ = { 9 6 i0~( k' ) I [--~ (9) ~ ~(~) }o 
Proof of (2). Suppose fEFn( a+9, K , M ) is supported by j: n+m >~§ 

with j(n+k) = ~ + 6 k, j' : ~+m b~+~ is defined by j'~ ~ = id and 
~k' "' ' j'(~+k) ~ ~ + and f's Fn( ~+m, K , M ) is such that j.{(f ) = f. 

= g'E Fn( m i0~(~) ~ ), and ~f~" s >fie) for ~ ~ ,  lh3~ , , 

i: m--~-8 defined by i(k) = ~k gives g = i.~(g')6 Pn( 9, ion(K), ~ ). 
Set e~9( [f3~+o ) = [g]8, where [.,,]~ is the equivalence class of 

Fn( ~, i0~(,< ), ~i ) determined by ~(~)7 ~Then e 8 is onto, and 

~f~+~ ~f~+~ iff {<s, t) I s~k % '-and t~ ~ ~ and f(<s, t~) 

f(<s, t>))~ ~~~ iff V*s V*t f(s)(t)&f(s)(t) iff {r ((io~(K))m I 

4.14. Theorem. Suppose ~9" is well-founded and ~<~. Then 

(i) For all y< i0~.(m) i 9 ( y ) = y .  

(2) io~(m)<i09.(m) : i~ 
(3) If 9 : k.19, i0~ (~) ~( iOn( ~: ) )" �9 ~ t) {i0~(~)l ~<~}. ( Thus {i09(~)I 
9 > 0 } is a closed unbounded class of ordinals if all }~9 are well- 

founded ). 

(4) (a) i0~( a ) M +i~_ ~+l and (b) S( i0~(K ) )/AM = 

S(i0~(*:) ) /'h M., for ~0 an%~+>~. 

(5) io~(7 )<[~'( (~ ~ )~): 3__t 
(6) i0~ ((m) = /~ for any cardinal ~> ( 2 ~)~. 

(7) i0~ (A) = A if ~<i , cfA # K', and ~ ~(< A whenever ~ l 
( e .  g." X = ( 2 K , ) + ) .  

Proof of (1). Assume by 4.13(2) that ~ = O. Then for y<~ and 

i09+l(y ), if we assume the result for i09( Y ), the problem reduces to 

showing that i99+i()') = u for all y< ~. But again by 4.13(2)~ this is 

true by induction on y for all Y<in~(K ), for if [f]<y, where If3 is 
with respect to ~(9) in Fn( l, i08(~), ~(8)), there is an ~< y such that 

($ < i09(K)If($)= ~ }E~ 9). If 9 = Ug, assume the result holds 
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good for all ~< ~ and Y~ y<;<. Then if x<i0~( u ), x = i ~(YJ) = 

i ~ (  i 07  ( Y ' ) )  = "lOB (Y ' )  = y' fo r  some ~ < ~  and y' ~ y �9 
Proof of (2). Again by 4.13, it suffices to assume a = 0 and ~ = i, 

since i0~(K )~i01(K). The result follows from the fact that ~< lid] 

<i01 (K) for each ~> m, where id: m > K is the identity function. 

Proof of (3). If x<i0~(K), x = i~(y) for some ~< ~ and 

y< iov (K), so that x = i~()" ) = )'< i0@ (m) by (1). 

Proof of (4). We can again assume by 4.13(~) that ~ = O. 

For (a), let a = If ] ; and define b: K ~KM by b(~): ~i ~f~(~ 

[bU~i0l(K)M1 ; a: ~K inM, forif~<~, {7 I b(7)(~)= 
f~(G )}~ ~. 
For (b), argue by induction on ~. If ~ = y + I, we can argue as in .(a) 

that S(K ) f h M  y+l = S(~ )Fh My : S(K )Fh M, using 4.13.2 for the first 

equality. A somewhat more straightforward argument for S(K)Z-~ M Y+l = 

S(m )#h M, or equivalently, by 4.13(2), S(K)/'h M 1 = S(K )#hM, is as 

follows. Suppose X(S(K)F-hM and [h~ 1 = K in Z 1 and f(~) = Xf'hh(a) 

for ~-~K. Then{ : i({)E [f] iff {~I{EXAh(~)}~ iff[6X, 

for each @<K . If ~ = [j~ and XES(m)f-hM, X6M 1 by ~ = I, and then 

by il~(X) = X ( by (i) for ~ = i ) is in M~. 

Proof of (5). Induction on 8, in each case for all 7" 

= i: ordinals <i01( ~ ) are equivalence classes of functions in M 

from K into ~, so ( i01(~) )= ~ ~( (~)K )M i+. 

i0~((~m))~) < ( ( ~ ~ )}~)--]* _ by inductive hypothesis: 

: ~ . ((~ ~ )~):. 
Proof  of (6 ) .  By (3) and (5) ,  i0 f f  ( K )  = d [ i o u  ( K )  I y < / x  } , and 

the eardinality of each i0v (~) is ~ . (mK)~ < ~.  
Proof of (7). First note that i0~(~ )< A for all ~, ~ < ~ �9 We show: 

i o ~ ( A )  = ~'~J~/~, i occ (~ ) ,  c~ : i "  if [ f ] < i O l ( A  ), ran f C ~ < ~  
since cf A and so [f]~ i01( ~ ). ~ = ~+i: argue as with (i) 

for Ultl( ~, ~(~) ), and transfer by e~l of 4.13(2) to M~§ 

= <_)a: if ~< ioa(A), ~ = iy~(~), some <'<i0y (A), so by the 

inductive assumption there is an f<~ such that ~ i 0Y (~). Then 

~ <  i w~(ioy ( [ )  ) = io~(~ ) .  

4.1~ Theorem. (i) If Ultl( M, Zg ) is well-founded, ~ is ineffable 

and ~]l indescribable for each n<m. n- 
(2) If Ult u is well-founded, a<~, j:~ kY is an order- 

embedding and If) S-- = i0~ (K), _~j.y(f))u ~- ioj(~)(K). 
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(3) If ~ ~ and Ult ( M, ~( ) is well-founded, {i0y (~) I Y< ~} is 

a set of indiscernibles for <2~. r E , <i0~(a) J a6 M >> 

(4) If Ulta(k~, ~6 ) is well-founded, and ~J~ a<AJ~, ( K >(a)<"')~. 

Proof of (i). Both conclusions follow from 4.14(2) and (4). Ineffabil- 

ity is shown as in the latter part of the proof of 2.11. If ~ is ~n l, 

AC_ K and (< K , ~ , A > ~ ~ ) , ( <K, ~ , A> b ~ )~l by 4.14(4), 

so ( there is a ~(< i01(~<) such that < A , E , i01(A)/% A ~ ~ ~ )k2[] , 

so ( there is a I < K such that <~(, e , AfA A > ~_ ~ )27i. 

Proof of (2). If D(~,~) is ( for all j: ~ > y, [f]~ = i0~(< ) > 

[j.(f)]y = ioj(~)(<) ) and C(~) is V ~  o(~,~), 
('7 C(e) for all ~>0 follows from D(0,1). 

Proof of (*). If j: ~ ;Y and ~<~ are given, D(0,1) gives that i01(K) in 

94f~ is k.~([f]l), where [f]l = ~, k: i--~ and k(0) = ~, so j.y(i0~(K)) = 

j. (k.~( [f]l )) = i0(jok)(0)(~), again by D(0,1), = i0j(~)(~). 
Proof of D(0 ill). We have j: l--->y such that j(0) = e, say; we may assume 

by 4.14(1) that y = ~+i. If [j~u165 -- [h]e<i0e( ~ ), (V*se ~e)(~*~ ) 

f( 7 ) = h(s), an impossibility since If]! = K. If [j.~(f)jy>io~(K) = 

[g]y, (V*s(m{)(V*~) f(~ )>g(<s,~>), so there is an h: K~ >~ such that 

(V*s(m~)(W*~) h(s) : g(<s,?)), so ioa(~< )>[h]~ : [i ~h]]y:[g]y= iOc~(~< 7. 
Proof of (3). Suppose ~ = <i0y ~ (K) ..... i0y~_ ~ (K)>, y = 

< i0 $o (K) ..... i 0 $~_~ ( K )> . For simplicity, assume there is only 

one parameter i0~(a) , a~. If j: n > ~ is such that j(m) : Ym for 

each re<n, j.a(i0n (a))= i0~ (a), and j,~(i)0m(<) = i0Ym(<) by (2). 

Then (~(~, i0~(a))F}fa iff ( ~( i01 (~<.. .... i0n_l(~), i0n(a)))~" . 
Doing the same for ~ establishes the result. 

Proof of (4). Suppose ( f: gin3 <~ >2 )M. By (3), {i0y (K) I Y<~} 

is homogeneous for i0~(f). Since ~ < &Jl F;~ = &Jl )~< , the argument of 

2.14(2) shows i0~(f) has a homogeneous set of type ~ in ~. Since 

i0~(~) = ~, by e!ementarity f has a homogeneous set of type ~ in M. 

4.16 Theorem. (I) ~a is well-founded for all ~ iff it is well- 

founded for all ~ < aJl'--- 

(2) If countable intersections of elements of ~ are in ~, ~ = 

Ult ( M, ~( ) is well-founded for all ~. 

Proof of (1). Suppose gfn+l~ ~ Ea[fn]~ for all n< m, where fn has 

support in: mn > ~" Let R = k_#ranj n, and j order-embed the type ~ of 

R onto R. Then there are gn&Fn( 9, ~ , M ) such that j.(gn ) = fn and 

[ gn+13 ~ E~ [gnD ~ for all n<~. 

Proof of (2). Suppose again [fn+l ] a E~ [fn ] ~ for all n<~, and 

Xn = { s I fn+l(S)E fn(S) } �9 We recursively define s~Y �9 )/ >~ for 
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y< ~ such that each X n( s ~Y) s ~-y " If s ~ y is already so 

defined, let s(Y) 6 for h~%~c { ~ I Xn(<s~u )(~-(y+l) ]" Then s 
is in every X n, since finite supporz Jn: mn > ~ of X n, 

s ~ ran jn s ~n in S( m n, m , M ), where jn.(~n) = X n. 

4.17. An ~-ultrafilter ~ on m(M is normal iff whenever X( 

and f: X ) ~ is a regressive function in M, there is a Y ~ X in 

such that f ~Y is constant. 

4.18 Theorem. (i) ~ is normal iff (a) [ id] is the ~th ordinal 

of ~l iff 

(b) whenever X y ( ~ for each y< m and <Xy I ~< m > ( M, the diagonal 

intersection ~y<~Xy : { u I y~ X for all ~< u }( ~. 

(2) If }~ is a transitive model of ZFC such that S( K)/-~N = S(K )/-~ 

and i: ~ ~ ~ is an elementary embedding such that i ~ K = id and 

i(K) > K, {XE S(K )6~ M I ~ i(X)} is a normal M-ultrafilter on K. 

In particular, if ~i is well-founded, a normal }~[-ultrafilter exists. 

(3) More generally, if ~I has a least ordinal If] such that iOl(~) EI[~ 

for all ~< K, and Xe~f iff If] E1 i01(X) iff f-l(x) E ~, ]/-is a 

normal M-ultrafilter on ~. Furthermore countable intersections of 

members of If are nonempty iff the same is true of ~, and each 

Ult ( M, ~ ) is well-founded iff Ult ( M, ]r ) is. 

Proof of (i). ~ is normal iff whenever [f]E l [id] , ~f~ = i01(~) 

for some ~<~, iff [id~ is the ~th ordinal of ~i' Note that XE 

iff { ~ I id(~)~ X } ~ ~ iff [id] ~ i(X), for any ~, normal or not. 

For the remaining equivalence, argue as in 0.5(1). 

Proof of (2). Suppose Xu ~ for y<K, and X = /~y~Xy . Then 

X E ~ iff K E i(X) iff ~E i(Xy ) for all y ~  iff Xy~ ~ for all 

Proof of (~). Suppose YE]f and g: Y > K is regressive. 

Then ( gof )(~)<f(~) for all ~ f-l,,y e ~ , i. e., Egof} E 1 El} , 

so by the assumption on f and 4.1(4) there is an 

X* ~f-l(Y) such that X*e ~ and ( gof ) is constant on X*. Then g is 

constant on f(X*) = Y*~Y, and Y*~ ]/'. 

We close this section with a characterization of a # in terms of 

iterated ultrapowers. The basic idea goes back to Gaifman's unpublished 

work in which he derived the existence of indiscernibles for L from the 

existence of a measurable cardinal. 

4.19 Theorem ( Kunen ). If a is a set of ordinals, the followin 6 are 

equivalent: 

(i) For some cardinal K ~A=a + ~}~K(a) = <L~(a),6 , a, <~I ~@<Ja>> 
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is not a Jonsson model 

(2) For some cardinal K~ ~ and ~ ~ ~, there is an 

elementary embedding i: ]~/~w(a) ~ ~Ti~(a) which is not inclusion. 

(]) For some y ~ <2a there is an L(a)-ultrafilter ~ on y such that 

Ultl(L(a),~) is well-founded. 

(4) For some y~ kta there is an L(a)-ultrafilter ~ on ~ such that 

Ult (L(a), ~) is well-founded for every ~0. 

(5) a# exists. 

(6) For any regular cardinal ~ ~ A = a+, the closed unbounded filter/~ 

is an L(a)-ultrafilter on ~(equivalently~ every stationary 

X~ S(~ )gAL(a) has a closed unbounded subset). 

Proof (i >2). If (N,E> -~i ~f~(a) is such that (N) = = K, and 

is the collapsing map, i = Tr- elementarily embeds ~(a) into ~f~(a). 

(2 >~) Suppose i" ~(a) ~ XY[~ (a) and y > k_) a 

is the least ordinal such that i( y ) ~ ]'. Then ~ = {X C_ y I ]'6 i(X)} is 

a (normal) L(a)-ultrafiler by 4.18(2), since S( y )/h L~ (a) = 

s( y ) ~ L(a). 

(a) Ult (L(a), ~ ) is well-founded. For if [ gn+l] E1 [ gn] for 

all n <~, let ~ ~Ua be such that all the gn'S are in 

L~(a), and let < 2}fs(a), e < fn j n < ~ >> be the transitive collapse 

of SH((y+I)~ {gnL n<~}, < ~Yi~(a),E , <gn I n < ~>> ). 

Then yE i( {~ gn+l(~) (gn(~) } ) iff Y E i( {~ i fn§ E fn(~) ] ) 

iff YE {~ I i(fn+l(~) )) e i(fn(~)) } iff i(fn+l(Y)) E i(fn()')) 
for all n, an impossibility. 

(~ >4) y is the u of (3), and ~ the ~( of its proof. We need the 

following definability result. 

(a) If ]'><)a, R : {the first ?+ cardinals A = +~+ such that ~ = ~ 

and cf~>? ( L 7<-i >~< A ) , K_K_ = (<JR) , and X is any element of 

S(Y )#hL(a), there are x 6 [y~<~, yE [ R ~ <~ and ~ in the 

language of set theory such that ~&X iff )~<(a)~ ~[~, x, y, a3 �9 

Proof of (a). If N is the set of t in L K (a) (pointwise) definable in 

~}[~(a) from some x, y or above and a as the unique t in LK(a) such 

that ~}[K(a) ~ ~t [ t, x, y, aD,~N,6>~iX}f~(a), so the collapse ~r 

takes N to i&(a) for ~ (?)+, and S(y)f'NL(a) = S(y)fAL~(a) 

since ~Ja< y. Then any Xs 6hL(a) is rF(~() for some X6N, so 

~E X for ~<u iff ~ EX iff YY~K (a) ~ ( B: z ~( z, x, y, a )A~Ez ). 

(b) If 2~ and ]/- are both normal L(a)-ultrafilters on y>k]a, ~f~L(a) = 

V/~L(a). For if XC__y, y { iO~l(X) iff y E i~l(X), by (a) and 4.14(7). 

(c__) We now prove Ult (L(a), ~ ) is well-founded by induction on ~0. 

If ~ = ~ + i, argue as in (2 ~3), using the fact that UIZ +l(L(a),2f) = 

Ultl(L(a), 2s If ~ = ~J~ and U is the class of all x in L(a) 
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fixed by each in~ for ~< ~, QUa,( ) --< < L(a),(> , for if 

(gy ~( ~, y ) ~#L(a) for ~ e [ U ~ <~a , the least such y is definable 

in L(a) from ~, so is fixed by any elementary embedding which fixes Z. 

If j: <L(a),(> ~ (L(a),( ~ is the inverse of the collapsing map 

n : U > L(a), j ~ y is the identity and j(Y)>io~(y) for each 

~< ~. For each ~<~, we now define 

(i) k~: UIt~(L(a),Z() ~ (L(a),() such that 

(ii) k~ [ i0~(u ) is the identity, and 

(iii) k~ o i~ = k~ for each Z< ~< ~ as follows. 

ko_= j. k~ for ~ : kJ~ is the "direct limit of <k~l ~< ~ ~ ", i. e. 

the embedding guaranteed by the fact that Ult~(L(a),~() is (isomorphic 

to) the direct limit of the Ul~(L(a),Z4)Vs for Z<~ ( cf. [ Sx , 

theorem i0.i~ ). (iii) is immediate, and (ii) follows from the fact 

that for each ~< i0$(y ), 9 : i~(~ ) for some ~< i0~(Y ). k~+ 1 

is defined as follows. Identify ~^ . with Ult. (L(a), ~($))Tand-- 

write_ifor i0~l(~), _[f~ for [f]~l~,+• for E~I • and ]'~_for i0~(y ). 

Thenk~+l( If] ) = k~(f)( Y~)_z" 

(i) k~+l:M~ (L(a),E). E. g_., f([f], [g]) in M~+ I iff 

y~( i({~< Y~I ~(f(a), g(~)) in L(a) }) iff 

Y~6 k~({ ~< y~I ~(f(a), g(~) ) in L(a)} ) (by (a)and 4.1&(7) ), iff 

k~(f)( "r~)e ~b(g)(y~). 
(ii) k~+ I ~ i0~+l(y ) is the identity. First note that i(f)( y~) = 

If] for each f&Fn(l, y~, L(a ) ), by induction over the well-founded 

relation E. For [fO E[g~ iff { ~< u [ f(~)6 g(a) ] 6 ~($) iff 

i(f)( y~)( i(g)(y~). But for f: u y~, i(f)(y$) = k~(f)(y$) by 

the definability lemma (a) above and 4.14(7). 

(iii) k~+l(i(x) ) = ks(x) by definition. Part (ii) of the inductive 

hypothesis for k~ gives the rest. 

If k is now the direct limit of the k~s for ~<a, k : ~ -<<L(a),6>, 

so ~ is well-founded and we are done. 

(4 >5) { i0~(Y ) I G>0 ] is a closed unbounded class of indiscernibles 

for L(a) by 4.14(3) and 4.15(3); it follows from 4.1~(3) and (6) that 

i0~(y )<~< for each cardinal ~ ~l = ~+ and a<K = i0g(u so that 

{ i0~( u )I ~< g } is a set of indiseernibles for ~K(a). 

(5 >6) If H is the c. u. set of indiscernibles for L(a), any A~S(;<) 

~L(a) is t(E,~) for some t ~ ~, and ~< m~<~. If C is {y ] 2<y< ~}, 

C is either ~_ A or disjoint from A, for [e A iff ~ (t(~,~) iff 

~ t(~,~) iff ~ A for all ~, ~ in C. The equivalence and implication 

both follow if we verify4.1(5) for K; but {~IX ~ K}~ ~ if 

< X ] ~<m> is, since "I am c.u." is absolute for L(a). 

(6 >5) As in (4 ~5), {i0~(m)[ a>O } is a c.u. set of indiscerni- 

bles for L(a). The well-foundedness of Ult (L(a),~) for each ~>0 
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follows more simply this time from the fact that K is closed under 

arbitrary countable intersections. 

(5 > l) If H = ~Y7 I 7 < A } is a c.u. set of indiscernibles for 

)'f~A(a), and q = t_97< A , extend the order-embedding j: y~l ~u for 

~<~, j: y q+n~----~y~+n+l for n<m, j: y~----~u for ~ +~, to 

an elementary embedding of )/~A(a) into a proper subset of itself. 

4.20 Remark. A proof of 3.5 due to Silver which does not require know- 

ledge of iterated ultrapowers is given in [~e ~ , pp. 199-2043 �9 Like 

the proof of (4 ~5) it uses classes of sets fixed by certain 

embeddings to define more embeddings, which in turn generate the 

indiscernibles. 
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5. Measurability 

5.1. Recall that ~ is measurable iff there is a "V-ultrafilter" on 

K , i. e., a ~-complete nonprincipal ultrafilter ~S(K); call such 

an ultrafilter simply a measure on K, and say that XC K has measure 

( measure 0 ) if X( ~ (X~ ~). Clearly if ~ is a transitive model 

of ZFC and ~ is an ~-ultrafilter on ~e M with ~e N, ( ~ is measur- 

able )~ . If ( ~ is normal and V = L(~))~ for such an ~ and 

0n~ M, call ~ a ~ -model, with constructing (normal) ultrafilter/ 

measure ~ . Kunen's main application of the techniques of section 4 was 

to show that the constructing ultrafilter is definable in }~ as the 

unique normal ultrafilter on the only measurable cardinal, and thus that 

there is only one K -model. Since if ~/~ is any (normal) measure on ~and 

=y~L(]~), (~6is a (normal) measure on K , and V = L(~ ) )L(]~), a by- 

product is Con( ZFC + there is a measurable cardinal ) > Con( ZFC + 

there is a measurable cardinal + V = HOD ) ( if the reader finds the 

first part of the sentence puzzling, the definitional material and 

lemmas on L(A) on pp. 206-209 of [~a~ is a good and inexpensive 

reference ). 

First some earlier results, several of them subsumed in what we have 

already done in section 4. 

5.2 Theorem. (i) If K is the least cardinal such that there exists 

an ~-complete ultrafilter ~ S(g ), K is measurable. 

(2) If ~ is measurable, a normal measure on K exists. 

(3) K is measurable iff there is an elementary embedding i from V in 

a transitive M~V such that i>K is the identity, i(K )> ~< and KM~M. 

(#) If ~ is a normal measure on K, ~ properly extends the closed 

unbounded filter on K . 

(5) ( Rowbottom ) Let ~ be a normal measure on m . Then for each 

n<~(a) X( ~n iff [Y]nC_ X for some Y~ ~. (b) If f(~)<x 0 for 

each R(X~ ~n' there is a Y~_ X such that Y~ 7( n and f ~Y is constant. 

(6) A measurable cardinal is ~2-indescribable and ineffable. 

(7) Say that ~ is ineffably Ramsey iff each regressive 

f: FK] <~ �9 K has a stationary homogeneous set. If K is ineffably 

Ramsey, [ /~< K I ~ is Ramsey } is stationary in ~. 

If~ is a normal measure on K, K is ineffably Ramsey, by (~), and 

A ~ ~ I A is ineffably Ramsey} ~ ~[ by (6). 

(8) If ~f is a transitive model of ZFC, ~ M is an M-ultrafilter 

on ~, M, and ~< ~, M, then, in the notation of section 4, 
(a) ~(~) " = l O ~ ( ~ ) ;  (.b) ( Scott ) ~ ( ~ ) ~ + 1 - - ;  (c))/]4~ ~ / ~  " 
(9) ( S c o t t  ) I f  ~ i s  m e a s u r a b l e ,  V # L .  
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(I0) If ~ is a K-model, ( K is the only measurable cardinal )~ 

(ii) If ~ is a normal ~-ultras on K, ({~< ~ I 2 M= ~+} )~d 

---% ( 2 ~ : ~+ )~ .  

Proof of (i). If ~ is not K-complete, then for some A with 

~01-< ~</~ and <B~ [ ~ < A >, each B~ ~, but ~_J~<~ B~ = ~. If 

is the least cardinal with this property, ~'~ S(A ) defined by 

XE ~' iff ~& X B~ E Z{, is an COl-complete ultrafilter on i(, for 

if ~-J~ E X n B~ ~ Z~ for each n<~ and X = ~-]n<~ Xn' ~-J~& X B~ = 

Proof of (2). Immediate from 4.18(2) or (3), since ~ is gJl-complete. 

Proof of (3). By 4o14(2) and (4), and 4.18(3). 

Proof of (4). Any ~-complete normal filter ~ extends the closed un- 

bounded filter, for any closed unbounded C D {'11 ~ = L_Y~ }#-~ {~ I ~ 

the ~th element of C for all ~ ] , and it is an exercise to see that 

each of these sets must be in ~. Alternately, for ~, argue that 

KE i01(C) in ~i' since i01(C)Fh ~ = C is unbounded in ~, so CE ~. 

Proof of (5). We assume (a) and (b) hold for n, and prove them for 

n + i. (b) for i is normality, and (a) for i a tautology. 

Suppose XE ~n+l and f.'X ~K is regressive, i_~. e__t., f(x)~x 0 for all 

~ X. Then for each a, the induction hypothesis gives a )~ ~ and a 

Y E ~n such that f(~,~) = y~ for all ~ in Y~. 

Let g(~) = y~<~, and Z E 24 be such that g ~' Z is {y} Then for 

all ~E W= { (~,Y) I ~E Z and ~<~E[Y ~ n] E ~n+l' f(x) = u We now 

find an HE 24 such that [H]n+Ic X. {~ I X(~)@ ~n} = K~ ~. Also, 

the generalized diagonal intersection ~<~ X(~) = {E l~eX(~) for 

all ~<x0}~, for if not, by (b) for n ~yV*X X@X(y), which is 

impossible. By the induction bypothesis, let I ~ ~ be such that 

[i] n ~ /ke<~ X_(~ ), and H = Kff-hl. Then [HOn+ic_ X, since if 

(a,X) E [H]n+l, ~<x0' ~E K and ~ X(~). 

Proof of (6). Suppose ~ is ~im for some m<~ , and ~ is ~(~, where 

is third-order. If ~ is a normal measure on g and 

< ~ , ~ , RN%A )~ ~ for all I(E X~ ~(, (( ~ , ~ , R)~ ~ ~i, but then 

< m , E , R )b 9 by 4.14(4a) or [4b), and the fact that the only third- 

order quantifier is existential. 
1 Notice that this result, rather than the weaker one of ~m-indescribabil- 

ity for all m<~ in }~, would have been obtainable in 4.15(1) from the 

assurance that (S(S(~)))~l~ ~f. By 4.15(1), m is ineffable, and 

since ineffability is ~,  {~< m [ ~ is ineffable ] E ~.. 
Proof of (7). ~< is ineffably Ramsey: if f: ~]<~ ~ K is regress- 

sire, ~ is a normal measure on ~ and Xn{ ~ is homogeneous for 

f ~ ~m]n, X = ~-~n<~ Xn is homogeneous for each f I ~ ~<] n Since an 

ineffably Ramsey ~ is ineffable, so ~]l indescribable, and " K is 
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i 
Ramsey" is ~2' the second sentence follows. The third follows similarly 

by (6), since " K is ineffably Ramsey" is ~. 

Proof of (8). As usual, we can assume ~ = O. 

(a) [ f i e  ~(~) i f f  V*s f(s)E ~ i f f  I f ]  E i o ~ ( ~ ) .  
(b )  I f  ~ were i n  ~9/1' ( i 0 1  ( K ) g  2 K ) Y} i l ,  s i n c e  t h e r e  i s  an 

f: KK o,~o> iOl(~ ) definable from ~ and S(~ )(-~N, and this would 

contradict ( iOl(~ ) is inaccessible ) 2~I. 

(c) follows from (b), since }~I is defined from elements of 2~/. 

Proof of (9). From (8(b)), if ~ is a measure on K and 2~ I is the 

transitive collapse of UItI(V, ~ ), ~ MI~ L, since )/~i is a transi- 

tive inner model of ZFC with 0nC__M I. 

Proof of (i0). ( There exists a Ramsey cardinal ~ K )~would imply 

( ~ ~ exists )~/~, incompatible with ( V = L(~) )~ff. Or we can argue 

directly from the premises given, as follows. 

Suppose ~,~ are both measurable, ~ is a normal measure on ~, 7/" is 

"(~) V ~)~i ~ UItI(V'~)' and V = L(~) any measure on H , i = m01 : 

If ~<~, ~ R(~ ), so i(~ ) = ~ , and H = L(~ ) = M I, which contra- 

dicts (8c). 

If ~< ~ , we show i(~ ) is ~/AM, which again leads to the contradic- 

tion MI= L(i(~)) = L(~ ) = H ( note that L(A) = L(B) whenever 

A ~ L(B) = B, or conversely; of. ~ s  pp. 206-7]). 

First notice that if I = (A I ~<A ~ ~ and ~ is strongly inaccessi- 

ble) ~, i~ I is the identity by ~.i~(7), and i(~) is on the right cardi- 

nal. i(~ )~ ~f-~M : if X ~ ~(%M, X~I ~ i(~ ). 

i(~ )C ~ : if X = If] 6 i(~ ), (/'bran f )f'AI ~ X, and f~ran f e ~. 

P r o o f  of (ii). If )/fl = U l t l ( M '  ~ )' {i< m ; ( 21 = A+)~f} ~ ~ i f f  

( 2 ~ = ~+) 2MI --~ ( 2 ~ = ~+ )Y/t. The last implication follows 

from the fact that (~ On ))~fl = ( ~On )F,f, which implies S(~ )/-~MI = 

S(~ )/'AN and K+f/fl = g+)~i 

We shift temporarily to a "weak"  variant of measurability. 

5.3. Let K be any uncountable cardinal, JC__ S(~ ) a filter on ~ , 

and ~J;.<A . 

(i) If A~< 2 ~ , ~ is A-saturated iff ~ is ~-complete and 

= S(K )/3 has the A-chain condition. Equivalently, for ~ ~< ~, 

there is no pairwise disjoint ~-sequence of sets A ~ /< such that 

A ~ for each ~ <A ( the chain condition is immediately equivalent 

to the same statement with "pairwise disjoint" replaced by "pairwise 

almost disjoint", i. e., A~/'AA~e~ for each ~p<A. The stronger 

statement follows by K-completeness when A~ ~ ). 

Write s( /~ ,,( , ~ ) as an abbreviation for " ~ is a /~-saturated filter 
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on ~ for some ff ~ ~ ", s*( ~, A , ~) for [ s( ~ , A , ~ ) and not 

s( ~ , A' , ~ ) for any A'< A and ~"C S(~ ) s( ~ , ~ )(s*( ~, ~ 7) 

means ~(s(~, ~ , ~ )) ( ~$g(s*( ~ , ~ , ~)). 

Note that ~ is measurable ifs s(~ , ~). Little is known about whether 

s*(~ ,~ ) can hold for ~ § ~ 2 ~ 

(3) ~ is real-valued measurable iff there is a noranegative ~-addi- 

tive real-valued measure ~: S(~ )-~0, i] such that ~(~ ) = i, ~(~/~X As) 

= ins { #(As) I s<~ } in ~, and ~ ( { y} ) = 0 for each F, ~< K 

Note that ~ is measurable iff ~ is real-valued measurable for some 

, and there is an A~ ~ such that ~(A)~0 and ~ ~ (S(A)) has range 

0, ~(A)} . Call such an ~ an atom of 

Note further that if ~ is real-valued measurable, s*(~ ,~, ~ ), where 

is the filter of A~ ~ such that ~(A) = i. For if not, there would 

be ~ sets A s and an n ~  such that ~(Asf'~A ~) = 0 for all s # ~<~i 

but each #(As)~i/n, violating ~(~ ) = I ( In other words, every 

measure algebra has the ~l-chain condition ). 

(4) An ultrafilter ~C S(~) is ( ~ ~ ~ )-regular is163 there is a 

sequence <Xsl ~< ~ > of elements os ~ such that whenever ~: ~ >~ , 

f-~<A X ~(~) = 0, ( X , ~ )-nonregular iff there is no such sequence, 

(A , K)-nonregularity for X< ~ is a weak form of ~+-completeness. 

5.4 Theorem. (17 ( Solovay, Jensen, Fremlin ) Is A~ ~+ and there is 

a A -saturated filter ~ on K ~ there is one which is normal. 

(2) ( Ulam ) Is there is a ~-saturated filter on ~ and 2 ~ 

there is an A~ ~ such that ~A = (B I B~A and B~ ~ is a measure 

on A ( call such an A by analogy with the note of (3) an atom of ~) and 

therefore K is measurable. 

(3) ( Solovay ) A A -saturated filter on ~ for A< ~ is ~-Rowbottom 

( recall 2.9 ). 

.(4) ( Solovay, Jensen, Fremlin ) s(~, ~ ) implies ~ is s-mahlo for 

all s< • ( and more ). 

(5) ( Silver ) Is ~ is a ~-saturated filter on ~ and ~_ any ultra- 

filter extending ~ , ~ is (A , ~)-nonregular for each ~< 

Proof of (17. Let J be the ideal dual to 3, ~ the ( complete, of. 

[5o23) boolean algebra S(~)/5 a , and IX] = {yc_ ~ I both X- Y and 

Y - X are inJ~} the element of ~ determined by X~ ~< . Extend (-)v 
%1 

to classes A by writing A v ( ~ ) = [ ae A~ = L~A [ ~ = a 2~. 

Define ~:dom(S(~<[)--*~ by ~(~7 = [ X~ ~Z= IX] . Let " ~is a 

weak M-ultrafilter" mean ~ satisfies (17 - (4) of 4.1; then UItI(M,~) 

makes sense, but not necessarily Ult2(~ , ~). Then [ ~{ is a weak 

~-ultrafilter~ ~ = K. for example, is <X J ~ < ~ > is given, 
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w E v Define further ~, =, ( V~ x V~)~ ,S by [ f {=}g ] = 

[( ~ If(a){~ ]g(~)}] , and__~ for x~V : ( the constant function, 

~" > x )v. We show 

(a) if. [ xe(V ~ )v~=~, 3[ = ~ x ~  for some gEV K By A-cc there 

are X< A,  {f J ~<~] and  disjoint IX ] : Ix : fv~ such that 

m~/<~ [ X ] = I[, and we can assume <J X = K. If g is such that 

g[~Xo~ -- f o ~  X~ , [[ x = g ] ] ~  I X  ] f o r  each  co, so [ x = ~ ] ]  = ] .  
(b) [ < (V K )v , E, => : 6~ is well-founded] = ][. For if there are 

x n in V~ such that [ Xn+iEXn] ~ IX] > 0 for all n, there are fn in 

V K by (a) such that { ~ ; fn+l(~)s }~ X, which is impossible�9 

Therefore there are ~-valued classes k,~M such that [ ~( collapses 

(~ onto 22~] = ]~. If xEV, let i(x) = that element of V ~ such that 

[ k(~) = y~ = ~. Then [ ( ~(i(x 0) ..... i(Xn))~ = ]L if 

~( x 0 ..... x n ), @ if not. We let the reader verify [ i(~) = [] = 

for ~< K ; note [ i(~ ) > ~ ] = ]L, for [g< ~(i~d)< i(~< )~ = ][ for all 

By (a), there is an f: k i  > V such that_[ k(f) : ~] : ~ ( f is the 

"incompressible function" of [ So ~] ). Define ~* by X ( ~* iff 

[ k(f~)~i(x)] =z iff {~I f(~)(x }~ 5 ~ iff f-l(x),~. 
Normality. if {~ ~ g(~)<~ }~ ~*, {~ I (g'f)(B)<g(~)}$ ~, so 

k(gof)<~ ~ > 0, so there is a y< ~ such that [ k(~f) = ~ ~ ~ 0, 

so {~i(g.f)(~)-- Y}r so {~g(~)-- Y }r 
A-saturation is immediate. A counterexample with respect to ~* would 

translate back to one for f, since if X~*, f-l(x)~ ~. 

Proof of (2). We assume there is no atom for ~, and show 2A~ ~<. 

Construct a tree T = < { A s I s (2 ~ for some ~< A } , ~> of subsets 

A of m by induction on ~ = gas by A 0 = m , and A<s,0)~A<s,l > for A s 

known, are ~ ~, where ~ is again the ideal dual to ~ , A<s,0>glA(s,l > 

= 0, and A<s,0><9 A<s,l) = A s ( possible since there are no atoms ), and 

A s for gas = ~ = tJ~ = Q<~ As[ ~ if this is ~ .  T has no branch 

of length A , by A-saturation. Let S : { s I gas = ~ and Ass but 

~s~r for ~<~}. 
Assertion: ~ = ~Js& S As' a contradiction unless K ~ (S)=~ 2~ . 

The assertion follows from the fact that, given ~6 K, we can choose s 

inductively so that ~EA 
s 

Proof of (9)- We show ~ ~[m]<~ for each ~ Let 

f: [m]<~ �9 ~ and fn f ~ g ~]~ < ~ ~n " , : . Defining from ~ as ~n 

was from 2s in section 4, it is not hard to prove by induction on n that 

each ~n is a .{-saturated filter on K n ( this will not necessarily work 

if A --- m ), and also the following variant of 5.2(5) for a normal 

A-saturated filter ~ ( retrace the proof given there ): 
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!a) X6 ~ n iff for some Y(~ [Y]nC_ X ; (b) if f(~)<x 0 for all 

x~ X not in the ideal Jn dual to ~n' then there is a Y~ X with 

Y ~ ~n such that f ~Y is constant. 

Then argue as follows. Let ~n = { ~ <~ I Xn~ = f-l( { ~ } ) ~ (% }. 

( ~(n )=< I and X n =<J[Xn8 I ~e Kn} is in ~n' by ~{-saturation of ~n" 

If Hne 9 is such that [Hn3nC_ X n and H = /-hn<~ H n, f"[H]C_ 

<J n<~ Kn" 
ultrafilter Proof of (4). Return to the looking-glass Z-valued " " " 

~( of (i), where we now assume that ~ is normal, so that the f." ~ > 

such that [ k(f v) = K ~ = ]~ is the identity function id: ~ > g. 

Then for X~_ ~ [ X E ~(~ = [X]: [k(i~)E i(X)~ = [~E i(X)~ , so 

Xe ~ iff [~ei(X)~ = /[. We continue (a) and (b) of (i) with 

(c) [ N contains all subsets of ~ IS = ~ ( o__ff. 4.14(4) ). 

If [YC_ ~ ~ = J[ and [~EY~ =[X]~ define f: < >S(< ) by f(~) = 

{ ~ I 7 E X } . Then for each ~<K [ ~Ek(~)~ = [i(~)s k(~)~ = 

[Y~M] 
(d) K is inaccessible~ Since K is regular and Z has ~-cc, l[ = 

[ ~ is regular] ~ [ ( ~ is regular ))~] . If J< were A +, [(i(<) is 

the successor of A~) ~i ] would be If, but this is impossible, since 

[ (i(A) : A v, ~ is a regular cardinal and ~<i(~)~] : If. 

(e) K is ~-Mahlo, in fact { X< ~<I A is ~-Mahlo } 6 ~ ( equivalently, 

[ ( ~ is ~-Mahlo ))~ ] : 1 ) for each { < ~4. For ~ : O, g ( ~ is 

regular))~>~ [ /~ is regular ~ = ]i by ~-cc. Now assume the result 

for ~, and suppose {i<< I there is a closed unbounded KAC - ~ con- 

taining no {-Mahlo j~ } = B ~. For $~< ~<m !etD $ = { ~  I the 

~th element ( in the increasing enumeration ) of K X is $ } , __E _ : 

{$ I DCt ~ . ~  } , HC( - : <J~e E~ D~ , and _~_ = [JEc~. By k~- 

saturation each (E~)--< & , y0i<~ and Hc~C- ~ ,  and ~ : B ~ (~ I 

~<R >]'~< ~}fh Z~<~<H~ {~-- Then for each .~,~ in B the ~%h 

element of K H for [<A is in E~, so ~< y~<A, so Kp/~A has type I 

and ~ 6 K/~ , a contradiction. Therefore B is really in ~, and 

( ~ is ( ~+i )V-Nahlo )~ = i. The induction at limit ordinals 

follows from ~-completeness of ~. 

Proof of (5). Let <X~I~< ~} be any sequence of elements of ~ , and 

define a ~-complete nonprincipal filter ~ on ~ by setting Y E s iff 

{ ~< ~ [ X - Y6 ~} has complement of cardinality< K. 

is ~-complete, for if Y~s for ~ < ~< ~, and Z~ = 

{ ~< ~ ~ X - Y~ @ ~}, Z = ~<l Z~ had power< K , and whenever 

~E W = ~ - Z and ~<A X - Y~ ~, so X - ( /~<A Y~ ) = 

Note that if S : {~t I ~ < 6}~ /< is maximal such that 
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([Jt.<~X~z)--(~t< ~ X~t) ~ ~ for all ~< g , ~< ~ by K- 

saturation and YS = k_~ ~t 6S X~ t is in ~. Use this to define a parti- 

tion < S~ I ~ < ~ > of ~ into disjoint subsets S~ of power <;~ such that 

each Y~ = ~-J~( S~ X~ is in ~, and each S~ is a maximal subset of K - 

~][<~ S~ in the same sense that S = S O was a maximal subset of K above. 

If A < ~ is given, choose Y( /~<I Y~ by K-completeness of ~ , 

and ~(8)~ S~ such that y~ X ~(~). Then Y~/~<A X ~(~). and we are 

done. 

5.5 Remark. If ~ is ~-complete, it is not hard to see that ~ is 

Jonsson ( cf. 2.3 ) iff ~ > ~ for some ( regular ) ~< 

use the argument of 2.12(3) ) , and that ~ ~ g ~  implies ( 

is ~-saturated. Thus a Jonsson (ultra)filter which is not a ~ - 

saturated filter for some ~< ~ ( or a measure on ~ , if ~ is strongly 

inaccessible, by 5.4(2)) may not be easy to find. Does one exist? 

( See the discussion of Jonsson and Rowbottom filters in generic exten- 

sions in [~e~3 ). 

5.6. If K is any uncountable cardinal, a filter ~ S(m ) is bounded 

iff whenever Xe ~, and f: X ~m is regressive, there exist A<m and 

Y~ S(X)gh~ such that f"YC A . ~ is weakly normal iff whenever Xs 

and f: X > K is regressive, there exist ~< K and Y6S(X)-~ such that 

f"Y~ A. A bounded filter is weakly normal, but not conversely. There i~ 

a close connection between bounded filters and nonregular ultrafilters 

5.7. Let 6_~o_be a conjunction of finitely many axioms of ZF which 

implies that the recursive definition of Lx( y ), as a function of x and 

y, is equivalent to a ~-l-definition. Then (cf.~a~) 

(i) If ~ is any transitive model of ~0' ~ an ordinal in M, and A~ ~ , 

(L (A))~ : L CA). 

(2) If )#f is any transitive model of 60' ~ an ordinal in M, and 

(Note that (2) is a consequence of (i)). 

Any LA (A), where A is uncountable, and A6 LA (A), is a model of 60. 

5.8 Theorem. (i) If (a) ( Hajnal ) A~ ~+, or (b) A~S(~ ), 

(2) ( Silver ) If ~ ~ ~ = cf g , and ~S(~) is a 

weaklF normal ~+- Rowbot~m filter, ( 2~ = ~+ for all 

~ ~ }L(~). In particular, the GCH holds in every ~- model ~. 

(3) ( Solovay ) If J is a K-complete~ A-saturated normal filter on 

> ~, ( ~ is measurable )L(~) 

Later we will see that ~ = ~#~L(~) is in fact the unique normal 
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measure on m in L(~). 

Remark. Silver stated the second sentence of (2); his proof 

establishes the first. Solovay combined this in ~$o~ with his 

observation 5.4(3) to prove (3). 

Proof of (i). (a) It suffices to show each X ~  is in L~+(A), since 

this has cardinality K +. Suppose X & LA (A), and ~4~ = <LA (A),~ > 

is such that XEN and ( K + i )~ K+#h N E ~+. Such an ~ is obtained 

by letting ~0 = SH( {X} ~ (K+ J), ~), E ] ~n+l = 

SH( Nn~)(Nn fh M+),~), for n<~, and ~ = ~-Jn<~ ~n" Collapse 

to <Ly (Afh$),E> , where ~ = K+#-~N = the collapse ~( K +) of 

K + p~$ is the identity, so ~(X) = X, and therefore XELy(A~$)C 

L K+ (A). ~ collapses to ~ Ly (A~), E > because ~ 

(60 ̂ V = L(y ))[A ] ), and so the transitive collapse ~* not only 

thinks it is some L~(AfAN*), it really is since it satisfies 60" We 

will handwave these steps in subsequent arguments. 

(b) If X C ~ , we show X( L K+ (A) as in (a). If XE LA (A), let 

= SH({X, A]U(gr <L~ (A), 6 > ), and collapse ~ to <Ly( n"A),E> = 

(Ly (A('~Ly (A)),~> = ~Ly (A),E> , since ~ ~ (K+I) = the identity, 

and so n(X) = X and C(Y) = Y for each YEA(hN. Since (N) = = ~, 

= K, and once again we are done. 

Proof of (2). By (ib), it suffices to prove the result for #< K. K 

is not a successor by 2.12(1), so ~+< K. If the result fails, let ~* 

be ~(~L(~), -< the canonical well-ordering of L(~*) = L(~), and XE 

L (~*) -~<~ L~(~*) the -<-least subset of ~ such that ~ = S(~ )Fh 

{the ~-predecessors of X} has cardinality ~. Let ~ = SH ({~) U 

(~}~X,J}U K, <L~++(~*),6>). Since (A) = = K, there is an 

HE~ such that ~= (N, E, Nl'h~) -< <A, ~ ,~ ~, (N) = = K, (N/~) = 

~#, andN = S~( ~ ~ {X,~}u{~} u {J*)u~ , ~). Set n collapse 

to some transitive ~ of power ~. C"N/~ = N(-~ , since ~C N, 

but also {~< ~ I n(~)< ~ } E Y, the ideal dual to ~, for if not, 

weak normality of ~ gives an H ~  such that ~" H~ v for some 

< ~ , an impossibility since ~ is injective. So ~(~*) = ~*#~ ~ 

also M = L y(~*) for some y, since L ~+v (~*) was a model of 60' and 

X is in L ~(~)}~*)--[<_)~< L$(~*) ] . Since ~(~)<~, ~(~) = 

~. But then ~ = ~, which contradicts ( ~#hN )=~ ~, and we are 

done. The last sentence of (i) follows, since ~ is 2-saturated. 

Proof of (9). This follows from (2) and from 5.4(2): 

( 2A = A+ < m )L(~) so ( ~ is measurable )L(~) 

The following collects some of the principal results of [/<a1~ . 
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5'9 Theorem ( Kunen ) 

(i) If ~2[, H are both K-models with constructing ultrafilters ~ M 

and IF& N, ~ = ]/-, so ~/~ = ~. 

~2) If ~ is a normal measure on ~ and V = L(~), ~ is unique. 

(~) If ~ is the least ordinal such that there exists a ~ -model )~ with 

constructing ultrafilter ~6M, every 6-model ~ is the transitive 

collapse ~a of some Ult (M~ ~) for ~ ~ 0o 

(4) If ~ is a normal measure on ~ and 7/- is any measure on K, L(~) = 

L(]r). 
In (5) through (7), let ~ be the unique ~-model, with constructin 6 

ultrafilter ~( M. 

(5) ( Every measure ~" is of the form { xZ~l~s i0~ (K) for some ~ ))~. 

(6) ( Every measure ~/- is equivalent to some ~n on K n, i. e., 
.~n 

i_o~(K) : ~01(m) and i%~S(m) : i~f__~S(~) )~o 

(7) ( Every Jonsson cardinal is Ramsey )~ 

(8) If ~ is a normal A -saturated filter~ where ~<K , and ~ = 

~hL(~), ( ~ is the normal measure on K )L(M ). 

�9 i~. Ult (}~,~) > Ult~()~f,~) Proof of (1)o Let 1 ~ = ~i" 

(< ) if x = i z~(y) and i0y (<)~ x, ~0Y" (<) e i0y+l(y), so 

y( ~(Y ), so x6iy~(~(u : ~(~). 

(---+) If x (~(~), x = i~a(y) for y(~(~), and i~y(y)~ ~(Y) for 

all y> ~, y<~, so i0y (~) ~ i~y+l(y) ~ x. 

(b) If A = cf A m ~ , and ~ is the c.u. filter on K, i0i (K) = I 

by 4.14(6), and ~#h L(~) = i0A(~), since if xE i0A (~), x has a c.u. 

subset by (a) and 4.14(3), and if x~ i01 (K), K - x does, so x is 

disjoint from a c.u. su~set of K - x. 

(c) If M is a K -model and N a ~-model with ~ K , S(~)f-~ N = 

>(K )A M, since each is S(K )/AL(~) for the c.u. filter ~on some 

sufficiently large regular A . 

(d) Whenever _~ ~ K +~M, Y0 > K, ~_K~I ~<$k is an increasing 

sequence and ~_is a cardinal > k_#~<~ y~, every element of 

S(~ )fA N = S(K )#'~N is in the Skolem hull of X = { y~l ~ < $ } L2 

Skolem hull is <L~( ~ ),E > 

s(K)~ M by 5.8(2). 

(e) ~ = If. If A is as in (b), and ~, < y~ I ~ < ~> 

in (d), we can assume each y~ and ~ are fixed by i0A 

show ~C~. The converse follws symmetrically. 

ifx  ,x: 
is in the appropriate Skolem language. 

For the transitive collapse of the 

for some ~ K +(~;, so it contains all of 

and ~ are as 

by 4.14(7). We 

, K , ~ } , w h e r e  

I f  y i s  t h e  s e t  d e f i n e d  i n  
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L~(] r) by the same formula and the same parameters, yE ]/-, since 

io (y) : i0 (x) I , P U, which 
i 

is in ~ since x was in ~(. The conclusion now follows from 

Proof of (2). Immediate from (i). If ]f is a normal measure on K, 

]/-{~ L(% r) : ~ , so IT = ~ since V = L(2(). 

Proof of (~). If (/ : i0a( ~ ) for some ~, ~ = ( the transitive col- 

lapse of ) Ult~( ~[ , ~) follows from (i). We show there is no ~ such 

that a (i-model exists with i0~( ~ )< &< i0a+l( ~ ). 

By 4.13, it suffices to show this for ~ : 0. If ~ is a 6-model with 

< &< i01(/o ) and constructing ultrafilter ]/-, let ~, ()'~ I a < ~> , 

and ~ be as in the proof of (1),#mA=cf] ~ 6 +, and Ef]l = 6 in 

UItI(M, 2~). By (d) in the proof of (i), i0A (f) is in the Skolem hull of 

{ t ~  [ ~ <  $ ] t /  {(~ I ~ ~< /< } t9 { . < }  i n  <L~x ( ~ ) , (  > . I f  j ( ~ )  : ~ + 1 

for ~ < A -W , $. maps L(~) into L(~) and fixes p, ~ and all the parame- 

ters defining i0x (f), so fixes i0~(f)(~) : 6 ( cf. ~age 4.10, line 22 ). 

which contradicts the fact that by 4.14(2), j.~( 6 ) : i0~(6 ) m 6 . 

Proof of (4). By (I), L(2g )~ L(]K), since L(]f) must contain a K - 

model, and it suffices to show that ]f/] L(~()E L(~(). 

Let 6= i0]01(K), where i0~ I" V >UIt(V, 7-), and let j = i0~01~L(~t): 
�9 2g~ L(~ ) > the 6 -model ~ . Since 2[= Ult (M, ~() for some a, ~ = m0~' 

where ~* = 2g {~ L(~), is also an elementary embedding' L(~) ~)~. 

Since ]~/-~L(~s = {x~S(m)KhL(~)l ~& j(x) }, where ~ = lid3 , in 

UItI(V,]r), and {x(S(m)6AL(~Z)I 7 ~ k(x)}(L(~), it suffices to 

show j~S(~)Kh L(~) = k~ S(~ )6h L(~). If /~ , ~ and < ~ a  I o~< ~ >  

are again as in the proof of (i), and are fixed by both j and k, any x 

, 

some ~, ~, ~a, and then j(x) and k(x) are both { ~< 6 I 

< L~ (W), ~ ) ~ ~ E ~, ~ , 6 , ~ ] , where ]~ is the constructing 

ultrafilter on 6 in ~. 

Proof of (~). From the proof of (4), it is clear that for every such 

so 

{ x~ m I ~i0~(X) } for some ~ and ~ < i0~(K)" 

If B ~m, i0~ (~) is inaccessible in UIt~(V,~) and therefore in 

UIt~(V,~) = Ultl(V,]r), an impossibility since UItI(V, ]/-) contains 

all countable sequences of ordinals. 

Proof of 46). We have just done this, in proving (5). 

Proof of (7). Arguing in M, we let A be any Jonsson cardinal, which 

we know must be between ,~ and M. 

Suppose f: [A~ <~ > 2 is given. If 

(*) there is an x~ ~<I with x&L~(~) -- ( <_~<~ L (~)) and 

fs L~(~ ), then let ~ be a transitive set model of "~ is a measurable 
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cardinal with normal measure If and V : L(]/-)", for some ~E M with 

~<~ , x~M and (M): : 6. Then f~ UItA(M,]~) by 4.i4(b), since UItA(M,} 

is some(Ly(~),E>, x6L~(~)6L~) and S(~ )/hUltl(M,~f) = S(A )ALy( 

i0A( # ) = A is measurable in UI~(M~]F), so f has a homogeneous set there 

(*) of course may fail, but we can reduce the problem for f to one of 

finding a homogeneous set for an f for which (*) does hold, as follows. 

Let ~ be a transitive set model for " 6 is a measurable cardinal, 7~/ is 

a normal measure on 6, and V : L(W)", where ~>~ , fe M and (~)= = A. 

If F maps A i - i onto M, A Jonsson gives an A ~ M of power A such 

that < A, ~ , F ~A>-< <~, 6 , F ~ Since A ~ ~, the inverse j of the 

transitive collapse of A onto T must move some least ordinal ~< A , and 

j(A ) : ~. Since ~ is not measurable by 5.2(i0), { xe S(~ ) I ~ e j(x)} 

is not a normal ultrafilter on ~ , so S( $ )~AT ~ S( $ ). If j(~) = f 

and x((S($ )- T ), we are in the situation (*), so there is a homogeneous 

set H for ~; j"H is then homogeneous for f. 

Proof of (8). We know by the theorems of Ulam and Solovay, 5.4(2) and 

5.7(3) above, that ~ is a union of disjoint atoms a~ for ~ in L(~), wh( 

~<u If ~ : {X~m I X~a~ { ~} , and ~ is the unique normal 

measure on ~ in L(~ ), each ~/hL( ~ ) is a normal measure on m in 

L(~), so must be ~, so $f/h L(~) : ~ , and we are done. 

We close this section on measurability with a version of Kunen's 

result on the difficulty of preserving measurability of K when 

2 ~ ~ K + , 

~.i0 Theorem. Suppose ~ is measurable, ~ is a normal measure on ~, 

~4 = ~L(~ ),E ~ is the unique K-model with constructing ultrafilter 

2~* = ~ fhL(Z4), ~2~ is (the transitive collapse of) Ult IM, ~*), and 

i_~ are the canonical elementary embeddings from ~a into ~. Then 

each of the following statements implies the next. 

(1) 2 ~ > ~+(~) 

.it(< )>io ~ (K) (2) For any measure ]/" on K, 101 

(3) A p-model exists for p< K. 

(4) (~*)# exists, where we identify ~* with its image in On under the 

canonical ( in fact, definable ) well-ordering of L(Z(). 

Proofs (i ~2) in~ (~)<~+(r~)~ 2K< "It 101(m ) since ( i0~ (K))=(2~) 

v 
.it 

: (~ �9 (K ~ ) :~K +(rs and 101(<) for i0~: >UIt(V,~-) --" 2[, 

is always ~(2m) ~ ( since it is inaccessible in }Z ), and (2K))~ = 2 K , 

since ~ N ~ N . 

(2 >~). Using the notation of (i ~2), a = {i0n(m ) I n< ~ } is 

in N, and so therefore is ~N, where ~ = {x I i06o(~ ) I some terminal 

segment of a is in x } . By 5.8.1(a) ~#] Mm is i0m (~*), so 



W. Boos 75 

( ~f< i~l(K )3 w (]4/ ('h L(~) is a measure on ~ )L(~4f))~. 

(3 > 4). Let A [ be the object the r-model P = L(~F) thinks is a 

constructing ultrafilter on ~ , and let 7- be any measure on K . Since 
.]f 
10ci( ~ ) = f and i~(~/) = AF for all ~ ~0, i]z-0~ maps P into P , and 

{ i0~(~ )I ~0 } is a class of indiscernibles for<P, E , <~ I ~<~(P)>>, 

so {A f cf I > K~ is a class of indiscernibles for 

<M, & , <~ I ~ < ~+(~ ) >> since i0~ (K) = A for such A and 

UIt~(P, •) is the ,,.-model ~f; this is good enough to show (~{*)# 

exists, by 4.19. 
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6. The Great Beyond 

6.1. We begin with a discussion of filters over [~ ] < ~ for ~ ~cf K = 

K ( c f .  [ J e c 9 ) .  For p e  [ ~ ] < m  , l e t  p = { q  e [ A ] < ~ l q D p  } .  
D : { p~I~< Y } ~ [~]<~ is a chain ( is directed ) iff for all ~, 

< y with ~<~, p~c p~ ( for all ~ r ~ < Y, there is a ~ y such 

that p~ ~ p~ C p$ ). 

C ~ [~<~ is closed iff the union of every nonempty chain D C C of 

power ~ ~ is in C ( putting "directed set" for "chain" gives the same 

definition ). 

X~ ~] ~ ~ is unbounded iff every p ~ ~] ~ ~ has a superset q in X. 

S ~ [~] ~ ~ is stationary iff S intersects every closed unbounded 

C ~ ~X] < ~ Let ~ be the filter generated by the closed unbounded 

subsets of E~ ~ ~ A filter ~ on ~ ] ~ ~ is normal iff whenever 

X is not in the ideal~ dual to ~, and f: [~<~ ~ ~ is regressive, 

i__~. e., f(p)~ p for each p e ~A~< ~ there is a Y ~ X with Y ~  such 

that f ~ Y is constant. ~ is regular iff $ ~  for each p s ~ ] < ~ 

6.2. ~ is ~-compact for ~ ~ ~ iff there is a K-complete, regular 

ultrafilter ~ S( [~ D < ~ ). 

is strongly compact iff m is ~ -compact for all ] ~. 

is ~-supercompact iff there is a K-complete, regular and normal 

ultrafilter ~ C S( g~ D < ~ ). 

K is supercompact iff m is ~-supercompact for all ~ ~ m. 

Notice that an ~< K, considered as a subset of K, is in ~]< ~ 

also that S~ ~ is closed unbounded (stationary) in [~] <K iff it 

is closed unbounded (stationary) as a subset of ~ and f: S >K is 

regressive in the 'new' sense iff it is regressive in the old, so that 

the case ~ = K in the following is Fodor's theorem, 0.5. 

6.3 Theorem. (i) A filter J on [A~<K is normal iff it is closed 

under diagonal intersections, i. e., whenever each X~E ~, for ~< ~[, so 

is X~ <]__X = {plp~X~ for all ~ p} . (2) The closed unbounded filter 

is a ~-complete regular normal filter on [~ ]<m 

P r o o f  o f  (1 ) (  >). I f  X = / k ~ < )  X~@ ~ ,  Y = E-{] <~<- X ~ ,  and 

f: p 2( least ~p such that p~X ) is regressive, so there is a 

Z ~ Y with Z ~ and an ~ such that f"Z = {~} , i__a. e__~., Z #-~X = 0, so 

x~ ~. 
(< ) If f: gAJ<K ) ~ is such that each f-l( (~})FhX = X ~ 

but x C J ,  Y = [~]~ - x ~ J f o r  each ~ so Y = z ~ <  ~ Y~is too) 

bu t  t h e n  f ( p ) ~  p f o r  each  p in  X :~ Y ~ : ~ .  
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Proof of (2). Regularity is clear. The limit case of the induction for 

K- completeness is done as follows. Assume the result is known for 

<~ = LJ ~, and let <C~I~<~ be given with C = ~<~C . C is 

unbounded, for one can define a sequence < P~I~<~ above an arbitrary 

Po = p by the inductive hypothesis so that each p$ ~ ~ < $  C for O< 

< ~, and p~c p~, for ~<~'< ~; then p* = ~J~<~p~ is in C. C is 

closed, since if D~ C is a chain, <_]D~ C for each ~<~, so <~D~C. 

Normality: If C e K for each ~ <~, and C = Z~ ~<~ C , then C is un- 

bounded. If p = Po is arbitrary, let Pn +i ~ Pn be such that 

Pn+l s ~(pnC~ for n~l. The p = ~Jn<~ Pn is in C, for if {6 p, 

~ Pn for sufficiently large n, so Pnr ( C for sufficiently large n, 

so p~ C . 

C is closed, for if D~ C is a directed set of power <m, and ~ p = <JD, 

p~C , since p is also kiD', where D' = { q~DI~eq} ~ {q~Dlq~C } . 

For the following, say that a set of sentences ~ ~ ~K~ is 

K -consistent iff every subset of ~ of power <K has a model. 

6.4 Theorem. The followin 6 are equivalent. 

(i) K is strongly compact. 

(2) Every ~-consistent set of sentences ~C ~ has a model. 

(3) Every K -complete filter ~C S(~ ) for ~ ~ can be extended to 

a ~-complete ultrafilter. 

Remark. The conclusion of (2) follows from (~)=-compactness of ~, and 

that of (3) for ~ from 2 X -compactness of K �9 

Proof of (i) ~(2). Let ~ be a K-complete regular ultrafilter over 

g~]<~ , where ~ is assumed well-ordered in type (~.)== ~. For each 

p E g~] < ~ , let r~p ~ Ap. Then the ultraproduct Ult(k~p, ~) of the 

}~p'S is a ( well-founded ) model of ~., since for each p 

Proof of (2) > (3). Let ~[] be the L ~  theory of <~ , (XIX~ ~ > 

( each X is a relation symbol ], along with sentences X(s ) for each X 

in ~ , where ~ is a new constant. By ~ -completeness of ~, ~. is 

~-consistent. If ~=<~, <XMIX~ ) ,~ ) is a model of ~[], 

( X~ ~ I ~ X M [~] ~ = ~ extends ~, and is a K-complete ultra- 

filter, essentially because ]4~ thinks ~ witnesses ~ is principal. 

Proof of (3) ~(I). Extend the closed unbounded filter K 

to a K-complete ultrafilter. 

6. 5 Theorem. The followin@ are equivalent. 

(i) K is l-supercompact. 

(2) There is an elementary embedding i from V intb a transitive M~V 
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such that i~K is the identity, i(K)mK and AM~M. 

Proof of (i) > (2). If ~( is a K-complete regular normal ultrafilter 

on [A] <K let i be the elementary embedding of V into the transi- 

tive collapse M of UItI(V , 2~ ]. 

i ~ K is the identity, by K-completeness~ if If]< i(~), 

V*P f(P)< ~, so there is a y< ~ such that V*P f(P) = u 

lid3= {i(~)I ~<1} : i"A : H in ~. H C_ [id] for i(~)6 [id] 

iff { p I ~E P } ={~}A6 ~, and this holds by regularity. [id] ~ H, for 

if if ] 6 lid ] , V*p f(p) E p, and then by normality ~/*p f(p) = y for 

some 3'< X , so If 3 : i(F). 

i(K)>l. If f(p) = Ip[ ( the order-type of p ) for all p( FAD <K, 
If]= IH[ = i in M. Since VP f(P)< <, ,{< i(K). 

For EXO<<M~_M,note first that [i] <K : 6 i3<~ /qM6 M by 5.2(3), 
i~i{ M ( as the increasing enumeration of H ), and normality of ~ gives 

i(p) = i"p for p6 IX] <<, so i~ [A]<J<e M. Then if x = Ef ]eM and 

h(q): p >fp(q) for p, q6 &A] <K, doe([h]) = [i(/ )~ <i(K)s and 

([h])o( ipCi] <~) maps p to Xp in M for each ps [AD<K 

Proof of (2) (i). Let H = { i(~) I e<A } : i" I , and define 

C_ CAO<K by X& Z( iff H6 i(X) in M. 

is K-complete, for if $</< and X E~ for a<$, HE 

i( /-~<$X ), since i ~( : id~ so /~<~X~E ~(. 

is regular, for if p 6 ~,{]<K, P = /~h~Ep {~}A , and the conclu- 

sion follows by K-completeness if we can show each {~}^( ~. But 

i(~)~H, so ~{(i(~))} ^ = i({~}^) inM, so {~}^~ ~. 

is normal, for if f- [l]<*~ >K is regressive, i(f) is regressive 

on [i(A)] <i(K) in M, so i(f)(H)EH, so i(f)(H) = i(y) for some 

z<4, so H~ {p( i([43 <K] I i(f)(p) =(y } : i({pl f(p) = z} ), 

so { p l f ( p )  : r}~. 

i(x) : 

6.6 Corollary ~< is l<-supercompact iff /< is /<-compact iff /< is 

measurable. 

Proof. Immediate from 6.5, 5.2(3) and the definitions. 

6.7 Remark By 6.5 if K is /<-compact every K-consistent ~ ~ ~/<~4 

of power K has a model, but the converse is false. The conclusion is one 

definition for strongly inaccessible ~f of weak compactness ( cf [Dr, 

p. 292 ff.~ and [ De 3~ ), and can hold as well below the continuum 

( cf [K~ 2 ~ and [Bo ] ]. 
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6.8 Theorem ( Vop$nka-Hrb&~ek )o If ~ is A+-compact, a # exists for 

every set of ordinals a such that ha< A § 

Proof. If ~ is a ~ -complete ultrafilter ~ S( 1 +) extending 

= {X~ A+I(~ - X )=~ ~ } , let N be the transitive collapse of 

Ult (V ,~ ). ( We can still define Fn( i, A§ V ) as before, and divide 

this out by ~ , obtaining an uhrapower which is well-founded by K -com- 

pleteness of ~ ). Similarly, we can form Fn- ( I, i+, V ) = 

f I Fn( i, A+, V ) I ( ran f )= ~ A }, and divide this out by ~ to 

obtain Ult-( ~, ~), which is still well-founded, and collapses to 

. Let i be the resulting embedding from V into ~, and j the one 

from V into N. Let ~ ~ ~ be defined by ~( gf~ -) = ~f3 , where 

[ f ~ - is the equivalence class determined by ~ in Fn( i, ~, V ). 

We continue to blur the notational distinction between If] - in 

UIt-(V, ~), say, and its image under the transitive collapse in ~ . 

(a) k ~i(A+)is the identity, since whenever ~ = [f]~ i(i+), f can 

be chosen so that ran f is bounded in I + and If]- : ~ in M iff 

[f~ = ~ in N, by induction on ~. 

(~) i(A+) = U { i(~)l~< 1 +} for if [f]<t(A+), with feFi(l, A+,V) 

[ f]-~ a in M, where ~ = tJ ran fgh ~§ < ~t 

(~) i( A+)< k(i( A +) = j(A+), since j(~)< lid: A + > I+3 in N for 

all ~<I +, so i(A +) = t3{ i(~)l~<l +} = [-]{J({)l~< A +} ~[id]. 

But [id]<j(A +) in N, since {~I I+>~ } & ~ �9 

Also i(a) = k (i(a)) = j(a) by essentially the ~ame argument as for (a). 

Call the common value ~. Extend the elementary-embedding notation to a 

definable class K in the usual way, by writing k(K) = ~J k( K f-~R(~))~ 

Then ~ ~ i(~) elementarily embeds L(~) in ~(t(~)) = i( a ) , 

with i( i +) the least ordinal moved. Then ( ~# exists )N y ~.19 so a # 

exists in V. 

Vopenka-Hrbacek stated the weaker conclusion that V ~ i(a), but the 

proof given above is a trivial extension of their original argument, as 

interpreted in [ ~ I 3 

6.9 Corollary. If K is strongly compact and ~ is a measure on K , 

K ++ is ineffable~ invisible, etc., in L(~). 

6.10 Theorem ( Solovay ). 

il) If # > ~ is regular and K is #- compact, #~ = # . 

(2) If K, ~ , and ~ are regular cardinals such that ~ is y- compact 

and 21 ~ j~, ~i = $ . 

(3) If ~ is a singular strong limit cardinal and K is nr +- compact, 
2% r" = 9/'+ . 
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Proof of (i). By 6.4 let ~CS( [ # ~ < K ) be a ~-complete ultrafilter 

extending the closed unbounded filter on [-I., ] < ~ If i is the 

elementary embedding from V into the transitive collapse M of the ultra- 

power UIt(V,Z(), let [s] : 6 = ~J{i(~) I ~<# } in M. 

(a). { plcf(s(p) )~K] =s_m{pls(p):<)s(p): t)(p~s(p)) --~f 
t(p)}: T (~. The first containment relation is clear, and we need 

only show Te ~. But if ~p t(p)<s(p), [t]~ i(~) for some ~<# 

in M, an impossibility, since ~E ~ and {P I s(p)>~}(~ for each ~<#. 

(b).. There exists a sequence d c_~ for ~T = { Upl peT} such that 

( d c t ) = ~  c f  ct for e a c h  c ts  and  [~ 3<KC- ('~o~< " S ( d c t ) '  so (' gffJ<~)= 
~' 2 ~ = #. d is defined as h"c , where c ~or ~T is some closed 

unbounded subset of ~ of order-type cf ~, and h from # into # is 

defined as follows. Set c(x) = c ~x for x~ T, and define ~0 = 0, 

~'~+ i = the least ordinal >7"~ such that there is a u in [-c ] with 

i( ~P~)~ Y< i(~P~ + i ) in M. Such a }" always exists since [c] and 

{ i(~) I a<~} are both cofinal subsets of 6 in N. If ~ = U~, set 

T# : ~J[<~ T[. Set h(g ) : ~ iff T~ ~ ~ ~'P~ + i' Then d~ : 

h"c satisfies (d{)=~ < cf ~ and d C~ since h"~c~ and if ~< ~, 
-- _ , i 

{ p I)~ e dk)p=}} : [ P I ~ h"c Up } : ~ p I for some 7 in CUp, 

h( ~ : ~ { P I for some 9 in Cup ~'~ ~ 7 < 9"~ + i ] ~ ~' ' 

by definition of ~ + i" 

Once we know {p I ~ d<gp} e ~( for each ~, we know {pl yC_dktp}& ~( 

for each y ~ [~ ]<m , by K- completeness of ~, and we are done 

with the proof that ~ : ~ . 

Proof of (2). By (i), we can assume A ~ ~. Let ~C_S( El ]<~ ) be 

a K- complete ultrafilter extending the closed unbounded filter 

on [ I ~<~ , and let i embed V into the transitive collapse M of 
Ult(V, ~ ). 
(a). 21< i(M)< ( 2 (A~))+ ( = ( 2 i )+ by (i)). Let g(p) = S(p) 

for p ( [I 3 << , and h(p) and r(p)< ~f be such that h(p) maps S(p) 

i-i into r(p). Then [hi maps [g] i-i into mr3 = Y< i(K). If 

fx(p) = X/hp for XC_ A , [fx ] ~ [ fy] for X r Y by regularity of ~, 

and so k: XI > fx embeds S(A ) into [g] , and [h] o k embeds 

S(I ) in )'. The second inequality follows from i(~ )< i(A ) and the 

fact that each If]< i(A ) may be taken to have range ~_ i. 

b). Any yC_~ with (y)=~< i is a subset of z&S(# )KAM with (z)=_ ~ 

~-~ ) = 2 A ( a weak version of 6.5 ). For if y = { )" I ~ < l} and 

)z = If ] , let h(p) : {f~(p) I ~p} and z = [h 3. Each 

[f~]~ z in M by regularity of ~; ((z):<i(K) )M, since each z(p) 

has cardinality < *~, and so (z)=~--~(i(K))= : 2 I by (a). 

(c). (#i(~_~) =max(#, iCM ) )Z, and so ( ( i(.~) )Z )= : #. 

For if i(k)< ~ ( which must be the case if 2 ~A < ~, 
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since then t~i( K ) < (2 A )+~ /~), then (i) glves ~ : ~ in N; and if 

~ i(K ), fi~-i-T- ~ ) < i(~ )i(~) = i(K) in M, since i(K) is strongly 

inaccessible in M. 

(d) We now compute ~ = 2 A, ( [~A )=~ .( i-~]~ )=. 

Each x~ f~31 is a subset of some z such that z ~  , (z) = = 21 and 

((z) = < i(K ))M. There are (( i(~K ))M)= = ~ such z's, each eontainl~ 

at most (2A) A = 2 A such x's, so ( [~A )= = 2A.~ = ~ . 

Proof of (~). Let cf ~ = A , let ( ~6 i 6< A ) be a increasing 

function with range cofinal in ~- , and set ~ = ~. Then 2 ~- = 

2(~X~6)= ~6<A~ ~6 -< /~<~ ~- = ]zA< ~I = #, the last equality by (2). 

After a final series of definitions, we offer Kunen's proof that an 

elementary-embedding axiom that was taken seriously for a time contra- 

dicts the axiom of choice. When large-cardinal axioms begin to approach 

the rim, they seem to clash with ZFC more than ZF. Even the existence 

of 0 @ can be interpreted as evidence of incompatibility of K~, with a 

certain 2~l-definable well-ordering of the universe. Kunen has further 

shown in [Ku 4] that for uncountable regular ~ ( there are ~ measurable 

cardinals between ~ and ~- ) implies that no well-ordering of ~y]<~ 

exists inside in Chang's L~ version C~ of L. The proof of 

6.12 will itself use a simple case of an older refutation in ZFC of a 

"large-cardinal" axiom ( that there are "m-Jonsson cardinals" ), due to 

ErdSs and Hajnal. All this is perhaps wryly amusing when one considers 

that moderately large cardinals are often "motivated" as infinitary 

choice/compactness properties. Choice apparently does not take kindly 

to infinitary " " of itself. generallzations" 

And who knows, without choice, what happens in the Jabberwocky void 

of full determinacy, where 1~z is measurable and '~s is singular? 

The Shadow knows. 

6.11. ( Kunen ) ~ is (almost) a-huge for a ~i iff there is an elemen- 

tary embedding i from V into a transitive M ~V such that i~ ~ is the iden- 

tity, i(K)>K and ia(K)MCM ( ~M~M for all ~<i~(K) ), where 

il(<) = i(K), i~+l(~ ) = i(ia(<)) and is(K) = ~']~<a i~(K) if a 
= ~ .  

OaK a(n) (almost) 1-huge cardinal simply (almost) huge. 

( Reinhardt ) If a ~ 1 ~ is a-extendible iff there exists an 

elementary embedding i from R( K + ~ ) into some R(~) such that i ~ K 

is the identity and i(K)>K ( Recall R(K+a) = R(a) if a ~ K" K). 

K is extendible iff K is a-extendible for all a. 

Vopenka's principle, stated in N~<C ( or over ZFC ), is the axiom 

(scheme): given any (definable) class $~, a~0)of structures of the 
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same similarity type, a pair ~ p exists such that s # P and 

Clearly if i: V > M witnesses that ~ is almost huge, w is A - 

supercompact for all ~< the strongly inaccessible cardinal i(m), so 

R(i(K )) = ( ZFC * m is supercompact ); thus, by CDdel's theorem we 

cannot expect to prove the existence of almost huge cardinals in ZFC 

+ ( there is a supercompact )o Kunen quite drastically capped the 

hierarchy of (almost) s-huge cardinals in ZFC by the following. 

6.12 Theorem. ( Kunen [ K~ ~3) 

(i) (ZFC) There is no ~ -huge cardinal. 

(2) (N~(C) There is no ~'nontrivial elementary embedding from V into 

V" -- that is, no class i embedding V into V such that i(x) r x for some 

x, yet ~(x) iff ~(i(x)) for all formulas ~ in the language of set 

theory. 

Proof of (I). Suppose K is ~-huge. Then each in(K ) is measurable 

by induction on n< ~, and A = i ~ (K) is a strong limit cardinal of 

cofinality LJ, so 2A= A~( see the proof of 6.10(3) ). 

For such a ~ , it is easy to see that there is a function F: [ A ]~ > 

> A such that whenever Ae ~ ~A , F" gA] ~ : A : 

let ~< A , Y~ I s< 2 ~ > enumerate ~13 A • A ( with lots of repeti- 

tions in the second coordinate ), choose inductively s ([A~] ~ - 

{ s~l ~< s } , and set F(s ) = ~'s" 

Clearly i(A ) : ~Jn<~ i(in(< )) = <Jn<~ in+l(K ) : A' so 

i(F): [A] ~ > I Take A : {i(s) I s< A} E El31}, and let 

t e lAD ~ be such that i(F)(t) = m . t = { i(~ n) I n < ~ } = 

i(s), where s = { Snl n < ~ } , so i(F)(i(s)) = i(F(s)) = K , 

an impossibility since i(~) = s for s< ~, and i( *g )> g. We are done. 

Proof of (2). Immediate from (i). What ~ thinks is S(i~(K)) 

cannot be what V thinks it is. 

6.13 Theorem. (i) ( Solovay ) If a< a < ~K+s : # and K is #- 

supercompact, ,( is (~ t i)- indescribable. In fact there is a normal 

measure ~q~S(M ) which extends the (a + i] - indescribable filter, so th~ 

whenever A~R(K) and (R(K+ s § l),E ) ~= ,~[ I<~ A] ~ {/[< ~ I 

< R(~+ s + i),6 ) ~ ,~[~, AfhR(A)~}E ~. In particular, if s>0, 

{4< J x is supe<compaot for all 

(2) ( Magidor ) If K is .4-supercompact for all -{ < ~ , and /w is 

�9 --supercompact, m is ~-supercompact. 

(3) ( Magidor ) If s = Us, ~ : <_]p, i elementarily embeds R(e) into 

R(8), i~ ~ is the identity and i(~)> •, K is A-supercompact for 
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all A < g. 

(4) ( Nagidor ) The following are equivalent: 

(a) ~ is the least supercompact cardinal. 

(b) ~ is the least cardinal such that whenever ~ ~ , there is an ~< 

and an elementary embedding i from R(~) into R(8). 

(c) ~ is the least cardinal such that whenever @ is second-order, 

A~_ R(~) and ~ = <S, & , A> ~ ~, there is an elementary submodel 

: < 7- , e , A I T)of J such that ~ ~ O o 

Proof of (i). Suppose j: V ~ M witnesses ~-supercompactness of K, 

AC R(~), and {A<~ I < R(A+~+~),~> ~ ~[A , Ar~R(A )]) ~ ~: 

( X~ ~ I ~ j(x)} , a normal ultrafilter on K by 4o18(2). Let N be 

the transitive collapse of UIt(V,~). If k: [f]q ~ (j(f))(K), 

k: UIt(V, ~) > N is elementary, 

*< e j( {~ t f(~)6 g(a)} ) iff j 

k(~) = (j(id))(~) = ~o Then ( 

since (eo go) [f]~ E~ [g]~ iff 

(f)(~)~ j(g)(~)o k(~) = M , since 

<~(K+o~+~l,~) ~ n1~['<, ~3)~, so 
((R(K+a§ E> D ~ ~[~,A]) N, since k: N~N and k(~) = K. But 

then (R(K+~+~)~E)~q ~ [ ~< ,A ~, since (R(~v ~ + i)) M = R(I<+ ~ + i)o 

Proof of (2). Let ~ be normal over [~r] <~ , and let i embed V into 

the transitive collapse M of the ultrapower UItI(V,U). 

Since i(~) = K~ V'<i(]~ ) and ~ is A-supercompact for all ~ j~ , 

K is ~r-supercompact in M. If ~ S( ~-~<~ ) witnesses this in 

M, ~ is a normal ultrafilter in V by 6.5, since [~3<~ M ~ M. 

Proof of (3). If A< min(~,i(K ) and ~ ~ ~AD<~ is defined by 

XE ~( iff { i(W ) [ Y< A } E i(X), (defined since g = ~g , and 

therefore S( [ A ~ ~K )~ R(g) ), ~ is a regular normal ultrafilter 

over ~A~<K by the proof of 6.5. If i0(K) = K, il(~ ) = i(K) and 

in( ~ )<~, let in+l(K) = i(in(K)). We show first: (~e) ~ ~< 6 = 

{ in+l(~ ) I in(~ )-~a} Suppose not. Then K< g, cf6 = ~, and 

i(6 ) = d . Let F: [6]~--~d be as in the proof of 6.11, and A = 

{ i(Y) % Y< 6 } . Then R(~)~ ( i(P)" [gO ~ ~6 a n d  i(F)" lAD ~= 6 ), 

so there is a t e [ A ] ~ such that i(F)(t) = K; but t = i(t') where 

t' = {~I i(~)~t}, and so i(F(t) = K, an impossibility, and (9+) is 

established. Now we show by induction on n that whenever in(m )< ~ and 

A < in+l(~ ), ~ is A -supercompaet; completing the proof of (3), since 

then ~4 is A-supercompact for all I < ~ by (~). n = 0 was done at the 

beginning of the proof. If n>~l and <R(~),6> ~ Kis A- superoompact 

for all A<in(~) , < R(~),~ > ~ i(K) is A- supercompact for all A< 

in+l(K) , so ;~ is I- supercompact for all A<in+l(/<) by (2), and 

we are done. 

Proof of (4). (a)----~(b). Suppose ~ is supercompaot, ~ ~ ~, ~ = 

(R(~)) = = ~-8, ~ is normal over [~<~ , and i embeds V into 
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(the transitive collapse M of) UItI(V, ~). By /~M~ M, R(~) and 

i~ R(~) are in M ( as is every set hereditarily of cardinality 

(~)= = ~ , and every subset of M of power ~ ~ ), so there is an 

ordinal ~<i(K ) and an elementary embedding from R(~) into R(i(~)) 

in M, so there is an ordinal ~ ~< and an elementary embedding from 

R(~) into R(~). 

(a) > (c) Assume the universe S of ~ is 6 and (R(6+I))= = #. Let 

be normal over ~]<K , and i embed V into (the transitive col- 

lapse M of) UItI(V, ~) as before. ~* M by 6.5, and L~ maps ,<I' onto 

a substructure of i(~), which satisfies (9 in V and therefore in M, 

since S(~ )~ M. Then i(~) has a substructure of cardinality~i(K ) 

satisfying (9 in M, so~ has a substructure of cardinality <I< satis- 

fying ~ in V. 

(c) >(b) If ~ ~ is given, and T~ R(~) codes a truth definition 
i for R(~), the following is a second-order ( in fact r] I ) sentence (9 

satisfied by (R(~), ~ , T ). 

"I am a (well-founded) model of the axiom of extensionality isomorphic 

to an R(~) for ~ >~ and T codes a first-order truth definition for me." 

For a transitive M is R(~) for such ~ iff (M,~) satisfies each of 

~x(0n(x) > ~y(y = R(x) ), ( the axiom of infinity ), and 

VxVx( xc_ x ~ 9y(x : y) ). 
Then if <N, ~ , Tf-~N) is a substructure of <R(~), E , T) of power 

K satisfying (9, (N,E) ~ ((R(~)~) , and (N,~} is isomorphic to 

< R(~),() for some ~ < K . 

(b) ~ (a) We first let K be any cardinal satisfying the condition 

(x) of (b), and show a supercompact cardinal exists. Let ~ ~ ~- 

with cf ~ : aJ I reflect supercompactness, that is, Z< ~ is supercom- 

pact iff ~ is ~- supercompact for all ~< ~. 

Let ~ 2 and i be such that i: R(~2)~ R(~+2); i(~ I) = ~i so 

cf~= a~ I, i(~ ) = ~, and the least ~ ~ such that i(~ ) > ~ is not 

( otherwise ~C S(~ ) = ~X I ~ i(X)} would be a normal ultra- 

filter on ~ ). 

By (2), ~ is ~ -supercompact for all ~ < ~ , so R(~) ~ i( ~ ) is 

-supercompact for all A < ~, so i(~) is supercompact by definition 

of ~. 

We now assume K is the least cardinal satisfying the condition of (b), 

and ~ is the least supercompact cardinal. By (a) > (b) ~ ~ ft. If 

were less than ~ , we could carry out the above argument in R(~ ), 

obtaining a cardinal # ~  such that ~ is ~ -supercompact for all 

<~ , and therefore ( by 2 ) supercompact, a contradiction. 



W. Boos 85 

6.14 Theorem. (i) ( Reinhardt, Solovay ) If ~ is 1-extendible 

g extendible ~ K is measurable [supercompact3, and has a normal 

measure ~ such that ~A<~I A measurable [supereempac%3 } 6 ~. 

(2) ( Magidor ) g is extendible iff K is second-order strongly 

cpmpact, i. e., whenever ~ is a set of sentences in the second-order 

analogue L2~ of L~_such that each subset of power <~g has a model, 

SO does ~. 

()) K is extendible iff for each ~>;< there exist ~o~ and 

":~L_<.R(~),,E)-<<R(~),6~ such that j~ is the identity and j(t<)~. 

[4) If an extendible cardinal exists, { ~( I w[ is ~-extendible } is a 

proper class for each ~>0. 

(5) ( MKC ) Vopenka's principle imp_lies that every closed unbounded 

subclass of On contains an extendible cardinal. 

(6) ( Powell ) If K is almost huge, <R(K+I),E)~ Vopenka's principle. 

Proof of (I). Measurability. Writing R(~), etc., for <R(~),6>, let 

i: R( K+l )-<R(/~+l ) witness 1-extendibility of •. Then ~ = { A { 

Ke i(A]} is a normal measure on K, so {i<<fXmeasurable }e ~. 
Supercompactness. • is supercompact by 6 13(3). If i: R(~)~ R(~) 

for some ~ = ~J~>~ is such that K is the least ordinal moved by i, and 

is defined as above, A = {l<mI~is ~-supercompact for all ~<<}~ ~, 

so each ~[~ A is supercompact by 6.13(2). 

Proof of (2). ( ~). Let ~- be a ~-consistent set of sentences of L2~, 

and  l e t  ~ > i <  be s u c h  t h a t  ( R(/x ) )= = #( , c f / x  = cO1, ~ E  R ( / ~ ) ,  and  
2 

any ~ L~ in R(~ ) has a model in R(~) if it has one at all. If 

i : R(~ )~< R(]r) is such that K is the first ordinal moved by i, there 

is a least ~<aj by the proof of 6.13(3) such that i~+l(K )>~, so to 

show ~ has a model it will suffice to verify P(k) below for each k~+l. 

P(k): ~ has a model for each subset ~ of ~ of power < ik(~). 

P(0) is M-consistency of ~- . If P(k) holds for k<[+l, ( /k has a model 

for each /~Ci(~-) of power <ik+l(K) )R(~-) by elementarity; but if 

/7~- has power <ik+l(K) , ~' = {i(~)I ~/~} is such a ~, and 

has a model iff ~ does. Since ( ~ has a model )R(~-) > ~ has 

a model, P(k+l) follows. 

(< ). Suppose ~ >~< is given, and let ~ be the following set of 

sentences of L2m , in appropriate constants and relation symbols. 

(a) Th( <R(a),~, <t It~R(a)> ) k2(b[ {the universe is isomorphic 

to some R(8)} i.) (c) {Vx(x6y < ~ ~< x = ~)I Y<m} U(d) {c is 

~J (e) {c~<~ ~ ~< ~}. The sentence ( ) aSove, which is Ul , appears 

in the proof of 6.13(4) (c) >(b). ]~ is K-consistent, since any p ~  

of power < ;< is modelled by <R(~), e , <e 7 I 7 < ~ > for sufficiently 
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large ~<~ and increasing c: ~ >K . If <R(~), &, < i t ~t6R(~)) , 

< cq [ q< ~ > > models ~, the correspondence t I > i t = i(t) elemen- 

tarily embeds R(G) in R(~), and i(~ )~ ~ by (e) above. 

Proof of (3). Immediate from the proof of (2). 

Proof of (4). If ~ >~ is arbitrary, let A be a limit cardinal > ~ 

which reflects extendibilit~ in the sense that ( ~ is ~-extendible )R(, 

iff ~ is 7-extendible'f~ ~, ~ < I~ and ( ~ is extendible )R(~ ) 

iff ~ is extendible, and let i: R(A )-< R(~ ) be such that i~K is the 

identity, and i(~ ) >I ; then i(~ ) is m-extendible for all ~<~. 

Proof of (5). ( MKC ) Suppose C is a closed unbounded class of 

ordinals, and S GC is the stationary class of all limit cardinals A6 C 

such that cf A = ~l' ~J(AghC) = A and i reflects extendibility in 

the sense of the proof of (4). If ~y = <R( v+2 ), &, C~> for 

v e S, there are A,#~S and i: ~A-< g~y such that if K is the least 

ordinal moved by i ( which exists, since i(A) = ~ ), K<~ and K is 

~-extendible for all ~< A ( restrict i to R(~) ), so extendible in the 

sense of R(A) since ~ S, so extendible, for the same reason. 

Now suppose 6 = k~ K~C)< K, and i~(~)<A~iK+l(~) as in the proof 

of 6.13(3). By induction on k~n, ~p ~ ( ik+l(6) = 6 = 

[.]( ik+l( ~)CAC ) ), which contradicts i~+l(~ )~A and the assumption 

that C/'~ is unbounded in ~. 

Proof of (6). If i: V >M witnesses that K is almost huge, w4 = 

{ ~a I ~< K } is a set of distinct structures of the same type, each in 

R(K), and 0~ 6 i(~ ) - ~4, i?(2 :~ i((~) is in M, so ~ ~0 6 

~j: ~0-<~ in V. Since (R(i(K)))M = R(i(K)) and i(~ 0) = ~0 6 i(~), 

( R(i(M+l)) ~ (~0' ~i 6 i(~) such that ~0 ~ ~i and ~j: ~0 ~ ~i ) ) 

so R(~+i) ~ ( ~0, ~16 ~4 such that ~0~ ~i and ~j: ~0< ~i ) in V. 

6.15 Surmise. ZFC + ( There is an extendible cardinal )~ V # HOD. 

9uestion. Does ZFC refute the existence of an extendible cardinal? 

For several reasons having to do with the abstrusely impredicative nature 

of the definition, I think the answer may be yes. 

? 

6.16 Envoi 

" By and by ... by and by ... 

There'll be pie in the sky 

When you die .... " 

- Joe Hill 
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INDESCRIBABILITY PROPERTIES AND 

SMALL LARGE CARDINALS 

by 

Keith J. Devlin (Bonn) 

Introduction 

These notes were originally written to accompany a course given by the author 

at the University of Heidelberg during the Summer Term, 1974~ The author wishes 

to thank Professor G.H.Mflller for arranging his stay in Heidelberg, and the org- 

anisers of the Kiel Conference for extending the invitation to provide these notes 

with their present resting place. 

The material covered is quite standard, though hitherto unpublished in a handy 

form, and falls naturally into three main sections, w Inaccessibility Properties, 

w 2. Indescribability Properties, and w Weak Compactness. 

We work in ZFC set theory, and use the standard notation and conventions. In 

particular, V~ denotes the ~'th level in the cumulative hierarchy and L~ the 

~'th level in the constructible hierarchy. We refer the reader to Devlin (1973) 

for details concerning the constructible hierarchy, and use, as there, ~L to 

denote the canonical, L-definable well- ordering of L. 

With the exception of Theorem 2.18,which is fairly recent, we have avoided the 

always dangerous practice of crediting the various ~esults. Historians of the 

field will have no difficulty in obtaining the relevant information elsewhere. 

1. Inaccessible Cardinals 

The concept of an inaccessible cardinal arises quite naturally in ZF set theory. 

In fact it is inherent in the intuition motivating the ZF axioms. We think of the 

universe, V, as being constructed by successive applications of the operations of 

taking the collection of all sets available at each stage, and forming the coll- 

ection of all subsets of that collection. The Axiom of Infinity enables us to 

escape from the finite sets. The Axiom of Replacement facilitates our passing 

certain limit stages. Suppose then, we introduce a new axiom which says that this 

process has a closure point; that is, we reach a stage ~ where V~ is closed 

under the universe- formation procedure. More precisely, we notice that the cruc- 

ial axioms in the process are the axioms of power set and replacement, and call a 

cardinal K inaccessible iff K is regular and (V~ K)(2 ~ K ), whence V~ clearly 

then satisfies these two axioms. Hence, if K is inaccessible, V K is a model of 

ZF. But notice now that by closing~ under a set of skolem functions for V , we 
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can find k<m such that cf(X) = ~ and Vx~ Va ; and since cf(~)=~, h is not 

inaccessible. Thus our notion of m being inaccessible (i.e. of being a closure 

point in the cumulative hierarchy) is not quite the same as saying that V~ is a 

model of ZF. However, if we consider von Neumann- Bernays- G~del set theory instead 

of ZF, we can obtain an exact characterisation in these terms. 

Inaccessible Cardinals and NBG Set Theory. 

Roughly speaking, NBG set theory is ZF with the notion of a proper class form- 

alised within the theory itself. As the underlying language we take ~, our "lang- 

uage of set theory", together with the binary function symbol {-,-} , only now the 

variables v0,vl,.., will range over classes, the primitive objects of NBG. In 

general we use A,B,C,...,X,Y,Z to denote arbitrary variables or classes. As usual, 

A~B abbreviates ~X~X~A--*XcB~. Recalling (or learning) that the German word 

for "set" is "Menge", we keep in accordance with historical usage and define the 

predicate M by M(X)~-~ 3Y[XEY]. Note that M is a defined predicate and not a 

symbol of the theory. Clearly, if M(X), then X is a set. A proper class is a class 

X such that-'M(X). We write a,b,c,...,x,y,z to denote sets or "variables" ranging 

over sets. More precisely, we write "...x..." for "M(X)^...X...", "~x...x..." for 

"~X~M(X) .... X...]", and "3x...x..." for "3X[M(X)^...X...]". The axioms of NIK] are 

as follows.(For clarity, we omit non-essential universal quantifiers.) 

1. (Extensionality) Vx~x c A ~-~ x~B]-,A=B. 

2. (Pairing) Vx[x ~ {A,B} ~ M(A) ^ M(B) ̂ (x = A v xz B) ] 

3.(Union) ~yVx[x~ y*-, Bz(z~a ^x~ z)]. 

4.(Power set) ~yWx[x~y ~-~ x~a ]. 

5.(Separation) By~x[xEy ~-~ x~a^x~B ]. 

6.(Infinity) 3x[~y(y~x) a (Vy~ x)(~z ~x)(yc z)]. 

7.(Replacement) Vx~!yky, x) ~ A]---, Va3b~y[(~x6 a)(<y,x> ~ A) --~ y~h], 

where <-,-> is the function defined by ~A,B>--{{A,A},{A,B]}. 

8.(Foundation) 3x(xcA) --, (~x~A)(Vy)-~(y~x ^ y~A). 

9.(Comprehension) ~3A~x(x[ A--~ ~x) ) , where ~(x) is any formula of the lang- 

uage of NBG which does not contain A, and all of whose 

bound variables are set variables. 

Note that 9. is an infinite axiom schema. It is possible to replace the comprehen- 

sion schema by a finite set of axioms. Thus NBG is finitely axiomatisable. For 

details of this, we refer the reader to GSdel (1940). 

It should be fairly clear that Con(NBG) --* Con(ZF). If N is a model of NBG, then 

[xGNI N~M(x)] is a model of ZF. Conversely, if 9 is a sentence in the language 

of ZF and NBG~% ~ , then in fact ZF ~. Thus N-BG and ZF are "equivalent" with 

regards to set theory. (For details of this, consult Doets (1969) and Shcenfield 

(195~) .) 
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Now, for ZF, the "natural models" are those V, where K is inaccessible, or 

where V K is a model of ZF for another reason. A few moments reflection (bearing 

in mind the definition of "set" in NBG, and the fact that the sets in a model of 

NBG form a model of ZF) will reveal that a "natural model" of NBG might be a VK§ I 

for some K (where V~ is a model of ZF). If we interpret NBG in VK§ I , then clearly, 

VK. ~ ~ M(x) iff xc V K; thus the "proper classes" of this model are those members 

of V~+~ (i.e. those subsets of V K ) which do not lie in V k. Our next theorem shows 

that V K being a model of ZF does not in itself imply that Vk. I is a model of NBG, 

although the converse is of course always true. First a lemma. 

Lemma 1 

Suppose K is inaccessible. Let XCVK§ I �9 Then x~Va~ IX~<K. 

Proof: Suppose first that x~V K. Since lira(K), x_cV~ for some ~<K, so it suffices 

to show that ~<K-~ ~V~<K. We do this by induction on ~. Firstly, IVoI = 0 < K. 

Secondly, suppose IV~(=k<K. Then IV~.II = I 6)(V~)I = 2~ < K, since ~<K-*2~<~. 

Finally, suppose lim(~) and @<~ --, ~V~i = ~#< ~. Then ~V~ = 10~V~I=~ ~@< ~ , 

since of(K) = ~ . 

Now suppose that IX~<K. Define f:x--~ K by f(y) = rank(y). (Since xEVK. ] , 

x=V , so ran(f)~cK ') Since Ix%<K and cf(~)=~ , f"x~_o( for some C~<K. But 

then of course x-~V~ , so xmV a . 

Theorem 2 

Let ~ be any ordinal. Then K is an inaccessib]e cardinal iff V . I is a model 

of NBG. 

Proof: Suppose V is a model of NBG. Clearly lim(K). We show that cf(~)= K (and 

hence, in particular, that ~ is a cardinal). Suppose A<K and f:~-~. Then f c-V~ 

" W M(ran(f)), so so f~VK. I �9 Since V.~ "Replacement and V~+ IW M(k), we have V 

ran(f) ~ V~ . Thus sup(f"A)<a, whence cf(~)= K . It remains only to show that 

<K ---~ 2 ~< K. Well suppose not. Pick X< ~ with K ~ 2 A . Let f: K--,@(k) be one- 

one, X = ran(f), g = f-1 . Thus g:X*-.K . Since X<K , @(X)~ V~ , whence X~V~ . 

Thus V 1 ~ M(X). But g~VK, I, SO again the replacement axiom in V~I gives K = 

ran(g)( V K , a contradiction. 

Conversely, suppose K is inaccessible. Since lim(~), it is easily seen that 

Va+ I satisfies all the NBG axioms with the possible exception of the replacement 

axiom. To verify this axiom, let x,f~Va~ I be such that Va~ I ~ M(x)^"f is a function 

with domain x". Since Va~1~M(x), x ~V~ . So by lemma l, ~X~<K. Thus Iran(f)~<~. So, 

by lemma i again, ran(f)~ V~ , whence V P M(ran(f)). U 

Weak and Strong Inaccessibility. 

We have defined a cardinal K to be inaccessible, henceforth written I(~), just 

in case (a>o~ and) cf(K)= a and )~< ~--, 2~< ~ . Such a cardinal must clearly be 

a limit cardinal. We call ~ a weakly inaccessible cardinal, and write WI(~), just 
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in case (&~and) cf(a)=~ and k~K--~ ; i.e. WI(~) means that ~ is an uncount- 

able regular limit cardinal. Such a cardiua] is clearly a fixed point in the "aleph' 

sequenoe (i.e. WI(K) --~ ~= K.) In the context of weak inaccessibility, "inaccess- 

ibility" is often referred to as "strong inaccessibility", but we shall continue 

to use our previous termonology here. Clearly, if we assume GCH, then I and WI 

coincide. However, there are models of ZFC in which they do not; for example, 2 ~ 

can be WI in a model of ZFC (See any introductory treatise on forcing, say Jech 

( l~ l ) . ) .  

Inaccessibility and Indescribability. 

Above, we arrived at the notion of an inaccessible cardinal by considering the 

intuition behind the construction of the cumulative hierarchy. In order to be a 

closure point in the hierarchy, an "inaccessible" cardinal has to be "much larger" 

than all smaller cardinals. We can also obtain a notion of "large cardinal" by 

approaching it from below, using metamathematical notions only. 

We say an ordinal ~ is first- order describable if there are predicates U 0 

V~rsuch that for some first-order sentence ~ in the language 

~(Uo,...,Ur) , the language obtained from ~ by the addition of an n -aryl predicate 

letter U i for each i ~r, < Va, ~ , UO, ... , Ur> ~ but for all~<a, < V~,6 , 

UonV~ , .... UrnV~r>~. (Thus, ~ is describable, in terms of some predicates 

on V~, as the first ordinal which satisfies a certain first-order sentence.) We 

say ~ is first-order indescribable just in case it is not first-order describable. 

Theorem 3 

Let K be an ordinal. Then I(K) iff K is first-order indescribable. 

Proof: Suppose first that I(K). Let UO~Vn~ ... ,UrC-~ be given, and let c;be 

a sentence of ~(Uo, ... ,Ur) such that (with an obvious abuse of notation) 

V K W ~(Uo, ... ,Ur). We seek an m~K such that (with a further abuse of notation) 

V~ ~ ~(U0, ... ,Ur). Let {fnln~@]be a complete set of skolem functions for the 

structure <VK, ~, UO, ... ,Ur~ . Let ~ be the least ordinal such that (Vn-~co) 

(fn"~(n)~ V ), where fn is k(n)-ary. Since I(K), such an c< is clearly less than 

K. But then <V~, ~ , U 0 ..... Urn-< ~VK, E , U 0 .... ,Ur> (with a similar abuse 

of notation aS before), so c~ is as sought. 

Conversely, suppose K is first-order indescribable. Then lim(K), for if ~=~*l, 

then K is first-order describable by means of the unary predicate U--[~}and the 

sentence ~=~xU(x). Hence V a*1 satisfies all of the axioms of NBG set theory with 

the possible exception of the replacement axiom. By Theorem 2~ therefore, it 

suffices to show that the NBG replacement axiom does in fact hold in V+I. So let 

u, fcV~, I be such that V~ I ~ "f is a function with domain the set u". Since u is 

a set here, u~V~ for some~K. Let U0~[~) , Ul=U , U2=f, and let ~ be the 
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sentence ~xU0(x ) ̂ Vx~y(Ul(X ) --~U2(Y,X)). Since V K p~(U0,U1,U2) , there i s  y<~ such 

that Vy ~ ~(Uo,UI,U2). Since V v ~ 3XUo(X), T>~ , whence U ~ V v . Hence, as f is 

a function, ran(f) = f"u s V v . Thus ran(f)~ V k , which means that V I ~ "ran(f) is 

a set". m 

Inaccessible Cardinals and L. 

Clearly, if V=L, then, by GCH, the notions I and WI coincide. However, for this 

to be at all a meaningful statement, we must check that the existence of such 

cardinals is compatible with V=L. Of course, as with any axiom, an initial act 

of faith is required concerning the consistency; we assume that the existence of, 

say, an inaccessible cardinal does not lead to a contradiction with ZFC. With 

regards to L, however, once the initial act of faith concerning the consistency 

of ZFC + ~KI(K) has been made, we can prove the consistency with ZFC @ V= L. All 
ZF 

that we need to know is the trivial fact that ]T 1 sentences relativise to inner 

models of ZFC. 

Aside: It is the author's viewpoint that consistency is the only point at issue 

here, and that the question as to the "existence" of inaccessible cardinals is 

totally meaningless. To us, large cardinal theory is a (worthwhile) structure 

theory, nothing more. 

Lemma 4 
ZF 

~hs predicates I(~) and WI(M) are ~I predicates of K �9 

Proof: K is regular ~-~ -~(3f)(BA)(A<K ^f:~--,~ ^f"~ is cofinal in k). 
�9 na " ZF Hence the predicate Reg(K)~-. " K is a regular cardl 1 is ~l " But, 

I(K) ~ Reg(~) ^ --~(Bf)(BX)[k<K a f is a one-one function ^ dom(f) = K ^ 

( V ~ K ) ( f ( ~ ) ~  X )  ] , an~ 

wI(K) , - .  Heg(~)  ^ ~ ( ~ s  K ^ f : X ~ K - - .  K ^ ( u  maps X onto ~) ] . 
ZF 

Clearly, both of these predicates are I[[1 " ~ 

Theorem 

(i t If I(K), then IL(K)! if WI(K), then wIL(K). 

(ii) If WI(K), then IL(K)! hence Con(ZFC ~I(~))<-~ Con(ZFC * ~WI(K)). 

Mahlo Cardinals. 

Once we consider the existence of inaccessible cardinals, we are led fairly 

naturally to an entire hierarchy of large cardinals. A cardinal ~ is hyperinaccess- 

ible if it is an inaccessible fixed-point in the sequence of all inaccessibles 

(i.e. if I(K) and l{k~ K I I(~)~l = K .). Similarly hyper-b/~perinaccessible, and so 

on. However, it is intuitively clear that this procedure does not lead to any 

cardinals significantly "larger" than the inaccessible cardinals themselves. (In 

other words, the notion of "largeness" is the same.) A much larger sort of card- 

inal is obtained by replacing the notion of "unbounded" by that of "stationary" 
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in the definition of hyperinaccessibility. 

Let ~ be any cardinal. A set A ~ a is stationary in K if AnC @ ~ for every 

closed unbounded subset C of K �9 Clearly, every closed unbounded subset of an 

uncountable regular cardinal K is stationary in ~ . The notion of a stationary 

subset of a cardinal ~ thus falls between the notions of "unbounded" and "closed 

and unbounded", at least as far as uncountable regular cardinals are concerned. 

A cardinal K is Mahlo iff I(~) and {kcKiI(~)~ is stationary in ~ . 

Theorem 6 

Let K be inaccessible. The following are equivalent: 

(i) a is Mahlo. 

(ii) { ~ k  is regu~lar ] is stationary in K. 

(lli) Every normal function f:~-~ has a regular/inaccessible/hyperinaccessible/ 

etc. fixed point. 

Proof: Trivial. 

Corresponding to Theorem 3 we have: 

Theorem 7 

Let K be an ordinal. Then Kis Mahlo iff whenever U 0 ~  ... ,Ur~V~ and 

is a first-order sentence in the language ~(U0,...,Ur) such that V K ~ ~(Uo,... 

..,Ur) , there is a regular cardinal k<~ such that V k ~ ~(U0,...,Ur). 

Proof: Assume K is Mahlo. Let A= {~KI<V~, E , Uo, ... ,Ur~ ~ <V , ~ , Uo, ... 

..,Ur~] . Clearly, A is closed and unbounded in M, so let kg A be regular. Then 

is as in the stated property. 

Conversely, assume the stated property. Let A~ ~ be closed and unbounded. Let 

~r= V ~ ( ~  ^ ~EA). Clearly, V K ~ ~(A). Let kc~ be regular with VX~(A~ ). 

Then sup(A~X)~ , so as A is closed, X~ A, whence a is Mahlo. 

And corresponding to Theorem 5 we have: 

Theorem 8 

If a is Mahlo, then K is Mahlo in L. 

Proof: Let A ~ L be closed and unbounded in a in the sense ~f L. Then A really is 

closed and unbounded in ~ , so the result follows from Theorem 5- 

2. Indescribability Properties. 

We have already met the notion of first-order indescribability in ll. In this 

section we shall obtain large cardinal axioms by considering natural generalisat- 

ions of this concept, based on the L6vy hierarchy of formulas of higher type. 

As before, we consider languages of the form ~(Uo,...,Ur) , consisting of 

with the additional predicates UO, ... ,Ur, where U i is k(i)-ary. We also use 

the same notational conveniences as before. Thus, for instance, we write <V~, E , 
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UO,...,Ur> instead of <V~, E,Uon~(O), ... ,UrO~(r)>. For each language~(Uo, 

...,Ur) , we let ~ (Uo,...,Ur) denote the finite-type extension of ~(Uo, .... Ur) , 

obtained by introducing new variables of type 1 to range over properties, new 

variables of type 2 to range over properties of properties, etc. (Thus U0,...,U r 

are "constants" of type I.) We assume the reader understands the (obvious) notions 

of interpretation and satisfaction for ~ (Uo,...,Ur) sentences in structures of 

the form <Vw~ E ,Uo,...,U r>. We use superscripts to indicate the t~zpe level of 

variables, with variables of type 0 being the usual set variables of ~. A formula 

~*(Uo, Vx 3 ~m of " '"~r )  is~m i f  i t  is of the f o r m W ~  .m n "''Xn ~ ' where ~ cont- 

ains no bound variables of type greater than m-l, and where the entire formula 

contains no variables of type greater than m. Dually ~m. 
n 

An ordinal ~ is ~ - describable if there are UO~(O) , ... ,Urge(r) and 

~mn sentence ~ of ~S(Uo,...,Ur) such that V K ~ ~(Uo~...~U ) but for all a 

~ K , V~ ~(U0~...~Lr). Otherwise K is ~m-indescribable.n Similarly with 
m 

~n in place of ~mn here. 
m m 

We shall consider ~n - indescribable and ~n - indescribable ordinals~ where 

m > O. By Theorem 1.3, we see that we shall always be dealing with inaccessible 

cardinals. So, since the formula lim(~) is first-order, we can always assume 

that the structures V~ which we come accross have lim(~). The advantage of this 

is that V~ is closed under the formation of ordered-pairs if lim(~)~ so we can 

always contract quantifiers without affecting satisfaction within V~ .(e.g. a 

given ~ formula may always be assumed to have the form ~x~ ~x~ ~x~ ... m xn~, 

where T has no bound variables of type greater than m-l, etc.) The exact procedure 

for achieving this contraction of quantifiers is developed by induction on the type, 

and we leave it to the reader to supply a suitable definition. By a similar 

procedure we may in fact always assume that the fixed predicates UO,...,U r are all 

unary, and furthermore that there is in fact only one such predicate. The following 

lemma sums up all of these remarks, and is "easily" proved. 

Lemma i 

Assume lim(~) and let U O~c~ (0), ... ,Ur_C V~ (r). Let ~ be a ]Tmn (resp. Z m) 

m (resp. ~n ) formula formula of~Uo,...,Ur). There is a single set U~V and a IT n 

of~(U) of the form ~x l~x 2~ m x m m m m x 3 ... n~ (resp. 3XlVX 2 3x 3 ... xnm~) such 

that for any limit ordinal ~-~, V~ ~ ~(Uo,...,Ur) iff V~ ~ cr(U). 

Corollar[ 2 

Let K be a cardinal. Then ~ is T[m (resp. m m ~n ) - indescribable iff for every 

U ~V k and every IT m (resp. m n ~n ) sentence ~: of i~(U) (of the above "canonical" 

form) such that V K ~r(U), there is a limit ordinal ~<~ such that V~ ~(U). 

We shall first concentrate on the case m= l, and then see which of our results 

generalise to the more general case. It turns out that in this case we need only 
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m 
consider the 7[ n - indescribable cardinals, by virtue of: 

Lemma 3 
1 

Let K he a cardinal, nE~. Then ~ is _~ntl - indescribable iff it is --ll 1 
n 

indescribable. 

Proof: One way is trivial. For the other, suppose K is ~l _ indescribable. Let 
n 

U g V K and let ~ be a ~l ~ sentence of ~*(U) such that V~(U). Let ~ be the 

7[ 1 formula such that~=Bx 9(x ,U). Pick W_V~ so that V~ ~(W,U). Then for 
n 

1 - indescribable. some ~a , V~ ~ ~(W,U), so ~ - - V_ ~(U]. Hence ~ ms 
n+l 

Corollary 4 
1 

Let K be a cardinal. Then K is ~I - indescribable iff I(K). 

Freof: By Theorem 1.3. 

For each m~n, we let ~m'm ~nm ~m m denote the least ~n' ~n - indescribable 

cardinal, respectively. Thus, by lemma 3, ~ ~r = ~ln for all n, and by ceroll- 

1 is just the first inaccessible cardinal. In order to investigate the ary 4, CY 1 

relationship between 1 and ~ 1 however, we require some extra metam~thematical 
n n,l' 

machinery. 

For convenience, we use x,y,z, etc. to denote variables of type 0 and X,Y,Z, 

etc. for variables of type 1. Fix n>0 from now on. Attach G~del numbers to the 

formulas of ~(U, X1,...,Xn) in some canonical, effective manner, so that ~o and the 

formulas of this language are in one-one correspondence (again in an effective 

manner). 

Let Sat be the (canonically defined) predicate such that Sat(R) iff R is a 

satisfaction class for ~(U, X1,...,Xn). More precisely, Sat(R) holds just in 

case (Vr)(V<~>)(R(r,<~>)~-* rr~[x]), where rr~ denotes the formula with GSdel 

number r. There is a first-order formula %o of ~(R,U,X 1 .... ,Xn) , with free 

variables r,x, both of type O, such that whenever lim(~) and R,U, X1,...,Xn-CV~ , 

<V~, e,U, XI,...,Xn> ~ Sat(R) iff <V~, E,R,U,X1,...,Xn> ~ ~r~x~(r,x). Thus Sat(R) 

is a first-order property in~[(R,U, X1,...,Xn). One defines the formula ~thus: 

@(r,x) _~ [r~u~ ^ x is a finite sequence of sets a rr~ has at most all its free 

variables in the set [v 0 .... ,Vk] , where k-l~-lh(x) ] .---~ 
w 

r =u(v i) ^ [H(r,x).-- U((x)i) ] 

v ~r~--Xl(q) ^ [ R(r,~)--, Xl((X) i) ] 
V ... 

~ ~ ~ ~ ~ [R(r,x) .--R(rl,x)~ R(r2,~) ] v r = r I v r 2 
rr'i = v "."s I t.[R(r,x)* -~ --,R(s,x) ] 

~ r ~ : ~vi~s ~ 4R(r,x) ~-- ~uR(s,x(~/i)) 

~r~--vi ~ ~j ^[R(r,x).-~ (x) i ~ (x) j ] 



K. Devlin 97 

r =(x) ] , v r~--v.=v. ^[R(r,x)~-~ (x) i j 
3 

where ~vili~oo } is the canonical enumeration of the variables of ~(U, XI,...,Xn), 

and where we use x(u/i) to denote the sequence obtained from x by substituting u 

at the i'th place. 

We have, of course, not really defined the formula ~, since we have used many 

clauses which are not 'prima face' first-order in <V~, E,R,U, X1,...,Xn> , for 

instance the initial demands on r,x, and the clauses ~r~=rrl~vzr2 ~, etc., but 

these are essentially trivial matters, depending on th~ actual definition of the 

language as a set-theoretical structure (we assume, as usual, that our language 

is a recursive subset of V@). In essence, however, we have shown that Sat is a 

first-order property on a predicate R. 

Now, for a given structure <Vg, E,U, XI,...,Xn>, where lim(~), there is clearly 

just one set R~V~ such that Sat(R), namely the satisfaction relation for(V~..~~ 

Hence the relation (on r) 3R(Sat(R) ^R(r,~)) and ~R(Sat(R)--bR(r,~)) are equiv- 

alent in <V~, E,U, XI,...,Xn> . And clearly, <V~, �9 ,U, X1,...,Xn>~H(Sat(R)^ 

R(r,~)) just in case V~ ~ rr~ (U, XI,...,Xn). So if we let ~(r) denote the ~(U, 

X1,...,Xn) formula ~R(Sat(H) ^ R(r,~)) and ~(r) the ~*(U, X1,...,Xn) formula 

~R(Sat(R) --~R(r,~)), we obtain: 

Lemma 
1 

There is a ~l-formula ~(r) of ~(U,X 1 .... ,Xn) and a ~l-formula ~(r) of 

(U, XI,...,Xn) such that for every sentence ~of ~(U, XI,...,Xn) there is an 

integer r such that, whenever lim(~) and U, X1,...,X n~V~ , 

V~ ~ ~(U,X1,...,Xn) iff V~ ~ ~(r~U, X1,...,Xn) iff V~ ~ ~r,U, XI,...,Xn).U 

Using lemma 5, we at once obtain: 

Lemma 6 (Uniform Enumeration) 

_~l E 1 ) formula ~n(r) of ~(U) such that whenever ~ is There is a (resp. 

a y~l (resp. ~n ~) sentence of ~(U) there is r~o such that whenever lim(~) 
n 

and U -= V~, V~ ~ ~(U) iff V~ ~ ~n(r,U). 

Proof: If n is even, set ]In(r ) = VXI~X2~X3...3Xn~(r), with ~ as in lemma 5, 

and if n is odd, ]In(r ) ~ ~Xl~X2VX3...~Xn~(r), with ~ as in lemma 5. 

For our given, fixed n~O, we set ]~(r) ]~n(r) from now on. 

Lemma 7 
1 ~* There is a ]Tn+ 1 sentence @ of such that V K ~ ~) iff K is ]Tl-indescrib~'n 

able. 

Proof: Set ~= VUVr [ T(r) --, ~(lim(~) ^ <V~, ~,UnVg > ~ ]~(r))] 

Theorem 8 
1 (i t If ~ is ~l - indescribable, then a is Mahlo. 
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~ is ~ §  ~ then [k~Kl~is ~[~-indescribable } is (ii) If 

stationary in K . 

(iii) For all n, 1 < 1 
n n@l" 

Proof: (i t Let C ~ ~ be closed and unbounded in ~ . Let ~ be the obvious T~I 

sentence of ~ such that for all ~ , V~ ~ ~ iff ~ is regular. Now, V~ k ~ 

~(~<~ ^ ~gC) (C) , so we can find ~ ~so that V~ ~ and sup(C~g)=~. 

Since C is closed, ~ ~ C. Since V a~ ~, ~ is regular. 

(ii) Proceed as in (i), but use the sentence ~ of lemma 7 instead of ~. 

( i i i )  From ( i )  and ( i i ) .  

F i n a l l y ,  we show tha t  the 

to L. 

Lemma 9 

IT 1 and 1 n ~n -indescribable cardinals all relativlse 

There is a ~l sentence, A, of such that for any inaccessible cardinal 

k, and any set X_cL~ , X~L~--~ V ~ A(X). (Notice that LK=V L here.) 

Proof: Let ~ be the conjunction of sufficiently many axioms of ZF*V=L (with the 

axiom of extensionality explicitly included) so that whenever M is a transitive 

model of or, M=L~ for Some c~. 

Let X~La be given. Now, if XgL , then XgLy for some ~<~r And as Iu 

we can code up L~. within V, . Hence, 

X~L ---, (BE~VkxV~)[ E is well-founded ^<VK,E>~cr ~ (3F_cV xV~)(~x ~V~) 

[(F i s  a function)a(dom(F) ={z~V~zEx }) ~ (Vz cdom(F))(F(z)  = {F(y) ~ y~ V~ ^ 

y ~  } ) ~ ( r a n ( F )  -- X ) ] ] .  

Now, if I(~) and E_~VkxVK, V K ~"E is well-founded" iff V~ (~Gc-V~xV~) 

(~f) I ( f : ~ - - ' V k ) - - ~ ( G ( f ) : f " ~  ~K ^(Vx, y~  f"~o)(xEy--~ G ( f ) ( x ) <  G ( f ) ( y ) ) ) ]  , which 
1 

i s  c l e a r l y  ~1 over V~ . 

Also, the sentence <V~,E>~ ~ can be written out as a (first-order) sentence 

of ~(F~), of course. (Just write out ~ with E in place of ~') 

Hence, the above expression can be rearranged to give the required sentence A.m 

Lemma lO 

Let ~ be a cardinal. Then ~ is 7[ 1 -indescribable iff, given any U-~V~ and 
n 

any ]Tl-sentence ~r of ~(U) such that V~ ~(U), there is an inaccessible 

cardinal X<~ such that V~ ~ ~(U). 

Proof: Since there is a ~-l sentence ~ of ~ such that V~ ~ ~ iff 04 is an 

inaccessible cardinal. 

Theorem ll 

Let ~ be 7[1-indescribable. Then ~ is 7If-indescribable in the sense of L. 
n n 

Proof: Since I(~), IL(a), so --L~. In L, let U_CL , and let ~be a ~n sentence 

of ~(U) such that L K ~ ~(U), say o- = ~Xl~X2%~X 3 .... Xn~ . Thus, in V, we have 
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V ~(~Xlg L)(~X~gL)(~X~EL)...(-X gL)~L(u). But by lemma 9, the quantifiers 
~ j n i 

(~X i ~ L) are ~i and the quantifiers (~i E L) are Z I , over V~. Hence as ~ is 

~ -indescribable, there is an inaccessible ~ K such that Vk ~ (~X lg L)(~X2E 

L)(~X3~L)...(-Xn~ L)~L(u). Again, ~ =Lk, so this means L~ ~(U), and we are 

done. 

Let us now turn to the general case, m >l. We shall continue to use x,y,z,... 

to denote type O variables and X,Y,Z,... type 1 variables, with xm,ym, zm,.., for 

type m variables. 

By a straightforward generalisation of the proof of lemmas 5 and 6, we obtain: 

Lemma 12 (Uniform Enumeration) 

m (resp m There is a ~n " ~n ) formula ~=~(r) of ~(U) such that whenever ~ is 

m (resp. m a ~n ~n ) sentence of ~(U), there is rg~ such that, whenever lim(~) 

and U~V~, Vg ~ ~(U) iff V~W ~r,U). 

Corresponding to lemma 7, we have: 

Lemma 13 

(i) There is a ~m ~entence @ of s such that V~ ~ iff K is Trm-indescribable. 
n n 

(ii) There is a~ sentence~Sof ~such that Vk~ ~ J iff K is Z~-indeecribable. 

Proof: (i) As in lemma 7. (Since m>l, the initial "~" quantifier can be 

ignored here.) 
m 

(ii) By the same proof as for (it, using the ~n ~ rather than the ~mn T . U 

Of course, in lemma 7, we did not formulate the corresponding version of part 

(ii) of the above, having no need for it. This was because Theorem 8 and lemma 
i xl ~ i 

together gave all the information regarding the relative sizes of ~n' n+l' n' 
1 

O-n+l, etc. For the case m > 1 considered here, however, we shall require all of 

lemma 13. Firstly, as in Theorem 8, we have: 

Theorem 14 

(i) If K is ~+l-indescribable, then ~Kl~is "~m-indeseribablen ~ and [~I~ 

is ~-indescribable } are stationary in K �9 
�9 m . . . m . . 

(ii) If K is ~ ~-indescrzbable, then [kgKl k is ~ -indescrlbable3 and{~eKl 
nT• m 

m , . . 
is ~n-lndescribahle } are stationary In ~ . 

m m and cry< X m m 
(iii) For all n, ~ ~nTl,~n+l n+l,O*n,l. 

There thus remains only the comparison of the size of m and ~m Well, we 
n n" 

have, by a simple application of lemma 13: 

Lemma I~ 

For all n>O, ~:y~ ~ m n  ~ 
m 

Unfortunately, it is not at present known whether ~n 

holds. We thus have the following picture:  

m m ~ om 
< ~n or n n 
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m ~n r~ 
C~ I < Cf a < CY~ < O ~ 

I ~ 9Xz < K 3 < ~i~ < 

However, following some work of Aanderaa, Moschovakis has answered the question 
m m 

in L. First, of course, we must show that ~n and ~n -indescribable cardinals 

relativise to L. Well, corresponding to lemma 9, and proved in an analogous 

manner, we have: 

Lemma 16 

There is a ~l formula ~(X m) of such that for any inaccessible cardinal K 

and any type m object X m X m over LK, 6 L ~-~ V~ ~ ~(xm). m 

Note that, strictly speaking, the above is proved by induction on m, since we 

must say that all of the elements of X m are constructible, etc. 

Arguing as in Theorem ii, we then have: 

Theorem 17 

If ~< is Tim-indescribable (resp�9 7.m-indescribable), then K is ~[m-indescrib-n 

able "~( resp m �9 ~n-zndescrmbable) in the sense of L. u 

Theorem 18 (Moschovakis) 
m m 

Assume V=L. Let m~l, n~O. Then ~n ~ ~n" 

iProof: For the sake of argument we shall take the case m =2, n=l. The general 

case is entirely similar. 
2 * ~%~ 

For each ~l formula ~(n,X) of .6 and each cardinal K, let = {(n,X) l 

Va ~ ~ (n,X) ] . 

CLAIM: For each ~2 2 1 formula ?(n ,X)  of Z there is a qTl formula Ohu(n,X;n' ,X' ) 
of ~*such that whenever ~ is an inaccessible cardinal, there is a map 

~K:~%--*On such that, given (n',X') ~ ~,, : 

( 1 ) (Vn,X) [ (n ,X)s  ^ ?%~,(n,X) -< ~%K(n',X')."--% V K I= OT(n ,X;n ' ,X ' )  ] .  
We leave the proof of the claim for the time being, and prove the theorem from 

it. Set T(n,X) = 1~(n,X) ~ ~u~[I(A) ^ u=V~ --~ u ~ -~q~(n,X )] , where T 
2 

is the universal formula for ~l predicates given by lemma 12 (regarded as a 

formula of ~ rather than a formula of ~'(X).). 
2 2 

Suppose the theorem is false. Let K =~l" Since K must be ~l-d_~escribable, we 

can find n,X such that V K ~ ~(n,X). Pick n,X here with ~,K(n,X) minimal�9 Thus, 

if n',X' are given, and V k ~ ~(n',X'), then ~ (n,X) _~ ~(n',X'), so by (1), 
2 

Va~ (Vn',X') [ -~ ~(n',X') v O~(n,X;n',X')] But this sentence is T[I, so 

there is an inaccessible ~ with: 
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(2) v ~ ( V n ' , x ' ) [  ~ ( n ' , X ' )  ~ 0.(n,X~n',X') ] .  
2 2 ~ 

Again, since k <~i, X is ~l-describable, so we can find n',X' with: 

(3) Vk ~ ~ ( n ' , X ' ) .  

By (2) and (3):  

(at V X ~ OT(n ,X;n ' ,X ' ) .  
By (1), (31, and. (47, therefore, V ~  T(n,X). But X~K i s  i n a c c e s s i b l e ,  s o  a s  

VK~(n,X), this is absurd (Recall the definition of ~.). This proves the theorem. 

We now turn to the proof of the claim. Suppose T (n,X) = ~O(~,n,X), where e 

is a type 1 formula, and where we use script letters to denote type 2 variables. 

It is convenient not to state 0 T explicitly, but rather to show that the 

relation A K such that AK(n,X;n',X' ) ~-* V K~ O~n,X~n',X') is expressible, in A 
i 2 

uniform way with respect to inaccessible K, as a -~l statement over V K. (This is 

clearly sufficient to prove the claim.) 

Fix ~ from now on with I(K). Notice that, by I(K), V K is just L~, a fact we 

make frequent use of. Thus from now on, type 0 variables will range over elements 

of LK, type 1 variables over subsets of LK, and type 2 variables over collections 

of subsets of L k. In particular, there are pecisely K type 0 objects, precisely 

K ~type 1 objects, and precisely ~* type 2 objects. 

Set A (n,X;n',X')~-, the <L-least ~ such that V K ~ O(~n,X) has constructible 

rank not greater than that of the <L-least ~such that V K ~ @(~,n',X'). 

[ Hence ~T,~ is really just the constructible rank of the first witness which 

puts a gived (n,X) into ~V,K" ] 

Now, all type 1 objects, being subsets of L,, are elements of L~. Hence all 

type 2 objects are subsets of La., and hence elements of LK+, . Thus, writing 

O(~,n,X) in place of VKWe(~,n,X), 

AK(n,X;n' ,X') *--* (V~l) (VT<~ * ) [ e(~J,n ' ,X') ^ ~tE Ly--* (~a ~ Ly)e(~, n, X) ] 

Now, for ~<~* , IL~[~ ~* , so Ly can be coded as a set of type 1 objects, i.e. 

as a type 2 object. Thus, letting ~ be the sentence of lemma 9, we have: 

Aa(n,X;n',X') ~ ~j~,@~ k ~ ^ ~ is well-founded ^~.~X( Xr ~collapses 

X to~)^ ~(~',n',X') .-~. V~V~X( X~ ^ ~ collapses X to~-~O(~,n,X))] 

2 
Using the same kind of tricks as in lemma 9, this is easily seen to be -~[1 

over L~ (and it is clearly uniform thus for all inaccessible K). In particular, 

the requirement "<~>~ ~* can be replaced by the sentence ~ itself, only with 

in place of s and with all variables and quantifiers written as type 1 variab- 

les and quantifiers,restricted to~ . And the requirement " ~ is well-founded" 
2 

can be replaced by a ~l statement as in lemma 9. The statement " ~ collapses 

X to~" can be written out thus: ~ is a function ^ dom(~) = { ZIZgX} ^ (VZ 

dom(~))(~(Z) = {~(Y) ~ Y~Z} ^ ran(~)=~ ~ . And this may be written out using 

type 1 quantifiers only. The proof is complete. 
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3. Weakly Compact Cardinals (i 

So far we have encountered two difierent approaches to obtaining large cardin- 

als. In the first place we can obtain them by postulating the existence of a 

cardinal which is inaccessible in terms of certain, specified arithmetical operat- 

ions. In the second place we can obtain them by post~latlng the existence of a 

cardinal which is indescribable in a specific, metamathematical sense. Now, large 

cardinal axioms are also often referred to as "axioms of infinity", for obvious 

reasons. This terminology suggests a further, not unreasonable method for obtain- 

ing large cardinal axioms: namely, to take some property of ~ and postulate the 

existence of an uncountable cardinal with this property. For example, since 

carries a non-principal (w-complete) ultrafilter (Stone's Theorem), we obtain the 

notion of a measurable cardinal as an uncountable cardinal K which carries a K- 

complete, non-principal ultrafilter. Now, measurable cardinals are without the 

scope of these notes, but there are other properties of ~ which give rise to 

interesting large cardinal properties in a similar manner. Interestingly, many of 

these properties give rise to the same cardinal (at least if we assume inaccess- 

ibility as well). The study of weakly compact cardinals thus turns out to be very 

rich in terms of combinatorial mathematics. 

Compactness of Certain Infinitary Languages 

A basic property of ~ is the compactness theorem for first-order, countable 

l~nguages. (Perhaps a pause is required here, whilst the reader convinces himself 

that the compactness theorem is a property of ~. OK? Then we shall continue.) 

This can be generalised as follows. We first of all generalise the notion of a 

countable, first-order language. 

Let ~ be an infinite cardinal. Define the infinitary language ~ as follows. 

As basic symbols we have variables V~,~<K~ predicate letters P~,~<K, function 

letters F~,~a, and constants c~,~<K . For each T<~ , a many of the letters P~ 

and ~ many of the letters F= are ~-ary. As connectives we have ^ , v ,~,-*,~-~, 

: , 3, V . Terms are defined in the obvious way. The atomic formulas are defined 

in the obvious way. In forming the formulas, we start with the a• formulas 

and build them up in the usual way, except that we allow conjunctions and disjunc- 

tions of all lengths less than K and quantification over sequences of variables 

of lengths less than K . (For example, in ~i we can express the notion " < is a 

well-founded relation" by the sentence (~VoVlVy...)~(Vl~V 0 ^v 2~vl^ ...).) The 

notions of an L -structure and of 0-L ~ ~t~] , where 0~ is an ~K-structure, ~ is --K 

an L -formula, and ~ is a ~-sequence from0-~, are defined in the obvious way. 

(As we have already indicated, the idea is that we "lift" everything naively from 

1. Much of this section is based on the notes of Rowbottom (1967), although 

several of the proofs have been changed or rearranged. 
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~.) A set,~ , of LK-sentences is K- satisfiable if every subset 7 ~ of ~ of 

cardinality less than ~ has a model. 

We say K is weakl~r compact, and write WC(K), iff K >~ and every set of L~ 

sentences which is N-satisfiable is simultaneously satisfiable (i.e. has a model). 

We remark that the word "weak" here is connected with the fact that we only allow 

many symbols in the language; when we remove this restriction we obtain a 

notion of "strongly compact", which is not within the scope of these notes. 

Lemma 1 

wc(K) - - .  I(K). 

Proof: (a) Suppose X =cf(K) < ~ . Let d~,~<K, and b be distinct constants of L K. 

Let ~ consist of the L -sentences: 
--K 

(i) k]~iV~<j ~ = b], where I is some cofinal subset of K of order- 

type k. 

(ii) d~ =~ b , 0<~- K. 

Clearly, ~ is K-satisfiable but not simultaneously satisfiable, a contradiction. 

Hence a is regular. 

~-=~_<2 ~ . Let b~,a<k, and d,i, ~<kA i<2 be distinct oonstante (b) Suppose 
of L~. Let ~ consist of the L~sentences: 

(i) A • = d~, 0 v < = d.,1]. 
(ii)-~/k [b~ = d%f(~)], where f:X-~ 2. 

{iii) d, 0 ~ d 1 , where ~<)k . 

Clearly, ~ is K-satlsfiable but not simultaneously satisfiable, a contradiction. 

Hence )~<K --~ 2X< K . l] 

Notice that as an immediate consequence of lemma l, L~ has exactly K many form- 

ulas in case WC(K). 

1 
Zeisler' s V K Extension Property. T[1-Indescribability. 

In connection with weakly compact cardinals, Keisler has formulated a property 

of a cardinal K (which, incidentally, does not hold for a~). We say ~ has the V~ 

extension property, EP(~), iff K >m~ and, given any structure of the form <V~, E , 

U> , where U-=Va~there is a transitive set X and a U'~X such that X~V K and 

<V K,E ,U~<<X, ~ ,U'> . We shall show that WC(K)*--)EP(~). First let us note 

the following trivial result: 

Lemma 2 

Let ~>@, <VK, g'2 -< <X, 6> , where X is transitive and X~V~. Then ~,V K 

Theorem 3 

If WC(~), then EP(~). 

Proof: Let Uc_V~ be given. By lemma l, I(~), so IV~]= w. Hence we may ,write as 
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an ~ theory the set of all ~a sentences valid in <V~, ~ ,U,(X)x~V > , together 

with the sentences c , Cx, x~V a , where c is some ~ constant, and for x in V , 

c x is the ~ constant denoting x. (Here, and in similar cases, we shall not 

explicitly describe how the set of sentences concerned is actuall~ written out 

in ~.) This set of sentences is clearly a-satisfiable (in ~V~, ~,U,(X)x~V>), 

and hence has a model, say <M,E,W,(m ) ~,m > . Now, as ~ is well-founded, 
X X~V~ 

<V~,~ ~(~n~ Vn) ~ Rn<~(Vn~l~ Vn) , so this sentence is true in <~,E~, whence 

E is well-founded. Again, as ~ is extensional, so is E. Thus we can collapse 

<M,E>to a transitive structure, say f:<M,E>~<X,E~ . Let ~X, E,U',(fmx)x~v~fm> 

be the image of <~,E,W,(mx)x~v,m> under f. By a simple induction on ~ , we see 

that fm =x for all x~V~. [For, let x~V~, and suppose that fm ~y for all y~x. 
x y 

Clearly, ~VI< , ~,...~ ~ Vv0(v0~Cx~--* Vy~xVo=Cy ) (as I(~) and x~V~, Ix~, 

so this is an L-sentence). Thus (~zgM)(ZEmx~-~(~yex)(Z=my)), which gives fm 

~f(z) ~ z~ ^ ZEmx ] = ~f(z) I z EM ^(~y~x)(Z=my)]= ~ fray[ y~x]={yl y~x3 

= x.~Hence V~ X and ~Va,~ ,U~X, ~,U' > . Moreover, since fm~V, X@V~ .U 

Instead of proving EP(~)--~WC(~) directly, we shall proceed by means of a 

long chain of implications, starting with EP(~), and eventually leading back to 

WC(~). The first property we shall consider needs no introduction, being our old 

1 t 1 friend ~l-indescribabili y. The equivalence of WC with ~l-indescribability will 

show that the "alternative" method of obtaining large cardinals which we mentioned 

above does not necessarily lead to anything new. 

Theorem 4 

Suppose EP(~). Then K is T~l-indescribable. 

Proof: Let U~V~, and suppose that <V~, ~,U>W~X~(X,U) , where ~ is a first- 

order sentence of ~(X,U). We must show that there is an ~<w with <V~, E ,U~ 

VX~X,U). Well suppose not. Then for all ~K , <V~, E ,U>W~X~X,U). Hence, 

<V~, e ,U> ~ V~ ~V~, E ,U~V~> ~ ~VX~X,U) ] . By EP(~), there is a transitive 

set M and a U'~N such that <V~, ~,U~<M,E,U'>. By lemma 2, ~,V~ 6 M, so 

<M, c , u , > ~ [  < v ~ , ~ , u , ~ v ~ > ~  ~ /~T(x ,u)  ] �9 ~ut u , n ~  = u ,  so ~ ~ v ~ , ~ , u >  

~X~X,U)] , which is to say M ~ [ <V~,~ ,U)~ ~X~X,U)] . Pick X with 

~ [~V~, ~ ,U~ ~ ~(X,U)] . Since ~ is first-order and ~ is transitive, this 

means that <Va, ~ ,U> W ~X,U), a contradiction. 

The First Ultrafilter Property 

Let ~be a field of subsets of some non-empty set X. Recall that ~ is ~- 

complete (or simply a ~-field) if, whenever A ~ ~ and 0 < IA}< ~ , then NA, 

Let X be a non-empty set, G~X). There is a unique smallest K-complete field 

of subsets of X containing G. This field is denoted by ~(G,X), and is called the 

field of subsets of X fl-generated by G; we say G is a set of ~-~enerators for 
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~K(G,X) . ~ is a (~;k)-field if ~ is a ~-complete field which is ~-generated 

by a set of cardinality at most ~ . 

We say ~ has the first ultrafilter property, UPl(K), if, whenever ~ is a 

(K,K)-field and U is a K-complete filter in ~ , there is a K-complete ultra- 

filter U' in ~ such that U~U'. 

Note that UP(~) is just Stone's Theorem. Hence UP falls into our category of 

large cardinal properties which are "lifted" from ~. 

Theorem 5 
1 

Suppose ~ is ~l-indescribable. Then UP(a). 

Proof: Let ~ be a (a,K)-field of subsets of X. Now, I(~), so it is easily seen 

that I$I ~ ~. We can assume that ~ = K , of course, since otherwise the result 

would be trivial. Let m, v, --, A, ~ be operations defined on V~ such that 

there is an isomorphism ~: ~ ~=<V~, ^, v,-,A,V> . (since I(~), Iv~l =K, 

of course.) Let U be a K-filter on ~, and set ~'=9~U , a ~-filter in ~ 

Suppose that there were no K-ultrafilter extending U in ~ . Then there would 

be no K-ultrafilter extending U in ~ . So: 

<V~, ~ , ̂  , v,- , ~,~> ~ " ~is a a-complete field of sets & U" is a K- 

filter in ~ & VW [U~W & W is an ultrafilter in --* W is not a-complete 

Now, I(~), so the ~-completeness clauses in the above are all first-order over 
1 

Va (If A%V~ and IAI~ a , then A[ V~ .). Hence the sentence concerned is Z1 

over V~. So we can find an inaccessible ~ <K such that ~V~, ...~ satisfies 

the same sentence. Let ~" * -~ "- = , U = ~ U . Then, 

clearly, ~ is a X-complete subfield of ~ and U ~ U is a ~-complete filter 

on ~ , having no X-complete prime extension in ~ . But look, U is K-complete, 

so ~[U. Let x~ OU, and set W ={A~ ~ xE A] . Clearly, W is a ~-ultrafilter 

in ~ which extends ~ , a contradiction. This proves the theorem, m 

We shall show that UPl(a ) -~ I(K). First some preliminary results. 

Lemma 6 

Suppose K is singular. If ~ is a ~-field, then ~ is in fact a+-complete~ 

And if U is a K-filter in ~ , U is in fact K -complete. 

Proof: Let f:~--~ k be cofinal, with k < a . Then, for any family ~ A~I~<~] 

A = % Q A? ~ ' ~ a  ~ ~k ~<f(~) , etc. 

Lemma 7 

Suppose ~ is singular. Then there is a (a,a)-field ~ , ~K,(~)~ ~ ~(K*), 

such that every K-ultrafilter in ~ is principal. 

Proof: Let X ~ K * ~ itself. _ K , IXI = a . We construct ~ on X rather than on 

Let A {f~X I f(~) =~] , ~,~. Set A = ~ ] .  Thus A c ~[X~ 

IA1m K. Let $ = ~(A,X). By lemma 6, ~ is a*-complete, so f~X --*{f] = 
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%~KA ,f(~) ~ ~ . Hence by K*-completeness again, tK,(X) c_ ~. 

Now let U be any ~-ultrafilter in ~. By lemma 6, U is in fact ~ -complete. 

Hence (V~<v.)(X - Ag~U ) ~ ~ -- ~_~(X - A ~)CU, which means that (~)(~<~) 

(A ~ U). Define f ~a by setting f(~) = the least ~ such that A @g U. Thus, 

{f]=~ A%f(~) ~ U, whence U is principal. = 

Lemma 8 
k 

Suppose co_~k<~(~2 . Then there is a (~<,]~)-field S , <K(K) ~ ~-~@(a), such 

that every ~-ultrafilter in ~ is principal. 

Proof: Let X ~--k2, IXI=K . Set A i={fgX I f(~) = i ] , ~<]L, i<2. Let A={A i I 

o~]<& i<2]. Thus A~- 6~(X), ~A~-~A. Let ~}= ~}~(A,X). As ~K, f~X--*~f~ = 

~ x A , f ( ~ ) ~  , so @ ~ ( x )  ~_ ~ . 

x 
Let U be any ~-ultrafilter in ~ . As above, we can define f~ 2 by f(~) = 

the least i such that A ~U, whence {f]eU, and U is principal, m 

Lemma 9 

UP1 ( ~< ) ~' I(~). 

Proof: (a) Suppose K is singular. Let ~ be as given by lemma 7. Let U be the ~- 

filter U--{X~II~ +- X~*} . By UPI(~), let U' be any ~-ultrafilter extending 

U. Then U must be principal. But as U~U', this is absurd. 

(b) Suppose there is a ~ such that ~_A<~<2 A . Let ~} be as given by lemma 

8. Let U be the K--filter U=[X_~I IK- X~K~].A contradiction follows as in (a).~ 

We say k has the weak first ultrafilter property, WLrPl(~ ), if, whenever S is 

a ~-field of cardinality at most ~ and U is a ~-filter in ~, there is a K- 

ultrafilter U' in ~ such that U~U'. 

Theorem I0 

Proof: By lemma 9, UPI(K) --~ I(~) aWUPI(~ ). For the converse, note that if I(~), 

then any (K,K)-field h~s cardinality at most K. m 

At this point it is convenient to complete a loop and show that UPl(K ) implies 

WC(k). 

Theorem Ii 

UPI(K ) -- WC(K). 

Proof: The idea is to generalise the usual proof of the L compactness theorem 

using ultraproducts To commence, let ~ be a ~-satisfiable set of L sentences. �9 --k 

Since I(K), I~I ~- K. We can assume I~ =a here, since otherwise there is nothing 

to prove. Let X= {~_~ I ~I<~}. Thus IX~--a . For each ~g X, let ~[~ be a model 

of ~ . By an easily proved "downward LSwenhelm - Skolem theorem" for L , we can 

assume that 10]~I<K here. Let F be the set of all L k formulas with fewer than ~ 
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free variables. Thus IFI--K. Let J ={,&l&is a sequence & dom(~) = X & (V~eX) 

(~(~) ~ 0-[~)] . (Thus ~c J iff &~-~ EX61~.) Since o~ 6 X--~I~I<K, IJ~=K. 

For each %~ s F and each assignment ~ of values from J to the free variables of 

~, let a(~,~)= ~c~c X ~%~[~(~)]] , and let G O be the set of all such a(%%~). 

For each ~ e X, let b(~) ---- {~'g X I<;~(~'] , and let G 1 be the set of all such 

b(~). Let G=GoUG 1. Thus IGI=K. Let ~ =~(G,X). 

Now, for any collection {~<~)~<~}~X, 0~kb(~ ) _~ b(O X<r~) , so the set 

U--~ce~ ~ (H~X)(b(~)~c) ] is a K-filter in~. By UPl(~), let U' be a k-- 

ultrafilter extending U. We define the ultraproduct ff[--( T~X0q~)/U' in the 

obvious way. 

CLAIM: For each ~ e F and each assignment ~/U' of values from G1 to the free 

variables of ~ , 07~5~ [&/U ~'] i f f  {r163 X ~OT~W %~[8-~)]]s 

The proof of this claim (and the understood prerequisite that the choice of 

each representative ~ from the U'-equivalence class ~/U' is irrelevant) is a 

straightforward generalisation of the usual ~os proof for L ultraproducts. (But 

note that we need the ~-completeness of U', since L a conjunctions and disjunct- 

ions can be of any length less than ~ .) We leave the details to the reader. But 

not/ce that, although we do not have an ultrafilter on the whole of ~X), our 

choice of ~ (to contain GO) ensures that U' contains all the sets it needs to. 

We now show that 61WZ . Let ~ ~,. Then {W} ~ X, so b({q~])~ U~U'. But ~re 

b({<F})--~ ~ -~7~. Hence, by the claim, 61 ~ %9 . m 

To sum up the situation so far, we have proved: 

1 Thm 5 WC(~) Thm 3 EP(~) Thm 4 �9 ~ is T[l-indescribable ~ UPI(K) 

T h m ~ l  Thm ii 

WUPI(~() ^ I(K) ~f WC(~) 

Notice that by virtue of Theorem 2.11, we thus have" 

Theorem 12 

~c(~)--~ wc~(.). 

The Second Ultrafilter Property. 

We say ~ has the second ultrafilter propert[, UP2(~), if, whenever ~ is a (K, 

~)-field such that 6~(~) ~_ ~- 6 ~ (K), there is a non-principal ~-ultrafilter 

in ~. 

Lemma 13 

uP~(~) --. ~(~). 

Proof: (a) Suppose ~ is singular. Then by lemma 6, 6~(~) is a ~§ (~, 

at-field. Let U be a non-principal ~-ultrafilter in @(~). By lemma 6 again, 
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~ ~% a-t~})EU, which is absurd. Hence K is regular. 

(b) By lemma 8, UP2(~ ) impl ies ( V k < K ) ( 2 k <  k ) .  

We say K has the weak second ultrafilter property, WIIP2(k), if, whenever 

is a a-field of cardinality W such that @~(K) ~ ~ ~ @(K), there is a non- 

principal K-ultrafilter in ~. 

Theorem 14 

Proof: By lemma 13, as in Theorem lO. u 

Theorem l~ 

UPl(~ ) "--~ UP2(K ) �9 

Proof, Let ~be a (~,K)-field such that 6D<,(K) % ~ ~ ~(~). Let U = {X e ~ 

~K- XI<K], a K-filter in ~ . By UPI(~), let U' be any K-ultrafilter which 

extends U. Clearly, U' is non-principal, n 

The Tree Property. 

A tree is a partially-ordered set T = <T ,~> such that for every xmT, the 

set ~ ={yET lynx} is well-ordered by<. The order-type of ~ under < is the 

height of x in ~, ht(x). The ~'th level of ~ is the set T~={x~ T lht(x)=~}. 

is a K-tree iff (i) (V~a)(O< IT~J~ a) and (li) T~ = ~. A branch of a tree 

is a totally-ordered initial segment of ~ it is an ~-branch if ~ is its order- 

type under < . 

We say ~ has the tree property, TP(K), if every K-tree has a K-branch. 

By the famous (and trivial) K~nig's Theorem, TP(~). By a classical result of 

Aronszajn, ~TP(~l). Specker generalised Aronszajn's proof to give: if GCH and 

is regular, then ~TP(~). For details of these results, we refer the reader to 

Jsch (1971a). Specker's assumption of GCH here is necessary, for in Mitchell (19 

2~= 72), Silver and Mitchell prove that Con(ZFC 4 3~WC(K)) Con(ZFC + 2~I =~z + 

TP(~2) ). [The assumption of a weakly compact cardinal here is also necessary, 

for in the same paper, Silver shows that if a is regular and TP(a~), then wcL(~ +) 

Jensen (1972) showed that if V=L, then TP and WC are entirely equivalent. At 

the time of writing, we believe it is still not known if we can weaken V =L to 

GCH here. Now, if GCH, then WI(K)*--,I(k). And, as we shall prove below, TP(a)--~ 

is regular. Thus, recalling Specker's result above, we see that if GCH is assum- 

ed, then TP(K) implies that either I(E) or else K=%§ for some singular % . But 

we shall also prove that TP(~) ~ I(K)~--~WC(K) (in ZFC), so the problem stated 

reduces to the question as to whether one can construct, in ZFC +GCH, for each 

singular cardinal % , a f-tree with no k-branches. 

Lemma 16 

TP(k) --~ a is regular. 
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Proof: Suppose k=cf(K)<~. Let <a~ I~< k> be a strictly increasing, continuous, 

cofinal sequence in ~ , with ~0 = 0. Define a tree T -~<K, ~<T > by ~ <T ~ *-~ ~ 

(~ _~ o~ ~ ~ K~,I). Clearly, T is a K-tree with no K-branch. ~] 

Theorem 17 

Proof: By lemma 13, we already know that UP2(K)~ I(K). So, we assume UP2(~ ) and 

verify TP(~). Let T be a K-tree. We may assume T=<I~, ~T > . For each c~ , let 

[~] ={~I~.4_[~}. Let G --{[~] I~ ~} , and define ~= ~K(G U@~(K), @(K)). Let 

U be a non-principal, ~<-ultrafilter in ~ . We define a K-branch < u 

_T by induction on ~ . Now, IToI ~ K and U is K-complete~ so there is a unique 

~((O) cT O such that [~(O)]E U. (Because d[[~]l~To}= K. ) If ~ " j ) g T j  is 

defined with [%'(~)] s U, then since I T~+II<K there is a unique ~ J + l )  E T~+ I 

such that ~-(~)<T ~(~+i) and [%'(~+i)] C U. (Because {Y(~)}uU{[Y]I'g6 TI+ I ^ %'(~) 

<T~]= [%'(~)] .) Finally, suppose lira(1) and ~-(q)~T~, ~<~, are defined with 

tr(q)] ~ u for all ~ ~. As U is K-complete, X~ = Oq<}[%'(q)] g U. But IT~l< ~ , 

and again U[[w]I~ T~^ (~%~j)( X([)~')] = Xj , so as before there is a unique 

~'(~) ~ TI with [~'($)]EU. And of course, q<[-~) <T~(([). This defines a 

~-branch, as required. 

Theorem 18 

TP(.) ~ I(.) -~ UPl(~). 

Proof: By Theorem i0, it suffices to prove that TP(~) ^I(K) --~ WUPl(~ ). So, 

assume TP(K) ^I(K), and let ~ be a ~-field of subsets of H of cardinality a. 

We may assume ~:K, of course, since otherwise the result is trivial. Let U 

be a K-filter in ~. We seek a K-ultrafilter U' extending U. Define a tree T 

as follows. The elements of T will be oL-sequences of O's and l's as ~ ranges 

over ~ . The ordering of T will be sequence extension. If s~ T and t_~s, we 

shall have t ~T, whence if ~<a and s ~T, then s~T~ iff s g ~2. We define T by 

induction on the levels. 

Let U-- {U~ [~a), and let <X~ l~<a> he a one-one enumeration of ~- U. 

Let T O = [ ~} ! and if lim(~) and T~, [<~, are defined, let T~ consist of 0b for 

each ~-branch b of U~=T~. Finally, suppose T~ is defined. Let s ~ T~. If 

x. n [ o~u~ ] n[~s-~(o)X~] n [~s-,(1)( ~- x~)] ~ ~ , 
put s~'<Obinto %+1" If, 

put s'~<l> into T~+ I. (So, if both intersections are non-void, s has two extens- 

ions in T~§ ) Otherwise, s has no extensions in T + I. 

This defines T. Clearly, as T ~ D :2 and I(~), (~<K)([T~I<K) and Ta = ~. 

Thus T will be a K-tree providing (~a<a)(T~ @ ~). Well suppose not, and let 

be least such that TS = ~. Clearly, ~= k§ for some k~ and T = ~kT . Since 

Tg = ~, we must have [~U~]~[~.e~o)X~.]~[O%.~I(1)(H - XV) ] ~ ~ for each 
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s~ TA. Now, U is a-complete, so we can pick x g ~@~U~ . Define s 0~X2 by s0(~ ) 

: 0 ~-~ x E X~. Clearly, s0~ T k. But look, x~ [ ~@~U~]N[OyEs~I(o)Xy] N 

[ONc<I(1)(H-Xw) ] , so we have a contradiction. Hence ~ is a K-tree. By TP(K), 

let s:a-~2 be the union of a a-branch of T. Let U' = ~X~Ig E s-l(o)j O U. 

Clearly, U' is a a-ultrafilter in $ which extends U. D 

Since our last diagram, we have proved: 

WC(a) ~arlier Thm Thm 17 I(~) Thm 18 UPI(K ) �9 ~ ~l(~ ) 15, o~2(K) �9 TP(~) ^ 

In particular, UPI(~),-~UP2(~). 

Partition Properties 

The study of so-called partition properties was begun by Ramsey, and developed 

extensively by Erdds, Rado, and others. 

Let ~ be a cardinal, n a positive integer. We write [~]n={~l ~ n  3. 

Since a has a natural well-ordering, we can identify [~]n with {<~l,...,~n> I 

~l<...<~ ~ ~] ~ a frequently used identification. A partition of [a]n is a map 
n n 

f:[~]n_~ ~ for some ordinal~ . If f: ~] -. ~ is a partition, we say a set 

X ~ ~ is homogeneous for f if there is a single ordinal ~ g ~ such that for 

all ~ X with I~I = n, f(~)= ~ . (Extending our above notation in an obvious way, 

this can be expressed concisely by: If"~x]nl ~ 1 .) 

n if for For cardinals ~, k, ~, and positive integers n, we write ~ ~ (k)~ 

every partition f: la~ n--~ ~ there is a homogeneous set X of cardinality k. 
n 

(The idea behind this notation is that a valid partition relation ~ ---~(k)~ 

remains valid if we increase the size of any parameter on the left of the arrow, 

and decrease the size of any on the right .) 

As we shall show below, partition relations are closely connected with proper- 

ties of trees. 

Lemma 19 

Let n ~  and let D~ n*l = ~ C~ be a (disjoint) partition of [~]n~-i into 

sets. (This is clearly just another way of expressing the notion of a "partit- 

ion" as defined above:) Then there is a tree T=<T,-~> and a surjection f:T-* K 

such that: 

(i) x~y --~ f(x) < f(y), 

(ii) Xl-~...~Xn-~ y-~z implies that <f(xl) .... ,f(Xn),f(y)> and <f(Xl),... 

.... f(Xn),f(z)> are in the same C~ ! 

(iii) if y,z are -~-incomparable, there are Xl-~ ...-~Xn-~y,z such that <f(xl),.. 

...,f(Xn),f(y)> and <f(xl),...,f(Xn),f(z)> are in different C~'s ! 

(iv) for cache, ~T~I -~ ~ *~- 

Proof: We define T by induction on the elements of ~ . The exact nature of T is 
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irrelevant, so we shall take T ~ ~ for definiteness. To commence, let 0-~l-~ ... 

...-on-1 and set f(0)=0,...,f(n-l)= n-l. Suppose now that we are at stage ~, 

looking at ~ for the first time. Let T denote that part of the tree so far constr- 

ucted. For each point x in T such that for all Xl-9...-~Xn§ <f(xl),... 

..,f(Xn~l)~ and <f(xl) ,...,f(xn),~> are in the same C~ and x is maximal in T 

with this property, introduce a new immediate successor, y, of x and set f(y)=~. 

For each maximal branch b of T of limit length such that whenever Xl, ...,Xn+lg b 

and Xl-e...-gXn~.l , then < f(xl),...,f(Xn§ and ~f(xl) ,...,E(xn),~ ~ are in 

the same C~ , introduce an immediate successor, y, of b and set f(y) = ~ . Clearly, 

T and f so defined will satisfy (i) - (iii) of the lemma. We prove (iv) by induct- 

ion on ~ . For ~---- O,...,n-1 there is nothing to prove. At limit levels o( in T, 

at most one point extends each ~-branch of T on T~ , so IT~ ~ number of ~- 

branches of T = ~O~T~ ~I ]~ _ ! -< [~[~+6) ~ ~, o~ , by induction hypothesis. 

Finally, if x~T~, y,z eT+l , and x~y,z, then if y~z there must be Xl-~ ...-~x n 

-~x such that (by (iii)) <f(xl),...,f(Xn),f(y)> and <f(xl),...,f(Xn),f(z)>are 

in different C~ 's. But there are at most ~n choices of <Xl,...,Xn> here, and 

only ~ sets C2 , so there are at most 5(~=~)distinct immediate successors of x. 

So, by induction, ~T+I I ~- ~T~I ~(~In)_< 5 +(~ . 

As an illustration of the way in which lemma 19 gives rise to theorems of ZFC, 

we derive some classical results of partition calculus. First, the famous "Ramsey 

The orem". 

Theorem 20 
/ ~ n+l 

Let m,n~. Then ~ ~ ~@#m " 

Proof: By induction on n, we prove (~m)[U~ --, (@)hi-l]. For n--0 there is nothing 

to prove Let n--1. Let ~2 C10 O C m �9 -- ... be a disjoint partition. Construct T, 

f:T-~ a~ as in lemma 19. Now, although we did no~ say so there, it is easily seen 

that T is an cO-tree. By "K~nig's Theorem", let b be an ~-branch of T. Then, if 

xcb and we pick y,z~b with x-gy, z, then <f(x),f(y)> and <f(x),f(z)> lie in 

the same C . So, for each x~b, let i(x)r ~l,...,m} be such that whenever x-gy 
i 

^yEb, (f(x),f(y)~Ci~x~ Now, we can find an infinite set b'mb such that 
~ J 

i"b' ~ {k} for some fixed k~l,...,m] . Let X=f"b'. By (i) of the lemma, IXI 

= ~. And clearly, X is homogeneous for the given partition. This proves the 

result for n-~l. Finally, for the general case, let n>~2 and assume that we have 

already proved (~m)[ co --, (m)n m S �9 Let a disjoint partition Kco] n~l .-- C1 ~ ... ~ Cm 

be given. Using the lemma much as above, we can find an infinite set X~ such 

that whenever<x0,...,Xn>~[X] n~l , the C i to which <Xo,...,Xn~belongs depends 

only upon <x0, ...,Xn_l> . We can then define a partition of [X] n by putting 

<y0,...,Yn_l~ and~Jo,...,Yn_l'~ into the same partition class iff there is a 

! ! 
y~X with Yn_l,Yn_ 1 ~ y such that <y0,...,Yn_l,y ~ and<y~,...,Yn_l,Y~are in the 
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same C (whence this~ will be true for all such y of courser. This partitions KX] n~ 

into at most m sets. So, as IX1= ~ , the induction hypothesis gives us an infinite 

set Y~ X which is homogeneous for this partition. Clearly, Y is homogeneous for 

our original partition as well. Hence (~m)[ 03 --~(~t~l]. 

Theorem 21 (The Erd6s - Rado Theorem) 

(i t For any cardinals K,~ with ~ and ~ ~ , (2 ~)~ ( ~2 �9 .~ �9 + 

(ii) For any cardinals ~,~ with ~w and Ka ~ and any n~, ~n(~) --~ (K.)~e~ 

Proof: (i) Let k=(2~) * , and let IX] 2 = ~ be a given partition. Let ~, 

be given by lemma 19. Since f is onto ~, IT~% . It follows that TW@ ~ (If not, 

a ~+-branoh of ~. Since cf(~t ~+> D ' b gives rise to a set b'~b , ~b'l~ ~, 

such that f"b' is homogeneous for the partition, exactly as in Theorem 20 (for 

the case n=l t. 

(ii) This is proved by induction, much as in Theorem 20. The only difference is 

that, as indicated by part (i t above, we must increase the size of the given set 

in order to guarantee a homogeneous set of the required cardinality. And as we 

saw above, the increase in size required is "successor of the power set": we need 

a tree of cardinality ]n§ in order to ensure that we have a ~n(K) ~ -branch 

to which we can apply the induction hypothesis. 

So much for theorems of ZFC. For our present purposes, lemma 19 is useful by 

virtue of: 

Theorem 22 

Assume TP(~) ~ l(a). Then for all n~ and all ~<~ , ~ --, ~a)~" ,n~l. 

Proof: Almost identical to the proof of Theorem 20. 

Corollary 23 

If TP(K) ~ !(~.), then ~--, (~]2. ~] 

Sierpinski's Order Property. 

We say a has the order property, OP(a t, if, whenever <X,-~ is an ordered set 

of cardinality~, there is a Y--~X, IY~ =~ , such that either <Y,-e) or <Y,~-> 

is a well-ordered set. 

Theorem 24 

Assu~e ~-~ (~)~. Then oP(at. 

Proof: Let ~,--2> be any ordered set of cardinality ~ . Define f: [~32--, 2 by 

f(<~,~>) ~- 0 ~-- ~-~ ~ . Let X~_K , ~X~ -~L< ~ be homogeneous for f. If f"K~S 2 = 

{0} , then<X,-~> is well-ordered. If f.~j2 _~ ~l~,then ~X,g-~ is well-ordered.~ 

Lemma 25 

0P(~ t --~ I(~t. 
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Proof: (a) Suppose ~=cf(a)< ~ . Let <K S I~<~> be strictly increasing, continuous, 

and cofinal in K , with ~0=0" Order K as follows. If ~ ( ~  ~ <~ < a~§ I ), set 

@-~ . If ~ ( ~ K ~ ) ,  set ~-~. Let X_~K, IXl=i< . Since X must meet some 

interval [K~, Kf+ I ) on an infinite set, X has a decreasing ~-chain (under -~). 

And since X must meet infinitely many different intervals [K| , K~+ I ), X has an 

increasing oa-chain. Hence K is regular. 
k 

(b) Suppose )~K-- ~ 2 , and let )t be the least such. Let X~ 2, IXI=K , and 

let "-3 be the lexicographic ordering on X. Let R~{fE k2 [ (3~<~)(V~>~)(f(~) 

= 0)} . Then IRl=2~k~a , since a is regular and IX was chosen minimally 

with 2~_>K . Alse, R is dense in ~2, so whenever f, gEX and f-~g, there is h~ 

R with f~h~_g. Hence X can admit no well-ordered or inversely well-ordered 

s~bset of cardinality K �9 Hence ~<a --* 2 ~K . m 

Theorem 26 

oP(~) -~ TP(~) ^ ~(~). 

Proof: By lemma 25, we need only assume OP(~) and verify TP(~). So let T=<T,~<> 

be a ~-tree. For each ~g , linearly order T~ by -~. Define an ordering -~of 

T by setting x~y iff x~ y or x~y or (~)(~x',y')~x',y'~T@ ^ x'< x ^y'< y 

~'~'^ x'<~ y' ] . By OP(K), let <xl~l<~> be a well-ordered sequence under-~ . 

(The case where we get an inversely well-ordered sequence is entirely similar.) 

Given x~T, let Ix] denote the set [yg T I x_~y} . Set A--{x~I~<K }. Clearly, 

A~T---[[J AoT~]U[Dx~TAns , each~ . Fixing ~<K , we observe that as 

~< is regular and IT|]<~< for all ~<g , IAnlx31=~< for some x~Tg. Suppose we 

could find distinct x,y~ T~ with I Aa[x]~=]Anly3~=~ , say x--2y. Pick 9~a with 

y-z~ . (Since there will be ~ many such 2's, this causes no problem.) Suppose 

now that x-~x . Then by definition of-9 , x-g x#~so ~:2. Hence ~{ q~x-2x?]l_~i~l 

g , which is absurd. Thus, given ~ , we can find a unique x~) e T~ such 

that I A~[x(~)] ~=~ . It is easily seen that <x(~4)~<~> is a ~-branch of T. m 

Thus, our final diagram is as follows: 

\n+l WC(K)~ Earlier TP(K) ^ I(~) Thm 22~ (~n)(~<~)[ K --- ka)~ ] 

Thm 26 ~ ~ Trivial 

oP(~) , Thm ~ [~ --, (~)~ ] 
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MARGINALIA TO A THEOREM OF SILVER 

Keith I. Devlin and R. B. Jensen (Bonn) 

w 0 Introduction 

The singular cardinals problem, in its simplest form, asks whether the 

continuum hypothesis can hold below a singular cardinal B and fail at B. 

A variant of the question is whether we can have 28= ~ and 2 ~ ~ B +. 

Since forcing is the natural method for producing independence results, 

set theorists have concentrated on a more specific form of the problem: 

Given a transitive model M of ZF + GCH, can a positive solution be ob- 

tained by forcing over M with a set of conditions ~ ? This approach sug- 

gests a number of related problems: Is there a ~ which collapses ~+ to 

~? Is there a �9 which makes an inaccessible cardinal singular? 

Until very recently, there was a widespread assumption among set theo- 

rists that such sets of conditions do exist and'merely awaited discovery. 

Then Silver challenged this assumption by proving it false. Specifically, 

Silver proved - in ZFC - that if the continuum hypothesis holds below a 

singular cardinal B of uncountable cofinality, then it holds at B. Thus, 

in many important cases, not only the narrower forcing problem but the 

general problem itself has a negative solution. 

Much of the effort to produce a positive forcing solution centered on 

the attempt to exploit the properties of special ground models - either 

L or models containing large cardinals. The latter approach met with some 

success: Prikry, ft. ins., showed that a measurable cardinal can be 

turned into an ~ cofinal cardinal. Magidor, starting with an elephantine 

cardinal, produced a model in which 2 n ~ mm for n ~ m and 2 ~ ~ m + 1. 

Jensen's efforts to produce a positive solution over L led to total 
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failure. Silver's work then led him to consider the problem from a new 

perspective. He discovered that the statement "0~ does not exist" (hence- 

forth abbreviated as ~ 0 ~ ) implies a negative solution to all cases of 

the singular cardinals problem. But then there cannot be a positive forc- 

ing solution over L, since every generic extension of L by a set of con- 

ditions satisfies ~ 0 W~. 

Throughout this paper we assume ZFC. Our main theorem says, in effect, 

that if ~ 0 4= , then the "essential structure" of cardinalities and con- 

finalities in L is retained in V. 

Theorem 1. Assume ~ 0 ~ . Let X be an uncountable set of ordinals. Then 

there is a constructible set Y s.t. X c Y and ~ = Y. 

Remark. By a theorem of Prikry, we cannot replace "uncountable" by 

"infinite" in Theorem i. 

Corollary 2. Assume ~ 0 ~. If T ~ m2 is regular in L, then cf(~) = ~. 

Remark. By a theorem of Bukovski, we cannot replace ~2 by ~I in 

Corollary 2. 

The following corollary establishes a totally negative solution of the 

singular cardinals problem over L. 

Corollary 3. Assume ~ 0 ~. Let 8 be a singular cardinal. Then 

(a) 8 is singular in L 

(b) 8 + : 8 +L 

(c) If A c 8 s.t. H 8 = Ls[A], then ~(8) c L[A]. 

(d) el(8) ~ y < 8 ~ 8 Y = 2 Y �9 8 + 

(e) Let 8 = 2 ~8. Then 

28 : f e if VY < 8 2 ~ : e 

[ e + if not. 



K. Devl in & R. Jensen 117 

The proofs of these corollaries are quite straightforward and will be 

left to the reader. 

The above results are due to Jensen and were originally presented in 

three handwritten notes bearing the title of this paper. The proof given 

there was developed "piecewise" and contained many redundancies. The 

present streamlined proof is due chiefly to Devlin. 

w 1 The a p p r o a c h  

From now on assume ~ 0 :~ 

Def T > m is suitable iff either J ~= (There is a largest cardinal) 

or else there are arbitrarily large y < T s.t. cf(y) > ~ and JT ~ (Y is 

regular). 

w 0 Theorem 1 reduces to the statement: 

Lemma I. Let T ~ ~2 be a suitable cardinal in L. Let X c ~ be cofinal 

in �9 s.t. ~ < ~. Then there is Y o X s.t. Y s L and ~< ~. 

We first show that Lemma I implies w 0 Theorem i. Suppose not. Let X 

be an uncountable set of ordinals for which the conclusion ofw Theorem 1 

fails. Choose T = lub(X) minimal for such X. Then ~ < ~, since otherwise 

the conclusion of w 0 Theorem I would hold with Y = T. Hence �9 > ~2" 

Now suppose that the conclusion of Lemma i held. There would then be 

--_L 
Z s L s.t. X c Z and ~L< T. Let 0 = Z and let f : p ~ Z be construc- 

tible. Set X' = f-I"x. Then X' c p < T. By the minimal choice of T there 

is Y' s L s.t. X' c Y' and ~' = ~'. Hence Y = f"Y' satisfies the conclu- 

sion of w 0 Theorem I. Contradiction! Now suppose the conclusion of 

Lemma i to fail. Then T is a cardinal in L, since otherwise the conclu- 

sion of Lemma I would hold with Y = T. But then T is not suitable and, 

in particular, not a successor cardinal in L. Hence there are arbitrarily 

large y < T s.t. y > ~2 and y is a successor cardinal in L. But then y 
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is suitable and hence cf(y) : ~ > ~, since otherwise Lemma 1 would give 

--_L 
Y c y s.t. Y ~ L and Y < y, making y singular in L. Hence T is suitable. 

Contradiction! Q E D. 

We now outline, very roughly, the method to be used in proving Lemma 1. 

Let T m m2 be a suitable cardinal in L and let X c T cofinally s.t. 

< ~. We can easily construct a map ~ : J~ ---~E1 JT s.t. 

(*) ~ < ~ is suitable 

(**) X c rng(~) (hence rng(~) D �9 is cofinal in ~). 

Suppose that ? is not a cardinal in L. Then there is a least 

m ~ s.t. ? is not a E cardinal in J~ (i.e. there is a J~ definable 

map of some ~ < ~ onto T (allowing parameters)). But then there is a 

least n ~ I s.t. T is not a E n cardinal in JE (i.e. there is a En(J ~) 

map from a subset of some ~ < T onto ?). We show that the map ~ "extends 

to ~" - i.e. there is ~ D n s.t. 

: J~----*Z JB for some 8 ~ T. 
n 

By the choice of ~, n, there exist ~ < T, p ~ J~ s.t. each x E J~ is 

En(J ~) in parameters from J~ u{~}. Let y = w(~), p = ~(~). Then y < ~, 

p E JB" Since ~ is a cardinal in L, there must be w' : JB,----~Z J8 s.t. 
n 

w' E L, 8' < B and J u {p} c rng(w'). But then rng(~) c rng(w') since Y 

~"(J~ u {~})c rng(w'). Hence Lemma 1 holds with Y = rng(~'). 

Now let T be a cardinal in L. The same proof which showed that w "extends 

to B" will, in this case, show that w "extends to ~" - i.e. there is 

m ~ s.t. ~ : L ~EIL. But that is a contradiction by the following 

well known lemma of Kunen: 

Lemma 2. Let ~ : L ---~EIL s.t. w + id ~ L. Then O~=exists. 

The cases: cf(T) > ~, cf(T) = m will be treated separately. The non 

cofinal case is the "natural" one, for we can then show that every 

w : J?---~E1 JT satisfying (*), (**) has the above extendability 
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properties. In the m cofinal case we shall have to resort to more or less 

unsavory legerdemain in order to show that ~, ? with the extendability 

properties exist. 

In proving the first extendability property, we shall not work directly 
n-I n-1 

with J~ but rather with (J~, ~), where ~ = p~ , ~ = A~ . We show that 

extends to ~ D ~ s.t. ~ : (J~, ~) >Zl (Jp, A) cofinally for some 

amenable (Jp, A). (Where "cofinally" means that ~"~ is cofinal in mp.) 

n-I n-1 
We then prove the existence of 8 s.t. p = P8 , A = A 8 (the same proof 

will show that ~ extends to ~* : J~ ---*~ J8). This latter step is the 
n 

main concern of w 2. 

w 2 Fine structure lemmas 

For the basic theory of the fine structure, the reader is referred to 

n n n 
[FS 3 t r o u g h  w 4 o r  [Dev]  Ch 7. p~ , A , Pm d e n o t e ,  as  u s u a l ,  t h e  Z n 

projectum, the Z standard code and the ~ standard parameter of ~. We 
n n 

recall the following facts: 

(1) pnm = the largest p s.t. (Jp, A) is amenable for all 

A s Zn(Jm) n ~(Jp). 

n-I 
n is Zn(Jm) iff R is Zl(Jpn-I , A m ). (2) R c JPm 

(3) A ~ o = Pa =gF 

(4) Let n ~ 1 and let h be the canonical ~1 Skolem function for 

n 
.~Jpn-1 , An-l).- Then p is the least p s.t. J n-1 = 

P 
n 

h " ( ~  x Jp x {p}) f o r  some p s Jp2  and p~ i s  t h e  < j  - l e a s t  s u c h  p .  

n-I n 
(5)  R c Jpn  i s  Z l ( J p n - 1  , A ) i n  t h e  p a r a m e t e r  Pa i f f  R i s  r ud  i n  

n 
(Jpn , A s) (i.e. R is the intersection of Jpn with a class rudimen- 

m 

tary in A~). 
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(6) Let ~ : (Jw~ , ~) >~. (Jpn , An)~ (i m 0). Then there is a unique 
1 S 

n n 
m ~ s.t. ~ = O- , ~ = A--. Moreover, there is a unique ~ m 

S 

s.t. ~ : J~ >Z Ja and ~(p~) : p~(j g n). 
n+i 

All of these facts are established in [Dev] and [FS]. The next result, 

though not explicit in our reference articles, does indead follow easily 

from the above facts. 

Def Let s g B, 0 g n g u: ms is ~ Z n cardinal (Z n regular) i~n J B iff 

there is no Zn(J B) function mapping a subset of some y < us onto (cofinal- 

ly into) ~s. 

a is a cardinal (regular) in JB iff there is no f ~ JB mapping a y < ms 

onto (cofinally into) us. If s is a cardinal in JB and a s JB s.t. a c J@ 

then (Js' a) is amenable. 

Clearly, being a cardinal (regular) in JB is the same as being a Zo car- 

dinal (regular) in JB" 

Lemma I. Let n m i, s g B. 

(i) If us is a Zn-1 cardinal but not a Z n cardinal in JB' then 
n n-1 n . 

PB < s ~ PB Moreover ups zs the least y < ~s s.t. there is Zn(J B) 

map of a subset of y onto us. 

(ii) If p~ < s g p~-I and s is regular in Jpn-i , then cf(us) = 

cf(up~-l). 

Proof. 

o 
( i )  PB = B ~ s .  U s i n g  ( 4 ) ,  (2)  and t h e  f a c t  t h a t  f o r  any p t h e r e  i s  a 

i 
AI(J p) map of up onto Jp, we get: PB ~ s for i < n (by induction on i). 

p~-1- m s. Now let p = the least p s.t. there is a Zn(J B) map of a Hence 

n 
subset of mp onto us. Then p < a. PB ~ p by ( 4 ) ,  ( 2 ) .  
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n 
We claim: P8 : p' Let f s ZI(J 8) map a subset of up onto Ja" Then f ~ JB 

n 
and hence (Jy , f) is not amenable for a < y g ~. Hence P8 g a. Now set: 

a = {v E dom(f) I v ~ f(v)}. By a diagonal argument, a ~ Ja" Hence (Jy, a) 
n 

is not amenable for p < y ~ a. Hence P8 g p" QED(i) 

n-1 n-1 n n 
(ii) Set: P = P8 , A = A 8 ' P = P8' Y = P8" 

Let h be the canonical Skolem function for (Jp, A). Define a map f from 

a subset of Jy onto J by: 

f((i,x)) = h(i,x,p) if x s J and h(i,x,p) E J y a 

f(u) undefined in all other cases. 

Then f is Zl(Jp, A) in a parameter q. Let 

y = f(x) ~ ~ Vz F(z,y,x, q) 

where F is ~o" Let I = cf(up) and let (~v [ v < ~) be a monotone se- 

quence converging to up. Define fv(v < ~) by: 

Y = fv(x) ~ y s S~v ^ Vz s s~v F(z,y,x,p). 

Then f s J and f maps a subset of J into J . 
v p v y a 

Set: av : sup(On O rng(fv)). Then a v < ua since we is regular in Jp. 

But v ~ n ~ ~v ~ an' since f c fn" Finally, sup av = ma since 

U fv= f �9 QED 

Carrying the proof of Lemma 1 (ii) a step further, we get the following 

rather technical lemma which will be of service to us in w 5. 

n-i n 
Lemma 2. Let P8 ~ ~ > PB where ua is regular in Js" Let X = cf(u~). 

Then there is a sequence (fv I v < ~) s.t. {fv I v < k} c Ja and if 

: J~ ---~7 J~ s.t. {fv I v < ~} c rng(~), then: 
o 

n 
(a) There are unique ~ -~ ~, ~ ~ ~, ~ c J~ s.t. P8 ~ rng(~) and 

n-i 
: (J~, ~) 'Zl(Jps-l, A S )- 
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n-1 n-1 
(b) There is a unique ~- s.t. ~ -- PE ' ~ : A-~ 

n 
(c) pg < 

n n n n 
(d) If ~(p~) : P8 ' then ~(PE) : P8 " 

Proof. 

We first prove the existen~part of (a). Let p, A, p, y, (~vJ v < k) 

h, f, q, (fJ 9 < k) be as in the proof of Lemma I (ii). We note that 

fv E J , since f s Jp is bounded in Ja and a is a cardinal in Jp. 

Set Y : rng(~) N J. X : h"(w x y x {p}). Then X ~Zl (Jp, A). 

It is clear by the definition of f that X D J = f"Y. Using this we get: 

Claim X n Ja : rng(~). 

Proof. 

(c) Let x E X n Ja" Then x = f(z) for a z ~ Y. Hence x = fv(z) for 

some v. Hence x s f" Y c rng(w) 

(m) Let x E rng(~). Let z = the <j-least z s.t. x = f(z). Then x = f (z) 

for some v. But then z s Y since z = the <j-least z s'.t. x = f (z). 

QED (Claim) 

Now let ~ : (J~, ~) ~--- ~ (X, A N X). Then ~ m ~ and �9 ~ J~ : # by the 

claim. This proves the existence part of (a). The uniqueness part of (a) 

follows by the fact that if ~ D # s.t. ~ : (J~, ~) )Zl(Jp, A) and 

p E rng(~), then rng(~') = h"(w x y x {p}). (b) is immediate by fact (6) 
n 

above. To prove (c), set J7 = ~-~,Jy. Then ~ < a. But P8 g 7, since, 

letting ~ = h~, ~ be the canonical Z 1 Skolem function for (J~, ~> and 

~(p) = p, we have: J-- = E"(~ x J-- • {~}), since rng(~) = h"(~ • Y • {p})= 
P Y n 

~"E"(~ x J7 • {~})" We now prove (d). We have: ~ = p~ and #(7) = Y. 

n 
Set p' = pE, p' = ~(~'). Then p' <j ~, since J~ = ~"(m x j7 • {~}). But 

p gj p', since there is ~ E J~ s.t. ~ = ~(i,~,p'); hence p : h(i,x,p'), 

where x : ~(~) s Jy. Hence h"(m • Jy x {p$ = Jp. QED 
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The main object of this section is to prove a sort of converse of fact 

(6) above. First a definition and a preliminary lemma. 

Def An imbedding o : (Jp, A) ~1 (Jp'' A') of one amenable structure 

into another is called strong iff whenever R is a well founded relation 

on Jp which is rud in (Jp, A) and R' is rud in (Jp', A') by the same rud 

definition, then R' is well founded. 

n n 
Lemma 3. Let i, n > 0 and suppose o : (Jp][, A~) -'*Zi (Jp' A) is strong. 

Then there are n, B, ~ s.t. ~ D c and: 

1 1 n-I I 
(i) P : Pn,B ' A = An, B , ~(p~[ ) : Pn B " 

n-1 
(ii) ~ : (Jp~-i , A~ ) ---~Zi+l(Jq,B ) is strong. 

Proof of Lemma 3. 

n n n-I n-I n-I 
Set ~ : p~, W : A~, ~ : 0~ , B : A~ , ~ : p~ 

Then J~ = h~,~ "(~ x J~ x {~}). (We shall generally use hnB to denote 

the canonical Z 1Skolem function of an amenable structure (Jn,B)). Define 

by 
h((i,x)) ~ h~,~(i,x,p) if x E J~ 

~(u) undefined otherwise. 

Define relations D, E, I, B' on J~ by: 

5 : dom(h) 

U 2 : {(x,y> E I ~(x) E E(y)} 

T : {(x,y) s U2 1 ~(x) = ~(y)} 

~' : {x ~ ~ I E(x) ~ ~}. 

Since ~, ~, Y, ~' are ZI(J~,B ) in p, they are rud in (J~, ~). 

Let D, E, I, B' have the same rud definitions in (Jp, A). Then E is well 

founded, since E is well founded and o is strong. Set: 
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: (D, I, E, B'), M : (D, I, E, B'). Let ~ be the E I satisfaction re- 

lation for the model M. Then T(@,(~}) ~ ~i @[~(~)], so T is 
<J~,~> 

ZI(J~, B) in p and hence rud in (J~, A). Let T have the same rud de- 

finition in (Jp, A). 

Fact i. T is the Z1 satisfaction relation for M. 

Proof of Fact 1. We must show that: 

T([v s w],(x,y)) ~ x E y 

T([v : w],(x,y)) ~ x I y 
O 

T(A(v), (x)) ~ B' x 

T(@ ^ r ~ ~ T(~,(x)) ^ T(@,(x)) 

T(-~,(~)) ~ ~ ~ T(r 

T(V v $,(x> ~ r V y s D T(r 

All but the last equivalence are expressible as HI statements in (Jo, A) 

and therefore hold since the corresponding ~I statements in (J~, ~) 

hold. To see the last equivalence, note that the relation 

I !l @[y,~(~)] is Zl(J~, ~) in p; hence 
<J~, B) 

~= W ~[~(~)] ~ Vi < e ~ %[h((i,~),(~)] 

hence: 

~ ~ 

T(~ r ~ Vi < ~ T(r 

But the last equivalence is expressible as a N1 statement in (J~, ~) 

(since Vi < m ~(@,((1,x),(~))) is rud in (J~, A) in the parameter m) 

and therefore carries up to (Jp, A). QED (Fact i) 

Since the satisfaction relations T, T are rud in (J~, ~), (Jp, A) resp. 

by the same rud definitions and o is Z. preserving, we have: 
1 

(~ ~ ~) : M >Z. M. So, in particular, M satisfies the identi~axioms 
l+l 

and the extensionality axiom, since ~ does. We may thus define the factor 
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model ~ : M/T : <D~, E*, B*), M ~ : M/I : (D*, E*, B*). 

Let ~ : ~ ) ~*, k : M > M ~ be the natural projections. E~, E* are 

both well founded and extensional. Hence we may transitivise the models 

M*, M ~ by Mostowski isomorphisms Y, i. Clearly, Y : M* ~ (J~,B) 

: : : ~ and ~ 1 k. Let 1 : ~ ~ (Jq,B). Set h 1 k. Define ~* M~ M* 
i+l 

by o k = k ~. Define ~ : (J~,B) ---~Zi+l (J~'B) by ~ h = h ~. 

Thus: 

M b M* 

. _ , h ~  f f  
k 1 ~ (Jn,B) 

h 

T 

/ 

Fact 2. ~ ~ J~ = o 

Proof of Fact 2. 

By definition, ~ uniformises the relation 

{(y,(i,x)) I x s J~ A ~= _ r where (r I i < ~) is some 
<J~,B> 

fixed recursive enumeration of the Z 1 formulae. Let Cjo(y,z) be the 

formula Vq((y,q) = x). Clearly, ~((Jo,X)) = x for x E J~. Set: 

s(x) = (Jo,X). Then s is rudimentary, s ~ Jp maps JU into D, since 

s ~ J~ maps J~ into ~. For x, y ~ J we have: 

s(x) E s(y) ~ x s y 

s(x) I s(y) x r x : y 
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z E s(y) ~ Vx s y z I s(x), 

since the corresponding formulae hold in (J~,~). 

Thus k s ~ Jp maps s ~ Jp isomorphically onto an initial segment of E *. 

But then h s ~ Jp = lk s ~ Jp maps s ~ Jp isomorphically onto an initial 

segment of s ~ Jq. Hence h s ~ Jo : id ~ Jp. Clearly, ~s ~ J~ = id ~ J~. 

Hence, for x s J~, we have ~(x) = ~ ~ s(x) = h ~ s(x) : h s ~(x) = ~(x). 

QED (Fact 2) 

Set p = ~(~). 

Fact 3. (i,x) s D --* h((i,x)) : hq,B(i,(x,p)) 

Proof of Fact 3. 

Let ~(y,w,u) be the canonical Z 1 formula defining the relation 

y = h c((W)o,((W)l,U)) for any (J,C). Let ~ s 5 be s.t. ~(~) = ~ and 

Set q : G(q). Then h(q) = p. Then /~ s ~ I=~_ ~[y,s(y), q], so 
M 

/~ s D ~M ~[y,s(y),q], since ~ ~ ~ : M ~z2M. Hence 

~y s D ~ $[h(y), y, p]. Hence h((i,x)) = hqB(i,(x,p)) for (i,x) ~ D 

(Jq'B) QED (Fact 3) 

1 1 
We recall that by definition, if (Jr,C) is amenable and p : P~,C' p : ~,C 

1 
then Av, C : {(i,x)~ x s Jp ^ ~ r where (r is a fixed 

(J,C) 
recursive enumeration of the Z 1 formulae. 

Fact 4. A : {(i,x)l x s Jp ^ ~= r 
~Jn, B ) 

Proof of Fact 4. 

1 
= A~,~ ; hence: Ai x(~(i,x) ~ ~_ ~i[s(x), ~]). 

M 

Since c : (J~, A) ---*Zl(Jp, A), we conclude: 

/ki x(A(i,x) ~ ~= ~i[s(x),q]). Hence A(i,x) ~ 
M 

QED (Fact 4) 

$i[x,P] �9 
(Jn,B) 
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1 
Fact 5. P : Pn,B " 

Proof of Fact 5. 

h is a ZI(Jn,B) map of D onto Jn by Fact 3; but D c Jp, hence Pn,B g p" 

On the other hand, (Jp, A) is amenable and every Zl(Jn, B) subset P of 

Jp is Z I in parameters from Jp U {P} (by Fact 3), hence rud in (Jp, A) 

in parameters from Jp (by Fact 4). But then (Jp, P) is amenable for all 

1 
such P. Hence p ~ Pn,B" QED (Fact 5) 

I 
Fact 6. P : Pn,B 

Proof. 
1 1 

Pn,B ~ J p by Facts 3 and 5. Now let Pn,B < J p" Then 

Vi Vq < j p Vx E Jp hu,B(i,(x,q)) = p; hence 

Vi V~ < j p Vx E J~ hw,~(i,(x,~)) = ~ by the fact that ~ is Z 
I 

serving and rng(~) 0 J 
P 

1 pre- 

: rng(~). Hence p~,~ < ~ Contradiction! 

QED (Fact 6) 

Facts 4, 5, 6 immediately give: 

1 
Fact 7. A : A 

n,B 

All that remains to be proved is 

Fact 8. ~ is strong. 

Proof of Fact 8. 

Let R be well founded and rud in (J~, B). Let R have the same rud de- 

finition over (Jn' B). Set: 

~' = {<x,y) ~ U 2 I E(x) R E(y)} 

R' = ( ( x , y >  E O 2 I h ( x )  R h ( y ) } .  

Then ~' is Z (J~, B) in ~ and R' is Zl(Jn, B) in p by the same de- 

finition. Hence ~' is rud in (J~, ~) and R' is rud in (Jp, A) by the 

same definition. But ~ is strong; hence R' is well founded. But then R 
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is well founded. QED 

By finitely many iterations of Lemma 3 we get: 

n 
Lemma 4. Let n > 0 and suppose ~ : (Jp~, A~) ---~Z1 (Jp, A) is strong, 

n 
where ( J p ,  A) i s  a m e n a b l e .  Then t h e r e  i s  an o r d i n a l  g s . t .  p = pg,  

A : A~�9 
Lemma 4 is the "converse" of Fact (6) announced earlier. 

Remark. Though we shall not make use of the fact, notice that B above 

must be unique and that ~ extends to a unique ~ : JE --~Zn+IJB which 

preserves the first n standard parameters. 

w 3 The non ~ cofinal case 

Set J : ~ Jv : L. 

Lemma i. Let ? be suitable s.t. cf(~) > ~. Let w : J? >ZI J cofinally 

(i.e. mT = sup (On n rng (~))). Let ? m E ~ ~ where ~ is a limit ordinal 

and ~ is a cardinal in J~. Then there are 8 m ~, ~ D w s.t. ~: J~ ---~ZIJ 8 

cofinally. 

The proof stretches over several sublemmas. Assume for the moment that 

I < T ~ B ~ ~, where B is a limit ordinal. 

Def T = T T'B = the collection of triples t = (6t,~t,ut) s.t. 6t < ~' 

~t < B, u t c Jut , ~t < ~. 

Define a partial ordering on T by t ~ t' ~ > 6t ~ 6t' APt ~ Pt' 

A u t cut,. For t s T set: 

X t = the smallest x <Z Jut s.t. J6t U u t c X ; 

hence X t = hut"(m x J~t x {ut} ), where hu is the canonical Skolem 

�9 Xt,. Set: function for Jp Clearly, t ~ t' r X t ~ Zo 

-I 
~t : JYt ~ ~ r Xt ; ~tt' = at' ~t (t m t'). 
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ctt' ~t' 
J > JB (t g t') and (Jyt), (ett,) is a directed Then JYt Z Yt ~ Z 

o o 

system whose limit is Js' (~t)" We note that ~t s Js' since ~t is the 

-I 
set of pairs (h t(i,z,ut) , hyt(i,z, a t (ut))) s.t. z s J~t and 

(i,z,ut) s dom(h t). If Wt < T, the same argument shows: s t E JT" But 

-I 
then Gtt' s JT if Yt' < T, since ~tt' = ~s' where s : (St,U,et,(ut)) 

-I 
and U = ~t' "(Xt' ~ Ut)" 

We also note that ~t is describable as the unique e : J r L s.t. 
-i Yt Zo 

~ J6t = id ~ J~t and ~(et (ut)) = ut" To see this, note that 

(*) JYt ~= r > L ~ r for all ~ s JYt and Z I formulae r 

Now let h = h be the canonical Z 1 Skolem function for L. Let x s JYt" 

-I 
Then x = hyt(i,z, ~t (ut)) for some i < m, z s J6t" By (~) we have: 

e(hyt(i,z , a~l(ut))) = h(i, z, ut). Hence ~ is unique. 

Lemma 1.1. ~T is a cardinal in J8 iff At s T Yt < ~" 

Proof. 

(< ) Suppose m~ is not a cardinal in Js" Then there are ~ < 8, f s JW 

s.t. f maps a 6 < T onto JT" Hence JT c X(6,~,{f} ) and Y(6,u,{f}) m T. 

QED (~ -) 

( >) We may assume X t = JYt ' since otherwise this holds with t re- 

placed by t' : (6t' Yt' atl(ut )). But then hu t s J8 and JYt : 

hut,,(m x J~t x {ut} ). It follows that an f s maps 6 t onto ~Yt" Hence 

Yt < x' since ~T is a cardinal in Js" QED 

Now let mT be a cardinal in J~ , ~ : JT ~7 1 Jw 

* 6t(~) = ~(6 t) For t, t' s T, t ~ t' set: ~t : 

t(~) Yt = Y = W(Yt ) 

* _.(~) 
att, = utt, = ~(ett,). 

cofinally, T = T ~'~. 
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* * ~z J* ~ ~ ~ ~ * Then att , : JYt o Yt' ' att' ~ J6 : id ~ J6 and (Jy), (att,) 

is a directed system. Define M = M ~'~, a~ = a~ (E'~) (t E T) by: 

M,(~ ) = the direct limit of ( ), (att,). We assume w. I. o. g. 

that a t ~ J~[ = id ~ J~ (hence J c M since T = sup 6 ). 
t 

Define ~ : ~(E) : J~ ---~ZI M by: 

a t J ~ ~ M 
Yt 

, Jg. 
JYt a t 

Then ~ D n, since for x s J? , there is t E T s.t. x s J6t and hence 

~(x) : a~ w all(x) = ~(x). We note that ~"w~ lies cofinally in 

* ~ ~ 1 ( ~  t {x I M ~ x e On}, since if x E On in M, x : at(n) , then as(~ a )) > 

x in M, where s = (St' Wt + i, u t U {Wt}). We also note that M satisfies 

the ~2 statement "Iama J ", since M,(~t) is the limit of (Jy~), (att,) 

and each J ~ satisfies it. Hence if M were transitive we could conclude: 
Yt 

V8 ~ ~ M : Js" 

Lemma 1.2. {Y I M ~ y e x} is a set for x s M. 

Proof. 

We assume ~ = ~, since otherwise M is a set and there is nothing to 

prove. We first note: 

(1) If t s T, then a~ : ~t' where ~t : {(Y'X)I M ~ y : ~(at)(x)}. 

Proof of (i). 

Since M satisfies "I am a J " a ' we can define its canonical Z I Skolem 

have the same Z I definition. But J * = function h. Then h, hyt 
Yt 
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hyt ~ "(m x J6~ x {~-1(u~)}), where u~ = ~(ut), since ~(hyt) = hyt~ and 

l(ut) ~-I 
~(a~ ) : a t (ut). 

By our previous argument, we conclude that ~ = ~t = the unique 

. s.t. : 
a : JYt o 

& Now set: = {y J M ~= y e J~(K)}. It suffices to show that JK is a 

set for arbitrarily large K. We show: 

(2) If K > T is regular, then JK c U rng(a~) 
ts K 

Proof of (2). 

Let t E T. We shall construct t' E T 0 JK s.t. rng(c~) 0 J~ c rng(~t,). 

Since K is regular, there is q < K s.t. rng(~ t) 0 J c J . Set: 
K 

Y = h t"(m x Jq x {ut}); a : J , ~ Y; a(u') = u t ; t' = (8 t, W', u). 

Then t' E T N JK and rng(a t) O JK C rng(~t,). Hence rng(~ t) 0 ~ c 
K 

rng(~t,) and the conclusion follows by (1). QED 

By Lemma 1.2. we may assume w. 1. o. g. that the well founded core of M 

is transitive. Thus M is a transitive class if M is well founded and, 

JB ". We complete the in fact, V8 ~ | M = , since M satisfies "I am a Ja 

proof of Lemma 1 by showing: 

Lemma 1.3. If ~ is suitable and cf(T) > m, then V8 ~ ~ M = Js" 

Proof of Lemma 1.3. 

As remarked, we need only show that M is well founded. Suppose not. 

Then there are x i E M s.t. x o~ x I~ .... We may suppose that x i E 

rng(ati , < ~ti+l and t i E . Then the system ), where t i ~ ti+ 1 yt i uti+l 

(JT~), (a~itj) has a limit which is not well founded. On the other 
t i 

hand, (Jyt), (atitj) has a well founded limit, since at. ~titj 
J : ati 

and oti: Jyt i ~Zo J~ , where J8 is well founded. Let N, (~i) : the 

limit of (JYti) , (atitj). Since N is well founded, we may assume it to 
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be transitive. Hence N : J for some y. Y 

Claim Jy' ~i s J?" 

Proof. 

We first note: 

(I) ~ s Jy' since o i : ot, where tf 
�9 1 
1 

Since cf(T) > m, we have: 

-I 
: ci+ 1 ~ )" 

(2) sup 6t. < ?" 
i z 

Let 6 = sup 6t." Pick p > 6 s.t. p g ?, p is regular in J? (hence in J~) 
i z 

and cf(p) > ~ (such p exists by our assumptions on T). It is clear that 

y g suPi Wti g B; hence o.l s J]~ by (I). But dom(~i) = JYtiand ~Yti = ~ti 

in J?; hence 

(3) rng(o i) N P is bounded in p, since 6 i < p and p is regular in J?. 

Set: n : U. rng(o i) N p : Jy N P. Then n < P since cf(p) > m. 
1 

Hence y : ~ < p and Jy s JT" Hence o i s J~ by (I). 

QED (Claim) 

: ~ j  Jy* and aj otitj: o i. NOW set: o i ~(oi ), y : ~(y). Then ~ : Jy Z o 

Hence (JY*)'t (~ ~ has a well founded limit. Contradiction! QED 

This proves Lemma I. As an immediate corollary we have: 

Corollary 2. Let T be suitable s.t. cf(~) > ~. Let ~ : J?---*Z J 

s.t. ~ tid ~ J? . Then T is not a cardinal in L. 

Proof. 

Suppose not. Then w extends to ~ : L L. Hence ~ tid ~ L and 0 ~ 
--*Zi 

exists by Kunen's lemma. Contradiction! QED 

Note. Corollary 2 could also have been proven by an ultrapower con- 

struction. (In Ch. 17 of [Dev] the existence of O~is derived from a 

slightly stronger assumption. That proof can be adapted virtually without 

change; only the proof that the ultrapower is well founded (p.200) needs 
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amendment.) 

Lemma 3. Let T m m2 be a suitable cardinal in L s.t. cf(~) > m. 

Then the conclusion of w I Lemma 1 holds. 

Proof. 

Let X c T cofinally s.t. ~ < ~. We wish to construct Y s L s.t. X c Y 

and ~L< T. Since T is suitable, we may assume w. i. o. g. That either 

is a successor cardinal in L or there are arbitrarily large y s X 

s.t. y is regular in L and cf(y) > ~. Define sets Z i < JT(i ~ ~1 ) by: 

Z = the smallest Z < J s.t. X c Z 
o T 

Zi+ 1 : the smallest Z < JT s.t. Z i U Z ~i c Z 

where Z.* = the set of limit points < T of 
1 

Z x : U z i for limit X. 
i<k 

TO Z i �9 

Set Z : Z . Then 

(a) Z < J 
T 

(b) Z : ~i " ~ < T 

(c) If y E Z is a regular cardinal in L, then either Z O Y is cofinal 

in y or else cf( I Z D y I) = ml" 

Let ~ : J - - ~  Z. By (b) we have T < ~. By (c) and the above assump- 
T 

tions on X we have: T is suitable. Since ~ is cofinal in �9 and cf(~) >m, 

we have: cf(~) > m. By Lemma 2 it follows that �9 is not a cardinal in L. 

Let 8 be the least ~ m T" s.t. ~ is not a 7. cardinal in J~. Let n be 

the least n ~ 1 s.t. �9 is not a Z n cardinal in J~. Then p~ < ~" ~ p~-I 

n-1 ~ = n-1 n n 
Set: ~ = p~ , AE ~ = p~ , ~ = p~. By w 2 Lemma 1 , we have 

cf(~) > ~, since ~ < n g ~ for some n g T s.t. n is regular in J8 and 

cf(n) > ~. Hence ~ is a limit ordinal and Lemma I gives us p m ~, ~" D 

s.t. ~ : J~----~Zl Jp cofinally. Set: A = ~ ~(~ O v). Then (Jp, A) is 
v<~ 

amenable and ~ : (J~, A) rE1 (Jp, A) cofinally. 

n n-l) 
Claim V8 (p = p8 -1 ^ A = A 8 @ 
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If n : 1, then A : ~: A ~ and p : p~. Now let n > I. By w 2 Lemma 4 it 
P 

suffices to show that ~ is strong. Suppose not. Then there are ~, R 

s.t. 

2 2 
(a) ~ c J~ is rud in (J~, ~) and R c Jp is rud in (Jp, A) by the same 

rud definition. 

(b) R is well founded but R is not. 

Then there are x i E Jp s.t. xi+ I R xi(i<m). Since cf(~) > m and ~ is 

cofinal in p, there is ~ = ~(~) s.t. {x i I i < ~} c Jn" Then R N Jn is 

not well founded. But ~ n J~ is well founded and ~ is admissible. 

Hence there is ~ s J-- s.t. T : J-- ---* ~ and x~y > ~(x) < ~(y). 
P n 

p and xRy > f(x) < f(y) Hence R N J Let f = ~(T). Then f : Jn " n 

is well founded. Contradiction ! QED (Claim) 

Set: y : w(~), p : ~(p). Let h, ~ be the canonical Z 1 Skolem functions 

, x {p}). Then Y s L. Since for (Jp, A) (J~, ~) resp. Set Y : h"(~ x Jy 

y < T and T is a cardinal in L, we have: ~L < x. By the definition of 

y, p we have: J~ = ~"(~ • J~ x {~}). But ~"J--y c J~; hence 

I! X c ~"J0 : h"(~ • (~ J~) x {p}) c Y. QED 

w 4 Vicious sequences 

Troughout this section we assume that 9 < �9 and w : J ---~ZlJ cofinally. 

We wish to examine more closely the circumstances under which M 8~ can 

fail to be well founded. To this end we define: 

Def 0 : 0(w)~ the least limit ordinal 0 m v s.t. v is a cardinal in Jo 

and M Ow is not well founded. 

w 5 Lemma I says that 0 does not exist if ~ is suitable and cf(~) > m. 

It is clear that, if 0 does exist, then 0 > ~. Moreover 0 < ~, since 

otherwise M ~ would be well founded, where K is the first regular car- 
. ~(~) 

dinal > ~. But then M K~ = J ~ for some K and there is ~ m w m w s.t. 

: JK ~ JK* cofinally, contradicting w 3 Corollary 2. 
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Now suppose that 8 exists. Let T : T v'@, M : M @'n, ~t* : ~ 

* * (7) ~ : ~(0) There must be a sequence (ti, xi)(i < ~) s.t. ott' = ~ ' 

(a) t i E T, t i ~ ti+ I t i E u , < ' ti+ 1 Yt i ~ti+ 1 

(b) If J ~ (a is the largest cardinal then 6 t > 
O 

(c) x i s Jy~. s.t xi+ 1 E w (xi) , (hence * 
�9 atiti+l ~ti+l(Xi+l ) s oti(x i) 

I 

(i < ~)). 

We refer to any sequence satisfying (a) - (c) as a vicious sequence 

for 7. Note that suPi Wti is a limit ordinal if (t i, x i) is vicious, 

since Wti+l> Uti. If 8 ~ ~ is any limit ordinal s.t. 8 m suPi Wti and 

is a cardinal in 8, then M 8w is not well founded. But then sup Uti > 9, 
i 

since otherwise JT = M~w would not be well founded. Hence 0 = suPi ~ti 

for any vicious (ti, xi). 

We define a canonical vicious sequence (t i, x i) = (t[, x i)~ (i < m) as 

follows: 

t i : the <j-least t s T s.t. 

there is a vicious sequence (t~ , x~) (k < ~) with 

(t~, x~)j : (tj, xj) for j < i and t!l : t. 

x i : the <j-least x i s J * s.t. 
Yt i 

there is a vicious sequence (t~, x~) (k < m) with 

(t!j, x~)3 : (tj, xj) for j g i. 

Lemma I. [J ) : Je i<~ rng(cti 

Proof. 

Set X : ~w . Since <Z J and sup : 0, we have X Jg" 
i Xti Xti 1 ~t i i Uti ~ZI 

Let G : Jk ~ X. Then k g 8. We know that t i E X, since 

t i E c 
uti+ 1 Xti+ 1" 



136 K. Dev l in  & R. Jensen 

Claim ~-l(t i) : t i. 

Proof. 

Let t i' : u-l(ti ). Then Xt,i : h~t!"(~ x J6tx {u-l(uti )}) : u-l"Xt" 

1 1 

Hence Yt! = Y t i  and o t ! t t  = o t . t  ( i  < j ) .  But t h e n  Yt!  = Yt i '  
1 1 3 1 3 1 

qt:t: = Utit j and it follows easily that (t~, xi)(i < ~) is vicious. 
i j 

But t! gj t i Hence t! = t by the minimal choice of t i. 1 " 1 i 

QED (Claim) 

But then I : suPi ~t.1 : 0 and Xti : hti"(~ x J6tix {ut!}). : o-l"xti. 

Hence Jo : JX : ~ : U ~ : .~ Xt. : X. QED 
1 1 1 1 

Corollary 2. If v is suitable, then sup 6ti= v. 
i 

Proof. 

v is either a successor cardinal or a limit cardinal in J0" In the 

first case, 6ti> a by definition, where v succeeds a in Jo" But then 

n i = Xt. n v is transitive, n i < v, since v is regular in Jo" Clearly 
l 

sup n i = v, since U xt. = J0" But 6 i m n i ~ Yi < 6i+1; hence sup 6. = v. 
i i i i i 

Now let v be a limit cardinal in J8" Let g : sup ft.< v. By suitability, 
i i 

there is y > 6 s.t. y is regular in Jo' Y < v and cf(y) > m. Set 

n i : sup(y n xti). Then n i < y by the regularity of y. But then n < Y, 

where n : sup hi, since cf(y) > ~. Hence q ~ U Xt. : Jo" 
i i z 

Contradiction! QED 

Remark Using Corollary 2, it would be easy to show that M 0"~ = U rng 
i 

(o~i) if v is suitable, but we shall not need this. 

6ti , -l(uti) ) (i < ~). Def v i : v~ : ( Yti, ~ti 

Then v i 6 Jv (i < ~). The sequence (v i) gives "complete information" 

about Jo' since Jo' (~ i) = the limit of (JYti), (ctitj) and the maps 
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ot.t. are recoverable from the v i by: ot.t. : o s where 
1 J 1 j  

s : o-l(ti ) s o -1 tj tj(uj) (i < j). 

We use this to prove: 

Lemma 3. Let v be suitable. Let ~ : J~ ---,ZI Jv s.t. 

{v i I i < m} c rng(~). Then 0(~) exists (hence (t~ ~, x i~) exists) and 

x i : x i (i < ~). 

Proof. 

otitj s rng(~) since ~ j is canonically recoverable from the v i. Set: 

~ij : ~--l(~ ~i : ~-l(Yti)' ~-i : ~-l(~ti)" 

Then ~ij : J~i >Z J~j(i g j < ~) is a directed system s.t. ~i. ~ J[.: 
O J i 

id ~ J~i" Let U, (~i) be the limit of (J~i), (~ij). We may assume 

w. 1. o. g. that o i ~ J~. = id ~ J~.. But sup [. : ~, since sup 6ti = 
1 i i 1 i 

and hence JQ c U. Define ~ : U >Z JO by: 
0 

W 
U ~ J@ 

~i I I ~ 
i 

JYi Yti 

It is easily seen that ~ D ~. U is well founded, since ~ imbeds it into 

J o '  and  s a t i s f i e s  " I  am a J ~ " .  H e n c e  we may a s s u m e  U = J g  f o r  some ~ .  

: ~-l(t i -- ~--I o-i (ti). Since sup : @ and ~t. : Set ~i ) = ~ ti+l i ~ti i 
A 

~(~ti-- ), it follows that ~,,~ is cofinal in @. Hence ~ : J~ ---*E l Jo 

c o f i n a l l y .  C l e a r l y ,  0 = s u p  ~ . .  
i z 

(i) If t s T : T g~, then ~(o t) : o~(t) (hence ~(yt ) : Y~(t) and 

~(att ,) : o~(t)~(t, ) for t, t' s ~, t ~ t'). 
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Proof of (I). 

s = st, u = e-l(ut), y = Yt are uniquely characterized by: 

: h "(~ x J6 x {U}) (a) Jy Y t 

J (b) ~ : JY---'~7.1 ~t 

(c) ~ ~ J~t = id ~ J~t" s(u) = u t. QED (1) 

(2) ~i : Yt-.' ~i = s~. (hence ~ij : et.t. )" 
1 i i j 

Proof of (2) 

~(y[i ) : Yti : ~(~i ) by (I); hence yt i- : Vi. Set: [ : -1 ~t!(Utl i )" 

Then ~ ~i(~) : qt.~(~) : ut. and ~ el. (~) : ~(s~.)~(~) : ot.~(~) : ut. 
1 i i 1 I 1 

by (I). Hence ~i(~) = sti-- (~) = uti--. But then ~i = oti-- = the unique 

: J~i ,7. o L s.t. a ~ J~[.~ : id ~ J~[.~ and ~ (u) : U~.l. QED (2) 

(5) ~ : e(~). 

Proof. 

Let p = O(~). 
*(~) 

(~ m ~) sgig j : ~7(s~.g ) : ~(otitj) : otitj by (2). But then lj 
~: G* M O'~w , * (xi+ I) s -- (xi) in where ~ = *(e,~) and M 8'~ 
~i+1 ti ~i ~i 

well founded. 

is not 

(~ m 8) suppose not. Let (~i' Yi ) be vicious for ~ and set 0 : ~(~), 
A -- 

s i = ~ ( s i ) .  By t h e  a b o v e  a r g u m e n t ,  ( s i ,  y i  ) i s  v i c i o u s  f o r  ~.  

Hence 0(~) : sup ~s. ~ 0 < e. Contradiction ! QED (3) 
I i 

(4) (~i" xi) : (ti ' xi )" 

Proof. 

(~i' xi) is vicious for ~ by the above argument. But (1), (2) and the 
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minimal choice of (ti, xi), (~i' xi) must be chosen minimally. 

QED 

Note We could have carried the proof of Lemma 2 a bit further to show: 

(a) MG'~ : Je and ~(8) : r 

~A 
(b) There is i : M~'#~-~--T--~ M 0'# s.t. #~(0) = i ##. 

Thus: 

W = W 

M~,~ ~ 

MO, w 

j ~  - -  f 
v 

JG M8'~ 

J 
J ~ J 

~ T 

w 5 The ~ cofinal case 

Let T ~ ~2 be an ~ cofinal suitable cardinal in L. Let X c ~ be cofinal 

in ~ s.t. ~ < ~. As before, we suppose w. 1. o. g. that, if T is not 

a successor cardinal in L, there are arbitrarily large u s X s.t. y is 

regular in L and cf(y) > ~. We wish to show that there is Y s L s.t. 

X c Y and ~L < ~. Obviously, it suffices to prove this in a generic 

extension of the universe. Since ~ < T, T ~ ~2 and �9 is singular (in V), 

there is a regular ~ ~ ~2 s.t. ~ < K < T. But we may then assume that 

= K, since if this is not true already, we can make it true by gener- 

ically collapsing T to ~. Now let k map K onto JT" For y < K set: Yy = 

the smallest Y <E JT s.t. X U Y U k" y c Y. 
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Set: Y = {e < K 1 e = Y n K}. Then r is cub in K. For e, 8 s F, e m 8 a 

~sS> wE 
set: w a : J v s ~  Ye; we8 = w81 we" Then Jxs Z Jw8 >Z Jx' and JT' 

w 

(we> is the limit of the directed system (JT)' (weB>" Clearly�9 
e 

we ~ Je = id ~ Js and we(a) = K. Also, Ye < < for a s r and K is regular 

Hence for each s s F there is 8 s Z s.t. r s < S and Y*e c YS' where Y*e is 

the set of limit points < T of T N Ye" Let ~ be the set of s s r s.t. 

cf(a) > m, s is a limit point of F, and Y8 < e, Y8 c Ya for all 8 E Fn e. 

Then F o is stationary in K. It follows by the argument of w 3 Lemma 3 

that T s is suitable for e s F o. Clearly cf(T s) = ~, since T n Ye is 

cofinal in T. 

Lemma I. {e E r o I @(w e) exists} is not stationary in K. 

Proof. 

Suppose not. For a E F o s.t. O(w a) exists set: @a = e(we)' (t~, x~) = 

w w w 

(tie e v e via �9 xi )' i = . Since cf(a) > m, there is 8 E F O a s.t. 

{v~ I i < ~} c rng(wSs). Let f(s) be the least such B. Then f is re- 

gressive and hence there is 8 o s.t. A = {s I f(s)= 8o ) is stationary. 

But then {u I i < ~} c rng(~e) for e, 8 E A, s m ~ and hence x~ = x i 

by w 4 Lemma 5. Set x i = x?z (e E A). Since cf(<) > m and JT = U rng(ws), 
sEA 

there is s E A s.t. {x i I i < w} c rng(wa). Then ~ a ~[l(x~+,)Eots ~i ) 
ti+l ~ ~ ~ i 

(i < ~) and Je is not well founded. Contradiction t QED 
s 

Lemma 2. If T is a limit cardinal in L, then the conclusion of w I 

Lemma 1 holds. 

Proof. 

Pick a E r o s.t. 8(wa) does not exist. Set T = Ta, w = w a 

Then T is not a cardinal in L, since otherwise M K'w would be well 

. 
founded. But then M ~'T = J * for some K and ~ : J - K K ~IJK* cofinally�9 
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where ~ = ~(<) m ~, violating w 3 Lemma 2. As in w 3 Lemma 5 set: 

= the least ~ m ? s.t. ? is not a Z m cardinal in J~; n = the least 

n n m 1 s.t. u is not a Z n cardinal in JE, ~ = p~-l, ~ = -1, ~ = O~. 

Then ~ m ? > V. By suitability, there must then be n s.t. ~ > n > V, 

n is regular in J-- and cf(n) > ~. Hence cf(~) > m. We can then finish 
P 

the proof exactly as in w 3 Lemma 5. QED 

Lemma 3. If x is a successor cardinal in L, then the conclusion of w I 

Lemma I holds. 

Proof. 

Set: r I : {~ E r ~ I O(~ ) does not exist}�9 Then r I is stationary. 

As above, ~a is not a cardinal in L for s s F 1. Set: 8~ = the least 

8 m r e s.t. xa is not a Z cardinal in J8; n : n = the least n m 1 

s.t. T a is not a Z n cardinal in J8; P~ : p~l ' As : An-18 m ' Pro: P~a 

= p~ �9 is a successor cardinal, hence y~ Then Pa ~ ~a > Ya and ~a 

regular, in JPa Hence cf(~pm) = cf(x ) -- w. 

Let fai (i < ~) be as in w 2 Lemma 2. Since cf(~) > ~ for a E FI, there 

w-I is 8 E F 0 a s.t. (y~} U (f-~ I i < ~} c rng(wBa). Set g = (8, Sa (Ya)) 

where 8 is the least such ordinal. Then g is regressive. Hence there are 

8', y' s.t. A = {m ~ F 1 I g(m) = (8',Y')} is stationary. But for s,8 ~A, 

m ~ 8 we then have n a = ns, w(ya) = Y8 and there is a unique ~a8 m ~m8 

s.t. W 8 : (Jpa,Aa) ~Zl(Jps, A 8) and ~ms(pm) = PS" 

By the uniqueness of the ~e8 it follows that if e, 6, Y E A, m ~ 8 ~ Y, 

then ~Sy~a8 = ~ay" Let M, (~s I ~ s A) be the direct limit of 

((JQm,Aa)] ~ E A), (~8 [ a, 8 s A and ~ ~ 6). 

M is well founded, since if xi+ 1 s x i in M (i < ~), there must be m E A 

s.t. {x i [ i < ~) c rng(~a). But then ~ (xi+ 1) s ~m (xi)(i < m). 

Contradiction ! M satisfies "I am a J " and hence we may assume: 
m 

M = (Jp, A) for some p. Then p ~ T and (Jp, A) is amenable. Fix m ~ A 
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and set: T : Tm, ~ : 8m, ~ : Pm, W : As, ~ : Ys' w : we, ~ : ~. It is 

n-I n-I for some 8, for we can then enough to show that p = P8 , A = A~ 

finish the proof exactly as in w 3 Lemma 5. But for this, it suffices 

to show that the map ~ is strong. ~ will be strong, however, if m is 

a chosen sufficiently large. To see this, let Rn(n < ~) enumerate the 

relations rud in (Jp, A) which are not well founded. Let ~n have the 

same rud definition in (J~, ~). For n < ~ choose (x~ I i < ~) s.t. 

xi+In Rn x~ (i < ~). Set X = {x~ I i, n < m}. Then Y c rng(~) for suffi- 

. i+l. ~-l(x~) and well found- ciently large ~. But then ~-l~x n ) Rn ~n is not 

ed. Now let R be well founded and rud in (J~, ~). Let R be rud in 

(Jp, A) by the same rud definition. Then R ~ ~n and hence R # R n (n < ~). 

Hence R is well founded. QED 
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COMPUTATION THEORIES : AN AXIOMATIC APPROACH 

TO RECURSION ON GENERAL STRUCTURES. 

Jens Erik FENSTAD 
University of Oslo. 

This is a brief survey of an axiomatic approach to generalized 

recursion theory. It is based on a set of lectures to the Kiel Summer 

Institute in Logic 1974. A first report on the project was given in 

[6]. 

An axiomatic study is to a large extent an analysis of existing 

methods and results. Our debts to those who have worked on general 

recursion theory is therefore considerable, as the many references 

to follow will bear witness to. A particular debt is due to Johan 

Moldestad and Dag Normann who have with great enthusiasm participated 

in the various investigations reported on in this survey. 

Being a survey paper proofs will only occasionally be hinted at. 

A more comprehensive presentation of the theory will appear as a book 

in the Spring Verlag series Perspectives in Mathematical ~ogic. 

I. BASIC THEORY. 

1.1 Combinatorial part. 

relation 

Our starting point is an analysis of the 

{a](~) = z 

which is intended to assert that the "computing device" named or coded 

by a and acting on the input sequence ~ = (Xl,...,Xn) gives z 

as output. 
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Definition I. A computation domain is a structure 

0~ = <A,C; 0,I> 

where A is a non-empty set, C is a subset of A , and 0,1 are 

two designated elements of C . C is called the set of codes. 

Definition 2. A computation set @ over O~ is a set of tuples 

(a,o,z) where a E C , o = (Xl,...,Xn) ~ where x i E A , z E A and 

lh(a,o,z) > 2 . 

At this stage we need not make any requirement of singlevaluedness, 

hence given a and o there may be more than one z such that 

(a,c,z) E @ However, in most cases we will require that 8 is 

singlevalued. 

Let | be a computation set over GD To every a E C and every 

n ~ 0 we can associate a partial function [a]~ natural number as 

follows 

[a]~(a) = z iff lh(o) = n and (a,o,z) E | . 

Definition 3. Let @ be a computation set over O~ . A function f 

is @-computable if for some f E C we have 

f(o) = z iff (~,o,z) E 

We call f a ~-code for f and write f = [f}~ . 

Definition 4. Let | be a computation set over 0~C o A consistent 

functional ~ is called @-effective if there exists a code ~ E C 

such that for all el,...,elE C and all ~ = (Xl,...,Xn) from A 

we have 

nl nl .^~l+n. 
~([el} ~ .... ,[e I ] ,a) ~ z iff ~}| tel, .... ,el,q) ~ z 

We see that ~ is @-effective if we can calculate ~ on | 

albe functions by calculating on the codes of the functions. 
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We will consider some specific functions and functionals. 

(1). Definition by cases (on the code set C) : 

I! DC(x,b,c,a) : 

9 

if not all a,b,c E C 

if x : a and all a,b,c E C 

if x / a and all a,b,c E C 

Outright definition by cases makes equality on A e-computable. This 

we may not always want. 

(2). Composition: 

~n(f,g,o) : f(g(~),~) , where n : lh(o) . 

(3). Permutation: 

P m.(f,o,T) = f(~J) 
~n,J 

Here n,m ~ 0 , 0 ~ j < n , and (Xl,...,Xn)J = (xj+1,Xl,...) 

Next we consider a property which a computation set @ on (~b may or 

may not have. 

(4). Iteration property: 

For each m,n > 0 there exists a map (i.e. total and single- 

valued function) S n such that for all a,~ E C and all T E A : 
m 

[a In+mr S~(a,a)]~( ) . 
' e  , c , ~ )  = [ T 

Definition 5. Let | be a computation set over the domaiu GL. 

called a precomputation theory on 0~ if 

(i) 

| is 

(ii) 

for each n,j (0 _< j < n) and m DC , ~C n , and P~n,jm are 

| with @-codes d,c n , and Pn,j,m ' respectively; 

8 satisfies the iteration property, i.e. for each n,m there 

is a e-code Sn, m for a mapping Snm with property (4) above. 
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Note that if <N,s) , i.e. the set of natural numbers with the successo 

function, is in the structure 0~ we may require that the codes 

and s are | mappings of n,j,m . We Cn' Pn,j,m n,m 

also note that we have the following enumeration property: We have a 

fixed code Pn,o,o such that 

[Pn,o,o](a,~) = [a](a) 

for all a E C . 

One may now show that certain functions are ~-computable. We 

omit this, only remark that ordered pair exists, and that we have the 

usual proof of the fixed point theorem. 

If we consider precomputation theories | over the integers and 

assume that the successor function ~x.(x+1) is | we 

can be more explicit: Any such theory is closed under the U-operator, 

the predecessor function, and primitive recursion. It follows that the 

(Kleene) partial recursive functions is the minimal precomputation 

theory over ~ . 

This result can be extended. In order to have the required uni- 

formity in the various constructions we now assume that the codes 

Cn' Pn,j,m' and Sn, m are computable functions of the parameters 

n, j and m . We also assume that all theories are singlevalued. 

Given any sequence ~ = fl,...,fl of partial functions over 

one may construct a "least" precomputation theory, which we will denote 

by PR~] (= the prime recursion theory generated by ~), in which 

the functions f are computable. 

Definition 6. Let @ and H be two precomputation theories over w. 

We say that H extends ~ , 

| 

if there is an H-computable mapping p(a,n) such that 
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(a,~,z) E G iff (p(a,n),~,z) E H , 

where n = lh(o) If @ ~ H and H ~ | , we say that 8 and H 

are equivalent, in symbols @ N H . 

Theorem. Let @ be a precomputation theory over m . There exists 

a @-computable function f such that 

e ~ PR[f] . 

Since 8 has an enumerating function (see the remark following defi- 

nition 5) it is immediate that there exists a ~-computable partial 

f such that | ~ PR[f] . It is the converse which requires a closer 

analysis. The idea is to analxse how we compute a function in PR[f] 

and to see that this procedure can be carried out inside | One 

way of doing this is to develop a normal form for functions in PR[f I. 

Once we have the representation theorem we may lift to arbitrary 

precomputation theories many of the results valid for ordinary recur- 

sion theory over m . We take the first recursion theorem as an 

example. 

Definition 7. Let | be a precomputation theory over m �9 A func- 

tional ~(f,x) is called uniformly @-computable if there is a code 

such that the function kx.~(f,x) is | with code 

for all functions f . 

Theorem. Let ~ be uniformly | Then ~ has a least 

fixed point f* , and f* is 8-computable. 

The proof makes essential use ef the fact that @ is of the form 

PR[f] for some partial function f . 

Remark. The theory developed so far is closely related to the previous 
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work of Strong [36], Wagner [37], and Friedman [8]. There is also an 

unpublished study by Aczel [I] on "enumeration systems", a notion 

essentially equivalent to our precomputation theories. The represen- 

tation theorem is already stated in Aczel's abstract. The thesis of 

Sasso [33] also contains a great deal of material relevant for this 

part of the theory. In particular he has the normal form theorem 

for a function recursive in a partial function. 

1.2. Computation theories. Many arguments of recursion theory seem 

to require an analysis not only of the computation tuple (a,~,z) E | , 

but of the whole structure of "subcomputations" of a given computation. 

Moschovakis [24] in his analysis emphasized the fact that what- 

ever computations may be, they have a well-defined length which always 

is an ordinal, finite or infinite. Thus he proposed to add as a fur- 

ther primitive a map from the set ~ of computation tuples to the 

ordinals, denoting by la,a,zI~ the ordinal associated to the tuple 

(a,~,z) s | . We suggested in [6] to abstract another aspect of the 

notion of computation, viz. to add as a further primitive a relation 

between computation tuples 

(a',~',z') < (a,~,z) 

which is intended to express that (a',~',z') is a "subcomputation" 

of (a,s,z) , i.e. that the computation (a,a,z) depends upon 

(a',~',z') 

Definition 8. Let O-g= <A,C,N;s> be a computation domain, i.e. 

A is a non-empty set, N ~ C S A , and <N, s ~N> is isomorphic to 

the natural numbers with the successor function. A computation struc- 

ture <| over 0V~ is a pair where | is a computation set and < 

is a transitive and well-founded relation on @ . 

Thus if (a,~,z) E @ then the set 

~(a,s,z) = [(a''a''z')l(a',s',z') < (a,~,z)} 
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is a well-founded transitive set (the set of "subcomputations" of 

(a,~,z)) ~(a,~,z) has an associated ordinal la,~,zI@ , which 

may be called the "length" of the computation (a,~,z) . 

The notion of computable function carries over unchanged to the present 

setting. In the definition of @-computable functional we make an 

addition. 

Definition 9. Let (@,<> 

A consistent functional 

a ~ E C such that for all 

we have 

(a) 

(b) 

be a computation structure on a domain OL . 

is called @-computable if there exists 

el,...,| 1 E C and all ~ = (Xl,...,x~6 A 

n I n 1 
~({el] | [eli @ ,O) = Z iff [~ l+n ,..., ]8 (el,...,el,~) ~ z . 

n I n i 
If @([eli | ,...,[eli @ ,~) ~ z , then there exists 

functions gl,...,g I such that 

n I n 1 
(i) gl ~ [eli| '''''gl ~ [eli| and ~(~,~) = z ; 

(ii) for all i = I,...,1, if gi(tl,...,tn2. ~ u , then 

(el,tl,...,tn ,u) < ( $ , e  1 .... ,el,o,z) �9 
1 

We may now state the definition of a computation theory. 

Definition 10. A computation structure <e,<) on O-L is called a 

computation ~ on 0"L if there exist | mappings 

pl,P2,P3,P4,P5 such that the following functions and functionals are 

~-computable with | as indicated and such that the iteration 

property holds: 
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I. f(x) : s(x) 

2. f(x,b,c,a) = DC(x,b,c,a) 

3. ~(f,g,o) = ~n(f,g,o) 

4. ~(f,o,~) = P~n?j(f,a,T) 

5. 

I 
f = {P1~e �9 

f = [P2~ �9 

$ = p3(n) �9 

$ = P4(n,j,m) �9 0_< j <n. 

Iteration property: For all n,m P3(n,m) is a @-code for a 

n 
mapping Sm(a,xl,...,Xn) such that for all a,o E C and all 

E A , lh(T) = m : 

.n+m. = [S~(a,o)]| ; (i) [a)| ~a,~) m 

(ii) if {a)~+m(o,T) = z , then 

(a,o,~,z) < (S~(a,a),T,z) . 

We shall state only one main result about computation theories, viz. 

that if ~ is a computation theory over a domain A and if the set 

of subcomputations ~(a,~,z) of a computation (a,~,z) is "finite" 

in the sense of the theory, then | is equivalent to the prime re- 

cursion theory associated with a partial type-2 object over A , and 

this in a way which preserves the structure of subcomputations. 

Note that in the present context we add the following clause to de- 

finition 6 of the relation | < H : 

if (a',o',z') <@ (a,a,z) , then (p(a',n'),~',z') <H (p(a,n),a,z) , 

i.e. the function p preserves the subcomputation relation. 

Definition 11. Let <| be a computation theory on a domain 0~6 

A set B ~ A is called | if the functional ~B is 8-com- 

putable: 

~B(f) 
L 

I if Vx E B If(x) ~ I] 

Thus a set is finite if we can computably quantify over it. 
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Definition 12. A computation theory <| is called s-normal if 

the sets ~(a,~,z) are uniformly | for (a,a,z) E | 

Theorem. Let (| be an s-normal computation theory on the do- 

main ~ �9 Then there exists a | functional ~ such that 

e ~ PR[T] 

Note that this is an improvement over a result stated in [6] where 

it was required that @ has a computable search operator. 

A computation theory | is also a precomputation theory on the 

domain. If we are only interested in the | relations 

on O~ , this is adequately represented by the semicomputable rela- 

tions of some theory PR[f] , where f is a partial function on O~ . 

What is added in the representation theorem above is that we can 

preserve the structure of subeomputations, in particular, the length 

function associated with subcomputations. 

2. FINITE THEORIES�9 

2�9 Finite theories on one type. In this part we will study theories 

in which the domain A is @-finite, i.e. we can ~-eomputably 

quantify over the domain�9 The resulting theory is a generalization 

of hyperarithmetic theory or recursion in 2E over ~ . 

Let <| be a computation theory on a domain 0~= (A,...> . We 

will not distinguish between the set of computations | and the 

"coded" set [(a,a,z> I (a,a,z) 6 | For x E | let Ixl| be the 

ordinal of the computation x , i�9149 the ordinal of the set 

s = {y~ely<x~ 
NX �9 

The following prewellordering property is essential in the study of 

finite theories: 
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p-normal if there is a | 

then p(x,y)$ , and 

Definition 13. @ is called 

function p such that if x E | or y E ~ , 

x ~ 0 ^ Ixl |  ~ lYI| => p ( x , y )  = 0 

lxl| ) lyI| => p(x,y) = i 

Recursion in 2E , or more generally, recursion in any normal higher 

type object over ~ , give p-normal theories. 

Note that p-normality is under suitable conditions implied by s-nor- 

mality, e.g. if there is a ~-semicomputable extension of the relation 

< to all tuples (a,G,z) . In this case we have the following recur- 

sion equations for the function p : 

(a) p(x,y) : 0 if Vx' E ~x Ey'[y'<y A p(x',y') = 0] 

(b) p(x,y) = I if Ex'Ex'<x A Vy'~ ~y p(x',y') = I] 

The assumption that < is e-semicomputable means that whether or 

not (a,a,z) represents a "true" computation, i.e. (a,s,z) E | , 

we should be able to start generating the "subcomputations" of (a,~,z), 

One of the most important consequences of p-normality is the existance 

of a single-valued selection operator over the integers. This was 

first proved by Gandy [9] for recursion in a normal type-2 object, 

later by Moschovakis [22] for recursion in 3E , and finally extended 

to all types by Grilliot [11]. Platek has also a similar result in 

his thesis [30]. 

We mentioned above that finite theories over one type is a generaliza- 

tion of hyperarithmetic theories. The first systematic study of such 

generalizations is to be found in Moschovakis work on hyperprojective 

theories [23]. Recently he has studied the notion of Spector class 

(see chapter 9 of [26]). This is related to the following class of 

finite theories: 
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Definition 14. A Spector theory <G,<> on a domain 0~ is a computa- 

tion theory satisfying 

(i) ~ is p-normal; 

(ii) A = C ; 

(iii) A is | 

Note that (ii) implies that equality is ~-computable. It is also 

rather straight forward to show that the class of | 

relations in a Spector theory | is closed under existential quanti- 

fier and disjunction. 

Let en(| denote the class of ~-semicomputable relations and sc(| 

the class of G-computable relations. The following result was ob- 

served independently of Moschovakis and Moldestad: 

Theorem. If e is a Spector theory on 0-~ , then en(| is a Spector 

class. Conversely, if r is a Spector class on 0-~ , then there is 

a Spector theory ~ on 0-b such that F : en(| 

Spector theories are also related to the theory of inductive defina- 

bility. We quote one simple, but basic result to show the connection. 

Theorem. Let <| be a Spector theory on m and let ~ be a 

sequence of | relations: 

(a Ind(Z2(~)) ~ en(~) . 

(b G ~ pR[2E,~] iff Ind(Z2(~)) = en(| . 

Thls result is basically due to Grilliot [12] and was adapted to the 

present frame-work by Moldestad. For further information on inductive 

definitions and the relationship between inductive definability and 

Spector classes/theories we refer the reader to the papers in [7], 

to Moschovakis book [26], and to his recent paper [27]. 
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2.2 Finite theories on two types. Moving up in types over m the 

notion of finiteness bifurcates. In higher types one must carefully 

distinguish between a "weak" and a "strong" notions. This is tied 

up with a phenomenon first observed by Moschovakis [22], viz. that 

the semi-computable in 3E subsets of ww are not closed under Za I . 

A further analysis reveals that higher type theories really can be 

captured as theories on "two types", i.e. on domains of the form 

A = S U Tp(S) (here Tp(S) = Sw) , where S is strongl~ finite but 

Tp(S) is only weakl 2 finite. Strong finiteness is finiteness in the 

sense of definition 11. The weak notion is defined as follows: 

Definition 15. Let | be a computation theory on a domain ~ . 

A set B ~ A is called weakly | if the functional ~ is 

~-computable: 

0 i f  v x ~ B  f ( x ) $  A ~ x ~ B  f ( x )  = o 

I if Vx EB ~y / 0 f(x) : y . 

The distinction between two types can already be found in Moschovakis 

[25]. It was systematically adopted by Harrington and MacQueen [16] 

in their proof of the Grilliot selection theorem. It has also been 

developed by Moldestad [21] as a natural setting for the general plus-2 

and plus-1 theorem; we follow his exposition here. 

The computation domain will have the form ~= <A,S,~) , where 

A = S U Tp(S) and S is a coding scheme for S . Let L be a list 
N 

RI,...,R k, ~1,...,~i, FI,...,P m where RI,...,R k are relations on A, 

~i,...,~1 are partial functions, and FI,...F m are functionals, i.e. 

functions from AA to w . Prime reeursion in ~ , PR(~) = PR(~,~,~), 

is introduced via a number of schemata in analogy to the way Kleene 

introduced recursion in higher types [18]. 

The schemata are rather standard: Introduction of the characteristic 

functions for N and S , the successor function, the functions 
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associated with the coding scheme, the functions in the list L . 

There are schemes for substitution, evaluation (f(x,y) = x(y) , 

if x E Sm and yE S) , and the enumerating function for the partial 

recursive functions. 

A scheme is also needed for the following extended case of substitu- 

tion: If kx.[e](x,a) is total, where x E S and a is a list of 

arguments from A , then f(a) = [e']~x.[e](x,a),a) is partial recur- 

sive in L with an index computable from e and e' 

A list ~ is called normal if the equality relation on S 

sive in L and the functional E , where for f E AA 

is recur- 

0 if Zx f(x) = 0 
E(f) : { 

I i f  vx f ( x )  J o , 

is (weakly) recursive in L (A functional F 

in L if there is a primitive recursive function 

is weakly recursive 

s(e) such that 

[s(e)]L(a ) ~ F(~x.[e]L(x,a)) 

for all e,a.) 

Adapting the proofs from MacQueen's thesis [ 2 0 ]  Moldestad has veri- 

fied the following: 

Theorem. Let PR(~) be normal on the domain A = S U Tp(S 

Then the following are true: 

a) PR(~) is p-normal. 

b) A is weakly but not strongly finite, i.e. the L-semlcomputable 

relations are not closed under the existential quantifier over 

Tp(S) 

c) S is strongly finite, i.e. the ~-semicomputable relations 

are closed under the existential quantifier over S 
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Property (e) is a corollary of the Grilliot selection theorem: Let 

L be a normal list and B c S a non-empty set recursively enumerable 

in ~,a . Then there is a non-empty subset B' ~ B which is recur- 

sive in ~,a . This result was first proved in [20It an "abstract" 

version appears in Harrington and MacQueen [16]. As mentioned above 

Moldestad's proof is an adaption of the proof in MacQueen [20]. 

Moldestad verifies in [21] that if S = Tp(O)U...D Tp(n-1) , n > 0 , 

then Sw can be identified with Tp(1)x...x Tp(n) . If F is an 

object of type-n+2 , there is a list ~ such that (Kleene) recursion 

in F on Tp(O),..., Tp(n) is essentially the same as recursion 

in ~ on ~ = <A,S,~> A converse is also true. Hence results 

about recursion in higher types can be deduced from the corresponding 

results for PR(~) on 

This is in a more precise way what we meant when we said above that 

higher type theories really can be captured as theories on two types. 

3. INFINITE THEORIES. 

The starting point for our analysis of infinite theories is the 

following fact: If a transitive set <A,E> is resolvable, then A 

is admissible if and only if every Z I inductive operator over A 

has a ~I fixed point. From this we shall abstract a notion of ad- 

missible prewellordering and characterize this notion in computation 

theoretic form. We note that the notion of admissible prewellordering 

was introduced by Moschovakis [24] and that the characterization 

theorem is essentially an adaption of one of his results to the present 

setting. 

Let 

that 

valued. 

(| be a computation theory on a domain 0~ . We assume 

is p-normal and that A = C | is also taken to be single- 
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We add the following axioms: 

A. There is a | prewellordering ~ of A such that 

the initial segments of ~ are (uniformly) | 

The finiteness assumption means that the follwing functional is 

W-computable 

0 if ~y& x. f(y) ~ 0 

I if Vy~x. f(y) ~ I 

B. 
m 

14 I = sup[la,a,zl| (a,a,z) E~} . 

Here la,~,zI| is the ordinal of the well-founded set ~(a,a,z) and 

I~ I is the length of the pwo ~ . ~ is a way of saying that the 

complexity of the domain matches the complexity of the computations. 

This is a feature of infinite theories which is missing in the case 

of finite theories. 

~. There is a | mapping p(n) such that {p(n)] is 

total and 

[p(n)}(a,~,z,w)= 0 iff (a,c,z)E@ ^ la,a,zl@ = lwl . 

Here n = lh(a) and lwl is the ordinal of w in the pwo ~ . 

Note that it now follows that A is not | if so, we would 

have (a,~,z) E | iff ~w p(a,a,z,w) = 0 , i.e. | would be e-com- 

putable. 

Usually the assumption is made that | has a (multiple-valued) 

selection operator. This is needed to have a decent theory for the 

| relations. A closer analysis shows that we get by 

just by requiring the ~-semicomputable relations to be closed under 

existential quantification over A . 
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D. 
m 

There is a @-computable mapping q(n) such that for all a,q 

x.[a}(x,a) ~ 0 iff [q(n)}(a,a) ~ 0 . 

Prom ~ and p-normality we may now show that the | 

relations are closed under v and that a relation R is | 

if and only if R and IR are | And our theories 

are single-valued. 

A number of elementary facts can now be established, e.g. 

~-finiteness can be characterized as being @-computable and ~ -bounded. 

And there exist @-computable relations ~@ such that the 8-semi- 

computable relations on A are exactly the ZI( ~ ,~) relations on A. 

Definition 16. Let ~ be a prewellordering on a set A and R a 

sequence of relations on A . (A, ~ ) is called R-admissible if for 

every ZI(~,X,~) formula 0 in which X occurs positively and 

which has parameters from A , the fixed point X* of the associated 

operator re(x) = [ale(a,x)] is a E1(~ ,~) relation. 

It is now an immediate consequence of the first recursion theorem for 

| that if ~ is any sequence of | relations extending 

the sequence ~ referred to above, then the structure (~,4) is 

~-admissible. We have the following converse 

Theorem. Let (Of,@) be an R-admissible prewellordering. There 

exists a p-normal computation theory (@,<> on G-~ satisfying 

to ~ and such that the | relations are exactly the 

Z I (4 ,R) relations. 

The theorem has the following refinement. If we start with an infi- 

nite theory | , there exist suitable ~-computable relations R such 
N 

that the theory ~* constructed according to the theorem above from 

the E-admissible pwo (~,~) is equivalent to | i.e. ~ N | ~ 
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Remark. No study of infinite theories can be complete unless degree 

theoretic arguments are accounted for. This is yet in a preliminary 

stage; we refer the reader to the recent work of Simpson [34], [35]. 

4. CLASSIFICATION OF FINITE THEORIES ON ONE TYPE. 

4.1 The imbedding theorem. A topic of central importance is the 

relationship between theories over "finite" and "infinite" domains. 

The basic example is here the relationship between hyperarithmetic 

theory over w and meta-recursion or L -recursion theory. 

We shall in this section describe a result on how finite theories 

in general can be imbedded into infinite theories. Infinite theories 

behave very much like ordinary recursion theory, hence one possible 

application of the imbedding theorem would be to obtain fine structure 

results for the semi-computable relations of the given finite theory 

by "pull-back" from the infinite theory in which we imbed. 

Another use would be to obtain various classification results 

for finite theories. 

A general imbedding theorem was stated in our paper [6]. For 

the purpose of these lectures we exhibit the main ideas in the simpler 

but important case of finite computation theories over w . 

Let <| be a Spector theory over �9 , i.e. | is p-normal 

and w is (strongly) | Associated with any such theory we 

have an ordinal 

II@]I = sup[ la,a,z1| ; (a,~,z) E @] 

and a "universal" relation 

R| iff x 68 ^ Ix~ ~8 �9 

Note that R@ can be coded as a subset of TIG11- 
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Theorem. Let <| be a Spector theory over �9 : 

I. LII|174 is R| and If811 is projectible to ~ . 

2. For any subset A c m : 

A ~ sc(~) iff A 6 L11~11[~ 8] . 

A E en(| iff A is Z I(<LIISII[R| R8>) �9 

The ideas implicit in this result can be traced back to the Kreisel- 

Sacks construction of meta-recursion theory [19] and to the Barwise- 

Gandy-Mosehovakis paper on the next admissible set [5]. The Kreisel- 

Sacks approach has been analyzed in Aczel [2]. Moschovakis has in 

chapter 9 of [26] generalized the "next-admissible" construction to 

a companion theory for Spector classes on transitive sets. We also 

note that a proof of the theorem is implicit in Sacks [31] when he 

verifies that the l-section of a normal higher type object is an 

abstract l-section. 

Adding the characterization theorem of section 3 to the above result 

gives the general imbedding theorem as stated in [6]. 

Theorem. Let <8,<> be a Spector theory on a domain ~ . It is 

possible to construct : 

(i) a computation domain (0k*,~ > where G-b* extends ~'b and 

is a prewellordering on ~* ; 

(ii) a relation R on <0~*, ~> ; and 

(iii) a p-normal computation theory (8*,<*) on < 0~*,~ ) 

(a) ~ is 8*-computable and initial segments of 

uniformly | 

(b) 8* satisfies A-D of section 3, 

(c) R is 8*-computable and ~*-semicomputability equals 

EI(~ ,R) definability over (~* , and 

(d) a subset B c A is | if and only if it 

is | 

such that 

are 
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The general theorem requires the use of admissible sets with urele- 

ments. (For this theory see Barwise [3], [4].) 

4.2 Representation in terms of higher t2pe objects over m . Let @ 

be a Spector theory over m . On general grounds (see section 1.2) 

we know that | is equivalent to the prime recursion theory associ- 

ated with a partial type-2 functional over the domain. From the above 

result we also know that | can be considered as the u-part of some 

Z1(R)-theory on some countable ordinal fiSH. 

The relation R@ is a relation on I!| , hence can in a natural 

way be coded as a total type-2 functional F . What is then the 

relationship between @ and PR[F] ? 

There are several difficulties. A basic one is that recursion 

closes off at m~ = the least in F F-admissible ordinal. But the 

ordinal TISI! need not be the least R@-admissible ordinal. There 

are two ways of correcting this situation. 

By forcing it is possible to replace a given L~[R] , where 

is R-admissible and countable and R ~ a , by some L~[R'] such 

that a is the least R'-admissible ordinal. Since LaIR ] = L JR'] , 

sections will be preserved; but since R' is obtained by a forcing 

argument, envelopes will not be preserved. 

Theorem. Let | be a Spector theory on m . There exists a normal 

type-2 object F such that sc(@) = ISC(F) 

This result is due to Sacks [31 7 . Our way of looking at it via the 

imbedding result is due to Normann [28]. 

There is another case in which we can modify R| vim. when 

I!@!! is not R| Mahlo then one may modify R@ in a 
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A1-definable way to a set R* such that [IGN is the least R*-ad- 

missible orainal. Then Z1-definability over LII@II[Re] will equel 

El-definability over LI!| ] , and with a bit of care it is possible 

to construct a functional F such that the 

El ( ( L ! I |  E ,R*> )  n 2 ~ . 

Theorem. Let @ be a Spector theory on m . 

some normal type-2 object F , if and only if 

sively Mahlo. 

ten(F) corresponds to 

Then | ~ PR[F] for 

If@I! is not R@-recur- 

This result is due to Simpson and independently to Harrington and 

Kechris [15]. 

5. CLASSIFICATION OF FINITE THEORIES ON TWO TYPES. 

5.1 Imbedding in hi~her types. We shall in this section describe 

an imbedding theory for recursion in higher types due to D. Normann 

[29]. Let I = Tp(O)U...U Tp(n) and let | be a computation theory 

on I . To capture the fact that @ is a computation theory in 

higher types we assume in addition that | is p-normal, that I is 

weakly @-finite (i.e. | extends recursion in n+2E), and that the 

evaluation maps and the characteristic functions of Tp(i) , i=O,...,n, 

are | We also assume that if (a,a,z) E @ , then both 

a and z belongs to �9 . Finally we must include the extended case 

of substitution as described in section 2.2. Note that we could have 

worked in the framework of two types as outlined in section 2.2. 

For the moment we need not require that S = Tp(O)U...U Tp(n-1) be 

strongly | 

Let V I be the universe of sets with I as urelements. In 

analogy with the coding of sets in HC as elements of w w it is 

possible to code certain sets in V I as subsets of I . Let a E I , 

by @[a] we understand computations in @ and the parameter a , 
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i.e. (e,~,z) E | if and only if (e,a,~,z) E | �9 

Definition 17. Ma[@ ] is defined as the collection of elements in 

V I which has a code in n+1-sc(@[a]) . Let ~={<a,a> :aE | A laIG=~}. 

We call 

<<Ma[~]>aEI,R | 

the spectrum of 0 , and denote it by Spec(e) . 

Note that Spec(| generalizes the construction of section 4.1. 

Given ~ we often write M a instead of Ma[@] . 

Theorem. 

i. Each M a is countable. 

ii. Each M a is rudimentary closed in R| 

iii. Each M a satisfies Ao(R| and 

Ao(Re)-dependent choice. 

iv. Let x E M a , then x ~ M a iff x is countable in M a 

We remark that M a is not necessarily a transitive set. This is 

connected with "gap phenomena" in computations in normal objects of 

type ~ 3 ~ 

Definition 18. Let P be a subset of M = U M a ~ P is called 
aEI 

Z -definable if there is a A o formula ~ (without parameters) 

such that for all x E M a and all a E I 

x E P iff ~y ~(x,y) iff ~y E M a ~(x,y) . 

If P and M-P both are E* P is called A*-definable. This 

notion may be relativized to R e and to an a E I . 

Theorem. (~*-collection) Let a E I o Assume that ~ is a 

Ao(Re,a)-formula and 
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Vb EI ~x EM(a,b ) @(x,b) . 

Then there is a set u E M a such that 

VbEI ~xEuOM<a,b ) q0(x,b) . 

With this machinery available Normann is now able to characterize 

the k+1-envelope of e in terms of the spectrum of 8 . Harrington 

has a similar result in his thesis [13]. 

Theorem. Let | be a computation theory on I (@ is assumed to 

satisfy the properties listed in the introductory paragraph above.) 

Let A c I . Then 

A s k+1-en(| iff A is E*-definable over Spec(| 

This theorem has many consequences. In particular, it is possible to 

generalize the characterization theorem of recursion in a normal 

type-2 object stated in section 4.2. 

Definition 19. Let (Na>aE I be a collection of structures in V I 

satisfying: (i) I E N a , for all a E I , and (ii) a E N b iff 

N a _c N b �9 Let R _c N = U Na " We call (Na>aE I nice relative to R 
aEI 

if: 

i. x E N a iff x has a code in N a . 

ii. Each N a is rudimentary closed in R . 

iii�9 <Na>aE I satisfies E*(R)-collection. 

It is a basic fact that is <Na>aE I is a nice collection relative 

to a type-n+2 functional F , then k+1-sc(F,a) ~ N a , for all 

a E I A special case of this was already proved by MacQueen [207. 

Strengthening the notion of niceness a bit, one obtains a notion of 

abstract spectrum which characterizes the spectrum of a theory�9 
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Definition 20. Let Spec(| = <(Ma)aEl, R 8) be given. We say that 

<Aa>aE I is R~-impenetrable if for all A*-definable functions g 

mapping each M a into itself, there is a nice family (Na)aE I rela- 

tire to R 8 such that: (i) Na~ M a , for all a E I , (ii) N a ~ Ma, 

for some a E I , and (iii) g is closed in <Na>aE I , i.e. g maps 

each N a into itself. 

Note that this generalizes the following way of characterizing recur- 

sively Mahlo: M is Mahlo if for all A I functions g there is an 

admissible N ~ M such that g(N) ~ N . 

Theorem. The following statements are equivalent: 

i. Spec(| is not RG-impenetrable. 

ii. There is a normal type-k+2 functional F such that @ is 

equivalent to (Kleene) recursion in F . 

A result essentially equivalent to this theorem has independently 

been proved by Kechris [17]. Normann also uses his imbedding theory 

to characterize the recursion theory described by Harrington [14] for 

the superjump S n+3 . 

G. Sacks has recently in [32] developed a notion of "abstract 

k+1-section" corresponding to the notion of an abstract l-section. 

And he has proved by a forcing argument a theorem generalizing the 

main result of his paper [31] (i.e. the first theorem of section 4.2). 

Normann has verified that the imbedding theory of this section gives 

a very natural framework for Sacks' forcing argument. But it would 

lead too far to describe these results here. 

5.2 The abstract plus-1 and plus-2 theorem. We shall now return to 

the setting of two types as described in section 2.2. Let | be a 

S computation theory on a domain of the type A = S U m . We call | 
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normal if the equality relation on S is @-computable, if A is 

weakly @-finite, if S is strongly @-finite, and if | is p-normal. 

We know from section 2.2 that if F is a normal functional over A , 

then PR(F) is a normal computation theory. 

Theorem. Let | be normal. Then there is a normal functional F 

such that S-en(8) = S-en(F) and sc(8,a) = sc(F,a) for all a E S . 

Here S-en(@) = IX ~ S : X is | and sc(| = 

IX ~ A : X is | . This result is an abstract version 

of the plus-2 theorem of Harrington [13] and also of the plus-1 theorem 

of Sacks [32]. The original plus-2 theorem of Harrington was a re- 

duction result: Starting out with a normal functional of type > n+2 

he constructed a functional F of type n+2 such that n-en(G) = 

n-en(F) The proof in [13] uses the fact that Tp(n) must be 

strongly finite in G . The theorem above is an improvement in the 

sense that we start out with a normal computation theory | Hence 

in the concrete setting of higher types we only assume that Tp(n) 

is weakly @-finite (but it is quite essential that Tp(n-1) should 

be strongly | Thus the above theorem gives a kind of char- 

acterization result. The proof in the setting of two types is due to 

Moldestad [21]. It is quite similar to Harrington's proof in [13]. 

There are some necessary modifications, partly suggested by Harrington. 

Remark. We cannot enter into the details of the proof in this survey. 

But we should mention that an essential role is played by a reflection 

phenomenon which was first studied by Harrington [13] (but see also 

the discussion in Kechris [17]). The reflection property follows 

from the strong finiteness of S , one particular important case being 

the following: Let B be a set of subsets of S , and assume that B 

is ~[a]-semicomputable and that B contains an element which is 

8[a]-semicomputable. Then B contains an element (i.e. a subset of S) 

which is @[a]-computable. 
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Introduction 

The theories T considered here are first order theories. Two such 

theories S and T, having the same languages L(S) = L(T) are called 

equivalent if their deductive closures S* and T* coincide. The classes 

~7~(T) consisting of all L(T) - structures M which are models of some 

theory T are called elementary classes (cf. [C.K] p.173). In this paper 

we investigate for certain classes TrCof L(T) - structures wether they 

are elementary classes and how the theory Th (~), Gonsisting of all 

sentences holding in all structures ofg~i , can be axiomatized. For the 

classes we assume that if M 6~and N ~ M, then N E99% . In part I 

we introduce the classes ~(T) of so called F - closed structures with 

respect to T (cf. I. 4), i.e. structures whose embeddings into certain 

other L(T) - structures preserve all the formulas of some given set F 

of formulas (cf. I. I). Such embeddings are called F-embeddings or 

embeddings as F-substructures. ~T) depends upon the choice of F. 

F = Vl for example gives rise to the class ~(T) of existentially closed 

structures (cf. I. 7) .Other examples are the class 0~T) of algebraically 

closed structures (cf. I. 8) and the class ~ of ~-injective A-modules 

in the sense of [E.S.] (cf. I. 9). ~(T) is closed with respect to taking 

union of chains (cf. I. 12) and elementary substructures (even V1-sub- 

structures, cf. I. 13, 14). If T V has the amalgamation property, then 
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• ( T )  is closed with respect to taking F-substructures (cf. I. 15). 

For F ~ VI the class ~(T) is always mutually model-consistent with 

~(T) (cf. I. 18). In part II we introduce the syntactical notion 

of the G-hull T G of some theory T, where G is some set of (closed) 

formulas (cf. II. I ) . This is a generalization of Kaisers "inductive 

hull" (cf. [K], see also II. 4). New examples are the algebraic hull 

(cf. II. 5), and the ~-injective hull of the theory T A of A-modules 

(cf. II. 6). Another application is P. Henrard's syntactical construc- 

tion of the finite forcing companion (cf. [H]) , which turns out to be 

an iterated hull construction (cf. II. 7). The close connection between 

G-hulls of theories and F-closed models is given by theorem II. 8, sta- 

ting that Th (~(T)) D V ~ F is equivalent to T V~F, provided that 

~T)is model-consistent with 2~Z(T). Notice that V 7 F is the set of clo- 

sed fomulas of the form V ~ ~ ~(~), where ~(~) 6 F. For F = Vl this 

yields corollary 7.16 of [E.S.] (cf. II 9.a). Other applications arise 

in the case of algebraic hulls, and algebraically closed structures 

(cf. II 9.b) as well as for ~-injective hulls and ~-injective A-modules 

(cf. II 9.c) . 

Part III concerns elementary classes of F-closed structures. Theorem 

III. 3 roughly states that if F is a subset of F' and ~T) is an 

elementary class then so is ~-(T). This generalizes corollary 7.14 of 

[E.S.] (cf. III. 4,5 d) and yields a new characterization of coherent 

rings (cf. III. 5 c) 

For elementary classes ~T), the theory Th (.~(T)) coincides with 

the V ~ F-hull T VvF (provided that F ~ V I and that T v have the 

amalgamation property, cf. theorem III. 6). For F : V I this reflects 

the well known fact that for the inductive hull T v3~ Th ( ~ (T)) 

model-companion of T (provided that the class ~ (T) of existentially 

closed structures is an elementary class, cf. III. 7). For a coherent 

ring A we get an alternative to Eklof-Sabbaghs description of the 

theory Th (~(TA)) of all absolutely pure A-modules (cf. III.9. and 

[E.S.]). 

In part IV we consider theories T, where the inductive hull is complete. 

For any F ~ V ], Th (~(T)) then coincides with T v~F (cf.theorem IV. 

4); e.g. the theory Th ( ~(T)) of the class of all existentially clo- 

sed structures is complete (cf. IV.3). It turns out that the inductive 

hull of the theory T A of A-modules is complete, without further re- 

strictions on A (cf. proposition IV.9). This yields an explicit syntac- 

tical description of the theory Th( ~ ) of ~- injective modules, for 

arbitrary rings A (cf. IV.12.). Notice that Th ( # ) has already been 
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described in [E.S.] for coherent rings A. I am indebted to Martin 

Ziegler for considerably simplifying my original proof of theorem IV.8. 

I. Closed Structures 

I. Sets F of formulas 

By F we denote any set of formulas of the language L (T) of some 

theory T, which contains all quantifier free formulas and which is 

closed with respect to conjunction and substitution. 

Let VI~F be the set of all formulas of the form V~ ~(~), where 

~(~) c F .  

2. Examples: 

a) For F consisting of all quantifier free formulas the set VvF 

consists of all universal formulas (i.e. formulas whose only quantifiers 

are universal ones). 

Thus V~F = Vl (up to logical equivalence of formulas). In general we 

say that some formula ~ belongs to Vn if ~ is some formula which 

has at most n blocks of quantifiers, the first one consisting of uni- 

versal ones. The set Vl will also be denoted by V , and V2 by VB. 

VO is the set of quantifier free formulas. 

b) Let F be the set L (T) of all formulas. 

Then V~F = L (T) . 

c) Let F be the set Vl. 

Then V~F = V 2. 

In general : If F = Vn then VvF = V (n+1), n6 ~ 

d) Let F = A consist of conjunctions of quantifier free formulas and 

formulas of the form 

V~ (~,~), where the ~ (~,~) are quantifier free positive formulas. 

Then the set V~A consists of formulas of the form 

V ~  (X (~,~) ~ r ( ~ , ~ , ~ ) )  

(where • is quantifier free) and of all universal formulas. 

e) Let F = P be the smallest set of formulas having the properties 

required in I which contains all formulas of the form 7~(~), where 
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is positive, i.e. there is no negation involved in ~ . Then V~P is 

the set of all formulas having no negation in the scope of existential 

quantifiers. 

3. F - embeddings 

Let M, N be L-structures. 

An embedding M _ c N of M into N as a substructure is called an 

F-embedding if it preserves the validity of the formulas of F, i.e. if 

for ~(~)6 F, M I= ~(~) implies N I= ~(~) �9 

We will denote this by M ~ N and say that M is embedded as an 
F 

F-substructure of N. 

In the special case that F = Vn the F-embeddings M E N are denoted 
F 

by M ~ N. 
n 

Any embedding M ~ N is a VO -embedding since VO consists of all 

quantifier free formulas, i.e. M ~ N. 
o 

4. F-closed structures 

An L-structure M is called F-closed with respect to the theory T 

if it is a model of T~VI and if all embeddings of M into models 

of T~DV-TF are F-embeddings. 

By T~DVI we denote the set consisting of all universal sentences 

which are provable in T. T~DVI will also be denoted by T v. Let 

~T) denote the class of all F-closed structures. 

5. Remarks 

a) An L-structure is a model of T*nv ~F if and only if it is an 

F-substructure of some model of T (cf. [F] , Theorem 8). 

b) The theory T~DV~F for the "test-structures" N, which serve to 

test whether some M is F-closed, can be slightly modified under cer- 

tain circumstances: 

Let F ~VI and M I = TV, then the following statements are equivalent 

( i) M is F-closed. 

(ii) M~NI= T implies M~N. 

F 



R. F i t t le r  173 

(iii) M_cNI= T v implies ~CN. 
F 

Proof : (i) ~ (ii) and (iii) ~ (i) are trivial, the latter since 

T V N TV N V~F. 

We prove (ii) ~ (iii) (see also [Sill , Theorem 2.4.) 

Let M c N I= T V and M 1 = ~(~), ~(~)6 F. 

It is to be shown that N I = ~(~). Since N 1 = TV, there exists N'I= T 

such that N ~ N' (cf. 5 a). Thus N'I= ~(~), because of (ii). But then 

obviously N 1 = ~ (~) , since ~ E V I. 

Q.E.D. 

6. Completin 9 Models 

Let F be the set L(T) (cf. 2b) . The L (T)-closed structures (with 

respect to T) coincide with the so called completing models of T 

(cf. [Ba.R. ] ) . 

7. Existentially closed structures 

Let F be the set Vl (cf. 2 c). In this case the F-closed structures 

are the so called existentially closed structures (cf. [E.S.] ,[M I] 

[Si I] [R 2] ). The class of existentially closed structures will be 

denoted by ~(T). 

8. Algebraically closed structures 

If F = A is the set of example 2 d, then the A-closed structures are 

the so called algebraically closed structures (cf. [M I] , [E.S.] ) E.g. 

let T be the theory of A-left modules over some unitary, associative 

ring A with O # I (cf. [E.S.] ), then the algebraically closed 

structures are the absolutely pure modules. The class of algebraically 

closed structures will be denoted by ~(T). 

9. ~ -injective A-modules 

Let T be the theory of A-modules (cf. 8). Let F = I be the small- 

est set having the properties required in I which contains all formu- 



174 R. F i t t l e r  

n 
las of the form V x ~(i/=__I I i x = Yi ) where I i 6 A , n 6 ILN. Then 

the I-closed structures coincide with the w-injective A-modules of 

[E.S.]. The class of ~-injective A-modules will be denoted by ~ . 

~ contains the class of injective models as a subclass (cf. [E.S.]). 

10. P-closed structures 

Let P be as in example 2 e. The class of P-closed structures will be 

called ~T). E.g. if T is the theory of A-modules (cf.8) the in- 

jective A-modules are elements of ~(T). This holds since for an in- 

jective A-module M and any model N of (T ~ N V~P)~ = T ~, if M ~ N, 

then there is a retraction g : N~M. But this implies immediatly that 

if for a positive formula ~ (~)/ N I = ~(~) holds, then M I: ~ (g(~))" 

Hence M I = ~(~) implies N ]: ~(~), for any positive formula ~(~), 

as well as for any quantifier free formula. Thus M I = • (~) implies 

N [= X (~) for any formula X (~) 6 P. 

The following characterization of F-closed models is a straight forward 

generalization of theorem 2.1 of [Sil]. 

11. Lemma 

For any model M of T v the following statements are equivalent: 

( i) M is F-closed with respect to T. 

(ii) If M [: ~ (~) , ~6 v, then 

(T ~ D V-;F)U A M [- ~(~), where A M is the diagram of M. 

(iii) If M I= ~(~), ~(~) 6 F, then there is some existential for- 

mula n4/(~) such that M I = ~2 (~) and T ~ N Y~F I- V ~ (~(~)~ ~(~)). 

Proof : By modification of Simmons proof. 

12. Corollary 

~(T) is closed with respect to unions of chains. 

Proof : Use Lemma 11 (ii). 

13. Corollary (cf. also [E.S.] Corollary 7.7 

Let F E V I. Any Vl -substructure of an F-closed structure is 

F-closed. 

Proof: Statement (iii) of Lemma 11 carries over to Vl-substructures 
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since F c VI. 

Q.E.D. 

14. Corollary 

Any elementary substructure of an F-closed structure (with respect to 

T) is F-closed (with respect to T). 

For a similar statement about F-substructures of F-closed structures 

we need the amalgamation property of T v (which means that for any mo- 

dels M' _~ M _~ M" of T there is a model Q of T and embeddings 

M ~ Q ~ M" such that r i = s j, ef. [B.S.] p.203) . 

15. Lemma 

Let T V have the amalgamation property and let F ~ V I. Then F-sub- 

structures of F-closed structures are F-closed. 

(cf. [E.S.] remark 2 p. 286). 

Proof : Let M be F-closed and N' 2 N ~_ M. It is to be shown that 

F 

the embedding N' _m N is an F-embedding, for N' I = T V (cf. remark 5b). 

The amalgamation property of 
TV guarantees the existence of Q [= T V 

and embeddings such that 
N~M 

IN In 

N' _c Q commutes. 

Let N [= ~(~) for ~ 6 F, then M 1 = ~(~), hence e [= ~ (~) 

(since M is F-closed). Thus N' [= ~(~) because F ~ VI. 

Q.E.D. 

16. Model-consistency 

According to [R 2] a theory T is called model-consistent with the 

theory S if every model of S can be embedded into a model of T. 

This definition which refers directly to the model classes ~(T) and 

~ (S) of all models of T and S has been extended to arbitrary 

classes ~, ~ of L-structures in the following way (cf. [C]) : 
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A class ~of L-structures is called model-consistent with the class 

~ of L-structures if any structure in ~ can be embedded into a struc- 

ture of ~ . It is obvious that T is model-consistent with S if and 

only if ~(T) is model-consistent with ~ (S). 

From remark 5a we conclude that T is model-consistent with S if 

and only if T V ~ S V . 

T and S are called mutually model-consistent if T is model-con- 

sistent with S and S is model-consistent with T. The analog defini- 

tion holds for classes, 

It follows that T and S are mutually model-consistent if and only 

if T V = S V. The following properties are trivial 

(a) For any theory T, T V and T are mutually model-consistent. 

(b) If ~ c ~ and ~is model -consistent with ~ tben ~and ~ are 

mutually model-consistent. 

17. Theorem 

The class ~ (T) of existentially closed models is model-consistent 

with ~ (Tv) 

Hence ~ (T) and ~(Tv) (and ~ (T)! ) are mutually model-constistent. 

Proof: cf. CSil] Theorem 2.3 

18. Corollary 

Let F c V I. 

The class ~T) of F-closed structures (with respect to T) is mutually 

model-consistent with~(Tv) (and with ~(T))~for F _c V I. 

Proof : ~ (T) _c ~(T) _c ~(T V) and E(T) and ~(Tv) are mutually 

model-consistent. Hence ~(T) is mutually model-consistent with both 

(T) and ~(Tv) . 

Q.E.D. 

The following compactness property will be used later. 

19. Lemma 

Any finite subset of T is model-consistent with S if and only if 

T is model-consistent with S. 
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Proof : 
If T is model-consistent with S then any finite subset is obviously 

model-consistent with S. Now, assume that T is not model-consistent 

with S. We want to show that some finite subset T' c T is not model- 

consistent with S. Since T is not model-consistent with S there 

is some model M of S which cannot be embedded into any model N 

of T. I. e. the theory T U A M where A M is the diagram of M is 

inconsistent. Hence some finite subset T' U A' M of T U ~ M is 

inconsistent, T' _c T, 4' M _~ ~ M. Then T' is not model-consistent 

with S. 

Q.E.D. 

II. Hulls of Theories 

I. G-hulls 

Let T be any theory and G E L (T) be some set of formulas, which at 

least contains all closed Vl -formulas. 

The G-hull T G of T is defined as the theory S which fulfils 

(a) T* D G ~ S* 

(b) S ~ G 

(c) S and T are mutually model consistent 

(d) S contains any theory fulfilling (a), (b) and (c). 

Notice that if T G exists, it is uniquely determined by T and G 

(up to equivalence of theories). T G does not always exist. For example 

let T be the theory of dense orderings (without specifications about 

extreme elements) and let G = L (T). Let S I be the theory of dense 

orderings having no extreme elements and S 2 be the theory of dense 

orderings, each having, say, a smallest but no greatest element. Then 

S I and S 2 fulfil (a), (b) and (c) but there cannot possibly exist any 

consistent theory T G containing S I and S 2 , since S I and S 2 

contradict each other. 

2. Lemma 

If T is the Vn-hull of S and if for <fw~6 V(n+1), T U {a] and 

T U {~} are both model consistent with T, then T U {o}U {~'} is 

model consistent with T. 
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Proof : 
T is equivalent to T*N Vn because T is Vn-hull of S. Any exten- 

sion of T which is model-consistent with T contains the same 

Vn-sentences as T ~. Hence 

T �9 D Vn : (T U{o]]~D Vn=(T U {%'} )* n Vn. 

By application of remark(5 a) to the case F = V(n-1) , V -i F = Vn it 

follows that any model of T is V(n-1) - substructure of some model of 

T U {o], and vice versa. Thus we can find for any model M of T a 

chain of V(n-1)-substructures 

Mn~_ 1 M 1 n < - l N l  n~-i M 2 n<_l N 2 n~_l . . .  

where M i I = (T U{~] )* D Vn and Nil= (T U {q/ })* N V n, i> o. 

Since T U{q} is V(n+1) -axiomatizable it follows that k_] M is a model 
1 

i:I 

of T U {o} (cf. [C.K], lemma 3.1.15). 

0 0 S i m i l a r l y  N i i s  a m o d e l  o f  T U { ' ~ } .  S i n c e  M i = ~ N i 
i=I 

it follows that any M 1 = T 

O M  of T U{o}U{qr} , i.e. 
i=I 1 

i=I 

is contained in some model 

i=I 

T U{o] U{~ } is model-consistent with T. 

Q.E.D. 

3. Corollary 

If T is the Vn-hull of S ~then the V(n+1)-hull T V(n+1) of T 

exists and T v(n+1) ={ ~ 6 V(n+1) I T U{o} is model-consistent with T} . 

Proof: Any finite subset of T' = {o 6 V(n+1) [ T U[o} is model-consis- 

tent with T} is model-consistent with T, according to lemma 2. Then 

T' is model-consistent with T (cf. Lemma 1.19). Thus conidtion II I(c) 

is obviously fulfilled. Conditons II 1(a) and (b) hold, too. It is also 

obvious that any theory fulfilling II 1(a), (b), (c) is a subtheory of 

T' (cf. II 1(d)). Thus T' = T v(n+1) 

Q.E.D. 

4. Inductive hull T V3 of T. 

Let G be the set of all V3-sentences of L (T) . 
V3 

Then T coincides with the inductive hull of Kaiser (cf. [K]) 



R. F i t t l e r  179 

TVB exists always and can be described by 

T vH = {a 6 V 3 I T V U [a} is model-consistent with T } ~ 

This follows from corollary 3, considering that T v3 = (T V) 

and that T v is the Vl -hull of T. 

V ~ A 
5. Algebraic hull T of T 

V3 

For F = A (cf. I. 2d and 1.8) the V~A-hull of T will be called 

the algebraic hull of T. Since V~A ~ V 3 it follows from II.4 that 

T V A = {a 6 V A I T V U {a] is model-consistent with T V] 

i.e. T V~A = T V3 n V~A 

6. ~ -injective hull T v~I of T A 

For F = I (cf. 1.9) the VTI -hull of the theory of A-left-modules 

will be called the ~-injective hull of T A- 

Similarly to II.5 we get 

T V~I = T V3 n V~l = {a6 v~ I IT A N {a} is model-consistent with TA} . 

7. The finite forcing companion 

The finite forcing companion T f (cf. [Ba.-R]) of any theory T can 

be constructed by an iteration process on theories (cf. [H]), at each 

step taking the appropriate hull of the theory already Gonstructed: 

Let T be any theory 

a) Recursive definition of T : 
n 

Set T I = T V i.e. T I is the VI -hull of T and 

Tn+ 1 = V (n+1)-hull of T n. 

The existence of Tn, n > o , follows from corollary 3. 

b) The theory ~] T is model-consistent with T. This follows from 
n=1 n 

lemma 1.19. 

c) It has been shown by P. Henrard that T f = O T n. 
n=1 

A semantical descriptien of the theories T f and T 
n' 

(cf. [H]) 

in the special 
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case that there are "enough" generic structures, has been given in 

[Sil]. It is closely connected to the following theorem 8. 

8. Theorem 

If the class ~(T) of F-closed structures with respect to T is 

model-consistent with the model class ~(T) of T then the 

V~ F-hull TV7 F of T exists and fulfils: 

T V~F ~ Th (~(T)) D V~F where Th (T(T)) denotes the set of 

all sentences holding in all F-closed structures. 

Proof : Set S : Th ( ~(T)) A V ~F. 

Verification of condition I (a) : T * D V~F ~ S ~. 

Assume that ~(~) 6 F and that V ~ -7 ~(Z) 6 T * n V~F. If 

V Z --7 ~(5) were not in S, then there would exist some F-closed 

structure M with M l=~V ~ --7 ~ (~) i.e. M I: ~ (~) for some 

in M. Since there is some model N I = T with ~ N, and M is 

F-closed we would have N I = T and N I: ~ (~), in contradiction to 

V ~ ~ ~ (X) 6 T* n V~ F. 

Condition 1(b) : S ~ V~F is obviously fulfilled. 

Verification of condition I(c) : 

According to I. 16 it suffices to show that T V = S v- 

T v ~ S v holds, since any F-closed struoture is a model of T v. 

S V ~ T V follows from the fact that S(T) is model-consistent with 

(T) , i.e. with ~(T V) . 

It remains to be shown that any theory T' meeting the conditions 

I (a), (b), (c) is contained in S ~. 

Since T' is V-7 F-axiomatizable, it suffices to verify that any sen- 

tence V ~ --7 ~(~) 6 (T) �9 , ~ 6 F, holds in every F-closed structure 

M. If not, we would have M I = ~(~) for some F-closed structure M, 

in M. Since M ~ N for some model N of T' (condition I (c)) 

and T �9 n V~F ~ T' (condition I (a)) we would have N I = ~ (~) , in 

contradiction to V ~ -7 ~ (5) s ~. 

Q.E.D. 
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9. Examples 

a) For the inductive hull and existentially closed structures (cf. 

1.7., II. 4) we get 

T v3 = Th ( ~ (T)) D V 3 

according to 1.17 and IT.8. This has already been shown in [E.S.] 

(cf. corollary 7.16). 

b) For the algebraic hull and the algebraically closed structures we 

get 

T v~A = Th (~(T)) N V~A = Th (~ (T)) n V~A = T V3 N V~A, 

according to 1.17, II.5 and II.8. 

V ~ I of T A we get c) For the ~-injective hull T A 

TAV~I = Th (~)~ A V~I = T VH ~ VT~ �9 ~ is model-consistent 

with ~(T A) since the subclass of,~ ~ consisting of injective 

A-modules is model-consistent with ~(T A) (cf. II.6) . 

d) The P-hull T~ ~ P of T A fullfills 

V P 
= Th (Z0(TA)) n VTP. T A 

~(TA) is model-consistent with~L(TA) , since the subclass of 2(TA) 

consisting of injective modules is model-consistent with ~(T A) 

(cf. I. 2e, I.Io). 

III. Elementary class of closed structures 

I. Elementary classes 

A class~of L-structures is called an elementary class if it consists 

of all models of some theory T (cf. [C.K.] p. 173). It is well known 

that~is an elementary class if and only if it is closed with respect 

to ultraproducts and elementary substructures. 

2. Lemma 

The class ~U(T) of F-closed structures with respect to T is an 

elementary class if and only if ultraproducts of F-closed structures 

are F-closed, too. 
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Proof : This follows from III.]. considering that elementary substruc- 

tures of F-closed structures are F-closed (cf. 1.14). 

Q.E.D. 

3. Theorem 

Let F and F' be given such that V 1 2 F ~ F' , and assume that 

T V has the amalgamation property. Then the class ~(T) of F-closed 

structures is an elementary class, provided that the class ~' (T) of 

F'-closed structures is an elementary class which is model-consistent 

with ~ (T) (i.e. with ~(T)) . 

Proof : According lemma III.1. it is to be shown that ~(T) is closed 

with respect to ultraproducts. For this purpose let 

{M i [ i 6 I} be a family of F-closed structures, D an ultrafilter 

on I, ~(X) 6 F such that ~ Mi/D ]= ~(~) and N I = T such that 

Mi/D E N. We are going to veryfy that N i = ~(~). 
I 

Since T) is model-consistent with (T) there is an F-closed 

structure M' I= T V such that M c M' . According to Los' theorem 
1 1 ~ 1 

we have IH Mi/D _OF I H M!l/D Since T V has the 

amalgamation property, there exists Q I= T V such that 

I ~ Mi/D ~F IZ M'i/D is commutative 

in In 

N ~ Q 

where the embedding f is an F'-embedding (as ~(T) is closed with 

respect to ultraproducts). We have Q I = ~(m) because ~ 6 F ~ F' 

Thus N I = ~(~), since F ~ V I. 

Q.E.D. 

4. Remark 

Theorem 3, as well as its proof, has been condensed from corollary 

7.14 of [E.S.], (cf. next example 5 a). 
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5. Examples 

a) If ~(T) is an elementary class then ~(T) is so, too, provided 

that T V has the amalgamation prope;-ty. 

E.g. If T has a model-completion then T has the amalgamation pro- 

perty (cf. [E.S.] lemma 2.1) and ~ (T) is an elementary class since 

it is the model class of the model-completion. Thus 0~(T) is an ele- 

mentary class. 

If S(TA) is an elementary class (T A has the amalgamation pro- b) 

then the class ~ of m-injective structures is an elementary perty) 

class. 

[E.S. ] it is shown that ~ (TA) is an elementary class if and c) In 

only if ~(T A) is an elementary class, if and only if ~ is an ele- 

mentary class, if and only if i is coherent. Furtheremore, 0~(T A) 

coincides with 4o provided that i is coherent. 

d) ~ (T A) is an elementary class if and only if A is coherent. 

Proof : Let A be coherent. Then M is ~-injective if and ony if 

M ~ M' for some injective M' (cf. [E.S.] lemma 3.17.2). But 

M-~ M', M' injective, implies M is P-closed (cf. I.Io, 1.13). 

Conversely if M is P-closed it is obviously t0-injective, since 

I c p. 

Hence M is ~-injective if and only if it is P-closed. Then 

~(T A) = ~ which is an elementary class (cf. C). 

Conversely let ~0(T A) be an elementary class, then ~o is an ele- 

mentary class, according to theorem 3. Hence i is coherent (cf. c). 

Q.E.D. 

6. Theorem : Let F ~ u and T v have the amalgamation proper- 

ty. Then Th (~(T)) N T v ~F , provided that ~(T) is an elementary 

class. 

Proof : We have TV~ F Th (~(T)) D V~ F according to theorem 

II.8 and theorem 1.17. It remains to be shown that Th ( ~ (T)) is 

V~F -axiomatizable. This holds, according to remark 1.5, if 

f(T) =~(T~ ~(T))] is closed with respect to taking F-substructures. 
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But this follows from lemma 1.15. 

7. Remark 

Q.E.D. 

The conclusion of Theorem 6 holds for F = V3 , without assuming the 

amalgamation property for TV, since Th ( ~ (T)) is the model-com- 

panion of T (provided that ~ (T) is an elementary class, cf. [E.S.] 

Corollary 7.13). 

8. Examples 

If the class 0~(T) of all algebraically closed structures is an 

elementary class then Th (~(T)) can be axiomatized by all those 

formulas of the form Y ~ 9 ~ (X (~) ~ ~ (~,~)) (where X,~ are 

quantifierfree and @ positive) which belong to the inductive hull 

T vH , provided that T v has the amalgamation property (cf. also II.7.b). 

For T = T A , where A is a coherent ring, this gives us a set of 

axioms for the absolutely pure A-modules (cf. 1.8 and III. 5 c), which 

then actually coincide with the ~-injective modules (cf. [E.S.] , 

proposition 3. 23). 

IV. Non elementary classes of closed structures 

I. Lemma 

Let ~be any class of L-structures. Any model N of Th (9~) is an 

elementary substructure of some ultraproduct of structures in 

(cf. [S 2] , proposition 3). 

2. Lemma 

Let F _c V I. Any model M I = Th (~(T)) is an F-substructure of some 

N [= Th  ( 8 (T) )  . 

Proof : According to lemma I there are F-closed structures M~, i 6 I 

and an ultrafilter D on I , such that M ~ E I Mi/D " Furthermore for 
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each i 6 I there is some existentially closed structure N i 

c N.. According to Los' theorem that M i ~ N i , hence Mi ~ l 

Mi/D ~ ~N. 
I F I i/D 

Since N = HNi/D I = Th ( ~ (T)) we have M c I= Th ( ~ (T)) 
i 

such 

Q.E.D. 

3. Lemma 

If T V3 is complete then T VB ~ Th ( ~ (T)). 

Proof : We have 

T v3 Th ( ~ (T)) n V B N Th ( 6 (T)). 

The first equivalence holds because of theorem II.7. ,the second one 

because Th ( ~ (T)) n V 3 is a complete subtheory of Th ( ~ (T)) . 

Q.E.D. 

4. Theorem 

Let F ~ V I and T VH be a complete theory. Then 

Th (~(T)) ~ T V ~F 

Proof : M I = Th (~ (T)) if and only if M ~ N 1 = Th ( ~ (T)) 
F 

(according to lemma IV.2 and 1.14) . The latter holds if and only if 

M I = (Th ( ~ (T)) D V~F (cf. 1.5) i.e. 

M I = T v3 D V-TF (cf. IV.3). 

But T V3 N V-TF ~ T v~F according to II.5. 

Q.E.D. 
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5. Lemma 

(cf. [S I] , corollaire I, p. 911 ) . Two i -modules are elementary 

equivalent if and only if both fulfill precisely the same set of 

V3 -sentences. 

6. Lemma 

(cf. [S 3] , corollaire I, p. 1291). Any i -module is existentially 

closed if and only if it is finitely generic. 

7. Corollary 

Th ( ~ (TA)) is complete. 

Proof �9 Th ( ~ (T i)) is equivalent to the finite forcing companion 

f of T i according to lemma 6 (cf. [Si 2] theorem I ) The latter T i , 

is complete since ~(TA) has the joint embedding property 

(cf. [Ba.R] theorem 4.6). 

Q.E.D. 

8. Theorem 

The theory Th ( ~ (TA)) of the class [ (T A) of all existentially 

closed A -modules is inductive, i.e. Th ( ~ (T)) N Th ( ~ (T))NVB. 

Proof : Let MVBN ( MBN abreviate the statements that N ful- 

fills the VH sentences (B-sentences) which hold in M. Let M be 

existentially closed and let N be such that MVBN. If we can show 

that NVBM , then it follows that M ~ N , according to lemma 5, 

and N is a model of Th ( ~ (TA)) . Hence Th ( ~ (TA)) is 

V3-axiomatizable. 

Thus it is left to be shown that NVBM. Since MVBN we habe MBN. 

Hence there exists an N' such that M ~ N' ~ N (cf. [B.S] lemma 9.38). 

Since M is existentially closed we have N'VBM. Hence NVBM. 

Q.E.D. 
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9. Proposition 

The inductive hull 

theory. 

Proof : 

We have Th ( ~ (TA)) ~ Th ( ~ (TA)) DVH (cf. theorem 8) and 

V3 (cf. II.7) Th ( ~(T A)) NVB T A 

Combining theorem 4 and proposition 9 we get 

VH of the theory T A of A-modules is a complete T A 

Q.E.D. 

Io. Theorem 

For the theory T A 

for F ~ V I. 

of A-modules we have Th (~(TA)) ~ T~F 

11. Absolutely pure modules 

The set of axioms for the theory Th (~(TA) of all absolutely pure 

A-modules which we got in III. 8 does the job also without the assump- 

tion of A being coherent, according to theorem 1o. 

12. ~ -injective modules 

According to theorem Io we have 

~ ) ~ T V~I ~ TVB D V~I (cf. II. 7c). One gets a set Th ( of 

axioms for the theory Th (~) of ~-injective A-modules by 

taking all the formulas 

VXl... VXn3Yl...3Ym(X(Xl,...,Xn,Y I, .... Ym )~ ~(Xl,.-.,Xn,Y I .... ,Ym )) 

which belong to T VH, where X is quantifierfree and 

(Xl ' .... Xn ' Yi ' .... Ym ) is either a conjunction of some for- 

mulas lij x i = yj , lij 6 i , or of the form x I = x I. 

Another axiom system, in the special case that A is coherent, has 

been given in [E.S.] p. 263. 

Notice that our technique works for ~-injectives too, if ~ < ~ . 
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AXIOMS OF CHOICE IN MORSE-KELLEY CLASS THEORY 

by T. B. Flannagan 

SECTION I 

INTRODUCTION 

Morse-Kelley class theory M , first formulated in Wang [~4~ as a 

natural extension of von Neumann-Bernays-C~del set-theory NBG , is ~-ritten 

in the first-order lang~age (with equality) whose only predicate is the 

. We denote this language by ~M" Variables (called 2-place predicate 

class-variables) are denoted by capital Roman letters X, Y, Z with or 

without subscripts. Those variables restricted to the predicate Z(-) 

defined by Z(X)~-~IY(X ~ Y) are called set-variables and denoted by 
u~ v 

small Roman letters x, y, z,Awith or without subscripts. Formulae of ~M 

are denoted by capital Creek letters ~, ~ etc.. 

The non-logical axioms of M are: I. the axiom of extensionallty; 

II. the axiom of pairs for sets; III. the sum-set axiom; IV. the power-set 

axiom; V. the axiom of infinity; VI. the axiom of foundation; VII. the axiom 

of replacement, and the following impredicative comprehension schema. 

VIII. ~X I .... ,X nIYvz(z ~ Y @-~ ~(z,X 1 .... ,Xn)) 

As usual, we denote by ~z : ~(z)) the unique class Y such that 

V~(~ ~ Y ~-~ ~(~)). 

The word impredicative is used to describe VIII since VIII is a 

schema ~]ich asserts the existence of a class even when the defining formula 

itself contains bound class-variables. M be Thus, may regarded as an 

extension of NBG obtained from NBC by allowing bound class-variables to 

appear in the specified formula in the comprehension schema. 

The superscript o will always denote the absence of the axiom of 

foundation (VI) , and the superscript - will aIways denote the absence of 

the power-sot axiom. Thus, for example, M = M ~ + VI and NBG = NF~ o- + VI + IV. 
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We do not regard the following strong axiom of choice (axiom 

Marek [|0]) as an axiom of M: 

C V : 

where 

IX of 

Vx~Y~(x,Y) ~ SZVx~(x,z(X)), 

Z (x) is defined as (y : (x,y~r Z}. 

The following definitions, like the one above, are fundamental to the 
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sequel. 

DEFINITION 1.1 

DEFINITION 1.2 

DEFINITION 1.3 

DEFINITION 1.4 

DEFINITION 1.5 

DEFINITION 1.6 

DEFINITION 1.7 

(X 

The domain of ~(X) 

The r~n~e of ~(x) 

The field of ~(X) 

X ~ W ~* ~xCX = z (~)) 

x ~c ~ ~Vz(z~ x-~ z~Y) 

X~ Y e-~ X Inc Y J% Y Inc X 

is a pair-class or relation.) Rel(X)~-@ Vx ~ X~y,z(x = (y,z>). 

X , = {x : :ly(<x,y)~ X)} . 

x , = (y ~xC<x,y>~ x)}. 

x , -- ~(x) u ~(x). 

If X is a relation, then since for any y ~ ~)(X) there is a unique 

Y such that Y = X (y) (Y) , we shall refer to X as a class-valued function, X 

being the class-valued image of y ~nder X. Moreover, if ~)(X) is a set, 

then we call X a set of classes ; but in general we call it a class o~ classes. 

Despite the confusion with Definition 1.14below, when it is clear that X is 

a class-valued function, we shall often just call it a function. The letters 
F, C, H, J and K will be used as variables for relations. 

Although in M we cannot form the totality of classes which satisfy 

a given formula, we often use the notation {X : ~(X)} when talking informally 

about the collection of classes X such that ~(X) holds. 

DEFINITION 1.8 If ~ is a formula with one free variable and 

3XVY(Y~ X ~-~(Y)) holds, then we say that the collection {Y : ~(Y)} , 
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or simply ~ , is coded by X. Of course X is only unique up to ~ . 

DEFINITION 1.9  I;',.~_s ~ C ~ Re l (F )  A Re l (G)  A , ~ ( F )  = ,,~(G) A VX ~ ' c ' l ~ (F ) (F (x )~  G ( x )  

DEFINITION 1.10 (X is a well-ordering) Bord(X) 4-* ReI(X) A '~y e ~(X)(~y,y> e X) 

<~,~>~ x)^ Vy,~(y~ ~(x) ^ ~ ~(x)-* <y,~>~ x v <~,y>~ x) ^ 

~y CI ~I~(X)(y ~ ~ ---) :Ix e y~y e Y((x,y) ~ X)). 

The letter T will always denote a well-ordering. 

DEFINITION 1.11 x <T y ~ <x,y} E T 

DEFINITION 1.12 (The initial segment of ~(T) determined by x.) 0T(X) = 

DEFINITION 1.15 T~x = T g~ (0T(X)) 2 

DEFINITION 1.14 ( X is  a f unc t i on . )  Func(X) e-~ Rel(X) A ~ y e  ~) (X)~] .z (<y ,z )  ~ X) 

DEFINITION 1.15 (F : X -'~Y) ~ Func(F) A ~)(F) = X A ~(F) ~ Y 

1-I 
DEFINITION 1.16 (F : X f--~Y)*~'~ (F : X'@Y) A ~(F)= Y A 

HI 
DEFINITION 1.17 TI---T2 *-* (H �9 ~(TI ) /L~ ~(T2) ) ̂  W,y(<x,z) ~ TI 4-* 

<~(x),:'{(,7)> ~ ~'z) 

T I"~ T 2 ~ ~H(T I~'T2) DEFINITION 1.18 

DEFINITION 1.19 

DEnNITION 1.2o 

DEFINITION 1.21 

~y c ~(X)(Bord(X (y)) A x(Y)< 

,4 ~ T2t '~)  and ~'1< T 2 ~ _.-qH(T 1 & T 2) T 1 ~ T 2 4 - *  ~ x ( T  1 

T 1 ~. T 2 4 - *  T I ~ T 2 v ' 2 1 ~  T 2 

Let X be a relation and T a well-ordering such that 

T) and VT' ~ T~y(T' ~ x(Y)). Then 
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T is said to have the property Sup X , and we write T = Sup X. 

H 
DEFINITION 1.22 I f  T I " - "  T 2 , Re l (F )  , Re l (C)  , ~ ( F )  = ~ ( T 1 )  and 

then we write (i) F ~" G if and only if Vx e ~(TI)(F(X) = G [H[x)))" " "" 

(ii) F~= G if and only if VX S ~ ( T 1 ) ( F ( X ) " "  G[H(x)))." " " "  

The following notation will also be useful. 

DEFINITION 1.23 Let ~(.) be a formula with one free variable. Then in 

analogy wish Definition 1.15 above we write F : X---~ to denote that 

F is a relation, ~)(F) = X and VY r X~(F(Y)). 

DEFINITION 1.24 If ~, defines some equivalence relation between classes, 

we write 3!X~(X) to denote that there is an X such that ~- "~(X) then 

and that X is unique up to ~_~ ; that is BX(~(X) ^ VY(Y ~ X ~ ~(Y))) . 

DEFINITION 1.25 We write ~T~(T) to denote that, to within ,,,, there is 

a least well-ordering T such that ~(T); that is, 

The plan of the paper is as follows: In Section 2 we show that class- 

valued functions can be defined by recursion on well-orderings in much the 

same way that set-theoretic functions can be defined in Zermelo-Fraenkel set- 

theory ZF by recursion on ordinals. We also show that functional formulae 

~(T,X) can be defined by reoursion on all the well-orderings just as 

functional relations F(~,x) can be defined in ZF by rectn~sion on the 

ordinals. 

In Section 5 we formulate some axioms of choice and prove various 

implications between them. 

In Section 4 we show that Fraenkel-Mostowski-Specker methods can be 

used in M ~ to prove independence results for some of the axioms of choice 

in Section 3. 

,D(G) = ~ ( ~ 2 ) ,  

and  
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In Section 5 we consider the theory M~ which is obtained from M ~ by 

adJoining Hilbert's ~-symbol to ~M and admitting s-terms cX~ to the 

schema. In particular, we show that in M~ it impredlcative comprehension 

is provable that the universe of sets (V) is well-orderable. 

In Section 6 we prove a conservative extension result, the proof of which 

strengthens a result of Prof. Mostowski. Finally, we ask some questions. 

We are grateful to U. Felgner and W. Guzicki for many valuable 

conversations and to the Alexander von Humboldt-Stift~ng for its gensrous 

flnantial support. 

"What more felicity can fall to creature, 

Than to enjoy deligh~ with liberty?" 
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SECTION 2 

DEFINITIONS BY RECURSION 
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In this section we prove two theorems in M ~ + C V. The first says 

that class-valued functions can be defined by recursion on any given well- 

ordering. The second says that certain formulae ~(T,X) which, in a 

natural sense, are functional on the second coordinate, can be defined by 

recursion on all the well-orderings. 

THEOREM 2.1 Let T be a well-ordering and 

free variable. Let r_(F) denote the formula 
-T. ~ 

and let 

P1. 

1"2. 

PS. 

2%(') a formula with one 

V= ~ ?(T) [2(F) = %(x) ^ W <T x A(F (~)) 

(',') be a formula with the following properties: 

P4. 

Then there is a class-valued function 

that 

VX,Y(~(X,Y) --~ VT(X ) ̂  A(Y)), 

VF,G,X(F~ c ^ ~(F,X) --~ ~(c,x)), 

VF,X,Y(~(F,X) A ~(F,Y) --~ X ~" Y) ( 

coordinate with respect to N) and 

VF(VT(F) -~> 3Y~(F,Y)). 

is functional on the second 

F, which is unique up to ~, , such 

~(F) = ~(T) ^ Vx ~ ~(T)~(Ff%(x),F(X)). 

Proof. I. (Uniqueness up to ~, ). Suppose there are functions F and G 

which both satisfy the theorem, and that F ~ C. Then ~y ~ ~(T)(F(F)~ G(Y)). 

Let Yo be the T-le st such y. Then Vz <T Yo(F(Z)N G(z))" Hence, 

F~ 0T(Yo) ~ G ~0T(Yo) , so by P3, F(Yo )'~ C(Yo ) -- a contradiction. 

2. (Existence) Let ~ denote the class 
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~xe ~(T) : ~F(~)(F) = 0T(X) ~ Vy< T 

We first show that ~ is an initial segment of 

and x a ~" and suppose 

~(F) = 0T(X ) A Vz ~T x~(F~0T(Z),F(Z) ). 

Let G = F~OT(Y ). Then ~)(G) = OT(Y ) and 

u <~ y(C (=) = F (=) ^ c to~(, )  = F to~(=)) ,  

SO 

V = < ,  F ~(G~OT(=) ,G(=))  

Hence, y ~ ~ and ~ is an initial segment of ~(T). 

Now 

Vxa~3F(~(F) = 0T(X ) ^ VY <T x ~(F~0T(Y), F(Y))), 

so by C V, there is an H such that 

2.1.1 Vx ~;~ (,,'b(H (~)) = OT(X) ^ V'y ~ T  

x ~ (F~0T(Y) ,F(Y) ) )  ~. 

~ ( T ) .  Let y <T  x 

x { ( ~ ( x ) r  o~(x), ~ (= ) (Y) ) )  

REMARK 2.1.2 Notice that the use of C V is essential here, for although 

F is unique up to ~, it is not strictly unique. 

Now by 2.1.1 and P4 we have Vx ~ ~ ~X ~(H(x),x), so by C V, 

2.1.3 ~YVx ~ ~ ~ (H(x),y(X)); 

and by 2.1.1 and uniqueness up to N 

Vz <~ x(H(X)r 0T(Z) ~ ~(~)) 

Hence, by 2.1.1, 2.1.2, i>2 and P3, 

Vz <T x(Y(z)~ H(X)(Z)); 
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that is, Yt 0T(X ) .~- H (x). Hence, by 2.1.3 and P2, 

2.1.4 Vx e~" ~(Y ~0T(X),y(X)) .  

Now y is an initial segment of ~(T), so it is either OT(Y ) 

for some y �9 ~(T) or ~(T) itself; but if ~ is 0T(Y), then by 

2.1.4, y e ~ -- a contradiction. Hence, ~ is ~(T) and Y is the 

required function. Q.E.D. 

P~JGhK 2.3 It is easy to see that if " "~ " in P3, and hence "~." in 

P2, is replaced by " = ", then C V need not be used in the above proof. 

However, note that even if the initial segments of ~(T) are sets, then 

the proof remains impredicative so long as some of the "values" of the 

function F being defined a~e proper classes. Thus, for example, the 

proof is impredicative if F is defined by recursion on m with "values" 

F (n) which are proper classes; but if ~(T) is On (the class of all 

ordinals) and the values F (~) of F are sets, then the proof reduces 

to the usual proof in NBG ~ 

In order to prove the next theorem, we need the following lemm~: 

: L ~  2.4 Let ~ be a formula such that ~ T ~ ( T )  and T 1 -~ T 2 ^ ~ (T1)  

~ (T2 ) .  Then ~ '~T~(T ) .  

P = o f .  S~ppose ~ ( % ) .  I f  there is no least  T such t ~ t  { ( T ) ,  th~n 

since ;~_ is cZosea ~ e r  " ,  there e=ists x ,  ~ ( % )  such that } ( T o t  =), 

but no least such x -- a contradiction since T is a well-ordering. 
o 

THEOREM 2.5 Let A(') be a formula with one free variable and 

denote the formula 

3T(~(F) = ~(T) A Vy ~ ~(T) A(F(Y))). 

Let ~(',') be a formula with the following properties: 

P(F) 

197 
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P1 ' �9 

I>2 ' . 

P3'. 

P4'. 
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Vx,Y(~(x ,Y)  ~ r (x)  ^ a(Y)), 

W,G,X(F ~ ~( ~( = G^ ~ , x ) - - *  c ,x ) )  

VF,xY(~(~x) ^ ~(Fr) -* x = ~) and 

VF(V(~)  --* ~ ( F , Y ) ) .  

Then there is a formula ~(',') 

QI. 

Q2. 

Q3. 

with the following properties: 

yT,X(~(T,X) ~-~ ~F(~(F,X) ^ ~(F) = ~(T) ^ W ~ ~(T)~(T x,F(X)))), 

VT,~ ' ,X(~ ,-- T, ^ ~ ( T , x )  ---* q ' ( T , , x ) )  ana 

VT,x,Y(~(T,x) ^ ~(T,Y) -~ x --~ Y). 

Proof. 

2.5.1 

~t 9 (~,x) 

Q3 now follows trivially from 2.5.1 and 

H 
The proof of ~2: Assume T ~ T' and 

~(F,X) A ~)(F) = ~(T) ^ W e ~(T)~(Fr%(x),F (~)) 

By Theorem 2.1 we have 

be the formula 

~ F ( ~ ( F , X )  ^ ~ ( F )  = ~ ( T )  ^ Vx e ~ ( T ) ~ , ( F ~ % ( x ) , F ( X ) ) )  

P3'. 

and ~t G = {<H(~),y> : ~x,y> ~ F }. The~ 

2.5.2 ~ (c) = ~(T'), 

2.5.3 V~ ~ ~(T)(F (~) = G (H(~))) 

2.5.4 F ~ G and 

2.5.5 V~ ~(T)(~ ~%(~)- c~%,(H(~))). 

By 2.5.5 and P2', ~(G,X) holds; and by 2.5.3, 2.5. 5 and 1'2', 
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VX �9 ~(T)~(G~OT,(H(x)),G(H(x))). 

Hence, ~(T',X) holds; so Q2 holds. 

It remains to prove QI. Let ~(T,X) denote the formula 

~(T,X) ~ A'(T,x), 

where ~@(T,X) denotes 

~F(~(F,X) A ~(F) = ~(T) ^ Vx ~ ~(T)~(Trx,F(X)). 

Claim 2.~.6 T~ T, ̂ A~(T,X) -~A~(T',X) 

Proof. Assume T N T' and 

~ ( F , x )  ^ ,~(F)  = ~ ( ~ )  ^ V x  ~ ~' (T)~I ' (~t~,F(x)) .~ 

Then 

Define G 

Moreover, by 

80 

Vx ~ ~(T)(Trx N T'rH(x)). 

as in the proof of Q2. Then, as above, ~(G,X) 

Q2 and 2.5.3, 

Vx ~(T)~(T'~ H(x),G(H(x))), 

holds. 

Vx ~ "~ (T')~Z(T'r x,G(X)). 

Hence, ~(T',X) holds; so the claim is proved. 

It now follows § from Q2 that 

2 . 5 . 7  T N T '  A ~ ' ( T , X )  ~ @(T',X) 

By induction cn T, we show now that Q1 holds, that is, ~T,X ~(T,X). 

Case (i). T = ~. This is trivial by the definition of ~ �9 

Case (ii). T ~ ~. If IVT,X~(T,X), then by 2.5.7 and Lemma 2.4, there 

199 
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is a least 

to within 

2.5.8 

T>~, 

"" . Then 
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T O say, such that 3X10(T,X); and T o is unique 

V T < T O Vx e ( T , x ) .  

that 

2.5.9 

Now by 2.5.1, there is a function F T , unique up to ~ , such 
o 

B(F T ) = W(T o) ̂  Vx ~ ~(To)~(F T r o T (x),F T (~)). 
O 0 0 O 

Moreover, 

2 . 5 . 1 0  Vx ~ ~(To)H!F(~(F) = o T (x) ̂  V y  ~ T  = ~}(F[% (y),F(Y)). 
o o o 

Hence, by C V, there is a J such that 

2.5.11 V=~ ~(To)(,,~(,~(x))= o T (=)^Vy ~T =~(J(=)I'0T (y)' ,j(x)(y))). 
o o o 

By uniqueness to within ~, it follows from 2.5.8 and 2.5.10 that for 

aii x ~'(To), 

2.5.12 J(= )  ~ F T ~ o T ( = ) .  
o o 

Claim 2.5 .1%. V~ ~ ~(To)VX(9(Tot ~,X) ~ ~ (F T ~ 0 T (~),X)) 
o o 

Proof. By induction on x. Let x ~ be the To-least element of ~(To). 

Case (i)': x = x o. This is trivial by the definition of ~ . 

Case (ii)': Xo< T x. Assume 
o 

Vy <T xVX(9(To[Y'X) ~ }(FT r 0 T (y),X)). 
o o o 

Then by 2.5.8, for all x e ~(To) and all X, 

~(To~X,X) ~ ~F(~(~ , •  ^ ~(F)  -- 0 T (A ^ Vy <T ~ ( F T  ~0~ (y),~(Y))) 
0 0 0 0 
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Now suppose 

~(~,x) ^ ,9(F) = % (=) ^ Vy <T = }(FT r % (Y),F(Y)). 
0 0 0 0 

Then by uniqueness up to .~, F ~ F T ~ O T (x); so by P2', ~(F T ~ 0 T (x),X) 
O O O" O 

holds. Hence, 

@(T ~ [ =,X) - ~  } (F T [ % (=),x).  
o o 

The converse is immediate from 2.5.11, 2.5.12 and the definition of ~ . 

Case (ii)', and hence Claim 2.5.15, is thus proved. 

We now complete the proof of Case ( i i )  by  showing that V X ~ ( T o , X )  

holds. Assume ~(To,X). ~ e n  by the def~• of ~ ,  there is an F 

such  t h a t  

2.5.14 ~(F,X) ^ ~ (F)  = ~(To) ^ Vxe  ~ ( T o ) ~ ( F t 0  T (x),F (x)) 
o 

Hence, by 2.5.1 and 2.5.9, F ~ FT, so 
o 

Vx ~ ~(~o)(F [0~ (x) ~ F T t % (~)) 
o o O 

By P2', it therefore follows that 

Vx ~ ~ ( T o ) ~ ( F  T t o T (x),F (~)) 
O o 

Hence, 

2.5.15 9(~o,X) -*  3F(~ (F ,x )  ^ ~ (F)  = ~ (T  o) ^ Vx ~ ~ ( T o ) ~ ( F  T t % (x),F (x)) 
o o 

Now assume 

2.5.16 ]~(F,x) ^ ~ ( F )  = ~ (~o  ) ^ V~ ~ ~ (To)~ (F  T [ % (~),F(~))- 
o o 

Then by PS', 
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Vx~ ~ (To) (F (x ) " '  F T (x)), 
O 

so F ~ F T . Hence, by P2' and 2.5.16, 
O 

,,,'~ ~ ~'(To)~(F[oT (~),F(~)), 
O 

so the converse of 2.5.15 holds. Hence, by Claim 2.5.13, ~ (To,X) holds, 

so QI is proved. Q.E.D. 

RJ~LRK 2.6. (i) By Remark 2.3, it follows that if "~---" is replaced 

by " = " in P3' and the definition of F ~ G (Defn. I.~2), then C V 

need not be used in the proof of Theorem 2.5. As far as we know, this has 

not been previously noticed. 

(ii) If, in addition to having the properties PI' - P4', 

has the property 

W , x , Y ( X "  Y ^ ~ (~ ,x )  ~ ~ (F ,Y ) ) ,  

then it follows trivially from the definition of ~ that 

Q4. ~T,X,Y(X ~" Y~ ~(T,X) -~ ~(T,Y)). 

Furthermore, if ~ is functional on the first coordinate with respect to ~" 

that is, 

VF,G,X(~(F,X) A ~(G,X) "--> F --~ G), 

then it follows trivially from Q1 that 

QS. V~,T' ,X(~(T,X)^ ~(T' ,X) --> �9 ~ T'). 

If both Q4 and Q5 hold, then ~ is what Marek~O] calls a sequence. 
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SECTION 3 
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IMPLICATIONS BETWEEN SOME AXIOMS OF CHOICE 

We first formulate, as schemata in ~M' two strong principles of 

dependent choices: DCColl~ and DCColl~~ We then show them to be equivalent 

in ~'2G ~ and so refer to them both as DCColl T. The formulation of these 

schemata is more intimidating than the idea expressed in both, which is 

roughly that if T is a well-ordering and ~X : ~(X)~ is a collection of 

classes, then T-many dependent choices of classes can be made from the 

oollectlon. Later, in Remark 3.4 (v), we shall see that DCColl T is the 

broadest possible generalization in ~M of L~vy's well-known principle 

of dependent choices DC , which involves making u-many dependent choices 

of elements from a set, where ~ is a cardinal. 

Most of the implications in this section are proved in NBG ~ so 

they also hold in M ~ 

DCColI~: Let T be a well-ordering, x ~ the T-least element of the field 

of T, {X : ~(X)} a collection of classes, and I[(-,-) a 

formula with two free variables. Then 

r 

X 
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DCColI~ : 
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~t ~ ~d x ~ beasabo~e {x: ~ ( ~ , x ) } ~  ~(T) boa 

collection (indexed by ~(T) )  of collections of classes, and 

-~ be a definable partial-ordering of the collection 

{X : ~(X)}, where ~(X) denotes ~x ~ ~(T)~(x,X). Then 

Yx~ ~(T )yF [ (F  : OT(X)---~ m) A V y , z ( y <  T x A z ~  T X 

(~(Y,  F(y)) A (Y < T  z ~ F(Y)'~ F(z))))  " - ~ X ( ~ ( x , X )  A 

V y < ~  ~(F(Y)-< x ) ) ]  - - ~  

Vx[ (Xo,  ) : x ^ 

Vx'y(xo <T x % x ~ <T y -'~ (~(x'F(X)) A (x <T y ~ F(x)'~ F(Y))})]] 

I~ 3.1 N'BC-~ '" DCColl T --@ DCColl T 

Proof. Assume the hypothesis of DCColI~ and suppose ~(Xo) holds. 

For x E ~(T), define 

~.1.1 ~(x ,F)  +~Df/F :{<~o'Y> : y ~ xo} if ~ : ~o, 
] 
L(F : OT(X)--~ ~ ) ^Vy <T  x~(F~0T(Y),F(Y) ) ifx~x o 

By the hypothesis of DCColI~, there is an X, X I say, such that 

~(X) ^ ~(~,X). Define 

F 'W G e.,.~f "4xl,=2(x 1 < 7  =2 ^ "#(=1 'F) ^ @(=2 ' F ) A V y "  ~(F) (F(Y)  = c(Y))),; 

that is, 

F -~ G ~r'~xl,x2(~(Xl,F ) A ~(x2,C ) • " F is an initial seo~men% of G "). 

Clearly, ~ is a partial-ordering of the collection {F : ~F)}, where 

~ ( F )  ~enote~ ~ "~(T)~(x,F). No~uppose 

3.1.2 (F : 0T(x) --~ ~'~)  ~, Vy,z(y < T x ^ ~ <T  x --~ (~ (y ,F  (y)) ^ 

(Y < 7  z ~ F ( Y ) - <  F(z) ) ) )  
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to show that the hypothesis of DCColl~ In order 

to show that 

3.1.3 ~G(~(x,G) A ~y <T x(F(Y)'~ G)). 

Case ( i ) :  OT(X > has a T-greatest element x m. By 

holds, so by the hypothesis of DOColl~, there is an 

3.1.4 

Define 

~(X) ~ W(F(xm),x) 

C : OT(X)--* ~ as follows: 

G(y) = ~ F  (y+I)(y) i f  

l x 2  i f  y = ~ ,  

where y+l =Df the T-least element 

Suppose y <T z <T Xm" Then 

3.1.5 G (y) = F (y+I)(y) = 

since, by 3.1.2, F (y+I) "~ 

3.1.6 c tOT(S) = 

and 

3.1.7 Z (z) "< G. 

5.I .8 

Now ~'(~,F(~m )) 

and since G (xm) 

y<~x; 

z e ~(T) such that 

F(=)(Y) = F(~)(Y) 

F(Z) .~ F(xm). Hence, 

F(=) = ~(=m)~ %(z) 

holds by 5.1.2, so by 

V~ "<T ~'rl'(G %(z),cG)); 

= X2, it follows from 3.1.4 

~(G ~0T(Xm),G(xm) ). 

is satisfied, it suffices 

3.t.2, ~ (~,F (==)) 
X, say ~, such that 

Y<T z. 

3.1.1, 3.1.5 and 3.1.6, 

and 3.1.6 that 

205 



206 T. Flannagan 

Hence, by 3.1.7 and 3.1.8, 3.1.4 holds in Case (i). 

Case (ii): OT(X) has no greatest element. The argument is similar to 

the one above, except that G is defined as follows: 

c(Y) = F(Y+I)(Y). 

Now applying DCColI~, there is an H such that 

(H : ~(T)-~ ~)^ H (x~ = X 1 ~ Vx,y(Xo<~ T x ~ x ~ <T y 

(~(~,~(~)) ^ (x <T Y-~ ~(~)'( ~(Y))))" 

As above, we consider the cases (i~: T is a successor well-ordering, and 

(ii~ T is a limit well-ordering. 

Case (i)': Let x m be th~ T-greatest element of ~(T). Since ~(xm,H(xm) ) 

holds, it follows from the hypothesis of DCColl~ that there is an X, 

X 3 say, such that 

~(x)  ^ ;l'(~(Xm),x). 

Define F : ~(T)-@~ as follows= 

F(Y) f 

=l X~ if y = x o, 

H (y+I)(y) if x o <  T y ~T Xm ' 

X 3 i f  y = x m. 

As above, it can be shown that 
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Case ( i i ) ' :  Define F : ~(T)--~ as fo l lows:  

F (y) m f X ~ if y = Xo, 

H (y+ I ) ( y )  i f  X o <  T y. 

Then again it follows that 

V= ~ ~ (T ) (=o<  T = ~ W ( F  ~OT(x),F(x))~ 

so in either case, we obtain the conclusion of DCColl~. Q.E.D. 

Proof. Assume the hypothesis of DCColI~. Let ~X) 

~x~ ~(T)~(x,X), suppose ~(xo,Xo) holds, and define 

follows: 

denote 

~r(F,x) as 

(2(F)=~^x:X o) v ~=E~(T)[= o<T=^(F:  %(x)~}~)^  

[~y,z(y <T x A z <T x -~ ~(y,F (y)) ̂  (y <T z --~ F(Y)'~ F(z))) 

-~ (~(x,X) ^ Vy(y~ T x -~ F(Y)-~ X)~] 

Clearly the hypothesis of DCColI~ now implies the hypothesis of DCColI~. 

Hence, by DCCoilV, there is an F : ~(T) --~ such that F (xO) = X ~ 

and 

3.2.1 Vx ~ ~ ( T ) ( = o <  T x -.Z(F[ 0T(x),F(x)). 

It remains to show that 

3.2.2 ~x ~ ~(T)(~(x,F (x)) ^ Vy< T x(F(Y)~ F(x))). 

The proof is by induction on x. If x = Xo, 3.2.2 is trivial. 

Xo ~T x and assume 

Suppose 
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3.2.5 

From 5.2.1 
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Vy "<T x(~(Y'F(Y))^Vz "<T Y(F(Z)'< F(Y)))" 

and ~.2.5 it clearly follows that 

~(x,F (~11 ̂ u x(F(Y)~ F(~)), 

SO we are done. 

By Lemmas 5.1 and 5.2, we have for each well-ordering 

~ 3.3 N~~ ~CColl~ ~ DCCcll~ 

We now consider the following axioms of choice: 

DCC T : 

IN~: 

(IN~)' : 

Inj x : 

SC X : 

Proj x : 

T, 

This is formulated like DCColl T, except that the collection of 

classes {X : ~(X)} is now required to be a class. 

If {Z : ~(Z)} is an uncodable collection of classes and X ~ ~, 

then X can be "injected" into it; that is, 

~F (F : X-*~ ) ̂  Vx,y(~ ~ X ^y ~ X ̂  x ~ y-* F (x) # F(Y)) 

If {Z : ~(Z)} cannot be coded by a set of classes and X # @, 

then X can be injected into it. 

If X ~ ~, then X can be injected into every proper class. 

VY ~ X3Y~(y,Y) "-~ ~ZVy e X~(y,Z (y)) 

Vy ~ X~z~(y,z) ~ ~F(Func(F) A Vy ~ X~(y,F(y))) 

If X ~ ~, then every proper class can be projected onto it. 

N (yon Neumann's axiom) : There is a bijection between any two proper classes. 

W0(V) : V (the universe of sets) is well-orderable. 

E (G~del's axiom of choice) : 3F(Func(F) A Vx ~ ~(F(x) ~ x)) 
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AC 

R ~  3.4 (i) If T is a well-orderlng, we write ...T 

For example, we write INJ T for INJ ~(T). 

(the ZF-form of choice) : ~x~f(Func(f) A Vy ~ x(y ~ ~ --~ f(y) r y)) 

for ...~(T) 

(ii) If ~ is an ordinal, then DCColl ~ and DC~ are like 

DCColl T and DCC T respectively, except that ~(T) is replaced by ~. 

DCColl 0n and DCC On are obtained similarly. 

(ill) (DCColl~) *, (INjX) * and (INJX) '* are like DCColl T, 

IN~ and (IN~)' respectively, except that the specified collection of 

classes is required to be disjoint. 

(iv) (cX) * is like ~ except that for each y e X, the 

collection {Y : ~(y,Y)} is required to be disjoint. 

(v) L~vy's formulation of DC ~ required ~ to be a cardinal, 

so the simplest and most natural class-form of DC ~ is the following: Let 

be a cardinal, C a class, and R(x,y) a relation between subsets x 

of C and elements y of C. Then, denoting the ca~dinality of x by ~ , 

~x C C(~<K-~y(y s C ^ R(x,y)) --~ 

Let us denote this axiom by (DCCK) ' , It is easy to see that 

~o~ Dec ~ ~ (DecK), 

for each cardinal ~, but from Theorem 3.8 below, it also follows that 

~~ ~ u ~ VKDCC K, 

where K denotes a card~nal. Hence, there is no need to restrict ourselves 

to cardinals in the formulation of DC~ or DCColl ~. 

THEOREM 5-5 The following implications hold in N~ ~ for any X. 
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(1) (cX) * --~ sc x, 

i 
(ii) (INjX) '* !~ inj x __~ ~oj x ' and 

(iii) P~oj x + scx -, Inj x 

The proof of (i). Assume Vy �9 X3z~(y,z). Put % =~z : ~(y,z)} and 

= z} X z : z �9 . Then C* is disjoint and ~y �9 X~u(u �9 ; 
Y Y 

so by (cX) *, there is a function F such that Vy �9 X(F (y) g C~). Now 

define G : X --~ U cy by putting G(y) = the unique element in the 
yE X 

domain of F (y). Clearly, G is the required function. 

The proof of (ii). Implication 2 is trivial and the proof of I uses 

an azgument like the one above. 

The ~roof of (iii). Let C be a proper class, X ~ ~, and F a projection 

of F onto X. For y e X, put F-1(y) = <x �9 C : F(x) =y~. Then 

F@1(y) ~ ~, so by SC X, there is a function G such that G : X --~C 

and G(y) �9 F-1(y) for all y �9 X. Clearly G is an injection. The proof 

of the theorem is complete. 

THEOREM 5.6 For everyclass X, NBG ~ ~- (INjX) ' ~ INJ X 

The proof is trivial. 

THEOREM 3.7 

in NBG ~ 

For every well-ordering 

(i) DCColl T ~ cT 

INjT 

(il) 

(cT) * 

Z 
(Dccon~)*k~-. Dcc T ~ sc T 

T, the following implications hold 
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The proof of (1). I. Assume Vx ~ ~(T)~(x,Y). Define ~@(Y) as 

~y ~ ~(T)~(y,Y) and X ~ Y as ~a(X) a ~(Y). The hypothesis of 

DCColI~ is clearly satisfied, so there is an F such that F : ~(T)--~ ~ 

and ~y ~ ~(T)~(y,F(Y)). Hence, C T holds. 

2. Let {X : ~(X)} be an uncodable collection of 

classes. Define W(F,X) as I(X~ F). Since ~ is u ncodable, the 

hypothesis of DCColl T is satisfied, so there is an F such that 

F : ~(T)-~ and Vye ~(T)-I(F(Y)~ F~y). Clearly, F is an 

injection. 

The proof of (ii). The proofs of implications I and 5 are like the proof 

of (i)I and the proof of 4 is like the proof of (i)2. The proof of 2 

uses a disjointing argument like the one in the proof of Theorem 5.5 (i). 

THEOR/E4 3.8 Let T I and T 2 be well-orderings and T I < T 2. Then 

the following hold in NBG ~ 

(i) DCColl T2 ---) DCColl TS, 

(ii) (DCColIT2) *'--) (DCColITI) *, 

(iii) DCC T2 ~ DCC TI. 

The proofs are all similar, so we Just prove (i)f as follows: 

H 
Suppose T I ~ T2~x o. Let Ylo be the T1-1east element of ~(TI) 

and Y2o the T2-1east element of ~(T2) . 

If X is an initial segment of ~(TI) and F : X--*~ , then 

define F* : ~"X ---~ ~ as follows: F *(HCy)) = F (y) for y ~ X. Similarly, 

if Y is an initial segment of ~(T2) and G : Y ~ , then define 

G** : H-I"Y--~ by putting G **(H-1(x)) = G (x) for x e Y. Clearly, 

(F*)**= F =d (G~)*= G. 



212 T. Flannagan 

Now assume the hypothesis of DCColl TI , that is, 

3.8.1 Vx ~(T)VF[(F (x)--* ~ ) --* 3X(r ^ ~(F,X))] . e : OTI 

Define ~[~(F,X) as follows: 

0T2 x 

Clearly, by 3.8.1, the hypothesis of DCColl TI is satisfied; so for any 

such that ~ (X), there is an F such that F : ~ ( T 2 )  ~ ~I~ , F(Y2~ 

and 

~OT2(Y),F(Y))) " Vy ~ ;(T2)(y2o y -*It (F <T 2 

Hence, setting G = (F ~0T2(Xo))** , it follows that G (yI~ = X 

Vx ~(TI)(ylo<TI ---~(G~ (E),G(X))); r x 0TI 

SO DCColl TI holds. Q.E.D. 

THEORIE 3.9 For every X 

implications hold in N~G ~ 

( i )  C x ~ C Y, 

(ii) (cX)*-~ (cZ) * 

(iii) scx-~ sc Y , 

(iv) INjX--~ INJ Y, 

(v) (INJx) * -~ (~JY)*, 

(vi) (INjX) ' ---~ (INJY) ' , 

(vii) (INjX)'*--~ (INJY) TM , 

(viii) InjX---> InJ Y and 

(ix) ProjX--~ Proj Y. 

and Y such that Y~X, the following 

X 

=X 

and 
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The proofs 

the next theorem is not. 

J 
are all lef~ to the reader. The proof of 

THEOP~ 3.10 All the following implications except (vii)2 hold in NBG ~ 

but (vii)2 holds in M ~ 

(1) 

(li) 

2 
~ x S C  x ----* AC 

V~DCC ~ fS 

w~j~ +-. W~oj ~ 

u ~ VxoX 

V~(INJx) ' 

(iii) V~(oCColl=) * '/Vx(cX)* 

~Vx(iNjx) '* 

(iv) 
VT(DCCon T) + WO(V) ~ cv '--/--* DccOn 

INjV 

(v) VT(~CColl~) * + wo(v) 

( or)* 

(INJ)* 

(vi) InJ v ~ Proj v ~ N S �9 injV 

(vii) N 

2 .-7 ~T(DccT) 
WO(V) / 

sc v ~ w~cc 

The proof of (i). Implication 5 is proved in Felgner[ 5]and is like the 

proof of Theorem 5.7 (i)3. 4 and 5 are proved in Rubin and Rubin [12]. 

The proof of I is like the proof of Theorem 3.7 (i)I, and the proof of 2 

is trivial. 
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The proofs of  ( i i ) 1  and ( l i ) 2  are l i k e  the proofs of  ( i ) I  and 

( i ) 3  respeetlveZy~ so are the proofs of ( i i l ) 1  ~ d  ( i l i ) 2 .  The proofs 

of  ( i v )  ~ d  ( v ) ,  except ( i v ) 3 ,  are a ~ i n  s i m i l a r  to those in  ( i i )  and 

(iii), but, whereas it follows from ~DCG ~ (and hence V~DCColl ~ and 

V~(DCColl~) *) that every set is well-orderable, in (iv)S, (iv)2 and (v) 

we need to assume that V is well-orderable since it seems, although this 

has mot yet been proven, that in M O, ~T(DCColl T) does not imply W0(V). 

The reason for this is that in M there is no power-class axiom which says 

that the collection of subclasses of each class is codable. We shall have 

more to say about this in section 5- 

.The proof of (iv)~. Let C be a class and assume that 

V~Vf((f : ~ -.c)-~x(x ~ c ^ ~(f,x))) 

Then by C V (in fact, SC V will do here), 

w 3 G v f [ ( f  : ~ --- c)  ~ G ( f )  ~ c ^ R( f ,~  ( ~ ) ) ] ,  

so again by C V, 

~ H V ~ V f [ ( f  : ~ ~ C) --m- H ( ~ ( f )  r C ^ R ( f , H  ( ~ X f ) ) ] .  

Now let x e C and define K : On --~ O by recursion on On, as follows: 
o 

K(~) = ~ x ~ if ~ = 0 

H (=)(~f=) if ~> o. 

Clearly, K is the required function. 

QUESTION 3.11 Does (cV) * imply DCC On or C V imply DCC T, where 

The above proof suggests that the answer to both questions is negative. 

The proof of (vLi). The proofs of 1, 3 and 5 are trivial, and 6 is 

well-known, The proof of 4 is like the proof of (iv)3. 

T >  O n ?  
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The proof of 2 is given in M ~ as follows: Let T' be a well-ordering 

of V and C be a class. Assume the hypothesis of DCC T, that is, 

Vx ~ ~ ( T ) V F  [ (F  : OT(X) - '* C) ~ 3y (y  ~ C ^ R ( f , y ) ) ]  

Le~: x ~ be the T-least element of ~(T), x I be the T'-least element of 

C, and ~ (X,y) denote the formula 

~ x  ~ W'(T)(X : O~(x) - - .  C) ^ [ ( , O ( x )  = r ^ y = x 1) v ( .O(x)  ~ r ^ 

W (~(X) ~ ~ & y = the T'-least z �9 C such that RCX,z))] . 

~ clearly satisfies the conditions PI - P4 on page 00 above, so by 

Theorem 2.1 and Remark 2.3, there is a strictly unique F such that 

F(Xo) = f X I if X = Xo, 

[ the T'-least z e C such %hat 

F is clearly the required function. 

R(F x,z), if Xo~ T x. 

This completes the proof of Theorem 3.10. 

215 

One naturally asks if any of the implications in Theorems 3.5 - 3.110 , 

apart from those in Theorem 3.10 (vi), can be reversed in NBC ~ or even M ~ 

In the next section, we give some examples of those which cannot be reversed. 

However, it is still not yet 

known that they are all irreversible, although intuitively, this appears to 

be th~ case. 

It was shown in Rubin and Rubin[1~] that in ZF ( = ZF O + VI), AC 

implies VxInj x. In fact, it is not difficult to see that ZF ~ AC --~V~DC~. 

(Note that DCC ~ and Inj x are schemata in ZF.) Thus, in the presence of 

axiom VI, all the above forms of choice ~lich can be formalized in ZF are 

equivalent. However, we can see no way of showing, for example, that 
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(• 

Gi) 

( •  

( iv )  

M + AC ~ Proj 0n , 

M+E FVxc ~or Vx(INJ~) ', 

M + o v + INj v f- W(Dccol#) 

T. Flannagan 

or 

N + c v + VT(DCconT) * ~ V x ( E j x ) .  

5.12 below extends the known results. 

N~ + AC ~ V= (DCCoI# )* 

M ~ + wo(v) ~ W(DOColl~* 

m ~  + wo(v) ~ (DCColl~) * 

Nevertheless, Theorem 

T~0RE~ 3.12 (i) 

( i i )  

and (iii) 

Proof. (1) Let {X : ~ (X)} be a disjoint collection of classes. For 

each X such that ~ (X), let X' be the subset of X consisting of those 

elements of X of least rank. Then {X': ~(X)} is a disjoint class, C say, 

and if xa C, there is a unique X, x* say, such that ~(X) ^ X' = x. 

If x is a set and F : x --~ ~ , define F' : x --~ C by putting 

F'(y) : (F(Y)) ' ; and if f : x --~ C, then define f* : x--~ ~ by 

~(y) : (f(y))*. 

NOW assume the hypothesis of (DCColl)~viz.~ 

and defL~e ~ ' ( f , x )  as I r ( f * , ~ ) .  Then c lear ly ,  

so by 

there is an f : ~ --)C 

Hence, f.(0) = X and 

DOg , which follows from AC in NBG , for all X such that ~(X), 

such that f(O) = X' and V~<~l~(f~,f(~)). 

V~ < ~ ~(f*~,f*(~)) , so (DCColf)$holds. Q.E.D. 
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(ii) Let T be a well-oTdering of V and X : (X) be a disjoint 

collection of classes. Assume the hypothesis of (DCCollT) *, viz, 

Yx ~ ~(T)VF (F: OT(X ) --') r ) -'* ~Y(~(Y)~ I~(F,Y)) �9 

Let Cx, F be the class {YT ' ~(u ^ ~[(F,Y)} , where YT is the T-least 

element of Y . Let Ix, F denote the T-least element of Cx, F and Yx,F 

be the unique Y such that ~(Y) A ~F,Y) A YT = Yx,F " Remember that 

this Y is unique since the collection {Y : ~(Y)} is disjoint. Suppose 

~(X) holds. We may define F : ~(T) --~ ~ by reoursion on T as 

follows: 
~(~) f 

= ~X if x=x ~ , 

1 
[Yx,Fr%(x) if Xo~TX , 

where x is the T-least element in ~(T). 
o 

function and (DCCollT) * holds. 

Clearly F is the required 

The proof of (iii) is left to the reader. 
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SECTION 4 

FRAENX]~L-MOSTOWSKI-SPECKER METHODS IN M ~ 

In this section we show that the well-known Fraenkel-Mostowski-Specker 

methods for proofs in NBG ~ of the independence of the axiom of foundation 

and various forms of the axiom of choice carry over easily to I~. We also 

prove some elementary results in M ~ for certain forms of choice mentioned in 

the previous section. It would be tedious to give details, especially since 

they are well-known and can in any case be found in Felgner [ ~ ] ~f ~r [g]. 

First, let F be a permutation of the universe of sets V, that is, 

a I-I mapping of V onto itself. We write X ~F Y for Z(X) ~ F(X) ~ Y, 

a6 usual~ 

For any formula 

every occurrence of 

, let ~F be obtained from ~ by replacing 

by ~F" It is shown in Boffa [ I ] that "''F is 

a syntactic model of N!~ ~ in NBG ~ that is, NBG~ ~ ~F for every axiom 

of N~C ~ In order to show that it is also a syntactic model of M ~ 

in M ~ it therefore suffices to show that the relativized version of the 

impredica~ive comprehension schema holds in M~ that is, that for any 

formula ~ with one free set-variable x, 

M ~ F V x l . . . x 3 Y V x ( x  ~F y " ; }F(X'Xl ' ' ' ' ' x ) ) '  

~ by t ~ i n ~  Y as { .~(~)  �9 { F ( x , X l , . . . , X n )  } , t h i s  i s  t r i v i a l  to  v e r i f y .  

I% f o l l o w s  t h a t  i t  i s  p o s s i b l e  t o  v i o l a t e  t h e  ax iom o f  f o u n d a t i o n  i n  

M ~ in all the usual ways (see _~__~ Felgner[ ~ ], p. 50 - 51). For 

example, the same proof as in Boffa[ i ] shows that if M e + N is 

consistent, then M ~ + N + "there is a proper class of reflexive sets" is 

also consistent. (A reflexive set x , or atom , has tLe property x = {x} .) 

Note that in Tharp [13] ,it is shown that if M O is consistent, then so is 

t, 

M + V -- L , where V = L is Godel's axiom of constructibility for sets. 
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Hence, M ~ + N is consistent relative to M ~ In fact, Tharp proved the 

stronger result that if M c is consistent, then so is M ~ + ~ = ~ , 

where ~ = ~ is the axiom of constructibility for classes, and he showed 

that one can define a well-ordering of the universe of constructible classes. 

By elementa1~y arguments like those at the beginning of the next section, it 

therefore follows that if M ~ is consistent, then so, for example, is 

M ~ + ~T(DCColl T) + N; and it is straightforward to show that 

N ~ + V~(DCColl T) ~ V~(DCConT)F for any pe~utation F of V. ~s, 

for example, by Boffa's proof, the theory M ~ + ~T(DCColl T) + N + "there 

is a proper class of reflexive sets", is also consistent. 

for 

WCs) 

By interpreting sets as elements of W(A) and classes as subclasses of W(A), 

one obtains ~j standard arguments the relative consistency of, for e~-ample, 

M ~ + VT(DCColl T) + N + "there is a proper class A of reflexive sets such 

WF(A), where WF(A) is 

Vx(x ~ ~ -'~ Sy e x(y n x = ~ V y e A)) 

It is well-kno~n that in this theory it is provable that V = W(A). By 

similar means, one obtains the relative consistency of theories like M ~ + 

VT(DCColl T) + N + "there is countable set s of reflexive sets such that 

WF(s),. 

We now show that the so-called permutation models ~G,~] , described 

in Felgner [ ~ ] and Jech[ ~ ] are models of M ~ 

We shall assume for definiteness that A is a proper class of atoms, 

but the argument is exactly the same if A is a set. 

By a permutation of A , we mean a se__~t 7~ which is a permutation 

of some subset s of A. By e-recursion, ~ can be extended to a unique 

219 

Now let s be a set of atoms. The relative yon Neumann hierarchy 

s is defined as follows: Ro(S) = s, ~(s) = ~ ~(~(s)). We put 

= ~.) ~(s). If A is a class of atoms, then we put W(A) = ~ J  w(s). 
~e On s~A 
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e-automorphism ~ of W(s); so if ~ is defined as IT~U Id ~ (V ~ W(A)), 

then ~ extends to a unique e-automorphism ~ of V, which in this ease, 

A 
is W(A). For notational convenience, however, we write ~ for • . 

Now let ~ be the group of all permutations of A and ~ be 

a nolnDal filter (in the sense of Feigner[ ~],P.55) of subgroups of a ~ubgroup 

G of ~ �9 Note that ~ is a class, so ~ is not a class, but a collection 

of classes. Nevertheless9 in all permutation models ~ [G,~] , G and 

are defined collections. Indeed, the right definitions of G and ~ are 

the alpha and omeg~ in the search for such models. Hence, we can safely 

use the shorthand "X & ~ ", meaning that X satisfies the formula which 

defines ~ . 

For any class, let H[X] =Df {~ c G : ~'% = X}. We say that 

X is s~nmuetric if H~X] E ~ and hereditarii.y symmetric if , in addition, 

E[y] E ~ for every set y e TC(X), where TC(X), the transitive closure 

of X, is X &) ~X u ~X .... We write ~(X), or say that X 

is an ~-class, if X is hereditarily symmetric; and for any formula ~ , 

we write ~ for the formula obtained from ~ by replacing every 

quantifier ~X by ~X(~(X) A .... Thus, the universe of the model 

[G,~] is the collection of hereditarily symmetric classes and the 

membership relation of the model is simply the real membership relation e. 

It is easy to see that Z~(X) ~ Z(X) ^ re(X); that is that the ~-sets 

are just the hereditarily symmetric sets. (The proof uses the fact that for 

any set x, HI{x}] = H[x] .) We shall write X C ~7~ for VY(Y e X --~ ~(y)). 

As usual, it is easy to see that ~ has the following properties : 

m. ~t is transitive: x ~ y ^ ~(y)-* ~(x), 

m .  xc~ -~ ( ~ ( x ) ~ - ~  ~ [ x ] ~ ?  ). 

The proof that the impredicative comprehension schema holds in  ~ , [ ~ , m ]  

is a simple consequence of the following lemmata: 
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~ 4 . 1  'Y~,(X)^ '~ ~ G ~ "~7~(lr~'X) 

f 1 
Proof. Assume m(X) ~ ~e G. A proof like that on page 55 of Felgner[ ~ 

shows that 

4.1.1 ~ ~ G --~ ~.H[X].~'-I~< H[~:'X] �9 

Hence, H[~&;X] e ~. Furthermore, a proof like that on page 54 foe cit, 

shows that ~(Y) A Tr E G --@ ~(~(y)). Hence, E~;X C ~ . Now by 

4.1.1, H[~"X] ~ ? , so by m, ~t(~L'x). %.Z.~. 

LEMMA 4.2 For any formula @ (X 1,...,xn) , 

The proof is by induction on the length of ~ and uses Lemma 4.1. 

Now let ~ (x,X I .... ,Xn) be a formula with one free set-variable 

and suppose that X1,...,X n are ~-classes. Let Y = {x : ~(x) /% 

~ (x,X I .... ,Xn) } . In order to prove that the impredicative comprehension 

schema holds in~[6.~,it suffices,by MI, to show that Y is an ~-class. 

N~w Y ~ ~, so by M2, it suffices to show that H[Y] e ~ . 

X t 

Now for i = 1...n, H[Xi] e ~ , since X i is an ~-class. Hence, 
n 

~utting H ~ ~H[Xi] , it follows that I~ ~ ~ We show that H e ~< H[Y] 
i=I o 

for then H[~] e ? . 

Let ~ H and x ~ Y. Then x , and hence ~(x), is an ~-set. 
O 

Moreover, ~(x,X 1 .... ,Xn) holds, so by Lemma 4.2, @~ (~(x), ~"XI, .... ~"Xn) 

also holds. However, We H[Xi] for every i = 1...n, since ~ 6 Ho; so 

~LCX = X.. Hence, 9~(x) ~ Y and ~Uy C Y. Now ~e ~ ---~ Ir -I s H O, 
i l -- o 

since H is a group; so ~Uy C Y. Hence, 9r~r = Y and ~r ~ H[Y]. Q.E.D. 
o 

Applications of the ~4S methods. 

It follows from the above result that all the non-implications 
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proved in Felgner-Jech f ~ ] and Feigner [ ~ ] also hold in 

(i) 

(il) 

(Ill) and 

(iv) 

AC ~ Proj w 

~xProj x ~-~ Inj W 

Vxlnj ~ -~ DC~ 

~ W0(V) 

M ~ in particular, 

From the theorems in Section 3, there are clearly many more non-implications 

which we could trj to prove in M ~ but in this section we prove only a few 

since we are chiefly interested in showing that FMS methods can be used to 

give independence results in M ~ 

THEOR]~ 4.3 M ~ + V~DCColl ~ +~Proj On + ISC On + IE is consistent. 

Proof. We find a permutation model ~ of the above theory. Let A 

class of atoms and G be the group of all permutations of A. A subgroup 

H of G consisting of all permutations which leave a certain subset s of 

A pointwise fixed, is called a set-support subgroup of G. s is called 

a support for H. Let ~ be the normal filter whose filter-base consists 

X 
of all set-support suhgToups of G. A classAis thus symmetric if and only if 

there is a subset s of A such that every permutation ~ which leaves 

pointwise fixed, leaves X fixed en bloc. s is also called a support for 

The ~-classes are the hereditarily-symmetric classes. 

T h e  proof that ~DCColl ~ holds in ~ : Suppose that the hypothesis of 

DCColl ~ holds in ~ .Then in the surrounding theory, 

W<~W[m(F) ^ (F : ~ ~ ~m ) -* 3X(m(X) 

Now let F be any pair-class such that for all 

holds. By ~xSC x in the surrounding theory, there is then a function 

such that for every ~ ,  f(~) 

Then any permutation which leaves 
A 

be a proper 

(x) ^ -rrm(F,x))] 

~,~ ~, ~ . (F  (~)) 
f 

X. 

is~s~pport fo~ /~). mt s= U f(~). 

s pointwise fixed leaves P (~) fixed en 
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bloc for every ~<~. 

on the well-founded part of V, 

leaves F fixed en bloc; but 

Hence, 

Moreover, every permutation acts as the identity 

in particular, on the ordinals. Hence, 

F (" ~, so by M2, F is an~-class. 

No,- suppose ~ . ( x )  ,, ~ ( x )  holds. 

thebry, there is a G such that 

Applying DCColl ~ in the surro~nfling 

G (o) =X ^V~(o<  ~<~  --,. ~ (G (~)) ^ "Im(C (~)) ~ --~'m.(Gf~,G(~))) 

and an argument like the one above shows that G is an~f~-class. Hence, 

DCColl ~ holds in ~ . 

The proof that ProJ On fails in ~ : Since every atom is clearly an 

~-set, it follows that A is an m-class. Suppose that in ~, A 

can be projected onto On by a function F . For each ~ e On, let ~ = 

{xe A : F(x)=~} and let s be a support for F. Since A is a proper 

class, we can choose ~, ~ ~ On~F"s and x and y such that F(x) = 

and F(y) = ~o. Let 

but interchanges x and 

(<x,~>) = ~y,~> , and 

The proof that SC On fails in ~ : 

kernel of X , Ker(X), is defined as 

is the transitive closure of X . 

For a cardinal ~ let C~ = 

Clearly every C~ is an m-class. 

fixed en bloc. 

be a permutation which leaves s pointwise fixed 

y. Then ~ leaves F fixed en bloc, but 

~y,~> ~ F -- a contradiction. 

First note that for any class X 

~c(x) ,', A , where ~C(X) 

the 

{x : ~(x) A Ker(x) has cardinality ~}. 

In fact every permutation leaves every C~ 

Suppose there is an ~-class F such that for every cardinal ~ , 
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F(~) ~ C~ . Let e be a support for F and have cardinality a( . Let 

x~ Ker(F(~+)) ~e and y ~ A %(Ker(F~*)) U e). Let IT be a permutation 

which interchanges x and y and ac~as the identity elsewhere. Then ~'(F~§ 

lr(F~@)) ~ F ~  and IT(F~) g C +. Hence, 1T"F ~ F. However, I~ 

leaves e ~ointwise fixed; so w"F = F - a contradiction. Hence, SC On 

fails in ~ . 

The proof that E fails in ~ : Clearly every subset of A is an ~-set. 

Assume that in ~ there is a function F such that for every subset s 

of A, F(s) ~ s. Let s o be a support for F and choose s I with at 

least two elements such that sln s = ~. Choose x e s1~F(Sl) } and let 

be a permutation which/interchanges x and F(Sl) and is the identity 

elsewhere. Then ~ leaves s I and F fixed en bloc; but ~(<s1,F(Sl)>) 

= <Sl,X > and ~sl,x > ~ F -- a contradiction. This completes the proof 

of Theorem 4.5. 

THEOREM 4.4 M ~ + E + xProj ~ + ~ SC is consistent. 

~j% of Lemma 8 of Feigner [ ~ ]. Felgner shows Proof. We use the model 

that E holds in ~ . The ~J~-sets are the sets x whose kernel, Her(x), 

is finite, Her(x) being TC({x}) ~ A, where, in this case, A is a countable 

set of atoms. It follows that ~ does not have the property M2, so it is 

not a model of the form ~[G,~] . Nevertheless, a proof similar to the 

one we gave above shows that it also is a model of M ~ 

The. proof ~t Pro~ f~i]s ~u ~ : Suppose that in ~ there is a 

projection F of the atoms A onto w. (Notice that although A is a 

set in the sense of the surrounding theory, it is a proper class in the sense 

of ~ .) Let s be a finite support for F and for each n e ~, let 

S n = ~XE A: F(X) = n}. Choose n,m ~ w such that s n~ s = S m~ S = 

and choose x e s n and y e s m . There is clearly an order-preserving 

permutation ~ which maps x to y and leaves s pointwise fixed. ~qus, 

~I" leaves F fixed en bloc; but I[ (<x,n~) = ~y,n~ ~ F _ a contradiction. 



T. Flannagan 225 

The proof that SC m fails in ~ : For n E w, let 

M = x : ~(x) % Esr(x) has cardinality n . 
n 

It is clear that M is a proper class in the sense of ~ , but in ~ , 
n 

there is no function f such that ~n a w(f(n) ~ M~), for such a function 

has an infinite kernel. Hence, SC w fails in ~ . 
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SECTION 

T. Flannagan 

5 

o 
TEE THEORY M~ 

0 
DEFINITION 5.1 Let M e be the theory obtained from M ~ by adding Hilbert's 

c-symbol to the language and a l lowing E-terms EX~ to f i gu re  in  the 

o 
comprehension schema. M e is, of course, M e +VI. 

In writing M O ~ ~ , we mean that there is a deduction of ~ from 

in Hilbert's e-calculus (see, for example, Lelsenring [q ] or Flannagan [~ ~). 

This section is devoted to the proof of the following theorem : 

~ ~.2 N ~ ~ wo(v) s 

First we note the following lenmma, the proof of which is left to the 

r e~de r .  

U~AS.3 (i) ~ ~ O v 

and (ii) M ~ ~- VT(~econ T) 
r 

The proof of Theorem 5.2 is similar to the usual ZF-proof of the well- 

ordering theorem 

W0 : " Every set is equipotent to an ordinal." 

Remember, however, that there is no "power-class" axiom in M in the sense 

already mentioned on page 2]4 , but that every proof of WO in ZF makes 

essential use of the power-set axiom. W0 can, however, be proved without the 

power-set axiom by invoking a stronger choice principle than AC. For 

instance, it is easy to see that 
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(1) NI~ ~ + DCC On ~ W0, 

(ll) ~mG ~ + E }- wo, 

and that if ZF~ is obtained from ZF ~ by adjoining the l-place operator 

to the language of ZF, adding the axiom Vx(x ~ ~ --~ T(x) e x), and 

allowing ~ to appear in the replacement schema, then 

(iii) zF$- I- wo. 

Likewise, if ZF~- is obtained from ZF ~ by admitting ~-terms of the 

form r to the replacement schema, then 

(iv) zF~- F wo 

Hence, even without the power-set axiom, W0 can be proved if there is a 

universal choice operator available which selects elements from sets and 

which is allowed to figure in the relevant schemata. It is not s~urprising, 

therefore, that M O ~ W0(V). Indeed, one might suspect that NBG ~ ~ W0(V), 

where NBG 2- is obtained from NBG ~ by adjoining the l-place operator ~ , 

adding Bernay's axiom 

(*) Vx(x ~ r ~ a-(x) ~ x) 

and allowing ~ to figure in the (predicative) comprehension schema. 

However, this does not seem to be the case since the proof of Theorem 5.2 is 

highly impredicative. Moreover, the proof makes essential use of C V , so, 

since we see no way of showing that M~ ~ C V , where M a is defined in the 

obvious way, it even seems that ~ ~ W0(V). Nevertheless, the proof of 

Theorem 5.2 does show that (M ~ + cV)s ~ WO(V), where (M ~ + cV)a is 

obtained from M ~ + C V by adding (*) and allowing c to appear in both 

the comprehension schema Bud C V. 

The proof of Theorem ~.2 : Let x ~ be a fixed set and #(F,X) 

formula 

be the 
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( ~ ( F )  ~ ~ ^  X = Xo) v ~ T [ T  ~ ~ ^ ~ ( F )  = ~ ( T )  ^ [ ( ~ y V z  e ~ ( T ) ( y  ~ F ( Z ) ) ^  

x = ~yV"  ~ ~ (T)(y ~ F(~)) ) v ( V~3  ~ ~ ~ ( T ) ( y  = F (~)) ^ X -- V ) ] ]  

clearly satisfies conditions PI' - P4' of Theorem 2.5 with X = Y in 

place of X ~--Y and F-----C in place of F~ C (see Definition 1.~Z). Hence, 

by Theorem 2.5, there is a fo~ula ~(T,X) with the properties Q1, Q2 and 

Q3' �9 V T , X , Y ( ~ ( T , x )  ~ ~ (T,Y) - *  x = Y).  

~Mrthermore, it is clear that 

5.4.1 ~I'(T,x)-* x ~  v ~  x = v .  

Claim 5.4.2: T' ~ T ^ ~ ( T ' , x )  A ~(T,y)--4P y ~ X. 

Proof: Assume the left-hand side. Since T ~ ~, it follows from QI that 

~(T,y) +~ ~F[~(F) = ~(T) ^ 3~Vv ~ ~(T)(u f F (v)) ̂  y = ~Vv ~ ~(T)(~ # F (v)) 

^ Vv ~ ~ ( T ) ~ ( ~ t v , F ( v ) ) ]  . 

Now ~ ' ~  T - - * T ' - ~  Tfz f o r  some ~ ~ ( ~ ) ,  so by 5 .4 .3  and Q2, @ ( ~ ' , F  (~ ) )  
for some F. = F(Z)" 
holds. But ~(T',x) holds, so by Q3', x Hence, by 5.4.3, y ~ x, 

so the claim is proved. 

We now show that 

5.4.4 - I~T :J x ~ ( T , x ) .  

Assume the contrary and l e t  C = { x  : ~ T ~ ( T , x ) }  . By Claim 5.4.2 i t  foT_lows 

that 

5.4.5 ~xe C~!T~T~'(T,x) 

Now we do not have strict uniqueness here, so we must use C V to pick a T 

for each x in C. Thus, there is an H such that 

5.4.6 Vx~ C~(H (x),x), 
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and s i n c e  H (x)  

from Q2 that 

is a well-ordering which is unique up to ~ , it follows 

t ~ 
5-4.7 x~ C ^ye C ^ x # y --~ (H~X)7~ HkYs). 

We now define a relation ~ on C as follows: 

x~ y~*H (x)< H (y). 

We claim that -( well-orders C. The proof is as follows. First, by 

Lemma 0.21 in Marek [10], -( is a total ordering. Let D be a non-empty 

subclass of C. By Q2, 

5.4.9 

but this means that 

by 5.4.1 there is a 

is a least such T, 

5.4.1o 

since trivially 

Claim 5.4.12. For any well-ordering 

Proof. By HI, 

5.4.8 TI "~  T 2 A ::Ix e D ~ ( T l , X  ) ~ ':Ix e D~T~(T2,x), 

so by Lemma 2.4, 3~T~x e D~(T,x). Let T' be such a least T and 

suppose ~(T',x) holds. By Q3', x is unique. Furthermore, T'~ H (x) 

by the uniqueness of H (x) to within ~ , so x is the ~ -least member of 

and the claim is proved. 

Thus, by Theorem 0.25 in Marek [10], there is a well-ordering, say 

with the property Sup H. Now by our assumption, and by 5.4.5~and 5.4.6, 

VT3x ~ c(T N H(x)) ) 

~T(T ~ To) , which is absurd, so 5.4.4 holds. Hence, 

T such that ~(T,V); and by Q2 and Lemma 2.4 there 

say TI, which is unique up to ~ Hence, by 5.4.1~ 

< T1 "--> ~ t x ~ ( T , x )  

VT~X~(T,X). 

T', 9(T',V) ---> W 3 T  -< T'@(T,x). 

9(T, ,v)  - .  3F[~r(T / ~ ^ D(F) = ~(~r) ^ W 3 y  ~ ~(T) (x  = F(Y))) 

^ .9 (F) = ~ (T') ^ Vy ~ ~('t" )~(T' ~ y,~(Y))] 

T o , 
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"-~ SF[~)(F) = ~(T') ,% VxSy 6 "~ (T')(x = F (y)) 

^ Vy  ~ 7"(~i")@(T, f" y,F(Y))]  

--~ V x ~ y  ~ "~(T ' )~ ' (T ' r  y,~) 

-~ Vx3T < m'~(m,x). 

Thus, if V # { x : 3 T < T I ~(T,x)} , then ~ x@(T I ,x). But by Q3' 

this contradicts ~(T~V). Hence V = ~x : 3T < TI~(T,x)~ . Now just 

as it was pro~ed that C is well-orderable, it can be proved that V is 

well-orderable, and in fact that T I well-orders V. Q.E.D. 

Finally in this section we ask the following question: 

QUESTION 5.5 Can it be shown ~hat M ~ ~ N ? 

At present we can see now way of answering this question, but strongly suspect 

that the answer is negative. 
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SECTION 6 

THE THEORY M~ AND A CONSERVATIVE EXT~SION RESULT 

231 

DEFINITION 6.1 Let R(',') be a new 2-place predicate and ~M(R) be the 

language obtained from ~N by adjoining R. ~ is the theory, written in 

~M(R), which is obtained from N ~ by admitting R to the impredicative 

comprehension schema and adding the following axioms: 

R1. VT ~XR(T,X) 

R2. VX~TR(X,T) 

R3. VT,X,Y(R(T,X) a R(T,Y) --~ X = Y) 

R4. VT,T',X(R(T,X) ^ R(T',X) --~ T ~ T,) 

RS. yT,T',X(T ~ T' ^ R(T,X) --~ R(T',X)) 

DEFINITION 6.2 R*(X,Y) ~ ~ VT,T'(R(T,X) ^ R(T',Z) --~ T 4 T'). 

The next two lemmas show that R ~ well-orders the universe of classes 

in such a way that every initial segment is coded by a class. In particular, 

it well-orders V . 

6.3 {x: (n} 
is a R*-least member of it. 

is a non-empty collection of classes, then there 

Proof. Let T o be the least T (to within ~ ) such that ~X(~ (X)A R(T,X)). 

Then the unique X such that E(To,X ) is the R*-least member of {X : ~(X)} . 

LEMMA 6.4 Every R*-initial segment of the universe of classes is codable; 

that is, YX3YVZ(Z~ Y~ R*(Z,X)). 

Proof. Let X be fixed. Define ~(Z) as R*(Z,X) and suppose R(T,X) holds. 

Then clearly 
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6.4.1 

and 

6.4.2 

%(z) -~ ~!x ~ ?(T)R(T ~x,Z) 

Vxe ~(T)(R(T~x,Z) --~ ~(Z)) 

Now define a class-valued function F 

the unique Z such that R(T ~ x,Z). 

seen to be a code for ~ . 

REM~d%KS 6.5 (i) By property Q5, 

(ii) By interpreting 

with domain ~(T) as follows: F (x) 

By 6.4.1 and 6.4.2 2 F is easily 

F is not the only code for ~ . 

cX~ as the R*-least X such that ~(X), 

it is easy to see that every c-free theorem of M ~ c ' that is, every theorem 

of M ~ which does not contain the ~-symbol, is an R-free theorem of s 

(iii) Proofs like those of Lemma 5.3 (i) and (ii) show that C V 

and ~T(DCColl T) also hold in M~, where the formulae specified in these 

schemata may now contain the predicate R. 

Most of the rest of this section is devoted to the proof of the following 

theorem. 

THEOREM 6.6 I~ i s  a conservative extension of M O + W0(V) + ~T(DCColIT), 

where DCColl T is R-free. 

The following corollary is an immediate consequence of Remarks 6.5 (i) 

and (ii). 

co~o~um~ 6.7 ~,o • 313o = coz=o~ative of ~o + wo(v) + VT(OCColl ~) 

The proof of Theorem 6.6 is a simple forcing proof similar to the proof 

in Mostowski [11] . The two proofs were discovered independently but this is not 
argu~ment 

surFrising since they both stemmed from the /~ in Felgner[~ ]. It was 

shown in Mostowski [ ~I] that if (A2) R is obtained from second-order 

arithmetic A 2 in e~actly the s mme way as ~ is obtained from M ~ then 

every~-modelAof A 2 + DCColl can be expanded by a relation R to a model 

(~ ,~) of (A2) ~ , where DCCon is the following principle of dependent 
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choices: 

VX[~(X) "-~ ~u A '~(X,Y)~ ~ ~FVn ~ W[~(F (n)) A~(F(n),F(n+J))] 

By an argument similar to L~vy's proof that ZF O ~ DC 4-~ DC ~ (see 

FeiGner[ ~ ],p. 147) but using finite sequences of classes instead of finite 

sequences, (a finite sequence of classes being a class-valued function whose 

domain is a natural number) one easily sees that DCColl is equivalent to 

DCColl W. Hence, the proof of Theorem 6.6 carries over almost word-for-word 

to yeild the following strengthening of Mostowski's result: 

TFJ~0REM 6.8 (A2) R is a conservative extension of A 2 + DCColl. 

The idea of the proof of Theorem 6.6 is as follows: Let ~ be an R-free 

theorem of ~ and let ~ denote the theory M e + WO(V) + VT(DCCollT). If 

~ ~ then ~ + X~ is consistent and so has a countable model ~ , 

which, of course, need not be a standard model. That is, the membership 

relation in ~ need not be the real membership relation. Forcing is used 

not in order to construct what Mostowski calls a C-extension of ~ by 

adding new classes, but in or@er to define a relation R in ~ so that 

the expanded structure (~,~) is a model of ~ + I~, thus contradicting 

the assumption that ~ ~-- ~. Since no new classes are added to ~ , we 

do not need a forcing language. 

DEFINITION 6.9 If X is a relation, then it will be called a (class-valued) 

bisection if and only if VY~ X~!x ~ ~(X)(Y = X (x)) 

The proof of Theorem 6.6. Let ~(X) be the formula: X is a relation 

with domain 2 , X (0) is a well-ordering, and X (I) is a class-valued 

bijection whose domain is the field of X (0). Classes which satisfy 

will be called conditions and be denoted by the letters P and Q. 

DEFINITION 6.10 (i) Let F and G be relations whose domains are ~(T) 

and ~(T') respectively, where T and T' are well-orderings; and suppose 
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T ~ T' We w=ite F ~ C to aenote that ~'x~ ? ( T ) ( F  (=) = C(H(x) ) ) .  

(ii) For conditions P and Q, PC, Q4---) p(O)~ 

and P~ Q *-* ~(0).~ Q(O)^ p(1)~ Q(1). 

(iii) If P is a condition and x e ~(p(O)), then 

denote the condition Q defined by: Q(0) = p(0) r x and Q(1) 

Q(o),, p(1) # Q(1) 

P ~ x will 

_ -  p(1 ) ~ Op(o)(x). 

LEEMA 6.11 Let T be a well-ordering and suppose F : ~(T) -a.~ , where 

x <T y "-~ F(X)~ F(y)" Then there is a condition P such that 

(i) Vx ~ ~(T)(F (x) C P), 

(ii) Vx ~ ~(p(o)) ~y ~ ~(T)(P rx C F (y)) 

and (iii) P is unique up to ~- . 

P shall be called the least upper bound of F and we shall write P ----- lub F. 

Proof. 

Case (i): T is a successor well-ordering. Let x be the T-~eatest 
m 

element in ~(T). It clearly suffices to take P as F (xm). 

Case (ii): T is a limit well-ordering. Define F ~ and F I with domain 

~(T) as follows: 

F(X)o = F(~) (~  ana ~ )  = ~(x) (1 )  

Let T' = Sup Fo, which exists by Theorem 0.25 of N~%rek [~O]. Then T' is 

a limit well-ordering and 

y~ ~(T') -~ax, ~(T )(T'rY ~< %(x)) 

!1~ ~ly).  Since Let ly be the T-least such x and suppose T'~y ~ F 

y E ~(T'~y+1), it follows that 

~+I(Y) ~ ?(F~ ly§ = ~(;(ly<)) 
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Now define G with domain ~(T ' )  as follows= C ~y#' ' = F~ly+I)(H7 " + I ( y ) ) . ,  

We show that G is a class-valued bijection. Suppose it is not; then 

6.11.1 3~,y  ~ ~ ( T ' ) ( x  '<T' y ^ c(x) = c(y))" 

Clearly x <T' y-'~ Ix+1 ~ T ly+1' 

But Fl(IX+l)~ F~ly+l), so 

K (ly+1) so F ( l x + I ) ~  -~- F 
0 0 

for some K. 

6.11.2 

Hence, 

6.11.3 ~l~+l)(H~+1(x)) = F~+I)(K(H~+I(*))). 

~. K ,~, F(1,+1 ) NOW T'F x+l IF(lx+I) ~ F ( ly+I) and T' ~y+l so 
O O O Y 

by~iquenes~, ~y+l ~x+l = K ' ~ .  1. Hence, ~+1(~) = ~(H+I(~)) ,  so by 

6.11.5, 

6.11.4 = 

Hence, by 6.11.1, 

6.11.5 F~ ly+I)(Hy+I(x)) = F~ ly+I)(Hy+I(y))" 

This, however, contradicts the bijectiveness of F1, so G is a bijection. 

Now define P as follows: p(O) = T' and p(1) = G. 

In order to prove (i) it suffices to show that 

6.11.6 Vx  ~ " ,~(T)(F~J4 c )  

Let z E ~ ' (F~) )  = ~)(F~X)). Since 

Fo(X ) K' similarity K' such that < T'. 

F(~) K' o ~' T' r t x, 

where t 
X 

;(x)< 
0 

Then 

T', there is a unique 

Now 
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Htx+l 
F(lt~+1 ), 
o 

SO 

and 

F~ x)(z) = F~ltx+l)(Htx+l(K(z))) = G (K(z)). 

Hence, F~X)~--~ G; so 6.11.6, and hence (i), holds. 
K" 

No~ ~. r x .< F (l~+I), say. so in order to p~ve (ii). it s~fices 
o 

to show that 

6,11.7 ~z <T' x(G(z) = F~ Ix+1)(K''(z)))" 

X* Hz+l F(lz+l) ~. 
Let z ~T' x. Since T' ~ z+l ~ o 

unique K*, it is clear that K" ~ z+1 = K*.Hz+ 1 az~ 

But F~Iz+l) ~--~ F~ Ix+l), so 

F (Ix+l) for a 
o 

so 6.11.7 is proved. 

(iii) follows immediately from the fact that T' is unique to within -~#; 

so the proof of Lemma 6.11 is complete. 

Now let C be the set ~Ye I~ : ~ ~ ~(Y)} �9 A subset X of 

is said to be dense m in C if VY E c~z E X(~Y C Z). 

Since ~ is denumerable, the set of fornwllae of ~M with one free 

variable and parameters in ~ is also den~merable. Hence, the set D 

of dense~ subses of C, which are definable in ~ by a formula with 

one free variable and paraz~eters in ~, is denumera~le. Let (Dn)n e w 

be an enumeration of D. 

We now define, by reeursion on w, a sequence of elements of 
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such that Vn e W(Yn~Dn). Let Yo be any member of D o and Yn+1 be 

any member of Dn+ I such that ~ Yn+l ~ Yn." (Notice that each Yn 

can be chosen since Dn is dense~ .) 

Let G be the set ~Yn : n~ w}. Then ~n ~ ~(~Yn ~ Yn+1 ). 

Now let ~ be a new 1-p!ace predicate and let ~a be the theory 

obtained from y + I@ by adjoining ~ to the language ~M' no_~t 

allowing '~ to figure in the impredicative comprehension schema, and 

adding the following axioms and schema: 

['I. Vx(['(x) -~f(x)) 

r2. Vx,Y(r(x)^ C(Y)-~xr-YvYZX) 

['3. VXl,...,x[Vx(~(x,x I .... ,x) --,,~(x)) ̂  Vx('g(x) ~ 3Y('~(Y) ^ 

X ~ Y A ~(Y,X I .... ,Xn) ) ~ ~X(['(X) ^ ~(X,XI,...,Xn))] , where 

{, does not contain r (i.e., is ['-free). 

B]~4ARK 6.12 The hypothesis of ~5 says that ~ defines a dense 

subcollection of {X : ~(X)}9 so ~5 says that every dense subcollection 

of {X : ~(X)} , which is defined by a ~-free formula, meets ~ . 

LEMMA 6.15 ~# is consistent. 

Proof. First, we know that ~ ~ ~ +I~. By interpreting ~(X) as 
G 

X e G , it is clear that ~I and ~2 are satisfied. The interpretion 

of the hypothesis of ~3 says that {Xe I~l : ~t ~(X)~ is a dense 

subset of C (defined by a ~-free formula), so by the definition of G , it 

meets ~ . Thus, ~5 is also satisfied, so the lemma is proved. 

Henceforth we work in the theory ~'. Our aim is to find an 

interpretation I of ~ +7~ in ~# end hence obtain the required 

contradiction. 

in 7' we define a relation ~(T,X) as follows: 

~(~,x) ~-~ aP,x(r(P) ^ x ~ "~ (p(o)) ̂  T --, ~(o) rx ^ p(1)(x) = x). 



238 T. Flannagan 

The interpretation ~I of a formula ~ is obtained by replacing 

every occurrence of R in ~ by 

LEF~A 6.14 For any well-ordering T, the collection of conditions P 

such that T < F (0) is dense. 

Proof. Let P be any condition and T' be a well-ordering > max(T,P (0)} . 

Suppose p(O)~ T'~ x and let ~ denote the collection 

pO)(u)(v) , u ~ ~({o)) ^ v ~ ~(T,) ,, 0T,(x) } 

Since ~ is codable by the class 

~U,V>,y> , y e P(1)(u)(v)A u ~ ~(p(O)) ^ v ' ~(T')~ OT,(X)}, 

there ~s a class A such that A is not in ~ . Put 

is a bijection and for all J , ~(T')X OT,(X), I(B(V)~ p(1)). Clearly B 

Now putting 

P(~)* = {<~(y),z>, :y,~>~ P(~)}, 

it follows that p(1)*-- p(1) (see Defn. 1.ZZ), so 

The required extension Q of P is now obtained by putting 

Q(o) _- T' 

and Q(1) = p(1)* &2 B. 
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6.15 For any X, the collection ~P : X ~ p(1)} 

Proof. Let P be any condition and suppose I(X ~ p(1)). 

successor of p(O), x be the T-greatest element in ~(T) 
m 

T ~x H p(O). Define F with domain ~(T) as follows: 
m 

;(x) = ~ ~(1)(~(x)) if 

1 X if x = x m- 

Now define a condition Q as follows: Q(O) = T 

P f- Q and X ~ Q(1), so the lemma is proved. 

is dense. 

Let T be a 

and suppose 

~a Q(1) = F. Cle~ly 

L~}9~A 6.16 Let X be any relation whose domain is well-orderable. Then 

the collection {P : X Inc p(1)} is dense. (See page ]9] for the definition 

of Y Inc Z .) 

Proof. Suppose T is a well-ordering of ~(X). Let Pc be any condition 

and x ~ the T-least element of (X). For x e ~(X), let (~x denote 

the collection {P : x(X)~ p(1)}. By Lemma 6.15, ~x is dense for every 

x e ~(X), and clearly if P is in ~x and P C Q, then Q is in ~x" 

We now use DCColl T to find an extension 

@x for every x~ ~(X) 

Q of P such that 
o 

Let x e ~(X) and suppose 

Q is in 

(F �9 o~(~)--~'e) ^ Vy,~ .<~ x(x(Y)? F(Y)(1)^ (y <~ ~ ~ F(Y)c F(~))). 

By Lemma 6.11 there is a condition Px such that Px = lub F. Since ~x 

is dense there is a P in ~x such that Px ~ P" Then clearly, 

Vy <T x(F(y) ~ P)' 

so the hypothesis of DCColl T is satisfied. Hence, choosing P' in ~Xo 
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such that P 
o 

G such that 

P' (which is possible since 
x 
o 

is dense), there is a 

(G : ~(X)--~) 2% C (x~ = P' AVy,z ~ ~(X)(x(Y)s G (y)(1)a (y <T z --~ 

G(Y) i'- G(z))). 

Let Q = lub C. Then Pc C Q and for every x ~ ~(X), Q is in ~x" 

Hence, X Inc Q(1) and the lemma is proved. 

L~4A 6.17 The interpretations of RI - R5 hold in ~e. 

Proof. 

(1) The proof of (RI)I: Let T be any well-ordering. By Lemma 6.14 

the collection of conditions P such that T < p(O) is dense, so by ~3 

it meets r . Hence, suppose r(P), T <p(O), T~p(O)~x and p(O)(x) 

Then ~(T,X) holds. 

=X. 

(ii) The proof of (R2)I: Let X be any class. By Lemma 6.14 and ~5, 

there is a P such that ~(P) and X S p(1). Let X = p(1)(x). Then 

H(P(~ x,X) holds trivially, so (R2) I holds. 

(iii) The proof of (RS)I: Suppose R(T,X) A K(T,Y) holds. Then there 

exist P and Q such that r(P) and r(Q), and there exist x s ~(p(0)) 

and y ~ ~(Q(o)) such that ~~P(~ x ~ Q(o)~ y, p(o)(x) = x and 

Q(0)(y) = y. By r2 we may suppose P C Q. Then for some H, p(O) ~ Q(O) 

and p(1)(x) = Q(1)(H(x)) But p(O)~x H~x Q(O)~H(x), so H(x) = y and 

X = Y. Thus, (RS)I holds. 

(iv) The proof of (R4)I: Suppose R(T,X) ~ ~(T',X) holds. Then there 

exist P and Q which satisfy ~ and x c ~(p(0)) and y ~ ~(Q(0)) 

such that T "~ p(O)~ x, p(1)(x) = X, T',v Q(0)~ Y, Q(1)(y) = X . By 

~2 we may suppose P r" Q. Then for some H, p(O)~Q(O) and 

p(1)(x) = Q(1)(H(x)) = Q(1)(y) Since Q(1) is a bijection, it follows that 

H(x) = y. But p(O)~x II,~x Q(O)~H(x) = Q(O)~y, so T "~ T' and (R4)I holds. 
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(v) The proof of (R5) I is trivial. 

Now ~0)i is I@ since ~ is R-free. Hence, in order to show 

every axiom ~ of for that ~' ~ (~ + I~)I, that is, Y' ~I 

+I@, it only remains, after the above lemma, to show that y'~ (VIIIR)I, 

that is, W l ~ ~I for every instance ~ of the impredicative 

comprehension schema which contains the predicate R. For this purpose we 

P ~ (P forces ~ ) between conditions 

The definition is by induction on the length 

now define the forcing relation 

P and formulae ~ of XM(R ). 

of ~ . 

P ~ X= Y *-* X = Y, 

P~ X r  Y *-~ Xe Y, 

P ~ R(T,X) ~ 3x ~ ~(p(O))(T ~ p(O)r x ^ pO)(x) = X), 

~M(R), the formula P ~ ~ is R-free. 

v  eus !forcing 

P such that 

and 

Notice that for any formula ~ of 

We write P U ~ (P decides ~ ) for 

lemmas follow. 

Id~4MA 6.18 For no formula ~ is there a condition 

The proof is immediate from the definition of 

L~_~LA 6.19 If ~ is R-free, then (P I"I" ~)~-~ 

The proof is by induction on the length of 

the next lemma. 

~ 6.20 P ~  A p r" Q _~ Q ~-~ . 

L~A 6.21 For any formula ~, the collection {P : P ~ ~} 

�9 So is the proof of 

i s  d e n s e .  
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The proof is by the definition of P ~1 ~ . 

LFJ~IA 6.22 For every formula ~ , ~I 

Proof. By induction on the length of ~ . 

~P(r(P) ^ P ~ ). 

The proof is trivial if ~ is atomic. 

Suppose ~ is 1~. If ~I holds, then by the induction hypothesis, 

there is a P such that ~(P) A P ~ . Hence, by ~2 and Lemmas 6.18 

and 6.20, there is no Q such that ['(Q) i& Q~-~ ; so ~P(~(P) ^ P ~  ) 

--~ ~I" Assume IqP(~(P) A P ~ ). By Lemma 6.21 and ~5, there is a 

Q such that ~(Q) A Q ~ �9 Hence, Q ~ , so by the induction hypothesis, 

~I holds. ~us, ~I ~-~3P(r(P) ^ P ~i ). 

Suppose * is ~I ̂  '2" ~h~n 

(~1 A ~2)i ~ (~1)i A (~2)i 

aP(r ^ P H-~I ^ ~2 ) 

by r '2 and Lem~a. 6.20. 

Suppose ~ is ~X~. For every X P 

(~(x)) I ~ ~P(P(P) ^ P ~ ~(x)) 

by the induction hypothesis; so clearly, 

( ~ x ~ )  I ~ -~ x(@(x)) I 

3 P ( r ( ~ )  ^ P ~ =J x ~ ) .  

The proof of the le~na is complete. 

L~MA 6.25 Let ~tx) be any formula with one free set-variable x and 

possibly parameters. Then the collection ~P : Vx(P ~ ~(x))} is dense. 
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Proof. By W0(V) there is a well-ordering T of V. Let P be any 
o 

condition. For any x let J%(x,P) denote the formula PoE P A P U ~(x). 

Lemma 6.21, the collection {P : A(x,P)} is dense for every x , and by By 

Lemma 6.20, if A(x,P) holds and P ~ Q, then 2%(x,Q) also holds. 

We now use DCColl T to find a condition Q such that A(x,Q) holds for 

every x. The lemma follows immediately. 

Let x be any set and suppose 

(F : OT(X)--.'1" ~) ^ Vy,z(y ~ T 

F(Y) r F(~))). 

^ ~ <~ ~ _.A(y,F(Y)) ^ (y<~ ~ -. 

Put Px--'-- lub F, which exists by Lemma 6.11. Since {P : A(x,P)} is 

dense, there is a P such that ~(x,P) ^ Px r- p. Clearly ~y <T x(F(Y) r P)' 

so the hypothesis of DCColl is satisfied. Hence, there is a G such 

that 

(G ~(~)-~ ~) ^ Vy,~(A(y,C (y)) ̂  (y ~ ~ -~ c (y) m G(~))). 

Put Q -'~ lub G. Then Q is the required condition. 

It can now be shown that ~r ~. (VII~)I. 

Let ~(x) be any formula of ~M(R) with one free set-variable and 

possibly parameters. We need to show that 

(*) BYV~(~ ~ Y ~, (~(x)) I) 

By Lemma 6.22. (~(x)) I ~ ~P(C(P) A P ~ ~ (x)) for every x, 

and by Lemma 6.2J and V3, there is a Q such that V(Q) ^ Vx(Q ~[ ~(x)). 

We show that 

(~) Vx(~P(r(P) ^ P~- ~(x)).~ q H- ~(~)) 

for then (*) follows trivially from Lemma 6.22 and the impredlcative 
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comprehension schema. 

Since r(Q) holds, the implicati~a from right to left in (**) is 

trivial. Suppose ~(P) A P~-~(X)o By ~2, P~ Q or Q ~ P. If 

PC Q, then by Lemma 6.20, QH- ~(x). If Q C P and l(Q~- ~(x)), 

then Q I"I- I ~(x) since Q ~ ~ (x). Hence, by Lemma 6.20, P ~-'I _~ (x), 

which is impossible since P ~- ~ (x). (**) is thus proved and the proof of 

Theorem 6.6 is complete. 
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Let ZF~ be obtained from ZF ~ (= ZF without the axiom of 

foundation and without the power-set axiom) by adding a new 2-place 

predicate R to the language of ZF, allowing R to flo~are in the 

replacement schema, and adjoining the following axioms, the conjunction of 

which says that R establishes a bijection between On and V. 

I. V= B ~(~,x) 

3. W,~,y(~(~,x) ^ R(~,y) -~ x = y) 

4. V~,~,x(~(~,x) ^ R(~,x) -~ ~ = ~) 

By taking conditions as bijections whose domains are ordinals or as 

pairs ~,f~ , where f is a bijection whose domain is ~ , one easily sees 

that the proof of Theorem 6.6 can be modified to yield the following result: 

7.1 ZF~- is a conservative extension of ZF O- + WO + ~DCC ~ . THE0~t~I 

COROLL~RY 7.2 

(i) 

+ u ~ 

(Immediate) 

I{BG ~ + N is a conservative extension of NBG ~ + W0 

with respect to ZF-sentences. 

(ii) }~O + N is a conservative extension of NI~ O + V~DCC ~ 

with respect to ZF-sentenoes. 

(iii) NI~ + E is a conservative extension of NBC + AC with 

respect to ZF-sentences. 

Corollary 7.2 (iii) is well-known and was proved, for examplet in 
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Feigner [4 ]. 

We conclude with some questions. 

QUESTION 7.5 9y adapting the forcing method in Chaqui [ 2 ], U. Feigner 

has shown that M + E is a conservative extension of M + AC with respect 

to ZF-sentenees, but can it be sho~ that M ~ + N is a conservative extension 

of N O + ~DC~ with respect to ZF-sentenees ? 

QUESTION 7-4 (i) Is M ~ + E a conservative extension of M ~ + AC with 

respect to ZF-sentences ? 

(ii) Is hqBG ~ + E a conservative extension of NBG ~ + AC 

with respect to ZF-sentences ? 

In Section 5 it was shown that,in the absence of the axiom of foundation, 

E is at least as weak as any other class-form of choice mentioned in that 

section. (See, for example, Theorem 5.10(vii).) Moreover, we have sought in 

vain a formula which is a theorem of M ~ + E (for example) but which is not 

a theorem of M ~ + AC. It would not surprise us, therefore, if the answer to 

Question 7.4 is affirmative. 

QUESTION 7-5 Is M ~ + C V 

respect to ZF-sentences ? 

QUESTION 7.6 Is M ~ + SC v 

respect to ZF-sentences ? 

a conservative extension of 

a conservative extension of 

M ~ + ~xC x with 

M ~ + VzSC x with 
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J. Flum 

We start with Lindstr~m's theorem which tells us that there is no language 

more expressive than the language of first-order logic and still satisfying 

the compactness theorem and the L~wenheim-Skolem theorem. We analyze two as- 

pects of the proof of this theorem, namely the use of the algebraic characteri- 

zation of elementary eqivalence and the way the compactness theorem is applied. 

The algebraic character izat ion of elementary equivalence, due to Fraiss~, 

leads to an algebraic understanding of the expressive power of f i r s t - o r d e r  

logic and is  a powerful too l  in model theory (see w In pa r t i cu la r ,  Fraiss~'s 

notion of n-isomorphism, ~n' is  a f i r s t - o r d e r  def inable approximation of the 

isomorphism re la t ion  =. The sequence ~ converges to =, i f  convergence is  
n 

defined in a way suggested by kindstr~m's proof. S im i la r l y ,  we may introduce 

f i r s t - o r d e r  def inable f i n i t e  approximations for  other algebraic re la t ions  bet- 

ween structures,  such as being an extension or a homomorphic image. We 

apply the convergence notion to obtain a general in te rpo la t ion  and preservation 

theorem for  f i r s t - o r d e r  log ic  (w 

Let L be a language sa t i s fy ing  the compactness theorem. Let Z be a set 

of L-sentences containing a binary predicate symbol <. I f  ~ has a model ~ where 

<A is  wel l-ordered of order type w,then, by the compactness theorem, E has a 

model where <A is  not wel l -ordered. The appl icat ion of the compactness property 

in Lindstr~m's proof i s  of t h i s  form. I t  turns out that the non -de f i nab i l i t y  of 
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(w,<) in a language L is equlvalen% %0 the compactness theorem. Thus, i f  

is any ord inal  the statement " (~,<)  is not L-def inable" may be regarded as 

a weak compactness property. The smallest non L-def inable ~ is cal led the 

wel l -order ing number of k. We use the wel l -order ing number of k to der ive 

some preservat ion theorems for  k (w and %0 show that the class of ( f i r s t -  
WlW 

order) minimal st ructures is not k -axlomatizable.  For a large class of l o -  
wlw 

glcs ( inc luding kw,k(Q ) and admissible log ics) ,  we apply the wel l -order ing 

number to obtain upward k~wenheim-Skolem theorems (w 
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Fra lsse s theorem 

Two s t ruc tu res  ~ and @ are e l e m e n t a r i l y  equ iva len t  i f  they are models o f  

�9 / !  
the same f i r s t - o r d e r  formulas.  In t h i s  sect ion we der ive  Frazsse s pu re ly  a l -  

gebraic c h a r a c t e r i z a t i o n  of  elementary equivalence [ lg ] .  

We denote similarity types by K, KI,K2, . . . .  They are sets of  p red ica te  

symbols ( P , Q , R , . . . )  and f unc t i on  symbols ( f , g  . . . .  ) .  Sometimes O-placed func-  

t i o n  symbols are denoted by c ,d ,  . . . .  Let T K be the set of  terms corresponding 

to K and k K the set o f  formulas of  f i r s t - o r d e r  l o g i c .  Assume we hove a f i xed  

enumeration V l , V 2 , . . .  of  the v a r i a b l e s .  For n ~ ~ l e t  k K be the set o f  Vo' n 

formulas whose f ree va r i ab les  are among Vo, . . . .  Vn_l, i . e .  

LK : [q:)ifr(c#) c [Vo,.. Vn_l]] n "' ' 

where fr(~) is the set of free variables of ~. We denote structures of type K 

by ~,@, . . . .  A,B,... are the corresponding universes. 

A one-to-one function p is a partial isomorphism from ~ to ~ if the domain 

of  p ,do(p) ,  i s  a subset o f  A, the range of  p, rg (p ) ,  i s  a subset o f  B, and f o r  

each P r K and r do(p) a o , . . . , a n _  1 

P~ao.. .an_ 1 i f f  P~P(Oo)...P(an_l) , 

and for each f c K and a ~ ..... a n r do(p) 

( I )  f~(a ~ . . . . .  On_ l ) : an i f f  f~(P(ao) . . . .  ,P(On_l) ) = P(an) . 
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Thus in  case . . . ,  r do(p)  and f ~ ( a o , . .  ao, an_ 1 . , a n _ l )  ~ do (p ) ,  (1)  o n l y  g ives  

the information that fW(P(ao) . . . . .  P(an_l)) does not lie in rg(p). Note US 

that p = ~, the empty function, is in P(~,W) in case K does not contain any 

o-ary predicate symbol. Let P(W,W) be the set of partial isomorphisms from 

toY. 

1.1 D e f i n i t i o n .  We w r i t e  I :  ~ ~ W and say t h a t  ~ and W are p a r t i a l l y  i s o -  
P 

morphic v i a  I ,  i f  I i s  a non-empty set  o f  p a r t i a l  isomorphisms w i t h  the back 

and f o r t h  property, 

f o r t h  p l roper ty :  

and a r do (q ) ,  

back p r o p e r t y :  

and b e r g ( q ) .  

f o r  every  p r I and a r A t he re  i s  a q r I w i t h  p c q 

f o r  every  p r I and b e B t he re  i s  a q e I w i t h  p c q 

We write Q ~ W, if there is an I such that I: ~ W. 
P P 

The following well-known g e n e r a l i z a t i o n  o f  a theorem o f  Cantor  desc r ibes  

the  r e l a t i o n  between ~__ and = . 
P 

1.2 Theorem. 

( i )  I f  ~ ~ W then ~ ~ W. 
p 

(ii) If ~ ~ W 
P 

and A and B are denumerable,  then ~ ~W.  

For f u t u r e  re fe rence  we g ive  a p roo f  o f  ( i i ) .  

Assume I :  ~ =  @ where A = [ a o , a l , . . . ~  and B = f b o , b l , . . . ~ .  Given Po c I l e t  
P 

P2n+l be some ex tens i on  p o f  P2n i n  I w i t h  an e do (p ) ,  

P2n+2 be some ex tens i on  p o f  P2n+l i n  I w i t h  bn r r g ( p ) .  
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Then p = Upn has domain A and range B. Hence, ~ = ~.  

1.3 Exe rc i ses .  

(a)  I f  ~ and �9 are dense l i n e a r  o r d e r i n g s  ( w i t h o u t  e n d p o i n t s ) ,  then ~ ~ ~.  
P 

(Take I = {PIP r P (~ ,~ ) ,  do(p)  f i n i t e ] ) .  

(b)  I f  ~ and @ are w - s a t u r a t e d ,  a l g e b r a i c a l l y  c losed f i e l d s  o f  the same charac -  

t e r i s t i c ,  then ~ ~ ~.  (Take I = {pl p c P(~ ,m) ,do (p )  f i n i t e l y  generated sub- 
P 

f i e l d  o f  ~ } ) .  

(c) If ~ and ~ are w-saturated discrete linear orderings, then ~ ~ ~. (Take 
P 

I = {PlPr P(~,~),do(p) f i n i t e } ) .  

By the  preceed ing theorem ~ may be viewed as a coun tab le  app rox ima t ion  
P 

o f  the r e l a t i o n  o f  isomorphism. We need f o r  our  purposes s t i l l  weaker n o t i o n s  

o f  isomorphsm. 

We use ~,~,~ to denote ordinals. 

I )~ '~ and say t h a t  ~ and S are ~ - p a r t i a l l y  1.4 D e f i n i t i o n .  We w r i t e  ( < ~:~ ~ ~ 

isomorph ic  v i a  (Iq)~q < ~, i f  

( i )  I ~ O I I ) . . . ~ I D . . .  , where f o r  each ~ < g , I  i s  a non-empty set  o f  p a r t i a l  

isomorphisms.  

( i i ) ( b a c k  and f o r t h  p rope r t y )  f o r  each ~ + 1 < g, p r I + 1 and a r A ( resp .  

b e B) the re  i s  a q r I w i t h  p c q and a r do(q)  ( resp .  b r r e ( q ) ) .  

Write ~_~g ~ if there is (In) q < ~ such that (In) ~ < ~'~/ _~ ~5. 

1.5 Theorem. 

( i )  I f  ~ ~ ~ then f o r  a l l  g, ~ ~ L~!. 
P 
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( i i )  I f  ~ ~n+2 ~ and A has n elements, then ~ ~ .  

( i i )  t e l l s  us tha t  f o r  n e (~' ~n may be viewed as a f i n i t e  approximat ion of  the 

isomorphism r e l a t i o n .  

1.6 Exercises.  

(a) I f  ~ = (A,R) and W = (B,S) are ordered structures, we denote by ~ ~ ~ the 

structure (A x B,[)lwhere [ is the order defined by 

(a,b) [ (a ' ,b ' )  i f f  Ca < a') or (a = a' and b < b ' ) .  

Assume tha t  t ~ and ~o are o rd i na l s  such tha t  w ~~ < ~o and whenever ~,~ < ~o 

then ~ + ~ < ~o" Show: I f  ~ = (A,R) is  any ordered s t ruc tu re  wi th  f i r s t  e l e -  

ment then 

(t~ %o ~ e (t~ 

~! ~ (X,<) for any uncountable cardinal (cf.~Z~) In particular, (X,<) ~X 

(b) Let (Z,+) be the additive group of integers. If ~ is a torsion-free abelian 

group and ~/P~-- (Z'+)/PtZ, +xk ) for each prime p, then ~ ~ (Z,+). 

The following lemma establishes the f i r s t  connection between the purely 

algebraic concept of isomorphism and the model-theoretic notion of elementary 

equivalence.  I t  t e l l s  us tha t  i f  W ~ ~, then ~ and @ s a t i s f y  the some formulas 
n 

of quantifier rank < n. More precisely: we define the quantifier rank of a for- 

mula ~,qr(~), by induction on ~ as follows: 

qr(q0) = 0, if ~0 is atomic, 

qr(-~ ~p) = qr (?) ,  
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qr (~  V %) = max [ q r ( ~ ) , q r ( % ) ] ,  

qr (3 x ~) = q r (~ )  + 1 . 

1 .7 Lemma. Let  K be a set  o f  p r e d i c a t e  symbols. Assume (Im) m < n: ~ ~n 

k K I f  p ~ Im, ~ e do(p)  and ~ c has q u a n t i f i e r  r a n k ~ m ,  then 
r 

(~ denotes and p(~) denotes P(ao) ..,P(ar_1)) ao,...,ar_ I, , .  . 

The p roo f  i s  by i n d u c t i o n  on m. Use the back and f o r t h  p r o p e r t y  in  case 

= 3x~. Thus, i f  p r I we may pass through m q u a n t i f i e r s .  
m 

In  case K con ta ins  f u n c t i o n  symbols the lemma remains t r u e ,  i f  we take 

rk(~) instead of qr(~), where rk(M) is defined by: 

i f  ~ i s  a tomic ,  then rk (~ )  i s  the number n o f  occurences o f  f u n c t i o n  

symbols in  ~ , u n l e s s  ~ i s  o f  the form t 1 = % 2 in  which case r k (~ )  = n - 1 

rk(~ M = rk(M),  

rk (~  v ~) = max { r k ( M ) , r k ( ~ ) ) ,  

rk<3~) = rk(~) + I. 

1.8 Corollary. If ~/ ~_ ~ (or for each n, ~ = ~), then ~ ~ ~. 
~J n 

Our aim is  to  prove the converse o f  1 .8 .  For t h i s  purpose we have to  

assume t h a t  K i s  f i n i t e .  Then we can express in  f i r s t - o r d e r  l o g i c  t h a t  ~ con- 

t a i n s  a f i n i t e  subset o f  a g iven isomorphism type .  Hence, i f  ~ and ~ are e l e -  

m e n t a r i l y  e q u i v a l e n t ,  ~ a l so  con ta ins  such a subset .  We put the co r respon-  

d ing p a r t i a l  isomorphism in  I . S i m i l a r l y ,  g iven a set  T o f  isomorphism types 
o 

o f  n+l e lements we may express in  f i r s t - o r d e r  l o g i c  t h a t  ~ con ta ins  a subset 
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of n elements tha t  may be extended, ad io in ing  one element, just  %o the types in 

T. Hence, i f  ~ ~ �9 then ~ also contains such a subset. Put the corresponding 

partial isomorphism in I I. Going on in this way we obtain a sequence (In) n <i~ 

such that  ( I n )  n < w: ~ ~w ~" 

More precisely, for r e w let 

L K = {~1~ ~ r,~ i s  of  the form Px . .  : x 1 or fx  . . . .  r o "Xs- l 'Xo o "Xs-1 Xs] 

1.9 Lemma. Given Q and @, ~ r A and ~ e B the fo l l ow ing  ore equ iva len t .  

( i )  For a l l  r ~ V : ~ ~ ~[~] i f f  ~ ~ ~ [~ ] .  
r 

( i i )  P(a i )  : b i f o r  i < r def ines o p a r t i a l  isomorphism. 

Thus the isomorphism type of  an r - t u p e l  ~ e A i s  determined by the set of  

formulas of  ~ tha t  i t  s a t i s f i e s ,  or ,  e q u i v a l e n t l y ,  by 
r 

(2) o = A 
e r r 

Cal l  o the O-isomorphism type of  ~ ( i n  ~) ( c f . [ 2 1 ] )  and put 
a 

IT ~ = {~~ I~ K-s t ruc tu re ,  ~ r A~}. 
r r 

a 

Note tha t  IT ~ i s  f i n i t e ,  since K i s  f i n i t e .  
r 

We def ine by induct ion on n the n-isomorphismtype @~ of ~ and the set 

a ITn- 1 IT n of  n-isomorphism types of  r - t u p l e s .  Assume tha t  n > 0 and tha t  i s  
r s 

f i n i t e  fo r  any s r w. 

Put 
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= n-1 (3) n A 3v n - I  A Vv V 
r r r r r 
a a r A oa a r A ao 

and 

(4) IT n : ~cpni ~/ K - s t r u c t u r e ,  r r A~ . 
a 

Thus 0 n t e l l s  us t o  wh ich ( n - 1 ) - i s o m o r p h i s m  t y p e s  we can ex tend  ~ a d i o i n i n g  
r 
o 

one e lement .  The proof  of the fo l l owing  lemma i s  by i n d u c t i o n  on n. 

I . I 0  Lemma. 

(i) IT n is finite. 
r 

L K (it) If ~ ~ IT n t hen  s r and qr(Cp) = rk(cp) = n. 
r r 

(iii) Given ~/ and a r r A, 0 n is the only ~ c IT n such that ~ ~ ~]. 
r r 
o 

n n n n-I - ~ for n > 0 .  (iv) M s r qo s for s < r, and ~ <Pr ~r 
a 0 a a 

In  case r = 0 deno te  ~ by ~ .  
O 

tend  t h e  empty  subse t  n t i m e s .  

n . 
~ is a sentence; it tells us how we may ex- 

I f  ~ and �9 a re  K-structure% pu t  

(5) I 
n 

= {P iP  r P ( ~ , ~ ) ,  t h e r e  i s  r r ~ and ~ r A such t h a t  

n 
do(p) = [a ~ . . . . .  ar_l} and @ ~ ~r [p (~) ] } .  

O 

Then 

1.11 hemma. 

(i) I n In+l " 

(it) (In) n <~ has the back and forth property. 
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( i i i )  I :~ ~ i f f  ~ ~ ~ �9 
n 

The proof i s  a simple consequence of the d e f i n i t i o n s .  Use 1.7 to der ive ( i i i ) . -  

From 1.7 and 1.11 we obtain 

1.12 Coro l l a r y .  Let K be f i n i t e .  Then 

n 
~n+l ~ i f f  ~ ~ ~ . 

1.13 Fra lss~ 's  theorem. Assume that  K i s  f i n i t e .  Then the fo l low ing  are 

equivalent. 

(i) ~ ~ ~. 

n 
(ii) For all n c ul t ~ ~ s . 

(iii) There is (In) n < w containing only partial isomorphisms with finite 

I n : ~ ~ ~. domain such %hat ( )n < w w 

( i v )  ~ ~ ~. --w 

Though the back and fo r th  technique has been appl ied ex tens i ve l y  in the 

study of  i n f i n i t a r y  languages (see, fo r  example, [ 3 ] ,  [1~) ,  we be l ieve  that  

i t  has been neglected in f i r s t - o r d e r  l og i c .  The formulas n have a clear 
r 
a 

algebra ic  content.  Since each f i r s t - o r d e r  formula i s  equiva lent  to a d i s iunc -  

t i on  of a f i n i t e  set of  these formulas (see the exerc ises below), we obtain 

an a lgebra ic  understanding of the expressive power of f i r s t - o r d e r  l o g i c .  Thus, 

i f  model theory is  viewed as s a t i s f y i n g  the equation "un i ve rsa l  algebra + 

log ic  = model theory"  (see [ 9 ] ) ,  the importance of the back and fo r th  

technique fo r  f i r s t - o r d e r  log ic  i s  not su rp r i s i ng .  

We use t h i s  technique in w to prove Lindstr~m's theorem, and in w 

to give a uniform treatment of  some i n t e r p o l a t i o n  theorems. We l l s t  some more 
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a p p l i c a t i o n s  in  the exerc ises to show i t s  wide a p p l i c a b i l i t y .  

1.14 Exerc ises.  

(a) Ca l l  a set ~ o f  L K complete, i f  any two models o f  ~ are e l e m e n t a r i l y  equ i -  
o 

volent. Show: I f  K is at most countable, then ~ is complete i f f  any two w- 

saturated models of ~ are par t ia l ly  isomorphic. Hence the following theories 

are complete (see 1 .3 ) :  the theory  of  dense l i n e a r  o rder ings ,  the theory  of  

d i sc re te  l i n e a r  ozder ings,  the theory  of  a l g e b r a i c a l l y  closed f i e l d s  of  f i xed  

c h a r a c t e r i s t i c .  

(b) ~33] Assume that Q is an infinite subset of w, Q = [qo,q I .... ] with 

qo < q] < .... Q has i ncreasin@ distances, if for n < m r {u, qn+] - qn < 

qm+l - qm" 

Show: 

Ci) If Q has increasing distances, then there is a complete set ~Q re- 

cursive in Q, such that (w,<,Q) ~ ~Q. In particular, if Q is recur- 

s ive ,  Th((w,<,Q)) is dec idab le .  

( i i )  For any Tur ing  degree ~ there i s  a Q c w, Q ~ ~, such tha t  Th( (w,<,Q))  

has degree a (H in t :  use p a r t ( ~ ) ) .  

L K (c)  Let K be f i n i t e  and l e t  ~ e be of  r a n k ~  n. 
r 

Then ~ ~ ~ V[M I ~ ~ ~ r . ,,-structure, A, ~ ~ ~LaJj 
o 

(d) Assume that ~ is a complete set in a countable language. Then the following 

are equivalent: 

(i) Each formula M is equivalent in ~ to a formula of rank s n. 

(ii)If ~ and ~ are w-saturated models of ~, then I:~ ~ ~ for I = {p J 
P 

there is ~ e A such that do(p) = [ao, . . . .  ar_1~ and (~,~) =n+1 (@'P(~)~" 

(e) Show that Frazsse's theorem is not true without the assumption that K is 
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f i n i t e .  In case K i s  countable, say K : UK wi th f i n i t e  Kn, der ive a 
n 

theorem analogous to Fralsse~ theorem by pu t t ing  in to  I p a r t i a l  i so -  
n 

morphisms with respect to K . 
n 

( f )  By ( c ) ,  the fo l low ing  may be viewed as an a lgebra ic  vers ion of the cam- 

pactness theorem: 

I f  Wo,W1,... i s  a sequence of K-s t ruc tures  and Wn ~n ~m fo r  n < m, 

then there is  a �9 such that  fo r  a l l  n < w ,  ~ ~. 
n ~n  

Give a pure ly  a lgebra ic  proof of t h i s  f ac t ,  i . e .  a proof that  does not 

use a f i r s t - o r d e r  languageF31~L,jSimilarly, f ind  an a lgebra ic  vers ion and 

proof of  the omi t t ing  types theorem. 

w 2 Lindstr~m's theorem. 

In the l a s t  20 years many languages tha t  are more expressive than the 

language of  f i r s t - o r d e r  l og i c ,  have been introduced and studied.  But none of 

them happened to s a t i s f y  both the compactness theorem and the L~wenheim- 

Skolem theorem. Later  Lindstr~m ~ proved that  there i s  no log ic  tha t  

strengthens f i r s t - o r d e r  log ic  and has these two model - theoret ic  p roper t ies .  

L indstr~m's theorem was the f i r s t  important r esu l t  of  tha t  branch of mathema- 

t i c a l  l og ic  which ks now ca l led  " s o f t  model theory"  or "abs t rac t  model theory" .  

Soft model theory deals wi th p roper t ies  of  log ics  and studies t h e i r  r e l a t i o n s  

(see [ 2] , [4] , [  14],[ 15]). 
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Thus L "is" first-order logic. L 
WW ww 

In t h i s  sect ion we s ta te  and prove L indst r~m's  theorem. But f i r s t  we 

l i s t  some examples of  extensions of  f i r s t - o r d e r  l o g i c ;  

second-order log ic  k 2, 

weak second-order l og ic  L 2w, 

log ics  wi th  added q u a n t i f i e r s  

e.g.  k ( ~ )  wi th  the unary q u a n t i f i e r  Q~where ~ ~ Qx~0(x) 

means that  there are at l eas t  ~ many a r A such tha t  ~ m ~ [ a ] .  

L(Q2) with the binary quantifier Q2~ where ~ ~ Q2xyqo(x,y)~ means 

that there is A c A, I A I ~ k such that for distinct a,b r Ao, 
0 0 

~ ~[a,b] .  

L(QH) wi th the added q u a n t i f i e r  QH where ~ ~ QHX~0? means 

infinitary logics 

e.g. L (arbitrary coniunctions and disiunctions), L~ (con- 

iunctions and disiunctions of fewer than ~ formulas, x on in- 

finite regular cardinal). 

will be our notation for first-order 

l og i c  in t h i s  paragraph. 

We choose some p roper t i es  that  are shared by a l l  these log ics  as de- 

f i n i n g  axioms of  a l og i c .  Denote by Str (K)  the c lass of K -s t ruc tu res .  

2.1 D e f i n i t i o n .  By a log ic  (or a mode l - theore t i c  language) ~ we mean a pa i r  

(L,~)  ( ! )  where L is  a func t ion  which associates to any type K a c lass L K, 

the c lass of  L-sentences of  type K, and where ~L is  a b inary  r e l a t i o n  s a t i s -  

fy ing  the fo l l ow ing  cond i t ions :  



J. F1 urn 261 

K 1 
( i )  I f  K 1 c K 2 then L c L K2 . 

( i i )  I f ~ t h e n ,  for s o m e K , ~  Str(K) a n d ~ k " .  

( i i i )  (Isomorphism proper ty)  I f  ~ ~.~ and ~/ ~L ~0, then ~ ~L s 

( i v )  (Reduct proper ty)  I f  s r k K, K c K' and ~/ e S t r ( K ' ) ,  then 

~L ~ i f f  ~ P K ~L ~ 

( ~ e r e  ~ ~K denotes the K-reduct of ~) .  

To s i m p l i f y  no ta t ion ,  where possib le we sha l l  omit the subscr i t  k in 
L 

L K write L for a logic s If ~ ~ let 

Mod(~) = (Mod~(~)) = [~I~ e St r (K) ,~  

and 

Suppose that  L and L' are l og i cs .  We say tha t  L is  contained in L ' ,  

k K k ,K L ~  L ' ,  i f  fo r  each type K and ~ r there is  a ~ ~ such that  

Hod(w) = Mod(~).L and L' are equ iva len t ,  L ~ L ' ,  i f  L ~  L' and L' < L. 

and L(02). For example, L~mS L(Q ) ,  L(Q~ ) ~ L 1 ~ 
o 

We introduce some f u r t he r  p roper t ies  of l og i cs .  We wr i t e  Boole(L) and 

say that  k is  closed under f i n i t e  Boolean operat ions i f  the fo l low ing  hold 

k K L K (i) for each ~ c there is a X r with 

Hod(E) = Si r (K)  - Hod(~), 

L K L K (ii) for each ~,~ e there is a X r with 

Hod(E) = Mod(~) u Mod(~). 

If Boole(k), o X satisfying (i) resp. (ii) is denoted by ~ ~ resp. ~ v r 

Suppose ~ is  a K-s t ruc ture  and B i s  a subset of A. I f  B i s  K-closed, 

i . e .  non-empty and closed under fA f o r  each f r K, we w r i t e  [B]  ~ fo r  the 
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substructure of ~ whose universe i s  B. By r e l a t i v i z i n g  the q u a n t i f i e r s  i t  i s  

easy to show tha t  a l l  l og ics  l i s t e d  at the beginning of t h i s  sect ion have the 

fo l low ing  proper ty  which we denote by Re la t (L ) .  

L K Relat (L)  i f f  f o r  each K, ~ c and each unary predicate U 

L K u {U} there is  a ? c such that  

(~,U A) ~ ? i f f  [uA] ~ ~ @ 

holds fo r  a l l  ~ c Si r (K)  and a l l  K-closed U A c A 

(a sentence ~ satisfying this condition is denoted 

by MU). 

We call a logic L regular, i f  L ~ L, Relat(L) and Boole(L). 

We list some more properties of logics. 

L K L~w(L) : i f  ~ ~ has a model, then i t  has a denumerable model. 

Comp(L) : i f  every f i n i t e  subset of Z c L K has a model, then ~ has a model. 

Compt(L): i f  every f i n i t e  subset of  a set ~ of  ~ ~ L-sentences has a model, 

then ~ has a model. 

For example, L~w(Lw~:>), L~w(Lwlw) , Comp(Lww), ComP~o(L(Q~l 

V = L then Comp~ (L(Q~)) (cf. [2~]). 
o 1 

) )  ( c f . [ 4 9 ] )  and, i f  

2.2 Lindstr~m's theorem. 

L6w(L). Then 

Suppose tha t  L is  a regu lar  l og ic  with Comp(L) and 

]) 
L ~ L w. 

lJLindstr~m~ used in F24] a renaming proper ty  (see w instead of the r e l a t i -  
v i z a t i o n  proper ty  which is  part  of the d e f i n i t i o n  of  r e g u l a r i t y .  Though the 
renaming proper ty  seems to be more na tu ra l ,  i t  i s  eas ier  to work wi th the 
r e l a t i v i z a t i o n  proper ty .  The idea of the proof becomes more t ransparent .  
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The idea of the proof presented in the next three lemmas is the following. We 

show using the compactness property that each L-sentence depends only on a 

f in i te  set of symbols (lemma l ) .  By the L~wenheim property we need to examine 

only countable models. By L-compactness a countable model may be regarded as 

the l imi t  of i ts f i n i t e  parts. But a l l  one can say about a f in i te  part of a 

structure (of f i n i te  type ) can be expressed in f i rs t -order  logic. 

L K . 2.3 Lemma. Let L be a regular logic with Camp(L), and ~ ~ Then there is 

a finite K c K such that for any K-structures ~ and ~, W~ K ~@ pK ~ implies 
0 0 

(~h~ i f f  ~ ) .  

Proo f .  Take new unary p r e d i c a t e  symbols U and V and a new unary  f u n c t i o n  

symbol h. Let ~ be a set of L -sentences, and hence, by regu lar i ty ,  of L- 
ww 

sentences,  say ing  t h a t  the U-par t  and the V -pa r t  are K-c losed and t h a t  the 

r e s t r i c t i o n  o f  h to  the K - reduc t  on U i s  an isomorphism onto the K - reduc t  on 

V. Then 

U V Z ~ cp ,-,cp . 

By Camp(L) %here i s  a f i n i t e  ~ such t h a t  
o 

U V E ~cp ~q~ . 
0 

Choose a f i n i t e  K c K such t h a t  ~ c L K~ u {U,V,h ]  
0 0 LUte) 

~i'K 
0 

~  Suppose t h a t  

~ PK o. We may assume A n B = ~. There i s  ($ ,uC,vC,hC)  such t h a t  

[uC] E = ~,[vC] ~ = ~ and (c, uC,vC,h c) ~ ~ . 
o 

Thus (~ ,uC,vC,hC)  ~ U ~ V ,  hence by R e l a t ( L )  

= [uC]  C" ~ ~0 i f f  ~ = [ vC ]  C ~ ~ . 

We have proved 
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2 .3 '  Lemma. Suppose tha t  L i s  regu la r  and Comp(L) holds.  Then f o r  each ~ e L K 

there is  a f i n i t e  K c K such tha t  f o r  any C c Str (K)  and any K -c losed 
0 0 

uC,v c c C, 

i f  E uC] ~ P Ko ~ F vC] ~ I' K U V o , then (c, uC,v C) ~ ~ ~ ~ . 

2.4 Lemma. Assume that L is regular with Camp(L). I f  for any Q and ~, 

s @ implies ~ ~ ~, then L ~ L 

Proof. We show L~ L . Let @ be in L K. I f  ~ ~ ~, by hypothesis Th (~) W 
W~ W~ 

~w " LK where Thwc~(~) = { * 1 '  r L ,~ ~ ~] By Comp(L) there i s  y~ r w~t, such tha t  

~j ~ q~ and ~/ ~ X~ T . 

Hence 

: ,~'lod ('X~.) �9 

Use Camp(L) to get for some ~ l , . . . ,~n ,  

n 

Mod(cp) = i U = l  
Mod( j ) : ) . 

3_ n 

But ~ I  v ' ' 'vy~n ~ LKm~'" 

The next lemma f i n i s h e s  the proof  of  L indst r~m's  theorem. 

2.5 kemma. Assume L i s  a regu la r  l og i c  w i th  Comp(L) and LSw(L). 

I f  ~ s @ then ~ ~ @. 
~W L 

Proof. By contradiction assume that ~ ~ ~ but non ~ ~ ~ holds for some ~ r L K. 

. /. w:~ f K o ~ ~ K o Choose a finite K as in 2.3' By Frazsse s theorem, (In) n r 
o " 
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for  some sequence ( In)  n c w" Take new predicate symbols P,U,V (unary), < , I  

( b i n a r y )  and G ( t e r n a r y ) .  Let  C be a s t r u c t u r e  such t h a t  

( I )  U c = A and [uC]C I'K = ~I 

(2) V C = B and [vC]Ci K = 

(assume t h a t  A n B = ~ ) ,  

(3)  ~ c C and <C i s  the n a t u r a l  o r d e r i n g  on ~, 

(4) pCp i f f  p c U I n , 
n c w  

(5) ICmp i f f  m r w and p c I l 
m 

(6)  GCpab i f f  t he re  is m r LU such t h a t  p r I 
m 

and p(a)  : b. 

Then ~ i s  a model o f  the  c o n i u n c t i o n  ~ o f  the f o l l o w i n g  sentences:  

Vp(Pp ~ VxVy(Opxy ~ Ux A Vy) )  

Vp(Pp ~ V x , x ' V y ,  y ' (Gpxy  A Gpx ' y '  - (-~ x = x '  ~ y = y ' ) ) )  

Vp(Pp ~ "p preserves p r e d i c a t e  and f u n c t i o n  symbols e K " )  
O 

Vx(3y(x < y v y < x) - ~p(Pp A Ixp))  

VpVxVy(y < x A Ixp  ~ Zyp) 

For th  p roper ty :VxVyVpVu(y  < x A Ixp  A Uu -* 3q3v 

(Iyq A Gquv A Vx'Vy'(Gpx'y '  ~ 6qx ' y ' ) ) )  

"Back p r o p e r t y "  

"< is a discrete ordering with first element" 

"U i s  K - c l o s e d "  
o 

"V i s  K - c l o s e d "  
O 

U 

(~ ~)V 
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I f  c is a new constant any f i n i t e  subset o f  

u { " c  i s  g r e a t e r  than the n - t h  element o f  ~ '  I n  c w] 

has a model, namely ~ .By  Camp(L) the re  i s  a model o f  the whole se t ,  thus a 

model o f  ~ A ~ f  where f i s  a new unary  f u n c t i o n  symbol and ~ f  says t h a t  f 

r e s t r i c t e d  to  the <-p redecessors  o f  c i s  an i n i e c t i v e  but  not s u r i e c t i v e  f unc -  

t i o n  i n t o  the <-predecessors  o f  c. By L~w(L) the re  i s  a coun tab le  model 

o f  r A ~ f .  Let  (dn) n r w be an i n f i n L t e  descending sequence of  <D. U D and V D 

are K - c l osed  and f o r  
0 

= [ P l  IDdnP f o r  some n r al l ,  I 

we have 

I : [ u D ]  ~ I ' K  ~_ [vD]  ~ l \ K  
0 0 

p 

Thus [UD] :0 PKo_~ FVI)] ~ i 'K~ . Hence by 2 . 3 ' ,  ~" ~ cO U 

~ $, in particular s- ~ qo U and ~ ~ (~ qo) v. 

V 
~ , a c o n t r a d i c t i o n  as 

2.6 Problem. Let ~ be an L - sen tence .  Let  L be the l e a s t  l o g i c  t h a t  con- 
0 ~]W 

t a l n s  ~o and f i r s t - o r d e r  logic  end is  closed under the ( f i n i t e )  Boolean opera-  

t i o n s .  Does Comp~ (L) imply t ha t  ~a is  equ iva len t  to a f i r s t - o r d e r  formula? 
0 

Note t ha t  in genera l  L does not s a t i s f y  Re la t (L) .  
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w Interpolation theorems. 

We take the formula ~ of  the proof  o f  the l a s t  lemma of  the preceeding 

sec t ion .  I f  f o r  n e w, we have a model E of  
n 

r u [ " c  i s  g rea te r  than the m-th element o f  ~ ' !  m < n ] ,  

then the U-part  o f  Cn' say ~n'  and the V-par t  o f  Cn' say ~n '  are n - p a r t i a l l y  

isomorphic,  ~ ~ ~ . Using the compactness theorem we obta in  a model of  
n n n 

u [ " c  i s  g rea te r  than the n - th  element o f  <~' I n r w] ,  

i . e .  a model such tha t  ~ ~ ~, where ~ i s  the U-part  and ~ i s  the V - p a r t . T h l s  
P 

leads us to the d e f i n i t i o n  of  the convergence of  r e l a t i o n s  given below. In 

particular, the sequence of relations ~ w i l l  converge to ~ . We apply this 
n p 

notion of convergence to obtain a general form of the interpolation theorem 

(cf. [25] and [29] for similar techniques). 

Al l  types w i l l  be f i n i t e  in this section and a l l  formulas w i l l  be f i r s t -  

order formulas. 

3.1 Definit ion. Suppose that R c Str(Kl) x Sir(K2). R is a PC6-relation,if 

L K ( i .e .  a set of f i rs t -order  for some type K ~ K l u K 2 there is a set ~ c 
0 

sentences) and there are unary pred ica te  symbols U,V r K such tha t  the 

following holds for a l l  ~ r Str(K I)  and ~ r Sir(K2) 

R ~ i f f  t h e r e  is a C e Sir(K) such t h a t  ~ ~ E,U C i s  Kl-Closed, 

V C is K2-closed,[uC]~ Kl = ~ and [vC] C ~K2 = ~ . l )  

I) Many-sorted languages are more natural for the study of relations among 
structures (see ~I~],[1G]). Nevertheless we do not introduce many-sorted 
languages as we ore not going to use them at any further point. 
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We say that ~ ( o r  more p r e c l s e l y  (K ,~ ,U ,V) )  d e f i n e s  R. 

Let  R and Rn, f o r  n c w, be PC6- re la •  on S t r (K1)  x S t r (K2 ) .  We w r i t e  

R --> R and say  t h a t  R f l r s t - o r d e r  converges  to  R, i f  t h e r e  a r e  K,U,V and 
n n 

such t h a t  f o r  n e w, (K,En,U,V) d e f i n e s  Rn,E n c ~n+l and (K, UEn,U,V) d e f i n e s  
n 

R. 

3.2  Examples. 

(a)  For K 1 = K 2 l e t  ~R @ hold i f  ~ ~ @, and ~R~ i f  Q ~ ~ .  R and R are PC 6-  n n p n 

r e l a t i o n s  and the p roo f  o f  2.5 shows t h a t  R - ~  R, i . e .  ~ - ~  ~ �9 
n n p 

(b)  Hore g e n e r a l l y ,  l e t  K be K 1 n K 2 and d e f i n e  Rn, R c St r (K1)  x S t r (K  2) by 

~JR @ i f f  ~ PK ~ @b K and 
n n 

~R$ i f f  Q ~ K_~ @T' K. 
P 

Then R --~ R. 
n 

The p r o o f  o f  2 .5  i s  a s p e c i a l  case o f  

3.3 Convergence lemmo. Suppose t h a t  f o r  n c w ~nRn%n~ 

the re  are  ~ *  and ~ *  such t h a t  

and •  R - - ~  R. Then 
n 

and 

f o r  any ~ c L~ 1, i f  f o r  a l l  n e w ~n 

K 2 
f o r  any ~0 r L ~ , i f  f o r  a l l  n e ~ ~n 

~, then ~*  ~ q~ 

I~ q~, then ~*  B, @. 

Proo f .  Take a denumerable model o f  

~ n u f I ~ U, �9 e L 1,~ n ~ c0 f o r  a l l  n r (~1} u ~qV, @ e Lo2,~ n ~ ~ f o r  a l l  n r w} Ur 
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The r e l a t i o n  of  isomorphism co inc ides w i th  ~ in  countable models, 
p n 

may be regarded as a f i n i t e  approx imat ion.  The f o l l o w i n g  d e f i n i t i o n s  g ive the 

corresponding approximations for some other algebraic relations. 

A func t i on  p i s  ca l l ed  a p a r t i a l  homomorphism from ~ to @, i f  do(p) c A, 

rg(p) c B and p preserves pred ica te  and func t i on  symbols, i . e .  

i f  P ~  and g r do(p) ,  then P~p(g), 

n+l 
if f~(n) = an and a e do(p), then f~(p(n)) = P(an). 

p i s  ca l l ed  a homomorphism, i f  in  add i t i on  do(p) = A. 

3.4 Definition. Suppose tha t  ~ and ~ c Str(K). 

(i) We write ~ ~ @ and say tha t  ~ "is" an extension of  ~,if ~ is isomor- 

phic to a substructure of ~. 

(ii) Suppose that % c K is a binary predicate symbol. Then ~ is called an 

end-extension of ~, ~ ~ @, if ~ is isomorphic to a substructure S' of 

@ with the following property, 

i f  b' r B ' ,  b r B and b B b ' ,  then b ~ B' 

( i i i )  We w r i t e  ~ ~ ~ and say tha t  ~ i s  a homomorphic image of  ~, i f  there 

i s  a homomorphism from ~ onto ~. 

In the proof  t ha t  ~ ~ ~ imp l ies  ~ ~ f o r  countable models (see 1.2) we - p  

used the f o r t h  p roper ty  of  a set I w i th  I :  ~ w ~ to obta in  a mapping def ined 
P 

on a l l  o f  ~ and the back proper ty  to ensure tha t  t h i s  mapping is  onto ~. This 

leads to the following definitions of partial extension 

end-extension ~ and partial homomorphic image _> . 
EP P 

~p, partial 
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3.5 D e f i n i t i o n .  

( i )  ~ ~ @ i f  f o r  some I ,  I :  ~ ~ ~,  where I :  ~ ~ ~ means t h a t  I i s  a 
P P P 

non-empty set  o f  p a r t i a l  isomorphisms w i th  the f o r t h  p r o p e r t y .  

( i i )  ~ ~ ~ i f  f o r  some I , I :  ~ ~ ~,  where I :  ~ ~ @ means t h a t  I i s  a non- 
sp ~p ~P 

empty set  o f  p a r t i a l  isomorphism s w i t h  the f o r t h  p r o p e r t y  and the E -  

back p r o p e r t y .  

f o r  a l l  p e I ,  b' c rg (p )  and b r B, i f  b ~B b' then b r r g (q )  f o r  

some q c I w i t h  q ~ p. 

( i i i )  ~ ~ �9 i f  f o r  some I ,  I :  ~ ~ ~,  where I :  ~ ->  @ means t h a t  I i s  a 
P P P 

non-empty set  o f  p a r t i a l  homomorphisms w i th  the back and f o r t h  p r o p e r t y .  

3 .6  Lemma~ Suppose t h a t  ~ and $ are a t  most coun tab le  K - s t r u c t u r e s .  Then 

(i) ~ ~ ~ implies ~ ~ ~, 
p 

(ii) ~/ ~ ~ implies ~ ~ $, 
%p E 

(iii) ~ ~ @ implies ~ ~> $. 
P 

Proo f :  We prove ( i i ) .  Let  I :  ~ ~tp ~ and A = { a o , a l ,  . . . .  } Let  bo, b 1 , . . .  be 

an enumerat ion o f  B such t h a t  each e lement  o f  B appears i n f i n i t e l y  many t imes .  

Given P o e  I choose 

- z  JD^n+" = some ex tens ion  p o f  -z~^n in  I w i t h  an e do (p ) ,  

-z  z~ = some e x t e n s i o n  p o f  -z  !~ in  I w i t h  bn r r g ( p ) ,  i f  t he re  i s  b e rg(R~n~ ) 

B 
such t h a t  b % b. 

n 

Put p = UPn. Then t he re  i s  a @' c @ w i th  p: ~ ~ ~ '  and whenever b' e B ' ,  b r B 

and b B b ' ,  then b e B ' .  Thus ~ 

I t  now should be c l e a r  how we d e f i n e  the  r e l a t i o n s  ~ ~g @, ~ ~ g @ and 

~ @. By an obv ious  m o d i f i c a t i o n  o f  the p roo f  o f  2.5 we may show t h a t  each 

o f  the above a l g e b r a i c  r e l a t i o n s  i s  the l i m i t  o f  i t s  f i n i t e  app rox ima t i ons ,  i . e .  



g. Flum 271 

> and ~ 3.7 kemma. For fixed K and all n r ~ the relations ~n' cn' -n p' gp' 

> a r e  PC6.  Moreover 
P 

4, ~ ~ ~ ~ and ~ ~ ~ . 
n p' an s n p 

3.8 Exercise.  Extend 3 . 2 ( b )  to the above r e l a t i o n s .  

I f  we look at the (n+l)- isomorphism type n + l  of  
r a 

in 9~ (see w 

n+1 n n 
%Or : a Ae A 3 v r  ~0r A VVr a Ve A q~r 

a o a  a ~  

f o r th  proper ty  back proper ty  

the f i r s t  par t  expresses the fo r th  proper ty  wi th respect to ~J and the second 

par t  the back proper ty .  This t e l l s  us how to def ine the corresponding formulas 

for the other algebra ic  relations. 

Suppose tha t  ~ is  a K-s t ruc ture  and ~ r A. Def ine, by induct ion on n, the 

n 
n-extension type ~r'n the n-s type ~nr and the n-homomorphism type Yr 

O O a 

as follows: 

0 0 0 

r -- Br :s176 
fl  a a 

(see w I . ( 2 )  for the definition of ~0 ~ 
a 

and 

= L K o A{~o l q0 atomic, q) c ~ ~ qD[~]~ 
Yr r' 
o 

n+l n 
= A ~v Cc Or a ~ A r r 

a aa 

~ --a~A ~v~n 
r r 

a a  
i~rVVr~Vi a Y ~ A r 

aay 

~ -back property 
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n+l n n 
Yr = a A A 3VrY A VV Y A Y 

r a r " 
o aa aa 

n n n 
Denote a,; by a~, 8 by ~gj and y~ by y~ . 

3.9 Lemma. 

n 
(i) ~ n+l ~ i f f  ~ ~ c~ 

n 

En+l ~ i f f  ~ ~ _ ~ 

n 

( i i )  For each n r m the sets { ~ 1 ~  c S t r ( K ) ] , [ ~  Str(K)  

and [y~ [~ c St r (K) ]  are f i n i t e .  

(ui) n 
is an existential formula, i.e. built up from atomic formulas 

r 
a 

and negat ions of  atomic formulas with A,v and 3. 

B n is O restricted -existential formula, i.e. built up from atomic 
r 
a 

formulas and negat ions of  atomic formulas w i th  A,V,3 and Vx~y. 

n . 
Yr zs a posi t i ,ve formula,  i . e .  does not contain the negat ion symbol. 

a 

Thus f o r  each of  the above a lgebra ic  r e l a t i o ~ R  the formulas t ha t  desc r i -  

be their f i n i t e  approximat ions R have a spec ia l  s y n t a c t i c  form. Using the 
n 

f ac t  tha t  R --~ Rwe show tha t  ~ i s  equ i va len t  to a formula of  t h i s  form, i f  
n 

the c lass of  models o f  ~ is closed under R. 

3.10 Preservat ion theorem. Suppose tha t  

(1) R ,~  c S i r (K)  x : S t r ( K )  and R --~ R. 
n n 

n L K (ii) for ~ ~ Sir(K) and n r ~ there is ~ r o 

for all Z r Sir(K) 

n 
such tha t  ~ ~ $~ and 
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n ~ ~ i f f  ~R ~. 
n 

(iii) {~n I ~  r S t r (K) }  is f i n i t e  f o r  n r w 

(iv) ~ is an LK-sentence such that Hod(~) is R-closed, i.e. ~R@ 

implies ~ ~ M. 

n 
Then ~ is equivalent to a dis}unction of the ~. 

Proo f .  For n r w put X n = V{ r  ~ ~ ~ ] .  By ( i ) ,  ~ X n+1 

Thus, i t  s 'u f f i ces  to  show t h a t  

and ~ ~ s 

n n 
X �9 By ( i i ) ,  ~ ~o-~ X . 

{X n j n e w} ~ cp. 

Take a model ~ o f  { xn [  n e w}. Then f o r  each n e w t he re  i s  ~/ such t h a t  
n 

n 
~ q~ and @ ~ ~ . 

n 
n 

By (ii) ~ R @. Hence by the  convergence ~emma, t he re  are denumerable ~ *  
' n n  

and @* with 

~ * 1 ~ * , ~ *  I= ~p and ~ *  ~ ~. 

By (iv), @* ~ ~; hence ~ ~ ~. 

Remark. We d id  not  need ( i v )  in  i t s  f u l l  genera~%y but o n l y  f o r  denumerable 

models ~ and @. 

3.11 Corollary. 

( i )  I f  Mod(~) i s  c losed under ex tens i ons ,  then ~ i s  e q u i v a l e n t  to  an e x i s t e n -  

t i a l  formula. 

( i i )  I f  Mod(~) i s  c losed under end -ex tens l ons ,  then ~ i s  e q u i v a l e n t  %o a re -  

s t r i c t e d - e x i s t e n t i a l  f o rmu la .  
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( i i i )  I f  Hod(~) i s  c losed under homomorphic images then ~ i s  e q u i v a l e n t  to  a 

p o s i t i v e  fo rmu la .  

We leave  i t  to  the reader  to extend 3.10 to  m-ary r e l a t i o n s  R and R and to 
n 

app l y  i t  f o r  o t h e r  a l g e b r a i c  r e l a t i o n s .  

The p r e s e r v a t i o n  theorem is  a s p e c i a l  case o f  the i n t e r p o l a t i o n  theorem 

3.12 below. As the p roo f  ~n the gene ra l  case 3.12 i s  s i m i l a r ,  we assume t h a t  

K = K 1 n K 2 and t h a t  Rn, R c S t r (K1)  x S• 2) are  g iven  by: 

~R ~ i f f  ~ ~ K ~ ~[~ K, 
n n 

~R@ i f f  ~ I'K ~ ~I' K. 
P 

For ~ r L K1 and n r w put 
0 

x : v f %  I" K 

Thus X n L K n+l n n r o '  ~ X ~ X and ~ q0 ~ X . 
K 2 

[ x n l  n r w~ i s  a set  o f  K - i n t e r p o l a t i n g  fo rmulas  f o r ~ , i . e .  ~ c Lo and ~ ~ - 

n n 
i m p l i e s  ~ q0-~ X and ~ ~ ~ f o r  some n c w. 

I t  s u f f i c e s  to  show t h a t  [ x n l  n r w] # ~. Thus suppose t h a t  @ i s  a K 2 - s t r u c t u r e  

and @ ~ { xn l  n ~ | Then f o r  n r w t he re  i s  an ~ r S t r (K  1) such t h a t  ~ ~ qo 
" n n 

and ~ ~ n ~ n  ~ K" Hence ~nRn ~" As Rn ~ R t he re  are denumerable s t r u c t u r e s  

~*  and ~ *  such t h a t  

~ * F ~ * ,  ~ *  ~ M and ~*  -z ~ .  

Thus ~ *~  K ~_ ~ * ~  K. Let  ~ be a K 1 u K 2 - s t r u c t u r e  w i th  ~ ! K 1 ~_ ~*  and ~ K 2 ~_~*. 

Then ~ ~ cp, ~ ~ ~, ~ *  ~ ~ and hence, ~ ~ ~. 

Note t h a t  i f  ~ i s  a K l - S t r u c t u r e  and ~ i s  K 2 - s t r u c t u r e  and ~ K ~ ~ K 
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whereK = K 1 n K 2 then ~ ~ @1 f o r  some K l - S t r u c t u r e  @1 wi th  @1 ~K = @ !K.  But 

in  genera l  there  w i l l  be no K2 -s t ruc tu re  ~1 such t h a t  ~1 ~ @ and ~1 # K = ~P K, 

i f  K 2 - K conta ins  func t i on  symbols. Th is  leads to the assumptions on S in  

3.12.  I f  we cons ider  the p o s s i b i l i t y  of  ex tend ing a homomorphism the r o l e  

of  ~ and @ are reversed.  This  leads to the assumptions on T in  3.12.  

3.12 I n t e r p o l a t i o n  theorem. Assume K = K 1 n K 2 and t h a t  

( i )  Rn,R c St r (K1)  x Str(K2)and Rn --~ R, 

( i i )  S c St r (K1)  x S t r (K  1) and f o r  denumerable ~ and @ w i th  ~R~ there  i s  @t 

t h a t  ~S@ 1 and ~ 1 P K  = @ I~K 

( resp .  T : S• x St r (K2)  

i s  ~1 such t h a t  ~IT~ and ~1 

n L K n ( i i i )  f o r  ~ r St r (K1)  and n ~ w there  i s  g~ r such t h a t  ~ ~ 4~ and f o r  a l l  
0 

c St r (K2)  , 

n 

n 

(iv) [4~I~ r Sir(K1) } is finite for n c ~, 

K I K 2 
( v )  ~ r ko ,4  ~ L ~ and ~ ~ ~ 4, 

(vi) Mod(~) is S-closed, i.e. WS~ and ~ ~ ~ implies @ ~ ~ for denumerable 

and @ 

( resp .  Mod(r i s  T - c l osed ) .  

~ (n Sir(K1)) such that Then there  is o d i s i unc •  X o f  the ~ 

and f o r  denumerable ~ and @ wi th  ~R~ there  

F K = ~ P K), 

3.13 

( i )  

such 

�9 ~ X and ~ X ~ 4. 

K 1 K 2 
Corollary. Let K = K 1 n K 2, ~ ~ L 4 ~ L and ~ ~ ~ 4. 

o i O 

If Mod(~) is closed under extensions resp. end-extensions, then there is 

L K such t h a t  ~ ~p ~ X an e x i s t e n t i a l  resp. r e s t r i c t e d - e x i s t e n t i a l  X r o 

and ~ X ~ ~. 
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(il) I f  Mod(~) i s  c losed under homomorphic images, then the re  i s  a p o s i t i v e  

L K X r such t h a t  ~ ~ ~ X and ~ X ~ ~, 
0 

3.14 Exe rc i ses :  

(a)  Der i ve  an interpolation and a p r e s e r v a t i o n  theorem r e l a t i v e  %o a set  

o f  sentences.  

(b) Assume t h a t  K = K 1 n K 2, t h a t  K con ta ins  a cons tan t  symbol and t h a t  f o r  

K 1 
n ~ 1, K 1 and K 2 con ta in  the same n -a r y  f u n c t i o n  symbols. Let  ~ r k ~ 

K 2 
be u n i v e r s a l  and ~ ~ L e x i s t e n t i a l .  Then the re  i s  a q u a n t i f i e r - f r e e  %< r k K 

o 0 

such t h a t  ~ ~0 ~ X and ~ X ~ r ( H i n t :  De f ine  R c St r (K~ x S t r (K  2) by: 
n 

~R ~ i f f  ~ K and ~ ~K s a t i s f y  the same q u a n t i f i e r - f r e e  fo rmulas  
n 

o f  rank ~ n) .  

(c)  Le t  K 1 = K u { P 1 , . . . , P r ]  and assume t h a t  @ is  a second-o rder  K l - sen tence  

o f  the form ~P1. . .3Pr~  where ~ i s  a f i r s t - o r d e r  fo rmu la .  Show t h a t  ~ i s  

e q u i v a l e n t  to a set  o f  f i r s t - o r d e r  fo rmulas  o f  type K. 

(d) Let  L be a many-sor ted first-order logic. By c o n s i d e r i n g  the back and 

f o r t h  p r o p e r t i e s  f o r  each s o r t  d e r i v e  Feferman's  many-sor ted p r e s e r v a t i o n  

theorems ( c f .  [ 1 6 ] , [ 1 5 ] ) .  
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and the well-orderin@ number 

We re tu rn  to the proof  of  the l a s t  lemma of L indst r~m's  theorem. There 

we used the compactness theorem to ob ta in  from a model where the order ing  < 

was we l l - o rde red ,  a model tha t  contained an i n f i n i t e  descending ~ c h a i n , i . e .  

a non-wel l -o rdered model. The next theorem shows tha t  each a p p l i c a t i o n  of  the 

compactness theorem ( i n  a countable language) may be r e w r i t t e n  such tha t  i t  

becomes an a p p l i c a t i o n  of  t h i s  form. 

4.1 Theorem. For a regu la r  l o g i c  L the f o l l o w i n g  are equ i va l en t .  

K 
( i )  I f  each f i n i t e  subset of  a set ~ of  L -sentences,  where I~ ! , I K I ~  ~o' 

has a model, then I has a model. 

K 
( i i )  Let ~ be a countable set of  L -sentences,  K at most countable,  and 

< ~ K a b ina ry  r e l a t i o n .  Suppose tha t  f o r  n c ~, E has a model ~ such 

tha t  ~A w e l l - o r d e r s  i t s  f i e l d  and the order  type of  <A is  ~ n. Then 

has a model ~ such tha t  ~ i s  not a w e l l - o r d e r i n g .  

Proof.  ( i )  ~ ( i i ) :  By compactness, Z u {Cn+ 1 < Cn I n  r m} has a model. 

( i i )  = ( i ) :  Let ~o,@1 . . . .  be countab ly  many L-sentences and suppose tha t  f o r  

n c m , [ ~ o , . . . , ~ n  } has a model. Let U be a new unary and < be a new b ina ry  

pred ica te  symbol. Then apply  ( i i )  to the set 

= {"U is  f c l o s e d " J f  r ~ u { " ~ f  the f i e l d  of  ~ has more than n elements, 

then ~0nU'in r ~} 

to get a model of  {qo n In  r ~tJ} . 
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Assume tha t  L i s  a l og i c  and ~ is  an o r d i n a l  such tha t  whenever a set 

of  L-sentences con ta in ing  a pred ica te  < has, f o r  each ~ < ~, a we l l -o rdered  

model o f  length  at l eas t  ~, i t  has a non-wel l -o rdered model. We c a l l  the 

l eas t  ~ w i th  t h i s  p roper ty  the w e l l - o r d e r i n g  number w(L) of  L (see w f o r  

the prec ise d e f i n i t i o n ) .  Hence W(Lww ) = w. By the preceeding theorem the s t a t e -  

ment " the w e l l - o r d e r i n g  number of  L i s  ~" may be viewed as a g e n e r a l i z a t i o n  

of  the compactness proper ty ,  and indeed, f o r  some l og i cs  i t  tu rns  out to be, 

as the compactness theorem of  f i r s t - o r d e r  l o g i c ,  a use fu l  mode l - theore t i c  re-  

s u l t .  In t h i s  sect ion we determine the w e l l - o r d e r i n g  number o f  L and we 
WlW 

use i t  to der ive  p reserva t ion  theorems, r e s u l t s  on non a x i o m a t i z a b i l i t y  (w 

and upward k~wenheim-Skolem theorems (w  

Let us f i r s t  s tate some well-known resu l ts  fo r  fu ture reference ( c f . [ 2 9 ] ) .  

4.2 L -L~wenheim theorem. Assume that  ~ is a model of the L - sentence - - +  + 
~C ~J ~t w 

~. Let Ao c A and iAol + ~ -< u <-IAl 'Then there i s  a ~ such tha t  

c ~I, ~ ~ co, A c B and [8 I= #. 
0 

In p a r t i c u l a r ,  i f  ~ e L 
w 1 

model. 

has an i n f i n i t e  model, then i t  has a countable 
w 

4.3 Sco t t ' s  isomorphism theorem. 

K 
numerable type.  There is  ~ j  r Lwl w 

Let ~ be a denumerable s t r uc tu re  of  de- 

such tha t  f o r  a l l  denumerable 

~ ~ i f f  ~ ~ ~ 

~ is  ca l l ed  a Scott  sentence of  ~ . 
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4 .4  Exe rc i ses .  

(a)  Assume ~ i s  a denumerable s t r u c t u r e  and I K I > ~ �9 Show: The:e i s  a coun- 
o K 

o 
t a b l e  Ko c K such t h a t  the p r e d i c a t e s  and f u n c t i o n s  i n  K -  Ko are Lwl ~ -  

d e f i n a b l e  w i t h  q u a n t i f i e r - f r e e  fo rmu la s~  i . e .  i f  P r K - K i s  n - a r y  t h e n  
o 

n n 
I~ Vv(Pv ,,~ ~ ( ~ ) )  

K 
f o r  some q u a n t i f i e r - f r e e  ~ (n )  ~ L o 

wlw 
; s i m i l a r l y  f o r  f u n c t i o n  symbols. 

(b)  Using (a)  extend S c o t t ' s  theorem to uncountab le  K. 

(c )  Prove the analogue o f  (o)  f o r  L . 
+ 

}c LU 

K 1 K2 
4.5 L - i n t e r p o l a t i o n  theorem. Assume t h a t  ~0 r L , ~ e L and 

~ 1  ~ Wl~ WlW 

K : K l n K 2. I f  ~ ~0 ~ 9 then m ~ ~ y and ~ X " ~ f o r  some X r L'~lW~ �9 

4 . 6  Lemma. I f  ~ ~ + �9 then  ~ ~ ~ . 
T 

~ w  

The p roo f  i s  a s t r a i g h t f o r w a r d  g e n e r a l i z a t i o n  o f  the p roo f  o f  1.7 

+ 
the f a c t  t h a t  every  L + - sentence has q u a n t i f i e r - r a n k  < ~ �9 

w 

and uses 

Let  < be a b i n a r y  p r e d i c a t e  symbol and K = [ < ] .  I t  i s  easy to d e f i n e  

f o r  each o r d i n a l  ~, by i n d u c t i o n ,  fo rmulas  ~ ( x )  and 9~ such t h a t  

L K (1) ~ ( x ) , ~  ~ for ~ < ~  
WLU 

m ~ ( x ) , ~  c L f o r  ~ -> w, 

(2)  f o r  a l l  ~ and a r A, 

~ ~0~Co] i f f  (~b I b e A,b <Aa ] , -A )  ,.., ( ~ , < ) ,  
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(3) for all ~, 

~ r i f f  ~ ~ (~ ,< ) .  

zn contrast to ( I )  - (3) we obtoin 

4.7 Lemma. Let ~ e L {<} and ~ + ~  ~ �9 
+ 

( i )  I f  for all ~ <;~i , (~,<) ~ ~, then (~,<) ~ ~. 

( i i )  I f  for a l l  ~ < x +, (~,<) ~ m, then ~ has a model that is not well-ordered 

and even contains o copy of the rationals. 

�9 - L6wenheim theorem there is  Proof ( i )  I f  (~,<)  ~ = q0, then by the L + 

(B,<) c ( ~ , < ) , j B I  = x and (B,<) ~ -~ ~. But (B,<) ~_ (~,<)  f o r  some ~ < ~  �9 

( i i )  By ( i ) ,  (E+,<) ~ ~. Let �9 be the set of  r a t i o n a l s  ~ O. By ] . 6 . a  and 

4.6, (x+,<) + ( C , < )  ~ (~+,<) .  Thus (c,+,<) ~ (~+,<) ~ ~ .  
LU 

Note t ha t  we used the assumption (~,<)  ~ ~ on ly  f o r  ~ w i th  I~ i : x .  

4.8 Exerc ise.  Assume tha t  A is  an admiss ib le  set and ~ ~ L I ; } .  Show: I f  f o r  

a l l  ~ r A, (~ ,<)  ~ ~, then ~ has a model t ha t  conta ins  a copy of  the r a t i o n a l s  

(H in t :  The set o f  o r d i n a l s  in A i s  closed under o r d i n a l  exponentiation. Note 

tha t  qr (~)  e A and apply 1 . 6 . a ) .  

Using 4 .7  and the i n t e r p o l a t i o n  theorem we show tha t  on ly  countable w e l l -  

o rder ings  are L - d e f i n a b l e  in  a model: 
Wl:~ 

L K 4.9 Theorem. Let ~ be an - sentence and < a b ina ry  pred ica te  symbol. 
WlW 

Suppose tha t  f o r  a l l  ~ < ml,~ has a model ~ such t ha t  <A i s  a w e l l - o r d e r i n g  

of  i t s  f i e l d  of  order  type ~ ~. Then ~ has a model t ha t  i s  not we l l - o rde red ,  
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and even conta ins  a copy of the r a t i o n a l s ,  l )  

Proof.  We may assume tha t  f o r  a l l  ~ <~1 there i s  a model ~ of ~ w i th  w e l l -  

ordered <A of  order  type ~ ( take as ~ the formula:~ A "< i s  a suborder ing of  

<" ,  where < i s  not in ~ ) .  Let R, P and f be new symbols, R and P b ina ry  and 

f unary. Let ~ c k K u {R, f }  be 
WlW 

A "R is  an order ing  of  the universe" ^ "f i s  an isomorphism of  the 

universe w i th  the o rder ing  R onto ( f i e l d  o f  < , < ) " .  

L { R, P} Let ~ ~ be 

" i f  P i s  a suborder ing of  R, then P i s  not a dense o rde r i ng " .  

Assume by c o n t r a d i c t i o n  t ha t  ~ has on ly  we l l -o rdered  models. Then ~ ~ ~ ~.  

Thus by the i n •  theorem 4.5,  there i s  X e L {R} such tha t  
WlW 

(~) ~ ~ ~ X and (b)~ X - '~ -  

By (a), for all countable ~ ~ ~)i' (~'<) ~ Y. By 4.7. (ii) this contradicts (b). 

4.10 Exerc ise.  Let A be a countable admiss ib le set and ~ an L A - sentence 

con ta in ing  <. I f  f o r  a l l  ~ e A ~  has a we l l -o rde red  model of  order  type ~ ~, 

then ~ has a non-we l l -o rdered model con ta in ing  a copy of  the r a t i o n a l s  (H in t :  

see the proof  o f  4 .9 ,  use the L A - i n t e r p o l a t i o n  theorem and 4 . 8 ) .  

By the preceeding theorem the w e l l - o r d e r i n g  number of  Lwl w i s  m 1 . We 

use t h i s  fac t  to der ive  some preserva t ion  theorems f o r  L in a way analogous 
wlw 

1) Note t ha t  4.9 i s  an immediate consequence of the L u s i n - S i e r p i n s k i  r e s u l t  
abou t~ l  c lasses in  d e s c r i p t i v e  set theory .  
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to that  fo r  f i r s t - o r d e r  predicate log ic  in w Compare [B  ] fo r  another proof 

of these theorems using back and fo r th  techniques. 

Let ~ ( x )  be the formula given below 4.6. Arguing as in the proof of 4.1 

we may restate the definition of R ~ R: 
n 

Let Rn, R c Sir(K) x Str(K). Then Rn --~ R i f  for some K,Z,U and V, where 

K c K and ~ c L R ww' we have 

(1) ~,~ u {3~n(X)~,U,V ) defines Rn and 

( i i )  ~R~ i f f  ~ and ~ are the U-part resp. V-part  of a model of ~ wi th 

non-well-ordered <. 

Hence the corresponding convergence notion of L i s :  
WlW 

4.11 Definition. Let R~ (for ~ < w l)  and R c Sir(K) x Sir(K), and assume 

that  K is  at  most countable. 

R{ --~ R i f  f o r  some type K ~ K and some U,V e K there i s  ~ c L~I w such 

that  

( i )  (K,~ A 3xq0~(x),U,V) defines R~ and 

( i i )  ~R~ i f f  for some model C of M with K-closed U C and V c and non- 

well-ordered <C we have 

[uC] CI'K~_~ and [ v C ] ~ f K ~  

4.12 Examples. ~{ ~ =p , { ---~ P" 

~ ---~ ~ �9 > ~-~ > �9 
EP ' -2 P 

4.13 L - convergence iemma. Suppose R~ ~ R and fo r  
-X~lW 

Let ~1 and ~2 be k K - sentences such that  ~ ~ ~1 and ~ 
WlW 

<w 1. Then there are denumerable ~* and ~* such that  

< w I ,~R~. 

M2 for all 
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~*R~*, ~* ~ M1 and ~*  ~ ~2" 

Proof.  We use 4.9 %o ge• a model of  M A M] U ^ ~2Vwi%h non-well-ordered 
is %he formula of 4.1~). 

< (here 

Assume ~ha• ~ i s  a coun%able K-s•177 and ~ r A. We def ine  f o r  ~ < w l ,  

by induc•  on ~, • "~-ex%ension %ype" o f  ~: 

o 

~r = s176 a a 

2:r ~r : a A A~v 
a a 

and 

a a 

, if ~ is a limi• ordinal. 

Deno• c~ by ~. 

4.14 Lemma. 

( i )  ~ i s  an ex i s •162  L - formula.  
r WlW a 

(ii) ~ ~ ~ iff for all ~ < ~ ~ ~ 
~4 

4.15 Theorem. Assume •177 ~ and ~ are countable s•177 and ~ha• every 

ex i s •177  L - sen• ho ld ing  in ~ holds in  ~. Then ~ is  embeddable in  ~. 
~1 w 

Proof.  By assump• and 4.14, ~ ~ ~ f o r  ~ < w~. Le• ~ resp. ~ be a Scot t -  

sentence of  ~ resp. ~ (see 4 .3 ) .  By • L - convergence lemma • are 
W 1 dl 

coun• ~* and ~*  such tha t  ~ * -  ~* ,  ~*  ~ ~ and ~*  ~ ~ .  Hence ~ 

~5 ~_ ~*, and ~ ~ ~, 

Given m e L lc, ~ and ~ < ~i • se% {~9~1 ~ ~ ~p~, in  genera l ,  i s  no% count-  
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able,  thus the d l s i u n c t i o n  of  t h i s  set i s  not an L - formula.  Therefore 
WlW 

we do not get using the convergence no t ion ,  the p reserva t ion  theorem 3.12 

f o r  L in an analogous way as f o r  f i r s t - o r d e r  l o g i c .  Using back and f o r t h  
WlW 

techniques tha t  depend on a given ~ one obta ins  f o r  L a pu re ly  model- 
WlW 

t h e o r e t i c  proof  o f  some i n t e r p o l a t i o n  and preserva t ion  theorems. (See E3o][~39J), 

4.16 

(a) 

(b) 

(c) 

Exercises. 

Let ~ be a countable s t r uc tu re  and ~ an L - sentence. Show: I f  ~ i s  a 
WlW 

model o f  every un i ve r sa l  % ~ L such tha t  ~ ~ - ~, then ~ can be em- 

bedded in  some model of  ~ (use the L -convergence lemma.) 
mlW 

Prove s i m i l a r  r e s u l t ~ f o r  [ an ~ . 

Let ~ = (A,<) be any o rder ing .  Show: Every e x i s t e n t i a l  L - sentence 
w I ~ 

t ha t  holds in  ~ holds in (Wl ,<) .  In p a r t i c u l a r ,  4.14 is  not t rue  in  case 

i s  uncountable.  (H in t :  Let (C,<) be an ordered s t r uc tu re  w i th  f i r s t  

element such that (A,<) c (C,<). Then (C,~) ~ (Wl,W) ~w (ml'<))" 

w A n o n - a x i o m a t i z a b i l i t y  r e s u l t  

We show in  t h i s  sect ion tha t  the c lass of  minimal s t r uc tu res  i s  no% Lwl w- 

ax iomat i zab le .  We f i r s t  der ive  a c h a r a c t e r i z a t i o n  of  minimal s%ructures t ha t  

enables us %o show t h e % a r b i t r a r i l y  large countable w e l l - o r d e r i n g s  are i m p l i c i t l -  

l y  de f i nab le  in  the c lass of  minimal s t r uc tu res .  Then we apply the fac t  t ha t  the 

well-ordering number of  L is w I to obta in  ~he above n o n - a x i o m a t l z a b i l i t y  
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r e s u l t .  The resu l t s  of  t h i s  sect ion are due to De iB ler  [ ~ I ] .  
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Assume throughout tha t  K i s  at most countable. A s t ruc tu re  ~ i s  ca l led  

minimal i f  i t  has no proper elementary substructures,  i . e .  i f  @ < ~ then @ = ~. 

Of couzse, every minimal s t ruc tu re  i s  at  most countable and every f i n i t e  s t ruc -  

tu re  is minimal. 

5.1 Examples. 

(i) (Z,<) is minimal and prime. 

( i i )  (0,<) i s  prime but not minimal.  

( i i i )  (~ , . )  is minimal but not prime. (To show that (Z,+) is not pr ime, let  

(Z(p) ,+ )  be the group of  a l l  r a t i o n a l s  whose denominators are not d i v i -  

s i b l e  by the prime p. Then, by ] . 6 . b ,  (Z,+) ~ ~ (Z (p ) ,+ ) ,  but (Z,+) cannot 

be e lemen ta r i l y  embedded in ~(ZCp),+) since each non-zero element of 

Z i s  d i v i s i b l e  by some prime whi le  1 e (E,+) i s  not (see [~ ] ) .  
P (P) 

(~,<) is minimal as each element is f i r s t - o r d e r  de f inab le ,  (Z,<) and 

(Z,+) are minimal s t ruc tu res  as each element is  f i r s t - o r d e r  de f inab le  using 

any element of  Z as parameter, i . e .  each element i s  de f inab le  " a f t e r  one s tep" .  

We sha l l  prove tha t  ~ i s  minimal ius t  in case each element of  ~ is  de f inab le  

" a f t e r  f i n i t e l y  many steps" .  

Denote f i r s t - o r d e r  log ic  by L. I f  ~ i s  a K-s t ruc ture  and A c A denote 
O 

by K u Ao the type K u [c a } a r Ao~, and by (~,Ao) the K u Ao-s t ruc ture  where 

K ) ,  put c a i s  i n te rp re ted  by a. I f  ~ r L1, i . e .  ~ = ~(v  ~ 

= ~a ta  c A , ~ E a ] ~  . 
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5.2 D e f i n i t i o n .  The rank in  ~ o f  an element a r A over  a subset  A c A, 
o -  

r k ( a , A o , ~ ) ,  i s  de f i ned  by i n d u c t i o n  on the o r d i n a l s :  

K u A  
rk(a ,Ao,W ) = 0, i f  f o r  some @ c L t o 

~ 3=lvoq0 and ~ ~ s 

and f o r  ~ > 0 

rkCa,Ao,~)  = ~, if r k (a ,Ao ,~  ) = ~ does not  ho ld  f o r  any ~ < ~,and 

K u A m(~,Ao), 
for some q) c L 1 o with ~0(~J'Ao ) # @ and all b 

r k ( a , A  ~ u [ b ] , ~ )  < ~ ho lds .  

In  case the re  i s  no ~ such t h a t  r k ( a , A o , ~ )  = ~ we put  r k (a ,Ao ,~  ) = ~ .  By con- 

v e n t i o n ,  l e t  ~ < ~  f o r  each o r d i n a l  ~. Let  r k ( a , ~ )  = r k ( a , ~ , ~ )  and 

r k (~ )  = sup i r k ( a , ~ )  +11 a r  Thus r k ( a , A o , ~ )  g ives  us the number o f  s teps 

we need to d e f i n e  a in  ~ us ing parameters o f  A . 
o 

5.3 Example. r k ( ( w , < ) )  = I ,  r k ( ( 2 , < ) )  = r k ( ( 2 , + ) )  = 2 and r k ( ( O , < ) )  = ~.  

The next  lemma is a simple consequence o f  definition 5 .2 .  

5 .4  Lemma. Let  ~ be coun tab le  and a c A. 

(i) If Ao c A 1 c A then rk(a,A1,~ ) ~ rk(a,Ao,~ ). 

( i i )  I f  A c A and r k (a ,Ao ,~  ) < ~ ,  then r k ( a , A  ,~)  < ~1" 
o K ~ A  

(iii) Let Ao c A and rk(a,Ao,~ ) = ~. If ~ e L I o and 

~(~'Ao) % O, then rk(a,A ~ u {b],~) = ~ for some b r ~(~'Ao). 

5.5 

(i) 

(u) 

Theorem. Let ~ be coun tab le  and a ~ A. Then 

r k ( a , ~ )  < ~  i f f  a i s  con ta ined  in  each e lementa ry  submodel o f  ~.  

rk(W) <~ iff ~ is minimal. 
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Proof .  ( i i )  f o l l ows  immed ia te l y  from ( i ) .  

(1 ) :  Assume r k (a ,~ )  < ~  and l e t  ~ be an e lementary  subs t ruc tu re  of  ~. Prove 

by i nduc t ion  on ~, 

i f  B c 8, b c A and rk (b ,Bo ,~ )  = { ,  then b r B. 
0 

In particular a r B. 

Now assume r k ( a , ~ )  = ~.  Let  ~o,~1, . . .  be an enumeration of  the formulas 

k K of  elements of  A by of  L K such t h a t  ~n c n+l"  Def ine a sequence (bn) n ~ ~ 

i n d u c t i o n .  Assume t h a t  b has been def ined f o r  m < n such t h a t  
m 

r k ( a , { b o ,  . . . .  b n _ l ~ )  = ~.  I f  ( ~ , { ~  . . . .  ,bn_ l ]  ) ~ ~Vo~(Vo,C b , . . . .  c b ) choose, 
0 n - ]  

using 5 . 4 . ( i i i ) ,  b such t h a t  
n 

O) ( ~ , [ b  ~ . . . . .  bn_l~ P s b , . . . , c  b ) and r k ( a , { b o ,  . . . .  bn ] ,~ )  = ~.  
o n-1 

Otherwise put bn = bn - l "  Let  B = {bn l  n r c~)t.. Then, by (1) and T a r s k i ' s  

1emma there  i s  a ~ such t h a t  ~ < ~ and B = B. As f o r  n e w 

rk(o~b ~ . . . . .  b n ~ )  = ~, a i s  not conta ined in the e lementary  submodel 9.  

Fo rma l i za t i on  of  the rank in L e 

Let U,<,Co,Rn(n e ~) be symbols not in  K,U unary,  < b i na ry  and Rn (n+2 ) -a ry .  

Let  K' = K u {U,<,Co} u {RnJ n c w] .  Let  ~rk be the con iunc t ion  of  the 

f o l l o w i n g  L K' - sentences:  

(a)  "< i s  an o rde r i ng ,  U i s  the f i e l d  of  <, c i s  the f i r s t  element o f  < " .  
o 

3 =1 (b) n A wv~n(Rnxnc V K ~p(y ,n )  A ~ ( x ,  n) 
o co(x, n) e L 

( " r k ( x , ~ , . )  : 0 i f f  x i s  f i r s t - o r d e r  d e f i n a b l e  over  ~) . 
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(c) A VxV~Vu(Uu A -7 u : c ~ (rnxnu*~ (~ ~v(Uv A v < u A r x n v) A 
n c LU 0 n 

LK(3 Y~ (n, Rn+l xnyv) ) V y) A Vy(~o(n,y) -~ ~v(v < u A )))  
~p(n, y) 

UULg 

(" i f  u > o, then rk(x,nx, .) : u i f f  . . .  " ) .  

(d) g VxV 3o(UuARx u) n r w n 

("each element has a rank over any f i n i t e  se t " )  . 

(e) Vu(Uu ~ 9x 9v(u~ v A R xv)) 
O 

( " the  rank of  elements are c o f i n a l  in  U").  

Clearly 

5.6 Lemma. Let ~ be a countable minimal K - s t r uc tu re .  Then 

( i )  ~'  W @rk holds f o r  some K ' - s t r u c t u r e  ~'  w i th  ~ ' ~  K = ~, 

( i i )  i f  the K ' - s t r u c t u r e  ~ '  i s  a model o f  ~rk and ~ ' ~  K = W, then < i s  

a w e l l - o r d e r i n g  of  type r k (~ ) .  

Below we show ( for some K) 

(*) for all ~ < w I there is a minimal K-structure ~ with rk(~) ~ ~. 

5.7 Theorem. The c lass of  (countab le)  minimal models i s  not the c lass of  

Ccountable) models o f  an L -sentence.  

Proof.  Otherwise f o r  some ~ c L K 
w I ~ t  

{~1 ~ c S t r ( ~ ) , ~  ~ ~,1 A I = ~o ] = [~ I ~  e S t r ( K ) , ~  minimal,  j A l=  No } �9 

By ( * )  and ( i )  o f  the preceedlng lemma ~ A ~rk has, f o r  each ~ < Wl, a w e l l -  

ordered model of  type ~ ~, hence, by 4.9 a non-we l l -o rdered model ~ ' . L e t  
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= ~ K, so ~ ~ ~. But then~ by par t  ( i t )  of the preceeding lemma~ is  not a 

minimal s t ruc tu re .  

The construct ion of a s t ruc tu re  ~ with r k ( ~ )  ~ ~ is by induct ion on ~. 

We sketch the idea: 

We know that  rk(Z,<)  = 2 and that  we need one step to def ine any a e Z. By 

at taching to each element of  (Z,<) a copy of (Z,<) we obtain a s t ruc ture  ~ such 

tha t  we need two steps to def ine any b r B. More p rec i se l y :  Let K be {<tP] 

where < and P are b inary .  Let @ be the K-s t ruc ture  wi th 

(a) B : Z  u (Z • 

(b) PB'~I(zl,~ 2) for ~1,~2 ~ z. 

(c) zl B ~2 for ~ 1 ' ~ 2 ~ Z '  5 <~2" 

(d) (Z,Zl)<B (z, z2) fo r  z,z 1,z 2 e E,z 1 < z 2. 

(e) pBala 2 or a 1 <B a2 only  holds, i f  required by ( ~ ) , ( c )  or (d ) .  

Using a ref inement of t h i s  const ruct ion we obtain the fo l low ing  lemma 

(see [4~] f o r  a proof ) .  

5.8 Lemma. Assume that  fo r  n r w, ~ i s  a minimal K - s t r u c t u r e .  Then fo r  
n n 

some K there i s  a K-s t ruc ture  ~ such that  

oo > ~k(~) ~ rk(%)  + rk(~l)  + . . .  

5.9 Coro l l a r y .  For each ~ < w 1 there is  an ~ such tha t  ~ ~ rk(~) < ~. 

L K 5.10 Exercise.  Show tha t  fo r  ~ <~1 there is  a m~ ~ Wl ~ such tha t  the class 

of  models of  ~ contains exac t l y  the minimal K-s t ructures of  rank ~. 
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(H in t :  Def ine by induct ion  on { a formula ~ ( V o , V l , . . . , v  n) tha t  says the rank 

o f  v o v e r  o {Vl,...,v n] is ~). Thus, if we restrict our attention to countable 

models, ~ ~ ~1 Mod(~)  is  the c lass of  minimal s t ruc tu res . -The  s t r a i g h t f o r -  

warded fo rma l i za t ion  of  the d e f i n i t i o n  of a minimal s t ruc tu re  i s  

vp(  vg(pv ~ A .A pvo_ 1 - ^ vxPx) 
~(~) r L 

The formula is  of  the form VP~where ~ is  in L 1 w. Vaught [ 3 ~  has shown 

that  (over  countable models) the c lass of models of any formula X of  t h i s  

form is  the union U~r of  ~1 L~I w - elementary c l a s s e s . ~  conta ins ius t  

< ~1 
those models of X that  have an implicitly de f inab le  well-ordering of length ~. 

Thus in the preceeding exerc ise  we obta in Vaughts r e s u l t  f o r  the formula (~) .  

5.11 Exerc ise.  An abel ian group G is  reduced i f  i t  has no n o n - t r i v i a l  d i v i s i b l e  

subgroups. G is  a p-group, p a prime, i f  every element has order  pn fo r  some 

n c ~. Show: The class of  reduced p-groups is  not the class of  models of some 

L - sentence. (H in t :  Def ine p~G by induc t ion :  pOG = G and f o r  ~ > 0 

p~G = ~p(p~G). I f  G is  a reduced p-group there must be a smal lest  ~ such 

that  p~G = O. ~ is  ca l led  the length of O. For any ~ < w I there ex i s t s  a re -  

duced p-group of  length ~. Apply 4.9 to get the conc lus ion) .  
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w Hanf number 
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An easy application of the compactness theorem shows tha t  each set of 

f i r s t - o r d e r  sentences wi th an i n f i n i t e  model has a r b i t r a r i l y  large models ( i . e .  

f o r  any card ina l  ~ there is  a model of  power ~ x ) .  The corresponding upward 

L~wenheim-Skolem theorem fo r  L i s  not obvious. We w i l l  obtain i t  using 
WlW 

the fac t  tha t  the we l l - o rde r ing  number of  Lwl~ i s  ml" Since most of  the re-  

su l t s  are t rue f o r  log ics  in the sense of  w we s t a r t  in the general frame- 

work. 

6.1 Definition. Let L be a logic. 

The Hanf number of L, h(L), is the least cardinal x such that if an L-sentence 

has a model of power ~ X, then it has arbitrarily large models (provided such 

a ~ exis• More general, for a cardinal k let hk(L) be the leas% x such that 

if a set of~ k many L-sentences has a model of power ~x, then it has arbi- 

trarily large models. Thus h(L) = hl(L ). 

hk(Lww) = ~o' h(Lwl~,') > ~o' h(L(Q )) > 

(take the sentence that says "< is an ordering of the universe of power at 

least x and each proper inltlal segment has power <~"). h(L ) does no~ exist 

(consider the sentences r of w176 

Assume %hot L is a logic and L K is o set: For C c LK, I CI ~ X, define xC 

by 
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O i f  ~ has a r b i t r a r i l y  large models. 

[ s u p { I A I l ~  ~} ,  otherwise. 

x~ = K sup{x~ I~ c LKelE1 ~ X}. By the axiom of  replacement, x~ K Put i s  a car-  

d ina l  1 
) K 

depends on K and sup{R~ i K a type} might not ex i s t .  But a l l  fami- 

l i a r  log ics  s a t i s f y  a kind of renaming property that  impl ies the existence of 

, o r  < 
0 A k 

An i n i ec t i ve  mapping ~ of a type K 1 in to a type K 2 is  a name changer, i f  

i% maps n-ary predicate ( func t ion)  symbols onto n-ary predicate ( func t ion)  

symbols�9 Such a name changer induces a natura l  t ransformat ion of a K2-st ructure 

in to a K l - s t ruc tu re  ~ .  We wr i te  Renam(L) and say that  L has the renaming 

property, 

i f  for each name changer ~: K 1 ~ K 2 

such that for ~ r Sir(K2) 

K 1 K 2 
and each ~0 e L there is  ~ e L 

~ # i f f  ~c ~ q0 �9 

6.2 Theorem (c f .  [20]).Assume that  L is  a log ic  with the fo l lowing proper t ies �9  

( i )  Renam(L), 

( i i )  the number of symbols occuring in an L-sentence is bounded, i �9149 there 

is a cardinal ~ such that for each L-sentence ~,~ r L K for some K with 

t )Note that  the existence of the Hanf number of second-order log ic  is  not 
provable in Zermelo set theory +El-replacement ( c f � 9  ] fo r  the precise 
statement).  
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Proof. Let K contain f o r  each n r w, ~ �9 X n-ary predicate symbols and ~ - 
o K 

n-ary funct ion symbols. Using ( i )  and ( i t )  i t  i s  easy to show tha t  x~ ~ x~ ~ 

holds f o r  any K. 

Al l  logics l isted at the beginning of w sat isfy (i),and a l l  but L 
oc~ 

s a t i s f y  ( i )  and ( i t ) .  Thus the Hanf number e x i s t s  f o r  a l l  these l og i cs .  

We w i l l  show that for some logics the Hanf number is related to i t s  well-  

ordering number. Let us soy that a cardinal U is captured by the L-sentence ~, 

i f  ~ has a model of power ~ H but not a rb i t r a r i l y  large models. Then the Hanf 

number of L is the smallest cardinal thai may not be captured by an L-sentence. 

Similarly, le t  us say that an ordinal ~ is captured by the L-sentence ~ con- 

raining a binary predicate symbol <, i f  ~ has a model with well-ordered < of 

order type at least ~ but ~ has no non-well-ordered models. Then the well- 

ordering number of L is the least ordinal that may not be captured by an L- 

sentence. More precisely: 

6.3 Definit ion. The well-orderinB number of the logic L, w(L), is the least 

ordinal ~ (provided such an ordinal exists)~such that i f  an L-sentence ~ con- 

taining a binary predicate symbol < has a model ~ with well-ordered <A of 

order type ~ ~,then i t  has a model ~ such that <B is not well-ordered. Simi- 

l a r l y ,  wx(L ) is defined. 
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6.4 Exerc ise,  Let L be a regu la r  l o g i c ,  l )  

( i )  I f  the compactness theorem holds fo r  sets of  sentences of  power~ l ,  then 

wx(L) : w. 

( i i )  wx(L) is a l imi t  ordinal closed under ordinal addition and multiplication. 

r )  

w) W~o(L ( ) )  = w, and i f  V = L then W~o(L(Q~ I _ ) )  = 

w. By 4.9,  w(L lW) = w 1. The sentences r o f  w show tha t  w(L ) does not 

e x i s t  and tha t  w(L +) _> ~+. I t  i s  shown in [27]  t ha t  w(L + ) e x i s t s .  Compare 
X U3 K L~ 

[ 7 ]  f o r  the value of  w(L + ) .  By [ 26 ] ,  w(L(QH)) does not e x i s t  (see w fo r  
K L~ 

the definit ion of L(QH) ). 

(X a ca rd ina l ,  { an o r d i n a l )  by i nduc t i on  on { :  Def ine Zl{ 

X 

sup[2 I q < ~] fo r  ~ > O. ~ ~ = ~ and 1~ = 

o by Obvious ly  > ~  Thus Denote i ~  1~. ]X+~ - " 

X (1) i f  X + ~ = ~, then ]~  = ~ 

By d e f i n i t i o n ,  ~ = ~ . Hence we have 
W 0 

1)Whenever in t h i s  sect ion we speak of  a regu la r  l og i c  L we assume tha t  L 
s a t i s f i e s  the f o l l ow ing  r e l a t i v i z a t i o n  proper ty ,  Re la t * ( k ) ,  t ha t  i s  s t ronger  
than t ha t  in t roduced in w 2: 

K 
Re la t * ( k )  i f f  f o r  any L-sentence ~ there i s  a K such tha t  ~ r k o and 

o K u{U} 
fo r  a l l  unary U I Ko there i s  a r (denoted by U ) , $  r k o 

such tha t  f o r  any ~ r Str (K ~ u lUg),  
~ K  

~ ~0 U i f f  U A i s  K -c losed and [uA] o 
0 
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We shaiI see that a similar reiation between the Honf number and the weIi- 

ordering number hoIds for some iogics. 

I f  ~o i s  an L-sentence having only  models of the i n f i n i t e  power x ,  then 

the L-sentence 

U % A w y ( v u ( U u  - ( E u x -  Euy)) * x : y), 

where E and U are new symbols, has a model of  power 2 ~ ( : ~ )  but not a l~ rge r  

one. I t e r a t i n g  the power set operat ion ~ t imes wi th a we l l - o rde r i ng  of  order 

type ~, we obtain an L-sentence tha t  has a model of power ~ but none larTger. 

We use t h i s  idea to show: 

6.5 Lemma. Let 1 ~ X s x and assume that  L has the fo l low ing  p roper t ies :  

( i )  L i s  regu lar  and wx(L) e x i s t s .  

( i i )  There i s  an L-sentence ~o tha t  has only  models of power ~. 

( i i i )  I f  E i s  a set of  ~ l L-sentences,then fo r  some K wi th Ec kK~ny ~ c S i r (K)  

and any A c A, i f  ~ ~ ~ then ~ ~ ~ f o r  some ~ wi th ~ c ~, A c B and 
O O 

IBI~ IAol + ~ .  

Then 

hx(L) l k(L)" 

Proof. wx(k) i s  a l i m i t  o rd ina l  (see 6 . 4 ( i i ) 1  hence i% su f f i ces  %o show tha t  

fo r  ~ < wx(L) there i s  a set ~ of ~ X many L-sentences tha t  has not a r b i t r a r i -  

l y  large models but has a model of  power ~ . S i n c e  { < wx(L) there i s  ~ , [~ [  ~ X, 

and < such tha t  ~ only  has wel l -ordered models and one of  order type { .  Let 
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U,V,E and g be new symbols. Let ~ cons is t  of  the sentences: 

U 
cO o 

V 
CO fo r  COr 

Vx(Vgx A "gx E fd(<)") 

VxVy(Eyx- g(y) < g(x)) 

Vx(Ux-~ "gx is the f i rst  element of <") 

VXCy(-~ Ux A -~ Uy A Vz(Ezx *~ Ezy) -~ x----y) 

4- 

6.6 Corollary. h(Lx ~+ ) -> "]~w( L + ) and h(L(Qx)) >- ~Rw(L(Q)) 

}t LU 

Proof. For L = L + take as COo the sentence Sx of w 
~ W  

and for L = L(Q ) 

take as COo the sentence 

~ ="< i s  a t o t a l  order ing"  A Q x x  = x A Vx-~ Q yy < x" �9 

We call ~ = (A,<) a x-like ordering, if ~ is a model of ~. 

Next we prove i n e q u a l i t i e s  of the kind H(L) ~wiL) f o r  a c lass of  l og ics  

ca l led  R - l og i cs .  The resu l t  f o r  ~ - l o g i c s  w i l l  imply the corresponding r e s u l t  

f o r  many f a m i l i a r  l og i cs .  We are lead to R- log i cs  by the fo l low ing  obser-  

vations: 

I f  n ~ w COn i s  an Lwl ,~-  formula and a unary predicate symbol U is  

interpreted in ~ by the set of natural numbers then, in S t we will see that 

we may replace the infinite disiunction V by a first-order existential 
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q u a n t i f i c a t i o n  over U. S i m i l a r l y ,  i f  %x~ i s  an k ( % ) -  sentence, ~ i s  a s t r u c -  

t u re  and (UA,< A) i s  a x - l i k e  o rder ing ,  then using a new unary f unc t i on  symbol 

f we may express Qxcp by the f i r s t - o r d e r  sentence " f  maps ~ 1-1 i n t o  ~ "  

and ~ 0  x~ by the f i r s t - o r d e r  sentence " f  maps a proper i n i t i a l  segment o f  

U A onto ~". - Thus Lwl w and L(Q) may be translated into first-order logic 

in structures with an adequate U-part. Such a restriction of admitted models 

i s  e s s e n t i a l  f o r  ~ - l o g i c s  (cf.[37]): 

Let ~ be a non-empty c lass o f  K - s t r u c t u r e s ,  and l e t  U be a unary pre-  
0 

d ica te  symbol not in  K . I f  ~ i s  a K - s t r uc tu re ,  then we c a l l  ~ an ~Tmodel, 
0 

i f  K u [U} c K and the U-part  o f  ~ l i e s  in  ~,  more p r e c i s e l y :  U A i s  K -c losed 
0 0 

and ~A]~ ~ K o ~ ~ for some ~ r ~. The ~-logic is %he pair (L(~),~) where 

I ~  , i f  K u [U] ~ K 
0 

L(9~) K = 

Lw K , i f  K u [U] c K 
0 

and where f o r  ~ r St r (K)  and ~ r L(~) K 

~ ~ iff ~ is an R-model and ~ ~ ~. 

In particula~ f o r  ~ = {(w,(n)n e w )} we obta in  w-logic. 

For the res t  o f  t h i s  sect ion assume tha t  a l l  s t r uc tu res  in  ~ have the 

same infinite cardinality ~. Then 

(o) VxUx has only R-models of power ~, 

(b) i f  E has an ~-modes and ~ E I ~  ~, 

then ~ has an ~-model o f  power x ,  
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(c) wkCL(~)) ex i s t s  ("embed ~ 

e x i s t s ) .  

L ( ~ )  in some L and use the fac t  tha t  w (Lw)  

Though L(~) is  not regu la r  in the sense of  w the fo l l ow ing  lemma is  

proved as lemma 6.5.  

6.8 Lemma. For all k ~ ~, hx(L(~) )  _ ~ w k ( L ( ~ ) ) .  

In order  to prove hx(k (~) )  < ~ x ( L ( ~ )  _ ) we need the fo l l ow ing  p a r t i t i o n  

theorem of  Erd~s and Rado. For a set • and n e ~ l e t  EX~ n be the set of  a l l  

subsets of  X of  power n. For ca rd ina ls  X,U and Pt and n r wt 1 ~ n t l e t  

p ~ (k mean tha t  f o r  a l l  f : [ p  ~ ~ there is  a subset X of  p of  power l 

such tha t  f i s  constant  on EX~ n. 

6.9 Theorem. ( c f .  E l2 ] )  

~)n fo r  r ,n_> 1. (i) ~ r+n+1 ~ (~ 

(ii) ~(~+I ~ ~ )g~ ) ( w~ fo r  n -> 1 and any ~. 

6.10 Theorem. For a l l  X ~ x  

hk(L(~) )  = 3 w k ( L ( ~ ) ) "  

Proof. Assume that the set ~ of ~ k sentences has an ~-model ~ of power 

>~ 
_ wx(L(~)). We must show that ~ has arbitrarily large ~-models. First we 

sketch the idea of  the proof :  

If we find an ~-model ~ of ~ containing an infinite subset X of elements 

indiscernib1~ with respect to U (i.e. any two finite sequences satisfy the 

same formulas with parameters in U)r then we obtain an ~-model of E of a 

given cardinality p >ICI throwing into ~ p new elements that behave as the 
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elements in X.  We get such a C wi th an i n f i n i t e  set X of  i nd i sce rn ib l es  as 

fo l l ows :  Since ~ ~ E and ! A I ~  ~w~L(~)) we f ind using the p a r t i t i o n  

theorem 6.9, f o r  each ~ a  subset X of  A such tha t  any two r - t up les  in X 
' r  " r  

s a t i s f y  the same formulas. Moreover Xr+ 1 c Xr. We code t h i s  fac t  in ~ wi th a 

we l l - o rde r l ng  of  length wk(k(~))  assoc ia t ing to each < -  descending sequence 

of length r the set X . By d e f i n i t i o n  of the we l l - o rde r i ng  number there is  a 
r 

non-wel l -ordered ~-model ~ e lemen ta r i l y  equ iva lent  to ~. An i n f i n i t e  <B _ des- 

cending chain w i l l  g ive r i se  to a set X where any two f i n i t e  sequences of X 

s a t i s f y  the same formulas. 

We start the proof with on ~-model ~ of Z, where IZI ~ X, of cordinality 

" 

Case I: k is inf inite and wk(L(~)) > w. 

Choose R c K such that ~ c L ~ ,  U r K and IKI<_ k. Assume that g is a set of 

un iversa l  sentences ( in t roduce Skolem func t ions ) ,  Let <A be any order ing of A. 

We define, by induction on r, for any {o,.. . ,~r_ 1 ~ wk(L(@)) with ~r_l<...<~o 

a subset X such tha t  

(a)  X -1 D X , 

(b) Ix  I= ]z  

(c) i f  ~, ~ • A A bo <A .o. <Abr_l 
, a o < ~*~ < ar_ I '  

and t h e n  V (UVoA...AUVr_ I --  

A A 
Suppose X i s  def ined and { r  < { r - l "  For a < . . .  < a r X def ine the o r 

funct ion 
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~,r+l (uA)~+I R 
: x L2(r+ l )  - {O,l} 

e 

(~+i ,~(~(=+~))) 
$ r+l 

O 

by 

l~ 

i f  ~ ~ ~[;:+1 r+l , a ] 

i f  ~ m r  [~+l ~+l] # �9 

Hence s:EX ] r+ l  ~ 2(uA) :+1 -K x L 2(r+l ) 

i2(e) r+1 ~t x L 2 ( r + l ) l  = 2g- where [ x l : ~W{r_] and 

Therefore, by 6.9 ( i l ) ,  there is  a subset X + l of X 

on which ~ is constant. 

of cardinality ~x 

Thus X s a t i s f i e s  (a ) , (b )  and (c ) .  

w . l . o . g  assume that  wx(L(~))  ~ A o.d l e t  <A be the e - r e l a t i o n  o~ 

pA 
wk(L(~)) For : e ~ we define the (r+l)-ary �9 on A by r e l a t i o n  

r 

Ar 
P-Ka i f f  a e X . 

r 

Put K : K u {<,<] u { P . I  r e ~] and 
r 

E 1 : {c0l qo ~ L~w~" (~[ ,<A<A ( p ; ) r  c ~) ~ ~] 

In pa r t i cu l a r ,  ~ c ~C 1 and I~]I_~ X. As <A has order type wk(L(~)) , ~l has a 

non-well ordered ~-model ~�9 Let (~n) n e w be an i n f l n l t e  descending sequence 

in <B�9 For r r w, put Br = [ b l  b r B,pBfb~}. Since ~B ~ El ,  we have: 

(a) B = Bo ~ Bt "~176 ' 

(b) B is infinite, 
r 
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then (c)_ i f  ar,~ e Br,a ~ <B...<Bar_ 1,bo<B...<Bbr_1,~ ~ U B and r r L2r, 

r r , j , 

Now, l e t  ~ be any c a r d i n a l .  We show t h a t  ~ has an R-model o f  power ~ ~.  Choose 

any o r d e r i n g  (X ,< )  o f  power ~.  By the  compactness theorem the f o l l o w i n g  set  

E 2 o f  f i r s t - o r d e r  sentences has a model ~. 

U B ~2 = [~  Cy = Cz[ y , z  e u X,y  ~ z} u 

{r u , . . . , c  )I r ~ w,~ c U B, 
0 ~ ' o Xr-I 

k ~ and ~ ~ ~ [~ ,~ ]  x J . . . < r _  I r 

f o r  some oo<B. . .<Bar_ l  e B ) .  

C U B, C Assume t h a t  c = u f o r  u r c = x f o r  x r X .Le t  ~ be the K - s u b s t r u c t u r e  o f  
U X 

~K generated by U B u X.Then IDl~ ~ and s ince  E i s  a set  o f  u n i v e r s a l  sentences,  

~ Z.  We prove t h a t  ~ and ~ have the  same U - p a r t .  Th i s  w i l l  f i n i s h  our  p r o o f :  

Since ~ is an R-model, ~ (or an expansion of 9) w i l l  be an ~-model too, hence 

i s  an 9~-model o f  ~ o f  power _> U. 

C l e a r l y  U B U D I f  d U D then d f a i r  r c . e = u , x ]  f o r  some K- term t ( 2 r ) ,  

u r r U B and Xo< . . . <X r_  1 r X. Thus Ut (c  u , . . . .  c ,c  . . . .  ,c  ) c •2" 
B B o Ur-1 Xo Xr-i 

o u , a ] .  Choose u e U such t h a t  Hence, for any a < .. .< a r 1 in Br+ I ,  ~ ~ u t [ r  r 

u t~ [ r ,~ ] .  Then c = t(c u , . ,c u ,c x , .  ) e Z2, thus u t~3[r r = .. = u,x]= d. 
U 0 r - ]  o " ' ' C x  _ r;~ pB 

Hence U D = U B. - Similari ly, i f  P r K n K then and coincide on 
o 

U D = U B. I f  P r K K then define pD such that pD = pB - on U. Do the same f o r  
0 

function symbols, and put ~I = (~3'(PD)P (fD) ) Then 
c K '  f c K  " 

0 0 
P ~  f ~ 
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FU DIED1 f Ko [uB] ~ P Ko 
: , thus ~I is an ~-model, 

Case 2: k i s  i n f i n i t e  and wx(L) = w. 

The proof is similar. We now use part  ( i )  of 6.9 to obtain fo r  ~ o , . . . , ~ r _ l  r w 

a subset X of  r - l n d i s c e r n i b l e s .  with ~r-1 < ' ' ' <  ~o 

Case 3: X is  f i n i t e ,  or ,  equ i va l en t l y ,  k = 1. 

In t h i s  case K is  f i n i t e .  I f  we code descending sequences of  o rd ina ls  we do 

not need i n f i n i t e l y  many predicate symbols P to express the p roper t ies  (~ ) , ( b )  
r 

and (E). We may replace ~1 by a recurs lve set of  sentences. But a recurs ive  set 

of sentences in a f i n i t e  type i s  equ iva len t ,  by a theorem of Craig and Vaught 

(see [1O]} to a f i n i t e  set of  sentences using add i t i ona l  pred icates.  

Some applications. 

A) / 
4 -  

W 

Put Ko = {c~i ~ <~} and ~ = {(a , (~)~  < ~ ) ~ .  

K 
There i s  q0 ~ = L +~ such tha t  Mad(q0 o ) .  . = 

W 

(more precisely, Mod(~ ) = {~j ~ _~ (~,(~)~ 
o <~ 

(1)  

)}).  

= { = x=c . Take cp ~ g < <-~ cg c g 

( i l )  For each ~ e L , Mad(w) i s  the class of  r e l a t l v i z e d  reducts of  3 -  
4- 

models of  some set of_< ~ many f l r s t - o r d e r  sentences; more p rec i se l y ,  

if ~0 c L then for some K' ~ K, some E c L K' , I ~I ~ ~ and some 
4- WW 

unary predicate symbol V ~ K',  

Mod(~0) : {FvA] ~ ~K{ ~ ~ E~ . 
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Proof. Define ~* ~ L 
[DL~ 

for @ r L 
+ 

/4 LU 

4" = ~, if % is atomic~ 

by induc t ion :  

(~ ~ ) *  = '~  r ' (~l v $2)*  = ~ l *  v ~2" 

(3•  = 3x(V• A ~*)  . 

If r i~ ~ v<~ ~ ~hoo~e Q new (n+1)-o~y 

~* = ~x(Ux A P~XVo...Vn_l) , 

and 

pred ica te  symbol P%. Put 

: [vO(%cKVo.. . n D~ .Vn_ I - ~K(v)) I{ < x} 

To prove ( i i ) ,  take for Z the set 

[~p*] u U[D~ 1% a subformula of m, % an inf in i te disiunction]. 

Now, using ( i )  and ( i i ) ,  i t  is easy to show that 

h(L + ) = hx(L(~)) and w(L + ) w (L(~)), therefore h(L + ) = i x  = w(L )" 

Since w(L + ) :> x + - we have x + w(L + ) = w(L + ) and hence, 
X ~J X UD ~t W 

~-~w(L + ) = ~-w(L + ) " 
7L W X ~ 

6.11 Theorem h(L + ) = ~w(L ) . In particular, h(Lwlw) = % 
x m  + 1 

~ W  

B) L(Qx). 

Put Ko = {<] and ~ = [9/I Q r Str(Ko),Q a x - l i k e  o r d e r i n g ] .  Then 
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K 
e L ~ (i) There is q~o (%) such that  Hod(s = 97. 

( i i )  For each ~ c L(Q ) ,  Mod(~) i s  the c l a s s  of  r e l a t i v l z e d  reducts  of  ~ -  

models of a f i r s t - o r d e r  sentence (see [ 4 9 ] ) .  

Thus ht(L(Q ))  = hl(L(97) ) and wl(L(Q ) ) = wk(L(~)) .  

6.12 Theorem. For I ~ 3, h t ( L ( Q ) )  = ~1 x 
Wt(L(Q)  

value of h i ( Q )  for  some t and x .  

C) Weak second-order  log ic  L lw 

. Compare [34]  fo r  the 

Put K : {<~} and ~ = { (w ,< ) ] .  Prove the statements corresponding to (1) and 
o 

(ii) in B. Since w(L 2w) = ~1 c, w~ere Wl c is the first non-recursive ordinal 

(cf.[31]), and ~ o = ~ , we obtain 
c c 

ml Wl 

6.13 Theorem. h(L 2w) = ~ . 
c 

w 1 

D) Admissible logics. 

Let A be an admissible set and assume, for  s i m p l i c i t y ,  that  A is  countable 

and w e A. For any ~ - l o g i c  l e t  the A-Hanf number hA(L(97)) be the least  car - 

d ina l  p such that  i f  an A-recurs ive set of f i r s t - o r d e r  sentences has a model 

of power ~ p, then it has arbitrarily large models. Similarly def ine the 

we l l -o rder ing  number WA(L(97)). Then the proof of theorem 6.10 shows that  

hA(L(97)) = ] B  wA(L(97)), since the set of sentences that  ensure that  (~) , r  

and (~) hold is  recur=ive.  

For any t r a n s i t i v e  a e A, put Ka = [Cb I b e a] and l e t  97a be the class 

containing only the K - s t ruc tu re  
o 
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(a,e ~ axa, (b)  b e a )"  

Since t h i s  s t ruc tu re  is  LA-charac ter izab le  , we have 

h(LA) ~ sup[hA(L(~a))la r A 

W(LA) ~ sup[wA(L(~a))[a r A 

, a t r a n s i t i v e ]  and 

, a transitive] . 

Using a s im i l a r  reduct ion as in A) ( i i ) ,  we obta in 

h(L A) <- sup{hA(L(9~a))la e A, a t r a n s i t i v e ]  and 

w(L A) ~ sup{wA(L(~a))la c A, a transitive] . 

o ~W~LA) Since for countable a r A, hA(L(~a) ) : ~WA(L(~a)) , we get h(LA) : 

Put % = sup[~ I ~ r A] . By 4.10, W(LA) = O A holds for countable A. 

6.14 Theorem [ 6 ] .  Assume tha t  A is  a countable admissible se t .  Then 

h(L A) = ] 
~A" 

6.15 Exercise [17]. For a logic L let h*(L) be the least cardinal p such that 

if an L-sentence has far each ~ < p a model of power ~ ~, then it has arbi- 

trarily large models. Let w ~ (L) be the least ordinal ~ such that if an L-sen- 

tence containing a binary symbol < has for each ~ < ~ a well-ordered model 

of order type ~ ~, then it has o non-well-ordered model. Show: 

(1) 

(ii) 

(ill) 

(iv) 

h(L) _< h*(L) _< (h(L)) + and w(L) _< w*(L) _< w(L) + l . 

w(L(Q )) : w*(L(Q )) for any x. 

I f  DI contains only one  structure, then w(L(DI)) : w*(L(~)). 

I f  w(L(~)) : w*(L(~)) (and al l  structures in ~ have the some cardln~i~ 

ty), then h(L(~)) = h*(L(~)). 
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(v) Both Hanf numbers and we l l - o rde r i ng  numbers co inc ide fo r  k + ,L ( (Qx) ,L  2w 
K LU 

and L A (Hint: use (ii),(iii) and (iv)). 

(vi) Give on example of o class ~ of structures (all of cardinality ~) such 

(assume tha t  for tha t  w(k(Dl)) ~ w*(k (~) )  and h* (k (~ ) )  t ~Iw.(L(DI) ) 

~. = "1 ~ 2 X 
w(L (~ ) ) '  > "x+)" 

The r e s u l t  6.10 that  re la tes  the Hanf number and the we l l - o rde r i ng  number 

fo r  92-logics is f a i r l y  genera l ,  s ince, as we have seen, most of  the log ics  f o r  

which h(L) = ~ ; i L )  is  known to hold "are"  9R-logics. But, i f  we look on big 

models, an 9~-logic behaves l i k e  f i r s t - o r d e r  l og ic  as i t  is  f i r s t - o r d e r  l og ic  

outs ide of  o subset of  f i xed  c a r d i n a l i t y .  What happens to log ics  tha t  are more 

close %o second-order l og ic  and fo r  which the w e l l - o r d e r i n g  number ex i s t s?  In 

9 
particular, i f  V = L we know that w(L(C~ )) -- w, but is i t  true tha t  

1 
h(L(Q2 )) = ] ~I 

1 w 
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SUMMARY (and OUTLOOK) 

In th is  paper we introduce i n f i n i t a r y  languages ~-A B which are determined by 

given sets (or classes) A and B of a su i tab ly  chosen metasystem and which can be 

regarded as a general izat ion of both the languages o~- A of BARWISE 1969a and the 

languages ~kX of KARP 1964. The languages ~ A  B w i l l  ( in formal ly )  defined in 

Chapter I and w i l l  be used in Chapter I I  to set up set theoret ical  systems axiomatized 

by means of these languages. The resu l t ing set theoret ical  systems include and possibly 

extend the usual f i n i t a r y  theories KP of KRIPKE-PLATEK and ZF of  ZERMELO-FRAENKEL. I t  

w i l l  be shown that many resul ts  carry over from the f i n i t a r y  to the i n f i n i t a r y  case. 

Addit ional resul ts (e.g. the existence of standard models of ZF) can be obtained in 

the i n f i n i t a r y  case which usual ly are proven in a second order set theoret ical  system 

which is stronger than the i n f i n i t a r y  system we are using. Moreover, we can make use 

of i n f i n i t a r y  logical  axioms in order to prove set theoret ical  resul ts which are ob- 

tained in the usual f i r s t  order ZF set theory only upon the assumption of the (set 

theore t ica l )  axiom of choice. 

We believe that one of the advantages of the i n f i n i t a r y  set theoret ical  systems 

introduced in th is  paper is the fact  that they natural1'y incorporate a schema of  

re f lec t ion  for  the language in which they are formalized whereas in the case of a 

second (or higher) order set theoret ical  system l i ke  QUINE-MORSE set theory the corres- 

ponding pr inc ip les of re f lec t ion  lead to very strong axioms of i n f i n i t y  which are not 

provable in the or ig ina l  systems. 

This paper is the f i r s t  part of the author's H a b i l i t a t i o n s s c h r i f t  (GLOEDE 1974). 

The second part (to be published elsewhere) deals with the fo l lowing topics: 

I )  A formal de f i n i t i on  of the i n f i n i t a r y  language ~-A B and various syntact ical  and 

semantical notions related to th is  language. In pa r t i cu la r  i t  is shown how the notions 

of r e l a t i v i z a t i o n  and t ru th  for  i n f i n i t a r y  formulas can be related to each other in a 

su i tab ly  chosen i n f i n i t a r y  system. (Such a re la t ionsh ip  is well-known to hold in the 

f i n i t a r y  case, but i t  is not at a l l  obvious how i t  extends to the i n f i n i t a r y  case, 

since the r e l a t i v i z a t i o n  of an i n f i n i t a r y  formula is again an i n f i n i t a r y  formula 

whereas the notion of t ru th  for  i n f i n i t a r y  formulas is usual ly defined by means of a 

f i n i t a r y  formula.) 

2) Various hierarchies of sets which are "const ruc t ib le"  wi th respect to a hierarchy 

of i n f i n i t a r y  languages (possibly a f ixed i n f i n i t a r y  language) and which define an 

inner model of ZF. The main resul ts are the fo l lowing:  Consider the hierarchy of sets 

<M I ~COn> defined by recursion as fo l lows:  

M 0 = O, M ~  = Def1~ (M a )  , M a = ~  M~ i f  ~ is a l i m i t  o rd ina l ,  
<~ 

M = ~ M~ , 
aEOn 

where ( f n t u i t i v e l y )  Def1(a ) is the set of subsets b~a which are definable in 

<a,C> by means of a formula of ~ and using C - f i n i t e l y  many parameters from a. 
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Then one can prove in ZF (the language ~% will be defined in 1.2 as a 

sublanguage of ~A% which is closed under forming the universal closure of 

a formula): 

1. M=L 

if C = HF for all ~ and 

(a) 2~ = ~ = ~-ZF for all ~ (GODEL) ; or 

M ~ if M~ is admissible , 
for all 

otherwise 

(c) ~ = ~*~*~ oo for all 

; or 

2- M = C I~ (where K is a regular cardinal ~ cO ) 

if ~ = ~ , C ~ = H(~) for all ~ (CHANG) 

(here we assume the axiom of choice). 

Horeover, the theory ZF can be generalized to a theory ZF~I < in the 

language ~kK (containing a name ~ for I< ) such that one can prove in ZFk~ 

(the schema) that C is the least inner model of ZF~ 

3. M = HOD 

4- 

if C~ = HF for all ~ and 

(a) ~ = ~ ,  ~, for all ~ ; or 

(b) ~ = ZMIM~ ~or all 

( ~ ~,~, is a suitably defined set of ~v-formulas, and again we 

assume the axiom of choice.) 

If ~= ~ M~ M~ ' C~ = HF for all ~ , 

then M is a transitive model of ZFC (in the sense of relativization), 

L ~ M ~ HOD , M has a definable well-ordering and M contains (e.g.) 

every ~- l-subset of CO 
n 
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CHAPTER I INFINITARY LANGUAGES FOR SET THEORY 

1 Introduction 

Among various approaches to set theory we shall adopt here the axiomatic one, 

and among the axiomatic foundations of set theory our starting point will be the 

theory ZF of ZERIiELO-FRAENKEL set theory. This theory can be used both as a 

formal system for set theory and also as a metatheory for mathematical theories 

which have been formalized within the first order predicate calculus (like ZF 

set theory itself) or within higher order or infinitary languages. 

If ZF is taken as a formal system for set theory, then there are various 

questions of intrinsic set theoretical interest which cannot be solved on the 

basis of its axioms. Some of these open problems have been decided upon the 

addition of axioms which either restrict the universe of all sets or else claim 

the existence of new sets (or "large" cardinals). Although most of these axioms 

can and will be formalized within the language of ZF set theory, they often 

involve notions which are related to metamathematical concepts of (possibly ex- 

tended) set theoretical languages. As an example of the former type of axioms 

we refer to the axiom V = L (GGDEL 1940) which decides many set theoretical 

questions but which usually is regarded as being too restrictive as an axiom for 

set theory. Since L , GODEL's class of constructible sets, is the least inner 

model of ZF (i.e. the least class M (definable by a formula of ZF set theory) 

such that M is transitive, contains the class On of all the ordinals and 

such that the relativization to M of every axiom of ZF is provable in ZF), one 

might wish to extend ZF set theory in such a way that the least inner model of 

the resulting theory is a "larger" (or "wider") inner model M which still can 

be characterized by means of a suitably chosen hierarchy of sets like GODEL's 

class L of constructible sets. It is well-known that M is an inner model of 

ZF iff there is a hierarchy of sots < Ma I aC On> such that M = ~.~ M a 

and for each ordinal a : aC0n 

M a is transitive, M a C_ M ~ if a ~ 6 , 

= U M~ if a is a limit number, and (3) Ma ~ a 

Def(M a ) ~ Ma+ 1 ~ ~(M ) , 

where (intuitively) Def(a) is the set of b ~ a such that b is first order 

definable in < a,E > using finitely many elements from a as parameters. 

In fact, if M is an inner model of ZF we may put 

M 
M = V for each a , 
a a 

where < V I a E On > is the yon NEUMANN hierarchy, in order to obtain a 

hierarchy of sets satisfying the above requirements. However, if e.g. M = HOD, 

the class of hereditarily ordinal-definable sets (cp. SCOTT-MYHILL 1971), this 
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hierarchy does not yield any essentially new information about M. Therefore we 

propose to take the opposite approach and define a hierarchy < M~ lu E0n > 

by specifying (besides (3)) 

(I) M 0 = 0 (say) and 

(2) M~+ 1 = Def ~a (M a ) 

where for each ~ , ~ is a suitably chosen infinitary language which may 

depend on M ~ (for examples see the summary ), and (intuitively) Def~ (a) 

is the set of subsets b~ a which are definable in <a,C> by means of a 

formula of ~ and constants for elements of a. 

The requirement (2) may be thought of as a description of the powerset in 

M, and it allows to investigate the fine structure of M by means of the hier- 

archy < M s i~E0n > (as in the case of L ) in terms of the process which 

leads from M to ~ ~ . With respect to this process it seems to be particu- 

larly interesting to investigate the case of a language ~ which is built up 

from M s and the sets in Ma in a "construqtive" manner (in a sense to 

be made more precise), since if e.g. ~ is the language~§ of KARP 1964 

and v;e assume the axiom of choice, then we will simply obtain Ms= V~ . Thus 

we shall primarily consider languages ~ which are built up from a given set 

A and which do not only contain constants for elements of A but which may 

also contain infinitary conjunctions and disjunctions of any length a snd 

possibly quantifieations over sequences of any length a provided a is an 

element of A. (See w for more details.) 

Once having introduced infinitary languages fo~ the purpose of defining 

inner models of set theory it seems to be natural to consider axiomatic set 

theories formalized in this language. ~r:his idea has been put forward by MOSTOWSKI 

and some of his students in Warsaw (according to a remark in CHANG 1971)~ but 

has also been discussed in private conversations between Prof. G.H. M~ller and 

the author in Heidelberg. 

As a first step in this direction we will use a finitary set theoretical 

system (M) ~ike ZF) as a metatheory and any given set (or even class) A of this 

metatheory to define a (possibly infinitary) language ~ which will be used 

(in Chapter ~) in order to set up a formal set theoretidal system (~) the 

axioms of which are formalize~ by means of the language 

Although ZF set theory has been used frequently as a metatheory for ZF set 

theory itself an4 for the formalization of metamathematical eonceDts related 

to infinitary and higher order languages, as far as the author knows it has not 

yet been fully employed in order to deal with infinitary systems of set theory. 

Of course, one might argue that any result obtainable in an infinitary set theo- 

retical system will finally be interpreted in its metasystem and hence will 

appear as a result in a suitably chosen finitary system; however, even in this 
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case the detour via infinitary languages can be instructive (as it gives, e.g., 

a better understanding of CHANG's C ~ as well as a new characterization of 

HOD) and, moreover~ we believe that it might be worthwile to consider infinitary 

statements as they are - and as it is often done even in usual mathematics 

(though in general not in an explicit manner). 

2 Infinitary set theoretical languages 

The usual first order language with at most countably many non-logical 

symbols is usually defined within a system of elementary number theory as its 

metatheory which has to be replaced by some suitable system of set theory when 

dealing with various semantical notions. Instead we choose to start at the very 

beginning with a set theoretical system, the KRIPKE-PLATEK theory KP of 

admissible sets (cp. BARWISE 1969a) which will be taken as our metatheory in 

order to deal simultaneously with the case of a finitary and an infinitary 

language resp. If the system KP is used as a metatheory we will refer to it as 

Meta-KP in order to distinguish it from the formal theory which may again be KP 

or an extension of it. 

Throughout this paper the metatheory will be used mostly informally. In 

order to make the distinction between a formal theory and its metatheory more 

apparent we shall use the following notations: 

Metatheory (M) 

variables: ~ ,  ~ , C , . . , m , ~ , . . , X , ~  , Z  
(possibly with indices) 

equality: = 

membership: E 

logical symbols: ~ ~A ,V, --> ,(-~ , V , B 

(when formalized) 

class terms: A, B, C . . . . .  F . . . .  . . . .  

Formal theory (F) 

U~ V? W, .... 

( p o s s i b l y  wi th  i n d i c e s )  

( A , v  , V  , 3 ~ , < - - ~  

A, B, ..., F,.., R,... 

as defined 
symbols) 

2.1 Let ~ and B 

denoting the universe of all sets in the metatheory). We use 

built up an infinitary language ~A B as follows: Its symbols 

~ C A , b E B  : 

variables v~ , individual constants c~ , 

b ~-place function symbols F -place relation symbols P~ , 

negation ~ , (infinitary) conjunction ~k and (infinitary) universal quanti- 

fication V �9 

The class of terms of ~A~ is the least class ~ such that 

be any class terms in a suitably chosen metatheory (possibly 

and ~ to 

are for every 

(Tq) v~ and ca. are in ~ (for eyery CL~ ). 
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(T2) If ~ is a function, the domain of ~ is ~ and the range of ~ is included 

in T, then F ~ ~ is in T (for every ~E ~ ~ E ~ , ~ E A ). 

The class of formulas of ~AB is the least class ~ such that 

(F1) if ~ is a function, the domain of ~ is ~ and the range of $ is icluded 

in Y , then P~ ~ is in 

(F2) if ~ is in ~ , then ~( ~ ) 

(F3) if {~ I~E ~] is a set in 

then A [~X i KE ~ is in 

(F4) if ~ is in Y , 05 

of variables of ~A~ ' then 

(for every ~E ~,~E ~ , ~ E ~ ), 

is in ~ , 

and for each ~E~ ~X is in ~ , 

(for every ~E ~ ), 

, and if ~ is any function on ~ into the class 

V~ ~ is in ~ (for every k EB ~E ~ ). 

Additional symbols A , v , k~ , 3 , ~ and ~-> are assumed to be defined 

as usual by means of the basic logical symbolsol~&~. Formulas will be denoted 

by ~,~ .... We also write ~k ~ for ~k { ~IKE~] , and similarly 

for Xv~. If ~ is a function the range of which consists of a single variable 

v , we write V v in place of V~ , similarly for 3 . 

2.2 The above definitions of the class of formulas and the class of terms are 

given only informally; actually the condition 

(+) {~ IK ~ ] is a set in & 

occurring in (F3) does not make any sense unless the formulas themselves are 

sets. (A similar remark applies to the condition " ~) is a set in ~ " and the 

condition " ~ ~ " .) In a subsequent paper (cf. GLOEDE 1974) we shall show how 

the above concepts can be formalized within a suitably chosen metatheory Meta- 

KP(~,~). In particular it will be shown that the symbols, terms and formulas 

of ~A~ can be identified with suitably chosen sets in the metatheory in such a 

way that ~ and ~ will become definable class terms in the metatheory. For 

this purpose we will always assume that 

~ ~ , ~ is admissible and ~ is ~ -admissible 

holds in the metatheory. This has several - though mainly technical - advantages, 

in particular, every formula of ~A~ can be denoted by an element of ~ . (If at 

the present stage of development the reader does not want to be referred to a 

formalization of ~ as indicated, he may think of & and ~ as being restric- 

ted to sets of the form ~(~) for some regular cardinal ~ (cp. 2.3 below) 

or as being equal to the class of all sets of the metatheory; in these cases 

the restriction (+) can be replaced by the simple condition ~E~. 
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2.3 The language ~ can roughly be characterized as follows: it is an ex- 

tension of the correspon@in C first order language (since ~ and ~ are 

assumed to be admissible and hence contain the hereditarily finite sets) which 

in addition allows to take (infinitary) conjunctions over every set (in ~ ) 

of ~A~ -formulas and universal nuantifications over functions of variables 

(in & ) provided the domain of the function is in ~ . Thus if ~ is ~ , 

the class of hereditarily finite sets (and hence the least admissible set), 

and if ~ is any a@missible set, then ~A~ is the infinitary language of 

BARWISE 1969a (disregarding some minor modifications), and if ~ = ~ (~)1) 

= ~ (~) (where ~ , X are regular cardinals, ~ ~ k~ ~ then ~A~ is 

(again up to some modifications) the infinitary language ~A of KARP 1964 

(with respect to the obvious similarity type). Therefore we szmply write ~ 

X for ~(k) ~(~) and ~ or ~ ~ ~ for ~ ~ 

2.4 In order to use the language ~A~ as a formal language for set theory we do 

not need all its symbols but only the binary predicate symbols ~ and s (denot- 

ing equality and membership resp.). However, at several places we shall make 

use of the availability of additional symbols which will be added as being re- 

quired by the context. E.g. we will later need a formalization of the syntax 

and semantics of the infinitary language in a suitably chosen metatheory. This 

metatheory may again be an infinitary system (F) in t~e set theoretical language 

~A~ (which in turn will be formelizable in a finitary metasystem (H)). In 

this case we will need two additional unary predicate constants ~ , ~ (or 

respective set constants ~ ,~ ) in the language of (F) in order to be able 

to describe in (F) the language ~A~ , now taken as the language of an infini- 

tary system (FF) to be formalized within (F). Finally, at several places we 

will need constants ~ (~6~) as terms of the language ~A~ denoting the 

set 0% . These constants correspond to the numerals in the finitary case 

and can be eliminated in a suitably chosen infinitary system (cp. 11.4). Thus 

we will actuallly need the following set theoretical lan$uases: 

(a) the "pure" set theoretical languages 

~A~ (no individual function and relation constants, symbols symbols 
except ~ and e ), 

~ (as above) in the finitary case A = ~ = ~ ; 

(b) ~A5 with constants from 

(like ~A~ in (a) but with additional set constants ~ for each ~E~); 

I O. j denotes the eardinality of ~i- (in this context we always assume the 
axiom of choice). TC(~) is the transitive closure of Ou , 
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<c) and 

(like the resp. languages of type (a) with additional predicate symbols A, 

(or set constants ~ , ~ , resp.) and set constants ~ for eachaEA; 

we will write v eL, v e ~ in place of Av, ~v , resp.). 

Usually we shall not distinguish between ~A~ (as in (a) and ~ with 

constants from ~ (as in (b)). We shall use the letter ~ to denote any 

of the set theoretical languages of type (a) - (c) (suppresslng reference to A 

and ~ if no confusion is likely to occur)~ many results, however, remain 

valid if ~A~ is the full language of 2.1 or any of its sublanguages. 

2.5 If ~ is a proper subclass of ~ , e.g. if ~ =~E ~ , then there 

are formulas <0 of ~A~ such that the universal closure of <0 is a formula 

of ~A~ but no longer a formule of ~ . Thus it seems to be advisable to 

introduce a subclass ~ of formulas of 6~ which is closed under universal 

closure of formulas and still "as big as possible". If ~ is any of the set 

theoretical languages of 2.4, then we define ~* to be the sublanguage of 

which is the least class (with respect to inclusion) ~* of ~ -formulas 

such that 

(F1 ev(ry atomic formula <0 of ~ such that ~%k (<0) s ~ , is in ~* 

(F2 if ~0 is in ~* , then -~ (~) is in ~Y* 

(F3 if ~" : ~{~x IXs is an ~ -formula, for each X6~ ~x is in~ 

and ~%~ (<~ x) C S , and if ~%;(~) 6 B then ~" is in ;* , 9 

* ~r* 
(F4 if �9 is in , ~V (~) E ~ and if A9 is a function in ~ , 

the domain of AO is a set in ~ and the range of ~ is contained in 

the class of variables { v x IXs %} , then V~ ~ is in ~* 

}{ere ~k ( <0 ) denotes the set of indices )~ of variables v X which are free 

in <0 . Since we always assume that ~ is admissible, we have: 

y* 
(a) if [0 is in then ~%r( <0 ) ~ 5 

(b) If �9 is in ~* and ~ is a subformula of <0 , then ~ is in ~* 

(c) If <0 is in ~*, then ~ 6~ for every variable v@_ occurring in ~0 

(d) if <0 is in ~*, ~ = ~%r (~) , ;~) = <vm IxE b> , then the universal 

closure of ~ , V~ ~ , is in ~* 

(e) If ~r O is any class of ~ -formulas satisfying (FI*), (a) and (b) 

(with ~ro in place of ;* ), then ~ C ~T * 

Thus ~ * can also be characterized as the largest class (w.r.t. inclusion) 

such that contains every atomic formula <0 of ~ such that ~F~ (<0) 

6 B and satisfies (a) and (b). Note that is again A ; 
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* is the class of ~A, -formulas which contain at most finitely many 
A~ 

free variables from [v~l'x~ ~ ) (which may he identified with { v~ ~<~ 3 ), 

whereas g~ -formulas may contain variables from ~ v X I~ E ~ ] , possibly 

infinitely many: 

2.6 Example. Let ~ be the least admissible set such that (~6 ~ , and let 

<~(~4)~)I~ > be a suitable enumeration of the formulas of the language 

of ZF set theory with free variables as indicated. Then 

A V~ T~ is a formula of ~ * but 

is a formula of ~ which is not a formula of ~ *A ~ , since it contains 

infinitely many free variables. I) 

3 Introducing class terms 

Let ~ be any of the set theoretical languages of 2.4. Then ~ and ~ * 

can be extended as usual by introducing class terms { vI m } , e.g. by 

adding the clause 

(F5) If ~ is in ~ , then so is us( vI ~ } 

to the formation rules for formulas (with the requirement that u and v be 

variables of ~ (from { v~ IXC ~) in case of ~* )) and by adding the 

(generalized) 

CHURCH-Schema: us{vl ~ (v,...)} ~ ~ (u,...) 

(provided u is not bound in ~ (v,...)) 

to the logical axioms for ~ . Hence class terms can be eliminated, and there- 

fore we will in general not distinguish between ~ , 4~* and their respective 

class term extensions. 

In a language with class terms we further extend the language by defining 

4 ~ C : ~--~ 3 v  ( v ~ 4 -  ~ ve~) 

if ~ , ~ are class terms or sets, but not both are sets. (If both 4 and 

are sets, then 4 ~ 6 and ~ e 6 are atomic formulas and the above equi- 

valences will later he derivable by means of the axiom of extensionality and 

suitably chosen logical axioms.) 

I) 
In the following we will often use C to denote ~ in case of the 

languages ~A5 and ~ in case of the languages A~ " 



K. Gloede 321 

4 Sequences of variables and relativization 

4.q As indicated in 2.2, we will later denote terms and formulas of the infini- 

tary language ~[ by suitably chosen sets in the corresponding metatheory. 

Though at the present stage of development it is not strictly necessary, we 

will adopt this formal approach with respect to the functions of variables. 

The ordered pair < O,(~ will be assigned to the variable v~ , and 

hence functions of variables will become sets (in the metatheory) which are 

functions with range included in {~0,~ I ~ ~ ~ ~ . We will denote these 

functions by ~ ~, 7,... (possibly with indices). The domain of v will 

be denoted by 4(~), and as usual, ~(X ) denotes the value of ~ at ~ 4(~). 

(Of course, even if we identify v x with (0,X> , ~(X ) need not be equal 

to v x .) Note that the domain of ~ need not be well-ordered (but e.g. in 

case of KARP's languages ~ it may be assumed to be well-ordered by some 

ordinal <~ ). In spite of this fact we prefer to use the term "sequence of 

variables" instead of the more precise expression "function of variables". 

The concatenation ~* ~ of two sequences of variables ~, ~ is defined 

to be the function ~ determined by 

4(7) = (4(V) ~ (0~ ) U (~(7) X (I~ ), 

~(QK ,0) ) = ~(x ) if K6 4(V) , ~( (X ,%) ) = ~(X ) if K s 4(7). 

The one-term sequence < v~) = < v K I K = ~) will often be identified 

with v~ , and u, v, w,... will also be used to denote single variables. 

If we wish to indicate that the variables in the range of u occur as free 

variables in ~ , we often write ~ (~) or ~(~,~) or ~(~,...) if 

= ~ * ~ . (If v and ~ both occur within a formula it does not mean 

that there is any relationship between them; v simply denotes a variable v~ 

and ~ a sequence of variables among which v~ may occur or not.) We hope 

that the use of further notations not explicitly defined will he clear from the 

context. 

4.2 If 7 , ~ are sequences of variables, ~(7) = ~) = ~ , and if ~ is 

any term (possibly a class term) then we use the following abbreviations: 

xe{ 

With regard to the latter definition, note that ~e ~ is a formula of some 

infinitary language whereas e.g. ~ 6 ~ is a metamathematical statement 

expressing that ~ (as a sequence of sets denoting variables) is an element of 

�9 The formula ~ g ~ is a generalization of an abbreviation which is 

commonly used, viz. 

Vo .... ,v~e~ ~ Voe@^...^v~e ~ 
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Similarly 

vV~ ~ and 3V~4 $ 

are used to abbreviate the respective formulas 

and similarly for a single variable v in place of v . 

4.~ If ~ is a formula and ~ is a term (possibly a class term) then the 

relativization o_~f ~ t__oo ~ , denoted by ~ ~ or ReI(~ , ~ ), is defined to 

be the formula obtained from ~ by replacing every quantifier V~ occurring 

in ~ by V~e ~ . (If v is a variable scouring as a bound variable in 

or in the range of v and if v occurs in ~ , we assume that is has been 

suitably renamed in ~ before performing the process of relativization.) 

Here we assume that ~ is a formula containing no class terms and no defined 

symbol; otherwise we define ~ or Rel(~ , ~ ) to be Rel(~ , ~ ) where 

is obtained from ~ by eliminating the class terms and the defined symbols 

occurring in ~ in a suitable manner. As regards the existential quantifiers 

this amounts to replacing 3~ by 3~s ~ , as regards class terms, {v I~] 

will be replaced by {v I Rel(~ ,~o )}(whereas predicate symbols will not be 

changed under the process of relativization). 

As in the finitary case there is a close connection between Rel(~ , ~ ) 

and (a formalized notion of) truth of ~ in the structure <~ ,s ~ . In fact, 

defining V s ~ and VTs 4- in the way described above, we were lead by 

the usual interpretation of the quantifier Vv in a structure of the form 

5 Hierarchies of formulas 

5.1 The usual classification of finitary set theoretical formulas (LEVY 1965) 

can easily be extended to the infinitary case. Let ~: be a class of formulas 

of an infinitary language ~ where the formulas are now supposed to contain 

A , 3 , V , V in addition to ~ , A , V as primitive logical symbols 

as well as symbols for restricted quantifioations (i.e. quantifiers of the form 

VV~u and ~7~u ). 

/~ ~ ( Y ) is the class of formulas ~ in ~ such that ~ does not contain 

any unrestricted quantifiers (but possibly restricted quantifiers of any kind). 

~1 ( f ) is the class of formulas ~ in Y which are of the form 

3~ ~ for some ~ ~ ( ~ )-formula ~" 

( ; ) is the class of formulas ~ in ~ such that the negation symbol 

occurs in ~ only in front of atomic formulas and ~ contains no unrestricted 
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universal quantifiers (but possibly restricted universal andlor (restricted or 

unrestricted) existential quantifiers). 

i ( ~ ) and ~ ( ~ ) are defined similarly, and one may also define 

classes of formulas ~. ( ff ), ~( ~ ) for --~ 2 . 

In general we shall not distinguish between formulas which are logically 

equivalent; in particular ~ will be called an ~ -formula whenever it is 

logically equivalent to a formula in ~ . If T is a theory (usually identi- 

fied with its set or class of axioms) then T is an ~ -formula in T iff 

there is a formula ~ in ~ such that T I- ~ ~ ~ - (If equivalence is 

taken in the sense of formal derivability, these notions depend on the under- 

lying logical system (e.g. with or without infinitary axioms of choice, 

distributive laws etc.), thus in general the latter notions should be understood 

in the semantical sense, cp. also Ii.I.) 

o and ~, are the respective classes of formulas ~ ~ (~), ~.(f) 

where ~ is the set of formulas of the finitary set theoretical language, 

similarly for A o(~ ), ~io(k - ,~ ) etc., where ~ is the set of formulas 

of the finitary set theoretical language with additional predicate constant 

k and predicate symbols k , ~ resp. This classification will be used for 

the language of the metatheory, too, and also if A is being replaced by a 

class term ~ . In this case e.g. ~o ( k ) is the set of formulas ~ of the 

usual finitary language of set theory with additional atomic formulas of the 

form ~s such that 9 does not contain any unrestricted quantifiers. 

5.2 The above notions will also be needed relativized to some class ~ . For 

our purposes it is most convenient to use the following definitions: 

Let ~ (A ,~) be the (finitary) language of some set theoretical 

system (M) in which ~ and ~ (which will be treated like unary predicate 

constants) denote two class terms such that ~ ~ A holds in (M). 

An re+l-place relation ~ A m+l will be called ~ (~) over A iff 

there is a ~-~( ~ )-formula ~ (Xo,...,x m) of ~ (A ,5) with free 

variables as indicated such that 

Similarly, ~ h m+l will be called Z (~) over A iff there is some ~, a 

~( ~)-formula ~ (Xo,...,xm,Xm+1,...,Xm+ n) with free variables as indicated 

and n elements Oil''''' ~n6A such that 

. . . .    el(A, . . . .  " 

(Note that here ~ is treated as a unary predicate symbol, and hence when forming 

Rel(~ ,~ ) from ~ , ~ will not be relativized but will be left unchanged.) 
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CHAPTER II AXIOMATICS FOR INFINITARY SYSTEMS 

1 Logieal axioms and derivations 

Let ~A~ be the infinitary language introduced in 1.2.1 (containing possibly 

-many predicate and function symbols and ~ -many individual constants, p2 o 
denoting equality). It is well-known that there are complete logical systems 

for ~A5 only for particular sets ~ and ~ (cp. 11.3.3 - 11.3.5 of KARP 1964 

for the languages ~i and Theorem 2.7 of BARWISE 1969a for the languages ~A 

= ~A0o , where k~ ~C= ~ (601)). For cur purposes, viz. derivations from 

the set theoretical axioms to be described below, we generally need only suitab- 

ly chosen axioms and rules of inference which can be obtained by strict analogy 

to the finitary case (e.g. take the axioms and rules of the basic formal system 

~ ( ~ ) of KARP 1964, w suitably rewritten for ~A~ ). We shall not 

bother here to write them down explicitly, since in general we shall not 

describe formal derivations but argue informally. However, we shall try to 

point out the cases which require to take into account additional axioms and 

rules which are peculiar to the infinitary case (e.g. distributive laws, axioms 

and rules of choice, cp. @9 below). Hence whenever we use the symbol I- for 

formal derivability we leave it to the reader to check which particular axioms 

and rules are needed for a particular formal derivation. Alternatively, one may 

either assume that the language under consi0eration is one of the languages 

~kk of KARP or ~A of BARWISE having a complete axiomatization, or one may else 

reolace I- by its semantical counterpart. 

A theory will often be identified with its set (or class) of non-logical 

axioms. If (F) is a theory formalize~ in the language ~A~ we shall frequently 

make use of the following principle which will be referred to as "~-induction 

for (F)" : 

if (~ IX~ is a sequence of formulas of ~ such that for each ~A 

~kj~ is a formula of ~A~ ' then: 

(F) I- (~ ~m ) ~ ~ for each ~ implies ~) I- ~ for each ~EA- 

in the finitary case, i.e. ~ = ~ = ~ , this principle (which must not be 

confused with the O0 -rule) usually does not receive any attention since it can 

easily be justified using (informal) induction on the natural numbers. Similarly 

in the infinitary case: Once we have specified the metatheory (M) for (F) (as 

will be done in a subsequent paper) one has to check that the notion of deriva- 

bility of a formula from the axioms in (F) is expressible in (~!) by a predicate 

for which the schema of foundation holds in (M). This can in fact be done for 



K. G]oede 325  

the theories (F) which we will consider in the following and their respective 

metatheories. 

2 Axioms in infinitary set theoretical languages 

2.1 We start with a list of the well-known axioms of ZF set theory which will 

be referred to as follows: 

Ext: Vu ( u c v ~ u s w) ~ v--- w (extensionality) 

Null: 3u Yv ( ~ v c u ) (empty set) 

Pair: 3u Vw ( wcu ~-~ w=_v ~ v w - v I) (axiom of pairing) 

Sum: 3u Yw ( wcu e-~ 3vsv ~ ( wcv )) (axiom of sum set) 

Pow: 3u Vw ( wcu ~ Vvsw vsv o) (axiom of power set) 

Inf: 3u [ 3w ( wcu )AVWCU 3VeU VVo(VoCV ~--~ V ~ -- W v VoCW )] 

(axiom of infinity) 

ReplS: Vu Vv Vw ( ~ (u,v,...) A ~ (u,w,...) -~ V=_W ) -~ 

3UoVW ( WCU ~ ~--~ 3VCV ~ ~(v,w,...)) 

(axiomschema of replacement) 

Fund: 3u (u~v) ~ 3u(ucv A ~W~U( -~ wCv )) 

(~om of foundation (Fundiez~ng, regularity)) 

The empty set will be denoted by 0 , the (unordered) pair of u and v 

by { u,v} ~ {u} :=(u,u} ~ < u,v> :={ { u} ,{ u,v} } denotes the ordered 

pair of u and v. ~ (u) denotes the power set of u , ~ u the sum of u; 

A C B , A U B , A N B , AX B, U A, A A also have their usual meanings 

(A~ B denoting class terms as in 1.3). V :={ ul u-u} is the universe of 

all sets. 

ReI(A): ~-~ VucA 3v 3w ( u ~ < v,w > ) (relation) , 

dom(R):~ { vl 3u < v,u > cR } (domain), rng(R):-{ ul 3v <v,u> sR } (range), 

Ft(F):(~> ReI(F) A VUVVVW(<U,V> cF A <U,W> eF -~ v--_w ) (function), 

F ~ A : ~ F A (A~V) (restriction). 

If F is a function, ACdom(F), then F ~ A will also be denoted by 

< F(u)I u r A > , and ~ F(u) := ~ { F(u)l us A} 
usA 

UA :~ { vl Ft(v) A dom(v)~ u A rng(v) _C A } , 

trans(A): @-~ VucA VvSu yea "A is transitive". 

The yon NEUMANN ordinals are defined by 

Oral(u): ~-~ trans(u) A VV VW ( V,WeU -~ VC W V v --T- W V WC V ), 
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On : ~ {u [ 0rd(u)~ , u+1 : ~ u ~ {u] , 

Lim(u): ~-~ 0rd(u) A u ~ 0 A Vv e u ( v+1 s u ) (limit ordinal). 

Ordinals will be denoted by lower case greek letters ~ , ~ , ~ ,..., ~ ,~ ,..., 

,~ ,...; ~ is the least infinite ordinal (and the set of natural numbers). 

Cardinals are identified with the initial ordinals. 

The theory obtained from ZF by adding the axiom of choice 

AC: Vu s v 3w ( w su ) ~ 3f (Ft(f) A dom(f) Z v A Vws v f(w) ~ w ), 

will be denoted by ZFC. 

The set theoretical definitions introduced above will also be used in the 

metatheory (except with : , ~ in ~lace of ~ , s and other notations 

for variables). 

2.2 When generalizing the axioms of ZF by allowing infinitary formulas to 

occur in the respective schemata we restrict ourselves to the set theoretical 

languages ~ of 1.2.4 and 1.2.5. More generally, let ~ be any class of ~- 

formulas. Then we introduce the following axiomschemata in which ~ is supposed 

to be an arbitrary formula of ~ with free variables as indicated and such 

that u does not occur in ~ 1) except in the ~ -ReplS we require that in 

addition VV ~ (V,w,7) or 3V ~(V,w,7) be a formula of Y ( t h e  reason 

for this restriction will become apparent in ~6); moreover the variables and 

sequences of variables are assumed to be elements of ~ 1}. 

- AusS: 3u Vw ( w s u e--> w e v A T(w,7)) (~- Aussonderungsschema) 

-ReplS: V v V v  Vw ( ~ ( 7 ,  v , 7 )  A ~ ( 7 , w , 7 )  ~ v ~ w ) 

(Schema of replacement for formulas in ~ ) 

{ -  FundS: 3w ~(w, ;7)  ~ 2w [ ~ (w  ~)  A V v s  w ~ y ( v , , , 7 )  ] 

- ReflS: 

(Schema of foundation for formulas in ~ ) 

3 u [ t r a n s ( u )  A v e u A VTa u ( ~1~(~) ~---> ~ u ( ~ ) )  ] 

(Schema of complete reflection for ~ ) 

~- PReflS: ~ ( ~ )  ~ 3u [ t r a m s ( u )  A VS U A ? U ( ~ )  ] 

(Schema of part ia l  reflection for j r  ) 

1)Restrictions of this kind will not always be mentioned explicitly in the sequel. 
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Note that if ~ is either ~AB or ~A~ ' then ~ -PeplS is a schema of 

formulas in ~, but ~-ReflS and ~- PReflS may consist of formulas which 

are not necessarily in ~ . 

Finally we introduce the following generalization of the axiom of pairing 

where C is either A or ~ (the case C = ~ (~) has been considered 

in KEiSLE~-SILVER 1971, p. 181): 

PairC : 3u Vw ( w e u ~-~ V w ~ v~ ) 
xE~ 

b-Pair c : ~ e  v ~ 3u Vw ( w s u ~r~Vw ~ v~ ) 

x~c x~c 

where in both axiom(-sehemata) r ranges over the men-empty elements of C 

(and for each e , u , w, v are suitably chosen variables). Thus Pair C 

and b-PairG are schemata (even in the case ~ = ~F in which case, however, 

Pair C can be reduced to the single axiom of pairing, Pair). (Further remarks 

on these axiomschemata will be given in w below.) 

For each of the languages ~ of 1.2.4 (referring to fixed classes ~ and 

) we define 

-Pair to be 

~ -Pair to be 

and similarly for b-Pair. 

2.3 Remark 

P~ir & 

~air 

(Cp. footnote I) on p. 1o.) 

In 6.9 we shall show t]~at several of the above axiomschemata can be 

strensthened by allowing sequences of variables in place of single variables 

at appropriate places (using a suitable infinitary axiom of pairing). However~ 

it should be noted that this kind of generalization is not applicable in each 

case, e.g. the Aussonderungsschema cannot be strengthened to yield the schema 

3u Vw ( weu ~-~ wev A ~(w,v)) 

since this schema is inconsistent even in the case ~(~) = Z: 

is equivalent to the formula 

3u Vw ~ Vw I ( Wo,W 1 e u ~ w o ~ 0 A W 1 -- 1 ) 

which clearly cannot hold. Thus the axioms of finitary set theory cannot be 

generalized to the infinitary case in a too simple-minded way (cp. however 

Theorem 6.12). 
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3 Infinitary set theoretical systems 

3.1 Let ~l be any of the languages ~ of 1.2.4 or its restriction of 

1.2.5. We denote by KP~, the theory consisting of the following axioms: 

Ext + /k o( ~I )-AusS + ~ (~')-PReflS + ~' -FundS , 

an~ by ZFA~t the theory 

Ext + ~ko( ~I )-AusS + -ReflS + -Pair + Pow + Fund. 

In both cases, if ~! contains the special predicate symbols A s (or 

COrresponding set constants ~,~ ) the theories KP~, and ZF~I are 

supposed to contain in adSition axioms stating that 

(1) k is admissible k is i admissible 

and the sentences 

(2) ~ ~ k , ~ s ~ for every &EA , ~6~ . 

(Similarly in case of set constants ~ , ~ in place of A ~ & ) 

If ~ is the pure set theoretical language ~A~ then we simply write 

KPA~ for KP~A~ , and ZFA~ for ZF~A~ ' 

and similarly in the other cases, e.g. 

In particular, if & = ~ = ~ , KP A~ and ZFA~ are (essentially) the 

respective finitary theories KP and ZF. 

3.2 In a subsequent paper we will use formal set theoretical systems like those 

introduced above as metasystems for a formal system of axioms formalized in the 

language ~A~ whereas throughout this chapter the metatheory will be used main- 

ly in an informal manner. However, since there are some results referring to 

a particularly chosen metatheory, we will append some notes on the use of the 

above systems as metasystems. 

According to our intention outlined in 1.1, ~ and ~ are regarded as 

class terms definable in the language of ZF set theory (now regarded as a meta- 

language) or in a suitably extended language, possibly by using parameters, e.g. 

= ~(K) for some regular cardinal K?~, ~ = ~. The metatheory is supposed 

to contain the axioms of Meta-KP (instead of number theory) and axioms express- 

ing (1) (possibly as a schema). Moreover, we shall need in (M) e.g. the following 

instances of the Aussonderungsschema: 

(3)  ~ V~ ( ~ ~K ~ y e ~  ^ T ( ~ '  ~ o  . . . .  ' ~ )  ) 

where ~ is a formula built up from formulas of the form 
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by means of the propositional connectives and restricted quantifiers. I.e., we 

need the ~o ( ~, Z )-Aussondernngsschema where ~ and Z are treated like 

predicate symbols. (Fen the formula ~ in (]) need no longer be a ~ o-fOrmula 

if we eliminate all subformulas of the form ~ &~ , yE~ by means of the 

formulas defining ~ and ~ resp.) Thus our metatheory will be Meta-KP(~,~) 

(or an extension of it) where ~ and ~ are regarded as predicate symbols, and 

this is one reason for introducing KPA~(~.,~) and ZFA~ (~ ,~ ) 

with the additional predicate symbols ~ and ~ . For particular applications, 

i.e. if ~ and ~ are specified to be particular sets or classes, Meta-KP(~,~) 

can be further specified, e.g. to be KP , ZF , ZFC or ZFC + In , where 

In is the axiom stating the existence of a strongly inaccessible cardinal >~ . 

4 Representation of A-finite sets 

4.1 The way the language ~ has been introduced as ageneralization of the 

usual finitary language suggests to use the notion " ~ -finite set" just for 

the elements of ~ (although we do not wish at this place to enter into a dis- 

cussion whether this is the proper generalization of the notion of finiteness). 

It is well-known that the possibility of defining numerals (and possibly 

representing recursive functions) in a formal system has far reaching consequen- 

ces for the metamathematical properties of these systems but also for working 

within these systems. In the infinitary case the (metamathematical) definition 

of numerals 0 (~) can easily be extended to a definition of 0 ( ~ ) for each 

ordinal ~6~. In fact, a more general method is known ~o "describe" every set 

r s by a formula of s where C =~ if $'=s C = ~ if ~ A~ : 

We define a formula ~c for each set r by ~ -recursion (in Meta-KP) 

as follows: 

~C (Vo) = VVl ~ v I s v ~ ) if C = 0, 

~(Vo> = vu U SVo~ k/ ~Cu)) if c $o 

(where u is a suitably chosen variable, v{c ~ say). Using a suitable coding 

of infinitary formulas, the function assigning to each set c the formula ~c 

can be regarded as a primitive recursive set function (in the sense of JENSEN- 

KARP 1971) , in particular for every admissible C : 

&~X ~Ks ~ C for every c~. 

Hence for each <~ ~, ~< is an ~' -formula. Moreover, under the usual 

interpretation of infinitary formulas, for every transitive set % such that ~S 

and for every set C~S : 
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4.2 Lemma. For every ~6~ : 

(2) Ext I- trans(u) ~ Vv c u ( ~(v) ~--~ ~f(v)) . 

Proof: (I) is obvious. (2) is proved by ~ -induction for the system Ext 

(considered as a theory in the language ~A~ ) in Meta-KP(~ ) = Meta-KP(A~ ~ ) 

as its metatheory (op. w ~] 

4- 3 Lemma. 

xP i- 3v ~(v) 

Froof (asain by ~ -induction for 

Suppose ~ and 

(i) ~ 3v ~K (v) 

is provable in KP~ . Since (i) is a 

reflection princinie of KP~ 

h 3vsu ~• , 

(ii) ~ 3VSU ~K (V) 

for every ~ ,  KP~I- 3 v ~6(v) for every ~(~. 

KP in the metatheory ~[eta-KP( ~ )): 
A~ 

(~A~)-fermula, by the partial 

there is a transitive set u such that 

and hence by Lemna 4.2 (2): 

By the ~ ~ ~A~ )-AusS there is a set w such thst 

(iii) Vv ( v~w ~-~ v~u A MY ~(v)) 

Because of (ii) and (1) of Lemma 4.2, the conjunctive member " v s u ,i can be 

deleted in (iii). i!ence we obtain ~ (w) . Thus we have proved in KPA~ : 

[k ~v ~(v) ~ 3v T~(v) 

The conclusion now follows usin S the principle of ~ -induction. 

By Lem;7~a ~.2 and 4.9 we can prove in KP~ (even without using the axiom- 

schema of foundation) for every ~6~ the existence and uniqueness of a set v 

satisfying ~(v) . Therefore we can introduce a set constant ~ for each 

~ denoting the unique set v satisfying ~(v). 

Let T A be the theory in the language ~ consisting of the following 

class of formulas as axioms: 

Vv ( v s ~ ~--> V v ~ ~ ) for each ~6~. 

As we have seen, T A can be interpreted in Kp A~ and T~can be interpreted 
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in KPA~ 

of 1.2.4 , then ~ contains the constants 

T K~ ZF~ , similarly with ~ in place of 

�9 Hence we shall henceforth assume that if ~ is any of the languages 

(~s and TA& KP~ and 

in case of the languages ~e 

of 1.2.5. 

4.4 Lemma. For every 0., ~> ~ ~ : 

~<p~,~ l- ~. ~ ~ i f  ~. 4~ ~' Similarly for KP and . 

Proof: again by ~ -induction. 

4.5 Lemma. For every O. s , ~. ~ O , and every ~ 5  -formula ~(v .... ): 

Proof: Vve ~ ~(v .... ) e--> Vvs~ ( W v a~ -~ ~(v .... )) 

# .  r,,. 

~ ~ (~ .... ) since Vvs & V v --- 

The corresponding result for sequences of variables already requires a 

distributive law: 

.[~ 

for every sequence Q~Xy I )~@-~ AY s of ~A~-formulas such that the 

above formula is a formula of ~A~ " 

4.6 Lemma. Assuming a suitable logical system for ~ containing the 

distributive laws of the schema hist ~ , if (k~ , ~  , %(~ 6 & and if 

is a formula of ~A~ ' then: 

T t- v ~  ~ , < 7 , . . . )  ,,.-., A 't( ~ . . . .  > , 

where ~(~ .... ) results f___._rom ~(q .... ) by replacing all the free occur- 

rences of ~(~ ) by ~(X) for each )Q @- ~V) = 

Proof: Similar to the proof of Lemma 4-5 except that the following distributive 
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law is required: 

& V v<~)---7 ~ V A v<x)~ 

and also a distributive law of the simple form 

pT) 

4-7 Lemma. For every ~,~ (~ one can prove in KP + 

(5) m A for  every natural  number ~ ~OO ~ A , where ~ 

th 
denotes the class term of KP defining the ~ numeral, i.e. 

( 6 )  Tc(~-) = r  

Proof of (1): 

v~Q~-~V v~K ~-~ v ~ ~ ~-~ v~ {&] 

(2) - (5) are proved similarly. (6) is proved by ~ -induction for 

Suppose ~ ~, O~ i 0 , and let ~X denote the formula 

TC( X ) ~ T C ( X  ) 

KP + TA: 

Assuming ~6o ~ ~ we have to show: 

v ~ Tc(~)<--, k/ v=_ ~<-~ V 

vcTX ~ V 

~ _ ~  v~ v V 

v c ~ v  3uc~. 

~CL . This can be done as follows: 

v ~  v V v~ y 

V v=-V 

v c TC( ~ ) (by assumption) 

va TC( u ) by Lemma 4-5 

Similarly one can prove: 
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4.8 Lemma. Suppose 

4.9 Corollary. Suppose ~6~ and 

KP +T I- 

and F t ( i ~  ) A d o m ( ~  ) = OL . Then  

, I~(X ) ) )  A Ft(~] m dom(~) --~ A 

n 

{ =[<• ,<o,• 

4.1o. Lemmata 4.7 - 4.9 can be viewed as particular cases of a more general 

theorem on the representation of ~ -recursive functions in a suitably chosen 

infinitary theory formalizable in the language ~ .  In fact, many theorems 

related to this subject carry over from the finitary to the infinitary case. 

However, since a detailed presentation of these results is beyond the scope of 

this paper~ we will restrict ourselves to some results which will be needed 

later (op. Chapter ili of GLOEDE 1974). 

First of all, note that the axioms of T~ correspond to the axioms ~4 

of ROSSER's system ~ of number theory (cp. TARSKI-MOSTOWSKI~ROBINSON 1953, 

P- 53), and hence it is not surprising that one can generalize the theorem on 

the representability of reeursive (numbertheoretic) functions in ~ . 

Let T~(k , ~ ) denote the theory consisting of the following axioms: 

VV ( va ~ ~r-V ~/ v ~ ) for every aEA ( i.e. the axioms of 

~ for every OL, ~ 6- ~ such that ~ $ ~ , 

~ ~ for every ~ , ~ ~ ~ such that OL~ ~ , 

aC k for every ~6~ 

~e ~ for every ~ ,  and 

Vu Vv ( u s v A ve ~ -~ us k ) (i.e. trams( k )). 

(Noie that T~ (~ , ~ ) can be regarded as a subtheory of K}>~%~ ( k, % ).) 

TA), 

4.11 THEOREM. 

Suppose that ~ is an u-place relation on ~ which is ~(~) 

over ~ with 5 occurring positively only. Then there is a ~(~ )-formula 

with ~ occurring positively only such that for all ~ q,...,~s : 

if <~i~..., ~ ~s ~ , then T (~,~) I- ~ k (~I,..., ~ ~). 
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Proof by induction on the logical complexity of the formula ~ defining ~ : 

Since all the other eases are trivial we consider only the case 

~ ( ~ , . . . . ,  ~ ) =  ~xe~{ ~ ( x ,  ~ , . . . , ~  ) .  

Thus sup~2ose ~(~I''''' ~) holds for given sets ~1,...,~i~ ~ . 

Then by induction hypothesis we have for all ~s ~{: 

where is a formula claimed to exist for the relation defined by ~ ). 

Thus 

hence by Lemma 4.5: 

J- Vuc i I" (n, ~1 . . . . .  ~ )  

Thus we may take ~ = Vu a v i 

exist for the relation defined by 

~(u,vl,...,v n) 

n 

aa the formula claimed to 

Infinitary pairing axioms 

We recall that by the infinitary ~xioi~ of vairing~ k'air 
C 

we denote 

the class o f  axioms 

~u Vw ( w~u ~--~ ~/ w - v~ ) 
Xs 

f o r  every a~C , C ~ O .  

Intuitively, Pair C (h-Pair ~ ) means that for every sequence (v~ IK~C~ 

of length g ~C (in the metamathematieal sense) there is a set u such that 

the elements of u are exactly the elements v~ for X~C (provided the 

sets v~ are "bounded" by some set v ~ i.e. v s v for each XEf-). This 

set u (which is uniquely determined if we assume the axiom of extensionality) 

will be denoted by [~] : 

w~[~]~V w- ~(• 

Clearly, the set [~] must be distinguished from the metamafihematical 

set { V(~ )[~c~- rn~(V) just as i~ the fin• case one has to dist• 

between the unordered pair { vo,v I } (as in object in a formal set theoretical 

system) and the set  o f  v a r i a b l e s  { v i i  i = 0,1 } ( i n  the corresponding meta- 

mathematical system). This distinction will also become apparent if we write 

down the conditions expressing that a structure < S , ~ satisfies Pair : 
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Under the usual definition of satisfaction for infinitary formulas it means 

that S is K -closed, i.e. 

~} [Ft( } )/% dom( f ) 6 ~(~] A rng( } ) _~ S --) rng(~ ) ( S ] , 

or equivalently (since in this context we always assume the axiom of choice): 

Here we used the fact thai: the interpretation of [~] in < Z, ~ P is the 

range of ~ if ~ is assigned to the sequence of variables ~ . 

5.1 THEOREM 

(1) Ext + ~ o(~ )-AusS + /ko( ~ )-PReflS I- ~ -Pair , 

(2) Ext + ~ ( ~ )-AusS I- ~ - b P a i r .  
o 

The same holds for ~ in place of 

Proof of (I): For every sequence V:<v~ J~<> wh| 0 ~ < 6C (where 

C is [ in case of i , 5 in case of I ~ ) one can apply the ~o(~ )-PReflS 

to the formula 

-- V (i.e. /~ vm 
X~C 

obtaining the existence of a set 

V g V 
I~s  x 

By ~o(~ )-AusS there is a set 

Vw ( wsu ~--)V w --- v~ 

X6c_ 

The last part of this proof also proves (2). 

- v~ ) 

v such that ~s v , i.e. 

u such that 

w --- vx ) 

) . 

, hence 

5.a 

and 

Corollary 

IqP~ I- ~-Pair and KP~ I- g~-Pair 

Throughout this section ~ is either ~ and ~ = & or ~ is ~ 
A5 

= ~ (hence ~ -Pair is Pair C ). 

Both languages are supposed to contain the set constants ~ (~.~ C ), and 

hence by results of w we may assume T c ~ KP~ . 

Whereas in the finitary case, more exactly if ~(7) = 2, [V] corresponds 

to the unordered pair of ~(0) and ~(1) , in order to obtain an analogue of 

the ordered pair in the infinitary case, we use a method which in the finitary 
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case is employed in order to represent ordered pairs of classes: Using the 

constants < we define the analogue of the ordered pair 

~--~V w ~ < X ,V(K)~ where we <V > 

Thus we also have: 

5-3 Corollary 

Kp~ I- v~ 

KP~ I- vV 3u u~ <V~ 

for every sequence of variables 

( ~ > as follows: 

c : ~(7). 

~u Vw ( w e u ~_>k/ w ~ <X,v~ ) , i.e. 
xs 

V = (v~ I• , where C6~, C-$ O. 

Let us define for V a sequence in ~ , 4(V) = s C , r i O: 

Rp~_ (u,~): (--~ u ~ < ~ > " u represents the sequence ~" . 

(Again one has to ~istinguish between the sequence of variables ~ as a meta- 

mathematical object and the object < v > which represents ~ in the formal 

theory in the above sense.) By results of w and Cor. 5-3 we have: 

5.4 Lemma. If v, 7 are sequences in h , d(V) = d(7) = < s C , (_ $ o, 

then the following formulas are provable in KP ~ : 

(I) Vv ~u Rp c (u,7) , 

(2) Rp= (u,7) -~ Ft(u) A dom(u) -~ A ~ U(X ) T T( X ) , 

X6C 

(3) Rp~(u,V) A Rp~ (w,V) - u { w, 

(4) Ft(u) A dom(u) : [ -- 37 ~p~ (u,V), 

(5) ~p~ (u,V) ~ ~pc(u ,7)  - V ~ 7 . 

Thus for every r , C $ 0 , there is in KP~ 

dence between sequences of variables v such that 

a one-to-one correspon- 

d(V) = ~ ~C and 

functions u such that dom(u) ~ ~ (Note, however, that this correspondence 

is not a two-place re~tion between sequences and sets, but a <-place function 

F(V) ~ <7> .) 

We now further assume that the language ~ has been extended so as to 

contain class terms (cp. 1.3). Just as ordered pairs are used in the finitary 

case in order to deal with relations by reduction to classes we now use the 

infinitary analogue of the ordered pair in order to define class terms (in a 

wider sense) representing & -place relations for every C&C: 

{v l (v .... )} := {w 1 3v( w T(v .... ))} 
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which may also be denoted by 

Similarly we can define binary relations between sequences by 

n ~ < v , ~  ~ ~ ( ~ , ~  . . . .  ) ) }  

= [<<%,~>>I ~,~ .... )} 

If ~ is either a class term or a set, ~ , ~ are sequences of variables, 

~(V) = C , ~(~) = ~ , then we define 

v sea :e-~Qv> ~4-  , < v , ~ >  s(, 

From these definitions we immediately obtain: 

5-5 Lemma. If ~ , ~, ~ , ~o are sequences of variables, 4(~) = ~(~) = C , 

~(~) = ~(~o ) = ~ , C,~, Q,~ ~ 0 , then in KP ~ : 

~ [ V l  4 ( V  . . . .  )}~-~ ~ c ~ , . . . )  , 

C , ~  ~ , ~ , ~ o  ~1 ~<~,~o . . . .  )}  ~-~ ~ ( ~ , ~ , . . . )  u~ 

5.6 Lemma. If ~ is a sequence of variables, ~(V) = C ~ O, C s , then 

Note, however, that ~ er need not hold, and hence e and sr need not 

coincide. - 

The axio~ of pairing, Pair ~ , can also be used in order to deal with the 

composition of ~ -finitely many functions (ep. Chapter IV of GLOEDE 1974). 

We also have an analogue of the cartesian product: 

5-7 THEOREM. For every ~ , ~ ~O , and every sequence ~ such that 

( 1 )  KP t- 3 u  Vw ( w c u  4-'--> 3 V s  v w ~ < V > )  , 
A& 

(2) KP ~ ~ 3uVw ( wSu 4--, 3vo(Ft(vo)Adom(v ) ---~ A rng(v o) ~ v )). 
&B o 

Proof: Apply the Z (~AB)-PReflS to the formula 

VVev 3w ( w~ 47> ) 

which holds in KP~B by Cor. 5.3- Thus there is a set 

vew ~ A trans(w o) A VTsv3wew ~ ( w =-- ~7> ) 

w such that 
O 
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then follows from the ~o(~A'~ Lemma(1) 5-4- [I Z )-AusS. (2) is a consequence of (1) and 

5.8 Remark 

1. Lemma 5.6 shows that in KP ~ the quantifiers of the form V~s~w 

and 3 ~w can be regarded as restricted quantifiers. 

2. The definitions and results described above show that the sequences of 

variables ~ such that ~(~) =C~C can be treated in KP~ like objects (a 

fact which is mainly due to the infinitary axiom of Dairing), provided one 

maintains the necessary distinction between objects in a formal system and 

the related metamathematical notions. (Examples will be provided in the follow- 

ing section, cp. 6.9.) 

6 Schemata of reflection and replacement 

The theory ZF can be axiomatized either by means of a schema of complete 

reflection or else by the schema of replacement and the axiom of infinity. 

There is a similar result for the infinitary case (at least for ZF~ ); 

however, since the proper generalization of the axiom of infinity for infinitary 

set theoretical systems seems to be difficult to guess at, it seems to be 

preferable to start with an axiomatization based on a schema of reflection, 

which has a straightforward generalization to infinitary languages. 

First we shall show how to derive various set theoretical axioms from 

suitably chosen reflection principles. - The following result is well-known 

(and easily provable): 

6.1 Lemma 

(I) Ext + ~ o-AUsS + ~o-PReflS I- Pair + Sum , 

(2) Ext + Ik o-AUsS + ~2-PReflS I- Inf , 

(3) Ext + ~o-AUsS + go-ReflS I- Null + Vv 3w ( w ~{v~ ) + Sum. 

(Note that Theorem 5.1 (1) is the infinitary analogue of the first part of 

Lemma 6.1 (I).) 

In order to prove the partial reflection principle from the corresponding 

princiole of complete reflection one seemingly needs an axiom of pairing (cp. 

however Cor. 6.7 (I) and Remark 6.8 below). - The following results can be 

proved just as in the finitary case: 

6.2 THEOREM 

Ext + ~o(X)-AusS + ~ -ReflS + ~ -Pair I- ~-ReplS + ~-PReflS + ~-AusS; 

and the same holds for ~ in place of ~ . (We shall see later that ~ - 

Pair is redundant if ~ =~ or ~ = ~ (Cor. 6.6).) 
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6.3 THE0~EM 

Ext + Null + ~ -ReplS I- ~ -AusS ; 

the same holds for ~ ~ in place of 

6.4 THEOREM 

Ext + ~o ( ~)-AusS + ~-2eflS + Pair 

u[ trans(u) A v~u ~ A 
X6~ 

for every ~6~, ~ ~0, and every sequence 

VVgU ( ~X (v) ~--~ RX (V)) ] 

(%(V) I~6~'7 of ~ -formulas with 

free variables as indicated such that ~e~• -~v) is a formula 0r 

The same holds for ~ in place of ~ if o~ . 

Proof: Suppose w is a variable not occurring in the range of ~ and con- 

sider the formula 

?(w,V) := ~/ ( w-~ ~ Tx(V)) 
X6~ 

l~sing Pair and applying the ~ -RefiS to the formula 

set v the existence of a transitive set u such that 

~-, v~u~ trans(u) /, Vw~u VT~u [ T ( w , 7 )  ~--> T U ( w , q )  ] �9 

The desired result is now immediate from Lemma 4.2 (2). 

6 . 5  ~ .. . . . . .  

Ext + ~ o  ( 2 )-AusS + o~'-ReflS I- ~'~ -ReplS ; 

the same holds for ~- in place of 

Proof: First we modify the proof of Theorem 6.4 in order to dispense with the 

axiom of pairing; e.g. if we define the numerals by 

O (O) - O , O ( ~ +1) __ ~ O ( V~ )] (using Lemma 6.1 (3)) 

we obtain the conclusion of Theorem 6.4 for finite sets CL without the con- 

junct "v eu". This weaker form of 6.4 can be applied to the formulas 

VI:= W(V,w,~) , 
~2:= ~w W(V,w,~) , 

y3:= ~vo,~) 

74:= v~v vo 

where ~Vo, W) 

formula ~ . ~4 

, we obtain for every 

WoN) , 

is the instance of the ~ -ReplS corresponding to the ~- 

can now be proved just as in the finitary case. 
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)-AusS + ~ -ReflS I- Pair~ 6.6 Corollary. Ext + ~o (~&~ 

Proof: By Theorem 6.5 we can apply the ~-ReplS to the formula 

~(v,w,V):: k/ ( v- ~ ~ w =- V(• 

(where ~ is a suitable sequence of variables such that 0 # ~ = ~(~)6_~ ). 

Thus we obtain the existence of a set u such that 

Vw ( w~u ~--) 3v~ ~ ~(v,w,V)), 

Vw ( w~u ~-) ~/ w = 7(x)) 

x{6 

(Zere we use Lemma 4-] which is easily seen to hold with the theory under 
discussion in place of KP~5.) [~ 

6.7 Corollary. (I) Ext + #%o(g*)-AusS +~-ReflS I- ~(-PReflS , 

(2) Ext + Ao(~)-AusS + ~-Pair + ~ -ReflS I- ~ -PReflS. ~] 

6.8 Remark 

Assuming the axioms Ext + ~o(~)-AusS, the axiomschemata @~-Pair and 

-ReflS can be combined into the following strengthened schema of reflection: 

-ReflS': 3u [ trans(u) A ~S U A VV~U ( ~ (V) ~---) TU(V)) ] 

where ~(~) is an arbitrary formula of ~ with free variables as indicated 

and ~ is a sequence of variables such that ~(~) = d(V) . 

-ReflS' immediately implies the corresponding schema of partial reflection 

(in contradistinction to ~ -ReflS). The same remark also applies to the language 

~in place of ~ ; however, in this case ~-ReflS and~-ReflS' are equi- 

valent by Cor. 6.6 (just as in the finitary case). 

6.9 We now consider the theory KP~ . Just as in the case of ZF and its 

infinitary analogue ZF ~ , the basic properties provable in KP carry over 

to KP ~ , e.g. we have: 

6.1o THEOREM 

The following schema of replacement holds in KP~ : 

VT~uVv Vw[ ?(7,v,~)~ ~ ( < w , ~ ) ~ v ~ ] ~  V~u3w ~(~,w,~) 
~ 3vVw( wev ~-~ 3V~u ~(V,w,w)) 

for every ~(~)-formula ~ with free variables as indicated such that 

3 ~ ~ (7,w,~) is a formula of ~ 

The same result holds for ~ in place of ~ 
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We shall now present some examples which show how the infinitary axiom of 

pairing and the results of w (cp. Remark 5.~) can be used to extend some of the 

above theorems stated for functions having sets as arguments and values to 

the case of many-place functions having many-place sequences as values. (We use 

sequences v ~ ~ u ~ at those places where single variables occured in the 

previous results.) 

6.11 THEOREM 

The following schema of replacement holds in KP 

VV~u vV ~ v~ [ ~(Vjoj)~ ~(V,Uo,~)~ ~ ~ ~ 

for every 

3v 3~ 
o 

(in particular C ,~E~ ). The same holds for ~" in place of 

],~ vT~u 3T O~(#,v  o,q) 

- ~  3~ v# ~ ( Vo~V ~ ~V~u ~(V,Vo,W)) 

( ~ )-formula with free variables as indicated such that 

~ ~ 4(7o ) (7 o) ~(V,Vo,W) is a formula of ~ and d(v) = C , = & : i 

6.12 THEOREM 

The following schema of Aussenderung holds in KP~ : 

. . . .  7o 7o~V vV o ( T(Vo,W) ~-~ ~(Vo,W)) ~ 3u VVo( ~u~ A 

where ~(~o,~) and ~(~o,~) are ~ (~)-formulas such that 

~ , ~ ~ O . The same holds for ~ in place of ~ 

Theorems 6.11 and 6.12 can be proved either directly or by reduction to 

to the single-valued case as follows: In order to prove e.g. Theorem 6.11 by 

using Theorem 6.1o one may proceed as follows: 

Let ~ be a formula as referred to in Theorem 6.11 and assume the 

hypothesis expressing existence and uniqueness. Then consider the formula 

~o(V,Vo,~):= 3V 3V ~ ( v~ <V~ VoW<roT ^ T(7,7o,7))" 

Applying the axiomsehema of replacement of Theorem 6.1o to ~o and the 

class 

u1:~ {<~) I ~su ~ (which is a set by Theorem 5-7) 

in place of u , we obtain the existence of a set v I such that 

V Vo(Vo~V I ~--~ 3v~u I ~o(V,Vo,~)). 

Hence: 

V~o ( Vo~Vl ~--~ 3~ ( v o ~ < v o> A Vo~V I ) 

VVo( ~o~V1 ~-~ SVo( Vo~ ~Vo> ^Bv~u I ?o(V,Vo,W)) 

? (7 0 ,w) ) 

d(7 o) =6 , 
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V ~V ~ ( v o S&v I e-~ 3~eu ~ (V,Vo,W)~ ~ ~ ) , q.e.d. 

A further variant of Theorem 6.1o can be obtained by replacing in 6.11 

~ u by ~ s<u . This form of 6.11 is proved by the same method except 

using 

in place of u I (u 2 is a set, too, by Theorem 5.7 and Remark 5.8 (I)). 

6.13 Applications 

Suppose that ~ is an admissible set such that O06~ , and let T be 

either KP or ZF . If < ~ I ~  ~ is a suitable enumeration of the axioms 

of T such that ~k~ is a sentence of ~ ~ ~ , then one can prove: 

T + ~ -PReflS I- 3u [ trans(u)A v~u A ~ ~# ] , 

i.e. one can prove in this theory the existence of "arbitrarily large" 

standard models of T . 

Similarly, if < ~I~4~ is a suitable enumeration of the formulas 

of the language of ZF set theory, then by Theorem 6.4 one has: 

ZF Ak I- 3u [ trams(u) A VSU A /~ VVSU ( y~ (V) 4---> y.(V)) ] 

where ~ = (v~ I~<~7 Hence if e.g. & = ~@~ = ~+ is the least 

admissible set ~ such that ~s I, then one can prove in ZF~ the 

existence of arbitrarily large transitive sets u such that <u,g) is an 

elementary subsystem of <V,s> (with respect to the finitary formulas of ZF set 

theory), and even in ZF;~ (or ZF + KP;~ ) one can prove the existence of 

a ~ountable) standard transitive model ~ of ZFC and hence the existence 

of any model ~ obtained from ]C[ by the usual methods of COHEN-forcing. 

Similar results hold for standard models of ZF ~% which can be proved to 

exist in ZFA, 5 (or even in ZFA~+ KP~) where for every admissible set a , 

A* is the least admissible set A ~ such that A 6A I (cp. BARWISE-@ANDY- 

MOSCHOWAKIS 1971 for the existence and properties of the "next" admissible set). 

(For the existence of natural models of the form <V~,e ) cp. Theorem 8.4 

below. ) 
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7 Critical points of normal functions 

In this section we will be concerned with some technical results (which 

will mainly be used in a subsequent paper). 

7.1 Definitions 

7.2 

OSq(F): ~-> Ft(F) A ( dom(F) m On v dom(F) ~ On ) A rng(F) ~ On 

"F is a sequence of ordinals" 

A S q ( F ) :  ~--) 0 S q ( F )  A V ~ , ~  C dom (F )  ( { < ~ ~ F ( ~  ) ~ F(  ~ ) )  

"F is an ascending sequence of ordinals" 

2Sq(F): 4--~ 0Sq(F) A V %,~ s dom(F) ( [ < ~ ~ F({ ) < F(~ )) 

"F is a strictly increasing sequence of ordinals" 

conf(a ,G ): ~--~ 3u ( ~ Sq(u) A dom(u) ~ A U rng(u) ~a ) 

" a is cofinal with ~ " 

cf(a ): : b 8 ( conf(a ,B )) 

Lemma (KP) 

iim(h ) A cf(h )> a ~---~ 

(where ~ denotes the usual minimum operator) 

is the oo~inality of a . 

h ~ 0 A ~ U (Ft(u) A dom(u) ~ a A rng(u)~ k 

3~<k rng(u) ~ ~ ). ~] 

We shall later need a generalization of the predicate cf(k )> a 

case where a is not necessarily an ordinal but may be any set: 

7-3 Definition 

gcf(k ,v): 4--9 h @ 0A V u (Ft(u) A dom(u) ~ v A rng(u)@ k ~3~<h 

Thus gcf(k ,a )4--> Lim(k) A c f (  h )> a by Lemma 7.2. 

7.4 Lemma (KP) 

OSq(f)AASq(g)Adom(f) ~7 A V~ <h f(~ ) <a A a 

U g(~) = <3 ~(f(~)) . 
<~ ~ <~ 

Proof: We have to show: 

The part " <-- " follows from the assumption V] <7 f( ~ )< 

implication follows from 

to the 

rng(u)~ ~). 

-=g f(~ ) A ~_~ dora(S) 

, the converse 
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7-5 Corollary (KP) 

Sq(f) A ASq(g) A dom(f) ~X 

kJ g(t) ~ L7 
<~ ~ <~ 

7.6 THEOREM (KP) 

A Lim(k ) A ~ ~ 
<x 

g ( f (  ~ ) )  [ ~  

f ( 1 ) c _  

g c f ( k  , v )  A t S q ( f )  A d o m ( f )  ~ k A a ~,j f ( ~  ) 
h<x 

Proof: Suppose Ft(g) A dom(g) ~ v A rng(g)~ 

We have to show: 3 ~ <a rng(g) ~ ~ . Suppose not. Then: 

( i )  V[< a r n g ( g )  r ~ , i . e .  

v~<~ 3 t ( ~ r n g ( g )  ~ ~ ~ ~ < ~  ) 

Let us define a function h such that dom(h) ~ v and for each 

h(w) = ~  ~ ( g ( w )  < f ( ~  )) . 

Then rng(h) ~ h . We shall obtain a contradiction by proving 

(i• ~< x ~ 3 w ~ v  ( T<h(w)) 

Thus let $ < X. Then f(~) < ~ , hence by (i) there is some w ~ v 

g c f ( ~  ,v)  

Put 

dom(g) 

WC V 

f ( f  ) r g(w) 

~o: : h(w) . ihen we have by the definition of 

f( ~ ) S g(w) < f( ~ ~ ) , hence ~ < ~o 

h: 

since 

such that 

Sq(f) . 

Thus we have proved (ii) which contradicts our assumption gcf(k ,v). 

7.7 Corollary (KP) 

The definition of gcf involves quantification over functions which can 

be reduced to a restricted quantification over sets when usin G infinitary 

languages. More precisely, let us define: 

7.8 Definitions 

where ~ is a sequence of variables such that CV) = C , C_ ~. 

SNft(F): a~> ASq(F) A dora(F) ~ On i V~ ( ~ S F( ~ )) A V k ( Lim(k ) -~ 

-" F( k ) -= U F( ~ ) )  "E is a semi-normal function" 
<x 

SNft (F):~-->ASq(F) A don(F) --- On A ~ ~ ( [<_ F(~ )) A V k ( gcf c (k) -~ 

--+ F(  k ) --- U F ( [  ) )  
I<~ 

Nft(F): (--> ~ Sq(F)Adom(F) ~ On A V X ( Lim(k ) -~ F(K) ~ u<KF( [ )) 

"F is a normal function" 



K. 61oede 345 

Nftr (F): ~-~ ~Sq(F) A dom(F) ~0n A V k ( gcfr ~ ) ~ F(k) N U 
< 

By Lemma 5.4 and 7.2 these notions are related to each other as follows: 

7-9 Lemma 

The following statements hold in KP~ for every 

and in KP~ for every C,~ ~ , O~ C ~ ~ : 

(1) g c f ( k  , E ) ~,""'> gef c ( X )  , 

g c f d ( k  ) ~ L im(k  ) A g c f c ( X  ) ,  

Lira( X ) ~--> gcf l(k ) ~ gcf~ (k) for each ~< ~ , ~ $ O , 

(2) 

(3) 

4) 

5) 

6) 

SNft(F) ~ SNftq(F) , SNft(F) ~ SNft r , 

Nft(F) <~> Nft1(F) , Nft(F) ~ Nft c (F), 

SNft c (F) ^ Lim(x) -- U F(~ ) S F(X ) , 

~([ )). 

c,a~A , o~ cc_A~ 

7) Nft a (F) -* SNft r (F) . 

From 7.5 and 7.6 we obtain the following theorem which shows that seminormal 

and normal functions are continuous in a more general sense: 

7.1o THEORF~.I (In KP~ for every C6A , C$O; in KP.g~ for every <(~, C_$O) 

SNft c (F) A gcf c ( k ) A ~ Sq(g) A dora(g) - X A a - U g(~ ) 

7.11 THEOREM (In ZF~ for every ae A, c$ o; in ZFz,for every (~ ,C_$ O) 

Suppose that F is a class term and G is defined by recursion as 

follows : 
G(a) H F(B ) , where $ - u~ ( V~<a G(~ ) '< F(~ )) 

(i.e. G is the function enumerating the range of F in increasing order). 

Then: 

S N f t c ( F )  -~ Nftc(G) A V % ( ~ __< F(~ ) < G(~)) 

Proof: Assume SNft C (F) . Then G is obviously a strictly increasing function. 

Let k be an ordinal such that 

We have to show: G( k ) < 

Since V~< k G(~ ) = F ( g ( ~  )) 

(in fact: g(~ ) --- b ~( ( V~@~ 

we have by Cot. 7-5: 

is - - - U  a(,, I ) -= 

u # ( ~ )  . gefc(k ) and put 5 := ~< 

for some g such that ~ Sq(g) A dom(g)~k 

~ ( ~ )  < F ( 1 ) )  for s < x), 

~J F(g( ~ )) ~ ~ F( ~ ) , where a:--- ~ g(~ )- 
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Since gcf c (~), by Theorem 7.6 and since SNft c(F): 

[~ - r ( a  5 .  

Moreover, since G(N ) --- F( ~ ) for some $ , namely 

(~ --- ~ ~. ( V { <  k G(~  ) < F ( ~  ))  , 

we have ~ S ~ , since V ~ < k G( ] ) < F(m 5. 

Therefore G(K) ~ F( ~ ) S F(~ ) -= B . [~ 

Similarly, by using again Theorem ?.6 and ?.Io we obtain: 

7.12 THEOREM (In ZF~ for every C6~, C $O~ in ZF~, for every C~ ,C $0) 

Nft c (F) A Nft~G) ~ Nft C (Fo G) , 

where F ~G := { u,vl 3 w ( <u,w > ~ G A < W,V > C F ) denotes the composition 

of the functions F and G. ~] 

The existence of critical points (or fixed points) of normal functions is 

usually proved by means of the axiom of infinity and the axiomschema of replace- 

ment, but can also be proved by applying the principle of complete reflection. 

The latter method is simpler and can easily be extended to the infinitary case. 

?.15 THEOREM 

k~, + ~ ~-ReflS I- S~;fts(F) -- 3~ e < ~ h gcf5 (]) A F( ~ 5 ~ ~ ) 

for every ~e~ , ~ $ O , and every ~ ~ -definable class term F. 

}roof: Suppose F ~ {u,v{ ~ (u,v,~)) for some ~-formula ~ , and 

assume SNft6(F) . We apply the principle of complete reflection (generallzed 

to finitely many formulas as in Theorem 6.4) to the formulas 

el:= m (u,v,~) , 

�9 2:= v~ ~ ~(% ,~ ,7)  , 

where ~ is a sequence of variables such that ~(~) : , ~ 

V,~ } where v is a set such that ~ e v (which exists 

5. Thus we obtain the existence of a transitive set u 

and to the set { 

because of Pair ~ 

such that 

, 7~u and 

(i5 v ~ ~u3~u I= F(S ) , 

(ii) V ;7 3~ ( ~sv ) ~ VwSu 3vau ( ~ v ) 

Since V w 3 v ( w r v ) is provable in the theory under consideration , 
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(ii) implies 

gcf Z (y) , where 

By (i) we have: 

V~< y F(~ )< X , hence 

<7 

T h u s  we h a v e  

~ < 7 A F( ~ ) ~ ~-~ 

X :- u ~ On . 

, since gef b (7) A SNftz(F). 

In particular, by Theorem 7.15 every normal function F has arbitrarily 

large critical points. In the finitary case we obtain: 

7.14 THEOREM (ZF) 

Nft(~) AVu~v gef(~,u) ~ 3~ (~<~ AV a~v gcf(~ ,u) ^~(~)~) 

for every class term F definable in the language of ZF set theory. 

Proof: Let G be the normal function enumerating the critical points of F 

in increasing order. Using Cor. 7.7, we can choose for each a an ordinal 

7 > a such that Vu s v gcf(7 ,u) . 

Consider ~ :a G(7 ) . Then by Theorem 7.6: 

V u s v g c f ( ~  , u )  a n d  F(  6 ) Z [ . [~1 

8 Infinitary analogues of the axiom of infinity 

In the usual finitary theory of KRIPKE-PLATEK (and afortiori in ZF set 

theory) the axiom of infinity implies the following statements (each of which, 

in fact, is equivalent to the axiom of infinity): 

In/: 3u V v ( v au <--) Nn(v)) , 

where Nn(v): d~) (v-O v 3w (V~W+I)A ~ We V( W-- 0V 3U ( W~U+I )) 

is the usual definition of a natural number; 

Inf2: 3u ( 0au A V V W~U { V,W } SU ) , 

Inf3: 3 h Lira( h ) , 

In/: 3 k V v (Nn(v) -~ gcf(k ,v)) 

We shall try to find analogues of the axiom of infinity for the infinitary 

systems KP~ and ZF~[ . Intuitively, such an axiom should imply the 

existence of a set ~ ( or ~ resp. in case of the language ~" ) such that 

one can prove for these constants in the formal theory the formal analogues of 
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the basic properties of the corresponding set ~ (or ~ resp.) of the meta- 

system. Instead of giving a precise meaning to the notion "basic property" 

(by using e.g. notions from recursion theory on admissible sets) we shall try 

to obtain the analogues of Inf I - Inf 4. 

One of the difficulties we encounter in the infinitary case is the follow- 
C 

ing problem: In general the infinitary axiom of pairing~ Pair , constitutes 

a schema of formulas of the language ~ which cannot be replaced by a single 

axiom of this language (except for the case ~ = ~(~) , ~ a singular or a 

successor cardinal). In addition, we shall show later that for every inaccessible 

cardinal K > ~ , <V~,~v is a model of ZFk~ , and hence one cannot prove 

in ZFI~ ~ the existence of the set ~ (this is expressed in a somewhat 

vague sense since in this context K is used in Lwo different meanings~ the 

statement can be made more precise by specifying 14 to be (e.g.) the least 

inaccessible cardinal ~ co ). 

Let us first consider 

Inf~ : 3 h gcf c (h) for each cEC , c $ 0 , 

as an infinitary analogue of Inf 3. Clearly, ~his is a schema of sentences, but 

this fact is not surprising since ~ -Pair is in general a schema, too. if 

C = ~ , Inf% reduces to the usual axiom of infinity Inf 3 (by (3) of 

Lemma 7.9). 

8.1 THEOREM 

ZF~ I- ~-Inf 3 and ZF~* I- ~* -Inf3 

Proof (the result already follows from Theorem 7.13, but in this case the 

proof can be simplified): Let C be ~ in the case of ~ and ~ in the 

case of ~* . Then by Psir C , for every c ~ ~ , C $ O , we have 

V V 3 w ( 7e w ) where ~(V) = C 

Hence by the complete reflection principle (cp. Lemma 6.fl (2)) there is a 

transitive set u such that 

u 0 A V~u 3w~u( v~w ) 

Put ~ :~ u~ On . Then gcf c (~). 
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8.2 Corollary. If ~6~ , then 

o,• 

P r o o f :  By P a i r  ~ we h a v e :  

V u ~ ~ g e f ( ~  ,u) 

A -@ 

( V v v~ 3 w ^vew ) where ~(v X) = X for X 6~ 
o~• 

Now proceed as in the proof of 8.1: by reflection there is some ordinal 

such that 

~>0 

g c f  x ( ~ )  

and  h e n c e  a l s o  V u ~ ~ g c f ( ~ , u )  by  7 . 9  a n d  4 . 5 .  ~] 

T h i s  p r o o f  s h o w s  t h a t  we a l s o  h a v e  an i n f i n i t a r y  a n a l o g u e  o f  I n f 2 :  

: A v< u Eh] u) 
holds in ZF~ if ~A - 

8.3 Corollary. If ~ , then 

ZF AB ~ J- N f t ( F )  ~ 3 k ( ~ < k A __X~ ~ g c f x  ( k )  A F ( k  ) m k ) 

P r o o f :  P r o c e e d  a s  i n  t h e  p r o o f  o f  Theo rem 7 . 1 3  t a k i n g  f o r  ~ 3 t h e  s e n t e n c e  

0~Z eZ 

In a subsequent paper we shall prove (cp. GLOEDE 1974, IV. 1.12 and 

IV.l.9 (1)): 

8.4 THEOREM 

ZF + PairA~+~-ReplS + ~ -Inf 3 [- 3k[a< k AVVsV k (~(~)(--) ~Vx(v))] 

for every ~ -formula ~(~) with free variables as indicated. 

In ZF~ the above schema holds for every ~A~ -formula ~ with 

free variables as indicated. 

8-5 Corollary 

The theories ZF ~ and ZF + ~ - Pair + ~ -ReplS + ~ -Inf 3 

are equivalent if ~ = ~ 

Since in Cor. 8.5 ZF may be taken as the theory of ZF axiomatized 

(as usually done) by means of the axiomschema of replacement rather than the 

schema of complete reflection, Cor. 8.5 is a generalization of the result 
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(just mentioned) which is well-known in the finitary case, viz. in ZF the 

axiomschema of replacement and infinity are equivalent to the axiomschema of 

complete reflection and the ( ~ o-)-Aussonderungsschema. Since Cor. 8. 5 is 

a generalization of this result to the infinitary case, we may take it as a 

justification for regarding ~ -Inf 3 as a suitable infinitary analogue of 

the axiom of infinity. 

8.6 Remark 

Let us assume the axioms of Meta-ZFC = Meta-(ZF + AC) for our metatheory 

(M) and let ~ ,~ be sets in (~) such that 

~ ~ , ~ is admissible and ~ is ~ -admissible. 

Using the notion of satisfaction for formulas of ~ in a structure of the 

form ~ ~ > (where ~'~ is a set), we have the following results: 

Suppose ~ = ~ (K) for some infinite cardinal ~ and for every 

ordinal ~ let ~§ denote the least infinite cardinal~ ~ . If ~ is a 

transitive set, ~ $ 0 , then: 

~ , 6 ~ satisfies the axiomschema ~-Inf 3 iff 

~XE A ~ ~ E ~ "~  EX] '~ ~[< ] ( r n g ( f )  <=_ ~ ) i f f  

~ ~< ~ 3~E~ ~E~ 3 ~ < ~ ( rng(f) C_ ~ ) iff 

~<~ 3 ~ 6 ~ ( Lim(~ ) ~ cf( ~ ) > ~ ) (by Lemma 7.2) 

u ~ c M  . 

iff 

Thu s 

, Tn~3 iff )~ E g.~'~ C ) satisfies ~ ~k~ ) 

but if • is a limit cardinal > ~ : 

< V a , @ 7 satisfies inf~[~) iff ~S 

Thus if e.g. K is inaccessible (in(K)) and ~@ , then Inf~[~) does not 

guarantee that every transitive model of this axiomschema contains ~ , since 

e.g. <~K , E > is a standard model of Inf3[~) 

Therefore we proceed to replace ~ -Inf 3 by a (possibly) stronger 

axiom which can be regarded as a generalization of Inf 4 : 

s ~ for each a~6-, and 
Inf 4 

C 

3x Vu~ C g c f ( ~  ,u) 
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We use the notation ~ ( ~ ) to indicate that ~ is supposed to be any of 

the languages of 1.2.4 or 1.2.5 containing set constants ~ ( ~ C  ) and 

a set constant C (possibly in place of the unary predicate symbol C if 

contains this symbol). Then we define 

Z ( ~ )  - I n f  4 := Inf i , Z * ( ~  ) - I n f  4 :: Inf 4 , 

8.7 THEOREM 

If A = ~ , then in ZFI ~ (~) the principle of complete reflection 

can be strengthened to yield the following schema of complete reflection: 

3 X [a <X A VUC ~ gcf(X ,U)A VVeV~ ( ~ (V) ~--> m \  (V ) ) ]  

for every ~ (~)-formula m (7) with free variables as indicated. 

(This theorem follows from Lemma 7.14 and results of GLCEDE 1974, Ch. IV.) 

8.8 Remark 

In the finitary case (where ~ is the finitary language of ZF set theory 

with additional set constants X ( ~ ~ ~T ) and a set constant ~F ) 

ZFI~ can be identified with ZF . If ~ ~ , then 

ZF~ (~) i- Inf~ by Cor. 8.2 and Lemma 4-4, 

hence ZF ~ and ZFI~ (~) are equivalent (note that ~ is definable 

in the former theory since ~6~ ). 

In the general case we can only prove that 

zF 2(A ) + AC 

as well as 

ZFz.(~o )+ AC 

and ZFI Z(&) + AC 

and ZFI~* (~) + AC 

are equivalent. Here we need the axiom of choice, since in ZFC one can prove the 

existence of arbitrarily large regular cardinals and hence 

(+) 3 k V u ~ v gcf(k ,u) 

is provable in ZFC. On the other hand, by Theorem 8.1 (+) is provable in 

ZF~ for every set v of the form ~ for some a E A , and in 

ZF]~, for every set v of the form ~ for some ~ C 

without using the axiom of choice. E.g. in ZF one can prove the existence 

of ordinals a such that cf(a ) > m 
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8.9 An important consequence of the axiom of infinity is the result that for 

every set u there exists a set v consisting just of the finite sequences 

of elements of u . This set is also the set of assignments for finitary 

formulas with respect to the definiti6n of truth in a structure with universe 

u , and hence it is of particular importance for a formalization of truth. 

Since here we are interested in the infinitary case let us define 

S(U,V):={ w I Ft(w) A dom(w) e u A rng(w)~ V } 

Note that in ZF~ one can prove (using the axiom of power set): 

~-Inf5: V v 3w ( w~ S(~ ,v)) 

provided ~ contains the set constant 

8.1o Lemma (ZF) 

If v ~ 0 , then: 

(I) vs V a A V U ~ V gcf(a ,u) ~ S(v,Va ) 

(2) S ( v , V  ) ~ ~ ~ V u c v  g c f ( a , u )  . 

P r o o f  o f  ( 1 ) :  S u p p o s e  v S  Va A V U e v 

i.e. Ft(w) A dom(w) e v A rng(w) ~ Va 

Let ~(u):~ ~ ~ ( u s V {+i) be the 

Wo:~ {< u, ~ (w(u))> I u e dom(w)} . Then: 

Ft(w ) A dom(w ) ~ v A rng(w O) ~ 
o o 

3 ~ < a rng(Wo) ~ ~ since 

Since ~ must be a limit number, we have 

W ~ V~ ~ tOO. 

Proof of (2): Suppose S(v,Va ) ~ V~ 

Since v ~ 0, a is a limit number. Now suppose 

Ft(w) A dom(w) s v A rng(w)~ a Then 

w ~ V ~ by assumption, hence 

ZF 

gcf( a ,u) , and let w s S(v,V a ), 

(yon NEUMANN) rank of 

, hence 

gcf(a ,dom(Wo)) . 

Wo~ Va and hence 

rng(w) ~ V$ for some ~ < a , and therefore 

rng(w)~ a [~ 

Theorem 8.7 and Lemma 8.1o suggest to consider the theory 

)(A ) obtained from ZF~(~) by adding the axioms g(~ 

s ~ for ~ ~ 

and replacing the ~(~ )-ReflS by the stronger principle 

u , and define 
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s )-ReflS( A ): 

for every formula 

(similarly with 

~* ). 

8.11 THEOREM 

(1 )  ZF f ( ~  )(  ~ ) 

3U [ trans(u)Aveu A S(~,U)~ u A 

vV~u ( ~ (V)<-->~u(7)) ] 

(~) of ~(~ ) with free variables as indicated 

and ~ in place of ~ and ~ in case of the languages 

I- 2 ( /~ ) - I n f  4 , 

(2 )  I f  ~ = 5 , t h e n  ZF Z (i)(A ) 

Proof of (1): An application of the 

of a transitive set u such that 

If we put 

zFz.(%)(~)i- Z*(~) -~nf  4 

and ZFI ~ (~) are equivalent. 

(A)-ReflS(A) yields the existence 

S( ~ ,u) ~ u A V W SU U rag(w) eu 

~:~ u A On , then (cp. the proof of Lemma 8.1o (2)): 

Vwe ~ gof(~ ,w) , 

and similarly in case of the language ~* 

Proof of (2): 

zF Z(~)(~) I- zFI ~(K) 

and ZFI ~ (~)I- ~ (i)-ReflS(~) 

follows from Theorem 8.7 and Lemma 8.1o. ~] 

8.12 Remark 

by (I), 

I. By Lemma 8.Io, in ZFI ~(~ ) we may replace the axiom 

h V u ~ ~ gcf( k ,u) by 

by ~ h s(~ ,v x ) <- v x , 

and similarly for ZFI~.(~ ). 

2. If • is regular, Inf4~[~] is a more satisfactory axiom of infinity as 

Inf3~[~) as far as the existence of ~(~) is concerned: 

First note that by results of s the theory T~[~is interpretable in 

ZF , and hence every model of ZF is isomorphic to an end-extension w.@ IK@ 

of < ~(k ), 6 , ~ ~ (K) . Secondly, under the assumptions of Remark 8.6, 

for a transitive set ~ we have: 

< I%% , 6 ,)[~(~ )~6>~(K) is a model of Inf4~(~ ) iff 
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k6  M ( L im(k  ) A c f ( k  )2 < ) 

Thus if M is regular, ~ < a , then 

< V , 6 , ~ , ~ (m) > is a model of Inf 4 
•  ~ ( ~ )  ~ ( ~ )  

(just as in the finitary case < : ~ ). 

8.13 Lemma (Meta-ZFC) 

Let k be an infinite cardinal, O~ $ 0 , O. transitive. Then: 

(I) ~ ~ ~<m(Ft(~) A dom({ ) = ~ ,,, rng(@ ) C_ ~ "~ rng(~) 6 0, ) 

H (~)c~ , 

(2) if cL is admissible: 

( Ft( ~ ) A dom(~ ) 6 (k A rng (  ~ ) r gi "~ r n g ( ~  )6 gt ) 

<--) 3 k ( reg(k ) ~ ~ = H ( X ) )  , 

where reg( ~ ): 4--> cf( k ) : k ~ 

~--) meg( m ). 

Proof of (I) by E -induction: 

(" k is regular"); 

rng( } )Q }4 ( ~ )  ") rng(~l ) EW(k ) i  

(i) ~ ~ ( Ft(@ ) A dom( @ ) 6 ~ A rng( ~ ) ~ 0. --9 rng(�89 )6 C~ ) 

holds. Then we obviously have 

(ii) V X,~ ( Z ~_~ A % 6 0L --~ X 6 CL ) (i.e. strans(Ck)). 

moreover, i f  ~ 6 ~  , ~ : ~--~ , then 4 [ - C ~ m r n g ( ~ )  6 a. by ( i ) ,  

and hence ~E ~ by (ii). Thus we have shown: 

(iii) ~ 6 ~ A 

Next we claim: 

(iv) a ~ H( 

Proof: Suppose ~6~ and let 

We have te prove: 

) where k := On~ 

~:= TC( 6 ). Then C E ~, since ~ is admissible. 

~ ~ i < k . Suppose not, then there is a function {;C-9 X 

iff K < 

Suppose 0 $ ~ 6 ~ (K) . Then b q~ by induction hypothesis. 

Since ~ 6 ~ (~), there is some function ~ such that 

dom(~ )< k A rng( ~ ) : ~ . By assumption, ~ : rng(~ ) 6 

Proef of (2): Let ~ be admissible and assume the closure condition 
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such that rng( ~ ) = k , hence k 6 ~ by (i), a contradiction. 

(v) H(k) C o~ (cp. the proof of (I).) 

Finally: k is regular: 

Suppose k = ~ rng(~) for some function ~ such that dom(~) =oF< k 

and rng( ~ ) ~ k . Then rng( # ) 6 CL by (i) , hence 

k = U rng(~ )6 O~ , a contradiction. 

Conversely, if O~ = ~ (k) for some regular cardinal k , then 

holds for 

(3) is a consequence of (2). 

8.14 Remark 

Let the metatheory he again Meta-ZFC, 

and let ~ be an infinite cardinal. Then by Lemma 8.13: 

(I) if < M , C > satisfies Pair �89 , then ~ (~) <_ H ; 

(2) < ~ (~), E > satisfies Pair iff ~- is regular ; 

(3) < C~ , C > is a transitive model of KP + Pair O~ iff ~. = ~ (X) 

for some regular cardinal k ; 

(4) < V, E > is a model of KP + PairVa iff ~ is inaccessible 

(since ~ is admissible iff ~(a) = V iff ~ = ~ ). 

On the other hand, it is easy to check that 

(5) for every inaccessible K> ~ : 

< ~ , E > is a model of ZF + Pair ~(J< ) + ~ -ReplS + Inf,( K ) 

(cp. (4) above and BOWEN 1973 for the schema ~k~-ReplS), and hence 

< ~ , 6 > is a model of ZF ~ by Cor. 8.5 , 

< ~ , 6 , X , VX ~ is a model of ZFI for every regular X<K. 

(This also follows from GLOEDE 1974, Chapter IV.) Finally, again by (4): 

(6) < ~k , 6 > is a model of ZF ~K iff K is inaccessible ( if K> ~ ). 

(By "inaccessible cardinal" we always mean "strongly inaccessible cardinal".) 

Thus we obtain the following result which has also been proved by BOWEN 197~ 

(independently and by different methods): 

If K is inaccessible , ~ S ~ < ~ < g , a , $ regular, then there are 

-many T < g such that 
< V , C > ~ < V~. ,6  > 

c~B 

(i) clearly 

a transitive set in the metatheory, 
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(Cp. Theorem 8.7 and 6.4.) In fact, by results of GLOEDE 1974 (IV.I.lo) we 

have the following stronger conclusion: 

There is a function ~ : K --~m which is strictly increasing and continu- 

ous and there are arbitrarily large ordinals y <M such that 

cf(~) ~ a and ~(~ ) = 7 (cp. Theorem 7.13) 

and for every such y : 

< V ,e > ~ <V~ ,e > 

Finally note that for every regular a : 

(7)if < ~7 ' 6 > ~ < V ,6 > , 7 g X , ~ inaccessible, then cf( y )~ a , 

and hence the assumption on the cofinality of Y made above is necessary. 

For, if ~< a , f: ~ --~ y , then rng(~ ) 6 V~ , and since 

< V~ , 6 > satisifes the following instance of Pair ~(K) under the 

assignment } : 

SuVv(v~u ~--~Vv ~ ~(% ) 

< ~y, 6 > satisfies the same formula under the assigment ~ , i.e. 

rng( } ) 6 V , and hence ~%< y rng( 4 )~ ~ . 
Y 

Therefore cf(7 )~ ~ for every ~< a , and thus cf( 7)~ a 

8.15 THEOi!EM (Meta-ZFC) 

Suppose K is ~ 1 1-indescribable (i.e. inaccessible and weakly compact). 

Then the set of ordinals 7 < K such that 

in(7) A < V ,6 > ~ <YI< ,6 > 
T 

is stationary in 

Proof: A set Z ~ ~ is called stationary in ~ (or dense in ~) iff it 

intersects each closed unbounded subset of I< . By results of GLOEDE 1974 , 

Chapter IV (referred to in the preceeding remark 8.14 following statement (6)) 

for each a <M the set Gu defined by 

~a = ~aa 

otherwise , 

is stationary in l~ . Hence by 

GLOEDE 1971): 

~ ~-indescribability (cp. Theorem 3.6 of 

~ ~ ~ is stationary in ~ 3 
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is stationary in K . Since O. is a subset of 

the latter set is stationary in ~ , too. [3 

We conclude this sectien with the following remark: Theorem 8.15 suggests 

to investigate an infinitary version of a strengthening of ACKEIqMA~N's set 

theory A (called ZA by REINHARDT 197o and Sb by LEVY 196o) by adding 

to A the following priciple of reflection 

vV~ V ( ~(V) ~--~ ~V(v)) 

for every formula ~0 of ~V V with free variables as indicated which 

does not contain the constant V (the class V referred to in the definition 

of ~VV clearly is the class of all sets in the corresponding metatheory). 

9 Foundation and choice 

In the preceeding sections we were mainly concerned with a generalization 

of the usual set theoretical axioms to the infinitary case but ~he results 

still applied to the finitary case except in some applications. We shall now 

consider some consequences of infinitary axioms which are peculiar to the 

infinitary case. 

A fundamental concept of set theory which cannot be characterized by a 

finitary formula (and even not in ~[ ) but by a formula of ~ is the 
~1 ~ ~ l e l  

notion of well-foundedness (and similarly the notion of a well-ordering). A 

finitary definition of " R is a well-founded relation " is usually given as 

follows: 

Fund(R): <--~ ReI(R) A Vu ( u~0 ~ 3v~u Vw ( wRy ~ ~ ws u ) 

(As usual, we write uR v in place of < u,v> sR .) 

Occasionally it is more convenient to introduce a stronger concept by 

requiring that there does not exist an infinitely long descending chain with 

respect to the relation R : 

NDS(R): 4--> ReI(R) A ~ 3u (Ft(u) A dom(u) ~ A V n<~ u(n+1)Ru(n)). 

However~ the equivalence 

Fund(R) 4---2 NDS (R) 

can be proved in finitary set theory (e.g. ZF ) only if the axiom of dependent 

choices, DC , is assumed. Instead we shall now make use of sufficiently strong 

infinitary languages in order to prove for every relation R : 

Fund(R) ~-~ ~ 3V /\ v R ( V < v~ [~< ~ >) ~<t,.~ ~ +1 V~  = 
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using a logical axiom which corresponds to the (set theoretical) axiom of 

dependent choices (which, however, will now be required for the metatheory 

in order to prove that the infinitary logical axiom of dependent choices is 

true in every model). 

9.1 THEOREM 

If ~ 6 ~ , then 

@ ~A~ -Funds t- 

Proof: Suppose 

~(u) := 3 7 

Then 3 u ~ (u) 

there is a set 

3~ A v V Consider the formula ~< ~ ~ +1 e 

A [ v~ . l  e v~ ^ v ~ u ]. 
h ~ ~ o 

by our assumption. Therefore, by the schema of foundation, 

u such that 

and 

s (u) A V v e u -n qo (v) , i.e. 

-~ - u ] (i) 3v A [ v.+ I ~v~ ^ v ~ 
~<~ 

(ii) ~ vmu -~ 3V ~ [ v + 1 

By (i) there is a sequence 

~ ^ v ~ ~ v ] 

"~ such that ~ ~(V~+I) ~: '~(~) A V(O) -= U 

Let ~ be the sequence of length ~ such that ~(~) = 7(~+I) for~< ~. 
Then 

7(O) c u ^ / k T ( ~ + l ) c w ( ~ )  ^7(o)  ~ ~(o) 

contrary to (ii). [~ 

9- 2 THEOREM 

If e C ~ , then 

KP* I- Fund(R) -~ -~ 3V A V(~+I) RV(~) 

Proof: Suppose /~  P ( ~ + l ) R v ( V ~ )  for  some sequence ~ , ~(V) = 

By Pair ~ the~r~s a set u such that 

Vw (w~u~-~ V w=-V(~ )) 

Obviously we have u~O AV weu 3 vau vRw , which implies -i Fund(R).~ 

Following KARP 1964 (p.12e) we introduce the following schema of dependent 

choices (as logical axioms): 

where V = <v~ I~ < (~> and < ~0~I~ < &) > is any sequence of ~ -formulas 

such that /~ ~ is a formula of ~ and vn does not occur in 
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(The proper generalization of KARP's axiom schema would allow sequences of 

variables ~ in place of the single variables v% ; however, for our 

purposes the above schema will be sufficient.) 

9-3 Corollary 

If ~ 6~ and if we assume the schema of dependent choices, 

~ I- Fund(~) ~--~ ~ei(R)~ ~V /~ V(~+~)RV(~) 
~< ~ 

DC~ , then: 

e--) NDS(R) 

for every ~ -definable class term R 

(The proof is similar to the proof of Theorem 9.4 below, and the last equivalence 

follows from Theorem 9.6 below.) 

9.4 THEOREM 

Denote by KP~ the theory obtained from KP~ by deleting the 

axiomsohema of foundation, ~ -FundS. If ~ 6 ~ , and if we assume DC~ 

then 

KP~ + m 3V A 7(m+1) s 7(~ ) i- s -Funds 

Proof: Suppose �9 (u,w) is a formula of 

indicated and 

3u ~(u,~) ~ Vu [ ~(u,~) ~ 3w ( 

Then we have: 

with free variables as 

~(w,7) ~ w~u ) ] . 

3 v ~ m(Vo,W) A ~ < ~ v%+1 

Applxing the law of dependent choices we have: 

3 ~ A ~ ( V ~  ,V +1,~) , where 
~< 

~o(Vo,Vl,W) := ~ (Vo,W) , 

~(v,~.1,7) :: [ ~(v~,7) ~ �9 (v .i,~) ~ v~.Icv ~] if ~ ~0 

9-5 ~emark 

If ~ 6~ and if we assume the axioms DC ~ (as logical axioms), then 

by Theorem 9.1 and 9-5 the axiomschema of foundation, ~ -FundS, can be re- 

placed in KP~ by the single axiom 

The same result holds for ZF~ ; moreover, in ZF~ the axiom of foundation, 
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Fund, already implies the axiomschema of foundation, ~ -Funds (mainly by 

using the ~ -AusS), and the axiom of foundation can be shown to be equivalent 

to (+) in ZF~ ( = ZF~ without Fund ) by using the single instance 

3v ~ (VeSU) A ~ V v~3 ( v v~) ~< ~ v~+ 1 ~+I s 

of the laws of dependent choices. 

(+) in turn may be replaced by the finitary sentence 

(++) ~ 3 u [ Ft(u) A dom(u) ~ @ A V n < @ u(n+1) s u(n) ] 

(i.e. NDS(s)) using only Pair ~ : 

9.6 TKEOREH 

If ~ 6~ , then (without using DC ~ ): 

KP~,_ i- 2el(R) . ~ . 3V & V(~%+1) R~(~ ) 

<~) 3u [ F~(u) A don(u) --- A Vn< ~ u(n+1)Ru(n) ]. 

Proof: Suppose that R is a relation and for some 

By Lemma 5-4 there is a set u such 5hat RD (u,~) 

Ft(u) A dom(u) ~ ~ A V n < ~ u(n+l) R u(n) 

-sequence v : 

i.e. 

((2) of Lemma 5-4)- 

Since e ~ ~ (cp. Lemma 4.7), we have proved " ~ " 

In order to show the converse, suppose 

Ft(u) A dom(u) ~ ~ A V n< e u(n+1) Ru(n) 

Again, since e = ~ and by Lemma 4-5 we have: 

~<~ 

and the conclusion is now immediate. [-~ 

9.? Application 

Let DC denote the (set theoretical) axiom of dependent choices of 

BERNAYS (see e.g. FELGNER 1971, pp.146ff). In Meta-(ZF+DC) one can prove: 

if ~ is an admissible set, ~ 6 ~ , then every model< ~ ,~ > of the 

theory Ext + Pair ~ + Fund (where ~ is a set) is isomorphic to a 

standard model, i.e. a model of the form < o' 6 > for some transitive set 

M 
0 ~ 



<~ ,E~ 

<M,E) l: 

K. Gl cede 

In fact~ ~ is extensional. Hence~ in order to abe able to apply 

MOSTOWSKI's collapsing theroem (I,iOSTOb'SKI 1949, Theorem 3) it suffices to 

show that ~ is well-founded. Suppose not; then by DC there is a function 

such that 

Ft(~) A dom(~{ ) = ~  A rng(~ ) _C- M A VVt<(e ~ ( ~ +I) ~ f ( ~ ) .  

this means that 

A VM. [ ~ ] hence %% < ~ +1 ev~ 

3~ ~k v(~+l) e ~(V% ) and hence by Theorem 9.2 

<~) I= m Fund , a contradiction. 

Using Theorem 9.1 instead of Theorem 9.2, the same result holds if 

< ~ ,~9 is a model of the schema ~B~ -FundS. In particular, if (~ 6~ , 

then every model of KP ~ (a fortiori every model of ZF ~ ) is 

isomorphic to a standard model (using DC in the metatheory). 
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SUR I..A MI~THODE EN HISTOIRE DE LA LOGIQUE 

C. Imbert (Paris) 

Jusqu'N une date r@cente, l'histoire de la logique s'est donn@ pour objet 

la description des formes logiques et pour principe la logistique, selon un program- 

me d~fini par H. Scholz : "La logique formelle est la seule logique qui, sous la 

forme de la logistique, soit aujourd'hui assez ~labor~e pour servir de point d'appui 

un examen r~trospectif de l'histoire dela logique, quelles que soient les limita- 

tions impos~es ''~I) . Le pr@cepte fut remarquablement servi par J. Lukasiewicz et 

LM. ]Bochenski, pour ne citer que les plus illustres. De fair, l'~cole logistique a im- 

pos@ une re@rhode issue d'une lecture partielle, et du fait de cette limitation partia- 

le, de travaux de G. Frege. H. Scholz semble tenir compte des seuls premiers pa- 

ragraphes de la Be~riffsschrift et de la description rudimentaire de la syntaxe logi- 

que qu'on en peut tirer (2) Or la logique de Frege tient sa nouveaut~ et sa puissan- 

ce, voire ses m~comptes, des hypotheses s~mantiques successivement adopt~es par 

le logicien d'I@na. On se propose de montrer qu'il serait souhaitable de reconsid~- 

rer l'histoire de la logique en privil~giant les d@terminations s~mantiques des sys- 

t~mes logiques. Leur r01e fut toujours d~terminant bien q,u'ils soient, c'est trop 

@vident, moins ais~ment assignables que ne l'est la forme logique. 

Pour respecter les limites d'une corr~munication, on s'en tiendra ~ux 

points suivants : 

I Un bilan des r~sultats obtenus par la m@thode logiciste, peut @tre @ta- 

bli sur le cas qui lui semble le plus favorable : la "restitution" de la dialectique 

stoi'cienne et son opposition ~ l'Analytique aristot@licienne. 

II On indiquera ensuite quelques pr@suppos~s de la m~thode logiciste. 

III Apr~s avoir r~sum@ la lemon des trois syst~mes logiques successive- 

ment adopt~s par G. Frege, on empruntera ~ cette oeuvre, apor@tique autant que no- 

vatrice, les raisons du d~placement des questions s@mantiques l@gu@es par la tradi- 

tion grecque. 

IV Za connaissance des clivages s~mantiques pourrait offrir un nouveau 

principe pour une division raisonn~e de l'histoire de la logique, alors capable de 

prendre en compte des doctrines jusqu'~ present d~pr@ci~es (telles par exemple les 

recherches logiques du XVII~ si~cle). 
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Soit, pour pierre d'~preuve, la restitution moderne de la dialectique 

stoi'cienne. L'histoire en est bien connue. Apr~s une longue p~riode d'oubli, puis de 

m~pris (auXIX~ si~cle), les textes stol'ciens ont ~t~ reconsid~r~s apr~s que leur in- 

t~r~t eut ~t~ mis en ~vidence par un article de J. Lukasiewicz, dat~ de 1934. Ce re- 

gain d'attention est li~ ~ des circonstances tr~s particuli~res. D'une part le logicien 

polonais avait su distinguer dans la Begriffschrift une partie propre correspondant 

au calcul des propositions (3). D'autre part, J. Lukasiewicz, parall~lement ~ une 

analyse philosophique du d~terminisme ~laborait alors une logique ~ plusieurs va- 

leurs de v~rit~ (4). Soumise aux deux crit~res de l'adh~sion au principe de bivalen- 

ce et de l'affinit~ avec le syst~me logistique le plus simple (lecalcul des proposi- 

tions), la dialectique stoi'cienne put @tre oppos~e ~ l'An~lytique aristot~licienne. En 

premier lieu, les tropes stol'ciens pouvaient ~tre directement confront~es aux r~gles 

de la logistique ; en second lieu, Aristote n'avait fait qu'un usage tacite et limit~ du 

principe de bivalence, d~s lors qu'il avait voulu inclure dans l'An~lytique une th~o- 

rie du syllogisme modal (5) j. gukasiewicz a repris, trois fois pour le moins (6) 

l'~tude de la dialectique stoi'cienne ajoutant 

1 - La th~se de bivalence 

les caract~ristiques suivantes : 

2 - Zes ordinaux dont usent les Stol'ciens (le premier, le second etc.. 

sont des variables propositionnelles tandis que les variables aristot~liciennes re- 

pr~sentent des termes. 

3 Zes stoi'ciens ont fait usage de connecteurs binaires dont la signi- 

fication est celle des fonctions de v~rit~ des modernes 

4 - Un syllogisme aristot~licien est une th~se, un syllogisme stol'cien 

est une r~gle d'inf~rence. 

Ces r~sultats ont ~t~ confirm~s par H. Scholz et I. M. Bochenski. Les 

travau• de Benson Mates (Stoic Logic, 1953) et de W. et M. Kneale (The Develop- 

ment of Logic, 1962) ont apport~ les pr~cisions suivantes : 

5 - Les Stoi'ciens connaissaient le th~or~rne de la d~duction (voir B. 

Mates, opus cit V, 3 : The principle of conditionalization) 

6 - Plut~t que le calcul des propositions, les r~gles d'inf~rence stof- 

ciennes anticipent la d~duction naturelle, entendue au sens de Gentzen (~. and M. 

Kneale et O. Becker : Zwei Untersuchungen zur Antiken Logik). 

7 Ii y a entre la dialectique du Portique et l'Analytique un rapport qul 
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m@rite d'@tre compar6 ~ celui qui vaut entre le calcul des propositions et ce que 

l'on appelle commun6ment "calcul des pr~dicats" 

8 Enfin, on peut comparer la s6mantique stoi'cienne ~ celle de G. 

Frege (par quoi on entend celle de l'article Sens et D6notation). 

L'interpr6tation moderne 6tait achev6e ; elle semblait m~me confirm@e 

par l'6tendue et la richesse du parall~le. Toutefois, une confrontation avec les tex- 

tes originaux montre que chacune de ces theses est contestable. De cette critique on 

ne peut donner ici qu'une 6bauche soutenue par quelques contre-exemples. Posons 

en principe que, loin d'opposer des arguments philologiques disjoints ~ telle ou tel- 

le des interpr6tations modernes, on voudrait confronter le syst~me grec dont Aris- 

tote et les Stoi'ciens ont d onn6 deux variantes, ~]a conception moderne de la logique. 

On montrera que l'interpr6tation inspir6e de la "logistique" est victime d'une dou- 

ble erreur quand elle inscrit les syst~mes grecs dans quelque partie des syst~mes 

modernes et quand elle oppose entre elles les syllogistiques grecques sur des points 

oh elle ne furent pas en conflit. Seule la consid6ration exclusive de "formes" real 

comprises en est responsable. 

Soit d'abord les trois premieres theses qui concernent la bivalence, la 

nature des variables et celle des connecteurs. On leur opposera la d6finition Stoi'- 

cienne de la dialectique. "Elle est la science de ce qui est vrai, de ce qui est faux 

et de ce qui n'est ni l'un ni l'autre. Elle a trait ~ ce qui signifie et ~ ce qui est si- 
(v) 

gnifi6" . La formule, inspir~e de Chrysippe, indique excellemment trois traits 

d6terminants de la discipline dialectique. En premier lieu elle est une critique (8) 

(on en pr~cisera plus bas l'intention), et les Stoi'ciens ont voulu donner les crit~res 

d'une orthologie ; en second lieu elle est l'art de discerner, dans le continuum don- 

n6 de la langue naturelle, ce qui peut @tre assert@ ou ni6 de plein droit et ce qui est 

soumis ~ une d~pendance contextuelle ; en troisi~me lieu le signifiant y est examin6 

eu 6gard k ses valeurs s6mantiques. Ea d6finition apporte donc une restriction ~ la 

bivalence, qui n'est pas attach~e de plein droit aux unit6s apparentes du discours 
e.~s t 

(les 6nonc6s ou lekta). Une proposition susceptible d'etre vraie ou fausse/ou bien 

celle qui comporte un 616ment deictique(adverbe, forme verbale d@termin@e, par- 

ticule d6monstrative) on l'ensemble d'une proposition ant6c6dente et d'une proposi- 

tion cons6quente reli6es par un anaphorique. Ii est donc exclu d'associer au condi- 

tionnel "si... alors " une fonction de v@rit6, et tout aussi impossible de voir dans 

les ordinaux dont usaient les Stol'ciens des variables propositionnelles. Ce n'est pas 

le lieu de discuter la notion de variable qui 6tait assur@ment @trang~re ~ l'horizon 

conceptuel des Grecs (9) ; il suffit ici d'apporter des contre-exemples. Si la d6fini- 
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tion des connecteurs @tait celle des fonctions de v@rit~, Chrysippe n'aurait pas refu- 

s~ l'@quivalence entre l'irnplication et la n@gation d'une conjonction cornrne il est rap- 

port@ dans un c@l~bre argument de De Fato. Quant aux expressions le premier, le 

second, elles renvoient au contexte ; elles en sont la citation abr@g~e. Or ce contex- 

te introduit toujours un rapport de dgpendance quant au sens et aux conditions de v~- 

rit~entre les substitu~s. 

Ex : Si Platon marche, Platon bouge. 

Ii est en outre pr@cis@ qu'un conditionnel oh ce rapport rnanquerait, qu'un 

conditionnel cornpos~ de propositions rgellement ind@pendantes, est faux. Diocl~s 

cite le suivant : 

S'il fair jour, Dion se prorn~ne (VII, 73) 

Ces exernples suffisent ~ invalider l'hypoth~se d'extensionalit~ qui sou- 

tient les trois premieres theses de notre liste. Ils ruinent ~galement toute tentative 

visant ~ identifier la s~mantique stol'cienne et celle de Frege, soft la th~se 8 de la 

liste. L'article Sens et D~notation, auquel Mates ernprunte, rel~ve du deuxi~rne sys- 

t~rne fr@g@en (voir infra Ill). L'auteur met en jeu trois facteurs : le signe, le sens, 

et la d@notation alors que la dialectique stol'cienne n'en consid~ra jarnais que deux : 

les signifiants et les signifies. En outre, l'intention de G. F~ege n'y est pas de cap- 

turer la s@rnantique de l'usage "naturel" du discours, rnais bien au contraire de 

l'hypoth~quer afin de soutenir par un argument de vraisernblance la th~orie, toute 

nouvelle, des fonctions et valeurs de vdrit~ (i0) 

II reste k considdrer les theses 4 k 7. IElles ernpruntent ~ la syntaxe des 

syst~rnes rnodernes plusieurs notions qui, ernploydes d'ailleurs d'une rnani~re alda- 

toire, n'en ont pas rnoins pour intention de/projeter les "forrnes"grecques dans les 

syst~mes rnodernes et d'utiliser le spectre ainsi obtenu pour opposer entre elles 

(rnais toujours par rdfdrence ~ l'interprdtation rnoderne) l'Analytique et la dialecti- 

que stoi'cienne. L'dcole logistique a ainsi obtenu un parallMe par effets contrastds 

assurdrnent brillant, rnais aussi s~rernent artificiel. On a contestd que le syllogisrne 

aristotdlicien soft une thhse (ll). En outre, il sernble dvident que la forrnule : 

Si A se dit de tout ce dont B se dit 

et  s i  B s e  d i t  de t o u t  ce  d o n t  F s e  d i t  

a l o r s  A s e  d i t  de t o u t  ce  d o n t  F s e  d i t  

n e  p e u t  @tre e n t e n d u g c o r n m e  u n  s e g m e n t  h o m o g ~ n e  de l a  l a n g u e  o b j e t .  De m a n i ~ r e  

g g n ~ r a l e ,  le  s o u c i  de r e c o n s t i t u e r  l e s  f r a g m e n t s  de la  l o g i q u e  g r e c q u e  a v e c l e s  c r i -  

t ~ r e s  e t  l ' a p p a r e i l  de l a  l o g i q u e  p o s t - f r g g ~ e n n e  on t  g t a b l i  u n e  p r e u v e  de c o n s i s t a n c e  

r e l a t i v e .  M a i s  l e s  l o g i s t i c i e n s  v o u l a i e n t  en  o u t r e  d g r n o n t r e r  l ' i d e n t i t g  ~ s o i - m @ m e  
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de la logique formelle, d'Aristote h Leibniz~et de Leibniz aux Principia russelliens. 

Bref h sauver du naufrage de l'histoire une logica perennis, capable d'ailleurs de 

(IZ) 
prot4ger la substance, plus pr4cieuse encore, d'une philosophia perennis corn- 

me "science rigoureuse". Si on laisse de c0t4 ce propos trop 4videmment dat4, il 

demeure que le programme logisticien s'est divis4 par lef~it en deux tentatives de 

succ~s in4gal. La premiere fur de confirmer les syllogistiques grecques en en don- 

nant un module satisfaisant aux crit~res contemporains, Elle fut conduite avec toute 

la rigueur que l'on peut demander au propos de formaliser une doctrine "naiVe". Za 

seconde tentative, moins heureuse, rut d'utiliser l'image des logiques grecques 

darts la syst~matique moderne (et on peut en concevoir plusieurs) pour juger de 

leur nature et de leurs rapports. Ce faisant, on les traitait comme des secteurs 

disjoints de la doctrine moderne sinon comme une anticipation de celle-ci. Ici les 

r4sultats - et particuli~rement les theses 4 h 7 - sont contradictoires, et ils sont 

arbitraires puisqu'il n'exi~eaucun moyen de les contr61er : ce qui est th~se pour 

l'un est r~gle pour l'autre. Et comment donner un sens au th4or~nae de la d4duction 

dans un syst~me qui r~pugne ~ la distinction entre th4orie syntaxique et th4orie s4- 

mantique de la d4duction ? Sans pr4juger si les Grecs avaient ou non notre concept 

de d4duction : on sait qu'Aristote identifie toujours le lien syllogistique h une cau- 

salit4. Z'incertitude des r4sultats est celle de la m4thode. 

II est cependant possible de tracer la diff4rence qui pr4vaut entre les 

syst~mes aristot41icien et stol'cien. Elle apparaft fort clairement d~s que l'on veut 

bien connaftre le probl~me auquel l'une et l'autre apportent une solution. Deux con- 

ditions d4termin~rent la naissance et le cours des recherches logiques des Grecs. 

Za premiere fur l'usage des livres Sur la Nature pour l'enseignement de la physi- 

que et comme v4hicule du savoir entre la Grace d'outre-mer I qui fut son point d'o- 

rigine) et l'Attique. De lh vient la n4cessit4 d'une m4thode capable de valider une 

connaissance non directement port4e par la perception. C'est l'origine de "l'examen 

des 4nonc4s" que Platon lia ouvertement ~ la parution du livre d'Anaxagore (13). La 

seconde condition d4terminante fut que les procedures d~nalyse ou de lecture (14) 

ont eu pour but non seulement d'identifier les unit4s de langue pertinentes et leur 

composition, mais encore de situer dans l'inscription r4siduelle des perceptions 

(ou m4moire) le paradigme de contr61e des 4nonc4s. Ces analyses ont pris diverses 

formes, dont les plus notoires sont l'aristot41icienne et la stofcienne. Leur strat4- 

gie de lecture s'oppose principalement sous les trois chefs : 

a) de la nature des unit4s linguistiques jug4es pertinentes 

b) de leur mode d'association 
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c) de  l a  n a t u r e  e t  de  l ' o r g a n i s a t i o n  d e s  d o n n 4 e s  e m p i r i q u e s  a u x -  

q u e l l e s  s o n t  r a p p o r t 4 e s  l e s  u n i t 4 s  d i s t i n g u 4 e s  p a r  l a  I e c t u r e  

L e  t a b l e a u  c i - d e s s o u s  r e n d  b r i ~ v e m e n t  c o m p t e  d e s  c h o i x  r e s p e c t i f s  

e t  d e s s i n e  e n t r e  l e s  d e u x  l o g i q u e s  u n  r a p p o r t  d ' e n v e l o p p e m e n t ,  n u l l e m e n t  d ' o p p o s i -  

t i o n  : 

Lycge le terme 

P o r t i q u e  

pr6dication 

l ' g n o n c ~ ,  qu i  p e u t  : p r g d i c a t i o n ,  c o m -  
~ t r e  i n c o m p l e t  (e t  l i -  : p l 4 m e n t a t i o n  ( d i -  
m i t g  ~ u n  t e r m e  p r ~ d i -  r e c t e  ou  i n d i r e c t e )  
c a t i f )  : s u b o r d i n a t i o n  

sensibles abstraits dis- 

tribu6s dans l'intellect 

en dix s~ries de cat6go- 

r~me s. 

prolepses d~pos~s dans 

la m~moire par l'exp~- 

rience ou compos6es 

partir d'elle 

L'analyse du Portique est donc arm~e pour traiter (lire) toutes les in- 

ferences valid~es par la r6duction aux termes comme le prescrit la m~thode d'A- 

ristote; mais aussi quelques autres, dont les tournures de subordination, qui 6chap- 

paient ~ la technique des Analytiques. Car les figures de l'Analytique, r6ductibles 

aux modes parfaits de la premiere, sont ~ leur tour lues par les deux premiers 

tropes anapodictiques stol'ciens. Mais si ces deux analyses m~ritent de plein droit 

le nom d'exercice s6mantique, elles ne visent nullement 5 confronter directement 

un texte et une donn6e physique, per~ue ou id6ale. La premiere intention a 6t6 inva- 

lid6e d~s que rut ~tablie, dans le Cratyle, la preuve de l'arbitraire (ou plut6t de la 

fragilitY) du signifiant : la seconde fur invalid6e par l'6chec du Sophiste (15), qui 

supposait une organisation physique strictement isomorphe ~ la syntaxe. Les tropes 

ou modes syllogistiques transmis par la tradition ne sont donc pas des formes im- 

manentes aux unit6s de langage et dont on a vraiment cherch~ la trace dans les tex- 

tes aristot61iciens ou stol'ciens ; ce sont des protocoles de lecture indiquant com- 

ment une suite argumentative doit ~tre valid6e c'est 5 dire confront6e avec les tra- 

ces mames que la nature a d6pos6es dans le sens, dans l'imagination, enfin sous 

une forme ress6r4e et ordonn4e dans la m6moire. 

Ce recours ~ la m~moire n'introduit cependant aucune instance psy- 

chologique, en aucun des sens modernes o~ on pourrait l'entendre. Car le r~alisme 

de la m~moire ne fut que la reprise ~ peine masqu~e, mais en des termes natura- 

listes, des m~thodes en usage dans les ~coles ath~niennes et alexandrines. D'une 
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part, l'analyse du texte soumis 5 l'exarnen (qu'ii s'agisse d'un th@or~rne de g~om4- 

trie, de la conclusion d'un syllogisme physique ou d'un jugernent de t414ologie mo- 

rale) est r4gie par une s4rie protocolaire de questions qui d4ploient l'inforrnation 

ress4r4e dans~'ordonnance du discours et qui enest exigible. Ces questions sollici- 

tent de l'@nonc4 l'une ou l'autre des d4terrninations cat@goriales (qu'il s'agisse des 

dix cat4gories aristot41iciennes ou des quatre stol'ciennes), assurant par 15 un cou- 

plage entre le texte et un syst~me de traits d4terminants, non sournis h l'ordre li- 

n4aire du discours et ernprunt4s aux r4alit@s naturelles qu'ils sch4matisent - ModU- 

le r4duit en quelque sorte, interrn4diaire entre le foisonnement de l'empirie et l'4- 

conomie h4t4rog~ne du discours. Dans les d..eux systhmes que nous confrontons, le 

modhle a pris la forrne soit d'une hi4rarchie de termes (Zyc4e) soit de s4ries rayon- 

nantes de prolepses 5 partir d'une d4terrnination donn4e (Portique). Le diagramme 

de la rn4moire est donc l'apriori s@rnantique responsable du choix des tropes syllo- 

gistiques. D'autre part, cette organisation rn4rnorielle r4plique les diagrarnmes sco- 

laires : tableaux de d4finition, arbres de classification naturelle, analyse lexicale, 

bref l'une ou l'autre des formules adopt4es pour la r4daction des recueils d'41@ments 

dont on peut voir la forme primitive dans les lexiques de termes horn4riques et la 

forrne 41abor4e dans les livres d'enseignement alexandrins - dont lesE14rnents eu- 

clidiens (15 bis) geur intention commune fur de fixer les liens d'association privi- 

14gi4e entre deux concepts, qu'elle soit d'essence ou d'usage. Remarquons que ces 

diagrarnmes ne sont pas des modules extensionnels. L'assirnilation des r4pertoires 

d'analyse 5 la m4rnoire r4surne en fait deux theses 6pist4mologiques. Z'une est 

l'ant4riorit4 culturelle des sch4matisations figuratives par rapport aux d4ductions 

linguistiques que les premieres doivent valider. Z'autre est d'attribuer 5 l'action 

secrete de la nature cette ant4riorit4. 

Si l'on n4glige cette derni~re th~se, constitutive de la philosophie 

grecque, et le fait historique des biblioth~ques ath~niennes, on retiendra la solution 

singuli~re propos4e aux apories de la lecture. Ici la longue exp4rience qu'avaient 

lCsGrecs des arts repr~sentatifs a infl4chi l'analyse logique en lui donnant toutes 

les ressources de l'exeg~se picturale (16) En particulier on savait ~ la lois jouir 

d'une image et profiter de son instruction sans cependant que le module en soit don- 

n4, ni rnn@rne puisse jarnais en @tre donn4 (17)., l'art dominant a pr~t4 5 l'autre. 

Mais dans les deux cas il fur admis qu'il s'agissait de reconna~re l'arch4type de la 

nature dans la perspective picturale ou dans le profil de l'4nonc4. Aussi la logique 

grecque a 14gu4 ~ la tradition en rn~me temps qu'une m4thode de lecture un poids 

4gal de pr4jug4s. Dont l'identification du concept et de la repr4sentation, une irnpos- 
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sibilitE de principe ~ reconna~re rant l'autonomie de la syntaxe que les limitations 

liEes au caract~re lin4aire du langage. Ces deux prEjug4s, dont le premier fur sou- 

vent dEnonc4, n'ont jamais pu @tre 4vitEs tant que la langue prise en compte par les 

logiciens fur une langue naturelle et que l'instance s4mantique rut de fair enti~rement 

ou partiellement confondue avec l'acte de perception (sensible ou intellectuelle) ; on 

leur dolt les trois theses suivantes qui ont affectE les premiers syst~mes de logique 

symbolique. Frege fur le premier ~ les Enoncer clairement et pour deux d'entre-el- 

les ~ s'en libErer. Mais ce fur au prix d'une critique dirigEe contre lui-m~me et 

poursuivie pendant plus de quarante ans. 

a) - La premiere est qu'une langue, artificielle sinon naturelle, 

peut cumuler les propri4tEs d'un calcul et d'une caractEristique universelle, unir 

les deux finalitEs d'une langue descriptive et d'une logique deductive. Dans cette hy- 

poth~se, deux langues scientifiques donnEes ne sauraient ~tre ni arbitraires ni hEtE- 

rog~nes. C'Etait l~ reproduire ~ l'int~rieur des syst~mes formels l'idEal grec d'une 

histoire naturelle qui aurait l'envergure d'une Encyclop~die. En outre, la m~me th~- 

se demande que les fonctions descriptives soient de m~me nature que les fonctions 

de d~cision, qu'un caract~re soit en m~me temps un crit~re (18) 

b) - La deuxi~me th~se est la cons4quence directe du naturalisme. 

Elle identifie l'analyse logique, assignable et inscrite dans un ensemble fini de r~- 

gles, avec le processus obscur, mais naturel et suppos4 infrangible, de la connais- 

sance. Elle conduit ~ assimiler des concepts ~ certaines unites syntaxiques (prEdi- 

cats ou fonctions). Elle est encore la cause de la repugnance qu'ont montr4e les lo- 

giciens ~ distinguer les diff~rents niveaux de structuration logique dissimulEs dans 

l'usage spontan4, ou stylistiquement Etendu, de la langue naturelle. Ii s'agit moins 

ici des logiques non-aristot41iciennes, au sens de J. Zukasiewicz (Logiques ~ plu- 

sieurs valeurs de v4ritE), que des syst~mes relativement indEpendants constituEs 

par le calcul des propositions, la thEorie de la quantification, la logique des prEdi- 

cats avec EgalitE etc... 

c) La troisi~me fut d'importer dans les langues symboliques la 

propri4tE d'Evidence ou de transparence attachEe, comme un imp~ratif biologique, 

la langue vernaculaire. Le langage, d'abord credit4 des m@mes vertus repr4sen- 

tatives que la perception, rebut ensuite la clartE ~ titre de qualit4 rh4torique et de 

caract~re normatif, g'analyse intentionnelle du discours interdit, parce qu'elle en 

est l'alternative, une caract4risation des EnoncEs eu Egard ~ des crit~res syntaxi- 

ques et sEmantiques dEnombrEs dans la m4talangue et relatifs ~ elle seule. Za mE- 
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talangue ne fut que tardivement substitu4e au point de vue absolu du lecteur grec. Ii 

ne servirait ~ rien d'objecter que les scolastiques opposaient la suppositio materia- 

lis ~ la suppositio formalis, ga doctrine ne fair que rep4ter la distinction stol'cienne 

des signifiants et des signifi4s ; elle n%t pas d'autre r~le qu'une m4decine contre les 

sophismes (Ex : mus edit caseum, mus est syllaba, ergo syllaba edit caseum). Ii 

ne servirait pas non plus de dire que l'Arsgrammatica des Alexandrins, que d4j~ 

m~me les Analytiques premiers ou encore le r4sum4 de Dioclhs de Magn4sie sont, 

de fait, parcourus de propositions 4nonc@<~ en m4talangue : ils n'ont pas 4t4 com- 

pris comme tels. Leur titre g4n4ral d'Eisagog4 (Introduction) indique leur fonction, 

qui est de mettre le disciple dans la position d'un lecteur absolu, intrSnis4 par la 

nature re@me des donn4es 4pist4mologiques. A l'inverse la distinction d'une langue 

objet et d'une m4talangue est le signe certain d'une ruine du naturalisme logique. 

Ces trois theses, qui jouent encore dans les deux premieres id4o- 

graphies fr4g4ennes ont 4t4 discut4es par le logicien allemand darts des textes de- 

meur4s in6dits de son vivant, et abandonn6es pour l'essentiel dans les Recherches 

logiaues. On notera qu'elles ont toutes une implication s4mantique. Ce fair explique 

(aue, malgr4 les recherches des math4maticiens au XVII~ et XVIII~ si~cle, et par le 

fair d'une r4flexion real centr4e sur la forme, la logique n'ait pas 4prouv4 de r4elles 

(19) 
modifications avant Frege 

II 

La m4thode des logisticiens a donc peu de prise sur les raisons qui 

ont d4termin4 la logique grecque. On peut estimer que l'inventaire des trait4s grecs 

et scolastiques, l'examen de leur consistance et la distribution des m4rites et des 

bl~tmes 4tait sa fin, et qu'elle l'a atteinte. Mais on s'inqui~tera plutSt de savoir si 

elle pouvait viser ~ autre chose, et si le catalogue des r4sultats n'4tait pas ferm4 

d'avance, par les limites m~mes du point de vue adopt4. 

Deux motifs ont conduit H. Scholz au programme de l'Esquisse, ge 

premier rut la critique de la logique transcendantale kantienne ; le second fut d'4ri- 

ger en m4thode quelques th~mes de la Begriffsschrift. Or ces deux motifs n'en font 

qu'un. H. Scholz reconnai't que Kant fut le premier ~ exposer le concept de logique 

formelle et ~ reconnai'tre son empire, puisqu'il tenta d'4tablir entre celle-ci et la lo- 

gique dite transcendantale "un lien tr~s probl~matique" qui "ne r4siste pas ~ un 

examen rigoureux". Mais cette doctrine transcendantale est inutile d~s lors que la 

logistique offre "une logique formelle parfaite" suffisant ~ une construction d~ducti- 
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ve de la math~matique moderne (p. 36 et 99). Quant ~ la juste notion de la forme, el- 

le rut eypos~e darts l'opuscule de Frege. 

Or les consequences de l'argument en contredisent les pr~misses. 

H. Scholz inscrit en effet l'histoire de la logique dans la perspective m~nag~e par 

Kant : elle n'est que le d~veloppement sans r~volution du "noyau aristot~licien". 

Et cet asservissement au "fil conducteur" kantien se double d'une c~cit~ quant au v~- 

ritable apport de la Begriffsschrift que Frege n'a pas manqu~ de signaler dans sa 

preface. Ce fut la construction de la fonction successeur, obtenue grace ~ la quanti- 

fication (entre autres), donc grace ~ une alteration fondamentale de l'analyse aris- 

tot~licienne de la proposition. H. Scholz a manqu~ l'invention ici pertinente, et sa 

notion de "forme parfaite" ne suffit pas ~ porter les consequences qu'il en esp~re. 

ll suffit de citer l'Esquisse : "l'exemple le plus simple d'une telle forme est, dans 

la symbolique El~mentaire d'Aristote, l'expression "Tousles S sont des P". Est-il 

besoin de rappeler que la Begriffsschrift est dans le detail de son id~ographie, une 

r~vision DolEmique de cette expression. Si jamais on en doutait Frege s'en est ex- 

pliqu~ dans sa r~ponse au comDte-rendu de Schroder (20). Scholz comrnet la m~me 

erreur que l'auteur des Vorlesungen tlber die Algebra der Zogik. 

Si l'on prend en consideration le commentaire que Frege lui-m~me 

fit de la Begriffsschrift et le d~veloppement qu'il lui donna, il conviendrait de re- 

partir les raises ~ l'inverse. Car Frege rut directement guid~ par Kant dans sa rE- 

(21) 
f l e x i o n  s u r  l a  q u a n t i f i c a t i o n  e t  l a  c o n s t r u c t i o n  d e s  c o n c e p t s  E n  o u t r e ,  on  a u r a i t  

t o r t  d e  c o n f o n d r e  u n e  l o g i q u e  f o r m e l l e  e t  l a  l a n g u e  f o r m u l a i r e  q u e  c o n g u t  F r e g e .  A u s -  

si bien a-t-il pris position contre le formalisme tout au long de sa carri~re (22) 

Sans aucun doute son analyse logique a servi les formalismes modernes, maisdans la 

mesure oh dEsormais une logique qui s'en tiendrait au seul volet de la syntaxe se- 

rait jugEe incompl~te. 

I I I  

Ii reste ~ ~tablir comment l'oeuvre de Frege, si elle n'offre pas 

une notion univoque et canonique de la "forme" peut donner les moyens de reconnaF- 

tre les clivages diachroniques pertinents. Le logicien d'I~na a propos~ successive- 

merit trois~yst~mes, et chacun d'entre eux est la correction d'une version ant~rieu- 

re. Cette remise en question, qui pour les deux derniers syst~n~es est une autocri- 

tiaue0 ne fut jamais subordonn~e ~ une recherche de la forme logique. L'opposi- 



C. Imbert  373 

tion de la forme et du contenu, vestige de l'aristot~licisme, n'a pas surv~cu 5 la 

premiere id6ographie oh elle jouait d'ailleurs un r61e inverse ~ celui que Scholz su- 

ppose. Frege mit en effet l'accent sur la representation des "contenus", et prenant 

parti aur la representation des rapports logiques proposes par Zeibniz et remani~e 

r~cemment par Boole, St. Jevons, E. Schroder et d'autrea, il constate : "ce qui 

manque, c'est le contenu" (23). Encore faut-il prendre garde ~ un d~placement des 

termea de l'ol~position, puisque dans les ann~es 80 Frege entend par forme logique 

les rapports de d~duction inscrits dans la dimension verticale de la page d'~criture 

et par contenu ce que prend en charge l'~criture horizontale. Cette distinction ar- 

bitraire, vite abandonn6e par Frege, montre combien le couple forme/contenu ~- 

tait inad6quat h traduire les intentions de ['id~ographie. gorsque Frege r~pondit au 

compte-rendu malveillant de SchrOder, s'il accepte de distinguer le calcul de la re- 

presentations des contenus, il precise que "le calcul de la d~duction est partie obli- 

g~e d'une id~ographie" (24) Ce qui eat nier l'oppoaition. 

Pour ne pas outrepasser les limites d'une communication, on con- 

sidera les trois systhmes fr~g~ens sous le seul chef de la caract~ristique. On ver- 

ra que la notion, d'abord entendue au sens leibnizien, 5 peu 5 peu c~d~ la place 5 un 

nouvel ensemble de conceots s~mantiques, aujourd'hui d~terminants. D'ailleura 

Frege a pris aoin d'a indiquer le poida de cette recherche. Pour la Begriffaschrift, 

nous venons de citer les textes. Dana l'introduction aux Grundgesetze, l'auteur rap- 

porte 5 la distinction du aens et de la d~notation des symboles le progr~s de la deu- 

xi~me id~ographie et voit l'origine de toutes les modifications apport~ea h la B e- 

griffsschrift_ (25) On n'en constatera paa la nature s~mantique. Enfin la premiere 

des Recherches Logiques (ga pens~e, 1918) eat en son entier une r~flexion sur le 

concept de v~rit~. On est donc en droit de mettre en place les trois a~mantiques 

f~g~ennes (Z6) 

l) En 1879, Frege nese propose rien de plus que de compl~ter le 

symbolisme de l'arithm~tique de mani~re h representer id~ographiquement lea par- 

ties de la d~duction jusqu'alors ~nonc~es en langue naturelle, ou m~me pass~es 

sous silence. Quel qu'ait 6t~ le hombre et l'importance des inventions logiques pr~- 

aent~ea dans cet opuacule, Frege ne voulut d'abord y voir rien d'autre qu'un exerci- 

ce particuli~rement aubtil de traduction. On y trouve repr~aent~s id~ographique- 

ment auasi bien le quaterne des propositions aristot~liciennes, que la subordination 

causale (~ 12) et la fonction auccesseur ( ~ Z7). Za seule norme a~mantique clai- 

rement posse est celle de l'univocit~, et Frege stigmatise la faiblesse de la logique 
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de Leibniz et de Boole. Puisque les signes ~ et y repr~sentent des operations lo- 

giques, il est impossible deles employer dans le contexte d'une preuve arithm~tique 

oh ces m~mes symboles ont leur signification usuel!e. Mais si Frege a parfait le 

syst~me Leibnizien en ~vitant qu'un m~me signe soit cr~dit~ de deux significations, 

il n'est jamais dit quelle est la nature de ces significations. Que repr~sentent les 

symboles : les pens~es ou les choses ? Les formules de l'arithm~tique, o'u les 

obiets de l'arithm~tiQue et les operations dont ils sont le domaine ? Les deux cas 

sont envisages, sans que Frege vole difficultY, darts l'Introduction (27) Apparem- 

ment, il s'agit plutSt de reproduire ad~quatement les raisonnements a~hm~tiques, 

c'est ~ dire de capturer dans l'id~ographie un autre langage, suppos~ sain. Cepen- 

dant l'homog~n~it~ s~mantique recherch~e entre les deux aspects de l'id~ographie, 

la d~duction et l'expression d'un "contenu conceptuel", entraFne le syst~me vers une 

interpretation oh les formules seraient r~f~r~es non ~ des significations (ou ~ des 

~nonc~s d'une autre langue) mais ~ un ensemble d'objets et aux operations d~finies 

sur ces obiets. L'incoh~rence s~mantique qui en r~sllte est particuli~rement sensi- 

ble dans l'analyse du vrai et dans celle de l'~galit~, dont on montrera la modifica- 

tion dans les syst~mes ult~rieurs. 

1879, l'introduction du signe d'~galit~ (% 8) donne ~ Frege i'oc- En 

casion de mettre en relief deux particularit~s de son emploi. Les signes qui figurent 

de part et d'autre du symbole d'~galit~ doivent, ~crit Frege, @tre pris pour eux-m~- 

mes et non pour ce qu'ils repr~sentent. L'~galit~ exprime la possibilit~ de substi- 

tuer les noms des choses mais non les choses m~mes, ce qui n'aurait aucun sens : 

on ne substitue pas une chose ~ eIle-m~me. En outre, Frege en tire une propri~t~ 

s~mantique g~n~rale, en vertu de laquelle l'identit~ introduit un d~doublement de 

signification (Zwiespaltigkeit) affectant tousles symboles. Frege est ici plus rigou- 

reux ~ue Zeibniz (28) et incline en faveur d'une interpretation extensionnelle de l'~- 

galit~ : mais au prix d'une ~quivocit~ affectant tous les signes, et d'une curieuse in- 

trusion d'une r~gle m~talinguistique dans la langue objet. 

Quant ~ la propri~t~ d'etre vraie, Frege la repr~sente par le signe 

~- , juxtapos~ au jugement et qu'il interpr~te comme "le pr~dicat commun" de 

tousles jugements (~ 3). ll n'a donc pas la notion de valeur de v~rit~ bien que le 

conditionnel soit d~fini par la conjonction de ses cas de v~rit~ (% 5). 

On voit que la Begriffsschrift a en partage quelques uns des traits 

par lesquels nous avons caract~ris~ la logique grecque. En premier elle assimile 

au sein d'une langue caract~ristique la d~duction et la description. Et si Frege a 

pris garde de representer les unes et les autres par des symboles distincts ce fut 
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afin d'assurer leur integration dans un langage homog~ne, et de rem~dier 5 la divi- 

sion introduite au XVII~ si~cle avec les langues "sp~cieuses". Ainsi l'~galit~ et la 

fonction successeur ont le re@me statut que les ola~rateurs logiques et les quantifica- 

teurs. En outre, Frege ne distingue aucunement ies deux niveaux logiques conjoints 

darts l'id~ographie (calcul des propositions et quantification). Bien plus, il se loue 

du passage ais~ de l'un ~ l'autre, de l'implication mat6rielle 5 l'implication formel- 

le (28) Enfin, la description de l'~galit~ autorise une substitution ad hoc du signe, 

pris en tant que tel, 5 ce qu'il sigrfifie, comme si c'~tait 15 un jeu linguistique nor- 

mal et sans craindre les paradoxes que ne manque pas d'entrai'ner l'absence de dis- 

tinction entre langue et m@talangue. 

2) La deuxi~me id~ographie tient son originalit~ de l'opposition qui 

organise maintenant la s~mantique du syst~me, entre le sens et la d6notation des 

symboles. Elle est bien connue, ainsi que ses difficult~s, et le paradoxe des exten- 

sions de concepts : aussi peut-on faire l'~conomie de son expos6. On se contentera 

de r~sumer les avantages et les inconv~nients de cette innovation s~mantique. 

IEn posant que deux symboles distribuds de part et d'autre du signe 

d'~galit@ doivent avoir la m~me d~notation malgr~ la difference des sens, Frege met 

fin 5 l'~nigme de l'~galit~ et 5 la solution qu'il lui avait donn~e dans la Begriffsschrift 

("division de la signification, " cf. (1)'ci-dessus). En outre, puisque tout symbole ou 

ensemble bien construit de symboles a un sens et une d~notation, on dira que la pro- 

position a pour d~notation le vrai (cf. l'article Fonction et concept, 1891). Ces deux 

theses fondent conjointement le calcul des propositions en rant qu'il ~tudie des fonc- 

tions particuli~res ayant le vrai (le faux) pour argument et (ou) pour valeur. Ainsi 

Frege peut-il ~liminer de la deuxi~me id~ographie le signe d'~quivalence (~). Son 

r61e est parfaitementtenu par le signe d'6galit~, d~s lors que l'~quivatence entre 

propositions n'est rien d'autre que l'identit@ de leur valeur de v~rit~ (29) 

Mais la notion,nouvelle, des fonctions de v~rit6 entrai'ne avec elIe 

une difficult~ majeure. Con~ues dans une analogie stricte avec les fonctions appel~es 

aujourd'hui pr~dicats, Frege est conduit ~ penser que leur argument (le vrai) est un 

objet, et que leur extension (comme les autres extensions du concept) est un objet. 

Ce dernier point est examin~ dans l'obscur ~ i0 de la Darlegung der Begriffsschrift 
It 

(Grundgesetze, tome I)0~e demandant si une valeur de v~rit~ peut @tre un parcours 

de valeur" (une extension de concept), Frege rdpond par l'affirmative, et pose que 

le vrai est l'extension de la fonction : -- (der Wagerechte) dont on sait qu'elle in- 

tervient dans la composition de toutes les fonctions propositionnelles (30). Du m~me 
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coup Frege introduit dans l'id4ographie une fonction qui a pour nature de prendre 

pour argument la valeur de v~rit~ de ce qui suit, et pour r4sultat paradoxal d'ad- 

mettre pour argument sa propre extention. On v4rifiera que cette m~me fonction in- 

tervient, avec sa propri~t4 paradoxale, dans la transcription id4ographique que Fre- 

ge a donn4e de l'antinomie russellienne (Nachwort, p. 256 sq.) Grundgesetze t. II 

Ze progrhs et la faiblesse, aussi notoires l'un que l'autre, de la se- 

conde id4ographie sont donc l'effet d'une innovation s4mantique qui n'affecte en rien 

la forme ; celle-ci est pass4e de la premiere ~ la seconde id4ographie sans alt4ra- 

tion sensible (31) 

On remarquera enfin une oscillation entre le point de vue syntaxi- 

que et le point de vue s4mantique dans la pr4sentation rant de l'4galit4 que de la 

quantification. Ces deux fonctions (la quantification 4tant dire fonction de second ni- 

veau} sont d'une part donn4es avec les r~gles de remplacement et d'instanciation 

{Lois fondamentales III et II a). Mais, d'autre part, elles sont d4crites dans leur 

rSle s4mantique. C'est m~me leur justification explicite : l'4galit4 admet pour argu- 

ments ceux dont la d4notation est identique, tandis que la quantification s'applique 

une fonction argument dont l'extension n'est pas vide (32) 

En subordonnant l'id4ographie 5 une th4orie g4n4rale des fonctions, 

Frege menait 5 son terme (cf. Fonctio1~ et concept) l'analyse du quantificateur exis- 

tenciel et de la construction des concepts (Aufbau der Begriffe) engag4e dans les 

Fondements. Reprenant l'examen de la preuve ontologique et de quelques pr4ceptes 

de la gogique Kantienne il avait alors montr4 combien le philosophe 4fair rest4 sou- 

mis ~ la logique classique. C'est donc simultan4ment que Frege emprunte ~ la logi- 

que transcendantale et entend en lib4rer les r~gles. On voit les effets de cette ind4- 

pendance r4cemment acquise dans la r4forme que Frege impose maintenant ~ la lan- 

gue arithm4tique quand il r4interpr~te la formule : 

y = a x 

au moyen du triplet de termes : fonction, argument et valeur de la fonction pour un 

argument donn4. Zes rapports entre logique et arithm4tique sont invers4s, la se- 

conde reqoit de la premiere les r~gles de son symbolisme. 

3) La troisi~me logique fr~g4enne resta inachev4e par la mort de 

l'auteur. On en connaft les trois premieres Recherches logiques publi4es entre 1918 

et 1925 ; la premiere page d'une quatri~me Recherche, dont on verra l'int4r~t, a 

~t4 publi4e dans le volume d'In4dits - Quatre traits majeurs montrent les modifi- 

cations apport4es au premier projet de la caract4ristique. 
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a) - La premiere Recherche logique 4bauche une d4finition s4man- 

tique (au sens moderne, celui de Tarski) du vrai, Sous le couvert d'une critique du 

psychologisme et de l'id4alisme, Frege examine les conditions d'objectivit4 d'une 

pens4e qui n'est pas dire vraie ~ la mani~re dont l'est une repr4sentation, et dont 

les conditions de v4rit4 ne sauraient @ire extrins~ques ~ son 4nonc4. Le pseudo pr4- 

dicat".., est vrai" n'est qu'une redondance propre ~ la langue naturelle et dont avait 

4t4 victime la premiere id4ographie et ~ certains 6gard la seconde. Frege exclut 

donc la fonction :~qui prenait pour argument sa propre extension. Enfin si le 

vrai est toujours d4sign4 comme une valeur de v4rit4, il n'est plus con~u comme un 

objet. 

b) - Dans les deuxi~me et troisi~me Recherches (La l'q4gation, l_a_a 

composition des pens4es) Frege expose une th4orie 4quivalente ~ une restriction du 

calcul des propositions. Toute proposition compos4e est fonction de v4rit4 des pro- 

positions 414mentaires qui y figurent ; de telles compositions sont dites "math4ma- 

tiques". Frege y associe des r~gles de d4duction analogues ~ celle de Gentzen. L'4- 

quivalence, pouvant ~tre d4finie ~ partir des compositions primitives n'est plus un 

signe primitif, elle est par l~ ~ nouveau distingu4e de l'identit4 (33) 

c) - La th6orie de la quantification, 4bauch6e dans les premiers 

paradoxes d'une quatri~me Recherche est distingu4e des fonctions logiques pr4c4~ 

dentes. Za m4thode rnise en oeuvre dans la troisi~me Recherche laisse supposer 

avec vraisemblance que Frege se proposait d'associer aux formules de quantifica- 

tion de nouvelles r~gles de d4duction, ges quantificateurs n'auraient alors d'autre 

contenu que leurs r~gles d'usage ; ils cessent d'exprimer une propri4t4 des pr4di- 

cats auxquels ils sont pr4pos4s. 

d) - Enfin Frege introduit une distinction qui r4sout bon nombre 

des obscurit4s s~mantiques des id4ographies pr4c4dentes en opposant le Darlegung- 

sprache (l'allemand dans lequel est expos4 le syst~me logique) et le Hilfsprache (le 

systhme logique lui-m~me, au service de l'expos4 math4matique). Sans lui @tre 

identique, cette distinction se rapproche de l'opposition (due ~ Carnap) entre langue 

objet et m4talangue, Elle 4claire en tout cas la p4nible discussion oh Frege s'4pui- 

sait, quelques quinze ans plus tGt, ~ convaincre Kerry que "le concept cheval" n'est 
(34) 

pas un concept mais un objet 

Sans vouloir forcer le parall~le, la parent4 philosophique la plus 

claire serait ici celle qui unirait les Recherches Logiques_ aux 4crits contemporains 
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de Wittgenstein. On salt le rSle que Frege a jou4 dans la publication du Tractatus 

bien que le contenu lui en ait paru obscur. Faute de connai'tre le propos des conver- 

sations que tinrent les deux logiciens, et dont le proc~s-verbal semble irr4m4dia- 

blement perdu, il serait sans doute fructueux de comparer la mani~re du Tractatus 

et les 17 Kernsatze zur Logik , publi4es dans le Nachlass. On remarquera encore 

que Post, vers la re@me 4poque, 4tablissait l'ind4pendance d'une partie propre des 

Principia correspondant au calcul des propositions et en donnait une traduction al- 

g4brique. Z'extensionnalit4 prenait la place du logicisme. 

Partant de ce r4sum4 des trois logiques fr4g4ennes il semble que 

l'on puisse conclure h une irr4m4diable insuffisance des seules consid4rations for- 

melles, au sens oh le concept de forme fut mis ~ l'honneur par l'4cole des logisti- 

r et sous le patronage usurp4 de Frege. Bien que la forme ait peu vari4 de la 

Begriffsschrift aux Recherches Zogiques (on voudrait ajouter : aux Principia) les 

logiques associ4es kdes schemes syntaxiques pourtant comparables sont fondamen- 

talement diff4rentes. La forme n'offre donc qu'une caract4risation d4bile tant que 

les r~gles de transformation et les assignations s4mantiques associ4es n'ont pas 4t~ 

soigneusement d~finies. Or cette d4finition prit un double aspect, dogmatique et cri- 

tique, dont le second fut dominant. On a vu qu'il s'est agi d'analyser et de restrein- 

dre les pouvoirs spontan4ment attribu4s 5 la langue naturelle, ceux que les langages 

artificiels ont d'abord tent4 de perfectionner sans rien vouloir perdre des propri4t4s 

ressenties comme 4videntes. Un des r4sultats bien connu de l'analyse fr4g4enne fur 

d'exclure d'une logique extensionnelle nombre de moyens stylistiques dont est pour- 

vue la langue commune (tels que la d4ixis, la modalit4 et toutes les nuances de la 

subordination des grammairiens : causalit4, concession, hypoth~se irr4elle), et 

dont la syntaxe m4ritait aussi bien le titre de forme. 

Confront4es au programme d'une histoire de la logique, ces remar- 

ques suffisent h invalider l'hypoth~se de l'h4ritage aristot41icien et d'une tradition 

logique continue, qu'on l'entende au sens d'un progr~s ou d'une interpr4tation r4- 

trospective. En conviendrait-on, qu'il faut admettre le caract~re singulier de la 

formalisation des Grecs, op4r4e sous le truchement d'une th4orie des facult~s. On 

a vu qu'il fallait y reconnai~re le souci d'indexer la logique d'une histoire naturelle 

par des figures emprunt4es aux sch4mas repr4sentatifs non extensionnels qu'avaient 

d4velopp4 l'art pictural et les exercices dichotomiques de l'4cole. Des Grecs 5 Fre- 

ge rien n'est demeur4 semblable, ni les 414ments syntaxiques jug4s pertinents, ni 

les modules auxquels ils sont confront4s ni la mani~re dei~onfrontation. Si l'on tient 

compte enfin des disciplines au service desquelles fut con~ue l'analyse logique 
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l'histoire naturelle pour les Anciens, les mathgmatiques pour les modernes ; on 

peut penser que la comparaison de ces syst~mes doit prendre en principe le contre- 

pied du pr~cepte de Wittgenstein : que la logique doit prendre soin d'elle-m@me. 

Car si une logique d~termine elle-m@me ses normes, l'arbitraire de celles-ci lui 

gchappe. 

IV 

Si l'on abandonne aussi bien le naturalisme kantien (35) que le pro- 

gramme des logisticiens, plus fiddles ~ Kant qu'il ne paraft (36) , il reste ~ propo- 

ser-N titred'hypoth~ses - les r~volutions qui ont marqug le dgveloppement de la 

logique occidentaIe. On pr~f~rera ~ cette m~taphore l'emprunt, m~thodologique- 

ment plus certain, du concept de modification diachronique. Aussi bien, l'histoire 

de la logique ne peut pas @tre dgsolidaris~e de ceIle du langage vernaculaire, m~- 

me si maintenant les prestations de service se font parfois ~ I'inverse. ga dia- 

chronie Iogique affecterait non seulement la syntaxe et la s~mantique, mais encore 

la mani~re de concevoir l'une et l'autre et de concevoir leurs rapports. 

Dans cette hypoth~se on pourrait distinguer quatre gtats diachro- 

niques, g'analyse aristot~licienne rgsout l'~nonc~ en termes directement confron- 

tgs aux reprgsentations et portant, seuls, la fonction s~mantique, ga syntaxe du 

discours n'est qu'un apparat sp~cieux, et on craindrait d'appeler logique une mgtho- 

de qui fait si peu de cas des contraintes et des ressources li~es ~ la lingaritg du 

discours. D'ailleurs Aristote n'a pas manqu~ de condamner le nom en m~me temps 

que les rudiments de la logique platonicienne. A l'inverse l'analyse stol'cienne a 

prgparg une logique autonome en examinant les propositions en tant que telles et 

selon les dgpendances de la syntaxe interne et externe. Zes r~gles de compatibilitg 

et d'incompatibilitg ont pris le pas sur la higrarchie des termes ; le discours ~tant 

un ~quivalent pr~cieux de la reprgsentation est dotg d'une fonction sgmantique de 

pIein droit ; et quand l'iconoclasme a proclamg la vanitg des images, iI a pris pla- 

ce dans les consequences du stol'cisme. Ii suppose en effet une technique achevge 

d'interprgtation des gnonc~s ; et la crise signale ~ l'historien le moment o~ la co- 

hgrence du texte fur pr~fgrge N l'~vidence des images, ga logique scolastique des 

consequentiae, bien adaptge ~ la langue naturelle Jut ~ son tour frapp&d'archal'sme 

quand celle-l~ fut confrontge au paradigme des langues sp~cieuses. Les chai'nes de 

raisons imitges de la g~omgtrie furent pr~f~rges aux implications de la scolastique; 

la logique dit de Port-Royal et les essais de combinatoire leibniziens t~moignent de 
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cette substitution. Vient, enfin, un dernier 6tat caract@ris6 par la juridiction de 

principes s@mantiques extensionnels. 

On ne craindra pas de soutenir le projet, involontairement parado- 

xal, d'une l~istoire diachronique qui situerait la premiere r@volution non-aristot@li- 

cienne dans les cons@quences iconoclastes du stoi'cisme, la deuxi~me darts la subs- 

titution des combinaisons d'id@es simples ~ la transivit6 de la predication (37)~ et 

la troisi~me moins dans la Begriffsschrift, syst~me transitoire, que dans l'analyse 

concert@e de la quantification et des fonctions de v@rit@. En plus de l'extensionnalit@, 

il faut retenir cette diff@rence majeure qui oppose tous les syst~mes modernes 

l'aristot@lisme : avec la Begriffsschrift la logique a cess@ d'@tre une r~gle critique 

de lecture ; elle d6termine jusqu'~ ses r~gles d'@criture, prenant ~ cet 6gard "soin 

d'elle-m@me", Ce en quoi Wittgenstein ~ vu une d6ontologie philosophique. 

Claude IMBERT 

ECOLE NORMALE SUPERIEURE 

PARIS 

de JEUNES FILLES 



NOTES 

(I) Heinrich Scholz, Esquisse d'une histoire de la logique, tr. fese p. 440, Voir 

aussi les deux articles de J. Lukasiewicz : Logistic and Philosophy (1936) et I__n 

d e f e n c e  of .L.ogistic (1937)  r 4 u n i s  d a n s  S e l e c t e d  W o r k s .  

(2) "Nous entendons par forrne en g4n4ral, une expression oh apparaft au moins une 

variable et qui est telle qu'elle se transforme en une proposition vraie ou fausse 

lorsque nous substituons quelque chose 5 cette variable, ou, en bref, lorsque nous 

donnons 5 cette variable un contenu appropri4". H. Scholz, ibidem, p. 22 Dis- 
posant d'une technique logique beaucoup plus sllre, J. Lukasiewicz ne prend pas 

moins pour crithre d'identification des syst~mes logiques le type des variables figu- 

rant dans une forme logique. 

(3) "Je pense qu'il est important d'4tablir ce qui ne semble pas etre commun4ment 

reconnu, m~me en Allemagne, ~ savoir que le fondateur de la logique proposition~ 

nelle moderne est Gott lob Frege". Sur l'histoire de la logique des propositions, 
Selected Works, p. 198, trad. fese par J. gargeault clans Zogique math4matique. 

Voir aussi la communication de J. Lukasiewicz et A. Tarski 5 la Socidt4 savante de 
Varsovie : Recherches sur le calcul des propositions (1930) publi4 dans A. Tarski 

Logic, Semantics, Metamathematies p. 38, trad. fese sous la direction de G. Gran- 
ger. 

(4) Voir les trois articles : On three-valued Logic (1920) , Two-valued Logic (1921) 

et On Determinism (19ZZ) dans Selected Works. 

(5) Voir la Syllogistique d'Aristote dans la perspective de la logique formelle mo- 

derne paragraphes 23 et 6Z. 

(6) En plus des deux articles cit4s : Two-valued Logic et sur l'histoire de la logi- 

que des propositions, voir ga Syllogistique d'Aristote dans la perspective de la lo- 
gique formelle moderne (l~re 4d. 1951) chap. I en particulier, trad. fese par 
F. Zaslawsky Caujolle. 

(7) Dgfinition rapport4e par Diocl~s, cit4 par Diog~ne Laerce, Vies illustres, VII 
62. Le r4sum4 de Diocl~s est le seul expos4 coh4rent que nous ayons de la logique 

stoi'cienne. Les citations de Sextus Empiricus ne sont pas utilisables directement, 
elIes rel~vent elles-m~mes d'une autre @conomie logique qui est l'argumentation 

sceptique. 

(8) Rappelons seulement que le terme kritikos dgsignait le lecteur et 1'amateur d'art. 

Za nature de cette activit4 critique fait l'objet d'un travail en cours de rgdaction sur 

Logique et Langage dans l'ancien stol'cisme. 

(9) II est vain de parler de variables sans d4finir un domaine oh ces variables pren- 
nent leur valeur. En outre, il conviendrait de prgciser la fonction dont cette varia- 

ble est l'argument. Enfin, on sait combien la notion est, pour l'analyse logiquelim- 
parfaite, tant qu'on n'y a pas joint la distinction entre variable fibre et variable li4e. 

(I0) Voir notre Introduction aux Ecrits logiques eL philosophiques de G. Frege, 

p. 31sq. 

(II) Voir G. Granger Le syllogisrn e cat4gorique d'Aristote, dans l'Age de la 

Science , oct. d4c. 1970. 
Voir aussi l'4tnde originale de Lynn E. Rose, Aristotle's Syllogistic, Springfield 

1968. 
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(12) Voir I. M. Bochenski : ga philosophie contemporaine en Europe et F. Caujol- 

le Zaslawsky, hogique et philosophie chez fan Lukasiewicz dans l'Age de la Science 

janv. mars 1970. be lien de l'~coLe logiciste et de la ph~nom~nologie n'est plus 

~tablir. 

(13) Voir Ph4don 99 c 

(14) Le pr4fixe ana (analusis, anamn4sis, anagnosis) indique le mouvement de r4f4- 
rer des segments linguistiques ~ des entit4s r4elles, par l'interm4diaire de leur 

trace m4morielle. 

(15) Voir la critique d'Aristote Met A 9, M 4, N 2 et Categories chap. 1 5 3 

(15 bis) On salt que les termes euclidiens de : d4finition, demande, axiome rel~- 
vent du vocabulaire stol'cien. Plac4s en tete du trait4, ils constituent la m4moire 

n@cessaire 5 son intelligence. 

(16) Cette subordination apparaK encore dans la formule d'Horace : Ut pictura 

poesis oh les pouvoirs et r~gles du langage sont plac@s dans la d@pendance des ca- 

pacit@s repr4sentatives de la peinture. 

(17) he glissement des m@thodes est 4tabli dans l'@tude cit4e plus haut, consacr4e 

la logique stoi'cienne. 

(18) Crit~re de classement et crit~re d'existence. Le ~ 89 des Fondements de 

l'arithm~tique invalide la seconde fonction ~qdistinguant entre les Merkmale d'un 

concept et sea Eingenschaften. L'appendice au deuxi~me tour des Grundgesetze dis- 
cute la premiere : "doit-on admettre que la Ioi du tiers exclu ne vaut pas pour les 

classes" ? (p. Z54) 

(19) Ii peut ~tre n@cessaire de rappeler que l'adjectif formalis des scolastiques d~- 

signe le contenu, le sigrifi@ d'un @nonc@. Et le formalisme leibnizien, dans la mesu- 
re o~ il a pour m~thode la combinatoire, est 1'art de lier 1'inf@rence au contenulen 

route ind@pendance de la syntaxe logique. 

(20) Sur le but de l'id~ographie, 1882 

(21) Voir Fondements de l'arithm~tique ~59, 88, 89, et notre Introduction p, 77 

sq. Egalement Dialog mit l~ l~ber Existenz, Nachlass p. 60 sq. 

(22) Fondements,~28, Grundgesetze If, p. 80 ~ 153, et Antwort auf dieFerienplau- 

derei des Herrn Thomae (1906) 

(23) ba Science justifie le recours ~ une id@ographie (1882), trad. fese p. 68. Voir 

aussi la preface ~ la Begriffsschrift. 

(24) Sur le but de 1'id~og_Kaphie, trad. fese p. 71 

(25) Vorwort p. IX et X : "Je peux, dans une certaine mesure ~tre juge de la r~- 

sistance que ces idles nouvelles ne manqueront pas de faire nai'tre car il me fallut 

vaincre en moi-m~me un tel sentiment avant de m'y arr~ter". 

(Z6) Cf. notre article : Sur la s~mantique de Frege, Annales de la IFacult~ des 

Lettres de Lille, 1972. 



C. Imbert  383 

(27) C o m p a r e r  u  p. IX : "une  m g t h o d e  de d S d u c t i o n  qui f a s s e  a b s t r a c t i o n  de 
la  n a t u r e  p a r t i c u l i ~ r e  d e s  c h o s e s "  et  s ' e n  t i e n n e  aux  l o i s  de la  p e n s ~ e "  ~ l a p .  XI : 
"une  m S t h o d e  de d ~ s i g n a t i o n  qui a d h e r e  aux c h o s e s  m a m e s " ,  

(28) L e s  s i g n e s  r e p r ~ s e n t e n t ,  s a n s  que L e i b n i z  ait  p e r ~ u  la  d i f f icul tY,  l e s  c h o s e s  et  
l e s  p e n s ~ e s  : " tou t  r a i s o n n e m e n t  h u m a i n  s ' a c c o m p l i t  p a r  le  m o y e n  de s i g n e s  ou de 
c a r a c t ~ r e s .  Ce ne  son t  p a s  s e u l e m e n t  l e s  c h o s e s  e l l e s - m a m e s  m a i s  a u s s i  l e s  i d l e s  
d e s  c h o s e s  qui ne  d o i v e n t  p a s  ~ t r e  o b s e r v ~ e s  d i s t i n c t e m e n t  p a r  I ' e s p r i t ,  et c ' e s t  
p o u r q u o i  a f in  d ' a b r ~ g e r  on l e s  r e m p l a c e  p a r  d e s  s i g n e s " .  "r C o u t u r a t ,  la L o g i q u e  
de L e i b n i z ,  chap.  II e t  III. 

(29) G r u n d g e s e t z e  I, V o r w o r t  p. IX 
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THE MODEL THEORY OF LOCAL FIELDS 

Simon Kochen 

Dedicated to the memory of Abraham Robinson 

I . INTRODUCTION 

In 1965 Ax and Kochen [I] gave a metamathematical connection 

between the p-adic fields ~p of algebraic number theory and the 

formal power series fields ~p((t)) of algebraic geometry. This 

principle states that an elementary statement about valued fields 

is valid in ~p if and only if it is valid in ~p((t)), for all 

but a finite number of primes p. The principle was applied to 

solve particular Diophantine conjectures of E. Artin and Lang by 

transferring these problems from ~p to ~p((t)). The principle 

itself was an immediate consequence of a theorem on ultraproducts, 

namely that for any non-principal ultrafilter D on the set of 

primes, ~p~p/D ~ ~p~p((t))/D (assuming the continuum hypothesis). 

The basic method in that paper was subsequently modified and 

generalized in Ax and Kochen [2] and [3] and also in Ersov [4] and 

[5] and Ax [6] to prove, among other results, that ~p is a decidable 

field, and that the decidability and elementary equivalence type of 

F((t)) is determined by that of the field F (for char. F = 0). 

In Ax and Kochen [3] it was also shown that an elimination of 

quantifiers was valid for these fields using a test of A. Robinson. 

In [7] P. Cohen outlined such an actual procedure for eliminating 

quantifiers, leading again to a proof of the original metamathe- 

matical principle. A. Robinson [8] proved the principle by the 

methods of non-standard analysis by showing that ~ is ele- 

mentarily equivalent to ~((t)) for ~ a non-standard prime number. 

In these notes we prove a single theorem, the Isomorphism 

Theorem, which gives a unified generalization of the previous results. 
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At thesame time, the proof is substantially simpler than the original 

proof. The Isomorphism Theorem leads to a classification of Hensel 

fields of finite ramification index e under elementary equivalence. 

The case e = 0 includes power series fields F((t)) of character- 

istic 0 as well as the generalized power series fields F((tG)) 

of Hahn; the case e = I includes the field Qp of p-adic numbers, 

and more generally the Witt vector field W(~)(W(~p) = QD), as well 

as unramified extensions such as the cyclotomic extension of Qp. 

In these cases the elementary equivalence type of the field is 

completely de~ermined by the elementary type of the residue class 

field and the value group. We present the cases e = 0 and e = I 

(the "unramified" case) in these notes. The case of ramified fields, 

with e > 1, requires some more algebraic information and will be 

treated in a subsequent paper. 

In our present simpler proof we have been able to dispense with 

much of the algebraic machinery of the original proof. This has 

enabled us to write this paper in a self-contained manner with the 

non-speciallst in mind, and in particular for those without a 

number-theoretic background. The basic approach remains the same as 

in the original papers: to prove elementary equivalence results via 

the isomorphism of ultraproducts. We do this by selecting the 

salient properties of the ultraproducts (e-pseudo-complete ~1-Hensel 

fields with cross-sections) which uniquely determine the field in 

terms of the residue class field and value group. The organization 

of the proof also has co~on features with the non-standard proof in 

A. Robinson [8]. 

We shall assume familiarity with the definition and basic prop- 

erties of ultraproducts. For background the reader may consult a 

standard text such as Bell and Slomson [9]. (The first few pages of 

Ax and Kochen [1] actually suffice.) To prove the ~-pseudo-complete- 

ness we have used the ~1-saturation property of the ultraproduct V: 
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a countable set [~i(x)] of elementary formulas is satisfiable by 

an element of V if every finite subset is. Those who do not wish 

to rely on this fact may easily prove the ~-pseudo-completeness 

directly or refer to the proof in Ax and Kochen [I], Lemma 9. 

For number-theoretic applications the focus of these results 

remains the metamathematical connection between the p-adic (now, 

more generally, Witt vector) fields and the power series fields. We 

stress that this connection is not surprising but rather formalizes 

the natural analogy between these two classes of local fields, which 

stems from the similarity between the global algebraic number fields 

and algebraic function fields in one variable. Indeed, Hensel intro- 

duced the local fields of number theory precisely in analogy with 

the power series fields over @ in order to explain and complete 

Kummer's work on the decomposition of rational primes in algebraic 

number fields. For Hensel the rational primes correspond to points 

z 0 in @ considered as primes z - z 0 in the ring ~[z]. The 

decomposition of the prime p in an algebraic number field corre- 

sponds to the resolution of a point z 0 into the separate points 

lying above z 0 on the Riemann surface of the algebraic fumction 

field. 

From this point of view the results presented in this and the 

subsequent paper on finitely ramified Hensel fields forms a natural 

completion of the earlier papers, since we now consider all points 

of the compact Riemann surface (with finitely many sheets) the 

branch points as well as the unramified points. It is possible to 

include a restricted class of Hensel fields of infinite ramification 

in our classification, those satisfying Kaplansky's Hypothesis A 

(see Schilling [10], Chapter 7, p. 220). The modifications nec- 

essary to include this class are routine and we leave them to 

the reader. 
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2. FINITELY RAMIFIED HENSEL FIELDS 

Let F be a field and G and ordered abelian group. Denote 

by F the multiplicative group of non-zero elements of F. A 

valuation ord: F ~ G is a group epimorphism (ord (ab) = ord a + 

ord b) satisfying the inequality 

ord (a + b) > min (ord a,ord b) 

Examples. Let 

(i) ~ = ~(t), 

able over ~. 

We follow the convention of writing ord 0 : ~. We shall frequently 

use the easily proved fact that ord (a + b) = min (ord a,ord b) if 

ord a ~ ord b. The ring O F = [alord a ~ O] is called the valuation 

ring of the valuation ord. The set @ = [alord a > O] forms a 

(unique) maximal ideal in O F . We call the field F = OF/@ the 

residue class field of F. 

be a field and G an ordered abelian group. 

the field of rational functions in one vari- 

(2)  

order of zero of a(t) at 0 

ord a(t) = - order of pole of a(t) at 0 

= ~, ord F = ~. 

F = ~((t)), the field of formal power series 

= { ~ aitilai e R, m c ~ ) 

i=m 
oo 

~,, t i ord a i = m, assuming a m ~ O. 

i=m 

(3) 

= R, ord F = ~. 

F = E((tG))~, the field of generalized power series 

of Hahn (~ > MO ) 

: { ~, astS'S well ordered C G, ~S = ~ } 

seS 

T~ 
ord ~_~�9 as tS = SO, the smallest element of S such 

seS that a ~ O. 
s 0 
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F = ~, ord F = G. 

If #G = ~ we write F = ~((tG)). 

(4) A further generalization of power series fields. A 

2 co-cycle f:G • G ~ e is a map such that 

(a) f(~,~) = f(~,s); 

(b) f(O,O) = f(O,~) = S(s,O); and 

Let 

F = ~((tG;f)) 

= ~ ~ a t~'S well ordered ~ G, #S = ~ } 

c~eS 

Multiplication of power series is modified by requiring 

t~t ~ = f(s,~)t ~+~. 

ord ~ as tS = SO' the smallest element of S 

~cS such that a ~ O. 
s 0 

= ~, ord F = G. 

The relevance of these fields and the significance of the 

2 co-cycle will become apparent in Section 9. 

(5) F = ~, the field of rational numbers, p a fixed rational 

prime, ord a = m where a = (r/s)p, r,s c ~, ptrs. F = ~p(= g/p)) 

ord F = ~. This is the p-adic valuation of ~.~ 

Let F be valued in ~. A sequence (a n] in F is a Cauchy 

sequence if for every 0 < k c ~ there exists n O such that for 

all n > m > n O ord(an-am) > k. This accords with notion of a Cauchy 

sequence in a metric space if we define a norm I I by 

la[ = r -~ a for r > ], r e ~. We may now form the completion of 

F with respect to Cauchy sequences. The completion of ~(t) is 

then ~((t)). The completion of ~ with respect to the p-adic 

valuation is the field ~p of p-adie numbers. We then have 
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ord:~p ~ and ~p = ~p. Every element a of ~p may be uniquely 

i with 0 < a i < p, and ord a m written in the form Zi=maiP _ = 

where a m ~ 0. Addition and multiplication are performed component- 

wise with carrying as in the decimal expansion of real numbers. 

The construction of the complete field ~p may be generalized. 

If ~ is any field, then there exists a unique (up to isomorphism) 

complete field F valued in ~ with F : ~. If char F = char ~, 

then F t ~((t)). If char F = 0 and char 9 = p with ~ a 

perfect field (~P = ~), then F t W(~), the field of Witt vectors 

(see Greenberg [11] Chapter 6). For ~ not perfect Witt's con- 

struction has been generalized in TeichmHller [12] (see Schilling 

[10], Chapter 7). In this case also we write W(~) for the unique 

field F. 

Definition. A valued field F is a Hensel field if it has the 

following property. Let f(X) ~ 0F[X] be such that the image of 

f(X) in F, f(X), has a non-singular root ~ in F, i.e., 

f(~) = 0 and f'(~) ~ 0. Then f(X) has a root a in O F with 

For power series fields this property is simply a statement of 

the Implicit Function Theorem for polynomials. A (weak) form of 

Hensel's Lemma state that complete fields are Hensel fields. To 

prove this we form the Newton sequence for approximating a root: 

let a 0 be any element of O F with a0 = ~ and an+ I = a n 

f(an)/f'(an). We claim that ord(an+1-an) > n and ord f(an) > n. 

For n = 0 this is clear. Assuming it for n, we have 

ord(an-a 0 ) > O, so that ord(f'(an)-f'(ao) ) > O. Hence, 

ord f'(an) = O. The Taylor expansion 

f(an )2 
f(an) f'(an) + f, )2 -b, with b e O F 

f(an+ I) = f(an) f, (an) (a n 
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shows that ord f(an+ I) > n + 1. Also ord f'(an+1) = 0, so that 

ord(an+2-an+]) > n + 1, completing the induction. Let a = lim an; 

then clearly f(a) : 0 and a = a. 

It is not difficult to check that the generalized power series 

fields also form Hensel fields. 

Let K be a valued field. We define the (absolute) ramification 

index e of K to be 

#[710 < ~ ( ord p] if char K : p > 0 

e : 0 if char K : 0 

If e < ~ we say that K is (absolutely) finitely ramified. 

In other words K is finitely ramified if [710 < 7 < ord n] is 

a finite set for all n { Z. Clearly this implies that K is of 

characteristic O. If e : 0 or I we say that K is unramified. 

Definition. A cross-section (x-section) ~:ord K ~ K* of a 

valued field K is a group homomorphism (~(~+8) : ~(~)~(~)) such 

that ord ~(a) = a for all a E ord K. If K has finite ramifica- 

tion index e > 0, then ~ is a normalized cross-section if in 

addition ~(e) : p. If e : O, then a normalized x-section is 

simply a x-section. 

H 
We shall often write ~a for ~(a) and, if H Cord K, 

for ~(H). 

Examples 

(I) The field K((tG))~ has the x-section ~(~) = t ~. 

(2) The field K((tG;f))~ has in general no x-section. We 

shall study this situation in Section 9. 

(3) The field ~p and, more generally the Witt vector field 

W(~p), has the normalized x-section ~(n) = pn. 

(L) If {Kili c I] is a family of valued fields with (normal- 

ized) x-sections ~i" then the ultraproduct ~iclKi/D has the 
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* 7(i) 
(normalized) x-section ~ defined by ~7 = ( ) Here * 

denotes the equivalence class defined by the ultrafi!ter D. 

The rest of the paper is devoted to the study of finitely rami- 

fied Hensel fields with a x-section. Our aim is the proof of the Iso- 

morphism Theorem of Section 6, which states that two such fields V 

and V I of eardinality ~ which are ~-pseudo-complete are iso- 

morphic if they have the same residue class field ~ = 9r = ~ and 

value group ord V = ord V r = G. We now indicate the plan of the 

proof. We shall build up the isomorphism of V and V ~ step by 

step from subfields E and E ~ . The steps fall into three categories: 

(i) unramified extensions, where the residue class field 

extends but not the value group ord E (Section 5); 

(ii) totally ramified extensions, where the value group 

extends but not the residue class field (Section 3); and 

(iii) immediate extensions, where neither E nor ord E 

extends (Section a). 

The unramified case is handled at one blow by showing that one 

can start the isomorphism with subfields E,E I such that E = E~ 

is the full residue class field ~. We take care of the totally 

ramified case by reducing it to the case of immediate extensions, 

using here the existence of a x-section. The main body of the proof 

lies in Section 4, which deals with the immediate extension case, 

using the Hensel property and the ~-pseudo-completeness of V and V ~ . 

We now make this plan more precise. The instrument we use to 

handle the extension of isomorphisms is the notion of a pure map, 

which we now define. 

Let K,K ~ be two valued fields with x-sections ~,~'. An 

analytic isomorphism ~:K ~ K ~ is a field isomorphism which induces 

an isomorphism of ord K onto ord K ~ . If ord K = ord K ~ we 

require that the induced map be the identity. The analytic iso- 

morphism ~ is x-analytic if the diagram 
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K - ,  cp b K ~ 

o r d  K ~, o r d  K' 
c o m m u t e s .  

If E is a subfield of V we let E denote the algebraic 

closure of E in V. The field E is algebraically closed in V 

if E = E. If H is a subgroup of the abelian group G, we let 

denote the divisible hull of H in G, i.e., H ={ ~I~ c G, 

~n c Z,n~ ~ H}. The subgroup H is pure in G if H = H. Let E 

be a subfield of V for which ~ is a x-section�9 Then 

ord E = o~d E. (We shall write o~d E for ord E.) For if 

7 c o~d E, then n~ cord E for some n c Z, so that 

n ~  ) 1 / n  ~ 
= ( c E, and ~ cord E. On the other hand, if c c E, 

then Zi< n aici 0 with a0, ,a n c E Hence ord E ai ci 

ai ci = ord ajc j for some 0 ~ i ~ j < n. Thus, so that ord 

ord c = (ord ai-ord aj)/(j-i) c o~d E. 

For the definition of a pure map and the reduction procedure 

of Section 3 we shall require only that V and V' are valued 

fields with x-sections and common value group ~ and residue class 

field ~. In Sections a and 5 we add the requirements that V and 

V' be finitely ramified ~-pseudo-complete Hensel fields with 

normalized x-sections. 

Definition. A pure map ~:E ~ E' is a x-analytic isomorphism 

of subfields E,E' of V,~ with ord E : ord E' a pure countable 

subgroup of G and E = E' = ~. 

We shall show that pure maps exist (Section 5, Proposition 4) 

and that every pure map can be extended to a pure map which includes 

in its domain an arbitrary new element a of V (Section 4, 

Proposition 3). A simple transfinite induction then yields the 

main theorem. Proposition 3 is proved by reducing the case where 

ord E(a) ~ ord E (Section 3, Proposition I) to the case where 

ord E(a) = ord E, which is handled by Proposition 2, Section 4. 
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3. TOTALLY RAMIFIED EXTENSIONS 

In this section we prove that if ~:E ~ E' is a pure map and 

~ A  

a E V, then there exists a pure map ~:E ~ E' extending ~, with 
A 

ord E(a) = ord E. 

We now motivate our method for proving this result. To construct 

the field E such that ord ~(a) = ord E, we certainly require 

that ord E D ord E(a). Thus, we first extend the group ord E 

to ord E(a) and we extend the corresponding field E via the 

x-section ~. We do this stepwise by adding one new element a n at 

a time from ord E(a) = [al,a2,...,Sn,...). Thus, as a first step 

sl E' we add ~ to E and extend the isomorphism E ~ to 

E(~ ) ~ E'(~' I) (Lemma I). However to do this we need the purity 

of ord E. We cannot continue directly to add s 2 since ord E(~ ) 

is not necessarily pure. We must first extend the isomorphism to the 

field 

s I 

s I 
the value group of which is the pure group ord E(~ ). Lemma 3, 

which is proved via Lemma 2, achieves this. 

Lemma I. Let ~:E ~ E' be a pure map and s e G - ord E. 

There exists a x-analytic map ~:E(~ s) ~ E'(~ 's) extending ~. 

Proof. The element ~ is transcendental over E, for other- 

wise nse ord E for some n e ~, so that s eord E, by the 

purity of ord E in G. Similarly ,s is transcendental over E'. 

Hence ~i~ ~,s defines an algebraic isomorphism 9:E(~ s) ~ E'(~'~). 

To see that 9 is analytic, let x = Z ai~is e E[~S]. If 

ord ai ~i~ = ord aj~ js for some i ~ j, then (i-j)s = ord aj 

ord a i eord E, so that s cord E, a contradiction. Hence 

ord x = min(ord a. + is) = min(ord ~(ai) + is) = ord @(x), so that 
i m i 

is analytic. Also this shows that ord E(~S) = ord E~s, and, 

for h cord E, n e ~, ~(h+n~) = ~( h)~(~s)n = ~h+ns, so that 

is x-analytic. 
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Lemma 2. Let e:E ~ E' be a x-analytic isomorphism, PB eord E, 

e G - ord E, with p a rational prime. There exists a x-analytic 

isomorphism ~:E(~ ~) ~ E'(~ '~) extending ~. 

Proof. We claim that the polynomial X p - ~PP is irreducible 

over E. If not, then for some z ai Xi e E[X] of positive degree 

�9 i~ a.~ ~ for less than p, Z ai ~l~ = 0, so that ord ai~ = ord J 

some i ~ j. It follows that (i-j)~ = ord aj - ord a i cord E. 

Since (i-j,p) = I we can find ~,m e Z such that ~(i-j) + mp = I. 

Hence, ~ = ~(i-j)~ + mp~ E ord E, a contradiction. Since X p _ ~PB 

is irreducible, the map ~ ~ ~'P defines an algebraic isomorphism 

*:E(~ ~) ~ E'(~'~). Now let x = Zi<pai~i~ be in E(~). If 

ord ai ~p = ord aj.~J~ for some i ~ j, then as before ~ r E, 

a contradiction. Thus ord x = m~n(ord ai+i~) = mSn(ordl ~(a~i~) = 

ord ~(x). Finally, for h E ord E, i < p, %(h+i~) = ~( h)~(~)i = 

( ,)h+i~. Hence ~ is a x-analytic isomorphism. 

Lemma 3. Let ~:E ~ E' be a pure map and m c G - ord E. Let 

H = ord E(~m), H' = ord E' (~'~). There exists a pure map 

9:E(~ H) ~E'(~ 'H') extending e. 

Proof. We can write ~ = ~=iHn , where H I = H, and Hn+ I 

is the subgroup of G generated by H n and an element ~n in 

G - H n with PPn e Hn" for some prime p. Let E I = E(~ ~) and 

~n) 
En+ I = En ( . Then clearly ord E n = H n, E(~ H) = ~=iEn , and 

I 
ord E(~ H) = H. Define E n in a similar fashion. By Lemma 1, 

extends to a x-analytic isomorphism ~I:EI ~ E I . By Lemma 2, 

every x-analytic ~n:En ~ E'n extends to a x-analytic 

E' . ~n+1:En+] n+1 Then ~ = U~=I~ n is the required pure map 

Proposition I. Let ~:E -~ E' be a pure map and a e V. There 

exists a pure map ~:E -~ E' extending ~ with ord ~,(a) = ord E. 
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Proof. First note that ord E(a) is countable. For if 

ord E(a) ~ ord E, then ord c ~ ord E for some c e E(a). Clearly, 

ord E(c) is the (countable) group generated by ord E and ord c, 

viz., [7 + n ord c17 eord E, n E ~]. Since every element of the 

field E(a) is algebraic over E(c), it follows that 

ord E(a) ~ o~d E(c), which is countable. 

Order ord E(a) in a sequence [~i,~2,...]. Let 

H 0 = ord E E 0 : E 

~i Hi) 
H i = o~d Ei_~(~ ) E i : E( 

H = q=0 Hi E : ~i=oEi 

Clearly H = o~d E(a), which is pure and countable and 
H ~ 

E = E( ~ ~). Define E' and H' similarly. Then an induction 

using Lemma 3 shows immediately that there is a pure map 

:E ~ E' extending ~. 

At this point we have that ord E = o~d E(a). However, it may 

still happen that ord E (a) ~ ord E so we continue the above pro- 

cedure to enforce the equality. Let 

~0 : H ~0 : E 

~i = o~d ~i_1(a) ~i = E(~i) 

= q=0~i 

Clearly ord E = H, 

I f  7 e ord  E ( a ) ,  

7 ~ ord  ~ i  < ord  E. 

= Ul=o~i 

which is pure and countable and E = E(H). 

then for some i, ~ E ~i" so that 

Thus ord ~(a) = oral E. Defining ~l and ~t 

similarly, we have by induction the existence of a pure map 

~ E l :E -~ extending ~. 
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4. IMMEDIATE EXTENSIONS 

Let ~:E ~ E ~ be a pure map and a e V such that E(a) is an 

immediate extension of E. Our aim in this section is to show that 

we can extend ~ to a pure map which includes a in its domain. 

To achieve this we shall use the machinery of pseudo-convergent 

sequences. These sequences were introduced in Ostrowski [13] 

specifically to study immediate extensions. 

We begin our discussion with a short account of the original 

motivation for considering pseudo-convergent sequences. For a field 

K valued in ~ the Cauchy completeness of K is equivalent to the 

maximal completeness of K, i.e., the non-existence of proper 

immediate extensions. For a field valued in an arbitrary group the 

two notions of completeness no longer coincide. In the case studied 

by 0strowski the field K is ~((t~/nln = 2,3,4,...)), the alge- 

braic closure of C((t)), which is valued in Q. The Cauchy com- 

pleteness K of K consists of the field of power series 

Z~=0c it with c i c C and ~i c Q such that ~i ~ ~" The field 

K is not maximally complete. It has the immediate extension 

~((tQ)), which is maximally complete. From the point of view of 

sequences the essential difference of the two completions lies in 

the following. If we form the partial sums a n =~ c t ~i of 

an element Z c it then for any m > n, ord(am-an) = a m 

increases, but not necessarily to =, as is the case in K. 

These considerations led Ostrowski to introduce the concepts 

of the pseudo-convergence and pseudo-limit of a sequence. He then 

showed that the completion of a valued field with respect to pseudo- 

convergent sequences yields the maximal completion. Kaplansky []4] 

proved uniqueness theorems for maximal completions via 0strowski's 

methods. Thus for one class of maximally complete fields K 

Kaplansky showed that K ~ K((t ~ K)). If ultraproducts of valued 

fields were maximally complete we could apply Kaplansky's results 
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to prove the relevant isomorphism theorem. Although ultraproducts 

are not maximally complete, the ~]-saturation property implies that 

they are ~-pseudo-complete, i.e., every countable pseudo-convergent 

sequence has a pseudo-limit. It is this property in the presence of 

Hensel's Lemma and the existence of a x-section that enables us to 

still obtain an isomorphism theorem. It may be helpful in our dis- 

cussion of pseudo-convergence to keep in mind the ~-pseudo-complete 

field ~((tG))~ of generalized power series. In fact to anticipate 

the final structure theorem (Section 9) the field V is isomorphic 

to ~((tG))~ in the case of ramification index e = O. 

We now treat pseudo-convergence in the context of our prob- 

lem. Let E be a subfield of V and let {a n} be a sequence 

in E. 

Definition 

(a) The sequence {a n] is pseudo-convergent if for some 

integer n O , ord(am-an) > ord(an-ak) for all m > n > k > n O . If 

this is so, we write ord(am-an)~eventually or, more briefly, 

ord(am-an)~ev. 

(b) An element a in V is a pseudo-limit of the sequence 

{a hI, in symbols a n ~ a or a c ps. lira a n , if for some integer 

n O , ord(a-a n) > ord(a-a k) for all n > k > n O (i.e., ord(a-a n)~ev.). 

The field V is called ~-pseudo-complete if every pseudo- 

convergent sequence in V has a pseudo-limit in V. We now add 

the requirement that V and V t are finitely ramified ~-pseudo- 

complete Hensel fields with normalized x-sectlons. 

If {an] is pseudo-convergent, then ord(am-an) = ord((am-an+]) 

+ (an+i-an)) = ord(an+1-an)eV.. We write 7 n = ord(an+1-an), so 

that Yn~eV.. If a is an element such that ~ = Yn ev., 

then clearly a n ~ a. The converse is also true. Thus, if ta n ] 

is any sequence such that a n ~ a, then for any m > n > k > no, 
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o r d ( a m - a n )  = o r d ( ( a - a n )  ( a - a m ) )  = o r d ( a - a n )  > o r d ( a - a k )  = 

ord(a-ak) (a-an)) = ord(an-ak) , so that [a n] is pseudo-con- 

vergent. Note that if we set n = k + I in the above argument we 

have that if a n ~ a then ~ = Fk ev.. 

It is far from being the case that a pseudo-convergent sequence 

[a n ] has a unique pseudo-limit. In fact, if a n ~ a and a' is 

any element such that ord(a'-a) > 7 kev., then for n > k 

~ ) = min(~ ~ = 7n > Fk = ~ ) ev. 

t 
�9 ~ a , t h e n  so that a n ~ a' Conversely, if a n ~ a and a n 

~ ~ min(~ ~ )) = Fk+1 > Fk ev.. 

Pseudo-convergent sequences fall into two classes depending upon 

whether a n ~ 0 or a n ~ 0. Assume first that a n ~ 0. We claim 

that ord a n is eventually constant. If not, then for all n 

there is an m > n such that ord a m ~ ord a n . On the other hand, 

since a n ~ 0, we have that for every k, there is an n > k 

such that ord a n ~ ord a k. Hence ord(am-an) = min(ord am,ord an) 

ord a n = min(ord an,ord ak) < ord(an-ak) , a contradiction. If 

now a n ~ a, then ord a = ord a n ev.. For otherwise 

7 n = ord(a-an) = min(ord a,ord an) ev., a constant, which contra- 

dicts 7nteV.. Finally, note that Fn = ~ 

min(ord a,ord an) = ord a. 

Next assume that a n ~ 0. Then ord anteV., so that 

ord a ~ ord a n ev.. If ord a < ord a nev., then 

F n = ord(a-an) = ord a ev., contradicting 7nteV.. Thus, 

ord a > ord a n ev., and 7 n = ord(a-an) = ord a n ev.. We collect 

these facts together in the following 

Lemma 4. Let {a n ] be a pseudo-convergent sequence and 

a n ~ a. Then 

(a) a n ~ 0 if and only if ord a = ord a n < 7 n ev. 

(b) a n ~ 0 if and only if ord a > ord a n = 7 nev.. 
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The more fundamental division of pseudo-convergent sequences 

than the above is given by the following. 

Definition. The pseudo-convergent sequence Jan) in E is 

algebraic if, for some polynomial p(X) c E[X], P(an) ~ O. Other- 

wise, [a n] is a transcendental sequence. 

If [an] is an algebraic sequence, we call a polynomial q(X) 

over E of least degree such that q(an) ~ 0 a minimal polynomial 

of (a n ] in E. If a n ~ c c V and q(c) = 0 for a minimal 

polynomial q(X) of Jan) in E, we say that c is a minimal 

algebraic pseudo-limit of Jan). 

It is clear that in order to study algebraic and transcendental 

sequences we shall need information on the value of a polynomial 

p(X) of degree k > 0 at a pseudo-limit a of the sequence [an]. 

For this the natural tool to use is the Taylor expansion of p(X) 

about the point a: 
k 

P(an) - p(a) = ~. pJ(a) (an_a) j 
j=1 J~ 

where pJ(x) is the jth derivative of the polynomial p(X). Let 

Sj = ord(pJ(a)/j~). Note that, for a non-constant polynomial p(X), 

Sj < ~ for some I S J S k. For if pJ(a) = 0 for all I S J S k, 

then P(an) = p(a) for every n, contradicting the fact that a 

polynomial takes the same value only finitely often. 

Since 7nteV. we have for fixed i ~ j, either 

(~-i)Tn < ~i - ~j ev. or (J-i)Tn > ~i - ~j ev.. In other words, 

either Sj + JTn < ~i + iTn ev. or ~j + JTn > ~i + iTn ev.. 

Thus, eventually there is a single term in the Taylor expansion 

with a strictly minimum ord value ~j + j7 n. Hence 

~ = ~j + JYn ev. 

Since ~j + j~nteV., we have proved that p(X) is a continu- 

ous function for pseudo-convergence in the sense that a n ~ a 
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implies that P(an) ~ p(a). This means in particular that [p(an)] 

is a pseudo-convergent sequence. Applying Lemma 4 to [P(an)], 

we have that 

P(an) ~ 0 if and only if ord p(a) : ord P(an) < 5j + JZn ev.] 
(*) 

P(an) ~ o if and only if ord p(a) > ord P(an) = 5j + JYn ev. J 

This discussion suffices to treat the case of transcendental 

sequences, but to deal with algebraic sequences we need more pre- 

cise information about the approximation of a polynomial by the terms 

of its Taylor expansion. In particular, we require that the first 

term p'(a)(an-a) is the closest approximation to P(an) - p(a). To 

achieve this we need to assume that p'(an) ~ 0. We shall now use 

for the first time the assumption that V is finitely ramified. 

Since we need to know about the value of p'(X) at the point a, 

we consider the Taylor expansion of p'(X) about a: 

k 

p'(an) p'(a) : ~ pJ(a) J(an_a)j-1 

j:2 J! 

By a similar argument as before we see that for some integer 

n O there is a single term with a strictly minimum ord value 

5j + (j-I)7 n + ord j for all n ~ n O . By taking n O large enough 

we can also ensure that 7nt for n ~ n O . 

Let m = #{710 < 7 ~ ord j] < ~. Then 0 < 7n+ I - Yn < 

7n+ 2 - 7 n < ... < 7n+ m 7 n for n ~ n O so that 7n+m - Fn > ord j. 

Hence (j-1)Tn+ m > (j-I)Y n + ord j, for j > I. 

Since p'(an) ~ 0 we have by (*) ord p'(a) = ord p'(a n) ev.. 

Thus, 51 = ord p'(a) ~ ord(p'(an)-P'(a)) = 5j + (j-I)7 n + ord j. 

To see that such an assumption is necessary, let p(X) = X 2 + 

~TX + ~Y, and 7nt with 7 n < 7 for all n. Then [ 7n] is an 

7n ~n) 
algebraic sequence with ~ ~ 0 and ord(p(~ - p(O)) : 

ord I/2 p'(O)(~Tn) 2 < ord p' (0)~ 7n. 
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Hence 61 < 5j + (j-l)7 n for n _~ n O + m or 81 + 7 n < 8j + j7 nev.. 

We have thus proved that if a n -~ a and p' (an) ~ 0, then 

ord(p(an)-P(a)) = 81 + 7 n ev.. 

It follows that in this case (*) holds with j = I, i.e., if 

a n -~ a and pt (an) ~ 0, then 

P(an) ~ 0 if and only if ord p(a) = ord P(an) < 81 + 7 n ev. 

J P(an) 0 if and only if ord p(a) > ord P(an) = 81 + 7 n ev. 

We are now in a position to apply pseudo-convergent sequences 

to the study of immediate extensions. 

Lemma 5. Let {a n ] be a transcendental sequence in E and 

a n -~ a e V. Then 

(i) a is a transcendental element over E 

(ii) Let ~:E -~ E' be an analytic isomorphism and a ~ ~ V' 

be such that ~(an) -~ a'. There exists an analytic isomorphism 

~:E(a) -~ E ~ (a') extending ~. 

Proof. 

(i) If p(X) ~ E(X), then ord p(a) = ord P(an) < 7 n ev. 

by (*). Therefore ord p(a) ~ ~, i.e., p(a) ~ 0. Hence a is 

transcendental over E. 

(ii) The map a ~ a' thus gives an algebraic isomorphism 

~:E(a) ~ E t (a'). Let p~(X) be the image of p(X) under the map 

~. Since ord p(a) = ord P(an) = ord p~(~(an)) = ord p(a') ev., 

the map ~ is analytic. 

Lemma 6. Let {a n ] be an algebraic sequence in E. 

(i) If P(an) ~ 0 and p'(an) ~ 0, then there is a c V 

such that a n ~ a and p(a) = O. In particular, there exists a 

minimal algebraic ps. lim. a c V of [an]. 

(ii) Let ~:E ~ E' be an analytic isomorphism and a e V 

a minimal algebraic ps. lim. of {an}. There exists a minimal 



402 S. Kochen 

algebraic ps. lim. a' of [~(an) ] and an analytic isomorphism 

~:E(a) ~ E'(a ~ ) extending eQ. 

Proof. 

(i) Let a ~ ps. lima n . If p(a) : 0, then we are done. 

Suppose p(a) ~ 0. Since ord p(a) > ord p' (a) + 7 n ev., p'(a) ~ 0. 

Let q(X) = P ( a + P(a)p' (a) X )/p(a) 

Then 

q(x)  = ~ + x + 
pJ(a) p(a) j-1 xj 

J: - -7;iJ 
Now 

pJ(a) p(a) j-1 
ord - 

j! p' (a) j 
= ~j + (j-1)ord p(a) - J~1 

> (~j + jTn) - (51 + ~n) ev., by (T) 

> 0 ev.. 

Thus q(X) : I + X, which has the root X : - I in ~. Since 

q'(X) : I ~ 0, we may use the Hensel property of V to obtain 

u ~ 0 V such that q(u) = 0 and u = - I. From ~ = - ] it 

follows that ord u = 0. Hence, p(X) has a root b = a + D(a---~-)u 
! 

p (a) 
in V. Now ord(b-a) = ord p(a) - 51 > 7 nev. by (~). Thus 

a n ~ b and we are done. Finally, if p(X) is a minimal polynomial 

for [a n] then P(an) ~ 0 and p'(an) ~ 0, so that b is a 

minimal algebraic ps. lim. of [an]. 

(ii) If p(X) is a minimal polynomial for [an], then 

p(X) is irreducible over E. For if p(X) = q1(X)q2(X) with 

deg qi < ord p, then qi(an) ~ 0 so that ord qi(an) = ord qi(a) 

ev. by (*). Hence ord P(an) = ord p(a) ev., contradicting 

P(an) ~ 0. 

Clearly pm(X) is a minimal polynomial for [~(an)]. Let 

a' ~ V' be a ps. lim. of [~(an)) such that p~(a') = 0. Then 

a ~ a' defines an algebraic isomorphism ~:E(a) ~ E'(a') extending 

~. Every element of E(a) has the form q(a), wheredeg q(X) < deg p(X) 



S. Kochen 403 

Hence  q ( a n )  ~ O, so  t h a t  o rd  q ( a )  = o rd  q ( a n )  = o rd  q ~ ( e ( a n ) )  = 

o rd  q e ( a  ~) e v . ,  p r o v i n g  t h a t  r i s  a n a l y t i c .  

(We n o t e  t h a t  i n  t h e  c a s e  o f  e a c h  o f  t h e s e  two lemmas t h e  f i e l d  

E ( a )  i s  an  i m m e d i a t e  e x t e n s i o n  o f  E. The p r o o f  o f  t h e  lermmas 

shows t h a t  o rd  E ( a )  = o rd  E. To s e e  t h a t  E - - ~  = E, l e t  

q(X) c E[X] ( w i t h  deg  q(X) < d e g  p(X) i n  t h e  s e c o n d  c a s e ) .  Assume 

ord q(a) ~ 0. Since q(an) ~ 0 we have ord q (a) = ord q(an) ev.. 

Thus, ord(q(a)-q(an) ) ~ O. But q(an) ~ q(a), so that 

ord (q(a)-q(an))~ ev.. It follows that ord(q(a)-q(an) ) > O. In 

other words q-~ = ~ c E. Of course, in our case E = ~ = V, 

so that E-~ = E, trivially.) 

We now prove a converse to these results. 

Lemma 7. Let E be a subfield V with ord E countable and 

let F be an immediate extension of E. If a c F - E, then there 

exists a sequence (an) in E with a as a pseudo-limit but with 

no pseudo-limit in E. 

Proof. Let H = [ord(a-x)[x c E). We show that H has no 

greatest element. Let ord(a-b) c H; then there is c ~ E such 

that ord c = ord(a-b), since ord F = ord E. Also since F = E, 

cd 
there is d ~ E such that d = ~ 2 ~ .  Thus, ord (1 - a--T-~) > 0, 

or ord(a-(b+cd)) > ord(a-b), giving a greater element of H. 

Since then H is countably infinite, there exists an increasing 

sequence [7 n] of elements of H cofinal with H. In other words, 

there is a sequence [a n ] in E with ord(a-an) = Fn ~. This 

shows that a n ~ a. 

If a n ~ b c E, then ord(a-b) > ~n ev., contradicting the 

fact that [7 n] is cofinal with H. Thus, [an ] has no pseudo- 

limit in E. 

We are now ready to prove Proposition 2, extending an analytic 

isomorphism from a subfield E of V to an immediate extension 
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E(a). First let us motivate the method of proof. The proof divides 

naturally into two cases. We first suppose that a is algebraic 

over E. We wish to apply Lemma 6; however the element a may not 

be accessible directly via an algebraic sequence in E, since a 

may not be a minimal algebraic ps. lim. of a sequence in E. Never- 

theless, we shall see that a may be reached by a (transfinite) 

succession of minimal algebraic extensions, so that Lemma 6 applies. 

In fact, the proof shows that the isomorphism extends to the alge- 

braic closure E of E in V. 

if a is transcendental over E, then we need to know that a 

is a ps. lim. of a transcendental sequence. This need not be the 

case unless the field E is algebraically closed in V. This nec- 

essitates our first extending the isomorphism to E (by the above). 

However we may now have lost the immediacy of the extension, i.e., 

ord E(a) ~ ord E. We may deal with this problem by using Proposition 

I to form E, so that ord E(a) = ord E, but now once again E may 

not be algebraically closed in V. We take care of both problems by 

alternating the two constructions countably often. 

Proposition 2. Let ~:E ~ E ~ be a pure map and a c V with 

E(a) an immediate extension of E. There exists a pure map 

~:F ~ F r extending ~ with a c F. 

Proof. 

(a) First suppose that a is algebraic over E. Consider 

the set P of all pure maps ~:K ~ K t with E ~ K ~ ~. P is a 

non-empty set partially ordered under inclusion with every chain 

having an upper bound, the union. By Zorn's lemma, P has a maxi- 

element ~:F ~ F ~ . We claim that F = E, so that a c F and we 

are done. If F ~ E, there is b c V - F algebraic over F. By 

Lemma 7 there exists a sequence {a n ] in F with b as a ps. lim. 

and no ps. lim. in F. The sequence la n] is algebraic by Lemma 5 
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(i) and has a minimal algebraic ps. lim. c e V by Lemma 6 (i). From 

Lemma 6 (ii) it follows that there is a minimal algebraic ps. lim. 

c ~ c V of the sequence {@(an)] in F ~ such that r has a pure 

extension ~:F(c) ~ F~(c~), contradicting the maximality of @. 

(b) Now suppose that a is transcendental over E. Let 

E 0 = E, E2i = E2i-1' E2i+1 = E2i' and E : Un=oEn . Then the field 

E is clearly algebraically closed in V and E (a) is an immediate 

extension of E. By Proposition I and Part (a) of this proof, 

can be extended to a pure map ~ with domain E . If a c E~ we 

are done. If a ~ E , then by Lemma 7 there exists a sequence 

{an ] in E with a as a ps. lim. and no ps. lim. in E . If 

{a n ] is an algebraic sequence, then Lemma 6 yields a proper alge- 

braic extension of E . Hence {a n ] is a transcendental sequence. 

Let a ~ be a ps. lim. in V ~ of the sequence f~(an)). Then 

El t i Lemma 5 (ii) gives us the required pure map @:E (a) ~ ~a ). 

Putting Propositions I and 2 together we have 

Proposition 3. For every pure map Q:E ~ E ~ and a c V there 

exists a pure map @:F ~ F ~ extending ~ with a e F. 

To obtain a pure extension of cp to ~:E(a) ~ E~(a ~ ) it suffices 

to take a maximal element ~:F ~ F' of the set of pure maps 

O:K ~ K' with E ~ K ~ E(a). Then F = E(a). We have constructed 

the larger field F = E for later use in the proof. The reader may 

find it instructive to construct ~ alternatively by transfinite 

induction. The field E (resp. E(a)) appears then as the closure 

of E under minimal algebraic ps. lims. of algebraic sequences in 

E (resp. with a as ps. lim.). 
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5. UNRAMIFIED EXTENSIONS 

In this section we prove that pure maps exist. Up to this point 

our proof has been uniform, not depending upon the ramification index 

e. Now our proof divides into the case e = 0, and e - I. This is 

not surprising since even in the classical case the existence and 

uniqueness of a complete field K valued in ~ with given residue 

class field ~ is treated separately in the cases of equal and 

unequal characteristic of K and ~. A basic difference that appears 

here is that for e > 0 there is a smallest positive element I of 

the value group G, and hence the ordered group ~ of integers lies 

as a convex subgroup inside G. For e = 0 this need not be the 

case. 

(a) We first treat the case e = 0. Here char V = char ~ = 0. 

The prototype for this case is the formal power series field F((t)) 

with char. F = 0. Here ~ ~ F, but F also occurs as a sub- 

field of F((t)). We shall now see that this property is also valid 

for V. To motivate the proof, we note that in the case of the 

field F((t)) ord is trivial on F, and F is a maximal field with 

this property. 

Lemma 8. Let F be a Hensel field with char. F - 0. Let F 0 

be a maximal subfield of F on which the valuation ord is trivial. 

Then F0 ~ F0 = ~" 

Proof. The field F 0 exists by Zorn's Lemma. Since F 0 is 

a field, the residue class map is a monomorphism on F 0. Suppose 

now that F0 ~ ~' so that there is ~ c F - F0" 

(i) ~ is algebraic over F0" 

There is an irreducible f(X) c F0[X] with f(~) = 0. 

Let q(X) ~ F0[X] be such that q(X) = f(X). Since f(X) is 

irreducible, f~(~) ~ 0, so that we may apply Hensel's Lemma to 

obtain a ~ O F such that q(a) = 0 and a = 6. Now q(X) is 

irreducible over F 0 since f(X) is irreducible over F0" Hence 
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the residue class map gives an isomorphism Fo(a ) ~ F0(a). Since 

g(a) c F0(a ) with deg g(X) < deg q(X) and ord g(a) > 0 yields 

g(a) = 0, a contradiction, we have that ord is trivial on Fo(a). 

This contradicts the maximality property of F 0. 

(ii) a is transcendental over F0" 

If a ~ F - F 0 with a = a, then clearly a is trans- 

cendental over F 0. Hence the residue class map F0(a ) ~ Fo(a) is 

an isomorphism. As in (i), ord is trivial on F0(a), contradicting 

the maximality of F 0. 

Proposition 4. (a) In the case e = O, there exists a pure 

map ~0:E0 ~ E 0. 
I 

Proof. Let E 0, E 0 be the subfields of V, V' provided by 

~ ' The isomorphism thus defined is clearly Lemma 8 with E 0 - ~ - E 0. 

a pure map. 

(b) Next we treat the case e = I. Here char V = 0 and 

char ~ = p. Let I denote the smallest positive element of G. 

Then ord p = I. 

We now need a construction from general valuation theory. This 

construction allows us to decompose valuations in terms of convex 

subgroups of the valuation group. A convex subgroup A of an 

ordered abelian group G is defined by the condition that if 

5 e A a n d  7 e G s u c h  t h a t  17[ < 151 ,  t h e n  7 e A.  T h e n  

P = G/A f o r m s  a n  o r d e r e d  a b e l i a n  g r o u p  w i t h  t h e  i n h e r i t e d  o r d e r i n g .  

Conversely, if h:G ~ P is an order-preserving homomorphism of 

ordered abelian groups then the kernel of h is a convex sub- 

group of G. 

Let ord:K ~ G be a valuation and let A be a convex sub- 

group of G. Let h:G ~ G/A(= E) be the canonical homomorphism. 

We define v:K ~ F to be the composition v = h o ord. Then v 
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is itself a valuation. Let K be the residue class field of K 
V 

under the valuation v. Define the map u:K v ~ A by u(~) = ord(a) 

where a is any element of K such that ~ is the image of a 

under the residue class map of the valuation v. Clearly u is a 

valuation with residue class K. The valuation ord is called the 

composition of the valuations u and v. We summarize by the 

diagram: 

K ~ G ~ 

~ v ~ A 

K 

In the case at hand the element I generates the convex subgroup 

~(~I) in G. Decomposing the valuation ord according to the 

previous paragraph we have 

V ~ G ~ G/~ 

K ~ 

1 
T h u s  K i s  a n  u n r a m i f i e d  f i e l d  v a l u e d  i n  ~ .  S i n c e  t h e  f i e l d  

V i s  m - p s e u d o - c o m p l e t e ,  t h e n  c l e a r l y  s o  i s  K. B u t  s i n c e  K i s  

v a l u e d  i n  ~ t h i s  m e a n s  t h a t  K i s  ( C a u c h y )  c o m p l e t e .  As s t a t e d  i n  

S e c t i o n  2 t h i s  i m p l i e s  t h a t  K ~ W(~) u n d e r  a n  a n a l y t i c  i s o m o r p h i s m .  

Now the field V valued in G/~ forms a Hensel field with 

residue class field K of characteristic O. By Lemma 8, there is a 

subfield E 0 of V valued in ~ which is isomorphic to K. A 

i 
similar consideration for V' yields a subfield E O. Now 

E 0 - W(~) - E 0 gives us an analytic isomorphism ~o:E0 ~ E . The 

! 

fact that the x-sections ~,~ are normalized means that 

~(n) = pn = ~'(n) so that ~0 is x-analytic and hence pure. We 

have thereby established 

Proposition 4 (b). In the case e = I, there exists a pure 

l 

map ~0:E0 ~ E O. 
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6. THE ISOMORPHISM THEOREM 

Theorem I. Let V and V t be unramified ~-pseudo-complete 

! 

Hensel fields of cardinality ~ with normalized x-sections ~,~ . 

Then there is a x-analytic isomorphism cD:V ~ V' if and only if 

~ V~ and ord V ~ ord V ~ . 

Proof. To simplify notation we assume that V = E = V' and 

ord V = G = ord V'. We define the map cD by transfinite induction. 

i 

We well order V,V' by ordinals ( ~I" Let e0:V0 ~ V 0 be the 

pure map provided by Proposition 4 (a) and (b). For ~ ( ~I assume 

V' is a pure map. If ~ is an even inductively that e :V ~ 

ordinal (i.e., ~ = k + n, k a limit ordinal and n a positive 

even integer) let a be the first element in V - V . Let 

t 

~+I:V +i ~ V+ I be the pure map provided by Proposition 3 (with 

V = E, V'~ = E' , ~ = ~). If ~ is an odd ordinal, let a' be the 

first element of V'- V'.~ Let ~+I:V+I ~ V'~+I be the _inverse of 

the pure map provided by Proposition 3 (with V' = E, V = E', 

~ = ~). For ~ a limit ordinal, let V = , = I 

I 

and ~ = UB<~B. It is clear that V = U <eIV ~ and ~ = U <eIV ~, 

and that ~ = U <e1~ ~ defines the required x-analytic isomorphism 

of V onto V'. 

By introducing transfinite pseudo-convergent sequences (see 

Schilling [10], Chapter 2) we may generalize the theorem to apply 

to unramified Hensel fields of cardinality ~ with normalized 

x-sections which are pseudo-complete for transfinite sequences of 

cardinality < ~ . However, no new ideas are involved, only 

added notation. 
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7. APPLICATIONS 

This section contains some of the model-theoretic and number- 

theoretic consequences of the theorem we have just proved. Our first 

and most important application is the metamathematical principle 

which connects power series fields with Witt vector fields. 

Theorem 2. For each prime p let ~ be a field of cardinality 
~0 P 

< 2 and characteristic p. Let D be a non-principal ultra- 

~0 
filter on the set of primes. Then, assuming 2 

~W(S)ID ~-~ ~p((t))/D 

P P 

via a x-analytic isomorphism. In particular, 

= ~I' we have 

7 ~p/D ~ ~p((t))/D 

P P 

Proof. That the fields ZpW(~p)/D and ~Z ~p((t))/D are unrami- 

fled Hensel fields of char. O, cardinality 2 , and e : 0 is clear. 

Example 4 of Section 2 shows that they have x-sections. It remains 

to show that these fields are ~-pseudo-complete. We prove this by 

using the fact that these ultraproducts are ~1-saturated. 

Let {an ] be a pseudo-convergent sequence (in either field). 

Then for some integer n O , ord(am-an) > ord(an-ak) for all 

m > n > k > n O . Let mk(X ) be the elementary formula 

ord(x-ano+k) = ord(ano+k+l-ano+k) 
m 

Then ~=I ~k (x) is satisfied by the element x = ano+m+1. By 

the ~1-saturation property there exists an element x = a in the 

field satisfying all the formulas mk(X ) simultaneously. Hence, 

ord(a-an) = ord(an+1-an) 

for all n > n O , proving that a n ~ a. 

Corollary I. Let A be an elementary statement about valued 

fields (with x-section). There exists a finite set U A of primes 
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such that A is valid in W(~p) if and only if A is valid in 

%((t)) for all p ~ UA. 

Proof. If & differed in validity on an infinite set T of 

primes for W(~p) and %((t)), then we could include T as an 

element of a non-principal ultrafilter D. In that case A would 

((t))/D but not the other, be valid in one of UpW(~p)/D and Up P 

N O 
contradicting the theorem above. This assumes 2 = Nj, but this 

assumption may be dropped by a standard argument via absoluteness 

using G~del [15]. 

This corollary has been applied to settling specific number- 

theoretic conjectures. A field K has the property Ci(d) if 

every form (i.e., homogeneous polynomial) over K of degree d 

with d i + I variables has a non-trivial zero in K. Chevalley 

proved that every finite field has the property C1(d) for all d. 

Lang [16] used this result to prove that the field ~p((t)) has 

the property C2(d) for all d. E. Artin conjectured that ~p 

is C2(d ) for all d. This was known (Meyer) for d = 2 and later 

proved (Lewis, Demyanov) for d - 3. Since C2(d) is an elementary 

statement which is valid in ~p((t)) for all p, we have 

Corollary 2. For each d, there exists a finite set U d of 

primes such that Qp has the property C2(d ) for all p ~ U d. 

Subsequently Terjanian showed that this result was best possible 

and that Artin's original conjecture is false for d - 4 and p = 2. 

Counterexamples for other d and p were later found by S. Schanuel, 

P. Samuel, and J. Browkin. 

Lang conjectured that if a form of degree d has coefficients 

in ~ then it suffices that it have d + I variables in order to 

have a non-trivial zero in Qp for all but a finite number of p. 
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If the coefficients are interpreted modulo p then this property holds 

for finite fields by Chevalley's result. Since ~p ~ ~p((t)) it 

also holds for ~p((t)). It follows from Corollary I that Lang's 

conjecture is true. A purely algebraic proof of Lang's conjecture 

was given by Greenleaf independently. No purely algebraic proof of 

Corollary 2 is known to date. Note that Lang's conjecture does not 

require the full Isomorphism Theorem, only the fact that ~p~p/D 

is imbeddable in ~p~p/D, which follows from Lemma 8. This is 

because Lang's conjecture is an existential statement whereas Artin's 

conjecture is universal existential. 

We now turn to some other applications of our isomorphism 

theorem. 

Theorem 3. Let char R = O. Then 

(a) R m ~ and G ~ G' if and only if R((tG)) ~ ~'((tG~)). 

In particular, 

R' R' 
R ~ if and only if R((t))  ~ ((t)) 

(b) R and G are decidable if and only if R((tG)) is 

decidable. In particular, ~ is decidable if and only if R((t)) 

is decidable. 

Proof. We apply the L~wenheim-Skolem Theorem if necessary to 

replace the fields R((tG)) and R'((tG' )) by elementarily equiva- 

R 0 
lent fields K and K' of cardinality < 2 . An application of 

the Isomorphism Theorem to the countably indexed non-principal 

ultrapowers KI/D and K ~ !/D yields the result. To prove the 

second half of (b) note that the ordered abelian group ~ is 

decidable. (A complete axiomization of the theory of ~ is given 

by the statement that the group G is a Z-group: G has a smallest 

positive element and the Euclidean algorithm holds for G, i.e., 

#(G/nG) = n, for all positive integers n. This result is due 

essentially to Presburger.) 
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A complete axiomatization of R((tG)) is as follows: V is a 

Hensel field with x-section such that Th(V) = Th(R) and 

Th(ord V) = Th(G). We shall see in Section 8 that we may drop the 

x-section from this axiomatization. 

Let ~ be the valued field of germs of meromorphic functions 

in the complex plane. Then ~ forms an unramified Hensel field 

with value group ~ and residue class field C. Hence ~ ~ @((t)) 

and ~ is decidable. In fact it is easy to extend our results to 

show that ~ is an elementary subsystem of ~((t)). An algebraic 

consequence is that every system of polynomials over ~ which has 

a common zero in ~((t)) (i.e., a formal zero) has already a zero 

in ~ (i.e., a convergent zero). 

Theorem 4. Let char R = p. Then 

(a) ~ ~ ~ if and only if W(R) ~ W(~). 

(b) R is decidable if and only if W(R) is decidable. In 

particular, ~p is decidable. 

The proof is similar to the proof of the previous theorem. 

A complete axiomatization of W(~) is as follows: V is a 

Hensel field with normalized x-section ord V a Z-group, ord p = I, 

and Th(V) = Th(R). For {p(: W(~p)) we may of course replace 

Th(V) : Th(R) by V = Zp. Again Section 8 will show that we may 

drop the x-section function. 

As another application, let ~p be the cyclotomic extension 

of ~p obtained by adjoining all roots of unity to ~p. The field 

~p is the maximal unramified algebraic extension of Qp. The 

residue class field of ~p is ~p the algebraic closure of ~p 

and the value group of ~p is ~. Since ~p is a decidable field, 

we conclude by the previous theorem that ~p is a decidable field. 

Also ~p ~ W(~p). We draw a number-theoretic consequence from this. 

Lang [16] showed that W(~p) is a C1(d ) field for all d. 
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v 

It now follows that ~p is also a C1(d ) field for all d. It is 

to give a purely aZgebraic proof of the fact that ~p is possible 

C1(d), using the generalized Hensel's Lemma in Greenberg []7]. How- 

ever, that is not the whole story. Greenberg's theorem is the result 

of an analysis of the algebraic content of Cohen's elimination of 

quantifiers for ~p. Cohen's method in turn analysed the construc- 

tive content of the model-theoretic proof of the decidability of 

~p in Ax and Kochen [2]. In this way, the circle of logical and 

algebraic ideas is closed. Incidentally, it is an unsolved conjecture 

of E. Artin that the corresponding global field, the cyclotomic field 

of ~ is a C](d) field. 

Other number-theoretic consequences of the above theorems are 

given in Koehen []8]. 

We indicate finally how the elementary equivalence of real 

closed fields may be subsumed under the Isomorphism Theorem. This 

may seem surprising since the Theorem refers to fields with non- 

Archimedean valuation whereas the ordering of the field R of reals 

corresponds to the Archimedean valuation of absolute value. The 

answer is that ultraproducts of real closed fields admit non- 

Archimedean valuations. Thus let ~ = ~I/D be a non-principal 

countably indexed ultrapower of ~ (or of any real closed field of 

cardinality ~ 2~0). Then the ring F of elements a of ~ which 

are bounded by ~, i.e., lal ~ r for some r c~, forms a valua- 

tion ring. This ring then defines a valuation ord on ~. The 

unique maximal ideal ~ consists of the infinitesimal elements, 

i.e., ~ = [alVr e m, lal < Irl}. We have ~ ~ and ord ~ is 

a divisible group (in fact, ord ~ ~ (~I/D)/~). Moreover, under 

this valuation ~ forms a e-pseudo-complete Hensel field with 

x-section. This allows us via the Isomorphism Theory to reduce the 

elementary equivalence of real closed fields to that of divisible 

ordered abelian groups. The elementary equivalence of these groups 

is easily proved (see for example A. Robinson [19]). 
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8. THE CROSS-SECTION 

All our results on the elementary equivalence and decidability 

of valued fields have assumed the existence of a x-section 

~:G ~ V. Since the standard fields which motivated this study all 

have a x-section this may be considered a reasonable requirement. 

Nonetheless, this funetion is not among the usual functions and 

relations in terms of which a valued field is defined, namely the 

field operations, the value group addition and inequality relation, 

and the valuation function ord. 

We shall show in this section that the results obtained for 

fields with x-section may also be obtained for valued fields with- 

out x-section. These results are neither stronger nor weaker than 

the previous ones. On the one hand, allowing a x-section ~ among 

the functions enriches the class of elementary statements and so 

strengthens decidability results. On the other hand, these results 

do not apply to fields without x-section. 

For an instance of such a field, consider the ultrapower field 

I D , l~ s ~ ~ (~p : ~p/ ~ =~I/Dj The group ~ is a convex subgroup 

of 2. This allows us to define a new valuation on ~o namely, 

~p ~ ~ with ~p = ~p. Now as we have seen ~p is a decidable 

field of characteristic O and ~, being a divisible ordered 

abelian group, is also decidable (see Robinson [19]). One can 

show however that this valuation v has no x-section. Thus the 

v 
previous results do not allow us to conclude that ~ ~ ~ is a 

P 

decidable valued field. The results of this section will show that 

this is indeed the case. 

Now all our results followed from applying the Isomorphism Theo- 

rem to appropriate ultraproducts. This in particular required that 

a x-section exist for these ultraproducts. We assured this by simply 

adding a x-section function to the first order language. We shall 

now show that these ultraproducts have a x-section automatically, 
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even when the factors do not. This is a consequence of the ~1-satu- 

ration property of the ultraproducts. We have so far used the 

~]-saturation property to show that the ultraproducts are ~-pseudo- 

complete. This uses only the additive properties of the field. We 

shall now use the saturation property on the multiplicative group of 

the field. This will take the form of proving that the group is 

complete in a certain topology, the Z-topology. 

We are concerned with the existence of a x-section for the 

valuation V or d> G. Now this is in fact just a problem about ord 

as a homomorphism of the abelian group V on G. The fact that 

V is a field and that G is ordered will only enter indirectly 

via the fact that V has meager torsion and that G is 

torsion-free. 

Let us now switch to additive notation and assume that A is 

an abelian group. The Z-topology on A is defined by letting the 

family [nAIn = ],2,...) be a base of a system of neighborhoods of 

the identi~ 0 of A. Note that the smaller family 

[n!Aln = 1,2,...) is also of a base of a system of neighborhoods 

of 0. The latter has the advantage of being a nested sequence. 

The group A is Z-complete if it is complete in the Z-topology 

on A. 

Lemma 9. An ~1-saturated abelian group A is Z-complete. In 

particular, a countably indexed non-principal ultraproduct of 

abelian groups is Z-complete. 

The proof is entirely similar to the proof of the ~-pseudo- 

completeness of ultraproducts given in Theorem 2 and so will be 

omitted. 

Clearly an abelian group A is Hausdorff in the Z-topology 

if and only if the subgroup A = n nA is the trivial group O. 
n~1 

For the class of groups in which we are interested we shall now see 

that A is the largest divisible subgroup of A. This will enable 
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us to reduce our problem to the case of Hausdorff groups. 

Definition. An abelian group A has meager torsion if for 

each integer n > O, the subgroup [alna = 0] is finite. 

As our principal example, note that a subgroup of the multi- 

plicative group of a field has meager torsion. 

Le~na 10. Let A be an abelian group with meager torsion. 

Then the group A = N nA is the largest divisible subgroup 
m n=1 

of A. 

Proof. It clearly suffices to show that A m is divisible. 

Let a e A . By hypothesis, the set S = Is c Alns = a] is a 
m n 

non-empty finite set, for each integer n > O. For each jli 

define the map 0~'Sil" ~ Sj by 0~(b) = (i/j)b. Then {Si,0 ~] 

forms an inverse system of non-empty finite sets, so that 

S = lim~ S i ~ ~. Let B c S. We have the canonical maps 

i 
ek:S ~ Sk, with @k'@k = @i 

~i = J~ij' so that ~i c A m . 

a = ~I = nBn" with ~n ~ Am" 

if ilk. Let Sk = 8k (~)" Then 

Thus for each integer n > O, 

This proves that A is divisible. 
m 

The existence of a x-section ~ to a homomorphism H ~ G 

of abelian groups (i.e., a homomorphism ~:G ~ H such that 

h(~(~)) = a for all a ~ G) 

the exact sequence 

0 - - >  A 

where A is the kernel of H. 

is equivalent to the splitting of 

h 
> H > G > 0 

Now, given G and A, the splitting 

of the above exact sequence for every abelian group H is equiva- 

lent to the homological condition Ex~(G,A) = O. It is therefore 

natural to make use of homological techniques in proving the 

existence of a x-section. We recall here those facts from homo- 

logical algebra which we shall need. We shall work in the category 



418 S. Kochen 

of abelian groups (considered as ~-modules). The only special prop- 

erty of ~-modules we use is that the global dimension of ~ is 

one, so that Ex~(G,A) = 0. The reader may consult e.g., 

Northcott [20], Chapter 7 for background material. 

As usual Hom(G,A) denotes the group of homomorphisms from G 

into A. Ext(G,A) (= Ex~(G,A)) denotes the group of (abelian) 

extensions of A by G. 

We shall make use of the following properties of the 

functor Ext. 

( I ) The exact sequence 

O, >R, 

induces the exact sequence 

(2) 

(3) 

>S >T >0 

> Hom(T,A) > Hom(S,A) . > Hom(R,A) 

> Ext(T,A) > Ext(S,A) > Ext(R,A) > 0 

Ext(G,A]~A2) T Ext(G,A~) ~Ext(G,A2). 

Ext(G,A) = 0, for A a divisible group (since a 

divisible subgroup of a group is a direct summand). 

Lemma 11. Let A be a Z-complete abelian group with meager 

torsion. Then Ext(G,A) = 0, for every torsion-free abelian 

group G. 

Proof. 

(a) Since A is divisible it is a direct summand of A. 

Writing A = A ~B we have by Properties (2) and (3) 

Ext(G,A) = Ext(G,A )~ Ext(G,B) = Ext(G,B) 

Also, since B is a direct summand of A, B is Z-complete; and 

by the previous lemma~ B is Hausdorff in the Z-topology. 

(b) Let 

0 ---> G > S --> T > 0 

be an exact sequence. Then by Property (I) we have the exact 

sequence 
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Ext(S,A) > Ext(G,A) > 0 . 

Thus, to prove that Ext(G,A) = 0 it suffices to prove 

Ext(S,A) = 0 for some extension S of G. In particular, we may 

take for S a divisible group, say the divisible hull G%Q of G. 

(c) Parts (a) and (b) show that it suffices to prove 

Ext(G,A) = 0 for A Hausdorff and Z-complete and for G divisible 

and torsion-free. In other words, we must show under these con- 

ditions that the exact sequence 

0 --.> A > H, ~. > G > 0 

splits. We effect the splitting by showing that there is a 

x-section ,:G ~ H of ~. 

-!(z/n!) for all integers n > 0. Let 7 c G. Choose c n c 

Let a n = n!c n - c I. Then a n c A, since ~(an) = 0. Now [an ] 

forms a Cauchy sequence in the Z-topology of A, since 

a n a k = k! (~," c n - Ck) c k!A. Hence, A being Z-complete and 

Hausdorff, [a# has a unique limit a in A. Define the map 

~:G ~ H by 

Then * 

n > O, and 

4(7) = a + c I 

/ 

is well-defined for if c n c ~-1(7/nl) 

' = ' �9 ' then a n n-c n - el, 

! / / 

(a n + ci) _ (a n + ci) = nlc n - n!c n ~ n~A , 

; ; 

so that a + c I : a + c I. 

Clearly * is a homomorphism, for let 71,72 e G, 

-I 
Cni e ~ (Ti/n!), ani = nlcni - Cli for n > 0, i : 1,2. 

d n e 0-I((71 + 72)/nZ ) to be d n = Cnl + Cn2. Then 

4(71 + 72) = a I + a 2 + c11 + c 

where a i = nl~m ani, i = 1,2. 

Finally, e(r = ~(a + ci) = 7. 

f o r  a l l  

C h o o s e  

12 = * ( 7 1 )  + * ( 7 2 )  ' 
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Proposition 5 (a). Let Vi ord > Gi be a countable family of 

valued fields. Let V ord > G be a non-principal ultraproduct of 

this family. Then there exists a x-section ~:G ~ V. 

Proof. If V = ~Vi/D, and U i is the group of units of Vi, 

then the group of units U of V is ~Ui/D. Hence U is 

Z-complete group. Since U is a subgroup of V , U has meager 

torsion. Also, G, being ordered, is torsion-free. Thus we may 

apply Lemma 11 to obtain Ext(G,U) = 0 from which the existence 

of a x-section follows. 

For the case of ramification index e = ] we require the 

existence of a normalized x-section. This will follow from the 

O-->A >H >G >0 

0 --> A I --> H I --> G I --> 0 

be split exact sequences. Assume that Ext(G/GI,A ) = O. Then 

every x-section ~I:GI ~ H I can be extended to a x-section 

~:G ~ H. 

Proof. By Property I, the exact sequence 

o --> o I > G > G/G 1 > o 

induces the exact sequence 

Hom(GI,A) > Hom(G,A) > Ext(G/GI,A) = 0 . 

Hence, every homomorphism from G I into A extends to one from 

G into A. 

Now by hypothesis there exists a x-section ~o:G ~ H. Define 

the homomorphism h1:G I ~ A by hl = ~I - ~0" Extend h I to a 

homomorphism h:G ~ A. Let the map ~:G ~ H be defined by 

= ~0 + h. Then clearly ~ is a x-section extending ~I" 

following homological lemma. 

Lemma 12. Let 
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Proposition 5 (b). Let Vi o rd > Gi be a countable family of 

ord 
Hensel fields. Let V > G be a non-principal ultraproduct of 

this family. Assume that V has ramification index e = I. Then 

there exists a normalized x-section ~:G ~ V. 

Proof. As we have seen in the proof of Proposition 4 (b), we 

have the exact sequences 

o ->u > v , > G ~ > O  

0 -> u o > w(v) >~ > o 

where U 0 is the group of units of W(V). The upper sequence 

splits by Proposition 5 (a); the lower one splits because there is 

a x-section ~I:Z ~ W(V) given by ~1(n ) = pn Since Z is a 

convex subgroup of G, G/Z is ordered and hence torsion-free. 

As before U is Z-complete and with meager torsion. Hence 

Ext(G/Z,U) = 0 by Lemma 11. It now follows from Lemma 12 that 

there is a x-section ~:G ~ V extending ~0' so that ~(I) = p. 

As a consequence of Proposition 5 (a) and (b) all the results 

of Section 7 apply without assuming the existence of a x-section 

function for the valued fields considered there. 

421 
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9. STRUCTURE THEOREM 

The Isomorphism Theorem states that an unramified ~-pseudo- 

complete ~1-Hensel field V with x-section is uniquely determined 

by its value group G and residue class field ~. This naturally 

calls for the identification of this uniquely determined field. In 

other words, what is required is a canonical construction of V 

from G and R. In this section we give such a construction. 

For the case of ramification index e - O, this is straight- 

forward. The generalized power series field ~((tG))~ is a Hensel 

~0 
field of cardinality 2 , with a x-section ~(~) = t ~. It is 

easily checked that this field is also ~-pseudo-complete. For the 

case e = I, the situation is more complicated. Since the group 

is a convex subgroup of G in this case we know that the 

valuation ord:V ~ G may be decomposed into u and v - h o ord. 

V 

w(R) , 

1 

ord h 

U 

G 

I 
j r(= a/~) 

Under the valuation v the field V remains an ~-pseudo- 

complete Hensel field. If v had a x-section, then we could con- 

clude by the Isomorphism Theorem that V ~ W(R)((t )) . However, 

the valuation v does not have a x-section. The obstruction is 

that Ext(r,~) ~ 0 so that 0 ~ ~ G ~ r ~ 0 does not split. 

h 
For if the canonical homomorphism G > r had a x-section, i.e., 

a homomorphism ~ g > G such that hg(~) = ~, then ~ o g 

would be a x-section for v. In any case, the extension G of 

by ? is given by a 2 co-cycle m:P • ? -~E; namely, let 

g:? ~ G be any map (not necessarily a homomorphism) such that 

h(g(~)) = ~. Then m(~,~) = g(~) + g(~) - g(~+~) is such a 
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2 co-cycle. Then ~ o m is a 2 co-cycle of r in W(~). Note 

that ~ o m(~,~) = ~(m(~,~)) = pm(~,~) so we may write ~ o m = pm �9 o 

Now, the construction of an ~-pseudo-complete Hensel field 

without x-section via a 2 co-cycle f:~ • ~ ~ K was described in 

4 of Section 2. This is the field K((t~;f)) . Example (Our 

present discussion should make the significance of the 2 co-cycle 

f in Example 4 clear; and also why such fields admit no x-section 

in general.) This suggests that we construct the field 

W(~)((tF;pm))~ to describe the field V valued in ~. Finally 

we must compose the valuation v with u to regain the valua- 

tion ord:V ~ G. This results finally in the following canonical 

construction. Let 0 ~ A ~ G ~ r ~ 0 be an exact sequence of 

ordered abelian groups. Let m:r • P ~ A be a 2 co-cycle for this 

extension. We assume that u:K ~ A is a valuation of a field K 

with x-section ~0" We define the valued field K((tr;m))~ ord) G 

as follows. The elements of the field are power series Z esC t~ 

where S is a well-ordered subset of r of cardinality ~. 

Multiplication in the field is defined formally, with the proviso 

that tat ~ = ~(a'~)t ~+B. An element of G may be considered as 

an ordered pair (y,8) with y c r, 5 c A, where 

I j s ~ l  , . 
(Y,5) + (7,5) = (Y + Y ,8 + + m(7,7 )) The ordering on the 

pairs (y,~) is defined lexicographically. We then define 

ord(Z sC ta ) = (a0,u(c 0)) where a0 is the smallest element of 

S with c O ~ 0. The field K((tr;m))B is an ~-pseudo-complete 

5y 
Hensel field with x-section ~((7,8)) = ~0 t . It has residue class 

field K and value group G. This completes our construction. 

We now summarize the results of this section. 
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Theorem 5. Let V be an unramified ~-pseudo-complete 

~1-Hensel field with x-section ~, residue class field ~, and 

~0 value group G. Then, assuming 2 = ~I' 

e = O, V ~ ~((tG))~; (a) if 

(b) if e = I, V T W(~)((tG~;m))~ where m is any 

2 co-cycle from Gi~ to ~. 

Moreover, the isomorphism is x-analytic. 
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Although quantifier elimination plays an important role in math- 

ematical logic, thus far no general definition of this notion has been 

given in the literature. This is not accidental because the technical 

difficulties inherent in such a task are quite puzzling. Frequently 

applied is the method of quantifier elimination. Given a theory ~ , the 

aim of this method is to determine a set of "simple" formulas such that 

every formula is equivalent in ~ to a simple formula. For all practical 

purposes this "definition" is useless because we do not see how to give 

the word "simple" a precise meaning so that all known applications are 

covered. A moment of reflection reveals that such explications of "simple 

as "finite" or "recursive" are absurd. As the term "quantifier elimin- 

ation" suggests, simple formulas usually have "few" quantifiers. But 

again, an explication in terms of prefix classes appears to be hopeless 

in view of known examples. Also often equivalence to simple formulas in 

the theory ~ turns out to be effective and, moreover, frequently it 

happens to be decidable whether a simple formula holds in ~ or not. 

This then yields a decision procedure for the theory Z . However, tie- 

ing such requirements into a definition of quantifier elimination would 

eliminate many useful and interesting applications, in particular all 

those which we are going to discuss in this paper. Indeed, if we take 

the term "simple formula" to mean "quantifierfree formula", then we come 

up with a very fruitful theory of quantifier elimination, although the 

expression "simple formula" can now be rather misleading as some examples 

show. Moreover, the effectiveness of quantifier elimination usually gets 

lost, although in some cases it can be recaptured by complimentary tech- 

niques. In fact, the most striking feature of this approach is that syn- 

tactical and combinatorial techniques can be replaced by model theoretic 

and algebraic methods. Of course, the most direct approach to quant- 

ifier elimination is syntactical. By some combinatorial or inductive 

procedure one shows that every formula is equivalent in the theory 

to a simple formula. Such arguments are sustained by astounding com- 

binatorial ingenuity although usually they are tedious and exasperating 
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in detail. Several famous results -have been established by this method. 

To mention a few examples, Tarski ~12~ eliminates quantifiers in the 

theory of Boolean algebras, Mostowski and Tarski ES] in the theory of 

well-orderin~s, Szmielew gll] in the theory of abelian groups and finally 

Tarski g13] in the theories of al~ebraically closed fields and real 

closed fields. Subsequently it was discovered that some of these argu- 

ments could be substantially simplified by model theoretic and algebraic 

methods. Again we only mention a few well-known examples. Robinson [7] 

uses the notion of model completeness, Kochen [4] uses ultra products, 

Shoenfield ~9] uses the substructure and isomorphism conditions and 

finally Shoenfield gl0~ , Blum ~13 and Sacks ~8] use saturated struct- 

ures. In all of these cases simple formulas are quantifierfree formulas. 

We shall add another variant of this approach which is a refinement of 

the method of saturated structures. By combining this method with the 

method of extending mappings "an element at a time" (essentially due to 

Fraiss$) we are able to give "almost" purely algebraic necessary and 

sufficient conditions for elimination of quantifiers which have striking- 

ly simple applications. The algebraic facts we appeal to in these app- 

lications are usually quite elementary and the model theory involved is 

clearly delineated. In fact, our approach reveals how much model theory 

is indispensible and where exactly it enters into the picture. 

Throughout this paper we shall use standard notation and termin- 

ology so that we may restrict ourselves to a few preliminary remarks. 

Given is a basic denumerable similarity type t determined by a count- 

able set RI of relation symbols and a countable set Op of operation 

symbols, t is called finitely based if both RI and Op are finite sets. 

A t-structure ~ has universe i~L , and for each n-ary relation symbol 

Re RI has an n-ary relation R ~ , and for each n-ary operation symbol 

f~ Op has an n-ary operation f~ . 0L is called an algebra if RI=~ and0~ 

is called a relational structure if Op= ~ . ~ is called locally finite 

if every non-empty finite subset of L~I generates a finite substructure 

of ~ . Notice that relational structures are locally finite. We write 

J 

in case ~ is a substructure, an elementary substructure, and element- 

arily equivalent to ~ respectively. If W~qis a class of structures then 

we define 

s~= ~ I ~ O L  and ~G~ 
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If CL is a t-structure and ~ # X ~ I~1 then we form the similarity type 

t(X) by adjoining for each x~ X an individual constant (O-ary oper- 

ation symbol) x. Correspondingly ~' = ( ~'X)x* X is a t(X)-structure , 

where we take 

x = x for all x, X . 

More generally, a t(X)-structure is of the form ~' = (~,f(x)) x. X ' 

where ~ is a t-structure, f:X-~l~l and 

�9 ~, 
x = f(x) for all x~ X 

We shall only be interested in the case where X is non-empty and finite. 

Of course, most of our definitions have obvious and well-known general- 

izations, however we shall attempt to drive to the point as directly as 

possible rather than clutter our presentation with extraneous general- 

ities. 

Suppose ~ ~ X=-IO'I.I , where X is finite, and f:X--~l~I f is call- 

ed a local isomorphism from ~ into ~ , in symbols 

- (~,f(X))x~X (~ ' X ) x ~  x o 

i f  t h e r e  e x i s t s  a n  i s o m o r p h i s m  f r o m  t h e  s u b s t r u c t u r e  o f  OL g e n e r a t e d  b y  

X o n t o  t h e  s u b s t r u c t u r e  o f  ~ g e n e r a t e d  b y  f ( X )  w h i c h  e x t e n d s  f .  ( N o t i c e  

t h a t  i n  t h i s  c a s e  t h e  i s o m o r p h i s m  e x t e n d i n g  f i s  u n i q u e l y  d e t e r m i n e d  b y  
�9 / 

f). Now, following Fralsse, we define inductively for each n~ 

(~'X)xGX =n+l (~'f(X))x~X 

if for every a el~l there exists b~l$1 such that 

(~'x'a)x~X -=n (~'f(x)'b)xe X 

and conversely, for each b ~I$I there exists a~l~tJ such that 

( ~ ' x ' a ) x ~ X  -n ( ~ ' f ( x ) ' b ) x ~ X  " 

A local isomorphism f from ~ into ~ is called immediately extendible if 

= (~,f(X))x ~ x (~ 'X)x~ x l 
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f is called elementary if 

( O ~ ' X ) x ~  x =- ( g ' ' f ( X ) ) x ~  x " 

Next we consider the (finitary) first-order language of similarity 

t. A set ~ of t-formulas is called substructure complete if every loc- 

al isomorphism between models of ~ is elementary. Notice that this def- 

inition is purely model theoretic. This notion has been vagrant in model 

theory for a long time, however the first formal definition apparently 

is due to Sacks [8] . Our first lemma is well-known and will only be 

put to auxiliary use in this paper. 

Lemma i ~ is substructure complete if and only if ~ is model 

complete and SMod~ has the amalgamation property. 

We say that ~ admits quantifier elimination if for every t-form- 

ula ~ there exists a quantifierfree t-formula ~ such that 

Notice that this definition may be interpreted as being purely syntact- 

ical. As we pointed out in our introductory remarks, this "definition" 

of quantifier elimination has no claim to universality. However many 

examples of quantifier elimination can be successfully treated with this 

definition. Moreover, this is the only definition known thus far which 

gives rise to a fruitful theory of quantifier elimination. 

The next theorem converts the syntactical notion of quantifier elim- 

ination into the model theoretic notion of substructure completeness. 

Again it appears that the first explicit statement and proof of this 

important result are due to Sacks [8] . 

Theorem 2 Z admits quantifier elimination if and only if ~ is sub- 

structure complete. 

The model theoretic-algebraic approach to quantifier elimination 

now is characterized by an attempt to establish substructure complete- 

ness by "purely" algebraic methods. As to be expected, with the help of 

ultraproducts this goal can always be fully attained. However, we shall 

develop a method which is less restrictive at the expense of being "al- 

most" algebraic. On the other hand we shall see that the model theoretic 
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residue of this method is easy to handle once it is fully exposed. Our 
�9 / 

basic tool is an important result which is due to Fralsse [2] . 

Theorem 3 Suppose ~ @ X ~-I~ , where X is finite, and f:X--~I$1 . 

If for every n <co, 

(~'X)xe x - (~'f(X))x n eX 

then 

(0~'X)xE X - (~'f(X))x~ X " 

Remark 4 Notice that the hypothesis of Theorem 3 is purely algebra- 

ic although it involves a rather complicated inductive procedure. The 

converse of Theorem 3 is not true in general. In fact, it is true only 

in case both ~ and 9~ are locally finite of finitely based similarity 
�9 / 

type. Since Fra!sse's Theorem has been proved originally for relational 

structures with finitely many relations (for which the converse is true), 

the first applications in the literature have been restricted to this 

case. We shall soon see that our method of establishing substructure com- 

pleteness will fail to be "purely" algebraic by exactly the same margin 

as the converse of Theorem 3 fails to be true. In fact, in order to est- 

ablish that a local isomorphism f from ~ into ~ is elementary we shall 

show purely algebraically that for every n<co , 

(~'X)x~X ~ (&'f(X))x n 6X" 

Since the converse of Theorem 3 is not true, in general we are attempting 

to show something too strong. Therefore the models ~ and ~- have to be 

suitably chosen. This choice constitutes the model theoretic residue of 

our method. First we reduce the inductive procedure involved in the hy- 

pothesis of Theorem 3 to immediate extensions of local isomorphisms. Of 

course, for practical applications this reduction is quite crucial. 

Lemma 5 Suppose every local isomorphism from ~ into ~ is immed- 

iately extendible, let ~ �9 X ~ I~I , where X is finite, and suppose 

f:X-->I$1 is a local isomorphism. Then for every n<co , 

let 

(~'X)x*X ~ (~ ' f (X))x  n e X "  

Proof: By induction on n . Assume the assertion is true for n and 

a eI~I . By hypothesis there exists be[~I such that 
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(~,x,a)x~ x -o (~'f(x)'b)x~X " 

By induction hypothesis, 

(~1,x,a)x~ x - (~,f(x),b)x~ x n 

and by symmetry, 

(~'X)x e X ~n+l (~,f(X))x~ X" 

Corollary 6 If every local isomorphism between models of Z is 

immediately extendible then ~ is substructure complete. 

Proof: Use Theorem 3 and Lemma 5 

Remark 7 Notice that the hypothesis of Corollary 6 is purely al- 

gebraic and does not invalve any inductive procedure any more. Again, 

the converse of Corollary 6 is not true. In the remainder of this paper 

we shall be concerned with the margin by which Corollary 6 fails to be 

true. This will reveal the model theoretic residue in our method of elim- 

inating quantifiers. First we need a few more definitions. 

is called locally homogeneous if every local automorphism of 

is immediately extendible. Notice that a countable locally homogeneous 

structure is homogeneous. 

Corollary 8 If ~ is locally homogeneous then every local auto- 

morphism of O~ is elementary. 

Proof: Use Lemma 5 

Remark 9 Again the converse of Corollary8 is not true. Although 

an investigation of the converse of Corollary 8 leads to interesting re- 

sults we shall not be sidetracked by such a pursuit. 

is called locally saturated if for every finite X ~I~I , every 

1-type for Th(~,x) x ~X is realizable in (~'X)x~ X " Notice that a 

finite structure is locally saturated and a countable locally saturated 

structure is saturated. Now we can see to what extent the converse of 

Theorem 3 is true. 
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Theorem i0 Suppose ~ and ~ are locally saturated. Then ~ 

if and only if for every n<~ , CL ~ 
n 

Proof: The assertion is trivial in case ~ and ~- are finite. So 

assume that ~ and ~ are infinite. We shall prove by induction on n 

that for every finite X ~ I~I and every f:X~I~l, if 

then 

(~,X)x~ X ~ (~,f(X))x~ x 

(C['X)xeX -n (~'f(X))xe X 

Clearly the assertion holds for n = 0 Now assume that the assertion 

is true for n , let X ~l~ be finite and let f:X--~lSJ , where 

(~ 'X)x~X ~ (~'f(X))x~X " 

Consider a El~l and let ~ be the type of a in (~'X)x~ X " Then 

is a 1-type for Th($'f(X))x~ X " Since ~ is locally saturated, there 

exists b~lSJ such that b realizes ~ in (~'f(X))x ~X ' Thus 

(~'x'a)x~X ~ (~'f(x)'b)x ~X " 

By induction hypothesis, 

(~,x,a)x~X - ($,f(x),b)x~ x n 

and by symmetry, 

(~'X)x eX ~n+l (~'f(X))x~ X " 

This completes the inductive proof and the converse of Theorem 3 is 

established. 

Denumerable (locally) saturated models do not always exist. In fact, 

necessary and sufficient conditions for the existence of a denumerable 

saturated model of a theory ~ are well-known (see Vaught [14~ ). Never- 

theless, locally saturated models always exist in abundance. The next 

theorem tells us where to look for them (see Sacks [8] ). 

Theorem ii 

~CL such that 

If 0~ is infinite then there exists a locally saturated 

cards ~ max( 2~~ ) 
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Notice that in Theorem ii we may not be able to obtain ~ denum- 

erable in case ~ is denumerable. Now we can state the main result of 

this paper. 

Theorem 12 The following are equivalent : 

(i) ~ is substructure complete. 

(ii) Every local isomorphism between locally saturated models of 

is immediately extendible. 

(iii) For every ~ , ~  Mod~ there exist~C~ and ~ such that 

every local isomorphism from ~ into ~ is immediately extendible. 

Proof: Assume (i) and suppose ~,~ @ Mod~ are locally saturated. 

Let ~ @ X ~I~I , where X is finite, and let f:X-~/~I, where 

(~'X)x~X ~ ( ~ ' f ( X ) ) x  o ~ X  

By hypothesis, 

(~'X)x~X ~ (~'f(X))xEx " 

Consider any a ~J~I and let Z be the type of a in (~ 'X)x~ X' Then 

is a 1-type for Th(~ ,f(x)) x~ X ' Since ~ is locally saturated, 

there exists b~I$1 realizing ~ in (~'f(X))x~ X ' Thus 

(~ 'x'a)xeX (~'f(x)'b)xeX ' 

and therefore 

By symmetry, 

(~ x'a)x~X ~ ($'f(x)'b)xeX 
' 0 " 

(~'X)x,X -1 ($'f(X))x~X �9 

Next, assume (ii) and suppose ~,$ ~ Mod~ . By Theorem ii, there 

exist locally saturated ~ and #~- and (iii) follows at once. Fin- 

ally, assume (iii). Suppose ~ ,~ 6 Mod~ , let ~ @ X ~l~l , where X is 

finite, and suppose f:X-~[~l, where 

c~ ~,~,X~x~X ~o ~" ~ ~'~'f'X'~x~X �9 

Choose ~ and ~ according to the hypothesis. Then 

(g,X)x~ x = (~,f(x)) x 0 ~ X ' 
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and by Lemma 5 , for all n <~ , 

By Theorem 3, 

and therefore 

( g " X ) x ~ X  = ( ~ ' f ( x ) ) x  n ~X " 

( g ' X ) x e X  ~ ( ~ ' f ( X ) ) x e X  ' 

( ~ ' X ) x ~  x - (~'f(X))x~X " 

This establishes (i). 

Remark 13 Theorem 12 clearly reveals the model theoretic component 

in our method of quantifier elimination. It gives us two options to apply 

model theory. Upon first view it appears that in applications we still 

may get rather deeply involved in model theory. In (ii) it appears that 

we have to determine the locally saturated models of the theory ~ . In 

(iii) it is not clear which elementary extensions of models of Z to 

choose (unless we go back to (ii) X). However, in all applications we 

have investigated thus far the task of characterizing the locally sat- 

urated models of Z turns out to be surprisingly simple. Once this is 

accomplished the application of (ii) only requires some well-known al- 

gebraic facts. Applying (iii) we have discovered that some well-known 
! 

algebraic facts together with a direct appeal to the upward Lowenhezm- 

Skolem Theorem are often successful. We shall amply illustrate these re- 

marks with examples. First we shall further refine our results. 

It is often possible to establish substructure completeness by con- 

sidering locally saturated structures internally. 

Corollary 14 Suppose that either ~ is complete or SModZ has 

the amalgamation property. Then Z is substructure complete if and only 

if all locally saturated models of ~ are locally homogeneous. 

Proof: We first consider the case where Z is complete. Assume all 

locally saturated models of Z are locally homogeneous and suppose ~, 

E Mode are locally saturated. Let ~ �9 X~I~] , where X is finite, 

and let f:X-~I~l , where 

(~ ,X)x, x - (~,f(x)) x o eX " 

Since ~ is complete, ~J- Consider any a ~ 1 ~  . Since ~ is locally 
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saturated it follows by a well-known argument that there exist g:X--~4$1 

and c el$1 such that 

(~,x,a)x~ x - (g,g(x),c) o x~X " 

Therefore 

(g,f(x)) ($'g(X))x~ x o xeX 

and by hypothesis there exists b~I$1 such that 

Thus 

and by symmetry, 

(~'g(x)'C)x~ X =o (~'f(x)'b)x~ X " 

(~x,a)x ~ X - ($ f(x),b)x~ x o 

(~'X)x~X ~ (~'f(X))x i EX" 

By Theorem 12, Z is substructure complete. The converse follows directly 

from Theorem 12. 

The case where SMod~ has the amalgamation property follows from 

the first case because in this case ~ is substructure complete if and 

only if all complete extensions of Z are substructure complete. 

Remark 15 There are again two options to apply Corollary 14. Often 

we wish to eliminate quantifiers in order to establish completeness. In 

this case the first option is not available. Then it is sometimes known 

from algebra that SMod~ has the amalgamation property. On the other 

hand it is also known from algebra that it is usually rather difficult 

to establish the amalgamation property. 

Next we shall discuss the case where model theory can be complete- 

ly eliminated from our method of quantifier elimination. From Remark 4 

it is clear when to expect this case. 

Corollary 16 Suppose the similarity type is finitely based and 

every model of ~ is locally finite. If either ~ is complete or SModZ 

has the amalgamation property then the following are equivalent : 

(i) ~ is substructure complete. 

(ii) Every model of ~ is locally homogeneous. 

(iii) Every denumerable model of Z is homogeneous. 
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Proof: We again first consider the case where ~ is complete.As- 

sume (i) and suppose ~ �9 Mode . By Theorem ii there exists locally sat- 

urated ~ , and by Corollary 14, ~ is locally homogeneous. Now it 

is well-known (see Morley and Vaught [6] ) that we actually can give a 

set P of formulas such that for any locally finite structure ~ , 

~Mod~ if and only if ~ is locally homogeneous. It follows that 

is locally homogeneous. Thus (i) implies (ii). Conversely, (i) follows 

from (ii) by Corollary 14, and the equivalence of (ii) and (iii) is ob- 

vious.The case where SMod~ has the amalgamation property can be treat- 

ed as before in the proof of Corollary 14. 

Remark 17 Suppose, under the hypothesis of Corollary 16, that 

is substructure complete. If, moreover, ~ is complete then it follows 

from Corollary 16 and a theorem of Morley and Vaught [6] that ~ is ~o- 

categorical. Thus in either case all complete extensions of ~ are 
o- 

categorical, and therefore every denumerable model of Z is saturated. 

It follows that every model of Z is locally saturated. This explains 

why in this case model theory can be completely eliminated from our meth- 

od of quantifier elimination (Compare also Theorem i0). 

Now it is time to give some examples. Since these examples are well- 

known from the literature we do not have to go into much detail. We begin 

with the most direct purely algebraic cases where Corollary 16 is appli- 

cable. 

Examples 18 (i) Let (DNO) be the theory of dense linear orderings 

A,~ ~ without endpoints. By definition, every dense linear ordering 

without endpoints is locally homogeneous. Since SMod(DNO) is the class 

of linear orderings, which has the amalgamation property, (DNO) is sub- 

structure complete. 

(ii) Let (ALBA) be the theory of atomless Boolean algebras 

< A,^ , v ,-> . Again it is a well-known fact that every atomless Bool- 

ean algebra is locally homogeneous. Indeed, atomless Boolean algebras 

may be defined as the locally homogeneous Boolean algebras. Since 

SMod(ALBA) is the class of Boolean algebras, which has the amalgam- 

ation property, (ALBA) is substructure complete. 

(iii) For each prime number p, let (AGp) be the theory of infinite 

elementary abelian p-groups ~ A,+,-,0> .Since an infinite elementary 

abelian p-group can be considered as an infinite dimensional vector space 
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over the integers modulo p, it follows at once that every infinite el- 

ementary abelian p-group is locally homogeneous. Since SMod(AGp) is 

the class of elementary abelian p-groups, which has the amalgamation 

property, (AGp) is substructure complete. 

Remarks 19 In all Examples 18 we have chosen the second option 

in the hypothesis of Corollary 16 using the amalgamation property. In 

two cases we just as well could have chosen the first option using the 

completeness of (DNO) and (AGp) respectively. However, by essentially 

the same argument we can also directly establish condition (ii) of The- 

orem 12 for all models ~ and ~ . In this case we obtain the amalgam- 

ation property and completeness as immediate consequences of Lemma i 

Next we give some examples where an almost blindfolded application 

of the upward L6wenheim-Skolem Theorem together with condition (iii) of 

Theorem 12 are successful. 

Examples 20 (i) Let (ACF) be the theory of algebraically closed 

fields < A,+,-,0,.,-I,I > . Suppose ~,~ Mod(ACF) . Then ~and ~- are 

infinite and therefore there exist uncountable ~ and ~ . Let 

# X ~l~l , where X is finite, and suppose f:X--~1~I , where 

(@ ,f(x)) (@'X)xex o x e x " 

Let d ~ be the algebraic closure of the subfield of ~- generated by X. 

Then there exists an embedding g: ~o-~ such that f~ g . Now consider 

any a ~t~I If a~I~o I then 

(~'f(x)'g(a))x ~ x (g 'x'a)x~ x o 

Otherwise a is transcendental over ~Y Since ~ is uncountable it has 
o 

infinite transcendence degree over g(~o ) It follows at once that 

there exists b ~I~I such that 

By symmetry, 

( @,f(x),b)x~ x" (~ 'x'a)x ~ x o 

(~-'X)x~ X-i (~'f(X))x~X ' 

and (ACF) is substructure complete. 

(ii) Let (DTFA) be the theory of infinite divisible torsionfree 
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abelian groups <A,+,-,0> . Suppose ~,~ ~ Mod(DTFA) . Then there exist 

uncountable ~Y~ and #2~- . Let ~ @ X~IgI ,where X is finite, and sup- 

pose f:X--~[~I , where 

(~ X)x~X ~ ( ~ ' f ( x ) ) x  ' 0 ~X" 

Let ~o be the divisible hull of the subgroup of ~Y generated by X. Then 

there exists an embedding g: ~o-~ such that fmg . Now consider any 

a~I~l If a e I~ I then 
O 

(g'x'a)xeX ~o ($'f(x)'g(a))x~X 

Otherwise we consider ~ and ~ as infinite dimensional vector spaces 

over the rationals. Then ~7 o may be identified with the subspace of 

generated by X and it follows at once that there exists b~I~I such that 

By symmetry, 

(~f'x'a)x~X - (~,f(x) o 'b)xeX " 

(g'X)x~X ~l ( ~'f(x))x*x ' 

and (DTFA) is substructure complete. 

Remark 21 In both Examples 20 we did apply the upward Lowenhelm- 

Skolem Theorem just to obtain uncountable elementary extensions. However, 

this weak appeal to the Lowenhelm-Skolem Theorem is somewhat misleading. 

In both cases the theory is ~l-categorical and therefore all uncount- 

able models are saturated. 

Finally we give some examples where a more subtle argument together 

with condition (ii) of Theorem 12 are required. 

Example 22 Let (RCF) be the theory of real closed fields 

< A,+,-,0,.,-1,1,6> . We first separate the property of locally sat- 

urated real closed fields which will enable us to eliminate quantifiers. 

Later we shall see that this property actually characterizes these fields. 

Let OI* Mod(RCF) and let ~_O~ . (X,Y) is called a cu_~t of ~ if 

(i) x~Y =I~( 

(ii) x~ = 

(iii) if xeX and y~ Y then x<y . 

Let a * l~l . We say that a fills (X,Y) if for all x~ X and all ye Y, 

x<a< y 
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We say that (X,Y) can be filled in ~ if there exists a ~I~l which 

fills (X,Y) 

Lemma 23 If O~ is a locally saturated real closed field then every 

cut of the real closure of a finitely generated subfield of ~ can be 

filled in 

Proof: Suppose ~ is a finitely generated subfield of ~ and let 

be the real closure of ~ in ~ . Then every element of /~{ can be 

characterized as the k-th root of some polynomial with coefficients in 

l~I . Thus for each x~I~l there exists a t(~)-formula ~x such that 

for all y*l~I , 

(~,b)b~i~ I ~ ~x[y] if and only if y = x . 

Now suppose (X,Y) is a cut of ~ and let Z be the set of following 

formulas : 

VvE ~xEV]-~v<u] if xex , 

FV[Tx [v]-~u<v] if x~Y 

Since ~ is a real closed field, ( /~{ , ~ ) is a dense linear ordering 

without endpoints. Thus every finite subset of ~ is realizable in 

(~,b)bEl$ I . Since ~ is locally saturated, there exists a ~/~I real- 

izing ~ in (~,b)b,l~l . It follows at once that a fills (X,Y). 

Now we continue Example 22 and suppose ~,~ Mod(RCF) 

saturated. Let ~ @ X~I~I , where X is finite, and suppose 

where 

(~,X)xGX - (g,f(X))xe x O 

are locally 

f:X-~/~, 

Let ~o be the real closure of the subfield of ~ generated by X. Then 

there exists an embedding g: ~o--~r such that fm g . Finally consider 

any a~/~/ . If a e/~ / then 
o 

(~ 'x'a)x~ X ~o (~'f(x)'g(a))xeX " 

Otherwise a determines a cut of g( G o) . By Lemma 23 there exists 

b~l~/ which fills this cut. It follows at once from field theory that 
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({'x'a)x~X -o ($'f(x)'b)x~X " 

By symmetry, 

(~'X)x ~X -i (6'f(X))x ~X ' 

and (RCF) is substructure complete. 

We also notice now that to eliminate quantifiers we used a property 

of locally saturated real closed fields which actually characterizes 

these fields. 

Corollary 24 A real closed field ~ is locally saturated if and 

only if every cut of the real closure of a finitely generated subfield 

of ~ can be filled in 

Proof: Assume the right-hand side of the assertion. Suppose ~ is 

a finitely generated subfield of ~ and let Z be a 1-type for 

Th( ~,b)bej$ l . Then there exist ~k~ and yeI@l such that y realizes 

in (~ ,b)bei~ l . Let ~ be the real closure of ~ in ~ . If y~l~l 

then y determines a cut of ~ . By hypothesis there exists x61~I which 

fills this cut. It follows from field theory that 

(~ "b'X)b~I~I ~o (~ 'b'Y)b~I~ " 

From Example 22 we now obtain that 

(~ ,b,X)b(l$ I ~ (~ ,b,Y)b~/$ I , 

and therefore x realizes ~ in (~ ,b)bel~ I .We have shown that ~ is 

locally saturated. 

Example 25 Let (PDA) be the theory of pr~ferized divisible abelian 

groups < A,+,-,O) (that is divisible abelian groups which have, for each 

prime p, infinitely many elements of order p).We first review a few facts 

from group theory. 

Every infinite divisible abelian group 0~ is a direct sum 

~-<~i I i~I~ , 

where each summand ~. is either isomorphic to the rationals <~,+,-,0~ 
i 
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or, for some prime p, is isomorphic to the p-Pru• group < ,+,-,0~ . 

Let L ~ be the number of summands ~. in this direct decomposition 
o i 

which are isomorphic to the rationals. Similarly, for each prime p, let 

be the number of summands which are isomorphic to the p-Prefer group. [p 

Then Lo ~m together with [~ ,for all primes p determine ~ up to iso- p 
morphism and 

~* Mod(PDA) if and only if ~p ~ ~o for all primes p . 

We again first separate the property of locally saturated pr~fer- 

ized divisible abelian groups which we need to eliminate quantifiers. 

Lemma 26 If ~ is a locally saturated pr~ferized divisible abelian 

group then Lo ~ ~o 

Proof: Suppose L ~ = n < ~-~o " Then there exists a sequence of n 
o 

independent elements of infinite order, and any sequence of independent 

elements of infinite order has at most n elements. If n = 0, let ~ be 

the trivial subgroup of ~ . Otherwise let xe l~l n be a sequence of 

independent elements of infinite order, and let ~ be the subgroup of 

01 generated by { xi~ i< n~ . Then 

c~-~</~ ,+,-,0 > n 

Now let ~ be the set of following formulas : 

ku = 0 , where 0<k<co , 

+ ku = 0-~ [b = O^ ku = O] , where b �9 and k~/~ . 

Since 01 is a pruferlzed divisible abelian group, every finite subset 

of Z is realizable in (~ ,b)b~i$ I . Since O~ is locally saturated, there 

exists a~]~I realizing ~ in (0~ ,b)b~l~ I . It follows that a has in- 

finite order and < Xo,...,Xn_l,a 7 is a sequence of independent elements. 

This is a contradiction. 

Now we continue Example 25 and suppose ~,~ Mod(PDA) are locally 

saturated. Let r ~: X~-I~]I , where X is finite, and suppose f:X-~l~$1, 

where 

(~ X)x~ x -: (~,f(x)) x o c-X " 
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Let ~o be a divisible hull of the subgroup of ~ generated by X. Then 

there exists an embedding g: ~o-~ such that f~g . Moreover, there 

exists divisible ~I ~ ~ such that 

~ =  ~ o ~  
o 1 ' 

and similarly there exists divisible ~i~- such that 

= g( ~o )@ ~ l  

Finally consider any aeI~I . Then there exist unique a oe [0~o[ and 

alEl0%ll such that 

a = a ~ + a I 

By Leraraa 26, there exists b I e l~iI which is disjoint from g(~o ) and 

has the same order as a I. Let 

Then 

By symmetry, 

b = g(ao) + b I . 

(O~'x'a)x~X =-o ( $ ' f ( x ) ' b ) x c - X  " 

( O t ' X ) x ~ x - l  ( $ ' f ( X ) ) x e X  ' 

and (PDA) is substructure complete. 

Again we notice that we used a property of locally saturated pr~fer- 

ized divisible abelian groups which actually characterize these groups. 

Corollary 27 A pruferlzed divisible abelian group ~ is locally 

saturated if and only if c ~ ~ 
O O 

The proof is simple and may be left to the reader. 

Our method of quantifier elimination is not "purely" algebraic be- 

cause we have to test local isomorphisms between locally saturated (b{ o- 

saturated) models of the theory. We now notice that we can further narrow 

the choice of test models. First, it suffices to test local isomorphisms 

between ~ 1-saturated models. However, this still leaves us with the 

task of investigating the ~l-saturated models of the theory. To com- 
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pletely avoid model theory we have to take a second step and use a re- 

sult due to Keisler ~3] �9 

Theorem 29 If F is an co-incomplete ultrafilter on I then 

il < 0~ i I i~ 1 2 is ~l-saturated. F 

With the help of Theorem 29 it is easy to see that we only have to 

test local isomorphisms between ultrapowers of models of the theory. We 

collect these observations and leave the proof to the reader. 

Corollary 30 Let F be an ~ -incomplete ultrafilter on~ . Then the 

following are equivalent : 

(i) Z is substructure complete. 

(ii) Every local isomorphism between ~-<l-saturated models of 

is immediately extendible. 

(iii) For every ~,~ E Mod Z , every local isomorphism between 

~F and ~F is immediately extendible. 

We know of no striking examples where the purely algebraic approach 

of Corollary 30(ii~) yields a marked advantage over an application of 

Theorem 12(ii). However, Corollary 30(ii) sometimes simplifies the arg- 

ument a little, and we give an example. 

Example 31 Suppose ~,~ E Mod(RCF) are ~l-saturated. Let ~@ X 

l~l , where X is finite, and suppose f:X--~lSJ , where 

(~,X)xe x - (~,f(x)) o x@X " 

We continue to use the notation introduced in Example 22 and obtain 

o o 

where card ~o < ~i " If a ~ 10~ol , let )- be the set of following form- 

ulas : 

u < ~  if a<x 

~<u if x<a 

Then every finite subset of ~ is realizable in (~,g(x)) x ~ ;0~o I_ . . Since 

is ~l-saturated, there exists b~l~I realizing 7 in (~,g(X))x~l~ol" 

It follows that 

(01,x,a)x�9 (~,g(x),b)x e1~o[ �9 
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Although the argument presented in Example 31 appears to be some- 

what simpler than the one in Example 22, this simplification is rather 

accidental. Indeed, we are using the fact that the ordering of an 
l- 

saturated real closed field is ~l-dense, and this property actually 

characterizes ~l-saturated real closed fields. It just so happens that 

it is a little easier to say what the ~l-saturated real closed fields 

are than what the _ ~o-Saturated ones are. 
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Intensional Semantics for Natural Language 

Franz von Kutschera 

In this paper I shall try to give a survey of the connections be- 

tween intensional semantics and semantics for natural languages, i. 

e. between a logical and a linguistic discipline. Since these 

connections are the result of a long and still very active develop- 

ment, this survey can only be concerned with the general outlines 

and so is not primarily adressed to the specialists in the field. 

When I was asked to give such a survey I accepted the offer as an 

opportunity to make a little bit of propaganda among logicians, whose 

interest is concentrated on mathematics, for another promising field 

of application of logic that may in the future become equally im- 

portant as that of mathematics. 

I 

First let me briefly sketch the development in theoretical linguistics 

that has been leading up to today's close cooperation with logic. 

Logic first gained influence in linguistics when its standards of 

preciseness for the syntactical description of languages were taken 

over by linguists. It is, among others, the merit of Y.Bar-Hillel 

and of N.Chomsky to have firmly implanted this idea in modern 

grammar. Modern logic from its beginning - essentially since Frege's 

'Begriffsschrift" (1879) - has been using artificial languages that 

are syntactically and, since Tarski'spaper on the concept of truth 

of 193~, also semantically built up in a rigorous manner. The, so to 

speak, idealized experimental conditions under which such artificial 

languages are constructed allow an exactness of their grammatical 
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rules and therefore of linguistic analysis that contrasts very po- 

sitively with the vague concepts and the assertions of doubtful 

generality in traditional grammar. Clearly natural languages, evol- 

ving from long historical developments are much more complex and 

difficult to describe by exact rules than constructed languages. 

But if the property of well-formedness of the sentences of a natural 

language L is decidable, as it should be as a precondition to them 

being easily understandable, then on Church's thesis on the mathe- 

matical definability of the concept of decidability and in view of 

the development of general systems for generating decidable sets of 

expressions in metamathematics, there must be such systems for gene- 

rating the sentences of L. Generative grammar mostly uses Semi-~hue- 

systems. If "S" (for "sentence"), "NP" (for "noun phrase"), "VP" 

(for "verb phrase"), "A" (for "article"), "N" (for "noun"), "VT" 

(for "transitive verb'), etc. are (grammatical) symbols, and the 

expressions from the lexicon of L provide the terminal vocabulary, 

the well-formed sentences of L can (in a first approximation) be des- 

cribed as the expressions derivable from the symbol S by applications 

of the rules of the system. These rules are of the form XCZ-gXzY, 

where ~ is a grammatical symbol and ~ such a symbol or a terminal 

expression. We obtain for instance this derivation of the sentence 

"The man hits the dog'S: 

S 

N? 

A N 

I 
The man 

YP 

J\ 
VT N~ 

/\ 
A N 

I I 
hits the dog 

This model ha~ the advantage of being familiar for linguists: the 

sentences of a language are analysed into a linearly concatenated 

sequence of constituents and this parsing operation can be performed 

at various levels of generality to yield a hierarchical branching- 

diagram. 

There are many complications involved in this grammatical model 
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that I shall not discuss here. Let me just say that the end-expressions 

of such derivations represent only the deep-structure of the sen- 

tences of L which in many cases do not coincide with their sur- 

face structure, i.e. their normal form, which then has to be derived 

from its deep structure by transformation rules which rearrange the 

expressions, take care of congruence, mode, number etc. 

But even if you count the theory of Semi-Thue-Systems as a logical 

theory, this is not a syntactical analysis of the sentences of L that 

could be termed "logical", since it is based on the categories "verb 

phrase" etc. of traditional grammar. So this was a step in the right 

direction but it did not carly very far. 

The first attempt at a generative semantics as made by Fodor and Katz 

in (63) was even less sucessful. They tried to coordinate semantical 

rules to the syntactical ones, but since the basic type of their 

projection rules was only that of forming a conjunction of one-place 

attributes, this attempt ended in failure. 

�9 he failure, however, of these projects to integrate logical ideas 

into the framework of traditional grammar cleared the way to lin- 

guistic analyses that are logical in a deeper sense. The idea seemed 

more and more attractive to depart from the categories of traditional 

grammar and use logical categories instead, as developed by K. 
f , 

Ajdukiewicz, St. Lesnzewskz, Y. Bar-Hillel, H.B. Curry and others, 

and to represent the deep-structure of the sentences by formulae of 

a logical language. Syntactically this idea was not very revolutionary 

since the complications of natural languages were already deferred 

to the transformational part of the grammar, which now could be left 

essentially unchanged. The only syntactical problem was not to make 

the deep structure too different from the surface structure of a 

sentence which it will be if the usual logical representation is used. 

Semantics, however, at first presented the difficulty that na- 

tural languages are full of non-extensional contexts, while logic, 

till about d5 years ago, had only extensional semantics to offer and 

then till about the end of the sixties only intensional semantics 

for elementary types of language. 

II 

W.V.Quine in his paper "~he Problem of Heaning in Linguistics" 

(5~) and in other papers since has argued that, while the theory of 

reference, i.e. of the extensions of expressions, is, thanks to the 

work of Tarski and others, a sound and rigorous discipline, the 
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theory of meanin G is still in a desolate state since it has not 

even been able to define its basic notions, as those of proposition, 

attribute, synonymity, analyticity etc. Neither, according to Quine, 

was it ever likely to attain the state of a sound discipline since 

these concepts cannot be rigorously defined. To vary a Wittgensteinean 

dictum, Quine thought that all that can be said clearly can be said 

in an extensional language, and whereof we cannot speak clearly, 

we should be silent. 

In his "Meaning and Necessity '~ (47), however, R.Carnap had al- 

ready shown the way to a rigorous definition of these concepts in 

the same set-theoretical framework extensional semantics uses. 

His idea was roughly this: If we know the meaning of a sentence A, 

then we know under which conditions it is true. We can express this 

by saying: If we know the meaning of A we know in which possible 

worlds it is true. The inversion of this principle is not so obvious: 

Do we know the meaning of a sentence if we know under which condi- 

tions it would be true? But we can at least define a concept of 

intension as a first approximation to that of meaning by postulating 

that this inversion hol~. Then we have for two sentences A and B: 

The intension of A is identical with that of B iff they have the 

same truth value in all possible worlds. 

And we can define the intension of A by abstraction to be that 

function f, s. t. for every world i f(i) is the truth value of 

A in i. 

This can be generalized for other types of expressions: The inten- 

sion of an expression E is that function which assigns to every 

world i the extension of E in i. 

A (possible) world is no distant cosmos on whose existence we 

speculate, but, as our world can be defined, according to Wittgen- 

stein, as the set of all facts, a (possible) world can be defined 

as a set of propositions that is consistent and maximal, i.e. as 

a "complete novel.' 

As two logically equvalent sentences like "2+2=~" and "dx2/dx = 

2x" have identical intensions but different meanings - meanings 

are to be defined so that two expressions, that are identical in 

meaning, may be substituted for each other in all contexts salva 

veritate - intensions are but approximations to meanings. They are, 

however, good approximations since it is possible, as we shall see, 

to define meanings with the help of intensions. 
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III 

Carnap's ideas were first put to use in modal logic by S.Kripke 

and others, although with a slight modification of the basic idea: 

instead of sets of worlds they used sets of interpretations. The 

language L is that of propositional or of first-order predicate 

logic with an additional sentential operator N for necessity, and 

a model of L is a set of functions r icl that have the properties 

of the usual extensional interpretations while @i(NA) depends not 

only on r but also on the values ~j(A) with j@i. A model for 

propositional modal logic for instance is a triple <I,S,r so that 

a) I is a non-empty set of worlds (or of indices for interpretations). 

b) For all iel S i is a subset of I with itS. 

c) For all icl ~i is a function from the set of sentences into the 

set It,fl of truth-values so that 

c~) r satisfies the conditions for extensional propositional 

interpretations,and 

c2) ~i(~A)=t iff Si~LA ], 
where [A] is the set ljr Cj(A)=t~ of A-worlds. 

Such intensional models made it possible for the first time to 

define the formal properties of the intuitive notions of necessity 

exactly and to prove the soundness and completeness of systems of 

modal logics with respect to such notions. Up to Kripke's work there 

was a host of competing axiomatic systems of modal logic, while no- 

body could justify his intuition that his axioms should make up an 

adequate system, nor say how his notion of necessity compared with 

others. 

There has been a lot of fruitful research in modal logic in the 

wider sense since, including for instance deontic, epistemic and 

conditional logic. Instead of sets S i families of sets or families 

of sets of sets were used. But all this did not give the general 

framework for the application of this sort of semantics to natural 

languages. What was needed was a richer language than that of 

first-order predicate logic, and a simple and general characterization 

for the different types of intensional functors. 

IV 

This was provided at the end of the sixties in several papers~ 

foremost in R.Nontague 's "Universal Grammar" (70). Let me briefly 

sketch his language, call it M, in an extensional and an intensional 
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interpretation, so that we get a better notion of what intensional 

semantics is like. 

First we define categories: 

D~: a) ~ and ~ are categories (of sentences and proper names 

b) If ~ and p are categories, ~(p) is a category (of functors 

which applied to expressions of category p produce expressions 

of category ~). 

N is to contain the symbols k (for functional abstraction),~ (for 

identity), brackets and an infinite supply of constants and variables 

for each category. 

The well-formed expressions of N are called terms of M: 

D2: a) All constants of M of category T are terms of category ~. 

b) If F is a term of category ~(p) and t a term of category p 

F(t) is a term of category T. 

c) If A[b] is a term of category ~ and b a constant and x a 

variable (not occuring in A[b])of category p, then kxA[x] 

is a term of category ~(p). 

d) If s and t are terms of the same category, (sEt) is a term of 

category ~. 

For the interpretation of N we first define the sets of possible 

extensions of terms of category �9 relative to the universe of dis- 

course U: 

~31Ev,U =U 

E~,u=It,fl 
= E~,uEp, U E~(p),U 

where A B is the set of functions from B into A. 

D4j An extensional interpretation of N over U is a function ~ such 

that 

a) ~(a) r E~ U for all constants a of category ~. 

b) ~(F(t)) = ~(F)(~(t)). 

c) r is that function f~ET(p),U so that for all r with 

r162 f(@'(b)) = r (where the constant b does not occur 

in kxA[x] and r $ r says that r and ~ coincide with the 

possible exception of the values ~(b), @'(b)). 

d) ~(s~t) =t iff ~(s) = ~(t). 

N is a type-theoretical language with predicates treated as truth- 

-value functions as Frege proposed in "Funktion und Begriff" 

(~89~) and two and more-place functions treated as one-place 

functions as in combinatory logic. As Tarski has shown we can define 

the usual logical operators, ~,a,A,e in M. 
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Intensional interpretations of M may then be defined thus: 

We supplement the alphabet of M by two new symbols ~ and 6. ~tt is 

to be an expression whose extension is the intension of t. ~t occur- 

ring instead of t signifies that t stands in an indirect or non- 

extensional context, where its extension, according to ~rege, is 

its usual intension. We need then new categories for such expressions 

and incorporate into D~ the condition: 

D~J If �9 is a category then ~(T) is a category (of expressions of 

the form ~t). 

and into D3 the definition 
I 

E~(~),U = E~, U , 

so that extensions of expressions of category ~(~) are intensions of 

expressions of category 7. 

6 is to be an operator such that 6ut ~ t. D2 is then supplemented 

by two stipulations: 

c) If t is a term of category ~, ~It is a term of category ,(T). 

f) If t is a term of category ~(~), 6t is a term of category 7. 

~52 An intensional interpretation of M over U and I (a non-empty set 

of worlds) is a function ~ such that for all ir 

a) r satisfies the conditions for extensional interpetations of M 

over U according to D4. 

b) r = X*j~(t) (where X* is a metalinguistie symbol for functio- 

nal abstraction). 

c) ~i(~a) = r 
Condition (c) of D4 now is to be modified so that ~' is an inter- 

pretation with ~(b) : ~(b) for all jr We want to quantify over 

and since there are more functions in Ep,U I than objects of E~,U 
Ep,U, and since r may depend on values r for j@i, we must 

restrict the ~'s accordingly. If ~(A[b]) does not depend on values 

~(b) for j@i, then the nature of the restriction does not matter; 

if it does, then XxA[x] may make no sense - that was Quine's argument 

against quantifying into modal contexts - and in that case again any 

restriction will do. If we interpret individual constants b as 

standard names , however, so that el(a) = @j(a) for all j~l - and 

S.Kripke has given good reasons for that in "Naming and Necessity" 

(~2) - then quantification over individuals into modal contexts 

makes sense, the same sense as our interpretation of expressions of 

the form ~xA[x]. 

A word may be in order on the much discussed problem whether all 



452 F.v. Kutschera 

the worlds in I should contain the same individuals, as we have 

stipulated, following Montague, or not, and how transworld-identity 

is to be understood, or if there can only be correspondences, counter- 

part-relations as D.Lewis suggests in (68) e.g. but no identities. 

First the objects in U are to be possible objects. For each ir 

we may introduce sets UicU of objects existin5 in i and these sets 

may be different for different i's. If E is a constant of category 

a(~) and r i we may define quantification over existing instead 

of possible objects in the manner of Free Logic by A.xA~x] :=Ax(E(x) 

A[x]). Second we can take the identity of objects as a basic notion 

that need not be defined for each world by the Leibniz-principle 

of coincidence of properties, or for different worlds by a restricted 

Leibniz-principle of coincidence of "essential ~ properties or some- 

thing of that sort. Introdmeing counterpart-relations in the sense of 

Lewis certainly makes for higher generality, but i know of no cases 

where this increase in generality is fruitful and therefore I prefer 

simplicity. 

Since non-extensional contexts are very frequent in natural languages 

the use of the u-operator is somewhat tedious. Therefore we might 

either treat all functors as correlating extensions to intensions, 

or assign intensions to the expressions directly. But as we want to 

distinguish, for instance, between quantification over extensions and 

that over intensions, between quantification over individuals and 

quantification over individual concepts, we have to mark the difference 

syntactically in any way so that we cannot hope to get off much 

cheaper by such approaches than in languages of the Montague-type. 

IV 

If L is a natural language and M an interpreted Montague-language 

then a logical grammar for L is defined by an analysing relation 

R(A,B) on T(M) • T(L), where T(M) is the set ofwe~formedexpressions 

of M and T(L) this set for L, such that 

4) For all BeT(L) there is an A with R(A,B). 

2) If R(A,B) then the meaning of A is a possible meaning of B. 

If R(A,B), A is called an anal~sing pxpression for B. 

If R is explicitly defined, all essential grammatical concepts 

for L can be defined from this relation. 

If R(A,B), then the expression A represents the deep-structure 

of B with constants of N in place of words or morphemes of L. There 

is no need now to supply analyses of deep-structures in the form of 
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their derivations, since the structure of the terms of ~ is unambi- 

guous, R may be taken to contain the rules of substitution of the 

terminal vocabulary of L for grammatical symbols in Generative Grammar 

ss well as its transformational part. 

V 

Analysing relations have been given only for very small fragments 

of natural languages. There are numerous difficulties to overcome 

if they are to be defined for larger and more interesting parts of 

language. I shall only mention some to convey an impression of the 

complexity of a logical analysis of natural language: 

~) First there is the syntactical problem that logical deep structure, 

i.e. the structure of the terms of N, is often very different from 

the surface structure of the terms of L. This makes for very compli- 

cated transformations, and therefore is an inventive to change the 

usual logical representation. Take the following two examples: 

a) Quantifiers like "everybody", "somebody ~', "nobody" are treated 

in English like proper names in the sentences Joe sings, Everybody 

sings, Nobody sings. Instead of representing those sentences in the 

usual form G(a), AxG(x) and ~VxG(x), there have been attempts there- 

fore, to assimilate proper names to quantifiers by treating them as 

functors of category o(o(~)), or by treating quantifiers ('a man", 

"all men", "no man"), as well as proper names, as names for bundels 

of properties (the "universal-generic man" having those properties 

that all men have, the 'existential-generic man' having the properties 

that some man has etc.). Cf. Lewis (70), e.g. 

b) In the German sentences 

~) Fritz sinai laut (Fritz sings loudly) 

9) Fritz singt gern (Fritz likes to sing) 

v) Fritz sin~t wahrscheinlich (Probably Fritz sings) 

the adverbs have the same function in surface structure though 

logically they are to be treated quite differently: 'wahrscheinlich" 

is applied to the proposition that Fritz sings, "laut" charac- 

terizes the verb, and 'gem" has itself the function of a verb, as 

becomes apparent in the English translations. The usual logical 

representations of the three sentences would look something like this 

Vf(S(f) ^ f(a) ^ L(f)) ("There is an action of singing that Fritz 

performs and that has the property of being loud"), F(a,g), and P(f(a)). 

"singt" occurs in (~) as a 2nd-order predicate, in (~) and (y) as a 

~st-order predicate. 



454 F . v .  Kutschera 

These two examples show that we should look for non-standard logical 

representations of ordinary language sentences closer to their syn- 

tactical structure. 

2) Generally speaking, there is a variability and plasticity of the 

terms of natural languages quite unparalleled in logic. The same term 

of L often has to be coordinated by the analyzing relation R to many 

categorially and semantically different terms of N. The task of 

getting along with a minimum of morphemes without ending up with 

ambiguity in too many cases is solved much better by natural languages, 

it seems , than by logic. It is quite an interesting problem whether 

we could not do better in logic even if we hold on, as we should, 

to the principle of unambiguity in all cases. 

3) Besides the syntactical problems of natural language analysis 

there are semantic problems which call for generalizations of the 

concept of an interpretation of N defined in D5. While we usually 

only consider eternal sentences in logic, many sentences of L con- 

tain index-expressions like 'I', 'you', 'here , 'now', 'yesterday", 

"this" etc., whose extensions vary for different utterances of the 

same sentence. Therefore extensions and intensions must be defined 

for utterances, i.e. pairs (A,j> of a sentence A and an occurrence 

of A. If I is a set of n-tuples of parameters, specifying speaker, 

audience, time, place, indicated things etc., i.e. a set of points of 

reference, then we may • in D5 besides i another index j for 

so that r is the extension, X*ir the intension of the 

utterance <A,j> of A, while ~*j@i,j(A) is the extension and X*iJr 

the intension of the sentence A. 

There is, however, no obvious limitation of the parameters in j, 

so that we must perhaps take j as an index for a space-time-point 

in i where A was uttered, as suggested by D. Lewis in (69). The meaning 

of an utterance may depend, for instance, on the facts obvious for 

speaker and audience in the situation of its occurrence as in the 

sentence "I shall now go (which may mean: walk, drive, go by train, 

fly) to Boston". 

4) In ordinary language there are wellformed but meaningless expressions 

as "q7 laughs", "The king of Bavaria is sitting in the audience' 

"If we were alive, we could read this paper", etc. Most empirical 

predicates are not defined for all syntactically admissible argu- 
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ments and many sentences for being meaningful presuppose that some- 

thing is the case which in fact may not be the case at all. There- 

fore we should, following D.Scott in (70), define the sets of 

possible extensions for the non-basic categories by 

,u=ET,u(Ep,u) ET (I), 
ET(P) A (B) is the and E (T),U= ,U 
where set of functions from subsets of B into A. 

5) Besides syntactical ambiguity (as "Flying planes can be dange- 

rous") there is also semantic ambiguity (as in "Peter is going to 

the bank") and pragmatic ambiguity (as in 'The problem I mentioned 

above was first noted by Quine'). As semantic ambiguity is often 

eliminated by the context ("Peter is going to the bank to cash a 

cheque"), we should not represent all ambiguous words by different 

constants of H. Instead we might assign classes of extensions to 

expressions and formulate the conditions in D5 thus: 

a) ~i(a) ~ E U for all constants a of category T 

b) @i(F( t ) )  ='{YCET,u: V=~(=r A ~ # i ( t )  m =(~) = 7)}- 
c) ~i(kxA[x])is that class of functions fcET(p),U such that for all 

= ' b = i(b) for all jcl there is ~ w i t h r 1 6 2  I~1 and ~j( ) 
a e~i(A~b]) with f(=)=~. 

d) @i(sms ') = {yCE $: V=~(=r h #r ^ (==# h y=t.V.=~b ^ 

~=f ))}. 

e) } i ( ~ t )  = {fr  AjV=(ar  a f ( j )  = = ) t .  
Then an expression t is unambiguous in i iff ~i(t) is a unit-class. 

We may then also abandon partial interpretations as considered 

under (4), since we can represent a function f = r eE~,u(Ep,u) 

which is defined on the subset E'eEp, U by the set of functions from 

E Ep,U coinciding on E' with f. 
~,U 

6) Not all differences in meaning can be represented by differences 

in intension. The two sentences 'Jack believes, that 2+2=4" and "Jack 

believes, that dx2/dx = 2x" may have different truth-values though 

"2+2=4" and "dx2/dx = 2x ': have the same intensions, as we saw. 

There is one approach to meaning, first taken by S.Kripke in his 

completeness proofs for the modal systems S~, $2 and $3, envisaging 

abnormal worlds in which not all logically true sentences hold. 

This has the advantage of formal simplicity but there is no way 

of determining what sort of absurd worlds we should assume to 

account for the logical incapabilities of all possible people in all 

our possible worlds. 
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Another approach is this: We introduce indices keK for the terms 

of M. Let k(A) be the index of the term A. Then we define ~i,k as 

in D5 and introduce an operator ~ such that ~i,k(~t)=l*ir 

This way we assign a term t an intension for every context A, re- 

presented by k(A), in which it occurs. 

~i,k can, for instance, be defined so that ~i,k(~S) = #i,k(~t) iff 

t is obtained from s by substituting constants with the same inten- 

sions. Then this concept of meaning coincides with Carnap's notion 

of intensional isomorphis m in (47). 

7) Besides descriptive sentences natural languages also contain 

questions, imperatives, exclamations, guesses, suggestions etc. As 

has been emphasized especially by J.L.Austin in (55) and J.R. Searle 

in (70) a semantics of natural language has also to account for these 

illocutionary modes of sentences or utterances. 

We may, however, assign the question 'Is Tom coming?', adressed by 

John to Jack the (descriptive) meaning of the assertion "John asks 

Jack, whether Tom is coming '~. And the question 'Is Tom coming?", as a 

sentence, can be assigned the (descriptive) meaning of the predicate 

"to ask, whether Tom is coming". In this way, which is essentially 

identical with what D.Lewis proposed in (70), we can, with the help 

of illocutionary verbs like "order", "ask', "promise' etc., define 

the semantics for other illocutionary modes in the framework of a 

semantics for assertions. 

V 

So the attempt at a logical analysis of natural languages suggests 

quite a few syntactical and semantical modifications of the language 

M. Besides the specific difficulties encountered in logical grammar 

we should also mention some fundamental objections that have been 

raised against the whole project: 

~) Natural languages are vague in many respects, syntactical and 

semantical. Analysing such languages, it has been said, by assigning 

them exact logical descriptions is therefore inadequate in principle 

since it projects on them a higher degree of precision than they 

actually have and is therefore a modification rather than a des- 

cription. It is not the task of a grammar of a language L to trans- 

form L into a precise language in the sense of logic, but to mirror 

faithfully the properties L actually has. 

This is not just the difficulty of how to derive the properties of 
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L from observations of how L is used, as D.Lewis suggests in (69), 

pp.200seq, but L as a natural language itself is not something 

precise but fuzzy all over. Instead of a well-defined class of 

wellformed expressions there are degrees of grammaticalness; in- 

stead of predicates with well-defined domains there are predicates 

more or less welldefined for different arguments; instead of a well 

defined class of possible interpretations of a term t there is a 

class of more or less possible or natural interpretations of t. 

In view of this John R.Ross in (73) gave the advice to grammarians 

"You have to get yourself thinking the fuzzy way!" Now, for logicians 

at least, this cannot mean thinking the vague or unprecise way, but 

only thinking the comparative instead of the classificatory way.This 

means that, after the more fundamental difficulties of logical 

grammar are overcome, we should think of defining notions like 

"Expression s is more wellformed than expression t", "~ is a more 

typical (or normal) interpretation of t than ~'" and '~s is less vague 

than t". In that way we may also define comparative concepts of 

synonymy and analyticity, as advocated by Quine. If, just to give an 

example, we have a relation of comparative similarity of worlds, as 

employed for instance by R.Stalnaker in (68) and D.Lewis in (73) in 

their analyses of conditionals, we might say that sentence A is at 

most as analytical as B iff ~A-worlds are at least as similar to the 

real world as ~B-worlds. Such comparative concepts certainly make 

for higher complexity, but I see no a priori reasons why logic should 

not be able to mirror the fuzziness of natural languages this way. 

2) Accounting for vagueness in this way would also solve another 

fundamental problem, pointed out by Quine: The interpretation of M - 

and if we analyse a natural language L by M also that of L - depends 

on the set I of possible worlds. Now we cannot take i to be the set 

of all lo~icall$ possible worlds, since the (analysing expressions of 

the) analytic sentences of L are to hold in all worlds of I. If, on 

the other hand, we determine I as the set of worlds in which all 

analytic sentences of L hold, then I is not well-defined since, as 

Quine has convincingly shown, the set of analytic sentences is not 

well defined. There is no firm boundary between analytic and 

synthetic truths, and with a little ingenuity you can always think 

of bizarre words, where the validity of supposedly analytic state- 

ments becomes doubtful. But if we admit partial interpretations, 

vagueness and a comparative concept of analyticity, we can take I 

to be the set of all logically possible worlds, 5-dimensional ones 
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and those with married bachelors included, but with the non-logical 

terms (almost) undefined there. 

3) The most fundamental objection against intensional semantics, at 

last, comes to this: The whole approach of this semantics is based 

on the realistic idea, that we confer extensions, intensions and 

meanings on linguistic expressions by coordinating extra-linguistic 

entities, concrete things, attributes, propositions etc. to them. 

That way we can abstract semantics from pragmatics, semantic coor- 

dination from the use of the expressions in accordance with these 

correlations. But this idea has been questioned with, as I believe, 

very sound arguments from Peirce onward. The slogan of today'S 

Philosophy of Language is: "The meaning of a word is determined 

by its use". Use, therefore, comes before, not after meaning, and 

therefore pragmatics, not semantics, is the fundamental discipline. 

Though we can certainly distinguish and identify many properties and 

facts without the use of language, a large and important class of 

concepts and propositions is defined only with the help of linguistic 

distinctions. In this sense Wittgenstein said: "How do I know that 

this color is red?' - An answer would be: "i have learned English" 

((53),387). Semantics, therefore, is not a theory of correlations of 

words with meanings, defined independently of language, but it has 

to be based on a theory of linguistic behavior. 

In his introduction to 'Word and Object ((60), p.iX) Quine said: 

"Language is a social art. In acquiring it we have to depend entirely 

on intersubjectively available cues as what to say and when. Hence 

there is no justification for collating linguistic meanings, unless 

in terms of men's dispositions to respond overtly to socially obser- 

vable stimulations." 

His "hence", however, is a non sequitur: Every semantics that is 

useful for the analysis of linguistic phenomena is thereby practically 

justified, no matter what theoretical constructs it employs, if it 

makes no pretense of being able to explain the fundamental facts of 

language; that, however, has never been the aim of intensional seman- 

tics. A deeper, philosophical analysis of meaning has to start from 

linguistic conventions in the sense of D.Lewis in (69). It can also 

be shown, how the descriptions of meanings in the framework of in- 

tensional semantics may be based upon descriptions of such conven- 

tions. But that is another story. 

To sum up this brief survey we can say then that intensional se- 
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mantics for natural languages, though still facing a lot of problems, 

has proved to bea very effective instrument for linguistic analyses. 

From a logical point of view, on the other hand, its interest lies 

in the fact that a closer look at the phenomena of natural languages 

is giving new stimulations to logical developments. 

References 

Austin, J.L. (55): How to Do Things with Words, (ed. by J.O.Urmson), 

London ~962. 

Carnap, R. (47): Meaning and Necessity, Chicago J956. 

Fodor, J.A. and Katz, J.J. (63): "The Structure of a Semantic Theory", 

Language 39 (q963), ~70-2~0. 

Kripke, S. (70): "Naming and Necessity", in Harman and Davidson (eds): 

Semantics of Natural LanguaGe , Dordrecht ~972, 

253-355, 763-?69. 
Lewis, D. (68): "Counterpart Theory and Quantified Modal Logic", 

The Journal of Philosophy 65(~968), ~J3-~26. 

Lewis, D.(69): Convention, Cambridge, Nasa. 4969. 

Lewis, D.(70): "General Semantics', Synthese 22(4970), 48-67. 

Lewis, D. (73): Counterfactuals, Oxford q973. 

Montague, R. (70): "Universal Grammar", Theoria 36(J970), 373-398. 

Quine, W.V. (5q): 'The Problem of Meaning in Linguistics", reprinted 

in Quine: From a LoGical Point of View, Cambridge/ 

Mass. JJ953. 

Quine, W.V. (60): Word and Object, Cambridge/Mass. ~960. 

Ross, J.R. (73): "Clause-Matiness", to appear in E.Keenan (ed.): 

Formal Semantics for Natural Language, Cambridge 

~975. 
Scott, D. (70): "Advice on Modal Logic", in K.Lambert (ed.): Philo- 

sophical Problems in Logic, Dordrecht J970. 

Searle, J.R. (70): Speech Acts, Cambridge q970. 

Stalnaker, R. (68): "A Theory of Conditionals ", in N.Rescher (ed.): 

Studies in Logical Theory, Oxford q968. 

Wittgenstein, L. (53): Philosophical Investigations, ed. by G.E.M. 

Anscombe and R.Rhees, Oxford J953. 



On extendabi l i ty  of models of ZF set theory to the models of Kelley-Morse 

theory of classes 

By W.Marek and A.Mostowski (Warszawa) 

w Introduction 

The standard axiomatisation of set theory due to 

Zermelo, Fraenkel and others was extended by yon Neumann, 

Berna~vs and GSdel to an axiomatisation in which there appears, 

apart from the basic notion of a "set", the notion of a "class". 

Intuitively, classes are properties of sets, it being understood 

that we identify properties with the same extensions. This 

intuition derives from Cantor, who spoke of consistent and 

inconsistent classes. 

The introduction of classes also extends the notion of 

"function": some classes which are not necessarily sets are 

functions. But the basic intuition of set theory that the 

image of a se~ is again a set is preserved. 

If we restrict the scheme of class existence: 

(where "X" does not appear in ~ ) to ~ormtulae in which 

no qu~ntifler binds class variables, we obtain the so-called 

"predicative class theory" of Bernays and G~del (or "GB"). 

If, however, no restriction of this sort is imposed, i.e.lf 

may contain quantifiers with variables ranging over all classes, 

the theory which results is called the Kelley-Morse theory of 
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classes (or "K~"). In both cases, GB and KM, we accept the 

class form of the replacement axiom. 

The system GB corresponds to the intuition that classes 

do not form an acceptable totality, although some operations 

on classes are acceptable, by the composition of appropriate 

operations we get classes { x : ~ (x) j for predicative ~. 

The system K~ corresponds to the conviction that the ag~egate 

of all classes does form an acceptable totality and is a 

legitimate mathematical object. 

The authors'staudpoint is the following. They agree with 

the opinion that there is no reason to assume the properties of 

sets form an aggregate which is a legitimate mathematical 

object~ but they think that the extensions of properties do 

form such an acceptable totality, and therefore that the system 

K~ has as strong an intuitive basis as the system ZF. We claim, 

in fact, that KM is a formalisation of ~econd order ZF set 

theory", and that, in particular, the form of the replacement 

axiom which is accepted in KM is in accordance with this claim. 

Thus we believe that KM is a very good system for the formalisa- 

tion and development of mathematics. 

This conviction leads to a comparison of the relationships 

between Peano arithmetic and second order arithmetic on the one 

hand and between ZF and K~ on the other. 

The intermediate systems (i.e. systems lying between GB 

and EN, for instance K~n, in which the scheme o5 class 

existence is restricted to ~I formulas) are not considered 
n 

here, although a substantial number of results (in particular w 

461 
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may be extended to that case. An interesting interpretation of 
I 

the ~ I class existence scheme is given in EI IJ. 

it is well-known that the theory KM is stronger than ZF, 

and that there are s~atements in the language of ZF set theory 

provable in E~ but not (under assumption of the consistency 

of ZF) in ZF. Sentences which assert the existence of transitive 

models of ZF set theory may serve as examples; another example 

is a sentence asserting the existence of a model of C~ ~no the 

~-~-class existence scheme. Let ZF x~ be the set of formulas 

of the of ZF set such that the relativisa- language theory 

tion -- ~V of ~ ~ to the universe of sets is provabne in EN. 

The system Z~ is an extension of ZF, and is axiomatisable~ 

but no axiomatisation (in the language of set theory) is known~ 

Our feeSing is that ZF KM consists of sentences as true as 

those o~ ZF set theory. (Clear~y the consistency of ZF KM is 

form~lly equivalent to that of KM). 

Consider a model ~ ~,E ~ of ZF KM . For general model- 

theoretic reasons ~ M, E ~ is elementarily equivalent to a 

model ~ N,E' ~ obtained from a model ~ R,E"~ of K~ by 

restricting it to sets of the model (with restricted membership 

relation). Thus it seems that it is most natural to begin 

studies of models of Z2 KM by considering models which are 

restrictions (in the above sense) of the models of K~. Such 

models are called "extendable". 

In the present paper we study extendable models. 
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The paper is organized as follows: w deals with 

preliminaries InPart One we give a number of extendable and 

non-extendable models. We introduce the important notion of 

- extendability (corresponding to ~ - models of second 

order arithmetic), which is a restriction of the notion of 

extendability. We show that every elementary class consisting 

of models of signature ~ I, 2 ~ contains an element not 

extendable to a model of K~. For the cO - models we have 

a stronger result, which, in view of recent work cf Erajewskl, 

is optimal. We show that extendability is a PC and ~ - 
I 

extendability is PCPC property. We establish the ~_ - 
I 

reflection for the theory K~. We discuss the connections 

between the extendability phenomenon and the height of the model. 

In Part Two we deal mainly with ~ - extendability. For 

a given transitive model ~ M, E ~ of ZF set theory, 

we define a class R.A~ ~ ~ (~) and show that ~ M, 6 ~ is 

a ~ - extendable model iff ~ R.A~ , M, g ~ is a model 

of KN. Since the class R.A~ is defined by a constructive 

(although transfinite) process, this result may be considered 

as a criterion of ~ - extendability : to see whether ( M .~ 

is a ~ - extend~ble model, we have only to check whether 

the images of sets in M by functions from R.A~ belong to M 

or not. In the former case M is ~ - extendable, in the 

latter not. The class R.A~ is called ramified analysis over ~; 

its construction closely follows work of Gandy and Putnam, who 
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proved similar results in the case of second order arithmetic. 

(Gandy's results were unfortunately never published. ). 

Transposing other unpublished ideas of Gandy to set theory, we 

prove that ~R.A M. , ~, E ~ is the smallest ~ - extension 

of the model M. Considerations used on this proof allow us to 

get inner interpretations of K~ in itself satisfying in 

addition various forms of choice In the course of this argument, 

we discover an interesting difference between second order 

arithmetic and the theory KM, namely that the latter has minimal 

transitive models; the former has not, as was shown by Frledman 

in ~3]. This solves a problem in ~ 3]. 

The results of Part Three were proved by W.M~rek. The most 

important result is a proof that the notions of extendability 

and of ~ - extendability of transitive models of ZP are 

different. (This is not surprising, on analogy with second 

order arithmetic, but it has to be proved). Using methods of 

Barwise and Wilmers, we show that the least ordinal ~ for 

which ~ L~, ~ ~ is extendable is smaller than the least 

ordinal ~ for which ~ L~, ~ ~ is ~ - extendable. 

Under reasonable assumptions (~amely that ~(~ exists), both o( 

aad ~ ~ are denumerable. Moreover, o( is denumerable in 

L~,, ~ , and ~ L~ , E ~ is extend~ble in 

We give sufficient conditions of extendability and ~ - 

extendability. They are entirely constructive; they appeal to 

the next admissible set, in the case of extendibility, and to 
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---~O 
the next ~--'o~ - admissible set, in the case of ~ - extenda- 

bility. 

The subject of this paper has been studied by both of us 

for quite a long time. We started systematic research on it 

in 1970 and discussed it over m~ny hours; hence our common 

authorship of the paper. Our earlier related results appeared 

sep ate   C6], EgJ, 00], C "J (=ra ed 

in order of appearance). 

In our opinion, the notion of extendability merits further 

research. The most important problem seems to us to be the 

axiomatisation of the Z~ KM set theory. In'particular, we are 

interested in mathematically interestin~ consequences of ZF KM 

which are not consequences of ZF. 

We are grateful to our colleagues from Warsaw: W.Guzicki, 

St.Erajewski, M.Srebrny and P.Zbierski for many valuable 

discussions and remarks. We owe a lot to R.0. Gandy whose 

ideas are so clearly seen in the part two. 

465 



466 W. Marek & A. Mostowski 

w 0. Preliminaries 

Pour basic theories we deal with in the paper are ZFC, ZF KM, 

and KM~. They all are formulated in the same language LST 

ZFC is the usual set theory of Zermelo and Fraenkel (with choice). 

ZF K~ was defined in the introduction. In order to introduce KM we 

proceed as follows: We change the language LST into two-sorted 

lan~ge defining a predicate ~ (X)~ (EY)(X E Y) and using 
~g 

small Latin letters for variables ranging over sets i.e. classes 

KM is the theory based on the following 

1o) 

Extensioaality 

Pairing for sets 

Sum for sets 

Powerset axiom 

Infinity axiom 

6 ) Poundation axiom 

7 ) Choice axiom 

8) Class existence scheme: (EX)(x)(x E X~ , > ~ (x)) 

X not free in ~ (.) 

9) Replacement axiom (class form) 

If in addition we add the scheme 10) 

Choice scheme 

where y(X) = { Y : < x,y > ~ Y~ , 

the resulting theory is called KNr 

with the property ~ (.). 

axioms" 

i) 

2) 

3) 

4) 

5) 



W. Marek & A. Mostowski 467 

Models of KN (K~@) may always be represented in the form 

~ ~N, M, E > where ~ c ~(M): namely it follows from the 

axiom of extensionallty and the definition of ~ (.) that proper 

classes may be uniquely represented by subsets of M where M is the 

set of all sets of the model. 

The height of a model < M,E > is the supremum of ordinals 

represented in ~ M, E > . In case when ~M, E > is a transitive 

model of ZP, the height h(M) is equal to M~ 0n. But when ~ M, E> 

is a model of K~ then the height of it is usually much larger 

since there are wellorderings in M of length bigger than On 

If ~N,E > is a structure and • E N then we put x m = ~y: N~ 

y ~x } . In case when N is transitive and E = E~N then x m = x. 

Throughout the paper we use standard model theoretic and set- 

theoretic terminology~ If X is a class then X (x) 

is called the x th section of X. We write X~Y instead of 

(Ex)(X = y(X)). In this way - intuitively - Y codes a collection 

y(X) : x ~Dom Y ~ . In part two we use the following property of 

the theory KM: wellorderings are comparable i.e. If X and Y are 

wellorderlngs then either X is similar to a (unique) initial 

segment of Y or conversly. This in turn implies that any two non- 

standard wellorderings which are wellorderings in the sense of a 

given model have the same initial wellordered type (it is in fact 

the height of the model). In part three we use-standard by now-facts 

from the theory of so called admissible sets. In particular we 

assume the working knowledge of classical results of Barwise on 

~i - compactness of denumerable admissible sets. We assume also 

some knowledge of constructible hierarchy. 
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w I. Extendability 

Definition: Let < M,E > be a model of ZF~ set theory 

and T a theory. < M,E > is called T - extendable iff there is 

C ~~ such that <~ ~M, M,E' >~T where E'= E~L(M~S:)~E] 

We shall consider models which are KM- or K~ - extendable. 

When from the context it is clear what is T we call < M~E 

just extendable. 

In case when M is a transitive set and E = ~M 2 then - 

if ~M, E ~ is extendable - we may find ~ such thzt M( ~_< ~(M) 

and ~ ,~, EV ~ KM. In fact we shall be mainly interested in 

such structures. 

The simplest property of the theory k~ is that for every 

formula of LST , if ZFC ~ ~ then kq~ ~- (~)%/. It follows in 

particular that if < M, ~M E~ ~ KM then dV ~, E F~> ~ ZFC. 

Let ZF KM = {~ : KM ~- (~)V ~ �9 Then ZF KM is a recursively 

enumerable set of sentences and therefore it has a recursive 

axiomatization Moreover it is easy to see that the theory KM is 

consistent,. Unfortunately we do not know any axiomatization of ZP KM. 

The theory ZF KM is much richer than ZFC. In particular 

ZF KM ~-- "There exists a transitive model of ZFC". A much 

stronger statement provable in ZF KN is the following 

"For every ordinal ~ there exists a sequence f, defined 

on c~ and such that f is an elementary tower of natural 

models of ZFC". 

Indeed~ using the classical reasoning of Montague Vaught 

(which we present below under the name "over-and-over-and-over- 

again") one can prove that V is the union of an elementary 

tower {Ri~eO~ 
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The last statement is not expressible in LST as a statement 

about sets since it has the form: "There exists an increasing 

function ~ : 0n--~ On such that ~ < ~ implies ~R~ , ~ 

~ R ~ , ~". The quantifier "there exists ~ " binds 

a class variable and not a set variable. A (very unsatisfactory) 

interpretationof this statement is the formula (~). It should be 

noted that the above statement is provable already in quite weak 

subsystems of K~. Although not provable in GB theory of 

I class existence classes it is derivable already from the ~-~I 

scheme. Another type of statement provable in KM is the following 

"There exists an increasing function ~ : On ) On such 

that ~ < ~ implies <R~i ' @~(R~i ' @ ~ and such that 

(~)0n (EX)(Xc_ R~+l & "~X, R~ , 6 > satisfies GB +~n - 

comprehension" )". 

A typical reasoning which we call "over-and-over-and-over- 

again" and use at least four times in this paper is the following 

one = 

Theorem: There are arbitrarily large o4 such that 

> z,/., V, e> .  

Proof: Using the scheme 8 we are able to prove full scheme 

of induction and so we are able to prove that for every class X 

tsf X ccnsisting of pairs < he , ~ > such that all terms of 

x belong to X and < X, 6)~ ~[~] . Applying the class form of 

the Skolem L~wenheim theorem (it is provable in KN, cf ~ 14~ ) 

we get a set s o such that <So, g~ ~V, E 
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We may assume that u ~ s o (where 

Notice that there exists oC o 

Now we define inductively two 

such that: 

u is a fixed set). 

such that s o g R 
~O" 

sequences I~ n~ ' [Sn~ n~co 

I ~s n , e> <<V, g> 

II s n ~ R~ d Sn+ I 
n 

It is clear that ~_~ s n == ~ P~ 
n&c~ n &~ n 

Put oq = ~_# o4 n . Since 
n&o 

= R 
<3O<n 
n~c3 

~J Sn, E>4 ~V, ~ ~ therefore 
n~o 

we have 

By the construction u ~ R~ so ~< may be chosen arbitrarily 

big. The proof as we presented it needs global form of choice~ the 

G~del2s axiom E. Considering Sn'S of least possible rank we are 

able to use only the local form of choice. 
| 

The sequence ~ R~)=< ~ On of the consecutive natural 

elementary submodels of V may be characterized as follows: ~ o is 

the least ordinal major,zing all ordina3sdefinable in V (i.e. 

definable by formulas of the form ~V(.)). Similarly ~ ~ +I 

is the least ordinal bigger than all ordinals definable in~/by 

formulas with the parameter E . 

In the language LST we are able to express the notion of 

wellordering, namely 
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Def in i t ion :  W . 0 . ( X )  ~ X~V2~(x ,y ) ( x6Dom X&yeDom X ~ 4 x , ~ > G I  

z=> y : x) z => 

< 

Similarly as in case of models of the second order arithmetic 

we introduce the notion of ~ -models. 

Definition: The structure <~j~, M, E > (where ~-_~ ~~ is 

called ~ - model (or - equivalently - is said to possess ~ - 

property) iff for all X E~, ~ ,  M,~WW.O.[X] implies 

that X is a wellordering. 

This leads to the following natural definition: 

Definition: The model < M, ~> is called ~ - KN - extendable 

( ~- ENC - extendable) iff there is ~ ~ ~ (M) such that 

~ , B~, g ~ is a ~ - model of KM ( ~- model of K~IC). 

Transitive models of ZP set theory are necessarily ~ - 

models. ~) This follows from the fact that 

ZF ~- (X)(W.0.(X) -----~(Eo~)(Ord(o() A X ~  <~ ,  ~ > )) and 

additionally from the fact that the formula "(.) is an ordinal" 

is an absolute formula with respect to ~ransitive structures. 

In c~se of the theory K~ the situation is different (we show this 

in w 3, although earlier i~ was proved in [9] ). A curiosity 

with respect to this is the following lemma: 

~) Indeed much weaker theories have this property; i~ is 

sufficient to assume A o - collection and >-~I - comprehension. 

The fact that powerset axiom is not used we employ later. 
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Lemm~_: 

one. 

Proof: 

W. Marek & A. Mostowski 

Formula W.0.(.) is equivalent (in KM) to a predicative 

Consider the following formula w.o.(X): (x,y) (x~Dom X 

y ~Dom X ~x,y>~X~y,x) eX~ y -- x) ~(z)(z ~_Dom X~z ~ ~ ~=> 

clea   w.o. w .o . (x ) .  

Assume now ~ W.0.(X); Consider x o of least rank such that the 

Class X~{t : ~ t, x o> eX)2 is not wellfounded. Now inductively 

define Xn+ I as an element of It : ~t, Xn~X ~- ~Xn~ of least 

possible rank such that xr~ ~t : 4t, Xn+1>EX]2 is not wellfounded. 

Xn] n ~ is a set not wellfounded in X. Again we can eliminate 

global choice from the proof. 
| 

The notions of extendability and ~ - extendability coincide 

on some classes of models; as shown in [9] , if ~ M, E ~ is 

a transitive model of ZFC and cf(~ ~ On) ~ ~• then every 

extension of ~ ~, ~ > is necessarily a ~ - extension. 

Indeed if ~ is an extension and ~ ~ , M, ~) W W.0. [X~ then, 

if ~ Xn~ ne~ is an X - descending sequence then by our 

assumption on the cofinality character of On ~ ~I, ~Xn~RE c~ 

for some o4 ~ 0n~ ~. But then, X ~R M, is not a wellordering; 

since X~RM~M therefore <M,a> ~ W.0. ~-X ~R~]contradlctlng 

We investigate now the extendability of some models of ZFC. 
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Proposition: If ~ is a strongly inaccessible cardinal then 

~Rc( , ~ ~ is ~ - KM~ extendable. 

Proof: ~ R Q+I , Ro~ , g ~ is a desired extension. | 

Notice that by Skolem-L~wenhein theorem, ~ R~ j E ~ has 

also other extensions. It has even more than ~( of them. Under 

assumption of regularity of 2 ~ it has even at least 2 ~ of them. 

Proposition: If ~ is a weakly inaccessible cardinal then ~ L~ , ~ 

is ~ - KM~ - extendable. 

Proof: If ~ is weakly inaccessible then < L , ~ ~ ~ " c~ is 

a ~rongly inaccessible cardinal". Moreover ~ L, g > ~ "L ~ -- R~' 

thus ~ L, ~ ~ "L ~ is ~ - KM~ - extendable". However the 

latter statement is absolute because L is a transitive model of ZF 

and therefore it is a ~ - model~ Note that one of ~ - extensions 

of <~, ~> is L~+~(L~). 
| 

Proposition: The least transitive model of ZFC is not extendable. 

ZF 
Proof: The formula "(.) is a transitive model of ZFC" is ~i 

and thus absolute with respect ansitive models of Z~. If the 

least transitive lw~re extendable then it would satisfy the sta- 

tement "there exists a transitive model of ZPC". But it does 

not since it is the smallest one. ~) 
! 

~) 
Once again we do not use the full po~er of K~i; ~7_ ~ class 

existence scheme is enough. 
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Let ~ Gf ~ O~ be the consecutive enumeration of heights of 

transitive models of ZFC. 

Proposition: Let ~ be a formula such that ZFC ~ (E.l c<)~ 

and ~ is absolute with respect to transitive models of ZPC. 

Let ~ be the unique object satisfying 

is not extendable. 

~> . Then ~ L E~ ~L~ j 

Proof: If ~ M, ~> is extendable then, since ~ ~ 6 

therefore a l s o  @ ~ E M and LG~ 6 M. Thus M@ L@~v | 

The above proposition can be generalized to the ordinal 

numbers definable in theories stronger than ZFC. Indeed it is 

enough that T is a recursive theory such that KM I " ~V,~> ~ T" 

KM n t class existence scheme ~ 9 ] For instance ZF = ~ ~ ". GB + 7 n 

Definition: If ~ is a strongly inaccessible cardinal then ~,~ 

is the least ~ such that ~R p , ~ <~R~ ~ g~ 

Proposition: If ~ is a stronglY inaccessible cardinal then 

~R~ J ~> is a non extendable transitive model of ZF. KM 

Proof: Since ~ R~, ~ ~ is extendable therefore it 

satisfies Z~ KM. Thus < R~, ~ ~ also satisfies ZF KM . 

By absoluteness of the notion of rank with respect to transitive 

models of ZFC we ge~, for ~<~ (R ) ~U~'~) 

If ~R~ ~ ~> were extendable then there would exist r I < o~ 
0 
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such that in the extension < ~j~', R~ , ~ > we would have 
C 

U~ 

contradicting minimality of 

2 ' ~><<v ,  e > ,, 

LTJ 

LJ 

o<r~ o 

124 

i.e. 

The analysis of the proof shows that < R~ , ~ ) is in 

fact not extendable to a model of GB + ~1 class existence 

scheme. 

Theorem (Krajewski): If < M, E > is a model of Z~C 

then there is <N, E' > such that i M, E> ~ < N, E' > and such 

that < N, E' ~ is not extendable. 

Proof: By themain result of 

such that fN, E'>~---<M, E > 

< N, E'> are definable in 

is the desired model. 

~17 ] there is a model <N, E' > 

and such that all ordinals of 

N, E' >. We claim that < N, E'> 

Indeed p 

<~,N,~,,> we wouldh~ve <~ 

for some ordinal ~< of <N, E* > . 

(R fN,E'>)m of the object R <N,E'>. 

_~< ) , E , ~ ( R ~  , b 

subsystem of 

elements of 

if it were extendable then, in the extension 

,~,~..>~ ,,<R~, ~ >~<v, ~ ,, 

Consider the replica, 

Then in particular 

is a proper elementary 

N~ E'>. Under this condition all definable 

N, E' ) must be in (R ~'E'>)*. But o4 is 
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not there, which gives the desired contradiction. | 

Corollary: If g~ is the class of all extendable G< models and 

an arbitrary elementary class in the language of LST then ~-~ ~ 

In the case of 6~ - models i.e. models with natural numbers 

ordered in the type Go , we get a slightly stronger result: ~) 

Theorem: If <~,E > is an co - model of ZFC then either ~ M,I~> 

is not extendable or there is an ordinal ~4 of the model ~,E 

s~,ch that <(~M,E> )m, E~(R~ ~'~ )*>~,E > and 

~ (R4<~,E>)*, E ~. ~(R ~M,E> )m ~ is not extendable. 

Proof: The key fact is the following tedious lem~: 

Lemma: If x~y are two elements of M such that ~ M,E > ~ " 

x is a pair ~ Xo, E') and y is a pair <~Yo' E" ~ and 

EJ~ H 
X2o and E"c y2 then ( < N,E >~ "x < y" iff 

(E")~ > )" 

Proof of the lemma: We show that the satisfaction class for x 

inside of the model ~ M~E > and the satisfaction class for 

x~ , E~ ~ in V are isomorphic. Indeed consider the object z 

which is the satisfaction class for x in the model <" M2E > . 

Then z m consists of objects being pairs ~ ~ , ~ > (in the 

sense of M) where ~ N,E > ~ . ~o is a formula" and 

~) We first define 

Definition: If xE M then x ~ = ~ (z , t~ : <M,E >~" ~z,t>cx" 
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M, E~ ~ " s is a finite sequence of elements of x ~ " and 

M, E > ~ " x ~ ~L~j ". Now we use the fact that ~M, E 

is an gJ - model and thus the notion of a formula is absolute 

with respect to ~ M, E~. Also the notion of finiteness is 

absolute i.e. ~ M,E ~ ~ " s is finite " implies that (s) m is 

actually finite. Now we show by induction (which is allowed since 

M, E> is an CO - model) that < M, E> ~ " x ~ T [~" iff 

xmo ' E~ ~ ~ ~(s)m) O] . Thus we had shown the isomorphism. 

Finally let us notice that ~ x~ ,E~ ~ ~y~, (E') ~ ~ is 

equivalent to the fact Stsf((Xo)*,Eo ~ = Stsf~(yo)*,(E,)o ) 

#-~ (Form~ ~ n(x~) ) �9 

~king the calculations inside and outside of the model and 

taking into account that (x ~ y)m = x m ~ ym. (Where the symbol 

on the left hand side denotes an operatio~ in the model and on 

the v-lght hand side a set theoretic operation) an finally using 

once more absolutness of a finite sequence, we get the result. 

With the lemma proved we prove the theorem as follows. 

Let ~ be the least ordinal - in the sense of ~ M, E > - 

such that in the extension ~ ~ , M,E'~ ~ " <Rc~, &)~/ ~" 

(Clearly under the assumption of extendability there must 

be ~ with this property). 
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We claim that < (R~M'E>)m E ~ (R ~M'E) )m ~ is not extendable. 
c< 

Suppose it were. Then there must be an ordinal ~ - in the sense 

of ~ (Ro<<M'E))m , E~(R~M'E>) m >-such that in the extension 

( o< )*)' ) the formula 

"dRy, holds. 

" J, l )D 

is an elementary subsystem of ~ (R~M'E>)m E ~(R~M'E> )m> 

But ~ M,E > is an rank extension of < (R~M'E>) m, E~(R~M'E>) m> 

(of E I : ~ ]  ) a n d  therefore (R (~ = 

( ~ , ~  > ~' �9 , ) �9 

Thus 

and so, using the lemm~ we have < M,E > ~ "<R~ , 62<<R~, 6>" 

contradicting the choice of o< . ~)| 

The extendable models always satisfy ZF I~ . The compactness 

theorem implies the following theorem: 

~) As shown by St.Krajewski the assumption that ~ M2E > is am 

60 -model cannot be omitted. Indeed he shows the following 

the erem 

Theorem: If ~Tl ~ ~ M,E > is an extendable model then there 
exists a cardinal ~ and an ultra filter D on ~ such that the 

ultrapower ~i = ~/D is extendable and for every ordinal o< o~ , 

if in the extension <T , ~)k "~Ro< ,~ 2<QV,~ ~" holds then 

(R ~ )m, E'~(R~ )m ~ is extendable. 
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Theorem: ~ M,E > is a model of ZF KM iff there is model ~ N,E'> 

such that ~ M,E ~ ~ ~ N~E'> and ~ N~E' > is extendable model. 

Proof: Implication from the right hand side to the left hand 

side is obvious. Assume ~ M,E ~ ~ ZF KM. 

It is enough to show that E~ + (Th( ~M,E> )V is consistent. 

Otherwise KM ~ (~)V for some ~ ~ Th(~M,E> ) thus ~ ~ZP KM. 

But ZF KM ~ Th( dM,E~ ), contradiction. 

The ultrapower ~7ZhlD of an extendable model is again 

extendable. Thus applying the theorem of Frayne we get the following 

result: 

Proposition (St.KraJewski): If ~ M,E > is a model of ZF KM 

then there is an elementary extension of it ~ N,E' > whio~ is an 

extendable model. 

We come back now to the discussion of the ordinal ~ 

Proposition: ~ ~ is a cardinal. 

Proof: Since ~V, ~ ~ is a rank extension of ~ R ~ , 6 

therefore the notion of a cardinal is absolute with respect to 

R~ , ~ > . Since ~ R~, @~ is a model of ZFC therefore 
LU~ 

it is a limit of its own cardinals. Thus ~ is a limit of 

cardinals and so is itself a cardinal. 
| 

Notice that the cofinality character of ~-~ is always cO . 

As is well known, if ~Yl is a natural model of the theory KM 

(and even of the theory GB) i.e. a model of the form ~ Ro(.I,R~ > 

then ~ is a strongly inaccessible cardinal, If however we 

consider models of the form ~, Ro4, ~ ~ without stipulation 
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that ~ = R~ +I' then, under the assumption that inaccessible 

cardinals exist we may find extendable models of the form ~ R~, E> 

Indeed we have the following theorem: 

Theorem: If ~ is an inaccessible cardinal then there are 

arbitrarity large _~ < ~yj such that < RO , ~ > is extendable, 

Proof: We use the "over-and--over -aud-over-~gain" method. 

Let u6R~ . Consider the system ~R,~ +I ' R~ , 6~ and its 

o subsystem ~ A ~ A~, ~> such that u~A I �9 The objects in 

are elements of R~ ~ objects in A ~ o - A I are elements of 

R~_ +I - R~. 
,. 

We define as before sequences 

such that: 

o 
A i 

{An}n ~, {A~ n~c ~ 

~/ A j, A~, ~> -~ ~R~+ I , R,--l, E "~ 

�9 C A~ +1 

As before A~ _c R~ , A j - A~c R~._ +I -R~_ 

Now set 
o 

A = ~_~ A j, A I =~_~ A~ , ~ = ~_~ Oj 

and 

Then <A, A I , ~ ' ~ R ~ + I ,  R._~ , 6> 

Let us note firstly that A I is transitive (though A is not) 

A I R~ . This follows from the fact that A _~ R~ ~-- 

Thus < A, R] ,6~<(R~+I ,~ R-~,~ E~. For each X~A put 
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x + = xn Rg. Let 3 ~ = Ix + : XEAJ. Clearly ~ arises 

simply from A by the contraction procedure and so 

<A, R~ , E > ~ < ~ , R ~ , C > .  Thus < ~- , R~ ,  C > k  KM. 

By our construction < R~ ,e )<< R~,  g-~ and of 
| 

Notice that the system ~ ,RD, Q~ is a ~ - model. 

Indeed let <~ , RD, 6 > W W.0. ~XS . Then for some 

Z 6A, X = Z ~. By our construction < A, R~ , ~ > ~ W.0. CZ~. 

The analysis of the form of Z shows that X is a restriction of Z 

to Now Thus 

~'R7+1, R~, E ~= W.0. [Z] and so Z is a wellordering. 
L.J 

S i n c e  Z i s  a w e l l o r d e r i ~ g ,  t h e r e f o r e  a l l  i t s  r e s t r i c t i o n s  a r e  

and so X is a wellorderingo 

When we look closely to the proof we find that we did'nt 

use all power of inaccesability. This leads to the ~ollowing 

definition. 

Definition: A model ~ ~i, ~ > is called 2-extendable iff there 

exist two extensions ~I and ~2 of ~ M, ~> such that: 

i.e the extension ~I is codable within ~2 ; in particular 

By virtually the same reasoning as above we have the 

following theorem: 

Theorem: If ~ M, 6 

04 ~ 0~ (~M such that 

is ~ -extendable then there exists 
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is extendable. If in particular the smaller extension ~ i  is 

a ~ -extension, then < R~, e ~ may be chosen ~ -extendable. 

Analogous hierarchies of n-extendability and ~ -extenda- 

bility may be introduced, with analogous results. However, we 

shall not pursue the matter here. 

Since we had shown that extendability is not an elementary 

property of models, it seems reasonable to investigate whether 

this property is connected with the height of model of ZF. 

Theorem: If there exists a strongly inaccessible cardinal 

and 0 ~ exists then there are transitive models MI and M 2 of Z~ TM 

such that 0nm M I = 0n~M2, MI is extendable (even ~ - 

extendable) and M 2 is not. MI and M 2 can be chosen denumerable. 

Proof: We first produce uncountable models MI and M 2 with 

the desired property as follows. If ~ is an inaccessible 

cardinal then consider ~ �9 As we proved before ~R~a, 6> 

is not extendable. But ~ is a cardinal and since 0 @ exists 

it is strongly inaccessible in L. Thus ~ L, ~ ~ ~ " ~L~, ~ 

is ~ -extendable". Since ~L, ~ ~ is transitive therefore 

~L~ , @> is actually ~-extendable. Set M i =~L~ , ~ 

M 2 =~R~ ~). Clearly both of them satisfy ZF K~ . We construct 

denumerable models M I and M 2 with the above properties as 

follows. Let ~ be the least ordinal ~ such~th~t c~ K ~ 

and Q R~ ,~>(~RK, @~ . Consider the structure ~ R~, ~, ~. 

Clearly ~ R~, E, ~ V satisfies " ~R~ , ~ > has no elementary 

of the form JR ' > is -exten ble" 
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Pick denumerable transitive model ~ M, ~ , ~ > elementarily 

equivalent to < R~, 6,~ >. We claim that <RA<~'~>& > is 

not extendable. If <R~ ~,e >, ~ > were extendable then for 

s o m e  9 < ~ 

, , 

By a reasoning we used twice, 
~R% ~a'~> ,~> ~,5> 

R~ = R A 

Thus ~ ~ 7  , ~ , ~ >  ~ d s o  

~,~l= ,, <~,~(~ ,~&,~,, 

This however contradicts the fact that < M,~ ,~Ri, 6, ~K 

Since ~ ~, ~ > is transitive and ~ ~, ~) ~ "L is 

4M, 6> ~ is indeed - extendable" therefore ~ L ~ , 

~- extendable i.e ~L~, ~) is ~ -extendable. 
| 

Thus the height of the mode2 does not determine the 

extendability property. 

There is positive result concerning Cohen extensions of 

extendable models. 

Theorem: If <~, 6 ~ is a denumerable transitive extendable 
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model, ~ P, .~> ~M is a notion of forcing, G any M-generic 

ultrafilter in < P, 6 > then < ~[G], 6 ~ is again extendable. 

Proof: Following [2] we find that if <N, V N, ~ > is a 

denumerable transitive model of KM, ~P, .~> E V ~ then 

~NLG], V N[G], 6 > is a model of KM (Actually, Chu~qui proves 

this for a larger class of notions of forcing, some of them 

being proper classes of N). Thus we only need to show that, if 

M = V ~ then M[G] = V ~[G3. This follows from the fact that if G 

is M-generic then (under assumption ~P,&> 6 M) i~ is nece- 

ssarily N-generic, and the fact that if KG(X ) s V N[G3 then for 

some set x, EG(X ) = KG(X ). | 

We show now a strong form of the reflexion principle for 

the theory EM. 

Let X be a class.We define a relation Sat(X, ~o, ~) between 

formulas of LST and finite sequences of elements of Dom X 

which satisfies the following conditions 

(xi) ~ x (x j) Sat(x, rv i ~ v~, ~) ~=> X 

(%) (~j) 
sat(x, % : v~,~) ~ x : x 

sat(x,%~ ~, ~) 4 . .> -~ sat(x,  ~ , ~) 

sa~(x,F~.~)~=> sat(x, ~ ,~)&sat(x, ~- , ~) 

, i )) sat(x, qEvi) ~ 2) <=> (EX)Dom x Sat(X, ~ , -~ ( x 

i)= (~_ {i]~v) ~ {<i,~>} where ~( x 
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We define Sat(.,.,.) as the smallest relation satisfying the 
F 

above. In case when X is a set, Sat(X, ~ ,<Xl... , Xk> ) is 

! equivalent to the following: < [ y : y~ XJ, E > ~ T[X (xl ...,Z 

We have the following lemma: 

Lemma: If ? is a predicative formula and X a class such that 

( x ) ( x  (-- V" =~ x ~ X) and X 1 X ( x l )  (Xk) = ,..., X k = X then 

(xl,..., sat(:, x) 

Proof: By induction on the complexity of formulas. For atomic 

formulas and boolean connectives the proof is obvious. In the case 

of the existential quantifier we use the fact that (x)(x ~ X). 

I 

Lemm~: If ~ is a Z 1 formula then (XI)...(Xn)(~ (XI,...,Xn) 

4=> (EX)(Ez 1 ) . . .  (EXn) IX 1 = X (xl)(~ . . .  ~Xn=x(Xn)(~ Sat(X,r~,x) 

(x)Cx I x)]l 
u/ Proof: Let r~ c(E vi ) where ~ is a predicative formula. 

Let X I ' ' ' ' '  Yn' Z be given such t l ~ t  ~ (Z,X1,. . .  , Xn). We 
n 

form the class X as follows: X =~o]~Zu ~_~{Ix~}~ xuU ~i+11~x i. 
x 6v i=I 

Then by the preceding lemma Sat(x,r~1 ~(} ,2 , . . . ,  n + I ) ) 

thus Sat(x,r~ I, ~ 2,..., n + I> ). Since X (2) = XI,...,x(n+q)=X n 

therefore (Ex I ) . . .  (EXn)(XI= X (xl)• ...~Xn= x(Xn)~ Sa t (X, '~ ,x) .  
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(x I ) 
Conversely, assume Sat(x,r~ ~, ~) ~ X, : X ~... %~ X 

• n 

Th~ Sat (X /(~vi ) @, ~). So for some 

i )). Consider X (z) ~ ~o~, sat(x/~ ~( z 

lemma again ~ (X (x), X1,... , Xn) and thus 

i 
Theorem (~1 reflection principle)" If ~E ~ I 

�9 I 

every X1,... , X n there are arbitrarily large ~ 

: x(Xn! 

By the preceding 

(EZ)~'(XI,-.., X n) 
| 

then for 

such that: 

(a) ~ (Zl,...,Xn)~-->~R~+I, R~ , E >  I= ~ [XI,~R ,...,XnnP~] 

Proof: Let XS,..., X n be given. If ~ ~ (XI,... , Xn) then 

let o< be appropriately large such that ~ R~ , ~> <<V, ~> . 

Suppose now ~ (XI,...,Xn). By the preceding lemm~ there 

is a class X and a sequence ~ such that Sat(X, ~ , ~) where, 

for each i, ~i~n, X (xi) = X i. Moreover, (x)(x? X). Now 

we use the "over-and-over-and-over-~gain" method once more 

(using Skolem-L~wenheim, class version). We define four sequences 

zn~n Ecd~ { zon~ , ~X n ~ , ~ t n~ inductively as 
n~co ns n~co 

follows: Let u be a given set. There is w _~ Dom X such that 

(s) u={x 
(zo), z ~ is any subset of Dom X such that, for all xE~ n 

n EcJ 

for all ~ 's Sat(X o, ~,~) <~---> Sat(x, V,~) 

where X o = X ~ (z~ V), z ~ = { z ~z ~ : X (z) g V ~ 
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o such that for some 7 t o is any set containing z o 

o is a set, t X (z) : z Et o ~ = H~ (Since z o o 

Now assume z n, z n , X n , t n are known. 

z n+l is a subset of Dora X such that tnd z n+1 

k 

and such that for all ~6 ~_/ 

can be found) 

t 

~n+l 
z = t n 

(zn+1), all ~ E Lsr 
k E 

Sat(Xn+1 , rw1, ~) {___> sat(x,,?~, i )  

where Xn+ I = X ~ (z n+Ix V). 

{ v ~ z n~. x (v) ~ v ] n + l  
z 0 = 

n+l such that for some ~ I in+ I is a set containing z o 

{x (~)- ,.~tn+l} =~? �9 Now form z ~ ~ z n 9 

nE~ 

~ z n x = x m (z~x V), z~ = n ~ o and t = ~_J t n 
ne~ 

We find that z ~ = ~ ~ ~z~ : x (v) ~ v J 
O 

By our construction there is ~ such that I x(V):v~ t~} = R~ 

The following holds: 

(z) (~)(E" E ~ _ ] ( n ( z ~ ) ) ~  (Sat(X~, "h ~ ~)~r-~. Sat(X, r9l ~ ) )  
nEo 

(II) z~= t c~ 

Since z ~ is a set we may assume that for zl,z 2 6 Dom X 

(~1) ("2) 
z I ~ z2~ X ~ X~ . 
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Define now on Dom X ~ a relation E as follows 

The relation E is wellfounded and extensional (for the last 

fact we need, for z I # %, x I) #x ). ~hus <~o~X~,E> 

<N, 6 > for some transitive N. 

We find that 

(h i )  

Thus 

gives the following : i(x) = x(X)~ R 

(x)(Sat(X~, viE V, {< i,x>{ )) 4.> X (x)~ 6 R? 

The analysis of the isomorphism i : < DomX~ ,E~> ~Nj E> 

x(X)~ R? 

Since S a t ( X ,  (4, ~ ) t h e r e f o r e  k/N ~, vN, C ~I=~fL-x (x 1 )r~ i~ ,... ~X. (Xn~R~]} 

% 

Finally for ~ 6 ~'~ ~/ ~'R7 ,e> ~ ~ ~%,..., Zn3 implies 

<R~ + 1 , R 9 , 6>~Lz1,..., Zn] �9 Thus Sat(X,T, x)  implies 

~R~+I, R~ , 6~ ~ ~X (xl)~ R~ ,~.., x(Xn)n RTJ(whenever 

4. 

Considering z n ~ s ~ and t n ~ s of least possible rank 

we may eliminate the usage of the global form of the axiom of 

choice. | 



Definition: (a) 

respect to the class ~ iff ]~ ~o(~ and there is a set of 

sentences S in the language LsT(A ) (arising from LST by 

adding unary predicate A) such that 
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A class ]~ of models is a PC class with 

)))) 

489 

(b) A class ]~ ~ is CPC with respect to ~ iff ~- ~ is 

PC class.~ogously we define PCPC, CPCPC classes etc. 

Theorem: The class of extendable models is a PC class with 

respect to the class of all models of ZFC. 

Proof: If ~ is extendable then - by virtue of Skolem- 

L~wenheim theorem there is C d_ ~ (I~) which extends ~ and 

such that ~ = I~I 

Let f be an enumeration of C with elements of i ~I �9 

Finally let X = ~ (x,y> : y 6 f(x)] . 

We have the following lemma: 

Lemma: For every formula ~ of LST there is a formula k~ W of 

LsT(A ) such that 

<c, M,~'> ~ [xl, ,~k,f(yl), , f(Yk)] 

M,~,X> I= ~[x 1--x k, Yl Yk] 

Moreover the mapping ~ ~-> ~ is effective. 

We leave the proof to the willingful reader. 

Now: ]f~ is extendable <--> 
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)) 

thus the class of extendable models is a PC class. 
| 

One shows (just by appropriate modification of the above 

definition) that the class of ~ - extendable models is a PCPC 

class. By the existence of the least ~ - extension (cf w 2) it 

is also a CPCPC class. We do not know whether it is a CPC class 

(with respect to the class of all models of ZFC). 

w 2. Ramified analysis and ~ -extendability 

We present here a construction of the least ~ -extension 

of a model ~ M,E > (provided ~ M,E > is ~ -extendable). 

The construction follows closely the one of Gan~y used in his 

proof of existence of the least ~ -model of analysis. However 

we have to change some details since not every model has a 

definable wellordering. 

We use instead another interesting property of transitive 

models of ZF; Every transitive model of ZF has a definable 

preweliordering (according to the rank of elements) such that 

every equivalence class of this prewellordering is a set. This 

fact will be used to show that ramified analysis has a prewell- 

ordering such that every equivalence class of it is codable as 

a class with the domain being a set. 

Let M be a transitive set, U C ~ (M) family of subsets 
I 

of M, we consider a structure ~U, M, ~) . 
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Definition: ~ ( <U,M, ~ > ) is the family of subsets of M, 

parametrically definable over ~U,M, 6) i.e. of the form 

491 

where ~ is a formula and z a sequence of parameters. 

Let us note that < U,M, 6 > ~ ~ [A] 
U 

with A 6M. 

is equivalent 

Let x_c~. 

We define R.AMo 'X = M U IX } 

M,X 

R.A M,X = ~ R.AM~ ~X 

and fin~lly R.AM.' X --~__J R M,X 
--- ~ 

~ On 

Since R.AM. 'X = R.A M'X implies that R.A M'X = R.AM. ~X 

therefore by os~rdi~lity argument there must be p such that 

R.AM., X = R.AM. 'X . 

P 
Definition: Let K c__ M. K is called M-amenable iff either 

K is not function or K is a function and (x)(x~M = K~x 6 M). 

Theorem 2.1 o (Ramified analysis theorem). If ~ M, E ~ is 

a transitive model of ZFC and if every element of R.A. M'X is 

M-amenable then < R.A. M,X M, E ~ is a p -model of KM. 



492 W. Marek & A. Mostowski 

Proof. The family R.AM.'Xis -by virtue of construction- 

closed under the scheme of class existence (Indeed, if 

M~ M,X i.e. R.AS~ R.AM.iE then R.A 4+i C R.AM.'• R.Av 

The axiom of substitution holds by the amenability 

property of R.AM. ~215 Since ~ 2"A'M'• -- M (by our previous remark) 

therefore the axiom of power set holds too. 

The proof of the fact that R.AM. '~is a ~ - model we 

defer until we get appropriate technique. | 

Lemma 2.1: I f  <R.AM.~ X, M, ~ > ~ KM then R.AM.~ R.AM.~ X . 

Proof I f  4R AM iX, M, therefore 

~ (  <R.AM.~ x, M, ~ > ) ~ R.AM.~ • . By induction R.AM.i• R.AM.~ ~ 

fo all I 

Our task - in fact for all the rest of this chapter - will 

be to prove that R.AM. 'x is definable in every ~ - model 

~K , M, ~ ~ of KM such that X ~ ~. 

Before we go into the proof we need certain extension of 

the language. We addto the language of LeT predicates ~(.) 

and ~ (.) and assume the following axioms: 

i) (x)(jl(x) ~ ~ (x)) 
~J 

3) (z F o)jl(.) 
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4) (Y) => Jl (Y)) 

Since there is no reason to assume that any of objects M,X 

is definable in KM we have to start at the language level. 

The theory K~,~ is the theory KM 4- 1) ... 4) where in 

the class existence scheme we allow ~/~ and ~to appear. 

It is clear that KMj~ ,~ is a conservative extension 

of KM. Let us notice that if ~ , M, 6 V ~ KM, X E 

then the structure < CJ~ , M, ~, M, X ~ is a model of 

KMjI,~. There are models of KMjI j of different form. For 
J 

instance <~- , M, ~ , L M, X > where X g~ and X~L M. 

In the sequel proofs will be done in KMjI,~ 

For a moment we are going to study prewellorderlngs 

Definition: A prewellordering (p.w.o) is any relation 
e 

reflexive, transitive and satisfying the wellfoun~ess condition 

(Z)(Z ~ ~ & Z _C Dom(~) ~> (Ez)(z eZ & (t)(t EZ =) z < t) 

If ~ is a p.w.o we define ~ as follows: 

x~<y <==> (x ~y ~ y ~< x). ~ is an equivalence; let 

CI~(x) be an equivalence class of x in ~'J~ 

Definition: A p.w.o ~ is a good p.wo.(gpwo) Iff 

(x)(x Dcm < Cl (x) EV) 

If ~ is a gpwo then ~ determines a wellordering 

on the class Dom ~ /~< as follows: Cl(x) ~ Cl(y)~=) x ~ y. 
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Conversly if <" is a wellordering and 

satisfies conditions: a) x # y ==> 

b) F(x) r 

then < and P determine natural p.w.o 

W. Marek & A. Mostowski 

F : ~om(<)--> v 

" "  = ~ :Dora(<. 

n~eZy x l ~  =2 ~ >  (EYl)('EY2)(=I eP(Yl )& x2e~(Y2)& Yl<Y2 ) 
r 

Operations -Q and ~ commute (up to isomorphism). 

In the sequel we will need one more operation: 

Let Y be a class such that Dom Y is set and 

a) (Y)(Y E Dom Y -=> W.0.(Y(Y))) and 

(Yl),--. ~(Y2) 
b) (Yl)(Y2)(Yl,Y2 E Dom Y ==> Y = ) 

We call Ymlxable iff it satisfies a) and b). 

The ordering y mix is defined as follows: 

Dom ymix = If E (Dom Y) V : (xi)(x2)(xl,x2 ~ Dom Y =@ y(X1~f(xl) 

y (X l )  ~ f (x2 ) } 

f l  ~/ymlX f2 ~ ~-(Ex)(x E Dora Y ~fl(x) "~y(X) f2 (x))  

Lemma 2.2. If Y is mixable then for all x6Dom Y~ ymi~= y(X) 

Definition: (a) If YI and Y2 are classes then 

0}~YI ~ ~I }• Y2 is called ordered pair of YI' Y2 

and is denoted by < YI' Y2 ~ 
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(b) If Y is a class, Y~V• ~ isa gpwo of Dom Y then 

the pair < Y, ~ ~ is called a gpwo family. 

(c) If ~ happens to be a wellordering of Dom Y then ~Y,~> 

is called a wellordered family. 

Definition: A proper formula is a formula ~ such that 

Ca) 0 ~  (b) i ~  =~i ~ 1~Fr~ 

(Fr ~_ is the set of indices of free variables in ~ ) 

Since we identify formulae with their G~del numbers, the 

set of proper formulas is a set of numbers; we denote it by 

Pform. Usage of proper formulas allows us not to bother 

about which are the free variables of the formula, thus 

simplyfying the formalization of the operation ~ (.). 

If ~ is a pwo then ~_~ nDom(~) has a natural pwo. 
n~cO 

We denote it by ~ alex " It is the following ordering: 

lh(~) < lh(~) ~lh(~) = lh(~) & (Ek)(J)(J<k =.~ ~(J),-,~(J) 

Lemma 2.3. If ~ is a gpwo then ~ alex is a gpwo. 

Proof: Assume s I ~ alex s2 ~ alex sl : Then it is 

obvious that lh(s~) = n~(e2). Let s I = ~1,...,~k > , 

~2 = ~ tl,..., t k > . We show by induction that 

z I ~ t I ... Zk'~ t k . This however shows howthe 

classes of ~ alex look like: 
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Cl~alex (<Zl.-.Zk})= i <t1"-'tk> : zl~t1~... ~zk--t k = 

Cl .(z I) x ... x Cl _.(Zk). The latter class is a set. 
m 

If ~ is a pwo then in the class ~ ~ (~FrL~j-iO~'om(<)) 
Y6 Pform 

there is a special pwo called the derived ordering of X and 

denoted by X' namely 

One proves that: If 

in particular that if 

also a wellordering. 

is a gpwo then 4' is a gpwo and 

is a wellordering then ~' is 

We recall that the formula ~ (.) served as formalization 

of the predicate "x s V" 

Definition: Let Y be a class such that 

(ii) sat(Y, I (')' t)=~ j~(y(t)) 

then we define ~j~(y) = %o, z~ , x 

(~ - Iol) 
(; e 

: Yg-Pform c~ 

Dom Y) A (Et)(t E DomY ~, y(t) = x 

Let Y be a set, then we say that the family of sets 

X : X ~ Y } i.e. ~ y(t) : t e Dom Y } is codable by Y 



W. Marek & A. Mostowski 

(or - e q u i v a l e n t l y  - that  Y is  a code for  { y ( t ) :  t&Dom Y } .  

In order to explain the meaning of the operation ~ (.)~ 

let us remark that if Y,M are sets y(t) d M for all 

t EDom Y, ~ (x) <=> x EM, then 

else but a certain code for the family 

as it was defined on page 491 

,,•j.f.(Y) is nothing 

J3 (<{z = z 9 ~ } '~' e~) 

Let us note that the operation JJ~(.) makes sense 

also in case when Y is a proper class and Jl (x)<~x 6 M 

where M is a proper class; In this case however 

(<{z . zl ~]' ~' ~ >) wasnotd, f~ed. 

Lemma 2.4.: If < Y, K > is a gpwo family (i.e. < is a 

gpwo) then ~jI(Y), ~' > is also a gpwo family. 

Lemma 2.5.: If ~ YI ' ~ I 3 is a gpwo family then there 

is a unique gpwo family ~ Y2' K 2 ~ (called the concentration 

of ~YI' ~ I > ) satisfying the following conditions 

a) (W)(W 1 Y1 <=> W 7 Y2 ) 

b) (x)(x6 Dom Y2 ==> y}X)= y~X) ) 

c) -4 2 = .4 l t " ~ ~  

. ~ ( X ) . y ( y )  
d) (x)(y)(x~Dom YI ~ ye. Dom Y2 ~ x<y~y4x~z I ~ I ) 

e) (x)(y)(x e-.,<iy ~y~X) = y}y)~(x@DomY2~,~ y6DomY2)) 

497 
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Proof: Let us describe how ~ Y2' ~ 2 V arises from 

< Y1, 

Let Z ~ YI ' Z = y~Z). We pick ~l-least z I with this 

property. Since ~ I is a gpwo z I needs not to be unique. 

We leave in the Dom( ~ 2) all these ~ I - least z1's but 

erase all other z's which have the property that y~Z) = Z. 

This procedure determines both Y2 and ~ 2" The conditions 

a) - e) were determined to give this procedure. 
i 

The unique pair constructed in the concentration procedure 

is called concentration of ~ Y, W > and denoted ~ Y-, ~ - 

Now let M be the class ~ x : ~(x) ~ , < the class 

define E~ <iYl , x) . xEy , E M 

In the case when M is a set then E is a code for 
H 

M and E~ is a code for M ~IX~ . 

Notice that Dom E~ has a special gpwo -(+defined as follows 

Lemma 2.6.: If T is a wellordering then there are unique 

classes U T and ~ T satisfying the following conditions: 

I) Dom U T = Dom T == Dom ~T 

2) (x)(x EDom T =) ~U(~ ), I~T (x) ~ is a gpwo family) 
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3) If x o 

uJXo ) 

is the first element of T then 

o (x o) § 

4) 

5) 

If y is a successor of x in the wellordering T then 

= 

If y is limit in T then 

x <T y z ~ Dom 

T 

z~Dom UT(X) ~ z 16Doe U~ xl) 

(x <~x I Ax#xl)v(x--x I & z 

Proof: We make use of the theorem on inductive definitions 

by transfinite induction on elements of wellorderings. We pick 

inductive clauses to correspond to the construction described 

on the lemma. One point which needs some explanation is that 

(y) 
~T is a gpwo when y is limit. Notice h~ever that this 

(Y) It is a direct is obvious by the method we produce ~ T " 

union (according to T) of disjoint copies of I~ (x) for 

x <TY- 
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The reader who h~d enough patience %o come to this point 

deserves an explication. 

M,X 
Intuitively U x) is a code for R.A~ where 

= T ~x (T~x is an initial segment of T determined by x ) 

and U T i s  a code f o r  the sequence ~ < ~ . R . A M ~  ~ : o~ < ~ 

where ~ = i , is a code for certain uniformly 

definable prewellordering of R.AM('~ This prewellordering is 

"thin" in the following sense: each of its equivalence 

classes is codable as a subclass Z of M such that Dom Z ~. 

The main point of this construction is that U T and ~T 

depend very loosely on T. If T I and T 2 are similar wellorderiugs 

then the unique similarity function F of T I and T 2 generates 

a sort of similarity between and . Similarly for UT 1 UT 2 

~T1 and ~ ~T2 . U T is called a diagram of construction 

of the ramified analysis along the~ellordering or simply a 

diagram. ~T is called the diagram of prewellordering of 

the ramified analysis along the ~vellordering T or simply pwo 

diagram. Notice that the complications we came into the 

clause 5 of the preceding lema arose from the fact that in 

order %o avoid use of choice scheme we had to pass the limit 

points in a uniform vay. 

Definition: Let Z~ M, 

the following formula: 

of  T" 

O~ (Z, T) is an abbreviaton of 

W.O.(T) A (E t) ("t is the last element 

- ? 
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Intuitively 0d (Z, T) means that Z belongs to 

.M,Z ~.JR.A~ '~ a~ m( where t RoA.~x -- = T~t is last element of T. 

Lemma 2.7. If TI, T 2 are wellorderings~ TI~= T 2 and 

establishes their isomorphism then: (x)(x6 Dom T I =~2 (Y) 

(Fx) u(x) <=~ ~ ). 
(Y D 71 ~ UT 2 

Proof: By induction on the length of the wellordering T I . 

For the first elements of T I and T 2 the equivalence is obvious. 

All the rest follows from the following: (Z)(ZTXI~Z~X2) => 

(Z)(Z ~ ~j1(Xl)<z> Z~ ~j~(X2) ) . Similar fact may be 

proved for ~ T" | 

Using the lemma 2.7. we show the lemma 2.8., formalislng 

the remark preceding lemm~ 2.7. 

Lemm~2.8. Od (Z, 7) l Od (Z, 71 ) ~ 7~71 

Definition: Let <Y, < > be a gpwo family and Z 7 Y 

We define <Y, ~ > (Z) = is : y(S) = Z & s is ~- minimal 

w~th this property }. 

Noticet~t <Y, < > (z)~ < Y-, <-> (z) 

Definition: 

(b) 

(a) r.a. (TTZ) is an abbreviation of the formula: 

(~t)(t ~ Dora 7 & z ~ %t) ) 

r.a. (Z) is zn abbreviation of the formuls: 

(~7)(,.o. (7) & r.~. (7,z)) 
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(c) Zl "(r.a. Z2 is an abbreviation of the formula: 

% ~ 2 1 " z ) ]  v ( ~ ) f  od (z 1, ~)&o~(z 2, ~) 

(t)(t q Dom(T) ~ Z 1 ~ U (t) ~ Z 2 ~ UT(t) ~=~ 

~w2 ~ (uT(t)' ~T (t) > (Z2) ~=~ Wlg(~(t) ) w2)) 

Intuitively r.a. (T,Z) means ZE R.A_ , r.a.(z) means 
T 

R.A~JXand z ~r.a.y means Z is constructed in the Z 

process of construction of R.AM'Xearller than Y i.e. either 

the order of construction of Z is smaller than that of Y or 

(if their order is the same then either Z was defined by a 

formula whose G~del number was smaller than that used to define 

Y or alternatively if it is the same formula then the parameters 

used to define z are lexicographically earlier than that used 

to define Y). 

Let us note that we could use U T and ~T as terms 

since indeed they were unique by the lemma 2.2. Formally we 

should use formulas U(.,.) and 39(.,.) such that: 

(a) u(~, Y) <~> w.o.(~)&Y = u~ 

(b) "Tfl(T,Y) (-----) W.O(T) A Y " ~  �9 
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Thus while speaking on absoluteness of U T and ~T we 

mean the absoluteness of the formulas U and ~ . 

Lemma 2.8. : r.a. defines a gpwo of r.a. 

Proof: The precise meaning of the lemma is that: 

(E Z)(r.a (Z)~  (~(7)) => (E z)(r.a.(Z) ~,~(Z)~(Y)(~(Y)~(r.a(Y) 

=) z ~r.aY)) 

Pick firstly least T such that (EY)(Od (T,Y)~ ~(Y)). Consider 

now any ~ (~) minimal z E Dom U (t) such that 

(u t))(~)) (where t is the last element of T). As (~T ) 

is an initial s~gment of ~ r.a. we ere done. | 

Now let M be a ~ - extendable transitive model of ZFC. 

Let ~f ~ ~ (M) be a ~ - extension of M, X 6 ~ is 

fixea subset of M. Then the structure ~ ,M, E,M, X ~ is 

a ~ - model of KMj.~,~ 

Recall that h(~ ) is a supremum of the types of well- 

orderings in ~ . 

The construction of the relativized ramified analysis was 

conducted above two times. 

In the first definition we constructed a family of subsets 

of a transitive set, in the second we defined a predicate in 

the theory KM. . The next lemma connects these two 

definitions and allows us - while interpreting J~ as M - to 
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use intercha~i~ly R.AM~ X and the family defined by the 

predicate r.a.(T,.) (where T= ~ ). ~ , M, X ~e fixed for 

the t~ne bei~. 

Lemma 2.9. If T ~ ~ , ~= c~ and <~ , M, E ~ is 

a ~ - model, X ~ ~ then, for all Z ~ 

a) / ~  ,M, ~:, M,X> ~= roa. ET,Z] <:> Z ~ R . A . ~  X 

~d so, for all Z ~ 

< ~ ,M, ~ ,M,X > ~ r.a. LZ~ <--) Z ER.AM~ X where 

9= h(~). 
M,X 

b) R.A C 

M~X 
c) R.A does not contain a wellorderi~ of type 

! 

Proof: Cle~ly a)implies b) and b) implies c). 

To prove a) we have to show the absoluteness - with 

respect to ~ , M, ~ , M, ~ > of U T which follows from 

the fact that ~ is a ~ - model. | 

~m~ 2.1o. If ~ <~ then the struct~e < R.A% • M, ~ 

,e 

Y is a wellordering)). 
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Proof: By lemma 2.9. Y ~ ~ and sojif Y is not a well- 

ordering then <~ , M, E ~ ~ ~ W.0. LY~ (here we use ~ - 

property of ~ , M, 6> ). Thus there is x e M such 

that ~ , m, E> ~ "x @ Dom Y & x ~ ~ ~"x has no y-first 

element". The formula in " " ~s is predicative and all 

the parameters are in R.A~ X . Thus < R.A.~M'X, M, ~>~ 

"X ~Dom Y ~x ~ ~ ~ "x has no Y-flrst element". So 

Definition: ~ o is the first ordinal ~ such that 

R .M,X .a~ +I does not contain a wellordering of type ~ ~ 

From the lemma 2.9. (c) it follows that ~o ~ ~ " 

We are going to prove that < R .M,X .A. ~o , M, E > has 

a definable prewellordering; one such ordering is ~ r.a. 

restricted to this set (which is absolute with respect to 

M,X 
<R.A~o , M, ~>). 

Lemma 2.11. ~ o is a limit ordinal. 

Proof: from a wellordering of type ) one can-putting the 

first element to the end - produce a wellordering of type ~o+ I. 

M~X 
This construction does not lead outside of R.A. ~o " 

| 

~e~ 2.12 If ~ < ~o ' ~ < ~o then ~ § ~, ~ ~ < ?o 

Proof: If TI, T 2 are wellorderings of types o< and 
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respectively and if they belong to some R.A.7 XM then 
.) 

orderings of type o% + ~ , ot o~ belong to R.AM'~+I 
~2 

M,X). Since ~ o is limit (as they are definable over R.A 

we get the result. 
| 

2.13.  aoh of the struct es < x 

is a model of G~del Bernays theory of classes. 

Proof: for ~< I I the statement is well known. The union 

of an ordered family of models of G6del Bernays theory of 

classes (with fixed V) is a model of G~del Bernays theory of 

classes. This fixes the limit case. So what we need to prove 

is the successor case. 

This is shown as usual by proving the closure under 

operations corresponding to the axioms of group B. Note that 

M,X ~ ~ implies the validity of the the fact that R.A. ~o -- 

axiom of replacement, j 

Generally~ in the theory GB we are not able to prove 
1 

the comparability of wellorderings (this needs ~1 class 

R .~,X existence scheme). But the structure ~ .A ~O1 M, ~ ~ does 

have the comparability property. 

Lemma 2.14. If TI, T 2 are wellorderings, T 1 , T2ER'AM'Xo~ T~T2 

Then the similarity function may be found in R.AM.~ + ~i+i 

Proof: We show that the similarity function is definable over 
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.AM, X R ~ +~I ' M, ~. We prove it inductively. Let P be a 

similarity function for T I and T 2. Then F~0TI(X ) is a 

similarity function of T1~x and T2~P(x ). By inductive 

M,X (for all x~DomTl). assumption P~OTI(X) belongs to ~'A'~ +TI 

By their uniqueness it follows that G ~ (P ~ 0TI (x)) x ~ DomT I 
M~X belongs to R.Ao( + ~I+I. If T I has no last element then th/s 

union is the desired similarity function. If T I has last 

element-say to-then T 2 has also last element-say u o- and 

G U i<to, Uo~ 1 ~ R.A~X+~s+ I since the latter is a model of 

G~del-Bernays theory of classes. Since F = G ~ l<to, Uo) I 

we are done.| 

Lemma 2.15. Relations of similarity and of "less then" for 
.M,X the wellorderings are absolute with respect to ~ ~.A~ , M, ~ 

J 

Proof: By 2.12. and 2.14. | 

Lemma 2.16. a) If Y ~ R.AM~ then ~j~(Y) ~ R.A ~'X 
o~ +I 

b) If T~ R.A M~X then T'E R.A M'X 

Proof: Since < R.AM~ , M, ~ ~ is a model of G~del- 

Bernays theory of classes therefore for each ~ and t 

{~o, t~, x~ : (Ey)(Y (y) = x ~ Sat(Y, ~ , y~t)) } belongs 

R.AM, X �9 Since < R.A~ , M, ~ > is an dO - model, to 

the notion of the formula is absolute and thus ~ (Y) is 
J~ 
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definable over ~ R.AMc~ X, M, ~ ~ . 

�9 M,X belongs to R.A.~ +I " 

Th s (Y) 
._,rL 

b) T' is definable from T by predicative formula. 
| 

Lemma 2.17. 
To 

operation ~j~(.) 

(b) The formula defining the operation '~f/(.) 

absolute with respect to ~ R.AM~, ~, E> . 

Proof: a) Pollows from 2.16.a and 2.11. 

(a) R.A M'X is closed with respect to the 

is 

(b) 

absolute with respect to 

implies absoluteness of 

We establish firstly that the formula Sat(.,.,.) is 

~ .~,X M, E>. This in turn 

~ (')" i 

M,X 
LemmR 2.18. If T E R.A~ , T 

. M,X 
a n d  ~T belong to ~.A.~ + ~+1 

is a wellordering then U T 

Proofs An~logous to the proof of the lemm~ 2.14 using the 

M,X 
R .A Io 

(Formulas defining) 

is closed with respect to the 

(b) The 

(a) Prom lemma 2.18 and 2.11. 

lemma 2.!6. | 

z~mma 2.19. (a) 

operations U T and 

operations U T and 

M,X 
7o ' M, 

Proof: 

I~ T are absolute with respect t o  
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(b) As before by the analysis of defining formulas. 
| 

The concentration operation 

, M, ~ ~ 

(.)-, (.)- Lemm~ 2.20. (a) 

is absolute with respect to < R.A M'x 

(b) The value operation ~., . > (Y) 

respect to < R .M,X M, E . A o  ~0 J 

Lemm~ 2.21. 

M,X 

is absolute with 

(Analogue of G~del~ ~ L, & 

(x) r.a. (x) 

M,X 
Proof: We need to prove that in < R.A To , M, ~ ) the 

following formula is satisfied 

(Y)(ET)(W.0.(T) ~(Et)(t eDomT ~ ~V% t) ). 

Y E R.AM~ o- . Thus for some ~ < ~o 
J 

definition of ~ there must be a wellordering T in R.AM.~X+I 

such that the type of T, T is bigger than or equal to 

Let Y be given, 

M~X Y~R.A.~ . By the 

Thus U T ~ R.AM~X+~4 + 2 

by 2.12 U T @R.AM~ X . As 

at most ~ �9 we are done. -~) 

(by the lemma 2.18). Once again 

order of construction of Y is 

~) It is cles~r from t he  reasoning that t h e  consideration of ~ 

(This trick is due to Gandy) is basic to the success of our 

construction.Because it may well happen that ~. ~ and then 

we would have inside of R.AM. 'X too few wellorderings to reach 

( ~ is h(~)). In ease when ~'~, M, ~> ~ ~r we ~n 
show directly - in ~, M, e ~ - that ~ R.AM'_ x , M, ~ 

satisfies KM. But this reasoning does not lead tJ basic 

lemmas 2.21 and 2.22. 
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Lemma 2.22. 
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The formula ~ is absolute with respect to 
tea. 

@) 

Proof: Using previous lemmas it is enough to prove absolute- 

ness of the formula 0d (.,.) which we leave to the reader. 
| 

To prove the reflection principle (and thus that 

R.AM{X , M, ~ > is a model of KM) we follow the classical 

proof of Levy of the reflection principle ZF. 

Theorem 2.2.: ( Reflection Principle for ~ ~ .M,X ~.A. yo p M, 6 

For every formula ~ of LST there are arbitrarily 

large o~ ~ ~ such that for all X 1... X n 6 R.AM~ X 

M,X 
~R.A. o~ ' M, ~ ~ I= ~ LXI,...,XnS ~==3 

e Xn] 

To show this we need three facts: 

I ~ The possibility of bounding the places where examples for 

existential formulas appear. 

2 ~ Every definable functional on ~R.AM.~X, M, ~ ~ which 

takes as values wellorderings, is invariant under simila- 

rity of wellorderings amd is continuous is maJorized by a 

functional of the same sort which is in addition increasing. 

3 0 Every definable, increasing, invariant and continuous 

functional has arbitrarily large critical poimts. 
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We show I ~ leaving 2 ~ and 3 ~ to the reader. In both cases 

the idea of proof is similar to that of I ~ . Namely in showing 

that appropriate supremum of wellorderings exist. 

Proof of I ~ Let UT(X) be given (i.e. a code for R.A M'X ). 
Trx 

Assume that for every Z ~ UT(X) there is W~R �9 such cA To 

that <R.AM'~ , M, ~> f= ~LZ, W]. We show tha~ there 

is ~ 4 ~o such that for every Z ~ UT(X) there is 

W~R.AM~ X such that (R.AM~X , M, 6) ~ ~[Z, W] . 

For every Z~UTQX)~ i.e. for every z~Dom UT(X)we may 

find ~ r.a. - minimal wellordering T z such that appropriate 

W may be found in R.A.~ X . Unfortunately T z is not unique. 

Consider the shortest Tz/S. Still we are not able to claim T z 

unigue. However we shall find a new wellordering similar to T z 

andis uniquely determined by z. 
which 

Definition: S ~ V 2 is called small class ord!~l (s.c.o) 

iff 

a) Doe S @V 

b) 

o) 

Definition: 

iff 
( M ) (  

( Y ) ( Y  ~ s =e w . o . ( Y ) )  

(Y1) (~2) (  YI s ~ 2 s -~ YI 

Classes Z I , Z 2 _~ V 2 are almost equal (a.e) 

zl 
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Lemma: 

a) 

b) 

c) 

d) 

W. Marek & A. Mostowski 

There is a predicate Sel(.,.) such that: 

se l (z ,  Y ) =~ w.o.(Y ) & s . o .o . ( z )  

Z 1 a.e. Z 2 ~ (SeI(Zl, Y )(=> Sel(Z2, Y )) 

S . O . O . ( Z )  =~ (E! Y ) Sel(Z, Y ) 

(x)(Y)(x E DomZ ~ Sel(Z, Y ) ~ Y ~ Z (x)) 

The most natural idea would be, %o consider instead of 

f u n c t i o n s  on Dom Z t a k i n g  a s  v a l u e s  e l e m e n t s A .  U n f o r t u n A t e l y ~ 4 " ~  

sets of elements on different levels may be identical. Let us 

notice however that elements f of Dom Z mix such that for 

given z, ~ f = z, form necessarily an element of V. 

So preceeding formally call a level of Z an ~ f for 

some f s Dom Z m~x 

Elements on the 

same level 

(x o ) (x 1 ) 
Z �9 .... Z . . . .  

Let us consider an order type of these f 6Dom Z mix such 

that ~ f = z (z fixed). This type is an ordinal and does no~ 

depend at all on Z in the sense that if Z I and Z 2 are a.e. then 
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~mix the appropriate types in Z~ i• and ~2 are the same. 

Define now, for z being the set of all elements on the 

same level ~C z to be the type of the set of all f's 

such that ~ f = z. 

Form now the class H Z = ~J{o< z x Iz] : z is the set of 

all elements on some level of Z }. 

Notice again that if Z I a.e. Z 2 then HZl = HZ2 . 

Order now H z as follows: ~o< ~ s> K~<~jt > iff 

"The initial segment of Z mix determined by the ~ t h 

function f(in zmiX) such that ~ f = t contains a subset 

ordered by Z mix in ~ype~of functions g such that ~ g = s". 

The predicate Sel(.,.) is a description of ~ from Z as 

constructed above. ! 

Lemma: < R.AM~ "x , M, e~ is closed with respect to %he 

operation determined by Sel, moreover Sel(.,.) is absolute 

MpX with respect to ~ R.A. , M, 6 > 

Using the above lemme we are able to prove certain 

uniformization principle for R.A M'X 

Lemmm: let ~ (.,.) be a predicate such that: 

<~.A~' x , M,~) ~ (H (z,Y) ,w.o.(Y)) & 

(7-((z,Y) i ~ ~ ~I ~ 7-C (z, YI)) 

513 
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/ 
there  i s ,  p r e d i c , t e  ] - - ( ( . , . )  such t h a t  

M,X 
<R.A. T~ , M 7 ~ > p (~-~(Z, Y) ~ ~ (Z,Y))~ [C~Y) ]-~ (Z,Y) ~ 

(~, ~) J-(~(z,Y) 
Proof: We describe a construction of ~ r Given Z consider 

all ~( minimal and shortest Y's such that ~--~ (Z,Y). r.a 

This collection may be coded as an s.c.o. Any two s.c.o's 

coding it are almost equal. Using Sel we get the appropriate 

we llordering. | 

Now, to finish the proof of I~ 

Let T z be the wellordering obtained when the uniformlzation 

principle was applied to the predicate: 

~ - ( ( z , S )  <~=) (E W)(Ey)(y ~ Dom S aW ~ Us(Y)a ~((UT(X) )(z)W)) 

Form the class K as follows: 

K ~ ~ (x) i z~ • Dom T z 

z s T 

Define a relation ~ on K as follows: 

Tz2 x ~ y 

From every equivalence class of ~ pick elements of the 

smallest rank; Let L be a class of these sets. Define now 

[~1,x>~C~2,y> ] iff (Et)(t T~2Y ~ T~1~x ~= T'2~t ) 
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< S is a wellordering maJorizing all T z's �9 < S is 

definable over ~R.A.~ 'X , M, ~ > and so,belongs to 

R.AM.'~I �9 Thus the type of ~ S must be less than To and 

so we have shown that the appropriate supremum exists below ~ . 

m 
we adjoin now to the formula ~ is The functional which 

the following (we use - as before - the symbols R.A. M'X to 

make it more readable) 

R~ (TI,T2)@:~(Z)(Z ~ R.A~ ~ (EY) ~ (X,Y) ==>(Ey)(y~R.A~ 'XT2 ~'(Z,Y) 

" T 2 is a shortest wellorderlng with this property")). 

The functional R' is definable, continuous and invariant 

with respect to the similarity of wellorderings. In order to 

get critical point used to reflect ~ we have to maJorize it 

by a definable functional with the same properties and im 

addition increasing. 

This is the reason why we prove 2 ~ and 3 ~ . 

We leave the details to the experienced reader. 

Since ~ R.AM.~ X , M, ~ ~ has the reflection property 

therefore it is a model of E~. Prom the existence of a definable 

gpwo we derlve; 

Theorem 2.3. ~ R.A.~'TX , M, E ~ satisfies the following 

collection scheme ; 

(x)(EY) ~ (x,Y) =7 (EY)(X)(Ey)(y ~ Don Y & ~ (~ ~ ~(Y))) 
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Proof: We pick 

them together. ! 

rea 
- minimal Y~ good for X and give 

Let Coll ~ and ~ be collection scheme and choice 

scheme instance for ~ respectively 

Theorem 2.4. KN + Coil ~ + Global Choice ~- ~ 

Proof: Assume Coil ~ and global choice i.e. let W be a 

wellordering of the whole clsss V. Assume (x)(EY) ~(x, Y). 

Then by Col lc~ , (EY) (x ) (Ey ) (y  ~ Dom Y ~ ~ (x ,y (X) ) .  

Let R x be a subset of Dom Y consisting of y's such that 

(~ , Y(Y)). Let z x be a ~ - first element of Don Y. 

~or~ Y1 " ~ ~ ~ ~ ~ Y('x) " Y1 ~ e ~  C ~ t rue. i  

M,X 
Thus we see that, if ~ R.A. 7~ , M, ~ ~ satisfies the 

global choice then it automatica fly satisfies the choice 

scheme. This happens for instance when M has a wellordering 

definable in < R.AM~ x , M, ~ > 

We have a much nicer situation when ~M, E ~ has a 

definable wellordering, say ~ . Applying the whole construc- 

tion to ~ (i.e. letting ~ T (to) = ~ ) we get a 

definable wellordering of the whole ~ R.AM}~, M, ~ > 

Since the existence of definable wellordering in the 

presence of choice scheme implies the scheme of dependent 

choices we sum up the situation as follows: 
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Theorem 2.5. (a) If < M, ~ ~ is a transitive ~ - 

extendable model of ZFC then there is the smallest ~ - 

extension of ~ M, C >. This extension has a definable 

without parameters good prewellordering and, apart of the 

axioms of K~ satisfies additionally the collection scheme. 

(b) If < M, E ~ is a transitive p - extendable model of 

ZFC, ~ is any ~ - extension of ~ M, ~ > , X g M, 

X ~ T then there is the smallest ~ - extension of 

~M, E~ containing X. As before this extension has 

a good prewellordering definable with the parameter X and 

satisfies additionally the collection scheme. 

(c) If ~ M, E> is a transitive ~ - extendable model 

of ZFC and has a definable wellordering then the smallest 

~ - extension of ~ M ~ has a wellordering definable 

without parameters, satisfies the choice scheme and the scheme 

of dependent choices. 

(d) If < M, ~ > is a transitive ~ -extendable model of 

ZFC and has a definable wellordering, and if ~ is a 

- extension of <M, E > ~ X E ~ then the smallest 

--extension of ~ M, E > containing • has a definable 

wellordering (with a parameter X) and satisfies the choice 

scheme and the scheme of dependent choices. 

Careful inspection shows that ~ r.a. is ~ ~ and r.a. 

I 
is 7-: ,  1 . 

The reasoning used in the proof of the theorem 2.5. may be 
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applied to a proof that V = L is relatively consistent with 

KM. Indeed when M is interpreted as L the formula r.a. defines 

an in~er model of KM + V = L in KM. More precisely let 

r.a.L(.) be this formula (i.e. ~L(x) ~==> x ~ L, X = ~. ) 

Definition: If T is a wellordering ~ T + I is the class arising 

from T by putting the first element of T to the end. 

L L 
Let r.a[] be r.a if there is no wellordering X such 

k 
that ~ (EY) Y~ X ~ r.ak(X + I, Y) and let r.a• (.) be 

r.a. (Z,.) if Z is the shorlest wellordering with this 

property (Intuitively we consider R.A. L if there is no ~ such 

h 
that R.A ~+I does not contain a wellordering of type ~ or 

R.A L for the least }7 ~ such that R.&~o+ I) does not contain 

a wellordering of type ~o ). By similar reasoning as in the 

L 
proof of the theorem 2.5. we show that the formula r.a.~ is 

an inner interpretation of EN + V = L in KM (the trick 

with ~ is again due to Gandy). 

There is an important modification. We need to show that 

the classes satisfying r.a L are L - amenable i.e. 
o 

that if X is an r.a~ - class which is a function, x E L 

then X ~x ~ L. This needs a form of the condensation Lemm~ 

of G~del proved as in the ZP case (In fact this was the 

begimning of investigations of the second author on the 

problems of this paper). Note that when we knew that M was 



W. Marek & A. Mostowski 

- extendable then the property of M - amenability of R.A M. 

classes was automatic. 

The syntactic contents of the reasoning leading to the 

theorem 2.5 may be summed up in the following 

Metatheorem: a) There is a formula @(.) such that 

I) ~ ~(v) 

3) For every ~ being an axiom of K~ or an instance of 

the collection scheme 

~ , -  (~)~ 

b) There is a formula ~ (.) such that 

s) ~ ~ |  

6) ~ ~ ( ~ ) ( ~  ~ |  

7) For every tiff being an axiom of KM or an instance of 

the scheme of choice , KM ~ (~)~ 

Proof: In case a) take as ~ the formula r.ao(. ) with 

M(=) ~=,,> ~ (=). 

Incase b) take as Q the formula r.a.% 

Now we are fin~lly able to complete 

The proof of theorem 2.1. 

"11 
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Assume that ~ R.AM. 'x , M, ~ ) is not a ~ - model 

(though it is a model). By the comparability of wellorderings 

all false (or as we say below nonstandard) wellorderings are 

longer than all standard (i.e �9 wellorderings in R.AM 'X 

and so all these nonstandard wellorderings have the same type 

of the maximal wellordered initial segment. Call the type of 

this segment ~ . Clearly R.AM. 'X does not contain a well- 

ordering of type ~ . Since R.A M'X _~ R.A. ~ therefore also 

~.A + I does not contain a wellordering of type ot . Let 

M.X To- as before - be least ~ such that R.A~ +I does not 

contain a wellordering of type I 

Case A: ~ < ~ . We claim that 

the property ~ . 

.AM, X 
Za ro , M, E > has 

First we remark that if ~ R.AM~ X , M, E~ |= W,0. CT 

then ~ R.AM'~ M, ~ ~ ~ W.0. C T] . 0ther~ise, since 

~R.A M'x, M, E > is a model of KM, there would be a set 

(i.e. an element of M) not wellfounded in T . Since 

M ~_ R.A T therefore ~R.AM'X ~ M, ~) ~ i W.0 CTJ 

contrary to the assumption. Now assume again ~ R.AM~ X ,M, 6 > 

I= W.0. IT ] but T is not a wellordering. By the above 

R.A. M'X , M, 6 ~ ~ W.0. LT ] and so the initial well- 

ordered segment of T has a type o~ which is bigger than 7o 

But then there is a initial segment of T of type ~ ~o in 
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and thus also in R.AM'X+I contradicting the choice R.AM~ X 

of ~ . 

Moreover every element of R.AM~X is M - amenable 

(since R.A~'X~ R.AM'X). 

Now we know that < R.AM~X , M, ( > has the ~ - 

property and as before - by the property of ~ we prove the 

reflection property of ( R.AM~X, M, E > . Thus it happens 

that < R.A M'X ~, M, ~)~ KM. 

By the lemma 2.1. R.AM~ = R.A M'X and so ( R.AM'~M,E~ 

is a ~ - model of KM contradicting our assumption. 

Case B: ~o = ~ . As before we show that < R.AM'Xo( ,M, E 

is a model of GB theory of classes. 

We prove now that: 

I) Por standard wellorderings T ~ R.A M'X , U T ~ R.A M'X 

2)  ornonst dardwellorderings 

(The point 2) has to be understood as follows: If T is not 

a standard we l l o rde r ing  then ~ R.AhX,N,  E > ~ (EX)U(X,T)) 

Point I) is proved by the same reasoning as the proof 

Since ~ R.AM~X,M, > 

U T for nonstandard T 

is nonstandard. 

of theorem 2.5. 

Point 2) we prove as follows: 

is a model of GB therefore together with 

we get U~ x)- for some x such that TPx 

521 



522 W. Marek & A. Mostowski  

By i ) UT(X) contains all the classes belonging to 

x ) 

~ This 

but is 

R M,X Now we construct the diagonal class for 

class being predicative in U T belongs to R.A M'X 
0% 

different from all the (UT(X))(z) which contradicts the fact 

that UT(X) contains all classes of R.A MgX . 

The points I) and 2) allow us to discern the well- 

orderings among the objects satisfying in < R.AM~ X , M, ~ 

the formula Wo0. (We still do not know that ~ R.A M~X , M, ~> 

is a ~ - structure!) namely these are the objects for which 

U T exists�9 As before we check the absoluteness of 0d(.,.), 

U(.,.) and ~(.,.) and < r.a. ~ (o,.). Now as before we 

show the reflection principle using instead of all objects 

satisfying in < R.AM~ , M, E ) the formula W.0. only 

those for which U T exists. 

So ~ R.AM~ , M, ~ ~ is a model, and since 

KM ~ (T)(W.O.(T) :@(EX)(U(X,T)) we get the desired contradlo- 

tion with the presence of nonstandard wellorderlngs in R.A M'X . 

Indeed we proved that for the nonstandard T's there is no 

U T in R.AM~ X Thus also in this case R A M'X (i.e. R .M,X ) 

is a ~ - model. 
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and 6~ 

model. 

Proof: If 
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If < ~ , M, E> is a ~ - model for EM 

is a family of subsets of M such that 

EM %hen < % )  M) ~ >  is also a ~ - 

X E ~ is not a wellordering therefore, since 

<"-~ ,=, 6 > ~ -7 W.O. CXJ (~ is a 6-model). 

Thus there is x ~M such that x is not wellfounded in X. 

Thus < S , M, C > w.0. ] 

Corollary: If there exists a ~ - model of X~ then there is 

a ~ - model ~ ) M) 6~ of KM such %h~%) for all ~ _~ 

i f  < 6  , M, E >  i s  a model then 6 = 

Proof: Let <~ , M) 6 > be a ~ - model; consider 

R.A M. , M, 6> . I% is the least ~ - model for KM (with 

M as the universe of sets). This together with the lemm~ 2.22, 

completes the proof. | 

The corollary shows an important difference between bJ - 

models of second order arithmetic and transitive models of E~. 

In the case of the former system there is no minimal GJ - 
in (3] 

model as shown by H.Priedma~. In the case of models of K~ there 

are - under suitable assumptions - minimal tremsitive models. 

This answers the question of H.Priedman from the introduction 

of the aforenamed paper. 
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If the constructed family R.A~ is not a model (thus not 

a ~ - model) then in the process of construction there must 

appear a class which is not M - amenable. Thus there must be a 

least o~ such that R.AM~ contains non - ~ - amenable class. 

Clearly R.A~ '~ does not contain such an animal. Similarly 
0 

R.~ '~ - since this class is the least model for GB which has 

M as the universe of sets. 

Theorem 2.7.: Let ~ be the least transitive model of ZP. 

Then R.A.~ contains a class which is not A z - amenable. 

Proof: As shown in 1 - 1 3 ~ ,  #/ = Lee where o( is the 

least ~ such that ~L~, ~> models ZF. In [7S it is 

shown that (LoQ+2 - L~ ) ~ ~ (~o) # ~. It is easy to show 

that Lo~+2 m ~ (o~) ~ R.A. 2 . Thus there is a subclass of 

6o which is not a set and so non ~- amenable class. 
| 

One can however prove the following 

Theorem 5: If M is a transitive model of ZFC, and M is 

then all classes in R.A.M'h~(M)+ are M --amenable extendable, 

(where h(M)+is the least admissible ordinal bigger than h(M)' 

Sketch of the proof: All the ordinals less than (h(M)) + are 

representable in every extension of the model M (it follows 

from the fact that the standard part of any possibly nonstan- 

dard admissible set containing M has to contain o( , as a 

subset, for every standard ~ ). Thus also classes U T for 
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< o( + are in every extension and so the classes constructed 

before ~+ are M - amenable. 
| 

Finally let us notice that in case when ~ M, 6 > is not 

- extendable but is a model of ZFC set theory we can show 

by slightly modified reasoning that <R.A~ M, ~ ) is a 

least ~ - model of KM- ~ replacement axiom] . This gives 

~he following theorem: 

Theorem 2.1 '. If 

then ~ R.A M. , M, ~ 

~M, ~ > is a transitive model of ZPC 

is the least ~ -model of(KM- 

I replacement axiom]~ith the class of sets equal M (i.e. it 

can process semisets in sense of Vopenka ~ Hajek). It is a 

model of KM just in case when ~ M, 6 > is ~ - extendable. 

w 3. Extendability vs ~ - extendability 

We shall deal now with models of KMC. Indeed we 

remember that every transitive model <(~ , M, 6 ~ of KM 

has a transitive submodel ~ , L M, E > which satisfies 

KM § scheme of choice. 

Thus while considering the heights of transitive extendable 

models we may restrict ourselves to the models extendable to 

the models of KM~. (Notice that h(M) = h(L M) and L M= Lh(M)) 

Let T denote the following sentence of LST : 
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Thus the sentence T means that "There is an inaccessible 

family of sets". We notice that T is ~ 2 formula and the 

formula "(.) is an inaccessible family of sets" is I" 

In [6] the following fact is proved: 

Proposition 3.1.: The theory ZFr + T is interpretable in 

K~r by means of wellfounded trees. 

Let us look more carefully at this interpretation. The 

inaccessible family is representable by a tree coding u Trees 

of rank less than On represent elements of the maximal 

inaccessible family. 

The trees of the rank less than or equal to On have 

realizations; in case of trees of rank less than On the 

realization is a set. In case of trees of rank On the realiza- 

tion is a proper class. 

The proposition 3.1. Leads to the following: If 

~ , M, ~ W KM~ then ~ Trees ~jM,~ , Eps, Eq) ~ ZF~ + T 

(where Eps and Eq are appropriate relations interpreting E 

a n d ~ y  tree has a rank which is a wellordering. Assume 

~, M, q)~ "T is a tree" ~ "U is a rank of T". 

Then T is a tree iff U is wellordering. This Smmediately 

~nplies that the notion of a tree is absolute exactly for 

- models. 
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Putting 

the results from [6~ : 

Proposition 3.2. < ~ , M, E 

There is a transitive model 

that 

I) 

2) 

3) 

all these together we get a semantic version of 

is a ~ - model of KMr iff 

~N, E) of ZFC- + T such 

N, g) ~ " M is an inaccessible family of sets" 

The proof ~ is roughly the following. We take all well- 

founded trees (without nontrivlal automorphisms) and take as Eq 

and Eps isomorphism and membership of trees relations. Then 

~Tree~ ~'M'E>, Eq, Eps ~ is a model (without absolute 

equality) of ZFC- + T. Thus the structure ~Tree~'M'E~EpS~q~ 

ZP~- + T. We take now realizations of trees from Trees ~'M'*~ . 

Since <~, M, g > was a ~ - model they are really trees and 

so they indeed have realizations. (The process of realization is 

similar to contraction procedure). We get an isomorphic model 

N, E> . The equivalence class of a tree coding M is a 

desired inaccessible family. By class existence in ~ ,M, ~ 

the subsets of M being in ~ and only them are in N~ ~D(M). 

The proof of ~ is obvious. 
| 

Corollary: < M, E ) is 

transitive model < N, E > 

1) M ~ N  

- KM~ - extendable iff there is 

of ZF~- + T such that 
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2) ( N , E ~  ~ "M is an inaccessible family of sets". 

If < M,E > is a relational structure, E ~ ~ x M then Sp M 

is the set of those m E M which are wellfounded i.e. those 

for which there is no infinite E - descending sequence beginning 

with m. If ~ ~,E) satisfies extensionality then 

Sp M, E ~Sp M ~ is isomorphic to a transitive structure 

~A, E > . Thus we may simply assume that Sp M is transitive 

(when ( M,E ) satisfies extenslonality). 

Further analysis of the notion of the tree allows us to 

give an analogue of the proposition 3.2. for extendable but not 

necessarily ~ - extendable transitive models. 

Proposition 3.3. ~ ~,M, ~> is a transitive model 

of KNr 

that 

I) 

2) 

3) 

Proof: 

iff there is a model ~ N,E > of ZFg- + T such 

E sp 

( N, E ) ~ "M is an inaccessible family of sets" 

(M) /V 

Again ~= is obvious (we tacitly assume that  the 

objects in N - Sp N are not subsets of M) 

z~ Once more consider (wellfounded trees) ~ ,M, E > i.e. 

objects which satisfy in (7 , M, ~ ~ the formula "(.) 

is a tree". All real trees which are in ~ are there but 

there may be also some "nonstandard trees". 
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we make the model ~t = ~ (Trees) <~'M'eZ, Eps<~'M'~/~..-- ~ ~ When 
Eq ~,M, ~ 

then: The standard part of the model ~ will consist of 

equivalence classes of wellfounded trees. Nonstandard trees 

(if there are any) give nonstandard elements of ~ . But 

the tree representing M has rank On and so is standard! thus 

its realization exists and is in Sp ~ . By class existence 

in Q~ , M, 6) the subsets of M being in ~ ) and only them~ 

are the subsets of M in ~Z. 
| 

<M, ~7 is KMC-extendable iff there is <N,E> 

ZFC- § T such that: 

Corollary: 

a model of 

I) ~ E sp~ 

As we noted, if 

"M is an inaccessible family of sets". 

<M, @> is extendable then < L I, g 

is extendable. In case when < M, 6 > is ~ - extendable and 

we take oonstructibility interpretation ~ (cf w within 

the ~ - extension ~ , M, ~> we get a structure 

<~ , L M, 6> which is a ~ - model. Therefore, if <M, 6> 

is ~ - extendable then <L~, C > is also ~- extend~ble. 

This leads us to the following definition: 

Definition: a) ~ is extendable ordinal iff <L ~ , 6 

is an extendable model 

b) ~ is ~- extendable ordinal iff <L~ 6> 

is a ~ - extendable model. 

Let us notice that - by our results in the w - KN and K~r - 
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extendability of L coincide (since it posesses a definable o~ 

wellordering). 

The same fact holds for ~ - extendability. 

Our criterions of extendability and ~ - extendability 

were highly ineffective in the sense that it was not clear 

where to look for the extensions. For the models of the form 

L o~ and ~ - extendability we have quite nice criterion~For 

other models and weaker form of extendability we show later 

some criterions. 

Definition: If o~ is an ordinal then o( ~ 

ordinal ~ such that: I) ~ 6 

Theorem 3.1. o~ is ~ - extendable iff 

is an inaccessible family". 

is the least 

Proof.: 

is ~N, ~ such that ~N, ~ ~ ~ "L 

family of sets", <N, E~ ~ Z~r 

Then ~L N, ~ ~ ZFC- and since 

By the corollsry after the proposition 3.1.there 

is an inaccessible 

"(.) is an inaccessible 

f ami ly"  i s  aKT 1 formula  t h e r e f o r e  ~ L  N, ~ ~ "L ~ i s  an 

inaccessible family of sets". Since L~/= ~(N) we h~ve 

h(N) ~ o~ ~ and so using again the fact that "(.) is an 

inaccessible family of sets" is~ i we get ~L~, E~ "Lo4 

is an inaooessible family of sets". 
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Immediate by the same corollary and the fact that 

~L~, 6> ~ ZF- implies<L e}~ ZFC--. 
! 

coron=y- If is extendable R.A. = ) 

L~ 
Proof: Both <R.A , L~, ~ > and <L~n~(Lo< ),Lo~ ,~-> 

are the smallest ~ - extensions of <L <~ 6 > 
�9 | 

For the rest of this paper we assume that there are ~ - 

extendable ordinals. 

Definition: 

b) ~ ~ 

Lemma 3.1. 

Proof: 

a) c~ ~ is the least extendable ordinal 

is the least ~ - extendable ordinal. 

Both ~ ~ and o( ~ are denumerable. 

Obvious by Skolem-LBwenheim. 
| 

Theorem 3.2. (On difference) a) o~ ~ < o~ ~ 

b) ~ L ~, E ~ ~ " ~ is denumerable" 

c) ~ L ~i, ~ ~ ~ , c~ ~ is extendable". 

We will prove our theorem usi~arwise theorem is provable 

in ZFC and thus valid in every model of ZPO. This fact was 

first noted by Barwise L13 and then by Wilmers ~ g] . We 

assume that the reader is familiar with the theorem of Barwise 

and some of its standard applications. 

As pointed to us by M.Srebrny, R.B.Jensen in his 

Habilitationschrift (unpublished) proves this equality 

for all oQ 's. 
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We need the following lemma: 

Lemma 3.2.: ~ + , the least admissible ordin~l greater 

than o< is smaller than o< ~ 

Proof: It is known that there is a single sentence ~ such 

that ~ +"scheme of foumdation'lis equivalent to KP (we were 

informed about this by G.Kreisel and C.Smorynski). By the 

reflection principle in ~ L~. , 6 > there is ~ < ~ 

suoh that ~ holds in <L ~ , e > (Since ~ holds in 

~L ~., ~ > ). Thus L ~ is admissible and since o<+~ 

we are done. 

Proof of the theorem 3.2. ("on difference") 

Consider the system 

in the infinitary language 

axioms: 

L(~) t ~ 6 > and the theory 

based on 3 groups of 

b) ~ - diagram of L(c~i). 

C) .L 

The theory 

by a ~-~'! 

(for instance 

the structure 

Consis ~ , where Consis 

expressing consistency of ~ . 

is an inaccessible family of sets" o( L 

T is definable over ~ L(~)+ , 6 , ~ ~] 

formula ~ and is consistent since it has a model 

L(~L)~ , ~ ~ is a model of T ). Therefore 

L + , ~ ,I~ ~ satisfies the formula 

is a finitary sentence of LST 
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Since L & L therefore since < L , ~b 

satisfies the full scheme of choice and has a definable well- 

ordering we have inside L(o(~)~ a denumerable (within L(~)~ ) 

elementary substructure <A, ~ ~A, ~ij) of <L(o~)@ , @, ~ 

The structure ~A, 6~A, ~J is isomorphic aggLin within 

L to a structure ~ B, E , i ~ ~ where B is transitive. 

By standard reasoning B = L ~ for some ~ . ~ is denume- 

table within ~ L , ~ ~ and so it is denumerable within 

~L~, ~ > since ~ L(~)~ , & ~ ~ "L o(~ is an inacces- 

sible family of sets". Consider now < L V , 6 , I~]>. First of 
J 

all we notice that ~ = ~ ~ 

Moreover ~L ~ , ~ , { ~) W ConsisG 

Now let us look what the formula ~ defines over 

, 

It is clear that it defines the following theory: 

a') 

b') 

c') 

ZE~- 

diagram of L 

" L ~ is an inaccessible family of sets 

As this theory is ~-I definable and ~ L 

we apply now Barwise compactness theorem within 

Since ~ is denumerable in ~ L 

is ~ - comp1~te in ~ L ~ ~ , 

' ~ ,~A~)~Oonsis~ 
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Thus we get within ~L~,~> a denumerable model of 

the theory definable over <L~ , ~ , ig) 3 by ~ , i.e. of the 

axiom groups a'), b'), c'). 

Let ~ N, E ) be a model of this theory. By the condiction 

b') ~ N,E ~ is an end extension of ( L~ , 6 ~ (within 

~L~ ~, E > but this is an absolute statement).Since 

< ~ therefore ~ belongs to the standard part of < N,E 

We apply now the corollary of the proposition 3.3. 

So ~L ~, E > is an extendable model. Clearly ~ ~ ~ 

and so both / 

a)~ and b) of the theorem hold. 

To show c) we apply within ~ L~, E > Skolem L~wenhein~ 

result of Nadel L16] , since ~ o is denumerable in 

and thus between o~ ~ and ~o] there are recursi- 

rely inaccessible ordinals. 

Definition: We call an admissible set A~• - complete iff 

for every ~! definable theory ~ , 

A, ~ > ~ Consis • iff 

where ~ is a ~'~ formula defining 

has a model 

T 

By the Bar~ise compactness theorem together with 

completeness theorem for languages ~M (M denumerable) we 

find that all denumerable admissible sets are ~i-complete. 
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Analyzing the proof of the theorem 3.2. we get 

Theorem 3.3. There is a formula ~ such that whenever 

<M +, E > is "~ i complete then : 

M,E> is KM% - extendable iff ~M§ ~ ,~) ~ 

Proof: ~ is a ~i sentence stating the consistency of 

the following theory ~ : 

a) ~\ z~c- 

b) " 4 - diagram of the world (it is called EE in 

C5] ) 
c) "M is inaccessible family of sets" 

Let us notice that b) 
set 

of admissibl~ over itself. 

un~ormly defines an 

We use the following fact : 

E diagram 

If ~N,E~ W KP then M ~ Sp N iff M +_C Sp N 

To prove the theorem assume firstly that < M, ~ ~ is KM~ 

extendable.By the corollary to the proposition 3.3. we find 

that there is a model ~ N,E > of a) and c) and such that 

M 6 Sp N. Thus M +_~ Sp N and so ~N,E > satisfies an ~- 

diagram of M +. Thus ~ N,E > is a model of ~ (more 

precisely of the theory defined over ~ M +, 6 ~ by (t~). 

Conversly, if <,~§ ~ , M > ~ Oonsis~ then, by 

~completeness of < M +, E > and by the fact t ha t  ~ i s  ~ l  
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definable we get a model ~N,E > of ~-. 

M+~ Sp N and so M s N. Using once more the corollary to 

the proposition 32. we are done. 
| 

Corollary: If M is denumerable then 

~, q > is extendable iff ~ M+,~ , ~ 

We come back to the proof of the theorem 3.2. It was 

definitely not economic for the following twe reasons. 

I) Remark that ~ L~, E > need not be ~ - extendable in 

order to make our reasoning work. What we need is that there 

is an extension ~ of ~L~, 6 ~ such that h( ~ ) ~ ~$ 

2) We did not use the following fact: Every ~ - model 

of ZFC which is extendable contains its own theory. 

We deflne: ot (o) = oQ c~(f+l) = ( o~ ( [))+ 

admissible or 

o~ if this ordim~l is 

o~.( § ( ~ ~)) otherwise. 
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Definition: An extendable model 

iff it has an extension ~ ~ , L 

L , s > is " ~- good" 

E ~ such that ~(F~(F) 

Using the reasoning of the proof of the theorem 3.2. we get 

Theorem 3.4. a) Every I - good model contains as an element 

0-good (i.e. transitive extendable) model 

b) If k 6 dO then every (k + 1)-good model contains as 

an element k - good model. 

The theorem 3.4. may be extended to all recursive ordinals. 

Following the line of 2) we find that in the proof of 
following 

the theorem 3.2. we could add the clause d) to the a),b),c): 

Th(Lo~, E VH as the latter is L ~ - finite. ~herefore we 

have the following~ 

Theorem 3.5. If ~M, E > is p - KMC - extendable then 

there is N EM such that ~N,E> ~- ~M, ~ and 

~M, 6~ ~ N = ~ ~ ~N, ~> is extendable". 

(Thus <N, E~ is indeed extendable). 

The proof of 3.5. needs a subtler considerations of ~ - 

extendable models. 

Namely in the proposition 3.2. one may add 4) "Every set 

is equipollent to an ordinal". The model produced from trees 

satisfies Skolem-L~wenheim theorem and so we work as in 3.2. 
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Additionally we must prove that L : LM] 6 L ~LM~ 

which is again obvlous./Weclose the paper with the informations 

on the number of extensions of <M, E > . 

In ~9] the following is proved: 

Proposlti~ 3.~. zf ~ , M, ~ 

of KM 

that 

1) 

then there is a proper extension ~ of 

2) 

is a denumerable model 

~ such 

~ , M, E ~ is not a ~ - model 

Moreover there is 2 c~ ~ 's of po~er ~ and 2 ~ of 

po~ter ~ i" 

We do not know any necessary and sufficient condition 

under which a ~ - model ~ ~ ,M, E> has a proper elementary 

extension <~ , M, ~ > also being a ~ - model. 

There are however some necessary and some sufficient 

conditions: 

Some of them are due to Guzicki C~] 

I) If we want to get a model of the same height as ~ then 

~ , M, 6 > must satisfy the negation of the class form of 

relative constructibility. 

2) Sufficient: The ones given in C4 S �9 They give stronger 

results than those of our proposition 3.5. (although they go in 
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different direction) 

Guzicki's models are forcing models-qulte exeptiomal fact 

since they are also elementary extensions. 

Under assumption of Martin~s axiom Guzicki's construction 

gives 2 2~o ~_ models of power 2 ~~ 
I 

Definition: 

I) 

2) 

3) 

4) 

s) 

A model ~ , M, 6) 

iff there is a model ~ N,E 

(~,~ I= ~: - b ~(M) 

of KM satisfies condition 

of ZFC- + T such that: 

@ 
(N,E> I= "M is an inacossible family of sets" 

~N,E ) is ~+ - standard 

(here M + denotes next cardinal in 

Proposition 3.5. ( [I0] ) If 

<' ~,E > ) 

/ ~ I  , M,~'> is a denumerable 

model of KM~ satisfying condition (~) then there are 2~~ 

proper elementary denumerable extensions < ~ ~ M, E > 

satisfying conditions (~) and 2 0~ of such extensions of 

power H i j all these extensions can be chosen to have the 

same height as "}", 

Proof: Using the quantifier "there is more than M + " in 

<~T, E2  I 

539 
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We have the following lemma: 

Lemma 3.2. If <q , M, ~> has a property (~) then it is 

a ~ - model. 

By this lemms, a countable model satisfying (~) has 2~o 

proper elementary denumerable extensions each of which is a 

~ - m o d e l .  

For the non-denumerable models almost nothing is known. 

If c~ is a strongly inaccessible cardinal then < R~ , E > 

has 2 ~ extensions of power o~ . There are even 2 ~ 

extensions being elementary subsystem of < R~+I, R o< , E 

If V = L then the elementary subsystems of ~ R <+I,R ~ 6> 

sme linearly ordered by inclusion. In the same time it is 

relatively consistent to assume that they are not linearly 

ordered by inclusion; even under the assumption that 

v :  L. 
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Attempts to systematize theoretical research concerning programs have led 

to the application of various ideas, methods and approaches. For instance methods 

of graphs associated with programs, algebraic treatments, axiomatic methods, an 

abstract approach using lattice theory and k-calculus [30], have all been applied. 

One of the research methods is to develop the theory of programs on the 

basis of formalized logical systems. The attempt to find simple logical systems, 

which would serve as a basis for programming theory and be sufficiently rich to 

allow sophisticated investigations, caused the creation of algorithmic logic and 

its various extensions. 

Algorithmic logic was formulated by A. Salwicki in his Ph.D. thesis 

([26], [27], [28]) and developed in several papers by L. Banachowski ([i]-[5]), 

A. Kreczmar ([8]-[ii]), G. Mirkowska ([14]-[16]), A. Salwicki [29], and others. 

Formalized systems of algorithmic logic contain in their languages expressions 

interpreted as programs and formulas describing properties of programs. For 

instance the stop property, correctness and partial correctness, various equivalence 

relations between programs, etc., are expressible by means of these formulas. This 

approach permits one to formulate most of the important laws on computational pro- 

cesses in the form of logical tautologies. Also, it turned out that methodological 

investigations dealing with problems which occur in programming can be carried out 

within the framework of algorithmic logic. Research which could improve program- 

ming is a further aim. 

The formulation of many-valued extensions of algorithmic logic was carried 

out for the following two reasons. In programming practice there are situations 
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in which one of n programs nl' " " " '~n should be performed according to which 

one of n conditions al, .... a n is satisfied. If condition a i is satisfied, 

then the program ~. (i = i, . . . ,n) should be realized. The instruction CASE, 
1 

which occurs in certain programming languages, is obviously appropriate in this sit- 

uation. The application of this instruction for arbitrary n ~ 2, considerably 

simplifies programming. In order to have a logical tool to investigate programs 

with case instructions ~+-valued algorithmic logic was formulated [18] and examined 

([19], [20]). The second aim in constructing many-valued extensions of algorithmic 

logic has been as follows. In formalized languages of algorithmic logic there are 

no expressions representing recursive procedures. However, investigations concern- 

ing recursive procedures may be carried out within algorithmic logic using a certain 

kind of implicit definition [29]. This approach is rather complicated. Moreover, 

it is not possible on the basis of algorithmic logic to investigate programs contain- 

ing the instruction go to. The attempt to construct a logical tool to examine 

programs with labels as well as the recursive procedures--understood as certain 

expressions realized as modified Mazurkiewicz's pushdown algorithms (see [6])--led 

+ 
to the formulation of various versions of extended ~ -valued algorithmic logic 

([21], [22]). 

0~+-Valued algorithmic logic and its extensions are closely related to the 

theory of Post algebras. The notion of a Post algebra of any finite order m > 2 

was introduced by P. C. Rosenbloom in 1942. The paper [7] by G. Epstein, in which 

the definition of Post algebra was formulated in a much simpler way, initiated 

research in this field. Over the last 14 years Post algebras have been investigated 

from a number of points of view and in increasing generality by various authors (e.g., 

G. Epstein, T. Traczyk, Ph. Dwinger, C. C. Chang and A. Horn, A. Malcev_z_V. Kirin V 

~] Rousseau, 
E. WZoda2ska, H. Sawicka, Cat-Ho Nguyen, z. Saloni, B. Dahn, L. Maksimowa and 

D. Wakarelov, T. P. Speed, and the present author). 

+ 
Generalized Post algebras of order ~ , as formulated in [17], and those 

which satisfy a finite representabilit F condition (see [20], [23]), play for extended 

0~+-valued algorithmic logic and for c0+-valued algorithmic logic, respectively, 

a role analogous to that of Boolean algebras for classical logic. On the other 

hand, ~+-valued predicate calculi [17] 
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and mixed-valued predicate calculi [23] constitute a starting point for the 

+ 
construction of formalized systems of extended ~ -valued algorithmic logic and of 

~+-valuedalgorithmic logic, respectively. These predicate calculi as well as gen- 

+ 
eralized Post algebras of order ~ have been formulated and examined from the point 

of view of their applications in a logical approach to programming theory. 

This paper is a brief survey of results concerning generalized Post alge- 

+ + 
bras of order e , mixed-valued and ~ -valued predicate calculi, ~Igorithmic logic 

and its many-valued extensions. 

1. 

PREDICATE CALCULI 

A generalized Post algebra of order 

~+) is an abstract algebra. 

(i) ~ = (P,v,u,N,=,~, (dn)n(N, (ei)0~i<~0), where 

+ + 
GENERALIZED POST ALGEBRAS OF ORDER 60 , MIXED-VALUED AND ~ -VALUED 

+ 
(or briefly Post algebra of order 

(p7) dla d ~ dla = V 

(P9) dn+la ~ dna 

The following definitions are adopted in 

(2) ]0 a = ~ dla, jn a = m dn+la N dna , n E N. 

It follows that 

{~ if n = i 
(3) Jnei = n ( NO, 0 < i < 0J, 

if n ~ i 

V if n < i 

(P6) dn(e i) = 

A if n >i 

(p8) a = U (dna N e n) 
n=l 

(Pl0) e = V �9 

and for all n ( N, k ~ N, 0 ~ i ~ ~, a,b 6 P, the following conditions are 

satisfied: 

(p0) (P,V,b,N,=,~) is a pseudo-Boolean algebra with a unit element V and a zero 

element A = ~ V, 

(pl) dn(a U b) = dna U dnb , (p2) dn(a N b) = dna N dnb, 

(p3) dn(a ~ b) = (dla = dlb) N . . N (dna = dnb), (p4) dn~a = ~dla , 

(P5) dndka = dka 

N is the set of positive integers, 
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where N O is the set of non-negative integers. 

+ 
In every Post algebra ~ of order 

(4) (p,v,u,n) is a distributive lattice with a unit element V and a zero 

element A = ~ V, 

(5) A = e 0 S e I ~ . . . ~ e = v 

(6) if a ~ b, then dna ~ dnb for each n ( N, 

(7) if ~ is no'degenerate, then i I ~ i 2 implies eil ~ ei2 , 0 ~ il,i 2 ~ e, 

(8) a = b iff dna = dnb for each n ( N, 

(9) the set B~ = {dna : n ( N and a ( P} coincides with the set of all 

complemented elements in (P,V,U,e) and ~ = (B~,V,U,N,=,~) is a Boolean 

algebra which is said to correspond to ~. 

+ 
It follows from (9) that every nondegenerate Post algebra ~ of order~ determines a 

+ 
nondegenerate Boolean algebra ~ ~ and a chain (5) of the type ~ . 

+ 
The simplest example of a Post algebra of order ~ is offered by the following 

algebra ~ which plays a role analogous to that of the two-element Boolean algebra 

in the class of all Boolean algebras. 

(I0) ~ = (P~,V,d,~,~,~,(dn) (ei) ), 
n6N' OSi~ 

= the elements ei, 0 < i ~ ~, form a chain where P~ {ei}o~i<( ~ 

+ 
A = ~ v = e 0 ~ e I < . . . ~ e~ = V of the type ~ , (P~,V,u,e,=,~) 

pseudo-Boolean algebra with the lattice ordering ~, i.e., for all 

is a linear 

0 <i <e, 

0_<k<~ 

(ii) e i U e k = emax(i,k) , e i q e k = emin(i,k) , 

V if i ~ k ~ v if i = 0 

e i = e k = ~ e i = e i = e 0 = 
e k if i > k, A if i # 0, 

and the operations dn, n E N, are defined by means of (p6). 

Notice that the subalgebra ~0 = ({e0'e~}'v'u'N'='~) of the corresponding reduct 

(P~,v,d,N,=,~) of ~ is the two-element Boolean algebra. Moreover, for each 

m ~ 2, the subalgebra 

~m = (Pm 'v'u'N'=' ~ 'dl' �9 " " '~-l'e0' " " " 'em-2'e~)' 

where Pm = {e0, �9 �9 �9 ,em-2,e~}, of the corresponding reduct 

(P~,v,u,N,=,~,dl, . . . ,dm_l,e0, . . . ,em_2,e ~) of ~ is the m-element Post 



H. Rasiowa 547 

algebra of order m. 

+ 
Other examples of Post algebras of order ~ may be obtained by the application of 

the following method. Let ~ = (B,V,U,N,=,~) be a Boolean algebra and let P 

the set of all decreasing sequences b = (bl,b2, . . .), b I ~ b 2 ~ . . . , of 

elements in B. Define the operations V,U,N,=,~,dn,n 6 N,e i for 0 ~ i < ~, 

P as follows: 

be 

(12) v = (v,v .... ), 

(13) b u c = (b I d Cl,b 2 O c 2 .... ), 

(14) b N c = (b I N Cl,b 2 N c2, . . .), 

(15) b = c = (b I = Cl, (b I = Cl) N (b 2 = c2) , . . .) , 

(16) ~ b = (~ bl,~ b I .... ) , 

(17) dnb = (bn,bn, . . .), 

(18) e i = (~ ..... V,A,A .... ). 

1-tlmes 

Then ~) = (P,V,u,n,=,~, (dn)nEN, (ei)0~i -<~0) 
+ 

and all its subalgebras are 

on 

Post algebras of order ~ . It can be shown that for each Post algebra ~ of order 

+ 
there is a Boolean algebra ~ , such that ~ is isomorphic either to ~(~) or 

to a subalgebra of ~(~). 

+ 
Another representation theorem for Post algebras of order ~ , viz. as 

algebras of subsets of certain quasi-ordered sets, has been proved by L. Maksimowa 

and D. Vakarelov [12]. They also considered representations preserving some infinite 

joins and meets. A topological representation of the algebras under consideration 

has been given by Z. Saloni [25]. 

+ 
Among Post algebras of order ~ we single out those which satisfy the 

following finite representability condition: 

(fr) for each element a there is m ~ 2 such that 

a = (dla N e 1 ) U . . . u (dm_2a N em_ 2) U dm_la. 

They constitute a special case of those as examined by Speed [31]. In particular 

satisfies condition (fr). A representation (fr) for a given element a is 

not unique. Because if (fr) holds, then for each n ~ m - i, dna = dm_la and 

hence a = (dla n el) u . . . U (dn_2a Men_ 2) d dn_la. By the order of a, in 

symbols ord(a), we mean the least m ~ 2 such that 
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a = (dle N e 1 ) u . . . O (dm_2a N em_ 2) U dm_la. For instance, ord(e~) = 2, 

ord[ef) = i + 2 for 0 ~ i < ~. The set of all elements of orders not greater than 

m forms a Post algebra of order m. 

+ 
The class of all Post algebras of order ~ which satisfy condition (fr) 

is characterized by the axioms (p0)-(p7) and (fr). Every nondegenerate Post 

+ 
algebra ~ of order ~ , which satisfies condition (fr) is a coproduct of a non- 

+ 
degenerate Boolean algebra ~ and a chain of type ~ . ~ is isomorphic to the 

subalgebra of ~(~ formed by all decreasing sequences b = (bl,b2, . . .) of ele- 

ments in ~ which are constant from some point on. In other words, for each 

b = (bl,b2, . . .) there is m > 2 such that bm_ 1 = bm+ k for k ( N O . 

Notice that for each 

algebras 

(19) ~ = (P,V,O,n,=,~,dl, . . 

m > 2, Post algebras of order m are abstract 

,dm_l,e 0, �9 . . ,em_2,e ~) 

satisfying for all 1 < n ~ m - l, 1 J k ~ m - i, i 6 {0, . . . ,m - 2,~} and 

a,b ( P the axioms (p0)-(p7) and moreover 

(pm) a = (dla N e 1 ) O . . . U (dm_2a N em_ 2) <J dm_la. 

Thus for each m > 2, the class of all Post algebras of order m is equationally 

definable. Every such algebra is a coproduct of a Boolean algebra ~ and an 

m-element chain A = e 0 ~ . . . < em_ 2 S e~ = v. It is then isomorphic to the alge- 

bra of all decreasing (m-l)-element sequences b = (bl, . . . ,bm_l), 

b I ~ . . . > bm_l, of elements in ~, the operations V,d,n,=,~,dl, . . . ,dm_ I, 

e0, . . . ,em_2,e ~ being defined in a way similar to that specified by equations 

(12)-(18). 

In Post algebras of order 

? satisfying the condition 

(20) a ( ? iff d a ( ? for each n 6 N (for n = i, . . . ,m ~ i) 
n 

play the role analogous to that of filters in Boolean algebras. If ? is a prime 

+ 
d-filter in a Post algebra ~ of order ~ (of order m), then ~ /? is isomorphic 

+ 
to ~o (to ~m ). Moreover, if D is a Post algebra of order ~ (order m), a 

is an element different from V and S is a countable set of infinite joins and 

infinite meets in ~, then there exists a prime d-filter ? in ~ such that 

co + (of orders m > 2) d-filters, i.e., filters 
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a ~ 7 and V preserves all infinite joins and meets in S (see [24],[17]). 

The following generalization of Epstein's lentma [7] also holds for Post 

+ + 
algebras of order ~ (see [17]): for any Post algebra ~ of order ~ (of order 

m) and any elements a, at, t ( T, in 

a = U a t iff dna = U dna t for each n ( N (n = i, . . . ,m - i), 
t(T t6T 

a = n a t iff dna = n dna t for each n ( N (n = i, . . . ,m - I). 
tET tET 

The theorems formulated above are useful in metamathematical investigations 

+ 
concerning ~ ~valued and mixed-valued predicate calculi. 

e+-Valued predicate calculi contain in their formalized languages predi- 

cates realized as k-argument (k (N) mappings from the universe of a realization 

into P~, 

constants 

0_<i<~, 

and logical connectives V,A,~,~,Dn,n ( N, as well as propositional 

E i, 0 S i ~ ~, realized as operations b, n, =, 7, d n, n ( N, ei, 

in ~, respectively. The realization of quantifiers is by infinite 

joins and meets in ~ ~. Thus the Post algebra ~ is adopted as a semantic basis. 

+ 
The class of all Post algebras of order ~ is applied as an algebraic tool in meta- 

+ 
mathematical investigations. A Hilbert-style formalization of ~ -valued predicate 

calculi (see [17]) needs an inference rule of ~-type: Dn~, n ( N The notion of 

+ 
ultraproducts of ~ -valued realizations has also been introduced and an analogue of 

~os' theorem has been proved and applied to a proof of the theorem on the existence 

+ + 
of ~ -valued models for consistent uncountable theories based on ~ -valued predi- 

cate calculi. The theorem on a preuex form of formulas, the compactness theorem, 

the first s and a modification of the second 6-theorem also hold. 

+ 
It is worth mentioning that there is a way of interpreting ~ -valued predicate 

calculi and theories in corresponding elementary theories of classical logic. The 

formalized languages in which such interpretations are given have to be much richer. 

+ 
With every predicate of e -valued predicate calculus or of a theory one associates 

+ 
a sequence of two-valued predicates. The provability of a formula in ~ -valued 

predicate calculus or theory is equivalent to the provability of a set of formulas 

in a corresponding classical theory. 
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+ 
A Kripke-style semantics for ~ -valued predicate calculi and the com- 

pleteness theorem with respect to this semantics has been given by L. Maksimowa and 

D. Vakarelov [13]. 

Mixed-valued predicate calculi have been formulated and examined in [23]. 

Their formalized languages contain m-valued predicates and m-valued propositional 

variables for arbitrary m ~ 2, but there occur neither infinitely many-valued 

predicates nor infinitely many-valued propositional variables. Any m-valued 

k-argument predicate is realized as a k-argument mapping from the universe of a 

realization into Pm = {e0' " " " 'em-2'e~ }' and any valuation assigns to each 

m-valued propositional variable an element in Pm" Propositional connectives and 

+ 
propositional constants being the same as in ~ -valued predicate calculi, are 

realized as corresponding algebraic operations in ~. The quantifiers are realized 

as infinite joins and meets in ~. A Hilbert-style formalization [23] does not need 

+ 
any infinitistic rule of inference. Post algebras of order ~ which satisfy condi- 

tion (fr) are applied as an algebraic tool for metamathematical investigations. 

Mixed-valued predicate calculi have properties analogous to those which 

hold for the classical ones. A great part of metamathematics can easily be proved 

using algebraic methods. For instance, a theorem on a prenex form of formulas, an 

analogue of the deduction theorem, a theorem on diagrams of formulas and a Gentzen- 

style formalization, the compactness theorem, a theorem on the ultraproducts of 

+ 
~+-valued models, the theorem on the existence of ~ -valued models for uncountable 

consistent theories, both g-theorems, the Herbrand theorem, the Craig theorem, and 

others. 

The following remark is worth making. Suppose that a k-argument m-valued 

m m k m 
predicate p is realized as PR : U ~ {e0, . . . ,em_2,e }. Then QR determines 

characteristic functions of m - 1 k-argument relations on U as follows: 

m if ,u k) > e n 
dnPR(U I, �9 ,u k) PR(UI' �9 . . _ �9 . = , n = I, . . . ,m - i. 

otherwise 

m m 
Obviously, dlPR(Ul, . . . ,u k) ~ . . . > %_iPR(Ul, . . . ,Uk). These characteris- 

m m 
tic functions may be treated as coordinates of PR" On the other hand PR also 

determines characteristic functions of m - 1 k-argument relations on U as follows: 
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, n = 0, . . . ,m - 2. 

I m 
m V if PR(Ul ..... u k) = e n 

JnPR(Ul ..... u k) = 
A otherwise 

The first assignment suggests an interpretation of mixed-valued predicate calculi 

and theories in corresponding elementary theories of classical logic, whose formal- 

m 
ized languages are obtained by assigning to each m-valued predicate p an (m - l)- 

m m 
element sequence PI' " " " 'Pm-i of two-valued predicates, and to each m-valued 

m m m 
propositional variable p an (m - l)-element sequence PI' " " " 'Pm-I of two- 

valued propositional variables. The second assignment is important with respect to 

applications in programming theory. 

Restricting a formalized language Lmi x of a mixed-valued predicate 

calculus to n-valued predicates and n-valued propositional variables for 

2 S n ~ m, where m is a fixed integer, and adopting among Dn, n 6 N, and Ei, 

0 ~ i ~ ~, only DI, . . . ,Dm_ 1 and E0, . . . ,Em_2,Ee, we obtain a language 

L m of mixed-valued predicate calculus in which there are m possible truth-values, 

i.e., e0, . . . ,em_2,e ~. Formalization of these predicate calculi (see [23]) gives 

a weak form of separation theorem for mixed-valued predicate calculi [23]. By 

ord (~), for any formula ~ of a mixed-valued predicate calculus we mean the least 

m, such that ~ 6 L m. We also distinguish, with respect to the syntax, Boolean 

formulas in any mixed-valued predicate calculus. Their orders may be arbitrarily 

high. If ord(~) = m, then for any realization R and valuation v, 

~R(V) ( {e 0 ..... em_2,e~}. If ~ is a Boolean formula then ~R(V) 6 {e0,e~}. 

The weak separation theorem mentioned above asserts that for any set A of formulas 

and any formula ~, if ord(~) S m and for each ~ E A, ord(8) E m, then ~ is 

derivable from A in the mixed-valued predicate calculus under consideration iff 

is derivable from A in the mixed-valued predicate calculus restricted to m 

possible truth-values. 

2. ALGORITHMIC LOGIC 

Formalized systems of algorithmic logic are extensions of first-order 

predicate calculi without quantifiers. Their languages contain certain expressions 

called programs, generalized terms, and generalized formulas describing properties 
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of programs. In generalized formulas may occur iteration quantifiers which are 

infinite disjunctions and infinite conjunctions of a special kind. 

More exactly, let L 0 = (A0,T,F 0) be an enumerable first-order predicate 

language without quantifiers, where A 0 is its alphabet, T the set of terms and 

F 0 the set of formulas. Assume that countable sets V and V 0 of individual 

variables and of propositional variables, respectively, are contained in A 0, and 

that propositional constants E 0 and E , corresponding to any false statement and 

to any true statement, respectively, belong to A 0. Extend A 0 to A by adjoining 

three program operations signs: o (composition sign), V (branching sign) and * 

(iteration sign), and moreover iteration quantifiers U, n and auxiliary signs 

[, ], /. 

Let R be a realization of predicates and functors of L 0 in a set 

U ~ ~ and let W u be the set of all valuations of individual variables in U and 

of propositional variables in {A,V} = {e0,e~}. The valuations are considered as 

memory states (state vectors). 

Programs are realized as partial mappings from the set W u into itself. 

Atomic programs are substitutions, i.e., expressions 

(I) [Xl/~ 1 . . . Xn/T n pl/al . . . pk/ak], n,k E NO, 

where Xl, . . . ,x n are different individual variables, Pl' " " ' 'Pk are dif- 

ferent propositional variables, TI, . . . ,T n are any terms and al, . . . ,a k 

are any formulas in F 0. The set of all substitutions will be denoted by S. If 

s ( S and has form (i), then its realization for a state vector v E W is defined u 

thus: 

(2) Sm(V) = v' E W u, where v'(xi) = FiR(V) for i = i, .... n, 

v'(Pi) = aiR(V), i = 1 .... ,k, 

and v' (x) = v(x) for x ~ Xl, .... Xn, v' (p) = v(p) for P ~ Pl ..... Pk' 

x EV, p EV 0 . 

The set FS of programs is the least set containing S and satisfying 

(fs) if K,M E FS and a E FO, then o [KM], V[~/<M], *[cO<] ( FS. 

In order to extend the realization R to FS we adopt the following equations : 
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(fsrl) o [KM]R(V ) = i 

(fsr2) V [eKM]R(V) =I 

(fsr3) * [aK]R(V) = 

MR(KR(V)) if this is defined 

undefined otherwise 

KR(V) if this is defined and aR(V) = e 

MR(V) if this is defined and gR(V) = e 0 

undefined otherwise 

i 
KR(V) , where i is the least non-negative integer such that 

�9 i 
gR(~(v)) = e 0 and KR(V) is defined 

undefined if such i 6 N O does not exist 

0 n+l n 
where KR(V) = v, K R (v) = KR(KR(V)), for n ~ N O . 

Programs in FS may be translated into an ALGOL-like language as follows. Substitu- 

tion (i) should be read: 

Xl : = T1 and . . . and x : = Tn and Pl : = ~l and . . . and Pk : = ~k" 

Programs o[KM], V [aKM], * [~K] correspond respectively to 

begin , if e then K else M, while ~ do 

K; 
M 

K; 

end 

From terms and programs expressions of a new kind are constructed to be 

called generalized terms. The set FST of generalized terms is the least set con- 

taining T and satisfying the conditions: 

(fstl) if T 6 FST and K 6 FS, then KT 6 FST, 

(fst2) if ~ is an n-argument functor and TI' " " " 'Tn 6 FST, then 

~(T I . . . ~n ) 6 FST. 

Generalized terms are realized as partial functions from W u into U. More exactly, 

in order to extend realization R on FST we adopt the following equations 

=rTR(KR(V))~ if this is defined 

(fstrl) KTR(V) L undefined otherwise 

l 

(fstr2) ~(TI " " " Tn)R(V) = ~ ~R(TIR(v) 
,ThE(V) ) if TiR (v) are defined, 

I i = i, . . . ,n 

(undefined otherwise 

The set FSF of generalized formulas is the least set containing F0, 

p(T 1 . . . ~n ) , where p is a predicate and and all expressions 
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TI, . . . , Tn ( FST, closed with respect to the propositional connectives V, A, 

~, ~, and satisfying the condition 

(fsf) if ~ 6 FSF and K 6 FS, then Ka, UK~, NK~ ( FSF. 

In order to extend the realization R to FSF the following additional 

equations are adopted 

(fsfrl) p(m I . . . Tn)R(V) = 

(fsfr2) K~R(V) = I~R(KR(v) 

e 0 o t h e r w i s e  

(fsfr3) UK~R(V) = U (Ki~)R(V) , 
i=0 

where KOc~ cz, K i + l  i = ~ = KK ~ for 

{ OR(TIR(V) . . . TnR(V)) if all 

i = l, . , ,n 

e 0 otherwise 

if this is defined 

TiR(V) are defined, 

i 
NK~R(V) = N (K ~)R(V) , 

i=0 

i ~ NO, and O, N on the right-hand sides of 

these equations denote infinite joins and meets in the two-element Boolean algebra. 

Properties of programs are expressible by means of generalized formulas. 

For instance, for any K ( FS, KE describes the stop property of K. Indeed, 

KE R(V) = e~ if and only if K R~) is defined. Formulas (~ ~ K~) describe a 

correctness of K ( FS with respect to an initial condition ~ for input state 

vectors and a terminal condition ~ for output state vectors. Similarly 

((~ A KE~] + K~) expresses the partial correctness of K with respect to ~ and 

~. Thus the examination of properties of programs can be reduced to examining 

satisfiability and validity of corresponding generalized formulas in certain or in 

all realizations. 

Systems of algorithmic logic have been investigated by G. Mirkowska ([14], 

I15], [16]), who obtained several metamathematical results (e.g., a Hilbert-style 

formalization with infinitistic rules of inference and a Gentzen-style formalization, 

an analogue of Lowenheim-Skolem-Godel theorem, an analogue of Herbrand's theorem for 

certain generalized formulas, a theorem on a normal form of a program and others). 

Effectivity problems in algorithmic logic have been examined by A. Kreczmar 

([8], [9], Ii0], [ii]). He proved that the set of all valid generalized formulas of 

algorithmic logic is recursively isomorphic to the set of all formulas true in the 
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standard model of arithmetic and that the set of all consequences of a set A of 

generalized formulas is hyperarithmetical with respect to A . Other results con- 

cerned the degrees of unsolvability of fundamental properties of programs in various 

classes of realizations. Using algebraic and metamathematical methods he obtained 

new simple proofs, eliminating Godel enumerations and Turing machines, of known 

theorems and certain new results. 

Problems of the definability and programmability of functions, relations 

and relational systems in algorithmic logic have been investigated by A. Salwicki 

[29] who presented a theory of programmability and its relationship with the theory 

of recursive functions. 

Problems concerning correctness of programs and modular properties of pro- 

grams within the framework of algorithmic logic extended by the usual quantifiers, 

as well as metamathematical problems dealing with this logic have been examined by 

L. Banachowski ([i], [3], [4], [5]). Moreover he has applied algorithmic logic to 

investigations of data structures [i]. 

An approach to recursive procedures by means of a special kind of implicit 

definitionS in algorithmic logic has been presented by A. Salwicki [29]. 

+ 
3. ~ -VALUED ALGORITHMIC LOGIC 

In certain programming languages the instruction CASE occurs. It is a 

generalization of if then else and corresponds to m-ary branchings, for all m > 2. 

In order to have a logical tool to investigate programs with this instruction, which 

+ 
greatly simplifies prograrmaing, ~ -valued algorithmic logic was invented ([18], [19], 

[20]). It is an extension of algorithmic logic. 

+ 
Formalized languages of ~ -valued algorithmic logic are constructed in a 

way similar to that in which those of algorithmic logic were constructed. But here 

one begins with a mixed-valued predicate language Lmix = (Amix,T,Fmi x) without 

quantifiers instead of a usual first-order predicate language without quantifiers as 

in Section 2. 

Let R be any realization of predicates and functors of Lmi x in a set 

U # 0 and let W u be the set of all valuations of individual and propositional 
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variables of Lmi x . 

Atomic programs are generalized substitutions, i.e., expressions 

m I m k 
(i) [Xl/Tl " " " Xn/Tn Pl /al " " " Pk /~k ]' n,k E NO, 

in which Xl, . . �9 ,Xn, 41, . , . ,T n are as in the case of substitutions, 

m i 
different individual variables and arbitrary terms, respectively, Pi ' for 

i = i, ~ . . ,k, are different mi-valued propositional variables, and ~i' 

i = i, . . . ,k, are any formulas such that ord(~ i) ~ m i- 

ized substitutions will be denoted by S~. The realization 

by equations analogous to (2) in Section 2. 

The set F~S of programs is the least set containing 

the following conditions: 

(f~sl) if K,M 6 FoS then o[KM] 6 F S, 

(f~s2) if ord(e) = m and K 0 ..... Km_2,K ~ 6 F~S, then 

(f s3) if a is a Boolean formula and K 6 F S, then * [~K] 6 F~S. 

The realization R is extended on FeS by adopting the equations 

in Section 2 and also 

KiR(V) if this is defined and 

(f~sr) Z [~K~Km-2 �9 �9 �9 K0]R(V) = ] i = 0 ..... m - 2,~ 

! 
undefined otherwise 

and let 

for 

The set of all general- 

R is extended to S~ 

S~ and satisfying 

(fsrl) , (fsr3) 

~R(V) = e i, 

Consider the following example. Let K be the following program in F~S 

K = V [p3(x) [x/0] [x/y] [y/l]] 

R be the standard realization in the set NO, by the assumption that 

3 I e0 if n < 0 

PR(n) = lel if n = 0 

e if n > 0. 

Then K may be translated into the program 
R 

CASE x > 0; x = 0; x < 0 of begin x : = 0; x : = y; y : = 1 end. 

The set F~ST of generalized terms is defined analogously to 

Section 2 and likewise for their realizations by a given realization R. 

The set 

FST in 

F SF of generalized formulas is the least set containing formulas 
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m m 
in Lmi x and all expressions @ (TI " " " ~n )' where p is an m-valued n-argu- 

ment p r e d i c a t e  a n d  4 1 ,  . . . ' ~ n  ~ FmST, i s  c l o s e d  u n d e r  a l l  c o n n e c t i v e s  i n  Lmi x 

and satisfies the condition 

(f~sf) if K 6 F S and a 6 F~SF, then Ka, UKa, NK~ 6 F~SF. 

In order to extend a realization R to F~SF the equations (fsfrl), (fsfr2), 

(fsfr3) in Section 2 are adopted, where U and n on the right-hand sides of 

(fsfr3) denote infinite joins and infinite meets in ~e' respectively. 

+ 
Each e -valued algorithmic language L~ uniquely determines for every 

m ~ 2 a mixed-valued algorithmic language L m with m possible truth-values: 

e0, . . . ,em_2,e ~. The language L m was obtained by restricting the alphabet of 

L to n-valued predicates and n-valued propositional variables, 2 ~ n ~ m, and 

by adopting among D n, n ~ N, and Ei, 0 S i < ~, only D I, . . . ,Dm_ 1 and 

E0, . . . ,Em_2,E ~. The sets F S, F ST and F~SF are then restricted to FmS, 

FmST and FmSF , respectively. Realizations of L~ restricted to L m are 

realizations of L m. The same is true of valuations. 

Hilbert-style formalizations with completeness theorems for systems of 

+ 
-valued algorithmic logic and for mixed-valued algorithmic logics with logical val- 

ues restricted to m were given in [20]. A weak form of separation theorem for 

+ 
-valued algorithmic logic also holds just as it does for mixed-valued predicate 

calculi. Metamathematical results concerning algorithmic logic may be extended to 

0~+-valued algorithmic logic. Moreover it can serve as a tool for research analogous 

to that carried out on the basis of algorithmic logic. 

+ 
4. EXTENDED ~ -VALUED ALGORITHMIC LOGIC 

The attempt to construct a logical tool to investigate programs with labels 

and with recursive procedures caused the formulating of two versions of extended 

~+-valued algorithmic logic. The first has been proposed in [21], the second in [22]. 

Other modifications are also considered in order to investigate programs with 

coroutines. The version to be presented here is an extension of that in [22]. 

+ 
The main idea of the construction of formalized languages of extended ~ - 

valued logic and their realizations is connected with a modification of the notion of 
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a deterministic pushdown algorithm (see [6]). 

A deterministic pushdown algorithm is a system 

At = [W,L*,L,I], where 

(i) W is a set (of objects of At), 

(2) L is a finite set and L* is the set of all words under 

empty word e0, 

(3) L 6 L is an initial label of At, 

(4) I is a finite set of instructions, 

(5) every I 6 I is an ordered pair (fl,rl) 

(a control function) and r I c W • W (an action), 

(6) with every I E I there is associated a label el; one of the instructions 

has as its label L, and all instructions have different labels, 

(7) {elw}w6L ,, i.e., the set of all words beginning with the label e I of 

(8) fI there is u 6 L* such that 

fl(elw) = uw, for each w 6 L*. 

The ordered pairs (w,v) 6 L* • W are said to be states of A~. 

A computation of an algorithm A~ is a finite sequence of states 

(L,v0), (Ul,V I) ..... (Un,e0), 

such that (Uk+l,Vk+ I) = (fl(Uk),rl(Vk)) for some I 6 I, k = 0 ..... n - i. 

+ 
Let L~ be an ~ -valued algorithmic language based on an initial mixed- 

valued predicate language Lmi x = (Amix,T,Fmix) without quantifiers as presented in 

Section 3. 

Suppose that in the alphabet of L~ we replace the iteration sign * by 

a procedure operation sign o*, the iteration quantifiers U, n by the infinite 

disjunction and the infinite conjunction signs V, A, respectively. Moreover, let 

= of label variables. In such a way we obtain a new us adjoin a set V L {an}n6 N 

alphabet A. Let R be a realization of functors and predicates occurring in A mi x 

in a set U ~ ~ and let W u be the set of all valuations (state vectors). Now we 

introduce valuations of a new kind to be called label valuations or label vectors. 

They are mappings v L : V L ~ {ei}0~i< ~ satisfying the conditions: 

L including the 

of partial functions, fI c L* • L* 

dom fl = 

I, 

for each 
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(9) for each v L there is n E N such that vL(a n) = eo, 

(i0) for each v L and n ( N, if vL(an) = eo, then vL(an+ I) = e 0. 

The set of all label valuations will be denoted by W . It follows from (9) and (i0) 
L 

that identifying each v L E W L with the sequence (vL(al),VL(a2), . . .), every 

label vector is either (e0,e0, . . . . . .  .) or (ekl , ,ekn,e0,e0, . . .), where 

hl' " " " 'kn ~ 0. The first label vector may be interpreted as the empty word over 

the set {en}nE N of labels, and the second one, as the word ekl . . . ekn over 

{en} . The ordered pairs (VL,V) E W L • W u will be called states. 
nEN 

The set FLS of programs is now defined in another way. Programs will be 

realized as partial functions from W L • Wu into itself. 

Three kinds of atomic programs are adopted: generalized substitutions, 

label substitutions and label supervisors. 

For any generalized substitution s E S in the form (i) of Section 3, 

(Ii) sR(vL,v) = (VL,V'), where v' is defined as previously. 

We shall also use the notation 

label substitutions: 

(SLI) [al/Ekl a2/al], k I E N, 

(SL2) [al/Ekl �9 . . an/Ekn 

(SL3) [el/a2], 

(SL4) [el/E0], 

(SL5) [ ]. 

The set of all label substitutions will be denoted by 

all label substitutions with the exception of 

In order to extend a realization R 

0 
definition: for each S* E S L 

(12) s~(vL,v) = (v~,v), where 

SR(V) = v'. The following expressions are called 

an+i/a2], kl, . . . ,k n E N, n 6 N, 

(SLrl) VT' ' = (ekl,VL(a l),vL(a 2) .... ) 

(SLr2) V'L = (ek I' .... ekn'vL(a2)'vL(a3) ' " " ") 

(SLr3) V'L = (vL(a2)'vL(a3) , . . .) in the case of 

(SLr4) v~ = (e0,e0, . . .) in the case of (SL4), 

(SLr5) v~ = v L in the case of (SL5). 

0 
S L. The set S L consists of 

[al/E0]- 

0 adopt the following to S L we 

in the case of (SL1), 

in the case of 

(SL3) , 

(SL2) , 
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(sp) 

where 

extend the realization 

following definition: 

(spr) [Jkan]R (VL,V) = 

Thus in any realization 

We shall also use the notation: 

The following expressions 

[Jkan ], k 6 NO, n ( N, 

df 
Jkan =(~ Dk+la n A Dkan) , k ( NO, 

R to the set Sp 

s*(v ) = v'. 
R L L 

label vector 

(fLSl) 

(fLs2) 

(fLsrl) 

are called label supervisors. In order to 

of all label supervisors we adopt the 

(VL,V) if Jk(VL(an)) = e~, i.e., if 

undefined otherwise. 

R this program tests whether the 

vL(an) = e k 

n-th coordinate of a 

v L is equal to ek, or not. 

The set FLS has also the following properties: 

if HI,H 2 6 FLS , then o[HIH 2] 6 FLS, 

if ord(~) = m, a 6 Fmi x and H0, . . . ,Hm_2, H~ E FLS, 

[~H~Hm- 2 . . . H 0] ( FLS. 

For further extension of the realization R we adopt 

H2R(HIR(VL,V)) if this is defined 

~ R (VL,V) = 
undefined otherwise 

(fL sr2) ~ [cuH~Hm_ 2 �9 . . H0] R (VL,V) = 

(il) 

(i2) 

from (spr), (fLsrl), (fLsr2) that if H ( I 1 and has form 

I (s~(vL) , SR(V)) if vL(al) = e k 

(irl) HR(VL'V) = Lundefined otherwise. 

If H ( I and has form (i2) then 
1 

then 

I HiR(VL,V) if this is defined and 

~R(V) = ei, i = 0, . . . ,m-2,~ 

L undefined otherwise. 

The following expressions are called instructions of order i. 

~[o[[Jkal]s*]s], where k ( N, s* 6 S L, s ( S~, 

~ I] Z [~ o [s~s~] o [s~_2Sm_2] .... [s~s0]]] , where 

ord(~) = m and s~l ( SL, s i ( S for i = 0, . . . ,m - 2,e. 

The set of all instructions of order 1 will be denoted by I I. It follows 

(il) then 

k ( N, ~ ( Fmix, 
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(Jr2) HR(VL,V) = 

undefined otherwise. 

Since in both cases the definability of 

vL(a I) = ek, it is natural to call e k 

(S~R(VL), SiR(V)) if vL(a I) = e k and ~R(V) = ei, 

i = 0, . . . ,m - 2, 

HR(VL,V) depends on the satisfaction of 

the label of instructions (il) and (i2). 

Observe that the realizations of instructions (il), (i2) correspond to instruc- 

tions in pushdown algorithms. 

Now we are going to define new expressions to be called procedures of 

order i. The set of all procedures of order 1 will be denoted by PI" The set 

P1 consists of the following expressions: 

�9 . Ht] , n 6 N, where (pl) o* [ H k l t H k l  . Hkn 

1 ~ . Hkl , . . ,Hkn are instructions of order 1 with different labels 

ekl' " " " 'ekn' and e k l  i s  adop ted  as t h e  l a b e l  o f  t h i s  p r o c e d u r e ,  

2 ~ E t does not occur in Hkl, . . . ,Hkn, 

3 ~ = Hkl t o[[Jklal] [al/Ekl a2/E t a3/a2]] and is called a preparatory instruction, 

4 ~ H t = o[[Jta I] [al/a2]] and is called a terminal instruction. 

In order to extend the realization R to the set ~I we introduce the 

notion of a computation of H E P1 by R for a state (VL,V). This is a finite 

sequence of states 

such that the following conditions are satisfied: 

(cl) (v~,v 0) = HkltR(VL,V) , 

, i+l i+l. i i 
(c2) for each i = 0, . . . ,m - i, tv L ,v ) = HkjR(VL,V ) for some 

j = i, . . , ,n, 

m+l m+l m m 
(c3) (v L ,v ) = HtR(VL,V ) t 

(c4) all states in (c) are defined. 

00 
Observe that (VL,V) for a procedure H in form (pl) is defined iff 

00 
vL(a I) = ekl , and in that case (VL,V) = ((ekl,et,vL(a2) , . . .),v). Thus the 

preparatory instruction, if it can be performed, separates the first label in v L 

from vL(a2),vL(a3) , . . . , by the terminal label e t. During a computation this 

label e t plays a part analogous to that of the empty word in computations of 
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pushdown algorithms. 

terminal label e t. It can be shown that if 

m+l 
(pl), then v L = (vL(a2),vL(a3) , . . .). 

The terminal instruction, if it can be performed, cancels the 

(c) is a computation of a procedure 

Now for any procedure H E PI' if H is in form (pl), then we define 

m+l m+l 
v L ,v ) if (c) is a computation of H by R for (VL,V) 

(prl) HR (VL,V) = 

undefined if a computation of H by R for (VL,V) does not exist. 

The following procedure H E P1 is an implementation of a recursive pro- 

gram P : F(x) ~ __if x = 0 then 1 else x . F(x - i), over N O . 

H = 0* [HI3HIH2H3], where 

HI3 = 

H I = 

H 2 = 

H 3 = 

c [[Jlal ] [al/E 1 a2/a 3 a3/a2]], 

o [ [Jlal] V [x = 0 o [[al/a2 ] [y/1]]o[[al/E 1 a2/E 2 a3/a2] [x/x - i]]]], 

o [o[[J2al ] [al/a2]] [x/x + 1 y/(x + i) . y]], 

o [ [J3 (al) ] [al/a2] ] " 

We adopt as R the standard realization of functors and of the equality predicate 

in the set N O . The following sequence of states is an example of a computation of 

H by R for (VL,V) E W L x WN0 , where v L = (el,e5,e 0 .... ) and v(x) = 3, 

v(y) E N O , v(2) 6 N O for 2 E V. In writing state vectors in this computation we 

shall only give the values of the variables which occur in H. 

0 = (el,e3,e5,e0 ' ) vO(x) = 3 vO(y) = v(y) v L �9 . . 

1 1 1 
v L = (el,e2,e3,e5,e O, . . .) v (x) = 2 v (y) = v(y) 

2 (el,e2,e2,e3,e5,eo ' ) v2(x) = 1 v2(y) = v(y) v L = . . . 

3 3 3 
v L = (el,e2,e2,e2,e3,e5,e 0 .... ) v (x) = 0 v (y) = v(y) 

4 (e2,e2 ,e O, . .) v4(x) 0 v 4 v L = ,e2,e3,e 5 . = (y) = 1 

5 5 5 
v L = (e2,e2,e3,e5,e O, �9 �9 .) v (x) = 1 v (y) = 1 

6 = 
v L (e2,e3,e5,e O, . . .) v6(x) = 2 v6(y) = 2 

7 7 7 
v L = (e3,e5,e O, �9 �9 .) v (x) = 3 v (y) = 6 

8 (e5,eo ' ) v8(x) = 3 vS(y) = 6 v L = . ~ . 

It can be proved that HR(VL,V) is defined for each state 

such that vL(a I) = e I . Moreover, if HR(VL,V) = (VL,V), (VL,V) E W L • WN0 

~(y) = v(x) ! 

then 
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Suppose that we have defined instructions and procedures of all orders 

m. Then we define instructions of order m + 1 in a similar way as those of order 

i, admitting in (il) and (i2) procedures of orders < m, at least one of them 

being of order m, instead of generalized substitutions. In that case the label 

substitutions which occur in instructions must have special forms. Procedures of 

order, m + 1 are defined as in the case of order i, but instructions occurring in 

these procedures may be of orders ~ m + i, at least one of them being of order 

m + 1. 

A realization R is extended to the set Im+ 1 of instructions of order 

m + 1 and to the set P m+l of procedures of order m + 1 in a manner similar to 

that in which R is extended to I 1 and PI" 

Let ~ = U ~m" The set FLS is the least set containing 
m=l 

0 
S~ u S L u Sp u ~ and satisfying the conditions (fLSl) and (fLs2). 

The following theorem concerning procedures is worth mentioning. If 

H E F, then for every realization R in a set U ~ % and any two states (VL,V), 

(WL,W) such that v = w and vL(a I) = wL(al) , either both HR(VL,V) and 

HR(WL,W) are defined or both are undefined. Moreover, if HR(VL,V ) = (VL,V) and 

HR(WL,W) = (WL,W) , then v = w and ~L = (vL(a2)'vL(a3)' " " "~ 

~L = (wL(a2),wL(a3) , . . .). Thus the resulting state vectors are equal. 

The following theorem on a normal form for programs in FLS is also worth 

mentioning. For each H E FLS there is nor H E FLS , effectively defined, such 

that for each realization R in U # 0 and for any state (VL,V), HR(VL,V) is 

defined iff nor HR(VL,V) is defined. Moreover, if 

nor HR(VL,V) = ( V L , ~ ) .  T h u s  a f t e r  p e r f o r m i n g  n o r  H R 

changed. 

The set T of terms is extended to the set 

HR(VL,V) = (VL,V) , then 

the label vector is not 

FLST of generalized terms. 

FLST is the least set containing T and satisfying the conditions analogous to 

(fstl) and (fst2) in Section 2, viz. 

(fLstl) if T E FLST and H E FLS, then 

(fLst2) if 9 is n-argument functor and 

(T 1 �9 �9 �9 T n) E FLST~ 

HT E FLST , 

HI, . . . ,H n E FLST, then 
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The realization R is extended to FLST by adopting the following 

equations: 

'4R(VL'V) = ~R(V) for each ~ ( T, 

rTR(HR(VL,V)) if this is defined 

H4R(VL'V) = i [undefined otherwise 

(fLsr) 

"~R(~IR(VL,V) ..... ~nR(VL,V)) 

~(~i " " " ~n)R (VL'V) = 4iR(VL,V) are defined for 

undefined in the opposite case 

if all 

i = i, . . . ,n 

The next step is to extend the set F . of formulas in the initial 
mix 

language to the set FLSF of generalized formulas. The set FLSF is the least set 

containing all propositional variables, propositional constants Ei, 0 S i ~ ~, 

m m 
label variables ai, i 6 N, formulas p (41 . . . Tn)--where p is any m-valued 

n-argument predicate and 41, . . . ,4 n ( FLST--,closed under the logical connectives 

V, A, 4, ~, Dn , n 6 N, and satisfying the following conditions: 

(fLsfl) if a 6 FLSF and H 6 FLS , then Ha 6 FLSF, 

(fLsf2) if (~n)n6N is a sequence of generalized formulas and the set of all 

individual variables and of all propositional variables which occur in 

these generalized formulas is finite, then V (ala 2 - �9 ~ and 

A (~i~2 �9 �9 -) are in FLSF. 

In order to extend the realization R to FLSF the following additional 

equations are adopted: 

(fLsfr) 

~R(VL,V) = ~R(V) for each formula a E Fmi x 

aiR(VL,V) = vL(a i) for i 6 N 

[ pm(~ (v ,v), . ,TnR(Vn,V)) if all 
I R IR L " " 

Pm(41 " " " ~n)R (VL'V) = I 4iR(VL,V) for i = i, .... n are defined 

I 

L e O otherwise 

I { ~R(HR(VL,V)) if this is defined 
H~ R (v L,v) = 

e 0 in the opposite case 

I V (~la2 , ")R (VL'V) = U (VL,V) 
i=l ~iR 

L A (al~ 2 - ")R (VL'V) ~ ~iR(VL'V) 
i=l 
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By means of realizations we introduce in the usual way a semantic conse- 

quence operation. A formalization in the style of Hilbert, using infinitistic 

+ 
inference rules, for systems of extended ~ -valued algorithmic logic can be given, 

and the completeness theorem holds. The set of formulas derivable from logical 

axioms by means of the inference rules coincides with the set of all valid formulas. 

Observe that properties of programs in FLS may be described by means of 

generalized formulas. For instance for each H 6 FLS , HE express the stop 

property of H. For every procedure H 6 P, whose label is ek, formulas 

(Jkal ~ (a ~ H~)), and ((Jkal ~ ((~ A HE ) ~ H~)) describe correctness and partial 

correctness of H, respectively, with respect to an input formula ~ and an output 

formula ~. 

Extended e+-valued algorithmic logic has been formulated in a simplified 

form in [22]. The approach differs from that presented above in that all m-valued 

predicates and m-valued propositional variables for m > 2 are eliminated. On the 

other hand it is also possible to construct formalized languages of extended 

+ + 
-valued algorithmic logic that include those of ~ -valued algorithmic logic and 

in particular of algorithmic logic. 

+ 
Various systems of extended e -valued algorithmic logic may be applied to 

research analogous to that carried out on the basis of algorithmic logic and concern- 

ing programs with instructions go to, CASE and with recursive procedures. 
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THE LEAST S 2 AND ~2 REFLECTING ORDINALS 

Wayne Richter I 

University of Minnesota 

i. Introduction 

In our lectures at the 197h Kiel Summer Institute we gave an exposition of the 

general theory of inductive definitions. With the recent publications of Mosehovakis 

[6] and [7] and the earlier papers of Aanderaa [i], Richter [8], and Richter-Aezel [9] 

most of this material is now available. For this reason the present paper is concerned 

with an application of the general theory. 

n n 
Recall from [9] that ~m is the least ~n -reflecting ordinal and ~ is the 

m m 
least ~n -reflecting ordinal. [Definitions appear below]. The main results of [9] 

m 
establish a connection between these reflecting ordinals and the closure ordinals of 

certain sets of operators. An operator ~:P(~) ~ P(~) determines a transfinite 

sequence ~ : ~ E ON) of subsets of ~ , where ~=U[~(~ ~) : ~ < k] ~ The 

closure ordinal I~I of ~ is the least ordinal ~ such that ~ + 1 = ~ Let 

~= ~l~I For ~ a set of second order relations on ~ , ~ ~ ~ means the 

second order relation kn, X[n E ~(X)] belongs to $ Let 

~-IND is the set of (first order) relations X on ~ such that for some ~ E 

and some ml,...,m j , 

X = [ ( n  1 . . . . .  nk )  : (m 1 . . . . .  mj , n 1 . . . . .  nk> E ~ 

where ( > is the usual coding function, y-HYP is the set of relations X such 

that both X and its complement are in ~-IND. 

Let 5 n be the supremum of the order types of well-orderings on ~ which are 
m 

A n definable on the structure (~, E ~ 8> In the statement of Theorem i.i (which 
m 
is part of Theorem E of [9]) zn is the set of ~n second order relations on 

m m 
(~, E I~> ; similarly for ~n 

m 

Theorem lol.(i) 5nm_ %~< n I~l 

iResearch supported in part by the U.S. National Science Foundation under 
Grant GP-2 0846. 



W, Richter  569 

(ii) 5nm--< nm_ < l<I 

In the special ease m = n = i , Theorem B of [9] implies 

(l) ~l 

The following main result of the present paper answers questions left open in [9]- 

i 
Theorem A. ( i )  ~ = 5 2 ; 

1 
(iii) A relation on e belongs to L~ iff it belongs to ~2 -HYP 

i 
Thus in terms of the inequalities in Theorem i.i, ~2 is as small as possible 

~ is as large as possible. [ (i) corrects an error in remarks on p. and 3O6 of 

[9]]. For n > i , m > i , Theorem i.!, (i), and Theorem A are probably the best 

results in this direction without further assumptions such as V = L Other 

information about IW~I may be found in Cenzer [3]. 

2. ~ -reflection 

~,~,~ are used to denote ordinals. L is the set of eonstructible sets of 

order less than ~ All structures we consider are of one of the forms 

(L G, 6 I ~ .... ) or (~, C I ~ .... ) To simplify notation we abbreviate by 

omitting E I ~ , E I ~ And we oceassional!y write L~ and ~ for (L~, E I ~) 

and (~, 6 I~> , respectively. We frequently omit mention of the language of 

specific formulas when this is clear from the context. We use the L~vlf hierarchy [4] 

where formulas with all quantifiers restricted are Zo(=~ ~) . For the most part 

terminology follows that of [6], [7], or [ 9]. 

Definition. (i) Let A c 0N The structure (LG, R I .... ) is ~ -reflecting 

i sentence ~ of the language for the structure, o_~n A if for every ~2 

<L~, R 1 .... >l=e :><%' ~lI~ .... >l:e for~o~e ~ ~An 

(ii) (L G, % .... ) is ~-reflecting if it is ~2-reflecting on ON 

(iii) G is LI -reflecting if LG is % -reflecting. 

(iv) 
are obtained from (i)-(iii) by replacing 

i 
The definitions of a ~2 -reflecting structure and 

i 
~2 by g2 

i 
~2 -reflecting ordinal 
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i -ref~e ctin@ (v) i is the least T~21 -reflecting ordinal and i is the least ~2 

ordinal. 

Recall that a structure of the form (A, E I A, R I .... > , where A is tran- 

sitive and closed under pairing and union, is admissible if it satisfies Z ~ - 

Collection and Z -Separation. If such a structure is admissible it also satisfies 
o 

AI -Collection and A I -Separation. An ordinal ~ is admissible if L~ is admissible~ 

a § is the smallest admissible ordinal greater than ~ , and for a structure 

(A, R I .... > , (A, R I .... >+ is the smallest admissible set having A, ~ .... as 

members. 

The following lemma is Theorem 6.2 (i) of [9]~ It is a uniform version of the 

basic theorem of Barwise-Gandy-Moschovakis [2] (cf. [6, p. 2G2]) 

i 
Lemma 2.1. If ~(v I ..... v n) is a 71 formula then there is a ~ formula 

~+(Vo,V I ..... Vn) having the same constants as ~(v I ..... v n) such that for every 

non-empty countable transitive set A and every admissible set B such that A E B , 

if al,...,a n 6 A then 

A I = ~o(a I ..... a n ) ii~ B I= J(A, a I ..... an) 

Definition. ~ is stable if for every ~ formula ~(v I ..... v n) and 

a I, �9 �9 �9 a n 6 L , 

Lci= ~(a I ..... a n ) iff ~(a I ..... a n ) 

Theorem 2.2. If ~ is stable and countable then ~ is ~2 -reflecting. 

i 
Proof~ Let ~0(U) be a 71 formula with U a free n-ary relation (variable) 

such that L I= ~U~(U) Then 

2VHU E V[V is countable & V is admissible & <~ E V & L~ I= ~0(U)] ; 

(i) ZV~U E V~# 6 V[V is admissible & U c- L~ & V I: J(%,U)] 

The statement "V is admissible" may be expressed by a 7 3 sentence, V is admis- 

sible (cf. Theorem 2.L of [9]) with quantifiers restricted by V The function 
+ 

~ L8 is uniformly ~ -definable in any admissible V and hence since m is 
+ + 

E 1 , V I = ~0 (L~,U) may be expressed by a ~ formula, V 1 = c (L~,U) Thus (i) 

may be expressed by a ~i sentence with constants from L Since ~ is stable, 

there is a V f L such that 
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L j= ~U ~ V~ 6 V[V is admissible & U c ~ & V I = 

By the absoluteness of E ~ formulas in transitive structures, for some V,U,8 E L , 
n 

U,~ E V and V is admissible and U cL~ and V I = J(~,u) ;i.e. U,~ E L 

and L~ 1 = @(U) 

1 </s~l Corollary 2.3. ~ = 52 

i is 1 by Theorem E of [9] Kripke and Platek observed that 52 Proof. ~ ~ 52 

i To stable (for a proof see Lenm~ 6.2 of [5]). Hence by Theorem 2.2, ~ ~ 52 

< I%1 0 
the set of ~2 second order relations on e . Then @(%) E ~-HYP . @~) is a 

i 
complete ~ set. Hence there is a well-ordering elementary in ~(%) , and hence 

i 
in ~-HYP , of order type greater than 52 Hence by Theorem 8 of [7] 

I I = I~l = sup[rank (<): < E 5~-HYP & < is wen-founded} > 5 2 

3. Elementary basis properties 

We reserve W, X, Y, Z, ZI,... to denote relations or variables on m , and 

i, j, k, m, n, ml, n I .... to denote members of ~ The following well known basis 

result is an immediate corollary of a relativization of the Novikoff-Kondo-Addison 

uniformization theorem. 

i 
Basis Theorem. If ~ is ~i on ~ then 

ZX~(X,Z) => ZX g ~(Z)~(X,Z) 

For a proof (of the non-relativized version) see Shoenfield [ll, p. 188-9] 

We also need the following relativized version of Shoenfield's important theorem 

([!0], [ii, p. 319]). Let 52(Z) be the supremum of the order types of well-orderings 
i 

on ~ which are A 2 on (~,Z) 

1 
Shoenfield's Theorem. If Z E L then X is A 2 on (o,Z> iff X 6 L52(Z ) 

Definition. ~ 6 B iff J is countable, a limit of admissible ordinals, and 

for every Z ~ second order relation ~(X,Y,Z) on ~ and every Z g L , 

Let Lira(B) = [~ :~ is countable & ~ is a limit of members of B] 

Lemma3.!. X ~n =>52(x) 6B 
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Proof. Let X ~ L and ~ = 52(X ) Then 

of admissible ordinals. Let W ~ L and ~ be Z ~ 

and Shoenfield's Theorem 

is stable and hence is a limit 

Then by the Basis Theorem 

Lemma 3.2. 

iff for every % second order relation ~(X,Z) B 

(1) ~ E ~(x,z) => ~(X,Z) 

Proof. We first observe that if 9(X,Y,Z) is E 

(2) ZYr => ZY (L~r 

For suppose [Yr , where X, Z ~ L , ~ < 

(cf. [ll, p. ik8]) relativized to X , Z there is a 

and a Y arithmetical in W such that 9(X,Y,Z) 

Let ~ be countable and a limit of admissible ordinals. 

on ~ and every 

Then 

Z 6L~ , 

o on ~ and X , Z ~ L~ then 

By the Kleene Basis Theorem 
i 

W which is ~i on (~,X,Z) 

By the main theorem of Barwise- 

Gandy-Moschovakis [6, p. 2C~] , W is ~ on (~,X,Z) + Since X,Z 6 L , 

(~,X,Z) + = E L + In either case W c L + Either (~,X,Z) + L + or (~,X,Z) + 

is ~ on L + Since Y is arithmetical in W , Y E L ++i_~ L~ by definition 

of L 

To prove the lennna assume the hypothesis. Let Z 6 L~ and ~ be 

and ~(X,Z) <=> ZYr I~t ~ E B Then 

vx ~ L~(X,Z) =>VX ~ L~Yr 

=> VX 6 L~ZY 6 L~r by (2) 

=> VX~(X,Z) , since ~ E B 

~l on Now suppose (1) holds for every ~ Then for ~ E ~ 

~Y~(x,~,z) :>~ E ~Y ~ ~(x,Y,z) 

by (2). Also, 

=> vx~(x,z) 

by (I). Thus ~ ~B 

E on 
0 

Lemma 3-3- Lim(B) c B 

Proof. Let ~ 6 Lim(B) Clearly ~ is a limit of admissible ordinals. 

~0(X,Z) be ~ll on co and Z 6 L~B such that VX E ~L~q~ For some ~ < 

Let 
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VEB 

Hence 

and Z E L Then VX E L ~(X,Z) Since ~ E B , VX~(X,Z) 

E B 

by Lemma 3.2- 

i 
Lemma 3.4. There is a ~2 sentence B such that L~ I= B iff ~ E B 

Proof. By Lemma 3.2, ~ E B iff 

(3) [~ is a limit of admissible ordinals and for every ~ second order relation 

~(X,Z) on ~ and every Z 6% 

vx E%~(x,z) => vx~(x,z) ] 

1 
It is easy to find a K 2 sentence B such that (3) is equivalent to ~ I = B__ . 

Lemma 3.5. There is an elementary formula 6 such that if ~ E B then 

Proof. Let ~ 6 B Then for Z E L~ and Zo ~ ' 

VX~Y~(X,Y,Z) <=> YX E L~ZY E L~(X,Y,Z) 

Hence ~ E B @ ~ iff 

(4) [~ < ~ & ~ is a limit of admissible ordinals & for every ~ second order 
o 

relation ~(X,Y,Z) on ~ and every Z EL 

VX 6 %~Y E L~(X,Y,Z) <=> VX E L ~Y E L~(X,Y,Z)] 

It is easy to find an elementary formula @ such that the right side, (k), is 

equivalent to L~ I = e(~) for ~ E B 

i 
4. 7 2 -reflection 

We turn now to the proof that ~ = IU~I Let ~ =~ 

of the proof, Lemmas 4.3 and 4.4, consists in showing that ~L , 

i -reflecting on Lim(B) and 7 2 

The crucial part 

B @ ~ is admissible 

Len~na 4.1. K E B 

Proof. a is recursively inaccessible and hence is a limit of admissible 

i < ~ An easy relativization of this ordinals. In [ 9] we observed that 8 2 _ 

argument shows that for each Z E L , $2(Z) < ~ . Let ~ be a ~ second order 
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relation on ~ and Z E L Suppose VX E L ~(X,~) but ZX -~ ~(X,Z) Then 

by the Basis Theorem, ~X ~ %(Z) ~(X,Z) ; hence by Shoenfield's Theorem, 

~X E L52(Z ) -i ~(X,Z) But this implies ZX E L -I ~(X,Z) which contradicts our 

assumption. 

Lemma 4.2. ~ is U~ -reflecting on Lim(B) 

Proof. Since ~ ~ B , L I = B__ , and hence for each C < ~ , L I = B & 
i 

= ~ Since ~ is U 2 -reflecting there is some $ < ~ such that L~ I = B 

& C = C ; i.e. V~ < z S~ < ~[c < ~ & L~ 1 = B__] Thus ~ E Lim(B) It is 
i 

easy to find a 7 2 sentence ~ such that for all V , 

w<~<{~<~ & L~I= B_] iff LyI: ~ , 

i.e. ~ E Lim(B) iff L I: 9 Since ~ ~ Lim(B) , L I: 9 Now let ~ be a 

i 1 -reflecting ~2 sentence such that L I = ~ Then L I: ~ & ~ Since z is ~2 

there is some ~ < ~ such that L~I = ~ & r Hence ~ E Lim(B) and L~ I = 

Lemm~ 4.3. (L , B ~ ~ is U I -reflecting on Lim(B) 
2 

Proof. Let ~0(U,V) be a Z formula of the language for (L,B) such that 
o 

(L , B ~ ~) I = VL~V~(U,V) Let c* be obtained from c be replacing each occurence 

of the form B((~) by @((~) Then ~0" is an elementary formula of the language 

of set theory such that if ~ E Lira(B) then for all U,V, 

<T, Bn~>l= ~(~,V) ~f T I= :(H,V) 

1 
Since <L, B n ~)I = VU~V~(U,V) , L I = VU~V~*(U,V) Since ~ is TT 2 -reflecting 

on Lira(B) there is some ~ E Lim(B) M ~ such that L~ I = VL~V~*(U,V) ; hence 

<T, B n ~> I = v~v~(u,v) 

Lemma 4.4. (L , B M ~) is admissible. 

Proof. We first show (L , B ~ ~) satisfies E ~ -Collection. Let m be a 

E ~ formula and a 6 L Suppose (L , B n ~) I = Vu E a~vq0 Let ~ be obtained 

from ~ as in the proof of Lemma 4.3. Then for all ~ 6 Lira(B) and u,v E L~ , 

(L~, B n ~) I = m(u,v) iff L~ I: ~*(u,v) Since ~ E Lira(B) , L I = Vu E s~v~(u,v). 
i 

Since ~* is elementary and hence 7 2 , so is the formula Vu E aSv~*(u,v) 

Since ~ is ~i -reflecting on Lim(B) there is a ~ E Lim(B) such that 

I= Vu E a~v~*(u,v) Since ~ 6 Lira(B) , for all u,v E ~ , L8 I= ~*(u,v) 

iff ~T, Bn~>I = ~(u,~) Hence <~, Bn~>I: Vu~a~(u,~) , i.e. 

Vu @ s~v E %[<L~, B N ~> I: ~O(n,v)] Since ~ is Eo ' 
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<~, B n B~ I= ~(u,v) iff <T, s n~> I: ~(u,v) ~enee 

(L, B n ~> I = Vu EaZv EL~(u,v) 

To show E o-Separation suppose ~ is ~o and a E Lx Choose ~ E Lie(B) n 

so that a E L~ and all constants in ~ belong to L~ Since ~ is E ~ , 

{u:u Ea~<L, sn~> I = ~(u)]= {u:u Ea~<L~, B n~> I = ~(u)] 

: {u:u ~a~L~ 1= ~(u)] ETa+ 1E~ , 

since ~ is elementary. 

At this point we may complete the proof that i = IT[211 by applying either 

Theorem 10.3 of [9] or Theorem 24 of [7]. Since the approach of Moschovakis is more 

general we use the latter. 

Let ~ be the set of second order relations on 0~ which are ~i on ~ Given 
M 

6 ~ and a set M , let ~ = ~ ~ M , i.e. 

~M(n I ..... nk,Z 1 ..... Zg) <:> Z 1 ..... Zg 6 M & ~(n I ..... n k, Z 1 ..... Zg) 

We abbreviate by ~0 and let ~ = [~ : ~ C N] Following [7] we say L 

is ~-admissible if the structure (L, ~ is admissible, where the distinguished 

relations of (L ,~> are 6 ~ L and the members of ~ L is said to be 

Wl(~)_reflecting if (L~, ~ 1 is U~ -reflecting. 

Lemm~ 4.5. L is ~-admissible and ~l(N)-reflecting. 

Proof. In order to show that L is ~-admissible it suffices to show that 

E N implies ~ is A1 on (L , B n z5 for then every relation Eo on 

(L ,~5 is Al on (L , B ~ z) and hence ~o-Collection and Eo-Separation for 

(L ,~> are implied by Ai-Collection and ~l-Separation for (L , B N ~) Suppose 

E ~ , say ~(n,Z) <=> V]CZY~(n,X,Y,Z) , where ~ is Eo Then there is a ~i 

formula ~' of the language for (L,B> such that for ~ ~ Lim(B) , 

~(n,Z) <=> Z 6 L~ & V'X~Y~(n,X,Y,Z) 
<=> Z~ < ~[~ 6 BQ~ & Z EL &VX6L ZY6L 9(n,X,Y,Z)] 

<=> <~,~, B n ~> I = ~'(n,Z) 

Similarly, there is a ~I formula (~ ~) ' such that 
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In particular, we have shown that if ~ 6 ~ then ~ is ~ on (L , B @ z) 

Now suppose ~ is a K~(y) sentence such that (L ,~} I= ~ We find 

~ ~ such that (L~,~) I = ~ Let ~i ..... ~k be the (names of) members of 

appearing in ~ Let ~* be the sentence of the language of (L,B) obtained by 

replacing each occurrence of the form ~i(nl .... ,nj, Z I ..... Z k) by 
I 

~i(nl .... ,nj, Z I ..... Zk) Then ~* is ~ and for ~ 6 Lim(B) , 

<%, ~> i=~ i~ % Bo~> I=~ 

i 
Hence (L , B @ ~} I = ~* and since gL , B @ K} is U 2 -reflecting on Lim(B) there 

is a ~ 6 Lim(B) @ ~ such that (L~, B @ ~> I = [~* ; hence {L~,~) l = 

Given a set M let o(M) = sup[~: ~ @ M] Summarizing the relevant portions 

of Moschovakis [6, Ch. 9], [7, p. 75] on companions we have: 

Lemma 4.6. Let 

co+(T[ I) = N[M:M is ~-admissible, ul(~)-reflecting, and co 6 M} 

Then: (i) @+(I[I) is ~-admissible and ~l(g)-reflecting; 

(iii) for any X , 

x ~  iff x is ~ on <J(~), ~> , 

where (% = o(co+([ 1)) 

Theorem 4.7 (i) i~211 ~ 1 ; 

(ii) for any X 

x x is % on whe  : 

(iii) in particular, for any X 

X E UI-HyP if~ X E L 

Proof. (i) I~ll > l_ by Theorem i.i. By Lemma 4. 5 , co+(?T I) m L ; hence by 

Lemma 4.6, 

+~ +l 
(ii) Since co ( ) is admissible and o(~ (%)) = z it follows easily 
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that L S ~+(~) ; hence L = ~+(~) Then by Lemma ~.~, 

X EW~-nVO i f f  X is 31 on ( L , ~ >  

From the proof of Le~ma 4.5, if ~ E ~ then ~ is A 1 on (L , B ~ ~> and hence 

every relation Z I on (L ,~> is ~i on (L , B n ~) For the other direction, 

let e E ~ parametrize the relations in ~ of signature (i,i), say 

~(m,n,Z) <=>VX~Yr , where ~ is Z ~ on ~ Then 

E B n ~ <=>~ < ~ & ~ is a limit of admissible ordinals 

& Vm, n E~VZ E L [~o~(m,n,Z) <=> VXEL^.GtYEL~,~(m,n,X,Y,Z)] 
c~ q% t% 

and hence B N ~ is ~ on (L ,~> It follows that every relation ~ on 

(L , B n ~ is E 1 on ~L ,~> �9 

(iii) By (ii) and Ai-Separation, for any X 

X E ~ -HYP iff X is 41 on (L ,B O ~) 

iff X E L 
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0. INTRODUCTION 

Investigations begun in 1969 with Christopher Strachey led 

to the idea that the denotations of many kinds of expressions in 

programming languages could be taken as elements of certain kinds of 

spaces of "partial" objects. As these spaces could be treated as 

function spaces, their structure at first se~med excessively com- 

plicated - even impossible. But then the author discovered that 

there were many more spaces than we had first imagined - even wanted. 

They could be presented as lattices (or as some prefer, semilattices), 

and the main technique was to employ topological ideas, in particular 

the notion of a continuous function. This approach and its 

applications have been presented in a number of publications, but that 

part of the foundation concerned with computability (in the sense of 

recursion theory) was never before adequately exposed. The purpose 

of the present paper is to provide such a foundation and to simplify 

the whole presentation by a de-emphasis of abstract ideas. An 

appendix and the bibliograph~provide a partial guide to the literature 

and an indication of connections with other work: 

The main innovation in this report is to model everything 

within one "universal" domain p~ = {xlx ~ ~}, the domain of all sub- 

sets of the set ~ of non-negative integers. The advantages are many: 

by the most elementary considerations pm is recognised to be a lattice 

and a topological space. In fact, p~ is a continuous lattice, even an 

algebraic lattice, but in the beginning we do not even need to define 

such an "advanced" concept; we can save these ideas for an analysis of 

what has been done here in a more direct way. Next by taking the set of 

integers as the basis of the construction, the connection with the 

ordinary theory of number-theoretic (especially, general recursive) 

functions can be made clear and straight forward. 

The model p~ can be intuitively viewed as the domain of 

multiple-valued integers; what is new in the presentation is that 

functions are not only multiple valued but also "multiple argumented". 

This remark is given a precise sense in Section 2 below, but the 



580 D, Scot t  

upshot of the idea is that multiple-valued integers are regarded as 

objects in themselves --possibly infinite -- and as something more 

than just the collection of single integers contained in them. This 

combination of the finite with the infinite into a single domain, 

together with the idea that a continuous function can be reduced to 

its graph (in the end, a set of integers), makes it possible to view 

an x c p~ at one time as a value, at another as an argument, then as 

an integer, then as a function, and still later as a functional (or 

combinator). The "paradox" of self-application (as in x(x)) is 

solved by allowing the same x to be used in two different ways. This 

is done in ordinary recursion theory via GBdel numbers (as in {e)(e)), 

but the advantage of the present theory is that not only is the 

function concept the extensional one, but it includes arbitrary con- 

tinuous functions and not just the computable ones. 

Section 1 introduces the elementary ideas on the topology 

of Pw and the continuous functions including the fixed-point theorem. 

Section 2 has to do with computability and definability. The 

language LAMBDA is introduced as an extension of the pure x-calculus 

by four arithmetical combinators; in fact, it is indicated in Section 

3 how the whole system could be based on one combinator. What is 

shown is that computability in P~ according to the natural definition 

(which assumes that we already know what a recursively enumerable 

set of integers is) is equivalent to LAMBDA definability. The main 

tool is, not surprisingly, the First Recursion Theorem formulated 

with the aid of the so-called paradoxical combinator Y. The plan 

is hardly original, but the point is to work out what it all means in 

the model. 

Along the way we have to show how to give every ~-term a 

denotation in Pw; the resulting principles of h-calculus that are 

thereby verified are summarized in Table I. Of these the first 

three (a), (B), and (~) are indeed valid in the model; however, 

rule (~), which is a stronger version of extensienality, fails in the 

p~ model. This should not be regarded as a disadvantage since the 

import of (~) is to suppose every object is a function. A quick con- 

struction of these special models is indicated at the end of Section 5. 

Since p~ is partially ordered by ~, there are also laws involving this 

relation. Law (~*) is an improvement of (g); while (V) is a form of 

monotonicity for application. 

Section 3 has to do with enumeration and degrees. G~del 

numbers for LAMBDA are defined in a very easy way which takes advan- 

tage of the notation of combinators. This leads to the Second 
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(~) 

(B) 

(~) 

(~) 

(~ *) 

(~ 

~x.T = hy.T[ y/x] 

(~X.T.)  ( y )  = T[ y / x ]  

~ x . x  = ~ x . ~  i f f  V X o X  = 

y = ~ x . y  ( x )  

)~x.x c )~x.(~ i f f  V x . ~  c c~ 

x c__ y a n d  u c__ v i m p l y  u ( x )  c__ v (y  ) 

T a b l e  I .  Some Laws  o f  ~ - C a l c u l u s  
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Recursion Theorem, and results on incompleteness and undecidability 

follow along standard lines. Relative recursiveness is also very 

easy to define in the system, and we make the tie-in with enumeration 

degrees which correspond to finitely generated combinatory subalgebras 

of p~. Finally a theorem of Myhill and Shepherdson is interpreted as 

a most satisfactory completeness property for definability in the 

system. 

Sections 4 and 5 show how a calculus of retracts leads to quite 

simple definitions of a host of useful domains (as lattices). Section 

6 investigates the classification of other subsets (non-lattices) of 

p~; while Section 7 contrasts partial (multiple-valued) functions 

with total functions, and interprets various theories of functionality. 

Connections with category theory are mentioned. 

What is demonstrated in this work is how the language LAMBDA, 

together with its interpretation in P~, is an extremely convenient 

vehicle for definitions of computable functions on complex structures 

(all taken as subdomains of p~). It is a "high-level" programming 

language for recursion theory. It is applied combinatory logic, 

which in usefulness goes far beyond anything envisioned in the 

standard literature. What has been shown is how many interesting 

predicates can be expressed as equations between continuous functions. 

What is needed next is a development of the proof theory of the 

system along the lines of the work of Milner, which incorporates the 

author's extension of McCarthy's rule of Recursion Induction to this 

high-level language. Then we will have a flexible and practical 

"mathematical" theory of computation. 
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I .  CONTINUOUS FUNCTIONS 

The domain pm o f  a l l  subse ts  o f  the se t  m o f  n o n - n e g a t i v e  

integers is a complete lattice under the partial ordering c of set 

inclusion, as is well known. We use the usual symbols w, ~ U,N 

for the finite and infinite lattice cperations of union and inter- 

section, pw is of course also a Boolean algebra; and for complements 

we write 

~x = {n ] n ~ x }  

where i t  i s  u n d e r s t o o d  t h a t  such v a r i a b l e s  as i ,  j ,  k ,  Z, m, n range 

over integers in ~, while u, v, w, x, y, z range over subsets of ~. 

The domain p~ can also be made into a topological space -- in 

many ways. A common method is to match each x a ~ with the corres- 

ponding characteristic function in {0,1} m, and to take the induced 

product topology. In this way pm is a totally disconnected compact 

Hausdorff space homeomorphic to the Cantor "middle-third" set. This 

is not the topology we want; it is a positive-and-negative topology 

which makes the function ~x continuous. We want a weaker topology: 

the topology of positive "information", which has the advantage that 

all continuous functions possess fixed points. (The equation x = ~x 

is impossible.) The topology that we do want is exactly that 

appropriate to considering pm to be a continuous lattice. But all 

this terminology of abstract mathematics is quite unnecessary, since 

the required definitions can be given in very elementary terms. 

To make the topology "visible", we introduce a standard 

enumeration {enln e m} of all finite subsets of m. Specifically we 

set 

e n = {ko,kl,... ,km_l)~ 
k. 

provided that k 0 < k I < ... < km_ 1 and n = .2 2 ~. Thus n is the 
~< m 

code number for en, and the elements of e n are the exponents in the 

binary expansion of the integer n. This is a one-one enumeration of 

finite subsets, where k ~ e n always implies k < n, the function 

max(e n) is (primitive) recursive in n, and the relations k ~ e 

e n a_ em, en = em w e k are all (primitive) recursive in k, m, n 

Topologically speaking the finite sets e are dense in the 
n 

space p~, for each x c p~ is the "limit" of its finite subsets in the 

sense that 

x = U{enle n ~ x}. 

To make this precise we need a rigorous definition of open subset 

of p~. 
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DEFINITION. A basis for the neighbourhoods of p~ consists of those 

sets of the form: 

{ x ~  P~le c x} ,  
n 

for a given e n . An arbitrary open subset is then a union of basic 

neighbourhoods. 

It is easy to prove that an open subset U c is just a set 

of "finite character"; that is, a set such that for all x e pw we 

have x e U if and only if some finite subset of x also belongs to U. 

An alternate approach would define directly what we mean by a con- 

tinuous function using the idea that such functions must preserve 

limits. 

DEFINITION. 

we have: 

A function f : p~ § p~ is continuous iff for all x c p~ 

c x } .  f(x) = U{f(en)le n _ 

Again it is an easy exercise to prove that a function is con- 

tinuous in the sense of this definition iff it is continuous in the 

usual topological sense (namely: inverse images of open sets are 

open). For giving proofs it is even more convenient to have the 

usual e-~ formulation of continuity. 

THEOREM I . I .  (The C h a r a c t e r i z a t i o n  Theo rem) .  A function f : p~ § p~ 
is continuous iff for all x E p~ and all e we have: 

m 

e m _c f(x) iff 3en -c x. em --c f(en). 

Note that open sets and continuous functions have a mono- 

tonicity property : 

whenever x c y and x E U, then y c U; and 

whenever x c y , then f(x) c f(y). 

This gives a precise expression to the "positive" character of our 

topology. However, note too that openness and continuity mean 

rather more than just monotonicity. In particular, a continuous 

function is completely determined by the pairs of integers such 

that m e f(en) , as can be seen from the definition. (Hence, there 

are only a continuum number of continuous functions, but more than 

a continuum number of monotonic functions.) This brings us to the 

definition of the graph of a continuous function. 

To formulate the definition, we introduce a standard enumera- 

tion (n,m) of all pairs of integers. Specifically we set 
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in,m) = �89 

This is the enumeration along the "little diagonals" going from 

left to right, and it produces the ordering: 

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),... 

Note that n ~(n,m) and m ~(n,m) with equality possible only in the 

cases of (0,0) and (1,0). This is a one-one enumeration, and the 

inverse functions are (primitive) recursive --but we do not require 

at the present any notation for them. 

DEFINITION. The graph of a continuous function f : p~ § p~ is 

defined by the equation: 

graph( f )  = { ( n , m ) I m  e f ( e n ) } ;  

while the function determined by any set u a ~ is defined by the 

equation: 

c x.(n m) e u} f u n ( u ) ( x )  = {mI3e n _ 

THEOREM 1.2.  (The Graph Theorem). Every con t i nuous  f u n c t i o n  i s  

uniquely determined by its graph in the sense that: 

(i) f u n ( g r a p h ( f ) )  = f. 

Conversely, every set of integers determines a continuous function 

and we have: 

Cii) u a g r a p h ( f u n ( u ) ) ,  

where equality holds just in case u satisfies: 

Ciii) whenever (k,m) E u and e k _c en, then (n,m) c u. 

Besides functions of one variable we need to consider also 

functions of several variables. The official definition for one 

variable given above can be extended simply by saying f(x,y,...) is 

continuous iff it is continuous in each of x,y, ..... Those familiar 

with the product topology can prove that for our special positive 

topology on p~ this is equivalent to being continuous on the product 

space (continuous in the variables jointly). Those interested only 

in elementary proofs can calculate out directly from the definition 

(with the aid of I.I) that continuity behaves under combinations by 

substitution [as in: f(g(x,y),h(y,x,y))]. 

THEOREM 1.3. ( T h e S u b s t i t u t i o n  Theorem). Continuous functions of 

several variables on p~ are closed under substitution. 

The other general fact about continuous functions that we shall 
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use constantly concerns fixed points, whose existence can be proved 

using a well-known method. 

THEOREM 1.4.  (The F i x e d - P o i n t  Theorem).  Every continuous function 

f : pm § p~ has a least fixed point given by the formula: 

f i x  ( f )  = U { f  n (~ ) In  ~ ~} ,  

where ~ is the empty set and fn is the n-fold composition of f with 

itself. 

Actually fix is a functional with continuity properties of 

its own. We shall not give the required definitions here because 

they can be more easily derived from the construction of the model 

given in the next section. 

For those familiar with the abstract theory of topological 

spaces we give in conclusion two general facts about continuous 

functions with values in p~ which indicate the scope and generality 

of our method. 

THEOREM 1 .5 .  (The Ex tens ion  Theorem).  Let X and Y be arbitrary 

topological spaces where X ~ Y as a subspace. Then every continuous 

function f : X § pw can be extended to a continuous function ~ : Y § p~ 

defined by the equation: 

7 ( y )  =U{n{f(x)Ix E x n U } l y  E u} ,  

where y E Y~and U ranges over the open subsets of Y. 

4 

THEOREM 1.6. (The Embedding Theorem_). Every To-space X with a count- 

able basis {Unln ~ ~} for its topology can be embedded in pm by the 

continuous function ~ : X + p~ defined by the equation: 

(x)  = {nlx ~ U n } .  

T e c h n i c a l l y  the T o - h y p o t h e s i s  i s  what is  needed to  show t h a t  

i s  one-one.  The upshot  o f  these two theorems i s  t h a t  i n  l o o k i n g  

f o r  ( r e a s o n a b l e )  t o p o l o g i c a l  s t r u c t u r e s  we can c o n f i n e  a t t e n t i o n  

to  the subspaces o f  pm and to  con t i nuous  f u n c t i o n s  d e f i n e d  on a l l  o f  

pm. Thus the emphasis on a s i n g l e  space i s  j u s t i f i e d  s t r u c t u r a l l y .  

What we s h a l l  see i n  the rema inde r  o f  t h i s  work is  t h a t  the use o f  a 

s i n g l e  space is  a l so  j u s t i f i e d  p r a c t i c a l l y  because the r e q u i r e d  sub- 

spaces and functions can be defined in very simple ways by a natural 

me~hod of equations. 

In order to make the plan of the work clearer, the proofs of 

the theorems have been placed in an appendix when they are more than 

simple exercises. 
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2. COMPUTABILITY AND DEFINABILITY, 

The purpose of the first section was to introduce in a simple- 

minded way the basic notions about the topology of pm and its con- 

tinuous functions. In this section we wish to present the details 

of a powerful language for defining particular functions - especially 

computable functions --and initiate the study of the use of these 

functions, This study is then extended in different ways in the 

following sections, 

Before looking at the language, a short discussion of the 

"meaning" of the elements x e p~ will be helpful from the point of 

view of motivation, Now in itself x �9 p~ is a set, but this does not 

reveal its meaning. Actually x has no "fixed" meaning, because it 

can be used in strikingly different ways; we look for meaning here 

solely in terms of use. Nevertheless it is possible to give some 

coherent guidelines. 

In the first place it is convenient to let the singleton 

subsets {n} �9 ~ stand for the corresponding integers. In fact, we 

shall enforce by convention the equation n -- {n} as a way of simplifying 

notation. In this way ~ �9 p~ as a subset. (Note that our convention 

conflicts with such set-theoretical equations as 5 = {0,i,2,3,4}. 

What we have done is to abandon the usual set-theoretical conventions 

in favour of a slight redefinition of set of integers which produces 

a more helpful convention for present purposes.) So, if we choose, 

a singleton "means" a single integer. The next question is what a 

"large" set x �9 pm could mean. Here is an answer: if we write : 

x : {Q,5 ,17 } = 0 U 5 m 17 , 

we are thinking of x as a multiple integer. This is especially 

useful in the case of multiple-valued function where we can write : 

f(a) = o u ~ u 17. 

Then "m �9 f(a)" can be interpreted as "m is one value of f at a." Now 

a �9 p~, too, and so it is a multiple integer also. This brings us to 

an important point. 

A multiple integer is (often) more than just the (random) 

collection of its elements. From the definition of continuity, 

c a. We may not be able m �9 f(a) is equivalent to m �9 f(en) with e n _ 

to reduce this to m �9 f({n}) with n e a without additional assumptions 

on f. Indeed we shall take advantage of the feature of continuous 

functions whereby the elements of an argument a can join in cooperation 

in determining f(a). Needless to say, continuity implies that the 
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cooperation cannot extend beyond finite configurations, and so we can 

say that a is the union (or limit) of its finite subsets. However, 

finitary cooperation will be found to be quite a powerful notion. 

Where does this interpretation leave the empty set ~? When 

we write "f(a) = ~" we can read this as "f has no value at a", or 

"f is undefined at a". In this case f(a) exists (as a set), but 

it is not "defined" as an integer. Single- (or singleton) valued 

functions are "well defined", but multiple-valued functions are rather 

"over defined". 

How does this interpretation fit in monotonicity? In case 

a a b and m ~ f(a), then we must have m ~ f(b). We can read "a c b" 

as "his an improvement of a" or roughly "b is better-defined than a". 

The point of monotonicity is that the better we define an argument, 

the better we define a value. "Better" does not imply "well" (that 

is, single-valuedness), and overdefinedness may well creep in. This 

is not the fault of the function; it is our fault for not choosing a 

different function. 

As a subspace w a pw is discrete. This implies that 

arbitrary functions p : ~ + ~ are continuous. Note that p : w § pw 

as well, because ~ a ~w. By 1.5 we can extend p continuously to 

: ~co + ~. The formula given produces this function: 

(i) F(x) = N{p (n)Tn ~ ~}, if x ; ~; 

= p (n) , if x = n e co; 

= ~ , otherwise. 

This is a rather abrupt extension of p (the maximal extension); a 

more gradual, continuous extension (the minimal extension) is 

determined by this equation: 

(2) ~(x) =U{p(n)In E x}. 

The same formulae work for all multiple-valued functions p : co § ~. 

Functions like f = ~ are exactly characterized as being those con- 

tinuous functions f : p~ § ~0J which in addition are distributive 

in the sense of these equations: 

f(x u y) : f(x) u f(y) and f(~) = @. 

The sets @ and m play special roles. When we consider them 

as elements of p~ we shall employ the notation: 

• = ~ and T = ~ .  

The element • is the most "undefined" integer, and T is the most 

"overdefined". All others are in between. 
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One last general point on meaning: suppose x ~ p~ and k ~ x. 

Then k = (n,m) for suitable (uniquely determined) integers n and m. 

That is to say, every element of x can be regarded as an ordered pair; 

thus, x can be used as a relation. Such an operation as 

(3) x;y = { (n,1)13m. (n,m) E x,(m,1) c y} 

is then a continuous function of two variables that treats both x and 

y as relations. On the other hand we could define a quite different 

continuous function such as 

(4) x + y = {n + mln E x,m E y} 

which treats both x and y arithmetically. The only reason we shall 

probably never write (x+y);x again is that the values of this 

perfectly well-defined continuous function are, for the most part, 

quite uninteresting. There is, however, no theoretical reason why 

we cannot use the same set with several different "meanings" in the 

same formula. Of course if we do so, it is to be expected that we 

will show the point of doing this in the special case. We turn 

now to the definition of the general language for defining all such 

functions. 

The syntax and semantics of the language LA~BDA are set out 

in Table 2. The syntax is indicated on the left, and the meanings 

of the combinations are shown on the right as subsets of p~. This 

is the basic language and could have been given (less understandably) 

in terms of combinators (see 2.4). It is, however, a very primitive 

language, and we shall require many definitions before we can see why 

such functions as in (3) and (4) are themselves definable. 

The definition has been left somewhat informal in hopes that 

it will be more understandable. In the above, T is any term of 

the language. LAMBDA is type-free and allows any combination to be 

made by substitution into the given functions. There is one 

primitive constant (0); there are two unary functions (x+i,x-1); there 

is one binary function (u(x)) and one ternary function (z~x,y); 

finally there is one variable binding operator (kx.~). The first 

three equations have obvious sense. In the fourth, z~x,y is McCarthy's 

conditional expression (a test for zero). Next u(x) defines 

application (u is treated as a graph and x as a set), and Xx.z is 

functional abstraction (compare the definition of fun). In defining 

~x.~, we use ~[ en/X] as a shorthand for evaluating the term z when 

the variable x is given the value e n. 

Note that the functions are all multiple-valued. Thus we 
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o = { o }  

x + l  = { n + l l n  ~ x }  

x - 1  = { n l n + l  ~ x }  

z o x , y  = {n ~ x l o  c z }  u {m c y[ 3 ~ . k + l  ~ z }  

U(X) = {m[ 3 e C x. (n,m) E u} 
n -- 

hx.T = {(n,m)Im C ~[ en/X]} 

T a b l e  2.  The L a n g u a g e  LAMBDA 
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have such a result as: 

( 5 )  (5 V 10 )  + 1 = 7 V 1 1 ,  

The  p a r t i a l  c h a r a c t e r  o f  s u b t r a c t i o n  h a s  e x p r e s s i o n  a s :  

(6) o - i = •  

We shall see how to define + and - in LAMBDA later. The conditional 

could also have been defined by cases: 

(7) zDx, y = • , if z = • 

= x , if z = O; 

: y , if O~ z # • 

= x w y, if 0 e z # O. 

We say that a LAMBDA-term �9 defines a function of its free variables 

(at least). Other results depend on this fundamental proposition: 

THEOREM 2.1. (The Con t inu i t y  Theorem). All LAMBDA definable functions 

are continuous. 

Once that is proved, we can use 1.2. to establish: 

THEOREM 2,2. (The Conversion Theorem). The three basic principles 

(a),  (~), (~) of X-conversion are all valid in the model. 

By "model" here we of course understand the interpretation 

of the language where the semantics gives terms denotations in em 

according to the stated definition. Through this interpretation, 

more properly speaking, e~ becomes a model for the axioms (~),(B),(~). 

Two well-known results of the calculus of h-conversion allow the 

reduction of functions of several variables to those of one, and 

the reduction of all the primitives to combinators (constants) - 

all this with the aid of the binary operation of application. 

THEOREM 2.3. (The Reduction Theorem). Any continuous function of 

k-variables can be written as 

f (Xo ,X  I . . . . .  Xk_ I )  = U ( X o ) ( X l ) . . .  (Xk_1) ~ 

where u is a suitably chosen element of p~. 

THEOREM 2.4. (The Combinator Theorem). The LAMBDA-definable 
functions can be generated (from variables) by iterated application 

with the aid of these six constants: 

0 : 0 

s u c  = hx.x+l 

pred = hx .x -1  
c o n d  = hxhyhz.zDx,y 
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K = hxhy.x 

S = huhvhx, u(x)(v(x)) 

But the result that makes all this model building and com- 

binatory logic mathematically interesting concerns the so-called 

paradoxical combinator defined by the equation: 

(8) Y = hu.  ( h x . u ( x ( x ) ) ) ( ~ x . u ( x ( x ) ) ) .  

THEOREM 2.5. (The F i r s t  Recursion Theorem). I f  u i s  t h e  g r a p h  o f  a 

continuous function f, then Y (u) = fix(f), the least fixed point of f. 

There are two points to note here: the fixed point is 

LAMBDA-definable if f is; and Y defines a continuous operator. The 

word "recursion" is attached to the theorem because fixed points are 

employed to solve recursion equations. It would not be correct to 

call the Fixed-Point Theorem 1.4 the Recursion Theorem since it only 

shows that fixed points exist and not how they are definable in a 

language. The Second Recursion Theorem (in Kleene's terminology) 

is related, but it involves G~del numbers as introduced in Section 3. 

From this point on we see no need to distinguish continuous 

functions from elements of p~; a continuous function will be 

identified with its graph. Note that u is a graph iff u = hx.u(x), 

which is equivalent to 1.2 (iii). For this reason (functions are 

graphs) we propose the name Graph Model for this model of the 

h-calculus. (There is more to LAMBDA than just h, however.) 

The identification of functions with graphs entails that the 

function space of all continuous functions from p~ into p~ is to be 

identified (one-one) with the subspace 

FUN : {u l  u : h x . u ~ x )  } S P ~ .  

The identification is topological in that the subspace topology agree 

with the product topology on the function space. This is the topology 

of pointwise convergence and is closely connected with the lattice 

structure on the function space which is also defined pointwise (that 

is, argumentwise). In the notation of h-abstraction we can express 

this as the extension of the axiom of extensionality called (~*) in 

Table 1 of the Introduction. The laws in Table 1 are not the only 

ones valid in the model, however. We may also note such argument- 

wise distributive laws as: 

(9) (fUg) ( x )  = f ( x )  U g ( x )  

(lO) (hx.~) u (hx.o)  = ~x.(~uo) 
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( 1 1 )  ( f n g ) ( x )  = f ( x )  n g(x) 

( 1 2 )  ( X x . T )  n ( X x . g )  = 

In the above f and g must be graphs. 

then 

( 1 3 )  U { f l f e J ~ ( x )  = U { f ( x ) l f e - ~ ,  

but the same does not hold forn. 

We state now a sequence of minor results which show why some 

simple functions and constants are kAMBDA-definable. 

(14) ~ = ( k x . x ( x ) ) ( k x . x ( x ) )  

( 1 5 )  x u y : ( k z . o )  D x , y  ( H I N T :  0 , 1  c k z . O )  

( 1 6 )  T = Y ( k x .  o u ( x + l ) )  

(17) xny = Y(~fXxhy.x~(yDO,z),f(x-l)(y-1)+l)(x)(y) 

The elements • and T are graphs, by the way, and we can characterize 

them as the only fixed points of the combinator K: 

( 1 8 )  a = h x . a  i f f  a = • o r  a = T .  

Next we use the notation < Xo,Xl,...,Xn_l) for the function ~ where 

p : w § p~ is defined by: 

( 1 9 )  

(2o) 

( 2 1 )  

( 2 2 )  

p ( i )  : x i , i f  i < n ; 

= i , i f i > _ n .  

(> = • 

< x) = hz.z~x,• 

(x,y) = ~z.z~x, (z-i~y,• 

{Xo,Xl,...,Xn ) = hz. ZDXo,(xl,... ,Xn> (z-1) 

Obviously we should formalize the subscript notation so that 

u x = u(x); then we find: 

(23) - 1 ) = x. i Xo'Xl'" "" 'Xn i 

= • 

Xx.(~na) 

It is also true that if~c p~, 

This gives us the method of LAMBDA-defining finite sequences (in a 

, if i < n~ 

,if i -> n. 
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quite natural way), and the next step is to consider infinite 

sequences. But these are just the functions ~ where p : w ~ p~ 

is arbitrary. What we need then is a condition expressible in the 

language equivalent to saying u = ~ for some p. This is the same as 

u = hx. U(uili ~ x}, 

but theU- and set-notation is not part of LAMBDA. We are forced into 

a recursive definition: 

(24) $ = Y(kshuhz.ZDUo,S(kt.ut+l)(Z-1)) 

This equation generalises (22) and we have: 

(25) $ (u) = hx. O{uili E x} 

Thus the combinator $ "revalues" an element as a distributive 

function. This suggests introducing the h-notation for such 

functions by the equation: 

(26) hn ~ ~.~ = $(~z.~[z/n]) 

With all these conventions LAMBOA-notation becomes very much like 

ordinary mathematical notation without too much strain. 

Suppose that f is any continuous function and acRe. We can 

define p : ~ § p~ in the ordinary way by primitive recursion where: 

p(O) = a ; 

p (n+l) = f(n)(p (n)). 

The question is: can we give a LAMBDA-definition for ~ (in terms of 

f and a as constants, say)? The answer is clear, for we can prove: 

(27) ~ = Y(hu~n E w.n ~ a,f(n-1)(u(n-1))) 

This already shows that a large part of the definitions of recursion 

theory can be given in this special language. Of course, simultaneous 

(primitive) recursions can be transcribed into LAMBDA with the aid 

of the ordered tuples of (22), (23) above. But we can go further and 

connect with partial (and general) recursive functions. We state 

first a definition. 

DEFINITION. A continuous function f of k-variables is computable 

iff the relationship 

m C f(eno) (enl)''" (enk-1) 

is recursively enumerable in the integer variables m,no,nl,...,nk_ 1. 

If q is a partial recursive function in the usual sense, 
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then we can regard it as a mapping q : ~ § ~u{• where q(n) = • means 

that q is undefined at n. Saying that q is partial recursive is just 

to say that m ~ q(n) is r.e. as a relation in n and m. It is easy 

to see that this is in turn equivalent to the recursive enumerability 

of the relationship m ~ ~(en); and so our definition is formally a 

generalization of the usual one. But it is also intuitively reason- 

able. To "compute" y = f(x), in the one-variable case, we proceed by 

enumeration. First we begin the enumeration of all finite subsets 

c x. For each of these f starts up an enumeration of the set e n m 

f(en); so we sit back and observe which m ~ f(e n) by enumeration~ The 

c x forms in the end the set y. totality of all such m for all e n _ 

THEOREM 2.6.  (The D e f i n a b i l i t y  Theorem) For a k-ary continuous function 

f, the following are equivalent: 

(i) f is computable; 

(ii) hXoXXl...XXk.l.f(xo) (xl)... (Xk_1) as a set is r.e.; 

(iii) ~XoXX1...XXk_1.f(Xo) (xl)... (Xk_ I) is LAMBDA-definable. 

As a hint for the proof we may note that the method of 

equation (27) shows that all primitive recursive functions p have the 

corresponding ~ kAMBDA-definable. Next we remark that a non-empty r.e. 

set is the range of a primitive recursive function; but the range of p 

is ~(T), which is clearly kAMBDA-definable. That any LAMBOA-definable 

set (graph) is r.e. is obvious from the definition of the language 

itself. More details are given in the appendix. 

We may draw some interesting conclusions from the Definability 

Theorem. In the first place, we see that the countable collection 

RE ~ P~ of r.e. sets is closed under application and LAMBDA definability. 

Indeed it forms a model for the h-calculus (axioms (a),(~),(~*) at least) 

and it also contains the arithmetical combinators. (Clearly there will 

be many intermediate submodels.) In the second place, we can see now 

how very easy it is to interpret h-calculus in ordinary arithmetical 

recursion theory by means of quite elementary operations on r.e. sets. 

Thus the equivalence of h-definability with partial recursiveness seems 

not to be all that good a piece of evidence for Church's Thesis. In his 

1936 paper (a footnote on p. 346) Church says about X-definability: 

The fact, however, that two such widely different and 
(in the opinion of the author) equally natural definitions 
of effective calculability turn out to be equivalent adds to 
the strength of the reasons adduced below for believing that 
they constitute as general a characterization of this notion 
as zs consistent with the usual intuitive understanding of it. 
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The point never struck the present author as an especially telling one, 

and the reduction of ~-calculus to r.e. theory shows that the diver- 

gence between the theories is not at all wide. Of course it is a pleasan 

surprise to see how many complicated things can be defined in pure 

~-calculus (without arithmetical combinators), but this fact cuts 

the wrong way as evidence for the thesis (we want stronger theories, 

not weaker ones). Post systems (or even first-order theories) are 

much better to mention in this connection, since they are obviously 

more inclusive in giving enumerations than Turing machines or Herbrand- 

G~del recursion equations. But the equivalence proofs are all so easy! 

What one would like to see is a "natural" definition where the equi- 

Valence with r.e. is not just a mechanical exercise involving a few 

tricks of coding. 

In the course of the development in this section we have stated 

many equations which are not found in Table I, and which involve new 

combinators. In conclusion we would like to mention an equation about Y 

which holds in the model, which can be stated in pure ~-calculus, and 

which cannot be proved by ordinary reduction (though we shall not try to 

justify this last statement here). In order to shorten the calculations, 

we note from definition (8) that Y(u) = Y(~y.u(y)); so by 2.5 this also 

equals u(Y(u)). 

(28) u = ~x.Y(~(x)). 

Call the left side f, and the right f". Now 

f" = ~ x . g ( x ) ( Y ( g ( x ) ) )  : ~ x . g ( x ) ( f " ( x ) )  

t h u s  f '  ~ f " ,  b e c a u s e  f '  i s  a l e a s t  f i x e d  p o i n t .  On t h e  o t h e r  hand  

f ' =  h x . g ( x ) ( f ' ( x ) ) ,  so  f ' ( x )  = g ( x ) ( f ' ( x ) ) .  Thus f " ( x )  c f ' ( x ) ,  b e c a u s e  

f " ( x )  i s  a l e a s t  f i x e d  p o i n t .  As t h i s  h o l d s  f o r  a l l  x ,  we s e e  t h a t  

f "  ~ f ' ;  and so t h e y  a r e  e q u a l .  T h e r e  mus t  be many o t h e r  such  e q u a t i o n s .  
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3. ENUMERATION AND DEGREES. 

A g r e a t  advantage o f  the combina to rs  from the f o r m a l  p o i n t  

of view is that (bound) variables are eliminated in favour of 

"algebraic" combinations. The disadvantage is that the algebra is 

not all that pretty, as the combinations tend to get rather long and 

general laws are rather few. Nevertheless as a technical device it 

is mildly remarkable that we can have a notation for all r.e. sets 

requiring so few primitives. In the model defined here the reduction 

to one combinator rests on a lemma about conditionals: 

( I )  c o n d ( x ) ( y ) ( c o n d ( x ) ( y ) )  = y 

Recall that cond (or D) is a test for zero, so that: 

(2) c o n d ( x ) ( y ) ( o )  = x 

This  suggests  t h a t  we lump a l l  comb ina to rs  o f  2.4 i n t o  t h i s  one: 

(3) G = c o n d ( < s u c , p r e d , c o n d , K , S > ) ( 0 )  

We can then readily p~ove: 

THEOREM 3 . 1 .  (The Gene ra to r  Theorem).  A l l  LAMBDA-def inable e lements  

can be obtained from G by iterated application. 

A distributive function f is said to be total iff f(n) ~ 

for all n c ~. As they come from obvious primitive recursive functions, 

we do not stop to write out LAMBDA-definitions of these three total 

functions: 

(4) app ly  = ~ncw. Xmem.(m,m)+1 

(5) o p ( ( n , m ) )  = n 

(6) a r g ( ( n , m ) )  = m 

The point of these auxiliary combinators concerns our G~del numbering 

of the r.e. sets. The number 0 will correspond to the generator G; 

while (n,m)+1 will correspond to the application of the nth set to 

the mth. This is formalized in the combinator val which is defined 

as the least fixed point of the equation: 

(7) va l  = ~ k C ~ . k ~ G , v a l ( o p ( k - 1 ) ) ( v a l ( a r g ( k - l ) ) )  

This f u n c t i o n  accompl ishes  the enumera t i on  as f o l l o w s :  

THEOREM 3 .2 .  (The Enumerat ion Theorem).  The combinator val  enumerates 

the LAMBDA-definable elements in that RE = {val(n)InE~}. Further : 

( i )  v a l ( 0 )  = G 

( i i )  v a l ( a p p l y ( n ) ( m ) )  = v a l ( n ) ( v a l ( m ) )  
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As a principal application of the Enumeration Theorem we may 

mention the following: suppose u is given as LAMBDA-definable. We 

look at its definition and rewrite it in terms of combinators - 

eventually in terms of G alone. Then using 0 and apply we write 

down the name of an integer corresponding to the combination -- say, 

n. By 3.2 we see that we have effectively found from the definition 

an integer such that val n = u. This remark can be strengthened by 

some numerology. 

(8 )  a p p l y ( o ) ( o )  = 1 and v a l ( 1 )  = O; 

(9 )  a p p l y ( o ) ( 1 )  = 3 and v a l ( 3 )  : <suc  . . . .  > ; 

( 10 )  a p p l y ( 3 ) ( 1 )  = 12 and v a l ( 1 2 )  = s u c .  

T h u s ,  d e f i n e  as t h e  l e a s t  f i x e d  p o i n t :  

( 11 )  n u m =  X n E ~ . n D l , a p p ! y ( 1 2 ) ( n u m ( n - l ) ) ,  

and derive the equation for all n E ~: 

( 12 )  v a l ( n u m ( n ) )  = n. 

We note that num is a primitive recursive (total) function. The 

combinator num allows us now to effectively find a LAMBDA-definitien, 

corresponding to a given LAMBDA-definable element u, of an element v 

such that uniformly in the integer variable n we have 

val(v(n)) = u(n). Further, v is a primitive recursive (total) 

function. This is the technique involved in the proof of Kleene's 

well-known result: 

THEOREM 3 . 3 .  (The Second R e c u r s i o n  T h e o r e m ) .  Take a LAMBDA- 

definable element v such that: 

(i) v a l ( v ( n ) )  = ~mEm. v a l ( n ) ( a p p l y ( m ) ( n u m ( m ) ) ) .  

and then define a combinator by: 

(ii) r e c  = h n E ~ . a p p l y ( v ( n ) ) ( n u m ( v ( n ) ) ) .  

Then we have a primitive recursive function w~th this fixed-poin~ 

property: 

(iii) v a l ( r e c ( n ) )  : v a l ( n ) ( r e c ( n ) ) .  

N o t e  t h a t  i f  u i s  L A M B D A - d e f i n a b l e ,  t h e n  we f i n d  f i r s t  an n 

such  t h a t  v a l  (n)  = u .  N e x t  we c a l c u l a t e  k = r e c  ( n ) .  T h i s  e f f e c t i v e l y  

g i v e s  us an i n t e g e r  such  t h a t  v a l  ( k )  = u ( k ) .  G ~ d e l  numbers  r e p r e s e n t  

e x p r e s s i o n s  ( c o m b i n a t i o n s  i n  G) ,  and  v a l  maps t h e  numbers  t o  t h e  v a l u e s  

d e n o t e d  b y  t h e  e x p r e s s i o n s  i n  t h e  m o d e l .  The k j u s t  f o u n d  t h u s  r e -  

presents an expression whose value is defined in terms of its own 

G~del number. In recursion theory there are many applications of 

this result. Another familiar argument shows: 
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THEOREM 3 . 4 .  (The I n c o m p l e t e n e s s  T h e o r e m ) ,  The set of integers n 

such that val (n) = • is not r.e.; hence, there can be no effectively 

given formal system for enumerating all true equations between LAMBDA 

terms. 

(A critic may sense here an application of Church's Thesis in 

stating the metatheoretic consequence of the non-result.) A few 

details of the proof can be given to see how the notation works. First 

let v be a (total) primitive recursive function such that: 

v a l ( v ( n ) )  = n n v a l ( n ) ,  

and note that: 

n n va l  (n )  = • i f f  n ~ v a l  ( n ) .  

Call the set in question in 3.4 the set b. If it were r.e., then 

so would be: 

{ n E ~ [ v ( n ) E b }  = (XnEw. V ( n ) n b D n , n ) ( T ) .  

That would mean having an integer k such that: 

va l  (k)  = { n E ~ I v ( n ) ~ b }  �9 

But then: 

k ~ v a l ( k ) i f f  v ( k )  E b 

i f f  va l  (v ( k ) )  = • 

i f f  k ~ v a l  ( k ) ,  

which gives us a contradiction. This is the usual diagonal argument. 

The relationship val (n) = val (m) means that the expressions 

with G6del numbers n and m have the same value in the model. (This 
0 

is not only not r.e. but is a complete ~2-predicate.) A total 

mapping can be regarded as a syntactical transformation on expressions 

defined via Godel numbers. Such a mapping p is called extensional 

if it has the property: 

va l  ( p ( n ) )  = va l  (p(m))  whenever v a l ( n )  = v a l ( m ) .  

The Myhill-Shepherdson Theorem shows that extensional, syntactical 

mappings really depend only on the values of the expressions. 

Precisely we have: 

THEOREM 3 . 5 .  (The Comp. le teness  Theorem f o r  D e f i n a b i l i t y ) .  If a 

(total) extensiona~ mapping p is LAMBDA-definab~e, then there is a 

LAMBDA-definable q such that va1(p(n)) : q(va1(n)) for all n E ~. 

Of course q is uniquely determined (because the values of q 

are given at least on the finite sets). Thus any attempt to define 
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something new by means of some strange mapping on GSdel numbers is 

bound to fail as long as it is effective and extensional. The main 

part of the argument is concentrated on showing these mappings to be 

continuous; that is why q exists. 

The preceding results indicate that the expected results on 

r.e. sets are forthcoming in a smooth and unified manner in this 

setting. Some knowledge of r.e. theory was presupposed, but analysis 

shows that the knowledge required is slight. The notion of primitive 

recursive functions should certainly be well understood together with 

standard examples. Partial functions need not be introduced separately 

since they are naturally incorporated into LAMBDA (the theory of 

multiple-valued functions). As a working definition of r.e. one can 

take either "empty or the range of a primitive recursive function" or, 

more uniformly, "a set of the form {ml3n.m+L = p(n)} where p is 

primitive recursive." A few obvious closure properties of r.e. sets 

should then be proved, and then an adequate foundation for the dis- 

cussion of LAMBDA will have been provided. The point of introducing 

LAMBDA is that further closure properties are more easily expressed in 

a theory where equations can be variously intervreted as involving 

numbers, functions, functionals, etc., without becoming too heavily 

involved in intricate GSdel numbering and encodings. Another useful 

feature ef the present theory concerns the ease with which we can 

introduce relative recursiveness. 

As we have seen {va](n)InC~} is an enumeration of all r.e. 

sets. Suppose we add a new set a as a new constant. What are the 

sets enumerable in a? Answer: {val (n) (a) Ine~} , since in combinatory 

logic a parameter can always be factored out as an extra argument. 

Another way to put the point is this: for b to be enumeration reducible 

to a it is necessary and sufficient that b : u(a) where u �9 RE. This 

is word for word the definition given by Rogers (1967) pp.146-7. What 

we have done is to put the theory of enumeration operators (Friedberg- 

Rogers and Myhill-Shepherdson) into a general setting in which the 

language LAMBDA not only provides definitions but also the basis of a 

calculus for demonstrating properties of the operators defined. The 

algebraic style of this language throws a little light on the notion 

of enumeration degree. In the first place we can identify the degree 

of an element with the set of all objects reducible to it (rather 

than just those equivalent to it) and write 

D e g ( a )  = {u(a)lu �9 RE}. 

The set-theoretical inclusion is then the same as the partial ordering 

of degrees. What kind of a partially ordered set do we have? 
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THEOREM 3 .6 .  (The Suba l f lebra  Theorem). The enumerat ion degrees are 

exactly the finitely generated combinatory subalgebras of P~. 

By "subalgebras" here we of course mean subsets containing G 

and closed under application (hence, they contain all of RE, the least 

subalgebra). Part of the assertion is that every finitely generated 

subalgebra has a single generator (under application). This fact is 

an easy extension of 3.1. Not very much seems to be known about 

enumeration degrees. Joins can obviously be formed using the pairing 

function <x,y) on sets. Each degree is a countable set; hence, it is 

trivial to obtain the existence of a sequence of degrees whose 

infinite join is not a degree (not finitely generated). The inter- 

section of subalgebras is a subalgebra -- but it may not be a degree 

even starting with degrees. There are no minimal degrees above RE, 

but there are minimal pairs of degrees. Also for a given degree there 

are only countably many degrees minimal over it; but the question of 

whether the partial ordering of enumeration degrees is dense seems 

still to be open. 

Theorem 3.6 shows that the semilattice of enumeration degrees 

is naturally extendable to a complete lattice (the lattice of all sub- 

algebras of P~), but whether there is anything interesting to say 

about this complete lattice from the point of view of structure is 

not at all clear. Rogers has shown ((1967)pp.151-3) that Turing 

degrees can be defined in terms of enumeration degrees by restricting 

to special elements. In our style of notation we would define the 

space: 

TOT = { -  I . = $ ( u )  andVne~ .u (n )em} ,  

the space of all graphs of total functions. Then the system 

{Deg(u)lueT0 T} is isomorphic to the system of Turing degrees. Now 

there are many other interesting subsets of P~. Whether the degree 

structure of these various subsets is worth investigation is a 

question whose answer awaits some new ideas. 

Among the subsets of Pm with natural mathematical structure, we 

o f  c o u r s e  h a v e  FUN, w h i c h  i s  a s e m i g r o u p  u n d e r  o = k u X v k x . u ( v ( x ) ) .  I t  

i s ,  h o w e v e r ,  a r a t h e r  c o m p l i c a t e d  s e m i g r o u p .  We i n t r o d u c e  f o r  i t s  

s t u d y  t h r e e  new c o m b i n a t o r s :  

(13) R = l x . <  o , ~  ; 

(14) L = ~X. X l (X2 )~  

(15) = ~x. xoD<l ,u ,x  1) , u ' ~ l ) ( x 2 ) .  
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THEOREM 3 . 7 .  (The Semi g r o u p  T h e o r e m ) .  The countable semigroup 

REnFUN of computable enumeration operators is finitely generated by 

R, L and G, 

The proof rests on the verification of two equations which permit 

an application of 3.1: 

(16)  L o ~ o R = ~x.u(x) 

(17) ~ o ~ o R = u ( v ) .  

C e r t a i n l y  t he  word p r o b l e m  f o r  REnFUN i s  u n s o l v a b l e :  i n d e e d ,  n o t  even  

r e c u r s i v e l y  e n u m e r a b l e .  Can t h e  s e m i g r o u p  be g e n e r a t e d  by two g e n e r a t o r s  

by t h e  way~ 
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4. RETRACTS AND DATA TYPES 

Data can be structured in many ways: ordered tuples, lists, 

arrays, trees, streams, and even operations and functions. The last 

point becomes clear if one thinks of parameters. We would normally 

hardly consider the pairing function XxXy.<x,y> as being in itself a 

piece of data. But if we treat the first variable as a parameter, then 

it can be specialized to a fixed value, say the element a, producing 

the function ~y.<a,y) . This function is more likely to be the output 

of some process and in itself can be considered as a datum. It is 

rather like one whole row of a matrix. If we were to regard a two 

argument function f as being a matrix, then its ath row would be 

exactly Xy.f(a)(y). If s were a selection function, then, for example, 

Xy.f(s(y))(y) would represent the selection of one element out of each 

column of the matrix. This selection could be taken as a specialization 

of parameters in the operator ~uXvXy.u(v(y))(y). We have not been 

very definite here about the exact nature of the fixed a, f, or s, or 

the range of the variable y or the range of values of the function f. 

The point is only to recall a few elements of structure and to suggest 

an abstract view of data going beyond the usual iterated arrays and 

trees. 

What then is a data type? Answer: a type of data. That is to 

say a collection of data that have been grouped together for reasons 

of similarity of structure or perhaps mere convenience. Thus the 

collection may very well be a mixed bag, but more often than not canons 

of taste or demands of simplicity dictate an adherence to regularity. 

The grouping may be formed to eliminate irrelevant objects and focus 

the attention in other ways. It is frequently a matter of good 

organization that aids the understanding of complex definitions. In 

programming languages one of the major reasons for making an explicit 

declaration of a data type (that is, the restriction of certain 

variables to certain "modes") is that the computed objects of that type 

can enjoy a special representation in the machine that allows the 

manipulation of these objects via the chosen representation to be 

reasonably efficient. This is a very critical matter for good language 

design and good compiler writing. In this report, however, we cannot 

discuss the problems of representation, important as they may be. Our 

objective here is conceptual organization, and we wish to show how such 

ideas, in the language for computable functions used here, can find 

the proper expression. 

Which are the data types that can be defined in LAMBDA? No final 

answer can be given since the number is infinite and inexhaustible. 
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From one point of view, however, there is only one: p~ itself. It is 

the universal type and all other types are subtypes of it; so p~ plays 

a primary role in this exposition. But in a way it is too big, or 

at least too complex, since each of its elements can be used in so many 

different ways. When we specify a subtype the intention is to restrict 

attention to a special use. But even then the various subtypes over- 

lap, and so the same elements still get different uses. Style in 

writing definitions will usually make the differentiation clear though. 

The main innovation to be described in this section is the use of 

LAMBDA expressions to define types as well as elements. Certain ex- 

pressions define retracts (or better: retraction mappings), and it is 

the ranges (or as we shall see: sets of fixed points) of such retracts 

that form the groupings into types. Thus LAMBDA provides a calculus 

of type definitions including recursive type definitions. Examples 

will be explained both here and in the following sections. Note that 

types as retracts turn out to be types as lattices, that is types of 

partial and many-valued objects. The problem of cutting these lattice 

types down to the perfect or complete objects is discussed in Section 

6. Another view of types and functionality of mappings is presented 

in Section 7. 

The notion of a retract comes from (analytic) topology, but it 

seems almost an accident that the idea can be applied in the present 

context. The word is employed not because there is some deep tie-up 

with topology but because it is short and rather descriptive. Three 

easy examples will motivate the general plan: 

( i )  f un  = ~u~x.u(x); 

(2)  p a i r  = ~u.<u o,ul~ ; 

(3 )  b o o l  = Xu.u ~ 0 , 1 .  

Here  ~ i s  t h e  doubly s t r i c t  c o n d i t i o n a l  d e f i n e d  by  

(4) z ~ X , y  = Z ~ (Z D X , T ) , ( Z  D T , y ) ,  

which has the property that if ~ is both zero and positive, then it 

takes the value T instead of the value xUy. 

DEFINITION. An element a ~ pm is called a retract iff it satisfies 

the equation a = aoa. 

Of course the o-notation is used for functional composition 

in the standard way: 

(5)  u o v  = X x . u ( v ( x ) ) .  
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And it is quite simple to prove that each of the three combinators 

in (I)-(3) is a retract according to the definition. But what is 

the point? 

Consider fun. No matter what u ~ p~ we take, fun(u) is (the 

graph of) a function. And if u already is (the graph of) a function, 

then u = fun(u). That is to say, the range of fun is the same as 

the set of fixed points of fun is the same as the set of all (graphs 

of) functions. Any mapping a whose range and fixed-point set coincide 

satisfies a = aoa, and conversely. A retract is a mapping which 

"retracts" the whole space onto its range and which is the identity 

mapping on its range. That is the import of the equation a = aoa. 

Strictly speaking the range is the retract and the mapping is the 

retraction, but for us the mapping is more important. (Note, however, 

that distinct retracts can have the same range.) We let the mapping 

stand in for the range. 

Thus the combinator fun represents in itself the concept of 

a function (continuous function on p~ into p~). Similarly pair 

represents the idea of a pair and bool the idea of being a boolean 

value as an element of {• since we must think in the multiple- 

valued mode. What is curious (and, as we shall see, useful) is that 

all these retracts which are defining subspaces are at the same time 

elements of p~, 

DEFINITION. If a is a retract, we write u:a for u = a(u) and 

hu:a.T for hu.T[a(u)/u]. 

Since retracts are sets in p~, we cannot use the ordinary 

membership symbol to signify that u belongs to the range of a; so 

we write u:a. The other notation with the h-operator restricts a 

function to the range of a. For f to be so restricted simply means 

f = foa. For the range of f to be contained in that of the retract 

a means f = aof. These algebraic equations will be found to be quite 

handy. We are going to have a calculus of retracts and mappings 

between them involving many operators on retracts yet to be discovered. 

Before we turn to this calculus, we recall the well-known connection 

between lattices and fixed points~ 

THEOREM 4.1. (The Lattice Theorem). The fixed points of any continuous 

function form a complete lattice (under c); while those of a retract 

form a continuous lattice. 

We note further that by The ~mbedding Theorem 1.6, it follows 

that any separable (by which we mean countably-based) continuous 

lattice is a retract of p~; hence, our universal space is indeed 



606 D, Scott 

rich in retracts. A very odd point is that a = aoa is a fixed-point 

equation itself (~u.uou is obviously continuous). Thus the retraction 

mappings form a complete lattice. Is this a continuous lattice? 

(Ershov has proved it is not; see appendix for a sketch.) A related 

question is solved vositively in the next section. Actually the 

ordering of retracts u~der a does not seem to be all that interesting; 

a more algebraic ordering is given by: 

DEFINITION. For retracts a and b we write a~ b for a = aob = boao 

The idea here should be clear : a~ b means that a is a retract 

of b. It is easy to prove the: 

THEOREM 4 . 2 .  {The P a r t i a l  Order in .q  Theorem ) . The retracts are partially 

ordered by ~. 

There do not seem to be any lattice properties of~ of a 

general nature. Note, however, that if retracts commute, aob = boa, 

then aob is the greatest lower bound under~ of a and b. Also if we 

and a a a for all n E 0J, have a sequence where both a n an+ i n - n+l 

then U{anlnC~} is the upper bound for the a n under~, as can easily be 

argued from the definition by continuity of o. 

Certainly there is no "least" retract under~. One has 

• = • (recall: • = kx.• but not aoz = z. This last equation means 

more simply that a(• = • that is, a is strict. For retracts 

strictness is thus equivalent to • ~ a, so we can say that there is 

a least strict retract. The combinator I = hu.u clearly represents 

the largest retract (the whole space), and it is strict also. In a 

certain sense strictness can be assumed without loss of generality. 

For if a is not strict, let 

b = ) ~ x . { n ] a ( x )  ~ a ( •  

Th i s  f u n c t i o n  t akes  v a l u e s  i n  { •  and i s  c o n t i n u o u s  because  

{x  c pcola(x ) ~ a ( •  is open. Next define: 

a* = hu.a(u) o b (u). 

This is a strict retract whose range is homeomorphic (and lattice 

isomorphic) to that of a. Note, however, that the mapping from a 

to a* is not continuous (or even monotonic). 

To have a more uniform notation for retracts we shall often 

write nil, id, and seq for the combinators • I, $. Two further 

retracts of interest are 

(6) open = "Au,{m I ~e C e .n ~ u} 
n - -  m 

(7)  i n t  = ~u .u  ~ o,  i n t  ( u - l )  ~ u , u .  
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The range of open is lattice isomorphlc to the lattice of open 

subsets of pm; definition (6) is not a LAMBDA-definition of the 

retract, but such can be given. 

In (7) we intend int to be the least fixed point of the 

equation. By induction on the least element of u ( if any) one proves 

that : 

i n t ( u )  = •  i f  u = •  

= u ,  i f  u e  m;  

= T, otherwise. 

This retract wipes out the distinctions between multiple values, 

moving all above the singletons up to T; its range thus has a very 

simple structure. The retract int clearly generalizes bool. The 

range of fun is homeomorphic to the space of all continuous functions 

from pm into pw; the range of pair, to the space of all ordered pairs; 

the range of seq, to the space of all infinite sequences. A com- 

bination like ~u.int o seq(u) is a retract whose range is hemeomorphic 

to the space of infinite sequences of elements from the range of int. 

We now wish to introduce some operators that provide systematic 

ways of forming new combinations of retracts. There are three 

principal ones: 

(8 )  a ~+ b = Xu.bouoa; 

(9 )  a | b = ~ u . < a ( U o ) , b ( u l ) >  ; 

( i 0 )  a @ b = h u . u  0 ~ < O , a ( u l ) >  ,< 1 , b ( u l ) >  . 

These equations clearly generalize (I) (3). Before we explain 

our operators, note these three equations which hold for arbitrary 

a, b, a', b' c F)co: 

(ii) (ao§ (a'o§ = (a'oa)o§ (bob'); 

(12) (a| (a'| = (aoa')| 

(13) (a@b)o (a'~b') = (aoa')@(bob'). 

The reversal of order (a'oa) on the right-hand side of (11) should 

be remarked. These equations will be used not only for properties 

of types (ranges of retracts) but also for the mappings between the 

types. 

THEOREM 4 . 3 .  (The F u n c t i o n  Space  T h e o r e m ) .  Suppose a, b, a', b', c 

are re tracts. Then we have: 

(i) ao+b is a retract, and it is strict if b is; 

(iiJ u:a~+b iff u = kx:a.u(x) and Vx:a.u(x):b; 
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(iii) if a~ a' and b ~ b', then a~b ~ a'o§ 

(iv) if f:a~b and f':a'~b', then f~f':(b~a')~ (a~b'); 

~v) if f:a~b and f':b~c, then f'of:ao§ 

Parts (iJ s (iii) , (iv), and (v) can be proved using equations (8) 

and (II) in an algebraic (formal) fashion. It is (ii) that tells us 

what it all means: the range of a~b consists exactly of those 

functions which are restricted to (the range of) a and which have 

values in b. So we can read u:a o§ b in the normal way: u is a 

(continuous) mapping from a into b. In technical jargon, we can say 

that the (strict) retracts and continuous functions form a category. 

In fact, it is equivalent to the category of separable continuous 

lattices and continuous maps. In this context, (iv) shows that 

operates not only on spaces (retracts) but also on maps: it is a 

functor contravariant in the first argument and covariant in the 

second. Further categorical properties will emerge. 

THEOREM 4 . 4 .  (The P r o d u c t  T h e o r e m ) .  

Then we have: 

(i) 

(ii) 

(iii) 

(iv) 

Suppose a, b, a t , b' are retracts. 

a | b is a retract, and it is strict if a and b are; 

u : a | b iff u = < Uo,U1> and u 0 : a and u I : b; 

if a~ a' and b~ b', then a ~ b~ a' | b'; 

~f f : ao+b and f' : a'o+b', then f | f' : a | a'o§ | b' 

Again the operator proves to be a functor, but what is stated 

in 4.4 is not quite enough for the standard identification of | 

as the categorical product. 

combinators: 

(14) 

(is) 

(16) 

For this we need some additional 

f s t  : ~u.uo ;  

snd = ~ u . u l ;  

d i a g  = hu.< u,W . 

Then we have these properties: 

(17)  f s t o  (a| : (a|  

(18)  s n d o ( a |  : ( a |  

(19 )  d i a g o a  : a ~ a |  

(20)  f s t o  ( f |  = f o f s t ;  

(21)  sndo ( f |  = f ' o s n d .  

Here a and b are retracts and f and f' are functions. Now suppose 
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a ,  b ,  a n d  c a r e  r e t r a c t s  a n d  f : co+a a n d  g : c * b .  

h = (f| 

we can readily prove that: 

Let 

h : co+ (a|  . 

and 

fstoh = f and sndoh = g. 

Furthermore, h is the unique such function. It is this uniqueness 

and existence property of functions into a| that identifies the 

construct as a product. 

There are important connections between 0+ and | To state 

these we require some additional combinators: 

( 2 2 )  e v a l  = X u . u  o (u 1) 

( 2 3 )  c u r r y  = X u X x X y . u ( < x , y >  ) 

I f  a ,  b ,  a n d  e a r e  r e t r a c t s ,  t h e  m a p p i n g  p r o p e r t i e s  a r e :  

( 2 4 )  e v a l o  ( ( b ~ + c ) |  : ( ( b ~ + c ) |  

( 2 5 )  c u r r y ~  ( ( a |  : ( ( a |  ( a o + ( b ~ + o ) )  

S u p p o s e  n e x t  t h a t  f : (a |  a n d  g : ao§ ( b o + c ) .  We f i n d  t h a t  

e v a l o  ( c u r r y  ( f ) |  = f 

a n d  

c u r r y ( e v a l o ( g |  = g .  

T h i s  s h o w s  t h a t  o u r  c a t e g o r y  o f  r e t r a c t s  i s  a c a r t e s i a n  c l o s e d  c a t e g o r y ,  

which means roughly that product spaces and function spaces within 

the category interact harmoniously. 

T_HEOREM 4 . 5 .  (The  Sum T h e o r e m ) .  S u p p o s e  a ,  b ,  a ' ,  b '  a r e  r e t r a c t s .  

Then we ~ave 

(i) a~b is a retract, and it is always strict~ 

(ii) u : a~b iff u = • or u = T or 

u = <O,u1> and u I : a or 

u = <i,u1> and u I : b ; 

(iii) if a~ a' and b ~ b', then a~b ~ a'~b'; 

(iv) if f " a~b and f' : a'~b', then f~f' " a~a'o+b~b' 

There are several combinators associated with ~: 

( 2 6 )  i n l e f t  = l x . <  o , x )  ; 
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(27) 

(z8) 

(zg) 

(3o) 

(31) 

i n r i g h t  = Xx.< i , x >  ; 

o u t ! e f t  = X u . u  0 ~ u i , i  ; 

o u t r i g h t  = ~ u . u  o ~ •  I ; 

w h i c h  = hu.u O; 

o u t  = hu.u I. 

(The last two are the same as fst and snd, but they will be used 

differently.) We find: 

(32) ( a ~ b ) o i n l e f t o a  : a~ ( a e b ) ;  

(33) ( a ~ b ) o i n r i g h t o b  : bo+(a~b); 

(34) a o o u t l e f t o ( a ~ b )  : ( a ~ b ) ~ a ;  

( 35 )  b o o u t r i g h t o ( a m b )  : (a~b)~b; 

(36 )  w h i c h o  (a~b)  : ( a ~ b ) ~ b o o l ;  

(37 )  a o o u t o ( a |  : ( a @ a ) ~ a ;  

where a and b are retracts. Most of these facts as they stand are 

trivial until one sets down the relations between all these maps; but 

there are too many to put them down here. Note, however, if a, b, 

and o are retracts and f : awe and g : b~o, then if we let 

h = c o o u t o  ( f ~ g ) ,  

we have : 

and 

h : (a| 

hoinleft = f and hoinright = g. 

But, though h exists, it is not unique. So a@b is not the categorical 

sum (coproduct). The author does not know a neat categorical 

characterization of this operator. 

There would be no difficulty in extending | and ~ to more 

factors by expanding the range of indices from 0,1 to 0,1,...,n-l. 

The explicit formulae need not be given; but if we write 

a o Q a I | ... | an_l, we intend this expanded meaning rather than the 

iterated binary product. 

To understand sums and other facts about retracts, consider the 

least fixed point of this equation: 

( 3 8 )  t r e e  = n i l  �9 ( t r e e  | t r e e ) .  

To be certain that tree is a retract, we need a general theorem: 
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THEOREM 4 . 6 .  (The L i m i t  Theo rem) .  S u p p o s e  F i s  a c o n t i n u o u s  f u n c t i o n  

that maps retracts to retracts and let c = Y ~ ) .  Then c is also a 

retract. If in addition F maps strict retracts to strict retracts 

and is monotone in the sense that a ~ b implies F(a)~ F(b) for all 

(strict) retracts a and b, then the range of c is homeomorphic to 

the inverse limit of the ranges of the strict retracts Fn(z) for n E ~. 

This can be applied in the case of (38) where F = Xz.nil �9 (z| 

Thus we can analyze tree as an inverse limit. This approach has the 

great advantage over the earlier method of the author where limits 

were required in showing that tree exists. Here we use Y to give 

existence at once, and then apply 4.3 - 4.5 to figure out the nature of 

the retract. 

In 4.6, the fact that c is a retract can be reasoned as 

follows: • is a retract. Thus each Fn(• is a retract. We compute: 

co c = U { r  n ( •  I n ~ }  ~ n ( I ) I  nEc0 } 

= U{Fn(z)oFn(z)In~} (Note: same n.) 

= U { F n ( z ) I n E m }  = c. 

In case F is monotone and preserves strictness, then we can argue that 

each Fn(z)~ c. The retracts Fn(• are the projections of c onto the 

terms of the limit. Of course Fn(z)~ Fro(• if n -< m. The u:c can be 

put into a one-one correspondence (homeomorphism, lattice isomorphism) 

with the infinite sequences < Vo,Vl,...,Vn,...> , where v n : Fn(• and 

v n = Fn(z)(Vn+~). Indeed Vn = Fn(• and u :U{Vnln~}. This is 

exactly the inverse limit construction. 

Retreating from generalities back to the example of tree, we 

can grant that it exists and is provably a retract. Two things in 

its range are • and T by 4.5 (ii), but they are not so interesting. 

Now • : nil, so by 4.5 (ii) we have < 0> = (0,• : tree. Let us think 

of this as the atom. What else can we have? If x,y : tree, then 

<x,y> : tree,tree and so <1,<x,y>> : tree. Thus (the range of) tree 

contains an atom and is closed under a binary operation. Note that 

the atomic and non-atomic trees are distinguished by which and that 

suitable constructor and destructor functions are definable on tree. 

But the space also contains infinite trees since we can solve for 

the least fixed point of: 

t : < 1,(< O) ,t>) 

and t : tree. (Why?) And there are many other examples of infinite 

elements in tree. 
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A point to stress in this construction is that tree being 

LAMBDA definable is computable, and there are many computable 

functions definable on or to (the range of) tree. All the "structural" 

functions, for example, are computable. These are functions which 

in other languages would be called isatom or construct or node, and 

they are all easily LAMBDA definable. Just as with ~, | ~ they are 

not explicit in the notation, but they are definable nevertheless. 

In the case of node, we could use finite sequences of Boolean values 

to pick out or name nodes. Thus solve for name = nil �9 bool | name , 

and then give a recursive definition of: 

node : name ~ ( t r e e  ~ t r e e ) .  

Any combination of retract preserving functors can be used 

in this game. For example: 

( 39 )  lamb = i n t  @ ( l a m b  ~ l a m b )  

T h i s  l o o k s  i n n o c e n t ,  b u t  t h e  r a n g e  o f  lamb w o u l d  g i v e  a q u i t e  

different and not unattractive model for the ~-calculus (plus 

arithmetic). What we do to investigate this model is to modify 

LAMBDA slightly by replacing the ternary conditional z D x,y by a 

quarternary one w D x,y,z; otherwise the syntax of the language 

remains the same. The semantics, however, is a little more complex. 

Let us use z, o, p, @ as syntactical variables for expressions 

in the modified language. The semantics is provided by a function 

that maps the expressions of the language to their values in (the 

range of) lamb. To be completely rigorous we also have to confront 

the question of free and bound variables. For simplicity let us 

index the variables of the language by integers, and let us take the 

variables to be Vo,Vl,V2,...,Vn, .... We cannot simply evaluate out 

an expression T to its value ~T~ until we know the values of the 

free variables in ~. The values of these variables will be given by 

an "environment" t which can be construed as a sequence of values 

in lamb. We can restrict these environments to the retract: 

( 40 )  env  = X t . l a m b o s e q ( t ) .  

When t : env, then t :lamb is the value that the environment 
n 

gives to the variable v n. We also need to employ a transformation 

on en%ironments as follows: 

( 41 )  t [ x / n ]  = ~ m ~ . e q ( n ) ( m )  D x , t  . 
m 

Here eq is the primitive recursive function that is 0, if n,m are 

equal, and is l, otherwise, for n,m~m. The effect of t[x/n] is to 

replace the n th term of the sequence t by the value of x, otherwise 



D. Scott 613 

t o  leave the rest of the sequence unchanged. To correspond with our 

use of very simple v~riables we have selected a simple notion of 

environment: in the semantics of more general languages it is 

customary to regard an environment as a function from the set of 

variables into the domain of denotable values. 

The correct way to evaluate a term ~ given an environment t 

is to find ~z~(t). We use the brackets [ and ~ here simply as 

an aid to the eye in keeping the syntactical part separated from 

the rest. The environment enters as a function-argument in the usual 

way; thus we shall have: 

(42) ~C~ : envo+ lamb.  

(43) ~v hI(t) = t n 

~ o ~ ( t )  = i n l e f t ( o )  

~C~+:s = w h i c h ( ~ t ~ T ] ( t ) )  ~ i n l e f t ( o u t ( ~ c ~ T ~ ( t ) ) + 1 ) ) , •  

~ z - 1 ] ( t )  = w h i c h ( } C ~ z ~ ( t ) )  ~ i n l e f t ( o u t ( ~ ( t ) ) - 1 ) ) , ,  

} c ~ e b T , ~ , p ] ( t )  = l a m b ( w h i c h ( ~ C ~ 0 ] ( t ) )  

( o u t ( ~ [  e~ ( t ) )  ] ~ T l  ( t ) , ~ c [ o ]  ( t ) ) , ~ [  p~ ( t ) )  

~ ( ~ ) ~ ( t )  = w h i c h ( ~ [ ~ ( t ) )  ~ , , o u t ( ~ t ~ ( t ) ) ( ~ C ~ ( t ) )  

~ I~v  . ~ ] ( t )  = i n r i g h t ( h x : l a m b . ~ T ~ ( t [ x / n ] ) ) .  
n 

A good question is: why does ~ exist? The answer is: because of 

the Fixed-point Theorem. 

If we rewrite the semantic equations ~(t) : ( .... ) in (43) 

by the equation ~ = Xt:env(...), then ~ is seen to be a function 

from expressions to values in lamb. As the range of lamb is contained 

in p~, we can say more broadly that ~ ~ ~Exp, wh~re Exp is the syn- 

tactical set of expressions and the exponential notation designates 

the set of all functions from Exp into p~. This function set is a 

complete lattice because p~ iSo Therefore if we read (43) as a 

definition by cases on Exp, then we can find ~ ~s a suitable fixed 

point in the complete lattice p Exp. Indeed it is the fixed point 

of a continuous operator. 

Actually we can regard Exp as being a subset of p~ to avoid 

dragging in other lattices. What we need is another recursive 

definition of a data type: 

(44) exp = i n t  r n i l  r exp r exp r (exp | exp | exp | exp)  

(exp | exp)  r ( i n t  | exp)  
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Note that there are as many summands in (44) as there are clauses 

in (43). We can think of exp as giving the "abstract" syntax of 

the language. We use the integers to index the variables and the 

nil element to stand for the individual constant. Read (44) as 

saying that every expression is either a variable or a constant or 

the successor of an expression or the predecessor of an expression 

or the conditional formed from a tupleof expressions or the 

abstraction formed from a pair of a variable and an expression. We 

do not need in (44) to introduce special "symbols" for the successor, 

application, etc., because the separation by cases given by the | 

operation is sufficient to make the distinctions. (That is why the 

syntax is "abstract".) The point is that for recursive definitions 

it does not matter how we make the distinctions as long as they can 

be made. From this new point of view, we could rewrite (43) so as 

to show: 

( 45 )  ~ : e x p ~ ( e n v ~ l a m b )  

which is clearly more satisfactory - especially as it is now clear 

that ~ is computable. And this is a method that can be generalized 

to many other languages. The method also shows why it is useful to 

allow function spaces as particular data types. 

Another example of this method can be illustrated, if the 

reader will recall the G~del numbering of Section 3. It will be 

seen that there are similarities with the tree construction : instead 

of 0 and apply(n)(m), tree uses <o> and <1,<x,y>>. Note, however, 

that G~del numbers are finite while tree has infinite objects. But 

the infinite objects are always limits of finite objects, so there 

are connections. (We discuss this again in Section 6.) In particular 

recursive definitions on Godel numbers, like that of val, have 

analogues on tree. Here is the companion of equation (7) of Section 3: 

(46)  vaa l  = ~ x : t r e e . w h i c h ( x )  ~ G, v a a l ( f s t ( o u t ( x ) ) ) ( v a a l ( s n d ( o u t ( x ) ) ) )  

We have vaal : treeo§ where of course (46) is taken as defining 

vaal as the least fixed point. This is an example of a computable 

function between effectively given retracts. The LAMBDA-definable 

elements of pm are the computable elements in the range of vaal. 

We have discussed the category of retracts and continuous 

maps, but if they are all LAMBDA-definable then they fall within 

the countable model RE. Thus there is another category of 

effectively given retracts and effectively given continuous maps. 
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(Examples: tree, id, vaal, and all those retracts and maps generated 

by ~, Q, and ~.) This category seems to deserve the status of a 

generalised recursion theory; though this is not to say that as yet 

very much is known about it. In fact, the proper formulation may 

require an enriched category rather than a restricted one. Thus 

instead of confining attention to the computable retracts and com- 

putable maps, it might be better to use the full category with all 

maps and to single out the computable ones (also maybe the finite ones) 

by special predicates. In effect we have avoided any methodological 

decisions by working in the universal space pm and by defining a 

notion when required - if possible with the aid of LAMBDA. This makes 

it possible to give all the necessary definitions and to prove the 

theorems without at first having to worry about axiomatic problems. 
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5. CLOSURE OPERATIONS AND ALGEBRAIC LATTICES 

G i v e n  any  f a m i l y  o f  ( f i n i t a r y )  o p e r a t i o n s  on a s e t  ( s a y ,  m) 

t h e r e  i s  a c l o s u r e  o p e r a t i o n  d e f i n e d  on t h e  s u b s e t s  o f  t h a t  s e t  

obtained by forming the least subset including the given elements and 

closed under the operations. Examples are very familiar from algebra: 

the subgroup generated by a set of elements, the subspace spanned by 

a set of vectors, the convex hull of a set of geometric points. We 

simplify matters here by restricting attention to closures operating 

on sets in p~, but the idea is quite general. The main point about 

these "algebraic" closure operations -- as distinguished from 

topological closure operations - is that they are continuous. Thus, 

in the case of subgroups, if an element belongs to the subgroup 

generated by some elements, then it also belongs to the subgroup 

generated by finitely many of them. In the context of p~ we can 

state the characteristic condition very simply. 

DEFINITION. An element a E ~m is called a closure operation iff it 

satisfies: I c a = aoa. 

We see by definition that a closure operation is not only 

continuous, but it is also a retract. This is reasonable since the 

closure of the closure of a subset must be equal to the closure. To 

say of a function that I a a, means that x c a(x) for all x ~ p~. 

In other words, every set is contained in its closure. (Note that 

closures are opposite to the "projections", those retracts where 

a ~ I.) Among examples of closure operations we find I and T; the 

first has the most closed sets (fixed points), the second has the 

least. (Note that T = ~ always is a fixed point of a closure 

operation; T = Xx.T is thus the most trivial closure operation.) The 

examples fun, open, int of Section 4 are all closure operations (cf. 

equations (I), (6), (7) of the last section). We remarked that fun 

is a retract, but the reader should prove in addition: 

( I )  u c ~ x . u ( x ) ,  

f o r  a l l  u E ~m ( c f .  T h e o r e m  1 . 2 ) .  We n o t e  t h a t  t h i s  f a c t  can  be 

rewritten in the language of retracts as: 

(2) I c I ~ I, 

the significance of which will emerge after we develop a bit of the 

theory of closure operations. 

Unfortunately the natural definition of the retract bool 

does not yield a closure operation. In this section we adopt this 

modification: 
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(3)  b o o o l  : ~ u ,  ~ ~ 0 , T  + I 

The c l o s e d  s e t s  o f  b o o o l  a r e  •  0 ,  T + I ,  and T. No te  t h a t  w i t h  any 

c l o s u r e  o p e r a t i o n  a ,  t h e  f u n c t i o n  v a l u e  a ( x )  i s  t h e  l e a s t  c l o s e d  s e t  

(fixed point of a) including as a subset the given set x. Thus given 

any family ~ pm of "closed" sets which is closed under the inter- 

section of subfamilies, if we define 

(4) a(x)  = N{y E ~ I x  ~ y } ,  

then this will be a closure operation provided it is continuous. 

This remark makes it easy to check that certain functions are closure 

operations if we can spot easily the family ~of fixed points. 

Alas, the "natural" definition of ordered pairs (cf. equation 

(21) of Section 2) leads to projections rather than closures. Here 

we must choose another: 

(5)  I x , y ]  = { 2 n [ n  ~ x }  U {2re+l i ra  E y } ,  

with these inverse functions: 

(6)  [ u ] 0  = { h i 2  n E u }  

(7)  [ u ]  I = {m12m+1 c u } .  

We s h a l l  f i n d  t h a t  t h e  ma in  a d v a n t a g e  o f  t h e s e  e q u a t i o n s  l i e s  i n  t h e  

o b v i o u s  e q u a t i o n :  

(8)  u = [ [ u ] 0 , [ u ] i ] ,  

which is not true for the other pairing functions. Of course we 

have: 

(9)  [ [ x , y ] ]  0 = x 

( i 0 )  [ [ x , y ] ]  I = y 

We shall not extend the idea of these new functions to triples and 

sequences, though it is clear what to do. 

Abstractly, an algebraic lattice is a complete lattice in which 

the isolated points are dense. An isolated (sometimes called: compact) 

point in a lattice is one that is not the limit (sup or lub) of 

any directed family of its proper subelements. This definition 

works in continuous lattices, but more generally it is better to 

say that if the isolated point is contained in a sup, then it is 

also contained in a finite subsup (a sup of a finite selection of 

elements out of the given sup). In the case of the lattice of sub- 

groups of a group, the isolated ones are the finitely generated sub- 

groups. The isolated points of p~ are the finite sets e n. To say 

that isolated points are dense means that every element in the lattice 
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is the sup of the isolated points it contains. The sequel to 

Theorem 4.1 for closure operations relates them to algebraic lattices. 

THEOREM 5.1. (The Alqebraic Lat t ice Theorem). The fixed points of 

any closure operation form an algebraic lattice. 

The proof is very easy if one notes that the isolated points 

of {xlx = a(x)}, where a is a closure operation, are exactly the 

images a(e n) of the finite sets in p~. ~at makes Theorem 5.1 more 

interesting is the converse. 

THEOREM 5.2. (The Representation Theorem for Algebraic Latt ices~. 

Every algebraic lattice with a countable number of isolated points 

is isomorphic to the range of some closure operation. 

By Theorem 1.6 we know that the algebraic lattice is a 

retract, but a more direct argument makes the closure property clear. 

Thus, let D be the algebraic lattice with {dnln ~ ~} as the set of 

all isolated points with the indicated enumeration. We shall use 

the square notation with symbols K and M for the lattice ordering 

and sup. The desired closure operation is defined by: 

a(x) = {mld m [ U{dnln E x}}. 

It is an easy exercise to show that from the definition of "isolated" 

it follows that a is continuous; and from density, it fellows that 

D is in a one-one order preserving correspondence with the fixed 

points of a. 

In the last section we introduced an algebra of retracts, 

much of which carries over to closure operations given the proper 

definitions. Without any change we can use Theorem 4.3 on function 

spaces, provided we check that the required retracts are closures. 

THEOREM 5.3. (The Function-Space Theorem for Alqebraic La t t i ces ) .  

Suppose that a and b are closure operations, then so is ao§ 

The proof comes down to showing that: 

( l l )  u ( x )  C b ( u ( a ( x ) ) ) ,  

whenever a and b are closure operations. But this is easy by mono- 

tonicity. Note that (I) is needed. 

For those interested in topology, one can give a construction 

of the isolated points of the function space which is much more direct 

than just taking the functions boe oa, which on the face of it do not 
n 

tell us too much. But we shall not need this explicit construction 

here. 
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The reason for changing the pairing functions is to be able 

to form products and sums of closure operations. In the case of 

products, the analogue of | is straight forward: 

(12) a ~ b = ~u. Ea([U]o),b(Eu]1)] ; 

while for sums using a' = hx. OOa(x-1)+1 and similarly for b' we write: 

a [] b = ~u. (Euo ]o~O,O)  u ( [ u ] l ~ l , a )  ~ E a ' ( E U ] o ) , •  

We can then establish with the aid of (8) (i0): 

THEOREM 5 . 4 .  (The  Produc t  and Sum Theorem f o r  A l q e b r a i c  L a t t i c e s ) .  

Suppose that a and b are closure operations; then so are a ~ b and 

a ~ b. Analogues of the results in Theorems 4.4 and 4.5 carry over. 

Following the discussion in Section 4, we can also show that 

the closure operations form a cartesian closed category, which in 

some ways is better than the category of all retracts. What makes 

it better is the existence of a "universe". 

Every continuous operation generates a closure operation by 

just closing up the sets under the continuous function (as a set 

operation). We can institutionalize this thought by means of this 

definition: 

(14) V = ~a~x.Y(~y. x U a ( y ) )  

C l e a r l y  V i s  LAMBDA-de f inab le ,  c o n t i n u o u s ,  etc.  A more under -  

s t a n d a b l e  characterization would define V(a)(x) by this equation: 

( IS)  V ( a ) ( x )  = n { y l x  ~ y and a(y)  ~ y} 

These two d e f i n i t i o n s  are e a s i l y  seen to  be e q u i v a l e n t .  What i s  

unexpec ted  i s  the  d i s c o v e r y  (due i n  a d i f f e r e n t  form to  Pe te r  Hancock 

and Per Martin-L6f) that V itself is a closure operation. 

THEOREM 5 .5 .  (The Un i ve rse  Theorem f o r  A l q e b r a i c  L a t t i c e s ) .  The 

function V is a closure operation and its fixed points comprise the 

set of all closure operations. 

Thus to say a is a closure operation, write a : V. To have 

a mapping on closure operations, write f : V~V. Remark that 5.5 

allows us to write V:V. It all seems rather circular, but it is 

quite consistent. The category of separable algebraic lattices 

"contains itself" - if we are careful to work through retracts of p~. 

The proof of 5.5 requires a few steps. We note first that 

for all x,a E p~: 

(16) x C V ( a ) ( x )  
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Let y = V(a)(x). This is the least y with xOa(y) ~ y. What is the 

least z with yUa(z) c z? The answer is of course y, which proves: 

(17) V(a)(V(a)(x)) = V(a)(x). 

Thus V(a) is always a closure operation. If a is already a closure 

operation, then clearly V(a)(x) = a(x). Therefore we have shown: 

(18) a = V(a) iff a is a closure operation. 

But then by (16) and (17) we have by (18): 

(19) V(a) = V(V(a)). 

From (16) by monotonicity we see: 

(20) a(~) ~ a (V (a ) ( x ) )  ~ V ( a ) ( x ) .  

Hence by (I) we can derive: 

(21) a c ~x.a(x) a hx.V(a)(x) = V(a). 

From (19) and (2!) it follows that V itself is a closure operation. 

The operation V forms the least closure operation containing 

a given element, and it shows that the lattice of closure operations 

is not only a retract of p~ but also an algebraic lattice. 

Since we can now use V as a retract, the earlier results become formulas: 

(23) (ha:V. ~b:V. a~5) : V~ (V~V); 

(24) ( ~ a : V .  ~Ib:V.  0 )  : V 0~ (V ~ V ) ;  

We can also state such functorial properties as: 

(25) (ha:V. ~b:V. ao§ : Vo§ 

Using this style of notation we have: 

THEOREM 5.6. (The L i m i t  Theorem fo r  A lqebra i c  L a t t i c e s ) .  

(Zf : V~+V.Y(f)) : (V~+V)~+V 

In words: if f is a mapping on closure operations, then its 

least fixed point is also a closure operation. The proof of course 

holds with any retract in place of V, but we are more interested in 

applications to V. For example, note that V(• = I. Now let 

f = Xa:V.a~+a. The least fixed point of this f is the limit of the 

sequence : 

•  I ,  Io+ I ,  ( I o + I ) o + ( I o + I ) ,  ( ( I o + I ) ~ + ( l o ~ I ) ) o §  ( ( I ~ I ) o + ( I ~ + I ) )  . . . .  

and we see that  a l l  these re t r ac t s  are s t r i c t .  This means Y(f)  is 

n o n - t r i v i a l  in that  i t  has at leas t  two f i xed  points  (v iz .  • and z). 

But d = Y(f )  must be the leas t  closure operat ion s a t i s f y i n g  
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(26) d = d~+ d , 

and we have thus proved that there are non-trivial algebraic lattices 

isomorphic to their own function spaces. This construction (which 

rests on hardly more that (2), since we could take d = Y(ha. Iu(a~+a))) 

is much quicker than the inverse limit construction originally found 

by the author to give X-calculus models satisfying (~). There are 

many other fixed points of (26) besides this least closure operation, 

but their connection with inverse limits is not fully investigated. 

We note in conclusion that most constructions by fixed points 

give algebraic lattices (like lamb in Section 4), and so we could 

just as well do them in V if we remember to use ~ and ~. The one- 

point space is T (not nil), and so the connection with inverse limits 

via 4.6 is not as clear when non-strict functions are used. For many 

purposes, this may not make any difference. 
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6. SUBSETS AND THEIR CLASSIFICATION. 

Retracts produce very special subsets of p~: a retract always 

has a nonempty range which forms a lattice under c. For example, 

the range of int is {• We often wish to eliminate • and T; and 

with a retract like tree the situation is more complex, since com- 

binations like <i,<<i,(• might require elimination. In 

these two cases the method is simple. 

Consider these two functions: 

( i )  mid = ~x : i n t .  x ~ o , o  

(2) p e r f  = h u : t r e e . w h i c h ( u )  ~ o , A ( p e r f ( f s t ( o u t ( u ) ) ) ) ( p e r f ( s n d ( o u t ( u ) ) ) )  

where ~ is a special combinator: 

(3)  A = X x X y . ( x D ( y D O , T ) , T )  U ( y D ( x D 0 , T ) , T ) .  

We find that ~ = {x:intlmid(x) = o}. In the case of trees, note first 

this behaviour of A: 

• 0 T 

• / T 

• 0 T 

T T T 

The question is: what subset is {u:treelperf(u) = 0}? 

Now perf is defined recursively. We can see that 

perf(• = • perf(T) = T, perf(<0> ) = 0, 

and 

p e r f ( < i , < x , y > >  ) = A ( p e r f ( x ) ) ( p e r f ( y ) )  

when x,y : tree. Every tree, aside from T or z, is either atomic 

or a pair of trees. The atomic tree is "perfect" (that is, 

perf(( 0> ) = 0). A finite tree which does not contain z or T is 

perfect -- as we can see inductively using the table above for A. 

An infinite tree is never perfect: either some branch ends in T and 

perf maps it to T, or T is never reached and perf maps it to • Thus 

the subset in question is then seen to be the set of finite trees 

generated from the atom by pairing. This is clearly a desirable 

subset, and it is sorted out by a function with a simple recursive 

definition. The general question is: what subsets can be characterized 

by equations? The answer can be given by reference to the topoZogy 
of p~. 



D. Scott 623 

DEFINITION. Let @ be the class of open subsets of pm, and ~ be the 

class of closed subsets. Further let ~ be the class of all (finite) 

Boolean combinations of open sets. 

We recall from Section 1 that U e @ just in case for all 

x e p~, we have x e u if and only if some finite subset of x is in U. 

The class of open sets contains ~ and p~ and is closed under finite 

intersection and arbitrary union; in fact, it can be generated by 

these two closure conditions from subsets of the special form 

{x e peIn E x} for the various n e ~. An open set is always monotonic 

(whenever x �9 U and x c y, then y e U), so that every non-empty U �9 

has l �9 U. 

Another characterization of openness can he given by 

continuous functions. Suppose U �9 ~. Define f : p~ + {• so that 

U = {x[f(x) = T}, 

then f is continuous. Conversely, if such an f is continuous, 

then U is open. But if we do not assume the range of f is included 

in {i,T}, this is not true. For the case of general functions we 

know that f is continuous if and only if {xlf(x) e v} is open for all 

open V. This defines continuity in terms of openness, but we can 

turn it the other way around: 

THEOREM 6.]. (The @ Theorem). The open subsets of P~ are exactZy 

the sets of the form : 

{xlf(x) ~ 0}, 

where f : p~§ is continuous. 

We could have written 0 �9 f(x) or the equation f(x)no = 0 �9 

instead of f(x) ~ o. Note that in case f : p~§ t~en f(x) ~ 0 

is equivalent to f(x) = T. Also any other integer could have been 

used in place of 0. 

We can say that {xl0 �9 x} is the typical open set, and that 

every other open set can be obtained as an inverse image of the 

typical set by a continuous function. We shall extend this pattern 

to Other classes, especially looking for equations. In the case of 

openness an inequality could also be used, giving as the typical set 

{xlx ~ i}. But since closed sets are just the complements of open 

sets, this remark gives us: 

THEOREM 6.2. (The ~ Theorem). The closed subsets off p~ are exactly 

the sets of the form: 

{x I f ( x )  = i}, 
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where  f : p~ § p~ i s  c o n t i n u o u s .  

A s i d e  f r o m  { x i x  = •  we c o u l d  h a v e  u s e d  { x i x  ~ a} as t h e  

t y p i c a l  c l o s e d  s e t  w h e r e  a �9 p~ i s  any  e l e m e n t  w h a t s o e v e r  a s i d e  f r o m  

T. T h i s  T h a s ,  by t h e  way ,  a s p e c i a l  c h a r a c t e r .  We n o t e :  

{m} = N { { x l n  �9 x}[n �9 ~ } .  

Thus {T} i s  a c o u n t a b l e  i n t e r s e c t i o n  o f  open  s e t s ,  o t h e r w i s e  c a l l e d  

a @ 6 - s e t .  T h e r e  a r e  o f  c o u r s e  many o t h e r  @ ~ - s e t s ,  b u t  {T} i s  t h e  

t y p i c a l  o n e :  

THEOREM 6.3. (The @6 Theorem). The countable intersections of open 

subsets of p~ are exactly the sets of the form: 

{x ] f ( x )  = T } ,  

where f : p~ § p~ is continuous. 

It may not be obvious that every ~6-set has this form. 

Certainly, as we have remarked, every@-set has this form. Thus if 

W is a @6' we have: 

W = N { u  In �9 ~} 
n 

and further 

U n = {x ] f n ( X )  = T ) ,  

where the fn are suitably chosen continuous functions. Define the 

function g by the equation: 

g ( x )  = { ( n . m ) i m  E f n ( X ) } ,  

Clearly g is continuous, and we have: 

w = { x l g ( x )  = T } ,  

as  d e s i r e d .  

We l e t  ~ n @  d e n o t e  t h e  c l a s s  o f  a l l  s e t s  o f  t h e  f o r m  C n U,  

where C e~ and U �9 @. Similarly for ~@~. Now {xlx ~ o} is closed 

and {xix ~ 0} is open. Thus {0} �9 ~N@ . This set is typical. 

THEOREM 6 . 4 .  (The ~ ~ @ T h e o r e m ) .  The sets that are intersections 

of closed sets with open sets are exactly the sets of the form: 

(x I f(x) = o}, 

where f : p~ ~ p~ is continuous. 

Again it may not be obvious that every ~N~ set has this 

form. We can write: 

and  

a = {x I f(x) = • 
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u = {x I g(x) -- o}, 

where C E~ and U E ~ and the continuous f and g are suitably chosen. 

Define 

h(x) = {2n+i I n ~ f(x)} u {2nln e g(x)}, 

and remark that h is continuous. We have 

a n u = {xlh(x) = 0}~ 

as desired. 

It is easy to see that {e} E ~N@ if e is finite, but in 

general {a} ~ ~N@6 " In case a is infinite but not equal to T 

(say, a = {n[n > 0} = T+I), then {a) is typical in its class. 

THEOREM 6.5. (The ~:N(~a Theorem). The sets that are intersections 

of closed sets with countable intersections of open sets are exactly 

the sets of the form: 

{X I f ( x )  = a }  , 

where f : po~ -. Re) is continuous and a is a fixed infinite set not 

equal to T. 

(~N~)~ is the same class as ~N~, so we see by Note that 

6.4 that a good choice of a is hnEm.0. 

There is no single subset of P~ typical forT, which can be 

viewed as the finite unions of sets from the class ~n @. 

THEOREM 6.6. (The ~Theorem). The sets that are Boolean combinations 

of open sets are exactly the sets of the form: 

{x ] f ( x )  ~ } ,  

where f : pc~ . poJ is continuous and ~is a finite set of finite 

elements of pm. 

To see that every ~ set has this form, suppose that 

V=W uW w wW 
0 :I " " "  n - : l '  

where each W. E ~n@. We can w r i t e :  

W.~ : {x ] f i ( x )  = 0} 

w h e r e  f i  : Pm + { •  i s  c o n t i n u o u s .  T h e n  d e f i n e :  

g ( x )  = { 2 i  + j I J ~ f i  (x )  n { 0 , 1 } ,  i < n } t  

a n d  n o t e  t h a t  g i s  c o n t i n u o u s .  L e t :  

~ =  {y a. {mlm < 2 n } [  3 i  < n . 2 i e y ,  2 i+l~y} 

we h a v e  : 
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as desired. 

THEOREM 6 . 7 .  ( T h e  9 ~  T h e o r e m ) .  The sets that are countable intersections 

of Boolean combinations of open sets are exactly the sets of the form: 

{x I f(x) = g ( x ) } ,  

where f,g : p~ § p~ are continuous. 

This is clearly the most interesting of these characterization 

theorems, because equations like f(x) = g(x) turn up all the time and 

the collection is a very rich totality of subsets of P~. It includes 

all the retracts, since they are of the form {xlx=a(x)}. And much 

more. That every such set in 6.7 is 9 6 follows from these logical 

transformations: 

{xlf(x)=g(x)} = {x I VnE~[nEf(x) ~-~ nCg(x)]} 

= N ({x[nCf(x),nEg(x)} W {Xln~f(x),n~g(x)}) 
n=0 

That puts the set in the class ~ G ~) g ~ 9 6 

On the other hand we can see that ~ U ~)G is exactly ~6" 

Because~in view of 6.6~, the class of countable unions of ~sets, is 

exactly (~)o. The remark we want to make then follows by taking 

complements. 

Now let S be an arbitrary ~-set. We can write: 

S = fi ({Xlfn(X)=O} u {xlgn(X)=O} ) n=O 

where fn 'gn : p~ § {• are continuous. Now let u, v be con- 

tinuous functions which on {• realize these two tables: 

U 

• 

o 

T 

where o' = 0 w i. 

• 0 T 

• 0 0 

0 0 O' 

0 O' O r 

v • o T 

• 0 0 O' 

0 0 0 O' 

T 0 t O r T 

This is an exercise in many-valued logic, and we 

find for x,y e {• : 

u(x)(y) = V(x)(y) iff x = 0 or y = 0 

Thus define continuous functions f' and g' such 

f' = hx~nEw. U(fn(X))(gn(X)) 

g' = hxhnEm. V(fn(X))(gn(X)). 

and we find: 
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S = {x I f'(x) = g'(x)} 

as desired. 

This is as far as we can go with equations. More complicated 
I 

sets can be defined using quantifiers. For example the Zl or analytic 

sets can be put in the form: 

{x I 3y.f(x)(y) = g(x)(y)}, 

I sets, in the form and their complements, the ~i 

{x I Vy ~z.h(x)(y)(z) = 0}, 

with continuous f, g, h. For the three classes we then have as 

"typical" sets those shown in the Table 3. 

It should be remarked that ~6 contains all the closed sets in 

the Cantor Space topology on p~ (that is, the topology obtained when 

it is regarded as the infinite product of discrete two-point spaces). 
1 

Therefore the E l sets for the two topologies on P~ are the same. 

I I (~ I is the class Hence, since we know for Cantor Space that A I = Z I ~I 

of BoreZ Sets, we can conclude that the two topologies on P~ have 

I is the Boolean the same Borel sets. (That is, in both cases 41 

~-algebra generated from the open sets.) 

Returning now to the example involving trees mentioned at the 

beginning of this section, we see that the set of perfect (finite) 

trees can be written in the form: 

{ x  I x = t r e e ( x ) ,  p e r f ( x )  = o}  = { x  I <x,per f (x)> = < t r e e ( x ) , o >  } ,  

thus it is a ~set. (Note that ~ are obviously closed under finite 

intersection by the ordered pair method just illustrated; that they 

are closed under finite union is a little messier to make explicit, 

but the essential idea is contained in the proof of 6.7.) 

As another example, we might wish to allow infinite trees 

hut not the strange tree T. Consider the following function: 

(4 )  t o p  : ~ u : t r e e . w h i c h ( u )  ~ z , t o p ( f s t ( o u t ( u ) ) ) u t o p ( s n d ( o u t ( u ) ) )  

We can show t h a t  t o p  : pm § { •  F o r  a t r e e  u t h e  e q u a t i o n  t o p ( u )  = • 

means that it does not contain T, or as we might say: it is topless. 

The topless trees form a closed subset of the subspace of trees. (An 

interesting retract is the function ~u.tree(u) u top(u) whose range 

consists exactly of the topless trees plus one exceptional tree T.) 

Such a closed subset of (the range of) a retract is a kind of 

semilattiae. (We shall not introduce a precise definition here.) Every 

directed subset has a limit (least upper bound) and every pair with an 
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Classes Typ i ca l  Sets 

@ 

1 
1 

H I 
1 

{x I o ~ x} 

{o}  

{~ [ ~ o  : ~1 } 

{u I : IY.Uo(Y) = U l ( Y ) }  

{u I Vy 3z.u(y)Cz) = o} 

Table 3. Classes and Typical Sets 



D. Scot t  629 

upper bound has a least upper bound. But generally least upper bounds 

de not have to exist within the semilattice. The type of domains 

that interest us become continuous lattices with the addition of a 

top element T larger than all the other elements. The elimination of 

T is done with a function like top of our example. This is convincing 

evidence to the author that an independent theory of semilattices is 

quite unnecessary: they can all be derived from lattices. The problem 

is simply to define the top-cutting operation, then restriction to 

the "topless" elements is indicated by an equation (like top(u) = • 

In this way all the constructions are kept within the control of a 

smooth-running theory based on LAMBDA. This point seems to be 

important if one wants to keep track of which functions are computable. 

An aspect of the problem of classification treated in this 

section which has not been given close enough attention is the explicitly 

constructive way of verifying the closure properties of the classes. 

Consider the class ~ for example. Let B be the typical set as shown 

in Table 3. Then whatever f ~ pm we choose, the set 

{xlf(x ) E B} 

is a ~-set and every such set has this form. Thus the f's index the 

elements of the class. Suppose f,g ~ pm. What we should look for 

are two LAMBDA-definable combinators such that union(f)(g) and 

inter(f)(g) give the functions that index the union and intersection 

of the sets determined by f and g. That is we want: 

{xlunion(f)(g)(x ) E B} = {xlf(x) E B} V {xlg(x ) E B} 

It should be possible to extract the precise definition from the 

outline of the proofs given above, but in general this matter needs 

more investigation. There may very well be certain classes where 

such operations are not constructive~even though the classes are 

simply defined. 
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7. TOTAL FUNCTIONS AND FUNCTIONALIIY.  

There is an inevitable conflict between the concepts of 

total and partial functions: we desire the former, but it is the latter 

we usually get. Total functions are better because they are "well- 

defined" at all their arguments, but the rub is that there is no general 

way of deciding when a definition is going to be well defined in all 

its uses. In analysis we have singularities, and in recursion theory 

we have endless, non-finishing computations. In the present theory 

we have in effect evaded the question in two ways. First we have 

embraced the partial function as the norm. But secondly, and possibly 

confusingly, the multiple-valued functions are normal, total functions 

from pm into p~. The point, of course, is that we are making a model 

of the partial functions in terms of ordinary mathematical functions. 

But note that the success of the model lies in not using arbitrary 

functions: it is only the continuous functions that correspond to the 

kind of partial functions we wanted to study. It would be a mistake 

to think of the variables in h-calculus as ranging over arbitrary 

functions -- and this mistake was made by both Church and Curry. The 

fixed-point operator Y shows that we must restrict attention to functions 

which do have fixed points. It is certainly the case that p~ is not the 

only model for the h-calculus, but it is a very satisfactory model and 

is rich enough to illustrate what can and what cannot be done with 

partial functions. 

Whatever the pleasures of partial functions (and the multiple- 

valued ones, too), the desire for total functions remains. Take the 

integers. We are more interested in ~ than m w {• Since the 

multiple values • and T are but two in number, it is easy to avoid them. 

The problem becomes tiresome in considering functions, however. The 

lattice represented by the retract int~int is much toe large, in that 

there are as many non-total functions in this domain as total ones. The 

aim of the present section is to introduce an interpretation Of a theory 

of functionality in the model p~ that provides a convenient way of 

restricting attention to the functions (or other objects) that are 

total in the desired sense. The theory of functionality is rather 

like proposals of Curry, but not quite the same for important reasons 

as we will see. 

In the theory of retracts of Sections 5 and 6, the plan of 

"restricting attention" was the very simple one of restricting to a 

subset. It was made notationally simple as the subsets in question 

could be parameterized by continuous functions. The retraction mappings 
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stand in for their ranges. Even better, certain continuous functions 

act on these retractions as space-forming functors (such as �9 and ~), 

which gives greater notational simplicity because one language is able 

to serve for several tasks. When we pass to the theory of total functions, 

this same kind of simplicity is no longer possible owing to an increase 

in quantifier complexity in the necessary definitions. (This remark 

is made definite below.) Another point where there is some loss of 

simplicity concerns the representation of entities in p~: subsets 

will no longer be enough, since we will need quotients of subsets. 

This is not a very startling point. Many constructions are affected 

in a natural way via equivalence classes. An equivalence relation 

makes you blind to certain distinctions. It may be easier also to 

remain a bit blind than to search for the most beautiful representative 

of an equivalence class: there may be nothing to choose between several 

candidates, and it can cost too much effort to attempt a choice. Thus 

our first agreement is that for many purposes a kind of object can be 

taken as a set of equivalence classes for an equivalence relation on 

a subset of pw. 

Because p~ is closed under the pairing function XxXy.(x,y>, we 

shall construe relations on subsets of p~ as subsets of p~ all of 

whose elements are ordered pairs. That is a relation A satisfies this 

inclusion: 

(I) A c (<x,y>Ix,y ~ P~}. 

DEFINITION. A (restricted) equivalence relation on p~ is a 

symmetric and transitive relation on pm. 

Such relations are restricted because they are only reflexive 

on their domains - which are the same as their ranges -- and these are 

the subsets with which the relations are concerned. We shall write x A y 

for < x,y) ~ A and x : A for x A x. What we assume about these relations 

is the following: 

(2) x A y implies y A x. 

(3) x A y and y A z imply x A z. 

In case a is a retract, we introduce an equivalence relation to 

correspond: 

(4) E = (<x,x) Ix:a~. 
a 

This is the identity relation restricted to the range of a. Such 

relations (for obvious reasons) and many others satisfy an additional 

intersection property: 
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(5) x A y and x A z imply x A (ynz)  

We shall not generally assume (5) in this short discussion, but it is 

often convenient. 

Each equivalence relation represents a space: the space of all 

its equivalence classes. Such spaces form a category more extensive 

than the category of retracts studied above. The familiar functors 

can be extended to this larger category by these definitions: 

(6)  A + B = { < X x . u ( x ) , X x . v ( x ) >  l u ( x ) B v ( y )  w h e n e v e r  x A y} 

(7) A • B = { ( ( x , x ' >  , < y , y ' > ) l x  A y a n d  x '  B y ' }  

(8)  A + B = {<<O,x> ,<o,y>> l x A y }  u { < < i , x , >  , < ~ , y , > >  I x ' B y ' }  

THEOREM 7.1.  (The Closure Theorem). I f  A a n d  B a r e  r e s t r i c t e d  

equivalence relations, then so are A + B, A • B and A + B. We find: 

(i) f : A § B iff f = hx.f(x) and whenever x A y, then f(x) B f(y)~ 

in particular: 

(ii) if f : A ~ B and x : A, then f(x) : B; furthermore~ 

(iii) u : A • B iff u = < Uo,Ui> and u 0 : A and u I : B; 

(iv) u : A + B iff either u = < O,u1> and u I : A, 

or u = < 1,u I) and u I : B. 

It follows easily from 7.1 that the restricted equivalence 

relations form a cartesian closed category which - in distinction to 

the category of retracts - has disjoint sums (or coproducts as they 

are usually called in category theory). This result is probably a 

special case of a more general theorem. The point is that p~ itself 

is a space in a cartesian closed category (that of continuous lattices 

and continuous maps) and it contains as subspaces the Boolean space 

and especially its own function space and cartesian square. In this 

circumstance any such rich space must be such that its restricted 

equivalence relations again form a good c~tegory. Our construction 

is not Strictly categorical in nature, as we have used the elements 

of p~ and have relied on being able to form arbitrary subsets (arbitrar~ 

relations). But a more abstract formulation must be possible. The 

connection with the category of retracts is indicated in the next 

theorem. 

THEOREM 7.2.  (The Isomorphism Theorem I . I f  a a n d  b a r e  r e t r a c t s  we 

have the following isomorphisms and identities relating the spaces: 

( i )  E a ~ {<x , y )  l a ( x )  = a ( y ) }  ; 

§ E b �9 ( i i )  E a ~  b ~ E a 
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= x E b (iii) Ea| b E a , 

= + E b u {<• • } (iv) Ea~ b E a , . 

Part (iv) is not categorical in nature as it stands, but 

and (iii) indicate that E ~s a functor from the category of retracts 

into the category of equivalence relations that shows that the former 

is a full subcartesian-closed category of the latter. We cannot pursue 

the categorical questions here, but note that there are many subr 

categories that might be of interest; for example, the equivalence 

relations with the intersection property are closed under +, • and +. 

Returning to the question of total functions we introduce 

this notation: 

(9) N = {<n,n) In c ~} 

This is the type of the integers without • and T, i.e.the total 

integers. We note that: 

( i 0 )  N = { u l u  = <UO,uO> , u 0 = i n t ( u o ) ,  m i d ( u o ) =  o } .  

Thus N is a ~6-set. What is N + N? We see: 

(ii) f : N + N iff f : fun and f(n) e ~ whenever n em. 

This N § N is indeed the type of all total functions from ~ into ~. 

It can be shown that N + N is also a ~-set. Good. But what is 
1 

(N § N) § N? This is no lenger a ~6-set, the best we can say is ~i" 

By 7.1 it corresponds to the type of all (extensional) continuous total 

functions from N § N into N. (The condition on A and B on the right 

side of (6) makes the concept of function of function embodied in 

A § B extensional, since the functions are meant to preserve the 

equivalence relations.) 

A more precise d~scussion identifies N + N as a topological 

space, usually called the Baire Space. If we introduce the finite 

discrete spaces by: 

(12) N k = {<n,n> In < k}, 

then N § N 2 can also be identified with a topological space, usually 

called the Cantor Space. In this identification we find at the next 

type, say either (N + N) + N or (N + N 2) ~ N2, that elements correspond 

to the usual notion of continuous function defined in topological terms. 

However, these higher type spaces are not at all conveniently taken 

as topological spaces. Certain of them can be identified as ~imit 

~paees according to the work of Hyland, and for these 4, • and + 

have the natural interpretation. We cannot enter into these details 
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here, but we can remark that the higher type spaces become ever more 

Thus ((N § N) § N) ~ N is a N~-set and each § will add complicated. 

another quantifier to the definition. This is reasonable, because 

to say that a function is total is to say that all its values are well 

behaved. But if its domain is a complex space, this statement of 

totality is even more complex. Despite this complexity, however, it 

is possible to sort out what kind of mapping properties many functions 

have. We shall mention a few of the combinators. 

~HEOREM 7 . 3 .  (The F u n c t i o n a l i t y  T h e o r e m ) .  The combinators I ,  K~a~d S 

enjoy the following functionality properties which hold for all 

equivalence relations A, B, C: 

( i )  I : A § A; 

( i i )  K : A § (B + A ) ;  

(iii) S : (A + (B § C ) )  + ( ( A  + B) § (A § C ) ) .  

Furthermore these combinators a~e uniquely determined by these 

properties. 

Let us check that S satisfies (iii). Suppose that: 

f ( A  § (B ~ C ) ) f '  

We m u s t  s h o w  t h a t :  

S ( f ) ( ( A  § B) + (A + C ) )  ~ f ' ) .  

To this end suppose that: 

g ( A  § B ) g ' .  

We must show that: 

S ( f ) ( g ) ( A  ~ C ) S ( f ' ) ( g ' ) .  

To t h i s  e n d  s u p p o s e  t h a t :  

x A x' 

We must show that: 

S ( f ) ( g ) ( x )  C S ( f ' ) ( g ' ) ( x ' ) .  

NOW b y  d e f i n i t i o n  o f  t h e  c o m b i n a t o r  S we h a v e :  

S ( f ) ( g ) ( x )  = f ( x ) ( g ( x ) )  

S ( f ' ) ( g ' ) ( x ' )  = f ' ( x ' ) ( g ' ( x ' ) ) .  

By a s s u m p t i o n s  on  g , g '  a n d  on  x , x ' ,  we k n o w :  

g ( x )  B g ' ( x ' )  

By a s s u m p t i o n s  o n  f , f '  a n d  o n  x , x ' ,  we k n o w :  
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f(x)(B § C)f'(x') 

The desired conclusion now follows when we note such combinations as 

S(f) and S(f)(g) are indeed functions. (We are using 7.1(i) several 

times in this case.) 

In the case of the converse, let us suppose by way of example 

that k e pm is such that 

k:A§ 

holds for all equivalence relations A and B. By specializing to, say, 

the identity relation we see that whatever a e pm we take, both k and 

k(a) are functions. To establish that k = K we need to show that the 

equation: 

k(a)(b) = a 

holds for all a,b �9 pw. This is easy to prove, for we have only to set: 

A = {<a,a) } and 

B = {<b,b> ), 

and the equation follows at once. Not all proofs are quite so easy, 

however. 

In the case of the combinator S it is not strictly true to 

say that 7.3 (iii) determines it outright. The exact formulation is 

this: if s e p~ is such that: 

s(f) = s(~x~y.f(x)(y)) and 

s(f)(g) = e(f)(~x.g(x)) 

for all f,g �9 p~; and if 

s : (A § (B ~ C)) + ((A + B) + (A + C)) 

for all A, B, C, then s = S. In other words we need to know that s 

converts its first two arguments into functions with the right number 

of places before we can say that its explicit functionality identifies 

as being the combinator S. 

In Hindley, Lercher and Seldin (1972) they show that the 

functionality property: 

(13) hfXg.fog : (B § C) + ((A § B) § (A § C)), 

follows from (7.1) (ii) and (7.3) (ii) and (iii) in view of the 

identity: 

( 1 4 )  xf~g.fog : S ( K ( S ) ) ( K )  

(see pp. 77-80). 
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A more interesting result concerns the iterators defined as 

follows: 

(15) Z 0 = Iflx. x 

(16) Zn+ 1 = Iflx.f(Zn(f)(x)). 

In other words, Zn(f)(x) = fn(x). These natural combinators can be 

typed very easily, but Gordon Plotkin has shown that the obvious 

typing actually characterizes them. 

THEOREM 7.4.  (The I t e r a t o r  Theorem). The combinators Z enjoy the n 
following functionality property which holds for all equivalence 

relations A: 

(i) Z : (A § A) § (A § A) 

Further if any element z �9 p~ satisfies (i) for all A, then it must be 

one df the iterators, provided that z(f) = z(hx.f(x)) holds for all 

fE p~. 

That each of the Z satisfies 7.4 (i) is obvious. Suppose 
n 

z were another such element. Then clearly: 

z = lflx.z(f)(x). 

Suppose f and x are fixed for the moment. Let: 

A = {< fn(x),fn(x))[n �9 ~}, 

where we can suppose in addition that: 

f = lx.p(x). 

Then f : A § A is clear, and so z(f) : A + A also. But x : A, 

therefore z(T)(x) = fn(x), for some n �9 ~, because z(f)(x) : A. 

The trouble with this easy part of the argument is that the integer 

n depends on f and x. What we must show is that it is independent of 

f and x, then z = Z will follow. 
n 

Plotkin's method for this case is to introduce some independent 

successor functions: 

(17) ~ 
O 

Note that : 

: lx.{(j,k+1)i(j,k) �9 x} 

(18) ~m((j',o)) : (j,m) , if j : j'; 
o 

= • , ifj #j'. 

It then follows that: 

(19) (~j U ~j,)m((j,O) U (j',0)) = (j,m) U (j',m). 

Having these identities, we return to the argument. 
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From what we saw before, given j E ~, there is an nj 

such that : 
n . 

J ( j , o )  = ( j , n j )  z ( ~ j ) ( ( j , o ) )  = ~j 
Take any two j,j' Em. We also know there is an n E m where: 

z(cr j  U d j , ) ( ( j , O )  U ( j ' , O ) )  = ( j , n )  U ( j ' , n ) ,  

in view of (19). But since ~j C ~j O ~j, and dj, C_ ~j U ~j,, we have: 

( j , n j )  U ( j ' , n j , )  c ( j , n )  U ( j ' , n )  . 

It follows that 

.j = n = nj, 

and so they are all equal. This determines the fixed n E ~ we want. 

Suppose that both f and x are finite sets in p~. Choose 

j > max(f U x). Let A this time be the least equivalence relation such 

that: 

rm( ) A u 

holds for all m ~ ~. We then check that: 

k x . f ( x ) ( A  § A ) ( k x . f ( x ) )  U ~. 

Therefore, we have: 

z ( h x . f ( x ) ) ( A  + A ) z ( ( k x . f ( x ) )  U a j ) ,  

and since x A x O (j,0), we get: 

z ( h x . f ( x ) ) ( x )  A z ( ( X x . f ( x ) )  U d j ) ( x  U ( j , O ) ) .  

NOW t h e r e  i s  an  i n t e g e r  m c ~ s u c h  t h a t :  

z ( ( X x . f ( x ) )  u ~ j ) ( x  u ( j , o ) )  : .tim(x) U ~ ( ( j , o ) )  

: fm (x )  U ( j , m ) ,  

where we have been able to separate f and ~ because j is so large. 

But the right-hand side must contain z(gj)(j,o) = (j,n). Thus m 

and our fixed n are the same. The other element 

z ( X x . f ( x ) ) ( x )  : f q (x )  

f o r  so m e  q E ~ .  T h u s  we h a v e :  

f q (x )  A fn (x )  U ( j , n ) .  

A g a i n  s i n c e  j i s  s o  l a r g e ,  ( j , n )  ~ f q ( x ) .  T h u s  b y  o u r  c h o i c e  o f  A 

we must have fq(x) = fn(x). This means then, since n is fixed, that 

for all f~nite f,x: 

z ( X x . f ( x ) ) ( x )  : f n ( x ) .  
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But then by continuity this equation holds for all f,x. It follows 

now that z = Zn, by the proviso of the theorem. 

These results bring up many questions which we leave un- 

answered here. For example, which combinators (i.e. pure h-terms) 

have functionality as in the examples above? and can we decide when a 

term is one such? In particular can the diagonal combinator 

Ix.x(x) be typed? (The argument of Hindley, et al., p.81, is purely 

formal and does not apparently apply to the model.) What about terms 

in LAMBDA beyond the pure l-calculus? 
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APPENDIX I .  PROOFS AND TECHNICAL REMARKS. 

For Sec t ion  I .  I f  we g i v e  the  t w o - p o i n t  space {• the weak 

T 0 - t o p o l o g y  w i t h  j u s t  t h r e e  open s e t s :  ~,  { T } ,  { Z , T } ,  we have what  i s  

c a l l e d  the S i e r p i n s k i  Space and i t s  i n f i n i t e  p r o d u c t  { •  m w i t h  the  

p r o d u c t  t o p o l o g y  i s  t he  same as pm. The f i n i t e  se ts  e n E pw cor respond  

e x a c t l y  to  the u s u a l  b a s i c  open sets  f o r  the p r o d u c t .  For those 

familiar with such notions, this well-known observation makes many 

of the facts mentioned in this section fairly obvious. From any point 

of view, I.I and the remarks in the following paragraph are simple 

exercises. 

Proof of 1.2. Equation (i) as a functional equation comes down to 

{mI3e n ~ x.m e f(en) } = f(x), 

which is just another way of writing the definition of continuity. 

Thus it is indeed true for all x. Next, inclusion ~ii) means that if 

(n,m~ ~ u, then 3e k ~ en.(k,m) ~ u. Clearly all we need to do is take 

k=n. If we also want the converse inclusion to hold, then what we need 

is condition (iii). 

Proof of 1.3. Substitution is generalized composition of 

functions of many variables with all possible identifications and 

permutations of the variables; however, as we are able to define con- 

tinuity by separating the variables, the argument reduces to a few 

special cases. The first trick is to take advantage of monotonicity. 

Thus, suppose f(x,y) is continuous in each of its variables. 

can we say of f{x,x), a very special case of substitution? 

f ( x , x )  : U { f ( e n , X ) l e  n ~ x}  

: U{f(en,e m) le n ~ x,e m ~ x}. 

= U e and realize that f(en,e m) c f(ek,ek) , Then if we think of e k e n m 

we see that 

f ( x , x )  = U { f ( e k , e k ) ] e  k ~ x } .  

This means that f(x,x) is continuous in x. This same argument works 

if other variables are present, as in the passage from f(x,Y,z,w) to 

f(x,x,z,w). When an identification of more than two variables is 

required, as from f(x,y,z,w) to f(x,x,x,x), the principle is just 

applied several times. 

Finally to show that f(g(x,y),h(y,x,y)) is continuous, it is 

sufficient to show that f(g(x,y),h(z,u,v)) is continuous in each of its 

variables separately. By simply overlooking the remaining variables, 

this comes down to showing that f(g(x)), is continuous if f and g are. 

What 

We calculate 
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But the proof for ordinary composition is very easy with the aid of the 

Characterization Theorem I.I. 

Proof of 1.4. This well-known fact holds for continuous functio 

on many kinds of chain-complete partial orderings; but p~ illustrates 

the idea well enough. Suppose f had a fixed point x = f(x). Then 

since ~ a x and f is monotonic, we see that f(@) c f(x) = x. But then 
m 

again, f(f(@)) c f(x) = x; and so by induction, ?(9) c x. This proves 

that fix(f) ~ x; and thus if fix(f) is a fixed point, it must be the 

least one. To prove that it i__~s a fixed point, we need a fact that 

will often be useful: 

LEMMA. If x n ~ Xn+ I for all n, and if f is continuous, then 

f(U{Xnlne~}) = U{f(Xn)Ine~}. 

Proof. By monotonicity, the inclusion holds in one direction. 

Suppose e m _c f(U{Xnlne~} ). Then by i.I we have em -c f(ek) for some 

e k ~{Xnlne~}. Because e k is finite and the sequence is increasing, 

we can argue that e k ~ x n for some n. But then f(e k) ~ f(Xn). This 

a U{f(Xn)Ine~ ) and proves the inclusion in the other shows that e m _ 

direction. <Exercise: Does this property characterize continuous 

functions?) 

Proof of 1.4 concluded. Noting that fn(~) c fn+l(@) holds for 
m 

all n, we can calculate: 

f ( f i x ( f ) )  = U { f ( ~ ( ~ ) ) ] n e w }  
= U { f n + l ( ~ ) [ n E r o } .  

But this is just fix(n),since the only term left out is f0(@) = ~. 

Proof of 1.5. The function ~ is clearly well defined even when 

y ey has a neighbourhood U where Xn u = 9: in that case ~y) = ~ by 

convention on the meaning of N in P~. In case x eX, it is obvious that 

7(x) ~ f(x). For the opposite inclusion, suppose that m �9 f(x). 

Because f is continuous and {zlm �9 z} is open in Pa, there is an open 

subset y of X such that x' �9 7 always implies that m �9 f(x'). But X is 

a subspace of Y, so V = X n u for some open subset U of Y. Thus we can 

see why m �9 ~(x). It remains to show that ~ is itself continuous. 

We must show that the inverse image under ~ of every open subset 

of Pa is open iny. But the open subsets of Pa are unions of finite 

intersections of sets of the form {zlm �9 z}. Thus it is enough to show 

that {y]m �9 ~(y)} is always open in Y. But this set equals 

U{uIm �9 N{f(x)Ix �9 X n u}}, which being a union of open sets is open. 

Note that what we have proved is that ~ is continuous no matter what 

function f is given; however, if f is not continuous, then 7 cannot be 

an extension of f. 
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For readers not as familiar with general topology we note that 

the idea of 1.5 can be turned into a definition. Suppose X a p~ is 

a subset of P~. It becomes a subspace with the relative topology. What 

are the continuous functions f : X § P~? From l.S we see that a 

necessary and sufficient condition is that the 7 : P~ § P~ be an exten- 

sion of f. Thus for x �9 X we can write the equation f(x) = 7(x) as a 

biconditional : 

c x Vx' � 9  c x' implies m �9 f(x')] m �9 f(x) iff 3e n _ n -- ' 

which is to hold for all m �9 ~. This form of the definition of con- 

tinuity on a subspace is more complicated than the original 

definition, because in general e n ~ X and we cannot write f(en). 

Proof of 1.6. What T O means is that every point of • is uniquely 

determined by its neighbourhoods. Now c(x) just tells you the set of 

indices of the (basic) neighbourhoods of x. Thus it is clear that E is 

one=one. To prove that it is continuous, we need only note: 

{ x l n  �9 E ( x ) }  = u 
n 

w h i c h  i s  a l w a y s  o p e n .  To show t h a t  c i s  an e m b e d d i n g ,  we m u s t  f i n a l l y  

c h e c k  t h a t  t h e  images  o f  t h e  o p e n  s e t s  U n a r e  o p e n  i n  c ( X ) .  T h i s  c o m e s  

down t o  s h o w i n g :  

E(z] n )  : ~ (X)  n { z ]n  �9 z}, 

which is clear. 

For Section 2. Equation (I) defines a continuous function because it 

is a special case of 1.5, where we have been able to simplify the 

definition into cases because ~ is a very elementary subset of pw. 

Equation (2) gives a continuous function since the definition makes 

distributive, as remarked in the text for finite unions, but it is 

just as easy to show that ~ distributes over arbitrary unions. The 

difference between a continuous f and a distributive ~ is this: to 

Cx with m E f(en) ; however, find m �9 f(x) we need a finite subset e n _ 

to find m �9 ~(x) we need only one element n �9 x with m �9 ~({n}) = ~(n) 

= p(n). Continuous functions are generalizations of distributive 

functions. The generality is necessary. For example in equation (3) 

we see another function x;y distributive in each of its variables; 

but take care: the function x;x is not distributive in x - there is 

no closure under substitution. This is just one reason why con- 

tinuous functions are better. Another good example comes from (4) if 

you compare the functions x, x+x, x+x+x, etc. 

Equations (5) - (7) are very elementary. Note that z D x,y 
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is distributive in each of its variables. We could write: 

z 3 x,y = ~(z), where p(0) = x and p(n+1) = y, to show that it is dis- 

tributive in z. 

Proof of 2.1. If we did not use the X-notation, then all 

kAMBDA-definable functions would be obtained by substitution from 

the first five (cf. Table 2). Since they are all seen to be con- 

tinuous, the result would then follow by the Substitution Theorem 

1.3, Bringing in ~-abstraction means that we have to combine 1.3 with 

this factr 

LEMMA. If f(x,y,z,...) is a continuous function of all its variables, 

then ~x.f(x,y,z,...) is a continuous function of the remaining varia- 

bles. 

Proof. It is enough to consider one extra variable. We compute 

from the definition of X in Table 2 as follows: 

Xx.f(x,y) = {(n,m)Im E f(en,Y)} 

= {(n,m)l~e k ~ y.m E f(en,ek) } 

= U{{(n,m) Im c f(en,ek)}le k ~ y} 

= U{hx.f(x,ek)le k ~ y}. 

Thus hx.f(x,y) is continuous in y. 

Proof of 2.2. The reason behind this result is the restriction 

to continuous functions. Theorem 2.1 shows that we cannot violate the 

restriction by giving definitions in LAMBDA, an~ the Graph Theorem 1.2 

shows that continuous functions correspond perfectly with their graphs. 

The verification of (~) of Table 1 is obvious as the ,x' in 

'Xx.z' is a bound variable. (Care should ~ taken in making the pro- 

viso that ,x, is not otherwise free in ~.) The same would of course 

hold for any other pair of variables. We do not bother very much 

about alphabetic questions. 

The verification of (B) is just a restatement of 1.2(i). Let 

define a function f (of x). Then by definition f(x) = T and 

hx.T = graph(f). Also fun(u)(x) in the notation of 1.2 is the same 

as the binary operation u(x) in the notation of LAMBDA. Thus in 1.2(i) 

if we apply both sides to y we get nothing else than (6). 

Half of property (~) is already implied by (B): the implication 

from left to right. (Just apply both sides to x.) In the other 

direction, Vx.T = ~ means that T and ~ define the same function of x; 

thus~ the two graphs must be equal. 
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Remarks on other laws. The failure of (~) simply means that 

not every set in p~ is the graph of a function. Condition 1.2(iii) is 

eq~i~valent to saying that u = Xx.u(x), in other words, u is the graph 

of some function if and only if it is the graph of the function deter- 

mkned by u. 

Law (V) is the monotone property of application (in both 

variables); therefore, (V) and (~) together imply (~*) from left to 

right. Suppose that Vx.T c a, then clearly: 

{(n,m)[m E TEen~X]} ~ {(n,m)Im E ~[en/X]} , 

which gives (~*) from right to left. 

There are, by the way, other laws valid in the model, as ex- 

plained in the later results. 

Proof of 2.3. This is a standard result combinatory logic. We 

have only to put: 

u = XXoXX i ... XXn_i.f(Xo,X i ..... Xn_l). 

That is, we use the iteration of theprocess of forming the graph of 

a continuous function. As each step (from the inside out) keeps 

everything continuous, we are sure that the equation of 2.3 will hold 

for iterated application. 

Proof of 2.4. This can be found in almost any reference on 

combinatory logic or ~-conversion. The main idea is to eliminate the 

in favour of the combinators. The fact that we have a few other 

kinds of terms causes no problem if we introduce the corresponding 

combinators. The method of proof is to show, for any LAMBDA-term T 

with free variables among Xo,Xl,...,Xn_i, that there is a combination 

y of combinators such that: 

T = ~ ( x 0 ) ( x  l )  . . .  ( x k _ l ) .  

T h i s  can  be done by i n d u c t i o n  on t h e  c o m p l e x i t y  o f  T. 

P r o o f  o f  2 . 5 .  The w e l l - k n o w n  c a l c u l a t i o n  shows t h a t  we h a v e  

f rom ( 8 ) :  

Y(u) = ( ~ x . u ( x ( x ) ) ) ( ~ x . u ( x ( x ) ) )  

= u ( Y ( u ) ) .  

Thus Y(u) i s  a f i x e d  p o i n t  o f  t h e  f u n c t i o n  u ( x ) .  What i s  n e e d e d  i s  

t h e  p r o o f  t o  show t h a t  i t  i s  t h e  l e a s t  o n e .  

L e t  d = X x . u ( x ( x ) )  and l e t  a be any o t h e r  f i x e d  p o i n t  o f  u ( x ) .  

To show, as we m u s t ,  t h a t  d ( d )  ~ a ,  i t  i s  enough  t o  show t h a t  e~ ~ d 

a l w a y s  i m p l i e s  e ~ ( e z )  ~ a ;  b e c a u s e  by c o n t i n u i t y  we h a v e :  
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d(d) = U{e~(es ~ ~ d}. 

By way of induction suppose that this implication holds for all n < ~. 

Assume that es ~ d and that m e e~(e~).We will want to use the in- 

duction hypothesis to show that m �9 a. By the definition of application, 

C e~ But there exists an integer n such that (n,m) �9 e~ and e n _ . 

a d. By the hypothesis, we have e (e n) c a. n ~ ( n , m )  < s  a n d  e n _ n - 

N o t e  t h a t  ( n , m )  �9 d a l s o ,  a n d  t h a t  d i s  d e f i n e d  by  X - a b s t r a c t i o n ;  t h u s ,  

m �9 d(e n ) by definition. By monotonicity U(en(en)) ~ u(a) = a; 

therefore m �9 a. This shows that ez(e ~) ~ a, and the inductive proof 

is complete. 

Remark. Note that we did not actually use the Fixed-Point 

Theorem in the proof, but we did use rather special properties of the 

pairing (n,m) and the finite sets e 

Equation (9) is proved easily from the definition of application; 

indeed u(x) is distributive in u. Equation (I0) is proved even more 

easily from the definition of X-abstraction. For equation (II), we 

see that the inclusion from left to right would hold in general by 

monotonicity. In the other direction, suppose m �9 f(x) n g(x). 

Then for suitable k and ~ we have (k,m) �9 f and e k ~ x, also (~,m) �9 g 

= and e~ _c x. Let e n e k u e~ _�9 x. Because f and g are graphs, we 

can say (n,m) e f n g; and thus m �9 (f n g)(x). This is the only 

point where w~ require the assumption on graphs. Equation (12) 

follows directly from the definition of abstraction. For equation 

(13), which generalizes (9), we can also argue directly from the 

definition of application. In the case of intersection is is easy 

to find u n such that 0 �9 Un(T) for all n, but n{unln �9 ~} = • 

Equation (14) is obvious because the least fixed point of the 

identity function must be • A less mysterious definition would be 

I = 0~i~ but the chosen one is more "logical". 

For (15) we note that by definition: 

Xz.0 = {(n,m)]m ~ 0} = {(n,0)[n E ~} 

Because 0 = {o,0) and i = (i,0), we get the hint. Equation (16) 

makes use of U for iteration. If x = 0U(x+1), then x must contain 

all integers; hence x = T. The iteration for n in (17) is more 

complex. The fundamental equation we need is: 

x n y = x D (y D 0 , •  n ( y - i ) ) + 1 .  

T h i s  s a y s  t o  c o m p u t e  t h e  i n t e r s e c t i o n  o f  two s e t s  x a n d  y ,  we f i r s t  

t e s t  w h e t h e r  0 �9 x .  I f  s o ,  t h e n  t e s t  w h e t h e r  o �9 y .  I f  s o ,  t h e n  we 

k n o w  0 �9 x n y .  I n  t h e  m e a n t i m e  we b e g i n  t e s t i n g  x f o r  p o s i t i v e  
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elements. If we could compute (by the same program) the intersection 

(x-l) n (y-i), then we would get the positive elements of the inter- 

section x n y by adding one. This is a very slow program, but we can 

argue by induction that it gives us all the desired elements. Of 

cours%n is the least function satisfying this equation. 

In the case of (18) it is clear that we have: 

%x.s = {(n,m)Im E • = • 

XX.T  = { ( n , m ) [ m  E T} = T ; 

because in the last every integer is a (number of a) pair. Suppose 

new that a = hx.a and a @ T. bet k be the least integer where k @ a. 

Now ~ = (n,m) for some n and m. If m ~ a, then (n,~) ~ a = Xx.a; 

hence m @ a . But m < k and k is minimal; therefore, m = k. But 

this is only possible if k = m = n = 0. Suppose further a @ • and 

that ~ is the least integer where % ~ a. Now Z = (i,j) with j ~ a and 

j < Z. So j = % and % = j = i = 0. This contradiction proves that 

a=zora=T. 

Equations (19) - (22) are definitions, and (23) is proved easily 

by induction on i. Equation (24) is also a definition. To prove (25) 

we note that {uili ~ x} is continuous (even: distributive) in u and 

x. Thus, there is a continuous function seq(u)(x) giving this value. 

W~at fs required is to prove that it is hAMBDA-definable. We see: 

s e q ( u ) ( x )  = {n ~ UolO ~ x)  u {m e U { u i + l I i + ~  ~ x } ] 3 k . k + a  ~ x }  

= x ~ u o , s e q ( X t . u t + l ) ( x - 1 ) .  

that is, seq satisfies the fixed-point equation for $o Thus $ ~ seq. 

To establish the other inclusion we argue by induction on i for: 

V x , u [ i  ~ x ~ u  i ~ $ ( u ) ( x ) ]  

This is easy by cases using what we are given about $ in (24), and 

it i~plies that seq c $. Note that: 

%ne~.z = Xn~.~ iff Vn~.T = o . 

Por primitive recursive functions, even of several variables, 

there is no trouble in transcribing into LAMBDA-notation any standard 

definition -- especially as we can use the abstraction operator ~nE~. 

If we recall that every r.e. set a has the form: 

a = {mI3n. p(n) = m+i}, 

where p is primitive recursive, we then see that a = ~(T)-i. This means 

that every r.e. set is hAMBDA-definable. 

Proof of 2.6. In case of a function of several variables, we 
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remark: 

hXolXl...lXk_l.f(Xo)(Xl)...(Xk_1)={(no,(n1,( ' .,(nk_l,m)..,)))l 

�9 )...( )} m f(eno)(enl enk_l 

This makes the implication from <i) to (ii) obvious. Conversely, 

if a graph u is r.e., then from the definition of application we have: 

m �9 U(eno)[e n )...(e ) iff (n0,(nl,( .... (nk_l,m)...))) �9 u, 
1 nk 

which is r.e. in m, no, nl,...,nk_ 1. Therefore (i) and (ii) are 

equivalent. 

We have already proved that (ii) implies (iii). For the converse 

we have only to show that all LAMBDA-definable sets are r.e. For this 

argument we could take advantage of the Combinator Theorem 2.4. Each 

of the six combinators are r.e., and there is no problem of showing 

that if u and x are r.e., then so is u(x); because it is defined in 

such an elementary way with existential and bounded universal number 

quantifiers and with membership in u and in x occurring positively. 

Explicitly we have: 

m �9 u(x) 

For Section 3. 

iff ~e n ~ x.(n,m) e u 

iff 3n Vm < n[[m e e implies m e x] and (n,m) e u], 
n 

E o r  t h e  p r o o f  o f  (1 )  we d i s t i n g u i s h  c a s e s .  I n  c a s e  

x = y = • we note that cond(z)(z) = • and •177 : z, so the equation 

checks in this case. Recall: 

cond(x)~y) = Xz.z ~ x y 

= {(n,m)Im 6 (e n D x,y)}. 

We can show 0 ~ cond(x)(y). Note first 0 = (n,m) iff n = o = m; 

furthermore, e 0 = • and • D x,y= • but 0 ~ • Also we have: 

cond(x)(y)(o) = x and cond(x)(y)(1) = y; 

so if either x # • or y ~ • then cond(x)(y) ~ • In this case, 

cond(x)(y) must contain positive elements. The result now follows. 

Theorem 3.1 is obvious from the construction of G, because 

G(G) = 0 and G(o)(0) =suc, and so the G(0)(i) give us all the other 

combinators. 

The primitive recurs• functions needed for (4) (6~ are 

standard. Equation (7) is a definition -- if we rewrote it using the 

Y-operator-- and the proof of 3.2 is easy by induction. There is also 

no difficulty with (8) (12). The idea of the proof of 3.3 is con- 

tained in the statement of the theorem itself. The proof of 3.4 is 



D. Scot t  647 

already outlined in the text. 

Proof of 3.5. The argument is essentially the original one 

of Myhill-Shepherdson. Suppose p is computable, total and extensional. 

Define: 

q = { ( j , m ) I m  e v a l ( p ( f i n ( j ) ) ) } ,  

where fin is primitive recursive, and for all j �9 ~: 

v a l ( f i n ( j ) )  = e . .  # 

C e r t a i n l y  q � 9  , and we w i l l  e s t a b l i s h  t h e  t h e o r e m  i f  we can p r o v e  

'hontinuity"~ 

v a l ( p ( n ) )  = U { v a l ( p ( f i n ( j ) ) ) l e  j ~ v a l ( n ) } .  

We p r o c e e d  by  c o n t r a d i c t i o n .  Suppose f i r s t  we have  a k �9 v a l ( p ( n ) ) ,  

whe re  k ~ v a l ( p ( f i n ( j ) ) )  w h e n e v e r  e .  c v a l ( n ) .  P i c k  r t o  be a j - 
primitive recursive function whose range is not recursive. Define 

s, primitive recursive, so that for all m �9 m: 

v a l ( s ( m ) )  = { j  �9 v a l ( n ) I m  ~ { r ( i ) l i  ~ j } } .  

The s e t  v a l ( n )  mus t  be i n f i n i t e ,  b e c a u s e  p i s  e x t e n s i o n a l ,  and i f  

v a l ( n )  = e j  = v a l ( f i n ( j ) ) ,  t h e n  k ~ v a l ( p ( f i n ( j ) ) )  = v a l ( p ( n ) ) .  

No te  t h a t  v a l ( s ( m ) ) ,  as a s u b s e t  o f  t h e  i n f i n i t e  s e t ,  i s  f i n i t e  i f  

m i s  i n  t h e  r a n g e  o f  r ;  o t h e r w i s e  i t  i s  e q u a l  t o  v a l ( n ) .  A g a i n  by 

t h e  e x t e n s i o n a l i t y  os p we see t h a t  k e v a l ( p ( s ( m ) ) )  i f  and o n l y  i f  

m is not in the range of r. But this puts an r.e. condition on m 

equivalent to a non-r.e, condition, which shows there is no such k. 

For the second case suppose we have a k ~ val(p(n))~where for 

a s u i t a b l e  ej. _�9 v a l ( n )  i t  i s  t h e  case t h a t  k �9 v a l ( p ( f i n ( j ) ) ) .  D e f i n e :  

t = ~ m � 9  u ( v a l ( m )  ~ v a l ( n ) , v a l ( n ) )  

We have~ 

t ( m )  = e .  , if v a l ( m )  : •  
J 

: val(n), if not. 

We choose u primitive recursive, where: 

v a l ( u ( m ) )  = t(m). 

By the choice of k, and by the extensionality of p, and by the fact 

that val(n) ~ ej, we have: 

k c v a l ( p ( u ( m ) ) )  i f f  t ( m )  = e .  
J 

i f f  v a l I m )  = • . 

Bu t  t h i s  i s  i m p o s s i b l e ,  s i n c e  one s i d e  i s  r . e .  i n  m and t h e  o t h e r  i s  

n o t  by 3 . 4 .  As b o t h  cases  l e a d  t o  c o n t r a d i c t i o n ,  c o n t i n u i t y  i s  e s t a b -  
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lished and the proof is complete. 

Proof of 3.6. Consider a degree Deg(a). This set is closed 

under application, because: 

u(a)(v(a)) = S(u)(v)(a), 

and S(u)(v) is r.e. if both u and v are. Note that it also contains 

the element G; hence, as a subalgebra, it is generated by a and G. 

Let A be any finitely generated subalgebra with generators 

' a '  ))(G) ao,a1; ' ... ,a'n_1 . . . . .  Consider the element a = cond(<a~,al, ' n-1 

As in the proof of 3.1, a generates A under application. It is then 

easy to see why A = Deg(a). 

Proof of 3.7. We first establish (16) and (17): 

Lo ~ oR = ~ x . L ( ~ ( < o , x > ) )  

= ~ x . L ( < l , u , x > )  

= ~ x . u ( x ) .  

o ~ o R  = ~ x . u ( v ( < o , x ) ) )  

: ~ x . ~ ( ( 1 , v , x ) )  

= ~x .u - - - ( - ( -~ ( x )  

= u ( v ) .  

Now starting with any u E RE, we write u = T, where ~ is formed from 

G by application alone. By (17), we can write ~ in terms of G and R 

using only o. That is,~ belongs to a special subsemigroup. In view 

of (16), we find that hx.u(x) belongs to that generated by R, L and 

G. But 

RE n FUN : { X x . ~ ( x ) l .  ~ RE}, 

and so the theorem is proved. 

For Section 4, The notion of a continuous lattice is due to Scott (1970/? 

and we shall not review all the facts here. One special feature of these 

lattices is that the lattice operations of meet andjoin (TI and U) are 

continuous (that is, commute with directed sups). As topological spaces, 

they can be characterized as those To-spaces satisfying the Extension 

Theorem (which we proved for p~ in 1.5). 

Proof of 4.1. Consider a continuous function a, and let 

A = {xix=a(x)}. By the Fixed-Point Theorem 1.4 we know that A is non- 

empty and that it has a least element under c. Certainly A is partially �9 

ordered by ~; further~A is closed under directed unions but not under 
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arbitrary unions. That is, A is not a complete sublattice of p~ with 

regard to the lattice operations of p~, but it could be a complete 

lattice on its own - if we can show sups exist. Thus, let S a A be an 

arbitrary subset of A. By the Fixed-Point Theorem, find the least 

solution to the equation: 

y = O{xlx~S} u a ( y )  

C l e a r l y  x ~ y f o r  a l l  x e S;  a n d  s o  x = a ( x )  ~ a ( y ) ,  f o r  a l l  x e S. 

T h i s  m e a n s  t h a t  y = a ( y ) , a n d  t h u s  y c A. By c o n s t r u c t i o n ,  t h e n ,  y i s  

an u p p e r  b o u n d  t o  t h e  e l e m e n t s  o f  $ .  S u p p o s e  z �9 A i s  a n o t h e r  u p p e r  

b o u n d  f o r  S�9 I t  w i l l  a l s o  s a t i s f y  t h e  a b o v e  e q u a t i o n ;  t h u s  y ~ z ,  a n d  

s o  y i s  t h e  l e a s t  u p p e r  b o u n d .  A p a r t i a l l y  o r d e r e d  s e t  w i t h  s u p s  a l s o  

has infs, as is well known, and is a complete lattice. 

Suppose that a is a retract. We can easily show that the 

fixed-point set A (with the relative topology from p~) satisfies the 

Extension Theorem. For assume f : X § A is continuous, and X ! Y as a 

subspace. Now we can also regard f : X + P~ as continuous because A is 

a subspace of p~. By l.S there is an extension to a continuous 

: W + p~. But then ao~ : W + A is the continuous function we wa~t 

for A, and the proof is complete. 

The Space of Retracts. Let us define: 

RET ~ {aJa=aoa} ,  

the set of all retracts, which is a complete lattice in view of 4.1. 

It will be proved to be not a retract itself by showing it is not a 

continuous lattice; in fact, the meet operation on RET is not con- 

tinuous on RET. 

The proof was kindly communicated by Y. L. Ershov and rests on 

distinguishing some extreme cases of retracts. Call a retract a 

nonextensive if for all nonempty finite sets x we have x ~ a(x). Call 

a retract b finite if all its values are finite (i.e. b(T) is finite). 

If a ~S nonextenskve and b is finite, then Brshov notes that they are 

"orthogonal" in RET in the sense that c = a ~ b = z. The reason is that, 

since c c b, it is finite; but c a a, too, so c(x) c a(x) for all x. 

Because c is a retract, we have c(x) = c(c(x)) ~ a(c(x)). As c(x) is 

finite and a is nonextensive, it follows that c(x) = • for all x. 

This orthogonality is unfortunate, because consider the finite 

retracts b = ~x.e We have here a directed set of retracts where 
n n 

U{bn[ne~} = hx.l=l. If N were continuous, it would follow that for 

nonextensive a: 

a = a R T = a N U { b n l n � 9  = U { a N b n i n � 9  = •  
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showing that there are no nontrivial such a. But this is not so. 

Let << be a strict linear ordering of ~ in the order type of 

the rational numbers. Define: 

a(x) = {mI3nEx. m << n}. 

We see at once that a is continuous; and, because << is transitive and 

dense, a is a retract. Since << is irreflexive, it is the case for 

finite nonempty sets x that ma~ (x) ~ a(x); hence, a is nonextensive. 

As a(~) = T, we find a ~ • The proof is complete. 

Note that there are many transitive, dense, irreflexive relations 

on ~, so there are many nonextensive retracts. These retracts~like a 

above, are distributive. A nondistributive example is: 

a' = {mI3n, n'~x.n ~ m ~ n'} 

Many other examples are possible. 

Proof of 4.2. The relation ~ is by the definition of retract 

reflexive on RET; it is also obviously antisymmetric. The transit 

goes like this: suppose a ~ b ~ c, then 

a = aob = aoboc = aoc. 

Similarly, a = coa. Note, by the way, that a ~ b implies that the range 

of a is included in that of b; but that the relationship a c b does 

not imply this fact. The relationship a ~ b, however, is stronger than 

inclusion of ranges. 

Proofs of 4.3 - 4.5. We will not give full details as all the 

parts of these theorems are dkrect calculations. Consider by way of 

example 4.3.(i). We find: 

(a~b) o (a~b) = ~u.b o (bouoa) o a 

=~u. b o u ? a  

= a ~ b, 

provided that a and b are retracts. A very similar computation would 

verify part (iv), if one writes out the composition: 

(ao+b') o (f~f') o (bo§ 

and uses the equations: 

f = bofoa and f' = b'of'oa' 

The main point of the proof of 4.6 has already been given in 

the text. 

For Sections 5 - 7. Sufficient hints for proofs have been given in 

the text. 
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The author regrets that, due to unforeseen circumstances, it was 

impossible to include the bibliography in this version. The 

editors felt, however, that the loss would have been much greater 

had the paper itself been omitted from the volume. 
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