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Preface

Land use and land cover (LULC) is a core information layer for a variety of

scientific activities and administrative tasks (e.g. hydrological modeling, climate

models, land use planning). In the last two decades, land use cover change (LUCC)

became an additional irreplaceable observation feature not only within Europe but

on a global context. LULC mapping products constitute mandatory baseline

datasets, which are required over large areas in different levels of detail and shall

be provided in a homogeneous and reliable way. To this end, space- and air-borne

remote sensing techniques coupled with field information are gaining ground

against large-scale statistical surveys based on in situ observations.

Europe has a long heritage on land use cover mapping activities. CORINE land

cover currently experiences its fourth update, as part of the GIO land (GMES/

Copernicus Initial Operations Land) project, with an intended update every 5 years.

Under the umbrella of the Copernicus Program of the European Space Agency and

the European Commission, a Fast-Track-Service on Land with regular European-

wide coverage and updates is anticipated. It forms the base for subsequent so-called

nationally funded downstream services.

The aim of the proposed book is to synthesize recent and current activities on

land cover mapping in Europe and from Europe. It shall provide an overview on

activities and projects covering large-scale mapping from an operational point of

view (state-of-the-practice) and state-of-the-art analysis techniques from the scien-

tific point of view. It is complemented by additional review papers and best-practice

examples covering various specific aspects of LULC as e.g. degradation, defores-

tation or nature conservation, but also gives perspectives of data use and integration

such as the integration into LULC modeling.

The editors are aware that due to the multitude of LULC and LUCC studies on

local, national and European level – performed and initiated from science, industry,

and public administration – this book can only cover a subset of contemporary

observations and activities, as an indication of the pulse of science, applications,
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and perspectives in its era. An equivalent multifold thematic compilation

on Remote Sensing advancements in LULC and LUCCmapping is not yet available

for Europe. The editors wish to raise awareness, discussion points, and set chal-

lenges, indicating the pace of progress along with dead-ends and bottlenecks.

Please, enjoy reading.

Thessaloniki, Greece Ioannis Manakos

Erlangen, Germany Matthias Braun
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Framework Conditions



Chapter 1

Remote Sensing in Support

of the Geo-information in Europe

Ioannis Manakos and Samantha Lavender

1.1 How Policy Feeds into the Development

of Information Services

The primary goal of European States’ policies is the preservation and, wherever

possible, improvement of the citizens’ quality of life. However, challenges remain

in relation to the conservation of natural resources, reduction of risks and threats,

sustainability of urban and rural development and resource security including food

and water. The human/natural environment interaction needs to be managed in

4 dimensions (4D), 3D spatial and temporal, which requires an underpinning

Information Service including a system to assimilate data and model scenarios.

The Millennium Ecosystem Assessment (Hassan et al. 2005) has paved the way by

assessing the consequences of ecosystem change for human well-being (security,

resources needed for a good life, health, and good social relations leading to

freedom of choice and action) leading to the definition of ecosystem services

(supporting, provisioning, regulating, and cultural ones). Direct drivers include:

changes in local Land Use & Land Cover (LULC); species introduction or removal;

technological adaptation and use; consumption of resources; climate change; var-

ious natural, physical, and biological drivers besides climate change. Indirect

drivers would include: demographics; economics; socio-political; Science & Tech-

nology; cultural & religious. The Condition and Trends Working Group found that

over the past 50 years, humans have changed ecosystems more rapidly and exten-

sively than in any comparable period of time in human history; largely to meet

rapidly growing demands for food, fresh water, timber, fibre and fuel.
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Strategic areas of intervention are recognized by the European Environmental

Agency (EEA) (Dufourmont 2011), with topics being categorised as:

– Environmental: such as air quality, air pollutant emissions, biodiversity, green-

house gas emissions and freshwater availability and condition.

– Cross-Cutting: such as climate change impacts, vulnerability and adaptation of

ecosystems, environment and health, maritime issues, sustainable consumption

including production of waste, land use, agriculture, forestry, energy and

transport.

– Integrated Environmental Assessment: such as integrated environmental

assessment, regional and global assessment, decision support systems, econom-

ics and strategic design.

– Information Services and Communication: such as shared environmental

information systems and communications.

European Union (EU) policies are driven by the aforementioned considerations;

being supported and iteratively improved through the results of directed research

undertaken according to EU’s funding frameworks. Ultimately, the aim is to

operationalize the research results, through information services, in addition to

dissemination and awareness raising campaigns. Feedback from beneficiaries and

end users across the Member States is sought, which feeds back into policy and

there-by closes the innovation circle new funding calls are opened.

Supporters of the development and implementation of Europe’s policy in terms

of geospatial data acquisition, processing and distribution include the EEA, Euro-

pean Space Agency (ESA), Copernicus Programme (formerly called GMES, an

acronym for Global Monitoring for Environment and Security), and networks of

excellence including commercial and scientific associations acting at both National

and European levels. European networks include the European Association of

Remote Sensing Companies (EARSC), European Association of Remote Sensing

Laboratories (EARSeL), European environment and information network

(EIONET) and EURISY. These networks have complimentary and overlapping

missions with activities related to:

(a) Space infrastructure development which supports core services that address

strategic areas of intervention.

(b) Methodological advancement that includes the ability to standardized informa-

tion and provides it in near real time (NRT).

(c) Definition and expansion of the downstream services to create value added

(VA) products for the end users, including sophisticated products with a simple

user interface for everyday life.

(d) Dissemination and promotion of data, information and techniques.

(e) Training and capacity building.

4 I. Manakos and S. Lavender



1.2 Current Status and Challenges

Internationally, initiatives are increasingly being taken by agencies acting at a

national, regional, and continental or global level in an effort to establish a

benchmark for assessing LULC changes. However, it’s important to quantify the

reliability of the information received, and to enhance the potential of space

applications by improving hardware and software technology in support of new

scientific discoveries and ultimately end user requirements; the aim being the

provision of the most relevant information in a form that is of use to decision and

policy makers.

During the last decade, the EEA and ESA through Copernicus and wider

activities have provided many hundreds of millions of Euros of funding to support

the development of science leading to operational applications. This has included

the geoland, geoland2, and BOSS4GMES series of projects that provided a proto-

type land core service (http://land.copernicus.eu/) that lead into the GMES Initial

Operation (GIO) contract for Europe (EEA 2011). The prototype marine core

service is currently the MyOcean2 7th Framework Programme (FP7) project,

which provides a wide range of temporal datasets including: monitoring

(encompassing NRT), multi-year, time invariant and forecast. The parameters are

both physical (e.g. salinity, sea level, temperature and sea ice thickness) and

biological (e.g. optical characteristics and phytoplankton biomass) in nature.

MACC-II – Monitoring Atmospheric Composition and Climate – is FP7 project

currently delivering regional and global pre-operational atmosphere services with

recent (historical) data, present conditions and forecasts including air quality,

climate forcing, stratospheric ozone, UV radiation and solar-energy resources. In

February 2013 the EU Council agreed to mobilize around €3.8Bn for Copernicus

through the Multiannual Financial Framework agreement (2014–2020), which the

European Parliament approved in July 2013, with the ocean and atmospheric

services due to become operational in 2014.

Products from the Copernicus services and projects rely on the provision of

satellite imagery from contributing missions, with the first mission called Sentinel-

1 (a polar-orbiting satellite carrying a C-band Synthetic Aperture Radar, SAR) due

for launch in 2014; agricultural applications are expected to benefit greatly from

Sentinel-1’s all-weather images. In July 2013 it was agreed that data and informa-

tion produced in the framework of the Copernicus programme should be made

available to the users on a full, open and free-of-charge basis, in order to promote

their use and sharing, and to strengthen Earth Observation (EO) markets in Europe;

on the assumption that any harm to private-sector satellite operators will be

outweighed by the expected growth in value-added services derived from the

data. A challenge for users will be ‘big data’ as it’s expected that the Sentinel

missions will provide at least tenfold increases in data volume compared to Envisat

comparable instruments e.g. the average Sentinel-1 scenario will produce over

500 Gb per day of NRT data.

1 Remote Sensing in Support of the Geo-information in Europe 5
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Asian and American Organizations, acting together under common initiatives

such as the Group on Earth Observation (GEO) and the International Society of

Digital Earth (ISDE) or UNESCO Natural and Cultural Heritage Programmes, have

been seeking partnerships and solutions in an effort to generate LULC products

with the highest possible precision (i.e. GEO 2011). Questions arising in LULC

Special Interest Groups (SIGs), such as those of EARSeL and the International

Society of Photogrammetry and Remote Sensing (ISPRS), are always focused

around the same keywords: methodology improvement; efficient homogenization

of the production; precision of information retrieved; regional model adaptation and

adjustment whilst having standardized data assessment procedures. In addition, the

International User Community is setting (with scientific support) its input require-

ments so that a series of satellites can be launched (Copernicus Sentinel missions

plus recently launched European PROBA-V and Chinese ZY-3 among others) to

guarantee a continuation of data provision.

Within the aforementioned framework, one may notice from the literature and

ones’ own experience that systematically acquired ground truth data is missing,

whilst EO datasets still suffer from mistrust in terms of both reliability and applica-

bility. The EEA supports the in-situ activity within Copernicus, but focused on

infrastructure metadata generation rather than directly supporting the data collection

itself that remains the responsibility of National agencies. There are also important

debates in the scientific community about the quantification of accuracy assessment

rules and (for land products in particular) the influencing factors of topography,

projection systems, and rule set definition for LULC and change detection mapping.

The final outcome of all these discussions is that enough data and methodologies

exist, but more coordination and homogenization is needed for the ultimate goal of

end user acceptance to be reached. The INSPIRE Directive (INSPIRE 2007) supports

this endeavour and Europe’s networks are closely following.

Therefore, remote sensing of land surfaces faces the following challenges driven

by recent research and technological developments (Manakos 2013):

(a) Image Classification: very high resolution (VHR) and hyperspectral sensors

require the development of a new generation of classification techniques. Two

different operational scenarios are suggested: (i) definition of training sets by

interactive labelling of unlabelled samples carried out by photointerpretation,

and (ii) definition of training set by using active learning techniques to drive

in-situ data collection campaigns. Therefore, new strategies that integrate semi-

supervised learning with active learning need to be investigated (Bruzzone and

Marconcini 2009), as well as techniques that leverage on previous existing

knowledge and datasets.

(b) Change Detection (CD) Analysis: from the simple post classification compar-

isons undertaken in the 1970s up to the complex algebra transformations and

classifications of the 2000s (e.g. Texture-based Algebra, Robust Change Vector

Analysis (CVA), Transformation Kernel Principal Component Analysis (PCA),

Fast Fourier Transform, Object-based Post-Classification Comparison (PCC),

Multisource PCC Support Vector Machines (SVMs)) challenges remain, such

6 I. Manakos and S. Lavender



as the: pre-processing issues (geometry & radiometry); influence of the CD

algorithm; segmentation approach and threshold selection; accuracy of the change

mask; influence of number and type of sensors; influence of surface features (also

in 3D). Further investigation is needed if optimal approaches are going to be

defined for operational users.

(c) Data Fusion from optical, radar, and thermal infrared sensors, operating

at different spatial and temporal scales, and from multifaceted products:

information retrieval potential relies on the synergy and complementarity of

combining remotely sensed data from multiple sources; especially when the

radiation interacts with the surface in very different ways. However, the fusion

of such data remains a challenge; since the launch of Envisat the community has

discussed the synergistic usage of the sensors on-board, but the number of

scientific publications addressing this remains low as considerable effort has

been required to understand and improve the data coming from individual sensors.

In addition, the increased availability of processed image analysis products as

continuous data sets for various land use/land cover bio-geophysical parameters

(e.g. biomass, vegetation composition, tree heights, percentage of tree/shrub

cover) rather than fixed classes requires the further development of legends and

classification schemes that allow for their interpretation and fusion in the data-,

and knowledge-base for an area. Overall, the primary objective remains the same

i.e. a performance improvement in capturing spatio-temporal variation of surface

elements.

(d) Accuracy Assessment: Ground data quality is of major importance when

estimating the accuracy of LULC extent and change detection. Quality impacts

vary with the nature of errors and often with prevalence. Challenges may be

identified in terms of the: genuine difficulty in discriminating classes (defini-

tion) i.e. biological variability; technical problems such as misregistration and

pre-processing; use of inappropriate reference targets i.e. leading to spatial

autocorrelation; use of misleading measures of accuracy; use of a biased

approach to accuracy assessment. In addition, one has to recognize that sources

of error and uncertainty originate from error in the ground data (Foody 2010),

which is often not assessed. Recently there is an effort to find ways to utilize the

plethora of available increasing amount of in-situ images from citizen sensors

acquired for arbitrary reasons to increase the training capacity of the classifier,

and accuracy of the derived products (e.g. ‘Mapping and the Citizen Sensor’

COST Action TD1202).

In addition, the challenges facing Copernicus and other multi-faceted

programmes such as Galileo is conveying their importance (and ultimately value

for money) to the citizens so that continued underpinning financial support is

available; in July 2013 Copernicus received the European Parliament’s approval

for its inclusion in the Multiannual Financial Framework (MFF) budget for 2014–

2020 with provision of €3 786 million (at 2011 economic conditions). This

approval follows several months of difficult negotiations, and so is a significant

political milestone. The Committee of the Regions (CoR) is the voice of Europe’s

1 Remote Sensing in Support of the Geo-information in Europe 7



local and region authorities that is ready to assume the role of intermediary and

coordinator between themselves and the relevant bodies involved in Copernicus

(Stahl 2012).

1.3 Future Trends and Conclusions

Based on more than four decades of innovation, developments and achievements in

EO technologies, methodologies and applications, Europe is proceeding from the

islands of pure research towards multi-modal and multi–source data assessment

including processes automation, data harmonization, web downstream service

development and tailor made solutions (Manakos 2013). Discussions within the

community are focusing on the importance of Quality Assurance e.g. the Quality

Assurance framework for Earth Observation (QA4EO, http://qa4eo.org/) that was

established and endorsed by the Committee on Earth Observation Satellites (CEOS)

as a direct response to a call from GEO and recent discussions co-ordinated by

EARSC/ESA (April 2013) on a certification scheme for the EO Industry.

Environmental and agricultural applications include LULC change, disaster

response, detailed mapping for monitoring purposes and 3D mapping with expec-

tations directed towards the combination of observations from diverse instruments

(Radars, Lidars, radiometers, optical sensors, etc.) in intelligent ways (Freeman

2012). There are high expectations for data acquisition and abundance from the

upcoming fleet of Sentinel missions (the first three are expected to follow within

12 months of the MFF budget approval), which together with complimentary

mission (including TerraSAR-X, Pleiades, RapidEye, DMCii, the US JPSS mis-

sions and Japanese GCOM series) aim to supply the demand from and for most EO

applications.

Completed and on-going projects have paved the way towards GMES Initial

Operations and Pan-European coverage plus been promoting capacity building and

enhancing member states’ engagement. With the last call for Space related pro-

posals under FP7 having closed (November 2012), the EU agency expects new

projects to establish a basis for the development of innovative products, applica-

tions with improved performance and services that combine existing and upcoming

sensor data with in-situ sources in a novel manner. In return, results need to feed

into end user decision support system and EO methodological/technological devel-

opments should take full advantage of the next generation of satellite missions.

Copyright issues are also a “hot” debate topic, addressed within the new EU

Framework Programme for Research and Innovation (Horizon 2020). Sawyer and

de Vries (2012) suggest that data from the upcoming Sentinel missions should be

regarded as Public Sector Information, increasing their value for money. The report

notes “GMES may well be Europe’s goose capable of laying golden eggs. But how

can we ensure a steady sustainable business model: do we take one egg (direct

returns from sales of data) or do we allow the egg to hatch, hoping more golden-

egg-laying geese will follow?” The free and open data policy for Sentinel data is

8 I. Manakos and S. Lavender
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expected to foster data reuse. From other missions (e.g. change in the U.S. Landsat

data policy) there is already evidence that economic benefits are magnified when

the data are made available at low or marginal cost so that barriers to entry are

minimised; the entire Landsat archive became freely available in December 2008

and since then downloads have been increasing exponentially with one million

downloads achieved in August 2009 and 12 million in July 2013.

Within the content of scientific research, one must look at the latest develop-

ments and advances of human activities to understand what will be the future

requests from the environmental and agricultural remote sensing communities.

Today, the land is covered (in general) by artificially sealed and urban areas, arable

and permanent crops, forests and wetlands, semi-natural and altered landscapes,

open and bare soils, and pastures. In the future we expect to see increasing urban

sprawl, bio-fuel crops, food crops, soil degradation, rehabilitation and reforestation

activities. The availability of water resources is increasingly worrying to both the

scientific community and society, and in addition, climate change impacts shall be

identified, confronted and mitigated. Biodiversity, food security, natural resource

depletion, deforestation, soil degradation, disaster management, and urban sprawl

are among the most important keywords for future EO applications.

Still, whatever the developments will be, the main issues remain as:

– Engagement of Member States: Local and Regional governments, e.g. through

CoR, need to remain interested and aware of the potential of remote sensing (and

Copernicus specifically) for supporting civil security and enhanced quality of

life to their citizens. In addition, they need to promote the usage of the new

advancements into everyday life once value is proven.

– Research Direction, its documentation, and promotion to the wider public of

actors and policy implementers. It’s expected that funding will be increased for

the Operational Program of the EU and reduced for the research and develop-

ment sector.

– Standardization, Harmonization and Usability: There is an urge and strategy

to produce thematic layer products in a standardized and homogenized way, for

which quality and credibility remain stable across wider geographical areas so

that administrative and projects’ implementation borders do not hinder joined-up

utilization.
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Chapter 2

Global Land Cover Mapping: Current

Status and Future Trends

Brice Mora, Nandin-Erdene Tsendbazar, Martin Herold, and Olivier Arino

2.1 Introduction

The observation of global-scale land cover (LC) is of importance to international

initiatives such as the United Nations Framework Convention on Climate Change

(UNFCCC) and Kyoto protocol, governments, and scientific communities in their

understanding and monitoring of the changes affecting the environment, and the

coordination of actions to mitigate and adapt to global change. As such, reliable and

consistent global LC (GLC) datasets are being sought. For instance, GLC datasets

are used as an input for many Global Circulation Models, Earth Systems Models

and Integrated Assessment Models used for global and regional climate simula-

tions, dynamic vegetation modelling, carbon (stock) modelling, ecosystem model-

ling, land surface modelling, and impact assessments (Hibbard et al. 2010; Herold

et al. 2011).

The selection of GLC datasets and their quality have a significant influence on

the outcomes of these models (Hibbard et al. 2010; Nakaegawa 2011). However,

the existing GLC datasets are often selected without considering their quality and

suitability for a specific application (Verburg et al. 2011). This is due, notably, to

the lack of interoperability and inter-comparability between the datasets (Jung

et al. 2006; Herold et al. 2008). Uncertainties of LC datasets also result in consid-

erable differences in modelling outcomes (Hibbard et al. 2010; Nakaegawa 2011;

Verburg et al. 2011). For instance, Benitez et al. (2004) have noted that the choice

of GLC dataset influenced the model results by as much as 45 %. Moreover, lower
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quality LC datasets (e.g., <80 % overall accuracy) have strong effects on

atmospheric simulations (Ge et al. 2007; Sertel et al. 2010). The need for GLC

datasets with better quality and increased interoperability and inter-comparability

has also been highlighted by GLC dataset user surveys for GlobCover maps and the

LC Climate Change Initiative (LC-CCI) (Herold et al. 2011; Verburg et al. 2011).

In response to this need, international bodies such as Group on Earth Observa-

tion (GEO) and Global Climate Observation System (GCOS) were initiated to

coordinate global cooperation to advocate and foster the establishment of an

operational and continuous global-scale LC observing system (GCOS 2012; GEO

2012). Earth observation (EO) communities in Europe have been involved in the

developments in GLC observation. For example, the European Commission Joint

Research Centre, the Université Catholique de Louvain (UCL), Wageningen Uni-

versity and other partners are actively working on the production of GLCmaps such

as GLC 2000 (Bartholomé and Belward 2005), GlobCover (Arino et al. 2007), and

LC-CCI (Defourny et al. 2011a, b, see Sect. 2.4 in this book) and on the integration,

harmonization and validation of GLC datasets via their participation to other

international initiatives such as the Global Observation of Forest Cover and Land

Dynamics (GOFC-GOLD) initiative, and GEO (GEO 2012).

This chapter reviews the current status in GLC mapping and foresees upcoming

developments within the field. The existing GLC maps and their characteristics are

briefly summarized in Sect. 2.2.1. Section 2.2.2 highlights current issues that need

to be overcome in GLC mapping initiatives. Sections 2.3 and 2.4 discuss upcoming

solutions and recommendations, respectively.

2.2 Status and Improvements for Land Cover Maps

2.2.1 Existing Land Cover Maps

Advancements in remote sensing technologies during the last two decades have

enabled the production of several GLC datasets supporting their extensive use in

scientific research on modelling notably. The first attempts to map GLC using

remote sensing produced 8 km and 1� of latitude coarse spatial resolution

maps for years 1984 and 1987 respectively (DeFries and Townshend 1994;

DeFries et al. 1998). Following these efforts, International Geosphere-Biosphere

Programme Data and Information System’s GLC map (IGBP – DISCover) and

University of Maryland (UMD) datasets, the first 1 km resolution GLC datasets,

were produced for the 1992–1993 period (Hansen et al. 2000; Loveland et al. 2000).

Moderate-resolution Imaging Spectroradiometer (MODIS), GLC2000, and GLC by

National Mapping Organizations (GLCNMO) products were also developed after-

wards with data acquired around 2000, with the same spatial resolution (1 km)

(Friedl et al. 2002; Bartholomé and Belward 2005; Tateishi et al. 2011). Moreover,

300 m and 500 m spatial resolution GlobCover and MODIS GLC maps were

produced with the recent development of higher resolution time series satellite

data for different periods (Table 2.1) (Arino et al. 2007; Friedl et al. 2010).

12 B. Mora et al.
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Mid to coarse spatial resolution sensors such as AVHRR, SPOT-VEG, MODIS

and MERIS are the main source for the existing GLC datasets. As shown by

Chander et al. (2010) calibration of top of atmosphere reflectance EO data has

improved over the recent years. GLC mapping initiatives benefit from these

advances notably for LC change analysis. Different categories of classification

algorithms (unsupervised/supervised, parametric/non-parametric) were applied to

characterize GLC using IGBP and LCCS classification schemes (Loveland

et al. 2000; Di Gregorio and Jansen 2005). GLC maps have been validated using

varying approaches that comprised different reference datasets, sample selection

scheme, sample unit size, minimum mapping unit, and reference data classification

procedure etc. (Scepan et al. 1999; Hansen and Reed 2000; Mayaux et al. 2006;

Friedl et al. 2010; Bontemps et al. 2011; Tateishi et al. 2011).

2.2.2 What Needs to Be Improved

User requirements surveys for GlobCover and the upcoming LC-CCI GLC datasets

were conducted to address the needs of general and key users (e.g. the climate

modelling community) (Herold et al. 2011). As highlighted in Table 2.2, the users

of existing GLC maps are diverse, coming from different thematic fields and

different organization types. While almost half of the users are coming from a

university/research background, there is also significant use in governmental,

non-governmental and commercial sectors across several disciplines.

The user survey for observing LC as Essential Climate Variable (ECV) has

highlighted that LC remains a key dataset that serves as a base for many land

surface parameters and associated temporal variability (Bontemps et al. 2011). The

users stressed some requirements in terms of accuracy, stability, spatial resolution,

and thematic content that are not met by the GLC datasets currently available

(Bontemps et al. 2012; Herold et al. 2011). In addition, further investigation and

Table 2.2 User distribution for the GLOBCOVER map by thematic field and organization type

Carto
graphy (%)

Climate/
meteorology/

hydrology
(%)

Information
technology/

GIS (%)

Natural
resources

(Agriculture,
forestry,

biodiversity)
(%)

Remote
sensing

(%)
Total (%)

Commercial sector 2.69 2.42 9.41 3.48 2.96 20.97
Government
organization

1.88 1.88 2.96 3.50 3.76 13.98

Non-government
organization

2.69 2.96 4.30 6.45 0.81 17.20

University/
Research

3.23 8.87 10.22 13.98 11.56 47.85

10.48 16.13 26.88 27.42 19.09 100.00

Source: GLOBCOVER user survey, N ¼ 372, Herold et al. (2011)
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advancements on consistency issues across GLC datasets and validation efforts for

GLC monitoring are also emphasized by the mapping communities (Herold

et al. 2008; Olofsson et al. 2012).

Table 2.1 shows the existing GLC maps have around 70 % (varying from 67 to

81 %) overall area-weighted correspondence with reference datasets. However,

GLC map-like users have stressed that such datasets should have a maximum error

of 5–15 % as a target, or at least higher than current quality, to be further used in

modelling applications (Herold et al. 2011). Thus, there is a clear need to improve

the current quality of GLC maps. Moreover, the relative importance of different

class accuracies varies significantly depending on the users. Commonly, evergreen

broadleaf trees, snow/ice, barren land classes show high accuracy (Giri et al. 2005;

McCallum et al. 2006). On the other hand, general inability of GLC mapping

approaches to clearly discriminate mixed trees, shrubs, and herbaceous vegetation

due to low spectral separability has been noted. More attention is needed to improve

the accuracy of these classes and the overall quality of the maps (Herold et al. 2008;

Fritz et al. 2011).

Consistency and comparability of different GLC maps needs to be further

analysed for a better understanding of their suitability and limitations for specific

applications. Currently, the use of differing methodological approaches (e.g., clas-

sification scheme, data sources and algorithms) for GLC map production raises

consistency issues and makes comparisons difficult. Consistency and comparability

studies are commonly implemented using per pixel spatial (dis)agreement analysis

(Hansen and Reed 2000; Göhmann et al. 2009; Fritz et al. 2011). These analyses

show good overall agreement on spatial pattern, but limited agreement for some

classes in specific areas (Giri et al. 2005; Herold et al. 2008). Disagreement is

mostly observed in transition zones where a mixture of main vegetation compo-

nents like shrub, tree grass (Hansen and Reed 2000; Herold et al. 2008). Unfortu-

nately, LC change primarily occurs in transition zones, which makes it difficult to

observe from differences between GLC datasets (Herold et al. 2008). Temporal

instability of multi-year GLC products is also regarded as a major challenge in GLC

change observations (Herold et al 2012; Bontemps et al 2012). This situation calls

for strengthened international cooperation between GLC mapping communities to

agree on a common set of harmonized GLC mapping procedures.

As indicated, landscape heterogeneity is one main driver of inconsistencies

between the LC datasets, and it is identified as a major challenge for GLC mapping

(McCallum et al. 2006; Herold et al. 2008; Wu et al. 2008). In addition, the use of

coarse spatial resolution datasets (�300 m) induces the presence of several LC

types in one pixel especially in transition zones. Current spatial resolution of GLC

maps can be sufficient for some users such as climate modelling community.

However, Landsat-type fine resolution datasets are also required for some model

parameters and for description of change (Herold et al. 2011). Thus, the use of fine

resolution satellite dataset will not only increase the usability of GLC datasets, but

also help to ensure higher quality of LC characterization in heterogeneous and

transition zones. Nevertheless, data availability of such fine resolution satellite data

16 B. Mora et al.



with high temporal frequency, particularly in consistent cloud covered areas is the

biggest constrain for this.

Several statistically rigorous assessments of GLC maps were done using

independent validation datasets (Scepan et al. 1999; Herold et al. 2008; Bontemps

et al. 2011). As GLC maps are used for a large number of applications, user-

oriented accuracy reporting can help understanding the uncertainty and limitations

of LC datasets for specific applications (DeFries and Los 1999). Such accuracy

reporting from GLC map user perspectives are limited (DeFries and Los 1999;

Mayaux et al. 2006). More work is needed to improve flexibility of user oriented

accuracy assessment methods as current overall accuracy and class-specific

methods cannot provide comprehensive information addressing varying specific

end-user needs. Validation datasets used for the GLC map quality assessment also

calls for an international cooperation and requires significant effort to reach high-

quality reference datasets. Thus, a comprehensive approach making best use of

existing resources to develop an operational integrated and flexible reference

dataset is sought (Herold et al. 2011). However, varying methodical approaches

(e.g. sampling design, sample unit, legends, and classification approaches) applied

for current reference datasets makes it a challenge (Olofsson et al. 2012).

An operational GLC observing system must provide LC change estimates for a

comprehensive delivery of societal benefits. Coarse-resolution LC change obser-

vation provides useful information on long-term trends, inter-annual versus intra-

annual dynamics, and the indication of large and cumulative land change, and hot

spots; however, the reliability of this information is often questioned particularly in

transitional and heterogeneous areas. On the other hand, fine-scale (i.e. Landsat-

type) satellite data are currently the most suitable data sources for observing a large

array of LC/land use change processes with confidence, but only a few examples

have demonstrated operational feasibility (Kennedy et al. 2010; Goodwin

et al. 2013). Thus, a combined approach using coarse and fine scale satellite

observations, and in-situ observations seems the most suitable avenue for global

and regional scale LC change studies (Bontemps et al. 2012). The need for such

operational approaches is currently emphasized in starting or strengthening national

forest monitoring activities in many developing countries to build capacity for a

global participation in the Post-2012 Agreement on Climate Change (GLCA 2009).

Progress in monitoring forest loss using the combination of coarse and fine scale

satellite images at global level can be observed now (Hansen et al. 2010). Success-

ful implementation and technical credibility of a GLC change assessment require

agreement, dedication, collaboration and coordination among countries and this,

from the supply of consistent observation data to the delivery of harmonized LC

products.

2 Global Land Cover Mapping: Current Status and Future Trends 17



2.3 Moving Forward

The development of new sensors is aimed to ensure continuity and increased

frequency for consistent and continuous LC observations. Furthermore the neces-

sity to provide supplementary and new sources of information has been urged since

the failure of the Landsat-5 platform (Fall 2011) and the failure of ENVISAT

MERIS mission (April 2012). The concomitant development of improved data

processing methods, as well as the establishment of standardized or harmonized

data processing procedures, demonstrates an accelerating trend towards the pro-

duction of sound, and consistent global products. We present the main national and

multi-national initiatives currently being led to overcome the aforementioned issues

and meet the needs expressed by the users of LC information. We present also the

emerging trends in terms of services, tools, applications, and the new users associ-

ated to GLC products.

2.3.1 Satellite Missions Allow Moving to Inclusion
of Multiple Sensors, Finer Scale and Longer
Time-Series Products

Looking forward from the progress of the last four decades in satellite observation

the European Global Monitoring for Environment and Security (GMES) (now

Copernicus) programme is aimed at providing information on Earth and its climate

to better understand the role of human activities on the changes being observed at

the global scale. The GMES programme provides a range of services among which

satellite, airborne, and in-situ data for EO (Aschbacher and Milagro-Pérez 2012).

As part of this programme, the launch of a series of EO Sentinel satellites is

scheduled for the coming years. The first series will include a Synthetic Aperture

RADAR (SAR) sensor (Sentinel-1), a high resolution optical sensor (Sentinel-2)

(Drusch et al. 2012), and a moderate spatial resolution (300 m) optical sensor, and

microwave sensors (Sentinel-3). Each of these satellite missions will encompass a

pair of satellites to improve revisit time period, geographical coverage and rapid

data dissemination (Berger et al. 2012). The launch of the first Sentinel-2 satellite is

currently scheduled for mid-2014. In addition to Copernicus programme, the

Pléiades constellation is another satellite constellation that is designed by France

and Italy under the Optical & Radar Federated EO (ORFEO) programme (Lamard

et al. 2008; CNES 2012). The satellites are designed to provide multi-spectral

optical images with a two meter spatial resolution. Commercial distribution of

images from Pléiades-1A is effective while images from the second satellite

(1B was launched in December 2012) will start during 2013. Furthermore, a

constellation of two new high-resolution (8 m for multi-spectral bands), optical

imaging satellites from the Système pour l’Observation de la Terre (SPOT) series is

also expected. First satellite (SPOT-6) was launched in September 2012 and launch
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of SPOT-7 is scheduled for 2014 (Astrium 2012). In the United States of America

(USA), the National Aeronautics and Space Administration (NASA) and the United

States Geological Survey (USGS) lead the Landsat Data Continuity Mission

(LDCM). As part of this initiative the Landsat-8 satellite was launched in February

2013. The new satellite provides images of similar characteristics compared to its

latest predecessor. First data is now available for download.

Existing EO systems combined with the scheduled arrival of new space-born

sensors, especially embedded in platform constellation will facilitate the mitigation

of atmospheric constraints inherent to the acquisition of optical images in tropical

and boreal areas. For instance a 5-day revisit time period is expected for a given

location when Landsat-8 and Sentinel-2 constellation satellites will be operational

and combined. Positive outcomes are also expected regarding global-scale change

detection monitoring with the generation of more complete time-series data. Build-

ing upon the existing archives of Landsat, MODIS, MERIS, AVHRR, and

ERS/ASAR data are instrumental for long-term consistency and continuity of

tracking land surface dynamics.

2.3.2 Novel Global Land Cover Products Are Being
Developed

A clear trend towards the use of satellite data of higher spatial resolution for GLC

analysis can be observed (Table 2.1). This dynamic is further reinforced by the

GLC mapping projects from scientists in China and the USA. A GLC mapping

project from Tsinghua University (Beijing) based on Landsat, Hun Jin (HJ), and

Beijing (BJ) satellite data aims to provide GLC map products with an emphasis on

water bodies, wetlands, and human settlements (Liao 2013; Chen 2012). Map

products should be finalised and made available by the end of 2013. A Landsat-

based GLC map product has been released (early 2013) by another team from

Tsinghua University (Gong et al. 2013). The product depicts Earth’s LC circa year

2010. While the first Chinese project relies on an automatic classification procedure

and significant manual checking and editing, the second project is based on

automatic classification procedures solely. In the USA, the NASA and USGS

support a 30-m spatial resolution GLC mapping project based on Landsat data

(n ’ 10,000) acquired around 2010 (Stone 2010; Lee-Ashley and Moody 2010).

These two GLC maps are expected to be released within the next 2 years and will

meet the recommended requirements for GLC products expressed in terms of

spatial resolution (Herold et al. 2009). For instance, Landsat-type data has been

proven to be efficient at providing sufficient information for LC and LC change

mapping at national scale with Minimum Mapping Units (MMU) comprised

between 1 and 5 ha (Herold et al. 2009). Global characterization of tree cover

using Landsat data is also recently released (Sexton et al. 2013; Townshend

et al. 2012).
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The European Space Agency (ESA) has initiated the Climate Change Initiative

(CCI), a programme for the monitoring of Essential Climate Variables (ECV)

(Sect. 2.4). Besides providing satellite data, data processing algorithms and

methods, the ESA CCI will also produce a suite of spatially explicit ECVs. LC is

one of the 14 terrestrial ECVs. ECV monitoring is to be conducted in 3 phases.

After consulting the scientific community and dressing the detailed list of require-

ments and specifications in phase 1, the systems were developed and first maps

were produced during Fall 2012 (phase 2). Phase 3 will consist in assessing the

trends of the generated products, optimizing model calibration and validation, and

quality assessment procedures, in close collaboration with the climate research

community (Food and Agriculture Organization 2007). Maps for three epochs

(2000, 2005, and 2010) will be released during fall 2013. Thus, the trend towards

deriving more accurate GLC products targeted at the need for specific user com-

munity is obvious and a logical development given that there is a large variety of

users whose needs cannot be all met by the current products.

To achieve the goal of producing sound and consistent GLC products, the data

acquisition, the processing chain, and the implementation of the mapping pro-

cedures to make the products available to the user community need to comply

with a series of standardized or harmonized practices that facilitate global-scale

coordination between the stakeholders. The establishment and acceptance of such

guidelines is an on-going process involving a range of institutions and persons

coming from universities, public research centres non-governmental organizations

(NGOs), private sector, and governments. These efforts need to include the option

to ingest data on land change in near-real time (Verbesselt et al. 2012).

2.3.3 International Coordination and Harmonization
Remain Vital

On-going international initiatives offer opportunities to improve relevance, accep-

tance, and approaches to operationalize and coordinate global and regional LC

mapping surveys. Efforts are currently made via four major thematic areas:

(a) standards for LC characterization, (b) standards methods for LC accuracy

assessment, (c) GLC observations and applications and (d) LC change monitoring

(Herold et al. 2012). Several initiatives that take lead on such efforts are summa-

rized below.

The Group on Earth Observation (GEO) is one of the most prominent scientific

and technical processes specifically concerned with EO sponsored by a partnership

of 88 governments and 64 international organizations (as of March 2012). The GEO

has recently recognized the importance of LC information to contribute to the nine

GEO societal benefits (see Sect. 2.3.7 in this chapter: citation to be fused later
with:) (GEOSS 2005). A specific GEO Task for GLC and LC change is aimed at

providing recommendations for the production of consistent GLC datasets and
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services. The current trend is to move forward the development of products of

higher spatial resolution (<50 m) and to emphasize the use of time-series products

to characterize LC change and its dynamics. Such LC products are meant to be

available to the user community through the Global Earth Observation System of

Systems (GEOSS) infrastructure. Following the GEO 2009–2011 Work Plan (GEO

2010), the 2012–2015 Work Plan is being developed by a range of international

bodies among which the GOFC-GOLD initiative (GEO 2011).

The GOFC-GOLD initiative is a panel of the Global Terrestrial Observing

System (GTOS) sponsored by the Food and Agriculture Organization (FAO), the

United Nations Educational, Scientific and Cultural Organization (UNESCO), the

World Meteorological Service (WMO), the International Council for Science

(ICSU), and the United Nations Environment Programme (UNEP). Specifically,

the GOFC-GOLD LC Project Office is a major international body funded by ESA

that contributes to the advancements in the four aforementioned thematic areas

(gofcgold.wur.nl). The GOFC-GOLD LC Office is currently engaged in (1) ensur-

ing continuity and consistency of observations, (2) promoting harmonization,

interoperability and synergy of LC products, (3) developing validation standards

and supporting their implementation, (4) improving adequacy and advocacy of land

information products, and (5) supporting capacity development. The GOFC-GOLD

LC Implementation Team (IT) has contributed to large series of international LC

programmes, such as working on the development of standard reports for the LC

and Biomass ECVs, the validation framework and implementation of GlobCover

products and doing comparative validation studies between GLC products (Herold

et al. 2008; Bontemps et al. 2011). The GOFC-GOLD LC-IT has taken lead roles in

the implementation of several GLC-related GEO tasks (GEO 2011). The GOFC-

GOLD LC Office and REDD + Working Group have played also a leading role in

the development and update of the Reducing Emissions from Deforestation and

forest Degradation (REDD+) Sourcebook (version 18 released in Fall 2012) in

which LC information remains crucial (gofcgold.wur.nl/redd). The Sourcebook

provides methods and procedures for monitoring and reporting anthropogenic

greenhouse gas emissions and removals associated with deforestation, gains and

losses of carbon stocks in remaining forests, and reforestation. Future updates of the

Sourcebook are expected regarding good practices on LC map accuracy assess-

ment. The subsequent presentation of international harmonization and standardiza-

tion initiatives for GLC mapping further highlights the active role of the GOFC-

GOLD LC Office in this field.

The UNFCCC and the International Panel on Climate Change (IPCC) among

other United Nations (UN) bodies support initiatives to implement systematic

observations of ECVs (IPCC 2006). There are currently 50 ECVs comprising LC

as one of them (GCOS 2010). Under the supervision of the GTOS, the report on the

LC ECV dresses the list of current data, products and capabilities for operational

GLC mapping (Sect. 2.4). A series of recommendations are also provided among

which to strengthen continuity and availability of data at different observation

scales, the production of a flexible and continuous reference data in support of

the calibration and validation of the models, the need for further international
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development and adoption of LC and LC change mapping standards, and a better

coordination of the efforts between the stakeholders.

The outcomes of the GlobCover user survey show a good match between user

requirements and the broader requirements from relevant international panels, e.g.,

those presented in the report on the LC ECV (Herold et al. 2009). The user groups

express a need for stable LC data, increased capacity for time-series analyses,

consistency among the model parameters, capacity to discriminate anthropogenic

vegetation from natural vegetation, and establish the history of disturbance. LC

products should also allow flexible use to serve at different scales and purposes. A

general need for transparent information on the processing steps and the quality of

LC products is expressed as well. Specifically, the availability of a multi-date

accuracy assessment system and the use of the LC Classification System (LCCS,

Di Gregorio and Jansen 2005) is advocated. The LCCS has been developed by FAO

and UNEP as a comprehensive and standardized classification system designed for

mapping purposes. The system is independent from the mapping scale and allows a

dynamic creation of classes without obliging the user to relate to a pre-defined list

of names by a dynamic combination of LC diagnostic attributes called classifiers.
The last version of the LCCS, i.e., the LCMetadata Language (LCML – LCCS v.3),

is proposed as a standard by the International Organization for Standardization

(ISO) under the reference ISO 19144–1. Complementary specifications are under

development under the reference WI 19144–2. Some GLC map products already

use the LCCS (see Table 2.1). The outcomes of the GlobCover user requirements

analysis were used as input for the product specification of the ESA LC-CCI in

addition to LC-CCI user survey (Herold et al. 2011).

2.3.4 GLC Validation Is Becoming Operational

The Land Product Validation sub-group of the Working Group (WG) on Calibra-

tion and Validation (Cal/Val) from the Committee on Earth Observation Satellites

(CEOS) aims to address the challenges associated with the validation of GLC

products (NASA 2012). Accordingly, the CEOS Cal/Val WG compiled a document

on recommended practices for validation of regional and GLC maps (Strahler

et al. 2006). Moreover, CEOS Cal/Val WG in collaboration with GOFC-GOLD

LC-IT initiated an operational GLC validation effort. This effort aims to develop a

“living” dataset of validation sites to be used for statistically rigorous validation of

GLC maps. Such dataset should have probability sampling scheme independent of

any specific LC map and support statistically rigorous accuracy estimation. Cur-

rently, a research group at Boston University is developing an independent LCCS-

compliant validation dataset consisting of 500 globally distributed sites for GLC

products (Fig. 2.1) (Olofsson et al. 2012). A suite of multi-spectral very high spatial

resolution (<1 m) satellite images is being acquired, segmented, classified, and

visually checked. The production of validation data at such spatial resolution

follows the trend observed for GLC products now being generated at higher spatial
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resolution (30 m). The GOFC-GOLD LC-IT is also working on the development of

an online information system to make these validation sites available to the

community along with a set of recommendations to guide the user to the most

appropriate dataset and usage (good practices). A beta version of the web portal has

been released (gofcgold.wur.nl/sites/gofcgold_refdataportal.php) and the platform

is expected to be operational in late 2013, hosting a dozen of reference datasets.

The ESA-CCI follows the reporting standards that are being developed under the

lead of the GTOS, the Global Climate Observing System (GCOS), and its panels.

The overall objective of the ESA initiative is to revisit the algorithms required to

generate the GLC maps, design and implement a system that can provide GLC

products derived from various EO sensors to the climate change community. In the

frame of the ESALC-CCI an independent product validation and comparison will

be performed to provide a robust assessment of LC product accuracy and precision.

Strengthened user confidence in these LC products, acceptance, and legitimacy of

the products are also expected within the international user and producer commu-

nity. As such, a review of the GlobCover product validation sites (Bontemps

et al. 2011; Defourny et al. 2011b) is undergoing under the lead of the Université

Catholique de Louvain. The UCL is assisted by the GOFC-GOLD LC-IT for this

task and the dataset will be made available on the aforementioned reference data

portal.

Fig. 2.1 Spatial distribution of validation sites from the Boston University database (Source:

Olofsson et al. 2012). Land cover classes are derived from the Köppen climate classes (Peel

et al. 2007)
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2.3.5 New Services and Tools

The outcomes of the Sentinel-2 Preparatory Symposium (s2symposium.org/)

stressed specific demands in terms of services and tools from different LC user

communities. A series of recommendations and requests were addressed to ESA

showing what current and future needs of the GLC mapping community as a whole

are: open and free access to data, higher revisiting capacity, availability of pro-

cedures to process large data loads (corrections, cloud masking, mosaicking,

classification, time-series analysis). Interoperability between data sources from

different sensors (inter-sensor calibration, archive linkage) has been stressed as

well, to enhance temporal revisit. In addition capacity development, in Non-Annex

1 countries in particular, still needs to be further strengthened. Note the GEO

Global Forest Observation Initiative (GFOI) and the GOFC-GOLD Regional Net-

works among other initiatives, play an active role to reduce capacity gaps through

different training programs. While stakeholders recognized the feasibility of GLC

mapping with existing data and tools, on-going research notably focuses on tech-

niques allowing the integration of different and complementary sources of infor-

mation such as optical, Radar and Lidar data (Lucas et al. 2006; Bork and Su 2007;

Lu et al. 2011; Li et al. 2012) and time-series analysis for change detection (Gutman

and Masek 2012; Verbesselt et al. 2012).

2.3.6 The First Global Assessments of Land Cover Change

Characterization of change and dynamics of LC is a developing research area in the

EO community especially since the advent of new processing techniques and a

facilitated access of EO data (Sect. 2.3.5). Intra-annual LC dynamics can be

characterized through the observations of vegetation phenology, seasonal snow

coverage, flooding, fire occurrence, etc., (Defourny et al. 2012; Bontemps

et al. 2012). Many EO initiatives such as ESA-CCI, NASA-MODIS Land Program

are actively working on the monitoring of such variables. Daily to yearly products

characterizing the GLC condition are being produced using time-series analysis

with MODIS, MERIS, SPOT and AVHRR data. Similarly, large-area LC change

and longer-term trends in vegetation and fire characteristics can also be estimated

using time-series analysis (Huang et al. 2002; Verbesselt et al. 2012). As an

example, the University of Maryland produces an annual Vegetative Cover Con-

version product, which consists in a global-scale LC change detection system at a

250 m spatial resolution (Carroll et al. 2006) that have now been used as input to the

estimation of deforestation carbon emission patterns globally (Harris et al. 2012).

However, LC change mostly occurs at a smaller scale than this coarse resolution

data can observe. It is now increasingly possible to overcome such a limitation as

finer spatial resolution earth observation data (e.g. Landsat imagery) becomes more

openly available at global scales. First serious attempts are being made using now
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freely available Landsat data provided by the Global Land Survey collection from

the USGS and NASA (Gutman et al. 2012). The USA and China are currently using

this Landsat archive to produce GLC maps (see Sect. 2.3.2). It is envisioned that the

LC information of the American products will be updated every year or every

5 years, depending on the product (Stone 2010; Lee-Ashley and Moody 2010).

Focused on forest cover and land use change, a sample-based global remote sensing

survey is being conducted as part of the Global Forest Resources Assessments

(FRA) led by the FAO (Gerrand et al. 2009) in cooperation with EU Joint Research

Centre’s TREES III project (ies.jrc.ec.europa.eu/index.php?page¼70). Forest area

and change rates have been calculated for years 1990, 2000, and 2005 using

samples (’13,500) from classified Landsat scenes validated by national experts.

The same assessment exercise is planned for year 2010. The first results have been

presented with more comprehensive analysis (Anonymous 2011).

2.3.7 New Users and Applications

The existing and upcoming LC products presented in this chapter can provide

useful information for a wider variety of users and for a wider range of applications.

The advent of new sources of EO data, improved processing techniques, standards,

and services give a glimpse on the added value of such products. For instance, the

proposed products and services associated to the nine societal benefits identified by

GEO (GEO 2011) show how the scientific community, NGOs, private sector,

governments and society as a whole can benefit from LC products. For Disasters

(fire, earthquakes, flooding), LC information can help short term action planning;

for Health, LC characteristics can help the identification of favourable conditions

for disease vectors; for the Energy sector LC information can be useful to charac-

terize the location of energy consumption spots and suitable areas for renewable

energies such as wind turbines and solar panels; for Climate modellers, LC

information can help modelling greenhouse gas emissions cause by LC change

and phenology; for Water resources, LC information can help optimizing con-

sumption and protect water bodies and wetlands; for Weather-related activities,

information on LC change can help modelling radiation balance and sensible heat

exchange, and provide information on land surface roughness; for Ecosystems, LC

information can help the characterization of human alterations, monitoring ecosys-

tem conservation, vegetation characteristics and change, as well as driving pro-

cesses; for Agriculture, LC information can help monitoring crop production and

cultivation practices and potentially associated land degradation. LC information

can help monitoring Desertification and plan actions to mitigate and adapt to the

phenomenon. Finally Biodiversity understanding, monitoring and conservation can

benefit from LC information with the characterization of ecosystems, habitats, land

fragmentation and connectivity. Thus, the potential use of LC and change data is

large and the trend to deriving more targeted products for specific users is already

obvious with a current focus on monitoring LC as ECV and for climate-change
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related, carbon emission assessment, purposes. But it is also expected that many

other users will directly benefit from progress made for a specific use application;

perhaps not in the full possible scale but to have a starting point to derive more

specific products to meet their requirements.

2.4 Conclusion

GLC datasets remain a key input for scientific communities, NGOs, private initia-

tives, and governments. The need for an operational and continuous GLC observa-

tion is emphasized by different user communities. Therefore, the quality and

consistency assessments of existing and up-coming GLC datasets should be

highlighted for a better understanding of their suitability and limitations for specific

applications. Reliable observation of LC is sought by GCOS. For this purpose, GLC

dataset producers are working closely with climate modelling user groups (e.g.,

Climate Modelling User Group (CMUG)) to reflect their requirements. However,

long term sustained interactions is not guaranteed. Current approaches on GLC

dataset generation, thematic contents and validation still needs to be harmonized. A

good documentation of GLC datasets generation and inter-comparison of different

LC-ECV products are required for understanding incompatibilities with other

datasets. The CEOS Cal/Val working group is actively working on GLC validation

and good practice guidelines LC and LCC validations are introduced. New robust

validation datasets from Boston University, the LC-CCI, and the Tsinghua GLC

validation dataset are coming up while the importance of crowdsourcing validation

datasets is also emphasized by the producer community (Fritz et al. 2009).

A number of initiatives from Europe (GMES, SPOT, Pléiades programmes) and

the USA (Landsat continuity programme) will secure EO data supply continuity in

the years to come. The recent end of life cycle of some satellite platforms (Landsat-

5, Envisat, Advanced Land Observing Satellite (ALOS)) act as supplemental

incentive to make these programmes operational. A clear trend towards higher

spatial resolution map products is observed with the on-going Landsat-scale Chi-

nese and USA GLC mapping projects, and the European GMES projects (Sentinel

constellations). In parallel a series of international coordinated efforts to ease data

access, to standardize (LCCS) or harmonize (GEO, GOFC-GOLD LC-IT, CEOS

Cal/Val WG) mapping procedures, are underway. The GOFC-GOLD initiative as

one major international body fosters free access to data and products. This coordi-

nation process that involves both GLC information producers and users is now

crucial as the emerging new services and tools associated to the availability of new

EO data sets broaden the scope of applications and concern a growing number of

user communities (GOFC-GOLD 2013).

The Rio+20 – the UN Conference on Sustainable Development – organized in

June 2012 in Rio de Janeiro, Brazil, tackled a range of topics embracing the green

economy in the context of sustainable development and poverty eradication and the

institutional framework for sustainable development. The need for monitoring
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carbon emission notably due to deforestation and forest degradation was

highlighted. As a result this UN initiative represents an important internationally

coordinated political incentive to ensure the development of new sensors, the

continuity and increased frequency of Earth LC observations, and concomitant

development of improved data processing methods as well as the establishment

of globally standardized/harmonized data processing procedures.
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Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from

Earth observation data. Int J Remote Sens 26(9):1959–1977

Benı́tez P, McCallum I, Obersteiner M, Yamagata Y (2004) Global supply for carbon sequestra-

tion: identifying least-cost afforestation sites under country risk consideration. International

Institute for Applied System Analysis, Laxenburg, Austria

Berger M, Moreno J, Johannessen JA, Levelt PF, Hanssen RF (2012) ESA’s sentinel missions in

support of Earth system science. Remote Sens Environ 120:84–90

Bontemps S, Defourny P, van Bogaert E, Arino O, Kalogirou V, Perez JR (2011) GlobCover 2009,

products description and validation report. European Space Agency, Frascati, Italy, and

Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

Bontemps S, Herold M, Kooistra L, van Groenestijn A, Hartley A, Arino O, Moreau I, Defourny P

(2012) Revisiting land cover observation to address the needs of the climate modeling

community. Biogeosciences 9(6):2145–2157

Bork EW, Su JG (2007) Integrating LIDAR data and multispectral imagery for enhanced classi-

fication of rangeland vegetation: a meta analysis. Remote Sens Environ 111(1):11–24

Carroll ML, DiMiceli CM, Townshend JRG, Sohlberg RA, Hansen MC, DeFries RS (2006)

Vegetative cover conversion MOD44A, deforestation. In: Burned vegetation – collection

4, ed. University of Maryland, College Park, Maryland. http://glcf.umiacs.umd.edu/data/vcc/

Chander G, Xiong X, Choi T, Angal A (2010) Monitoring on-orbit calibration stability of the Terra

MODIS and Landsat 7 ETM + sensors using pseudo-invariant test sites. Remote Sens Environ

114:925–939

Chen J (2012) China 30 m-resolution Global Land Cover Map in 2012. GIM International. http://

www.gim-international.com/issues/articles/id1838-China_mresolution_Global_Land_Cover_

Map_in.html

CNES (2012) ORFEO Pleiades. http://smsc.cnes.fr/PLEIADES/index.htm

Defourny P, Bontemps S, Martin B, Brockman C, Fomferra N, Grit K, Kruger O (2011a) CCI land

cover project – product specification document, version 1.2. www.esa-landcover-cci.org

Defourny P, Bontemps S, Schouten L, Bartalev S, Cacetta P, De Wit A, Di Bella CM et al (2011b)

GLOBCOVER 2005 and GLOBCOVER 2009 validation: learnt lessons. In: GOFC-GOLD

global land cover & change validation workshop, Laxenburg, Austria

2 Global Land Cover Mapping: Current Status and Future Trends 27

http://www.astrium-geo.com/en/147-spot-6-7
http://glcf.umiacs.umd.edu/data/vcc/
http://www.gim-international.com/issues/articles/id1838-China_mresolution_Global_Land_Cover_Map_in.html
http://www.gim-international.com/issues/articles/id1838-China_mresolution_Global_Land_Cover_Map_in.html
http://www.gim-international.com/issues/articles/id1838-China_mresolution_Global_Land_Cover_Map_in.html
http://smsc.cnes.fr/PLEIADES/index.htm
www.esa-landcover-cci.org


Defourny P, Mayaux P, Herold M, Bontemps S (2012) Global land-cover map validation experi-

ences: toward the characterization of quantitative uncertainty. In: Giri C (ed) Remote sensing

of land use and land cover – principles and applications. CRC Press – Taylor and Francis, Boca

Raton, pp 207–224

DeFries RS, Los SO (1999) Implications of land-cover misclassification for parameter estimates in

global land-surface models: an example from the simple biosphere model (SiB2). Photogramm

Eng Remote Sens 65(9):1083–1088

DeFries RS, Townshend JRG (1994) NDVI-derived land cover classifications at a global scale.

Int J Remote Sens 15(17):3567–3586

DeFries RS, Hansen MC, Townshend JRG, Sohlberg R (1998) Global land cover classifications at

8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree

classifiers. Int J Remote Sens 19:3141–3168

Di Gregorio A, Jansen LJM (2005) Land cover classification system: classification concepts and

user manual: software Version 2. Food and Agriculture Organization of the United Nations,

Rome

Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B et al (2012)

Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote

Sens Environ 120(May):25–36

Food and Agriculture Organization (2007) FAO website. www.fao.org/gtos/topcECV.html

Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE,

Gopal S, Schneider A, Cooper A (2002) Global land cover mapping from MODIS: algorithms

and early results. Remote Sens Environ 83(1–2):287–302

Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang XM (2010)

MODIS collection 5 global land cover: algorithm refinements and characterization of new

datasets. Remote Sens Environ 114(1):168–182

Fritz S, McCallum I, Schill C, Perger C, Grillmayer R, Achard F, Kraxner F et al (2009) Geo-wiki.

Org: the use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354

Fritz S, See L, McCallum I, Schill C, Obersteiner M, van der Velde M, Boettcher H, Havlı́k P,

Achard F (2011) Highlighting continued uncertainty in global land cover maps for the user

community. Environ Res Lett 6:44005

GCOS (2010) Implementation plan for the global observing system for climate in support of the

UNFCCC, GCOS-138, vol 138

GCOS (2012) Global climate observing system. http://www.wmo.int/pages/prog/gcos/index.php?

name¼AboutGCOS

Ge J, Qi J, Lofgren BM, Moore N, Torbick N, Olson JM (2007) Impacts of land use/cover

classification accuracy on regional climate simulations. J Geophys Res 112(D5), D05107

GEO (2010) GEO 2009–2011 work plan – revision 3

GEO (2011) GEO 2012–2015 work plan – revision 1

GEO (2012) Group on earth observations. http://www.earthobservations.org/about_geo.shtml

GEOSS (2005) The Global Earth Observation System of Systems GEOSS 10-year implementation

plan. Available at: www.earthobservations.org

Gerrand AM, Lindquist EJ, Wilkie M, Shimabukuro Y, Cumani R, Hansen MC, Potapov P,

Achard F (2009) The 2010 global forest resource assessment remote sensing survey. In:

Proceedings of the 33rd international symposium on remote sensing of environment ISRSE,

2–5, Stresa, Italy

Giri C, Zhiliang Z, Reed B (2005) A comparative analysis of the Global Land Cover 2000 and

MODIS land cover data sets. Remote Sens Environ 94(1):123–132

GLCA (2009) Toward a post-2012 agreement on climate change: recommendations of global

leadership for climate action. Global leadership for climate action. http://www.

globalclimateaction.com/images/pdf/glca_recomm_post2012_agreement_climatechange.pdf

GOFC-GOLD (2013) Third GOFC-GOLD symposium. Wageningen University, Wageningen,

The Netherlands, 15–19 April 2013. http://www.gofcgold.wur.nl/sites/Gofcgold_Sympo

sium2013.php

28 B. Mora et al.

http://www.fao.org/gtos/topcECV.html
http://www.wmo.int/pages/prog/gcos/index.php?name=AboutGCOS
http://www.wmo.int/pages/prog/gcos/index.php?name=AboutGCOS
http://www.wmo.int/pages/prog/gcos/index.php?name=AboutGCOS
http://www.earthobservations.org/about_geo.shtml
http://www.earthobservations.org/
http://www.globalclimateaction.com/images/pdf/glca_recomm_post2012_agreement_climatechange.pdf
http://www.globalclimateaction.com/images/pdf/glca_recomm_post2012_agreement_climatechange.pdf
http://www.gofcgold.wur.nl/sites/Gofcgold_Symposium2013.php
http://www.gofcgold.wur.nl/sites/Gofcgold_Symposium2013.php


Göhmann H, Herold M, Jung M, Schultz M, Schmullius CC (2009) Prototyping a probability-

based Best Map Approach for global land cover datasets at 1 km resolution using MODIS,

GLC2000, UMD and IGBP. In: 33rd ISRSE, Stresa, Italy

Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z et al (2013) Finer resolution observation

and monitoring of global land cover: first mapping results with Landsat TM and ETM + data.

Int J Remote Sens 34(7):2607–2654

Goodwin NR, Collett LJ, Denham RJ, Flood N, Tindall D (2013) Cloud and cloud shadow

screening across Queensland, Australia: an automated method for Landsat TM/ETM + time

series. Remote Sens Environ 134:50–65

Gutman G, Masek JG (2012) Long-term time series of the Earth’s land-surface observations from

space. Int J Remote Sens 33(15):4700–4719

Gutman G, Justice C, King LA (2012) The NASA land-cover and land-use change program –

research agenda and progress (2005–2011). In: Giri C (ed) Remote sensing of land use and land

cover – principles and applications. CRC Press – Taylor and Francis, Boca Raton, pp 379–396

Hansen MC, Reed BC (2000) A comparison of the IGBP DISCover and University of Maryland

1 km global land cover products. Int J Remote Sens 21(6–7):1365–1373

Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification

at 1 km spatial resolution using a classification tree approach. Int J Remote Sens

21(6/7):1331–1364

Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss.

Proc Natl Acad Sci 107(19):8650–8655

Harris NL, Brown S, Hagen SC, Saatchi SS, Petrova S, Salas W, Hansen MC, Potapov PV, Lotsch

A (2012) Baseline Map of carbon emissions from deforestation in tropical regions. Science

336(6088):1573–1576. doi:10.1126/science.1217962

Herold M, Mayaux P, Woodcock CE, Baccini A, Schmullius CC (2008) Some challenges in global

land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets.

Remote Sens Environ 112(5):2538–2556

Herold M, Woodcock CE, Cihlar J, Wulder MA, Arino O, Achard F, Hansen MC et al (2009)

Assessment of the status of the development of the standards for the terrestrial essential climate

variables – land cover. Rome

Herold M, van Groenestijn A, Kooistra L, Kalogirou V, Arino O (2011) Land Cover CCI user

requirements document. Louvain-la-Neuve, Belgium

Herold M, Kooistra L, van Groenestijn A, Defourny P, Schmullius CC, Kalogirou V, Arino O

(2012) Building saliency, legitimacy, and credibility towards operational global and regional

land cover observations and assessments in the context of international processes and observ-

ing Essential Climate Variables (ECV’S). In: USGS/Earth Resources Observation and Science

(EROS) Center, Giri CP (eds) Remote sensing of land use and land cover: principles and

applications. CRC Press, Sioux Falls, pp 397–414

Hibbard K, Janetos A, van Vuuren DP, Pongratz J, Rose SK, Betts R, Herold M, Feddema JJ

(2010) Research priorities in land use and land-cover change for the Earth system and

integrated assessment modelling. Int J Climatol 30(13):2118–2128

Huang C, Wylie B, Yang L, Homer CG, Zylstra G (2002) Derivation of a tasselled cap transfor-

mation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23(8):1741–1748

IPCC (2006) Guidelines for national greenhouse gas inventories, vol 4 AFOLU (Agriculture,

Forestry and Other Land Use). Kanagawa, Japan

Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover

products for carbon cycle modeling. Remote Sens Environ 101(4):534–553

Kennedy RE, Yang Z, CohenWB (2010) Detecting trends in forest disturbance and recovery using

yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms. Remote Sens

Environ 114(12):2897–2910

Lamard JL, Frecon L, Bailly B, Gaudin-Delreeu C, Kubk P, Laherrere JM (2008) The high resolution

optical instruments for the pleiadesHREarth observation satellites. In: InternationalAstronautical

Federation (ed) 59th International Astronautical Congress. Glasgow, pp 2650–2662

2 Global Land Cover Mapping: Current Status and Future Trends 29

http://dx.doi.org/10.1126/science.1217962


Lee-Ashley M, Moody J (2010) United States launches new global initiative to track changes in

land cover and use. Lee-Ashley M, Moody J (ed). US. Department of the Interior

Li G, Lu D, Moran E, Dutra L, Batistella M (2012) A comparative analysis of ALOS PALSAR

L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region.

ISPRS J Photogramm Remote Sens 70(06):26–38. doi:10.1016/j.isprsjprs.2012.03.010

Liao A (2013) Global land surface water product at 30 m resolution. ISPRS/GEO workshop on

high resolution global land cover mapping, 24 April 2013, Beijing, China

Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development

of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data.

Int J Remote Sens 21(6/7):1303–1330

Lu D, Li G, Moran E, Dutra L, Batistella M (2011) A comparison of multisensor integration

methods for land cover classification in the Brazilian Amazon. GISci Remote Sens 48

(3):345–370. doi:10.2747/1548-1603.48.3.345

Lucas RM, Cronin N, Moghaddam M, Lee A, Armston J, Bunting P, Witte C (2006) Integration of

radar and Landsat-derived foliage projected cover for woody regrowth mapping, Queensland,

Australia. Remote Sens Environ 100(3):388–406

Mayaux P, Eva H, Gallego J, Strahler AH, Herold M, Agrawal S, Naumov S et al (2006)

Validation of the Global Land Cover 2000 map. IEEE Trans Geosci Remote Sens 44

(7):1728–1739

McCallum I, Obersteiner M, Nilsson S, Shvidenko A (2006) A spatial comparison of four satellite

derived 1 km global land cover datasets. Int J Appl Earth Obs Geoinf 8(4):246–255

Nakaegawa T (2011) Uncertainty in land cover datasets for global land-surface models derived

from 1-km global land cover datasets. Hydrol Process 25(17):2703–2714

NASA (2012) CEOS LPV website. http://lpvs.gsfc.nasa.gov/

Olofsson P, Stehman SV, Woodcock CE, Sulla-Menashe D, Sibley AM, Newell JD, Friedl MA,

Herold M (2012) A global land-cover validation data set, part I: fundamental design principles.

Int J Remote Sens 33(18):5768–5788

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate
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Chapter 3

The Users’ Role in the European Land

Monitoring Context

Núria Blanes Guàrdia, Tim Green, and Alejandro Simón

3.1 A Bit of History About the European Land

Monitoring Process

In 1985 the European Commission started a programme to collect information

relating to the environment named CORINE (COoRdination of INformation on the

Environment). In the case of land cover data, national databases and maps were found

to be too meager and diverse to be able to collect, harmonize and present the

information in a comparable way from all the member states at a European level.

Provided this situation, a programme to collect land cover and land use data at EU

level (the CORINE Land Cover (CLC) programme) was started, centralizing the

remote sensing based land cover mapping efforts in a single European land cover

dataset, resulting in the CLC-1990. Since 1994, the European Environment Agency

(EEA) has integrated CLC into its work program, and two more campaigns, the

CLC-2000 and CLC-2006, have been produced. With these three time series of land

cover datasets, maintaining its centralized specifications and standardization

(although the production is decentralized at the member state level), CLC has become

the de facto standard for a pan-European land monitoring system (HELM 2011).

In 2001, the GMES (Global Monitoring for Environment and Security) Action

Plan (COM (2001) 609) started an overall discussion on how to deal with Land

Cover Change exercises in Europe among other topics. Several expert groups
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(the GMES Steering Committee, the GMES Advisory Council, the Implementation

Group on the Land Monitoring Core Service, and since 2011, the GMES User

Forum) became involved in discussions with the GMES Bureau, EEA, and with the

Directorate Generals of the European Commission concerning how the GMES

Land program could tackle the land monitoring program in Europe by using

semi-automatic classification of remote sensing images to produce land cover and

land use information at pan-European, European and local levels.

Based on these discussions and on the rich heritage of outcomes of the different

GMES related projects funded by the European Space Agency and the European

Commission (such as GSE AquaSoil/SAGE, GSE GMES Urban Services, GSE Forest

Monitoring, GSE Land, geoland, GNU, geoland2 and HELM), the GMES Land

monitoring program at European level has evolved from previous specifications for-

mulated to develop mapping products (e.g. full automatic land cover classification for

Europe with 21 classes) to the current specifications creating services to support current

mapping activities like the production of five High Resolution Layers (imperviousness,

forest, grasslands, water bodies and wetlands). These High Resolution Layers (HRL)

will be operationally produced during the GIO (GMES Initial Operations) program,

providing information such as degree of imperviousness, tree cover density or amask of

wetland areas. The data can be used for instance to better specify the content of the

CORINELandCover (also included inGIO funding) classes at European level and also,

to provide more content base to national land cover classifications.

It should be highlighted that, in parallel to the GMES developments at EU level,

Member States are investing in the development of their own land monitoring

programs to fulfill their specific national and regional needs. In order to explore

the compatibility of national needs and systems with each other and with European

products, several countries have experience concerning the potential of a bottom-up

approach to develop a European land monitoring program based on the harmoni-

zation of data from existing national systems. Such an approach would be in line

with the Infrastructure for Spatial Information in the European Community

(INSPIRE) and Shared Environmental Information System (SEIS) principles of

producing information once and at the level where it is most appropriate. However,

its straightforward implementation is still to be proved.

Such collaborative initiatives have already started, and the diverse stakeholders

that should contribute to the whole process are establishing the roles and the

mechanisms to work together in order to ensure compatibility between different

components.

Figure 3.1 provides an overview of the EU land monitoring in the last 20 years. It

displays the relationships between the different GMES activities until 2012, focus-

ing on the research and pre-operational phases of the GMES program, at European

and at Member State level, which is also the focus of this article.

In December 2012 Copernicus became the new name of the European Commis-

sion’s Earth Observation Programme, previously known as GMES (Global Moni-

toring for Environment and Security). Copernicus aims to set up informative

operational services in six domains: land, marine, atmosphere, security, emergency

response, and climate change.
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3.2 Policies Influencing the Establishment of a European

Land Monitoring Program

Within the various European Directives there is no legal obligation to derive land

cover information. However, information about land cover and land use is a key

requirement for many directives (e.g. Water Framework Directive, Habitats Direc-

tive, . . .) and other reporting obligations including international ones that should be
accomplished by the Member States (e.g. Kyoto Protocol under the United Nations

Framework Convention on Climate Change, Convention on Biological Diversity,

Forest Europe – Ministerial Convention on Protection of Forests in Europe).

Figure 3.2 shows the most relevant policies and reporting obligations for Europe.

The implementation of the INSPIRE directive is a key step to ensure that the spatial

data infrastructures of the Member States are compatible and usable in a European

and international context, addressing 34 spatial data themes needed for environ-

mental applications (including land cover and land use).

In 2008 the European Commission published a Communication to the European

Parliament, the Council, the European Economic and Social Committee and the

Committee of the Regions on Global Monitoring for Environment and Security
(GMES): we care for a safer planet (COM(2008) 748 final) (EC 2008a) with the

objectives to:

Fig. 3.1 Timeline of the European land monitoring programme until the end of the pre-operational

phase of the GMES programme
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1. Define a transparent and sustainable governance framework that contains a clear

division of the roles of the partners in the GMES partnership, based on the

principle that GMES should use to the largest extent possible existing capacities;

2. Guarantee user uptake, in particular through constant involvement of users so

that GMES remains user driven;
3. Reassure stakeholders about the EU commitment to GMES in the sensitive

phase of demonstration which precedes the move to operation;

4. Outline how the governance and financing framework can be implemented in a
reasonable timeframe (EC 2008b).

3.3 Which Users Have Been Involved in the European

Land Monitoring Program and What Have Been

Their Roles?

From the different communications published by the EU, policy makers and public

authorities have been defined as the major users of the GMES land initiative. In

parallel, national mandated bodies and research institutions have been in charge of

the development of the national land monitoring program and of the development

of the CORINE Land Cover program at the EU level, which has been included as

one of the GMES activities.

Fig. 3.2 Policies and EU actions related to land monitoring
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Defined by their geographical influence, the users in the current European land

monitoring context are divided into:

– High-level European and International user organizations, which influence and

support the production of uniform European wall-to-wall products;

– National and regional/local user organizations, which are more focused on

determining the added value of the services being supplied, establishing what

would be their general needs and provide access to in-situ data.

In the GMES program, there has been variable involvement of user organiza-

tions linked to the different projects resulting in variable levels of satisfaction with

the project outcomes. Involvement ranged from partnerships between service pro-

viders and users where users were actively engaged in establishing requirements

and service specifications, service reviews and final assessment of the utility of the

product; to a more theoretically and political involvement, where users would have

little opportunities to participate in the development of the services.

An evaluation concerning the user involvement in different GMES domains

(Land, Forestry, Atmosphere and Geosciences) and related projects running until

June 2009 was carried out by the GNU project (GNU 2010); where it was stated that

the GMES projects are generally initiated and led by service providers -as described

within the framework for these projects laid out by the ESA and the European

Commission (Table 3.1). Only a minor proportion of the budget was available to

involve the users and follow-up user uptake of the products and services being

developed.

The provision of direct funds to user organizations could increase their capacity

and motivation to participate more actively in the projects and in further (and

perhaps also foreseen) developments. In contrast, if most of the project budget is

dedicated to production, users have to provide their inputs often using their own

time and resources. Thus, the outcomes will mainly depend on the motivation of the

person/organization being involved. Hence, efforts have increased to establish a

more representative user involvement in the research and implementation projects

being undertaken towards a new and harmonized land monitoring program at EU

level. Attempts have been made to involve users in different GMES projects and

GMES related forums to discuss future approaches. Nevertheless, there is still much

room for improvements.

Regarding the European institutions, it is important to highlight the two main

roles they play in these processes: (1) they are the institutions providing the funding

to develop European research programs or projects (e.g. FP7 – GMES Land –

geoland2) and operational services (e.g. GIO 5 Pan-European High Resolution

Layers); and (2) they determine the requirements or specifications of the products

to be developed and also the specifications to validate those products.

Only the European Commission through its Directorates General as well as the

GMES Office can be considered as mandated bodies to take decisions in respect to

new developments of the European land monitoring program. The formal mandated

and therefore, decision-making body for GMES is the GMES/Copernicus Commit-

tee, which in fact approves the regulations related to GMES.
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On 25 May 2011, a Delegation Agreement was signed between the European

Union and the European Environment Agency (EEA). The agreement tasks EEA

with the technical coordination of the pan-European and local components of the

GIO land monitoring service. EEA was the mandated body for the initial operations

of the GMES/Copernicus land component, due to its aim of supporting the devel-

opment and implementation of sound environmental policies in the EU and other

EEA member countries by delivering timely, targeted, relevant and reliable infor-

mation to policy-makers and the public. To accomplish this aim, through different

information channels EEA collects environmental data from:

Table 3.1 Key user organisations and their role within the GMES/Copernicus programme
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European institutions
European Commission –
Directorates General (DGs)
European Environmental
Agency
European Spatial Agency
GMES Office /GMES
Committee

National (or sub-national) organizations
GMES User Forum
NRCs for Land Cover and
Spatial Analysis (EIONET –
Member States)
NFP Working Group on
GMES
National ministries
(Environment, Planning,
Rural development,
Agriculture,…)
National agencies /offices 
(e.g. national geographic 
institutes, national forest 
agencies, national forest 
inventories)

Others
Research Institutes
SMEs
Spatial planners
Expert groups for EU
directives
The public
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– EIONET (the European Environmental Information and Observation Network) –

Partnership network of the EEA and its member and cooperating countries to

provide timely and quality-assured data, information and expertise for assessing

the state of the environment in Europe;

– GMES/Copernicus – The European Commission’s Earth Observation Program

provides data to help deal with a range of disparate issues including climate

change and border surveillance on land, sea and atmosphere;

– GEOSS (The Global Earth Observation System of Systems) – It promotes

common technical standards so that data from the thousands of different instru-

ments can be combined into coherent data sets.

Therefore, EEA can be seen as one of the main European users. It informs about

the EU needs and provides the technical user requirements to the services being

currently developed within the European land monitoring program (e.g. 5 High

Resolution Layers), as well as to deliver key information to the policy makers and

to the public. It could also propose the next steps to be achieved by the program,

highlighting the challenges that need to be overcome.

Future stages of the implementation of the European land monitoring program

should be guided by the mandated bodies and authorized users. Currently the

mandated body is the GMES/Copernicus Committee. However, it would also be

important to broaden the list of authorized users setting up a comprehensive list to

be endorsed by the GMES User Forum. By doing so, the responsibility to propose

next steps and decisions would be shared among a large number of stakeholders.

This would ensure that a broader range of interests would be taken into account to

achieve the final aims of (1) having a land monitoring program harmonized at

European level, and (2) GMES using existing capacities to the largest extent

possible (EC 2008a).

3.4 Shaping the Role of the Users in the Mid-to Long-Term

There have already been attempts to change the involvement of the user organiza-

tions and public institutions into the “projects environment” and into the GMES

program itself. The attempts address issues such as allowing users a more active

role based on

– a direct participation in the products’ development,

– in the provision of data, and

– last but not least, to undertake the quantitative validation and verification of the

services being developed.

In fact, many users highlighted the need to link the update of national products

with European products, and vice versa, in terms of thematic content and acquisi-

tion dates. This shall avoid duplication of work (principle of subsidiarity (EC 2009)

and aims to provide comparable and interlinked data.

3 The Users’ Role in the European Land Monitoring Context 37



All those activities require funding, either as in-kind contribution from the user

side in anticipation of the development of services that they better presume will be

useful for them, or through planned participation of the users. Insufficient consid-

eration of user involvement and user funding leads to a situation within some

projects, where users have been asked to provide user requirements when the

project has already started. Instead it would be better for users to be involved in

the project planning, a prerequisite for the design of truly useful products in later

stages of the project.

In order to achieve a more representative involvement and interaction on GMES

governance with users from member states, the GMES User Forum was established

by the Commission in 2011. It is the latest GMES user initiative aiming to ensure

systematic consultations with authorized users, including users from Member

States. The consultations will tackle the issue of a more active user involvement

and should end in the establishment of agreed user needs (EC 2008a). However, the

Forum has an advisory role only providing mainly recommendations for the

decisions taken by the EU mandated bodies.

At the first official meeting of the GMES User Forum, May 2011 in Brussels

(GMES User Forum 2011b), the role of obtaining harmonized land cover data was

discussed and the importance of the INSPIRE Thematic Working Groups on Land

Cover and Land Use was also highlighted. With regard to data policy and data

distribution, the need for free, open and interoperable land products, in line with

GEOSS data sharing principles, was stressed. Several delegations were concerned

about the need for clear service specifications for the land products allowing

repeatability, compatibility with national datasets and transparent communication

among the stakeholders involved in the land domain.

Moreover, besides workshops being held at national level to promote the GMES

program, other relevant meetings related to the land domain were organized under

the GMES User Forum umbrella, to discuss for instance issues related to access to

the reference/in situ data (September 2011, Brussels) (GMES User Forum 2011a),

global land (December 2011, Lisbon), on data and information policy (January

2012, Brussels), and the 5th GMES User Forum (March 2013).

As an outcome of these meetings a serious user uptake effort is required. Within

this user uptake, users would be actively involved

– in the current development and testing phases of the products,

– in understanding the administrative logistics behind, and

– in enabling the integration of the GMES services in national workflows and

reporting activities.

Therefore, it is important to build up real and active Copernicus user groups,

supporting effective federating and including all different administrative levels

stakeholders’ identified, which should actively interact as equal partners with the

service providers and become involved in steering the process.

By establishing common working agendas, common initiatives and efforts

between all relevant stakeholders involved in the process, it would be possible to

change perspectives and expectations that have been established long time ago.

38 N. Blanes Guàrdia et al.



Several working groups are currently steering and contributing to the evolution of

the European land monitoring program, such as:

– the EIONET NRC Land Cover (EEA network),

– the EAGLE working group (EIONET Action Group on Land Monitoring in

Europe) or

– the INSPIRE Thematic Working Groups on Land Cover and Land Use.

Nevertheless, the GMES Committee (now Copernicus Committee) as the formal

mandated body should be enabled to coordinate and structure the contributions

from those users’ organizations and working groups.

3.5 Current Situation and Aspects Still to Be Addressed

in the Future

Provided that this article has been mainly focused on the research and

pre-operational phase of the GMES program, the authors have considered that it

may be interesting to include some hints on the current situation considering the

GIO regulation, in place from September 2010, and the Copernicus framework,

being adopted at the end of 2012 (EC 2013).

In 2010 Regulation EU No 911/2010 was issued on the European Earth moni-

toring programme (GMES) and its initial operations (2011–2013). GMES initial

operations (GIO) are considered as a transition phase between the research phase

(based mainly on FP6, FP7 and ESA funds) and the full exploitation of GMES

capabilities in an operational phase. The GIO call established the work program for

the European Earth monitoring program (GMES) in order to allow an operational

GMES system by 2014 (EC 2011).

Its primary objective is to provide, under Union control, information services which give

access to accurate data and information in the field of the environment and security and

are tailored to the needs of users. In doing so, GMES should foster better exploitation of the

industrial potential of policies of innovation, research and technological development in the

field of Earth observation. (EC 2010).

The GIO program was in fact, the culmination of many years of consultations and

research with various experts and stakeholders.

While the European remote sensing services industry leads the production and

design phase of the five HRL, EEA ensures the continuity of CLC 2012 in a

cooperation framework with its member states. The HRL development was split

thematically by layer and also geographically, and awarded to various project

consortia in 2011. The initial work started in 2011 and the production will be

finished in 2014. Likewise, GIO was also aimed to support HRL workshops to

promote cooperation between countries and service providers boosting verification

and enhancement activities and finding synergies between EU and national land

cover products.
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Previously in GMES and afterwards in GIO regulation (2010), user uptake has

already being foreseen and implemented, and it is expected that it will be also

included in the operational phase 2014–2020 of the Copernicus program. It is

important to entrust a transparent mechanism for users’ consultation at different

administrative levels. The GMES User Forum has already addressed some of the

issues (and it is expected that it continues as such):

– The Commission is responsible for user and service requirements (endorses)

– The Commission consults the User Forum before endorsing user requirements

– The Commission consults the GMES committee before endorsing the service

requirements

Nevertheless, taking into account all the initiatives already being done, the

balance in the involvement of service providers and different types of users is a

key issue to continue the development of the Earth Observation programme at EU

level, especially for the land component.

A sustained effort and funding is still needed to provide services, to build the

community of users, and to develop and improve the services according to the user

needs. Efforts should also be focused on establishing a more representative inter-

action with users, as it was recognized that the interactions earlier in the GMES

program were variable. Therefore, there is still the need to establish and develop

long-term partnerships among users, the EU institutions and service providers. In

addition it is necessary to boost mandated bodies and organizations, as well as

addressing the role that each type of user organization should perform, in order to

guarantee the success of the Copernicus GMES programme.

And last but not least, an intensification of communication is required among

stakeholders involved to define and consolidate the data policy. This simple but

important step allows, on the one hand, the stakeholders (users to service providers)

to know the conditions of supply (e.g. cost, frequency of production), and on the

other hand, to support the provision of the services in well-known conditions in the

European and in the global market. The intentions to support full, open and free

access to information services have also been stressed and encouraged during the

last years.
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Chapter 4

Towards an European Land Cover

Monitoring Service and High-Resolution

Layers

Steffen Kuntz, Elisabeth Schmeer, Markus Jochum, and Geoffrey Smith

4.1 GMES/Copernicus – The European Contribution

to Global Environmental Monitoring

The current global economic crisis forces nations to pinch and scrape on all their

expenses. At the same time the demand for more and better information on the state

of environment is increasing, together with more obligations to report on develop-

ment and to estimate the impacts of environmental and spatial planning policies.

Both needs may motivate a much stronger use of remote sensing, as so-called “free

data” covering large regions or even continents become more and more important.

The advantages of remote sensing have been acknowledged by many stake-

holders world-wide. In Europe this has led to a dedicated effort called “Global

Monitoring for Environment and Security – GMES” (nowadays “Copernicus”). It is

a joint initiative of the European Commission and the European Space Agency.

GMES can be considered as a major European activity to make available timely and

high quality information, services and knowledge, and to provide autonomous and

independent access to information in relation to environment and security.

Copernicus is also the European Union contribution to the Global Earth Observa-

tion System of Systems – GEOSS.

Starting in 1998, today Copernicus is fast moving towards an operational phase.

It builds upon four pillars:

1. The space component (observation satellites and associated ground segment

with missions observing land, atmospheric and oceanographic parameters).

This comprises two types of satellite missions: ESA’s five families of dedicated
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Sentinel space missions and those from other space agencies, called Contribut-

ing Missions.

2. In-situ measurements (ground-based and airborne data gathering networks

providing information on oceans, continental surface and atmosphere).

3. Data harmonisation and standardisation.

4. Services to users.

Users will be provided with information through services dedicated to a systematic

monitoring and forecasting of the state of the Earth’s subsystems. Six thematic areas are

developed: marine, land, atmosphere, emergency, security and climate change. A land

monitoring service, a marine monitoring service and an atmosphere monitoring service

contribute directly to the monitoring of climate change and to the assessment of mitigation

and adaptation policies. Two additional GMES services address respectively emergency

response (e.g. floods, fires, technological accidents, humanitarian aid) and security-related

aspects (e.g. maritime surveillance, border control). GMES services are all designed to

meet common data and information requirements and have global dimension

http://www.gmes.info/pages-principales/overview/gmes-in-brief/

In the following chapter the geoland2 project, which addresses the “Land

Monitoring Core Service (LMCS)” will be briefly described emphasising the high

spatial resolution layers providing basic land surface information with wall-to-wall

coverage of Europe.

4.2 geoland2

4.2.1 Background

The European CORINE Land Cover (CLC) approach1 – the only existing

harmonised European land data base available today – comprises 44 thematic

classes with a minimum mapping unit (MMU) of 25 ha for stock, and 5 ha for

changes, respectively. Since 1990 the CLC products have demonstrated the overall

value of a harmonised data base at the European level. CLC is an excellent tool for

strategic analysis and planning, as well as for general evaluations and overviews of

the state-of-the-art and for facilitating policy making at European level. However,

CLC’s thematic content comprises a mixture of land cover and land use classes.

Also, its MMU serves well the needs of the European Commission and the

European Environmental Agency (EEA) but is not suited for national or regional

planning activities. In addition, the previous update rate of 10 years had not been

1On a proposal from the Commission in 27 June 1985 the European Council adopted a decision on

the CORINE programme (Coordination of information on the environment) to compile informa-

tion on the state of the environment; to coordinate the compilation of data and the organization of

information within the Member States or at international level; and to ensure that information is

consistent and that data are compatible.

http://www.eea.europa.eu/publications/COR0-landcover
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sufficiently rapid to track fast changes, which may appear, for instance, when new

member states join the European Union.

To improve or support CLC former research projects in the framework of GMES

funded by the European Commission and the European Space Agency were carried

out. As a result, the “GMES Land Monitoring Core Service (LMCS)” shall provide

accurate and cross-border harmonised geo-information at global to local scales. The

service produces geographical information on land cover including its seasonal and

annual changes and monitors variables such as the vegetation state or aspects of the

water cycle. It has a wide range of applications in land use/land cover change, soil

sealing, water quality and availability, spatial planning, forest monitoring and

global food security. The pre-operational land monitoring service of GMES was

developed by the European Union (EU) funded project geoland2 (http://www.

gmes-geoland.info).

4.2.2 The Project

geoland2 was an EU funded 7th Framework Programme (FP7) Research Project,

which was responsible for the development and pre-operational validation of the

GMES LMCS. The project started in September 2008 and finished in 2012. It

comprised 51 project partners and more than 80 major international user

organisations.

Building on the results achieved by its predecessors2 geoland2 is the last brick

towards the implementation of a fully mature GMES LMCS. Based on land cover,

land use or bio-physical information derived from Earth Observation satellite data,

the service provides decision-makers with relevant information on the changing

conditions of natural resources (e.g. water quality information across catchments

basins). geoland2 aimed to:

– Organise a qualified production network;

– Build, validate and demonstrate operational processing lines in representative

European and global test sites and on European level;

– Set-up a user driven product quality assurance process.

geoland2 addresses two different service levels: Core Mapping Services (CMS)

and Core Information Services (CIS). Core Mapping Services provide:

– Land cover/land use data;

– A range of bio-physical parameters describing the continental vegetation state,

the radiation budget at the surface and the water cycle;

– Seasonal and annual change monitoring at a range of scales and extents

(Jochum 2010).

2 i.e. mainly ESA GMES Service Element projects (2003–2007) and the FP 6 projects geoland

(2004–2006) and BOSS4GMES (2006–2008) together with national initiatives.
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The CMS products cover a wide variety of thematic content, spatial scales from

local to global, and update frequency, from 1 day to several years.

The Core Information Services (CIS) aim at demonstrating the added-value that

can be built on the Core Mapping Service in various fields. They propose a set of

more specific, focused and context sensitive thematic products related to forest

monitoring, spatial planning, land carbon monitoring, global crop monitoring,

natural resource monitoring, agri-environmental monitoring and water monitoring

applications. The CISs support reporting to European Environmental Policies and

international treaties on climate change, food security and the sustainable develop-

ment of Africa. Figure 4.1.3

Fig. 4.1 Overview of the geoland2 service approach. In the center three “Core Mapping Services”

are addressing local to regional land cover and continental to global bio-geophysical parameters.

They serve the seven Core Information Services with basic input data for environmental modeling

3All data can be accessed free of charge under the following link: http://www.geoland2.eu/portal/
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The CMS within the GMES LMCS are divided into three groups related to the

scale at which they will be implemented: local, continental and global.

4.3 The Continental LMCS

The continental component of the LMCS comprises at present high spatial resolu-

tion biophysical parameters and the five high resolution layers. The following

chapters describe the process of the service definition and the consolidated service

specification.

A full description of the service specification can be found in geoland2- CMS

Euroland (2011).

4.3.1 Service Definition Development

In order to overcome the shortcomings of CORINE for regional management and

reporting, the FP6 project geoland set up a Core Service Land Cover (CSL) in 2004.

Its goal was to achieve a consensus on a new European land cover data base and

demonstrate its benefits offering improved spatial detail and thematic content

compared to CORINE. The data base was designed to serve common land moni-

toring needs providing the status quo and the possible changes of Europe’s land-

scape for European users and Member States enabling a wide range of downstream

sectorial applications and user uptake.

Based on this approach, in 2007 the geoland2 proposal was made towards a

service evolution offering more thematic content in certain areas (i.e. more forest

classes and agriculture features) and a 1 ha MMU. The GMES Implementation

Group Land supported this approach in its Strategy Document4 and it was accepted

in the geoland2 negotiations with DG Enterprise.

However, as a result of the intensified discussion with Member States since

October 2008, the GAC paper 13–02, and based on recent feedback from EIONET

members at several meetings between 2009 and 2011 this approach is not valid

anymore. For political reasons – and here mainly the principle of subsidiarity –

Member States do not want GMES services to interfere with their national mapping

and monitoring obligations. Hence, the current approach for the local and conti-

nental LMCS emphasises the provision of intermediate products which are suitable

for a large variety of applications and can actually support national obligations. The

current way forward is:

4 Strategic Implementation Plan of GMES Fast Track Land Monitoring Core Service, final

Version, 24/04/2007; DG ENTR/IG Land.
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• Urban Atlas monitoring is continued on behalf of DG Regional Policies.

• CLC change mapping shall be continued to assure European-wide harmonised

time series on LC/LU changes.

• High resolution biophysical parameters shall be made available on a regular

basis for the whole of Europe.

• A set of five high resolution thematic land cover layers (HR layers) shall be

produced. These layers shall comprise information on imperviousness (sealed

areas update), forests, grasslands (arable land/pasture), wetlands and small water

bodies (Fig. 4.2).

4.3.1.1 Service Specification

The set of biophysical parameters offered from geoland2 includes an estimate of

green vegetation, brown vegetation and soil cover fractions, LAI.5 FAPAR,6

chlorophyll content, a shadow factor, water and snow cover fractions, and water

Fig. 4.2 Example for the five HR layers

5 Leaf Area Index.
6 Fraction of Absorbed Photosynthetically Active Radiation.
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height for each pixel. These parameters are produced every 10 days from MERIS

data (details in: geoland2- CMS Biopar 2011). In addition, production of these

parameters at high spatial resolution (20–30 m pixels), as well HR data sets from

Landsat, SPOT or IRS have been found to be very useful; in the future even higher

quality from Sentinel-2 imagery will be available.

These high spatial resolution primary or “support layers” are provided usually

as:

1. 20 m by 20 m pixels carrying information that can be perceived as “probabili-

ties” or “densities” (for imperviousness, crown cover, etc.). These full resolution

HR layers are not an end product (in the sense of traditional land cover maps),

but a support tool to populate/characterise land cover objects, e.g. CORINE

Land Cover or statistical grids. Hence, they are more geared towards a statistical

use of the information.

2. High resolution layer “secondary products”, usually aggregated to 1 ha MMU,

derived from the “support layers” and ancillary information (e.g. build-up layer

derived from the degree of sealed areas or changes in tree cover density).

The usage of the HR Layers in the context of CLC is still debated and discus-

sions are not finalised. While some users see more the use of the HR Layers in

populating CLC polygons, others see their applicability also during the CLC update

process.

The “support” or “primary” layers shall provide comparable measures across

Europe to:

1. Support characterisation of any (meaningful) user specified units (e.g. CLC

polygons, reference grids, etc.);

2. Allow users (or value added providers) to derive additional layers (or products)

based on user defined thresholds which can be driven by local context and shall

provide already interpreted information.

The following Table 4.1 provides a short overview on the current service

specification developed by geoland2 and presented to and discussed with European

experts from the EAGLE7 group.

In the framework of the GMES Initial Operations (GIO) phase the wall-to-wall

mapping of HR biophysical parameters and the five HR layers has been initialised.

However, according to the open public tender issued by the EEA in summer 2011,8

for cost reasons, the HR layers and biophysical parameters are produced with a

reduced service specification.

7 Eionet Action Group on Land monitoring in Europe (EAGLE).
8 Open call for tender No. EEA/SES/11/004.
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Table 4.1 Specification overview of the Urban Atlas and the five high resolution (HR) layers

Urban Atlas Information content Specific benefits

Land use and land cover data with

19 classes for Large Urban Zones

with more than 100.000 inhabitants

Development of a cost efficient update

methodology of the existing Urban

Atlas data contributing for instance

for the European Spatial Development

Perspective and the Urban

Environment Thematic Strategy

Data type: Vector

MMU 0.25 ha (artificial); 1 ha (non-artificial)

Update

frequency

3 years

HR layer Information content Specific benefits

Imperviousness Built-up areas including continuous

degree of imperviousness ranging

from 0 to 100 %

Input to State of Environment Report:

Land-take trend in Europe (vs. Fast

Track Service Sealing 2006)

Input to various reporting & management

obligations (e.g. Water Framework

Directive, Soil Thematic Strategy,

Convention on Long-range

Transboundary Air Pollution, Kyoto

Protocol, Urban Environment The-

matic Strategy; European Spatial

Development Perspective;

Streamlining European Biodiversity

Indicators; Common Agricultural

Policy; Common Database on Desig-

nated Areas and national sustainabil-

ity strategies)

Forest Continuous Forest Crown Cover

Density and Forest Type

compositions

International: Environment for Europe

Ministerial Conference (EfE);

Ministerial Conference on the

Protection of Forests in Europe

(MCPFE).

EU level: EEA State of Environment

Report, SEBI2010* indicators,

support to the EU Forest Action Plan

implementation.

National level: support to national forest

inventory and monitoring

Grassland Grassland areas with a continuous

degree of intensity

Input to Habitats Directive

Common Agriculture Policy

(cross-compliance aspects: agri/forest

conversion, environmentally friendly

farming, maintenance of grasslands)

Global Warming impact monitoring

(desertification in the South, spread of

humid grassland in the North)

(continued)
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4.3.2 Expected Benefits

Like all GMES Core Services once implemented in a sustainable wall-to-wall

monitoring scheme over the European mainland the benefits resulting from the

local and continental LMCS will be on different levels and will differ according to

the needs of the various customers interested in land cover information and changes

in land cover over time.

As frequently stated, not only from international organisations and user DGs, but

from scientists as well, coherent transboundary information on land cover and land

use is important. It not only provides measures to assess the impact of European

policies and directives across the member states (e.g. in international river basins

such as the Rhine or Danube), but it can also support new reporting obligations

(e.g. coming from UNFCC or UNEP).

For Member States the HR and VHR layers can support their reporting obliga-

tions by reducing the overall costs, as shown in Germany where the sealing layer

was successfully used for CLC production. In addition, they allow the upgrade of

national data bases; e.g. again in Germany where the sealing layer for the national

topographic landscape model (DLM-DE) was deployed. The availability of the

other HR layers could also improve such initiatives

It is expected that the soon available HR and VHR layers for the whole of the

European area will motivate member states to invoke national programmes to take

best benefit from the new data sources.

On a regional level the HR Layers may allow the upgrading and/or updating of

environmental indicators and cross-border planning.

Table 4.1 (continued)

HR layer Information content Specific benefits

Wetlands Wetland areas according to

RAMSAR definition, wetness

indicator

Provision of first pan-European data set

on wetlands, Improve National digital

data to RAMSAR, Birds directive,

Common Database on Designated

Areas data, Habitats and NATURA

2000 sites

Water Small inland water bodies such as

lakes, water reservoirs, river,

streams

Input to various reporting & management

obligations (Water Framework

Directive, Flood Directive, Climate

Change, Aarhus Convention, CAP)

Data type Raster

MMUa Pixel level (20 m), validated to 1 ha

Update

frequency

3–5 years

aMMU minimum mapping unit
*SEBI - Streamlining European Biodiversity Indicators. http://ec.europa.eu/environment/nature/

knowledge/eu2010_indicators/index_en.htm
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The possibility to connect in-situ monitoring with spatially explicit information

may allow the improvement of the remote sensing based information by calibration

of models, leading to better environmental indicators and improved statistics, as has

been demonstrated for instance by the Core Information Service Spatial Planning.

Of critical importance for all governmental users is the long-term sustainability

of the local and continental LMCS services with appropriate levels of quality. Only

by providing reliable and repetitive time series of data for the monitoring of urban

and regional developments will GMES/Copernicus create the highest benefits and

lead-in investments required by national and regional entities for the whole service

chain to become economically feasible.
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Chapter 5

CORINE Land Cover and Land Cover

Change Products

György Büttner

5.1 Introduction

From 1985 to 1990, the European Commission implemented the CORINE

Programme (Co-ordination of Information on the Environment): an experimental

information system on the state of the European environment was established; and

nomenclatures and methodologies were developed and agreed at European level.

CORINE Land Cover (CLC) was specified to standardize data collection on land in

Europe to support environmental policy development. CLC data provide informa-

tion on the bio-physical characteristics of the earth surface. Images acquired by

Earth Observation (EO) satellites are used as the main source data to derive land

cover and land use information (EEA Task Force 1992). The implementation of

CLC follows a bottom-up approach,1 meaning that national teams are producing the

database for their own country, and these data are integrated at the European level.

Project management is provided by the European Environment Agency (EEA).

Despite its limitations in spatial resolution, CLC has become the primary spatial

data source on land for EEA. CLC is widely used for indicator development,

environmental modelling and land cover/land use (LC/LU) change analysis in the

European context. Other Commission Services (e.g. DG ENV, DG AGRI) also rely

on CLC. Page-view statistics (8,600 page-views per month average in 2011) show

that CLC is one of the most popular databases of EEA.
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5.2 Technical Specification

The basic parameters of CLC have not changed during its lifetime (Table 5.1), thus

maintaining the comparability between consecutive inventories.

Table 5.1 Evolution of CORINE Land Cover

CLC1990 CLC2000 CLC2006 CLC2012

Satellite data Landsat-5 MSS/TM

single date

Landsat-7 ETM sin-

gle date

SPOT-4/5 and

IRS LISS III

dual date

IRS LISS III and

RapidEye

dual date

Time

consistency

1986–1998 2000 +/� 1 year 2006+/� 1 year 2011–2012

Geometric

accuracy,

satellite

data

�50 m �25 m �25 m �25 m

Min. mapping

unit/width

25 ha/100 m 25 ha/100 m 25 ha/100 m 25 ha/100 m

Geometric

accuracy,

CLC

100 m Better than 100 m Better than

100 m

Better than

100 m

Thematic

accuracy,

CLC

�85 % (probably

not achieved)

�85 % (achieved

(Büttner and

Maucha 2006))

�85 % (not

checked)

�85 %

Change map-

ping

(CLCC)

Not implemented Boundary displace-

ment min.

100 m; change

area for existing

polygons �5 ha;

for isolated

changes �25 ha

Boundary

displacement

min.100 m;

all changes

�5 ha are to

be mapped

Boundary

displacement

min.100 m;

all changes

�5 ha are to

be mapped

Thematic

accuracy,

CLCC

– Not checked �85 % (achieved

(Büttner

et al. 2011))

�85 %

Production

time

10 years 4 years 3 years 2 years

Documentation Incomplete

metadata

Standard metadata Standard

metadata

Standard

metadata

Access to the

data (CLC,

CLCC)

Unclear dissemina-

tion policy

Dissemination pol-

icy agreed from

the start

Free access for

all users

Free access for

all users

Number of

countries

involved

26 (27 with late

implementation)

30 (35 with late

implementation)

38 39
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5.2.1 Minimum Mapping Unit and Minimum
Mapping Width

The Minimum Mapping Unit (MMU) is 25 ha; this means that objects having less

than 25 ha area cannot be present in the database. The Minimum Mapping Width

(MMW) of linear elements is 100 m; this means that objects (most typically highways

and rivers) having less than 100 mwidth cannot be present in the database (EEA Task

Force 1992). The explanations for these two values are: (1) The satellite images at

that time had coarse resolution and poor geometric accuracy (namely 57 m � 79 m

for Landsat MSS); (2) Producing CLC with photo-interpretation is a labour intensive

process, so a compromise had to be found between mapping detail and production

costs; and (3) In CLC1990, when interpreters drew and coded CLC polygons on

plastic overlay at scale 1:100.000, the 25 haMMUwas considered the smallest object

that could be mapped. Similarly, the 100 m MMW was considered as the narrowest

linear element that could be drawn (0.1 cm width at a scale of 1:100.000).

Land cover objects having a size smaller than the MMU are generalized. The

generalization is based on the ‘similarity’ between the small object (size <MMU)

and the valid objects in the neighbourhood (Bossard et al. 2000) (e.g. a small

wetland is joined to a neighbouring water body rather than to a forest). Generali-

zation is usually straightforward for the experienced photo-interpreter, but it is not

so evident for automation.

In CORINE Land Cover Change (CLCC) mapping, it was necessary to reduce

the MMU for changes down to 5 ha to produce policy relevant information at the

European scale. This resulted in a much more detailed CLCC layer than is possible

in the CLC status layers (MMU ratio is 25/5 ¼ 5) (Büttner et al. 2002a).

The use of a 25 ha (CLC) and 5 ha (CLCC)MMU is obligatory in theEuropeanCLC

datasets. However, there are a few examples of more detailed national CLC and CLCC

databases (e.g. Finland and Sweden apply a semi-automatic methodology, producing

national land cover data with << 25 ha MMU, which is then generalised to yield the

European CLC dataset (CLC2000 Finland Final Report 2005), (Engberg 2005)).

5.2.2 Nomenclature

The standard CLC nomenclature (Table 5.2) is hierarchical, including three levels of

thematic detail in five major groups (Heymann et al. 1994): (1) artificial surfaces;

(2) agricultural areas; (3) forests and semi-natural areas; (4) wetlands; and (5) water

bodies. In addition to pure land cover classes, the nomenclature includes land use

classes (especially within the artificial surfaces group) and some classes have mixed

LC/LU character aswell. Altogether there are 44 classes on level-3. The description of

the CLC classes has become more detailed during the last 20 years. These enhance-

ments have the main aim to further improve some of the class definitions or to discuss

certain special cases (Feranec et al. 2007), so the results of inventories are kept

comparable over time. The use of level-3 classes is obligatory in the European CLC
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Table 5.2 The standard CORINE Land Cover nomenclature

Level 1 Level 2 Level 3

1. Artificial

surfaces

1.1. Urban fabric 1.1.1. Continuous urban fabric

1.1.2. Discontinuous urban fabric

1.2. Industrial, commercial

and transport units

1.2.1. Industrial or commercial units

1.2.2. Road and rail networks and associated land

1.2.3. Port areas

1.2.4. Airports

1.3. Mine, dump and

construction sites

1.3.1. Mineral extraction sites

1.3.2. Dump sites

1.3.3. Construction sites

1.4. Artificial,

non-agricultural

vegetated areas

1.4.1. Green urban areas

1.4.2. Sport and leisure facilities

2. Agricultural

areas

2.1. Arable land 2.1.1. Non-irrigated arable land

2.1.2. Permanently irrigated land

2.1.3. Rice fields

2.2. Permanent crops 2.2.1. Vineyards

2.2.2. Fruit trees and berry plantations

2.2.3. Olive groves

2.3. Pastures 2.3.1. Pastures

2.4. Heterogeneous

agricultural areas

2.4.1. Annual crops associated with permanent

crops

2.4.2. Complex cultivation patterns

2.4.3. Land principally occupied by agriculture,

with significant areas of natural vegetation

2.4.4. Agro-forestry areas

3. Forest and

semi-natural

areas

3.1. Forests 3.1.1. Broad-leaved forest

3.1.2. Coniferous forest

3.1.3. Mixed forest

3.2. Scrub and/or herba-

ceous associations

3.2.1. Natural grassland

3.2.2. Moors and heathland

3.2.3. Sclerophyllous vegetation

3.2.4. Transitional woodland-scrub

3.3. Open spaces with

little or no vegetation

3.3.1. Beaches, dunes, sands

3.3.2. Bare rocks

3.3.3. Sparsely vegetated areas

3.3.4. Burnt areas

3.3.5. Glaciers and perpetual snow

4. Wetlands 4.1. Inland wetlands 4.1.1. Inland marshes

4.1.2. Peat bogs

4.2. Marine wetlands 4.2.1. Salt marshes

4.2.2. Salines

4.2.3. Intertidal flats

5. Water bodies 5.1. Inland waters 5.1.1. Water courses

5.1.2. Water bodies

5.2. Marine waters 5.2.1. Coastal lagoons

5.2.2. Estuaries

5.2.3. Sea and ocean
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datasets. However, there are many examples of more detailed (e.g. level-4, level-5)

national nomenclatures, where one or more of the standard level-3 classes are hierar-

chically subdivided (e.g. Estonia, Hungary, Portugal, Spain, Sweden, Turkey).

5.3 History of CORINE Land Cover

In its 25 year history, CLC has maintained its basic technical specifications

(e.g. nomenclature, geometric resolution (Heymann et al. 1994)), but the process

of technical implementation has significantly changed since its beginning.

The first CORINE Land Cover project (‘CLC1990’) was implemented in most of

the EU12 member countries in the 1990s, as well as in the 13 partner countries

in Central and Eastern Europe (EEA Task Force 1992). The nomenclature was

finalized during the project.

In CLC1990, ortho-correction was not routinely applied in producing the base

image map document for photo-interpretation. Today, with the availability of a DEM

with appropriate spatial and vertical resolution, ortho-correction of satellite imagery is

a standard process, providing higher geometric precision of the imagery. In CLC1990,

mapping technology entailed photo-interpretation by drawing manually on a plastic

overlay covering a 1:000.000 scale printout of a satellite image map (i.e. Landsat TM,

sometimes Landsat MSS). Drawings on the plastic overlay had to be digitized

manually to create the final database. The lack of ortho correction and the deformation

of the plastic often caused geometric distortion of the resulting land cover data.

In-situ (ancillary) data in CLC1990 were mainly topographic maps and black-and-

white photographs as hardcopy. Quality control and assurance were difficult tasks in

CLC1990 as the checking of photo-interpretation had to be carried out on the plastic

overlay.

Since the setting up of EEA in 1990 (EEC regulation 1210/1990), and the

establishment of the European Environment Information and Observation Network

(Eionet), EEA has had the responsibility of managing the CORINE databases.

The second CLC inventory was implemented within the ‘IMAGE&CLC2000’

project managed by the EEA and the Joint Research Centre (JRC). There were two

main aims with similar priorities: (1) produce an updated CLC database based on

lessons learnt during the 1st inventory with improved geometry (CLC2000) and

(2) derive a database of land cover changes (CLCC) between 1990 and 2000

(Büttner et al. 2004). In CLC2000 the technology of drawing on transparencies

was discarded, and fully replaced by computer-assisted photointerpretation (CAPI).

CLC2000 also included the removal of problems caused by the plastic overlay

applied in the first inventory. Bulk geometric mistakes were removed by polyno-

mial transformation or rubber-sheeting and residual geometric errors exceeding

100 m and coding mistakes were removed by editing. An additional step was to

generalise all polygons smaller than 25 ha. This was a heavy task in some countries,

where MMU <25 ha was applied systematically in CLC1990 (e.g. MMU ¼ 10 ha

in Belgium, resulting hundreds of <25 ha polygons). In some countries correcting

CLC1990 needed significantly more efforts than the subsequent updating.
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CLC2000 has provided the opportunity for mapping CLC changes. Majority of

countries first updated CLC1990 to CLC2000, then the two status layers were

intersected to derive CLCC. However, due to the different MMUs in CLC and

CLCC the result included lots of noise and false changes. Changes of objects having

size under the 25 ha MMU were naturally omitted by this method. A few countries

used the other way of update, where first changes were mapped then the new status

layer was produced in GIS (Maucha et al. 2004). This method was later selected as

the preferred method by the EEA. All in all CLCC database production for

CLC2000 was not homogeneous across Europe.

The third CLC inventory, ‘CLC2006’ (Steenmans and Büttner 2006), was the

result of EEA’s collaboration with the European Commission (EC) and the Euro-

pean Space Agency (ESA) on the implementation of the Fast Track Service on

Land Monitoring (FTS LM) in line with the communication: ‘Global Monitoring

for Environment and Security (GMES):2 From Concept to Reality’ (European

Commission 2005). The CLCC database was considered as the primary product,

and a uniform change mapping methodology was applied. Dual date satellite

imagery (SPOT-4/5 and IRS P6 LISS III) provided enhanced change mapping

capabilities. A significant increase in the number of participating countries took

place (Fig. 5.1). Some of the countries newly entering the project also produced

CLC2000 based on CLC2006 and CLCC(2000, 2006).

CLC2006 map of Europe

CLC2006

Missing data

Other countries

Prepared by ETC LUSI partner FOMI

European Topic Centre
Land Use and Spatial information

..

Fig. 5.1 Coverage of the CLC2006 inventory (Büttner et al. 2010)

2 GMES ¼ Global Monitoring for Environment and Security (named Copernicus since late 2012).
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At the time of CLC2006 scanned topographic maps and national coverages of

digital colour aerial photographs (ortho-photos) are commonly available. Thematic

maps, such as LPIS are also frequently accessible. Computer-assisted quality

control provides written, geo-located explanations regarding the problems and

supports harmonized production of the database all over Europe.

Data dissemination has also been improved. Since the second inventory

(CLC2000) data have had dual ownership (EEA and the country). Today CLC

data are freely accessible from EEA to any person or legal entity.

5.4 Components of CORINE Land Cover Inventories

In this chapter the commonalities regarding the major components of CLC

inventories are described (Table 5.3).

5.4.1 Satellite Image Acquisition and Processing

Satellite images to support CORINE Land Cover mapping are provided by ESA.

These image data sets are often referred to as IMAGE[year], where ‘year’ refers to

the characteristic year of the image acquisition period (e.g. IMAGE2006 was taken

in 2005–2007). These satellite images are also usually used for purposes other than

the CLC inventory. At the time of the first four CLC inventories, ESA did not have

its dedicated satellite(s) suitable for continental land monitoring, therefore ESA

established agreements with appropriate satellite image providers for image acqui-

sition. Since 2009, ESA is leading a federation of EO missions, named GMES

Space Component, which has the objective to ensure a comprehensive and sustain-

able supply of data from space-based observations in response to GMES Service

needs. The GMES Space Component provides harmonised access to data from

different EO sources, ensuring seamless access to different EO data coming from

Table 5.3 Typical work packages of a CORINE Land Cover inventory

WP Tasks NRC EEA ESA JRC Data & service providers

1.1 Satellite data acquisition o X o

1.2 Ortho-correction X o

1.3 Satellite image mosaic X o

2 In-situ data collection o X o

3.1 CORINE land cover change mapping X X

3.2 CORINE land cover production X X

4 Validation X

5 Data dissemination o X o

6 Project management X X o o o

X leading organisation, o organisation involved, NRC National Reference Centre, responsible for

CLC
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multiple missions including ESA, national and other third party missions

(GMES Space Component Data Access Portfolio, Data Warehouse 2011–2014).

ESA’s Sentinel-2 satellites, planned for launch in 2014 (http://en.wikipedia.org/

wiki/Sentinel_2) are expected to provide the primary data support for the fifth and

future CLC inventories.

Ortho-correction of satellite imagery is provided by service providers. A large

amount of imagery has to be processed (e.g. in IMAGE2006, a total of 2,416 SPOT

4&5 and 1283 IRS P6 images were ortho-rectified (Lima 2009)). The satellite image

mosaic is a general purpose product manufactured by using the pan-European

coverage of high spatial resolution satellite imagery. For instance, using

IMAGE2000 data the JRC has produced three types of mosaics: combination of

Landsat TM bands 321; 453; and 752 (RGB), which can be accessed via WMS

(http://image2000.jrc.ec.europa.eu/index.cfm/page/product_characteristics/p/p5).

5.4.2 In-Situ Data

The ortho-rectification of satellite imagery needs topographic information (Ground

Control Points, Digital Terrain Model). As this information can be reused in

subsequent CLC projects, new data collection is needed only for new participating

countries.

In CLC and CLCC mapping, which are implemented by national teams, highly

relevant in-situ data are provided by the countries. These valuable data are consid-

ered as in-kind contributions to the project. Digitized topographic maps, up-to-date

digital ortho-photos and ground survey are the most commonly used type of in-situ

information. For the semi-automatic production of CLC, data stored in national

land use databases (national Spatial Data Infrastructure) are of utmost importance.

On the other hand, Eurostat’s LUCAS projects (The Lucas survey 2003) providing

field based land use and land cover data and photographs in a regular grid are

examples of centralized in-situ data support.

5.4.3 CLCC Mapping and CLC Production

CORINE Land Cover Change (CLCC) mapping has been carried out since the second

inventory. CLCC is considered as the primary product since the third inventory. The

new CLC status layer is derived by adding together the CLCC and the old CLC status

layer. Photo-interpretation was applied by a majority of countries to derive the first

CLC status layer, as well as the CLC Change layer, because semi-automatic methods

were not considered mature enough to handle the large number of CLC classes in

the diverse geographic environment of Europe. However, in the Scandinavian coun-

tries and recently in Germany (Federal Environment Agency 2012) and in Ireland

(Irish National Project Plan 2011–2013) a combination of using land use data,
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regression estimation for forestry, image processing and/or generalisation have been

applied to yield semi-automatically producedCLC and to some extent CLCC. Change

mapping Guidelines (Büttner and Kosztra 2007) were designed to primarily support

the photo-interpretation approach because: semi-automated methods are not yet

widespread and their standardisation is difficult given the dependency on available

national input data.

5.4.3.1 Methodology of Change Mapping

The ‘change mapping first’ approach has been recommended to follow as a method

of deriving CLCC (Büttner and Kosztra 2007). The aim is to produce European

coverage of real land cover changes that:

• are larger than 5 ha and wider than 100 m;

• occurred between year1 and year2;

• reflect real evolution processes (e.g. urban sprawl, new forest plantation, forest

fire damage, new water reservoir).

Experts interpret CLC changes directly on screen, by comparing IMAGE_year1
and IMAGE–year2 data in a dual-window environment. The delineation of changes

must be based on CLC_year1 polygons in order to avoid creating sliver polygons

and false changes when producing a CLC_year2 database. An interpreter must give

two CLC codes to each change polygon: code_year1 and code_year2. These codes

must represent the land cover status of the given polygon in the 2 years, respec-

tively. A change code pair thus shows the process that occurred in reality (Fig. 5.2)

and may be different from the codes occurring on the CLC_year1 map and/or in the

final CLC_year2 map (due to generalization applied in producing CLC).

With the three variables: CLC_year1, CLC_year2 and CLCC(year1, year2), each

polygon can have either of these two statuses: valid (if >MMU) and not valid

(if <MMU), and in theory, 23 ¼ 8 different mapping cases can occur (Maucha

et al. 2004). A ‘technical change’ attribute has been introduced to be able to

delineate non-real ‘changes’ in cases when a land cover patch existed in year1, it

could not be mapped as a separate polygon due to the 25 ha limit in year1, and the

interpreter wished to include in the database in year2 (Büttner and Kosztra 2007). In

the course of change mapping, recognized mistakes of the old status layer have to

be corrected. This process yields a CLC_year1(revised) layer.

The main benefits of the ‘change mapping first’ approach are: (1) changes are

interpreted directly (the interpreter has to think about what the real process was);

and (2) all changes larger than 5 ha can be easily delineated regardless of their

geometric position (whether attached to an existing polygon or not). The weakness

is that some small (<5 ha) deficiencies in CLC_year2 cannot be avoided (Maucha

et al. 2004). Table 5.4 gives insight to the European CLCC (2000, 2006) database

(Büttner et al. 2010).
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Fig. 5.2 Change mapping example (Ireland). Coniferous forest (code ¼ 312) in 2000 (left) is
clearcut by 2006 (left). The loss of forest cover is characterized by the light color of the ground due
to the disappearance of crown cover. Forestry regulation protects forest cover by requiring

replanting after harvesting. The loss of forest cover is therefore temporary. The transitional

woodland area (code ¼ 324) will sooner or later be replaced by forest. This is the most widespread

change type in CLCC (2000, 2006)

Table 5.4 Some features of the CLCC(2000, 2006) Europe database (V15) (Büttner et al. 2010)

Total changed area: 70,824 km2

Part of Europe (without sea and ocean) that changed between

years 2000 and 2006

1,24 %

Number of change polygons 358,969

Number of change types occurring 935

Number of change types altogether providing 90 % of total

change area

73

Number of sporadic change types (each giving less than 0.1 %

of total change area)

853

Change types providing 50 % of total change area 312–324 24,547 km2

324–312 6,311 km2

311–324 5,729 km2

Largest change type in artificial surfaces classes 133–112 2,492 polygons

Largest change type in agriculture classes 231–211 3,210 polygons

Largest change type in forests and semi-natural classes 312–324 146,596 polygons

Largest change type in wetlands and water classes 412–324 1,017 polygons

Country with the largest amount of changes in CLCC(2000, 2006) Portugal (1,4 %/year)
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5.4.3.2 Change Mapping by Means of CAPI

Software developed by ESRI (ArcGIS and ArcView) were the most widely used

tools to support CLC change mapping by means of computer-aided photo-interpre-

tation (CAPI) technology. About half of the participating countries have used

InterChange software (Büttner et al. 2002b) running under ArcView 3.x to imple-

ment CLC2000 and CLC2006. For CLC2012 InterChange has been rewritten as a

stand-alone application (http://clc2012.taracsak.hu/). Its improved functionality

significantly facilitates updating, change mapping, quality control and the correc-

tion of CLC databases by means of CAPI.

5.4.3.3 Production of the New Status Layer (CLC_year2)

With the CLCC(year1, year2) database completed, CLC_year2 is generated through

an automated process:

CLC year2 ¼ CLC year1 revisedð Þ þð ÞCLCC year1; year2ð Þ

(+) means the following operation: revised CLC_year1 and CLCC(year1, year2)

databases are intersected, then CLCC(year1, year2) polygons’ codeyear1 is replaced

by codeyear2, and finally neighbours with similar code are unified. Small (<25 ha

MMU) polygons are generalized according to a priority table (Bossard et al. 2000).

Table 5.5 includes CLC2006 statistic for Europe.

The consequence of the above methodology (and eventually that of the different

MMUs) is that the difference (intersect) between two consecutive status layers

(e.g. CLC2000 and CLC2006) will differ from the corresponding CLCC layer

(e.g. CLCC(2000, 2006)). The magnitude of difference depends on the size distri-

bution of change polygons. If there are many changes in the size range of 5–25 ha,

the difference can be significant. If all changes were larger than 25 ha, then there

would be no difference (Fig. 5.3, (Büttner and Kosztra 2007)).

5.4.3.4 Semi-automatic Approaches Applied in CLC

Some countries have applied semi-automatic solutions to map CLC and CLCC. The

main aims of these solutions are to replace labour-intensive photo-interpretation,

increase accuracy and reproducibility and provide better compatibility with

national databases. The implementation of a semi-automatic approach heavily

depends on the type of LU/LC data available in the country. Brief overviews of

the methodologies are presented below.

In Finland, physics-based pre-processing of satellite images, classification of

stratified imagery, regression estimation for forestry parameters, visual interpretation,

integration of national land use data, and generalization of high-resolution national

data to European CLC are applied. Level-4 CLC nomenclature is used for national
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Table 5.5 CORINE Land Cover 2006 statistics for Europe (V15) (Büttner et al. 2010)

CLC

code Short class name

No. of

polygons

Area (km2)

level-3

Area (km2)

level-1

% of

total

111 Continuous urban fabric 6,041 6,727 214,938 3.75

112 Discontinuous urban fabric 140,338 153,544

121 Industrial or commercial units 31,193 23,710

122 Road and rail networks 3,224 2,568

123 Port areas 1,130 1,147

124 Airports 1,586 3,379

131 Mineral extraction sites 10,306 7,213

132 Dump sites 1,518 1,120

133 Construction sites 2,832 1,899

141 Green urban areas 4,650 3,099

142 Sport and leisure facilities 15,131 10,533

211 Non-irrigated arable land 180,133 1,216,467 2,441,791 42.65

212 Permanently irrigated land 9,666 81,841

213 Rice fields 969 8,074

221 Vineyards 20,314 40,441

222 Fruit trees and berry plantations 17,185 28,822

223 Olive groves 11,589 37,870

231 Pastures 184,484 395,863

241 Annual crops with permanent crops 5,492 9,563

242 Complex cultivation patterns 184,242 302,529

243 Agriculture land with significant natural

vegetation

242,572 287,390

244 Agro-forestry areas 6,286 32,930

311 Broad-leaved forest 195,289 549,314 2,784,970 48.64

312 Coniferous forest 175,634 741,147

313 Mixed forest 182,630 342,001

321 Natural grassland 67,968 208,283

322 Moors and heathland 42,309 163,149

323 Sclerophyllous vegetation 27,319 86,846

324 Transitional woodland-scrub 255,631 338,577

331 Beaches, dunes, sands 4,204 8,081

332 Bare rocks 17,040 90,667

333 Sparsely vegetated areas 56,825 239,253

334 Burnt areas 584 1,169

335 Glaciers and perpetual snow 1,711 16,484

411 Inland marshes 9,444 14,203 135,021 2.36

412 Peat bogs 58,575 104,624

421 Salt marshes 1,675 3,318

422 Salines 200 632

423 Intertidal flats 2,092 12,244

511 Water courses 2,109 13,584 148,520 2.59

512 Water bodies 49,931 126,495

521 Coastal lagoons 487 5,818

522 Estuaries 261 2,625

Total 2,232,799 5,725,240 5,725,240 100.00
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purposes with pixel-resolution (25 m). Forest and semi-natural areas and wetlands in

particularly have more thematic detail (CLC2000 Finland Final Report 2005). In

Iceland, data are provided by relevant national authorities and institutions. Several

classes are derived from remotely sensed data. Applied tools are: GIS harmonization

and generalization (CLC2006, CLC2000 and CLC-Changes in Iceland 2009).

Norway applies generalization and the merging of data from land resource maps

and national registers (Sjolbørg Flo Heggem and Strand 2010), (Aune-Lundberg and

Strand 2010). In Sweden, theme-wise classification of satellite imagery (interactive

thresholding or automatic classification), visual interpretation, forest classification

calibrated by National Forest Inventory data, and generalization of high-resolution

national data to European CLC are applied. Sweden has produced 58 level-6 classes

for national purposes (called SMD) with pixel-resolution (25 m) and MMU ¼ 1, 2, 5

or 25 ha (Engberg 2005). In the United Kingdom, the semi-automatic generalization

of national Land Cover Map (itself produced by a semi-automatic process) followed

by the interactive editing of results are the applied tools (Balzter et al. 2011).

5.4.3.5 Quality Control

An important element of CLC project management on behalf of EEA is quality

control of the work done by national teams. Usually two verifications are organised

in each country during a CLC inventory. The main aims of these missions are to

discuss progress with the team, check intermediate results, and give advice on the

application of nomenclature and mapping of changes. Verification procedures have

a corrective purpose with feedback from the team responsible for production. For

checking the CLC and the CLCC databases, dedicated software (InterCheck) is

used (http://clc2012.taracsak.hu/).

CLC2000 CLCC(2000,2006) Before generalization CLC2006

12 ha

10 ha

Fig. 5.3 The effect of generalization on producing the new status layer. A new construction site

(pink) and industry (lilac) on former arable land (yellow) are appearing next to a settlement (red).
In CLC2006, the construction site and industry polygons being below MMU (25 ha) are general-

ized into the existing settlement. The difference between CLC2000 and CLC2006 will not be the

same as CLCC, which shows real changes (Büttner and Kosztra 2007)
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5.5 Validation

The aim of validation is to give information on product quality. Validation needs to

be done on independent EO data, not used in the course of mapping. Validation data

should have higher spatial resolution than that used for mapping. Eurostat LUCAS

data (The Lucas survey 2003) fulfilled these requirements and were used to validate

CLC2000 (Büttner and Maucha 2006). Two approaches were used: (1) reinterpreta-

tion of IMAGE2000 around LUCAS sampling points based on LUCAS codes and

field photographs (Fig. 5.4); and (2) automatic comparison of CLC2000 codes with

LUCAS LU and LC codes. The main result of the reinterpretation approach showed

that the overall reliability of CLC2000 was 87.0 � 0.8 %, i.e. the 85 % specified

accuracy requirement was fulfilled. The result of the automatic comparison showed

that agreement between CLC2000 and LUCAS LU/LC was 74.8 � 0.6 %. This

lower accuracy was attributed to the resolution difference between the two datasets.

The highest class-level reliability (> 95%) was obtained for rivers (511), lakes (512),

industrial and commercial units (121) and discontinuous urban fabric (112). The

analysis revealed that the subjectivity of photo-interpretation could be noticed in

18.2 % of the samples. The most subjective CLC classes were as follows: agriculture

with significant amount of natural vegetation (243), transitional woodland, shrub

Fig. 5.4 Validation of CLC data by means of LUCAS (Büttner and Maucha 2006). The CLC code

had to be estimated around the yellow dot over the satellite imagery, by using LUCAS field

photographs (right) and LU/LC codes obtained on the field (red codes) (example is from Belgium.)
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(324), complex cultivation patterns (242) and mixed forest (313). The lowest class-

level reliability (below 70 %) was obtained for the sparse vegetation class (333).

Stratified random sampling was used for validating the CLCC(2000, 2006)

database. This was the first change validation effort in the history of CLC (Büttner

et al. 2011). The exercise proved to be difficult because the amount of

CLC-Changes was small (Table 5.4). Therefore a special sampling strategy was

applied: 100 sample points were selected from inside each of the 25 level-1 change

types, thus representing the whole change polygon population. The obtained

87.8 � 3.3 % overall accuracy (calculated using commission errors only) based

on 2,405 samples is satisfactory. The omission error was not possible to measure

due to the very large sample size that is required. The large number of participating

countries made it unrealistic to collect very high spatial resolution orthophotos or

satellite imagery and even topographic maps for the purposes of validation. There-

fore validation was executed through the re-interpretation of IMAGE2000 and

IMAGE2006, supported through the use of Google Earth imagery. 17 of the

25 change type groups showed accuracy higher than 85 %, 13 types of which had

accuracy higher than 90 %, including the largest level-1 change class (i.e. internal

changes in forest and semi-natural vegetation). Significant change types with

accuracies below 85 % were: (1) forest/semi-natural area changed to agriculture;

and (2) artificial area changed to forest/semi-natural cover (e.g. reclamation of

mineral extraction sites).

5.5.1 Data Dissemination

Most of the countries participating in CLC have an internal data dissemination

service, which distributes data in national projection. Table 5.6 presents the dis-

semination of European CLC data by the EEA Data Service (http://www.eea.

europa.eu/data-and-maps/find/global#c12¼Corine+Land+Cover).

Rights of use are explained through EEA standard re-use policy (http://www.eea.

europa.eu/data-and-maps/find/global#c12¼Corine+Land+Cover), which states that,

unless otherwise indicated, re-use of content on the EEA website for commercial or

Table 5.6 The European

CORINE Land Cover

products, distributed by EEA

(Version 15)

Products Type Characteristics

CLC1990 Raster 100 and 250 m grid

CLC2000 Raster 100 and 250 m grid

CLC2006 Raster 100 and 250 m grid

CLC2000 Vector by CLC codes, 44 classes/files

CLC2006 Vector by CLC codes, 44 classes/files

CLCC(1990, 2000) Vector

CLCC(1990, 2000) Raster 100 m grid

CLCC(2000, 2006) Vector

CLCC(2000, 2006) Raster 100 m grid

Projection: ETRS89 LAEA (EPSG: 3035)
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non-commercial purposes is permitted free of charge, provided that the source is

acknowledged (http://www.eea.europa.eu/legal/copyright). The copyright holder is

the European Environment Agency.

5.6 CORINE Land Cover 2012

The fourth CLC inventory (CLC2012) is implemented as part of the GMES3 Initial

Operations (GIO) initiated by DG ENTR of the European Commission. The

coordination of the GIO land monitoring is delegated to EEA for implementation

(REGULATION (EU) No 911/2010). At the time of writing of this article the

project was in the start-up phase. The ESA Data Warehouse (GMES Space Com-

ponent Data Access Portfolio 2011–2014) provides a satellite image catalogue and

download system for all GMES-related activities, including CLC2012. Two satel-

lite image coverages have been acquired (primarily IRS/ResourceSat LISS III

and RapidEye) in 2011–2012. Gap filling is targeting those areas which were

not covered by imagery during the planned 2 year image acquisition period.

The technical implementation of CLC2012 will be similar to the CLC2006 inven-

tory. Majority of countries will apply CAPI technology mapping the CLCC layer

first. Germany (Federal Environment Agency 2012) and Ireland (Irish National

Project Plan 2011) joined the Scandinavian countries by applying a semi-automatic

methodology based on the integration of existing land use data, satellite image

processing and generalization.

39 European countries, covering an area of approximately about 5.8 Mkm2 plan

to participate in CLC2012:

• All EU27 countries (members of EEA as well): Austria, Belgium, Bulgaria,

Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece,

Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands,

Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United

Kingdom;

• All other EEA member countries: Liechtenstein, Iceland, Norway, Switzerland,

Turkey;

• EEA cooperating countries: Albania, Bosnia-Herzegovina, Croatia, the Former

Yugoslavian Republic of Macedonia, Kosovo under UNSCR 1244/99,

Montenegro.

Results are expected by the end of 2014.

3GMES ¼ Global Monitoring for Environment and Security (named Copernicus since late 2012).
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5.7 Future of CORINE Land Cover

The main criticism against CLC is that: (1) the MMU is large, and databases are not

spatially detailed enough; (2) the nomenclature consists of land cover and land use

classes; (3) some of the classes (e.g. mixed agriculture) are difficult to translate to

other systems, e.g. the LCCS (Land Cover Classification System) (Herold et al.

2009); and (4) CLC data cannot be used for statistical comparison with other surveys

(Sjolbørg Flo Heggem and Strand 2010).

There are two on-going activities that pave the way towards future of European

landmonitoring: EAGLE (Eionet ActionGroup onLandmonitoring in Europe (http://

sia.eionet.europa.eu/EAGLE/#Activities)); and HELM (Harmonised European Land

Monitoring) FP7 project (http://www.umweltbundesamt.at/ms/fp7helm/fp7helm_

home/?zg=). EEA encourages building the European Land Monitoring System on

national and sub-national land monitoring systems, i.e. an improved bottom-up

solution. Countries would like to have a long-term European plan to harmonise

national programmes with the European one. The GIO land project (REGULATION

(EU) No 911/2010), having the high-resolution layers (HRL) component (Impervi-

ousness density, Tree Cover density, Forest Type, Permanent grassland, Wetland and

Water) and the CLC component, is the first step towards integration of theme-wise

high spatial resolution information and landscape level mapping provided by CLC.

This gives the possibility of populating CLC polygons with more precise land cover

information (Fig. 5.5).

Fig. 5.5 Comparison of HRLs and CLC. (a) Imperviousness density; (b) Tree Cover density;

(c) Integrated High Resolution Layers (Imperviousness, Forest Type, Grassland, Wetland and

Water; (d) CORINE Land Cover (example is from Hungary)
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5.8 Conclusions

CORINE Land Cover (CLC) was specified to standardize data collection on land in

Europe to support environmental policy development. Since the late 1980s, three

European CLC inventories have been realised (timed around 1990, 2000 and 2006).

The 4th inventory recently commenced, as part of the GIO land (GMES/Copernicus

Initial Operations Land) project. The number of participating countries has been

increasing – currently 39 with a total area coverage of 5,8 Mkm2. The project is

mainly co-financed by the European Commission and participating countries and

implemented by national teams under the management of EEA.

Ortho-corrected high spatial resolution satellite images (Landsat TM/ETM in the

past, IRS, SPOT, RapidEye recently, and Sentinel-2 in the future) provide the

geometrical basis for mapping. Multitemporal imagery improves the accuracy of

classification. In-situ data (topographic maps, ortho-photos, and ground survey

data, etc.) are essential ancillary data.

The basic technical parameters of CLC (i.e. nomenclature, minimum mapping

unit and minimum mapping width) have not changed since the beginning of the

project; therefore the results of the different inventories are comparable. The

method of mapping has, however, changed significantly. Working on plastic over-

lay in the 1990s’ was fully replaced by computer assisted photo-interpretation.

Nowadays semi-automatic methodologies are introduced in order to (1) replace at

least in large part the labour-intensive photo-interpretation (2) increase reproduc-

ibility and objectivity, (3) build upon national inventories including a higher

resolution national land cover database or (4) produce higher resolution national

land cover data parallel with European data.

Two European validation studies have shown that the achieved accuracy is

above the specified minimum accuracy of 85 % for CLC, as well as for CLCC.

Results of the CLC inventories can be downloaded from the EEA Data Service free

of charge for all users.

An increased use of semi-automatic solutions in replacement of photointerpre-

tation is expected in future CLC inventories. National land monitoring programmes

will be harmonised with the European CLC by translating LC/LU information

between different nomenclatures (http://sia.eionet.europa.eu/EAGLE/#Activities).

One of the proposed ways to increase the value of CLC in the future is to

populate landscape level objects of the CLC database with high spatial resolution

land cover information. The GIO land project is making the first steps towards this.
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Maucha G, G Taracsák, G Büttner (2004)Methodological questions of CORINE Land Cover change

mapping. In: Proceedings of the 2nd international workshop on the analysis of multi-temporal

remote sensing images, MultiTemp-2003 workshop. World Scientific Publishing Co., Singapore,

pp 302–313

REGULATION(EU)No911/2010of theEuropeanParliament and of theCouncil of 22September 2010

on the European Earth monitoring programme (GMES) and its initial operations (2011 to 2013)

http://www.google.com/search?q¼EU+Regulation�%28EU%29�n%C2%B0911%2F2010

5 CORINE Land Cover and Land Cover Change Products 73

http://www.eproceedings.org/static/vol03_3/03_3_buttner2.pdf
http://gmesdata.esa.int/web/gsc/dap_document
http://gmesdata.esa.int/web/gsc/dap_document
http://nofc.cfs.nrcan.gc.ca/gofc-gold/Report%20Series/GOLD_43.pdf
http://nofc.cfs.nrcan.gc.ca/gofc-gold/Report%20Series/GOLD_43.pdf
http://www.google.com/search?q=EU+Regulation%C2%B1%28EU%29%C2%B1n%C2%B0911%2F2010
http://www.google.com/search?q=EU+Regulation%C2%B1%28EU%29%C2%B1n%C2%B0911%2F2010
http://www.google.com/search?q=EU+Regulation%C2%B1%28EU%29%C2%B1n%C2%B0911%2F2010
http://www.google.com/search?q=EU+Regulation%C2%B1%28EU%29%C2%B1n%C2%B0911%2F2010


Sjolbørg Flo Heggem E, Strand G-H (2010) CORINE Land Cover 2000. The Norwegian

CLC20000 project. Report from the Norwegian Forest and Landscape Institute, 10/2010
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Chapter 6

European Area Frame Sampling Based

on Very High Resolution Images

Marek Banaszkiewicz, Geoffrey Smith, Javier Gallego,

Sebastian Aleksandrowicz, Stanislaw Lewinski, Andrzej Kotarba,

Zbigniew Bochenek, Katarzyna Dabrowska-Zielinska, Konrad Turlej,

Andrew Groom, Alistair Lamb, Thomas Esch, Annekatrin Metz,

Markus Törmä, Vassil Vassilev, and Gedas Vaitkus

6.1 Introduction

A sampling frame is a representation of a population to be sampled. If it consists of a

set of geographic units, it can be called an Area Sampling Frame (Faulkenberry and

Garoui 1991). Spatial sampling, also called Area Frame Sampling (AFS) is used in

many fields as an alternative to list frame sampling. For environmental estimates it

becomes an essential tool (Stein and Ettema 2003; de Gruijter et al. 2006). In

particular it is important to infer information about land characteristics in the whole
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investigated area (e.g. land cover or land use). Two fundamental techniques of data

acquisition for land use or land cover estimation are field inspection and remote

sensing. The advantage of the first one is that a well trained surveyor can unambig-

uously determine a (large) number of parameters, perform in-situ measurements and

collect samples for further analysis in a specialized laboratory. Remote sensing, on

the other hand, can provide uniform data from large areas, but the collected infor-

mation will be less thematically detailed. The decisive factor in choosing one

approach or another is the cost to benefit assessment.

An AFS scheme can be either random or systematic. There are several examples

of AFS that have been employed on national, continental and global scale. The UK

Countryside Survey is a prime example where a clearly thought out strategy to AFS

design has consistently produced useful results and has been able to adapt to

changing political requirements over 30 years. Apart from these random schemes,

two systematic approaches should be mentioned: Firstly, the Land use/cover area

frame survey (LUCAS) was designed to collect agricultural and environmental data

and photographs by field observation of a specific geographically referenced point

to obtained harmonized information across the European Union (EU) about land

cover (LC) and land use (LU) (Gallego and Delincé 2010), and secondly, FRA2010

a FAO survey of forests, that considers a non-stratified systematic sample of

20 � 20 km in geographical coordinates. Each site is located on the intersection

of integer-valued meridian and parallel (Eva et al. 2010).

The Seasonal and Annual Change Monitoring Service (SATChMo) is one of

three Core Mapping Services (CMS) developed in geoland2 project. It is focused on

LC/LU change detection on annual and seasonal time scales and comprises four
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different groups of products: (i) AFS Europe based on very high spatial resolution

(VHR,<5 m) images acquired annually, the subject of this chapter, (ii) AFS Africa,

dedicated to change detection in LC in sub-Saharan Africa in 5 year intervals; the

high spatial resolution (HR, 20–30 m) Landsat-type data are collected on a regular

grid, (iii) seasonal vegetation changes and annual crop area estimates based on

medium spatial resolution (MR ~300 m)/HR images, and (iv) global land cover

change indicators derived from MR multi-temporal data series. The product groups

are linked through change detection methodology.

This chapter deals with the AFS Europe products only. It starts with the descrip-

tion of AFS objectives and presents the design of the sampling scheme tailored to the

amount of available VHR data. Next, the classification scheme and algorithm are

shown, the production chain including product validation is described and the results

of a statistical analysis are given. The following section is dedicated to the change

detection method deployed by SATChMo and shows first results of the chosen

approach. The chapter is concluded with a preliminary assessment of the developed

products and with presentation of possible downstream products that can be derived

from the AFS Europe output data.

6.2 AFS Objectives and Design

The SATChMo AFS scheme was designed after a careful analysis of possible

solutions, taking into account the following issues: (i) shall a random sampling of

test sites across Europe be preferred over a systematic sampling on a pre-defined

grid, (ii) will it be beneficial to introduce strata for instance urban or coastal areas,

(iii) how to define the size of the sample unit (single site), and (iv) how to assess the

statistical accuracy of the area or the area change estimators.

For the first issue, there is a large amount of literature showing that in cases when

the spatial correlation is a decreasing function of the distance, the systematic

sampling with a random starting point is superior to random sampling (Cochran

1977; Bellhouse 1988). This is true in particular for land cover data obtained from

remote sensing (Dunn and Harrison 1993). The systematic sampling performs well,

because it ensures a good spatial distribution of the samples. Its main drawback is

that there is no unbiased estimation of the variance. The usual formulas, valid for

random sampling, overestimate the variance if applied to systematic sampling, but

alternative formulas based on local variances can be introduced to substantially

reduce the bias (Wolter 1984). A more significant drawback of the straightforward

systematic sampling is the difficulty of accommodating the sample size to the

available budget without rerunning the whole design process (Stehman 2009). For

SATChMo a version of systematic sampling based on multiple replicates was used

that keeps the good spatial distribution and subsequent standard error reduction and

is quite flexible to accommodate sample size changes. The scheme is very similar to

the one used for the Eurostat LUCAS 2006 survey (Gallego and Delincé 2010).

When considering stratification, the original design of SATCHMO supported

requirements of other geoland2 services as well as the need to complement the
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LUCAS survey and address European Environment Agency (EEA) issues. The

strata were defined as:

• High lands: Defined as the set of sites with more than 50 % above 1,200 m above

sea level. This stratum was chosen to enhance the collaboration with LUCAS,

since LUCAS excludes the field visits in points above 1,200 m.

• Euroland: Sites with more than 50 % in Euroland sites (Kuntz et al. 2014 &

http://www.gmes-geoland.info/fileadmin/geoland2/redakteur/pdf/

Project_Documentation/User_Requirements/

g2_EL-RP-D_EL010-1_UserRequirements_I1%2000.pdf)

• Urban Atlas: Sites that intersect some of the Large Urban Zones covered by the

GMES Urban Atlas (http://www.eea.europa.eu/data-and-maps/data/urban-atlas)

• Coastal areas: Sites that touch a 10 km buffer of the coast. This stratum and the

Urban Atlas stratum were considered because more important land cover

changes are expected in these areas.

• Cyprus and Malta: Countries not covered by LUCAS survey.

• Other areas: The remaining area not covered by the above strata.

The choice of the size of sampling unit (area) should be done based on two main

criteria: obtained coefficient of variation and effective cost of processing including

data acquisition. The first one favors smaller units, the other larger ones.

The main constraint to be considered is that sampling units should be compatible

with VHR images. Most VHR images have a size between 10 km � 10 km and

20 km � 20 km. However the range is larger if we include in the VHR category

SPOT super-mode images with 2.5 m resolution. The assessment of these criteria

can be done with the help of CLC (CORINE Land Cover, JRC-EEA 2005) as

pseudo-truth. This allows simulating and comparing any type of sampling scheme,

although the behavior of CLC is not quite the same as the behavior of land cover

observed on the field.

A way of assessing the size that optimizes the cost-efficiency is considering a

cost function of the type C ¼ α + βn + nγs ¼ α + n(β + γs), where C is the total

cost, α is the fixed cost (management, etc) that has no influence at all on optimi-

zation, n is the number of sites, β is the part of the cost per site that approximately

does not depend on the site size (image ordering and reception, correction, etc.), s is
the area of each site (we express it in number of 10 � 10 km units) and γ is the

marginal cost when s increases by one unit. γ has a relatively high value in the case
of visual photo-interpretation. In this case smaller sites (e.g. 10 � 10 km) are more

efficient. If image processing is mainly automatic, γ has a lower value and larger

sites (e.g. 30 � 30 km) are more efficient.

The efficiency of a sampling site can be measured in terms of “equivalent

number of points”. A value Q for the equivalent number of points means that

n sites are equivalent to nQ unclustered points. It can be proved that Q � 1=ρM,
where ρM is a weighted average of the spatial correlation between points inside the

same site (Gallego 2011; Gallego and Stiebig 2012).

Both approaches lead to the same conclusion. Table 6.1 illustrates some results

of the simulations with sites of 10 and 30 km compared with the sampling accuracy
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of LUCAS 2006 for some land cover classes (first rows) and changes (last rows).

For major land cover classes, the sampling error of a VHR-image based sample is

much higher than the sampling error of LUCAS. Even if this table does not include

a cost analysis, it shows and it will be difficult for an image-based approach to be

competitive with field visits in the EU, except in the areas with difficult access, such

as mountains. The situation is radically different for land cover change: even if the

Coefficients of Variation (CV) shown by the table look modest, they would be a

major contribution in a field in which field surveys still have major problems,

mainly because it is very difficult to distinguish between real land cover changes

and fake changes due to location errors or different interpretations of the nomen-

clature by different surveyors. These simulation results lead to some suggestions:

• SATCHMO should focus on land cover changes as the first priority, although the

land cover status remains an important target.

• For land cover status, the sampling scheme should give priority to areas with

difficult access.

• If the image analysis is mainly automatic (small value of γ) and the acquisition

of large images is feasible, they are more cost-efficient than small sites.

Based on above mentioned analysis the original design of AFS Europe com-

prised 350 sites of 30 � 30 km to be imaged by SPOT with 2.5 m spatial resolution.

This original design had to be changed when the number of scenes to be acquired

was reduced to 198 due to logistic reasons and the SPOT sensor was replaced by the

Kompsat-2 system. The smaller number of scenes was split in only 3 strata: urban,

high altitude and other. However, even this scheme did not survive the confronta-

tion with the acquisition offer and finally a set of 114 sites were selected to be

imaged by Kompsat-2 15 � 15 km scenes taken in 2009. Most of the sites were

located in the spots, where 198 sites were chosen, but some were taken in neigh-

boring locations (Fig. 6.1).

Table 6.1 Sampling accuracy for area estimation of some land cover classes and changes

Coefficient of variation (CV)

100 images

10 � 10 km (%)

100 sites

30 � 30 km (%)

LUCAS2006

(11 countries) (%)

Based on CLC2000 Artificial 17.4 11.2 1.1

Arable rainfed 9.5 7.1% 0.4

Arable irrigated 63.6 45.1 1.9

Forest 9.7 7.5% 0.45

Shrubland 18.0 13.0 1.35

Based on changes

CLC1990–2000

New artificial 30.8 20.5

New agriculture 49.1 28.0

Agricultural

abandonment

35.6 20.1

Other changes 22.1 16.4
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6.3 Classification

The land cover classification algorithm was developed at the Institute of Geodesy

and Cartography (IGiK) with certain elements delivered by Infoterra UK. The

classification approach was prepared for the discrimination of ten generic land

cover classes that correspond to main land cover types in Europe and could be

recognized by relatively automated processing independently of the date (season)

when the images are acquired. Incidentally, the proposed classes are very similar to

several Level 1 classes used in LUCAS (Table 6.1).

The algorithm was developed as a generic tool for processing VHR images.

Since the main type of SATChMo acquired images were from KOMPSAT-2, the

algorithm was tailored to cope with this kind of data and later extended to include

FORMOSAT-2 images. Both sensors provide a panchromatic channel and four less

spatially detailed multispectral channels (blue, green, red, infrared). The spatial

resolution of the two image types were not the same; Kompsat-2(1 m for PAN, 4 m

for MS data) and FORMOSAT-2 (2 and 8 m, respectively).

The main difficulty was to develop a solution that was effective for images

throughout the whole of Europe. As a result of the research study a semi-automatic

object-oriented method, based on eCognition software was prepared for the opera-

tional mapping. The algorithm has been named SATChMo-K2 (Lewinski et al. 2010).

Fig. 6.1 Distribution of 198 planned sites (green rectangles) and 114 acquired sites (rectangles
with red lining)
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The basic feature of the algorithm is the assumption that agricultural areas and

water class are characterized by low values of the texture while the remaining classes

are associated with high texture values (de Kok and Wezyk 2008). Division of the

content of images on high and low texture is made on the basis of panchromatic

channel processed by Sigma filters. All classification steps are executed sequentially

and the whole process was divided into four main stages: (1) division of study area

into two object groups, first group characterized by high texture and the second by

low texture measures; (2) classification of high texture group, including urban/

artificial class, forests/woodland/trees, sparse woody vegetation and bare

non-cultivated ground; (3) classification of low-texture group, comprising agricul-

tural areas, grasslands, snow and ice (if existing) and water; (4) re-classification of

existing classes to refine classification output. The individual classes are identified on

the basis of distinguishing features of panchromatic and multi-spectral data. The only

class that is not classified directly is “agriculture areas”. These areas are classified at

the end as non-classified to the other classes. This procedure helped to avoid the

complicated process of identification of various forms of agriculture, which occur in

Europe.

Out of the ten land cover classes three are not classified automatically. To this

group belong grasslands, other vegetation and clouds. Grasslands are not classified

because it is impossible to distinguish them using just one satellite image and

additionally when the time of an image acquisition could be unrelated to the

whole vegetation period.

The classification process has been developed within object-oriented eCognition

software environment using the “architect” interface with the support of Infoterra

UK. The classification is performed interactively by an operator, who has access to

selected functions, however most of discrimination rules are hidden and all param-

eters of segmentations are predefined and fixed.

The last steps of classification process concerns generalization and manual

editing. According to assumptions applied to land cover maps in SATCHMo,

MMU was set to 0.25 ha. The operator has access to handy tools which allow to

correct the automated results. The classification interface including tools for man-

ual editing was prepared in collaboration with Infoterra UK. The final results are

exported to raster and vector files. Implemented functions allow the saving of

classification parameters to allow them to be used on subsequent scene of a similar

landscape type. Thanks to this feature, classification of images representing similar

geographical regions can be perform automatically or only some minor modifica-

tions are required.

The total number of scenes acquired from June 2009 to June 2010, the baseline

interval for classification and later change detection, amounted to 114. The images

were distributed among five production teams that processed them using the

common SATChMo-K2 tool. The images selected for processing by each team

belonged to a geographically uniform part of Europe.

The classical method of product validation was employed, i.e. 500 points were

randomly chosen on each images and interpreted by an operator. In that way the

error matrix was generated for each image. The designed accuracy of the product
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was set to 85 % and the products (maps) that did not pass this threshold were

considered as wrongly classified and were corrected. Three examples of products

from UK, Poland and Greece are shown in Fig. 6.2.

Overall accuracy of products is 89 % (Fig. 6.3), with 21 sites not reaching the

threshold (85 %). The preliminary statistical analysis of the classification products,

provided on the assumption that the sites are chosen randomly, gives the results

presented in Table 6.2. However, due to the problems with data acquisition that

resulted in uncontrolled choice of scenes with respect to the designed pattern, the

statistical analysis will be repeated using classes from CLC data base as

co-variables (Table 6.3).

The estimated class LC proportion was calculated by simple average over the

total number of sites. For calculating the coefficient of variance of the Class

Estimator a bootstrapping method was employed. Specifically, 500 replicas were

randomly generated from the original 114-site sample. The obtained CV can be

improved by applying regression method with CLC proportions as a covariable.

Fig. 6.2 Examples of land cover classification for three different sites: UK (mixed agriculture,

top left), Poland (agriculture, top right), Greece (mixed, near Thessaloniki, bottom left)
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Fig. 6.3 Accuracy of validated land cover classification for 116 images. The overall accuracy

amounts to 89 %

Table 6.2 Comparison of SATChMo and LUCAS classes

Class

no SATChMo nomenclature

LUCAS

nomenclature

1. Urban and artificial areas ARTIFICIAL

LAND

2. Bare non-cultivated ground; soils, rock, sand dunes, dry lake beds,

inter-tidal mud, rock, soil, sand dunes and, Inter-tidal mud

BARE LAND

3. Water WATER

AREAS

4. Snow and ice

5. Agricultural areas; irrigated and non-irrigated Arable cropped areas,

permanent crops (orchards, vineyards, olive trees), pastures and

set-aside fallow land

CROPLAND

6. Forest/woodland/trees; broadleaf and coniferous trees WOODLAND

7. Sparse woody vegetation; shrubs and bushes SHRUBLAND

8. Grassland GRASSLAND

9. Other vegetation; moorland, reed beds, saltmarsh and other not specified

vegetation

10. Unclassified; clouds and clouds shadows, voids
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6.4 Change Detection

The approach of the AFS Europe team was to make a survey of existing change

detection methods, choose the most appropriate and efficient one concerning the

product requirements, modify it to the point when automatic processing is

guaranteed and the manual corrections are reduced to minimum, and, finally, cast

it into the form of a ready-to-use eCognition-based tool.

After a careful analysis of methods available in the literature the Multivariate

Alternate Direction (MAD) transform was chosen as a baseline (Nielsen

et al. 1998). If multispectral images of a scene acquired at times t0 and t1 are

represented by random vectors X and Y, which are assumed to be multivariate

normally distributed, the difference D between the two images is calculated by

D ¼ aTX � bTY (Nielsen et al. 1998). Analogously to a principal component

transformation, the vectors a and b are sought subject to the condition that the

variance of D is maximized and subject to the constraints that var(aTX) ¼ var

(bTY) ¼ 1. Determining the vectors a and b in this way is a standard statistical

procedure which considers a generalized eigenvalue problem. For a given number

of bands N, the procedure returns N eigenvalues, N pairs of eigenvectors and

N orthogonal (uncorrelated) difference images, referred to as to the MAD

components.

The Iteratively Reweighted Multivariate Alteration Detection (IR-MAD)

method (Nielsen 2007) for detecting the change makes a step forward with respect

to the standard MADmethod and first calculates the ordinary canonical and original

MAD variates to assign different weights to the observations in the following

iteration steps. Small changes get a higher weight than bigger changes. This allows

delimiting regions in which changes occur from regions without changes. Iterations

are performed until a defined termination criterion is reached.

Table 6.3 Statistics of LC classes obtained from 107 images

Class no Class description

Estimated class LC

proportion

Relative standard error

(CV) (in %)

No of images

with LC class

1 Urban impervious 0.05466 15.0 107

2 Bare non-cultivated

ground

0.01547 27.5 107

3 Water 0.02772 21.8 103

4 Snow and ice 0.00194 51.3 12

5 Agricultural areas 0.41052 7.0 107

6 Forest/woodland/trees 0.28194 7.8 107

7 Sparse woody vegetation 0.14292 13.2 107

8 Grasslands 0.02582 18.9 81

9 Other vegetation 0.02763 28.4 69

10 Cloud, voids etc. 0.01139 30.8 63
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The main advantages of this approach are: (i) radiometric normalization of

images is not necessary, (ii) the method is very sensitive to changes, hence it rarely

happens that changes are missed. The main drawback is that MAD generates alarms

that do not correspond to land cover changes but rather to seasonal variations. To

improve the algorithm in these points two additional characteristics were intro-

duced in processing of a pair of images from different dates: NDVI and texture.

Both of them improve the detection of real thematic (i.e. not seasonal) changes.

SATChMo change detection algorithm is suitable tool for the analysis of VHR

satellite images. Two sets of data from periods: T1 and T2 constitute the input to the

algorithm. Each set consist of four multispectral channels (blue, green, red and near

infrared) and a panchromatic channel. In addition, the algorithm uses the classifi-

cation made for the time T1 using Satchmo-K2 algorithm, and the results of the

IR-MAD transformation (Nielsen and Canty 2005).

The main part of the algorithm, based on the MAD transformation, was devel-

oped by the Space Research Centre of Polish Academy of Sciences (SRC PAS) and

next complemented with functions for identifications the direction of changes

proposed by IGiK.

The algorithm for change detection is a three-stage approach. In the first step, the

high spatial resolution data: from the time T1 and T2, the T1 classification result

and the result of the IR-MAD transformation consisting of four components and χ2
layers should be entered into the algorithm. Then additional layers, such as texture

layers created using the Lee-sigma filter, as well as the Normalized Difference

Vegetation Index (NDVI) layers, are generated. They allow for filtering of changes

occurring in vegetation, which are recognized by the MAD algorithm. According to

the design goal of the algorithm (which is the maximum automation of the process),

the thresholds distinguishing the occurrence of changes in the individual layers are

automatically generated using statistical values, or, if it is not possible, with the use

of T1 classification. The process results in the creation of the mask of changes,

which is then used to identify the type of change.

In parallel information on change directions (types of change) is created. The

process of detection of change directions starts from scene segmentation, based on

original image data (multispectral + panchromatic) and on thematic classification

of image from T1. After obtaining homogeneous objects first classification is

performed, which divides image into two process groups: re-vegetation and

de-vegetation. The criteria of determination of these two groups are based on

NDVI thresholding. Next, in order to delineate anthropogenization group, a feature

for extracting built-up areas is applied. As a result of this two-stage procedure final

map containing three classes of change directions is produced. This information is

inserted into the mask of general changes, produced at first stage of algorithm. The

areas not detected as changes but still marked as change directions, subject to

further discrimination of changes of land cover types. Next both thematic layers

are combined using a union procedure to create resultant map of change types and

directions. This map is verified and corrected with the use of the tool for manual

editing, prepared specially for land cover change method. As a result of the whole
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workflow three outputs are produced: map of change directions, map of change

types (all possible combination of ten classes) and classification map for T2.

The map of change directions, in conjunction with land cover classification map

produced for T1, determined some changes in land cover types, especially those

manifesting in urbanization process. The validation method, elaborated by the

Remote Sensing Application Center in Bulgaria, is based on the LPIS Quality

Assurance developed at the EU Joint Research Centre (JRC) and it consists of:

(i) generation of a sample of randomly selected objects (items of inspection or

inspection units) from the change product, (ii) evaluation of the selected objects

(inspection units) in respect of the correctness of the “change/no change” status

they represent, (iii) analysis of observations and assessment of change direction in

reference to producer’s values. Three different metrics were introduced to quantify

the validation process: (i) Difference between the total area changed for the whole

scene, as reported by the inspection and the total area changed for the whole scene,

as reported by the change product (acceptance threshold is 15 %), (ii) Number of

erroneously classified inspection units – separately for the two types (change and no

change), (iii) Histogram of the erroneously classified inspection units in relation to

the land cover found. An example of the change detection processing is shown in

Fig. 6.4.

Fig. 6.4 An example of change detection processing performed on eCognition platform. Top:
images acquired at dates T0 and T1. Bottom left: change detected automatically, bottom right:
change accepted manually. Automatically detected changes (red patches in the bottom left panel)
are assessed by the operator as real (new building in the middle) or seasonal (agricultural parcels in
the left). Only the first one is accepted in the final change/no change map (bottom right)
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6.5 Conclusion

The Area Frame Sampling based on VHR images on continental scale (Europe) was

developed by the SATChMo team in the framework of geoland2 project. The three

main elements of the whole processing chain comprise:

1. Development of the cost-optimal sampling scheme that takes into account

available resources (cost of acquisition + processing time) as well as the

expected outcome (statistics of LC and land cover changes (LCC) classification),

2. Semi-automatic classification algorithm for VHR images that generates ten

classes for any image acquired during a snow-free season and gives good

accuracy reaching on an average 88 %,

3. Change detection algorithm that is based on the MAD method employed for

multispectral VHR images but uses also NDVI and texture to eliminate seasonal

changes.

The results of the processing of 114 images are very promising and show how

much could be gained concerning local scale LC classification and assessment of

changes in Europe when 5–10 % of the surface area of the continent is covered

annually with VHR images. Since the algorithms and programs were tested on

images acquired by several sensors (Ikonos, Kompsat-2, Formosat) and proved to

be robust and reliable, they can be easily modified to accept any VHR data source.

The potential users of SATChMO AFS products include Eurostat (as service

complementing LUCAS), DG Env and EEA (concerning change detection in

hot-spot areas).

The maps of AFS sites are used to derive new products, in particular environ-

mental indicators, such as patch density, patch richness or different diversity

indices. The local component of GMES, whatever will be its main objective, should

benefit from the results and products delivered by AFS Europe team within

SATChMo.
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Chapter 7

European Forest Monitoring Approaches

Markus Probeck, Gernot Ramminger, David Herrmann, Sharon Gomez,

and Thomas Häusler

7.1 Introduction

Consistent, accurate, reliable and up-to-date information on the state of forests in

Europe is required by European countries for reporting and policy making in the

frame of several European and international forest- and environment-related poli-

cies, action plans and international agreements in the fields of environmental

protection, protection of biodiversity and ecosystems, conservation planning, sus-

tainable use of natural resources, climate change mitigation actions and environ-

mental modelling at both national and international levels. In the European context,

relevant policies and action plans comprise for example the EU Biodiversity

Strategy to 2020, the Europe 2020 Strategy and related Greenhouse Gas reduction

targets, the European Environment Agency’s 5-yearly State of the Environment

Reporting (SOER), the SEBI2010 (Streamlining European Biodiversity Indicators

on progress towards the target of halting the loss of biodiversity by 2010), Forest

Europe (the Ministerial Conference on the Protection of Forests in Europe –

MCPFE) or the Alpine Convention. The most relevant international policies com-

prise the United Nations Framework Convention on Climate Change (UNFCCC)

and the Kyoto Protocol, the United Nations Convention on Biological Diversity

(UNCBD), the United Nations Forum on Forests (UNFF), the FAO’s Forest

Resources Assessment (FRA) and the associated Temperate and Boreal Forest

Resources Assessment (TBFRA).

Highly accurate forest information is typically available on national level,

mainly from National Forest Inventories (NFI’s) and partially from national land

use/land cover classification systems. Therefore, data harmonisation and improve-

ment of access is one of the major challenges (JRC 2008). On European level, such

national forest data were in the past frequently suffering from a lack of harmonised
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definitions, spatial detail and timeliness, however recent harmonisation efforts

initiated by FAO and followed up by the NFI’s in the framework of the European

Network of National Forest Inventories (ENFIN) with support of EC’s Joint

Research Centre (JRC) are leading the way towards better comparability and

large-area usability of NFI data.

Since several years, such national forest information has been increasingly

complemented with remote sensing-based observations, which are considered an

adequate and accepted means for providing reproducible, reliable and spatially

explicit information on forest cover and characteristics over a large spatial extent in

a cost-efficient and objective manner (Seebach et al. 2011; UNECE/FAO 2001). Up

to date there have been several efforts for mapping European forests from regional

to continental scales, with the overarching aim to develop and establish a systematic

and sustainable operational monitoring capacity.

This article provides a comprehensive overview of earth observation-based

forest monitoring approaches in Europe from early approaches using low- and

medium-resolution satellite data to operational monitoring systems developed in

the frame of the European earth observation programme Copernicus (formerly

called GMES). The latter comprise mainly the pan-European land use/land cover

information provided by CORINE Land Cover (CLC), the regional, national and

pan-European-scale Forest services and products implemented by the ESA-funded

GMES Service Element Forest Monitoring (GSE FM), the pan-European

forest products provided by the Joint Research Centre’s (JRC) European Forest

Data Centre (EFDAC), pre-operational forest monitoring services developed by

the European Commission-funded FP7 Land core project geoland2 and the first-

time operational mapping of a pan-European High-Resolution Forest Layer in the

frame of the GMES Initial Operations (GIO) Land, being implemented by the

European Environment Agency (EEA) since 2012. Additionally, customised

regional forest Downstream services as designed by the FP7 project EUFODOS

are presented. Conclusions and prospects for future forest monitoring approaches in

the upcoming Sentinel-2 era are provided.

7.2 Legacy of European Forest Monitoring

Many regional- and national-scale land use/land cover and forest mapping

approaches have applied remote sensing techniques to map forest resources with

high thematic accuracy and high spatial resolution. Examples are the Land Cover

and Land Use Information System of Spain – SIOSE (e.g. Valcarcel et al. 2008),

DLM-DE in Germany (Arnold 2009) or the UK Land Cover map (Smith et al. 2007;

Fuller et al. 2005). High-resolution national forest area maps have been produced

e.g. for Austria (Gallaun et al. 2007) or Switzerland (Romero et al. 2007). However,

since such approaches have been explicitly designed to fulfil in first instance

specific regional/national user-defined requirements, they have been making use

of a variety of different mapping approaches, different national forest definitions
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and diverse sources of input data (Seebach et al. 2011). Therefore, such data are

typically lacking thematic homogeneity beyond the national borders, making any

use for international policy, reporting or scientific purposes difficult.

For this reason, a range of initiatives with different specifications has been set up

for mapping forests and land use/land cover types from global to continental scales

in a large-area harmonised and consistent manner. In order to select those products,

which are best suited for specific applications, it is important to understand the

characteristics and specific strengths of such maps, since the selection of land/forest

cover products greatly influences the results of further value-added thematic appli-

cations such as environmental, climate or hydrological modelling (e.g. Ludwig

et al. 2003). In order to derive spatially explicit forest maps at continental scales,

earth-observation data are considered the most cost-efficient and large-area consis-

tent option (Pekkarinen et al. 2007).

On European level, a methodology for mapping information on land cover/land

use based on earth observation satellite data had been developed for the first time by

the Commission of the European Communities (CEC) CORINE (Co-ordination of

Information on the Environment) Land Cover (CLC) project (EEA Task Force

1992). The main objective of this comprehensive land use/land cover classification

system was to derive consistent and compatible land cover (including forest)

information for all of Europe by means of visual interpretation of Landsat images.

The CLC nomenclature combines land cover and land use elements for a total of

44 land cover/land use classes with a consistent MinimumMapping Unit (MMU) of

25 ha (Bossard et al. 2000) and 5 ha for change area updates, respectively. CLC

discriminates three different forest classes: Coniferous, Broadleaved and Mixed

Forest, plus additionally Agro-Forestry Areas and Transitional Woodland/Shrub. It

has meanwhile been repeatedly updated and is available as a well-established time

series of land-use/land-cover information from EEA’s Land Use Data Centre

(LUDC) for the years 1990, 2000 and 2006 (Heymann et al. 1994; Büttner

et al. 2004; Büttner et al. 2010) in different data formats together with many derived

products and user applications. The CLC 2012 update is currently being carried out

and a further update is foreseen for the reference year 2018 (Langanke et al. 2013).

The overall thematic accuracy of CLC was found to be generally over 85 %, with

the reliability of forest classes being slightly higher (85–90 %) (Seebach

et al. 2011). Although CLC has become a well established LU/LC standard that is

meanwhile widely and successfully used for various environmental applications,

its specifications do also set limits to the usability for more sophisticated applica-

tions that require e.g. high spatial resolution, frequent updates or unambiguous class

definitions without mixed classes (Langanke et al. 2013).

Therefore other remote sensing-based approaches have been conceived and

implemented to overcome such shortcomings. In the following, the development

of those initiatives focusing on deriving European-scale forest information is

presented, which gradually have migrated from using low-resolution NOAA-

AVHRR (Advanced Very High Resolution Radiometer) and medium-resolution

IRS-WiFS (Wide Field Sensor) imagery (GAF 2001) to the use of high-resolution

Landsat, IRS-LISS III and RapidEye data. The presumably first consistent remote
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sensing-based pan-European forest area map had been the ESA Digital Forest Map,

which was prepared as a contribution to the World Forest Watch project of the

International Space Year 1992, using NOAA-AVHRR imagery from the years

1989–1992. The map had a reported overall classification accuracy of 82.5 %,

assessed with Landsat-MSS data (Häusler et al. 1993). It discriminated the classes

Forest, Non-Forest and Water. This pan-European forest database had been used in

the following for the creation of another Forest/Non-Forest dataset of Europe,

established in the frame of the FIRS (Forest Information from Remote Sensing)

project (Kennedy et al. 1994). Roy et al. (1997) investigated also the use of the

Normalized Difference Vegetation Index (NDVI) in combination with surface

temperature and a regional bio-geographic stratification approach.

In order to overcome the limitations of low-resolution satellite data while taking

advantage of their large area coverage, spectral mixture modelling approaches had

been developed to derive sub-pixel fractional land and forest cover information in a

spatially explicit manner (e.g. Oleson et al. 1995; Foody and Cox 1994; Cross

et al. 1991). Such approaches were also applied to derive forest proportion maps

from NOAA-AVHRR images with 1 km2 spatial resolution. Häme et al. (2001)

classified pixel-based “forest probabilities” for a pan-European mosaic of

49 NOAA-14 AVHRR images from 1996/1997 stratified into three

bio-geographic regions. Päivinen et al. (2001) as well as Schuck et al. (2003)

combined these results with forest inventory statistics of 15 EU countries to derive

adjusted forest maps corresponding to the official regional/national level forest area

statistics, resulting in the Calibrated European Forest map (CEFM1996). On

regional scales, the feasibility of sub-pixel land cover class de-composition

approaches has been demonstrated for sets of multiple land cover classes – includ-

ing distinct Broadleaved and Coniferous forest proportion discrimination – by

applying spectral mixture modelling together with GIS information and fuzzy

rule sets (e.g. Probeck et al. 2004).

Satellite image acquisitions from the Medium-Resolution Imaging Spectrometer

(MERIS) on board the ENVISAT satellite at full 300 m spatial resolution (FR) have

been used by the European Space Agency in partnership with EEA, FAO, GOFC-

GOLD, IGBP, UNEP and JRC for creating global image composites and producing

the global land cover classification GlobCover. It provides more than 20 land cover

classes and is made available by ESA for two reference periods, i.e. December 2004 –

June 2006 (Defourny et al. 2009) and January – December 2009 (Arino et al. 2010)

under http://due.esrin.esa.int/globcover/. Though GlobCover provides a spatial reso-

lution that is significantly better than all previous satellite-based global land cover

maps, the class nomenclature is not straightforward to handle for potential forest-

related applications, since broadleaved and coniferous forest cover is distributed over

12 partially mixed classes.

The most significant European initiative that makes systematic and operational

use of Earth Observation (EO) imagery for land monitoring purposes is the Coper-

nicus programme, formerly called Global Monitoring for Environment and Security

(GMES). Copernicus is a European flagship initiative jointly implemented by the

European Commission (EC), the European Space Agency (ESA) and the European
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Environment Agency (EEA). It is considered one of the most ambitious EO

programmes ever undertaken, aiming to establish an autonomous and operational

European EO capacity. Its main objective is to support policy makers and public

authorities in developing and implementing policies and legislation related to

environment and security at the European level through systematic acquisition

and evaluation of multi-source EO and in-situ data. Additionally, Copernicus has

the broader objective of contributing to international environmental and climate

change related monitoring efforts by providing services also on a global scale

(Farquhar 2011). It comprises a dedicated space component, an in-situ component

and a service component.

The Land Monitoring service as part of the Copernicus service component has

been systematically prepared and demonstrated through several phases and pro-

jects, and has finally entered its Initial Operations Phase in 2010 with the adoption

of Regulation no. 911/2010 on the European Earth Monitoring programme (GMES)

and its initial operations (2011–2013) by the European Parliament and the Council

on 22 September 2010 (European Commission 2010). The following sections

provide information on the GMES/Copernicus Land services with highest rele-

vance for European forest monitoring: the pan-European forest products provided

by JRC’s European Forest Data Centre (EFDAC), the services provided by the ESA

GMES Service Element Forest Monitoring (GSE FM), pre-operational forest ser-

vices and products developed and demonstrated by the FP7 land core project

geoland2 and the pan-European high-resolution forest products being implemented

in the frame of the GMES/Copernicus Initial Operations (GIO). Additionally, the

current stage of development with respect to customised and regional forest down-

stream services is presented.

7.3 Pan-European Products from the European Forest

Data Centre

The European Commission and EEA agreed in 2005 to establish “European Data

Centres” for the provision of data and information in some environmental fields.

The Joint Research Centre of the European Commission (JRC) acts as data centre

for soil (European Soil Data Centre – ESDAC) and forest (European Forest Data

Centre – EFDAC). The EFDAC is organisationally attached to the JRC’s Institute

for Environment and Sustainability (IES), Land Management and Natural Hazards

(LMNH) Unit, FOREST Action. It aims at providing a single focal point for forest

data and information relevant for policy reporting, and at hosting and connecting to

relevant forest products (including datasets, documents or statistical data) and

providing web-based tools. Further, the EFDAC provides an infrastructure for

hosting of data collected under EU forest-related regulations and provides access

to existing forest databases of the EC and EU member states. It also hosts the

European Forest Fire Information System (EFFIS).
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EFFIS provides a multitude of up-to-date forest fire related information for over

30 Mediterranean and other European countries in support of services and institu-

tions in charge of forest protection against fires in the EU, both as download and

online viewing services. Amongst other services, the EFFIS website (http://forest.

jrc.ec.europa.eu/effis/) provides latest information on the actual fire season in

Europe and especially in the Mediterranean. It comprises meteorological fire

danger maps on a daily basis and forecasts for several days, a satellite image history

of the last 7 days, and daily updated maps of most recent hot spots and fire

occurrences. It also provides historic fire and burnt area information, which reach

back more than 25 years for some countries (San Miguel-Ayanz et al. 2012). All

EFFIS map products are currently derived from the daily processing of MODIS

satellite imagery with 250 m spatial resolution.

The European Forest Data Centre also hosts high-resolution pan-European forest

maps for the years 2000 and 2006 (http://efdac.jrc.ec.europa.eu/), which had been

produced by JRC in order to overcome the limitations of previously available

European forest maps, which were typically available only with limited spatial

detail, either because being based on low-/medium-resolution satellite input data

(AVHRR, MERIS, WIFS, see above) or because applying an MMU of 25 ha (as in

case of CLC, see above).

The Forest Map 2000 was derived by an automated scene-by-scene nearest

neighbour classification of 415 Landsat ETM+ images from the Global Land

Cover Facility (GLCF) and Image2000, using adapted CORINE Land Cover

2000 data as training inputs, and applying a subsequent mosaicking to a seamless

European product (Kempeneers et al. 2012; Seebach et al. 2011; Pekkarinen

et al. 2009). In order to retrieve the Forest Map 2006, the Image2006 dataset

consisting of more than 3,800 IRS-LISS III and SPOT scenes (2 coverages) was

classified. Additionally, MODIS satellite imagery was incorporated into the map-

ping process to enable proper Forest Type discrimination (Kempeneers et al. 2012).

Whereas the Forest Map 2000 distinguishes the classes Forest and Non-Forest

based on LANDSAT ETM + data (Pekkarinen et al. 2009), the Forest Map 2006

provides an additional discrimination of Broadleaved and Coniferous Forest

(Kempeneers et al. 2011, 2012). The Forest Maps 2000 and 2006 have the follow-

ing technical main characteristics:

• Consistent datasets independent of national boundaries, covering EEA-39

(2000: without Turkey) countries

• Uniform coordinate system ETRS89-LAEA

• Thematic Classes: Forest/Non-Forest (2000, 2006), Broadleaved/Coniferous

Forest (2006)

• Spatial resolution: 25 m; no Minimum Mapping Unit

• High geometric and thematic accuracy

The derived Forest Cover Maps for 2000 and 2006 were validated with indepen-

dent field survey point data from the European LandUse/Cover Area Frame Statistical

Survey – LUCAS (Kasanko 2010), randomly selected GoogleEarth reference points

and other sources. An overall accuracy of 90.8 % was reported for the Forest Map

94 M. Probeck et al.

http://forest.jrc.ec.europa.eu/effis/
http://forest.jrc.ec.europa.eu/effis/
http://efdac.jrc.ec.europa.eu/


2000, while the overall accuracy for the Forest Map 2006 reached 84 %. The notably

lower accuracy of the more recent map is mainly caused by a lower achieved Pro-

ducer’s Accuracy of the Forest class (Kempeneers et al. 2012).

The continuity of this time series of pan-European Forest products with 25 m

spatial resolution has been ensured through the GMES Initial Operations (GIO)

phase where a dedicated so-called “Service Element 2” is included in the forest

product specifications (see below). This will provide another update of the Forest-/

Non-Forest as well as the Forest Type product for the reference years 2011/2012.

7.4 The GMES Service Element Forest Monitoring

The GMES Service Elements (GSE’s) are one component of the ESA Earthwatch

Program which was conceived to make use of the next generation of ESA opera-

tional EO satellite missions. The main aim of all GSE’s was to deliver policy-

relevant, operational information services, generally using such data sources that

best meet user needs and requirements. In most instances, this meant a combination

of EO data, in-situ data, ancillary data and analytical models.

The GSE Forest Monitoring (GSE FM) forms an integral part of the ESA GMES

Service Elements (GSE) programme. It had two main stages of development: the first

Stage was considered to be a consolidation phase (2003–2005), which focused on

consolidating, aggregating, integrating and improving existing European pre-cursor

service capacities, systems and precursor services, in order to make them operational

within a reasonable time frame. The next phase (2005–2009) was the implementation

phase and targeted the roll-out and expansion of the extensive portfolio of regional,

national and pan-European-scale Forest services and products to users worldwide

(Häusler et al. 2009). GSE FM has been conducted by an international consortium of

European forest service providers, various users and expert consultants since 2003,

and has been routinely supplying users with a service portfolio of reliable, timely and

effective information products and services on the state of global forests to support

decision-making and improved implementation of policies that enable sustainable

forest management, compliance with specific protocols and binding conventions, and

related user- and/or policy-driven activities.

In order to identify sustainable forest services in preparation of the GMES opera-

tional implementation phase, GSE FM had undertaken a thorough policy foundations

review (vanBrusselen andSchuck2005) among potential forest user organisations. This

identified that forest-related information needs are often similar and sometimes identical

for several users across policy sectors and processes. It was found that in case of

overlapping requirements, duplication of efforts can be avoided by taking into account

such requirements in a simultaneous and coordinated way. Three major categories of

forest information needs resulted from the policy review. These were:

1. “area”: surface area and specification of location and boundaries of an area and

changes per land cover/forest class;
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2. “biomass”: biomass as such, volume, changes of biomass and volume, growth

and increment;

3. “disturbances”: biotical damage, abiotic damage – particularly forest fires.

Information needs related to these variables are supported across the whole

forest and environmental policy spectrum. The potential user organisations,

which were addressed in a stakeholder survey, indicated that they could be helped

first and foremost with information on ‘forest area’, ‘forest area changes’ (in terms

of afforestation, reforestation and deforestation as well as land use and land use

change between different land use classes), and ‘aboveground vegetation biomass

and changes therein’. Users pointed out that products and services should target to

serve different reporting obligations simultaneously (van Brusselen and Schuck

2005).

As a consequence, the key policies addressed by GSE FM were the United

Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto

Protocol (KP), the UN Convention on Biological Diversity (UNCBD), the Minis-

terial Conference on the Protection of Forests in Europe (MCPFE) and related

Criteria & Indicator processes, the United Nations Forum on Forests (UNFF) and

national Forest Programmes (Gomez et al. 2008). Accordingly, the GSE FM

offered the following services addressing specific policy areas on different spatial

scales (Häusler et al. 2009):

Pan-European Scale

• PAN European Forest Monitoring Service

National Scale

• Support to National UNFCCC and Kyoto Protocol Reporting on Land Use, Land

Use Change and Forestry (LULUCF) Activities

National and Sub-national Scales

• Forest Information Up-date

• Support to Environmental Monitoring

• Detection and Post-monitoring of Natural and Human Induced Forest

Disturbances

Local Scale

• Support to Management and Reporting Obligations of LULUCF Clean Devel-

opment Mechanism (CDM) Projects

Mainly the Forest products generated by the pan-European and the national scale

services can be considered as Core service (precursor) inputs to Downstream

services, such as IRS-AWiFS-based Forest maps of pan-European service nature

generated for several European countries (see Fig. 7.1 – left), or national-scale

Forest Area and Change products generated in several regions of Europe (see

Fig. 7.1 – right). All forest products produced by GSE FM are accessible on request.
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Based on these policy foundations, the GSE FM service network offered services

including land use/cover and land use/cover change maps, forest cover and forest

cover change maps, clear cut/disturbance maps and related databases, stand-type

maps that support sub-national forest Geographic Information Systems (GIS),

forest fragmentation and structural diversity maps, stem volumes, biomass and

carbon statistics and corresponding change data, as well as user-customised ver-

sions and combinations thereof (Häusler and Gomez 2007). Figure 7.2 provides

a comprehensive overview of the products’ spatial scales and information levels

addressed by GSE FM.Whereas the outer information layers (EO data, general land

cover) represent the more generic product portfolio constituents which served the

information needs of national- and international-level users in congruence with the

concept of a core service, the innermost layers (Tree Species, Biodiversity) repre-

sent more value-added and customised, downstream-type applications serving

regional-level users. Most products have been implemented and provided to the

users both in a mono-temporal (Fig. 7.2, left) and a multitemporal change detection

mode (Fig. 7.2, right).

By the end of the GSE FM Stage 2 (May 2009), about half of the European GSE

FM users confirmed to apply the GSE FM forest products in one or more of the

international policy processes that are listed below. The list covers all important

international and most key national forest-related policy processes.

• European Environment Agency ‘SEBI2010’ (Streamlining European Biodiver-

sity Indicators on progress toward the target of halting the loss of biodiversity by

2010) in the framework of the UN Convention on Biological Diversity

• European Environment Agency 5-yearly State of the Environment Report

• Forest Europe/the Ministerial Conference on the Protection of Forests in Europe

• Environment for Europe ministerial process

• United Nations Framework Convention on Climate Change and Kyoto Protocol

• Global Forest Resources Assessment (FRA) of the Food and Agriculture Orga-

nisation (FAO)

Fig. 7.1 GSE Forest Monitoring service areas mapped for the Pan-European Forest Monitoring

service (left) and the Support to National UNFCCC and Kyoto Protocol Reporting on LULUCF

service (right) (Häusler et al. 2009)
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• Convention on Long-Range Trans-boundary Air Pollution (CLRTAP)

• The EEA EURECA report: Europe’s contribution to the update of the Millen-

nium Ecosystem Assessment

• Alpine Convention – State of the Alps

• Indirect use for NFI and other national monitoring and reporting tasks

• National forest mapping and hot spots location monitoring

• Detection of changes in forest area

These policies will continue to determine forest-related information needs both

for international as well as national user organisations. With this extensive portfolio

of policy-based and user-accepted services from pan-European to regional scale,

GSE FM has laid the foundations for many currently pre-operational and opera-

tional European Forest Monitoring services, which are being implemented in the

frame of current GMES/Copernicus core and downstream services (see next

sections).
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Fig. 7.2 GSE Forest Monitoring service portfolio of mono-temporal (left) and multitemporal

change detection (right) products. The outer layers represent generic overarching, the inner layers
further value-added and specialized service products (Häusler et al. 2009)
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7.5 Development of Pre-operational Services: geoland2

The project geoland2 (www.gmes-geoland.info) has been the most influential

GMES/Copernicus Land research & development project under the EU 7th Frame-

work Programme (FP7), from September 2008 to December 2012. It constituted a

major step forward in the implementation of the Copernicus Land Monitoring Core

Service (LMCS) by successfully demonstrating the three components (Local,

Continental and Global) of the LMCS. It dealt with a wide range of topics including

land use, land cover change, forest monitoring, water quality, spatial planning, or

global carbon monitoring. The main objectives of geoland2 were to consolidate the

LMCS specifications and prepare, validate and demonstrate pre-operational service

chains and products, giving convincing proof of the LMCS’s feasibility by setting

up a pre-operational prototypic production environment ready for operations. More

than 50 European Service Providers and over 80 major international user organi-

sations have been assembled by geoland2 (Jochum et al. 2011).

In terms of EO data, geoland2 has been widely making use of the GMES Space

Component Data Access (GSC-DA) mechanism which had been put in place

specifically for the GMES Pre-operations Phase based on a grant agreement

between the European Commission (EC) and the European Space Agency (ESA).

The GSCDA’s main aim was to serve pre-operational GMES services such as

geoland2 with a harmonised and sustainable access to space-based data from

various Earth Observation missions, including ESA, national and Third-Party Mis-

sions. Specifically, the data sets DAP_MG2-3_01 “European wall-to-wall coverage

2009 (also called ‘Image2009’) and the access to the previously produced

Image2006 (Müller et al. 2009) have been of primary importance for the develop-

ment and demonstration of pre-operational Forest core services in geoland2. These

data sets comprise IRS-P6 LISS-III and SPOT 4/5 HRVIR/HRG images resampled

to 20 m pixel resolution.

The basic structure of geoland2 consists of three ‘Core Mapping Services’ and

seven thematically specialized ‘Core Information Services’ (Jochum et al. 2011):

• The ‘Core Mapping Services’ (CMS) have been set up based on the critical

review of existing user needs carried out in previous GMES Land projects, in

order to produce multi-purpose generic geo-information products on land cover

and land use and its annual and seasonal changes, as well as a variety of

additional biophysical variables. The CMS undertook to design, set up, test

and demonstrate pre-operational prototypes which should become ready for

operational implementation.

• The CMS acted as the basis for more specialised thematic applications by the

‘Core Information Services’ (CIS) and potential future Downstream applica-

tions. The CIS had set out to define specific information products (e.g. for forest

and environmental indicators, impact analysis and forecast models) and assess

the utility of products and services coming from the CMS together with their

involved end-users.
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Further detail on the specific geoland2 tasks is given in Lacaze et al. (2010). In

terms of Forest Monitoring, geoland2 represents a direct continuation and evolution

of the GMES/Copernicus forest core service constituents that had been previously

designed and demonstrated by the ESA GSE Forest Monitoring (see above).

According to their partially more core service- and partially more downstream

service-like nature, Forest Monitoring services have been included both in

geoland2’s continental CMS task ‘Euroland’ (European Land Cover) and in the

dedicated CIS task “Forest Monitoring”.

The continental LMCS component as conceptualised in the Euroland task was

designed as a set of high-resolution (HR) pan-European thematic land cover layers

(Imperviousness, Forest, Grassland, Wetland and Water). These ‘HR Layers’ have

been shaped in response to the existing gap in the process of European-level

harmonisation and integration of national mapping and land monitoring activities,

with the aim to provide important complementary information (e.g. enabling var-

ious downstream applications, or updating and attributing new information to

existing classification systems). The HR Layers were designed to support EEA

and Member States in their policy reporting obligations as well as assist national

mapping/monitoring and Downstream service activities. Further detail on the

geoland2 HR Layers is provided by Kuntz et al. (2011).

Specifically, the ‘HR Forest Layer’ has been suggested to bridge the gap between

current forest area/cover definitions, which differ not only between European coun-

tries but also depend on the specific purpose the Forest information is used for.

Methods and algorithms have therefore been designed, tested and demonstrated to

produce continuous and spatially explicit pixel-based estimates on Forest Crown

Cover Density and Forest Type Composition (in terms of Coniferous vs. Broadleaved

Forest fractions) that can subsequently be flexibly converted into any required forest

categories defined by different national- or international-level users according to their

specific requirements. Such customisation can be done e.g. in terms of defined crown

cover thresholds, forest type classes, minimum mapping units etc. Forest Crown

Cover Density is defined as the percentage of the forest area covered by vertically

projected tree crowns (Sirro et al. 2012) and is typically required in many national

and international forest definitions (e.g. FAO 2000).

Depending on the individual user requirements, the HR Forest Layer products are

providedwith a consistent 0.5 ha or 1 haMinimumMappingUnit (MMU),with respect

to Forest Area. The full HR Forest Layer contains as ‘primary’ information layers a

Forest Crown Cover Density product (see Fig. 7.3) and a Forest Type product (see

Fig. 7.4). As ‘secondary’ (derived) products a customised Forest Area/Cover product is

retrieved (applying a forest-definition based threshold to crown cover density) as well

as a Forest Area Change product, using multi-temporal change detection.

Figures 7.3 and 7.4 provide examples of these two products from a randomly

selected sub-area in Southwest Poland near the border to the Czech Republic, as had

been produced as part of the geoland2 trans-boundary demonstration site EU-16e

Poland/Czech Republic in 2011.
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For all demonstration sites, ortho-rectified Image2006 data with all spectral

bands (Green, Red, NIR, and SWIR) were available with 20 m pixel size. Several

classification algorithms were tested and benchmarked for mapping the above

quantitative continuous forest characteristics in a cost-efficient, large area opera-

tional manner. Two principal methods were found to be suited for meeting these

multiple requirements:

• A multiple linear regression model describing the relation between grey values

in the HR optical satellite image bands and the continuous forest characteristics,

providing for each pixel a percentage of broadleaved/coniferous forest propor-

tion as well as a fractional crown cover. (Schardt et al. 2014);

• The probability estimation method of Häme et al. (2001), also resulting in pixel-

based estimates of broadleaved/coniferous forest proportion and fractional

crown cover (Sirro et al. 2012).

Fig. 7.3 The geoland2 Forest Crown Cover Density product in an area of SW-Poland, derived

from an IRS-P6 LISS-III scene of 17 July 2006 (Credits: geoland2/GAF AG. Produced using

products©Antrix Corporation Limited 2006; distribution by Euromap GmbH, Germany, all rights

reserved; provided under EC/ESA GSC-DA)
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In geoland2, both methods have been successfully implemented and demonstrated

by forest service providers in several demonstration sites across Europe. Independent

validation with in-situ and/or very-high resolution (VHR) satellite/aerial imagery

confirmed a high to medium accuracy of the classification results (e.g. Sirro

et al. 2012) with the best results under Western, Central and Eastern European

conditions. It proved that the best suited measure for quantifying the accuracy of

such continuous-scale data is the coefficient of determination R2 derived from

scatterplots between VHR-interpreted stratified random samples and the HR-based

classification results. Typically an R2 > 0.65 was reached in good conditions.

Specifically, the geoland2 Forest Crown Cover Density and the Forest Type

products have migrated to the subsequent Copernicus initial operational phase,

though with modified specifications (see below). The above shown geoland2 forest

products (Figs. 7.3 and 7.4) are located in the Southwest of Poland where also GIO

HR Forest Layer products were available at the time of writing. The production of

intermediate GIO HR Forest Layer products has been concluded meanwhile

Fig. 7.4 The geoland2 continuous Forest Type composition product in an area of SW-Poland,

derived from an IRS-P6 LISS-III scene of 17 July 2006 (Credits: geoland2/GAF AG. Produced

using products©Antrix Corporation Limited 2006; distribution by Euromap GmbH, Germany, all

rights reserved; provided under EC/ESA GSC-DA)
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(see Figs. 7.5 and 7.6). Despite an acquisition time difference of 5 years, the figures

allow to investigate the systematic differences between the products, which are in

fact primarily caused by the different product specifications between geoland2 and

GIO. A detailed discussion of the differences between the geoland2 and the GIO

forest products is provided in the next section.

Additional to these CMS products of the HR Forest Layer, geoland2 has been

also establishing a range of forest indicator products in the frame of the CIS Forest

task, which make use of the CMS forest products as inputs to derive grid-based

forest indicators and metrics providing various measures to support characterization

of forest fragmentation and connectivity as well as environmental and biodiversity

status and changes.

All geoland2 Forest tasks pursue an open data access policy; therefore all mapped

demonstration data are made available free-of-charge for non-commercial use and can

be explored and accessed via the geoland2 data portal (http://www.geoland2.eu/portal/).

Fig. 7.5 GIO-Land HR Forest Layer: Tree Cover Density product in an area of SW-Poland,

derived from an IRS-P6 LISS-III scene of 25 September 2011 (Credits: GIO-Land/GAF

AG. Produced using products © Antrix Corporation Limited 2011; distribution by Euromap

GmbH, Germany, all rights reserved; provided under EC/ESA GSC-DA)
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7.6 Operational Forest Monitoring: The GIO

HR Forest Layer

In order to bridge the transition period between the Copernicus/GMES

pre-operational phase and the full operations starting in 2014, the EC had put

forward a proposal for GMES and its Initial Operations (GIO) in 2009. The

necessity to provide such bridging support has been recognised especially for the

Copernicus/GMES Land and Emergency Core Services.

The Copernicus/GMES Land Monitoring service led by the EC’s DG Enterprise

and Industry, entered its Initial Operations (GIO) phase with the final adoption of

the EC Regulation (EU) n�911/2010 on the GMES programme and its Initial

Operations (2011–2013) by EU Ministers during the General Affairs Council

meeting and the entry into application on 22 September 2010, thereby reaching

EU law status. The regulation has the overarching objective of contributing to the

Fig. 7.6 GIO-Land HR Forest Layer: Forest Type – Dominant Leaf Type product in an area of

SW-Poland, derived from an IRS-P6 LISS-III scene of 25 September 2011 (Credits: GIO-Land/

GAF AG. Produced using products © Antrix Corporation Limited 2011; distribution by Euromap

GmbH, Germany, all rights reserved; provided under EC/ESA GSC-DA)

104 M. Probeck et al.



establishment of GMES as an operational programme by providing sustainable

funding to the initial operational phase of GMES, enabling a gradual build-up of

fully operational capabilities until 2014, as well as to put into place the necessary

structures for GMES governance (European Commission 2010). During this tran-

sition phase, the development of the GMES-dedicated Sentinel satellites will

continue.

Thematically, the Land Monitoring service focuses on the topics defined by the

Land Monitoring Core Service Implementation Group (IG LMCS) and the results

of various user consultations. It builds on precursor activities (geoland and

geoland2), ESA’s GSE Land and Forest Monitoring projects, CLC, the Land Fast

Track precursor service, on the GMES Preparatory Action on Reference Data

Access and on other activities at European and national levels (Langanke

et al. 2013). The particular objective of the Copernicus Land Monitoring service

is to make use of EO data in combination with other sources of data (e.g. national

in-situ) for providing users in the field of land use/land cover, forestry- and

environment-related applications with up-to-date and free-of-charge multi-purpose

information that is common to a large community of users. It addresses a wide

range of environmental, agricultural, regional development, transport and energy

policies at EU level, as well as several European commitments to international

Conventions.

In December 2011, EEA has contracted industry consortia of European service

providers to map the GIO HR Layers Forest, Imperviousness, Grassland, Wetland

and Water by means of (semi-)automated classification of HR satellite images in

the frame of the “GMES Initial Operations 2011–2013 Land Monitoring Services:

High resolution land cover characteristics of five main land cover types”

(EEA/SES/11/004) in five separate regional Lots for all EEA-39 countries. Before

start of operational production in mid-2012, an initial Streamlining Phase was

carried out to consolidate product specifications for all HR Layers, as well as to

ensure product consistency across the regional Lot boundaries.

The HR Forest Layer is primarily being mapped on basis of the ESA

Data Warehouse (DWH) wall-to-wall HR image coverage of the CORE_01

‘Optical HR pan-EU coverages 2011/2012’ dataset, comprising predominantly

IRS-P6/Resourcesat-2 LISS-III and RapidEye imagery (ESA 2013). Additionally,

Medium Resolution (MR) pan-European IRS-AWiFS coverages (CORE_08) as

well as VHR satellite imagery are needed to support image data pre-processing

and HR image classification. All HR satellite imagery have to undergo a radiomet-

ric pre-processing procedure to account for sensor and radiometric differences as

well as atmospheric and topographic effects, in order to allow a large-area consis-

tent retrieval of the observed quantitative forest characteristics.

The specific objective of the HR Forest Layer production is to map forest cover

characteristics, i.e. tree cover density and forest type based on the HR satellite

images. This shall also support deducing a forest cover map with an MMU of 0.5 ha

in line with Member States’ requirements for their reporting obligations towards

e.g. UN-ECE/FAO. Therefore, the HR Forest Layer processing chain comprises a

per-pixel classification of the spatially explicit and continuously-scaled Tree Cover
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Density and of a Dominant Leaf Type (Broadleaved, Coniferous) product in

original 20 m pixel resolution and in an aggregated 100 m � 100 m version of

Tree Cover Density and Forest Type. The latter includes also a ‘Mixed Forest’ class

(see Table 7.1). Table 7.1 provides the latest available overview of the GIO Land

HR Layer Forest specifications by EEA.

The above product specifications constitute a certain modification as compared

to the products suggested and demonstrated by geoland2 (see above), such that:

• the GIO Tree Cover Density product is a pixel-based “tree” product without

application of an MMU or a density threshold, in contrast to the corresponding

geoland2 “Forest” Crown Cover Density product;

• the GIO Forest Type product consists of two sub-products, in order to take into

account on the one hand all pixels with tree cover �1 %, and on the other hand

comply to a stricter “Forest” definition (FAO), according to which trees with

predominantly agricultural use and trees in urban context need to be excluded

from forest areas;

• both the GIO Tree Cover Density product and the Forest Type product will be

provided with 20 m � 20 m original pixel resolution and additionally in a

100 m � 100 m spatially aggregated version

The production of the HR Layers is organised as a mix of industrial production of

‘intermediate products’ and decentralized contributions to product verification and

enhancement by the EEA member and cooperating countries. These countries are

further expected to contribute to the process in the form of in-kind provisions of

nationally available in-situ data. However, the highly variable availability and quality

of in-situ data across the EEA-39 countries has proven a considerable challenge, as

well as the timely availability of HR image data as indispensible basis for all

classification steps. Remaining gaps in the 2011/2012 coverage over Northern Europe

and the British Isles have necessitated additional image acquisitions in 2013

(Langanke et al. 2013). Another challenge for large-area harmonized mapping is

the effect of seasons and vegetation phenology on the satellite images’ spectral

Table 7.1 HRL forest specifications (EUFODOS 2013 and Langanke et al. 2013, both modified)

Tree cover density (20 m � 20 m) Tree cover density values from 1 to 100 %

Forest type (20 m � 20 m)

consisting of two layers

(1) Dominant leaf type

Coniferous and broadleaved tree cover (plus non-forest);

MMU of 0.5 ha and 10 % tree cover density threshold

applied

(2) Support layer: map of trees under agricultural use and in

urban context from CLC and HR layer imperviousness

2009

Tree cover density

(100 m � 100 m)

Tree cover density values from 1 to 100 %

Forest type (100 m � 100 m) Coniferous, broadleaved and mixed forest. Trees under agri-

cultural use and urban context from additional support layer

are removed
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characteristics as well as the atmospheric disturbances, i.e. clouds and haze (Sirro

et al. 2012).

Figures 7.5 and 7.6 provide intermediate product examples for the GIO HR

Forest Layer in SW-Poland in the same area as in case of Figs. 7.3 and 7.4, which

allows for a direct product comparison. Algorithmic improvements from geoland2

to GIO comprise amongst others a better algorithmic de-coupling between the

forest density and type characteristics (see Fig. 7.3/Fig. 7.4 vs. Fig. 7.5/Fig. 7.6),

which are considered to be independent variables.

The geoland2 Forest Type product contains considerably more information

content and spatial detail within forest areas than the corresponding GIO product

due to its continuous-scale representation of coniferous and broadleaved tree

species proportions per pixel (see Fig. 7.4 vs. Fig. 7.6). In terms of the geoland2

Forest Crown Cover Density vs. the GIO Tree Cover Density product, the situation

is exactly the other way round due to mapping without MMU and algorithmic

improvements in GIO (see Fig. 7.3 vs. Fig. 7.5). This causes a significant difference

in the maximum tree cover outline, as is separately shown in Fig. 7.7.

Fig. 7.7 Comparison between the geoland2 Forest Area of 2006 (forest crown cover density

>10 %, MMU 1 ha) and the additional GIO-Land HR Forest Layer’s Tree-Covered Area of 2011

(tree cover density �1 %, no MMU) in an area of SW-Poland (Credits: geoland2 & GIO-Land/

GAF AG. Produced using products © Antrix Corporation Limited 2006 & 2011; distribution by

Euromap GmbH, Germany, all rights reserved; provided under EC/ESA GSC-DA)
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All HR Layers are foreseen to become freely available both as harmonized and

independently validated 100 m spatial resolution product versions and in their

original (non-validated) 20 m spatial resolution versions. A regular update of the

HR Forest Layer together with the other HR Layers is currently envisaged for 2015

as integral part of the pan-European component of the Copernicus Land services

(Langanke et al. 2013).

The HR Layer products are considered to complement and add value to the

pan-European LU/LC information currently available from CLC as well as to

national-level LU/LC classification systems. Additional to the above described

‘standard’ HR Forest Layer, a so-called ‘Service Element 2’ will be mapped for

further monitoring purposes, matching as closely as possible the pan-European

forest products that the JRC’s European Forest Data Centre provides (see above). It

shall provide a per-pixel classification of tree cover presence/absence and dominant

leaf type, using the DWH CORE_01 imagery with 25 m resolution and European

ETRS89_LAEA projection as the primary input data source.

7.7 Customised Applications: The Forest

Downstream Sector

In addition to the above described GMES/Copernicus forest core services, many

other value-added, so-called ‘Downstream services’ are expected to emerge in the

near future, being tailored to more specific public or commercial users’ needs (e.g.,

forecasting services with a local/regional scope, further thematic value-adding on

top of the Core service products, services integrating natural scientific and socio-

economic data, etc.), possibly even for markets that are up to now not making use of

any EO imagery (Farquhar 2011).

A variety of Downstream service applications has already been consolidated and

demonstrated by previous FP6 and GSE projects (e.g. GSE Forest Monitoring, see

above). Such Downstream services typically use local/regional in-situ data and/or

modelling approaches in addition to the EO-based core service products, in order to

support legally mandated organisations in their regular reporting and decision

making on national and regional scales with very detailed information products.

Future customised Downstream applications might address commercial and/or

export spin-off opportunities, building on available Copernicus/GMES products

and capacities. It is expected that especially for small- and medium-sized enter-

prises (SME’s) which are serving regional/local demands or specific Downstream

market sectors, a broadly usable multi-purpose Land core service will offer excel-

lent opportunities for business development, and substantially stimulate the Down-

stream service market (Jochum et al. 2011).
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Since Forests play a vital role in the European economy and environment, the

protection of the ecological and economic functions of forest resources is one of the

key aspects of forest-related Copernicus/GMES Downstream services. A range of

such services has been developed towards an operational level and demonstrated in

several service cases together with regional forest users by a consortium of Euro-

pean research organisations and commercial service providers in the frame of the

EU FP7 research project EUFODOS (European Forest Downstream Services) from

2011 to 2013. EUFODOS has established close links to an extensive forest user

community that is well connected to other GMES User Groups, which is expected

to facilitate the roll-out of the prototypic services to larger scales, and create a

socio-economic benefit (Schardt et al. 2012).

EUFODOS has been prototypically setting up services by means of state-of-

the-art satellite and laser scanning (LIDAR) technology to serve forest authorities

with cost-effective, timely and comprehensive information on forest structure and

damages, since these authorities have both the legal mandate and the obligation to

take appropriate countermeasures against forest damages in order to ensure a long-

term sustainable forest management (Schardt et al. 2012). Available services

comprise the assessing of insect-infested damages, windfall events, storm or

snow damage, and similar events.

Specifically, the use of space- and air-borne optical and radar systems allows

acquiring up-to-date EO imagery within short time intervals during or after a

damage event. The combined utilization of such ‘after-event’ imagery together

with existing GMES/Copernicus forest core service products (such as the GIO HR

Forest Layer’s Tree Cover Density product) and operational processing chains is

expected to allow undertaking a rapid forest damage detection, delineation and

impact assessment in a cost-efficient manner, on an operational basis.

7.8 Conclusions & Outlook

Together with the evolution of optical satellite sensors in terms of spatial, temporal

and spectral capabilities over the past decades, also pan-European forest monitoring

approaches have developed from coarse-scale forest/non-forest maps towards oper-

ational high-resolution monitoring systems of spatially explicit forest characteristics

in Europe. All above described forest monitoring approaches were following slightly

different product specifications and achieved slightly different accuracy levels,

typically determined by the applied sensors’ physical characteristics and limitations

as well as different user requirements.

The GIO Land HR Forest Layer in combination with the upcoming European

fleet of EO satellites (ESA Sentinels) designed for long-term sustainable operation

from 2014/2015 onwards, is considered to provide a new, sustainable and widely
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applicable standard in European EO-based forest monitoring that will be serving

the EO data needs of the GMES/Copernicus programme and the wider user

community. Specifically the Sentinel-2 satellites are eagerly awaited, as they are

expected to boost Copernicus Land and forest applications with their systematic

global delivery of HR multispectral images in unprecedented quality and fre-

quency. In essence, Sentinel-2 will combine a large swath width with frequent

revisit times and a systematic global acquisition scheme at high spatial resolution

and at a large number of spectral bands. Thus Sentinel-2 will provide enhanced

continuity of SPOT-, IRS- and LANDSAT-type imagery. Sentinel-2 will carry an

optical payload with 13 bands in the Visible, NIR and SWIR spectrum at 10, 20 and

60 m spatial resolution with a swath width of 290 km. A revisit time of only 5 days

at the equator (under cloud-free conditions) and 2–3 days at mid-latitudes will be

achieved with two satellites. This short revisit time together with the large swath

width of Sentinel-2 will constitute a major step forward towards much improved

data availability compared to the current optical HR satellite acquisition schemes.

The 13 spectral bands of Sentinel-2 should additionally enable a more reliable

compensation of atmospheric influences and an improved cloud masking also in

case of thin clouds (Sirro et al. 2012). This is expected to facilitate future updates of

the current GIO HR Layers.

The launch of the first Sentinel-2 satellite unit is expected in late 2014 / early

2015. Data continuity and sustainability is planned to be ensured by a series of

further Sentinel-2 satellite units to be launched in regular intervals. Especially the

short revisit time will allow the detection and monitoring of rapid changes, e.g. for

disaster control or vegetation monitoring during the growing season. In terms of

Forest Downstream Services, Sentinel-2 will specifically support operational mon-

itoring of Forest damages caused by fires, storms, etc.

Since the Sentinel satellites are being funded by ESA and EU Member States, a

‘free and open’ data access policy has been announced (Aschbacher and Milagro-

Perez 2012). Together with observations from the Landsat-8 satellite, cloud-free

optical satellite data availability will presumably not remain a major limiting factor

in operational forest monitoring applications. However, the operational handling of

the associated very large volumes of satellite data needs to be properly addressed.

Available funding (and a sufficient extent of land cover/land use change) given,

even moving to higher monitoring frequencies for forest core service products

might become an option in the future.
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Sirro L, Häme T, Ahola H, Lönnqvist A (2012) Forest crown cover estimation in Northern Boreal

and temperate European forests. In: Proceedings of ‘First Sentinel-2 Preparatory Symposium’,

Frascati, Italy (ESA SP-707, July 2012)

Smith G, Beare M, Boyd M, Downs T, Gregory M, Morton D (2007) UK land cover map

production through the generalisation of OS MasterMap. Cartogr J 44(3):276–283

UNECE/FAO (2001) Forest Resources of Europe, CIS, North America, Australia, Japan and New

Zealand. (Industrialized temperate/boreal countries). UN-ECE/FAO contribution to the Global

Forest Resources Assessment 2000. Main Report. ECE/TIM/SP/17. New York and Geneva.

445 p

Valcarcel N, Villa G, Arozarena A, Garcia-Asensio L, Caballero ME, Porcuna A, Domenech A,

Peces JJ (2008) SIOSE, a successful test bench towards harmonization and integration of land

7 European Forest Monitoring Approaches 113



cover/use information as environmental reference data. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XXXVII, Part B8,

pp 1159–1163, Beijing

van Brusselen J, Schuck A (2005): Policy foundations review for geographically explicit infor-

mation needs on forests. EFI internal reports No. 18. European Forest Institute, Joensuu,

Finland

114 M. Probeck et al.



Chapter 8

The European Urban Atlas

Enrique Montero, Joeri Van Wolvelaer, and Antonio Garzón

8.1 Overview and Main Characteristics

The origin of the Urban Atlas answers to a European Commission need for detailed

and comparable information related to cities. The urban information is so far

provided by local and national statistics or using data extracted from land cover

maps as CORINE Land Cover. CORINE Land Cover provides a resolution of

1:100,000 (25 ha) and is clearly unsatisfactory for the demand of the Commission

services. As in Europe, urban areas accommodate more than three-quarters of the

population and these areas have grown rapidly in recent decades, there is an urgent

need for pan-European, reliable and inter-comparable urban planning data. The

Urban Atlas, developed as part of GMES (Global Monitoring for Environment and

Security) brings exactly that.

In order to achieve this goal, the Urban Atlas brings together thousands of

images from European satellites and provides detailed and cost-effective mapping

of larger urban zones, yielding accurate land cover and usage data.

One of the main purposes of the Urban Atlas is to provide more detailed

information to Urban Audit: the main requirement is information with more

resolution and comparable.

The current specifications of Urban Atlas fulfill these conditions: 0.25 ha in

urban areas and the same methodology and product in all the major agglomerations

of Europe.

Besides the Urban Audit, the Urban Atlas is a source of accurate information to

use in the framework of ESPON and INTERREG program.
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The Urban Atlas concept has been present in the GMES initiative from the

beginning since one of the first projects started in GMES Service Element (funded

by ESA) was the GMES Urban Services (GUS) project where the first services on

thematic Land Use and the legend based in CLC and MOLAND were provided to

regional and local users.

The Urban Atlas is coordinated with related European projects, as GMES Core

Services (Local component of the Land Monitoring Core Service), GSELand (third

yearly cycle), Geoland-2 and Boss4GMES (Fig. 8.1).

Urban Atlas provides coverage for a detailed and cost-effective mapping of

larger urban zones, giving accurate land cover and usage data. The Urban Atlas

mission is to provide high-resolution hotspot mapping of changes in urban spaces

and indicators for users such as city governments, the European Environment

Agency (EEA) and European Commission departments. More than 300 major cities

in the EU were covered by mid 2011. All EU capitals are included in the exercise

plus a large sample of large and medium-sized cities participating in the European

Urban Audit (Fig. 8.2).

The main source of the Urban Atlas is SPOT 5 satellite imagery (or other

available VHR imagery), the first operational production was performed using

imagery with a reference date of 2006 (+/�1 year).

The Urban Atlas cities are mapped at 1:10.000, using in total 20 classes, of

which the 17 urban classes have a minimum mapping unit (MMU) of 0.25 ha and

the 3 non-urban classes a MMU of 1 ha. The minimum accuracy of the data

provided is 85 % for artificial surfaces and 80 % for the other classes.

Fig. 8.1 Example of the UA of the city of Madrid (Legend in Fig. 8.4)
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The urban fabric (CLC classes 1.1.1 and 1.1.2) are differentiated by their degree

of imperviousness which is integrated from the LMCS (Land Monitoring Core

Service) high resolution soil sealing layer. The production is based on a mix of

CAPI (Computer Aided Photo-interpretation) and object oriented classification.

8.2 Analysis of User’s Requirements

To date, a very wide range of local users have got to know and interact with the Urban

Atlas product. These organisations deal with different topics (e.g. environmental

policies, urban planning, etc.) and therefore they can have different needs hardly

fulfilled with a single geo-information product. Consequently, users have shown very

different levels of satisfaction.

A very important factor when the product is evaluated by the user is the country

of origin and the amount of available geodata for their working area. For example,

Spain invests high amounts of money in geo-information at national and regional

level, producing tailored products, mostly in-house, to suit their particular needs

and generating regular updates of the information. Therefore, many organisations

have exactly what they need by developing their own geo-information projects.

Fig. 8.2 Cities and LUZ (large urban zone) of UA
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This type of user shows little interest in the UA, as they have their needs already

covered by their own products.

On the other hand, in other countries, such policies to finance this type of project,

do not exist or are not widespread. In these cases, organisations lack suitable

geo-information to assist their tasks and any mapping product is most welcome.

If we look at user’s reactions regarding the benefit of the UA, they have been

diverse. Those users who have no similar product, have found it really useful for

their tasks in land management and environmental planning, stating benefits such

as:

• Harmonised approach.

• Better detail than CORINE for urban areas (when CORINE is the only similar

geodata they have).

• Most useful and Use product they have ever had.

• Cross-border homogeneous data.

On the other hand, users who have similar available information do not consider

the UA as a substitute, but a complement of what they already have. In some cases,

the benefit they see is the current cost of the product, which is provided for free.

When users are asked about how the product should be improved or changed to

make it more useful and useable to better cover their needs, answers are quite

similar regardless their degree of satisfaction with the current specification. Users

who need to work at local level consider the current scale insufficient, as the

current degree of detail does not separate individual buildings and geometric

accuracy should be finer.

The other main shortcoming found at the moment by most users is the thematic

detail. Some classes (both urban and non-urban) are seen as too aggregated and

they should be separated into several individual components. For example, class

12130 (Public military and private services) is generally considered too broad and

should be disaggregated in their individual components, otherwise this introduces a

lot of uncertainty making this class quite useless. Other users, more involved with

environmental issues, would like more detail for non-urban classes, disaggregating,

for example, class 31000 (Forest) into deciduous and evergreen forests.

Those users who have had the opportunity to see their cities produced at local

and European level (as defined by DGRegio) have shown disappointed with the

result of the latter, as the loss of thematic content makes the geo-data much less

useful for local purposes, not seeing much compatibility between the product and

the tasks it could be useful for. Also they appreciate a very high unbalance

between scale, MMU and number of classes (Fig. 8.3).

Users’ expectations for the future are focused on the regular updating of the

product (1–2 years). For land management and urban planning change assessment

is a very important issue and most users lack products or projects devoted to a

regular monitoring of changes.

At the moment, the most involved European user is DGRegio. As soon as

DGRegio showed interest in the UA, they got involved in the technical discussions

and definition of the European UA, approving a final version of the product,
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which guidelines are being applied in the current production. Therefore, user’s

requirements at European level are considered to be fulfilled, as, at the moment,

the “only” European-level user has stated its needs and consequently the product

has been tailored to fit these requirements.

8.3 Urban Atlas: Main Features

The Urban Atlas concept has been developed in such a way that the maps serve

multiple purposes: the Urban Atlas should help urban planners for better assessing

risks and opportunities, ranging from threat of flooding and impact of climate

change, to identifying new infrastructure and public transport needs.

In order to do so, the maps are created with following specifications:

• Provides harmonised land cover/land use maps at scale 1:10,000 and according

to a common classification

• Designed to measure urban land use at high resolution and at high/low levels of

soil sealing

• Covers 305 major European agglomerations, based on Urban Audit’s Larger

Urban Zones

• Minimum mapping unit: 0.25 ha in urban and 1 ha in rural areas

• Minimum linear width: 10 m

• Positional Accuracy : �5 m

• Thematic classes based on CORINE LC nomenclature and GUS Legend (based

on MOLAND) – 20 thematic classes

• Thematic accuracy: 85 % urban areas, 80 % outside

• Vector format

• Use of commercial off the shelf (COTS) navigation data for the road network

• Degree of sealing for 11 classes based on GMES FTS (Fast Track Service) Soil

Sealing Layer specifications

Fig. 8.3 Detail of the Urban Atlas of Málaga (Spain) at local level (left) and European level

(right) (Legend in Fig. 8.4)
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• All input data described by metadata according to the INSPIRE metadata profile

specifications and guidelines (Fig. 8.4)

8.4 Methodology Description for UA Update

In the framework of Geoland2, the European Land Monitoring Service

(EUROLAND) addresses the local (i.e. the Urban Atlas) component of the Land

Monitoring Core Service (LMCS).

One of the goals within the project was to develop an Urban Atlas update

procedure based on a mapping of changes. This actual change delineation and

Fig. 8.4 Urban Atlas legend
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interpretation is a manual process. However, this effort was supported by the results

of automated change detection. In the next paragraphs, the possible approaches for

change detection considered are described.

8.4.1 General Change Detection Considerations

The first step in change detection is to determine the nature of the problem in terms

of substance, time, and space. Then the desired remote sensing imagery/data can be

defined, along with supporting ancillary data. Processing procedures may then be

outlined, including classification schemes. A sequence of steps needed to perform

change detection using digital remote sensing data is outlined (Fig. 8.5).

8.4.2 Change Detection Algorithms

For the detection of change pixels, several statistical techniques exist, calculating

e.g. the spectral or texture pixel values, estimating the change of transformed

pixel values or identifying the change of class memberships of the pixels

(Lu et al. 2004; Baatz and Schäpe 2000). But when adapted to high-resolution

imagery, the results of these pixel-based algorithms are sometimes limited. Espe-

cially if small structural changes are to be detected, object-oriented procedures

seem to be more precise and meaningful. Object-oriented change detection

and analysis techniques can in addition estimate the changes of the mean object

features (spectral colour, form, etc.), assess the modified relations among

neighbouring, sub- and super-objects and find out changes regarding the object

class memberships.

Image differencing is one of the most effective methods in image algebra and

can result in a meaningful change/non-change map if appropriate threshold values

are chosen.

A common method in image differencing is to consider the pixels’ brightness

magnitude. The measure of the change across all the bands in an image can be

derived and then the relative difference between the two images is. In image-to-

image change detection, selecting a threshold is a trade-off between real changes

and the noise level.

State the change detection problem

Considerations of significance when performing change detection

Image processing of remote sensor data to extract change information

Quality assurance and control program

Distribute results

Fig. 8.5 General steps

used to conduct digital

change detection using

remote sensor data

(from Jensen 1996)
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One motivation for the object-oriented approach is the fact that, in many cases,

the expected result of most image analysis tasks is the extraction of real world

objects, proper in shape and proper in classification. The proposed approach relies

on three steps: first is segmentation of the image to produce image objects, second is

the detection of changes by comparing both images and by the use of suitable

features, and finally a post-processing using some rules to reduce the vagueness and

increase the reliability of the results.

For image data taken at two different dates, the image segmentation could

be performed in three different ways, depending on the input data (Niemeyer

et al. 2008):

(a) On the basis of the bi-temporal data set, i.e. using a data stack that consists of

both scenes.

(b) Based on the image data of one acquisition time; the generated object bound-

aries are then simply assigned to the image data of the second acquisition time

without segmentation.

(c) Separately for the two times, i.e. the two data sets are segmented independently.

The variation of objects shape features is in any case an important indicator for

real object changes and needs to be taken into account for object-based change

detection.

Object changes could then be identified based on the layer features, such as mean

or standard deviation of the single image bands, shape and texture features

(Fig. 8.6).

A good image segmentation should result in the creation of homogeneous

objects, thereby enabling an object classification using strict thresholds. The aim

is to find a set of feature parameters (spectral as well as textural) which enable the

identification of changed areas. Creating ratios by dividing object values from t1 by

those of t0 (spectral values and texture calculations) proves to result in a set of

object parameters highly valuable for the identification of changed areas.

Fig. 8.6 Segmentation of SPOT5 images (2005 and 2008) based on both images gives a good

delineation of changed and non-changed features. (Madrid, ES) (from van Wolvelaer et al. 2010)
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8.4.3 Change Detection Within the geoland2 Project

Within the geoland2 project the developments regarding the local component were

threefold:

1. The creation of an update protocol to guarantee a common mapping approach

2. The development of an automated change detection algorithm

3. The implementation of the developed methodology for the updating of the Urban

Atlas

At first an Urban Atlas update protocol was developed based on the Corine Land

Cover change mapping approach (2000–2006). This protocol identifies the different

change possibilities (e.g. new features, disappearance of features, fragmented

change, etc.) and gives a specific solution for each change type.

This mapping protocol is necessary to implement the automatically detected

changes in a uniform way. In the end the aim within the geoland2 project was to

create a “full” Urban Atlas update for a set of European cities. In order to do so, the

detected land cover changes need to be interpreted by a photo-interpreter to create a

database of land use changes and ultimately come to an updated Urban Atlas map.

Different change mapping approaches have been developed, including a stan-

dard pixel-based differencing, a comparison of object texture, and a change iden-

tification based on the Pearsons’ index. In total the Urban Atlas for seven European

cities has been updated using this semi-automated change detection approach.

In contrast to this “full” update whereby an image-to-image comparison is

performed, the “quick update” procedure compares the existing Urban Atlas

(2006) map with the updated HR layer Imperviousness (2009). This change detec-

tion method considers the monitoring of urban sprawl, thereby focusing on the

built-up of formerly non-built up areas.

Within the objects of the Urban Atlas classified as non-built-up (agricultural

areas, forests, land without current use, green urban areas, . . .), the updated sealing
layer is screened for the presence of sealed areas. In the next step, these highlighted

areas are segmented based on the new HR image (2009).

This methodology offers a quick procedure for the monitoring of the urban

expansion using existing datasets. Drawback is that it is only focused on certain

land cover classes, thereby neglecting other possible land cover changes.

8.5 Conclusions

Automated change detection techniques prove to be applicable for detecting

changes in the urban environment. More specific, the effort needed for identifying

land use changes in order to update an Urban Atlas map is significantly reduced

when using automatic change detection techniques for the detection of land cover
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changes. These change/no-change layers can be used as a direct input for the CAPI-

based map updating.

Multiple methodologies have been studied, thereby comparing pixel- with

object-based procedures. The object-oriented methods prove to be best suited for

the task in mind.

Future research should focus on an improvement and validation (reduction of

commission and omission errors) of the tested workflows, thereby also focusing on

the classification of changes.
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Chapter 9

A Review of Modern Approaches

to Classification of Remote Sensing Data

Lorenzo Bruzzone and Begüm Demir

9.1 Introduction

Remote sensing (RS) images are a rich information source for monitoring the Earth

surface, e.g., for climate change analysis, urban area studies, forestry applications,

risk and damage assessment, water quality assessment, crop monitoring. Due to the

recent developments in both passive multispectral and hyperspectral sensors, as well

as Synthetic Aperture Radar (SAR) active instruments, the role of this technology is

becoming more and more important for environmental monitoring and anthropic

applications. The new generation of satellite multispectral sensors characterized by

very high geometrical resolution (VHR) (e.g., Ikonos, Quickbird, Spot-5, and

Geoeye-1) can acquire images with a metric or sub-metric resolution. Hyperspectral

sensors can acquire images characterized by a high spectral resolution that usually

results in hundreds of observation channels. The acquisition of VHR SAR images

from satellite platforms has also become possible thanks to recent TerraSAR-X,

TanDEM-X and Cosmo-Skymed missions.

In this chapter we focus our attention on automatic classification methodologies

for passive RS images aimed at generating land-cover maps. Land-cover maps are

usually obtained from RS images by using supervised classification techniques,

which require a set of labeled samples for training the classification algorithm.

The information contained in the last generation of satellite RS data allows a

classification of land-cover types with improved accuracy and robustness.

However, for an efficient and effective analysis of the huge amount of data available,

it is necessary to define automatic techniques that can address several critical

problems related to the very high spectral and geometrical resolutions of the data.

High spectral resolution data (i.e., hyperspectral images) result in the possibility

to discriminate land-cover classes with very similar spectral signatures with a high
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accuracy. However, supervised classification of hyperspectral images is a very

complex task due to: (1) the non-stationary behavior of the spectral signatures of

land-cover classes in the spatial domain of the scene, which is due to physical

factors related to ground (e.g., different soil moisture or composition), vegetation,

and atmospheric conditions; and (2) the small ratio between the number of training

samples and the number of available spectral channels, which results in the Hughes

phenomenon (i.e. the classification accuracy decreases by increasing the number of

features given as input to the classifier over a given threshold, which depends on the

number of training samples and the kind of classifier adopted (Hughes 1968)).

All the aforementioned issues result in decreasing the robustness, the generalization

capability, and the overall accuracy of classification systems used to generate the

land-cover maps.

In the case of VHR data, the significant amount of geometrical details present in a

very high-resolution scene completely changes the perspective of data analysis

compared with high and moderate-resolution images provided by previous-

generation satellite sensors (such as the multispectral Thematic Mapper and

Enhanced Thematic Mapper Plus scanners). In particular, the improvement in spatial

resolution simplifies the problem of mixed pixels present in standard images, while it

increases the internal spectral variability (intraclass variability) of each land-cover

class and decreases the spectral variability between different classes (interclass

variability). Thus, on the one hand, the resulting high intraclass and low interclass

variabilities lead to a reduction in the statistical separability of the different land-

cover classes in the spectral domain, which in turn involves high classification errors

(Carleer et al. 2004; Binaghi et al. 2003). In addition, the limited spectral resolution of

VHR sensors, which depends on technological constraints, further increases the

complexity of the classification problem (Carleer et al. 2004; Schowengerdt 2002).

On the other hand, due to the high spatial resolution of the images, the geometrical

information of the scene can also be considered in the classification process according

to proper feature-extraction methodologies. Thus, the properties of VHR data require

the development of specific methods for data analysis.

The aim of this chapter is to review different techniques proposed in the literature

for the classification of multispectral and hyperspectral RS images. We focus our

attention on the most recent methodological developments related to the classification

of RS images acquired by new generation RS sensors. The rest of this chapter is

organized as follows. Sections 9.2 and 9.3 review the techniques proposed in the

literature for the classification of hyperspectral and VHR RS images, respectively.

Section 9.4 introduces the most recent classification approaches presented in the

literature. Finally, Sect. 9.5 draws the conclusion of this chapter.

9.2 Classification Techniques for Hyperspectral Images

Statistical and machine learning techniques have been widely used in the past

decades for the analysis and classification of multispectral RS data. Many tech-

niques have been presented in the literature including maximum likelihood (ML)
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classifier (Duda et al. 2001), spectral angle mapper (SAM) classifier (Kruse

et al. 1993), k-nearest neighbor classifier (Samaniego et al. 2008), decision trees

(van de Vlag and Stein 2007), genetic algorithms based classifiers (Bandyopadhyay

and Pal 2001) and ant colony algorithms (Liu et al. 2008). In the past, many

machine learning algorithms based on artificial neural networks (Haykin 1999)

have also been used for classification of multispectral data (e.g., multilayer

perceptrons (Bischof and Leona 1998; Yang et al. 1999), radial basis function

neural networks (Bruzzone and Fernández-Prieto 1999; Giacinto and Bruzzone

2000)). Multispectral sensors proved to be effective for discriminating among

different land-cover classes. However, they cannot discriminate classes with very

similar spectral signatures. To deal with this problem, hyperspectral RS images

can be used. However, the above-mentioned classification techniques decrease

their effectiveness when applied to hyperspectral images. This depends on their

sensitivity to both the large spatial variability of the signatures of land-cover classes

and the Hughes phenomenon.

In order to handle the aforementioned problems, in the literature, different

promising approaches have been proposed to hyperspectral image classification.

In the recent years, kernel-based RS image classification techniques have become

very popular, since these approaches are robust to the Hughes phenomenon and

can provide reasonably high classification accuracy also in critical conditions.

Four different kernel-based methods, i.e., regularized radial basis function neural

networks, support vector machine (SVM) (Boser et al. 1992; Schölkopf and Smola

2001), Fisher discriminant analysis, and regularized AdaBoost have been analyzed

and compared both theoretically and experimentally in the context of classification

of hyperspectral data in Camps-Valls and Bruzzone (2005). The comparison has

been carried out in terms of robustness to high dimension of the input space, low

number of training samples, and noisy data. As a result, SVM is found to be most

effective, yielding higher accuracies than the other kernel-based methods con-

sidered, and at a much lower computational cost. The success of SVMs in classifi-

cation of hyperspectral data is justified by three main reasons (Camps-Valls and

Bruzzone 2005; Gualtieri et al. 1999; Huang et al. 2002; Camps-Valls et al. 2004;

Melgani and Bruzzone 2004): (i) their intrinsic effectiveness, with respect to

traditional classifiers, which results in high classification accuracies and very

good generalization capabilities (low sensitivity to the Hughes phenomenon);

(ii) the convexity of the objective function used in the learning of the classifier,

which results in a unique solution (i.e., the system cannot fall into sub-optimal

solutions associated with local minima); (iii) the possibility of representing the

convex optimization problem in a dual formulation, where only non-zero Lagrange

multipliers are necessary for defining the separation hyperplane (which is a very

important advantage in the case of large datasets) that is related to the sparsity of the

solutions (Cristianini and Shawe-Taylor 2000). Another interesting and effective

method introduced in the RS literature is the kernel Fisher discriminant (KFD)

analysis (Mika et al. 1999; Murat Dundar and Landgrebe 2004). This method takes

advantage of the same concept of kernel used in SVMs to obtain nonlinear
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solutions; however, it minimizes a different functional, and thus the solution is

expressed in a different way. Another kernel-based classification technique is

relevance vector machine (RVM), which has been presented in Demir and Ertürk

(2007) for the classification of hyperspectral images. The most important advantage

of RVMs compared to SVMs is that it can provide similar classification accuracy

with a significantly reduced number of relevance vectors with respect to that of

support vectors. Thus RVM is more suitable for applications that require low

complexity and, possibly, real-time classification (Demir and Ertürk 2007).

9.3 Classification Techniques for Very High

Geometrical Resolution Images

With the availability of VHR images it is possible to acquire detailed information on

the shape and geometry of the objects that are present on the ground. This detailed

information can be exploited by automatic classification systems to generate land-

cover maps that exhibit a high degree of geometrical details. The precision that the

classification system can afford in the characterization of the geometrical properties

of the objects that are present on the ground is particularly relevant in many practical

applications. In the recent literature, many papers have addressed the development of

novel techniques for the classification of VHR RS images. In Camps-Valls

et al. (2006), composite kernels defined in the context of SVMs are used to combine

spatial and spectral information to obtain higher accuracy compared to that yielded

using spectral information only. To this purpose, spatial feature vectors are obtained

using either a simple mean or the mean and the standard deviation together of a

certain neighborhood window of the corresponding spectral feature vector. Then, it is

proposed to compute kernel matrices corresponding to spatial and spectral feature

vectors separately and merging them using different combination approaches.

In Pesaresi and Benediktsson (2001) and Tuia et al. (2009a) it is proposed to use

morphological profiles (MPs) for the classification of VHR images. In these works,

MPs are constructed by applying opening and closing operations to the image

features. The characterization of spatial information with MPs is mostly suitable

for representing the multiscale variability of the structures in the image, whereas it is

not sufficient to model other geometrical features. To overcome this limitation, in

Dalla Mura et al. (2010) it is proposed to use morphological attribute filters instead of

the conventional MPs for better modeling the spatial information. The combination

of spectral and spatial information is achieved based on Markov random field in

Farag et al. (2005), and majority voting is used within regions obtained by the

watershed segmentation algorithm in Tarabalka et al. (2008). In Unsalan and Boyer

(2004), a technique for the identification of land developments across large-scale

regions is presented. The proposed technique uses straight lines, statistical measures

(length, orientation, and periodicity of straight line), and a spatial coherence
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constraint to identify three classes, namely: (1) urban; (2) residential; and (3) rural. In

Shackelford and Davis (2003), an object-based approach is proposed to classification

of dense urban areas from pan-sharpened multispectral Ikonos imagery. This

approach exploits a cascade combination of a fuzzy pixel-based classifier and a

fuzzy object-based classifier. The fuzzy pixel-based classifier uses spectral and

simple spatial features to discriminate between roads and buildings, which are

spectrally similar. Subsequently, a segmented image is used to model the spectral

and spatial heterogeneities and to improve the overall accuracy of the pixel-based

thematic map. Shape features and other spatial features (extracted from the

segmented image) as well as the previously generated fuzzy classification map are

used as inputs to an object-based fuzzy classifier. In Mott et al. (2002), an algorithm

based on selective region growing is proposed to classify a high-resolution image.

In the first step, the image is classified by taking into account only spectral infor-

mation. In the second step, a classification procedure is applied to the previous map

by taking into account not only spectral information but also a pixel distance

condition to aggregate neighbor pixels. By reiteration, neighbor pixels that belong

to the same class grow in a selective way, obtaining a final classification map.

A pixel-based approach to the classification of VHR images is presented in Bruzzone

and Carlin (2006). The proposed approach is defined on the basis of two modules:

(1) a feature-extraction module that exploits an adaptive, multilevel, and complete

hierarchical representation of the spatial context of each pixel in the scene under

investigation; and (2) a classification module based on SVMs. A graph-based filter

model for object-oriented classification in VHR imagery, namely locally weighted

discriminating projection, is proposed in Chen et al. (2011). Thanks to this model, the

traditional graph-based linear criteria can be extended to facilitate nonlinear mapping

for linear nonseparable sample set.

9.4 Advanced Techniques for Classification

of Remote Sensing Images

One of the main critical issues in the application of supervised classification methods

to the analysis of RS images is the definition of a proper training set for the learning

phase of the classification algorithm. In many RS applications, due to the practical

impossibility to obtain a sufficient number of representative training samples for a

reliable estimation of classifier parameters (particularly when many information

classes are considered), supervised classification approaches may result in poor

accuracies. Indeed, the amount and the quality of the available reference samples

play an important role to obtain accurate land-cover maps. However, the collection of

a sufficient number of high quality labeled samples is time consuming and costly.

The quality of samples is related to different factors: (i) the high spatial correlation

that exists when training patterns are collected in neighboring locations on the ground
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(thus violating the expected independence assumption) that results in reduction of the

information conveyed by training samples with respect to the case of independent

samples; (ii) the intrinsic variability of the spectral signatures of land-cover classes in

the images (which have a non-stationary spatial behavior) that is related to the

acquisition and the ground conditions (this is particularly critical in hyperspectral

images where the spectral resolution of the sensor results in an intrinsic high

sensitivity to small variation in these conditions). This results in a limitation of the

capability to properly model the classification problem in the training set and thus in

defining an effective classification model with supervised classifiers.

To deal with these problems, semisupervised learning (SSL) and active learning

(AL) methods have been recently presented in the literature in the context of

classification of RS images. Semisupervised classification methods exploit both

training data and unlabeled samples in the learning phase of the classifier in order to

obtain a general decision function that can take into account both the information

present in the training set and the structure of all data in the feature space. This is

particularly useful in ill-posed problems where the training set does not completely

represent the real distribution of the data in the feature space. AL is introduced as

an alternative to passive learning. Passive learning is the standard approach

adopted for the definition of a training set in RS, which is based on the application

of statistical sampling procedures that exploit the knowledge of the appli-

cation domain for extracting ground reference samples and do not consider any

interaction with the adopted supervised classifier. In AL, the idea is to optimize the

definition of the training set by interacting with the criterion adopted by the

classification technique for the decision process. The concept is that starting from

an initial small number of training samples it is possible to exploit the classifier for

defining a training set that completely describes the classification problem

according to the mechanism adopted by the classifier for defining the discriminant

functions. In this way, it is expected that the classifier drives the definition of the

training set and that the expensive phase of collection of labels for irrelevant

(i.e. redundant or non-useful) samples is avoided.

Another conceptually different approach to improve the statistic in the learning

of a classifier is domain adaptation (DA). DA methods aim at classifying an image

for which no prior information is available (target domain) by exploiting the ground

reference samples already available for another similar image (source domain).

Accordingly, the need and effort to recollect labeled samples is significantly

reduced by reusing the already available information on the source domain to

classify the target domain. DA (also known as partially supervised/unsupervised

learning) methods define strategies that use the information available on the source

domain to classify the target domain, assuming that the two domains may have

different (but related) distributions.

The next subsections provide a discussion and a review on the use of SSL, AL

and DA, for the classification of RS images. Table 9.1 summarizes the main

characteristics of all the aforementioned learning methods.
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Table 9.1 Main characteristics of the considered learning problems

Type of learning Hypotheses Objective

Supervised learning (Duda et al. 2001;

Kruse et al. 1993; Samaniego et al.

2008; van de Vlag and Stein 2007;

Bandyopadhyay and Pal 2001;

Liu et al. 2008; Haykin 1999;

Bischof and Leona 1998;

Yang et al. 1999; Bruzzone and

Fernández-Prieto 1999; Giacinto

and Bruzzone 2000; Boser et al.

1992; Schölkopf and Smola 2001;

Camps-Valls and Bruzzone 2005;

Gualtieri et al. 1999; Huang

et al. 2002; Camps-Valls et al. 2004;

Melgani and Bruzzone 2004;

Cristianini and Shawe-Taylor 2000;

Mika et al. 1999; Murat Dundar and

Landgrebe 2004; Demir and Ertürk

2007; Camps-Valls et al. 2006;

Pesaresi and Benediktsson 2001;

Tuia et al. 2009a; Dalla Mura

et al. 2010; Farag et al. 2005;

Tarabalka et al. 2008; Unsalan

and Boyer 2004; Shackelford

and Davis 2003; Mott et al. 2002;

Bruzzone and Carlin 2006;

Chen et al. 2011)

Labeled training data

are available

Exploit available labeled

samples for the learning

of the classification

algorithm
Samples to be classified are

drawn from the same

domain of training data

Semisupervised learning (Bennett

and Demiriz 1998; Bruzzone

et al. 2006; Dundar and Landgrebe

2004; Chi and Bruzzone 2007;

Camps-Valls et al. 2007; Zhou

et al. 2004; Gómez et al. 2008;

Belkin et al. 2006; Chi and

Bruzzone 2005, 2006;

Bruzzone and Persello 2009;

Li et al. 2011, 2012)

Small number of labeled

training data is

available

Exploit both labeled and

unlabeled samples for

the learning of the

classification algorithmThe samples to be classi-

fied are drawn from

the same domain of

training data

Active learning (Mitra et al. 2004;

Rajan et al. 2008; Tuia et al. 2009b;

Demir et al. 2011a; Patra and

Bruzzone 2011; Liu et al. 2009a, b)

Small number of labeled

training data is

available

Define an optimized

training set according to

an iterative procedure

based on interactions

between the classifier

and supervisor

The samples to be classified

are drawn from the same

domain of training data

Learning under domain adaptation

(Bruzzone and Fernandez Prieto

2001; Bruzzone and Fernandez

Prieto 2002; Bruzzone and Cossu

2002; Bruzzone and Marconcini

2010; Bahirat et al. 2010; Persello

and Bruzzone 2011; Demir

et al. 2011b)

Labeled training data are

available for the source
domain

Adapt the classifier trained

on the source domain

for the target domain by

using SSL or AL

methods
The samples to be classi-

fied are drawn from

the target domain

(target domain 6¼source

domain)
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9.5 Semisupervised Learning Techniques

for Classification of Remote Sensing Images

The semisupervised paradigm represents an alternative to the traditional supervised

classification methods, which entirely base the design of the classifier decision rule

on the available training data, assuming that the training data completely represent

the classification problem according to the rule adopted by the classifier. However,

this may be a strong assumption in RS, where often we have ill-posed problems in

which both the quantity of training data available and their quality are critical

issues. Unlike the supervised approaches, semisupervised methods exploit both

training data and unlabeled samples in the learning phase of the classifier, and

thus, under proper assumptions, outperform standard supervised techniques espe-

cially when few training samples are available.

Recently, in the machine learning community, a growing attention has been

focused on semisupervised approaches implemented under the cluster assumption:

this assumption states that each cluster of samples is assumed to belong to one data

class; thus, the decision boundary between classes is defined between clusters, i.e., in

low-density regions of the feature space. In this context, transductive SVMs

(TSVMs) (Vapnik 1998, 1999) and semisupervised SVMs (S3VMs) (Bennett and

Demiriz 1998) proved particularly effective in several applications. In particular,

TSVMs and S3VMs exploit specific iterative algorithms based on SVMs which

gradually search a reliable separation hyperplane (in the kernel space) through a

learning process that incorporates both labeled and unlabeled samples in the training

phase. In Bruzzone et al. (2006) the authors proposed a semisupervised classifier

specifically designed for addressing ill-posed problems in the context of RS.

In particular, this technique has the following properties: (1) it is based on a

transductive procedure that exploits a weighting strategy for unlabeled patterns on

the basis of a time-dependent criterion; (2) it is able to mitigate the effects of

suboptimal model selection (which is unavoidable in the presence of small size

training sets); and (3) it can address multiclass problems. A similar method that

exploits, in place of SVMs, a modified version of the Kernel Fisher’s discriminant

using labeled and unlabeled data has been presented in Dundar and Landgrebe

(2004). In particular, the proposed technique is obtained through an optimization of

a quadratic programming problem that minimizes the total cost of misclassified

labeled data while maximizing the Rayleigh coefficient in the kernel space. Other

effective approaches have been presented in Chi and Bruzzone (2007), where the

authors introduced in RS two different S3VM algorithms for the classification of

hyperspectral data implemented and optimized in the primal formulation. In this case

the constraints of the labeled and unlabeled samples are directly included in the cost

function in order to obtain an unconstrained optimization problem. The first presented

primal S3VM optimizes the unconstrained objective function by the gradient descent

technique, leading to the formulation of ∇S3VMs. The second algorithm combines

∇S3VMs with a graph-based kernel matrix.
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Another class of promising methods includes graph-based semisupervised

algorithms, which define a graph where the nodes are labeled and unlabeled

patterns and edges reflect the similarity of samples. Each sample spreads its label

information to its neighbors until a global stable state is achieved on the whole data

set. Graph-based approaches aim at estimating an objective function on the graph

which generally consists of a loss term and a regularizer. In this context, an

interesting approach has been proposed in Camps-Valls et al. (2007) where a

graph-based classifier is presented for hyperspectral images, which is based on

the algorithm described in Zhou et al. (2004). This algorithm takes advantage of

both the high number of unlabeled samples present in the image and the integration

of contextual information. Another technique has been proposed in Gómez

et al. (2008). In particular, the authors extended to the RS domain the Laplacian

SVM technique proposed in Belkin et al. (2006), which introduces an additional

regularization term on the geometry of both labeled and unlabeled samples by using

the graph Laplacian. This method follows a noniterative optimization procedure

in contrast to most transductive learning methods and provides out-of-sample

predictions in contrast to graph-based approaches.

In order to increase the reliability of the semisupervised learning process, systems

based on ensemble methods have also been devised. As an example, in Chi and

Bruzzone (2005, 2006), the employment of semilabeled-sample-driven bagging

techniques is proposed. In Bruzzone and Persello (2009) a context-sensitive

semisupervised SVM (CS4VM) classifier is presented. This method addresses

classification problems where the available training set is not fully reliable, i.e.,

some labeled samples may be associated to the wrong information class (mislabeled

patterns). A soft sparse multinomial logistic regression model is presented in Li

et al. (2011) for the semisupervised classification of hyperspectral images. This

model exploits both hard and soft labels corresponding to labeled and unlabeled

training samples, respectively. Thanks to the soft labels obtained by subspace-based

multinomial logistic regression algorithm (Li et al. 2012), this strategy effectively

models the phenomenon of mixed pixels present in hyperspectral images.

It is worth nothing that the effectiveness of the semisupervised methods

depends on the two main assumptions: (i) the considered data should follow

the cluster assumption (i.e., samples of different classes belong to different

clusters in the feature space); and (ii) the initial training samples should not be

too far from the correct representation of the considered classification problem.

It is very intuitive to understand that if the first assumption is not verified the

semisupervised method cannot work properly. The second assumption is critical

in the sense that the initial training samples pose a bias on the part of the feature

space where looking for low density. If these samples are too far from the real

decision hyperplane, the risk is to find a correct solution from the theoretical

viewpoint that does not match the property of the addressed problem. For these

reasons, the use of semisupervised methods should be done after a careful

evaluation of the properties of the considered problem and when the available

training set is incomplete, yet not too biased.
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9.6 Active Learning Techniques for Classification

of Remote Sensing Images

A different approach to both enrich the information given as input to the supervised

classifier and improve the statistic of the classes is AL. AL techniques iteratively

expand the size of an initial labeled training set selecting the most informative

samples from a pool of unlabeled samples for manual labeling. At each iteration,

the most informative unlabeled samples (for a given classifier) are selected based on

a query function, labeled by a supervisor and added to the current training set.

Finally, the supervised classifier is retrained with the samples moved from the pool

to the training set. It is worth noting that the initial training set requires few labeled

samples for the first training of the classifier and then is enriched iteratively by

including the most informative samples selected from a pool. At the convergence,

the training set is made up of a minimum number of samples “optimal” for the

considered classifier. When the AL process is completed, the classifier is trained

once again and the classification of the image under investigation is carried out.

The selection of the most informative samples from a pool to be included in the

training set on the basis of AL offers three main advantages: (i) the labeling cost is

reduced due to the avoidance of redundant samples, (ii) the computational com-

plexity of the learning phase is reduced due to the selection of an optimal subset of

training samples (i.e., a set with a small number of most representative samples),

and (iii) accurate classification accuracy can be obtained due to the improved class

models estimated on a high quality training set on the basis of the classification rule

used from the considered classifier. The supervisor is usually a human expert who

gives the true class labels to the selected samples. For RS classification problems,

the labeling of both the initial training set and of queried samples can be obtained

by: (1) in situ ground surveys, (2) image photointerpretation, or (3) hybrid solutions

(both photointerpretation and ground surveys).

In the RS literature some AL techniques have been recently presented to optimize

the training set. In Mitra et al. (2004), the unlabeled sample that is closest to the

classification boundary (i.e., classification margin) of each binary SVM in a One-

Against-All (OAA) multiclass architecture is considered as the most informative and

therefore included in the current training set at each iteration of the AL process.

An AL technique that selects the unlabeled sample that maximizes the information

gain is presented in Rajan et al. (2008). To estimate the information gain, the

Kullback–Leibler (KL) divergence is calculated between the posterior probability

distribution of the current training set and the training set obtained by including each

unlabeled sample into the training set. Two different AL techniques for multiclass RS

classification problems are presented in Tuia et al. (2009b). In the first technique, the

unlabeled samples that both have the smallest distance to the decision hyperplane of

each binary SVM in an OAA multiclass architecture and do not share the same

closest support vector are selected as uncertain and added to the training set.

The second technique assesses the uncertainty on decisions of a committee of

classifiers, i.e., uncertain samples are those having maximum disagreement between
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a committee of classifiers. Disagreement among the classifiers is measured by the

entropy in the distribution of the labels provided by the committee members for each

sample. In Demir et al. (2011a), different AL techniques proposed in the machine

learning literature are investigated for the multiclass SVM classification problems,

and also a novel AL method is proposed. The latter firstly selects the most informa-

tive unlabeled samples by theMulticlass-Level Uncertainty strategy. Then it analyzes

their distribution by using the k-means clustering in the kernel space. Finally, the

most informative (i.e., most uncertain) sample of each cluster is added to the training

set at each iteration of AL. In Patra and Bruzzone (2011), a cluster assumption based

AL method is presented for addressing critical problems where significantly biased

initial training sets are available. Label acquisition costs sensitive AL techniques are

proposed in Liu et al. (2009a, b). Differently from the standard AL techniques

proposed in the RS literature, these techniques assume that the collection of the

label of each sample has a non-uniform cost that depends on the label acquisition

process. The cost of labeling each sample is modeled only according to the overall

traveling distance for collecting the labels of all the samples, ignoring the accessi-

bility of the samples.

From a general viewpoint, the use of AL techniques has not the drawbacks

mentioned for the semisupervised techniques. AL generally works properly in any

classification problem. If the initial training set is biased, the effect that we can

obtain is to reach the convergence of the learning slowly, i.e. with a higher number

of iterations and thus requiring the labeling of a higher number of training samples

(empirical results reported in many papers point out that in any case the correct

convergence can be generally achieved with a smaller number of samples than

those collected in traditional passive learning). The main drawbacks of AL are

related to the need to implement a training data collection strategy that includes the

classifier in the process. This is relatively easy when the training set can be defined

via photointerpretation. It becomes apparently more challenging when label col-

lection is performed on the ground. In this case the strategy for collecting samples

should be driven by the classifier. This can be achieved by connecting the people

operating on the ground and their GPS coordinates with the computer running the

classifier, which can be either a remote server connected via radio link or a laptop

that can be used on the ground.

9.7 Domain Adaptation Techniques for Classification

of Remote Sensing Images

Another important problem in the classification of RS data is to update land-cover

maps by the analysis of the RS images. Land-cover maps updating is important due

to the availability of increased numbers of images regularly acquired by satellite-

borne sensors on the same areas at different times (i.e., time series of remotely

sensed images). Because of the new policies related to free availability of data
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(e.g., Landsat archive, future ESA Sentinel missions) this issue is becoming more

and more strategic as time series are accessible to each potential users in a

systematic way. Land-cover maps can be updated by direct supervised classifi-

cation of each image in the time series. However, such an approach requires reliable

ground reference data for all the available temporal images in order to properly train

the classifier. In operational scenarios, as mentioned before, gathering a sufficient

number of labeled training samples for each single image to be classified is not

realistic due to the high cost and the related time consuming process of this task.

Moreover, although the images in the time series refer to the same area, ground

reference samples available for one of the images may not follow the same

distribution in other acquired images due to several reasons, such as differences

in the atmospheric conditions at the image acquisition dates, different acquisition

system state, different levels of soil moisture, changes occurred on the ground, etc.

In these situations, exploiting the classifier trained on the image for which training

data are available may result in poor classification performance, and therefore

recollection of labeled samples is necessary. To reduce the need and effort to

recollect labeled samples, it is desirable to reuse the already available information

on images acquired on the same area of interest (source domain) to classify new

images acquired on the same area (target domain).

To deal with this problem, transfer learning (TL) techniques, and more in detail

DA methods in TL, have been recently introduced in the RS literature (Bruzzone

and Fernandez Prieto 2001; Demir et al. 2011b). DA is known also as partially

supervised/unsupervised learning and is addressed with SSL or AL methods. On the

one hand, SSL applies a classifier trained on the source domain to the target domain

after tuning the parameters according to unlabeled data from the target domain

(Bruzzone and Fernandez Prieto 2001; Bahirat et al. 2010). In other words, the

information of reference training samples from the source domain is improved by

costless unlabeled samples from the target domain to obtain a reliable classifier for

the target domain. On the other hand, AL methods aim at improving (from the

target domain point of view) the information of the source domain reference

samples by iteratively adding samples selected from the target domain (Rajan

et al. 2008; Persello and Bruzzone 2011; Demir et al. 2011b). Before inclusion in

the training set, these samples should be manually labeled by a human expert, thus

these methods have associated a cost that SSL techniques do not have. However AL

methods try to reduce it by labeling the smallest possible number of unlabeled

samples. This is achieved by selecting for labeling those samples that are the most

informative from the target domain viewpoint, thus avoiding the huge cost of

collecting large amount of labeled samples. In the literature examples of DA

methods based on both SSL and AL are available. For example, in Bruzzone and

Fernandez Prieto (2001) DA problems are addressed with SSL by updating on the

basis of the distribution of the target domain the parameters of a parametric ML

classifier already trained on the source domain. This method has been generalized

in the context of the Bayes rule for cascade classification in order to exploit the

temporal correlation between domains (Bruzzone and Fernandez Prieto 2002).

Further improvements of this method are presented in Bruzzone and Cossu
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(2002) and Bruzzone and Marconcini (2010). A multiple cascade classifier system

is proposed in Bruzzone and Cossu (2002) including ML and neural-network

classifiers, whereas differences on the set of land-cover classes between the

domains are addressed by the joint use of an unsupervised change-detection method

and of the Jeffreys-Matusita (JM) statistical distance measure in Bruzzone and

Marconcini (2010). Another DA method with SSL based on an SVM classifier is

described in Bahirat et al. (2010). In this work, the discriminant function for the

target domain is initialized by the labeled samples of the source domain. Then the

unlabeled patterns of the target domain that have a high probability to be correctly

classified are iteratively included in the training set, whereas the labeled samples of

the source domain are gradually removed.

In Rajan et al. (2008), Persello and Bruzzone (2011), and Demir et al. (2011b) DA

problems are addressed with AL and thus, unlike (Bruzzone and Fernandez Prieto

2001; Demir et al. 2011b), a small number of labeled training samples is collected

from the target domain together with the labeled samples of the source domain.

In Rajan et al. (2008), the classifier parameters are initialized by the distributions

estimated on the labeled samples of the source domain. Then the unlabeled samples

of the target domain that have the maximum information gain (measured by the KL

divergence) are included in the training set of the target domain after manual labeling.

In Persello and Bruzzone (2011), the statistical parameters of a ML classifier are

initialized by exploiting the labeled samples of the source domain, and then the

most informative samples are iteratively selected from the target domain by AL to

be added to the training set after manual labeling. In this method, during the AL

process, the source domain samples that do not fit with the distribution of the classes

in the target domain are removed. An AL technique developed in the context of the

cascade classification of multitemporal RS images for updating land-cover maps is

presented in Demir et al. (2011b). The proposed AL technique is based on the

selection of unlabeled samples that have maximum uncertainty on their labels

assigned by cascade classification, and explicitly exploits temporal correlation

between multitemporal images by conditional entropy.

9.8 Discussion and Conclusion

In this chapter, we presented a literature survey on the most recent classification

techniques for the analysis of multispectral and hyperspectral RS images.

We observed that differences in both the type of classification problem and the

type of RS data require the development of specific data analysis methods.

In the context of classification of hyperspectral RS data, techniques that are both

robust to the Hughes phenomenon and to the nonstationary behavior of the spectral

signatures of land-cover classes are required. In order to address the above-

mentioned problems, kernel-based methods, particularly SVMs and RVMs, are

found very effective in the RS literature. The most appealing properties of SVMs

and RVMs for the classification of hyperspectral RS data are their high generali-

zation capability and robustness to the Hughes affect (which allow SVMs and
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RVMs to operate in large dimensional feature spaces with few training samples),

and their sparse solutions (i.e., the solution is expressed as a function only of the

most critical training samples in the distribution).

In the context of classification of VHR RS data, the exploitation of spatial

information together with the spectral information is found to be very beneficial.

To this end, several methods defined by exploiting composite kernels, morpho-

logical filters, Markov random fields, segmentation algorithms and region growing

methods have been presented in the RS literature for the joint use of spectral and

spatial information.

We also discussed the recent trends for the automatic classification of RS

images. In particular, we focused on semisupervised learning (SSL), active learning

(AL) and domain adaptation (DA). These approaches allow one to address classi-

fication problems in the critical conditions where the available labeled training

samples are limited. These operational conditions are very common in RS data

classification problems, due to the high cost and time related to the collection of

labeled samples. We observed that semisupervised techniques can improve the

classification accuracies obtained by supervised classifiers (thanks to using both

labeled and unlabeled samples in the learning of the classification algorithm)

depending on both: (1) the quality of the initial training set; and (2) the use of the

data for which the cluster assumption is hold. We also stated that, unlike the

semisupervised techniques, AL techniques can converge to good classification

accuracies starting from any initial training set and without requiring the cluster

assumption, thus resulting in a very useful tool for the collection of informative

labeled samples in real RS problems. We also observed that DA methods are very

promising for low-cost updating land-cover maps by using RS images periodically

acquired on the same investigated area. These technique are developed under

two assumptions: (i) the set of land-cover classes that characterizes the target

domain should be the same as those included in the source domain, and (ii) the

land-cover class statistical distributions should be sufficiently correlated (but not

necessarily identical) between the domains.

Despite the promising developments discussed in this chapter, it is still

necessary to develop more advanced classification methods that can efficiently

extract information from the complex data acquired by the last generation of RS

sensors. Furthermore, the above-mentioned recent developments, such as AL and

DA, have some critical limitations, and thus need to be improved for operational RS

scenarios. For example, most of the AL methods presented in the RS literature

assume that the costs of labeling samples are equal to each other (i.e., uniform cost).

However, the labeling cost of each sample in the case of ground surveys depends on

both the accessibility of the sample and the traveling distance to reach the related

locations. To deal with this problem, it is necessary to define labeling cost-sensitive

AL methods. Furthermore, as mentioned before, DA methods are defined on the

basis of two critical assumptions. However, in some real RS classification problems

these assumptions could not be satisfied due to (i) the possible appearance and/or

disappearance of the land-cover classes during time, and (ii) the possible high

differences on the class statistical distributions in the image time series. Thus, it

is necessary to study DA methods that can mitigate the aforementioned problems.
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Chapter 10

Recent Advances in Remote Sensing

Change Detection – A Review

Antje Hecheltjen, Frank Thonfeld, and Gunter Menz

10.1 Introduction

In one of the most cited reviews, change detection is defined as “. . . the process of
identifying differences in the state of an object or phenomenon by observing it at

different times” (Singh 1989). Change detection can be seen as a processing chain

encompassing several partly interlinked and overlapping steps: pre-processing,

change extraction (CE), thresholding, change labeling, and accuracy assessment

(Fig. 10.1). Selected input data (described here in Sect. 10.2) are first pre-processed;

typically encompassing radiometric as well as geometric preparation (Sect. 10.3).

Change extraction describes the algorithm applied to detect changes in the data sets

(Sect. 10.4). The separation of changed and unchanged pixels is frequently

achieved by applying thresholds to the change extraction result. The term “change

labeling” was first used by Johnson and Kasischke in 1998 to distinguish it from

“change detection” as a functionally and procedurally distinct process. Current

prevalent needs extent beyond knowing simply that change has occurred; informa-

tion is required regarding what has changed and how, and this has driven important

developments in the process of change labeling in recent years.

Coppin et al. 2004 differentiate between change extraction (i.e. the change

detection algorithm) and change labeling. Equating change labeling with change

classification routines, they decided to limit their review to change detection

algorithms only. Kennedy et al. (2009) presented a broader perspective of the

change labeling process. They distinguished between two general methods of

deriving labeled change maps, both employing differencing functions. The first

method applied a mapping or classification function over the two input images

separately; both of the classifications or continuous estimates were then compared

through differencing, resulting in a change map. This is part of what we term
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“pre-CE-labeling”. The second approach involved spectral differencing of the two

input images directly; labeling is performed through applying a function to the

difference image. This is part of what we call “post-CE-labeling”. The authors

mention three exceptions to this general scheme: (1) maintaining the existing

classification for the unchanged pixels and applying classification models to label

the changed pixels only; (2) direct change classification on a bi-temporal layer

stack, and; (3) time series analysis.

Our review follows a similar broad understanding of change labeling. We define

change labeling as the process of identifying and naming various types of changes.

In its simplest form, the change extraction algorithm (CEA) results in a binary

discrimination of the change data in which changed and unchanged pixels are

identified. More complex procedures result in maps of land-use/land-cover conver-

sions shown as from/to classes, or derive land-use/land-cover modifications indi-

cated as increases or decreases of an index value. We distinguish the different

change labeling operations according to their position in the change detection

processing chain, referring to these operations respectively as pre-CE-labeling

(Fig. 10.1, first row), post-CE-labeling (Fig. 10.1, second row), or concurrent

labeling (Fig. 10.1, third row). Change labeling and its linkages with CEA are

described in Sect. 10.5. Result of the change labeling step is a change detection

map, the accuracy of which must then be assessed (Sect. 10.6).

Few of the existing change detection reviews attempt to consider SAR and

optical data together (Milne 1988; Singh 1989; Mouat et al. 1993; Rignot and

Van Zyl 1993; Polidori et al. 1995; Coppin et al. 2004; Lu et al. 2004; Radke

et al. 2005). Thonfeld et al. (2010) is an exception. SAR sensor data have unique

utility in environmental monitoring purposes due to their independence from solar

illumination and ability to penetrate clouds. SAR data, however, have not been

equally considered or utilized for change detection applications. Reasons for this

include limited data availability and increased data costs, or limited processing

capabilities. Although SAR data typically include a lower number of sensor bands

(corresponding to the number of polarizations), multitemporal SAR data and

derived information are increasingly being used in two principal ways: (1) to

improve the description of temporally variable classes for classification analyses

(Bruzzone et al. 2004; Quegan et al. 2000), and; (2) to assess the evolution of

dynamic environments without necessarily classifying an image (e.g. Shepherd

et al. 2001).

Fig. 10.1 The change detection processing chain – three general options to derive labeled change

maps (1: pre-CE-labeling; 2: post-CE-labeling; 3: concurrent labeling)
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Typical applications of SAR including the use of differential interferometry

(InSAR) to detect ground deformation due to earthquakes (Massonnet et al. 1993),

subsidence (Strozzi et al. 2003) or slope instabilities (Strozzi et al. 2005), or for

velocity measurements of glaciers and ice caps are usually not considered as

change detection techniques. This paradigm seems to be generally accepted in the

field of land cover change detection. These analyses are, however, used to detect

changes on the earth’s surface and are sometimes applied to land cover change

detection. It therefore seems reasonable to integrate SAR methods in this change

detection review.

10.2 Input Data

In many cases the purpose of a study determines the choice of input data. If long

term monitoring is the objective, only few data sources are available; Landsat, Spot,

AVHRR are the most widely used. If satellite imagery is required for short term

analyses (e.g. emergency response), the user has to take advantage of all available

information and select the most appropriate and useful contemporary high spatial

and temporal resolution data. The choice of an appropriate image spectral or

polarization band mix also depends on the application. Thus, input data sets –

spectral bands or indices – and the selection of adequate, appropriate analytic

methodologies are driven by the particular application. Since many radar systems

provide only one (e.g. ERS-1/2) or two (e.g. ENVISAT ASAR) polarizations, SAR

methods are frequently limited to very few input bands. However, for some

algorithms the user can decide which band(s) to select, and functions such as

image differencing, ratioing, regression or texture can be calculated for each

band. In many studies, only one optimal band is selected (Ridd and Liu 1998).

Principal Components Analysis (PCA) may be applied on all change bands to

reduce data dimensionality (Jha and Unni 1994). Other change detection methods

such as Change Vector Analysis (CVA) (Malila 1980), Iteratively Re-Weighted

Multivariate Alteration Detection (IR-MAD) (Canty and Nielsen 2008), or PCA are

usually applied to the whole data layer stack.

10.3 Preprocessing: Radiometric and Geometric

Requirements

10.3.1 Radiometric Requirements

Many change detection and classification approaches do not require absolute

atmospheric correction (Song et al. 2001). However, the data should represent

similar atmospheric conditions and this can be achieved by relative atmospheric
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correction or radiometric normalization. Early relative atmospheric correction

methods used pseudo-invariant features (PIF) identified in both images (Schott

et al. 1988). State-of-the-art algorithms such as IR-MAD function completely

automatically and do not require any knowledge of the acquisition conditions or

of the study area. Several studies have analyzed the influence of radiometric

correction on change detection accuracy (Collins and Woodcock 1996; Song

et al. 2001; Schroeder et al. 2006) and all recommend applying radiometric

correction. However, they also conclude that relative atmospheric correction per-

forms as well as absolute correction and is usually easier to implement. Thus,

although absolute atmospheric correction is not required in many cases, it is

required if spectral libraries or field spectra are included in the analysis, and it is

necessary to analyze spectral reflectances. But sun angle effects such as differing

shadow lengths and incident illumination characteristics as well as additional vari-

ables such as different atmospheric conditions and sensor performance have to

be corrected by adjusting the target images to a reference image, i.e. relative

radiometric normalization. Vicente-Serrano et al. (2008) assessed different

preprocessing methods for land cover change detection and suggested implemen-

tation of a sequence including cross-sensor calibration, absolute radiometric cor-

rection, topographic correction and automatic relative radiometric normalization

when vegetation trends are analyzed. Relative normalization methods have to be

applied following absolute methods since non-surface related noise must be har-

monized. For the analysis of abrupt vegetation changes the use of Top of Atmo-

sphere (TOA) reflectances and accurate relative radiometric normalization are

sufficient to achieve useful results (Vicente-Serrano et al. 2008). However, these

researchers did not include IR-MAD in their study. Since IR-MAD is based on

linear regression, cross-sensor calibration using empirically derived slope and

intercept parameters is redundant and may be omitted (Vogelmann et al. 2001).

In recent change detection studies based on multiple images, one image is atmo-

spherically corrected using an absolute procedure (e.g., Second Simulation of the

Satellite Signal in the Solar Spectrum, or “6S”) and all the other images

are subsequently normalized to that master image using a relative method

(e.g. IR-MAD) (Coops et al. 2010; Griffiths et al. 2012; Powell et al. 2008). For

time series analysis, it is more important to have consistent surface reflectance

measurements rather than true surface reflectance (Schroeder et al. 2006). This

consistency is referred to as “common radiometric scale” (Song et al. 2001).

Cloud cover remains a challenge for change detection studies based on optical

imagery. Cloud free scenes must be selected for bi-temporal change detection and

trajectory analysis. Analysts sometimes have to employ images out of season.

These data do not display the same acquisition conditions of sun angles or vegeta-

tion phenology, and additional and mostly irrelevant variations in the data are

introduced. In a typical time series analysis, virtually every image can be used

because in many cases the entire area of interest is not obscured by clouds, and

those areas with cloud cover are likely to be unobscured on nearby images. For

many regions in the world, it is nearly impossible to construct cloud free time series,

and clouds and cloud shadows must be masked in each scene. Consequently, each

pixel has its own time series, with all cloud and cloud shadow pixels as well as any
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missing values (e.g. gaps in Landsat ETM+ SLC-off images) being masked out

(Zhu et al. 2012). Assuming a perfect masking function, cloud cover, cloud

shadows and missing values are minor problems in time series analysis. Two

powerful software packages have been recently developed for the systematic and

automatic radiometric preprocessing of TM and ETM+ Landsat images: (1) the

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek

et al. 2006) performs image calibration to TOA reflectance, cloud-screening, and

atmospheric correction to surface reflectance using the MODIS/6S approach, and;

(2) Fmask (Function of mask), a tool for cloud and cloud shadow detection (Zhu

and Woodcock 2012). Other cloud detection methods include the Automated Cloud

Cover Assessment (ACCA) (Irish 2000; Irish et al. 2006) and the method by (Huang

et al. 2010b).

10.3.2 Geometric Requirements

Precise geocoding and registration of images is mandatory to achieve reliable

change detection results (Townshend et al. 1992). Even small inaccuracies may

result in pseudo-changes – changes which are due to image misalignment and other

artifacts rather than real changes. Thus, methods have been developed to reduce the

effects of registration noise in remote sensing change detection (Gong et al. 1992;

Bruzzone and Cossu 2003; Stow 1999). Assuming perfect co-registration of

images, there may be pseudo-changes caused by differences in acquisition geom-

etries; different sun angles may cause different shadow proportions or different

viewing angles may result in distortions. Sun angle effects may be reduced by

selecting images acquired under similar sun angle conditions; distortions due to

viewing angle variation can be reduced by considering the pixel neighborhood

during the change detection process (Castilla et al. 2009). The latter effects are

more pronounced in high spatial resolution imagery acquired by sensors with

off-nadir capabilities (e.g. Ikonos, Quickbird, Formosat-2, and RapidEye) and in

areas of distinct relief such as urban areas.

Misregistration and differences in viewing geometries also affect SAR images

(Gamba et al. 2006), although modern SAR satellite systems such as TerraSAR-X

achieve subpixel accuracies, corresponding to errors of less than a meter (Yoon

et al. 2009). Several approaches have been developed to mitigate geometric con-

straints; Gamba et al. (2006) describe a combined pixel and feature based change

detection procedure.

10.4 Change Extraction Algorithms

Many change extraction algorithms were developed in the 1970s and 1980s

(Table 10.1). With increasing computing power, growing image archives and the

emergence of new sensors the number of new methods increased as well, and the
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first comprehensive technical reviews soon followed (Milne 1988; Singh 1989).

Newer sensors such as IKONOS, MERIS or TerraSAR-X have completely different

spatial, spectral, radiometric and temporal resolution characteristics. New change

extraction methods were required to take advantage of the improved sensor data and

updated comprehensive reviews have been carried out to summarize major findings

within the field of remote sensing change detection (Coppin et al. 2004; Lu

et al. 2004; Radke et al. 2005).

A suite of well-known and frequently used change extraction algorithms was

developed rather early in remote sensing history and many enhancements and

further developments of existing methods were generated. The aim of Sect. 10.4

is to review the major change extraction techniques irrespective of application and

data requirements. We have adopted the nomenclature for this discussion in part

from Lu et al. (2004), in which each change extraction algorithm is assigned to one

of four categories (Table 10.1):

1. Image algebra, which leads to change extraction based on spectral values,

backscatter values, indices, texture features and related properties.

2. Transformation based change extraction uses transformed images properties

such as principal components (PC).

3. Classification based approaches – there are several different strategies to use

classification for change extraction, but the results of all of these CE techniques is

a classified image. We review classification based CE strategies in Sect. 10.4.3.

Table 10.1 Genealogy of change detection algorithms. (Green: algorithms for optical data;

yellow: algorithms for SAR data; blue: algorithms for both, optical and SAR data). Only major

innovations are shown

1970s

Post-classification
comparison (PCC)

Differencing

Ratioing

Classification

Transformation

Algebra

Time series analysis

1990s

Artificial neural
networks (ANN)
Spectral mixture
analysis (SMA)

Multivariate alteration
detection/ maximum
autocorrelation factor
(MAD/MAF)
Iterative PCA

Iterative MAD

GrammSchmidt

Coherence

Differential SAR
Interferometry (DInSAR)
Speckle tracking

Speckle decorrelation

Trajectory analysis

2000s

Object-based methods

Multisource PCC

Machine learning (e.g.
SVM)
Change-restricted PCC

Kernel methods

Object-based methods

Wavelets

Object-based methods

Kernel methods

Persistent scatterer
interferometry
Multilevel CVA

Texture-based algebra

Offset tracking/ feature
tracking
Time series
segmentation

2010s

CMFDA

Fast Fourier
transformation

Curvelets

Robust image
differencing (LCM)

BFAST

1980s

Kauth-Thomas Tassled 
Cap

Principal component
analysis (PCA)

Vegetation index
differencing

Change vector analysis
(CVA)
Differential
radargrammetry

Regression
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4. Time series analysis, which can be defined as CE process using more than

two time steps. Clear distinctions are sometimes complicated, but we normally

refer to time series analysis when trends are analyzed, frequently in conjunction

with the detection of seasonal and abrupt changes.

In Fig. 10.2 change detection algorithms and selected fields of application are

shown. Some of the algorithms are suitable for use with either SAR or optical image

Fig. 10.2 Matrix of change detection algorithms (Shape of symbols refers to sensor, i.e. triangle:
SAR, circle: optical, square: SAR and optical; outline color of symbols refers to type of change,

i.e. black: conversion, red: modification, blue: conversion or modification, green: motion; fill color

refers to change process, i.e. very dark grey: gradual, dark grey: abrupt, light grey: gradual or
abrupt; white: seasonal, gradual and abrupt)
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data only; others can be applied to any kind of input data. In the same manner,

certain algorithms are suited for certain change types, i.e. conversion, modification,

conversion or modification, or motion. Some of the algorithms are able to capture

the character of a change process, thereby separating abrupt from gradual changes.

Others are also able to detect seasonal processes. Finally, each algorithm can be

assigned to one of the categories of algebra, classification, time series analysis

(TSA) or transformation. The transformation categorization is not important for the

understanding of change. Advantages and disadvantages as well as performance

of each CEA are dependent on a number of factors including research goal, region

of interest, and data availability. These factors are not shown in this figure.

10.4.1 Algebra Methods

10.4.1.1 Image Differencing and Vegetation Index Differencing

Image differencing was introduced in the 1970s (Weismiller et al. 1977) and is one

of the earliest change detection algorithms. It is sometimes referred to as delta

change detection (Weismiller et al. 1977). The technique includes the subtraction of

a date one image from a coregistered second date image. Image differencing is

frequently used as it is easy to apply and interpretation of results is straightforward.

The image data layers may consist of original reflectance or radiance values,

spectral indices or texture values. Vegetation index (VI) differencing (Nelson

1983) is one of the most frequently used change detection algorithms (Thonfeld

et al. 2010) and can be seen as image differencing applied on vegetation indices.

Due to their sensitivity to vegetation condition and abundance, VI differencing is

usually applied to detect changes related to vegetation. Due to data gamma-

distribution, ratioing techniques rather than image differencing should be applied

to SAR data (Rignot and Van Zyl 1993). An effective way to visualize the results of

an image differencing analysis is a RGB composite with the difference image in the

red channel, the t2 image in green and the t1 image in blue (Castilla et al. 2009).

10.4.1.2 Ratioing

Although image ratioing is one of the earliest change detection algorithms, it is

rarely used for optical images (Howarth and Wickware 1981). However, ratioing is

better adapted to the statistical properties of SAR images than image differencing

(Rignot and Van Zyl 1993). In ratio images, no-change areas are represented by

values close to one whereas changes have either high values or values close to zero.

Due to the non-Gaussian distribution of the ratio image (resulting in inappropriate

standard deviation metrics, for example) thresholding techniques must be employed

carefully (Chen 2007).
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10.4.1.3 Normalized Difference Change Detection (NDCD)

The normalized difference change detection (NDCD) procedure developed by

Gianinetto and Villa (2011) is a derivation of the image differencing approach

that was originally described in Coppin and Bauer (1994). It is calculated in the

same way as the Normalized Difference Vegetation Index (NDVI) (Tucker 1979)

with the t1and t2 variables representing the pre- and after-event images,

respectively:

NDCD ¼ t2 � t1ð Þ= t2 þ t1ð Þ

This method produces a normalized difference image for each image band with

output values ranging between �1 (representing maximum reflectance decrease)

and +1 (maximum reflectance increase) with a 0 value indicating no change. The

method was initially developed to assess flooded areas in an urban environment but

may be applied to a wide variety of environmental changes.

10.4.1.4 Regression

The multitemporal image regression method assumes a linear relationship between

the images of two dates (Ridd and Liu 1998). The regression image is determined

from the residuals of the least square regression for each reflectance band. Using the

regression equations, a “no-change” image can be predicted from unchanged pixels.

The difference between the predicted image and the 2nd real time-image denotes

changes in each spectral band (Jha and Unni 1994). Although this method reduces

errors caused by atmospheric distortions and haze, it is considered to be somewhat

outdated since it requires user interaction and the selection of no-change pixels. In

addition, performance improvements are negligible compared to image differenc-

ing techniques (Ridd and Liu 1998).

10.4.1.5 Change Vector Analysis (CVA)

Change Vector Analysis (CVA) is a bi-temporal change detection method which

calculates change magnitude and direction (Malila 1980). The advantages of the

method are its capability of using all spectral input information and the provision of

directional information which facilitates the interpretation of occurring changes.

Although CVA is not limited to selected bands, it is typically advantageous to use

uncorrelated bands or reduce the number of input bands to meaningful spectral

ranges (Bovolo and Bruzzone 2007). It is also possible to include textural features

in the CVA calculation (He et al. 2011). The change magnitude is usually expressed

as a Euclidian distance between two spectra, i.e. the square root of the sum of the

squares of the differences for each input band. The direction can be calculated in

four different ways: (1) sector-coding (Michalek et al. 1993); (2) vector direction
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cosines (Chen et al. 2003); (3) PCA in multitemporal space (Lambin and

Strahler 1994); and, (4) direction in polar domain (Allen and Kupfer 2000).

Although the additional direction information is one of the strengths of CVA, it is

sometimes ignored and only change magnitude is calculated (Xian et al. 2009;

Xian and Homer 2010).

10.4.1.6 Phase-Related SAR Change Extraction Methods

One key characteristic of SAR images is that the detected signals are composed of a

real and an imaginary component which can be expressed as amplitude, i.e. the

absolute value of the complex number, and phase. Consequently, SAR-based

change detection methods can be based on phase or on intensity values (the square

of amplitude).

Persistent Scatterer Interferometry (PSI)

The persistent scatterer interferometry (PSI) technique (Ferretti et al. 2007) makes

use of image features which are stable over long periods of time such as buildings.

Using PSI allows for the detection of ground deformation in the range of millime-

ters and centimeters per year. As such, PSI indicates neither environmental mod-

ification nor conversion. Rather, it denotes ground changes due to subsidence or

deformation caused by natural forces such as earthquakes, by mining (Wegmüller

et al. 2010) or groundwater extraction (Bell et al. 2008).

Coherence Change

Coherence is a measure of the phase correlation of two images. If changes occur

between two image acquisitions, the phase is decorrelated. Stable regions show

high coherence. Most vegetation surfaces decorrelate within very short times

(seconds to minutes) due to the motion of branches, leaves, and stems. High

coherence, on the other hand, is often related to non-vegetated and man-made

surfaces. Similar imaging geometry for both images is required.

For change detection of man-made objects it is more appropriate to use the

coherence difference approach. For this technique, two image pairs are required –

the first pair can be termed the pre-image pair, the second pair as the after-image

pair. Coherence is then calculated for both the pre- and the after-image pairs.

Subsequently, the coherence of the pre-image pair is subtracted from the after-

image pair coherence (Liao et al. 2008). If vegetation has been replaced by an urban

object, then the low coherence of the pre-image pair has turned into high coherence

of the after-image pair. However, if a forest has been cleared and reforested, it will

not be apparent in the coherence difference image since both coherence images will

show low values. Therefore, coherence differencing only identifies changes
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between coherent and incoherent surfaces. Thus, the application of coherence

difference techniques is recognized as more efficient at detecting changes as well

as better able to discriminate changes within the context of multi-temporal features

(Liao et al. 2008; Thonfeld and Menz 2011).

Differential SAR Interferometry (DInSAR)

Interferometry uses the phase difference of at least two SAR images that have

similar acquisition geometries but that were acquired at different times or with

different orbital positions (Bamler and Hartl 1998). While interferometry is a

powerful technique to generate digital elevation models, differential interferometry

can also be used to quantify various types of surface displacements, including

ground motion caused by tectonic processes, subsidence due to mining, gas,

water, and oil withdrawal, and glacier and ice sheet movement. Such processes

can be identified over large temporal and spatial scales at centimeter or even

millimeter precision. Bamler and Hartl (1998) and Rosen et al. (2000) present

extensive introductions to the principles of radar interferometry. Interferometry is

considered a powerful technique for the detection of changes (Rignot and Van Zyl

1993; Polidori et al. 1995) and is one of the most frequently applied methods in

radar remote sensing.

10.4.1.7 SAR Backscatter-Related Change Extraction Methods

In addition to methods such as ratioing that can be applied equally to optical and

SAR data, a number of change extraction methods specific to SAR have been

developed based on SAR backscatter analysis.

Differential Radargrammetry

Deriving height information from SAR amplitude images with different viewing

geometries is called radargrammetry. Converting the parallaxes to surface displace-

ments instead of heights is the process of differential radargrammetry (Polidori

et al. 1995). Although this methodology is somewhat dated, however, it has been

applied to map sea ice (Leberl 1983).

Speckle Decorrelation

The occurrence of speckle is a characteristic of SAR data. Speckle is caused by

distributed ground targets which contribute to the signal of a resolution cell leading

to multiplicative noise and a “salt and pepper” effect in the image. Intensity images

can be correlated in a predefined sliding window as can phase images. Speckle
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decorrelation is supposed to be caused by changes in backscatter elements. Thus,

the decorrelation of intensity images should be identical to the loss of coherence

(Zebker and Villasenor 1992). However, in some cases the loss of correlation in the

intensity images may also be caused by other phenomena such as the cardinal effect

in urban areas (Yonezawa and Takeuchi 2001). Combining both coherence and

speckle decorrelation may reveal complementary information regarding changes on

the ground.

Offset Tracking

DInSAR has been introduced as powerful technique to quantify surface motion at

large spatial and temporal scales. However, this technique fails if the phase

information is decorrelated. In some cases it is possible to select stable point

scatterers, which can then be used for PSI. When no stable point scatterers can be

detected even PSI must be excluded. Feature tracking or offset tracking is an

alternative method based on backscatter intensity (Strozzi et al. 2002). Two inten-

sity images acquired at different times are first co-registered based on the motion-

free image elements. A spatial neighborhood for a pixel of the first image is then

defined, and the position of the most similar pixel cluster is identified in the second

image. Offset tracking is frequently applied to quantify glacier motion since glacial

surfaces often show phase decorrelation in the acquisition interval of current SAR

satellite sensors (Fallourd et al. 2011; Pritchard and Vaughan 2007). SAR offset

tracking is similar to feature tracking in optical images but has some advantages,

especially in the field of ice motion detection since it is not affected by cloud cover,

darkness or sensor saturation (Pritchard and Vaughan 2007).

Feature tracking in optical images can be accomplished using the COSI-Corr

tool which co-registers and correlates satellite or aerial images (Leprince

et al. 2007). Areas of application for COSI-Corr include the identification of ground

deformation due to severe earthquakes (Wei et al. 2011), monitoring glacier motion

(Herman et al. 2011), and monitoring sand dunes (Necsoiu et al. 2009).

Speckle Tracking

In contrast to offset tracking, speckle tracking is used to analyze speckle rather than

robust physical features (Pritchard and Vaughan 2007). The use of amplitude rather

than phase characteristics (i.e. interferometry) is typically less accurate but has

other advantages: amplitude data are more robust to decorrelation and are not only

sensitive to displacement in range (Michel et al. 1999).

10.4.2 Transformation-Based Methods

Several methods are based on the transformation of the input data in a higher

dimensional feature space (e.g. PCA, Gram-Schmidt transformation, Kauth-Thomas
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Tasseled Cap transformation (TC), IR-MAD, Minimum Noise Fraction

transformation (MNF), Maximum Autocorrelation Factor transformation (MAF),

or Chi2 transformation).

10.4.2.1 Principal Component Analysis (PCA)

PCA can be applied to data arrays containing all spectral bands of two acquisition

dates (Ingebritsen and Lyon 1985; Byrne et al. 1980). Unchanged pixels are

oriented along the first PC axis as a consequence of the assumed linear relation

between unchanged pixels. The second PC contains change information (Coppin

and Bauer 1994). Change information will be oriented along the second PC axis

which is orthogonal to the first (uncorrelated) axis (Wiemker 1997). PCs are

calculated from eigenvectors based on all pixels, including the changed pixels.

Thus, the first PC (the “no-change” axis) contains erroneous information introduced

by the change pixels. To minimize the influence of the change pixels, Wiemker

(1997) developed an iterative approach which calculates the covariance matrix

incorporating a weighting coefficient for all pixels that quantifies the probability

of each to be a no-change pixel. This method greatly improves the identification

of no-change pixels and consequently improves the change information. This

technique has been adapted to other approaches such as IR-MAD.

Although PCA is rarely employed as a change detection methodology, the

technique is often used to reduce the dimensionality of change extraction results

derived by other means, e.g. image differencing applied to all layers in an image

data stack (Jha and Unni 1994).

10.4.2.2 Gramm-Schmidt Transformation

Another transform used for change detection is the Gramm-Schmidt orthogonali-

zation. Collins and Woodcock (1994) applied this technique to Landsat images in

order to detect tree mortality. In a related study, Collins and Woodcock (1996)

compared the utility of three linear transformation methods; PCA, TC, and Gramm-

Schmidt. They concluded that PCA and TC showed better results than Gramm-

Schmidt; they also specifically recommended the use of the TC transform since the

TC components are easier to interpret. The Gramm-Schmidt transform is currently

not frequently used.

10.4.2.3 Iteratively-Reweighted Alteration Detection (IR-MAD)

A robust and automatic CE method is the iteratively re-weighted multivariate

alteration detection (IR-MAD) (Canty and Nielsen 2008). This method is an

10 Recent Advances in Remote Sensing Change Detection – A Review 157



extension of the multivariate alteration detection (MAD) developed by Nielsen and

Conradsen (1997). IR-MAD is designed to identify unchanged pixels which can

subsequently be used to define a regression equation for radiometric normalization

of multispectral images. Since one output is a Chi2 image representing the change

probability of each pixel, the method can be used for change extraction. MAD

components are also computed as a second output. As they are uncorrelated, every

MAD component can be referenced to a different type of change. No radiometric

preprocessing is required. In many instances, IR-MAD (or its MAD forerunner) are

used for automatic radiometric normalization (Griffiths et al. 2012; Schroeder

et al. 2006, 2011).

10.4.2.4 Other Transformations

Numerous other transformation-based methods have been developed. These

include Chi2 analysis (Ridd and Liu 1998), Minimum Noise Fraction (MNF)

methods (Gianinetto and Villa 2007) or Fast Fourier Transformation (FFT).

These transforms are rarely used today as better results can often be obtained

through use of simpler algorithms that produce more easily interpreted results.

An innovative recent development in the field of change extraction is the use of

kernel transformation methods, including the kPCA (Nielsen and Canty 2008) and

kMAF techniques (Nielsen et al. 2010). These methods allow for the solution of

non-linear problems and thus often show improved change extraction results.

10.4.2.5 Wavelets, Curvelets and Other – Lets

Bovolo and Bruzzone (2005) utilized the wavelet representation of a logarithmic

scaled ratio image to suppress speckle effects in change extraction results. Final

results are generated by an adaptive scale-driven fusion. A multi-resolution repre-

sentation of the change image derived using wavelets has also been applied to

optical data in order to minimize misregistration effects (Carvalho et al. 2001).

A recent advance in SAR change detection is the use of curvelets (Schmitt

et al. 2010). This method transforms two co-registered logarithmic scaled SAR

amplitude images in the curvelet domain and differentiates the curvelet coefficients.

The results are then transformed back to the spatial domain. Curvelets have been

shown to provide a better representation than wavelets, surfacelets and Laplacian

pyramids (Schmitt et al. 2010). Significant advantages of the curvelet method are its

wide range of application (including flood, forest fire, and earthquake monitoring,

ship detection, or detection of new buildings), and its capability to process single

and multi-polarized data, even data acquired at differing incidence angles (Schmitt

et al. 2010).
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10.4.3 Classification-Based Methods

10.4.3.1 Post-Classification Comparison (PCC)

There are numerous classification-based approaches used to detect and identify

changes. The oldest and presumably most widely used of all such methods is post-

classification comparison (PCC) (Jensen et al. 1987). PCC is based on the separate

classification of two images taken at different times. Following image classifica-

tion, change matrices are derived which can then be interpreted as from/to classes.

From those matrices change statistics are calculated. The primary advantage of this

method is that it operates independent of input data. Thus, classification results

derived from SAR and optical data or other data can be compared. No radiometric

preprocessing or adjustment between images is required. However, since none of

the single classifications are of perfect accuracy, the errors of input classifications

compound and decrease the overall accuracy of the final change extraction error

matrix. In general, the PCC technique tends to produce more inclusion errors (“false

alarms”) than methods based on spectral or textural features.

A further development of the PCC approach is one that we term “change-restricted

PCC”. This hybrid process operates in the following way. Multidate image data are

first acquired and classified. Change extraction is applied to t1 and t2 imagery using a

reflectance-based method such as CVA. A conservative threshold is then applied to

differentiate between changed and unchanged areas. Finally, the changed areas are

reclassified using the class descriptions of the unchanged areas (Xian et al. 2009;

Xian and Homer 2010). It is important that all classes are described since the t2 image

may include classes that are not present in t1 imagery.

10.4.3.2 Continuous Monitoring of Forest Disturbance

Algorithm (CMFDA)

Continuous Monitoring of Forest Disturbance Algorithm (CMFDA) is a method

recently developed for use with high temporal resolution satellite image time series

data sets (Zhu et al. 2012). CMFDA exploits the temporal/spectral trajectory of each

individual pixel (its “history”) thereby defining a multitemporal class description.

Thus, any date of the satellite image can be predicted and subtracted from a real

acquisition. Assuming perfect masking of clouds and cloud shadows within the

imagery, the remnant differences can be attributed to land cover change. Applying

thismethod allows for the immediate detection of changes and the results becomemore

robust the longer the data time series that is available before and after the change event.

10.4.3.3 Multitemporal Spectral Mixture Analysis (SMA)

Based upon the definition of pure end-members, high-spectral dimension data sets

can be used for bi-temporal change detection. Since even fine changes can be
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captured with multitemporal spectral mixture analysis (SMA) the procedure is

sensitive for intra-class changes such as forest degradation. Usually, four

end-members (green vegetation, non-photosynthetically active vegetation, soil,

and shadow) are defined based on spectral libraries, in situ field measurements or

image properties. For comparability, end-members are derived from or converted to

reflectances, i.e. atmospherically corrected spectra. It is assumed that the spectra in

the image are composed of a linear combination of pure spectra. Changes in the

proportions of the end-members of each pixel between acquisitions can be referred

to ecosystem changes. Adams et al. (1995) used SMA to compare end-member

fractions within a multi-year Landsat TM image data set covering a tropical

environment. To better capture fractional degradation patterns, the Normalized

Difference Fraction Index (NDFI) was developed and shown to be more sensitive

for changes than the individual end-member fractions (Souza Jr. et al. 2005). Thus,

very fine year-to-year changes can be monitored. Other examples of the usage of

SMA for change detection can be found in dry regions. Dawelbait and Morari

(2012) applied SMA to assess land degradation in Sudan. Several studies exist

which tried to assess gradual changes based on multitemporal SMA. Yang

et al. (2012) calculated end-members for each image of a Landsat time series and

regressed them against tree cover to monitor long-term tree cover dynamics in

semi-arid woodlands. They compared the results with those of vegetation indices

and concluded that they depend greatly upon specific climatic conditions (i.e. wet

vs. dry years). Since vegetation indices are heavily affected by background signals

generated by soils and other factors, SMA may be the preferred approach for use in

sparsely vegetated dry lands (Hostert et al. 2003).

10.4.4 Time Series Analysis (TSA)

Most published change detection studies analyze two temporal steps, and may be

understood as bi-temporal before/after analyses. Such analyses are inherently

limited, however, as many ecosystem processes cannot be detected when only

two dates of images are analyzed. Remote sensing based time series analyses of

change detection were developed in part to overcome this limitation. This approach

is not new – such analyses have been performed for many years. To date, however,

the use of time series analyses for environmental change detection has not been the

subject of a systematic review. Most long term time series have been neglected in

reviews because of their rather coarse spatial resolution. NOAA-AVHRR data are

an example. Indeed, these data have not been considered for use in classical change

detection, a term which typically refers to bi-temporal change analyses. A recent

development in change detection research has been the implementation of time

series methods utilizing higher spatial resolution data sets such as Landsat. Despite

the Landsat Long Term Acquisition Plan (Arvidson et al. 2001) and systematic,

long-term acquisitions (Markham et al. 2004; Williams et al. 2006) gaps are present

in the various data time series for most locales, reducing the number of available
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scenes, sometimes to only a few per year. The number of usable data sets is further

reduced by the presence of cloud cover within the imagery (Ju and Roy 2008).

Instead of seeking only cloud-free images, all available data should be considered

when compiling a time series (Zhu et al. 2012).

Promoted by the opening of the comprehensive Landsat archive, and novel data

distribution policies which make data sets available at no cost, the development of

time series methods has accelerated and many studies using Landsat time series

have been published (Griffiths et al. 2012; Huang et al. 2010a; Kennedy et al. 2010,

2012; Pflugmacher et al. 2012; Powell et al. 2010; Schroeder et al. 2011;

Vogelmann et al. 2011; Wulder et al. 2012; Zhu et al. 2012).

Time series reveal more information about the nature of changes that occur

within the environment. There are only few surfaces in the environment which are

not subject to changes. Even rather stable surfaces such as manmade objects like

roofs, roads and other artificial objects change their condition over time. Thus,

change is a function of time, and the suitability of data to detect changes is greatly

dependent upon their temporal dimension. Processes on Earth’s surface exhibit

different temporal behavior. Seasonal changes, trends, abrupt changes, and cyclic

events often are all components of a single reflectance signal. Often such underly-

ing processes can only be separated by employing dedicated time series methods in

combination with an adequate data time series. In recent change detection studies,

compositing techniques have been developed to reduce seasonal effects in time

series of annual images (Griffiths et al. 2012). Remote sensing time series analysis

focuses mainly on the description of environmental processes and their modeling.

Recent studies also make use of the data to model past processes in order to predict

future ones. If the temporal behavior of each pixel is known, an image of any point

of time can be constructed, i.e. predicted (Zhu et al. 2012). Given this information,

each new acquisition can be compared with the predicted one and differences may

then be referenced directly to changes on the ground.

Bi-temporal change detection methods may be able to detect gradual and abrupt

changes as well as trends in the environment, but likely will not be adequate to

describe the temporal characteristics of the environmental processes underlying

these phenomena. Thus, time series analysis should be favored to reveal such

processes when adequate data are available.

10.4.4.1 Trajectory Analysis

Trajectory analyses may be viewed as an intermediate methodology. In contrast to

time series, which represent continuous temporal information, temporal trajectories

are capable of indicating information in longer temporal increments – typically in

years – but are generally unable to depict underlying environmental processes.

Many approaches aim at removing or minimizing seasonal variations from long

term response signals. Schroeder et al. (2007) applied a time-invariant regression

method to construct a fitted trajectory curve for analysis of stand recovery in a forest

environment. Huang et al. (2010a) used a z-score method to normalize seasonal
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variations in forest analysis. Kennedy et al. (2010) took advantage of a de-spiking

algorithm for analysis of forest disturbance and recovery.

Time series analyses may be used to identify spatial and temporal changes while

simultaneously characterizing changes as either abrupt changes, disturbances, or

longer term trends. However, due to data set gaps caused by limited availability or

cloud cover, complete long-term time series of data from similar sensors are rare.

Thus, annual data are selected to perform analyses on trajectories. The major advan-

tage of annual time series is the potential to separate abrupt from gradual changes.

Examples are given for change differentiation from fires and grazing pressure in

rangelands (Hostert et al. 2003; Röder et al. 2008b; Sonnenschein et al. 2011; Stellmes

et al. 2010) and changes in forests (Röder et al. 2008a; Viedma et al. 1997).

Lawrence and Ripple (1999) published one of the first studies describing the

application of Landsat-like data that utilized more than two time steps. They

analyzed vegetation regeneration in southwestern Washington State following the

Mount St. Helens volcanic eruption. Their analysis was based on unsupervised

clustering and subsequent change curve extraction. The change curves were calcu-

lated as polynomial curves fitted to the cluster means. The Vegetation Change

Tracker (VCT) described by Huang et al. (2010a) is a similar algorithm. VCT uses

spectral indices to monitor forest changes and fire impact (Vogelmann et al. 2011).

Sen et al. (2012) used trajectories of several indices derived from Landsat images to

monitor mining revegetation.

10.4.4.2 Time Series Segmentation

The Landsat-based detection of Trends in disturbance and Recovery (LandTrendR)

is a sophisticated method of fitting temporal trajectories to spectral curves using

both regression and point-to-point fitting (Kennedy et al. 2010). This technique

allows for the discrimination of fast and slow change processes. Like most time

series methods, it is based on spectral indices. It is frequently used for forest

monitoring, including mapping the effects of insect driven disturbance on tree

mortality and surface fuels (Meigs et al. 2011).

10.4.4.3 Breaks for Additive Seasonal and Trend (BFAST)

Breaks For Additive Seasonal and Trend (BFAST) is a method which was origi-

nally developed for use with MODIS time series data (Verbesselt et al. 2010a, b).

As the name indicates it separates the observed signal – an NDVI time series, as an

example – into a seasonal component, a trend component and residuals which can

be interpreted as random fluctuations. The algorithm allows for the detection of

long-term phenological changes (Verbesselt et al. 2010a, b). The strength of the

algorithm lies in its ability to detect abrupt changes in the trend component and is

particularly effective for analysis of natural ecosystems such as forests and savan-

nahs. The approach has been extended to allow for near real-time detection of

changes (Verbesselt et al. 2012).
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10.4.5 Object-Based Approaches

The availability of high spatial resolution imagery from the Ikonos, Quickbird, Spot 5,

Kompsat-2, Formosat-2 sensor systems has driven the development of analytic

methods appropriate for the new data. Object-based methods have been used

successfully in numerous applications, including mapping shrub encroachment

(Laliberte et al. 2004) and forest change (Castilla et al. 2009; Desclée et al. 2006).

Object-based approaches generally consist of deriving homogeneous image objects

(which ideally correspond to real world objects); then calculating object statistics and

spatial indices; and finally applying existing change detection algorithms on the

previously derived object features. Following this procedure, object-based image

differencing (Desclée et al. 2004), MAD (Listner and Niemeyer 2011; Niemeyer

et al. 2007), and PCC (Laliberte et al. 2004) have been successfully applied. All of

the object-based methods shown above achieve accurate results (which also often

correspond to human perception). Difficulties remain, however, in defining an

appropriate number of segmentation levels and in integrating the information to one

change extraction result. Change objects are sometimes derived from the change

extraction result rather than from the spectral input data (Castilla et al. 2009).

That means an arbitrary change detection method is applied on a per-pixel basis and

the output is then subjected to the segmentation. This can be an advantage when

large proportions of spurious changes are identified due to geometric misalignment

between two images. Also, since only change objects are segmented, it is not

necessary to define several segmentation levels. Small areas of false changes can be

suppressed by applying a minimum mapping unit limit (Castilla et al. 2009).

An exhaustive introduction to the field of object-based changed detection is presented

by Chen et al. (2012).

10.5 Change Labeling

10.5.1 Categorization of Change Extraction Algorithms
Regarding Their Suitability for Change Labeling

Within the context of change labeling, the CEA discussed in Sect. 10.4 can be

divided into three groups:

1. Algorithms that return the intensity or probability of change, such as image

differencing or image ratioing, both of which are types of algebraic algorithms.

Such algorithms are useful to identify change “hot spots” and to derive change

masks; however they are of limited use in deriving change labels.

2. CEA that produce images containing information about kinds of changes,
including bi-temporal PCA as well as other transformation algorithms. Some

algorithms also return information on both change intensities and the type of
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change. Examples of such algorithms include CVA which derives change

magnitudes and change directions, and IR-MAD with its Chi2 image and

MAD components. Such algorithms can be used for further change analysis in

order to derive labeled change maps.

3. CEA that return labeled change maps directly without further analyses, includ-
ing PCC and Support Vector Machines (SVM) change detection. Both of these

techniques are considered as classification algorithms and as such do not require

any additional analysis for change labeling.

10.5.2 Change Labeling Approaches

Depending on which CEA (Sect. 10.4) is implemented, change labeling happens

either before, concurrent with or after the application of the CEA. Pre-CE-labeling

assigns mono-temporal informational classes or indices to the input data. This may

be through the calculation of an index like NDVI, a transformation like TC

(separating information on greenness, brightness, and wetness), or a classification.

The CEA then performs the analysis of changes within or between those informa-

tional classes, employing, as an example, an image algebra operator such as image

differencing (Sect. 10.4.1). Concurrent labeling means that change labeling is

inherent in the CE, as in classification approaches like direct multi-date classifica-

tion. Post-CE-labeling assigns information on the kinds of changes to the results of

the CEA. In the case of a transformation type CEA (Sect. 10.4.2), this might be the

correlation of PCs with input bands or simply the visual interpretation of the CE

results using the input data in combination with ancillary information. In the case of

an algebra based CEA, post-CE-labeling is done by implementing a thresholding

function to separate change from no-change or positive change from negative

change.

10.5.2.1 Pre-CE-Labeling: Setting the Ground

The results of a CEA are typically more easily interpreted if the input data have

undergone some transformation procedure(s), particularly if the CEA involves

image differencing. Differencing two pixel values of earth observation image

data indicates only that the pixel value has become larger or smaller, and cannot

provide any additional information about the specific meaning of these changes in

pixel values. In some cases, if the test site is very well known and the spatial subset

of the scene contains only known change types, the data analyst may be able to

interpret changes in pixel values and attribute accurate additional meaning to them.

An example is a forest environment where changes can only be attributed to logging

and regrowth. In other cases where such interpretation is difficult, a data transfor-

mation prior to the CEA can aid the process of adding meaning to the CE results.

CVA may be thought of as a more sophisticated form of image differencing
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(Sect. 10.4.1.5). Every environmental change (regardless of direction) is a variant

combination of spectral response, recorded as increasing or decreasing brightness

values in the image input bands. Pre-CE-labeling approaches are thus also proposed

for CVA. In his original 1980 paper on CVA, Malila described spectral trans-

formations like the TC transformation (Kauth and Thomas 1976) as optional

processing steps prior to performing the actual CVA. The TC transformation was

developed to transform Landsat MSS data to better derive information on vegeta-

tion greenness, brightness and wetness. It was later enhanced to make full use of

Landsat TM bands (not including the thermal band) by Crist and Cicone (1984).

These techniques are transferable to other sensors only if these sensors cover the

same spectral bands; such sensor systems include Landsat ETM+, MODIS or the

planned Sentinel-2 system. Fung (1990) analyzed the applicability of the Kauth-

Thomas TC brightness, greenness and wetness components for change detection.

Relatively few bi-temporal studies make use of TC components. These are, how-

ever, more frequently used for time series analysis within forested environments

(Griffiths et al. 2012; Hais et al. 2009; Powell et al. 2010).

The Pre-CE-Labeling procedure also includes the calculation of indices; the
result of image differencing or CVA is thus not merely a change in digital numbers

or reflectances within the data, but may be interpreted as an increase or decrease in a

specific index. Two examples of widely-used indices are the NDVI for green

vegetation and the NDWI for surface water (McFeeters 1996). Special indices

have also been developed for SAR data, including the SWI soil water index

(Zhao et al. 2008). An extensive list of available indices and formulas, along with

information regarding their interoperability among different sensors (as well as

additional information) can be found in the Index Database (IDB) at: http://www.

indexdatabase.de/ (Henrich et al. 2009).

For more specific change labeling tasks, when the change classes of interest

cannot be characterized using generic functions such as TC or by available indices,

application-specific spectral features can be developed and implemented. Johnson

and Kasischke (1998) used multivariate discriminant analysis to examine the

spectral responses of and to develop spectral signatures for three change classes

of interest: new clay topsoil deposits, new asphalt, and new vegetation. A full-

dimensional CVA change image containing all possible change directions was the

starting point for this analysis. A priori knowledge regarding the relevance of

identified changes was utilized to assess individual change areas within the study

site and to develop spectral features. This method can be utilized to develop spectral

features for any change classes of interest; limited only by the spectral discrimina-

tion among change classes.

Image texture is frequently employed to improve classification accuracy and

to support change detection and monitoring studies (Del Frate et al. 2008). Briggs

and Nellis (1991) utilized image texture characteristics in the monitoring of hetero-

geneity within Prairie ecosystems. Texture data are typically used in combination

with spectral information. With the availability of new high spatial resolution

sensors such as Quickbird and Ikonos, image texture information is also used to

detect new buildings in informal settlements and refugee camps (Klonus et al. 2012),
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as well as to assess damage in populated areas following natural disasters. Several

texture measures of the grey level co-occurrence matrix (GLCM) have been used for

change extraction (Haralick et al. 1973; Klonus et al. 2012). Changes are calculated

as the difference of two texture features derived from image data acquired at

different times.

Numerous multitemporal features have been derived using SAR image time

series with the goal of improving the characterization of distinct classes present

within a study area, thereby improving overall classification performance. These

features include, among others:

• the mean annual variation (MVA) described by Quegan et al. (2000)

• standard deviation

• normalized standard deviation

• logarithmic measure based on normalized standard deviation

• saturation

• standard deviation of decibel (dB) values

• maximum-minimum ratio in dB (Bruzzone et al. 2004)

Several studies have been published describing the use of multitemporal features

in combination with SAR backscatter intensity for assessing flood dynamics (Mar-

tinez and Le Toan 2007) and urban change detection (Liao et al. 2008; Thonfeld and

Menz 2011). It must be noted that multitemporal features may also be applicable to

change detection of optical imagery, but to date have not been applied in this way.

Further, for SAR data, especially polarimetric SAR data, parameters such as

backscatter coefficients, correlation coefficients and phase differences can be applied

singly or in combination. Such parameters can be used to describe selected change

classes and to enhance the interpretability of the change extraction results. Conradsen

et al. (2003) use this capability in combinationwith test statistics in the complexWishart

distribution for changedetection of agricultural fields. For someapplications, especially

those involving high spatial resolution imagery, it can be useful to apply image
segmentation and object feature extraction before applying the CEA. This procedure

has been implemented for the IR-MAD algorithm; corresponding plug-ins for the

Definiens/eCognition software are readily available (Listner and Niemeyer 2011).

In a strict sense, PCC (Sect. 10.4.3.1) is image differencing with pre-CE-labeling.

The separate classification of two input images can therefore also be considered as

Pre-CE-Labeling. The advantage is that change labels are easily interpretable and

change detection utilizing data from multiple sensors is possible. Error propagation

through the separate classifications can be a disadvantage of this approach, however.

Table 10.2 provides an overview of pre-CE-labeling techniques.

10.5.2.2 Post-CE-Labeling: Labeling Change Types and Change

Intensities and Interpretation of Change Extraction Results

The results of CEA performed on satellite image data, rather than on spectral

features or indices, are typically difficult to interpret accurately. Post-CE-labeling

approaches have been developed to address this issue.
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The most common approach to aid interpretation of CE-results is the use of

thresholds to separate change and no-change-areas. Apart from a manual, iterative

search for optimal thresholds, a number of additional automated methods are in use.

A popular method of change thresholding is the use of a fixed value threshold, – two

standard deviations, as an example (Singh 1989). More sophisticated automated

approaches include Gaussian fitting (Bazi et al. 2005), the Expectation-Maximization

(EM) algorithm (Bazi et al. 2009), Markov Random Fields (MRF) (Bruzzone and

Prieto 2000, 2002), and the histogram corner method for unimodal thresholding

(Castilla et al. 2009; Rosin 2001). The extent and location of change pixels identified

within an image can differ depending upon the thresholding method implemented.

It is often useful, therefore, to consider applying several different thresholding

methods and selecting the results that best fit the criteria for the particular application.

Table 10.2 Pre-CE-labeling techniques

Pre-CE-labeling Associated CEA Sensors

Applications/

classes References

Tasseled Cap

Transformation

Image

differencing;

CVA

Landsat Greenness,

brightness,

wetness

Kauth and Thomas

(1976) and

Malila (1980)

Indices, e.g. NDVI,

NDWI, SWI

Image

differencing;

CVA

Mainly optical

but also

scatterometer

(e.g. SWI);

cf. index

database

(IDB)

Any;

e.g. vegetation,

surface water,

soil moisture

Henrich

et al. (2009),

Tucker (1979),

McFeeters

(1996), and

Zhao

et al. (2008)

Spectral features Image

differencing;

CVA

Optical Any; e.g. clay,

asphalt,

vegetation

Johnson and

Kasischke

(1998)

Multitemporal

features

SAR, partly

transferable

to optical

e.g. flood, urban

change

Bruzzone

et al. (2004),

Liao

et al. (2008),

Martinez and Le

Toan (2007),

Quegan

et al. (2000), and

Thonfeld and

Menz (2011)

Polarimetric

parameters,

e.g. backscatter

coefficients,

correlation

coefficient,

phase difference

Test statistics Polarimetric

SAR, e.g.

ALOS-Palsar,

Radarsat-2,

TerraSAR-X,

ENVISAT-

ASAR

e.g. crops Conradsen

et al. (2003)

Image segmentation

and extraction of

object features

IR-MAD Optical Any Listner and

Niemeyer

(2011)

Classification Image

differencing

(¼PCC)

Any (optical

and SAR)

Any Singh (1989)
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A relatively simple approach to identifying and labeling CVA change directions

involves examining the spectral response increases and decreases in specific spec-

tral bands that are known to indicate certain types of change. As an example,

consider a simple CVA using two Landsat images: decreases in green vegetation

may be identified by an increased response in band 3 and decrease in band 4; all

such change directions could be coded by the analyst in red. Increases in green

vegetation would be indicated by a decrease in band 3 response and an increase in

band 4, and all such change directions could be coded in green. Johnson and

Kasischke (1998) refer to this technique as “change space sectors”.
Given a classification of each of the two input images, CE results may be

easily interpreted. This approach can operate as follows. CE is performed on

two satellite images resulting in a full-dimensional change image. Applying a

threshold, change areas are identified. The changes are labeled according to both

classifications. If the classes for a specific change pixel are different in both

classifications, the pixel is labeled as a conversion class. If the classes are

identical, the change pixel is labeled as modification within that particular class.

Johnson and Kasischke (1998) employ this method in combination with CVA.

This procedure has two advantages over the PCC method: (1) modifications can

be accurately identified, and (2) pseudo-changes due to classification errors are

not misidentified as modifications.

CE results, and in particular the types of changes identified based on PCA are

generally difficult to interpret. PCs are orthogonal and uncorrelated, and it can

therefore be expected that changes represented by one PC are not included in

another PC. However, due to the nature of the transformation – which is data

driven – it cannot be generalized which components contain which kind of changes.

Collins and Woodcock (1996) performed PCA on a bi-temporal Landsat TM image

stack. To label the PCs they applied stepwise regression, linking the results of

PCA CE with forest mortality and choosing the components significant for forest

mortality from the transformation matrix.

The Maximum Autocorrelation Factor algorithm (MAF) (Nielsen and Canty

2009) or the kernelized (kMAF) version (Nielsen et al. 2010) can be applied as a

post-processing routine to MAD or PCA CE. This procedure cannot directly apply

change classes to label each pixel; rather, it assists the post-CE-labeling process.

MAF makes use of spatial autocorrelation and preserves the spatial context, which

is desirable since objects of change generally occupy several contiguous pixels in a

scene. Post-processing with MAF/kMAF tends to focus on extreme changes with

high spatial autocorrelation.

To label the MAF/MAD variates, Canty and Nielsen (2006) proposed a

clustering approach called Fuzzy Maximum Likelihood Estimation (FMLE)
(Gath and Geva 1989). FMLE is similar to the EM algorithm. This approach

has also been transferred to object based change detection for high resolution

imagery (Niemeyer et al. 2007). An overview of post-CE-labeling techniques is

provided in Table 10.3.
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10.5.2.3 Concurrent Labeling: Labeling Change Classes

Classification-based CEAs simultaneously detect and label changes (Sect. 10.4.3),

we therefore summarize them under the term ‘concurrent labeling’ (Table 10.4).

Concurrent labelingmethods incorporate the advantages of PCC-CE (Sects. 10.4.3.1

and 10.5.2.1), principally the compilation of maps showing actual change classes.

The concurrent labeling approach incorporates these advantages while overcoming

the principal disadvantage of PCC: the propagation of thematic error throughout the

derived datasets due to the integration and subsequent subtraction of two separate

classifications. These methods are considered supervised classification algorithms

which require the development and use of training data.

Table 10.3 Post-CE-labeling techniques

Post-CE-

labeling Associated CEA Sensors

Applications/

classes References

Thresholding Any, e.g.

image

differencing,

CVA

Any (optical

and SAR)

Change – no

change

Bazi et al. (2005),

(2009), Bruzzone

and Prieto (2000),

(2002), Castilla

et al. (2009), and

Rosin (2001)

Change space

sectors

CVA Optical e.g. vegetation Johnson and Kasischke

(1998)

Classification Any, e.g. CVA Any (optical

and SAR)

Any Johnson and Kasischke

(1998)

Stepwise

regression

PCA Optical,

e.g. Landsat

e.g. forest

mortality

Collins and Woodcock

(1996)

MAF, kMAF MAD, PCA Optical Change – no

change;

specific

classes,

e.g. mining

Nielsen and Canty

(2009) and Nielsen

et al. (2010)

Clustering,

e.g. FMLE

MAD,

MAF/MAD

Optical, high

resolution

optical

e.g. new

buildings

Canty and Nielsen

(2006) and

Niemeyer

et al. (2007)

Table 10.4 Concurrent labeling techniques

Concurrent-labeling

Associated

CEA Sensors

Applications/

classes References

Direct multidate

classification (DMC)

None Any Any Hecheltjen et al. (2010) and

Kuemmerle et al. (2008)

Compound classification None Any Any Demir et al. (2012)
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Rather than classifying both input images separately, direct multidate
classification (DMC) performs change classification directly on bi-temporal data

layer stacks. The difficulty in this approach is defining an accurate set of training

data for the change classes. Kuemmerle et al. (2008) applied SVM for direct

multidate classification to assess farmland abandonment in the Carpathians.

Hecheltjen et al. (2010) employed DMC change classification with SAR and optical

data to assess land cover changes due to mining.

Demir et al. (2012) conclude that compound classification is less critical with

regard to the definition of training data sets when compared with DMC. They apply

active learning approaches to model temporal dependence between the images.

10.6 Accuracy Assessment

Accuracy assessment remains a challenge in CE analyses, principally due to the

limited availability of complete timely in situ ground information. Incomplete or

imperfect ground data have substantial impact on the accuracy estimation from

confusion matrices (Foody 2009, 2010). Further difficulties arise in natural envi-

ronments characterized by phenological changes or seasonal and long term envi-

ronmental variations. Depending upon the aim of the individual study, it is

important to differentiate between targeted changes and natural fluctuations; thus,

accuracy assessment may in some cases be subjective. However, strategies have

been developed to minimize mislabeling; limiting map updating to changed areas

only, is an example. Li and Zhou (2009); Morisette and Khorram (2000); Van Oort

(2007) have all conducted studies dedicated to change detection accuracy

assessment.

10.7 Conclusion

In this review we have shown that a wide variety of strategies have been developed

and applied to conduct change detection studies. There exists, however, no single

CE method which is best for all applications or all sensors. Sensors must be

carefully chosen to provide relevant spectral and temporal information for a

given application. The core of the CE process – the labeling of changes – can be

performed in essentially three different ways: pre-CE-labeling, post-CE-labeling,

and concurrent labeling. The CEA itself can be selected from a variety of algo-

rithms. An increasing number of studies take advantage of satellite spectral data

time series. Early work revealed the temporal SAR backscatter behavior of different

land cover types over time periods on the order of one year. To date, however, there

is no study based on the application of a time series of SAR data to discriminate

trends from abrupt changes. Calculated scene-by-scene difference imaging has

helped to identify substantial changes between data acquisitions. As summarized
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previously, multitemporal SAR data have been frequently used for land cover

classification, as well as for monitoring ground deformation, glacier movements

or other mass movements. However, currently only preliminary studies have been

performed evaluating the use of a limited SAR time series data set for land cover

change detection. Object-based approaches, time series analysis and increasing use

of SAR data can be seen as major innovations in change detection research during

the past decade – mainly driven by progress in data policy and data availability.

There are many CEAs to extract changes. The labeling of the changes, however,

provides the essential information about the nature of change.
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Chapter 11

Synergies from SAR-Optical Data Fusion

for LULC Mapping

Björn Waske

11.1 Introduction

Nowadays Earth Observation (EO) systems play a major role in supporting

environmental programs and monitoring compliances, such as the European

Global Monitoring for Environment and Security (GMES – Copernicus) program.

Copernicus aims on the provision of reliable and current information on our planet

and its environmental state in three Earth system domains “Land”, “Atmosphere”,

and “Marine”. Moreover, the corresponding services support the management of

humanitarian crises, natural disasters and man-made crisis (Aschbacher and Milagro-

Pérez 2012). Products in the Land-domain, comprise accurate and cross-border

harmonized information on land cover and land cover change, including information

on seasonal and annual changes, the vegetation state and the monitoring of the water

cycle. Overall these products will support decision-making and various monitoring

applications in context of land use and land cover change, water quality, spatial

planning, and global food security (Copernicus 2012).

In context of Copernicus as well as other environmental treaties, land cover

mapping is the most commonly used remote sensing application. Consequently, the

development of adequate classification methods is an ongoing research field.

However, map accuracies are driven, among others, by factors such as input

images, training data, study site, and classification method (e.g., Smith et al.

2003; Waske and Benediktsson 2007).

Many land cover classifications aim on areas that are characterized by great

temporal variability and typical spatial patterns of highly frequent land cover

changes between different crops. As a matter of fact, multitemporal imagery can

significantly improve the classification accuracy when compared to the accuracy

achieved by single-date applications (Brisco and Brown 1995; Blaes et al. 2005;
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McNairn et al. 2009). Nevertheless, the potential and availability optical images

may be limited by weather conditions, particularly in regions of Central Europe.

Multitemporal data sets within one growing season can be produced reliably by

synthetic aperture radar (SAR). Moreover, optical and SAR data provide different,

often synergetic information on land cover. As a matter of fact the classification

accuracies can be increased by combining optical and SAR data (e.g., Blaes

et al. 2005; Waske and Benediktsson 2007; Waske and van der Linden 2008;

McNairn et al. 2009). Regarding recently launched EO missions with increased

revisit times and better spatial resolutions like the German TerraSAR-X and

RapidEye multisensor applications become even more attractive. In addition,

upcoming missions like ESAs satellite constellation Sentinel will further increase

the availability of multisensor data sets, e.g. due to Sentinel-1 and Sentinel-2.

Overall, users can choose between various EO data sets. Nevertheless, the number of

studies and applications that are based onmultisensor data sets is still limited. One reason

might be the demand for adequate classification strategies. Frequently used methods as

the maximum likelihood classifier are often limited when classifying multisensor and

multitemporal imagery. Although some multisensor applications are based on conven-

tional classification methods, more sophisticated approaches from the field of machine

learning, such as support vector machines and classifier ensemble as Random Forests,

have been shown to perform more accurate results (e.g., Briem et al. 2002; Gislason

et al. 2006; Waske and van der Linden 2008; Waske and Braun 2009).

Unfortunately implementations of such methods often may require complex

frameworks and often expert knowledge and/or programming skills. Moreover,

they do not necessarily support the direct use of remote sensing imagery. In contrast

to this, widely used (commercial) remote sensing software packages typically do

not include more recent classifier developments (Waske et al. 2012).

The major aim of this study is to foster the operational use of Random Forests

(RF) classification approach as well as the use of multisensor remote sensing data,

by using a freely available and platform independent tool for remote sensing image

classification, called imageRF (Waske et al. 2012).

The specific objective of this study is the classification of multisensor data

(Enivsat ASAR and SPOT) from agricultural areas. To demonstrate the positive

impact of different sensors, classifications with different input data sets are

performed. Moreover, the study demonstrates the general potential of RF in

this context. The impact of the two parameters on the accuracy and stability of

ensembles in terms of the classification result is investigated.

11.2 Background

11.2.1 Random Forests

The concept of classifier ensembles, e.g., Random Forests, is based on the idea of

combining outputs from more than one classifier to enhance classification accuracy.
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In many cases a self-learning decision tree (DT) is used, even though the use

of more complex classification methods was investigated (e.g., Kim et al. 2003;

Zortea et al. 2008; Waske et al. 2010). However, decision trees are computationally

light and simple to handle.

RF (Breiman 2001) use a set of k DT classifiers. Each tree within the ensemble

is trained with a randomly generated subset of the original training samples.

Moreover, at each split node of the tree a subset of m randomly selected input

features is used, with m < D and D as the dimension of the input image. The

number of randomly selected features is user defined and often set to the square root

of the total number of input features, i.e., D the dimension of the input data set.

Another common default value is m ¼ log(D).
The final classification, i.e., the assignment of each pixel to an information

class (i.e., the specified land-cover classes), is based on a majority vote over

all k classifier decisions. The proportion of votes for a certain class ωj ∈ Ω ¼
{ω1, . . ., ωc} over all k trees can be also interpreted as the (pseudo)probability of

occurrence of that class:

Px ωj

� � ¼ nj
k

with nj as the number of trees classifying pixel x as class ωj. A pixel is finally

classified to that class with the highest likelihood (i.e., using a simple majortiy

vote).

Beside the classification output, the RF algorithm provides additional para-

meters. The out-of-bag (OOB) error seems particularly interesting, because it

enables an independent assessment of the classification accuracy, without providing

additional test data. Each individual tree in the ensemble is based on a randomly

chosen 2/3 of the training data, while 1/3 is left out for each specific tree. These out

of bag samples are classified by that particular tree. The OOB-error is derived by

the classification error of all left-out samples, averaged over the total number of

trees (Breiman 2001). The variable importance, which utilizes the OBB measure,

provide information in the impact of each band on the classification accuracy.

RF have been widely used for ecological applications (e.g., Prasad et al.

2006; Cutler et al. 2007) and were successfully introduced in context of land

cover classification of remote sensing data (e.g., Gislason et al. 2006; Chan and

Paelinckx 2008; Waske and van der Linden 2008; Waske and Braun 2009; Loosvelt

et al. 2012). These results show that RF can perform similar or even outperform

other methods in terms of accuracy.

11.2.2 imageRF Classification Software

The training and classification were performed using imageRF (Waske et al. 2012),

which is a freely available IDL-based tool for RF classification and regression

analysis of remote sensing imagery. In this study imageRF was run in the

11 Synergies from SAR-Optical Data Fusion for LULC Mapping 181



EnMAP-Box1 a freely available, license-free and platform-independent processing

environment for remote sensing imagery. However, imageRF can be fully integrated

into the commercially available IDL/ENVI environment. imageRF includes among

others (i) generic image files for the input images, reference data and results,

(ii) separate training and application of the RF model, i.e., a trained model is saved

and can be applied several times, and (iii) a user-friendly GUI (Fig. 11.1) for the

Fig. 11.1 Basic (top) and advanced (bottom) parameterization menu for RF classification, using

imageRF in the EnMAP-Box

1 http://www.geographie.hu-berlin.de/abteilungen/geomatik/projects/enmapbox

http://indus.caf.dlr.de/forum/
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definition of the following parameters: number of iterations, number of randomly

selected features, stopping and split criterion. Although these parameters can be freely

defined by the user, reliable default parameters are provided. Regarding other remote

sensing applications, which usually report the classification accuracy, and contrary to

the original RF implementation the OOB accuracy (i.e., 100� obb-error) is provided.

11.3 Study Site and Data Set

The study site is located near the city of Bonn in Western Germany, in the federal

state North Rhine-Westphalia at an average altitude of approximately 170 m ASL

(Fig. 11.2). The almost flat area is dominated by agriculture and thus characterized

by the typical spatial patterns that result from.

North Rhine-
Westphalia

Fig. 11.2 Location of the study site (indicated by the square)
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The classification was conducted on a set of multitemporal SAR and multispectral

images. Ten Envisat ASAR alternating polarization (HH/HV) and image mode

(VV) images were acquired between 16. March and 13. September, 2007. The

multispectral data set consist of two SPOT-4 images from 24. May and 4. August,

2007. The SAR data was calibrated to backscatter intensity following common

procedures. The SAR inherent noise was reduced by multitemporal speckle filter.

Finally, the SAR images were orthorectified with a spatial accuracy of approximately

one pixel, using a digital elevation model, orbit parameters and a multispectral

reference image.

11.4 Results and Discussion

11.4.1 Experimental Setup

To underline the impact of the input data on the classification accuracy, RF was

applied several times, using (i) the SAR data, (ii) the SPOT data and (iii) the

multisensor data set.

For the generation of independent training and validation sets a stratified random

sampling approach was chosen, using the corresponding ground truth data as a priori

knowledge. To investigate the impact of the number of training samples on the

classification accuracy, different sizes of the training sets were generated containing

50, 100, 150 and 200 samples per land cover class. Each sample set sizewas generated

ten times and the final classification accuracies were averaged and the standard

deviation was derived. The same independent validation set was used for the

evaluation of all classification results. Accuracy assessment was performed using

overall accuracies and confusion matrices in order to derivate the producer’s and

user’s accuracies.

The classifications in this study are performed following common default values

(i.e., square root of the number of features). Moreover, various classifications were

generated by systematically increasing the number of randomly selected features

(i.e., m) as well as the number of trees that are combined for the final class decision

(i.e., k). In doing so, the impact of the two parameters on the accuracy and stability

of ensembles in terms of the classification result is investigated.

11.4.2 Classification Results, Using Single-Source Data Sets

The experiments in this paper were conducted on the multisensor data sets

consisting of SAR and multispectral imagery using different number of training

samples. RF was applied three times: on the multitemporal SAR, the multispectral

and the multisensor data set.
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As expected, the experimental results clearly show the potential of Random

Forest in terms of accuracy and stability of the results (Fig. 11.3). Although the

accuracies are slightly increase, with an increasing number of training samples,

RF performs well with small training sample sets. Moreover, the accuracies show a

small standard deviation, i.e., the impact of different training samples on the

classification accuracy is relatively low. These findings are in accordance with

previous studies (e.g., Waske and Braun 2009).

The class accuracies, provided by the SAR and multispectral imagery, confirm the

different nature of these data sets (Fig. 11.4). While some classes are most accurately

classified by the SPOT data set, the ASAR data is more adequate for the separation of

other classes. Comparing the different data sets, it can be assessed that the 2-month

SPOT data set outperforms the multitemporal ASAR imagery in terms of accuracies.

Nevertheless, the classification of ASAR data results in higher producer’s accuracies

for wheat and potatoes and higher user’s accuracy for barley. Moreover, the accur-

acies are generally increased by a multisensor data analysis (see Sect. 11.4.3).

11.4.3 Classification Results Using Multisensor Data Sets

Comparing themultisensor-based results, the total accuracy increased by approximately

4 % compared to the classification results achieved on the SPOT data and up to 2 %

when compared to the accuracy achieved with the ASAR data (Fig. 11.3). The positive

impact from the multisensor data set on the classification accuracy is independent from

the number of training samples.
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These findings are confirmed by the producer’s and user’s accuracies. The

producer’s accuracies for orchards, potatoes and wheat as well as user’s accuracies

of corn, grassland and orchards are increased by multisensor image analysis.

In addition, the producer’s and user’s accuracies are more balanced, when com-

pared to the single-sensor results (Fig. 11.4).

Nevertheless classification accuracies of some land cover classes (e.g., potatoes,

strawberries, and orchards) are relatively low, irrespectively of the used input data

set. Reasons for this could be the nature of these classes and the study site itself.

Many potatoes and strawberries fields are of relatively small size and thus, the

classification accuracy is decreased. This is in accordance to other studies that

discussed the negative effect of landscape heterogeneity and decreasing plot sizes

on the classification accuracies (e.g., Smith et al. 2003).

Moreover, classes as strawberries are characterized by temporal and spatial

variability, e.g., due to agricultural management (e.g., temporary covers by plastic

foil and straw). The ground beneath orchards, which are characterized by a relative

sparse canopy cover, is often covered by grassland. As a result, orchards can appear

as a mixture between grassland and forest (Waske and Benediktsson 2007).
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The visible assessment of the classification results confirms the good

performance of a multisensor image analysis, using RF (Fig. 11.5). The SAR

inherent noise, which is often obvious in SAR-based land cover maps, is clearly

reduced. Although some noise exists, most fields are clearly assigned to a specific

land cover class. Edges along different field plots are clearly indentified, even along

relatively small objects.

11.4.4 Impact of RF Parameters

Figure 11.6 shows the OOB accuracy, depending on the number of trees within the

RF (i.e., k). Irrespective of the data set, the generation of very small RF was

Barley

multitemporal SPOT data (PC1-PC-2-PC3) multitemporal ASAR data (Apr.-May-Aug.)

Corn

Forest

Grassland

Orchards

Potatoes

Rapeseed

Strawberries

Sugarbeets

Urban

Wheat

Fig. 11.5 Land cover map, using RF with tr’200 and multitemporal SPOT (PCs were only used

for visualization) and Envisat ASAR data
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ineffective in terms of accuracies. The maximum OOB accuracy is achieved by

generating RF with approximately 50–100 iterations, while the use of additional

trees did not further improve the OOB accuracy. This is also confirmed by the

classification accuracy, derived from the independent test data set. When varying

Learning Curve (Out-of-Bag-Accuracy)
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Fig. 11.6 Learning curve (out-of-bag-accuracy) provided by imageRF, using SAR (a) and

multisensor (b) data
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the number of iterations (e.g., k ¼ 25, 50, . . . 500), overall accuracies achieved

on the multisensor data set vary by ~2 % (not shown in detail).

The number of randomly selected features (i.e., m) was systematically set to

2, 4, . . ., 18, to investigate the impact of this parameter on the classification

accuracy (Fig. 11.7). The results confirm that the widely used default recommen-

dation, m is set to the square root of the number of bands (Gislason et al. 2006), is

useful, while a larger value results in a reduction of the overall accuracy. However,

in this experiment smaller values provide similar accuracies. Thus, one may setm to

the log of the number of bands, which is another known default value.

11.5 Conclusion

Overall, RF appears very well suited for classifying multitsensor data. The results

show clearly that a multisensor image analysis is superior to standard single-source

classification methods.

The good results for separating agricultural classes, which are often difficult to

separate, particularly with mono-temporal data sets, underline the value of a

multisensor multitemporal image analyses. As already discuss in other studies RF

performs well, even with a small number of training samples and without any prior

feature selection. Another advantage of RF is computational very light and very

simple to handle, because it mainly depends on two user defined values k (i.e., number

of iterations) andm (i.e., number of randomly selected features).Moreover, the impact

of these parameters on the classification accuracy is relatively low and reliable default

recommendations can be given, respectively.

The RF implementation imageRF that was used in this study further simplifies

the use of RF. The user-friendly implementation is freely available, can handle

common remote sensing file formats, and provides reliable default parameteri-

zation, which can be flexible modified in a GUI. Behind these facts, the use of
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RF as well as multisensor image analysis is advanced and seems particularly

interesting for user-oriented applications and operational monitoring services,

e.g. in context of GMES and ESAs upcoming Sentinel missions.
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Chapter 12

Application of an Object-Oriented Method

for Classification of VHR Satellite Images

Using a Rule-Based Approach and Texture

Measures

Stanislaw Lewinski, Zbigniew Bochenek, and Konrad Turlej

12.1 Introduction

Since the launch of commercial software for object-oriented data analysis numerous

research and application works were undertaken, in order to apply this concept and

elaborate semi-automatic methods for land cover classification based on satellite

images. The research works were concentrated on two main aspects of object-

oriented approaches: multi-resolution segmentation to adjust objects to terrain

elements in an optimal way and on classification methods, exploiting comprehen-

sively spectral, spatial and textural features of image objects, as well as their mutual

relationships. Applications range from studies using multi-resolution satellite data

(Whiteside 2005) to very high-resolution images (QuickBird, Ikonos), which enabled

more effective analysis of texture and shape features (Wei et al. 2005; Kressler

et al. 2005; De Kok and Wężyk 2008; de Kok et al. 2008). A common classification

approach was based on applying training areas for particular land cover classes and

a Standard Nearest Neighbour Classifier to assign objects to land cover categories

(Yuan and Bauer 2006; Hajek 2005; Elmqvist et al. 2008). Alternative approaches

for the classification process comprise the use of parametric values of spectral and

texture type as well as hierarchical classification workflows, based on a decision tree
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method (Lewinski and Bochenek 2008; Lucas et al. 2007; Su Wei et al. 2008).

The presented work on an object based classification approach emerged from the

needs formulated within the Geoland 2 SATChMo Core Mapping Service.

12.2 Satellite Data and Study Areas

Very high-resolution satellite images acquired by the Korean Multi-Purpose

Satellite KOMPSAT-2 formed the study base. The main characteristics of the

KOMPSAT 2 images are as follows: four spectral bands (blue, green, red and

infrared) plus one panchromatic channel; 4-m spatial resolution in multispectral

mode and 1-m spatial resolution in panchromatic mode; 15 � 15 km scene size.

The images were collected by the European Space Agency for Geoland 2 Project in

August–September 2009 and pre-processed at ESA facilities prior to their delivery

for further research works. Satellite data were converted to the level 1R, including

geometric correction. Unfortunately, no atmospheric correction was performed and

it was a major challenge in the construction of automatic classification algorithms.

Four images located in Poland, Sweden (south-east), Great Britain and Spain

(close to Madrid) were available for the study. The main test area was located in

central-western Poland, in Wielkopolska region. The area encompasses all main

land cover classes; agricultural land is predominant in this region, while also mixed

forests, small cities, rural settlements and grassland patches occur. The method was

developed on the Polish study site and its applicability and transferability was tested

and adapted using the three other areas.

12.3 Methodical Approach

12.3.1 General Assumptions

The general idea in this work was to prepare a semi-automatic method for land

cover classification that could be used for operational mapping throughout Europe

for the nine main land cover categories related to CORINE Land Cover level 1 and

2 nomenclature (CORINE 1993):

• Urban/artificial

• Bare non-cultivated ground

• Agricultural areas

• Forest/woodland/trees

• Sparse woody vegetation

• Grassland

• Other vegetation (moorland, etc.)

• Water

• Snow and ice
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The approach is based on a decision tree that sequentially separates land cover

classes. The main difficulty is hence the identification of appropriate object features

and a criteria for their classification. The approach follows a stepwise approach

(Fig. 12.1); individual steps are described in more detail in Sect. 12.3.2:

• Stage 1 – division of the study area into two object groups, the first group

characterized by high texture values, the second by low values respectively;
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Fig. 12.1 Object-oriented classification workflow using an iterative decision-tree approach
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• Stage 2 – classification of the high texture group, including urban/artificial class,

forests/woodland/trees, sparse woody vegetation and bare non-cultivated ground;

• Stage 3 – classification of the low-texture group, comprising agricultural areas,

grasslands, snow and ice (if existing) as well as water;

• Stage 4 – re-classification of existing classes in order to refine the classification

output.

12.3.2 Hierarchical Classification of Land Cover Categories

The panchromatic image of the study area was used to generate/divide high- and

low texture areas using texture filters. Two sigma filters were used for this purpose,

which emphasize the inner and outer object boundaries, respectively. The sum of

two filtered images formed the resultant PAN SIGMA image, which was used at the

next stages of analysis for deriving texture information.

The panchromatic image was used in conjunction with original one for a first

segmentation, i.e. division of the study area into homogeneous objects. The scale

parameter in this segmentation was chosen to be quite high in order to keep the

resultant objects as large as possible. The PAN SIGMA image was divided into

high- and low texture areas by using quantiles, following a solution proposed by de

Kok and Wężyk (2008). This measure allows to split the analyzed distribution

(range of PAN Sigma values in this case) into two sub-distributions, which e.g. can

represent two groups of land cover, characterized by different textures. The crucial

point is to determine the quantile value, which could make such a division with high

thematic accuracy. This can be done by an iterative process through analysis of

division into high and low texture, while applying various thresholds (quantile

values) within the test area. In theory such a quantile value should be fixed for

various satellite scenes, but in practice, it can change depending on character and

differentiation of the land cover. As a result of this step two groups of objects were

created; a high texture group, including urban/artificial class, forests/woodland/

trees, sparse woody vegetation and bare non-cultivated ground, as well as a low

texture group, comprising agricultural areas, grasslands and water. The high texture

areas were assumed to be a fixed property of urban/forest (spectral discontinuity)

while spectral low variability (spectral continuity) was assumed to be a character-

istic property of agriculture/water and large grass fields.

In parallel to the discrimination of high and low texture areas the extraction of

lines, represented mainly by linear shadows, was performed. That step was done on

the basis of the infrared channel analyzing the orientation of linear features within

the IR image. The resulting layer with lines was used at the later stages of the

classification to refine the final classification product.

Once the high texture image was created, it was segmented again, including the

multispectral channels (green, red, infrared) and a lower scale factor in order to

obtain smaller objects. After this segmentation the division of high texture areas

into the forest/woodland tree class and non-woodland class was done. As a criterion
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of this division a spectral feature called RatioR was utilized. This customized

feature is defined by the formula (de Kok and Wężyk 2008):

RatioR ¼ R= Rþ Gþ Bþ IRþ PANð Þ

where R, G, B, IR, PAN denote the reflectance values in respective spectral channels.

The threshold value of the RatioR feature was also determined by quantiles. In

addition, the Normalized Difference Vegetation Index (NDVI)

NDVI ¼ IR� Rð Þ= IRþ Rð Þ

was included in the processing of high texture areas together with the RatioR in

order to classify forest/woodland/trees objects. In the presented classification

workflow this class could be optionally sub-divided into two forest categories:

coniferous, and deciduous forests. In this case, a sampling approach was utilized:

samples for coniferous and deciduous forests were collected and a standard nearest

neighbour classifier was applied.

The stage of delineating the forests/woodland category is equipped with addi-

tional procedures, allowing to extract from this class areas, which despite of high

texture belong to agricultural category. Two types of extraction can be done:

agricultural fields characterized by high texture and openings located within forest

areas. For the first type of extraction threshold values in the infrared band and

texture homogeneity measure in this channel were utilized, while for the second one

brightness threshold values and homogeneity PAN measure were applied.

Once classification of forest/woodland/trees category had been completed, the

analysis of the remaining area within high texture category was started. As a first

step of this analysis a segmentation of this area was donewith a low scale factor, using

the line layer, prepared in the previous step. Subsequently, the classification of

shadows was performed through the application of a threshold value to the line layer.

At thefinal stepof this stage a new segmentation of the remaining high texture areawas

performed with a low scale factor using the three spectral bands (red, green, infrared).

The resulting area was in turn classified, in order to distinguish the next land

cover category – sparse woody vegetation. Two feature attributes were used for this

purpose: NDVI and RatioR, with a priority put to the NDVI threshold and comple-

mentary utilization of the RatioR threshold. The remaining high texture area was

classified in the next step with the aim to discriminate the two land cover categories:

urban/artificial class and non-cultivated bare ground. In case of the urban/artificial

class two features were used for discrimination:

• a customized feature – standard deviation in red channel divided by the square

root of the area of the object

• a texture homogeneity measure in the PAN image

In case of non-cultivated bare ground the threshold for the brightness index was

applied in conjunction with a texture homogeneity measure in the panchromatic

band. Three basic land cover classes exist in the low texture group – water,

grasslands and agricultural areas. They were considered in this third step. At the
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initial phase an additional segmentation of the low texture regions was performed,

with a possibility to refine the results through the use of a second segmentation

based on spectral differences between objects in the infrared band. After the

completion of the segmentation procedure water bodies were classified applying a

threshold in IR reflectance. The remaining classes in the low texture regions were

assumed to represent agricultural areas and grassland. No division was finally made

between these two land cover categories, due to unfavourable dates of acquisition

of the satellite images (late summer/early autumn). In order to discriminate these

classes with high accuracy a multi-temporal approach would be more appropriate.

At the fourth stage of the classification workflow re-classification of some

classes was done. This concerned especially the class of linear shadows as well

as some areas representing bare non-cultivated ground. Latter were shifted to urban/

artificial class, when neighboring this class to a high degree. At the end a general-

ization process was conducted with the requirement to preserve objects, which

fulfill the condition of a Minimum Mapping Unit >0.25 ha. The final classification

image for the Polish study area is presented in Fig. 12.2.

Fig. 12.2 Classification image of Polish test site – Wielkopolska region
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12.3.3 Accuracy Assessment

An accuracy assessment was conducted using 500 randomly-stratified control

points. Stratification was done by land cover classes (sparse woody vegetation

was not classified since it was not present in this study area). For each control

point with its surroundings the land cover was interpreted visually based on original

image color composites. Results of the accuracy assessment are presented in the

form of error matrix in Table 12.1.

12.4 Results and Discussion

The overall accuracy of the classification reached 89.4 % fulfilling the requirements

for generic land use maps prepared within GMES Land Services (85 %). The

obtained accuracy is supported by a high Kappa coefficient (0.83).

The best results were achieved for three land cover categories: forests, water and

agricultural areas/grasslands. Both assessments – from point of view of producer’s

and user’s accuracy – proved to have a high level of accuracy. In each category

results of accuracy assessment exceeded the pre-determined level of 85 %. How-

ever, one must remember, that agricultural areas/grassland class was a broad land

cover category, so while separating it into two independent classes the accuracy

level could be slightly lower.

The urban/artificial class and bare non-cultivated ground revealed moderate,

although acceptable producer’s accuracies. Precision of discrimination of urban/

artificial class mainly depended on its detailed assigning to the high-texture group.

Bare non-cultivated ground was mixed with agricultural bare soil, while having low

texture characteristics, at the same time decreasing its level of recognition, espe-

cially from the user’s point of view.

Table 12.1 Accuracy assessment of classification of Kompsat 2 image

Reference data

Classified data

Forests/

woodland

Urban/

artificial

Bare

ground Water

Agriculture/

grassland Total

Forests 176 6 0 0 12 194

Urban 4 24 2 3 6 39

Bare ground 1 2 8 0 11 22

Water 0 0 0 23 2 25

Agri &

Grassland

3 0 1 0 216 220

Total 184 32 11 26 247 500

Accuracy (%)

Producer’s 95.7 75.0 72.7 88.5 87.4

User’s 90.7 61.5 36.4 92.0 98.2

Overall accuracy 89.4 %
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The applicability of the presented method was tested on the other three test sites

spread out in various regions of Europe: Sweden, Great Britain and Spain.

The same accuracy assessment procedure has been applied for each test site,

with 500 points randomly distributed across the study area. The following values of

overall accuracy were obtained: 72.8 %, 72.8 % and 82.4 %, respectively. They are

lower than in the case of the Polish scene, but having regard to the geographical

differences of the analyzed area they can be considered as satisfactory. In opera-

tional phase of SATChMo project results of automatic classification were corrected

manually.

12.5 Conclusions

The presented work demonstrates an object-oriented, rule-based classification

method, utilizing threshold values for spectral, texture and context features in a

decision tree work flow. The advantage of the proposed method against approaches

requiring reference samples is its simplicity – each land category is described by

one or two features, which allows the operator to adjust this features quite easily in

order to achieve acceptable result of class delineation. Moreover, the whole process

of classification can be highly automated and easily modified through adding new

features or classes when needed.

Application of multi-resolution segmentation at different stages of the classifi-

cation process is another characteristic element of the proposed method. It enables

to adjust size and shape of objects to particular land cover classes more precisely

than in a one-step segmentation approach. An innovation of the proposed approach

is also the use of a textural image created through filtering the very high-resolution

panchromatic image in order to separate land cover categories characterized by

high or low texture at the initial stage of classification.

The presented approach was verified through its application to three other test

sites, located in Sweden, Great Britain and Spain. The subsequent results obtained

in the course of SATChMo project indicate especially, that the proposed method

can be effectively applied for land cover mapping in a temperate zone of Europe,

with minor adjustments of features used for class separation. In case of the

Mediterranean zone, characterized by specific types of vegetation and agriculture,

the proposed approach requires some additional modifications, but its general idea

is fully applicable. Further research work on improving the proposed method are

still required in order to increase accuracy of the classes urban/artificial as well as

bare non-cultivated ground. An efficient solution for grassland delineation, based

on multi-temporal approach is also required.
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Chapter 13

Remote Sensing of Vegetation

for Nature Conservation

Sebastian Schmidtlein, Ulrike Faude, Stefanie Stenzel,

and Hannes Feilhauer

13.1 Introduction

A rapidly changing environment with land use and climate as the most dynamic

components causes new challenges for nature conservation and management of

protected areas. Dealing with these changes requires a systematic monitoring.

To date, such monitoring programs are mostly backed by expert guess or permanent

observation plots. Both have their merits but the plot-based approach is certainly

more objective. However, even in the case of appropriate sampling, plots provide

only punctual information and changes in the area between plots are easily missed.

This gap can be closed by remote sensing.

Remote sensing applications may help experts by substantiating their guess and

by assessing the spatial relevance of changes. Today, remote sensing methods in

nature conservation and management include a broad range of approaches from

visual interpretation to numerically based techniques. Similarly broad is the origin

of data, which includes aerial photography, airborne and satellite-borne multi-

spectral and hyperspectral optical data as well as data from active remote sensing

using LIDAR or radar sensors.

Despite this broad range of possibilities, visual interpretation of images

continues to be the most widespread technique used in nature conservation (Gross

et al. 2009). High-resolution digital and analogous imagery is readily available at
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no or low cost and can be handled with simple approaches. Trained interpreters

are able to gain a great amount of information from these data. Yet, there remains a

lot of unused potential. Several reasons have been discussed, such as limited

data access, the complexity of more advanced approaches in terms of comprehen-

sibility and the need of established methods (Van den Borre et al. 2011). Practi-

tioners are often not inclined to support studies that are (or appear to be)

experimental or they are frustrated by overly enthusiastic promises of remote

sensing scientists. In addition, high costs for specialized software may have put a

break to the implementation of advanced approaches.

Fueled by the hope for cost-efficient vegetation mapping, the discussion

about the potential and possible implementations of remote sensing continues.

Compared to a few years ago, remote sensing data have become more affordable

and some powerful software products for their analysis are available even free of

cost (e.g., grass GIS, RGui, EnMap-Toolbox). The fact that remote sensing is able

to provide information that could not be derived by conventional approaches plays a

minor role in the discussion about a possible application in conservation and

management. In our opinion budgeting issues should not be the only reason to

opt for or to decide against the use of remote sensing. Instead, possible extra gains

should be taken into account. For instance, a combination of remote sensing and

field work may derive detailed information about continuous gradients in species

composition or ecosystem functioning that cannot be derived from field-based data

alone (Schmidtlein and Sassin 2004; Feilhauer et al. 2011; Schmidtlein et al. 2012).

In general, semi-automated approaches in remote sensing are reproducible, which

is a desirable property especially in monitoring programs. In addition, these

approaches are indeed often cost efficient for what they can deliver. This is

especially true in case of remote or large areas. A prominent example for such

applications are the mapping tasks in the context of the European habitat directive

and the related Natura 2000 network that requires monitoring of huge areas in

6 year intervals (Council of the European Communities 1992).

Such demands raise the question which data and techniques are useful in

conservation and management. We are of the opinion that until further notice and

with the exception of simply structured targets, only training of semi-automated

methods based on samples taken from the image itself provide the amount of

detail that is needed. The reason is that signatures of species and vegetation types

are highly variable in space and time. Thus, spectral libraries or physically based

approaches are not in the focus of this chapter. We aim to give a brief overview

on the promising approaches but will also point to the difficulties. The chapter

focuses on the detection of individual plant species, the mapping of distinct

habitats, plant communities and diversity patterns, as well as on approaches that

take into consideration gradual transitions. We put an emphasis on applications

that are relevant to Europe. Other review articles dealing with these or similar

topics have been written by Kennedy et al. (2009), Newton et al. (2009), Van

den Borre et al. (2011), Wiens et al. (2009), as well as Xie et al. (2008) to name

just a few.
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13.1.1 Which Remote Sensing Data Is Useful?

Despite successful applications based on multispectral data (see, e.g., Förster

et al. 2008; Somodi et al. 2012, or Feilhauer et al. 2013 for an assessment of the

potential), hyperspectral data are currently on the tip of everyone’s tongue when

talking about the future of optical remote sensing in nature conservation. With the

detailed spectral resolution of these sensors, the detection of spectral differences

between different habitats or species becomes more likely. Even though hyper-

spectral satellites (like EnMAP) are planned to be launched over the next years,

hyperspectral data will continue to be delivered by airborne sensors for a while.

Accordingly, spatial and temporal coverage is typically limited. Sensors like the

upcoming Sentinel-2 with 13 spectral bands may prove a valuable replacement for

the time being. When using hyperspectral data it should also be kept in mind that

specialized methods are required that can make use of the rich spectral information

and that are robust towards highly inter-correlated spectral bands. In particular if

3-d patterns of the canopy are relevant, LIDAR and radar data are another option or

a good add-on (Wulder et al. 2007). A special strength of radar is the ability to

penetrate surfaces and to address water content in soils and vegetation. This is

potentially useful for identifying wetlands or monitoring wetland degradation.

Further, these data may allow for the detection of changes in the 3-d habitat

structure that are an urgent problem for the function of habitats (Nagendra

et al. 2012). For example, increases of shrub and tree cover affect the occurrence

of light-demanding plant species in fallow farmland and most birds react instanta-

neously to changes in vertical patterns. Fusions of optical remote sensing data with

LIDAR or Synthetic Aperture Radar (SAR) may improve the results in this context.

For example, the use of very high resolution imagery and aerial photographs

(Laliberte et al. 2004; Walker and Briggs 2007), involving texture analysis,

object-based approaches or stereoscopy, can complement the information on 3-d

structure (Waser et al. 2008; Nagendra et al. 2013; Hantson et al. 2012). In some

cases, hyperspectral data has been used for this purpose (Harris et al. 2003;

Spanhove et al. 2012). While bush encroachment is an obvious field of application

for this kind of analysis, few studies try to address grassland structure. For example,

recent attempts aim to develop a method for detecting cutting dates from

multitemporal TerraSAR-X data (Schuster et al. 2011). The frequency and date of

mowing can be useful for estimating the conservation value of grassland.

Three important questions should be answered before choosing data or starting a

flight campaign: (1) what spatial coverage do I need?, (2) what spectral coverage

makes sense?, and (3) what spatial resolution (ground sampling distance, GSD) is

necessary? Especially concerning flight campaigns, it is often opted for the highest

spatial resolution in order to preserve all possibilities. Yet, especially the decision

on spatial resolution may be of great consequence: typically, the signal-to-noise

ratio decreases with increasing spatial and spectral resolution for a given sensor

sensitivity. This may lead to technical issues that exceed the benefits of a higher

resolution. Also, the higher the spatial resolution, the more flight strips or tiles are

needed. This comes with higher processing efforts and sometimes interfering

illumination effects.
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It is thus preferable to select a spatial resolution for which it can be assumed that

the targets, be it species or habitats, are well depicted. For example, to characterize

a plant community, a pixel should contain a mixture of species. The best size for

determining individual plants avoids such mixtures and returns a pure species

signal. Yet, species identification becomes difficult if the area on ground covered

by the pixel is so small that the reflection of one individual or of a mono-stand

becomes too heterogeneous (see Nagendra 2001; Wulder et al. 2004). Considering

the spectral resolution, a large number of bands is not always necessary. Tests with

simulated data show, that in certain cases a broad spectral coverage may be more

important than high spectral resolution (Feilhauer et al. 2013). Still, a high spectral

resolution offers a maximum flexibility in the selection of spectral features.

This can be important since, with our incomplete knowledge about radiative

transfer and due to the influence of unknown surface components, surprises regard-

ing which spectral bands are relevant are not uncommon.

Remote sensing of vegetation will not always lead to satisfactory results. The

success is not only highly dependent on data and methods, but also on actual

reflectance differences between vegetation units or species across the study area.

13.1.2 On the Uniqueness of Plant Species Appearances

When aiming to map certain plant species, species assemblages, or habitats,

we assume that their respective reflectance is unique (Castro-Esau et al. 2006).

Yet, even if plants feature a multitude of anatomical structures, the basic elements

remain the same (Sorby 1873). All plants (but a few) are basically green most of the

time (Kumar et al. 2001) and their reflectance may not be as unique as we hope for.

Usually the vegetation optimum, i.e., the peak in plant development, is the best time

to map vegetation patterns since differences in species traits are fully developed

(Feilhauer et al. 2010; Feilhauer and Schmidtlein 2011; Laba et al. 2005).

The contrary may apply if species traits are less clear. Often, litter and soil are

related to species occurrences and variation in reflectance that is caused by these

surface components may serve as a proxy for species occurrences. In these cases,

good results may be achieved outside the vegetation optimum (Schmidt and

Skidmore 2003; Feilhauer and Schmidtlein 2011; Schmidtlein et al. 2012). This

applies to empirical approaches with a calibration based on samples within the area

of an image at the time of acquisition. Approaches that rely on collections of

reflectance taken elsewhere or at another time hardly profit from such correlations.

Variables that differ between individual plants, like state of growth or turgor

pressure, exert a decisive impact on reflectance. Spatial differences in plant devel-

opment due to health, stress, and disturbance (e.g., land use) add to mapping

uncertainties (Carter 1993; Carter and Knapp 2001; Gausmann 1984; Sanger

1971; Sorby 1873). In fact, Castro-Esau et al. (2006) showed that intra-species

variability can be higher than inter-species variability, especially across large areas,

and thus blur if not offset possible relations between species and reflectance. In such
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cases the use of multiseasonal remote sensing (which makes use of differences in

growth over the year) may be helpful but can also even worsen the situation,

especially if non-taxonomically caused differences are spatially variable across

seasons. Multiseasonal remote sensing has often improved the mapping results

(see, e.g., Townsend and Walsh 2001 for a discussion on the value of multiseasonal

multispectral data and Noujdina and Ustin 2008 for a comparison of monotemporal

and multiseasonal hyperspectral data), yet does not guarantee success since noise in

the data is also accumulated (Feilhauer et al. 2013; Ghioca-Robrecht et al. 2008;

Langley et al. 2001).

13.1.3 Species Mapping – Looking
for a Needle in the Haystack?

With respect to individual species, practitioners in conservation and management

focus on two sorts of species worth mapping and monitoring – either invasive

species that threaten an ecosystem or target species that are rare, endangered, or act

as umbrella species (i.e., indicator species for threatened habitats). Since endan-

gered species are often small and unobtrusive, their direct detection is mostly not

feasible with remote sensing methods. Yet, this does not mean that they cannot be

detected indirectly, for example via co-occurring species. In contrast, invasive

species often feature remote sensing friendly properties such as prominent flowers,

high spatial coverage, and the formation of mono-stands.

Direct mapping of species that are present in the upper canopy is possible if

individuals of a species are sufficiently large or if the species forms sufficiently large

mono-stands. Besides this uniqueness of reflectance it is also important whether the

species is surrounded by a homogeneous background or mixed with other species

(Fig. 13.1). The importance of the complexity of the environment for mapping

success (Andrew and Ustin 2008) is closely linked to issues caused by mixed pixels

and thus to an appropriate spatial resolution. For direct mapping of individual species,

a b cTarget species

C1 C2

Accuracy of attempts to detect the species directly

C1 C2

Necessity to consider co-occurring species

C1 C2

Fig. 13.1 Detecting invasive species in a mixed stand of two communities C1 (not invaded) and

C2 (invaded). Increased mixing with other species (from a–c) affects the accuracy of the direct

detection of individual species. However, the canopy reflectance of an entire plant community may

serve as a proxy for characteristic species
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the appropriate selection of distinct phenological stages for data acquisition or

multiseasonal remote sensing are likely to contribute to a high mapping accuracy

(Everitt et al. 1992; Laba et al. 2005; Langley et al. 2001). If a species grows higher

than the species in its surroundings (e.g., shrub encroachment), the incorporation of

LIDAR or SAR data can lead to another improvement (Hantson et al. 2012).

In case of individual species mapping, most conventional classifiers are of little

help since information about all occurring surface elements in the area is required

(e.g., Underwood et al. 2003). One-class classifiers such as Maxent (Phillips

et al. 2006), Support Vector Data Description (SVDD) (Tax and Duin 2004), and

One-Class Support Vector Machines (OCSVM) (Schölkopf et al. 2001) are more

adapted. These classifiers require only spatial data on the occurrence of the target

species and hence enable an efficient acquisition of ground-truth data. By learning

from the spectral properties of species occurrences, one-class classifiers aim to

distinguish this class from the landscape background (i.e., the image) and result in

fuzzy predictions of class membership probabilities.

Understory plants can hardly be addressed directly via their spectral signature.

Only in special cases a characteristic phenological development like early greening

allows for a direct detection (e.g., Tuanmu et al. 2010). The situation for species with

small or few individuals that vanish in a mixture of other species is similar. This

hampers, for example, the detection of invasive species in an early stage of invasion.

However, the characteristic reflectance of plant communities is often a good proxy

for an indirect mapping of hidden plant species. This means that it might be worth

the try to address these species based on their ecological requirements and

co-occurring species that are triggering canopy reflectance. If this procedure is

followed it should be kept in mind that the result can be based on actual as well as

on potential occurrences – a fact that may pose methodical issues. Remote sensing

depicts the current condition of the Earth surface and if we derive maps of potential

habitat the outcomes will always be biased by current land use and thus land cover.

Bradley et al. (2012) criticize that this has often led to difficulties in the interpreta-

tion of results. The aim of a mapping project thus needs to be considered carefully

and the usefulness of remote sensing data must be scrutinized.

13.1.4 Mapping Vegetation Types and Ecotones

Considering the issues in detecting species, mapping the distribution of vegetation

types may seem easier. However, this task comes along with other challenges:

Have you ever stood in the field and asked yourself where one vegetation type stops

and another begins? This may often be a difficult and frustrating task because the

species composition of vegetation often changes gradually. The continuous change

is referred to as ecotone or floristic gradient. Apart from the continuum in space,

another continuum exists in floristic similarity because even if patches of vegetation

are well distinct in the field they are hardly ever identical in terms of their species

composition. For these reasons, the use of discrete classes for vegetation mapping is
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affected by two issues. First, the spatial delineation of vegetation types or plant

communities (Fig. 13.2a) is prone to uncertainties and varies between observers or

algorithms. Second, “typical” stands are difficult to identify in the field but such

“typical” stands are a fundamental requirement to train and validate classifications.

This issue is even more complicated if the artificial nature of the pixel is taken into

consideration where mixed stands are the rule. Taken together, it may be easier and

closer to ecological thinking (Foody and Trodd 1993; Foody 1996) to refrain from

juggling with different classification systems and to aim to preserve the vegetation

continuum. Several approaches to map the vegetation continuum have been devel-

oped to date. In general, these approaches can be classified in two categories, either

based on fuzzy classification (Fig. 13.2b) or gradient mapping (Fig. 13.2c). Both

approaches have successfully been used to map natural ecosystems.

A fuzzy classification can be achieved with various algorithms designed for

conventional ‘hard’ classifications. These classifiers generate much information

beyond the mere assignment of a pixel to a class (Wang 1990). This information, for

example the probability of a pixel to belong to a certain class, can be used to

generate a fuzzy classification that represents vegetation patterns closer to ecologic

reality. Several algorithms are suitable for fuzzy classification and have been used

to map the distribution of various heathland types (see, e.g., Foody 1992, 1996),

grassland (e.g., Oldeland et al. 2010), and transitional gradients from heath to forest

ecosystems (e.g., Wood and Foody 1989). Similarly, spectral unmixing techniques

offer great potential for fuzzy vegetation mapping. Instead of probability maps

this approach results in predictions of pixel-based cover fractions of vegetation

types (e.g., Roberts et al. 1998). As with individual species, habitats and commu-

nities can be mapped with one-class classifiers and most of them have a fuzzy

mode. For example, SVDD has proved to be able to detect single vegetation types

(Sanchez-Hernandez et al. 2007a, b) in a landscape matrix. Maximum Entropy

modeling does so too (Amici 2011) and even performed better in comparison to

OCSVM (Li and Guo 2010).

Despite all benefits, the application of fuzzy classification is hampered by two

issues. First, fuzzy approaches generate a separate map for each class. In particular

a b cClassification

Map representation

Ground truth

Vegetation pattern Vegetation pattern Vegetation pattern

Ground truth Ground truth

Map representation Map representation

Fuzzy classification Gradient mapping

Fig. 13.2 Addressing patterns in natural vegetation with continuously changing species

composition. The patterns can be described as either hard classes (a), fuzzy classes (b), or floristic

gradients (c)
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for heterogeneous and complex ecosystems, this leads to a bulky result consisting of

multiple maps. Second, fuzzy classification still requires a priori defined vegetation

classes for calibration and validation (Foody 1999) – certainly a source of subjec-

tivity and error. The identification of what may be considered a ‘pure’ represen-

tation of a vegetation type is a topic that drove to despair generations of

phytosociologists. It is unlikely that remote sensing resolves the issue.

Gradient mapping does not require any a priori defined classes. Instead, it takes

advantage of ordination techniques adopted from ecology to describe the vegetation

continuum as an interval-scaled floristic gradient based on a quantitative vegetation

sample. Ordination techniques are very common in ecology and are basically a

dimensionality reduction of the vegetation data. Various numerical algorithms

(including the well-known Principal Component Analysis) may be used for this

task. The resulting floristic gradients or similarity spaces are subsequently regressed

against the gray values corresponding to the vegetation sample. To cope with the

inter-correlation inherent to the spectral data, sophisticated regression techniques

such as Partial Least Squares regression (Wold et al. 2001), Support Vector

regression (Smola and Schölkopf 2004), or Random Forest regression (Breiman

2001) are required.

13.1.5 Diversity and Different Ways to Tackle It

Biodiversity belongs to the ecosystem properties that are most frequently addressed

with remote sensing. Still, the outcome of the related studies differs considerably.

These differences may be due to the fact that there is little agreement about the

meaning of the term ‘biodiversity’. Biodiversity includes – but is not limited to –

measures of species richness or evenness of species shares within a defined area

(i.e., Whittaker’s Alpha diversity shown in Fig. 13.3) (Whittaker 1960), the change

rate in species composition related to a certain distance (i.e., Whittaker’s Beta

diversity), the diversity of functional attributes as well as genetical, phylogenetical,

structural, or chemical diversity. In addition, these measures are generally restricted

to certain parts of a system (e.g., to vascular plants).

Biodiversity patterns are ecosystem properties on a meta scale and there is only

little reason to believe that they are globally related to spectral features. Meta

analyses of remotely-sensed maps showing the vegetation properties of interest

(e.g., species composition, biochemical composition, or structures) using moving

windows or measures of spatial variability are a viable way to assess diversity

patterns coarser than the pixel resolution. Similarly, the spectral heterogeneity of a

vegetation stand is sometimes linked to compositional changes and may thus be

used as a proxy for species richness (Gould 2000; Hall et al. 2012; Rocchini

et al. 2004). The opposite conclusion (homogeneous reflectance indicates low

diversity) is, however, more likely to be wrong (Schmidtlein and Sassin 2004).

If species feature a similar spectral signature or if diversity patterns are located at

sub-pixel scales, the observed heterogeneity may underestimate the actual species
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richness. The spatial resolution of the imagery dictates the spatial scale at which

diversity is quantified and needs to be chosen with care.

Although the diversity within a pixel is more difficult to address following

causal relationships, simple proxies often allow for a local estimation of parameters

such as species richness. For example, mere canopy height may indicate species

richness in forest ecosystems (Goetz et al. 2007). Also, some vegetation types

generally feature a higher diversity than others. Vegetation maps showing the

distribution of these types may hence allow for a rough assessment of biodiversity

(e.g., Hernandez-Stefanoni and Ponce-Hernandez 2004). Such proxies are,

however, only valid for the ecosystem under investigation, hardly transferable to

other systems and are hence no viable solution for a general assessment of

biodiversity.

The capability of remote sensing to address functional diversity depends on the

functions of interest. Specific aspects, such as plant strategies, can be described

comprehensively (Schmidtlein et al. 2012). Since these characteristics are often

closely linked to plant optical properties, modeling and mapping of functional

diversity should be easier than assessments of species richness. This applies even

more to the chemical diversity of vegetation canopies, which is related to both

species richness and functional diversity (Townsend et al. 2008), and can be scaled

from the leaf to the landscape level (Asner and Martin 2008). Because many

biochemicals are also responsible for optical properties of vegetation stands, the

biochemical variation can in general be assessed with high accuracy using

hyperspectral data. Problems arise, however, if biochemistry varies locally due to

plant stress or leaf exposure to light. The approach has to date only been tested for

tropical forest systems.

Species richness
H

ig
h

L
o

w
Evenness

1 out of 5 species in common 3 functional groups

1 functional group4 out of 5 species in common

b-diversity Functional diversity

Fig. 13.3 Different measures and concepts of biodiversity. Each symbol represents a species, the

shape of the symbols illustrate functional groups
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13.2 Synthesis

Remote sensing for nature conservation is a field with numerous applications that

are only partly exploited. Depending on how close a mapping target is linked

to optical or structural properties of vegetation, success and failure are close by.

The potential for a complete automation of most mapping procedures mentioned in

this chapter is very low and field work will always be needed to calibrate new

models. This is bad news for the hard science party in remote sensing. Good news is

that the products are not cheap replacements of field work but valuable add-ons that

provide detailed spatial information on target variables with only little additional

effort compared to field-based studies. These add-ons may help to fulfill the

existing demand for reliable and objective information in conservation planning

and may further have the potential to take monitoring attempts to the next level.

However, this has not been fully realized in the conservation community. Constant

interaction, communication, and understanding of ecologists and remote sensing

scientists are required to take full advantage of the synergies between both fields.
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Chapter 14

Modeling Urban Sprawl

Roland Goetzke

14.1 Introduction

Urban populations are increasing worldwide. The percentage of people in Europe

living in cities increased from 51 % in 1950 to 70 % in 2000 and is expected to

reach 84 % in 2050 (United Nations Population Division 2010). The growth of

cities and the social and environmental consequences associated with this phenom-

enon are subjects of intensive debate. Especially suburban sprawl within the Anglo-

American context has been well documented and is a major target of contemporary

criticism (Blais 2010; Kunstler 1994; Warner 1972). It is viewed as an expression of

wealth and individual freedom (Gillham and MacLean 2002), as well as a mani-

festation of chaos requiring restraint through planning (Batty 2008). The challenges

of urban sprawl raised the need for new concepts in urban planning and sustainable

growth policies, like smart growth or new urbanism (Freilich et al. 2010).

Uncontrolled urban sprawl has diverse environmental, economic, social and

aesthetic consequences. The conversion of land-use evolving from urban growth

lead to alterations of biogeochemical cycles, hydrologic systems, and biodiversity

in the city and – because of a city’s “ecological footprint” – well beyond its

boundaries (Grimm et al. 2008). Urban sprawl is not only a phenomenon of

Anglo-American cities, where it is associated with low-density expansion of private

residential housing. In Europe cities have historically developed a dense core; but

since the 1950s urban sprawl has also become a challenge for urban planning and

policy (EEA 2006).

Cities belong to the most complex land-use systems and their sprawling nature

often seems unplanned, even chaotic. But being complex does not necessarily mean

disordered. Cities are “. . .the example par excellence of complex systems (Batty

2008)”: They show emergence, non-linearity, feedback, and path-dependence.
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Cities are self-maintaining and their physical expansion is a function of the sum of

the manifold decisions made by their constituent parts, i.e. residents, planners, and

economic interests. This makes urban growth an appropriate and fascinating subject

for scientists engaged in modeling (Berling-Wolf and Wu 2004). There is also an

increasing demand by policy makers and city planners for models that can support

their decision-making process by forecasting future states of cities or future sce-

narios resulting from different planning assumptions (Geertman and Stillwell

2004). In the last four decades a great number of urban growth models have been

developed and incorporated into Spatial Decision Support Systems (SDSS) and

Planning Support Systems (PSS) (Geertman and Stillwell 2009). Despite this

development much criticism remains concerning the gap between planning practice

and scientific research (Couclelis 2005).

This paper provides a comprehensive overview of the processes and problems of

urban sprawl with a focus on European urban areas. A summary of common urban

growth models and modeling techniques is given and the role of remote sensing in

these processes is examined. An example application illustrates model coupling as

one part of ongoing research activities.

14.2 Urban Sprawl

Despite considerable research on the subject of urban sprawl there is no agreement

on a comprehensive definition of urban sprawl. According to Chin (2002) four

elements have to be considered: urban form, land-use, impacts, and densities.

Urban sprawl and urban growth are both terms that describe spatial processes that

may result in a similar land-use pattern. While urban growth can take place in a

coordinated way, urban sprawl is often associated with an uncoordinated growth

that is larger than reasonable. A third term in this context is urbanization, which
describes an a-spatial process referring to the complex changes of life style

resulting from the impact of cities on society (Clark 1982). The terms urban growth

and urban sprawl are used in the following interchangeably, because the focus of

this paper is on the physical expansion of urban structures and not on the processes

leading to these observable patterns.

14.2.1 Patterns, Processes, Problems, and Policies

Urban sprawl accelerated in Northern America and Europe since the second half of

the twentieth century. With an increasing population in the cities, a lack of

affordable housing in the centers, and higher levels of income the consumer

demand for housing changed. At the same time an increased mobility and changes

in the mode of private and public transport enabled access to areas at further
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distances from the city leading to a spreading suburban development. It is this

suburban development that has been principally identified as urban sprawl.

Most widely cited as urban sprawl are low density expanses of single-use

development leading to uniform suburban patterns. Additionally, there is “leap-

frog” or scattered development, referring to discontinuous growth away from

central cores resulting in a fragmented land-use pattern (Gillham and MacLean

2002). Another form is “commercial strip development”, which typically follows

arterial roads lined with shopping centers and commercial areas (Gillham and

MacLean 2002).

The environmental and economic impacts of urban sprawl are numerous and

have triggered the debates about this phenomenon. These impacts include the

consumption of valuable agricultural land, natural habitat fragmentation, and in

recent years the loss of biodiversity (Grimm et al. 2008); increased air pollution,

greenhouse gas emission and traffic congestion (Gillham and MacLean 2002); high

infrastructure and development costs and exhaustive energy consumption (Burchell

2005); the loss of landscape heritage values and the evolution of displeasing urban

patterns (Antrop 2004). A key indicator for unsustainable land-use changes in

urbanized areas is the increase of impervious land-cover, which directly affects

surface water runoff and infiltration, soil functions and local climate (Arnold and

Gibbons 1996).

The continuing loss of arable land due to urban growth has caused the German

federal government to implement a reduction of the daily land conversion

(or “take”) in the national sustainability strategy, from 129 ha in the year 2000 to

30 ha in 2030. In 2009/2010 the daily land take for settlement and infrastructure

areas in Germany was 77 ha (Hoymann et al. 2012). In addition to the above listed

specific problems, spatial planning has to deal with urban sprawl under the condi-

tions of globalization, demographic change and the need for developing and

implementing strategies for climate change adaptation (EEA 2012).

14.2.2 Trends of Urban Sprawl in European Cities

European cities are often idealized as “compact cities” with higher densities and

shorter distances than North-American cities (Dieleman and Wegener 2004). But

since the 1950s Europe’s cities have expanded by 78 % while their population grew

by only 38 % (EEA 2006). The development of European cities is diverse. Kasanko

et al. (2006) found that Southern European cities are still the most compact. In

Eastern Europe and parts of Central Europe most cities are characterized by

discontinuous residential structures and low population densities, while in Western

Europe and parts of Central Europe cities show a diverse development. This could

only partially be confirmed by Schwarz (2010), who also identified low density

cities in Italy and Spain as well as compact cities in the UK.

The driving forces of urban sprawl in Europe are manifold and vary

between countries, and within regions and cities. Economic drivers range from
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macro-economic factors like the European Integration to micro-economic factors

such as land prizes. Population growth is, of course, an important factor, but urban

sprawl can also be observed in areas where population is declining (Couch

et al. 2005). Social factors include new housing preferences and pull-factors

resulting from inner-city problems. Transportation factors like private car owner-

ship or improved public transport provide greater freedom to the localization of

people. Policy interventions play a major role in urban sprawl, but are of all the

relevant factors the most difficult to quantify. Weak land-use planning or a lack of

coordination can lead to undesirable urban patterns. In German cities it can be

observed that in recent years, due to inter-communal competition for residents and

tax revenue, the urban development changed from the demand side to the supply

side, resulting in the construction of new housing estate areas and business parks

(Mainz 2005; Siedentop et al. 2009).

The areas in Europe, where urban sprawl is most obvious, are the regions with

high population density and economic activity, notably the Netherlands, Belgium,

Luxembourg, Western and Southern Germany, Northern Italy, and the Paris and

London regions (EEA 2006). But there are new “hot spots” and corridors with

higher growth rates than in these already highly urbanized areas. EU Structure and

Cohesion funds have had significant implications on urban sprawl. Regions such as

Ireland, Portugal, Eastern Germany, and several areas in Spain, which have

benefited from EU regional policies, have also recently shown high growth rates

(EEA 2006). These countries have invested high amounts of these funds to improve

and expand their transportation network. Such direct infrastructure investments

affect land development by improving accessibility to and availability of land,

which attracts transport-related industries, followed by jobs and residents

(Christiansen and Loftsgarden 2011).

Today, urban sprawl in Europe affects not only urban areas, but the rural

countryside as well (Antrop 2004). As a result, new urban structures emerge

which have urban as well as rural characteristics, resulting in an “urban–rural

continuum” (Sieverts 2005). Current trends of urban growth in Germany show an

increasing polarization (Hoymann et al. 2012) where most areas show both urban

growth and a declining population.

14.3 Models of Urban Growth and Urban Dynamics

In the early 1960s the computer became an essential tool for geographers and urban

planners and the dynamic modeling of recurring urban patterns became a new field

of research (Hägerstrand 1967). Already in that early stage critics fundamentally

questioned the purpose of urban simulations in the planning context (Lee 1973) –

and the same worries about the loss of contact with policy problems, high

processing power requirements, and confusing methodologies are still discussed

today (Couclelis 2005).
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14.3.1 Scope and Objectives of Urban Growth Models

Operational, spatially explicit urban growth models did not become available until

the 1990s. Urban models developed in the last two decades are valuable tools for

three groups of users: (1) researchers developing modeling tools and investigating

processes in the urban environment, (2) land-use planners needing support in

realizing visions for future city development, and (3) citizens who benefit from

participation in their community and use model results as illustrations of future

projections. The three groups have by nature very different backgrounds and

expectations related to urban models. Couclelis (2005) offers an in-depth view

into the trade-offs concerning models in research and planning.

Traditionally, computer simulations of urban growth have been particularly

developed in the context of community planning where population growth, eco-

nomic trends and transport-related effects on economic growth were the main

concerns. Currently, the consequences of land-use and environmental impacts of

growing cities are becoming increasingly important.

14.3.2 Theories and Modeling Techniques

A diverse suite of modeling approaches has evolved during the last decade, some of

these deal explicitly with processes leading to urban growth, others consider urban

growth as one type of land-use change amongst others. A selection of these

approaches is presented in the following paragraphs. Recent surveys of operational

land-use change models offer deep insights into elementary model concepts and

characteristics, including aspects of urban growth (Agarwal et al. 2002; Briassoulis

2000; Koomen and Stillwell 2007; Verburg et al. 2004b). Reviews of urban growth

models in particular cover the applicability of models in a planning context

(US EPA 2000) and a differentiation of models arising out of transportation,

economic, and environmental sciences (Berling-Wolf andWu 2004). Other reviews

examine urban models based on specific modeling techniques, such as Cellular

Automata (CA) and Multi-Agent Systems (MAS) (Benenson and Torrens 2004;

Haase and Schwarz 2009). In addition to CA and MAS other modeling techniques

commonly used in urban growth models include Statistical Regression (SR), Spatial

Optimization (SO), and Machine Learning (ML). Table 14.1 provides an overview

of well documented land-use change models used in the context of urban growth as

well as the analytic techniques applied in these models.1

1 The techniques are not evaluated or ranked in terms of performance. All presented models use a

combination of modeling techniques in their algorithms.
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14.3.2.1 Cellular Automata (CA)

CA are related to the behavior of complex, self-reproducing systems (Tobler 1979).

All CA use the same assumptions and have the same basic structure:

• CA have a uniform cellular space,

• every cell has one state out of a finite number of states,

• every cell has a finite neighborhood,

• the transition of a cell from one state to another is possible and is determined by

local transition rules that can be deterministic or stochastic, and

• the cell states are updated in a discrete sequence of time steps.

Tobler (1979) envisaged the concept of CA for geographical applications. They

became increasingly important in urban growth modeling (Batty and Xie 1994;

Clarke et al. 1997; Couclelis 1985; Torrens and O’Sullivan 2001; White and

Engelen 1997). CA are quite simple systems, which can be used to model complex

dynamic systems like cities, which are characterized by emergence, self-

organization, and non-linearity (Barredo et al. 2003). Assigning the transition

rules is a crucial part in creating realistic simulations with CA, and often SR or

ML modeling techniques are used for this function. Established urban growth

models based on CA are SLEUTH – also known as the Clarke Urban Growth

Model (Clarke et al. 1997) –, the Environment Explorer (Engelen et al. 2003), and

MOLAND (Lavalle et al. 2004).

Table 14.1 Methodological background of several models of urban growth

Model CA MAS SR SO ML References

California Urban Futures

(CUF II, CURBA)

� � + + � Landis (2001)

CLUE (Clue-S,

Dyna-Clue,

EU-ClueScanner)

+ � + + � Batisani and Yarnal (2009), Verburg

et al. (2002) and Lavalle et al. (2011)

Environment Explorer + � + + � de Nijs et al. (2004) and Engelen

et al. (2003)

GEOMOD + � + � + Poelmans and Van Rompaey (2009) and

Pontius et al. (2001)

ILUTE � + + � � Miller et al. (2004)

Land Transformation

Model

+ � � � + Pijanowski et al. (2002)

Land Use Scanner � � + + � Koomen et al. (2011)

MOLAND + � � + � Lavalle et al. (2004)

PUMA � + + � � Ettema et al. (2007)

SLEUTH + � + � + Clarke et al. (1997) and Silva and Clarke

(2005)

Urban SIM � + + � � Waddell (2002)

What If? � � � + � Klosterman (2008)

CA cellular automata,MAS multi agent systems, SR statistical regression, SO spatial optimization,

ML machine learning
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14.3.2.2 Multi Agent Systems (MAS)

While CA focus on the discrete cell space representing individual land-use cells or

land-parcels, MAS deal with the decision processes of the key actors – or “agents” –

in the land-use system and their impact on the land-use. Agents interact with each

other, they are autonomous, they share their environment with other agents, they

communicate, and they make land-use decisions. Agents are entities, like

e.g. individuals, households, cities, or political structures. MAS are actually

non-spatial, but in urban growth models cells are considered as containers for

agents. Information can be distributed from one agent to another through neigh-

borhood effects in the raster. In contrast to CA agents in MAS are able to move

along cells.

MAS are highly complex and require intense parameterization and computing

power. For these reasons, many MAS are based on simplified hypothetical land-

scapes (Verburg et al. 2004b). Hybrid MAS/CA models are often employed, where

CA represent the landscape and the land-use changes that are induced by agents in

the MAS (Torrens 2001). While CA have advantages in simulating changes in

urban extent and infrastructure, MAS better model the processes resulting in these

changes, such as population dynamics or changes in transport flows.

14.3.2.3 Statistical Regression (SR)

SR is a modeling technique utilized for detecting logic correlations between land-

use changes and underlying driving forces. Multiple linear regression is a common

SR technique. Logistic regression must be employed rather than linear regression

when SR is applied to raster data, where land-use is represented in the form of

discrete classes. Examples for the application of SR for the explanation of urban

land-use changes can be found in Batisani and Yarnal (2009), Goetzke (2011) and

Verburg et al (2004a).

14.3.2.4 Spatial Optimization

Spatial Optimization (SO) is a technique which is highly focused on the applica-

bility of models in a planning context, delivering stakeholders a set of alternative

scenarios instead of a single solution. The land-use allocation that is performed by a

model has to meet ex ante assumptions about the environment, the economic

activity of agents, and policy impacts. Models implementing SO attempt to mini-

mize parameter deviations, such as those of predefined land-use demands or claims.

The resultant alternatives should then be treated by stakeholders as propositions

for further analysis and not as ultimate solutions (Ligmann-Zielinska et al. 2008).
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14.3.2.5 Machine Learning (ML)

ML is used in bottom-up modeling approaches, where either expected land-use

changes cannot be predicted or no linear relationship between land-uses and driving

forces can be presumed. With ML, a model is fitted during calibration until it best

fits reference data; ML is thus employed in many CA-based models. A well

documented example of a CA model using ML during calibration is the SLEUTH

model (Dietzel and Clarke 2007). Other ML approaches used to improve urban

growth models are Artificial Neural Networks (Li and Yeh 2002) and Support

Vector Machines (SVM) (Huang et al. 2010; Yang et al. 2008).

14.3.3 Remote Sensing and Models of Urban Growth

Cellular space is well suited to represent real world phenomena. Thus, raster

information derived from remote sensing imagery is a major data source for

urban growth models. Extensive research has conclusively shown remote sensing

techniques to be valuable in mapping urban areas and urban change (Bhatta 2010;

Gamba and Herold 2009; Weng 2012). Increasingly available suites of remote

sensing data in different resolutions from new instruments (including radar and

hyperspectral data) reveal new insights into urban systems. Typically, urban models

utilize discrete land-cover classes or types of urban land-use (e.g. residential and

industrial/commercial uses). Residential uses can be derived directly from remote

sensing data; industrial/commercial uses, however, require interpretation and infer-

ence of socioeconomic information.

Many urban growth models are implemented at local or regional scales, where

individual data sets are collected using medium to high resolution satellite data or

topographic maps. For urban growth models to be implemented at national or trans-

border scales, comprehensive data sets are required that permit proper comparison

between regions. Recent activities have generated land-use datasets that synopti-

cally characterize European urban areas; these datasets have been produced based

on remote sensing data and can serve as a base data for urban models. These

include CORINE Land Cover and the GMES/Copernicus Urban Atlas (see also

Chaps. 2, 3, 4 and 5). Several international initiatives have also developed global

land-use/-cover products that can be used in large-scale urban modeling applica-

tions. The GlobCover and GLC2000 datasets show global urban areas at compar-

atively coarse resolutions of 300 and 1,000 m, respectively. Although these datasets

employ the same classification nomenclature, they are not fully comparable due to

different classification mechanisms.

224 R. Goetzke

http://dx.doi.org/10.1007/978-94-007-7969-3_2
http://dx.doi.org/10.1007/978-94-007-7969-3_3
http://dx.doi.org/10.1007/978-94-007-7969-3_4
http://dx.doi.org/10.1007/978-94-007-7969-3_5


14.4 Example: Combined Use of Two Land-Use

Change Models

A priority research topic within the field of urban growth modeling that requires

additional attention is the integration of different modeling concepts in order to

address the heterogeneity and multi-scale characteristics of urban land-use systems.

This can be expressed in the combining of bottom-up and top-down modeling

methodologies (Rounsevell et al. 2012). In the following section examples of a

combined use of different modeling approaches are presented with the aim of

expanding established concepts in this field.

Conceptually, the Clue-S model (Verburg et al. 2002) relies on the competition

among land-uses. The model allocates regional demands for land-use changes

based on local land-use suitability maps that have been calculated using logistic

regression. Thus, the model is capable of simulating changes in an entire land-use

system and to provide insights into the driving forces leading to these changes.

Clue-S may also be used to analyze scale dependencies by bringing regional

(“top-down”) demands and local suitability together. In this model urban areas

are treated as one land-use class amongst others. If the demand for urban land

is high and the areas best suited for urban land have already been “urbanized”,

urban growth will compete in Clue-S with other land-use types having a lower

demand (e.g. forest or agriculture), but a higher local suitability in the respective

areas.

The SLEUTH model (Clarke et al. 1997) has been widely used in urban growth

simulations. The model has a CA component simulating the development of urban

areas and a land-cover component that simulates land-cover changes other than

urban. The SLEUTH urban growth model follows a “bottom-up” approach. The

model parameters that determine the form of urban growth are defined during a

calibration process where the model performs brute force Monte Carlo iterations

and compares the model results with reference data to find the optimal parameter

combination. The model simulates four different kinds of urban growth: spontane-

ous growth, new spreading centers, organic (edge growth) and road influenced

growth. In addition to maps of existing urban extent, primary model input data

include terrain slope maps, transportation network maps and an exclusion layer

containing development restrictions.

In this study a modified version of the CA component of SLEUTH is used. It

differs significantly from the original model. First, in the original model a set of

Pearson’s regression statistics is used to determine the growth coefficients. These

are calculated by comparing different landscape metrics produced as model output

with reference data. This procedure has been replaced by the multiple resolution

validation (MRV) method (Pontius et al. 2004). Second, the number of reference

datasets used during calibration is reduced from 4 to 2. The original algorithm needs

besides an initial dataset at least three control datasets in order to calculate the

regression scores. Four subsequent datasets (and ideally a fifth) are also required

in order to validate the model; in practice these are often difficult to acquire.
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We therefore utilize the MRV to compare the simulated built-up areas with a single

control map during the process of model calibration. This reduction is reasonable

when the time-domain of the simulation covers only a few decades during which

approximately linear growth can be assumed. The original calibration methodology

should be implemented in cases where the entire history of urban development is to

be modeled, resulting in the characteristic s-shaped growth rate.

Both the Clue-S and the modified Urban Growth Model (UGM) component of

SLEUTH have been implemented in the JAVA-based modeling platform XULU

(eXtandable Unified Land Use Modeling Platform) (Schmitz et al. 2007). The core

program of XULU contains management functions, import/export routines, as well

as a GUI. The models are implemented as XULU plug-ins, requiring that the model

algorithms be translated into JAVA programming language. XULU stores all data

in a data pool, which offers the opportunity for model coupling. The output of one

model can serve as input for a second model, with both models running simulta-

neously in XULU. A coupling routine has been developed that copies the urban

extent simulated by the UGM into the Clue-S model. In that way, all land-use

classes except the “urban” class are modeled by Clue-S and the urban areas are

modeled by UGM (Goetzke 2011).

Both models have been applied separately as well as coupled to a study area

covering the federal state of North Rhine-Westphalia (NRW) in Germany

(Fig. 14.1). The study area comprises the highly urbanized areas along the Rhine

river and the Ruhr area, as well as rural areas. These rural areas are dominated by

Fig. 14.1 Map of the study area North Rhine-Westphalia (NRW) based on classified Landsat

data of 2005
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agricultural land-use in the lowlands and by pasture and forests in the upland

regions. Despite a declining population since 2000, the average land consumption

in NRW remains 15 ha per day. Reference land-use data were available from

classified Landsat data for 1975, 1984, 2001, and 2005, which were spatially

resampled at a resolution of 100 � 100 m (Goetzke 2011). All land-use maps

were classified with an overall accuracy of above 85 %. Land-use classes included

urban, agricultural land, pasture, forest, water, and other (mining and military

training areas). The land-use data reveal an increase in urban area of 63 %, or

approximately 187,000 ha (5.4 % of the total land area) during the last 30 years

within the study area.

The models have been calibrated by simulating land-use changes from 1984 to

2001. The final simulation covered the 2001–2025 period. Two scenarios were

calculated: one followed a “business-as-usual” form of urban growth and the

second alternative simulated urban growth under the achievement of sustainability

goals. Data from 2005 were utilized to validate the models during the simulation.

Because of the relatively short 2001–2005 time period and the expected small

amount of land-use change during that period, another validation has been

performed by simulating land-use changes during 1975–1984. All model results

during calibration and validation were compared to a “Null-Model”, where no land-

use changes are assumed during the relevant time period. As large elements of the

landscape within the study area are persistent, the Null-Model often delivers better

results than a land-use model (Pontius et al. 2004). Goodness-of-fit statistics for

each model are measured by the average agreement at all resolutions calculated by

the MRV (Pontius et al. 2004) (see Table 14.2). For the calibrated model, the MRV

shows that Clue-S outperforms a Null-Model assumption at 16� original pixel size

(1.6 km), while the coupled model delivers better results than a Null-Model at

8� original pixel size, or 800 m (Fig. 14.2).

Fig. 14.2 Agreement between a reference map of the year 2001 and three model results: Null-

Model, coupled version of Clue-S and UGM, Clue-S. Clue-S performs better than the Null-Model

at a resolution 16� pixel size and the coupled model at 8� pixel size
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Table 14.2 shows the significantly better performance of the coupled Clue-S/

UGM model, which uses UGM to simulate urban growth. The Null-Model

performed better only for the 2005 validation year, due to the high degree of

persistence in the landscape between 2001 and 2005 as determined by the high

level of agreement between the Null-Model and the reference map.

When examining the results of this test, it is useful to consider both the average

agreement for the entire study area as well as a regional comparison of model

performances. The Clue-S model tended to overestimate urban growth in existing

highly urbanized areas. According to the calculated probability maps, pixels with

the highest suitability for urban land-use are located close to existing urban areas. In

agglomerations like the Ruhr area, less urban growth appeared than was estimated

by the model. The deviation between observed and simulated growth was much

lower in the coupled version of the model (Fig. 14.3).

Table 14.2 Performance of the calibrated models Clue-S, UGM, and a coupled version of Clue-S

and UGM for simulating land-use changes in NRW for the years 1984–2001 (validation results are

shown in brackets: 1975–1984; 2001–2005)

Model MRV agreement for all land-use classes

MRV agreement for urban

land-use

Clue-S 0.934 (0.926; 0.975) 0.978 (0.976; 0.994)

UGM – 0.984 (0.977; 0.996)

Coupled Clue-S/UGM 0.939 (0.932; 0.979) 0.984 (0.977; 0.996)a

Null-Model 0.924 (0.927; 0.986) 0.972 (0.969; 0.998)

The values indicate the overall weighted agreement between the simulated and observed maps at

different resolutions by the multiple resolution validation method described in Pontius et al. (2004)
aUrban areas identical with UGM

Fig. 14.3 Deviation between simulated and observed urban growth with the Clue-S model (left)
and the coupled Clue-S/UGM model (right) for the reference year 2001
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14.5 Perspectives in Urban Growth Modeling

With a very diverse methodological background and the increasing availability of

land-use/land-cover data thanks to progress in remote sensing, the prerequisites for

modeling urban dynamics are available. However, many established models still do

not address the process of simultaneous urban growth and contraction (Haase

et al. 2012). Also, the differing pathways and interactions typically present in

urban and rural areas still need more attention (Verburg et al. 2004b). Especially

when human decision-making is considered, urban growth models – MAS is an

example – tend to become increasingly complex, limiting their application and

transferability. Another challenge is the integration of political planning measures

in urban models; implementing strategies for climate change adaption and mitiga-

tion is an important example (Verburg et al. 2012). Many urban growth models still

lack adequate validation methodologies, limiting the use of model results as a basis

for discussion (Verburg et al. 2004b). Significant new findings can also be expected

by combining modeling approaches from different disciplines. Examples are the

EU-ClueScanner developed for the European Commission DG Environment

(Koomen et al. 2010) and the Land Use Scanner applied by the German Federal

Institute for Research on Building, Urban Affairs and Spatial Development

(Goetzke et al. 2012). Both models are programmed in the GeoDMS environment

and are based on the modeling approach taken from the Dyna-CLUE model using

the numerical algorithm of the well-established Land Use Scanner model.

Under the regime of climate change along with new challenges resulting from

changing demographical and environmental conditions, urban models are becom-

ing increasingly important and they are becoming more valuable for planners,

researchers, and ultimately the public.
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edn. Birkhäuser, Basel

Silva EA, Clarke KC (2005) Complexity, emergence and cellular urban models: lessons learned

from applying Sleuth to two Portuguese metropolitan areas. Eur Plan Stud 13:93–115

Tobler WR (1979) Cellular geography. In: Gale S, Olson G (eds) Philosophy in geography. Reidel,

Dordrecht, pp 379–386

Torrens PM (2001) Can geocomputation save urban simulation? Throw some agents into the

mixture, simmer and wait . . . (Working Paper No. 32), UCL working paper series. UCL Centre

for Advanced Spatial Analysis, London, UK

Torrens PM, O’Sullivan D (2001) Cellular automata and urban simulation: where do we go from

here? Environ Plan B Plan Des 28:163–168

United Nations Population Division (2010) World urbanization prospects: the 2010 revision.

United Nations, New York

US EPA (2000) Projecting land-use change. A summary of models for assessing the effects of

community growth and change on land-use patterns. United States Environmental Protection

Agency, Washington, DC

Verburg PH, Soepboer W, Veldkamp AT, Limpiada R, Espaldon V, Mastura SSA (2002)

Modelling the spatial dynamics of regional land use: the CLUE-s model. Environ Manage

30:391–405

Verburg PH, Ritsema van Eck JR, de Nijs TCM, Dijst MJ, Schot PP (2004a) Determinants of land-

use change patterns in the Netherlands. Environ Plan B Plan Des 31:125–150

Verburg PH, Schot PP, Dijst MJ, Veldkamp AT (2004b) Land use change modelling: current

practice and research priorities. GeoJournal 61:309–324
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Chapter 15

Land Information System Austria (LISA)

Gebhard Banko, Reinfried Mansberger, Heinz Gallaun,

Roland Grillmayer, Rainer Prüller, Manfred Riedl,

Wolfgang Stemberger, Klaus Steinnocher, and Andreas Walli

15.1 Current Status of Land Monitoring in Austria

These days different federal public organizations generate, maintain and provide

land cover (LC) and land use (LU) information in Austria. In addition, all nine

federal state authorities of Austria, several cities and municipalities, and providers

of infrastructure (e.g. road and rail-network, telecommunications, energy, etc.)

acquire regional or local land cover and/or land use datasets. However, most of

these products have different properties concerning spatial and temporal resolution,

thematic classes and indefinite LC or LU classifications, which lead to limited

data interoperability and to high economic costs.

A pioneer work has been accomplished in the Austrian-Hungarian monarchy

throughout the eighteenth and nineteenth century by revised mapping approaches

under the governance of the Austrian Military Survey (Lego 1968). These first land

monitoring approaches at scale 1:28,880 were carried out in parallel with the attempt
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to establish detailed landscape and property information for mainly taxation purposes

through large-scale maps (1:2,880) in form of the stable cadaster1 (1817–1861).

Therefore information on basic land cover characteristics like arable land, permanent

grassland, orchards, vineyards, forest, water area and built-up area is available back

to the 2nd Austrian Military Survey (1807–1848, Abart et al. 2011).

The Federal office of Metrology and Surveying (BEV) has kept up this parallel

production processes for the cadastral information and topographic map production.

In addition to the geometric information on parcel boundaries the (digital) cadastral

maps contain assorted information on land cover and land use classes. This informa-

tion is updated at irregular intervals, object specific (e.g. building plan from building

permits) or project specific (large area updates based on aerial photographs). Simul-

taneously, digital topographic maps (1:50,000) are updated in intervals of 5–10 years

based on aerial photographs and field verification. Due to a recent regulation

(BANU-V 2010) and the implementation of a digital production these two processes

will be merged within the next years. They will be based on one common data model

and make use of novel approaches for change detection from orthophotos.

For control and application of agricultural subsidies (IACS) a central registry

has been built up in the last years (INVEKOS-GIS). This registry contains, beside

others, the information on the geometrical boundary of different agricultural utili-

zation that is digitized by farmers based on orthophotos. The digital cadastral map

has played an important role as basic background mapping reference. Due to the

“greening” of common agricultural policy (CAP), this system will be enhanced

until 2014 by landscape elements digitized from orthophotos. Landscape elements

consist predominately trees and bushes that are digitized either as point information

(MMU2 > 4 m2) or as polygon information (MMU > 100 m2).

Since the introduction of geographic information systems in the regional

authorities most administrative information is created in digital format. This lead

1 “Stable Cadaster” is a synonym for the “Franziszeischen Cadaster” (1768–1835). The term stable

describes the invariability of the taxation over time due to improvements of soil (Abart et al. 2011).
2Minimum Mapping Unit.
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in the nine federal states to the creation and usage of nine different land use maps

for the main land use classes like settlements, traffic and forest areas.

The development of a common, intermodal traffic graph across Austria as a

common transport reference system (Graphen Integrations Plattform – GIP) is

currently under construction.

Besides these state-run mapping products more and more commercial and public

domain products find their way into administrative applications. Administrative

bodies have the growing need to display also the surrounding of their area of

interest and not to display their area as isolated map. The commercial products

that are widely available are “Google-Maps” and “Bing-Maps”, whereas the public

domain dataset “Open Street Map” shows a fast increase of both, i.e. completeness

and level of detail – depending on the number of active mapping communities.

15.2 LISA – Development of a Countrywide Approach

15.2.1 Why LISA?

The availability of homogeneous LC and LU datasets for Austria is an indispensable

public necessity, needed for political decisions, effective administration, successful

corporate governance and personal usage of the citizens. In particular such geoin-

formation is required by departments of public administration at federal and regional

level for the interests of regional planning, forestry and agriculture, watermanagement,

natural hazard management, environmental and nature conservation for the periodic

monitoring of changes. Detailed data on land cover and land use are also required in the

private sector in fields such as site planning and geo-marketing to name but a few. The

land cover data and land use data currently available in Austria do no longer meet these

requirements. Available datasets are either not homogeneous, outdated, not compatible

with other European LC or LU datasets, simply not available for use or do not provide

adequate coverage and/or resolution (Grillmayer and Schneider 2004). The users

require not that much a one-off snapshot in time, but they prefer regularly updated

information on land cover and land use changes over time.

The Global Monitoring for Environment and Security (GMES/Copernicus)

program enabled at national level to carry out the project “Land Information System

Austria” (LISA). The objective of LISA is to achieve a consensus on a new Austrian

land cover data base and to apply cutting edge science, innovative technology and to

provide cost efficiency by combining satellite with high resolution in-situ data, to

achieve economy of scale and sustainability of funding through a shared effort across

different administration units. Instead of producing specific land information at

specific levels, a land information system has to fulfill a multi-user approach. It is

compiled out of the “core” requirements that serve not only one but also many user

levels (from local to regional to national to international) (Weichselbaum et al. 2010).

In LISA the major challenge was the integration of the different basic data

sources for homogeneous area-wide land cover/use data production, also permitting
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for continuous monitoring and periodic updates. The drawback of established

nomenclatures, like CORINE Land Cover, is their inherent mixture of land cover

and land use classes. Although this mixture is quite useful for some specific

practical applications, it is not useful for operational semi-automated production

chains. Therefore the European Environment Agency (EEA) has established a

European Action Group for Land Monitoring in Europe (EAGLE) that is currently

developing a new data model for land monitoring recognizing the need to explicitly

differentiate a standardized set of land cover and land use classes as well as a their

characteristics in an object oriented approach (Arnold et al. 2013).

An important enabler for LISA was the paradigm change in photogrammetry

within the last decade: digital cameras provided images with better radiometric and

spectral resolution. Additionally, they allowed the assessment of at least four spectral

bands. Due to improved sensors the geometric resolution is comparable with analogue

photogrammetric cameras. GNSS (Global Navigation Satellite System) combined

with IMU (Inertial Measuring Unit) accelerated the process of orientation by measur-

ing directly the positions of projection centers and sensor planes (exterior orientation).

The availability of digital images promoted the development of (semi-)automatic

methods for the assessment of geometric and thematic information (e.g. generation

of digital surface models, classifications). As the height of object is a valuable

parameter for a classification processes, new methods for the derivation of height

information from stereoscopic photographs are useful. Especially the development of

innovative algorithms (e.g. semi-global matching, Hirschmüller 2008) enable the

derivation of Digital Surface Models (DSM) and in combination with Airborne

Laser Scanner Data (ALS) the assessment of heights of individual objects. Finally,

the continuous improvement of hardware (e.g. faster processors, cloud computing,

extended disk storage) was a significant ingredient for an automatized, large area

segmentation and classification process, as implemented in the LISA-project.

15.2.2 National Spatial Data Infrastructure

Without an adequate National Spatial Data Infrastructure (NSDI) and agreed

licensing and usage models, the development of an effective land monitoring

system would not have been possible. The core remote sensing backbone for

LISA are orthophotos. For the last few years, three different administrative bodies

(BEV, federal provinces and ministry for agriculture) jointly finance and acquire

aerial images in a 3 years interval and produce orthophotos with a ground resolution

of 20*20 cm2. Most of the aerial photographs are acquired with Vexcel UltraCam-X

and the recent overlapping standards are 80 % within flight direction and 40 %

across flight direction. These overlapping standards will enable the optimal com-

putation of Digital Surface Models (DSM) from aerial images in the near future.

Airborne laser scanning (ALS) data has been acquired for almost the whole

territory of Austria. However, it is expected that updates will cover rather small and

dynamic areas, but not the entire country within the next years to come. Never-

theless ALS data provide information on the height of the terrain (DTM) and they

are essential to derive a normalized difference surface model (nDSM). Current cost
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estimates underline the importance of the DSM generation from aerial images.

The production of orthophotos is currently in the range of 25–35 €/km2 and ALS

data acquisition are mostly beyond 100 €/km2. First draft cost estimates for DSM

generation from aerial images are around 5–10 €/km2. However, it can be expected

that the production of a DSM will soon be integral part of orthophoto production

even with the capability to produce “true orthophotos”.

Whereas land cover can be directly derived from remote sensing data, land use

aspects rely largely on thematic spatial data infrastructure. The building census as one

example for in-situ data in Austria is generated as point information expressing the

main usage of buildings. Due to data privacy protection of statistical data this

information is only available in form of aggregated 250*250 m2 grid cells that are due

to the coarse resolution only of little help for the level of detail in LISA. In Austria

land use zoning plans from the spatial planning authorities are with exceptions

available in digital format. They are valuable data sources to improve the quality of

land use mapping. Last, but not least environmental inventories on bogs and mires,

wetlands, dry grasslands and riparian zones are available to be integrated in the land

use data. Many environmental inventories can be quite outdated (e.g. the last

complete dry grassland inventory of Austria dates back to 1986), but they are

nevertheless valuable indicators for specific land cover and/or land use.

15.2.3 European Spatial Data Infrastructure

European Services in the frame of GMES/Copernicus land monitoring are

integrated into the LISA concept. On the one side, they provide multi-temporal

coverage for areas that can hardly be classified with a single image per year. On the

other side, they provide information on potential hot-spot areas of LC/LU changes

on a coarse scale. Namely, the change in levels of soil sealing and forest coverage

can be expressed using the high resolution layers from the GMES services

(EC 2011, 2010). Especially the upcoming next generation of operational European

satellites under the SENTINEL program is of major interest being integrated into

national land monitoring programs. They will enhance the 3-D information from

national spatial data infrastructure (exact geometry of Orthophotos combined with

object height information from digital surface models) with a fourth dimension:

time. The SENTINEL-2 data with a geometric resolution of 10*10 m2 and a

revisiting capability of 2–3 days for Austria will be used to further describe and

populate land monitoring objects according to their variability in time and phono-

logical development, thus retrieving important information on ecosystem status.

15.2.4 Future Potential of Very High Resolution
Satellite Imagery

A cost and acquisition efficient additional alternative is the vastly increasing

number of very high resolution (VHR), multispectral satellites. With 10 satellites
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offering ground resolutions of 50 cm currently waiting for launch and 15–20

systems planned in the future, the investments of the industry and public in this

technology is significant. These days very high resolution satellites offer approxi-

mate equally expensive and fast as well as agile acquisition capacities (no overflight

permissions are needed, a much greater ground coverage capacity, and image

acquisitions are automatically repeated until cloud free coverages of an area of

interest are given), thereby providing a complementary image and DSM source to

existing orthophoto coverages. Moreover, the satellite missions are often supported

by national initiatives or funding, providing preferred data provision for applica-

tions of national and civil importance. In Europe, the Plèiades system, as the

successor to the SPOT satellite series has taken advantage of existing multi-national

cooperation on the Spot and Helios programmes, where Austria, Belgium, Spain

and Sweden have agreed to share the costs and possible benefits from the

programme. In return for its investment in the forthcoming Plèiades system, Austria

has been assured an access to the resources in proportion to its investment. Thereby

public administrations may complement their image data acquisition campaigns

with VHR images and optimize investments into aerial imagery, airborne laser

scanning and VHR images to profit from the individual advantages of the systems in

order to improve environmental monitoring and maintain higher monitoring cycles.

15.2.5 Object-Orientated Data Model

The user demands were translated into data model specifications in an iterative and

cooperative procedure between service providers, users and scientific advisory

board. Most land cover nomenclatures rely on hierarchical nomenclatures. It has

to be noted that modern land information systems have to provide flexible solutions

for further improvements and amendments. Therefore, object-orientated data

models (Egenhofer et al. 1992) – originally developed within computer sciences –

are applied in national applications like in Spain (SIOSE) or Austria (LISA). In an

object-orientated concept of data modeling, real world entities are represented by

objects, namely called “geographic features”. A geographic feature is characterized

by its feature properties as well as methods for their changing (Mitášová et.al.

1996). Instead of using the hierarchically Data Model, where only the type of land

cover class/land use class is stored in a feature property, it is advisable to use the

object-orientated Data Model (OODM). In OODM, even more characteristics of the

geographic feature (e.g. biomass density, height, wetness index, sealing degree) can

be stored as feature property (so called “object attributes”).

The Environment Agency Austria has developed two distinct data models on

distinct levels of scale in LISA:

• Land Cover data model and a separated

• Land Use data model.
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The Land Cover data model contains 13 pure land cover classes that are purely

derived from remote sensing data (orthophotos, height information and satellite

imagery) using automated segmentation and classification techniques in an approx-

imate scale of 1:10,000. The minimum mapping units (MMU) varies between the

different classes (25–50 m2) (Table 15.1).

The Land Cover classes can be described using a subset of classification

parameters from the FAO Land Cover Meta Language (LCML, DI Gregorio and

Jansen 2000) that establishes the ISO 19144 standards. In addition a semantic

transformation is made to the INSPIRE Land Cover Classes (ILCC) that were

developed as part of the INSPIRE draft technical guidelines on land cover

(INSPIRE 2013). In the ILCC the class “arable land” exists, which constitutes a

problematic class, as it is rather a land use class than a land cover class, if classified

from a mono-temporal image only. Therefore the LISA logic avoided this mixture

between land cover and land use and defined the land cover on purely biophysical

properties and context sensitive parameters enabling nevertheless an additional

attribution of objects (e.g. according to temporal characteristics). The development

of LISA is therefore in-line with the new approaches of the EAGLE data model that

is currently developed for European applications (Arnold et al. 2013). As objects

are derived using image segmentation techniques, the border between objects is

kept even between objects assigned to the same class, if they can be further

differentiated according to defined attributes (e.g. field structure in agriculture).

The Land Use classes are grouped according to the six main land use classes:

settlements, traffic, agriculture, forestry, natural areas (vegetated and non

Table 15.1 List of land cover classes

MMU MVU accuracy

1 building 25 50
98% object accuracy
95% n.G.

2
other
constructed area 25 100 95%

3 bare soil 50 500 90%
4 screes 50 500 90%
5 bare rock 50 500 85%
6 surface water 50 200 95%
7 snow 50 500 85%
8 ice 50 500 85%

9 trees 25
25
50

1.000

95%
strata 1: 25-50m2, 
object accuracy

Strata 2: 50-1.000 m2, 
Strata 3: >1.000 m2

10 bushes 50 500 90%
11 dwarf shrubs 50 500 85%

12
herbaceous 
vegetation 50 500 95%

13 reeds 50 500 95%
unclassified 14 shadow 500 500

biotic

woody

herbaceous

class

abiotic

built-up

non-built
up

water
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vegetated), and water systems. Although from land cover information a range of

land use classes can be directly derived, the complete data model relies on the

integration of sectorial geospatial in-situ data like cadastral information, land use

zoning plans, traffic infrastructure, etc. The challenge for this production process is

to make all kind of sectorial data available and to agree on licensing permissions.

The comparable scale of the land use maps is about 1:25,000 with MMUs starting

from 1,000 m2 (e.g. settlements, technical infrastructure, forest) up to 5,000 m2

(e.g. alpine grassland, glaciers). The land use data model contains 25 classes and

72 attributes. Attributes are for example used to further differentiate the settlement

area according to the dominant use (residential, industrial, commercial or mixed

use) and the dominant type of buildings (single houses structure, closed building

structure, semi-detached, large blocks, etc.).

15.2.6 Land Cover Mapping

The feasibility of land cover mapping was tested for 49 pilot areas, each covering

30 km2. Criteria for the selection of the pilot areas were the representativeness of

regions (federal provinces) and landscape diversity. The aim of this study was to

optimize methods and processing chains for mapping land cover for meeting the

needs and requirements of the users and to enable the cost estimation for a country

wide rollout. The study was done in a five stage approach:

• Production of land cover maps for all pilot areas (iteration 1)

• Verification and validation (qualitative by users, quantitative by scientific staff)

• Improvement of algorithms and workflow based on results and feedback of

validation team

• Production of final land cover maps for 17 pilot areas (iteration 2)

• Validation (quantitative).

Two different service providers (GeoVille Information Systems GmbH /

Innsbruck and Joanneum Research Forschungsgesellschaft mbH/Graz) produced

all land cover maps. Orthophotos with a resampled geometric ground resolution

of 50 cm, normalized difference surface models (nDSM) and GMES satellite

images (IMAGE 2006, IMAGE 2009) were used as input data for the classification.

The minimal mapping unit – defined by the scientific staff in accordance with the

users – was dependent on the specific object class (e.g. 25 m2 for buildings and

trees, 50 m2 for herbaceous vegetation).

The mapping of land cover objects could be achieved with a high degree of

automation, as the features for the differentiation of classes directly could be

derived from the available remote sensing data. The mapping of the land cover

object was carried out in segment-based method: Segments were identified by

spectral, radiometric and texture parameters. Using a comprehensive set of rules

the classification was done for the individual land cover classes in a multi-level

approach. Subsequently, corrections and improvement of the automatically

produced land cover were outlined manually.

244 G. Banko et al.



The validation of the land cover maps produced in this first stage showed weak-

nesses in the differentiation between “buildings” and “other sealed areas” as well as

between “stocked areas” (areas covered with trees) and “bushes”. That was the reason

to integrate Airborne Laser Scanning (ALS) data for the production of the final land

cover maps (Fig. 15.1). The use of nDSM (normalized digital surface models) derived

from ALS data led to improved results and reduced the time for manual post-

processing. For future roll-out, digital surface models derived from the operationally

acquired aerial images can replace the ALS derived digital surface models. Appro-

priate methods were tested successfully for an image block with 104 aerial images.

The accuracy of the prototypes of land cover maps was assessed in a statistical

manner using a stratified random sampling method (Congalton and Green 2009).

The number of samples was optimized for getting significant information (confidence

interval 95%, probability level 4 %) about the results for individual regions, landscape

diversities, and for the specific producers. The achieved accuracy of the final map

(95.5 % overall accuracy, based on 5,000 visually interpreted reference samples) was

meeting the requirements of the users (both for commission and omission errors).

15.2.7 Land Use Mapping

The process chain for producing land use maps postulates the availability of land

cover maps as the derivation of specific land use classes could be achieved – in a

first approach – by aggregating the land cover objects (e.g. settlements are derived

by aggregation of specific land cover types according to their spatial distribution).

In addition to this aggregated information, geo-base data (Digital Cadastral Map)

and other sectorial geodata (e.g. zoning plans, Integrated Agricultural Control

System – IACS, building census data) were used as input to identify land use

objects in the six main categories.

In a second stage the land use classes were refined using the available

geoinformation with the result of in total 25 sub-land use classes and 72 attributes.

For each of the sub-classes specific rules were implemented in a GIS (Geographic

Information System). The complexity of the system can be seen in the high number

Fig. 15.1 Land cover map (Schrems, Austria) (left: orthophoto 2009, middle: nDSM 2006, right:
land cover map)
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of single steps in the process chain (up to 80 sub-processes, Stemberger et al. 2012).

The prototypes for land use maps were produced for 17 pilot areas in iteration 2.

The challenge was the heterogeneity of the provided geodata, caused by the fact

that according to the Austrian constitution the assessment of geodata lies in the

responsibility of different levels of authorities. As an example, zoning plans are

produced individually by the municipalities, environmental data are provided by

the regional (provincial) governments, and cadastral data are under the responsi-

bility of a federal institution (Federal Office of Surveying and Metrology) with the

result of data sets with different geometric accuracies, different scales, different

dates of assessment, and different thematic levels of detail (Fig. 15.2).

The validation of the prototypes of land usemaps was performed for all 17 test sites.

In contrast to the validation of land cover, the mapped polygons were used as sample

units to enable an assessment of the thematic and geometric quality of the outlined

objects. In total, 4,500 samples were selected (10 % of all polygons) in a stratified

randomly approach to ensure that at least five samples per test area were evaluated for

each class. Each sample was evaluated according to the geometric quality of the

delineation (four geometric quality levels based on shape and size criteria: fit, largely

fit, partly fitting, wrong), as well as according to the quality of the assigned classes

(four thematic quality levels: correct, plausible, problematic, wrong).

Across all areas 90 % of all samples were rated within the two geometric criteria

“fit” and “largely fit”. The total thematic accuracy is 88 % (samples rated with the

thematic criteria “correct” or “plausible”). The analysis of the results showed that

some improvement in the quality could be achieved by sharpening the definition of

land use blocks.

15.2.8 Change Mapping

LISA was designed to serve and fulfill common land monitoring needs, providing

information on the status quo, and even more important on the changes occurring in

Fig. 15.2 Land use map (surrounding of City of Klagenfurt, Austria) (left: orthophoto 2009,

middle: land cover map, right: land use map)
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Austria’s landscape. So the core functionality for detecting and implementing

changes in the land cover database of LISA also was developed within the project.

This covers the challenging synchronization of two technical processes, the

development of the Earth Observation based method to automatically detect and

map the changes and the implementation of the mapped geometric and thematic

changes into the LISA database.

The concept developed for change detection strongly relies on object orientation,

which enables the users to track back the changes for every single object during

its lifetime. Thus, a new house is determined and the alterations done – e.g. in size –

can be monitored using the spatial-temporal database. The challenge is to avoid

technical changes (e.g. due to changes in improved methods or improved geometrical

accuracy of the base data). Effects caused by different acquisition parameters of

aerial photographs (e.g. tilts, shadows) had to be considered in the algorithm to avoid

the detection of “false” changes. This could be achieved by using the land cover

polygons of the initial state, freezing their geometry and by modifying this geometry

(and topology) based significant changes in the image data of the later date. Therefore

very small sliver polygons due to technical changes could be avoided. The definition

of shape parameters, of neighborhood characteristics, potential changing paths, and

other plausibility checks are features within the program to improve the results. The

test for the detection of land cover changes was done for nine pilot areas each 30 km2

sized. The results of the land cover interpretation as described in Sect. 15.2.6 were

used as initial state. In consideration of the available recording times for three test

areas the change detection was outlined for an up-dating (newer images available),

for the remaining six test areas the interpreted changes are based on down-dating

(images of a previous photo flight available). The selection of the nine test areas was

representative for different landscape types (e.g. settlements or alpine forests). For all

test sites the nDSM (representing object heights) were only available for the classi-

fication of the initial state (Fig. 15.3).

The validation of change detection of land cover requires a more complex

analysis than validating single-date land cover classifications. The number of

potential correct results extends the number of classes by the number of changes

between classes. The maximum number of potential results is therefore n*n,

leading to a confusion matrix of (n*n)*(n*n), which is difficult to interpret.

In addition the sampling design requires a large number of sample points.

Fig. 15.3 Change detection (City of Innsbruck, Austria) (left: orthophoto 1999, middle:
orthophoto 2008, right: recognized changes)
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As an alternative, a two steps approach was applied (Prüller et al 2011). In the

first step 2300 representative samples out of all “change polygons” (polygons of all

test sites that were classified as changes) were compared with reference data.

Ninety-two percentage of all the changes were recognized correctly.

The second step was a simple change/no change validation for the whole area in

a regular grid with in total 2,400 sample points. The overall accuracy estimated in

the validation process was 97 %. This seems to be very high, but it has to be

considered that this value is influenced to a great extent by the high number of

sample points (2,100) classified with “no changes3”. In this case the figures on

values of producer (84 %) and user accuracy (83 %) are more representative.

Maucha and Büttner (2008) have pointed out that for rare observations (<5 % of

area percentage) the differences between commission errors and omission errors

are substantial and have implications on the statistical design. Potential for

improvements are given by the availability of nDSMs or at least DSM (Digital

Surface Models) as input for all land cover interpretations of the time series.

15.3 LISA – Selected Applications

The results of LISA – land cover and land use maps – opens new fields of land

monitoring applications. Some examples, which had been tested in the LISA

project, are characterized in the following chapters.

15.3.1 Upscaling of LISA-Data Sets to CORINE Land Cover

The development of transformation methods for the LISA database is proposed to

ensure future flexibility and compatibility with different national LC/LU monitor-

ing initiatives within Europe (e.g. DML-DE, SIOSE) and to ensure that LISA can

serve as the Austrian input layer for European level LC/LU datasets (e.g. CORINE).

The functionality of the method for the spatial upscaling and aggregation of classes

to the specifications of a target model is demonstrated in Figs. 15.4 and 15.5.

The transformation consists of a semantic transformation (translation of classes)

and a geometric transformation. The geometric transformation (upscaling geomet-

rical properties of polygons) is performed as iterative process in four steps of MMU

upscaling: from 1,000 to 3,000 m2 and 1, 5 and 25 ha. The typical CORINE Land

Cover priority rules (EEA 2000) for aggregation are not strictly adapted, but

modified according to the dominant landscape type (e.g. within a forest dominated

landscape agricultural parcels are aggregated on cost of forest polygons, whereas in

agricultural landscapes the order is reversed and forest polygons are aggregated on

cost of agricultural polygons).

3 The interpretation of “no changes” was necessary, as the samples were randomly selected over

the whole test area to avoid omission errors.
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15.3.2 Accounting of Land Reserves Available
for Construction

On the basis of the Regional Planning Acts, the regional spatial planning depart-

ments are required to report on the development of built-up areas and land re-serves

available for building at community level. The results of these evaluations provide

information on the location and extent of existing land reserves, densification and

reserves of arable land at intervals of at least 5 years.

Compared to the land cover employed in previous assessments, LISA can supply

substantially higher number of classes, more appropriate geometric properties and

Fig. 15.4 Semantic and geometric transformation of LISA land use classes into CORINE Land

Cover Classes Upper row: left: original LISA land use classes with 1,000 m2 MMU, middle: LISA
LU with 3,000 m2 MMU, right: LISA LU with 1 ha MMU; Lower row: left: LISA LU with 5 ha,

middle: LISA LU with 25 ha, right: LISA LU with 25 ha and cartographic processing

Fig. 15.5 Comparison between transformed LISA product and CLC 2006 (left: upscaled LISA

data set with 25 ha MMU; right: CORINE Land Cover 2006)
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the potential for national roll-out. As part of the demonstration phase, the entire

workflow was adapted, highly automated and applied to the province of Tyrol.

The analysis with single-owned land parcels, which can be distinguished as

“developed” or “undeveloped”. Undeveloped areas represent potential land

reserves, while built-up areas have basic consolidated reserves. In a second step,

all potential areas within a parcel which are potentially available for construction

are analysed using a moving-window algorithm, considering parameters of the

regional building law. The method, developed by Blome and Riedl (2007), was

further refined, so that specific cases of buildings with no minimum distance from

the arable areas can also be determined.

As a result, a cartographic visualization of land reserves, densification and

reserves of arable land (Fig. 15.6), which is a statistical representation of the available

land reserves for construction. In addition to automating this process in the form of an

ArcGIS tool, a flexible adaptation to changes in input data given through different

data situations is also possible.

15.3.3 Classification of Coverage Types in Settlements

Monitoring urban settlements represents an essential input to spatial planning tasks.

The location of various building types, reserved areas, and their future demand in

urban settlements are integral information for regional policy. The objective of this

application is the identification of different coverage types within settlement areas

based on LISA land cover data. Seven categories are selected for the classification:

detached houses, semi-detached houses, terraced houses, apartment buildings,

perimeter block development, large storage buildings (typical for industry/trade),

and high-rise buildings. The methodology relies on integrating location, footprint,

Fig. 15.6 Designation of land for development, densification and reserves of arable land together

with buildings of special LISA land cover
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and height parameters from the land cover data with plot boundaries from

the cadaster. Combination of these data sets enables identification of building

structures, from open to closed coverage types. The differentiation of detached,

semi-detached, and terraced houses can only be achieved by the integration of plot

boundaries. Additional parameters are the number of buildings per plot, as well as

the green-area ratio. Small building objects of less than 35 m2 are eliminated from

the data set (Steinnocher et al. 2011), as they in general do not representative

buildings that are suitable for permanent housing in Austria.

The methodology has been implemented in ArcGIS 9.2 and tested on two pilot

project sites, the City of Salzburg and the City of Innsbruck. Realization in GIS

starts with an intersection of land cover data with the plot boundaries and proceeds

with a spatial join in order to get information from both data sets. For each building

parameters such as height and footprint, number of buildings per plot, green-area

ratio, and plot boundaries are calculated. The final classification is based on

predefined rules referring to a set of selected parameters for each building type.

The result of this investigation for the center of Salzburg is presented in

Fig. 15.7. Approximately 90 % of all buildings could be classified automatically.

A first qualitative analysis shows some problems in the interpretation due to wrong

building heights (partly caused by different acquisition dates of aerial photographs

and ALS-data) and due to complex building shapes.

Fig. 15.7 Coverage type map (City of Salzburg) (yellow: single houses; red: serial house, brown:
block of buildings; violet: industrial building; blue: high-rise building; grey: not classified)
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15.4 From Project Status to Operational Roll-Out

The initial development of LISA was funded by resources of the Federal Ministry of

Transport, Innovation and Technology within the Austrian Space Applications

Program (ASAP) of the Austrian Research Promotion Agency (FFG). The devel-

opment was implemented as a three-stage process: Concept Phase (2009–2010) –

Completion Phase (2010–2012) – Roll-out Phase (from 2012).

The Concept phase is presented in the chapters “Land Cover Mapping” and

“Land Use Mapping”. In this project stage stakeholders, users and the scientific/

technical community achieved a consensus about the specifications for the new

Austrian land cover/use data model and land monitoring system. During an iterative

process, a technically feasible requirement catalogue and data model have been

established, processing chains developed, prototypes have been produced and

verified, and the costs been determined. Beside the demonstration prototypes

covering in total 49 test diverse test sites (>3,000 km2), the main results were a

user community defined, technical feasible and scientifically verified requirement

catalogue, the architecture and data model to be used.

During the Completion Phase – described in the chapters “Change Mapping”

and “LISA – Selected Applications” critical components enabling the operational

roll out of LISA as a national and operational monitoring solution were developed.

These included establishment of the data model in a physical database, the imple-

mentation of fully automated change detection and upscaling method (spatial

aggregation to European level LC/LU datasets, such as CORINE) and the demon-

stration of LISA for the usage in spatial planning applications.

The Roll-out Phase is already initiated through single initiatives of regional

governments which financed land cover/land use data collections according to

LISA specifications for part of their territory. This represented a major achievement

in making LISA a sustainable user accepted standard. Nevertheless, the ultimate

vision is to initiate single funded, country-wide roll-out to fulfill the initial user

requirements for a homogenous and operational land monitoring system for Austria.

For a roll-out phase the project has to be transformed into a sustainable admini-

strative cooperation. A unique opportunity in time for a country wide LISA roll-out

is currently opened up in the frame of the Austrian Spatial Development Concept

2011 (ÖROK 2011). The spatial development concept is a strategic steering

instrument for overall spatial planning and development and is updated every

10 years. For the implementation phase so called “ÖREK partnerships” are created

to raise the commitment of the ÖROK members. One of the partnerships deals with

“Land monitoring and management” and will focus on administrative, organiza-

tional and financial framework for the roll-out of LISA. Up to now it has been

agreed that the national mapping agency will take over the data model for land

cover and extract this information according to the flight planning for the

Orthophoto-production every 3 years starting first time in 2014.

A further roll-out is currently carried out within the frame of the project

“Cadaster Environment” financed by the European Space Agency (ESA). It will

provide land cover data according to the LISA data model for a total of 10,000 km2
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around the main urban regions in Austria by 2014 and an additional change alert

layer for almost the entire country (84,000 km2). The change alert layer contains all

permanent land cover changes (e.g. agriculture to urban) with a MMU of 0.5 ha

using multitemporal coarser satellite image observations (in the range of 10–30 m)

e.g. LANDSAT data from 2006 to 2009 (as substitution for upcoming SENTINEL

data). The change alert regions, identified by the LCC alert mapping, are used as

focus area for a finer analysis of the type of change using VHR land cover mapping.

The results of the LISA and “Cadaster Environment” project can be found on

and downloaded free from the project homepage: www.landinformationssystem.at.

15.5 Lessons Learnt

From the experiences gathered during the various project phases the following

lessons learnt can be concluded that are of relevance for similar efforts in other

European countries.

• A new land monitoring system can only be developed, if all major stakeholders

(data providers, users, service providers, scientific advisory board) are involved

and communication/discussion is (also a financial) key element of the project

• The national data infrastructure is recognized and a key asset together with the

provision of satellite image services under the COPERNICUS program

• Results of LISA are developed with a core user group (governmental organiza-

tions on various levels) and their requirements have to be carefully balanced to

financial constraints for acceptance of results

• The LISA land cover and land use data model represent the minimum standard

(“lowest common denominator”) of requirements of local, provincial and federal

authorities, thus providing consistent and homogenous LC/LU information

• For European Integration and upscaling of data it is absolutely necessary to

orient novel approaches in line with the newly developed EAGLE data model
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Chapter 16

Digital Land Cover Model

for Germany – DLM-DE

Michael Hovenbitzer, Friederike Emig, Christine Wende, Stephan Arnold,

Michael Bock, and Stefan Feigenspan

16.1 Introduction: Background and Motivation

of the DLM-DE

16.1.1 Federal Structure and Land Surveying
Responsibilities in Germany

The tasks of the German Federal Agency for Cartography and Geodesy (Bundesamt

für Kartographie und Geodäsie – BKG) include, besides others, the provision of

basic spatial and geodetic reference data mainly for the needs of the Federal

Government, but also for the administrative, economic and scientific sectors and

the citizens (BKG 2014). The land surveying authorities of the 16 Federal States

M. Hovenbitzer (*) • F. Emig • C. Wende

Bundesamt für Kartographie und Geodäsie (BKG – Federal Agency for Cartography

and Geodesy), Richard-Strauss-Allee 11, 60598 Frankfurt am Main, Germany

e-mail: michael.hovenbitzer@bkg.bund.de; friederike.emig@bkg.bund.de;

christine.wende@bkg.bund.de

S. Arnold

Statistisches Bundesamt (Destatis – Federal Statistical Office),

Gustav-Stresemann-Ring 11, 65189 Wiesbaden, Germany

e-mail: stephan.arnold@destatis.de

M. Bock

Deutsches Zentrum für Luft- und Raumfahrt (DLR – German Aerospace Center),

Königswinterer Straße 522-524, 53227 Bonn, Germany

e-mail: michael.bock@dlr.de

S. Feigenspan

Umweltbundesamt (UBA – Federal Environment Agency),

Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany

e-mail: stefan.feigenspan@uba.de

I. Manakos and M. Braun (eds.), Land Use and Land Cover Mapping in Europe:
Practices & Trends, Remote Sensing and Digital Image Processing 18,

DOI 10.1007/978-94-007-7969-3_16, © Springer Science+Business Media Dordrecht 2014

255

mailto:michael.hovenbitzer@bkg.bund.de
mailto:friederike.emig@bkg.bund.de
mailto:christine.wende@bkg.bund.de
mailto:stephan.arnold@destatis.de
mailto:michael.bock@dlr.de
mailto:stefan.feigenspan@uba.de


together with BKG form the Working Committee of the Surveying Authorities of

the Federal States of Germany (AdV). All topographic data produced by AdV mem-

bers is called ATKIS (Authoritative Topographic-Cartographic Information System)

(AdV2009) and comprises several datasets with different scales of 1:10,000–1:25,000

(Basis-DLM), 1:50,000–1:100,000 (DLM50), 1:250,000–500,000 (DLM250) and

1:1 Mio (DLM1000). The Federal States produce large scaled data up to 1:100,000,

while BKG produces small scaled data from 1:250,000 to 1 Mio. The Basis-DLM is

the key dataset, which is used as the source for any other derived topographic dataset

at smaller scale.

The continuous updating of the ATKIS ® Basis-DLM lies within the respon-

sibility of the land surveying authorities of the States. It is done mainly based

on airborne ortho-imagery. The average update cycle of aerial ortho-imagery in

each Federal State is 3 years. Hence, landscape’s topography is captured and

mapped stepwise over a 3 years cycle, but not for the whole territory at once.

Within these cycles, different levels of updating priority exist, depending on the

topographic relevance of the captured feature type; infrastructure and built-up

areas are mapped with a higher priority than vegetation, water bodies or wetlands.

BKG collects the ATKIS ® Basis-DLM data from the States to derive its own

federal products for the entire territory of Germany. Also, BKG is a contact point

for the provision and reselling of the States’ products to other authorities and to

the public.

16.1.2 History of CORINE Land Cover in Germany

The first production of CORINE Land Cover (CLC) 1990 in Germany was organized

and managed by the Federal Statistical Office (Destatis, formerly StBA), located

in Wiesbaden. In accordance with the Council Regulation (EEC) No 1210/90 of

7 May 1990, the European Environment Agency (EEA) together with the European

Environment Information and Observation Network (EIONET) were established

in 1994. Due to this action, the Federal Environment Agency of Germany

(Umweltbundesamt – UBA) was appointed as National Focal Point (NFP) in

general, as well as National Reference Center (NRC) for land cover and land use

in particular, and took over the responsibility for CLC, which is maintained at UBA

through the subsequent CLC phases 2000, 2006, 2012 (Keil et al. 2005, 2009)

till the present days. As the main source of information, satellite imagery (a mosaic

named IMAGE1990, 2000, 2006) centrally acquired by the European Space

Agency (ESA) was used for automated image analysis, visual interpretation and

on-screen digitizing. Following the production of the first full coverage of CLC in

1990, a shift of work procedure has been made from “mapping first” to “change

first”, which means that based on the starting situation of the previous CLC dataset,

the changes were captured first, before the full area coverage of CLC 2000 has been
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created by combining the changes with the previous dataset. After all, CLC

production was executed mainly independent from other national basic topographic

mapping and surveying activities.

16.1.3 Motivation for the Concept of DLM-DE

In principle, CLC is a well-established land cover dataset. In Germany many

existing applications are using CLC data for land monitoring purposes on national

and sub-national levels. However, nationwide users meanwhile require higher

spatial and temporal resolutions on land cover data and land cover changes than

conventional CLC data can offer.

The expectation of cost saving through a more efficient use of existing data and

avoidance of redundant data production for both national and European purposes in

parallel is another driving factor of DLM-DE’s development. The integration of

national topographic reference data into pan-European thematic datasets aims at a

more consistent and harmonized interoperability between national data sources and

geo-information data on the European level.

Aforementioned reasoning has led to the new methodological bottom-up

approach: Creating a consistent and harmonized production chain from national to

European datasets on the one hand, and on the other hand aiming at cost efficiency by

using already existing data as input instead of redundant data production.

16.1.4 Initiation of DLM-DE

Based on a decision of the German Interministerial Committee for Geo-Information

(IMAGI), which dates back to May 2007, a trilateral cooperative project between

BKG, UBA, and the Federal Ministry for the Environment, Nature Conservation and

Nuclear Safety (BMU) was initiated with the long term aim to create a high

resolution vector dataset on land cover and land use information by using already

existing national data in combination with remote sensing methods. The project was

called “Digitales Landschaftsmodell für die Aufgaben und Zwecke des Bundes –

DLM-Bund” to meet the requirements and purposes of the Federal Governmental

Body, later renamed to “Digitales Landbedeckungsmodell für Deutschland (Digital

Land Cover Model for Germany) – DLM-DE”.

Since 2006 BKG has the responsibility for the production management and

implementation part of DLM-DE (with subcontractors), while the role of UBA

under BMU is still the NRC for land cover and responsible for the grant agreement

and delivery of CLC to the EEA (see Fig. 16.1). A main target application of

DLM-DE, besides other national and regional usages, is the derivation of CORINE

Land Cover data from the federal dataset DLM-DE (Arnold 2009).
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16.2 Concept of DLM-DE

In this chapter the concept of DLM-DE shall be explained. Having started with a

feasibility study in 2007, the DLM-DE2009 was the first dataset to cover the entire

area of Germany. The enhanced concept of the subsequent DLM-DE2012 is

characterized by several improvements in processing and production to create a

higher flexibility and a broader scope of application.

16.2.1 DLM-DE Feasibility Study 2007

The BKG assigned to the German Remote Sensing Data Center (DFD) at the

German Aerospace Center (DLR) a feasibility study according to BKG’s and

UBA’s requirements in order to develop a first plan and concept for the DLM-DE

and to estimate the expenses and the technical feasibility of a nation-wide produc-

tion. The task was to verify and update national available topographic data and

bring it with remote sensing methods to the recent state (2007 as reference year).

Four tiles in size of a topographic map sheet 1:100,000 were selected as test sites.

16.2.1.1 Input Data and Source of Information

Following the principle of a bottom-up approach to integrate existing national data,

the ATKIS ® Basis-DLM was used as input data. Besides this vector dataset,

additional data were integrated. The main source of information was the

Fig. 16.1 Involved contributors in the German land cover bottom-up approach
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IMAGE2006 satellite mosaic from the conventional CLC2006 production phase.

Other GMES products were also taken into account like the raster datasets Fast

Track Service (FTS) Soil Sealing, and GSE Forest. Also, soil sealing results from

the REFINA (DIFU 2012) project of the year 2000 were integrated in the study,

where they were available.

16.2.1.2 Study Results

The overall result of this study was the affirmation of the technical feasibility of the

intended project. The best practice outcomes of the study, e.g. which working steps

are necessary, which processing can be automated, what is the estimated manual

effort, were included in the subsequent planning process for the entire country-wide

coverage of DLM-DE (Bock et al. 2008). Datasets like REFINA or GSE Forest

were useful, where available. However, because of their limited regional extend by

that time, they were not recommended for nation-wide integration into the

workflow. Two main results among others were the fusion of the layer-structured

vector data of the ATKIS ® Basis-DLM in a single layer form. This modification

will in the following be mentioned as flattened structure. A second result was the

additional assignment of preliminary CLC codes to its features due to a semantic

transformation prior initiating the update and verification process itself.

16.2.2 DLM-DE2009

16.2.2.1 Input Data and Source of Information

The produced vector data from the ATKIS ® Basis-DLM (according to old data

model, BKG 2011a) were used as the fundamental input dataset for DLM-DE2009

(BKG 2012; Arnold et al. 2010). The input data were taken as a “data freeze” from

the GeoDataCentre (GDZ) of BKG by the date of April 2009 for further preparatory

pre-processing. By that time, the data at GDZ were roughly between 6 months and

several years old (depending on the last individual update activities and deliveries

from the Federal States to BKG). Only CLC-relevant polygon feature types of the

thematic categories ‘settlement, transportation, vegetation and water bodies’ were

used from the ATKIS data; point and line features were not included. Due to the

step-wise patchwork update cycle of the ATKIS ® Basis-DLM, it was necessary to

refer to remote sensing satellite data as source of land cover information. By these,

it is possible, to update practically the whole country for a single reference year.

The main source of information were multi-temporal satellite imagery of the sensor

RapidEye with a ground sampling distance (GSD) of 5 m and additional imagery

from the system Disaster Monitoring Constellation (DMC) with a GSD of 32 m.

Due to various reasons, for some minor patches the acquisition of RapidEye

imagery had to be postponed to 2010 (Hovenbitzer et al. 2011).
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Besides the RapidEye imagery, other auxiliary data were used, e.g. the GMES

(now Copernicus) product Soil Sealing Layer 2009, the IMAGE2006 collection and

authoritative digital orthophotos (DOP).

16.2.2.2 Semantic Transformation

In preparation of deriving the CLC data, the ATKIS feature type catalogue was

compared with the CLC nomenclature by creating a semantic transformation table.

Therefore the commonalities in the definitions of the ATKIS feature types and the

37 CLC-classes that are relevant in Germany (out of 44 classes in total for Europe)

were analyzed. So all DLM-DE features received a preliminary CLC coding, which

had to be verified and updated using remote sensing data.

16.2.2.3 Pre-processing of ATKIS ® Basis-DLM

The ATKIS data are provided as a set of different layers. To simplify the handling,

the input layers are flattened by transferring it into a seamless and non-overlapping

data structure. Using GIS-based workflow, all overlapping situations are elimi-

nated, and only one single polygon feature remains in case of previous overlap of

ATKIS layers (see Fig. 16.2). This flattening procedure follows an ordered

sequence of the feature types dependent on their relevance for land cover modeling

regarding the derivation of CLC. This pre-processing step brings the input data also

to a format and shape similar to the CLC target dataset.

16.2.2.4 Production and Results

The verification and updating of DLM-DE itself as the main data production

phase was outsourced through a call for tender to the geo-information industry.

Fig. 16.2 Original layer structure of the ATKIS ® Basis-DLM flattened for the DLM-DE update

process
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The preliminary (unique or multiple) CLC-codes, that were attached to the initial

dataset, were then verified and updated through a semi-automated procedure based

on remote sensing methods (supervised imagery classification, probability estima-

tions, visual interpretation). The minimum mapping unit (MMU) was set to 1 ha for

all features. The outcome of the DLM-DE project is a high resolution vector dataset

on land cover and land use with a MMU of 1 ha for all features types. Figure 16.3

shows a snap shot of DLM-DE2009 results compared to the conventional CLC

mapping result.

16.2.3 DLM-DE2012

Following DLM-DE2009 as the first mapping phase of the dataset, the year 2012

has been chosen to be the reference year for the second DLM-DE production.

Regarding the availability of needed additional imagery the synchronization of

the DLM-DE with the production phase of CLC2012 comprises a large benefit,

as the ESA provides satellite data for the reference year 2012 to the member

states. The different additional images allow a higher quality of multi-temporal

analysis. Continuing the approach of DLM-DE2009 the procedure in 2012 has

changed at a central point. As it was in 2009, the input data still is the ATKIS ®
Basis-DLM (according to new AAA data model, BKG 2011b) and the MMU is

again set to 1 ha. Instead of directly using the nomenclature of CLC (like in 2009),

for the update of DLM-DE2012 a new class system separating land cover and land

use was established, which is described in the following chapter, also to achieve

better interoperability with the ATKIS data of the Federal States.

Fig. 16.3 Heidelberg, Germany. Comparison of conventional CLC2006 with 25 ha MMU (left)
and DLM-D2009 with 1 ha MMU (right) dataset, both colored according to CLC legend (Source:

CLC2006 (left side), © EEA 2006; DLM-DE2009 (right side), © BKG/Geobasis-DE 2013)
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16.2.3.1 Input Data and Source of Information

Concordant with the previous 2009 production phase, the ATKIS ® Basis-DLM is

used as the basic input data for the DLM-DE2012 production. In addition, selected

results from the DLM-DE2009 mapping are integrated in the 2012 starting dataset.

Different satellite imageries are used as main source of land cover information.

The primary source is one coverage from the RapidEye constellation for summer

2012. Furthermore and similar to 2009 one coverage of DMC is used for multi-

temporal analysis, especially the distinction between grassland and cropland. The

IMAGE2012 data is integrated in the production process as well, because it proved

to be very useful for the classification of forest area types.

It was intended to make use of the land cover information provided by the High

Resolution Layers from the Copernicus Land Monitoring Services as well, but these

layers were not finished, when the production of DLM-DE2012 started. An over-

view of input and auxiliary data for DLM-DE2012 production shows Fig. 16.4.

16.2.3.2 Enhanced Classification: Separating Land Cover

and Land Use

The new classification system applied for mapping takes place in between the

CORINE nomenclature on one hand and the nomenclature of the ATKIS ®
Basis-DLM on the other hand. For this purpose it describes the aspects of land

use and land cover in two separate codes (LU and LC). CORINE Land Cover is

Fig. 16.4 Data used for production of DLM-DE2012 (Includes material© (2011, 2012) RapidEye

AG, Germany. All rights reserved: © [2012] DMC International Imaging Limited of the United

Kingdom; © BKG/Geobasis-DE 2013)
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traditionally mapped on the source of satellite imagery and due to this historical

development it focuses very strongly on the land cover aspect (although it mixes

cover and functionality in case of built-up areas and infrastructure). In contrast

the ATKIS ® Basis-DLM contains very detailed information on the land use. The

separation of LC and LU manages not only the transformation from ATKIS ®
Basis-DLM into the nomenclature of CORINE Land Cover, but also allows (partly)

the way back to ATKIS. This opens up the possibility to support the Federal States

with additional detailed information, especially in the field of natural classes

(forests and semi-natural areas, wetlands, etc.). By separating the land cover and

the land use aspects, the update is much easier for the interpreters. Instead of being

forced to make a decision about the land use of features they can clearly classify the

land cover as it appears in the imagery. The information about the usage is already

contained in the ATKIS ® Basis-DLM and for the majority of features it is not

possible to retrieve a proper classification of land use based on optical image data.

Figure 16.5 illustrates the benefits and needs of the distinction between land

use and land cover. Each of the examples is classified as “142: sport & leisure

facilities” according to the CLC nomenclature. But in fact these objects show very

Fig. 16.5 Different kinds of leisure facilities (aerial ortho-imagery, © BKG/Geobasis-DE 2013).

(a) Wildlife park. (b) Sports ground (grass). (c) Ice rink. (d) Go-cart and motorcycle race course
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different types of land cover. Thus the new classification system helps to obtain

more detailed information on the real land cover while supporting the derivation of

CLC (in this case class “142”) by referring to the land use information of the

ATKIS ® Basis-DLM.

As a result of the pre-processing each DLM-DE polygon is given both a prelim-

inary LC and a preliminary LU code that has to be verified and updated during the

production process by (semi-automated) image interpretation. The final classes

according to the CLC nomenclature will be created in a post-processing step after

the update. Each CLC-class can be populated by combining one of the new codes for

land cover and one for land use. As the excerpt in Table 16.1 shows, the design of the

land cover and land use categories guarantees a unique CLC-assignment.

16.2.3.3 Pre-processing

The ATKIS ® Basis-DLM has been “frozen” again in 2012 in its status as provided

by BKG’s GeoDataCentre. All LC/LU relevant feature types are selected and brought

again into a flattened structure. Additionally some results from DLM-D2009 (like

forest area types) were integrated into the geometries of the input dataset of

DLM-DE2012 through GIS operations. Several other pieces of information from

2009 were included, but not with their geometry, only as attribute.

16.2.3.4 Production Phase

All the pre-processing steps in preparation of the production phase (preliminary

LC/LU-codes, integration of former results and geometric flattening) have been

done by BKG. The actual update of DLM-DE2012 is again accomplished by a

subcontractor after a call-for-tender procedure. The schedule foresees the finaliza-

tion of DLM-DE2012 by the mid of 2014.

In parallel to the production, the developments for the derivation of the CLC

change 2006–2012 and the CLC2012 dataset have started. These tasks lie again in

the responsibility of BKG (in cooperation with UBA and DFD/DLR).

16.3 Transition from DLM-DE to CLC

The reporting duty from UBA towards the EEA does not only include a 25 ha

CLC2012 dataset, but also the CLC change between 2006 and 2012. This results in

two major tasks, fulfilled by BKG with support from DLR. The generalization from

1 ha CLC2012 to 25 ha CLC2012 and the creation of a 5 ha CLC change layer

between 2006 and 2012.
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16.3.1 CLC2012 Derivation and Generalization

As the first step of deriving CLC, the updated land cover and land use codes of the

DLM-DE2012 are transformed by combining them into CLC classes according to

the cross-table shown in Table 16.1. This results in the first intermediate product,

the CLC2012 1 ha dataset. This provides the basis for the subsequent generaliza-

tion. During a first iteration another intermediate product with 5 ha is generated,

before the final 25 ha CLC2012 dataset is created. For the basic part of this complex

process a generalization tool prototype is used that has been developed in a

cooperation between BKG and the IKG (Institute for Cartography and

Geoinformation) of the University of Hannover (Thiemann et al. 2009). This tool

is used for some basic operations, whereas further individual processing steps for

regional or class-dependent improvements have been developed at BKG. This fine-

tuning is necessary to handle objects that obviously belong together because of spatial

vicinity (and therefore have to be merged during the generalization process), but do

not share a common border. For lakes and settlements it is especially important to

resolve and close these gaps. If their vicinity is not taken into account during the

generalization, toomany of those objects would be lost in the final dataset. Figure 16.6

shows an example that illustrates the importance of this vicinity aspect. Also, some

testings on geometric simplification and generalization have been done at the DFD/

DLR (Nieland 2009).

Another very important issue that has to be taken into account is the scale-

dependency of some CLC classes. Especially the complex classes (“242 – complex

cultivation patterns”, “243 – land principally occupied by agriculture, with signif-

icant areas of natural vegetation” and “313 – mixed forest”) have to be treated

differently from the remaining classes. Candidate polygons that can contribute

to these classes on 5 or 25 ha need to be identified already in the 1 ha dataset to

Fig. 16.6 Gap between two lakes (DLM-DE/CLC 1 ha – left side, © BKG/Geobasis-DE) that has

to be closed during generalization in comparison with CLC2006 (right side, © EEA 2006)
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preserve them grouped as clusters during the single generalization steps. If this aspect

is not considered, all these features would be resolved into neighboring polygons

according to the basic generalization rules like the longest common border or the

thematically similarity. BKG has developed several algorithms to identify the proper

candidate polygons in order to generate meaningful features for the complex classes

on the level of 5 and 25 ha MMU.

The EEA’s technical guidelines for CLC (Büttner et al. 2002, page 40) provide a

priority table (similarity matrix) of the CLC classes for the traditional way of CLC

production. This table brings all classes into relation, showing index values from

1 to 8 to represent the similarity between classes and give an indicator for the

merging of neighboring polygons below the MMU during the mapping process.

This table has been revised and adapted due to the needs of a fully automatic

generalization process.

The algorithms for the last generalization from the intermediate 5 ha (see

Fig. 16.7) to 25 ha CLC2012 are currently under the final development stage.

16.3.2 Land Cover Change 2006–2012

Besides the full dataset CLC2012, the derivation of the changes between CLC2006

and CLC2012 is an important part of the data delivery to EEA. Traditionally CLC is

produced by mapping the land cover changes by interpreting satellite imagery

(“change first”). With the now applied bottom-up approach to generate CLC2012

based on high resolution vector data, the conventional procedure is no longer

feasible. In this case the change has to be derived in a subordinate process.

Because of the different production processes it is not possible to directly compare

the (traditional) CLC2006 with the CLC2012 derived from DLM-DE2012. The

diverging shape and structure of geometries would result in a large amount of

pseudo-changes. DLM-DE2009 would be more appropriate because of the same

Fig. 16.7 Results of generalization from 1 to 5 ha (DLM-DE2012 – left side 1 ha. right side 5 ha,
© BKG/Geobasis-DE)
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geometrical basis, but the reference year is not suitable. To make this temporal

comparison still possible, UBA has subcontracted the DLR to perform a backdating

of DLM-DE2009 to 2006 (see Fig. 16.8).

In doing so, DLM-DE2009 is used as starting point and is reconstructed based

on IMAGE2006, CLC2006 and archive ATKIS data from 2006 and brought

back to the status of the reference year 2006 by using a backdating procedure

(Keil et al. 2010). With the DLM-DE2012 being the future-projected counterpart,

and the DLM-DE2006 backdated as the past-projected counterpart, the CLC

2006–2012 change dataset with 5 ha MMU can be generated.

The algorithms for the calculation of the change are as well developed at the

BKG. Candidate features for changes are identified by comparing the 1 ha datasets

DLM-DE2012 and DLM-DE2006 backdated. The relevant changes go through a

generalization process and result in indicative change layer features that fulfill the

MMU of 5 ha. Additionally, the geometry is improved and adapted to the CLC2012

5 ha dataset to guarantee full geometric consistency (snapping). Figure 16.9 shows

an example for the derivation of CLC 2006–2012 changes.

16.3.3 Data Backflow Between National
and Sub-national Level

The DLM-DE concept also foresees the possibility of a data flow back of the

DLM-DE data to the land surveying institutions of the Federal States in a way

that they can integrate the results in their own continuing updating process for

ATKIS. On the long run, the DLM-DE concept comprises the vision of the iterative

reduction of effort that is needed to derive European datasets from national sources,

as European relevant LC/LU information to a certain extent can be integrated

stepwise on the sub-national level through the data exchange between BKG and

the AdV (see Fig. 16.10).

A test-wise attempt to integrate LC/LU information from DLM-DE2009 into

ATKIS resulted in the understanding that LC/LU information described according

to the CLC nomenclature can only be integrated selectively. In other words not

Backdating DLM-DE 2006 Updating DLM-DE 2012

IMAGE 2012 / IMAGE 2009

aux data: Maps
DOP GMES

DLM-DE 
2009

IMAGE 2006 / IMAGE 2009 
AWiFS 2006

CLC2006
25 ha

DLM-DE 2006
backdated

BasisDLM
flat_2006

DLM-DE 2012
updated

BasisDLM
flat_2012

CLC-Change 
2006-2012 5ha CLC 2012

25ha

Fig. 16.8 Workflow DLM-DE2012/CLC2012 and land cover change mapping 2006–2012
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Fig. 16.9 Results of change derivation (red in the right image (CLC2012, 5 ha) based on the

comparison between DLM-DE2012 1 ha (above) and DLM-DE2006 backdated 1 ha (below)).
© BKG/Geobasis-DE

Fig. 16.10 Possible data flow of topographic and LC/LU data between national level (BKG) and

sub-national level (AdV) along the time line
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every CLC class is useful to support ATKIS feature types, because the definition of

some CLC classes are semantically not congruent or too broad compared to the

definition of ATKIS feature types. As a lesson learnt, the ATKIS feature types

were not directly transformed into CLC classes and then update them due to the

CLC nomenclature, but intermediate LC/LU components were used instead. This

approach allows a broader use of the dataset besides the derivation of CLC. It offers

also the possibility to give information on certain land cover features back to the

Federal states and other interested institutions.

16.3.4 Integration of CLC-Relevant Attributes in ATKIS
Feature Type Catalogue

As a reaction on the need for harmonization between national and European land

surveying activities, it was achieved to add placeholders for certain CLC relevant

land cover information according to its nomenclature into the German ATKIS

feature type catalogue (FTC). This will help to make the derivation of some CLC

classes based on national data easier, when it is implemented in the forthcoming

next release of the FTC. This is a development that is independent from the above

described DLM-DE specific set of LC/LU components. In particular this extension

of the ATKIS feature type catalogue concerns the CLC classes “321-natural

grassland”, “324-transitional woodland-shrub”, “421-salt marshes”, “521-coastal

lagoons” and “522–estuaries”. In this context the first step is made on the way to the

involvement of the Federal States’ land surveying authorities in the European land

monitoring bottom-up approach by handing over a part of the relevant data capture

to their responsibility and competence, following the principle of subsidiarity.

16.4 Conclusion and Outlook

The transition of executive responsibility for land cover data production over the

years from Destatis via UBA to the BKG as the national mapping agency manifests

the changing significance of land monitoring activities from a more statistical point

of view to a more holistic and integrative bottom-up approach. The targeted

advantages of the DLM-DE concept are more precise information on LC/LU with

high spatial resolution, higher consistency between national and European LC/LU

data, and cost efficiency by avoiding redundant data production. This goes in

direction of the pan-European vision of an object-oriented land cover modeling

approach.

Besides Germany, also a number of other European member states already

implemented also such a bottom-up approach deriving LC/LU data relevant for

the European level out of national reference data. Two initiatives shall be
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mentioned in this context, an FP7-funded project called HELM (Harmonized

European Land Monitoring) bringing together best practices, ideas, requirements

and future visions, and also the EAGLE group (EIONET Action Group on Land

Monitoring). The latter comprises of a principally voluntary cooperation of com-

mitted land monitoring experts throughout many European countries. They work on

an enhanced data model for land monitoring that suits both European stakeholders’

interests and national/sub-national land monitoring applications (EAGLE 2013;

Arnold et al. 2013). The group is developing a new data model for land monitoring

that is capable to store LC and LU information in a separate and more

comprehensive way.

In relation with the developments in Germany in particular, the project “digital

land cover model – DLM-DE” as a bottom-up approach will be continued. There

are plans for the next update cycles in the years 2015 and 2018. BKG is strongly

involved in the discussion process with the Federal states, which are interested

in using the results and methods of the LC/LU production at BKG. Therefore,

the goal is to integrate the land cover update process into the update workflow of

topographic reference data of the Federal States.
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Chapter 17

Land Use & Land Cover Mapping in Europe:

Examples from the UK

Geoffrey M. Smith

17.1 UK Philosophy

The United Kingdom (UK) has a long heritage in the development and application

of land cover mapping approaches based on Earth Observation (EO) data. The

production of UK national land cover products from EO data began as a technology

driven proof-of-concept project in 1990, the Land Cover Map of Great Britain

(LCMGB). Once in production LCMGB was brought under the banner of the

Countryside Survey (CS), the national land monitoring program focusing on hab-

itats. The next iteration, the Land Cover Map of 2000 (LCM2000), aimed to update

LCMGB, but also upgraded the product with the adoption of new technology and

respond to national policy drivers. The Land Cover Map of 2007 (LCM2007)

continued this trend by integrating digital cartography and applying complex map

generalization processes within its production.

The CS program included a series of scoping studies to assess user requirements

and identify opportunities for the exploitation of new technology. These studies

highlighted the conflicting requirements for national land cover mapping. There is a

need for temporal consistency to assess change over time, but this is always

alongside the need for improved quality/integration and reduced costs/production

time while also responding to a broad and often changing set of policy require-

ments. There has also been a demand to deliver a product that services a broad and

sometimes mutually exclusive set of user requirements. The UK LCMs could

therefore be criticized for inconsistencies over time, but they have remained at

the forefront of land cover mapping technology and continuously developed to

address the needs of real users. The procedural developments in terms of parcel-

based mapping, knowledge-based enhancements, parcel-level metadata and process

operationalization have led the way in improving product accuracy and usability.
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The final overall accuracy of the LCMs have been comparable with the best

performing land cover mapping exercises, including the more experimental

approaches, of their time.

17.2 The Development

The origin and history of the UK land cover maps can be charted through a series of

research and development projects, scoping studies, production activities and reviews.

17.2.1 Land Cover Map of Great Britain (LCMGB)

The LCMGB of 1990 was the first national land cover product for Great Britain

derived from EO data. Land cover mapping was often cited as an application of EO,

but few, if any, operational large extent projects had been completed at that time.

The European CORINE project was under development, but it was in effect an

extension of the visual interpretation approaches which had been applied to aerial

photography for topographic mapping. LCMGB was a semi-automated classifica-

tion of spectral data (Fuller et al. 1994a, b) from the Landsat Thematic Mapper

(TM) instrument, mostly collected during 1988 and 1989. The final product

contained 25 land cover classes (Table 17.1) recorded against a 25 m grid equiv-

alent to the sampling scheme of the input Thematic Mapper (TM) data. The

production included a set of rudimentary knowledge-based enhancements to cope

with some classes out of context (Groom and Fuller 1996). The original design and

purpose of LCMGB was based around a proof-of-concept approach with a speci-

fication which maximized the performance of the input data rather than addressing

key user needs. Since production, LCMGB data (Fig. 17.1) have been licensed to

over 500 users, including researchers, policy makers and commercial organizations,

with wide ranging end uses.

17.2.2 Classification of Environment with Vector
and Raster-Mapping (CLEVER-Mapping)

The LCMGB was successful, but the pixel-based approach gave an arbitrary grid

structure to the landscape. The pixel-based approach also incorporated noise and

unwanted natural variation into the classification process resulting in a somewhat

speckled appearance with little, if any, information on landscape structure (Fuller

et al. 1998). This situation and the continued development of geographic information

and image analysis technology encouraged the development of object-based

approaches which analyzed the EO data in units that were representative of ‘real

world’ features.
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Table 17.1 Comparison of the classification nomenclatures used for the LCMGB (1990),

designed to maximize the capabilities of the data, and the LCM2000, aligned with an established

nomenclature used in field surveys

LCMGB (1990) LCM2000

Sea/estuary Sea/estuary

Inland water Water (inland)

Beach and coastal bare Littoral rock

Saltmarsh Littoral sediment

Upland bog Saltmarsh

Lowland bog Supra-littoral rock

Open shrub moor Supra-littoral sediment

Dense shrub moor Bog (deep peat)

Open shrub heath Fen, marsh, swamp

Dense shrub heath Dense dwarf shrub heath

Grass heath Open dwarf shrub heath

Scrub/orchard Montane habitats

Deciduous woodland Broad-leaved/mixed woodland

Coniferous woodland Coniferous woodland

Mown/grazed turf Improved grassland

Meadow/verge meadow/semi-natural Neutral grassland

Rough/marsh grass Set-a-side grassland

Moorland grass Calcareous grassland

Bracken Acid grassland

Tilled land Bracken

Ruderal weed Arable cereals

Suburban/rural development Arable horticulture

Continuous urban Arable non-rotational

Inland bare ground Suburban/rural developed

Felled forest Continuous urban

Inland bare ground

Fig. 17.1 The simple pixel-based classification of the 1990 Land Cover Map of Great Britain,

using the standard UK nomenclature color table. In this case one pixel is selected which identifies

itself as Deciduous Woodland (code 15, color red). (LCMGB)
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The Classification of Environment with Vector and Raster-Mapping (CLEVER-

Mapping) project developed an object-based classification procedure pre-empting

the interest and growth of object-based image analysis (OBIA). This approach

(Fig. 17.2) used a dataset of land parcel objects to control the analysis of the EO

data thus avoiding the mixed pixels at the edge of each object, which were often

misclassified in conventional per-pixel approaches due to their mixed spectral

signatures for adjacent cover types (Dean and Smith 2003). The spectral response

in each image band was averaged for the core pixels only within each object to

minimize noise and unwanted natural variation. The averaged spectral responses

for the core area were then applied to a standard maximum likelihood algorithm and

the resulting classification attached to the object as a whole.

The object-based structure allowed different EO data types to be combined and a

broad range of non-EO data to be included as attributes on the object. The later were

used to perform complex knowledge-based enhanced. For instance, objects with

elevations greater than a few meters could be excluded from the intertidal habitats

and soil type could be used to refine the semi-natural grassland types that could be

recorded. The topologically structured objects also allowed advanced spatial con-

text enhancements to be applied. For example, it is likely that small patches of

arable completely surrounded urban are incorrect and bare ground in a coniferous

forest context is more likely to be felled forest.

The CLEVER-Mapping/OBIA approaches were tested in a relatively large scale

object-based land cover mapping exercise by successfully producing a land cover

map for the island of Jersey in 1997 (Smith and Fuller 2001).

17.2.3 Land Cover Map 2000

After the success of the mapping in Jersey, it was agreed that the LCM2000 (Fuller

et al. 2002) would use the parcel-based processes and procedures developed within

Fig. 17.2 The integration of vector, raster and ancillary data proposed by CLEVER-Mapping
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the CLEVER-Mapping project. As well as improving the spatial structure of

LCM2000 it was necessary to align the thematic content more closely with user

requirements. The LCMGB nomenclature, although designed to maximize the

performance of EO data, was not particularly policy relevant or aligned to existing

classification schemes. The nomenclature for national monitoring as whole was

under discussion and it was recommended that the Biodiversity Action Plan (BAP)

Broad Habitats (Jackson 2000) should be selected and adopted as the LCM2000

nomenclature (Table 17.1).

LCM2000 essentially used the same type of input EO data as LCMGB, but

applied to a variant of the CLEVER-Mapping procedure described earlier (Fuller

et al. 2005). Unfortunately, a suitable vector land parcel data set was not available

for the UK, therefore segmentation was used to group image pixels into areas

broadly equivalent to land parcels. The segmentation results were generalized to

give a minimum mapping unit (MMU) of 0.5 ha. The MMU was selected to capture

relatively small features while still containing around 9 pixels, so that in a square

object there would be at least one central pixel surrounded by 8 other. Segment-based

approaches, in the same manner as parcel-based approaches, avoided mixed edge-

pixels and used mean spectral responses for thematic identification. Ground reference

data were used to identify image segments of known cover which would act as a

sample of training areas from which to calculate the spectral reflectance statistics

for each cover class. The classification used a maximum likelihood algorithm applied

per-segment and recorded the most likely spectral subclass in statistical terms: in fact,

it stored probabilities for the top five spectral subclasses, usually covering >90 % of

the probability distribution. Knowledge-based enhancements were used to allocate

an alternative class label, where more appropriate, for segments which were classified

with low confidence or with classes out of their natural context.

As well as representing both the landscape structure and its thematic composi-

tion, the LCM2000 also recorded a rich set of object-level metadata (Fig. 17.3).

Fig. 17.3 Land Cover Map 2000 data showing the segment structure and the attribute groups on

each object
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The LCMGB had only recorded a single land cover code against each pixel. Against

each segment LCM2000 recorded a set of metadata grouped under the following

headings: identification (e.g. unique identifier); context (non-remotely sensed ancil-

lary information, e.g. elevation); control (information to guide the production, e.g.,

known (a priori) land cover type of a parcel); result (outputs of the production

procedure, e.g. the predicted land cover type and a measure of its probability),

remark (additional information associated with the classification procedure and

results) and image information (e.g. number of pixels extracted).

In conclusion, LCM2000, for the first time, mapped land cover for the whole of

the UK from satellite images. It offered a data structure which attempted to record

the ‘real’ structure of the landscape and thus satisfied a wider range of user-needs.

LCM2000 offered much more scope for use, integration and further exploitation

than the conventional per-pixel products of the earlier mapping. It had a MMU

which offered far better resolution than other available land cover datasets at that

time and since.

17.2.4 Land Cover Map 2007

The LCM2000 was again a success with users, but technology had moved on and

the use of GI data across the stakeholder community had increased thus improved

integration was required. The most recent iteration, LCM2007, therefore used a

similar parcel-based mapping approach to that used for LCM2000, but the spatial

framework was based on existing national digital cartography from the Ordnance

Survey’s (OS) MasterMap (MM) product.

The use of digital cartography for the spatial structure more accurately reflects

the true structure of the UK landscape (Smith 2008). OS MM is a topologically

structured digital cartography layer for the whole country. The structured nature of

the data provides a comprehensive cover of land parcel objects and their associated

attribution allows the use of efficient, cost effective generalization to provide land

parcels suitable for integration with EO data that has a spatial resolution of

approximately 20–30 m (Smith et al. 2007). The half a billion objects within MM

had to be reduced to around six million with a MMU of 0.5 ha and a minimum

feature width (MFW) of 20 m. However, these objects did not represent all the

required boundaries in the landscape and additional linework from agricultural

surveys and image segmentation were required to complete the spatial framework

(Smith and Morton 2010).

The objects were then labeled with land cover classes by a combination of

object-based maximum likelihood classification of the EO data and knowledge-

based enhancements driven by a range of ancillary data as in LCM2000. The final

product (Fig. 17.4) was again an attribute rich land cover database but this time

linked to national cartography designed to support a wider range of applications

(Morton et al. 2011).
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17.3 Trends

The UK land cover products have always been at the forefront of technical and

conceptual developments and their application in an operational domain.

17.3.1 New Technology

The key technical development has surrounded the use of object-based image

analysis for the monitoring of ‘real-world’ objects which represent landscape

structure. Even when the eCongition system was in its infancy, the LCM2000 had

applied object-based approaches in an operational context exploiting a combination

of research software, bespoke modules and commercial vector/raster OO database

systems. The use of new technology continued in LCM2007 with development of

an automated system for the generalization of detailed national cartography, which

was deployed across a cluster processing system.

17.3.2 Integration

A major issue addressed by the UK land cover products has been the integration

between the land cover maps, national field survey and other survey and monitoring

Fig. 17.4 The Land Cover

Map 2007 showing the land

parcel structure derived

from existing digital

cartography
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activities. This has been achieved by the migration from pixels to segments and

finally to the integration of national cartography within the process. This was also

extended in LCM2007 by the use of agricultural land parcel (LPIS, IACS) data

within the construction of the spatial framework. This has resulted in a land cover

product which is more closely aligned with existing stakeholder datasets and their

perceptions of the landscape.

17.3.3 Metadata

The complex production flowlines of LCM2000 and LCM2007 required and

produced a large amount of information, which provided a rich source of additional

data compared with the single land cover class that was recorded by LCMGB. The

UK parcel-based production retained as much information as possible at the parcel-

level (Smith and Fuller 2002). The thirty or so attributes attached to each land

parcel were summarized into a set of parcel-level metadata. The utility of this

information has been explored but the use made of it has been primarily academic

as it is often still too advanced for operational users of land cover data.

17.3.4 Top-Down/Bottom-Up Processes

Recently some of the EO and supporting ancillary data have been made available

through the GMES and other initiative and supplied by a European service in a

consistent manner. The UK has then combined these data with local information

and expertise to generate national products. All three UK LCMs have been gener-

alized to form the UK contribution to the European CLC products (Fuller and

Brown 1996; Smith et al. 2009). This demonstrates the benefits of a combination of

top-down and bottom-up components when attempting to produce consistent and

integrated land cover information at both the national and European levels.

17.3.5 Change

The issue of change has been considered throughout the development of the UK

LCMs, but the implications of the changing methodology and nomenclature have

meant that the generation of reliable change products was very challenging. As with

other forms of survey, problems also exist in detecting what are often small degrees

of change, against a background of uncertainty in the data. A range of technical and

quality issues were identified which would need to be resolved to allow change

mapping, so it was therefore recommended that the UK LCMs should go ahead

without the requirement to deliver change information. Beneath this is a dilemma
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that faces any long-term longitudinal survey – whether to persist with what

ultimately becomes an out-dated and sub-optimal technology to maintain consis-

tency over time, or to adapt to new and improved methodologies as they become

available.

17.3.6 Quality Assessment

Quantifying accuracy of land cover data is also inherently problematic, because of

the difficulty in defining an objective and error-free reference against which results

can be judged. At the outset, a target classification accuracy, when compared to

independent field classifications, of 90 % was set for the UK LCMs. The main

component of the CS was a field survey where in excess of 600 1-km squares were

visited and mapped by field surveyors. These 1 km results were used to assess the

quality of the UK LCMs and in practice, the results probably fall slightly short of

the target at between 80 and 90 %, though this apparent error is to some extent

inflated by uncertainties or inconsistencies in the field data.

17.4 Future

The national land cover maps in the UK have been seen to provide a valuable source

of information, that was used not only to support countryside policy but also policy

and research in many other areas. At present the UK is reviewing the CS program

within which the LCMs sit, with a possible intention to rerun the surveys in the

coming years. It is likely that the trends described above in technology and

specification would continue in any future UK land cover product with the current

needs for greater efficiency, integration and end user applications. A rolling pro-

gram of land cover mapping has been suggested, but excluded in favor of attempts

to more closely integrate the field survey and land cover mapping activities. At the

European, national and regional level, the GMES program and its Land Monitoring

Core Service (LMCS) will be an important force (and source of support) for future

monitoring activities. The next UK LCM will undoubtedly be closely integrated

with the LMCS to exploited centrally procured data and information products,

validate them at the national level and contribute to European level reporting

through initiatives such as CLC.
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Chapter 18

Operational Land Cover and Land

Use Mapping in the Netherlands

Gerard W. Hazeu

18.1 Introduction

Land cover is changing rapidly in many parts of the world, particularly in areas with

high population density like The Netherlands. The effect of these land cover

changes becomes increasingly important in fields of work like spatial planning,

water and environmental management. It is essential background information for

environmental issues related to the land surface (Lambin et al. 1999; Kaufmann and

Seto 2001; DeWit 2003; Chen andWang 2010). In The Netherlands, remote sensing

data combined with additional spatial data are recognised as an important source

of information to characterise land cover and to detect its changes over time.

At national scale the following four important databases are dealing with land cover:

1. Topographical database (Top10vector/Top10NL) (Kadaster 2003, 2007a, b)

2. Land Use database “Bestand BodemGebruik (BBG)” (CBS 2002)

3. National Land Use database “Landelijk Grondgebruiksbestand Nederland

(LGN)” (De Wit 2003; Hazeu 2006; Hazeu et al. 2011)

4. CORINE Land Cover (Büttner et al. 2004; Feranec et al. 2007a; Hazeu

et al. 2011)

All databases are covering the entire Netherlands, but they have different

properties and are produced according to different specifications (updating cycle,

thematic detail, data format etc.) (see Fig. 18.1 and section Data sources used). The

LGN database will be dealt in more detail as it combines information from BBG

and TOP10vector/Top10NL with other additional information, it has a clear land

cover focus and is a well-established Dutch database that is regularly updated.
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The first objective of this chapter is to present the Dutch LGN database. After a

short historical background, the data sources used for the production of the last

version of LGN (LGN6), the methodology, and the way how land cover changes are

monitored are presented. A second objective is the comparison of the LGN6

database with the European CLC2006 database for the Netherlands. Harmonization

of both databases is hampered by differences in the level of spatial detail, temporal

update frequency and semantics.

18.2 LGN6 and Its History

The Dutch land use database (LGN6) is a grid database of 25*25 m2 reflecting the

land cover for 39 land cover classes including urban areas, forest types, water, crop

types and several ecological classes (Hazeu et al. 2010, 2011). Today there are six

versions of the LGN database (LGN1..LGN6) with the following reference years

1986, 1992/1994, 1995/1997, 1999/2000, 2003/2004 and 2007/2008. This range of

Fig. 18.1 An area in the Netherlands represented by four “land cover” databases showing the

differences in thematic detail, format and appearance (Top10NLversion2011 (LL), BBG2008

(UL), LGN6 (UR) and CLC2006 (LR))
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more than 20 years of land cover information creates a unique spatial information

source to monitor developments of land cover over time in The Netherlands.

Besides information derived from satellite imagery (mainly Landsat 5/7 and

IRS-P6), additional data sources like the Dutch topographical map Top10vector

(Kadaster 2003, 2007a, b), “BestandBodemGebruik (BBG)” (CBS 2002), aerial

photographs, natural areas database (BKN) (Kramer et al. 2007; Hazeu and

Schuiling 2009) and land use information from the Office of Statistics (CBS)

were used in the production of LGN6.

During its history the database evolved from an experimental pilot project

(LGN1 – 1986) into a widely used and established database (LGN6 – 2007/

2008). The first two versions of LGN were produced with a limited nomenclature,

mixed classes and a limited accuracy. In LGN3 the nomenclature of 39 classes was

consolidated, its thematic accuracy improved and with the introduction of nature

classes it strongly became even more useful for environmental analysis. Important

improvements in LGN4 were the connection with the Dutch topographical database

(Top10vector) which made the classification of the agricultural crops easier and

more consistent. The nomenclature (39 classes) and spatial resolution of 25*25 m2

did not change while monitoring of land cover changes was introduced. LGN4 was

used as input database for the production of LGN5. The production methodology

for LGN5 and LGN4 are comparable. Emerging user requirements (exchange

between databases, interoperability, INSPIRE developments) and increased data

availability made it inevitable to adapt the methodology for LGN6 (Hazeu

et al. 2011).

A comparison of the different LGN databases shows an increase in thematic

detail, in thematic accuracy and in the number of satellite images used for classi-

fication (in later versions mainly for the classification of agricultural crops) (see

Table 18.1). Figure 18.2 shows the differences in appearance of the different

databases. The LGN1 database looks much more patchy then later versions. Also

the thematic detail increased from LGN1 onwards.

Table 18.1 Different LGN databases compared on thematic detail, thematic accuracy, images

used, integration and monitoring of land cover changes

LGN1

(1986)

LGN2

(1992)

LGN3

(1997)

LGN4

(2000)

LGN5

(2004)

LGN6

(2008)

Number of classes 17 45 39a 39 39 39

Accuracy (%) 67 70–80b 85 90c 81c 85c

Number of satellite images 2d >10 17 16e 19e 19

Number of time steps 1 2–3 3–4 3 2–4 2–4

Integration with other GIS No No Yes Yes Yes Yes

Crop classification base on

Top10-vector geometry

No No No Yes Yes Yes

Monitoring land cover changes No No No Yes Yes Yes
aLGN3: LGN3 consists of 25 classes, LGN3plus consists of 39 classes
bLGN2: accuracy with mixed classes
cOnly crop database
dLGN1: exclusive satellite images for completeness
eLGN4 and LGN5: without ERS-SAR mosaic
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From LGN4 onwards a methodology was designed to monitor land cover

changes in a consistent and accurate way (De Wit 2003). The LGN nomenclature

was aggregated into eight monitoring classes, namely Urban, Orchards, Green-
houses, Agricultural land,Water, Infrastructure, Forest andNature (see Table 18.2).
In case of LGN4 and LGN5, the previous LGN3respectively LGN4 version was

taken as a basis for the production of the next version to avoid inaccuracies and

pseudo-changes due to shifts in geometry. Real changes between the aggregated

classes were visually interpreted and manually digitised by comparing multi-

temporal images from different acquisition time windows. Improvements or

changes that fixed previous misinterpretations were handled as technical changes

separately from real changes (De Wit 2003; Hazeu 2006). The methodology to

monitor land cover changes gradually changed with the production of LGN6

which will be explained in the methodology section of this chapter.

18.3 Data Sources for LGN6

The following databases were used for the production of LGN6 (see also (Hazeu

et al. 2011)):

– Remote sensing: satellite imagery (Landsat5 TM: April 16th, May 2nd, August

6th and September 23rd 2007; May 11th, July 30th and August 31st 2008,

IRS-P6: June 11th 2007; May 7th, June 24th and August 30th 2008) and aerial

photographs of the year 2006 (spatial resolution of 0.5 m and were acquired

during the period April-June 2006).

– Dutch topographical map (Top10vector, version 2006): topographical map

sheets at scale 1:10,000 with reference years from 2002 to 2006. Since 1998,

Fig. 18.2 Visual comparison of the same area of land between different LGN versions (from left
to right: LGN1, LGN3plus and LGN6)
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the entire Netherlands is covered by 1,350 map sheets covering an area of 5 by

6.25 km. The map sheets are updated every 2–4 years which will be increased in

the near future. The Top10vector version2006 contains map sheets from 2002

till 2006 and is the last available version (Kadaster 2003, 2007a, b). From then

onwards, improvements made the topographical database available as object

oriented database (Top10NL). The database is uniform, consistent and covers

the complete Netherlands. The database consists of different topographical

elements in GML format (e.g. terrain, water, roads, etc.). This database will be

used in LGN7 and other future updates of LGN (see Fig. 18.1). Field observa-

tions in combination with aerial photography are the basis for the updates.

– Urban areas of 2003: database produced by Ministry of Spatial Planning and

Environment (VROM) and based on land use database 2003 (BBG2003) with

delineations of urban areas (VROM 2007). Only one version available.

– Land use database of 2003: land use database produced by the Office of Statistics

(CBS) with Top10vector database (version 2003) as geometrical basis. The 2003

version (BBG2003) recognises 38 different land uses with special focus on

urban (CBS 2002). Figure 18.1 shows a spatial representation of the database.

Recently, the 2008 version was published. Other versions are the ones indicating

the land use with reference years 1989, 1993, 1996, 2000, 2003, 2006 and 2008

showing an increase in update frequency. The social/economic use of land is the

main criteria to classify land into different categories. The updates of the Land

Use database are based on the most recent topographical database (Top10vector/

Top10NL) in combination with aerial photography and statistical information.

– Natural areas database of 2007: a grid database having Top10vector as basis.

The database focuses on the nature areas of the Netherlands and especially

coastal and inland dune areas and natural grassland areas (Kramer et al. 2007;

Hazeu et al. 2009; Hazeu and Schuiling 2009).

– Previous LGN version (LGN5) (Hazeu 2005, 2006).

Table 18.2 LGN monitoring classes with corresponding LGN classes (Hazeu et al. 2010)

Agriculture Grassland, maize, potato, sugar beet, wheat, other crops and flower bulbs, tree

nurseries, buildings in agricultural areas

Greenhouses Greenhouses

Orchards Orchards, fruit nurseries

Forest Deciduous forest, coniferous forest

Water Fresh water, salt water

Infrastructure Main roads and railways

Urban Primary and secondary built-up, forest in primary and secondary built-up,

grassland in primary and secondary built-up, bare soil in built-up

Nature Salt marshes, coastal sands, dune areas with low or high vegetation, heath land in

coastal areas, drifting sands/river sandbanks, heath land, grassy or very grassy

heath land, raised bogs, forest in raised bogs, reeds, forest in swamp areas,

other swamp areas, natural grasslands
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18.4 Methodology

Increased data availability and changing user requirements (exchange between

databases, interoperability, INSPIRE developments) made it necessary to adapt

the methodology to produce LGN6. During the development of the LGN6 database

the following pre-conditions were taken into account:

– Dutch topographical database as geometrical basis (instead of former LGN5

database) to harmonize between topographical data and LGN6

– integration with other national databases to avoid redundant data production

– backward compatibility with previous LGN versions

The new approach consisted of two main workflow lines:

1. object-oriented classification: an assignment of LGN classes to Top10vector

objects followed by

2. pixel-based classification: a rasterisation process (Hazeu et al. 2010, 2011)

Figure 18.3 respectively Fig. 18.4 are flow diagrams representing these different

steps in the production process.

The object based classification started with the aggregation of Top10vector

classes into a limited number of LGN classes. Secondly, urban areas from

BBG2003/BG2003 were integrated with the Top10vector database (version2006)

to define the urban extent. The integration was based on decision rules taking into

account Top10vector, the BBG2003/BG2003 and surface area information.

Thirdly, Top10vector objects were aggregated into eight LGN monitoring classes.

Land cover changes were attributed by comparing 2003/2004 and 2007/2008

imagery with the Top10_upd database as result. The marked land cover changes

(Top10_chg) finally appear as a binary mask in the LGN6chg database (Fig. 18.4).

The updating methodology is comparable with the update of previous LGN data-

bases and described in detail in De Wit (2003).

Top10_agr

Top10_upd

Top10_forest

Top10_heath

LGN5BKN 2007

BBG/BG2003

Satellite images, aerial
photographs, ancillary data

Top10_lgn6

Top10_chg

Top10vector (2006)

LGN6crop

Fig. 18.3 Data flow diagram for the object-oriented LGN6 production phase. The topographical

database (Top10vector) is the geometrical basis for updating (Top10_upd) and crop classification

(Top10_agr). It is integrated with urban information (BBG/BG2003), land cover changes based on

comparison of remote sensing images from different time steps and information on nature areas

(BKN2007 and LGN5)
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The following methodological step was to attach further attributive information

to the Top10vector objects on basis of additional databases. LGN5 and Natural

Areas database (BKN2007) in combination with Top10vector made it possible to

attribute salt marshes, heath land in the coastal areas and raised bog to the

Top10vector objects resulting in Top10_lgn6 database (Table 18.3). Finally, forest

and heath land areas were selected. In another production step, these areas were

classified on basis of satellite imagery into more thematic detailed classes (forest

type, cover of grass in heath land areas).

In a separate subsequent step, the agricultural areas were classified. The classi-

fication started with the selection of the agricultural parcels of the Top10vector

database (pastures and agricultural land) (Top10_agr). Agricultural parcels with

more than one agricultural crop were manually subdivided on basis of satellite

imagery. A multi-temporal classification of satellite imagery based on NDVI was

carried out. The differences in phenology for seven agricultural crops were used to

LGN6ras_agr

LGN6ras_basis

LGN6ras_forest

LGN6ras_heath

Top10_lgn6

Top10_houses

LGN6 +
LGN6chg

Top10_infra

LGN5

BKN2007

LGN6crop

Fig. 18.4 The pixel-based classification as second step in the LGN6 production process. The

LGN6 grid cells (LGN6ras_basis) were enriched with additional information from GIS databases

(Top10_houses and infrastructure, BKN2007 and LGN5) and remote sensing classifications

(forest, heath and crops) resulting in the final database (LGN6 and LGN6chg)

Table 18.3 Databases and remote sensing imagery used in the final thematic assignment of the

LGN6 classes (Hazeu et al. 2011)

Top10vectora Greenhouses, orchards, tree and fruit nurseries, main roads and

railways

Top10vector buildings Primary and secondary built-up areas; buildings in agricultural areas

Land use and urban

areas of 2003

Urban classes

Natural areas of 2007 Sand and dune classes, swamp classes, natural grasslands

LGN5 Fresh and salt water, salt marshes, raised bogs classes, swamp classes

Satellite imageryb Grassland, maize, potato, sugar beet, wheat, other crops and flower

bulbs; forest classes; heath land classes

Aerial photographsb Dune classes
aTop10vector geometry and thematic content plays a role for each LGN6 class at an earlier stage
bBoth remote sensing sources were used to detect land cover changes
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classify them (grassland, maize, potato, sugar beet, cereals, other crops and flower

bulbs). A non-supervised classification with manual correction was applied. Clas-

sification results (area statistics) were compared with CBS agricultural statistics.

Finally, each crop parcel was attributed to the main crop type (LGN6crop database)

(De Wit and Clevers 2004; Hazeu 2006).

The second main workflow line (pixel-based classification) started with the

conversion of Top10_lgn6 objects into 25*25 m grid cells (lgn6ras_basis)

(Fig. 18.4). The location of the grid cells corresponds with the previous LGN

versions. Crop information from the LGN6 crop database (LGN6crop) was attrib-

uted to the agricultural areas of LGN6 grid database (LGN6ras_basis). Also forest

and heath land unsupervised classification results were attributed. The extent and

type of different grassland, dune and swamp areas were defined by combining

information from topographical data (Top10vector), natural areas (BKN2007) and

LGN5 database information. Next, the buildings (Top10vector buildings) were

buffered with 10 m, rasterised and attributed to the 25*25 m2 grid cells. For a

selection of main roads and railways rasterisation and attribution was also applied

after buffering them with 5–15 m depending on their type. All information was

added to the LGN6ras_basis database with the LGN6 database as final result

(Fig. 18.4). The LGN6crop and the LGN6chg were validated (see for details

(Hazeu et al. 2010, 2011)).

18.5 Results and Discussion

18.5.1 LGN6 and Land Cover Changes

In LGN6 (2007/2008) agricultural pastures are the main land cover in the Nether-

lands. Together with other agricultural crops they occupy 63.3 % of the Dutch land

territory. Urban areas, forests and nature areas occupy 14.2 %, 10.6 % respectively

7.2 % of the land surface (Hazeu et al. 2010, 2011).

Land cover changes are monitored for eight aggregated monitoring classes (see

Table 18.2) between LGN5 and LGN6. A total of 259.1 km2 which is 0.62 % of the

land surface has changed between 2003 and 2008. As reported in (Hazeu

et al. 2011) almost 50 % of all land cover changes is from agricultural land into

urban area. The surface area of real land cover changes for the monitored classes is

far below the difference between LGN5 and LGN6 (see Table 18.4). In other words,

the real land cover changes are outnumbered by methodological changes (Hazeu

et al. 2011). Two significant reasons for this discrepancy are the difference in

production methodology between LGN5 and LGN6 together with the fact of not

using the former LGN5 as basis for the production of LGN6. In Hazeu et al. (2011)

a solution is presented to facilitate modelling and assessment studies as well as

statistical comparison of databases produced with different methodologies.
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18.5.2 LGN6 and Corine Land Cover

The CORINE Land Cover (CLC) database is extensively described in Chap. 5 and

also appears in various peer-reviewed articles (Büttner et al. 2004; Feranec

et al. 2007a, b). CORINE Land Cover is a European land cover vector database

characterised by 44 land cover classes (3 level hierarchical nomenclature), mini-

mum mapping units of 25 ha with a width of >100 m and addresses the scale

1:100,000. Three version (1990, 2000, 2006) are available with layers indicating

land cover changes of >5 ha. In the near future a new version (CLC2012) will

become available. In the Netherlands only 30 out of the 44 CLC class are present

(Table 18.5).

The Dutch CLC activities are independent from the production of the national

LGN database. One of the reasons is that the long term vision for updating of CLC

is not yet stabilised to synchronise it with the national land cover mapping. Also the

history of both databases, spatial detail and semantics are different, which makes

harmonisation difficult as discussed in e.g. Jansen et al. (2008).

The comparison of the LGN legend with the CLC nomenclature shows that the

LGN database has less detail in the urban areas, more detail in agricultural and

nature areas. In general, however, LGN has more thematic (and spatial) detail

(39 classes) compared with the 30 CLC classes present in the Netherlands.

Table 18.6 gives an overview of the relations between LGN and CLC based on

their semantics. Mapping of LGN to CLC shows that there are 1:1, 1:m and m:1

relations at CLC level 3. Some examples:

– 1:1 relation: salt marshes (LGN code 30) is 1:1 compatible with salt marshes
(CLC code 4.2.1),

– 1:m relation: grass in built-up areas (LGN code 23) can be mapped by construc-
tion sites, green urban areas and sport and leisure areas (CLC codes 1.3.3, 1.4.1

respectively 1.4.2) and

– m:1 relation: maize (LGN code 2), sugar beet (LGN code 4) and cereals (LGN

code 5) can be merged into the arable land (CLC code 2.1.1) or several LGN

heathland classes are compatible with moors and heath lands (CLC code 3.2.2).

Table 18.4 Areas (km2) for 8 monitoring classes for LGN5 and LGN6 and the land cover changes

(Adapted from Hazeu et al. 2011)

Monitoring classes LGN5 LGN6

LGN6-

LGN5 Real changes

Decrease

LGN5

Increase

LGN6

Agricultural land 22233.4 21686.6 �546.8 �184.1 193.5 9.4

Greenhouses 152.5 144.0 �8.5 7.1 8.8 15.8

Orchards 291.7 255.3 �36.4 �4.7 5.1 0.4

Forest 3156.8 3544.1 387.3 �8.3 14.0 5.8

Water 7771.4 7984.5 213.0 14.3 2.3 16.6

Urban 5082.9 4768.5 �314.4 136.0 25.6 161.6

Infrastructure 1017.6 734.9 �282.7 4.7 6.2 10.9

Nature 1820.8 2409.3 588.5 35.1 3.6 38.7

Total 41527.1 41527.1 0.0 0.0 259.1 259.1
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Table 18.5 CLC land cover classes in the Netherlands (Hazeu 2003)

Level 1 Level 2 Code Level 3 CORINE land cover class

Artificial

surfaces

1.1 Urban fabric 1.1.1 Continuous urban fabric

1.1.2 Discontinuous urban fabric

1.2 Industrial, commer-

cial and

1.2.1 Industrial and commercial units

Transport units 1.2.2 Road and rail networks and associated
land

1.2.3 Port areas

1.2.4 Airports

1.3 Mine, dump and 1.3.1 Mineral extraction sites

Construction sites 1.3.2 Dump sites

1.3.3 construction sites

1.4 Artificial

non-agricultural

1.4.1 Green urban areas

Vegetated areas 1.4.2 Sport and leisure facilities

Agricultural

areas

2.1 Arable land 2.1.1 Non-irrigated arable land

2.1.2 Permanently irrigated land

2.1.3 Rice fields

2.2 Permanent crops 2.2.1 Vineyards

2.2.2 Fruit trees and berry plantation

2.2.3 Olive groves

2.3 Pastures 2.3.1 Pastures

2.4 Heterogeneous agri-

cultural areas

2.4.1 Annual cops associated with permanent

crops

Agricultural areas 2.4.2 Complex cultivation patterns

2.4.3 Land principally occupied by agriculture
with significant natural vegetation

2.4.4 Agro-forestry areas

Forests and

semi-

natural

3.1 Forest 3.1.1 Broad-leaved forest

Areas 3.1.2 Coniferous forest

3.1.3 Mixed forest

3.2 Shrub and/or

herbaceous

3.2.1 Natural grasslands

Vegetation

associations

3.2.2 Moors and heath lands

3.2.3 Sclerophyllous vegetation

3.2.4 Transitional woodland-scrub

3.3 Open spaces with

little or no

3.3.1 Beaches, sand, dunes

Vegetation 3.3.2 Bare rocks

3.3.3 Sparsely vegetated areas

3.3.4 Burnt areas

3.3.5 Glaciers and perpetual snow

(continued)
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Table 18.5 (continued)

Level 1 Level 2 Code Level 3 CORINE land cover class

Wetlands 4.1 Inland wetlands 4.1.1 Inland marshes

4.1.2 Peat bogs

4.2 Coastal wetlands 4.2.1 Salt marshes

4.2.2 Salines

4.2.3 Intertidal flats

Water bodies 5.1 Inland waters 5.1.1 Water courses

5.1.2 Water bodies

5.2 Marine waters 5.2.1 Coastal lagoons

5.2.2 Estuaries

5.2.3 Sea and ocean

CLC classes in italics are present in the Netherlands

Table 18.6 LGN6 legend and corresponding CORINE land cover classes

Code Class CLC classa Code Class CLC classa

1 Pasture 231 26 Built-up areas outside

urban areas

112

2 Maize 211 28 Grass in semi built-up

areasb
124, 131, 132, 133,

141, 142

3 Potatoes 211 30 Salt marshes 421

4 Sugar beet 211 31 Coastal sands 331

5 Cereals 211 32 Dune areas with low

vegetationc
321

6 Other agricultural

crops

211 33 Dune areas with high

vegetationc
321

8 Greenhouses 211 34 Heathland in coastal

areas

322

9 Orchards 222 35 Drifting sands/river

sandbanks

331

10 Flower bulbs 211 36 Heathland 322

11 Deciduous forest 311 37 Grassy heathland 322

12 Coniferous forest 312 38 Very grassy heathland 322

16 Fresh water 511 39 Raised bogs 412

17 Salt water 523, 522 40 Forest in raised bogs 311

18 Urban built-up

areas

112, 121, 123,

124

41 Other swamp

vegetation

411

19 Semi urban built-up

areas

112, 142, 121,

123, 124

42 Reeds 411

20 Forest in built-up

areasc
141 43 Forest in swamp areas 311

22 Forest in semi

built-up areasc
141, 142 45 Natural grasslands 321

23 Grass in built-up

areas

133, 141, 142 61 Tree nurseriesb 211

24 Bare soil in built-up

areas

133 62 Fruit cultivationb 222

25 Main roads &

railways

122

aCLC code is explained in Table 18.5 and Chap. 21, LGN-CLC matching based on semantics
bNew classes in LGN6
cThematic definition of class strongly differs between LGN5-LGN6
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Mixed classes like complex cultivation patterns (2.4.2), land principally
occupied by agriculture with significant natural vegetation (2.4.3) and mixed forest
(3.1.3) are not used in the national LGN database. Also the classes transitional
woodland-shrub (3.2.4) and intertidal flats (4.2.3) do not have an equivalent in the

LGN database.

Both CLC and LGN databases have a different format and minimum mapping

unit. LGN is a grid database with regular grids of 25*25 m2; CLC is a vector

database with a minimum mapping unit of 25 ha. As a consequence the application

scale of CLC and LGN is different. LGN addresses the scale 1:50,000 while CLC

addresses the scale 1:100.000. A consequence of the different spatial scales is that a

geometrical overlay of LGN and CLC shows a wide variety of LGN classes present

in particular CLC polygons.

The temporal synchronisation between national LGN and European CLC

releases is largely by accident. The CLC1990 and 2000 database are partly based

on satellite imagery with the same acquisition date as LGN1 and LGN4, i.e. the

years 1986 and 2000, respectively. CLC2006 has no temporal national equivalent.

Having a single topographical database as a common source of LC/LU infor-

mation would avoid double work and synchronise the national and European land

cover activities. Good examples are United Kingdom with LCM and Germany with

DLM-DE (Smith et al. 2007; Arnold 2009). The CLC database would be a spatial

and thematic less detailed version of the national land cover database. However, the

comparison of these newly defined databases with old versions of LGN or CLC will

be hampered by differences in statistics and spatial allocation of land cover. This

can be (partly) avoided by mapping separately the real changes and creating a new

database with the new geometry in which you introduce for the real changes the

land cover of the previous (t-1) database. Another possibility is to create a new

database with the old geometry and introduce for the real changed areas the land

cover from the newly (t) created database (Hazeu et al. 2011).

18.6 Conclusions

The Netherlands has a long history in land cover/land use mapping. Several country

wide databases exist with different history, formats, update frequencies, semantics

and spatial detail. The most detailed one in the fields of environment and agriculture

is the LGN database. In already more than 20 years a unique series of land cover

snapshots has been built up making it possible to have a spatial and statistical

overview of developments in the landscape. Meanwhile a lot of experience has been

acquired with the mapping of land cover and its changes.

The production of LGN is independent from the Dutch CORINE Land Cover

(CLC) activities. One of the reasons is that a long term vision for updating of CLC

is not yet stabilised. Synchronisation with the national land cover mapping is

therefore not yet possible. Also the history, the spatial and thematic details of

both databases are different, which makes harmonisation difficult.
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Thematic classes are often not 1:1 exchangeable between databases, which

makes the generation of CLC out of LGN (bottom-up approach) difficult without

additional information. Ideally a new start for both databases making use of the

same topographical baseline would avoid double work. However, backward com-

patibility needs to be guaranteed.

The temporal synchronisation of national and European land cover activities

needs a long term vision. The reference years of the national and European land

cover databases have to coincide as much as possible. Ideally, all time snapshots of

the less frequent updated database coincide with snapshots of the more frequently

updated land cover database.

The integration of national land cover mapping activities (like LGN) with the

European CLC activities is a challenge for the future. Spatial, temporal and

thematic (semantics) details need to be fine-tuned between MS and EU activities

keeping in mind that the time series will be maintained, i.e. the comparison between

versions (with different reference years) still will be possible. Several activities

(e.g. FP7-HELM project http://www.fp7helm.eu/ and EAGLE working group

http://sia.eionet.europa.eu/EAGLE) are running to achieve this goal. The EAGLE

concept is a first step for a successful, more efficient and effective land monitoring

programme.
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Chapter 19

The Use of the Land-Cover Classification

System in Eastern European Countries:

Experiences, Lessons Learnt

and the Way Forward

Louisa J.M. Jansen, Alexandru Badea, Pavel Milenov, Cristian Moise,

Vassil Vassilev, Ljudmila Milenova, and Wim Devos

19.1 Introduction into Categorisation

and the Land-Cover Classification System

The understanding of the interactions between land cover, defined as “the observed
(bio)physical cover on the Earth’s surface” (Di Gregorio and Jansen 2000), and

land use, defined as “the type of human activity taking place at or near the surface”
(Cihlar and Jansen 2001), in their spatial and temporal appearances is fundamental

to comprehension of land-use and land-cover change. Land cover can represent an

expression (indicator) of human activities and, as such, changes with changes in

land use and management. Hence, land cover may form a reference base for

applications including forest and rangeland monitoring, production of statistics
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for planning and investment, biodiversity, climate change and desertification

control (Di Gregorio and Jansen 1998).

In the 1990s, different groups worked on the development of universally

applicable land-cover and land-use categorisations that would contribute to

standardisation of the criteria used for description and consequently categorisation,

in addition to harmonisation between existing datasets plus harmonisation of

change (Jansen 2010). FAO and UNEP emphasized a parameterised approach,

i.e. using a set of explicit independent criteria resulting in a flexible data model

that can be used as a uniform basis for description, in addition to the use of (part of)

these parameters for change detection and monitoring. Thus not class labels are

vital but the applied explicit set of parameters (Jansen 2010).

Without categorisation, real landscape phenomena would remain merely a

bewildering multiplicity and the precise and unambiguous communication of

ideas and concepts concerning these phenomena would be impossible (Shapiro

1959). Categorisation, or classification, is defined as “the ordering or arrangement
of objects into groups or sets on the basis of relationships. These relationships can
be based upon observable or inferred properties” (Sokal 1974). Another, and even

earlier, definition by Shapiro (1959) reads “the sorting of a set of phenomena
composed of generally-alike units into classes or kinds, each class or kind
consisting of members having definable characteristics in common” is also inter-

esting but does not underline the importance of relationships. It is important to note

that categorisation is an abstraction in the sense that it depicts a representation

of the reality (Di Gregorio and Jansen 2000).

The set of diagnostic criteria for the parameterised categorisation approach

followed in the Land-Cover Classification System (LCCS), developed in the period

1996–2000 at FAO together with UNEP and financed by the Italian Cooperation

(Di Gregorio and Jansen 2000), is based upon examination of criteria commonly

used in existing categorisations that identify and describe land cover in an impartial,

measurable and quantitative manner (Jansen and Di Gregorio 2002). However, the

definition of categorisation provided in FAO (2005) “classification is an abstract
representation of the situation in the field using well-defined diagnostic criteria:
the classifiers” confuses categorisation with an abstract representation of a

categorisation example given in Kuechler and Zonneveld (1988) and completely

overlooks the fact that categorisation is the basic cognitive process of arranging
objects into classes or categories, as well as the act of distributing objects into

classes or categories of the same type (Jansen 2010, p. 24–25).

The parameterised LCCS approach to categorisation aims at a logical and

functional hierarchical arrangement of the parameters, thereby accommodating

different levels of information, starting with broad-level classes that allow further

systematic subdivision into more detailed subclasses. At each level the defined

classes are mutually exclusive. Criteria used at one level of the categorisation are

not to be repeated at other levels. The increase of detail in the description of a class

is linked to the increase in the number of parameters used. In other words, the more

parameters are added, the more detailed the class. The class boundary is then

defined either by the different number of parameters, or by the presence of one or
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more different types of parameters. Emphasis is not given to the derived class name,

the traditional method, but to the set of parameters used to define this land-cover

class (Jansen and Di Gregorio 2002; Jansen 2010). The use of parameters and their

hierarchical arrangement is a function of geographic accuracy. The arrangement

of parameters will assure at the highest levels of categorisation, i.e. the most

aggregated levels, a high degree of geographic accuracy. Since land cover deals

with a heterogeneous set of classes, the parameters are tailored to each of the eight

major land-cover categories (Fig. 19.1).

LCCS is an a priori categorisation system, implying that all combinations of

parameters are accommodated in the system independent of scale, method and tools

used to identify objects (e.g., human eye, statistics, aerial photographs or satellite

remote sensing). Having all pre-defined classes included in the system is the intrinsic

rigidity of this type of categorisation. However, it was considered at the time of

development the most effective way to produce standardisation of categorisation

results between user-communities. In order to assist the latter a dedicated software

application was developed (Jansen and Di Gregorio 2002). The use of this software

application for harmonisation of existing datasets in a number of Nordic countries has

been critically examined by Jansen et al. (2008).

Cultivated & managed terrestrial areas

- Life form of main crop*
- Field size**
- Field distribution**
- Crop combination
- Cover-related cultural practices
- Crop type***

(Semi-) natural terrestrial vegetation

- Life form of main stratum*
- Cover of main stratum*
- Height of main stratum
- Spatial distribution**
- Leaf type
- Leaf phenology
- Stratification of 2nd layer
- Stratification of 3rd layer
- Floristic aspect***

Artificial surfaces & associated areas

- Surface aspect*
- Built-up object***

Cultivated aquatic or regularly flooded
areas

- Life form of main crop*
- Field size**
- Field distribution**
- Water seasonality
- Cover-related cultural practices
- Crop combination
- Crop type***

(Semi-) natural aquatic or regularly 
flooded vegetation

- Life form of main stratum*
- Cover of main stratum*
- Height of main stratum
- Water seasonality
- Leaf type
- Leaf phenology
- Stratification of 2nd layer
- Floristic aspect***

Primarily vegetated areas Primarily non -vegetated areas

Bare areas

- Surface aspect*
- Macropattern
- Soil type/lithology***

Artificial water bodies, snow & ice

- Physical status*
- Persistence
- Depth
- Sediment load
- Salinity***

Natural water bodies, snow & ice

- Physical status*
- Persistence
- Depth
- Sediment load
- Salinity***

Environmental attributes

Available attributes to most major land-cover categories are: Landform, Lithology, Soils, Climate and Altitude.
Available attributes depending on the major land-cover category are: Erosion, Crop cover, Salinity, Scattered vegetation.

* =Obligatory parameter to define a land - cover class.
**=Parameter can be skipped or activated.

***=Specific technical attribute that is optional.

** Can be skipped 
only together!

Fig. 19.1 The major land-cover categories of LCCS (version 2.0) grouped under the primarily

vegetated and primarily non-vegetated area distinction (Jansen 2010, p. 26)

19 The Use of the Land-Cover Classification System in Eastern European. . . 299



The LCCS categorisation methodology has been tested, modified and validated

in several international projects in order to analyse its applicability in different

environmental settings, its use at different data collection scales and with different

means of data collection, its usefulness for data harmonisation and in land-cover

change analysis (Jansen 2010, p. 27–28). The Land Use and Cover Change (LUCC)

project of the International Biosphere-Geosphere Programme (IGBP) and Interna-

tional Human Dimensions Programme (IHDP) on Global Environmental Change

endorsed the methodology (McConnell and Moran 2001). In Europe, it has been

applied in a number of FAO projects in the Central and Eastern European Countries

(CEEC) and the Commonwealth of Independent States (CIS) (e.g., Azerbaijan,

Bulgaria (Travaglia et al. 2001), Romania (Jansen and Veldkamp 2012) and

Moldova) at the time of their economic transition, by the Nordic Council of

Ministers’ Nordic Landscape Monitoring project to examine in detail harmoni-

sation (Groom 2004; Jansen et al. 2008), and by a World Bank financed project in

Albania to study land-cover/use change (Jansen et al. 2006). In this paper the

projects in the CEEC and CIS will be discussed, as they were the first European

countries where LCCS was introduced, to illustrate the experiences with LCCS and,

if applicable, follow-up activities (Sect. 19.2), the lessons learnt (Sect. 19.3), and

further developments in Europe (Sect. 19.4). This is followed by suggestions for the

way forward at the methodological level (Sect. 19.5).

19.2 The Use of LCCS in the Different

CEE and CIS Countries

FAO initiated Technical Cooperation Projects (TCP) in Azerbaijan, Bulgaria,

Romania and Moldova shortly after the transition to a market-oriented economy

started. Transition from a centrally planned to a market-oriented economy involved

‘privatisation’ of agricultural lands meaning the shifting of ownership of land from

collectives and state to private persons. This land reform is either through restitu-

tion, distribution or compensation (Table 19.1). Land is at the centre of sustainable

development; this recognition leads to promoting secure tenure rights and equitable

access to land (FAO 2012).

Governments in the CEEC and CIS implemented a comprehensive package of

social and economic reform policies. Spatial developments were rapid in the period

of transition and such developments are related to the reform choices the govern-

ments made in these countries (Swinnen 1999; Kuemmerle et al. 2008). These land

reforms did not only deal with the transfer of property rights and ownership, they

dealt with the structures of the agrarian economy. In rural areas the relation to land

has profound implications for agricultural productivity, environmental sustainabil-

ity and the social and economic status of the rural households. Matching land use

and land tenure with the aim to reach a better socio-economic structure therefore

becomes crucial (Larsson 2002).
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As FAO had developed the LCCS, it was from the organisational viewpoint the

logical approach to apply in these projects in countries that were at the time not

European Union (EU) Member States1 or accession countries, instead of the

commonly used EU CORINE Land Cover (CLC). The latter serves as a tool for

fulfilling pan-European monitoring needs. The experts worked in more than one

FAO project thereby enhancing the cross-fertilisation in the methodologies used

and experiences gained.2

Land-cover data are seen as a baseline dataset for the understanding of how our

environment is changing. Thus, knowledge of the actual occurrence of land-cover

types (“where” and “what”) is essential in order to be able to monitor environmental

changes (“why” and “how”). Furthermore, understanding land-use change

processes of the past (“what was”) may contribute to model their effects on

land-cover patterns in future (“what may be”). Land cover and land use changed

dramatically in the transition period, thus the demand for current datasets by the

governments was huge to enable them to develop new policy and planning and to

make informed decisions.

In the subsequent sections an overview is provided per country of the projects

and further activities concerning land-cover/land-use mapping from an operational

viewpoint. Especially the efforts to create the technical and human capacities in the

countries are highlighted. The successful use of advanced technologies such as

remote sensing and GIS depend on these capacities. The science and comparative

advantages of the parameterised approach of LCCS are described in more detail

Table 19.1 The privatisation process (Deininger 2003)

Region and

country

Potential private

ownership Privatisation strategy Allocation strategy Transferability

CEE

Albania All land Distribution (phys.) Plots Buy and sell,

leasing

Bulgaria All land Restitution Plots Buy and sell,

leasing

Romania All land Restitution and

distribution (phys.)

Plots Buy and sell,

leasing

CIS

Azerbaijan All land Distribution Plots (from shares) Buy and sell,

leasing

Moldova All land Distribution Plots (from shares) Buy and sell,

leasing

1On 1 January 2007 Bulgaria and Romania joined the EU.
2 The authors were involved in LCCS and the projects described in various ways: Louisa

J.M. Jansen is author of LCCS and she was involved in the projects in Albania and Romania;

Alexandru Badea worked in the projects in Azerbaijan, Romania and Moldova; Pavel Milenov

worked in the projects in Bulgaria and Romania and used LCCS at JRC; Cristian Moise was

involved in the projects in Romania; Vassil Vassilev and Ljudmila Milenova were involved in the

projects in Bulgaria; Wim Devos uses LCCS at JRC.
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elsewhere (Di Gregorio and Jansen 2000; Jansen and Di Gregorio 2002; Jansen

et al. 2008). The analysis techniques used in the beginning in each country

comprised visual onscreen interpretation of satellite imagery. However, especially

in Bulgaria and Romania the approach evolved over time in automated procedures

and object-oriented approaches.

19.2.1 Azerbaijan

Azerbaijan was the first country of the CIS where a new land-cover/land-use inven-

tory was executed by the FAO Technical Cooperation Project “Strengthening Capac-
ity in Inventory of Land Cover/Land Use by Remote Sensing” (TCP/AZE/8921)

starting in July 1999. This new inventory was necessary to see how to balance new

owners’ rights with the necessity and capacity of the government to regulate land use

and development for the best interest of society (Van der Molen and Jansen 2010;

Williamson et al. 2010). This new inventory led to a unique georeferenced

parameterised dataset using LCCS version 1.0 comprising 45 classes in five

categories (e.g., Water, Vegetation, Agriculture, Built-up areas and Bare surfaces)

to be used for agricultural planning, forestry and other sectors. In preparing the land-

cover dataset at 1:50,000 scale based upon interpretation of LANDSAT satellite data

acquired in 1998 and 1999, the project acquired a wealth of information on aspects

such as the salt affected areas, destruction of villages and on-going mineral exploi-

tation in the occupied territories. This specific information extracted from the digital

dataset, or newly generated with the acquisition of additional satellite images,

assisted in provision of a first layer of information in de-mining activities.

The usefulness of the generated digital land-cover dataset was shown by the

potential applications, thereby answering requests of different organisations (Badea

and Herisanu 2002). For example, following the invitation of the local government

of the Lenkaran District, and taking into account the uncontrolled urbanisation

(urban sprawl), the land distribution process and the lack of modern measuring

tools, the project team realised by image interpretation an inventory of the classes

‘Tea plantations’, ‘Orchards’, ‘Rice fields’ and ‘Herbaceous crops’ that could be

compared with the results obtained using classical methods by a local team of field

inspectors. Though the year of data collection differs, significant differences in the

perennial crops areas were found (Table 19.2). Thus, the project provided local

government with up-to-date information on which to take informed decisions.

Table 19.2 Comparison of two types of data with certain land-cover classes in the Lenkaran

District in Azerbaijan

Class Data obtained from maps (1995) (in ha) TCP/AZE data (2000) (in ha)

Tea garden 3,3753 8,953

Rice 1,787 927

Orchard 2,826 4,428

Herbaceous crops 956 2,155
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After 17 months the established project created a well-equipped remote sensing

laboratory at the Azerbaijan National Aerospace Agency (ANASA) that allowed

the staff to operate with ease the hardware and software, producing the countrywide

land-cover dataset from satellite image interpretation. The local team was then able

to offer support to important governmental initiatives in the domain of agriculture,

environment and inter-governmental development projects such as the Azerbaijan-

Russia transboundary transport corridor, an important part of the Silk Way global

infrastructure.

19.2.2 Bulgaria

The FAO Technical Cooperation Project “Strengthening Capacity in Agricultural
Development Through Remote Sensing and GIS” (TCP/BUL/8922) was executed

jointly by FAO and Bulgarian experts from the Remote Sensing Application Centre

(ReSAC) at the Bulgarian Aerospace Agency (BASA) from June 1999 onwards.

Bulgaria was the first European country where land-cover mapping using LCCS

version 1.0 was undertaken (Travaglia et al. 2001; see http://www.fao.org/

DOCREP/004/Y0785E/y0785e00.htm).

Land is an important productive resource in Bulgaria. The land reform changed

the structure of the agrarian economy. At the time of the implementation of the

land reforms neither the size, nor form, nor location of land parcels were issues.

As a result, the farm structure deteriorated in most cases. Agricultural, or rural,

development was not the main aim of land reform.

This project aimed at the development and testing of remote sensing and GIS

methodologies for inventory of land cover/land use in selected districts represen-

tative of the agricultural structure and production in the country, to set-up the

strategy for the provision of accurate parameterised baseline information on land

cover/use and associated land characteristics. This approach enabled the relevant

authorities to prepare and implement sound agricultural development plans, includ-

ing criteria for the land redistribution. A second objective was the strengthening

of the remote sensing and GIS capacities at ReSAC, at the time located in BASA.

This resulted in a well-structured ReSAC able to provide accurate and timely

information to the relevant government agencies.

The project produced initially 14 digital land-cover maps at 1:50,000 scale for

selected areas in the country covering an area of 5,600 km2 (an example is shown in

Fig. 19.2). These maps were prepared using LANDSAT satellite data, acquired in

1998 and 1999, as main data source and thus representing the land cover at that

time. This resulted in the three selected areas in a class set comprising 49 classes.

Different from the approach followed in Azerbaijan were two issues:

1. In Bulgaria each land-cover polygon also contained information on soil type and

erosion features from other sources. The resulting comprehensive digital dataset

was unique at that time in Bulgaria.
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2. The project also applied very high resolution IKONOS satellite images, acquired

in August 2000, for the inventory of vineyards in the area of Sandanski in the

southern part of the Strouma Valley.

The database provided useful information for agriculture, forestry, urban devel-

opment planning, environmental protection and for many other applications. It was

also used for computerised decision-support systems using application-specific

models, for instance to calculate erosion hazard risks or changes in water runoff

(using data from additional sources) associated with land-cover changes (Travaglia

et al. 2001). The project outcome underlined the flexibility and care of the para-

meterised LCCS methodology, as opposed to land-cover categorisations using a

predefined class set such as CLC, commonly used in the Europe Union (EU).

In the years following the FAO project, ReSAC expanded the land-cover

mapping activities over the territory of the country (Nedkov et al. 2000; Milenov

et al. 2004). More than half of the country was covered with digital land-cover data

through various regional projects, such as:

• Biomass assessment in forested areas for the purpose of green energy;

• Impact assessment of the pan-European transport corridors in Bulgaria based on

SPOT 5 (5 m resolution) satellite imagery;

Fig. 19.2 Example of land-cover map at 1:50,000 scale in Bulgaria
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• Flood risk analysis;

• Development of the strategy for the Land Parcel Identification System (LPIS) in

the context of the European Union’s Common Agriculture Policy (CAP)

(see also Sect. 19.4);

• Urban planning using land-cover data at 1:5,000 scale using very high resolution

satellite imagery; and

• Cross border cooperation (CBC) of ReSAC with Romania in the framework of

the FAO and CBC projects.

These initiatives resulted in the decision to develop a national land-cover

database, using LCCS as a reference to support the decision-making process at

national and regional levels. A nation-wide land-cover dataset, compliant with

1:50,000 cartographic scale, was developed on the basis of LANDSAT 5 satellite

images from 2009 with spatial resolution 30 m, using an object-oriented approach.

Each land-cover polygon from the dataset represents an ‘elementary unit’ of the

terrain having common (i.e. homogeneous) land cover, elevation and slope aspect

characteristics. The information for the landform was taken from the Shuttle Radar

Topography Mission (version 4; see http://www2.jpl.nasa.gov/srtm/), available at

the Joint Research Centre (JRC) of the European Commission (EC). The reference

land-cover dataset was entirely prepared by experts from the Agency for Sustain-

able Development and Euro-integration – Ecoregions (ASDE) and ReSAC

supported by FAO experts. The resulting database was delivered to the Executive

Agency Electronic Communication Networks and Information Systems (ECNIS) of

the Ministry of Transport, Information Technology and Communications. It is

currently available through a national geoportal. This reference land-cover dataset

will be used also in accordance with the implementation of the Directive 2/2007/EC

of the European Parliament and of the Council of 14 March 2007 establishing an

Infrastructure for Spatial Information in the European Community (INSPIRE), the

Directive 60/2007/EC of the European Parliament and of the Council of 23 October

2007 on the assessment and management of flood risks and other Directives and EU

programmes, including the international project GLOBCOVER, in which the EU,

USA, Russia, Canada and other countries participate. In future this land-cover

database will be upgraded and enhanced in agreement with the requirements for

the 1:25,000 cartographic scale to efficiently contribute to building-up the opera-

tional capacity to implement the INSPIRE Directive and the Global Monitoring for

Environment and Security (GMES) programme.

In addition to the countrywide BULCOVER dataset (Fig. 19.3), land-cover

mapping was executed for regional cities in Bulgaria on the basis of satellite images

with very high resolution. These maps are at scale 1:5,000 or 1:10,000 using images

with spatial resolution of 0.5–1 m (e.g., IKONOS, Quickbird, Eros andWorldview 1).

The class set for these datasets is LCCS-based but adapted to the specific scale and

user requirements (Fig. 19.4). Digital maps and databases are available from the

beneficiary Ministry of Regional Development and Public Works at the Department

Technical Rules and Regulations. These maps were developed in coordination

with the Executive Agency ECNIS that created an information system for the

harmonisation of spatial data and risk management (Milenova et al. 2003).
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Fig. 19.3 BULCOVER national land-cover dataset: 2009–2010

Fig. 19.4 Detailed land-cover map at scale 1:10,000 for 27 district centres based on the

BULCOVER LCCS methodology
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In 2012, further research on the application of the LCCS methodology was

carried out by MSc students from the Geology and Geography Faculty of the

Sofia University St Kliment Ohridski and ReSAC. This research concerned the

application of the object-oriented image analysis for land cover and analysis of

land-cover changes (period 2005–2010).

19.2.3 Romania

With the land reform in 1991, a new era started in Romania concerning land

ownership and land use. By imposing a maximum for land restitution and distrib-

uting the remaining collective land to farm workers, Romania attempted to combine

the strong demand for full property rights from those who formally owned the land

(i.e. historical justice) with equity considerations (Swinnen 1999).

Following the successful implementation of the FAO projects in Azerbaijan and

Bulgaria, an ambitious undertaking was started in 2002 for the entire territory of

Romania in the project “Land-Cover/Land-Use Inventory by Remote Sensing for the
Agricultural Reform” (FAO/TCP/ROM2801). The project aimed at (1) providing the

Ministry of Agriculture with an objective and accurate countrywide database on land

cover/land use including larger scale information for areas of particular agricultural

interest; (2) strengthening the capacity of the Romanian Centre for Remote Sensing

Applications in Agriculture (CRUTA) and other staff from the Ministry of Agricul-

ture to apply internationally recognized methodologies on land-cover/use mapping

by satellite remote sensing and GIS technologies; and (3) transferring the know-how

and practical applications of high resolution remote sensing, GIS-based metho-

dologies and LCCS to the staff assigned to the project through formal and on-the-job

training (see http://www.fao.org/sd/2002/TCPROM2801/fao_tcp_home.htm).

The specific outputs of the activities undertaken during the 18 months lifespan of

the project facilitated:

1. The production of a comprehensive digital land-cover dataset at 1:50,000 scale

of the whole country and detailed land-cover/use datasets at 1:25,000 scale for

few areas of particular interest, using LCCS version 1.0, through satellite image

interpretation, integrated with field observations and/or additional information.

These outputs became an essential input to the land redistribution and the

improved agricultural planning process as these datasets provided detailed

information on the various sizes of agricultural fields that occur in different

parts of the landscape (Jansen and Veldkamp 2012). To each land-cover polygon

additional information on soil types, erosion features (like in Bulgaria) and

municipal and/or district boundaries were added.

2. Capacity building in remote sensing and GIS.

3. The transfer of modern technology on satellite image interpretation of land

cover/use, based on the considerable FAO experience on this subject, and

constituted a good basis for the sustainable capacity and the development of

remote sensing applications in the country.
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Currently, the two LCCS databases (2000 and 2003) created with FAO and with

National Research & Development support are used by numerous public institu-

tions and economical agencies for thematic studies. The use of these datasets

underlines the accomplishment of the FAO project (Badea et al. 2007, 2008;

Docan et al. 2007). The joint team ROSA/CRUTA used the vector database

LCCS 2003 for generating a thematic map during the activation of the International

Charter on Major Disaster for the floods affecting the lower basin of Siret river in

2005 (Fig. 19.5). The value of the method used for the first time by Romanian

experts has been positively appreciated by the final users. Thus, in 2008 and 2010,

the maps for flood management included reports about the land-cover/land-use

categories affected by the disasters.

Furthermore, since CLC is the commonly used methodology in EU Member

States, in Romania two separate groups of experts allowed the creation of datasets

based upon CLC and LCCS. Rather than being a duplication of efforts, it allowed

the study of the agricultural and forest dynamics in a manner complementary to

CLC. The conclusions of the dual CLC/LCCS 2000 analysis imposed the contin-

uation in parallel of the LCCS activities. To ensure the actual use of the LCCS

results and their continuity, it was essential to adapt the LCCS 2000 and 2003

databases to be compatible with the INSPIRE Directive requirement that came into

force in 2006 for each EU Member State to document the categorisation

system used.

Fig. 19.5 The use of LCCS dataset of 2005 in Romania for generating a thematic map on flood

management
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As logical continuation, the project “Hybrid Method for Thematic Update of
the Land-Use Inventory by Remote Sensing/GIS Technology, Support for the Imple-
mentation of the European Agriculture and Environment Programs” (see http://

lccs07.rosa.ro) is continuing the activities developed during the previous years

around the group of the Romanian Space Agency (ROSA). This project takes into

account the evolution of data acquired by the new earth observation satellites and

the advanced methods of the semi-automatic and automatic processing of these data

that have become operational. The project allowed both the harmonisation of the

LCCS 2000 and 2003 datasets and the preparation of the interpretation of the SPOT

5 satellite image coverage acquired in 2007 (Mamulea and Dana 2008). The main

target of this project is to develop a second, scientific level of determination of

land-cover/use parameters (Olteanu et al. 2009). This project offered the possibility

to obtain the third series of LCCS databases using recent advanced technologies

adapted to the Romanian conditions. With this step methods and rules will be set up

for processing and validation of data. The first results are expected by late 2013.

Having developed such methods, a new coverage can be made every 3–4 years

based on the available human resources and at low costs. Furthermore, the third

LCCS dataset will enable the testing of mathematical models for the study of

landscape dynamics. An evaluation of the limit to which automation can be reached

without jeopardising the quality of relevant information is foreseen.

To ensure continuation of the built institutional setting and capacities, two

project proposals were submitted to the Seventh Framework Programme in the

spirit of the INSPIRE Directive and GMES, the “Towards an operational GMES
Land Monitoring Core Service” (GEOLAND2) and “Services and Applications for
Emergency Response” (SAFER). Until present, an important part of the moun-

tainous areas was interpreted. A comparison of the three LCCS datasets for 2000,

2003 and 2007 datasets is shown in Table 19.3. Due to the use of the SPOT

5 multispectral imagery with 10 m resolution the number of polygons increased

and new classes were identified.

19.2.4 Moldova

The massive land distribution implemented in Moldova was not accompanied by

any initiative to update the information on the land-cover/use changes using

Table 19.3 Comparison of

the three LCCS datasets in

Romania

Datasets

LCCS 2000 LCCS 2003 LCCS 2007

Number of polygons 13,730 15,268 37,973

Minimum (km2) >0.01 >0.01 >0.01

Maximum (in km2) 3,520.7 3,173.9 5,369.6

Sum (in km2) 41,906.9 41,906.9 41,906.9

Mean (in km2) 3 2.7 1.1

Number of classes 52 49 56
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modern technologies. For an agricultural country, such as Moldova, knowledge of

the extent and location of the cultivated areas in the different regions has not only a

basic value for development planning, but also prime economic and social impor-

tance. To revitalise the agricultural sector, the Ministry of Agriculture needed

timely and accurate information on the distribution of land-cover/use types in the

country. Data prepared before the land distribution process were of limited use, as

they depicted a situation no longer existent or they were prepared for specific crop

suitability studies, while their production was no longer considered necessary.

The assistance provided through the FAO Technical Cooperation Project

“Building Capacity in Inventory of Land Cover/Land Use by Remote Sensing”
(TCP/MOL/2903), started on March 2004, increased the satellite data processing

capacity of the State Agency for Land Relations and Cadastre (SALRC), enabling

provision of inputs to the Ministry of Agriculture concerning provision of relevant

data on land use and the immediate transfer of the generated databases for agricul-

tural planning appropriate to the existing conditions. The specific outputs of the

activities undertaken during the 15 months project period were:

1. The production of land-cover data for the whole country at 1:50,000 scale (based

on LANDSAT TM image interpretation) and detailed land-cover/use data at

1:25,000 scale for specific areas of particular interest (based on SPOT multi-

spectral satellite data) using LCCS version 1.0 for land-cover categorisation.

These outputs constituted an essential input to the land redistribution and the

improved agricultural planning process.

2. Production of a comprehensive database for the whole country, by adding to

each land-cover polygon from other sources additional information on soil types,

erosion features (like in Bulgaria and Romania) and municipal/district bound-

aries (like in Romania).

3. The transfer of modern technology on satellite image interpretation for land

cover/use, specifically based on the considerable FAO experience on this

subject. This constituted a sound basis for the sustainable development of remote

sensing applications in the country.

The on-the-job training increased capacities in remote sensing and GIS enabling

the SALRC staff to provide, through the linkages established by this project,

accurate data and services to the Ministry of Agriculture and other institutions.

This comprised initially the actual land-cover/use situation, while later it comprised

data on water resources, forestry, land degradation and other subjects relevant to the

sustainable development of agriculture and renewable natural resources.

This FAO project benefited from the experiences gained in the projects in

Azerbaijan, Bulgaria and Romania. In Moldova the reference control points for

the satellite imagery were homogenised with those in Romania. In practice, the

LANDSAT TM images for 2000 became, for both projects, the reference in the

orthorectification process. Due to the common natural conditions of Moldova and

the Eastern part of Romania (e.g., geomorphology and vegetation) the class set

used in Eastern Romania was adopted in Moldova. The experience of the local staff

and the usefulness of the land-cover/use inventories convinced the Government to
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implement, under the assistance of the European Environment Agency, the project

“Evaluation of the Impact of Land-Use Changes in Moldova” based on the CLC

methodology. Started in 2011, this project is implemented by SALRC in coopera-

tion with the Technical University of Moldova and the Institute of Geography and

Ecology using WebGIS technologies (see www.geoportal.md).

19.2.5 Albania

In the turmoil of a rapidly changing economy the Albanian government needed

accurate and timely information for management of their natural resources

and formulation of land-use policies. The change to a market-oriented economy

had also an impact on the natural resources and their management, not only due to

privatisation, but also because of the strong land fragmentation as a result of the

land distribution and increased urbanisation. The increasing pastoral economy and

husbandry caused landscape degradation and natural resources depletion in many

regions of the country. Uncontrolled timber harvesting, overgrazing and over-

exploitation of wood (in a country with a permanent energy shortage) and other

forest products have changed environmental assets. The depletion of forest

resources, particularly in accessible areas, had become alarming. Scarce possi-

bilities of control and a lenient policy caused severe, sometimes even irremediable,

damages to the natural resources of Albania (Jansen et al. 2006).

The World Bank financed “Albanian National Forest Inventory” (World Bank

loan/credit 2846 ALB) project, executed in the period 2002–2004, provided a

quantitative analysis of spatially explicit land-cover/use change dynamics at

national (Fig. 19.6) and district levels in the period 1991–2001 using LCCS version

1.0 for codification of classes, satellite remote sensing (digital LANDSAT

7 Enhanced Thematic Mapper imagery for 2001 and LANDSAT 5 Thematic

Mapper for 1991), field survey for data collection and validation of the interpreta-

tion, and elements of the object-oriented geo-database approach to handle changes

as an evolution of land-cover/use objects (i.e. polygons) over time to facilitate

change dynamics analysis. The 1991 polygons are described by what has changed

in their state, i.e. the spatial extent of the polygon formed by a set of land-cover/use

boundaries and/or the polygon label (land-cover/use class) vis-à-vis their state in

the validated 2001 dataset. This allows quick identification of ‘hotspots’ of change

(Jansen et al. 2006). The approach to change analysis was fundamentally different

from approaches that delineate the state of land cover at certain times and analyses

change dynamics by making overlay procedures in a GIS.

The 1991 and 2001 land-cover/use interpretations apply 35 classes described by

LCCS version 1.0. This ensures harmonisation of the data with existing datasets at

international level, while at the same time standardising the method used for

description of land-cover/use features (Jansen 2006; Jansen et al. 2008). Contrary

to the FAO projects previously discussed, the prime focus in this project was on

natural resources and not on agriculture. The 2001 digital database provided the
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baseline data in forestry and pasture planning and policy. It was used for the forest

inventory in 2003, a grazing impact study (Papanastasis 2003) and in the transfer of

responsibility of management of forest areas to communes (Jansen et al. 2006).

19.3 Lessons Learnt

19.3.1 At the Institutional Level

The sequence of FAO Technical Cooperation Projects provided a unique opportu-

nity with a learning curve. The first application of LCCS meant also the first

possibility in the region to become acquainted with the new methodology.

In each subsequent project the implementation went smoother and new ideas

were tested and evaluated. This was strengthened by the fact that experts worked

in more than one project. In this manner a cross-fertilisation was generated from
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Fig. 19.6 Land-cover/use change by LCCS domain or land cover group (Codes used: AV aquatic

vegetation, TC tree and shrub crops, HC herbaceous crops, ML managed lands, FOB broadleaved

forests, FOC coniferous forests, FOM mixed forests, WLB broadleaved woodlands, WLC conif-

erous woodlands,WLMmixed woodlands, TS thickets and shrublands, GL grasslands, BU built-up

areas, BA bare areas, WB water bodies) (Jansen et al. 2006)
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which the projects that started later have obviously benefited to a greater extent than

those at the start. In 1999 there was, furthermore, the possibility of direct feedback

to the LCCS development team so that changes in the methodology could still be

implemented.

The FAO projects established a baseline dataset in each country that was used in

various, mainly agricultural, applications. With time these applications covered

different sectors and the applications became more detailed in nature. Until this day

the LCCS methodology is in actual use in order to assist decision makers. The latter

have to evaluate what impact a decision may have on future generations. To support

decision-making relevant and up-to-date data and information are essential with:

• The capacity to elaborate spatial data in order to create information (e.g., time-

series analysis, creation of relationships between various thematic layers,

scenario development, impact analysis); and

• The use of powerful models that simulate various scenarios in order to be able to

evaluate the effects, risks and advantages of a choice.

The strength in the set-up of the projects lay also in the fact that the focus was not

solely on collection of the land-cover/use data, but these were immediately used in

an application. In this manner in each country immediate experience was gained in

the use of LCCS data in certain applications and the possibility to check if these

data comprised the essential classes. Thus, the capacity building was not limited to

the use of the LCCS methodology for remote sensing applications, but embraced

the analytical (GIS) capacities in the various institutions involved. With this

approach the sustainability of the projects has been successfully enhanced.

The World Bank project in Albania had a similar approach in that the land-

cover/use data collection was in direct support of the forest inventory and grazing

impact study. The World Bank prescribed the use of LCCS in the project. However,

the remote sensing and GIS capacities in the country could not be substantially

enhanced due to the lack of a dedicated institution or department within the

Ministry that comprised a critical mass of experts. Nonetheless, the data collected

and the various applications have clearly shown the usefulness of a comprehensive

and consolidated approach. The frequency of forest inventories is around 10 years,

therefore the near future will disclose if the methodological approach will be

repeated.

19.3.2 At the Methodological Level

In the period 1999–2005, the use of LCCS in the FAO andWorld Bank projects was

from the organisational viewpoint a logical decision. LCCS is the methodology

developed by FAO and UNEP and therefore an apparent choice in United Nations

projects. The World Bank stipulated in the Terms of Reference for the project in

Albania the use of LCCS. However, the closer some of the countries came to

pre-accession and accession status (e.g., Bulgaria and Romania) the more obvious
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it would have been to shift the attention, as far as land cover is concerned, to CLC as

that is used not only in the EU Member States but by 39 countries in Europe for

environmental monitoring purposes. However, in both countries LCCS continued

to be used alongside CLC. Since land-cover/use data collection is costly and

requires dedicated resources (e.g., specialist in interpretation of satellite images,

knowledge of hard and software, analytical skills to operate the GIS, etc.) it is

interesting to investigate what the reasons were of using two different

categorisations in parallel other than the use of CLC for fulfilling European

requirements and LCCS for national purposes.

CLC was originally developed for a smaller group of Member States than the

39 European countries that are using CLC nowadays. Since CLC comprises a

pre-defined class set, this meant that over time this set had to be adapted to the

environments of the new(er) countries. CLC is not based on a parameterised

approach in which new combinations of parameters could be used for definition

of new classes. Knowledge and technology have advanced and policy objectives

will also have changed over time (Jansen et al. 2008). This means that with time

insights are gained and new possibilities are within reach that one wants to use.

Therefore, the methodologies applied -independent whether it is general-purpose

categorisations like CLC or LCCS or any other- have to be dynamic over time to

continue monitoring activities at national and pan-European levels.

The same is true for the use of satellite imagery: in the 1990s use was mainly

made of different generations of LANDSAT satellite images, nowadays SENTI-

NEL data from the Copernicus Programme offers a logic continuation from the

LANDSAT type satellites but with improved spatial and temporal resolutions, and

very high resolution satellite imagery has become available that allows more detail

in the applications. Therefore, one observes a shift from countrywide data collec-

tions to studies related to specific areas of interest (e.g., in the examples provided

for Bulgaria and Romania). At certain periods it is useful to have a countrywide

overview and this was certainly the case in the transition period when land-cover/

use dynamics were high. In that respect the projects were timely in providing the

datasets at a time when a lot of decisions had to be taken in each country. Based on

these overviews so-called ‘hotspots’ of change could be identified where more

detailed studies were useful. The projects described show also that the dynamics in

agriculture are higher than in forestry and accordingly request a different frequency

for up-to-date and reliable data.

Whereas CLC allows adding more detailed levels of classes to the pre-defined

class set, LCCS has the advantage that the same concept can be used to generate

more detailed classes and these classes have an intrinsic hierarchical order. The

latter facilitates regrouping of the classes, this is useful when a study requires

various levels of analysis for instance when policies are made at national level

and executed at lower levels (e.g., the change analysis at national and district levels

in Albania). Especially for monitoring and evaluation purposes the parameterised

approach furnishes the parameters that can be measured over time. Thus, it facil-

itates comparison by parameters over time. The CLC methodology has the advan-

tage to cover all Member States and this is of great value in studies at European
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level or cross-border studies. However, for specific purposes it may still be required

to use different dedicated class sets. For example, Lund (1999) made an inventory

of forest definitions all over the world and came across an enormous variety. People

look at the world with different views and all of these views are valuable in better

understanding our environment.

With the experiences gained in the application of LCCS methodology in

land-cover/use data collections, the Eastern European countries can analyse:

• The key factors that may affect the quality of the obtained data (i.e. which

classes are determined with what type of precision? What are the problems in

obtaining a minimum required level of accuracy? How subjective is satellite

image interpretation and does it change over time?); and

• The view and manner of creating the land-cover/use class set, trying to reflect the

real world over time.

It would be of particular interest to examine these questions both for CLC and

LCCS and compare results.

19.4 Further Developments

19.4.1 Data Standardisation and Harmonisation

In practise, results from different surveys will need to be harmonised over time and

space (e.g., in relation to cross-border issues), and reference to existing information

is often required to verify new results (e.g., regarding urban sprawl and landscape

changes). Data harmonisation, being defined as “the intercomparison of data
collected or organised using different classifications dealing with the same subject
matter” (McConnell and Moran 2001), thus becomes a prerequisite for many data

analyses. However, development of the general-purpose LCCS has led to the

common belief that once such a categorisation system becomes widely adopted

for new surveys the problem of data harmonisation would be overcome because

new data sets would be collected using a single standard system allowing direct

comparison of new class sets, whilst existing class sets could be ‘translated’ into the

adopted system making possible direct class comparison with new class sets

(Jansen et al. 2008). However, this stance that is geared towards data

standardisation, defined as “the use of a single standard basis for classification of
a specific subject” (McConnell and Moran 2001), assumes falsely that the contin-

uous advances in either knowledge, technological developments and/or changing

policy objectives will not have any impact on a categorisation framework or its

application. With each data collection effort lessons are learnt that leave their

imprint on successive efforts (e.g. CLC 1990 versus 2000 (Büttner et al. 2004)).

Data standardisation may thus be an unrealistic expectation and only partly feasible

with the need for data harmonisation always present (Jansen et al. 2008).
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The main documents available that describe the LCCS 1.0 and 2.0 (Di Gregorio

and Jansen 2000 updated in FAO 2005) lack a formal definition of the cate-

gorisation rules. This represents a problem because, as the software source is not

open, there is no possibility to (easily) understand the behaviour of the software

application. The underlying logic can only be derived experimentally by using the

software intensively and by defining classes step-by-step with the software to know

if they are correct (Jansen et al. 2008). This also means that it is not possible to

propose modifications as the formal definition of classes is missing and thus it is

impossible to adequately describe LCCS (Di Costanzo and Ongaro 2004).

The fundamental structure of LCCS became the International Organization for

Standardization ISO 19144–1 ‘Classification Systems – Part 1: Classification

system structure’ standard in 2009. This standard establishes the structure of a

geographic information categorisation system, together with the mechanism for

defining and registering the parameters. It defines the technical structure of a

register of parameters in accordance with ISO 19135. It is important to differentiate

between this ISO standard and countrywide land-cover/use data collections

executed with LCCS versions 1.0 and 2.0. Furthermore, LCCS was used as the

basis for the ISO 19144–2 ‘Classification Systems – Land Cover Meta Language’

standard established in 2012. LCML comes with a Unified Modelling Language

(UML) diagram. The object-oriented structure of UML is a basis for implementa-

tion in languages like Java or C++. In order to use the LCML as a reference for the

implementation of land-cover categorisation software application, it is necessary to

transform the UML concept model into a computer-oriented format. The Extensible

Mark-up Language (XML) schema language from the World Wide Web Consor-

tium has been selected for its immediate compliance with object-oriented struc-

tures, for its worldwide diffusion and for its soundness in terms of documentation

resources, development and support (see www.glcn.org). With the UML there is

finally a formal description of LCCS that provides insights into the categorisation

rules and that can form the basis for further developments by scientists and the user

community.

As described by Jansen et al. (2008), it may be necessary to ‘translate’ a class set

into a third system, a so-called reference system that functions like a bridge between

two class sets: each class in the original class sets will find its more or less

corresponding class in the reference system. The use of a reference system may

be a sensible choice when many class sets are involved as the number of pair-wise

class combinations becomes excessive with comparison of n class sets requiring

n(n-1)/2 comparisons to be made. As Wyatt and Gerard (2001) point out, the use of

a reference system requires a single ‘translation’ from each original class set into

the reference system and obviates the need for pair-wise class comparisons between

every class set of interest. LCCS would like to function as such a reference system

but, as has been pointed out by Jansen et al. (2008) using a number of class sets

from the Nordic countries, the system falls short in many ways.

Nonetheless, FAO presents efforts that are limited to a crosswalk ‘translation’

effort between categorisation systems and/or class sets that ignore the complexity

of harmonisation. For example, overviews in which FAO shows that country
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land-cover maps are ‘translated’ into LCCS (e.g., as shown by Herold et al. 2006)

offer the wrong impression of data harmonisation as such efforts have been limited

to correspondence of original classes (i.e. legends) with LCCS rather than having

examined the full meaning of the data (Jansen et al. 2008).

19.4.2 Monitoring Agriculture with Remote Sensing (MARS)

The ‘Land-Cover Meta Language’ (LCML) offers ample possibilities to harmonise

different land-cover categorisations and class sets. It is also proposed as one

possible transformation mechanism in the draft INSPIRE data specification.

This will assist to address the need from the EU agricultural policy community

for a unambiguous description of the land, exclusively based on its physical nature

and independent of land-use considerations, linguistic and/or traditional con-

notations. This development is a unique opportunity in Europe to apply LCCS

and LCML.

The GeoCAP action of the Monitoring Agriculture with Remote Sensing

(MARS) Unit of the European Commission Joint Research Centre (JRC), integrated

LCCS as a central component of the common methodology for the annual quality

assessment of the Land Parcel Identification System (LPIS) that is implemented by

all EU Member States. The importance of the LPIS comes from the requirement

that it must channel all area-based subsidies under the Common Agricultural Policy

(CAP; Council Regulation EC 2009R73) totalling around 41 billion Euro in 2011.

For this specific purpose, the LPIS quality can roughly be defined as the ability of

the system to fulfil two explicit LPIS functions:

• The unambiguous identification of all declared agricultural parcels by farmer

and inspectors; and

• The quantification of all eligible area for farmer declarations and cross-checks

during the administrative controls by the Paying Agency in the respective

countries.

Failure of LPIS in the unambiguous identification (i.e. the geographical location)

induces risks for double declarations of land and for ineffective inspections, while

inadequate quantification of eligible area renders the cross-checks ineffective for

preventing and identifying over-declarations by farmers. Both failures involve

financial risks for the EU Funds. The high financial impact calls for a transparent

and pan-European reporting system on the ability of the LPIS to perform these

functions with adequate quality.

The definitions and requirements for the geographic data, related to the Inte-

grated Administration and Control System (IACS) and LPIS, are laid down in the

CAP Regulations. A key parameter is the definition of the eligible hectares required

to activate payment. Council Regulation 73 from 2009 states: “‘Eligible hectare’
shall mean any agricultural area of the holding taken up by arable land and
permanent pasture or permanent crops,” or “parcels taken up by arable land,
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permanent grassland, permanent crops, kitchen gardens or planted with short
rotation coppice shall be eligible”. However, as legal, financial, land-use or

production related criteria can also be considered for granting payment, the key

characterisation of land did not always receive due attention. The EU Member

States were using different conceptual frameworks in order to define and map

eligibility, but all states applied land-cover and land-use related approaches.

This is also due to the variety of landscapes, climate, agricultural practices and

land management approaches across Europe. Currently there is consensus among

the technical actors in the LPIS domain that in the current EU regulation the term

‘eligible hectares’ is clearly land-cover oriented, while other qualifying conditions

for a particular subsidy application are referring to the farmer’s socio-economic

activity and are thus land-use oriented.

Previous studies at JRC on a number of implementations, showed that the land-

related information, stored at reference parcel level in the LPIS, corresponds indeed

to the concept of land cover (Fig. 19.7). For spatial mapping to measure eligibility,

the land-cover concept has strong advantages over the land-use one, as:

• It provides unambiguous and detailed characterisation of the Earth’s surface,

exclusively based on the physiognomic-structural (biotic or abiotic) aspect of the

land;

• It is the easiest identifiable indicator of human interventions on the land and the

resulting changes; and

• It is the main feature constraining the use of land.

The fact that LPIS retains a maximum eligible hectare value derived by delin-

eation requires considering the above advantages and it supports the land-cover

conceptual choice. A land-cover categorisation would definitely be the ideal instru-

ment to identify the potential eligibility, expressed by this maximum eligible area.

Independent Land Cover Mapping 1:10 000
Using LCCS conceptLPIS Land cover/Land use map 1:10 000

Forest

Arable land

Mixed 
(arable/grass/trees)

Grassland

Woodland

Urban

Fig. 19.7 Comparison between the LC/LU information stored in the LPIS (example from a new

EU Member State) and a large-scale land cover map
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As laid down in Article 17 of Council Regulation 73/2009, the spatial information

stored in the LPIS should be compliant with the cartographic standards applied at a

scale of 1:10,000 or larger. Such large-scale land-cover mapping requires a particular

approach, taking into account that:

• This deals with much higher information contents than the regional land-cover

mapping, traditionally performed at 1:50,000 to 1:100,000 scales.

• There are different landscapes involved, as the EU Member States cover the

major part of the European continent.

• The ‘eligibility’ concept, although applied by the individual EU Member States,

should ensure an equal treatment of all European farmers.

Studies showed that a single land-cover class set cannot be realistically applied

to the 27 EU Member States at the large scale required for LPIS.

For these reasons, a common quality assessment requires a universal identifica-

tion and categorisation of the land-cover types (Milenov and Devos 2009, 2012).

It was necessary to adopt a systematic framework, or a standard categorisation

system, to characterise all agricultural land using a set of well-defined diagnostic

criteria. The definition of the land-cover classes and the respective criteria had to be

independent of data capture technology and (to some extent) scale. JRC decided to

use the LCCS to ‘map’ this land potentially eligible for payment, as it provided a

common language, a common environment and common ‘business rules’. LCCS

provided the conceptual framework for this comprehensive description of any type

of agricultural land cover using a minimum number of parameters. It is flexible in

accommodating the variety of country-specific land-cover types and in enabling

comparisons between land-cover types. The LCCS methodology also comprises

the concept of the variable minimum mapable area and it could handle, in a

standardised manner, intrinsically mixed land-cover units, these are important

issues in the context of LPIS.

In the framework of the LPIS Quality Assessment, the semantic ‘bridge’

between land cover and eligibility was implemented through the concept of the

so-called ‘eligibility profile’ (Devos 2011). It is a conversion table allowing

mapped land-cover features to be expressed as eligibility for agricultural payments.

It quantifies in a single methodology through joining the common class set of land-

cover features with the national rules for support schemes applied to the measured

areas (Fig. 19.8). It converts thus the results of the land-cover mapping into ‘eligible

hectares or eligible features found’, for each land-cover class defined and coded a
priori through LCCS in each Member State.

The first year of the LPIS Quality Assessment implementation demonstrated that

the introduction of the consistent approach for quantification of the eligible land

through the use of standardised and concise land-cover semantics provided

extremely valuable feedback to the EC and EU Member States with respect to the

understanding of the agricultural landscapes in Europe and contributed to the

harmonisation of the land-cover concepts for this community at EU level.
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19.5 The Way Forward to Categorisation

“To classify is human” as Bowker and Star (1999) stated. Few categorisations take

formal shape or any formal algorithm, even fewer categorisations are standardised.

Yet, we all use (in)formal categorisations on a daily basis, intentionally or inad-

vertently. The knowledge about which categorisation will be useful under certain

conditions and at a given moment is embodied in our responsibilities and routines in

a certain context. At the level of policy, categorisation of areas, uses and covers

plays an equally important role. The categorisation of an area as either nature

reserve or industrial will have a clear impact on future economic decisions. Thus,

the relation between categorisation and decision-making may be invisible but is

evidently powerful. Nowadays in the information era, scientists work on the design,

description and choice of categorisation systems embodying choices that create

people’s identities but few people realise how much impact a categorisation may

have. In the context of land cover, in Europe the CLC contributed in creating a

European identity; the LCCS contributes in creating a UN identity (Jansen 2010).

Categorisations embody a worldview and each category and class in it values this

specific viewpoint. This is in itself not critical as long as it is recognized that another

viewpoint may be silenced, which may be the case if a single categorisation becomes

the preferred standard. From the analysis of semantic information and used defini-

tions one can deduce something about this view and the intent of the data producers,

but much more transparency is needed. Also more insights in the design of

categorisation systems is needed and research examining their impact. The effort of

attaching objects to categories and the ways in which those categories are ordered

into systems is often disregarded. In the land-cover domain, for instance, several class

definitions in CLC (CEC 1999; Bossard et al. 2000) or in LCCS (FAO 2005) are

described by taking a bird’s eye view, or map view, rather than a geographic entity
view probably because these systems are used in remote sensing (Jansen 2010).

Categorisation facilitates the communication of knowledge concerning specific

phenomena (e.g., land use and land cover) between individuals. Ideally cate-

gorisations are able to travel across the borders of (scientific) communities, of

which the individuals are part, and maintain some sort of constant identity.

Fig. 19.8 Examples of categorisation of LPIS land cover using LCCS
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The tangible results of categorisation are classes and categories that serve as the

vehicles for communication of meaning (Ahlqvist 2008). Parameters used in the

categorisation are usually not tangible, simply because they are usually inexplicit

rather than explicit. The members in each class or category have definable charac-

teristics in common and with the use of categorisation one can discover general

truths related to the distinguished classes or categories rather than to their individ-

ual members (Shapiro 1959). Categorisation is, at the same time, a simplification

because it represents only part of the complexity of reality (like models represent

simplifications of the real world). Different perspectives, or so-called ‘scapes’, to

categorisation can be taken that are all equally valid and valuable (Veldkamp 2009)

One needs to recognise, therefore, that no categorisation reflects accurately the

social or the natural world (Bowker and Star 1999). Categorisations arise out of

social communication needs but they serve specific purposes: not only do they

reflect the ideas of a certain community or institution, but they can also be the

end-result of negotiating and reconciling individual, group and institutional differ-

ences (Ahlqvist 2008). This is particularly true for CLC representing the EU

community and LCCS representing the UN community.

Definitions expressed in natural language associated by sub-type/super-type

relationships, i.e. hierarchical relationships, are called terminological ontologies
(Sowa 2000). Almost all land-use and land-cover categorisations to date are

terminological ontologies (e.g., CLC and LCCS). Ontology is an explicit specifi-

cation of a conceptualisation to represent shared knowledge (Gruber 1993; Ahlqvist

2008). Semantic information can be determined from the definitions of the ontology

and the representation of categories can be enriched with semantic properties

(e.g., purpose, time, location, etc.) and relations (e.g., “is-a”, “is-a-part-of”, “asso-

ciated-with”, etc.) in order to reveal similarities and heterogeneities (Kavouras

et al. 2005). Recognition of semantic heterogeneity is the basis for creating sound

data linkages between multiple datasets that are needed for land-change analysis,

monitoring and modelling for land-use planning, land development, policy

(e.g., EU CAP) and informed decision-making.

As Cihlar and Jansen (2001), Comber et al. (2005, 2007) and Ahlqvist (2008)

point out: manifold ways to conceptualise and communicate knowledge exist

according to the disciplines of (groups of) experts, professions, etc., so that there

are necessarily many-to-many relationships between classes and thus inherent

ambiguity in any categorisation. Categorisations contribute to communication of

knowledge and in making joint progress in that knowledge by facilitating com-

munication. However, they can only make such contributions by being dynamic in
nature. By keeping the voices of parameters and their constituents present, as is the

case in parameterised categorisations, the maximum flexibility of the system is

retained. This includes the key ability to be able to change with changing knowl-

edge, technological developments and changing policy objectives (Jansen 2010).

In this respect LCCS has an advantage over CLC.

Collection of data leads to the creation of categories. Contrary to old hierarchi-

cal class and data sets (or databases), where relations had to be decided once for

all the time of original creation, many class and data sets today incorporate
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object-oriented views whereby different parameters can be selected and combined

on the fly for different purposes (Bowker and Star 1999). Object-oriented inter-

pretation exists already in remote sensing (as used in Romania and Bulgaria) and

also in the approach to databases (as used in Albania). But what about an object-

oriented approach to categorisation? Parametric Object-Oriented Data Models

(POODM) should take the place of old-fashioned categorisation systems, like

CLC and LCCS, because they allow an unprecedented flexibility and capability

in the design and use of very complex information systems and environmental

change requires such an information system. Such a POODM should use the UML

as standard, something both CLC and LCCS miss (though LCML has) and thereby

neglect fulfilling the ISO 19100 standard. These parameterised multi-level class

and data sets put more emphasis on the parameters to be used than on the structure

in which these are organised. This approach is dynamic, easily adaptable under

changing circumstances (Jansen 2010).

Based on the fact that categorisations are dynamic in nature one could argue that

the definitions of Shapiro (1959), Sokal (1974), and FAO (2005) or even the

definition applied in the documents of ISO/TC 211 should be abandoned in favour

of a modified version of the definition of Bowker and Star (1999): categorisation
is a spatial, temporal, or spatio-temporal, and organisational hierarchy based
segmentation of the world. This definition emphasizes that the dimensions of time

and space are imperative in determining a categorisation, as well as the organi-

sational level. In the case of a non-hierarchical system one could speak of zero

organisational hierarchy, analogue to zero tillage when no tillage occurs.

The most commonly used categorisation systems are hierarchically structured

(e.g., plant taxonomy). To many ecologists it has been long apparent that ecological

systems are structured as such (Egler 1942; Schultz 1967). Early on it was also

acknowledged that “it is not to be assumed that some one classification will one day
be found, and all others will then be abandoned. Each classification serves a certain
purpose, and will continue to exist by its own right” (Egler 1942). Thus, there is not
one categorisation that best characterises land cover or land use. In addition, it

seems not fruitful to go in search of the one hierarchy because there is no single,

a priori parameter for developing such a hierarchy. Instead, a number of different

hierarchies may be used to address different problems. With standardisation one

runs the risk of adopting a categorisation with a determined hierarchy that fits a

predetermined purpose. Adopting such a categorisation for another purpose

involves working with a system with a bias that might force our thinking into the

framework that was designed for, and is probably more appropriate for, another

problem area. Currently, there is no a priori designation of hierarchy imposed by

the social and biophysical sciences in such a way that no other manner of looking at

either land use or land cover is feasible or useful. The hierarchy theory also includes

that principles developed at one hierarchical level cannot be transposed to higher

and lower levels. Clear distinction of type and category within the hierarchy will

not lead to more scientific progress. It is the inherent and awkward ambiguities of

land cover and land use that should be included in the more innovative approach

of using fuzzy set theory as the mathematical theory underlying categorisation.
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Thus, to be truly innovative, this means a move away from existing systems like

CLC and from LCCS to LCML (Jansen 2010). Together with the methodological

way forward is also the potential future use by the land monitoring community of

the detailed LPIS datasets (currently these data are unavailable to them), collected

each year, to generate land-cover data sets covering the country or areas of specific

interest.
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Chapter 20

Differentiation of Crop Types and Grassland

by Multi-scale Analysis of Seasonal

Satellite Data

Thomas Esch, Annekatrin Metz, Mattia Marconcini, and Manfred Keil

20.1 Introduction

The implementation of productive and sustainable cultivation procedures is a major

effort regarding the agricultural production in the European Community. However,

political, economic and environmental factors impact the cultivation strategies

directly and indirectly, and therewith strongly determine the condition and trans-

formation of the cultivated and natural landscape. To assess the actual status,

identify basic trends and mitigate major threats with respect to the agricultural

production and its impact on the cultural and natural landscape, a frequent and area-

wide monitoring of cropland and grassland is required. Satellite-based earth obser-

vation (EO) provides ideal capabilities for the area-wide and spatially detailed

provision of up-to-date geo-information on the agricultural land use and the prop-

erties of the cultivated landscape. A specific benefit of EO is given by analysing

multi-seasonal data acquisitions. Intra-annual time series facilitate the analysis of

the phenological behaviour of the main crop and grassland types – key information

with respect to the characterisation of the land use intensity and its impacts on the

environment.

The presented approach focuses on a seasonal analysis of multi-scale EO time

series to classify main crop types and differentiate between cropland and grassland

for given areas of interest on the basis of field parcels. The areas of interest are

typically existing land use/land cover (LULC) data sets (e.g. national topographic
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data, CORINE Land Cover, etc.) that show a limited resolution in the semantic

and/or spatial domain. Hence, the presented approach is primarily designed to

improve the level of thematic/geometric detail for given LULC data sets.

20.2 Seasonal Characteristics of Grassland and Crops

Most established approaches towards the classification of land cover (LC) types

from EO data rely on the analysis of the spectral signature. However, the spectral

characteristics of grassland and crops show significant variations throughout the

vegetation period and their spectra are quite similar for at least some points in time –

e.g., depending on the growth states and cultivation forms (cp. Itzerott and Kaden

2006). Cropland shows highly variable seasonal characteristics, whereas grassland

features a more continuous seasonal development (Fig. 20.1). Nevertheless, due to

more or less distinct intra-class variabilities particular sub-classes might show

similar behaviours – e.g. intensively used grassland and certain crops. The main

drivers for the different seasonal behaviours are – apart from the local climate at the

given geographical region and the weather conditions during the vegetation period –

sowing dates, cultivation cycles and forms, and the harvesting times (cropland) or

mowing dates (grassland), respectively.

Fig. 20.1 Variation of the Normalized Difference Vegetation Index (NDVI) throughout the

vegetation period for semi-natural grassland and different crop types derived from data of the

MODIS sensor (Modified after Metz 2009)
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Considering the ambiguity in the signatures of grasslands and crops during the

vegetation period, a robust classification procedure for the identification and sep-

aration of grassland and crop types should in particular focus on an analysis of the

seasonal development in addition to the interpretation of spectral properties. Stud-

ies on regional to global scale have demonstrated that multi-seasonal time series

analyses of EO data can serve as an effective instrument for characterising grass-

and croplands. Most studies implement optical remote sensing data with a high

temporal and a comparably low spatial resolution, e. g. NOAA-AVHRR or MODIS

data, to characterise and map crop types based on phenological profiles derived

from NDVI or EVI (e.g. Shao et al. 2010; Wardlow and Egbert 2008; Zhang

et al. 2003). Several studies successfully implemented high resolution (HR) to

very high resolution (VHR) optical imagery, such as RapidEye, SPOT or IKONOS,

as they are more applicable to classify crops and grassland in areas with heteroge-

neous patterns of smaller fields (e.g. Conrad et al. 2010, 2011; Itzerott and Kaden

2006; Singh et al 2011; Turker and Ozdarici 2011). The need of specific images for

important points in time during the crop growing cycle and limitations of data

acquisition through cloud cover for example, constrict the usage of optical data for

operational applications (Blaes et al. 2005). Synthetic Aperture Radar (SAR)

systems represent active imaging sensors that can acquire data independently of

the weather and environmental conditions – a significant advantage for collecting

seasonal time series. Most of the studies employing SAR data for crop and

grassland monitoring focus on the analysis of backscattering intensity (as with the

NDVI in case of multispectral data, the radar backscattering also correlates with the

buildup of biomass) and polarimetric parameters of single scenes, whereas analyses

of the seasonal variety and development of these features based on multi-temporal

SAR data are still comparably rare (e.g. McNairn et al. 2009; Smith and Buckley

2011; Schuster et al. 2011).

20.3 Multi-scale Analysis of Seasonal Time

Series Data – An Example

The main challenge with respect to EO-based seasonal analyses lies in the collec-

tion of a cloud-free data base covering key dates and seasons, while at the same

time providing enough spatial detail to assure an accurate analysis on field parcel

basis. Spatial detail is particularly important when investigating regions with small

sized field parcels as they are typical for many rural areas in Central Europe. To

address this challenge, we propose one solution combining the interpretation of

multi-seasonal high and medium resolution optical data. The basic idea of this

approach is to first use one or two HR satellite images (e.g., spring and summer) to

properly delineate the different land parcels in the region of interest by means of an

image segmentation. Then, medium resolution (MR) satellite scenes are employed

in combination with the HR data in order to characterise the seasonal behaviour of
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the extracted image objects. Here, the use of segments minimizes the effect of

mixed pixels that might occur along the borders of field parcels, especially in case

of the MR data. MR sensors show a significantly larger swath width compared to

HR systems – a property that allows for frequent coverages within comparably

short periods of time, therewith increasing the chance to collect a cloud-free

seasonal data set. In this study, we introduce a multi-sensor approach combining

two HR scenes of IRS-P6 LISS-3 (23.5 m spatial resolution, 120 km swath width)

with three MR IRS-P6 AWiFS images (56 m spatial resolution, 700 km swath

width). After pre-processing, meaningful land parcels are extracted based on an

image segmentation of the LISS-3 data. Next, the three seasonal data takes of

AWiFS are used in addition to the LISS-3 images to derive a defined set of

seasonality indices for potential cropland or grassland segments. The spatial

focus on crop- and grassland is implemented by using a mask derived from vector

data of the German Authoritative Topographic-Cartographic Information System

(ATKIS). In a next step, thematic point data of the Land Use/Cover Area frame

statistical Survey (LUCAS) is applied as sample data to automatically train a tree

classifier that finally detects and qualifies grassland as well as different crop types.

A schematic view of the entire methodology is provided in Fig. 20.2.

20.3.1 Data, Pre-processing and Derivation
of Basic Parameters

The EO data basis includes two LISS-3 scenes and three seasonal AWiFS images

(ISRO 2012) for an agricultural region in Mecklenburg Western Pomerania

(MV) and Brandenburg (BB), Germany. The area under investigation covers

23,012 km2 and is dominated by the LC categories agriculture, woodland, settle-

ment and water bodies. The LISS-3 data were acquired on 05.05.06 and 17.07.06

and the AWiFS images on 13.06.06, 17.07.06 and 12.09.06. In addition to the EO

images, we use LUCAS point data (Martino and Fritz 2008) collected in 2006 for a

training of the classification procedure and later validation of the results. For the

study area, the LUCAS data base provided a total of 1,796 points covering a total of

17 classes. For our research we were only interested in the LU/LC categories related

to agriculture and grassland. The resulting selection of 1,529 points for 11 classes is

listed in Table 20.1, along with a grouping of the single classes into five more

general agricultural categories representing main crop types and grassland, which

are addresses by the later classification. Finally, ATKIS vector data (AdV 2012) is

used to create a mask of agricultural and grassland areas. For that purpose, the

polygons of the ATKIS classes for agriculture and grassland are dissolved and

merged and then exported as an agriculture mask. The later classification procedure

is only applied to those areas assigned as agricultural or grassland areas by the

agriculture mask.
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Fig. 20.2 Schematic view on the multi-scale approach towards the analysis of seasonal EO data
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The pre-processing starts with an atmospheric correction of the EO images based

on the software ATCOR-2 (Richter and Schläpfer 2011) in order to minimise the

effects of seasonal variations due to different atmospheric conditions. Next, the area

covered by the full data set of five images is identified and clipped in each of the

single scenes. For the clipped LISS and AWiFS data sets the Normalized Difference

Vegetation Index (NDVI) is calculated and with the five resulting NDVI layers

being stacked to one image. Using this stack, the seasonal development can be

quantitatively described by calculating a set of four statistical seasonality parame-

ters for each pixel, including seasonal minimum, seasonal maximum, seasonal

mean and the range between minimum and maximum. Finally, the seasonality

parameters are also combined to a layer stack.

20.3.2 Land-Parcel Extraction

The optimal spatial unit for the characterisation and classification of grassland and

crop types are the land parcels used for cultivation. Such a parcel-based view can be

addressed by an object-oriented image analysis approach that groups the pixels of

the raster images into meaningful segments (Baatz and Schäpe 2000). In addition,

an object-oriented classification approach provides further advantages, such as an

effective and flexible implementation of a multi-sensor concept (HR and MR data)

and the prevention of salt-and-pepper effects (Schiewe et al. 2001). The image

segmentation is conducted with the software Definiens Developer (version 8.7),

whereas a special optimisation procedure is applied to improve the results. The

concept of this approach has been introduced by Esch et al. (2008) and aims at the

effective minimization of over- and under-segmentations by means of a systematic

variation of the segmentation parameters. Inputs for the segmentation are the two

LISS-3 images and the agriculture mask. In a first step, a segment level is created

that exactly reflects the vector geometry of the agriculture mask. Then, the poly-

gons of the mask are subdivided with the segmentation optimisation process that is

Table 20.1 LUCAS categories used for the training and validation of the multi-sensor

classification

LUCAS code LUCAS class name No. of sample points Main category

B11 Common wheat 296 211 (Cereals)

B13 Barley 173

B14 Rye 98

B15 Oats 14

B18 Triticale 50

B16 Maize 84 216 (Maize)

B21 Potatoes 14 220 (Root crops)

B22 Sugar Beat 17

B32 Rape 246 232 (Rape)

E01/02 Grassland 537 400 (Grassland)
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conducted solely using the two LISS-3 scenes with five iterations and a scale

parameter increasing from 20 to 100 in an interval of 20. The result of the image

segmentation is shown in Fig. 20.3.

20.3.3 Identification of Grassland and Main Crops

The classification of grassland and crops starts with the semi-automated generation

of a sampling data base for the training of a decision tree classifier – in this case

Fig. 20.3 Input reference information for the masking of agricultural areas (Geobasis data ©
German Federal Agency for Cartography and Geodesy – www.bkg.bund.de) and the automated

training of the classification algorithm (top); multi-seasonal EO data set with objects resulting

from an image segmentation of the corresponding imagery (center); result of the classification of

main crops and grassland (bottom)
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C5.0 (Quinlan 1992). The specific capabilities of C5.0 allow to deal with classical

challenges in time series and LC/LU analyses, such as missing values (e.g., due to

cloud cover) or a non-Gaussian statistical distribution of the classes in the feature

space. Since the algorithm automatically selects the attributes relevant for the class

assignment along with the suitable thresholds, no manual adjustment of the classi-

fication parameterisation is required as long as the designated classes are ade-

quately represented by the training data set. For this study we use a technical

framework for the C5.0 classification introduced by Huth et al. (2012).

In preparation of the training and classification procedure, the LUCAS point data

is pre-selected using GIS-operations and zonal statistics in order to exclude

unconfident sample points, e.g., positioned at the border between two land parcels.

The pre-selection results in a total set of 1,529 points, from which 50 % are used for

training and 50 % for validation. The training process itself is based on all image

objects that intersect with a LUCAS point, whereby the C5.0 algorithm automati-

cally creates a classification decision tree that relates properties of each training

object to its assigned LUCAS LC/LU class. The set of input features provided for

each object includes the spectral bands of the five input scenes as well as the NDVI

and seasonality layer stacks. The created classification tree is then applied to all

image objects in order to classify grassland and four main crop types. The

corresponding result is illustrated in Fig. 20.3.

20.4 Results and Discussion

The assessment of the crop and grassland analysis shows an overall accuracy

(OA) of 86.0 % and a Kappa coefficient of 0.79 for the five classes addressed.

The error statistic for the classification – including producers (PA) and user

accuracies (UA) – is provided in Table 20.2. The outcome indicates that cereals

(class 211), rape (class 232) and grassland (class 400) are assigned with PAs and

UAs of more than 85 %, whereas maize (class 216) and root crops (class 220) show

significantly lower accuracies between 63 and 78 %. The decreased values for these

two classes can be attributed to the fact that root crops and maize as well as maize

and grassland show a similar seasonal and spectral behaviour resulting in

Table 20.2 Accuracy for classification of main crops and grassland

Class 211 216 220 232 400 Samples UA

211 (Cereals) 269 7 2 10 27 315 85.4

216 (Maize) 1 33 1 0 7 42 78.6

220 (Root crops) 0 4 10 0 1 15 66.7

232 (Rape) 8 0 1 110 4 123 89.4

400 (Grassland) 20 8 1 5 243 268 87.3

Samples 298 52 15 125 273 763

PA 90.3 63.5 66.7 88.0 85.7 OA: 86.0
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corresponding misclassifications. It has also to be considered that the number of

sample points for maize and root crops is quite low so that the error statistics react

more sensitive towards slight variations in the number of classification errors.

Furthermore, the classifier provides information about the usage and significance

of each feature. For this analysis, the NDVI and near-infrared (NIR) of the LISS-3

May as well as the AWiFS September scene had the highest importance, followed

by the July AWiFS scene. The June AWiFS scene as well as the seasonality

parameters did not provide much additional information to the classification and

therefore had a minor influence on the analysis. However, the selection and

significance (i.e. temporal) of each feature might vary depending on the geograph-

ical region (varying phenology depending on local climate) and the selected crop

and/or grassland type.

In addition to the described analysis, we applied a version that aimed at the

assignment of all 11 original agricultural LUCAS classes occurring in the study

region. This classification shows an OA of 70.2 %. We also compared the results

with the outcome of classifications based on one single scene (05.05.2006) and a

dual-time data base (05.05.2006, 12.09.2006). Here, OAs of 69.3 % (single-date)

and 76.3 % (dual-date) are achieved regarding the five-class-classification.

Considering the seasonal development of major crops and grassland (see

Fig. 20.1), it appears that the harvesting period is best fitted to differentiate between

cereals and grassland. However, in this phase the NDVI still shows similarities

between grassland and maize as well as grassland and root crops. Therefore, the

separation of arable crops and grassland requires additional data acquisitions during

the spring season. In comparison to arable land, pasture land shows a more constant

and homogenous behavior with respect to the development of green vegetation over

the entire vegetation period. Looking at the seasonal behavior, the NDVI of

grassland shows a distinct increase in spring (March, April) before it levels in

early summer, followed by a slight drop during the dry season and a constant

decrease from late summer to winter. Meadows affected by hay mowing feature a

higher dynamic during the summer period. For arable crops, the vegetation devel-

opment starts at different time slots. After a significant increase during the growing

phase, the NDVI levels or slightly decreases in the maturation before it finally drops

significantly during the harvesting period (i.e., cereals and rape).

20.5 Conclusions

The results of the study indicate that seasonal time series analyses afford the

accurate identification and characterisation of main crops and grassland. Key issues

in this context are the existence of adequate reference information (number of

samples and their thematic reliability) and the availability of a constant seasonal

and spatial coverage with multi-seasonal satellite data. A limiting factor for the

required multi-seasonal EO data analysis is the frequently occurring cloud coverage

in time series of optical sensors that clearly constraints the data availability –

especially regarding HR imagery and data requirements for specific dates of the

20 Differentiation of Crop Types and Grassland by Multi-scale Analysis. . . 337



year (as explained in the chapter “Multi-scale Analysis of Seasonal Time Series

Data”). This factor becomes particularly critical with respect to large-area assess-

ments. The study demonstrated that the combination of HR and MR imagery

represents a promising approach to ensure – or at least increase the chances – to

achieve a significant coverage with seasonal data while at the same time assuring a

high spatial detail of the analysis. An alternative approach to improve the data

availability might be the use of radar data since the corresponding systems – e.g.,

TerraSAR-X, TanDEM-X or Radarsat-2 – can collect data independently of the

weather and environmental conditions.

The presented object-based concept possesses effective options for the realisa-

tion of a multi-sensor/data, multi-scale and multi-season approach that in turn

provides the flexibility which is required for the realisation of multi-seasonal

analyses on regional or national scale. At the same time this approach represents

a promising methodology for the frequent monitoring of trends and transformations

of LC/LU – e.g., extensification or intensification in terms of a conversion from

cropland to pastures or vice versa. It also facilitates the (semi-)automated update or

thematic extension of existing geo-data layers with respect to general changes in

LC/LU or relative changes in the intensity of use or productivity.
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Chapter 21

Enhancing Remotely Sensed Low Resolution

Vegetation Data for Assessing Mediterranean

Areas Prone to Land Degradation

Christof J. Weissteiner, Kristin Böttcher, and Stefan Sommer

21.1 Introduction

Large parts of the Mediterranean region are sensitive eco-regions, which are

susceptible to land degradation. It is widely accepted that changes of the vegetation

density and structure over time bear important information of land degradation

dynamics either caused by natural or man-made processes (e.g. Hanafi and Jauffret

2008). For monitoring the development of vegetation cover on a regional to global

scale, archives of satellite data with coarse geometric but high temporal resolution

are the preferable choice. These data allow a more continuous spatial and temporal

monitoring of the area of interest due to their high revisit rate and long term record

of observation. The currently longest back-dating times series with a capability to

generate a simple vegetation index and including surface temperature are provided

by the NOAA AVHRR sensors.

These long-term remote sensing time series constitute an important basis of land

degradation and desertification monitoring and assessment. Land degradation

processes can, amongst other techniques, be identified and quantified by change

detection analyses in relation to soil/vegetation cover and indirectly land use/land
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functioning, or by more complex techniques such as desertification syndrome

modelling (Hill et al. 2008; Weissteiner et al. 2011a).

The NDVI is one of the most widely used indicators for monitoring the vegeta-

tion cover. However, it is not only determined as a pure function of vegetation cover

but is also influenced by the background signal by i.e. soil and rock. Soils for

instance can show NDVI values up to 0.3 (Price 1993). Especially land degradation

vulnerable areas with low vegetation cover, typically the dry land regions in the

Mediterranean, are affected by this limitation of detecting sparse vegetation cover.

Additionally, the NDVI shows sensitivity to several parameters such as the atmo-

sphere (Gutman 1991), the illumination and the observation geometry (Kaufmann

et al. 2000), which is, however, supposed to be partly eliminated by a temporal

maximum value compositing of the data (Holben 1986). Furthermore, the NDVI

values are platform/sensor dependent due to different spectral system specifications

as well as to orbit specific variation of observation geometry which complicates a

direct comparison among different sensors.

Due to these problems it is preferable to find a measure for vegetation abundance

which would, at least partly, overcome the mentioned problems. Since improved

vegetation indices like the JRC-FAPAR (Gobron et al. 2007) are not yet available

for the time before 1998, their use for long term assessments (e.g. trend analysis), as

needed for land degradation studies, is currently limited. Therefore a long term

time series of AVHRR data (MEDOKADS/Mediterranean Extended Daily One Km

AVHRR Data Set) (Koslowsky and Bolle 2003; Koslowsky et al. 2005) with a time

span of 17 years (for the presented study 1989–2005) was selected as base data set

for the derivation of an enhanced vegetation abundance measure.

In this context of data enhancement Linear Unmixing has been recognized a

promising approach (Sommer 1999), as hereby not only vegetation cover estimates

are provided but also abundances of other applied endmembers and delivers hence

data in the sub-pixel domain, which partly compensates for the coarse spatial

resolution. The here presented and applied unmixing technique is based on the

inverse relationship between NDVI and land surface temperature. Generally,

surface temperature (Ts) is observed to be inversely proportional to the amount of

vegetation canopy cover and thus to the NDVI. This is due to a variety of factors

including latent heat transfer through evapotranspiration, the lower heat capacity

and thermal inertia of vegetation compared to soil (Choudhury and Asrar 1989;

Goward and Hope 1989).

The applied methodology to derive Green Vegetation Fraction (GVF) is

expected to offer higher reliability and robustness than a simple vegetation index.

It has been shown that using both NDVI and Ts, allows a characterization of

land cover in a more comprehensive and climatically resistant manner than by

multitemporal NDVI data alone (Nemani et al. 1993; Ehrlich and Lambin 1996).

In this work methodology and results for the derivation of an improved vegeta-

tion measure (compared to NDVI) will be presented. The derived measure is

designed to be suitable for the Mediterranean area and to provide a highly reliable

time series that can be employed in subsequent analyses. Indeed, two case studies

which take advantage of the data set when assessing vegetation based parameters
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are reported. Compared to FAPAR (available from 1998 onwards) this NOAA

AVHRR based time series dates back to 1989 and offers sensor compatibility,

i.e. allows to date time spans of 25 years and more to be observed. By generation of

useful side-products this vegetation measure achieves further added value.

21.2 Data

The MEDOKADS data set was provided by the Freie Universität Berlin. It consists

of radiometrically and geometrically corrected data of all AVHRR channels,

including derived data such as NDVI, surface temperature and ancillary data such

as viewing angles or illumination geometry data. Despite its relatively coarse

spatial resolution of 0.01� (approx. 1 km2) it does still offer one of the most valuable

data sets for long term vegetation analysis.

The AVHRR data set covers the wider Mediterranean region including the

North African coast and the Near East region. The base data consisted of

10-day-composites, computed according to Holben and matching the 1st, 11th and

21st of each month. The data is provided in geographic coordinates, WGS-1984.

The time series consists of AVHRR data of different NOAA satellites (NOAA

11, NOAA 14, NOAA 16). Correction algorithms were applied to account for the

changes of the short wavelengths channels 1 and 2 (AVHRR instrument changed

from NOAA 14 to NOAA 16), the sensor degradation, and the changing illumination

and observation geometry due to orbital drift. The BRDF effect was corrected by

corrections for the sun zenith angle (cosine correction) and normalization to nadir

view conditions. The land surface temperature (Ts) is derived by a split window

approach, which uses the difference in brightness temperature between AVHRR

channel 4 and 5 to account for the atmospheric effects on Ts. A more detailed

description of all pre-processing steps is given in Weissteiner et al. (2008a).

21.3 Strategy

The status and dynamic of vegetation is usually assessed by vegetation indices

(e.g. NDVI) when using NOAA-AVHRR data. Limitations for the detection

of sparse vegetation with vegetation indices have been widely discussed in the

literature. Several alternative indices, like GEMI or SAVI (Huete 1988; Pinty and

Verstraete 1992) have been developed to compensate for atmospheric and illumi-

nation conditions and soil background reflectance.

Spectral mixture analysis (SMA) has been applied by different authors

(Smith et al. 1990; Hill et al. 1995) to detect sparse vegetation cover from Landsat

TM images in areas with spectrally diverse substrates. The difficulty encountered in

the application of SMA to NOAA AVHRR data is related to the limited number of
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reflectance channels recorded, which hence, restricts the separability of different

surface materials.

Lambin and Ehrlich (1995) used the ratio between Ts and NDVI for continental

scale land-cover classification and demonstrated a clear increase of biome discrim-

ination when integrating both thermal information and vegetation index. A more

sophisticated technique to combine Ts and NDVI is described hereafter. In contrast

to the classical SMA (Adams et al. 1986), the here presented approach uses a

modified unmixing technique with NOAA AVHRR data based on the inverse

relationship between vegetation cover and the surface temperature under dry

conditions (Sommer 1999).

Due to factors like the latent heat transfer through evapotranspiration, the lower

heat capacity and the thermal inertia of vegetation compared to soil, the surface

temperature is inversely proportional to the amount of vegetation canopy, which

itself is proportional to the NDVI. On small spatial scales the variations of different

vegetation species and soil classes can show a high variability regarding surface

temperature, while on coarse geometric resolution (e.g. AVHRR) the variation

seems to be primarily caused by the vegetation fraction, vegetation physiology

and physiognomy being of secondary importance (Nemani et al. 1993). Thus, linear

approximations to explain NDVI as well as surface temperature of mixed AVHRR

pixel (vegetation and non-vegetation) in relation to vegetation have been given

(Fig. 21.1). Fractional cover should predominantly control the position of an

AVHRR land surface pixel in the feature space of NDVI and Ts. Water, surface

moisture and local meteorological conditions may influence this position further.

Ts

No
Evaporation

Max
Evaporation

Wet Edge

Dry Edge

No Transpiration

Max Transpiration

NDVI

bare soil

partial cover

full cover

Fig. 21.1 Simplified Ts/NDVI (Lambin and Ehrlich 1996; Sandholt et al. 2002)
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The concept of the classical linear spectral mixture analysis is based on the

assumption, that the measured surface reflectance of a pixel is equivalent to the sum

of the single reflectance from a limited number of pure materials – the so-called

endmembers (EM) – depending on their pixel fraction. Mathematically, this

assumption can be expressed as:

ρj ¼
Xm

i¼1
Fiρei, j þ εj ð21:1Þ

Where ρj denotes the reflectance of the mixed spectrum in band j, Fi the fraction

of an endmember i of the pixel, ρei,j the reflectance of an endmember spectrum

i in channel j and εj is the residual error in band j. At the same time the proportions

of the endmember have to fulfill the sum-to-unity constraint, which can be

expressed as:

Xm

i¼1
Fi ¼ 1 ð21:2Þ

If the reflectance values of the endmembers are known, their fractions can be

estimated for each pixel by solving a linear system of equations.

The scheme for the derivation of Green Vegetation Fraction (GVF), (term equally

used with normalized vegetation abundance) from the NOAA/AVHRR time series is

given in Fig. 21.2. Technically, the approach derives three endmembers for each

decade (10 day interval), the non-vegetated EM, the vegetated EM and the cold

EM. These EMs represent the edges of the space spanned up by NDVI and surface

temperature (Fig. 21.1) and therefore build a distinct and robust model to estimate the

vegetation cover. The cold EM works similar to the shade EM in the common SMA,

accounting for effects that lower the surface temperature of the surface, including

local gradients related to altitude and exposition, temperature variations due to soil

moisture, variable evaporation and transpiration respectively and remaining cloud

artefacts.

Price (1993) expressed the NDVI of a mixed NOAA/AVHRR pixel as a function

of the vegetation cover fraction as

NDVIpixel ¼ FNDVIveg þ 1� Fð Þ NDVInon�veg ð21:3Þ

where NDVIpixel is the NDVI of a given pixel, F is the vegetation fraction, NDVIveg
is the NDVI value for full vegetation and NDVInon-veg is the NDVI value for a non
vegetated surface.

Likewise, the relationship between vegetation cover fraction and surface tem-

perature was stated by Caselles and Sobrino (1989) as

Tspixel ¼ FTsveg þ 1� Fð ÞTsnon�veg ð21:4Þ

where Tspixel is the surface temperature of a pixel, Tsveg the surface temperature for

full vegetation and Tsnon-veg denotes the surface temperature of a non vegetated

surface. According to these relationships, the implemented spectral unmixing
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approach acts on the assumption that vegetation cover should predominantly

control the position of an AVHRR land surface pixel within the feature space

formed by NDVI and surface temperature (European Commission 1998), which

is illustrated by Fig. 21.3.

21.3.1 Endmember Selection from MEDOKADS Data

For the determination of the three endmembers, the Mediterranean area was

subdivided into an eastern and western window (Fig. 21.4) to account for the

east-west gradient of the vegetation – surface temperature relationship. To avoid

DECADAL
MAXIMUM

NDVI
COMPOSITE

PURE PIXEL
EVALUATION

ENDMEMBER
COLD

ENDMEMBER
BARE SOIL

DECADAL
MAXIMUM

Ts
COMPOSITE

SOIL ABUNDANCE
IMAGE

VEGETATION ABUNDANCE
IMAGE

NORMALISATION OF
VEGETATION ABUNDANCE

POST_PROCESSING (MISSING
VALUES; FILTERING)

COLD ABUNDANCE
IMAGE

ENDMEMBER
VEGETATION

LINEAR UNMIXING
MODEL

Fig. 21.2 Linear unmixing scheme applied to AVHRR time series for the assessment of vegeta-

tion coverage (After Sommer 1999)

346 C.J. Weissteiner et al.



sharp transitions between the separately processed tiles for each pixel a linear

interpolation of the derived endmembers was implemented. All criteria for the

extraction of endmembers are documented in Table 21.1.

The NDVI-Ts relationship is not constant in time and space due to variable

climatic conditions and the changing observation geometry. Therefore the “mixture

triangle” was determined for each time step. An automated approach based on

synthetic endmembers, following the method described by Stellmes et al. (2005),

was applied. Endmembers were either defined upon theoretical considerations or

extracted from the data using statistical methods.

In this context the NDVI value of the fully vegetated endmember was set to 0.7,

which is the maximum NDVI value of vegetation for not atmospherically corrected

NOAA AVHRR data according to literature (Czajkowski et al. 2004). To account for

the dependency of the NDVI on the sun zenith angle (Θs) (Singh 1988), the maximum

possibleNDVI value is corrected for each decade. The relationship between sun zenith

angle and maximumNDVI has been determined empirically. The presented approach

allowed the extraction of this relationship separately for the periods from 1989–2000

and 2001–2004. The separation into two periods should take into account the varying

response of the AVHRR/2 and AVHRR/3 instruments in the red and near infrared

band. Since theNDVI of bare soil is almost not affected byΘs, its NDVIwas extracted

at the lower edge of the decadal NDVI distribution (1 % percentile) of the whole

Mediterranean dataset. To avoid the influence of remaining cloud pixels on the NDVI

of the non-vegetated EM a temperature threshold was introduced (0 �C). The NDVI of
the cold EMwas extracted separately for the eastern and western window at the lower

edge of the decadal NDVI distribution (1 % percentile).

The temperatures of the fully vegetated and the non-vegetated EM were defined

through the NDVI-Ts relationship. The relationship, which is described by a linear

regression equation, was derived by the automatic approach described by Nemani

et al. (1993).

Modifying the initial method described by Stellmes et al. (2005), the temperature

of the cold EM was set to a fixed value (20 �C). Unlike other EMs, the cold EM can

Fig. 21.3 Unmixing

triangle for a scatterplot

consisting of the NDVI

(x-axis) and Ts (y-axis)

for the 16th decade 2001

(western Mediterranean

window). EMs are depicted

as symbols: non-vegetated

EM (◊), vegetated EM (Δ)
and cold EM (*)
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be considered as an artificial EM and is therefore less dynamic. The chosen temper-

ature value represents occurring extreme values in the population of both windows

(Eastern and Western Mediterranean). Linear interpolation was applied for EM

outliers in the temporal domain.

21.3.2 Unmixing

The computation of proportional abundance can be principally explained and

solved with a simple system of linear equations as follows:

A � X ¼ B ð21:5Þ

where A ¼ m (channels) * n (endmember) matrix of spectral endmembers

X ¼ n * 1 unknown vector of abundances

B ¼ m * 1 observed data vector (mixed pixel NDVI and Ts)

The unknown vector of abundances is determined by inverting the endmember

matrix A:

X ¼ A�1�B ð21:6Þ

Table 21.1 Selection criteria for endmembers in the NDVI-TS feature space

Endmember NDVI Ts

Non-vegetated Based on percentile at the lower edge of

NDVI values (1 %), considering

positive NDVI values only. To

avoid effects of remaining cloud

pixels to the NDVI of the extracted

non-vegetated EM, a threshold of

0 �C (lowest allowed value) was

applied.

Ts following Nemani (1993).

Following this approach, the

upperbound pixels of the Ts-NDVI

scatter are extracted for each

decade and fitted by a linear

function. Gain and offset of this

function are used to derive the

temperature of the given NDVI.

One window for the whole area Number of window(s): n ¼ 2

Fully vegetated Max. NDVI is set to 0.7 and corrected

then for the relationship sun zenith

angle (corrected for orbital drift)

versus NDVI (Holben and Fraser

1984; Singh 1988) – empirical

approach, defined separately for the

two time periods 1989–2000 and

2001–2004

Ts following Nemani (1993).

Following this approach, the

upperbound pixels of the Ts-NDVI

scatter are extracted for each

decade and fitted by a linear

function. Gain and offset of this

function are used to derive the

temperature of the given NDVI.

Number of window(s): n ¼ 2, Number of window(s): n ¼ 2,

Cold Based on percentile at the lower edge of

NDVI values (1 %)

�20 �C

Number of window(s): n ¼ 2, Number of window(s): n ¼ 2
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A unique solution is possible if the number of spectral endmembers corresponds

to the number of spectral bands. Furthermore in the case of an underdetermined

problem (this study) the number of unknown endmembers exceeds the number of

bands by one, a solution can be found by assuming the set of endmembers is

exhaustive (i. e., the sum of the computed endmember fractions is equal to one).

The unmixing procedure resulted in the three abundances images for each

decade: the vegetation, non-vegetated (soil) and “cold” abundance.

21.3.3 Normalization of the Vegetation Abundance

The vegetation abundance was normalized according to the assumption that the

“cold” component does not change the ratio between the other derived abundances.

The abundance of the cold endmember was apportioned to the remaining

endmembers by taking into account their fractional abundance through the follow-

ing factor:

F ¼ 1= 1� Fcoldð Þ ð21:7Þ

This is applied up to a cold abundance of 30 %. If the cold abundance exceeds this

value, this GVF modeling approach is rejected as invalid and these pixels are flagged

as NODATA. The value 30 %was chosen, as it represents a value, when the cold EM

starts getting predominant and this implies that the assumption of an inverse NDVI-

Ts-relationship starts getting questionable. It was found for the Iberian Peninsula that

the number of pixels above this threshold did not exceed 15 % during the period

March–October, averaged over all years 1989–2005 (see Fig. 21.5).

The terms normalized vegetation abundance and green vegetation fraction

(GVF) are used equally in this document.

21.3.4 Effect of the Cold Abundance on GVF

Does the cold abundance contribute to an improvement of the GVF and if so, to

which extent? As reported earlier (see introduction), several effects may lead to a

wrong NDVI. Amongst them, atmospheric effects, which are not eliminated by the

maximum value compositing algorithm, play a major role. Generally, clouds and

poor atmospheric conditions depress NDVI values. In the case of GVF, this effect

should be attenuated by the normalization, when the cold abundance (if being

between 0 and 30 %) is re-distributed to the remaining fractions.

The effect was tested for the subset of the Iberian Peninsula for the first decade of

May of all years 1989–2005. Out of this subset, only pixels of supposed ‘stable’

land use types were used. Supposed ‘stable’ pixels were extracted from unfiltered

NDVI data for each decade and pixel, considering the deviation to the long term
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median. These represented mainly forests and sclerophyllous vegetation, while

urban areas and agricultural land use types were excluded. As Fig. 21.6 shows,

both GVF and NDVI show negative deviations from their long term mean in the

case of a high cold abundance of 20–30 % (except for the year 2005). However,

the negative deviations (depressions) are clearly larger for the NDVI, the difference

between GVF and NDVI ranging between �0.1 and �13.0 percentage points, in

average over all years 1989–2005 amounting to �5.4 percentage points. It should

be noted that the degree of compensation of poor atmospheric conditions via cold

abundance is depending on the relation of vegetation and soil abundance: A strong

compensation is theoretically possible in the case of abundances closed to 100 %,

where the cold abundance has a strong absolute compensation effect with

normalisation (see Eq. 21.7). In the case of equal values for soil and vegetation

abundance the cold abundance is distributed equally and has hence a minor impact

on the absolute value of the single fraction.

Fig. 21.5 Occurrence of cold abundance greater than 30 % (Iberian Peninsula, average and

standard deviation 1989–2005)
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Keeping in mind, that the pixels used in Fig. 21.6 are supposed to be stable

(no land use change, no significant seasonal change), it indicates, that the GVF is

much closer to stability than the NDVI, or, in other words, the GVF is less prone to

depression by bad atmospheric conditions than the NDVI is.

21.3.5 Post-processing of the GVF Time Series

Post-processing included a procedure to substitute missing data and outliers

(both replaced by seasonal means). Data smoothing was done with a Savitzky-
Golay-filter (Chen et al. 2004). The window size was set to six decades in forward

and backward direction.

Fig. 21.6 Deviation of unfiltered GVF and NDVI to their long term mean for pixels of a

(unfiltered) cold abundance between 20 and 30 %. Only ‘stable’ pixels (no land use change

supposed) were used. Data refers the first decade of May 1989–2005 for the Iberian Peninsula
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21.3.6 Validation of Results

GVF was tested over different test sites. The aim was to test and compare GVF on

sites with different amounts of vegetation cover and vegetation dynamics within the

growing cycle. Additionally, GVF was compared with independently derived high

and low resolution vegetation cover (fCover).

The agreement between an NDVI, scaled to the same range as GVF, is generally

ranging around the 1:1 line (see Fig. 21.7). The agreement is particularly good

during the vegetation period. Stronger differences are observed for the winter

months, that is when the cold abundance is re-distributed between soil and vegeta-

tion abundance. Looking at specific test sites, the GVF was found slightly higher

(in particular around the growing cycle peak) than the scaled NDVI, which can be

attributed again to the mentioned normalisation.

The presence of the cold endmember has an additional positive effect, when the

vegetation abundance is re-scaled to GVF. This step attenuates the typical effect of

bad atmospheric conditions, usually depressing NDVI. For the case of GVF this

typical depression has been found to be considerably less.

Fig. 21.7 Comparison MEDOKADS scaled NDVI (x-axis) vs. MEDOKADS GVF (y-axis) for

12 decades of the year 2001 (whole Iberian Peninsula). The continuous line indicates the

correlation between both datasets, while the dashed line stands for the 1:1 relationship. Coefficient
of determination (R2), slope (sl) and offset (o) of the regression line are indicated

21 Enhancing Remotely Sensed Low Resolution Vegetation Data for Assessing. . . 353



The comparison with independently derived vegetation cover (fCover) estimates

from the VALERI1 network, extracted from SPOT HRV imagery, revealed a linear

relationship between GVF and fCover. However, GVF values result in average

15 % higher than fCover.

A comparison with the SPOT VEGETATION derived CYCLOPES fCover

product (Baret et al. 2007) revealed again a linear relationship with (again) higher

values for GVF.

Apparently, GVF is not identical to the fractional vegetation cover. Which

relation exists between the two measures? Relations between a scaled NDVI and

fractional vegetation cover are in fact mentioned in the scientific literature. In turn,

the close relation between GVF and the scaled NDVI (almost 1:1) allowed an

approximate calculation of fractional vegetation cover, as outlined below.

Choudhury et al. (1994) and Gillies and Carlson (1995) independently obtained

an identical square root relation between a scaled NDVI and fractional vegetation

cover, which was later confirmed by findings of Carlson and Ripley (1997)

(see Eq. 21.8). Fractional vegetation cover is defined as green vegetation cover

per unit horizontal surface area.

Fractional vegetation cover � NDVIscaledð Þ2 ð21:8Þ

The obtained GVF was highly correlated to the scaled NDVI, the relation being

almost 1:1, with slightly higher values for GVF, especially in the higher ranges.

Assuming a direct 1:1 linear relation between the scaled NDVI and GVF, the square

of the ‘corrected’ GVF should be a real measure of fractional vegetation cover,

comparable to the CYCLOPES fCover.

Fractional vegetation cover � GVFð Þ2 ð21:9Þ

For more details on the methodology and the comparison between independent

data and GVF it is referred to Weissteiner et al. (2008b).

21.4 Discussion

21.4.1 Advantages of This Unmixing Approach

NOAA AVHRR is the longest available remote sensing time series. It is known

that this satellite system is affected by some undesirable properties, e.g. high

oscillations due to a bad signal to noise ratio or weak geometrical accuracy. Unlike

a simple NDVI, which uses 2 channels only, the Unmixing is based on 4 NOAA

1 http://www.avignon.inra.fr/valeri/
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AVHRR channels and built on a physically based relationship between ratios or

combinations of these channels. Certainly, Unmixing is depending on the base data

as well as a vegetation index, but mitigates the risk of erroneous data propagation

due to its multi-dimensional approach.

Another advantage of the Unmixing has to be regarded the fact, that in the here

applied case the technique delivers three basic outcomes, a vegetation abundance, a

bare soil abundance and a cold abundance. All of them can be utilized per se and

present sub-pixel information. For obvious reasons the main focus of this work was

the vegetation abundance, which we normalised (see Eq. 21.7) and hence corrected

for the existence of the cold abundance (fourth outcome). The normalised vegeta-

tion fraction (GVF) represents a refined product for vegetation estimates, corrected

for effects that lower the surface temperature of the surface, e.g. effects related

to altitude and exposition, temperature variations due to soil moisture, variable

evapo(transpi)ration and remaining atmospheric effects and cloud artifacts. More-

over, the position in the Unmixing triangle allows conclusions about occurring

evaporation/transpiration potential.

While direct NDVI transferability of different sensors is critical, the GVF

represents a better standardized and hence comparable product, which could be

derived from any sensor delivering the necessary input variables NDVI and

Ts. This comparability was shown for Landsat TM derived GVF and NOAA

AVHRR derived GVF for the Ayora region in Spain by Stellmes et al. (2005).

The relationship between both data sets was linear, almost 1:1.

The comparison with independently derived fractional vegetation cover shows

clearly, that GVF contains considerable volumetric vegetation information, similar

as NDVI does. Although the name Green Vegetation Fraction might be misleading

in this sense, it was kept for historical reasons. However, the term ‘normalized

vegetation abundance’ would reflect better the real properties of the parameter.

GVF data is higher in comparison to CYCLOPES fCover although these validation

data might be too low in general, as stated by the authors themselves (MEDIAS

France 2006). GVF may be considered an improved vegetation index which is

similar to NDVI, as for the volumetric vegetation information. Most important

improvements of GVF in comparison to NDVI are the atmospheric disturbance

mitigation and the widening of range (scaling). Also the derivation of useful

by-products from the unmixing process and the enhanced cross-comparability of

the data are valuable.

The approximation of a real fractional vegetation cover by squaring GVF

leads to close results to the CYCLOPES fCover and confirms this approximation

technique reported in literature.

21.4.2 Assumptions and Limitations

As reported above, the approach is based on an inverse relationship between NDVI

and surface temperature Ts. This inverse relationship is best pronounced during the
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growing cycle, when some vegetation is on ground and acts as cooling agent. On the

contrary, the relationship is not inverted for regions with extreme cold conditions,

when vegetation acts as a warming rather than a cooling agent. Hence, this

approach is limited to areas of moderate warm or hot temperatures and does not

apply, e.g. for high mountainous regions.

Other regions of limited suitability for this approach are wetlands or areas

of high moisture content. The presence of surface water biases the relationship

NDVI-Ts as the cooling effect does mainly derive from the surface water. These

areas, however, are recorded by the system as areas with a high ‘cold’ abundance

and are eventually excluded.

Also, over evergreen forests, without a moisture availability constraint, the

Ts-NDVI relation is modified compared to water limited environments. This is

often the case in the tropics. At the scale of a decade the slope of the Ts-NDVI

relation is positive (Lambin and Ehrlich 1996). However, this does not apply for the

Mediterranean area with its classical dryland areas.

A crucial issue for unmixing is the identification of the endmembers (EM). Since

scaling of the data is determined by the EMs, these should be chosen with care. In

order to guarantee the comparability of the derived data, windows for the extraction

of EMs were kept large. Still, the different climatic conditions for Western and

Eastern Europe are attempted to be treated differently by the two chosen windows.

The quality of the derived GVF data set depends considerably on the base

MEDOKADS data. Although enormous effort was put into correction of

the MEDOKADS base data, there are still deficiencies, as reported earlier e.g. the

decline of the year 2000 mainly due to the late overpass of NOAA14 in its late

operating period. Even though some problems could be mitigated by empirical

approaches, some deficiencies linked to atmospheric effects and illumination effects

(BRDF) could not be fully corrected. In comparison to the NDVI, the GVF was

generally showing a closer temporal profile to the independent data set FAPAR.

An additional factor to consider is the switch from AVHRR/2 to AVHRR/3

instrument, which occurred after the year 2000. The effect of AVHRR/3 is

generally a higher NDVI, due to different band widths in the red and infrared

wavelength range. The switch can not be easily corrected and was hence not

corrected at all for MEDOKADS. The effect is expected to be mitigated by

(decadal) Unmixing. A proper demonstration of positive Unmixing effects on the

‘instrumental switch’ is difficult since the ‘orbital drift’ effect is overlaid.

21.5 Case Studies

The derived GVF data has been made available to the public and can be downloaded

(http://desert.jrc.ec.europa.eu/action/php/index.php?action¼view&id¼154). The data

has been used in a number of studies, ranging from erosion studies on catchment

scale to phenology analysis and many more. Two applications, where the data had

been of particular importance and usefulness, are mentioned hereafter. These
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applications are referring to case studies in theMediterranean, in one case deriving

olive farming intensities and in the second case mapping of rural land abandon-

ment. Both studies are relying on trends of extracted GVF time series parameters,

describing the temporal dynamics and phenology related parameters for the years

between 1990 and 2004. The parameters are expressing the dynamic (seasonality)

as well as stable portions of GVF throughout the year.

Figure 21.8 depicts schematically the dimensions of the extracted vegetation

dynamics parameters. The seasonal component is referred to as absolute seasonal

component (ASC), and expresses the dynamically changing proportion of the vege-

tation cycle while the permanent component (absolute permanent component/APC)

is formed by the permanent background of the vegetation presence. Both ASC and

APC are expressed in the same units as GVF (or any other vegetation index). Besides

that, both proportions can be expressed in relative units (%), normalizing them by the

overall GVF (e.g. normalized seasonal component/NSC is calculated as ASC/overall

GVF). Moreover, the model allows an extraction of the timing of vegetation peak.

The extraction of the mentioned parameters can be extracted from large remote

sensing time series by the SINFIT model (Weissteiner et al. 2008a).

21.5.1 Olive Farming Intensities

Olive groves are mapped by the European Corine land cover (CLC) survey, which

has been carried out in 1990, 2000 and 2006 so far. However, since this survey is

based on land-cover, there is no distinction made between varying farming inten-

sities. When in 2007 the High-Nature-Value farmland (HNV) had been to be

Fig. 21.8 Illustration of observed and modelled permanent and seasonal component by an

exemplary typical seasonal run of green vegetation
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re-mapped, experts were rising the problem, that HNV in the case of olive groves

would need an additional input based on farming intensity, to achieve an accurate

assignment (or not) to the HNV areas. Up to that point the assignment to HNV has

primarily be done by land-cover data. Due to the above mentioned advantages the

GVF data set had been chosen to derive vegetation dynamics parameters, which,

together with CLC data to restrict the analysis to mapped olive areas could be

successfully used to map olive farming systems in different classes, which, in turn

were attributed to the three prevalent olive farming systems according to Beaufoy

(2001). The strategy applied is taking advantage from three main points. First, the

presence or abundance of the olive grove understory is primarily used to determine

the farming intensity, second, the olive tree crown-cover is relatively stable for

the majority of cultivations, and third, the olive tree itself is evergreen and hence

not significantly disturbing the observations of changing groundcover. If crown-

cover and olive tree dynamics can be considered quasi stable, the vegetation

dynamics can be attributed to the ground vegetation, which, in turn are supposed

to determine the farming type and intensity. Although the spatial resolution of

NOAA AVHRR data is around 1 km, the use of ancillary data (CLC), which has

been used to restrict the analysis to distinct olive grove areas, and the particular

methodology design has allowed a sound assessment of olive groves, which in other

terms would require data of a much higher spatial resolution. The analysis was

carried out focusing on two distinct target years, which were selected in accordance

with the available CLC data (1990 and 2000). To level out undesirable effects, such

as exceptional or extreme impacts on vegetation (e.g. droughts), GVF data have

been averaged over target and surrounding years. Applying the methodology to two

distinct target years allowed a change detection analysis, resulting in further

findings such as intensification and extensification strenghts and locations. A subset

of the olive farming type classification is depicted in Fig. 21.9. More details can be

found at Weissteiner et al. (2011b).

21.5.2 Rural Land Abandonment

The second case study has been usingGVF trends over thewhole time span of the time

series. In this case, trend analysis of vegetation dynamics parameters were used as

input for a study of rural land abandonment in the Mediterranean. However, the GVF

based trends, are only one part within a set of indicators which were combined to

several intermediate levels of meaningful results using appropriate aggregation

methods, and were finally combined to the rural land abandonment (RLA) indicator.

Similar as for the olive farming intensities, not land-cover but land functionality

(relation between land cover, land use and the provision of goods and services by

the land system) were used to monitor land change, as proposed by Verburg

et al. (2009). These authors could show for a land abandonment study that this process

may not have any consequences in land-cover, since poorly represented in this type of

data. They state that functionality often requires local and contextual factors
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synchronously, which can be provided by a set of different data sets of varying nature

(i.e. bio-physical and socio-economic data). In the particular case study of RLA, GVF

data provided trends of observed vegetation trends (vegetation symptom likeliness

indicator – VELI), which were in a later step combined with the land abandonment

disposition indicator (LADI), composed of physical environmental conditions (PECI)

and socio-economic conditions (SECI), to create the final rural land abandonment

index (Fig. 21.10). VELI was created itself by aggregation of three different observed

vegetation trends, the seasonal and the permanent proportion of the vegetation cycle,

and the total productivity of the annual vegetation cycle, representing a proxy for Net

Primary Productivity (NPP). In a similar way PECI and SECI are aggregated group

layers (e.g. created out of soil data, economic data, etc.). Formore specific details refer

to Weissteiner et al. (2011a). By applying modern soft fusion techniques for data

aggregation (Bordogna et al. 2012) the final RLA not only delivered a highly detailed

map of occurrence of this syndrome in the Mediterranean, but also gave an indication

Fig. 21.9 Modeled olive farming classes for Andalusia in Southern Spain (data subset)

Fig. 21.10 Rural Land Abandonment indicator (RLA) for the Mediterranean
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of the syndrome strength.Moreover, it was possible to estimate the proportion of each

contributing group layer to the final RLA, which made it e.g. possible to identify the

main causes of RLA (socio-economic or physical environmental conditions).

21.6 Conclusions and Outlook

Employing four NOAA AVHRR channels and a physical relationship between

surface temperature and NDVI for the generation of this GVF dataset mitigates

base data uncertainty, which is of particular importance for accurate trend analysis.

Compared to NDVI data, clear improvements could be shown. The improvements

are in particular mitigating undesired effects due to bad atmospheric conditions.

The methodology not only delivers a reliable data set of a vegetation measure

(GVF) but also abundances of all other employed endmembers (non-vegetated EM,

cold EM), each of them utilizable as standalone products.

The GVF or any other EM-abundance represent sub-pixel information,

exploiting the limited NOAA AVHRR potentialities to a maximum.

GVF and fractional vegetation cover (fCover) is not identical, since GVF

contains also a volumetric component of vegetation. A relationship between GVF

and fCover has been found and confirms similar findings in literature.

In this investigation, in comparison to a scaled NDVI, it could not be found a

higher sensitivity of GVF for scarcely vegetated areas. However, the higher sensi-

tivity is certainly given in comparison to a non-scaled NDVI, due to the extended

range of GVF, exploiting the full margin within statistically derived limits.

GVF data has successfully been used in two case studies, where a reliable base data

set for the derivation of status and trends of vegetation was of crucial importance.

The derivation of GVF can be run in an almost operational way. Due to its design

GVF is less sensor dependent than NDVI. This enables its use as monitoring measure

for long term observations and its application for suitable upcoming sensors.
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Chapter 22

Beyond NDVI: Extraction of Biophysical

Variables From Remote Sensing Imagery

J.G.P.W. Clevers

22.1 Introduction

By sight humans can use visible differences in the reflection of the sunlight to

recognize vegetation colour. Part of the reflected radiation observed with remote

sensing (RS) techniques coincides with the part visible to the human eye. When

looking at the electromagnetic (EM) spectrum used for optical RS, visible light

(VIS) constitutes the first range of wavelengths. In the VIS, ranging from 0.4 to

0.7 μm, various pigments, such as chlorophyll (green), xanthophyll (yellow), and

carotene (orange), influence the reflection. This reflectance is a characteristic of an

object and it is often plotted against wavelength. It is called the spectral signature.

In most plant species two types of chlorophyll (a and b) determine the reflection,

mainly by absorption of blue and red light and to a lesser degree of green light

(cf. Fig. 22.1). The energy in these spectral bands is used for the displacement of

electrons and initiates the synthesis of carbohydrates from atmospheric CO2

and absorbed groundwater. Green-yellow chlorophyll a is present in all photo-

synthesizing plants. Higher plants and green algae contain blue-green chlorophyll

b, although in small quantities. Both chlorophylls absorb the visible light to a large

extent, and have two absorption peaks: one in the blue (approx. 0.45 μm) and one in

the red (approx. 0.65 μm) region of the EM spectrum. As a result of this and also of

the hypersensitivity of the eye to green, vegetation reveals itself to the eye in

various shades of green. Subsequently, the peak of the reflectance in the VIS occurs

at approx. 0.54 μm. Spectral measurements in the VIS thus may provide informa-

tion on pigment concentrations of vegetation, although the signal coming from

vegetation is relatively low due to the large absorption. This strong absorption also

causes that in the VIS the reflectance of only the top canopy layer determines the

total reflectance of a vegetation canopy. Soils do not show this strong absorption
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due to pigments and therefore they mostly show a strong contrast with green

vegetation in the VIS. As a result, spectral measurements in the VIS not only

provide information on pigments, but also on the percentage of soil covered by

vegetation (fCover) and properties related to this quantity, such as the fraction of

absorbed photosynthetically active radiation (fAPAR).

The second range of wavelengths from 0.7 to 1.3 μm (near-infrared radiation,

NIR) is mainly determined by the absence of absorption by pigments (see Fig. 22.1).

This means that the radiation passes through the leaf (the leaf is transparent) or that

it is reflected. Approximately 50 % of the NIR radiation is reflected by the leaf.

However, this percentage varies widely for different plant species. It has been

established for this range of wavelengths that a leaf becomes very transparent if

the air channels between the cells of the leaf are filled with fluid. This gave reason to

a theory that reflection takes place in the leaf at the transition of air and cell walls

(Knipling 1970). Since a green leaf hardly absorbs any NIR radiation, leaves or

canopy layers under the top layer contribute significantly to the total measured

reflectance. This multiple reflectance denotes the NIR reflectance to be particularly

suitable for estimating the so-called leaf area index (LAI) (“counting the number of

leaf-layers”).

In the third region of wavelengths ranging from 1.3 to 2.5 μm (called middle-

infrared (MIR) or shortwave infrared (SWIR)), a great deal of radiation is absorbed

by water in the cells (see Fig. 22.1). The figure shows that the major absorption

peaks fall at 1.90 and 1.40 μm. It should be pointed out that weak absorption bands

of water also occur at 1.20 and 0.97 μm.
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Fig. 22.1 Typical spectral reflectance curves for dry soil, wet soil and vegetation. 1: 0.54 μm;
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Clevers (1999) has shown that the VIS can be considered as one region

providing information for estimating plant properties. Since spectral bands (either

narrow-band or broad-band) mutually are highly correlated, there is little added

value to be expected by combining spectral bands in indices based on just the VIS.

The NIR is another principal region for estimating vegetation properties. Again,

spectral bands in the NIR are highly correlated and little added value is to be

expected by combining spectral bands in just the NIR. A third region is the SWIR,

which mainly provides information on water content in vegetation studies, and the

same conclusion can be drawn as for the VIS and NIR. Clevers (1999) showed that

there is a fourth region that may provide significant information on vegetation

properties, in addition to the mentioned three regions. This is the so-called red-edge

region exhibiting a steep rise in plant reflectance between 0.67 and 0.78 μm.

In addition to the above-mentioned main spectral regions for deriving vegetation

properties, some specific regions related to specific absorption features may be of

interest. This is, e.g., used by applying spectroscopy in soil mineralogy. In dry

vegetation samples information on nitrogen can be obtained in the SWIR region.

E.g., at 1.51 μm an absorption feature occurs due to the first overtone of the N-H band

vibration and at 2.18 μm an absorption feature occurs due to the second overtone

(Curran 1989). In living plant material these features are obscured by the absorption

effects of water. Only the minor water absorption features at 0.97 and 1.20 μm are

features that provide specific information on vegetation that is detectable from a

remote sensing point of view (see Sect. 22.4.4).

To describe the relationship between spectral measurements and biophysical and

chemical variables of vegetation both statistical and physical approaches have been

used. As an example of statistical methods, numerous indices have been developed

for estimating leaf and canopy properties (Myneni et al. 1995a). Radiative transfer

(RT) models are highly suitable for studying the relationship between biophysical

variables and reflectance or vegetation indices (VIs) and to study the effect of

sources of variability (Combal et al. 2003). Subsequently, RT models may be used

to determine ‘universal’ VIs that are site and species independent by calibrating VIs

on large simulated datasets. A good index would be an index only sensitive to the

variable of interest and not to other variables (cf. Verrelst et al. 2008). Section 22.2

provides some remarks on using radiative transfer models, whereas Sect. 22.3 gives

an overview of the field of vegetation index development.

22.2 Radiative Transfer Models

A number of physically-based models, which account for the interactions of

incident radiation with vegetation canopies, have been developed. Radiative trans-

fer (RT) models have been used both in forward and inverse mode. In forward

mode, RT model simulation allows validation and intercomparison of different

RT model implementations (Myneni et al. 1995b) and sensitivity studies of

canopy variables relative to diverse observation specifications, for an improved

understanding of the RS signals and an optimized instrument design for future Earth
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observation systems (Bacour et al. 2002). For the retrieval of vegetation properties, RT

models need to be invertedwith RS data as input. For a successful inversion, one has to

choose an appropriate and well-validated RT model that matches the spatial scale

and correctly represents the RT of the observed target (Pinty and Verstraete 1992).

Models are traditionally being developed at the leaf and at the canopy level. Leaf

RT models physically simulate reflectance and transmittance of plant leaves, which

can be used by canopy level RT models to compute phase functions for multiple

scattering. Canopy RT models can be classified either based on their dimensionality

or based on the RT solution. In terms of dimensionality, there are two types of

models: (i) one-dimensional (1D) models that require homogeneity in the horizontal

dimension, such as turbid medium models, and (ii) three-dimensional (3D) models

that handle heterogeneity and discontinuity in both horizontal and vertical dimen-

sions (like needed for modeling forests), such as geometric-optical or hybridmodels.

The latter combine features from turbid medium and geometric models.

The combined PROSPECT leaf optical properties model and SAIL canopy

bidirectional reflectance model, also referred to as PROSAIL, is the most popular

RT model to study plant canopy spectral and directional reflectance in the solar

domain (Jacquemoud et al. 2009). The PROSPECT model is a radiative transfer

model for individual leaves. It simulates leaf spectral reflectance and leaf spectral

transmittance as a function of leaf chlorophyll content (Cab), leaf water content

(Cw) and a leaf structure parameter (N ). PROSPECT is also including leaf dry

matter (Cdm) as a simplification for the leaf biochemistry (protein, cellulose, lignin).

The one-layer SAIL radiative transfer model simulates canopy reflectance as a

function of canopy parameters (leaf reflectance and transmittance, LAI and leaf

inclination angle distribution), soil reflectance, ratio of diffuse/direct irradiation and

solar/view geometry (solar zenith angle, zenith view angle and sun-view azimuth

angle). It also takes the hot spot effect into account by considering the relative leaf

size. This hot spot is a peak in the directional reflectance commonly observed in

vegetation canopies when the sun and observer are at the same position, meaning

that no shadows are observed. The output of the PROSPECT model can be used

directly as input into the SAIL model. As a result, these models can be used as a

combined PROSPECT-SAIL model.

Deriving biophysical properties from PROSAIL is feasible due to the relatively

small number of input variables required for PROSAIL (Jacquemoud et al. 2000).

In principle, inversion is performed by minimizing the difference between simu-

lated and measured reflectance based on some sort of cost function and possible

constraints for the model input variables (either set to an a priori value or allowed to

vary within a plausible range). For the inversion process, a wide range of minimi-

zation techniques have been used: classical iterative optimization, simulated

annealing, genetic algorithms, look-up tables, Monte-Carlo Markov chains and

generalized likelihood uncertainty estimation. However, classical iterative optimi-

zation techniques, look-up tables and neural networks have been the most widely

used (Liang 2004). Although the number of input variables is limited, we mostly

still are dealing with an underdetermined problem since the number of unknowns to

be estimated is larger than the number of independent spectral observations (even in
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case of hyperspectral sensors). Use of constraints then becomes necessary. Another

problem is the ill-posedness of the inversion, meaning that different combinations

of input variables yield the same spectral model output. Regularization techniques

are then required for obtaining stable solutions. An overview of the state-of-the art

is provided by Baret and Buis (2008). For deriving biophysical variables first the

top-of-canopy (TOC) is ascertained. Inversion of TOC observations has proven to

be successful in the last decades, enabling the production of high level data products

(Garrigues et al. 2008). Recently, Laurent et al. (2011) demonstrated the direct use

of measured top-of atmosphere (TOA) radiance data to estimate forest biophysical

and biochemical variables, by using a coupled canopy–atmosphere radiative trans-

fer model. Advantages of this approach are that no atmospheric correction is needed

and that atmospheric, adjacency, topography, and surface directional effects can be

directly and more accurately included in the forward modelling.

22.3 Vegetation Indices

Many investigations have been conducted to assess vegetation characteristics, such

as biomass and LAI, by means of combinations of reflectances in various spectral

bands. Such a combination of reflectance values, the vegetation index (VI), also

serves to correct for undesirable influences of varying soil reflectance or atmo-

spheric conditions on the results. These kinds of disturbances are particularly

undesirable in spatial and multitemporal analyses. Most commonly used VIs are

based on red and NIR spectral bands, because the large difference between red and

NIR reflectance of dense green vegetation is a unique feature. Generally, indices are

divided into ratio and orthogonal indices. Whereas ratio-based indices are calcu-

lated independently of soil reflectance properties, orthogonal indices refer to a base

line specific for the soil background. More recently, indices have emerged that can

be considered hybrid versions of the classic ratio and orthogonal indices.

The first investigations into vegetation indices concerned the NIR/red ratio by

Rouse et al. (1974, 1973). Rouse and his colleagues found this ratio to be suitable –

when applied to satellite data – for the estimation of crop characteristics owing to a

partial correction for the solar position and atmospheric influence. They also used

the normalized vegetation index for the same purpose. Often, this type of vegetation

index is called the normalized difference vegetation index (NDVI):

NDVI ¼ NIR� redð Þ
NIRþ redð Þ ð22:1Þ

In order to find an index independent of the influence of the soil, Richardson and

Wiegand (1977) introduced the so-called perpendicular vegetation index (PVI):

PVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
redv � redsð Þ2 þ NIRv � NIRsð Þ2

q
ð22:2Þ
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where subscripts v and s refer to the vegetation and the underlying bare soil,

respectively. The increase in the amount of vegetation agreed with the offset of

the reflectances perpendicular (orthogonal) to a so-called soil line in a NIR-red

feature space plot.

A similar approach for suppressing variations of the soil influence has been

developed by Kauth and Thomas (1976). They applied a linear transformation to the

four-dimensional data space of Landsat MSS measurements of agricultural regions

with various soil types, called the tasselled cap transformation. This transformation of

the four Landsat-1 MSS bands resulted in a so-called brightness index dominated by

soil differences and a so-called greenness index dominated by green vegetation:

Soil brightness ¼ 0:43�MSS4þ 0:63�MSS5þ 0:59�MSS6þ 0:26
�MSS7 ð22:3Þ

Greenness ¼ �0:29�MSS4� 0:56�MSS5þ 0:60�MSS6 þ 0:49
�MSS7 ð22:4Þ

MSS4: 0.5–0.6 μm, MSS5: 0.6–0.7 μm, MSS6: 0.7–0.8 μm, MSS7: 0.8–1.1 μm.

Later the tasselled cap transformation was also applied to the spectral bands of

the Landsat Thematic Mapper (Crist and Cicone 1984). The soil brightness can be

considered as a multidimensional soil line and the greenness is orthogonal to this

soil line, in essence similar to the PVI concept.

In order to obtain a more precise correction for soil background, Huete (1988)

developed the soil adjusted vegetation index (SAVI). This index was further

improved by Baret et al. (1989) yielding the transformed soil adjusted vegetation

index (TSAVI). Different researchers made further versions of the SAVI, resulting

e.g. in an adjusted TSAVI (ATSAVI), second version of SAVI (SAVI2) and a

second modified SAVI (MSAVI2) (Broge and Leblanc 2000).

A semi-empirical approach for estimating LAI of a green canopy, introduced by

Clevers (1988, 1989), resulted in the so-called weighted difference vegetation index

(WDVI). In this model it is assumed that in the multitemporal analysis the soil type

is given and the soil moisture content is the only varying property of the soil. For

estimating LAI a weighted difference between the measured NIR and red reflec-

tances was ascertained, assuming that the ratio of NIR and red reflectances of bare

soil is constant, independent of soil moisture content (which assumption is valid for

many soil types). Subsequently, this WDVI was used for estimating LAI according

to the inverse of an exponential function. Basically, the WDVI is a 2-dimensional

greenness index, and as such also strongly related to the PVI. WDVI is calculated

as:

WDVI ¼ NIR� C� red ð22:5Þ

C ¼ NIRs=reds ð22:6Þ

where subscript s again refers to soil reflectances.
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Up till now, a large set of vegetation indices have been developed, mainly for

estimating vegetation cover, LAI, biomass, pigment content, water content and

related (indirect) quantities. Various studies have compared many different indices

for estimating one of these vegetation variables (Broge and Mortensen 2002; Gong

et al. 2003; Haboudane et al. 2004; Schlerf et al. 2005; Thenkabail et al. 2002;

Zarco-Tejada et al. 2005). The performance of the various indices always is

different, depending on the specific data sets used for the study, resulting each

time in different indices as being the best one. This makes it difficult to compare the

various studies. One should always consider the theoretical background of an index,

its validity range and its purpose, and then use one index as much as possible

rendering results that are mutually comparable spatially and temporally. In the next

section focus will be on the main biophysical variables that can be estimated with

RS techniques.

22.4 Biophysical Variables

22.4.1 Chlorophyll and Nitrogen

In vegetation studies nitrogen and chlorophyll have always played an important

role. A sufficient supply of nitrogen is crucial for the biochemistry of plants since

nitrogen is an important component in proteins, nucleic acids (e.g., DNA, RNA)

and chlorophyll (a and b). Photosynthesis is the source of energy and of carbon in

all organic compounds in plants. This photosynthesis takes place in reaction centers

that contain chlorophylls. Plants having a shortage of nitrogen will have a lower

chlorophyll concentration resulting into a non-optimal photosynthesis. This results

into not only a reduced plant growth but also a reduced carbon fixation. We see that

nitrogen and chlorophyll concentrations often are highly correlated in plants

(Jongschaap and Booij 2004; Yoder and Pettigrew-Crosby 1995). Actual estimates

are relevant for many application fields ranging from local scale such as precision

farming up to global scales dealing with the global carbon cycle.

Since the VIS should be considered as one band of information, few vegetation

indices have been developed based on bands in the VIS solely. For estimating

chlorophyll content actually the main one is the photochemical reflectance index

(PRI) as developed by Gamon et al. (1990). The PRI is presented as an index for

estimating the green shift, centered near 531 nm, caused by reflectance changes

associated with the de-epoxidation of violaxanthin to zeaxanthin. As such this

provides information on canopy photosynthesis, in particular the light use effi-

ciency (Gamon et al. 1997). Recently, Garbulsky et al. (2011) provided a review of

the scientific literature on the relationship between PRI and photosynthetic effi-

ciency or related variables across a range of plant functional types and ecosystems.

However, experiences with the PRI are varying.
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Haboudane et al. (2002) gave a typical example how radiative transfer

(RT) models can be used for development of an index for estimating the chlorophyll

content from hyperspectral data. They established and tested the ratio of two optical

indices, namely the transformed chlorophyll absorption in reflectance index,

TCARI (Daughtry et al. 2000), and the optimized soil-adjusted vegetation index,

OSAVI (Rondeaux et al. 1996). This resulted into the TCARI/OSAVI ratio. Sim-

ilarly, the ratio of the modified chlorophyll absorption in reflectance index,

MCARI, and the OSAVI was tested, MCARI/OSAVI (Daughtry et al. 2000).

The red-edge region as mentioned before is a special region that has often been

used for estimating chlorophyll and nitrogen content at both leaf and canopy level.

Physically it is the content at canopy level that we expect to estimate with

RS. Collins (1978) and Horler et al. (1983) were among the first researchers to

point out the importance of the red-NIR wavelength transition for vegetation

studies. Both the position and the slope of this red-edge change under stress

conditions, resulting in a shift of the slope towards shorter wavelengths (Horler

et al. 1983). As an index mostly the position of the inflexion point on the red-NIR

slope is used. This is called the red-edge position (REP), and it will be influenced by

both the LAI and the chlorophyll concentration (Clevers et al. 2001). It was shown

before to be a good estimate for chlorophyll content, but being less sensitive at

higher contents. This saturation effect is still a problem. There are various ways to

calculate this REP (Clevers et al. 2004). Guyot and Baret (1988) applied a simple

linear model to the red-infrared slope. This approach is feasible for satellite data

like obtained with the Medium Resolution Imaging Spectrometer, MERIS (Clevers

et al. 2002).

Another type of index based on the red-edge slope has been developed specif-

ically with the advent of MERIS: the MERIS terrestrial chlorophyll index, MTCI

(Dash and Curran 2004). It is proposed as a better index than the REP.

Wu et al. (2008) suggested to replace the traditional red and NIR spectral bands

in indices likeMCARI, TCARI andOSAVI by spectral bands in the red-edge region,

particularly a band at 705 nm instead of the traditional red band at 670 nm, and a

band at 750 nm instead of the band at 800 nm in the traditional MCARI and TCARI.

They found that this resulted into indices that have better linearity with chlorophyll

content and are thus more suitable. This band replacement is also consistent with

the results of the sensitivity analysis by Gitelson and Merzlyak (1996).

Gitelson et al. (2003, 2006a, b) presented a simple index based on a NIR band

and a red-edge band (e.g., at 710 nm) to estimate chlorophyll concentration: the

so-called chlorophyll index (CIred-edge ¼ R780/R710–1). He also presented a variant

using a green band instead of the red-edge band (CIgreen). Major advantage of these

latter two indices would be their linear relationship with chlorophyll and the

absence of the saturation effect as obtained with the REP indices.

Clevers and Kooistra (2012) tested the potential of the above-mentioned VIs for

retrieving canopy chlorophyll and nitrogen content. The formulae of the indices are

given in Table 22.1. Main results are summarized in Table 22.2. They showed

through PROSAIL model simulations that out of the above-mentioned VIs the

CIred-edge performed best in estimating canopy chlorophyll content showing a linear
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relationship over the full range of potential values. In contrast, highly non-linear

relationships of chlorophyll content with most traditional red-edge indices were

found. Subsequently, they performed tests with field data for sampling locations

within an extensively grazed fen meadow using ASD FieldSpec measurements and

within a potato field with a Cropscan radiometer for estimating canopy nitrogen

content. Also at these study sites the CIred-edge was found to be a good and linear

estimator of canopy nitrogen content (no chlorophyll was measured) for both the

grassland site and the potato field (Clevers and Kooistra 2012). Currently, this

approach can, e.g., be applied with MERIS, Hyperion and RapidEye data and with

the upcoming Sentinel-2 and -3 systems. An example of the relationship between

CIred-edge and nitrogen content of potatoes is shown in Fig. 22.2. For a more detailed

analysis of the data and description of results the reader is referred to Clevers and

Kooistra (2012).

22.4.2 Vegetation Cover Fraction (fCover) and fAPAR

As stated in the introduction, radiation in the VIS can be used by plants for

photosynthesis. Therefore, this is called photosynthetically active radiation

(PAR). The rate of photosynthesis can be calculated from the amount of absorbed

PAR (the APAR) and the photosynthesis-light response of individual leaves.

Table 22.1 Vegetation

indices evaluated in the study

of Clevers and Kooistra

(2012)

Index Formulation

REP 700þ 40
R670þR780ð Þ=2�R700

R740�R700

MTCI (R754 � R709)/(R709 � R681)

MCARI/OSAVI R700�R670ð Þ�0:2 R700�R550ð Þ½ � R700=R670ð Þ
1þ0:16ð Þ R800�R670ð Þ= R800þR670þ0:16ð Þ

TCARI/OSAVI 3 R700�R670ð Þ�0:2 R700�R550ð Þ R700=R670ð Þ½ �
1þ0:16ð Þ R800�R670ð Þ= R800þR670þ0:16ð Þ

MCARI/OSAVI[705,750] R750�R705ð Þ�0:2 R750�R550ð Þ½ � R750=R705ð Þ
1þ0:16ð Þ R750�R705ð Þ= R750þR705þ0:16ð Þ

TCARI/OSAVI[705,750] 3 R750�R705ð Þ�0:2 R750�R550ð Þ R750=R705ð Þ½ �
1þ0:16ð Þ R750�R705ð Þ= R750þR705þ0:16ð Þ

CIred-edge (R780/R710) � 1

CIgreen (R780/R550) � 1

Rλrefers to the reflectance factor at wavelength λnm

Table 22.2 Overview

of R2 values of the linear

relationships between indices

and chlorophyll (PROSAIL)

and nitrogen (grass and

potato) content (Clevers and

Kooistra 2012)

Index PROSAIL Grass Potato

REP 0.49 0.79 0.84

MTCI 0.83 0.80 0.89

MCARI/OSAVI 0.25 0.06 0.09

TCARI/OSAVI 0.39 0.58 0.19

MCARI/OSAVI[705,750] 0.93 0.57 0.87

TCARI/OSAVI[705,750] 0.91 0.75 0.71

CIgreen 0.94 0.77 0.88

CIred-edge 0.94 0.77 0.88
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Estimating APAR over some time interval (e.g., daily APAR) requires both inci-

dent PAR and the (average) fraction of APAR by vegetation, which is called

fAPAR. Daughtry et al. (1992) showed that daily APAR may be reliably computed

from measurements of the fAPAR near solar noon and daily incident PAR. The

fAPAR is considered one of the main essential climate variables related to the

terrestrial ecosystem (WMO/IOC 2010). It is strongly correlated to the vegetation

cover fraction (fCover) (Bacour et al. 2006). fCover corresponds to the gap fraction

of vegetation either measured from above or from below in the nadir viewing

direction. fAPAR, conversely to fCover, depends on the illumination conditions.

The large contrast in reflectance between bare soil and vegetation in the VIS will

be most suitable for estimating fCover and fAPAR. Since this contrast not only

depends on the amount of vegetation but also on the moisture content of the soil, a

single band is not suitable and a vegetation index should be used. Again, due to the

strong mutual correlation of bands in the VIS, mostly a combination of VIS and

NIR bands is used. Clevers et al. (1994) showed that a linear relationship may be

assumed between WDVI or NDVI and fAPAR. External factors such as soil

brightness, diffuse/direct irradiation ratio and solar zenith angle only have a

minor influence on such a relationship between WDVI and fAPAR. Moreover, leaf

parameters such as chlorophyll content, mesophyll structure and hot spot parameter

(see Sect. 22.2) also have quite a small influence for green leaves. The leaf angle

distribution (LAD) is the main parameter influencing the relationship between

WDVI and fAPAR. So, for different LADs different regression functions should

be used. Although the relationship between NDVI and fAPAR is slightly less

N = 4.2575×CIred-edge
R² = 0.88
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Fig. 22.2 Relationship between CIred-edge and canopy nitrogen content for a potato study site in

The Netherlands (Clevers and Kooistra 2012)
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influenced by LAD and solar zenith angle, important disturbing factors are the soil

brightness and leaf chlorophyll content. Similar results have been found in other

studies (Asrar et al. 1992; Goward and Huemmrich 1992). So, the WDVI is to be

preferred over the NDVI.

22.4.3 Leaf Area Index

Leaf area index (LAI) is defined as the total one-sided green leaf area per unit

ground area and it is regarded a very important canopy characteristic because

photosynthesis takes place in the green plant organs. Moreover, it is also considered

an essential climate variable (WMO/IOC 2010). Most of the vegetation indices

mentioned in Sect. 22.2 have been used for estimating LAI. Clevers and Verhoef

(1993) have performed an extensive sensitivity analysis using a combination of the

PROSPECT leaf reflectance model and the SAIL canopy reflectance model towards

the relationship between WDVI and LAI. As expected according to the Lambert-

Beer law for light extension in a canopy, this is an exponential relationship. The

influence of external factors such as soil brightness, diffuse/direct irradiation ratio

and solar-view geometry hardly have an effect on the relationship between WDVI

and LAI. Moreover, leaf parameters such as chlorophyll content, mesophyll struc-

ture and hot spot parameter also have only a small influence for green leaves at near

nadir observation (like is the case for many satellite observations). The main

variable influencing the relationship between WDVI and LAI is the leaf angle

distribution (LAD). So, for different LADs different regression functions should

be used. An example of calibration lines for estimating LAI using the WDVI for a

range of agricultural crops in the Netherlands is provided by Bouman et al. (1992).

Figure 22.3 shows an example of the WDVI – LAI relationship for barley from the

original WDVI paper of Clevers (1989). He applied the inverse of a special case of

the Mitscherlich function (Mitscherlich 1920) for estimating LAI:

LAI ¼ �1= / �Ln 1�WDVI=WDVI1ð Þ ð22:7Þ

22.4.4 Canopy Water

Currently, one of the main scientific issues in studying global climate change is to

understand the role of terrestrial ecosystems and the changes they may undergo.

The water cycle is one of their most important characteristics (ESA 2006). In this

respect, the canopy water content (CWC) is of interest, also in view of the water use

efficiency of plants. As stated in Sect. 22.1, the SWIR region of the EM spectrum

mainly is sensitive for canopy water. Water absorption features as a result of

absorption by O-H bonds in liquid canopy water can be found at approximately

0.97, 1.20, 1.45 and 1.95 μm (Curran 1989). The features at 1.45 and 1.95 μm are
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most pronounced. However, when using remotely sensed observations, one should

also consider water vapour in the atmosphere, which also results in several absorp-

tion bands in the infrared part of the spectrum. Main atmospheric absorption

features occur around 1.40 and 1.90 μm. As a result, those bands will result in

very noisy measurements and should not be used for remote sensing. Spectral bands

outside these main features in the shortwave infrared (SWIR) region are suited for

the remote sensing of canopy water content (Tucker 1980). Landsat Thematic

Mapper band 5 (1.55–1.75 μm) was designed because of this sensitivity to canopy

water content. Also Thematic Mapper band 7 (2.08–2.35 μm) is sensitive to canopy

water content. Various broad-band vegetation indices are based on these wave-

length regions. One of the first ones is the infrared index (II) as defined by Hardisky

et al. (1983).

The canopy water absorption features at 0.97 and 1.20 μm are not that pro-

nounced, but still clearly observable (Danson et al. 1992; Sims and Gamon 2003).

Therefore, these offer interesting possibilities for deriving information on canopy

water content. In these regions one should consider the water vapour band absorp-

tions at 0.94 and 1.14 μm when observing through the atmosphere (Gao and Goetz

1990; Iqbal 1983). One can notice that the centers of the liquid water bands (in the

canopy) are shifted to longer wavelengths as compared to the corresponding water

vapour band centers. Due to the development of imaging spectrometers, accurate
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measurements on these minor absorption features in the near-infrared (NIR) have

become feasible.

Various spectral techniques, based on the water absorption features at 0.97 and

1.20 μm, have been proposed to estimate CWC. Often these techniques are equiv-

alent to those applied to the chlorophyll absorption feature in the red part of the

electromagnetic spectrum. Thus far, approaches based on spectral indices, contin-

uum removal and derivative spectra have been studied in literature. Concerning

spectral indices, Peñuelas et al. (1993, 1996) focused on the 0.95–0.97 μm slope and

defined the so-called water band index (WI) as the ratio between the reflectance at

0.97 μm and the one at 0.90 μm (as a reference wavelength). Gao (1996) defined the

normalized difference water index (NDWI), analogously to the well-known nor-

malized difference vegetation index (NDVI), by using the 1.20 μm feature and

0.86 μm as a reference wavelength. In addition, a continuum removal approach can

be applied to the two absorption features at about 0.97 and 1.20 μm. This is a way of

normalizing the reflectance spectra (Kokaly and Clark 1999). The maximum band

depth, the area under the continuum, and the band depth normalized to the area

(Curran et al. 2001) have been used thus far for estimating foliar biochemicals like

chlorophyll. Few studies have applied this to the water absorption features at 0.97

and 1.20 μm (Kokaly et al. 2003; Stimson et al. 2005).

Danson et al. (1992) showed that the first derivative of the reflectance spectrum

corresponding to the slopes of the absorption features provides better correlations

with leaf water content than those obtained from the direct correlation with reflec-

tance. Rollin and Milton (1998) found moderate correlations between the first

derivative at the left slope of both absorption features and CWC for a grassland

site in the UK. Clevers et al. (2008) applied derivatives in a preliminary study at the

field and airborne level. These studies showed that spectral derivatives at the slopes

of the 0.97 μm and (to a lesser extent) 1.20 μm absorption feature have good

potential as predictors of CWC. Recently, Clevers et al. (2010) showed that the

first derivative of the reflectance spectrum at wavelengths corresponding to the left

slope of the minor water absorption band at 0.97 μm was highly correlated with

CWC. PROSAIL model simulations showed that it was insensitive to differences in

leaf and canopy structure, soil background and illumination and observation geom-

etry. However, these wavelengths are located close to a water vapour absorption

band at about 0.94 μm (Gao and Goetz 1990). In order to avoid interference with

absorption by atmospheric water vapour, the potential of estimating CWC using the

first derivative at the right slope of the 0.97 μm absorption feature were studied by

Clevers et al. (2010). Their results of PROSAIL simulations showed a linear

relationship between the first derivative over the 1015–1050 nm interval and

CWC. This result was confirmed, e.g., using an ASD FieldSpec spectroradiometer

for a range of grassland plots at a fen meadow. Consistency between simulation

results and actual field data confirmed the potential of using simulation results for

calibrating the relationship between the first derivative and CWC. An example of

this is provided in Fig. 22.4.
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22.5 Outlook

Within Europe the application of Earth observation data, particularly as acquired in

the reflective solar domain, is reaching a state of maturity. Especially the availabil-

ity of data will boost applications. For successful applications the user requirements

in terms of spatio-temporal continuity, consistency and quality of products have to

be fulfilled. Users require univocal numbers. Currently a multitude of satellite data

is available already, and this availability will increase enormously in the near

future. ESA has for long focused on research instruments, but is now developing

five new missions called Sentinels specifically for the operational needs of the

Copernicus programme (previously known as GMES). For land applications using

the solar reflective domain, in particular two systems are relevant. Sentinel-2

(equipped with the Multi Spectral Instrument MSI) will provide images with high

spatial, spectral and temporal resolution and it aims at ensuring continuity of

Landsat and SPOT (Système pour l’Observation de la Terre) observations. In

addition, it incorporates three new spectral bands in the red-edge region, which

are very important for retrieval of chlorophyll (Delegido et al. 2011). It has a swath

width of 290 km by applying a total field-of-view (FOV) of about 20�. Sentinel-3 is
a medium resolution land and ocean mission, to be seen as a continuation of the

Envisat mission. The Ocean and Land Color Instrument (OLCI) has a swath width

of 1,270 km (FOV of about 68�, but slightly tilted) and a spatial resolution of 300 m.

It will provide data continuity of MERIS on Envisat. Both Sentinel-2 and Sentinel-3

CWC = 13.119 × Derivative-0.415
R2 = 0.68
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missions are based on a constellation of two satellites each in order to fulfill revisit

and coverage requirements, providing robust datasets for Copernicus services.

As discussed in this chapter, RS can provide a number of key biophysical and

biochemical products of vegetation, such as the fraction of absorbed photosynthet-

ically active radiation (fAPAR), leaf area index (LAI), chlorophyll content and

water content. The first two have been identified as essential climate variables

(ECVs) by the UNFCCC and are key variables that are both used in surface process

models and retrieved from remote sensing observations in the reflective solar

domain. Various algorithms are used to derive these products, but they mostly

relate to nadir or directionally normalized observations (Baret et al. 2007). For

operational RS applications multisensor data usage will be required to increase the

number of observations within a given time period, particularly relevant in regions

with frequent cloud cover (Verger et al. 2011). This will result in an increase of

high-quality data in time-series for monitoring activities. However, instability of

retrieval algorithms to directional effects will degrade the accuracy of derived

products.

A major research item for the coming years is assessing the anisotropic reflec-

tance behavior of vegetation and soils, as described by the bidirectional reflectance

distribution function (BRDF). With the advent of remote sensing systems with

off-nadir viewing capabilities like SPOT and commercial high-spatial resolution

systems (like IKONOS, QuickBird, GeoEye and WorldView), and sensors with

wide FOV (like the OLCI on Sentinel-3) information on the BRDF characteristics

of surface features is becoming very important for the retrieval of surface param-

eters. Moreover, directional information may also be significant for sensors with a

limited FOV (like the MSI on Sentinel-2) for accurate retrieval of surface param-

eters. As a result, information on the BRDF of targets is relevant for normalizing

images taken under different illumination and/or viewing conditions (Baret

et al. 2007), but on the other hand it has been shown that multi-angular observations

provide additional information that can be used to improve the accuracy of

retrieved products (Coburn et al. 2010; Laurent et al. 2011; Verger et al. 2011).

The BRDF of surface targets contains information on structure and composition

that cannot be inferred from spectral properties alone (Barnsley et al. 1994).

As such, it provides an additional dimension to remote sensing observations.
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Chapter 23

Land Transformation Processes in NEChina:

Tracking Trade-Offs in Ecosystem

Services Across Several Decades

with Landsat-TM/ETM+ time Series

Joachim Hill, Marion Stellmes, and Changyao Wang

23.1 Introduction

The concept of ecosystems services and functions has been central to the

establishment of the Millennium Ecosystem Assessment reports (Millennium

Ecosystem Assessment (MEA) 2005). Ecosystem functions refer to the habitat,

biological or system properties or processes of ecosystems. Ecosystem goods and

services represent the benefits human populations derive, directly or indirectly, from

ecosystem functions. The ecosystem services consist of flows of materials, energy,

and information from natural capital stocks which combine with manufactured and

human capital services to produce human welfare (Costanza et al. 1997). There is

increasing consensus about the importance of incorporating the valuation of eco-

system services into resource management decisions, but quantifying the levels and

values of these services has proven difficult (Nelson et al. 2009).

As human impact on ecosystems became increasingly pronounced, the focus in

earth-system science is more and more on the dynamics of social–ecological

systems (Ellis and Ramankutty 2008; Lambin and Meyfroidt 2010). Land use

practices have not only affected global and regional climate due to the emission

of relevant greenhouse gases but also by altering energy fluxes and water balance

(Baldocchi et al. 2004; Bormann et al. 2007; Foley et al. 2005). Changes in factors

that indirectly affect ecosystems, such as population, technology, and land use

practices frequently lead to changes in factors directly affecting ecosystems. This

implies that land use and land use change processes are directly linked to ecosystem
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services and their modification. Land use change and associated alterations of habitat

structure as well as release of substances like fertilizers, pesticides, air pollutants and

waste water impact on various ecosystems goods and services, amongst them biodi-

versity, substance flows, water and air quality, soil properties and disease vectors may

force ecosystem services to change and thereby affect human well-being (DeFries

et al. 2004; Foley et al. 2005; Lambin and Geist 2006; Vitousek et al. 1997).

Foley et al. (2005) have argued that land use often includes conflicting aspects

of development. Many land use practices are absolutely essential (they provide

critical natural resources and ecosystem services, such as food, fiber, shelter, and

freshwater), but at the same time may degrade the ecosystems and services, upon

which we depend. Typically, progress toward one objective such as increasing food

production develops at the cost of other objectives such as conserving biological

diversity or improving water quality. Particularly countries with urgent develop-

ment needs may see themselves confronted with substantial challenges in designing

appropriate and sustainable land use concepts. Management decisions generally

involve trade-offs among ecosystem services, which are to be balanced with respect

to societal objectives, i.e. to reduce negative environmental impacts of land use

while maintaining economic and social benefits (Kareiva et al. 2007; Nelson

et al. 2009). In this respect, a quantitative and scientifically based assessment of

trade-offs is an essential prerequisite for sound decision-making (DeFries

et al. 2004). Satellite remote sensing represents one of the most efficient data

sources and analytical approaches for assessing the current spatial extent and

condition of ecosystems and, owing to the available long observation records, for

identifying trends in ecosystem conditions and services (Millennium Ecosystem

Assessment 2005). Advances in remote sensing technologies over the past few

decades now enable repeated and calibrated observations of the Earth’s surface.

The potential to apply these data for assessing trends in ecosystem condition is only

beginning to be realized.

China’s cultivated land has been undergoing dramatic change along with its

rapidly growing economy and population. The impact of land use transformation on

food production at the national scale, however, is poorly understood due to the lack

of detailed spatially explicit agricultural productivity information on cropland

change and crop productivity (Gao et al. 2006). In many parts of the country,

such as Inner Mongolia in NE China, land degradation processes are associated

with these land use transformations and have become an important issue (Chen

and Tang 2005). The availability of long records of satellite observations has

opened new perspectives on assessing consequences of these land transformation

processes on ecosystem services and functions.

23.2 Background and Objectives

Conversion of natural or semi-natural ecosystems to grow crops, raise animals,

obtain timber, and build cities is one of the foundations of human civilization.

As a result of this transformation a range of other ecosystem functions, such as the
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provisioning of freshwater, regulation of climate and biogeochemical cycles,

maintenance of soil fertility and others will be altered. Balancing the inherent

trade-offs between satisfying immediate human needs and maintaining other eco-

system functions requires quantitative knowledge about ecosystem responses to

land use (DeFries et al. 2004). Ecological knowledge and process understanding is

one crucial prerequisite for assessing such trade-offs. However, equally important

are precise estimates of changing land use proportions and land use intensity over

time, together with selected key attributes being considered suitable surrogates for

specific ecosystem services and functions. In many cases, land use decisions and

associated trade-offs manifest themselves on regional scale levels which neces-

sarily require the availability of spatially explicit information as provided by the

existing range of satellite observation systems.

Land cover changes can be distinguished in two major groups: (i) conversions

and (ii) modifications (Coppin et al. 2004; Lambin and Geist 2006). Land use

transformations usually involve the replacement of one land use/land cover class

with another one (e.g. shrub lands with arable land), whereas modifications are

usually related to gradual changes within one thematic class (e.g. shrub encroach-

ment within natural ecosystems). Besides land use change in terms of conversion

also modifications of land use might profoundly alter the performance and health of

ecosystems and therefore, have to be considered when assessing ecosystem services

over time. Therefore, the assessment of both conversions and modifications is

important to provide a comprehensive picture of land use/cover changes. In parti-

cular, the assessment of modifications is a crucial element in dryland areas because

changes related to land degradation are often associated with modifications of

the existing land use system (Lambin and Geist 2006; Lambin and Geist 2001);

they include for instance vegetation cover loss due to overgrazing.

As mentioned before remote sensing images can provide valuable surrogates

linked to land use changes and cover both, conversions and modifications which can

be related to the condition of ecosystem services. While incomplete spatial coverage,

infrequent temporal coverage, and large data volumes have precluded global analysis

of land cover change, data acquired bymedium resolution (10–100 m) optical sensors

onboard satellites (e.g. Landsat, SPOT, ASTER) have been the primary sources for

identifying land cover change in particular locations. The spatial resolution of the

imagery has made the Landsat archives an invaluable information source for science,

management, and policy development. Landsat imagery of some form has been

collected since 1972, resulting in the longest continuously acquired collection of

space-based terrestrial observation. Further, the opening of the entire U.S. Geological

Survey (USGS) Landsat archive in 2008 and 2009, which made all of the USGS

Landsat imagery freely available through a web-portal (glovis.usgs.gov) (Woodcock

et al. 2008), has resulted in an increased capacity to undertake ambitious analyses of

terrestrial dynamics across large areas, and in using dense time series of imagery

(Vogelmann et al. 2012; Wulder et al. 2012).

The preparation and analysis of Landsat time series covering several decades

imposes specific requirements with regard to data calibration and standardization,
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selection of appropriate reference periods, extraction of meaningful indicator

variables (such as biophysical vegetation attributes, soil characteristics, surface

water) and the identification of changing land use patterns. If these conditions

are met, Landsat observations can provide at least some quantifiable and measu-

rable indicators for assessing and understanding temporal trends and changes of

important ecosystem functions (e.g. Cohen and Goward 2004).

The scientific basis for incorporating natural capital into resource- and land use

decisions on a large scale is still in its infancy (Daily et al. 2009). However, Nelson

et al. (2009), for example, have proposed a spatially-explicit modeling approach to

predict changes in ecosystem services based on available spatial data layers.

Usually, the most important spatial data input to ESS assessment models are

maps of land use and land use change. However, the focus on conversions of land

cover (change of land use and cover type) often disregards modifications within

existing land use systems (e.g. intensification of arable land) and their conse-

quences for ecosystem performance and the sustainable provision of ecosystem

services.

Instead of modeling future scenarios, this study aims at considering these issues

and explores how satellite-derived indicators of dynamic land surface properties

may be directly transferred into surrogates of spatial-temporal changes of relevant

ecosystem services (i.e. biomass production, dune fixation and groundwater

recharge) by taking the example of a study site in Inner Mongolia, China. It aims

at demonstrating the impacts of governmental management policies on land use

change and its impact on the long-term availability of important ecosystem

services. The study focuses on following objectives:

– Identify and evaluate suitable remote sensing based surrogates that are able to

assess modifications within the dominant land use systems of the study area

– Evaluate the status of ecosystems and their capacity to provide ecosystem

services based on the identified modifications of land use.

The use of associated models for translating these findings into quantitative

biophysical or monetary terms is neglected here and remains reserved to future

extensions of this work.

23.3 Study Case: Horqin Sandy Lands

Since the early 1980s, the unprecedented combination of economic and population

growth in China has led to substantial land transformations across the nation.

Horqin Sandy Lands with the core study site of Naiman County (Fig. 23.1), located

in the agro-pastoral zone between the Inner Mongolian Plateau and the Northeast

Plains in China (42�410 – 45�450 N, 118�350 – 123�300 E), make in this respect no

exception.
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23.3.1 Geographical Characteristics

Covering more than 42,000 km2 Horqin Sandy Lands forms one of the major sand

areas in Northern China and includes an important part of Inner Mongolian grass-

lands. The vegetation consists predominantly of shrubs and perennial grasses, trees

are found in places where water conditions are favorable. Climatically, the region is

part of continental drylands with hot and short summers and very cold winters. Mean

annual temperature minima and maxima are �8.8 �C in January and 30.4 �C in July,

respectively; mean annual precipitation is 375 mmwith nearly 80 % concentrating in

the months from June to September. An important characteristic is rainfall irregu-

larity: annual precipitation varied from 205 to 679 mm year�1 in the observation

period from 2000 to 2008 (NOAA’s National Climate Data Center, NCDC, http://

www.ncdc.noaa.gov/). These physiographic characteristics, including easily erodible

loess soils and mobile sand dunes, render the area prone to pronounced land degra-

dation processes (Chen and Tang 2005).

Figure 23.1 illustrates the current distribution of land use classes within the study

site. Dominating land use and cover classes are intensively used irrigated as well

as rainfed arable land, semi-natural areas mainly serving as range lands, as well as

extensive sand dune systems. Based on satellite-derived land use maps and the

Fig. 23.1 Location of Naiman County (part of Jirem Prefecture) in Inner Mongolia (China); the

coverage of Landsat frame used in this work is inserted in the map of administrative units (in red).
The MODIS-derived land use map with major land use strata (black-rimmed areas) is shown in the

upper part of the figure
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information collected during several field campaigns between 2008 and 2011 the

area was stratified by defining relevant land use systems:

• Rangeland, predominantly used for sheep and cattle grazing (R1-R3),

• Rangeland/Agriculture, sand-dominated grazing ranges with interspersed areas of

agricultural land use with varying proportions of irrigated and rainfed crops (R/A),

• Agriculture, either dominated by irrigated (IA) or rainfed crop systems (RA).

23.3.2 Land Use History and Ecosystem Services

Against this background, this study focuses on the evaluation of eight ecosystem

services of major relevance in the study site. Following the proposed scheme by the

MEA study (2005), these services are classified into provisioning (agricultural

production, forest production, and rangeland production), supporting (groundwater

recharge, dune fixation) and regulating services (habitat and biodiversity preser-

vation, carbon sequestration and climate, and air regulation). Each of the existing

land use systems involves a characteristic assembly of the services (Table 23.1),

which may be directly and indirectly linked to anthropogenic activities and

changing land use preferences.

The approximate reconstruction of relevant ecosystem services performance

under traditional land use at the beginning of the nineteenth century, and at the

time period where this study departs (Fig. 23.2b) is primarily based on information

provided by Jiang (1999, 2002, 2006), Tong et al. (2004), Wu and de Pauw (2010)

and Zhu and Zou (1988). We address a relative evaluation of ecosystem performance

by assigning scores between zero and one, one being the optimum provisioning of a

service, zero no provisioning, respectively. However, whereas the provisioning

services as well as the supporting services may often be directly linked to suitable

proxies, the regulating services are usually a more complex mixture and interaction of

several factors, especially when regarding the whole range of ecosystems present in a

study area. This affects the valuation of an actual status of ecosystem services as well

as the estimation of change rates due to land use conversions and modifications.

Table 23.1 Land use systems and linked provisioning and regulating services

Land use system Provisioning ESS Regulating/supporting ESS

Agriculture (IA,RA) Agricultural production Climate & air regulation

Forest production Carbon sequestration

Rangelands (R1-R3) Rangeland production Habitat & biodiversity preservation

Groundwater recharge

Forest production Dune fixation

Rangeland/Agriculture (R/A) Agricultural production

Forest production

Rangeland production
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Foley et al. (2005) have illustrated the provisioning of multiple ecosystem services

under different land use regimes through ‘spider’ diagrams, in which the condition of

important ecosystem services is indicated along several axes. Picking up on this

concept, we attribute starting scores (approximated based on the above cited

literature) to the main provisioning services “Agricultural Production” (AP ¼ 0.4),

“Forest Production” (FP ¼ 0.4), “Rangeland Production” (RP ¼ 0.95) and “Ground-

water Recharge” (GR ¼ 1.00). At this point we wish to emphasize that in this study

the ecosystem service “Rangeland Production” is not related to the amount of

livestock but to the capacity of the ecosystem to provide net primary productivity

to feed the livestock.

In the absence of better data, regulating services such as “Carbon Sequestration”

(CS) are approximated by an area-weighted linear combination of the service scores

for rangeland, agriculture, and forest productivity [CS ¼ 0.2 + 0.8 • (0.2•AP +

0.5•FP + 0.3•RP)], assuming that long-term storage in forest ecosystems (FP) is

the most important component. The lower proportional weights for agriculture

(AP) respond to the fact that carbon incorporated in plants is released back as

CO2 into the atmosphere through the food web within the year (Piao et al. 2009);

rangelands (RP) are considered slightly more favorable in this context since higher

amounts of biomass are permanently present. Soils are the largest source of

uncertainty in the terrestrial carbon balance of China; in the cold drylands of

Horqin, a base value of 0.2 is attributed to soil carbon pools and considered roughly

constant over time, although it is understood that also the soil carbon storage

changes over time. For example, the amount of root input and crop residue has

augmented in agricultural areas in more recent times (Piao et al. 2009).

Similarly, an approximate service score is also defined for “Habitat & Biodiver-

sity Preservation” (HBP) where proportional contributions from “Rangeland Pro-

duction” and “Forest Production”, “Dune Fixation” (assuming that fixed dunes

favor plant and animal biodiversity) and “Groundwater Recharge” (owing to its

impact on aquatic and wetland ecosystems) are considered; again, a constant base

value for biodiversity services (0.2) is assumed to exist independently from other

contributions, i.e. [HBP ¼ 0.2 + 0.8 • (0.1•AP + 0.4•FP + 0.3•RP + 0.2•GW)].

An adequate definition of “Climate and Air Regulation” (CAR) is difficult; assuming

a more or less constant base level of 0.5, the hypothesis is that “Dune Fixation”

and “Groundwater Recharge” are the main control parameters, hence [CAR ¼ 0.5 +

0.5 • (0.5•DF + 0.5•GW)]. The implemented approach is simplistic and especially

the evaluation of the regulating services is based on subjective reasoning and

leaves room for improvement. Nevertheless, the major intention of this study was to

demonstrate how an integrated estimation in the performance of all major ecosystems,

including feedback mechanisms, might be implemented.

The resulting spider diagram (Fig. 23.2a) approximately describes an ecosystem

that once supported a sustainable nomadic production system: extensive areas with

sandy soils or sand dunes hosted drought-resistant shrubs and numerous grass

species which provided top quality pasture for sheep grazing. Remnant forest

patches provide evidence of previous landscapes in the forest-steppe transitional

bioclimatic vegetation zone, being highly supportive for carbon sequestration,
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regional air quality regulation (suppression of dust movements through dune

stabilization) and the preservation of habitats and biodiversity. Most remarkably,

the sandy soils with their high infiltration rates supported a rich store of ground

water, sometimes only a few meters below ground (e.g. Jiang 2002). The diagram

thus characterizes a landscape where rangeland productivity and groundwater

recharge capacities are close to maximum performance while agricultural produc-

tivity is limited (mainly due to climatic risks of drought); forested areas are limited

to isolated patches.

The main aspect of land degradation in this area is what Chinese authors term

“sandy desertification” (including sand dune reactivation, shifting sand dunes and

sands spreading into grasslands, wind erosion in dry farmland), which develops on

sand sheets and fans of quaternary origin. Although the role of drought has not been

entirely clarified most authors suggest that human activity and cultural change are

key determinants of these processes. Main drivers emerged from the transformation

of the traditional Mongolian grazing society: Chinese immigrants brought with

them a cultural tradition that is rooted in farming, a practice further promoted by the

socialist regime (Jiang 2002). In the 1950s and 1960s local farmers were forced to

give up their nomadic way of life and to settle in small villages, hamlets or

individual farms. Together with a moderate increase in number of livestock this

policy has increased grazing pressure around the newly established settlements and

brought the large scale pastoral movements between seasonal pastures to an end

(Sneath 1998). Reclaiming rangelands in areas of marginal rainfall and strong

winds for agricultural production has caused the destruction and loss of topsoil,

while the concentration of cattle in the remaining rangeland areas increased stock-

ing rates above sustainability thresholds (Zhu and Zou 1988). The consequences

have negatively impacted several inter-related ecosystem services (Fig. 23.2b).

Fig. 23.2 Synthesis of important ecosystem services in Horqin Sandy Lands for the early twentieth

century (a) and around 1985 (b) in the form of spider diagrams proposed by Foley et al. (2005)
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It is important to understand that the increasing extent of degradation of

grassland ecosystems in Inner Mongolia was strongly influenced by political

decisions.

Ever since, national policies, such as Deng Xiaoping’s reforms during the first

period of new policy formulation (1979–1985), but also decisions and regulations

issued by regional governments have encouraged both new and intensified land

use practices (expansive groundwater-based irrigation) as well as restoration and

protection measures (enclosures of pasture land, grazing regulation, tree planting

campaigns) (Jiang 2006; Wu and de Pauw 2010).

The new economic policy established in the 1980s, which allowed individuals to

profit directly from increased meat or wool production, sharply fostered the pres-

sure on the land resources and resulted in intensified agricultural land use and

large scale overgrazing (Butterbach-Bahl et al. 2011). According to satellite-based

estimates which are claimed to be a magnitude more precise than official statistics

(Liu et al. 2005a, b) more than 70 % of the increased cropland area occurred in the

two provinces of Heilongjiang and Inner Mongolia. Conversion from grasslands to

croplands dominated the land transformation in Inner Mongolia. Although less

densely populated than Southern and Central China, population density in Inner

Mongolia is considered very high, relative to the inherent low productivity of arid

and semi-arid zones. Today, irrigated agriculture in the study region is dominated

by corn, areas with rain fed agriculture by winter wheat and vegetables.

23.4 Material and Methods

An extremely important component in identifying cumulative impacts of land trans-

formation processes is the availability of sufficiently long observation records. Land

degradation processes, for example, have been conceptualized as a pathological

process of multi-annual land-cover dynamics. Following this concept it is almost

mandatory to cover time spans on the scale of decades and decouple changes on the

long run from the impact of short-term fluctuations driven by seasonal pulses or

single events. Since required observation periods typically exceed the life-span of

individual satellites one needs to establish calibrated archives which include data

from identical or spectrally comparable observation systems. Connecting Landsat

data from different archives (e.g. USGS and Remote Sensing Ground Station in

Beijing, RSGS) with the scope of characterizing surface properties across several

decades with calibrated data products still remains a challenge.

This study uses a dataset of 30 Landsat-5-TM and Landsat-7-ETM+ scenes from

USGS and RSGS covering the period from 1987 to 2007 (Table 23.2). The majority

of images were obtained from the USGS archive (www.glovis.usgs.gov); some

scenes not available there have been acquired from the Remote Sensing Satellite

Ground Station in Beijing (http://www.fas.org/spp/guide/china/agency/rsgs.htm).

So far, 11 scenes (indicated in bold letters in Table 23.2) from a phenological
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window in the late summer period (late August–September) have been used for

studying land change processes.

While high-precision geometric ortho-rectification is routinely implemented in

various processing chains, radiometric corrections still requires attention, because

distorted image radiometry may significantly impact on the identification of gradual

ecosystem changes. Variations in solar illumination conditions, atmospheric scat-

tering, atmospheric absorption and detector performance result in differences in

radiance values unrelated to the reflectance of land cover. Traditionally, authors

have argued that absolute radiometric quantification is an expensive, time consum-

ing and likely untenable goal for land-cover and land use monitoring (Rogan and

Chen 2004). However, successful efforts in monitoring the instrument calibration

of the different Landsat imagers (e.g. Chander et al. 2009; Markham and Helder

2012) have substantially increased the options for creating calibrated satellite

observations. In combination with efficient implementations of validated radiative

transfer models such as SMAC (Rahman and Dedieu 1994), ATCOR (Richter

1996), AtCPro (Hill et al. 1995; Hill and Sturm 1991; Röder et al. 2005), 6S

(Kotchenova et al. 2006; Vermote et al. 1997) and LEDAPS (Ju et al. 2012) it

has become feasible to produce calibrated reflectance spectra, from which

meaningful biophysical indicator variables can be retrieved.

23.4.1 Ortho-Rectification

All images where ortho-rectified using SRTM-derived digital elevation data and

an automatized image correlation approach for identifying the required ground

control points (GCPs) (Hill and Mehl 2003). Based on up to 500 GCPs per image

Table 23.2 Acquisition dates of the Landsat 5-TM and Landsat 7-ETM+ images used in this study

Date Sensor Provider Date Sensor Provider

11/08/1987 L5-TM RSGS 25/10/2000 L7-ETM+ USGS

26/06/1988 L5-TM RSGS 19/04/2001 L7-ETM+ USGS

22/08/1991 L5-TM RSGS 13/05/2001 L5-TM RSGS

27/08/1993 L5-TM RSGS 21/05/2001 L7-ETM+ USGS

15/09/1994 L5-TM RSGS 25/08/2001 L7-ETM+ RSGS

18/09/1995 L5-TM RSGS 02/09/2001 L5-TM RSGS

04/09/1996 L5-TM RSGS 12/10/2001 L7-ETM+ USGS

05/09/1999 L7-ETM+ USGS 11/07/2002 L7-ETM+ USGS

13/09/1999 L5-TM RSGS 20/08/2002 L5-TM RSGS

23/10/1999 L7-ETM+ USGS 13/09/2002 L7-ETM+ USGS

31/03/2000 L7-ETM+ USGS 25/04/2003 L7-ETM+ USGS

02/05/2000 L7-ETM+ USGS 02/09/2004 L7-ETM+ RSGS

13/07/2000 L5-TM RSGS 15/10/2005 L5-TM RSGS

14/08/2000 L5-TM RSGS 16/09/2006 L5-TM USGS

07/09/2000 L7-ETM+ USGS 03/09/2007 L5-TM USGS
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the average registration error (RMSE) for each scene did not exceed 0.25 pixels

(i.e. 7.5 m). The Chinese Gauss-Kruger Projection System (Zone 21) was used in

this study.

23.4.2 Atmospheric Correction

Relative radiometric normalization using pseudo-invariant features (PIFs) is

traditionally used for standardizing image time series (Schott et al. 1988).

More recently, improved procedures have been proposed which combine radiative

transfer models and image-based retrievals of atmospheric parameters with

non-lambertian topographic correction (e.g. Vicente-Serrano et al. 2008). Kaufman

et al. (1997) have suggested efficient approaches for deriving image-based

estimates of the aerosol optical depth (τaer) but it is much more difficult to obtain

reasonable estimates for the absorption optical depth of atmospheric water vapour

(τH2O). The fundamental problem here is that in dryland ecosystems (typically

characterized by high albedo surfaces) good estimates of atmospheric water vapour

concentrations are more important than aerosol effects.

The processing concept developed for this study is based on the AtCProradiative

transfer code (Hill and Sturm 1991), originally inspired by the formulation of 5S

(Tanré et al. 1990), and consecutively upgraded with additional features (e.g. Hill

et al. 1995). AtCPro accounts for atmospheric extinction processes as a function of

sensor and terrain altitude and provides corrections for atmospheric absorption,

scattering, pixel adjacency effects and terrain-dependent illumination effects.

A wide concentration range for absorbing gases (H2O, O3, CO2, CH4, and O2) is

taken into account by sampling pre-calculated tables generated with MODTRAN-4

(Berk et al. 1999).

The atmospheric parameters (both τaer and τH2O) for correcting the Landsat

time series were retrieved by combining AtCPro with a non-linear optimization

algorithm (a modified Powell’s direction set method) (Press et al. 1992). The

principle of this method is to match a series of spectrally contrasting Landsat

DNs with the corresponding surface reflectance by simultaneously adjusting

aerosol and water vapor parameters for the radiative transfer until optimum con-

vergence is reached. Reference spectra can be imported either from direct reflec-

tance measurements or, as in this study, by combining the MODIS reflectance

product and temporally invariant surfaces (for processing Landsat images collected

before 2000).

This approach has been validated by comparing water vapour retrievals for

21 Landsat-TM/ETM+ acquisitions from the period 2000–2010 with simulta-

neously recorded MODIS-Terra estimates (MOD05_L2) which are derived with a

differential absorption technique; the product has been reported to reach accuracies

better than 0.2 g/cm2 (e.g. Vermote et al. 2002; Vermote and Kotchenova 2008) and

is therefore considered an excellent validation reference. The comparison between

the τH2O-retrievals for the Landsat images and the corresponding MODIS reference
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produced a residual standard error of only 0.2473 g cm�2, a coefficient of

determination of 0.9521 and the regression coefficient was significant at the

5 %-level (Fig. 23.3); this proves that the proposed method is suited to reliably

retrieve the critical water vapour optical depth parameter for a precise atmospheric

correction of extended Landsat-TM/ETM+ time series.

23.4.3 Spectral Indicators for Changing Land
Surface Conditions

As stated in the objectives the main goal was to characterize trade-offs between

selected ecosystem services (biomass production, dune fixation and groundwater

recharge) by assessing gradual changes in land surface conditions. This implies

selecting a range of spectral indicators which can be associated with these services.

Spectral Mixture Analysis (SMA) has been advocated as an efficient method to

computationally decompose spectra into proportions of pure spectral components

(end-members) (e.g. Schowengerdt 1997; Smith et al. 1990), which can be conve-

niently used for analyzing temporal trends (Röder et al. 2008; Vogelmann

et al. 2012). SMA builds on the basic assumption that most of the spectral variation

in multi-spectral images is caused by mixtures of a limited number of surface

Fig. 23.3 Comparison between the estimated water vapor concentrations (AtCPro/Powell

Optimization) and the corresponding MODIS-Terra “Precipitable Water” product (MOD05_L2);

the one-to-one line is shown for comparison. The MODIS reference values are derived from the

statistical average inside the Landsat frame extension (right part of figure)
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materials (i.e. vegetation, soil, shade) with different reflectance properties;

they commonly mix at the sub-pixel scale, producing mixed-pixel spectra.

In first approximation, spectral mixing is modeled as a linear combination of

pure component (“end-member”) spectra, such that

Ri ¼
Xn

j¼1
Fj � REij þ εi ð23:1Þ

Ri is the reflectance of the mixed spectrum in band i, REij the reflectance of the

end-member spectrum j in band i; Fj denotes the fraction of end-member j, and εi
the residual error in band i. Linear mixing assumes that the surface components are

large and/or opaque enough to allow photons to interact with only one component.

Conceptualizing radiative transfer processes to be additive, spectra can be unmixed

by inverting the linear mixing equation. The objective is to isolate the spectral

contributions of surface materials (“end-member abundance”) before these can be

edited and recombined to produce thematic maps. End-member abundance maps

derived from simple linear mixture models using a common set of end-member

spectra provide the convenience and inter-comparability of standard land cover

metrics (e.g. NDVI) while retaining benefits of physically based estimates. Several

studies (Elmore et al. 2000; Small 2004) suggest that these include good agreement

with ground based measurements and output units corresponding to physical prop-

erties of land cover that can be used directly as input to land surface process models.

SMA offers the additional advantage that several indicators for land surface

properties can be obtained simultaneously. The core hypothesis here was to param-

eterize a linear mixture model with spectral surrogates of the targeted ecosystem

services. Firstly, this implies selecting Green (i.e. photosynthetic) Vegetation

(GV) as one of the spectral end-members to account for changes in biomass

production.

Secondly, in the Horqin study area one of the most significant surface properties

related to degradation processes is the presence of Mobile Sand (MS) (primarily

due to the re-mobilization and dislocation of quaternary sands), assuming that

intensified grazing with too high stocking rates is a major socio-economic driver

behind this process. Ultimately, as it can be assumed that the sinking water table,

primarily triggered by ground water extraction, might affect the spatial extension of

lakes, ponds, bogs and swamps, Water (W) was selected as the third end-member

component. Figure 23.4 shows an example of the three layers (GV, MS, W)

produced by SMA for one of the Landsat acquisition dates.

23.4.4 Trend and Change Analysis

The temporal coverage available from the Landsat sensor family usually confines

time series analyses to the transient or linear component (e.g. Röder et al. 2008;

Vogelmann et al. 2012); in case sufficiently dense time series are available the use
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of piece-wise linear trends (Verbesselt et al. 2010) might be more efficient. In this

study we applied a linear regression function to each pixel, yielding a function of

the type

y ¼ g � tþ o ð23:2Þ

where y represents the proportional abundance of an end-member at date t

(image acquisition date in days since the first observation), g is the regression

gain and o the corresponding intercept. The latter characterizes the level of

end-member abundance at the starting date of the observation period, while the

gain is an expression of general direction and magnitude of the temporal dyna-

mics during the observation period. As these regression parameters are calcu-

lated on a per-pixel basis, the temporal development can be illustrated by

corresponding maps.

Additional output parameters are the coefficient of determination (R2) and the

significance for the retrieved regression coefficient (a two-sided t-test with α ¼ 10%).

For reasons discussed later the linear trend analysis was applied only to the

SMA-derived theme layers of mobile sand and green vegetation. Figure 23.5

illustrates typical results for the sand abundance (cover in per cent) over time:

permanently active dune areas (1) expose a stable/invariant behavior on a level

Fig. 23.4 Abundance estimates for the Landsat image from 27 Aug 1993 derived from linear

unmixing with three endmembers (GV, MS and W)
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between 85 and 95 %, while areas with varying grades of increasing or decreasing

sand proportions produce corresponding trend lines (2–6). Area (7) presents a

special case: the discontinuous pattern is caused by the rapid drying of an extended

lake area between 2000 and 2001. The mobile sand proportion first increases due to

the exposed substrate, but then decreases again while the former lake bed is

successively integrated into the agricultural production area (with gradually

increasing vegetative cover). Such cases can be excluded from the trend analysis

based on statistical tests of significance.

This example suggests that open water areas in the study region are affected by

abrupt and sudden alterations rather than changing gradually over longer time

periods. In these conditions we considered trend analysis not an efficient assess-

ment strategy, in particular because statistical tests of significance tend to become

meaningless. It was therefore decided to map the presence and extension of lakes,

ponds, wetlands and swamps based on assessing their entire area at selected

observation times (1987, 1995, 2001, 2006 and 2010).
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Fig. 23.5 Linear trends of SMA-derived estimates for the abundance of Mobile Sand, based on

11 time steps for selected reference areas (image backdrop is the average SMA-derived abundance

of Mobile Sand for the period 1987–2007)
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23.4.5 Approximate Valuation of Ecosystem Services

The proposed approach for valuating trade-offs between ecosystem services is

derived from blending the long-term change of the spectral surrogate for a specific

ecosystem service with the spider diagram concept of Foley et al. (2005). If we

consider the length of a specific ESS indicator at time t0 (¼ time of last assessment

available) being proportional to the theoretical optimum (Pmax ¼ 1.0), the updated

indicator length at time tact is determined by adjusting its end position in accordance

with the proportional change rate of the associated endmember abundance during

the observation period, i.e.

Ptact ¼ Pt0 þ Pt0 � g � tactð Þ=o½ � ð23:3Þ

wherePt0 is the ESS indicator length at time t0,Ptact the updated ESS indicator length at

the end of the observation period (tact) (Pt0 andPtact assume values between 0 and 1.0).

The spatial context of selected ESS indicators is accounted for by using the median of

Ptact within representative sampling areas (e.g. land use or land cover strata); in case a

land use stratum is composed of several spatial entities (such as in the case of the

rangeland stratum in this study) an adjustment of the corresponding ESS indicator

is obtained from an area-weighted sum of the respective median values.

Similar to the initial assignment of starting scores for major ecosystem services for

the beginning of the observation period (compare Sect. 23.3) remote sensing based

surrogates might be directly intertwined with changes of ecosystem services whereas

the development of other scan only be roughly estimated with a high uncertainty due

to a lack of external data. In the context of this study one would, for example,

conclude that the ESS “Crop Production” has improved in those pixel locations

inside a stratum “Agriculture” where the productivity indicator (i.e. the

SMA-derived abundance for Green Vegetation) has increased in comparison to the

initial value of the time series (i.e. all positions where [(g � tact)/o] > 0). In case a

median value of +0.25 is found, the previous ESS indicator (which was at 50 % of

a theoretical optimum) would thus be adjusted towards a value of 62.5 % and indicate

that this ecosystem service has substantially improved during the observation period.

In contrast, carbon sequestration is a function with a high complexity that is related to

primary productivity which can be estimated by remote sensing but is also to a large

degree dependent on other factors like for instance agricultural practices.

23.5 Results and Discussion

The linear trend analysis of SMA-derived abundance estimates for Mobile Sand

and Green Vegetation within the observation period (1987–2007) provides clear

evidence for substantial land cover changes in the study region. With the objective

to uncover possible trade-offs between ecosystem services associated to specific
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land units, the evaluation was conducted in relation to relevant land use strata

(compare Fig. 23.2).

Figure 23.6 presents these strata as an overlay to the trend map of SMA-derived

values of the proportional changes in GV abundance between 1987 and 2007: green

areas indicate an increase of more than 25 %, red areas a decrease of more than

25 % of the initial GV abundance in 1987; the range between�25 and +25 % has no

color assigned and might be considered as uncertainty corridor. It is evident that the

agricultural strata have consistently increased or at least maintained greenness

during the observation period (1987–2007), while the grazing ranges (R1-R3)

show a significant loss of greenness proportions. Rangelands with interspersed

agricultural areas (R/A) exhibit a patchwork of areas with positive and negative

changes in GV abundance (Fig. 23.6).

A more differentiated analysis is derived from box plots of statistically signif-

icant trends which emphasize the statistical distribution of the proportional increase

or decrease of end-member abundances within selected strata. Inside the three

rangeland sub-areas (R1-R3) more than 50 % of the GV abundance changes are

negative, suggesting that the presence of green biomass has thoroughly diminished

within the observation period (Fig. 23.7). In comparison, the mixed rangeland and

agriculture stratum (R/A) still has a negative median but exhibits a substantially

larger statistical variance; this is consistent with the spatial pattern of negative and

positive GV trends, either associated with sandy rangeland or interspersed agricul-

tural areas of increasing productivity (Figs. 23.7 and 23.8). Both agricultural strata

Fig. 23.6 Areas with increasing and decreasing trends of Green Vegetation abundance (1987–

2007), overlaid on the land use strata described in Sect. 23.3. Colors are discussed with more detail

in the text; b/w image backdrop is the long-term average of the mobile sand abundance
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Fig. 23.7 Aerial view of the mixed rangeland/agriculture stratum (R/A) with its characteristic

patchwork of sandy rangelands and intensifying agricultural land use (Photo © J. Hill 2008)
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(IA and RA), however, are characterized by statistical distributions where the

majority of proportional change values are positive, indicating that the abundance

of green biomass has substantially increased since the mid-1980s (Fig. 23.7).

Not only is the interpretation, that these findings suggest substantial improvements

of agricultural productivity, in agreement with the constantly growing area under

irrigation. It is also supported by statistical data for Naiman County which, for

example, demonstrates an increase of fertilizer consumption (from 500 to 75,000 t)

and farm machine power (from 50,000 to 425,000 kW) during the observation

period (Helldén 2010).

The changing presence of water at the land surface is not as much a continuous

process but characterized by abrupt changes as water bodies tend to disappear

within few years. Since it builds on the assumption of gradually changing

end-member proportions, linear trend analysis of SMA-derived abundance esti-

mates is therefore not considered as suitable for characterizing such phenomena.

Instead, the reduction or complete disappearance of open water surfaces within the

observation period was characterized by mapping their spatial extension approxi-

mately along 5-year observation intervals (1987, 1995, 2001, 2006 and 2010).

The water map for each date was produced by applying a consistent threshold to

the Water abundance image (i.e. Fwater > 0.65 ! open water). It is found that the

Fig. 23.8 Box plots of proportional change (in per cent, relative to of the starting date of the time

series) in the SMA-derived abundance of Green Vegetation (GV) and Mobile Sand (MS) over a

20-year observation period (1987–2007)
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SMA-detected acreage of lakes, ponds, bogs and swamps has diminished from

approximately 62,000 ha (1987) to 22,800 ha in 2006, i.e. a reduction of more

than 60 % has taken place during the observation period (Fig. 23.9).

This drastic decrease is only explained by an accelerated decline of the water

table, where the most rapid change occurred between 1995 and 2001. However,

including a more recently acquired scene from 2010 indicates that the drying of

lakes and ponds has not yet come to an end, as groundwater exploitation and the

expansion of irrigation agriculture into former rangelands is continuing. These

findings are strongly supported by available statistical data: the number of power

wells in Naiman County almost continuously increased from approximately 2,000

(1985) to slightly more than 10,000 in 2007 (an increase of >800 %), and the

irrigated surface has grown from roughly 24,000 to 88,000 ha (Helldén 2010).

Evaluating the identified changes of land surface characteristics in the frame-

work of ecosystem services requires a contextual evaluation of the derived indica-

tors. In this sense a preliminary and simplified rating scheme was designed, which

aims at linking image-derived indicators to those ecosystem services for which they

have a specific expressive capacity (Table 23.3). Ponding water on the land surface,

for example, used to be a strong indicator for a shallow water table and, since these

ponds and lakes persisted over time, provided evidence for high ground water

recharge rates. Over the past 20 years, these areas have shrunk by more than

60 %. Since this is a strong indicator for a declining water table, the

ESS-Indicator for “groundwater recharge” was adjusted accordingly (Fig. 23.10).

It should be noted that the reduction of this service does not necessarily imply a

sensible restriction, because ground water extraction may continue as long as the

capacity of pumps is sufficient to deliver water from increasingly deeper levels.

However, the reduced service clearly indicates that compensating measures

(introduction of more efficient irrigation practices and technologies, changes in

crop varieties, water assignment schemes, etc.) need to be prepared with urgency.

The indirect effects upon associated ecosystem services result from the adjustment

rules introduced and explained earlier.
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Fig. 23.9 Change in total area (in ha) covered by water (lakes, ponds and rivers) within the

Landsat-TM/ETM+ scene area, based on thresholding the SMA-derived abundance estimate for

water
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Table 23.3 Proposed linkage between SMA-derived indicators of changing land surface

conditions in the available time window (1987–2007) and the associated ecosystem services

(based on Eq. 23.2)

ESS Descriptive indicator

Proportional change in

abundance and stratum

ESS indicator

length

adjustment

Groundwater

recharge

Total area covered by

water (ponds, lakes, rivers)

� 63.20 % 0.90 � 0.57

#
Dune fixation SMA-derived abundance

of “Mobile Sand”

within strata R1-R3

R1: +38.86 % 39.23 % 0.70 � 0.27

#R2: +48.40 %

R3: +29.06 %

Range

productivity

SMA-derived abundance

of “Green Vegetation”

within strata R1-R3

R1: �38.41 % 44.52 % 0.80 � 0.36

#R2: �43.92 %

R3: �49.38 %

Crop productivity SMA-derived abundance

of “Green Vegetation”

within strata IA

and RA

IA: + 44.82 % 45.49 % 0.65 + 0.30 "
RA: + 46.12 %

Fig. 23.10 Spider diagram displaying selected ecosystem services and their changes within the

observation period (1987–2007)
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The indicators for ecosystem services such as “Dune Fixation”, “Range

Productivity” and “Crop Productivity” were adjusted with regard to the median

values of proportional abundance changes within the relevant land use strata.

The specific relevance for certain ecosystem services follows the concept that

“Dune Fixation” and “Rangeland Productivity” is intrinsically linked to the range-

land stratum, while “Crop Productivity” is evaluated based upon the agricultural

strata solely. Representative values for strata composed of several spatial entities

(such as the rangeland stratum which is composed by R1, R2 and R3) were obtained

by calculating the area-weighted sum of the corresponding median values.

Following this type of reasoning, the increasing abundance of Mobile Sand in

the rangeland strata suggests a certain loss in the capacity of stabilizing sand dunes.

The co-occurring decrease in Green Vegetation abundance indicates that this

has developed in parallel to a reduction of grassland biomass (with negative

implications for a second service, namely “Range Productivity”). Accordingly,

the increase in the abundance of Green Vegetation within irrigated and

non-irrigated agricultural land over the past 20 years is interpreted as an increase

in “Crop Productivity”.

A synoptic representation of these changes in the form of spider diagrams suggests

that over the past 20 years the ESS “Agricultural Production” has been optimized at

the cost of other services, primarily “Groundwater Recharge” (Fig. 23.10). More

recently, agricultural land use has also begun to penetrate into former rangelands,

causing a reduction of available grazing area, with the potential consequence of

increasing stocking rates in the remaining ranges. This is probably one of the reasons

why the ecosystem services “Dune Fixation” and “Range Productivity” are

experiencing a notable reduction, the latter being related to a further reduction in

“Carbon Sequestration”. Additionally, these changes have negative repercussions on

other ecosystem services, such as “Forest Production” (it is observed in several

locations that willow trees, traditionally used for harvesting firewood, are dying-off

due to the increasing distance to the water table), the “Preservation of Habitats and

Biodiversity” (loss of wetlands as well as increasing pressure on grazing ranges

leads to exchange and/or loss of species) and regional “Climate and Air Quality

Regulation” (reduced capacity for dune fixation triggers the availability of particles

for dust storms).

23.6 Conclusions and Perspectives

Ecosystem services, biodiversity conservation, and commodity production values

are a function of land characteristics and the land use and land use change pattern.

The process of land change analyzed in this study represents a significant example

for transforming a human-environment system with limited resource availability

into an alternative state. It can be considered representative for many parts of arid

and semi-arid China. After 1973 the objective of improving rural livelihoods has

been pursued by a combination of incentives aimed at increasing agricultural
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productivity and enforced regulations directed towards protecting rangeland

resources at risk (e.g. Gao et al. 2006; Jiang 2002, 2006; Wu and de Pauw 2010).

The main strategy was to render agricultural production less dependent on climatic

risks (i.e. drought) by increasing the proportion of irrigated areas. The water table

being just a few meters below surface, this prime objective could be addressed with

simple technologies and moderate investments. Additionally, private initiative has

been encouraged by modified land leasing concepts and by facilitating access to

investments, agricultural mechanization and fertilizers. This decision has unleashed

a process which traded different ecosystem services against each other, primarily by

optimizing the service “Crop Production” at the cost of “Groundwater Recharge

Capacities”, and dragging behind a number of negative impacts on interrelated

ecosystem services. It is shown in this study that long time series of satellite

observations can be used to trace both, the impact of the rapidly declining water

table but also the improving productivity of the agricultural system over an obser-

vation period of 20 years. However, trend analysis of suitable indicators of specific

land surface conditions also revealed more subtle indications for increasing envi-

ronmental risks: the accessibility of ground water resources facilitates the expan-

sion of agricultural activities into formerly rangeland-dominated ecosystems and/or

the reactivation of already existing agricultural land with marginal productivity.

Not only did this increase the exploitation of groundwater resources, but caused a

reduction of the area available for grazing sheep and cattle. In combination with

the implemented legal restrictions in accessing certain parts of rangelands this

inevitably led to increasing stocking rates in the remaining rangelands. Not unex-

pectedly, the analysis of the satellite observations covering the past 20 years

provides evidence for a decrease in rangeland productivity (negative GV trend),

which combines with indicators for an increasing disturbance of formerly con-

solidated sand and loess soils (positive MS trend).

The study confirms that Landsat time series are a unique source for deriving

broad scale information about gradual changes of land surface properties at

landscape level, very difficult to obtain through other approaches. Substantial

progress is demonstrated with respect to composing geometrically and radiometri-

cally calibrated time series of Landsat observations. However, while available

processing chains have reached considerable maturity, there is a need to focus on

the development of advanced interpretation concepts able to cope with the full

complexity of land transformation processes, involving both conversions and

modifications of land use and cover. Adjusting specific ESS indicators in the spider

diagrams in proportion to satellite-derived indicators, for example, is one option for

generating a synoptic perspective on land transformation processes and associated

trade-offs in ecosystem services. It is also shown how the underlying processes are

linked to changing capacities of ecosystems to provide goods and services, thereby

providing essential insights for designing adapted management concepts.

It is of course acknowledged that the linear adjustments and scaling functions

applied in this study are somewhat arbitrary and leave room for improvements and

more differentiated scaling concepts (e.g. Barrett et al. 2005). The disappearance of

water bodies, for example, may be related to their original water depth thus that
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their gradual drying out over time could be quantified as descent rates of the water

table. Knowing these rates may enable improved predictions of future water

availability or account for additional investments imposed by the necessity of

increasingly powerful pumps, thereby closing the conceptual gap to associating

monetary costs to specific ecosystem services. However, the main objective here

was to demonstrate that EO satellites may contribute to assessing changes of

ecosystem services and functions beyond supplying simple land use or cover maps.

In spite of the principal feasibility in pairing SMA-derived end-member abun-

dance with selected ecosystem services, it should also not be overlooked that simple

three-end-member models are rarely sufficient to adequately characterize complex

land surface conditions. In our study case, for example, the inspection of images

representing the modeling error suggests that using a single end-member (Mobile

Sand) for representing a range of non-photosynthetic background materials is a

fairly rough approximation. Efficient multiple end-member models (e.g. Rogge

et al. 2006) may offer challenging perspectives to be explored in this context.

Also, discontinuities and breaks in the behavior of surface conditions over time

have so far been neglected, but might be addressed by using improved trend

analysis concepts (e.g. Verbesselt et al. 2010). It is evident that the evaluation of

trends in land surface conditions largely benefits from spatial stratification con-

cepts. In this study meaningful strata have been outlined based on few available

base maps and visual interpretation of Landsat imagery, additionally fuelled by

information collected during several field visits. Given the recent advances in

pattern recognition algorithms, it might be expected that automatic mapping strat-

egies together with the availability of large volumes of freely accessible image

archives may efficiently assist in such tasks.
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Chapter 24

Carbon Stock Estimation of Tropical Forests

on Borneo, Indonesia, for REDD+

Sandra Englhart, Jonas Franke, Vanessa Keuck, and Florian Siegert

24.1 Introduction

Tropical forests store huge amounts of carbon (C), the majority (78 %) in above-

ground trunks, branches, and leaves as well as in belowground roots (22 %) (Saatchi

et al. 2011b). Forested tropical peatlands accumulate additional carbon in below-

ground peat deposits which are sustained by intact forests. In Indonesia, approxi-

mately 55–58 GtC is stored belowground in peatlands and 18.6 GtC aboveground in

forests (Jaenicke et al. 2008; Koh et al. 2009; Baccini et al. 2012). Peatlands are

often drained, deforested or burned for industrial agricultural development, such as

the establishment of oil palm and pulp wood plantations, which causes massive

carbon emissions that are released to the atmosphere (Hooijer et al. 2010).

Emissions from deforestation and forest degradation in Southeast Asia, includ-

ing tropical peatland burning and oxidation amounted to 23 % of total anthropo-

genic CO2 (carbon dioxide) emissions worldwide between 1997 and 2006 (Van der

Werf et al. 2009). Hooijer et al. (2012) estimated the carbon loss from converting

peat swamp forests into agriculture to be on average 100 tCO2 per hectare per year

annualized over 25 years. Through these processes, Indonesia became one of the

largest CO2 emitters worldwide.

Considering these high emission rates, projects aiming at forest conservation

offer good prospects for climate change mitigation in developing countries. One

example is REDD+, which aims at reducing emissions from deforestation and

forest degradation, conservation of forest carbon stocks, sustainable management
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of forest land and enhancement of forest carbon stocks (Campbell 2009). REDD+

was approved at the United Nations Climate Change Conferences in 2009 and 2010,

the year 2011 was the starting point for the development of a worldwide forest

monitoring system. The system considers current technical capabilities to monitor

greenhouse gas emissions and removals from deforestation, reforestation and

degradation activities in forest land remaining forest land (GOFC-GOLD 2011).

REDD+ intends for conditional payments to countries reducing emissions, and

conditional payments from national levels to forest stewards reducing emissions

(Campbell 2009). Implementation of REDD+ policies depends on accurate and

precise estimates of emissions avoided at national scale. A nationwide monitoring

is needed to prevent leakage within a country, where reduced deforestation or forest

degradation could occur in one part of the country but increase in another part

through displaced activities (DeFries et al. 2007).

In May 2010, a contract between the Indonesian and Norwegian government was

signed providing one billion US$ for a cooperation on REDD+. A major component

is a moratorium on new agricultural and logging licenses, which aims to support

Indonesia’s goal of reducing national emissions by 26 % until 2020 and to prepare

Indonesia to draw payments from industrial nations via the REDD+ scheme (Sloan

et al. 2012).

A crucial element for REDD+ is the estimation of current carbon stocks. The

Intergovernmental Panel on Climate Change (IPCC) provides Guidelines for

National Greenhouse Gas Inventories which refer to two basic inputs for calculating

greenhouse gas inventories: activity data, which specify the extent of deforestation,

reforestation and forest degradation/enhancements in unit area, and emission fac-

tors, which describe emissions/removals of greenhouse gases per unit area (IPCC

2006). Uncertainties of both activity data and emission factors are an important

element of greenhouse gas inventories to identify the contributions to the overall

accuracy (Grassi et al. 2008). The guidelines include three different tiers which

represent the level of methodological complexity: Tier 1 uses IPCC default values

to estimate emissions, Tier 2 requires country specific carbon data, and Tier 3 is

based on a detailed national inventory.

The most accurate way of aboveground biomass (AGB) and carbon stock

retrieval using Tier 3 are forest inventories which include field based measurements

(e.g. diameter at breast height (DBH), tree height, tree species-specific wood

density) to estimate biomass on the basis of allometric equations (Brown 1997;

Chave et al. 2005). The carbon stock is generally derived from AGB estimates by

assuming a carbon content of dry biomass of 50 % (Goetz et al. 2009). Albeit this

method provides very precise AGB values, it is time and cost consuming, difficult

to implement in remote areas and most importantly lacks information on the spatial

variability (Lu 2006). Monitoring AGB by remote sensing is less accurate, but the

major advantage is the ability to generate spatially explicit and potentially ‘wall-to-

wall’ carbon stock estimations in large and remote areas. Most approaches are

based on an assessment of historic, current and future deforestation rates based on

detectable changes in forest areas using satellite or airborne data (Boettcher

et al. 2009). Moderate to coarse resolution data (e.g. MODIS) are usually used
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for global carbon stock estimation (Baccini et al. 2012) and medium resolution data

(e.g. ALOS PALSAR) are usually selected for AGB estimations at national or

regional scales (Englhart et al. 2012; Ryan et al. 2012). Monitoring systems that

allow for credible measurements, reporting and verification (MRV) of forest carbon

stocks and their changes in REDD+ project sites are among the most crucial

elements for a successful implementation of REDD+.

Different approaches have been developed to assess AGB by remote sensing

using forest inventory AGB data. The stratify & multiply approach is a simple way

to retrieve a carbon stock map by linking a single AGB value (or a defined range,

ideally derived from field inventories) determined for a specific vegetation type to a

remote sensing based land cover map (Goetz et al. 2009). A major disadvantage of

this discrete approach is lack of information on the spatial variance of AGB within

one land cover class.

A more sophisticated technique is the continuous approach, at which radiometric

satellite measurements are calibrated to field based AGB measurements to derive a

wall-to-wall AGB estimation map also indicating the spatial variation of the carbon

stocks (Goetz et al. 2009). Examples using optical and SAR (Synthetic Aperture

Radar) imagery for a continuous estimation of AGB are described in the following

paragraph.

Multispectral satellite images have been widely used to derive AGB in tropical

regions using vegetation indices (Zhang and Run-Guo 2009; Li et al. 2010), spectral

signatures (Baccini et al. 2008; Tangki and Chappell 2008; Li et al. 2010; Avitabile

et al. 2012), image texture (Lu 2005; Wijaya et al. 2010; Nichol and Sarker 2011;

Sarker and Nichol 2011), and spectral mixture analysis (SMA) (Soenen et al. 2010).

Major constraints of using optical data for AGB estimation are the saturation of the

signal in high biomass ranges, the dependence on daylight, and the obstruction by

clouds, which is a crucial point in tropical regions.

Active SAR systems can operate day and night while penetrating through haze,

smoke, and clouds. The correlation of backscatter signal and biomass is mainly

dependent on wavelength, polarization, and incidence angle. Longer wavelengths

have been proven to be more useful for AGB estimation because of an increasing

backscatter range with changing biomass (Luckman et al. 1997; Lu 2006) and a

higher saturation level in regard to the biomass range (Saatchi et al. 2011a; Englhart

et al. 2011).

In order to compare the performance of SAR and multispectral satellite data for

AGB estimations using the continuous approach, a case study was established in a

tropical peat swamp forest area in Central Kalimantan, Indonesia. The potential of

different approaches and data sources are demonstrated in the context of REDD+.

The objectives of this case study are therefore (i) an evaluation of either different

SAR frequencies and polarizations or SMA MF fractions of a multispectral

RapidEye scene to estimate AGB by the continuous approach and (ii) a comparison

of continuous and discrete (stratify & multiply) AGB estimation using the example

of RapidEye data.
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24.2 Methodology

24.2.1 Study Area

The study area is located east of Palangka Raya, the capital of the province Central

Kalimantan, on the island of Borneo, Indonesia (Fig. 24.1).

Peat swamp forest is the predominant vegetation type besides riparian forest,

forest areas heavily degraded by fire (shrubs and regrowing forest) and seasonally

flooded wetlands. The peatlands have been drained and deforested, mainly for

agricultural development and plantations (Hooijer et al. 2010) and recurrent fire

events destroyed approximately 50 % of the forest cover in the past decade. The

most severe impact was caused by the Mega Rice Project (MRP), conceptualized by

the Indonesian government in 1995 in order to convert an area of one million

hectare for rice cultivation through the construction of about 4,000 km of drainage

and irrigation channels in peatlands (Page et al. 2002; Boehm and Siegert 2004).

Fig. 24.1 (a) Overview map of the study area in Central Kalimantan on Borneo. (b) Landsat 5 TM

satellite image from 10/02/2010 (bands R:5, G:4, B:3) showing the study area. Field inventory

locations are depicted in red. (c) shows an aerial photo of an intact forest and (d) depicts a

degraded regrowing area (© F. Siegert, S. Englhart); typical locations are indicated by arrows
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24.2.2 Data

24.2.2.1 Field Inventory Data

Field inventory measurements were collected in the years 2008, 2010 and 2011.

Forest inventory plots with different plot sizes were established in forested and

regrowing areas (Fig. 24.1b depicts the plot locations). The sample plot design is

following the guidelines provided by Pearson and Walker (2005).

For regrowing forests, a 20 � 50 m rectangular plot was chosen and all trees

within this area were sampled. For forests, three circular nested plots with radii of

4, 14, and 20 m were sampled. In each nest, trees of a certain DBH were measured

depending on degradation intensity: 2–10 cm or 5–20 cm (within the 4 m radius),

10–20 cm or 20–50 cm (within 14 m radium), and greater than 20 or 50 cm (within

20 m radius).

Within regrowing and forested plots, following parameters were collected:

DBH, tree height, and species of all trees in order to estimate their wood density.

Tree specific wood densities were derived from databases provided by Chudnoff

(1984), World Agroforestry Centre (2011), and IPCC (2006). If the tree species

could not be identified, an average wood density for Asian tropical trees of

0.57 Mg m�3 was applied (Brown 1997).

AGB was calculated using a combination of allometric models from Hughes

et al. (1999) for saplings (if DBH < 5 cm and height � 1.3 m) or trees (if DBH

< 5 cm and height > 1.3 m) and Chave et al. (2005) for moist tropical forest stands

including DBH and tree height (if DBH � 5 cm and height > 1.3 m).

All field inventory plots were monitored for possible changes and were removed

if there were any. Altogether 107 plots were sampled, 48 plots in regrowing

vegetation ranging from <0.1 to 19.6 t/ha and 59 plots in forested areas ranging

from 8.7 to 458.4 t/ha.

24.2.2.2 SAR Data

X-, C- and L-band data in HH and HV polarizations were investigated for their

potential for estimating AGB. Four TerraSAR-X (X-band) ScanSAR HH polarized

images with a pixel spacing of 8.25 m and an incidence angle of 34.2� (acquired on:
11/07/2011, 22/07/2011, 13/08/2011, and 24/08/2011) and three RADARSAT-2

(C-band) standard mode HH and HV polarized images with a pixel spacing of

8.00 m and an incidence angle of 36.6� (22/07/2011, 15/08/2011, and 08/09/2011)

were analyzed. In addition, six ALOS PALSAR (L-band) fine beam HH and HV

polarized images with a pixel spacing of 12.5 m and an incidence angle of 38.8�

were evaluated which covered three time stamps, as two different paths were

necessary to cover the whole study area (30/06/2010, 17/07/2010, 15/08/2010,

01/09/2010, 30/09/2010, 17/10/2010). All images were acquired during the dry
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season (May to October) to minimize any impact of rainfall and soil moisture. No

major land cover changes took place between 2010 and 2011.

Preprocessing of SAR images included standard radiometric calibration for

sigma naught (Fritz and Eineder 2009; Luscombe 2009; Shimada et al. 2009),

frost speckle filtering with a moving window of 7 � 7 pixel, and co-registration.

Multi-temporal backscatter coefficients were used because averaging backscat-

ter in time reduces speckle without losing spatial resolution. In a previous study, we

found that multi-temporal backscatter values were superior to mono-temporal

values for estimating AGB (Englhart et al. 2011).

24.2.2.3 Multispectral Imagery

A RapidEye scene was used to analyze the potential for estimating AGB using

multispectral data. RapidEye data has a pixel resolution of 5 m and contains five

spectral bands. An image recorded on 21/06/2010 was preprocessed including a

geometric and atmospheric correction using ATCOR (Richter 1997). Spectral

Mixture Analysis (SMA) is a suitable technique to derive forest parameters from

remote sensing data (Souza et al. 2005; Asner et al. 2009; GOFC-GOLD 2011).

Forests degraded by selective logging or fire are characterized by mixed pixels due

to the observed mixed reflectance from different constituents of the earth’s surface,

i.e. green vegetation (GV), non-photosynthetic vegetation (NPV), soil, shade, etc.,

within the area of one image element (pixel). The advantage of SMA is that the

abundance of sub-pixel components can be estimated as continuous values. A

special type of SMA, the Mixture Tuned Matched Filtering (MTMF) was applied.

A detailed description of SMA and MTMF is provided by Adams et al. (1986),

Williams and Hunt (2002) and Mundt et al. (2007). The result of the MTMF is a

grey-scale matched filtering (MF) fraction image representing the estimated rela-

tive degree to which each pixel matches the reference spectrum (Williams and Hunt

2002). The reference spectra of GV, soil and NPV were generated by manually

creating areas containing these reference spectra and storing the information in a

spectral library. The MF fractions derived from the RapidEye image were scaled to

values between 0 and 1, where 1 indicated a perfect match of the pixel spectrum to

the reference spectrum.

24.2.3 AGB Estimation

24.2.3.1 Continuous Approach for AGB Estimation

Using SAR and Multispectral Data

The relationship between each of all available SAR backscatter or multispectral MF

fractions and AGB was analyzed using spatially averaged signals over a grid with a

cell size of 40 � 40 m. This size was chosen as it is similar to the size of the biggest

416 S. Englhart et al.



nested field plot (radius 20 m). Due to the saturation of the satellite signals in high

biomass ranges, only field data smaller than 300 t/ha were used for the regression

modeling. The AGB field data was randomly split up to be used for training (85 %

of all data) and validating (15 %) the AGB models. For SAR images, all 98 AGB

reference samples were usable while for RapidEye only 53 AGB samples were

available due to clouds and area coverage. In a first step, the relationship of each

single SAR and multispectral input signal and AGB was analyzed. Different curve

progressions were examined, but the exponential one yielded in all cases the best

results. Based on these results, a combined regression model was tested. Therefore,

a least-square multivariate linear regression was conducted using exponential

values of either SAR backscattering coefficients or multispectral MF fractions of

GV, soil and NPV.

24.2.3.2 Comparison Continuous vs. Discrete AGB Estimation

Using Optical Imagery

A comparison of continuous and discrete AGB estimations was conducted on the

basis of RapidEye. The continuous AGB estimation is based on MF fractions per

pixel and the discrete AGB estimation is derived from a land cover classification

linking a single AGB value derived from field inventory data to the individual

classes of a land cover classification. The RapidEye land cover classification is

based on an object based classification approach of the scene from 21/06/2010

(Fig. 24.3). A hierarchical rule set defining the different classes was applied using

spectral, geometric, thematic and topologic criteria.

In total, eleven land cover classes were defined whereby only six are relevant for

carbon stock comparison (primary and secondary peat swamp forest, riparian

forest/agroforestry, bush/shrubs/regrowth, grassland/fern/agriculture, and recently

burned/sparse regrowth). For a quantitative accuracy assessment of the land cover

classification, 75 sample plots (located in peat swamp forest, bush/shrub/regrowth,

and recently burned/sparse vegetation), mapped according to the LCCS standard

(land cover classification system) and recorded with differential GPS, were evalu-

ated. Furthermore, a geo-tagged video, recorded during a flight over the study area

in 2010, was analyzed for the existing land covers and their spatial pattern and

compared to the final land cover map. The achieved overall accuracy was 87.8 %.

24.3 Results

24.3.1 Continuous Approach for AGB Estimation
Using SAR and Multispectral Data

The relationships between SAR backscattering coefficients of X-, C- and L-band

data and RapidEye based MF fractions and AGB were investigated separately and
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are depicted in scatterplots in Fig. 24.2. A significant correlation between SAR

backscatter and AGB was only found with TerraSAR-X HH and ALOS PALSAR

HV polarized data. Two of the field inventory plots were located in a recently

burned area and are visible in the ALOS PALSAR HV polarized scatterplot

(Fig. 24.2, ALOS PALSAR HV circle). Trunks of dead trees scattered on the

ground cause double bounce backscatter and thus high backscatter signals there.

RADARSAT-2 HH and HV and ALOS PALSAR HH polarized backscatter showed

no correlation to AGB. All investigated RapidEye-derived MF fractions showed a

correlation to AGB (Table 24.1). The exponential dependency is also linked to

saturation in higher biomass ranges as the curve flattens in higher biomass ranges.

The saturation effect is visible in the scatterplots depicted in Fig. 24.2, showing

similar backscatter or MF fraction values from approximately 100 t/ha upwards.

Fig. 24.2 Scatterplots showing AGB derived from field inventory measurements versus SAR

backscatter signal of TerraSAR-X, RADARSAT-2 and ALOS PALSAR (upper panel: HH

polarization, middle panel: HV polarization; n ¼ 98) and RapidEye GV, soil, and NPV MF

fractions (lower panel; n ¼ 53). The circle in the ALOS PALSAR HV scatterplot indicates double

bounce backscatter on a recently burned area

418 S. Englhart et al.



On the basis of the exponential dependencies, a multivariate linear regression

using exponential values of SAR signals and multispectral MF fractions was also

analyzed. Table 24.1 depicts the regression and independent validation results of all

investigated relationships. The multivariate regression models using either SAR

backscatter coefficients or multispectral MF fractions turned out to be more accu-

rate for AGB estimation than regression models using only a single variable

(Table 24.1). A regression model, which combined SAR backscatter and multi-

spectral MF fractions, was also evaluated but the achieved accuracy was not higher

than the multivariate MF fractions regression model and was therefore not further

analyzed. The independent validation demonstrates that AGB estimates derived

from optical MF fractions are more accurate, resulting in higher coefficients of

determination (r2) and lower root mean square errors (RMSEs). The multivariate

SAR AGBmodel was more accurate than the single variable TerraSAR-X or ALOS

PALSAR model in terms of the RMSE. The multivariate RapidEye model achieved

a higher r2 from the regression modeling, but the results of the independent

validation showed slightly lower r2 and slightly higher RMSEs than the GV and

soil fraction AGB models. The NPV model is the least accurate model of the

multispectral MF fractions with a high RMSE.
In order to qualitatively test these validated regression models for AGB predic-

tion of larger areas, they were applied to remote sensing data of a 1,893 km2 test

area in Central Kalimentan, Borneo (Fig. 24.3). AGB estimations are shown in

aggregated classes from <5 t/ha (dark red) to >300 t/ha (dark green). Estimations

exceeding 300 t/ha were not further differentiated due to the saturation effect of the

satellite signal in the higher biomass range. TerraSAR-X AGB estimations were

more reliable in low biomass ranges and less reliable in high biomass ranges and

ALOS PALSAR AGB estimations showed opposite results. Due to double bounce

on recent burn scars, the ALOS PALSAR based regression model clearly over-

estimates AGB in these areas (see Fig. 24.3 arrow). AGB estimations derived from

the combined TerraSAR-X and ALOS PALSAR regression model are higher in the

low biomass range than derived from either TerraSAR-X or ALOS PALSAR. This

Table 24.1 Results of regression modeling (reg.) and subsequent independent validation (val.) of

AGB values on the basis of TerraSAR-X HH and ALOS PALSAR HV polarized data (n ¼ 98) or

RapidEye-based GV, soil, and NPV fractions (n ¼ 53)

Input data

r2 r22 RMSE [t/ha] RMSE [%]

(reg.) (val.) (val.) (val.)

TerraSAR-X HH 0.51 0.30 81.71 110

ALOS PALSAR HV 0.68 0.69 63.77 86

TerraSAR-X HH & ALOS PALSAR HV 0.68 0.50 60.92 82

RapidEye GV 0.86 0.86 37.11 37

RapidEye soil 0.89 0.82 38.11 38

RapidEye NPV 0.70 0.87 67.87 67

RapidEye GV & soil & NPV 0.92 0.83 44.17 44
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model also overestimates AGB on burned areas due to double bounce of the ALOS

PALSAR HV polarized signal.

Estimating AGB from RapidEye imagery is clearly spatially limited by clouds

which cover 12.8 % of the study area. AGB estimations based on GV and NPV MF

fractions are very similar. AGB predicted by soil fractions is overestimated in

burned areas, but apart from that, similar to GV and NPV estimated AGB, which

was expected due to the fact that there is a linear relation between these three

fractions as a result of SMA. The multivariate RapidEye model estimates AGB

to be higher in low biomass ranges than the single variable MF fractions models.

In burned areas, AGB is again overestimated.

24.3.2 Comparison Continuous vs. Discrete AGB
Estimation Using Multispectral Data

AGB estimates of the continuous approach applying the multivariate multispectral

model were compared to discrete AGB estimates derived from a land cover

Fig. 24.3 Estimated continuous AGB maps of the different regression models. A detailed

RapidEye (RE) land cover classification of 21/06/2010 is shown for a comparison to the discrete

AGB estimation method for which this map was used (example given in Fig. 24.4). The arrow
indicates a fresh burn scar on which AGB is overestimated
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classification (Fig. 24.3). Table 24.2 depicts the median and the standard deviation

values of the estimated AGB for each land cover class. The number of 40 � 40 m

grid cells used for deriving these averaged figures from the estimated AGB values

(continuous approach) or used field inventory plots (discrete approach) is given in

brackets. Every predicted AGB value within one land cover class was used for the

calculation of the continuous AGB mean value. The mean AGB value of the

discrete approach was calculated on the basis of all available field inventory plots

within each class. Two additional field inventory plots of riparian forest which were

located outside of the study area were used because no field inventory plot was

located inside the study area. The continuous AGB estimates of primary and

secondary peat swamp forest are similar (196.7 and 183.1 t/ha, respectively) with

a relatively low standard deviation (25.2 and 26.7 t/ha) whereas the values of the

discrete AGB estimate have a wider difference (220.2 and 178.4 t/ha) with a higher

standard deviation (73 and 73.3 t/ha), although the number of field inventories is

much lower than the number of continuous AGB estimations. The field inventory

values indicate high biomass variability within these two classes. AGB of riparian

forest/agroforestry is difficult to compare, as only two field inventory plots were

available which were both located in riparian forest outside of the study area while

agroforestry is not included in the field data. Agroforestry and riparian forest cannot

be differentiated in this region using RapidEye for the land cover classification and

were therefore combined. These facts may explain the wide difference between

continuous and discrete AGB estimates (110.7 and 294.2 t/ha) of riparian forest/

agroforestry. The class bush/shrubs/regrowth shows higher AGB values with a

higher variability (indicated by a higher standard deviation) in the continuous

method (37.7 t/ha, std dev: 33.1 t/ha) compared to the discrete approach (12.6 t/

ha, std dev: 8.3 t/ha). It is assumed that the biomass variability of this class is not

correctly represented by three field inventory plots. AGB of the class grassland/

fern/agriculture was estimated very similar by the continuous and discrete method

(3.8 and 3.3 t/ha) but there is a higher standard deviation in the continuous AGB

estimations. AGB estimates on recently burned/sparse regrowth areas are extremely

overestimated by the continuous approach, which is also indicated in Fig. 24.3.

Figure 24.4 depicts an area of active logging showing the continuous and

discrete AGB estimation, the land cover classification used for the discrete AGB

estimation and the true color RapidEye image. The narrow logging tracks (2–10 m

wide) are clearly visible within the RapidEye scene (purple color) and the resulting

biomass loss from logging is indicated in the continuous AGB map. The land cover

classification and the derived discrete AGB estimation do not differentiate such

different levels of degradation within the same land cover class.

24.4 Discussion

Different SAR frequencies and polarizations, as well as multispectral MF fractions

were analyzed for their potential for estimating AGB. The most accurate

SAR-based AGB regression model was found to be a multivariate TerraSAR-X
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HH and ALOS PALSAR HV model. The combined multispectral MF fraction

model based on RapidEye derived GV, soil and NPV MF fractions was the most

accurate AGB model in terms of RMSE. Combining multispectral MF fractions and

SAR backscatter was not found to add an additional value for AGB estimation,

because a higher accuracy than of the multivariate MF model could not be

achieved. Both multivariate SAR and multispectral AGB models overestimate

AGB in recently burned areas (3 years and less after the fire event). The combined

TerraSAR-X and ALOS PALSAR AGB model is negatively influenced by double

bounce from the ALOS PALSAR signal occurring in recently burned areas. The

RapidEye MF fraction model is affected by AGB overestimations in case of

deriving AGB from soil fractions in burned areas. The soil fraction is relatively

low in these areas due to the large amount of NPV (dead trees and trunks, standing

and lying) and GV (rapid regrowth of young trees, fern and bushes). Frequent cloud

cover hampers the acquisition of multispectral imagery and repetitive AGB maps

are therefore very difficult to produce, which can only be overcome by very short

repetition cycles. The combined SAR model estimates AGB are not as accurate as

the combined multispectral model, but SAR is able to penetrate clouds, smoke and

haze and repetitive area coverage can be achieved. Since SAR signals are

influenced by water, it is very important to use multi-temporal SAR data acquired

during the dry season to minimize any impact of precipitation or soil moisture.

A further crucial point is the AGB field reference data set. The range between

20 and 80 t/ha is underrepresented in the reference data set (Fig. 24.2) as such areas

are very rare and difficult to access. On the one hand, regrowing areas contain

Fig. 24.4 Example of a logging area showing continuous and discrete AGB estimations,

RapidEye land cover classification (LC classification) used for the discrete AGB estimation and

the true color RapidEye scene from 21/06/2010
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mostly AGB values lower than 20 t/ha due to recurrent fire events since the risk of a

repeated fire increases dramatically after one fire event (Langner and Siegert 2009).

On the other hand, selective logged or degraded forest areas mostly contain AGB

values higher than 80 t/ha. To improve the AGB estimation models, it is necessary

to expand the AGB reference data set representing the whole biomass range.

The most accurate AGB model, based on continuous multivariate MF fractions,

was compared to discrete AGB estimates assigned to a land cover classification.

Based on the authors’ long-term experience in the study area, it is supposed that the

real biomass variability of primary peat swamp forest is not correctly described by

the continuous approach in high biomass ranges due to the saturation effect.

However, AGB loss caused by severe degradation, e.g. intensive selective logging,

is visible in the continuous AGB map (Fig. 24.4). AGB of bush/shrubs/regrowth

and grassland/fern/agriculture is estimated very accurate. AGB of recently burned/

sparse regrowth areas was extremely overestimated, most likely due to low soil

fractions caused by rapid regrowth and large quantities of dead woody debris.

Considering these results, a combination of continuous and discrete AGB estimates

appears to be the most promising approach. AGB in forest areas with high AGB

values such as primary peat swamp forest, as well as recently burned/sparse

regrowth areas is therefore suggested to be estimated by the discrete approach,

whereas AGB in areas with low AGB values such as secondary peat swamp forest,

riparian forest/agriculture, bush/shrubs/regrowth and grassland/fern/agriculture

should be estimated via a continuous approach.

24.5 Conclusions

Using a combination of continuous and discrete AGB estimations based on remote

sensing and detailed field inventory data meets the Tier 3 definition of the IPCC

guidelines, which describes the most complex methodological level of AGB esti-

mation (IPCC 2006). The combined approach of continuous and discrete AGB

estimation overcomes the problem of saturation in higher biomass ranges. It has

still to be proven if AGB of areas that experienced low impact degradation can be

differentiated from secondary forest despite the saturation occurring in high bio-

mass ranges.

The challenge of carbon stock monitoring is to avoid gaps, achieve high accu-

racies and observe defined time intervals thereby meeting the requirements of

REDD+. In general, field inventories are the most accurate way to estimate AGB

but they are time and cost consuming and the single point based measurements do

not describe the spatial variability. In contrast, remote sensing is advantageous to

estimate AGB over large areas although field inventory measurements are manda-

tory. LiDAR (Light detection an ranging) provides the best input data for deriving

accurate AGB estimations due to the information that can be obtained on the

vertical structure and height of the vegetation (Koch 2010). Associated large data

volumes and costs usually limit the spatial extent and a repetitive application. But
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LiDAR measurements are suitable to provide accurate, numerous AGB estimations

including the spatial variability (providing a powerful basis) for an up-scaling with

multispectral or SAR data using the presented approach for large-scale sub-national

and national AGB carbon stock monitoring.
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Büttner, G., 91, 248, 267, 283, 291, 315

Byrne, G.F., 157

C

Campbell, B.M., 412

Camps-Valls, G., 129, 130, 133, 135

Canty, M.J., 85, 147, 157, 158, 168, 169

Carleer, A., 128

Carlin, L., 131, 133

Carlson, T.N., 354

Carroll, M.L., 24

Carter, G.A., 206

Carvalho, L.M.T., 158

Caselles, V., 345

Castilla, G., 149, 152, 163, 167, 169

Castro-Esau, K.L., 206

Chan, J.C.W., 181

Chander, G., 392

Chave, J., 412, 415

Chen, C.H., 152

Chen, D., 392

Chen, G., 163

Chen, J., 19, 154, 352

Chen, X., 131, 133

Chen, Y., 384, 387

Chen, Z., 283

Chi, M., 133–135

Chin, N., 218

Choudhury, B.J., 342, 354

Christiansen, P., 220

Chudnoff, M., 415

Cicone, R.C., 165, 368

Cihlar, J., 297, 321

Clark, D., 218

Clark, R.N., 375

Clarke, K.C., 219, 222

Clevers, J.G.P.W., 290, 363–377

Coburn, C.A., 377

Cochran, W., 77

Cohen, W.B., 386

Collins, J.B., 148, 157, 168, 169

Collins, W., 370

Combal, B., 365

Comber, A.J., 321

Congalton, R.G., 245

Conrad, C., 331

Conradsen, K., 166, 167

Coops, N.C., 148

Coppin, P., 145, 146, 150, 385

Coppin, P.R., 153, 157

Cossu, R., 133, 138–139, 149

Costanza, R., 383

Couch, C., 220

Couclelis, H., 218, 220–221

Cox, D.P., 92

Crist, E.P., 165, 368

Cristianini, N., 129, 133

Cross, A.M., 92

Curran, P.J., 365, 370, 373, 375

Cutler, D.R., 181

Czajkowski, K.P., 347

D

Dabrowska-Zielinska, K., 75–87

Daily, G.C., 386

Dalla Mura, M., 130, 133

Dana, I.F., 309

Danson, F.M., 374, 375

Dash, J., 370

Daughtry, C.S.T., 370, 372

Davis, C.H., 131, 133

Dawelbait, M., 160

de Gruijter, J.J., 75

De Kok, R., 81, 193, 196, 197

De Nijs, T.C.M., 219

de Pauw, E., 388, 391, 405

de Vries, M., 8

De Wit, A.J.W., 283, 286, 288

Dean, A.M., 276

Dedieu, G., 392

Defourny, P., 12, 14, 23, 24, 92

DeFries, R., 384, 385, 412

DeFries, R.S., 12, 17

430 Author Index



Deininger, K., 301

Del Frate, F., 165

Delegido, J., 376
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