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PREFACE 

Many facts were at the origin of the present monograph. The ftrst is 
the beauty of maple leaves in Quebec forests in Fall. It raised the question: 
how does nature create and reproduce such beautiful patterns? The second 
was the reading of A. Lindenmayer's works on L systems. Finally came the 
discovery of "the secrets of DNA" together with many stimulating ex
changes with biologists. 

Looking at such facts from the viewpoint of recursive numerical 
systems led to devise a simple model based on six elementary operations 
organized in a generating word, the analog of the program of a computer 
and of the genetic code of DNA in the cells of a living organism. 

It turned out that such a model, despite its simplicity, can account for 
a great number of properties of living organisms, e.g. their hierarchical 
structure, their ability to regenerate after a trauma, the possibility of 
cloning, their sensitivity to mutation, their growth, decay and reproduction. 
The model lends itself to analysis: the knowledge of the generating word 
makes it possible to predict the structure of the successive developmental 
stages of the system; and to synthesis: a speciftc type of structure can be 
obtained by systematically constructing a generating word that produces it. 

In fact the model here proposed is coherent with the fundamental 
assumptions of cellular biology and in particular with recent discoveries 
concerning DNA, which in the light of our model behaves like a very 
elaborate generating word. 

This monograph represents the present state of our research. 
It is the authors' ambition that this work will help system engineers 

become acquainted with these problems and will suggest some hypotheses 
to biologists. 
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Chapter 1 

PROEM: THE MODEL 

1.1 GENERAL 

A developmental system, in the most general sense, is a set of 
ordered, oriented elements - the components - which changes in time. 

More particularly, systems will be considered the structure of which 
changes at discrete intervals of time as a consequence of elementary 
operations acting on the elements. 

By analogy with living organisms, which consist of cells and develop 
in time according to certain patterns, it will be assumed that an element 
("cell") of a developmental system can undergo differentiation or multipli
cation (giving rise to not more than two cells) and always derives from a 
preexisting cell of the system. 

1.2 INTRODUCTORY EXAMPLES 

1.2.1 Example A: one-dimensional developmental system 
Suppose that an initial oriented cell a gives rise at each new develop

mental stage to two cells a and b (a being of the same, b of a different type) 
and the b cells then remain unaltered. 

The first operation will be called linear generation and denoted 

L(a) = ba or a-jba 

which means that an a cell when acted upon by an L operation gives rise to 
two cells a and b, situated close to each other, a following b in the 
direction defined by the oriented a mother cell (Fig. 1-1). 

The fact that the b cell remains itself will be expressed as a stagnation 
operation and denoted 

S(b) = b or b-jb 

L 8~EB 
a b a 

Fig. 1-1. Linear generation. 



2 DEVELOPMENTAL SYSTEMS 

We shall say that the generating word of the system is 

GWA = LS 

and write in expanded form 

L 
I 
S 

a-7ba 

b-7b 

The developmental system will be called 

DS = LS 
A a,b 

with the initial condition: one a cell. 

§ 1.2.1 

(1-1) 

(1-2) 

The result is a developmental system DS A of cells of the a and b 
categories which changes in discrete time (denoted k = 0,1,2, ... ). 

On the basis of (1-1) the successive developmental stages are easily 
obtained: 

k=Q 

k = 1 

k=2 

k=n 

or, in recursive notation: 

DSA(O) = a 

DSA(k) = bDSA(k - 1) 

DSA(O) = a 

DSA(1) = ba 

DSA(2) = bba 

for k > 0 } (1-3) 

At its k-th stage the system consists of one a cell and of k b cells. If 
the growth is assumed to take place along a constant direction, the system 
has the shape of a one-dimensional filamentous string (see Figure 1-2). 

The evolution of the system in time can be quantitatively characterized 
by the number of cells of each category at each stage of its development 

a(k) = 1 b(k) = k (1-4a) 

or, in a more compact form, by the row matrix 

Y(k) = [a(k) b(k)] = [1 k] (1-4b) 

and its growth rate can be evaluated on the basis of the total number of cells 
("volume" or "size" of the system) (Fig. 1-3) 

V(k) = a(k) + b(k) = k + 1 (1-5) 



§ 1.2.1 THE MODEL 

a 
o 

b b a 
0----0---<> 

b b b a 
0----0--0--0 

b b b b a 
0----0---0---<> 

bbbbba 
0--<>--<>------

b b b b b b a 
~ 

Fig. 1-2. LS 
Developmental stages k = 0 to k = 6 of system DS A = -

a,b' 

V(k) 
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Fig. 1.3. Growth of developmental system DS A • 
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1.2.2 Example B: two-dimensional developmental system 

Now suppose that the b cell of Example A no longer remains 
unaltered, but divides at each stage into two other cells, according to an 
operation which will be called bifurcation with change of direction and 
denoted 

C90(b) = c(d) or b -j c(d) 

This means that a b cell when subjected to a C90 operation gives rise to 
two new cells c and d, the former being still in the direction of the original 
oriented b cell and the latter being at an 900 angle with it. Here the 
parenthesis indicates a 900 change of direction for the d cell (Fig. 1-4). 
Suppose furthermore that the c and d cells remain unaltered throughout the 
evolution of the system. 

Fig. 1.4. Bifurcation with change of direction of 90°. 

The generating word is now 

GWB = LC90 SS 

or, in expanded form: 

b-j c(d) 

and the developmental system will be called 

LC90 SS 
DSB =--

a,b,c,d 

with one a cell as initial condition. 

(1-6) 

(1-7) 
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OSB (0) 0 

a 

OSB (1) 0---0 

b a 

OSB(2) L 
c b a 

DSB (3) ~ 
c c b a 

DSB (4) ~ 
c c c b a 

OSB (5) ~ 
c c c c b a 

OSB (6) ~ 
c c c c c b a 

Fig. 1.5. 
LC90 S S 

Developmental stages k = 0 to k = 6 of system DSB = . 
a,b,c,d 

The successive developmental stages are easily obtained on the basis 
of (1-6): 

k = 0 DSB(O) = a 

k = 1 DSB(1) = ba 

k = 2 DSB(2) = c(d)ba 

k = 3 DSB(3) = c(d)c(d)ba 

or, in recursive notation: 

DSB(O) = a, DSB(1) = ba 

DSB(k) = c(d)DSB(k - 1) for k> 1 
1 (1-8) 

As a result a two-dimensional pattern is obtained (Fig. 1-5). 
The number of the cells at the k-th developmental stage is for k > 1 

a(k) = 1 b(k) = 1 

Y(k) = [1 

whence the size (Fig. 1-6) 

c(k) = k - 1 d(k) = k - 1 (1-9a) 

1 k - I k - 1] (1-9b) 

V(k) = a(k) + b(k) + c(k) + d(k) = 2k (1-10) 
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Fig. 1.6. Growth of developmental systems DSB and DSc-

1.2.3 Example C: another two-dimensional system 

§ 1.2.3 

Now suppose that the direction in which the d cells develop is not at 
90° any more, but makes an angle of 45° with the main development 
direction, alternately on one side and on the other. In order to distinguish 
from Example B, a ± 45° subscript will be added to C 

LC±45S S 
DSc = (1-11) 

a,b,c,d 

Equation (1-8) remains valid but the meaning of the parentheses has 
changed, since they now denote a change of direction of + 45° and 
- 45° alternately. 

The two-dimensional pattern obtained (Fig. 1-7) has the shape of a tree 
with branches of unit length. A distinction can be made between the 
"stagnant" cells, acted upon by S operations (c and d) and the cells which 
undergo division (a and b) and are therefore responsible for the system 
growth. In terms of cellular physiology (Hall, Flowers and Roberts, 1974, 
pp. 5-8) the latter constitute the meristem of the tree-shaped pattern ob
tained. (In Figure 1-2 the meristem consists of the a cell, in Figure 1-5 of 
the a and b cells.) 

The quantitative evaluation of the cellular composition and of the 
growth rate [eqs. (1-9) and (1-10)] are of course the same as for Example 
B. 
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DSc (0) 

o 
a 

~. 
d -....... -

THE MODEL 7 

DSc(2) 

0------0 

b a 
~ 
c <~ a. ' 

..... .. ". ," 

~ .. 
d o, ... 

~: d d ' .. _ .... ~ d d · .. _.' 

b a. 

LC+ 45 S S 
Fig. 1.7 . Developmental stages k = 0 to k = 6 of system DSc = - . 
(Meristem is outlined.) a,b,c,d 

1.2.4 Example D: developmental system with feedback 
In the previous examples each cell had an antecedent with the 

exception of cells of the first category (a). A new feature will now be 
presented: the presence of feedback in the sequence of the operations, in 
the sense that a cell of the first category is regenerated by cells correspond
ing to the last letter of the generating word. 

Consider the developmental system 

L a ---1 ba 
I 

DS - LCSLF 1\ b ---1 c(d) 

Dl - (1-12) 
a,b,c,d C---1C 

L d ---1 ad 

where C should be understood as C ±45 (as in § 1.2.3) and the F superscript 
indicates the presence of feedback from the second L of the generating 
word. 
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The first developmental stages, starting from the initial condition 
DSDI (0) = a, are: 

k = 1 DSDl(1) = ba 

k = 2 DSDl(2) = c(d)ba 

k=3 

k=4 

DSDl(3) = c(ad)c(d)ba 

DSDl(4) = c(baad)c(ad)c(d)ba 

k = 5 DSDl(5) = c(c(d)babaad)c(baad)c(ad)c(d)ba 

k = 6 DSDl(6) = c(c(ad)c(d)adc(d)babaad) 
c( c( d)babaad)c( baad)c( ad)c( d)ba 

(1-13) 

The result has the shape of a tree with branches and subbranches 
(Fig. 1-8). 

Quantitatively the cellular composition 

Y(k) = [a(k) b(k) c(k) d(k)] 

is given by 

Y(O) = [ 1 0 0 0] V(O) = 1 

Y(1) = [ 1 1 0 0] V(1) = 2 

Y(2) = [ 1 1 1] V(2) = 4 

Y(3) = [ 2 1 2 2] V(3) = 7 

Y(4) = [ 4 2 3 3] V(4) = 12 

Y(5) = [ 7 4 5 5] V(5) = 21 

Y(6) = [12 6 9 10] V(6) = 37 

The growth (Fig. 1-9) is faster than in Examples A, B and C, but no 
explicit expression for V(k) is apparent. 

In the next example the feedback consists in the fact that a cell of the 
first category is regenerated by cells corresponding to a non-last letter of the 
generating word. 

Consider the developmental system 

LeFS 
DSD2 =--

a,b,c Cb 
I 
S 

a-)ba 

b -) c(a) (1-14) 

c-)c 

where e should be understood as e ±45 and the F superscript indicates the 
presence of feedback from the e operation. 
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d 

0 <>----0 70 0 ~ b a b 

Fig. 1.8. 

a c b a a 
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d a 

a 
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d 
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Developmental stages k = 0 to k = 6 of system DSDI = =-..:.-=-=

a,b,c,d 
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Fig. 1.9. Growth of developmental system DSDI ' 
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The first developmental stages, starting from the initial condition 
DSD2(O) = a, are: 

DSD2(1) = ba 

DS02(2) = c(a)ba 

DS02(3) = c(ba)c(a)ba 

DS02(4) = c(c(a)ba)c(ba)c(a)ba 

DS02(5) = c(c(ba)c(a)ba)c(c(a)ba)c(ba)c(a)ba 

1.2.5 Example E: developmental system with operating system 
All the previous examples were developmental systems which grow 

indefinitely. A system which reaches a maximum size and then decays will 
now be considered. It consists of Example A with the following modifica
tions of the operations. 

a) Instead of always being submitted to an L (a ~ ba) operation, the a 
cell generates ba so long as no more than six b cells are present in the 
system, but it dies afterwards; in other words, the L operation is replaced 
by 

l a~ba na ~ 6 
0aL (1-15) 

a~b na>6 
b) Instead of indefinitely remaining itself (b ~ b), a b cell remains 

itself only ten times, then it disappears, i.e. the S operation is replaced by 

I b~b nb ~ 10 
0bS (1-16) 

b~ - nb> 10 

What operations are performed is thus under the control of the 
operating system (Oa,OJ, which makes the system respectively sensitive to 
internal context (number of b cells present in the system) and to external 
context (discrete time elapsed). The system will be denoted 

(O~)(O~) 
DSE =---

a,b 
(1-17) 

The first six developmental stages are identical to those of Example A 
[eq. (1-3)]: 

DSE(O) = a DSE(1) = ba DSE(2) = bba DS~3) = bbba 

DSE(4) = bbbba DSE(5) = bbbbba DSE(6) = bbbbbba 
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o 0-----<> 0---0---0 0---0--0--0 ~ 

b b a b b a b b b a b b b b a 

0----0--0----0- ~ 

b b b b b a b b b b b b a 

0----0--0----0-

b b b b b a 

0---0--0--0 0---0---0 

b b b b b b b 

0-----<> o 
b b b 

Fig. 1.10. 
(0,,") (ObS) 

Developmental stages k = 0 to k = 17 of system DS E = . 
a,b 

Then, as a consequence of the presence of six b cells, the a cell 
disappears, the b cells remaining stagnant: 

DSE(7) = bbbbbbb = DSE(8) = DSE(9) = DSE(10) = DSE(11) 

At the k = 12 developmental stage the 0b(S) operation acting on the 
last b cell becomes b ----j -, whence 

DSE(12) = bbbbbb 

and similarly 

DSE(13) = bbbbb DSE(14) = bbbb DSE(15) = bbb 

DS E(16) = bb DSE(17) = b DSE(18) = DSE(19) = ... = -

These results are shown in Figures 1-10 and 1-11. 
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V(k) 
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3 

DEVELOPMENTAL SYSTEMS §1.3.1 

--~-- ------------ . - -----------------~.-----, , , , , , . , , , , , , , , , 

2 -- ----- ----- ----~--------------.---~-------------------I--- --- ----

1 

o 1 5 10 15 18 k 

Fig. 1-11. Growth and decay of developmental system DSE. 

1.3 GENERAL DEFINITION 

1.3.1 General 
A developmental system DS consists of: 
a) an ordered set Z of elements ("cells") of n categories 

Z = {aI' a2' ... an} 

b) a sequence of n elementary operations Ai' A2, • •• An (the generating 
word GW) acting on the cells at discrete instants of time k 

(1-18) 

c) an initial condition (k = 0) which is usually one cell of the first 
category DS(O) = a 1 

We shall note: 

n 
SEQ Ai 

GW i= I DS=-=--.:....---
Z al,a2, ... ,an 

(1-19) 
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1.3.2 The elementary operations 
Six types of Ai operations will be considered. 
1) The simplest operation consists of a cell remaining unaltered. We 

shall call it stagnation and write . 

or (1-20) 

2) The next simple operation consists of a cell being differentiated 
into another. We shall call it transformation and write 

T(ai) = aj or ai -1 aj ai' aj E Z (1-21) 

3) A cell may divide, giving rise to a new cell . We shall call this 
linear generation and write 

L(ai) = api or ai -1 api ai' aj E Z (1-22) 

If the generation of the aj cell occurs with a change of direction, we 
shall speak of rotative generation and write 

Ra(ai) = alai) or a i -1 alai) ai' a j E Z (1-23) 

where the parenthesis denotes the change of direction (Fig. 1-12). 
It may be useful to specify of how many degrees the change of 

direction consists and whether it always occurs in the same direction 
(giving rise to a spiralling pattern) or whether the direction alternates at 
each k (giving rise to a sort of zig-zag pattern). To do this, one may add a 
subscript and write 

or 

RO( 8 

Fig. 1-12. Rotative generation Ra. 

4) Finally a cell may divide into two cells of different categories: 

B(aj) = apk or ai -1 apk ai' aj , ak E Z (1-24) 

Such an operation will be called bifurcation. The aj cell is oriented in 
the direction of the oriented ai mother cell. If the ak cell is oriented at an 
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B 8 ~ era 
a· I a· J ak 

Co< 0) ~ ~fx_ 
a· I a· J 

Fig. 1-13. Bifurcation without and with change of direction Cl . 

angle a with respect to the said direction (see Figure 1-13), we shall speak: 
of bifurcation with change of direction and write 

Ca(a) = aj (ak) or aj --j aj (ak) aj' aj' ak E Z (1-25) 

where again the parentheses denote the change of direction. Like for the R 
operation, whether the sign of the change in direction is constant or is 
alternately + and - can be specified by writing 

Ca or C±a 

In all that follows C without a subscript should be understood as C ±45 . 

The cells which undergo L, R, Band C operations constitute the 
meristem of the system. If the said operations would cease being performed 
the development of the system would also stop. 

These six operations (see Figure 1-14) are consistent with axioms of 
biology: each cell derives from a preexisting one and can at most generate 
two cells at a time. They have been chosen because it turns out that 
combining them enables one to account for a great number of properties of 
two-dimensional developmental systems which are analogous to properties 
of living organisms (see Chapters 2, 3 and 4). 

1.3.3 The generating word 

A) GENERAL 

The sequence of the operations AI' A2, . • • , An acting on the n elements 
al' a2' ... , an is the generating word of the developmental system. 
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SYMBOL 
OPERATION 

Algebra Configuration 

L a -l ba 8 =:} ffi 
a b a 

, 

Rex a -l b(a) 8 =:} 
a "J 8Q---~-

a b 

B a --. be 8 ~ ffi 
a b e 

Cex a -l bee) 8 ~ 
c '\ 8Q ___ cx_ 

a b 

T a ~ b 8 ~ 8 
a b 

S a --. a 8 =} 8 
a a 

Fig. 1-14. The elementary operations. 

If the symbols Ai of the operations are considered as the letters of a 
language, the operation sequence is a word in that language. A "correct" 
word should fulfill the following conditions : 

a) if Aj(aj) = aj' then j ;;. i 

b) if Aj(aj) = apk or a/ak) or apj or alai) 

then j ;;. i k ;;. i j *" k 

) (1 -26) 

The operations should be performed after one another, the first 
operation acting on the initial a l cell. This amounts to "reading" the word 
from left towards right. 
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If the conditions (1-26) are fulfilled the generating word will be said to 
be of the linear, or rectilinear, type. 

Such a linear word can be represented in the fonn of an oriented graph 
of the binary-tree type, as in the case of Paragraph 1.2.2 [eq. (1-6)]. It is 
seen on the graph that each letter of such a word has one antecedent, except 
the first letter (the "root" of the tree) which has none. As a consequence of 
(1-26): on the graph each T, L or R is followed by one letter, each B or C 
by two letters; after an S no letter follows; the number of S exceeds by one 
the number of B and C. 

A generating word of the type commented on in Paragraph 1.2.4 [eqs. 
(1-12) and (1-14)] is said to be 'Circular. The graph has a loop, which 
expresses the presence of feedback from a certain letter towards the fIrst. In 
this case the (1-26) conditions are not fulfIlled anymore. Each letter 
(including the fIrst letter) has an antecedent. 

We shall speak of a global loop if the feedback originates in the last 
letter of the word (as in the case of SDDl) and of a local loop if it originates 
in another letter of the word (as in the case of SDD2)' 

B) GENERATING WORD WITHOUT AN OPERATING SYSTEM 

In developmental systems the generating word of which has no 
operating system all the Aj(a) operations are perfonned simultaneously at 
each developmental step; an (n,n) matrix can be associated to the graph. 
We shall call it the evolution matrix of the system. It is most easily 
constructed on the basis of the elementary operations acting on each cell 
category: see the last two columns of Figure 1-15. 

The evolution matrix of a developmental system without feedback is 
upper-triangular. Its elements are zeros and ones. The ones are located in 
lines which express respectively: 

a) a stagnation (S), if the one lies in the main diagonal; 
b) a transfonnation (T), if the one lies at one or two spaces at the right 

of the main diagonal; 
c) a linear (L) or rotative (R) generation, if a one lies in the main 

diagonal and a second one lies at one or two spaces more to the right; 
d) a bifurcation with (C) or without (B) change of direction, if two 

ones lie close to each other at the right of the main diagonal. 
Hence a "map" of the evolution matrix (Figure 1-16) can be drawn, in 

which stagnations give rise to ones on the main diagonal, passive operators 
(T, B, C) to ones at the right thereof, and active operators (L, R) to pairs of 
ones located on and at the right of the main diagonal. (For the tenns 
"passive" and "active", see § 2.1.1-F infine.) A one located in the lower
left half of the matrix expresses the presence of feedback, as in the case of 
Examples DSDl and DSD2' 



§1.3 .3-B THE MODEL 

LS I~ ~: 
a-ba 

[: : 1 
DSA =-

a,b b-b 

As 
a - ba 1 1 0 0 

DSB}_ Less b - c(d) 0 0 
DSc a,b,c,d c--c 0 0 0 

d -- d 0 0 0 

AJ 
a-ba 0 0 

os = LCSLF b - c(d) 0 0 
01 a,b,c,d 

0 0 0 c--c 

L d -+ ad 0 0 

LCFS :P :~ 
a - ba 

[: :] OS02 =-- b -- c(a) 0 a,b,c 

c -+ c 0 

Fig. 1-15. Graph and evolution matrix of developmental systems DSA to DSD' 

Tr ansformation T 
Bifurcation B,C 

r-~~-r----~r---~ 

Local 
feedback- 1 

~-;---

Global _ 1 
feedback ~------------~~ 

Active operation 
Generation L I R 

Stagnation S 

Fig. 1-16. Location of the ones in the evolution matrix of a developmental system. 
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It should be noted that the evolution matrix makes no distinction 
between the two generative operations L and R, nor between the two 
bifurcation operations Band C. In other words, the matrix ignores changes 
of direction. 

C) GENERATING WORD WITH OPERATING SYSTEM 

In developmental systems the generating word of which is of the type 
just described all Aj(aj) operations are performed (1) simultaneously at each 
developmental step and (2) in a context-free manner, i.e. independently of 
external circumstances and of the state of the system. 

Such limitations can be overcome by introducing into the generating 
word an operating system (as in elaborate multiprogrammed processes) 
which controls the performance of the operations in such a manner that 

1) they may be performed at different instants, 
2) their performance may be affected by external circumstances (sen

sitivity to external context) or by the state of the system (sensitivity to 
internal context). 

If OJ is the local operating system which controls the Aj operation, the 
generating word will be written 

n 
GW = ~EQOjAj (1-27) 

I = a 

System DSE of Paragraph 1.2.5 is a very simple example. 
A global operating system can also exist. It concerns the strategy of 

the execution of the Aj operations as a whole: 

GW = 0 0 { ~~~ Aj } (1-28) 

Still more generally, the operating system can have both global and 
local parts: 

(1-29) 

* 
We are not, by far, the only authors who write on the subject of 

developmental systems. Our starting point was Aristid Lindenmayer's 
publications (1968 to 1976) which gave rise to an important body of 
literature on L systems, sometimes at a high level of generality and 
abstraction (for example, Rozenberg and Salomaa, 1980). Spencer Brown's 
laws of forms have been applied to biological phenomena (Varela, 1979) 
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and Thorn's catastrophe theory is known to a large public (1977). We 
would also like to quote the work by Roger Jean (1978) devoted to the 
mathematical description of plant growth. 

Our aim has been to develop a mathematically simple model compat
ible with the fundamental assumptions of cellular biology. In fact such a 
model leads to easily interpretable results without any mathematical diffi
culty and, despite its simplicity, accounts for many biological facts. It is 
essentially based on the concept of a generating word, which is the analog 
of the program of a computer and of the genetic code of DNA present in the 
cells of a living organism 

The following three chapters will be devoted to developmental systems 
with increasing degree of complexity: synchronous developmental systems 
without feedback (Chap. 2), with feedback (Chap. 3) and developmental 
systems with an operating system (Chap. 4). The systems will be inves
tigated from the double viewpoint of their structural properties and of their 
quantitative growth. 
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Chapter 2 

SYNCHRONOUS DEVELOPMENTAL 
SYSTEMS WITHOUT FEEDBACK 

The present chapter is devoted to the simplest kind of developmental 
systems: systems the generating word of which has no operating system 
(Le. all operations are performed simultaneously and indefinitely) and no 
feedback (Le. the first cell has no antecedent). The generating word of such 
a system has the shape of a binary tree. Examples were the systems DSA , 

DSB and DSc of Section 1.2. 
We shall first explain, with the help of examples of systems construct

ed mainly with C, L and S operations, in what manner the development is 
controlled by the generating word. Then structural and finally quantitative 
properties will be investigated. 

2.1 GENERATING WORD AND SYSTEM 
DEVELOPMENT: ANALYSIS AND 
SYNTHESIS 

2.1.1 System with stem and branches. Role of L 
Example C of Paragraph 1.2.3 

(1-11) DSc = LCSS 
a,b,c,d 

has the shape of an indefinitely growing tree with branches of unit length. 
In the present paragraph emphasis will be laid on the role played by the L 
operation in the growth of the system. 

A) REMOVING L 

Removing L yields the developmental system 

C±aSS 
DSF =---

a,b,c 
It is easily seen that the sequence of operations 

a --7 b(c) 

b--7b 

C--7C 

(2-1) 

(2-2) 
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produces a development 

DSF(O) = a, for 

§2.1.1-B 

k>O (2-3) 

which does not grow indefinitely, but remains of bounded size (Fig. 2-1). 

DSF(O) DSF(1) DSF(2) DSF(3) 
.. " 

C /)+0< 
b 

C /)+0< 
0 /-_.-

);:}-o< 
/-_._----

a b b 
, , 

Fig. 2-1. Development of DS F = C S S . The growth remains bounded because of 
a,b,c 

the absence of any active (L,R) operation. 

B) ADDING L TO THE STEM 

If on the contrary a second L operation is inserted before the first S 

DSo = 

the sequence of operations 

L 
I 

L~ 
I S 
S 

gives rise to the development 

LC±aLSS 

a,b,c,d,e 
(2-4) 

a -1 ba 

b -1 c(d) 

c -1 ec (2-5) 

d-1d 

e-1e 

DSo(O) = a DSo(l) = ba DSo(2) = c(d)ba DSo(3) = ec(d)c(d)ba 

DSo(4) = eec(d)ec(d)c(d)ba DSo(5) = eeec(d)eec(d)ec(d)c(d)ba 

DSo(6) = eeeec(d)eeec(d)eec(d)c(d)ba .. . 
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or, in recursive form: 

DSa(O) = a DSa (1) = ba DSa(2) = A(2)DSG(1) 

where A(2) = c(d) 

and for k > 2 (2-6) 

DSa(k) = eA(k)DSa(k - 1) 

A(k) = eA(k - 1) 

which has the shape of a tree with unit-length branches; but, as a 
consequence of the additional L, the interbranch distance increases at each 
step (Fig. 2-2), i.e. the stem grows Jaster. 

e e e e c e e e 

Fig. 2-2. 
LCLSS 

Development of system DS B = --
a,b,c,d,e 

C) ADDING L TO THE BRANCHES 

If the additional L operation is inserted before the second S 

the sequence of operations 

L 
I 

s~o 
L 
I 
S 

LC±a.SLS 

a,b,c,d,e 

a -1 ba 

b -1 c(d) 

C-1C 

d -1 ed 

e -1 e 

(2-7) 

(2-8) 
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produces the development 

DSH(2) = c(d)ba 

DSH(3) = c(ed)c(d)ba DSH(4) = c(eed)c(ed)c(d)ba 

DSH (5) = c(eeed)c(eed)c(ed)c(d)ba 

DSH(6) = c(eeeed)c(eeed)c(eed)c(ed)c(d)ba 

DS~7) = c(eeeeed)c(eeeed)c(eeed)c(eed)c(ed)c(d)ba 

or, in recursive form 

DSH(3) = c(A(2))DSH(2) 

and for k> 2 

where 

DSH(k) = c(A(k - I))DSH(k - I) 

A(2) = ed ) 

§2.1.1-C 

(2-9a) 

(2-9b) 

The development has the shape of a tree whose branches grow 
indefinitely (Fig. 2-3). The meristem (see Paragraphs 1.2.3 and 1.3.2) 
consists of the a, band d cells, which undergo division; the remainder of 
the system (c and e cells) is the analog of the conduction and support 
tissues of a plant ("carrier" subsystem). 

"" 

...... 
carrier , 
system~ 

. ....... meristem 

X .. 
.... 

d 

,-" 

" .' d ... 

----_.:.::' ... 

Fig. 2-3. Development of DSH = L C S L S: indefinitely growing branches. 
a,b,c,d,e 
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D) ADDING L TO STEM AND TO BRANCHES 

If now two L operations are added 

LC±a.LSLS 
DS] = --.-:.--

a,b,c,d,e! 

L 
I 

a ~ba 

L~O 
b ~ c(d) 

c ~ec 

I L d~fd 

S I e~e 

S f~f 
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(2-10) 

(2-11) 

it is easily seen that the two above effects are combined: the branches grow 
indefinitely and the interbranch distance increases. Figure 2-4 shows 

DSI(6) = eeeec(JjJfd)eeec(fffd)eec(jfd)ed(fd)c(d)ba (2-12) 

e e e e c e e e b a 

Fig. 2-4. 
LCLSLS 

Development of system DS[ = . 
a,b,c,d,eJ 

E) LINEAR GENERATION L VERSUS TRANSFORMATION T 
If T is substituted to L in DSc (eq. 1-11) 

TC±a. SS 
DS,=---

a,b ,c,d 
(2-13) 
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the sequence of operations 

T 
I 

sf\; 
S 

produces a development 

DSiO) = a 

DSik) = c(d) 

which remains indefinitely bounded. 

a~b 

b ~ c(d) 

c ~c 

d~d 

DSil) = c(d) 

for k> 1 

§2.1.1-E 

(2-14) 

} (2-15) 

Similarly if T is substituted to the second L of the system DS H 

(indefinitely growing branches, eq. 2-8): 

LC±uSTS 
DSK =----

a,b,c,d,e 

the sequence of operations 

L 
I 

s~o 
T 
I 
S 

a ~ba 

b ~ c(d) 

c~c 

d~e 

e~e 

(2-16) 

(2-17) 

gives rise to a system the branches of which remain of unit length (Fig. 2-5): 

DSK(6) = c(e)c(e)c(e)c(e)c(d)ba 

LeSTS 
Fig. 2-5 . Developmental stage k = 6 of DSK = --

a,b,c,d,e 

(2-18) 
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Similarly the reader will check that replacing the last two L of DS, 
(eq. 2-10) by T 

LC±uTSTS 
DSL =-----

a,b,c,d,e,j 
(2-19) 

yields a tree with unit-length branches and constant interbranch distance. 

F) LINEAR GENERATION L VERSUS ROTATIVE GENERATION R 
If an R operation is substituted to the second L of DS H (eq. 2-7) 

LC±45SRu S 
DSL = (2-20) 

a,b,c,d,e 

the d -7 ed operation (eq. 2-8) is replaced by d -7 e(d): 

DSL(6) = c(e(e(e(e(d»))))c(e(e(e(d))))c(e(e(d)))c(e(d))c(d)ba (2-21) 

As a consequence the branches grow spirally (Fig. 2-6) but the system 
has not been affected from the topological viewpoint. 

LCSRS 
Fig. 2-6. Developmental stage k = 6 of DSL = --

a,b,c,d,e 

It results from the above (especially from Paragraphs A, E and F) that 
the growth of a system or of parts thereof is due to the presence of Land R 
operations. For this reason they will be called active operations, as opposed 
to the passive operations T, Band C. 
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2.1.2 Branches and subbranches. Role of C 
The comparison of developmental systems DSA and DSB (see Section 

1.2) shows that a C operation is responsible for the generation of branches. 

A) ADDINO C TO BRANCHES 

If a second C operation is added to the generating word of DS H 

(eq. 2-8), the following system is obtained 

DSM = LCSLCSS (2-22) 
a,b,c,d,e,j,g,h 

where both C are to be understood as C ±4S. 

The sequence of operation becomes 

L 
I 

~ 
L 
I 

~ 
S 

whence the development 

a~ba 

b ~ c(d) 

c~c 

d~ed 

e ~ ft..g) 

j~j 

g~g 

DSM(O) = a DSM(1) = ba DSM(2) = c(d)ba 

DSM(3) = c(ed)c(d)ba DS~4) = c(ft..g)ed)c(ed)c(d)ba 

DSM(5) = c(ft..g)j{g)ed)c(ft..g)ed)c(ed)c(d)ba 

DSM(6) = c(ft..g)j{g)j{g)ed)c(ft..g)j{g)ed)c(ft..g)ed)c(ed)c(d)ba 

(2-23) 

(2-24) 

The indefinitely growing branches now bear subbranches of fmite 
length. Figure 2-7 shows the k = 7 developmental stage. 

On the basis of the above, more complicated development systems can 
be synthesized. 
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d 

c a 

LCSLCSS 
Fig. 2-7 . Developmental stage k = 7 of DSM = : branches 

a,b,c,d,e,f,g 
and subbranches. 

a) Adding an L after the second C of DS M causes the subbranches to 
grow indefinitely: 

DSN = LC SLC SLS 
a,b,c,d,e,j,g,h 

L 
I 

C 

S~ 
L 
I 

~ 
L 
I 
S 

The k = 6 developmental stage is 

a -jba 

b -j c(d) 

c-jc 

d -j ed 

e -j .f(g) 

j -jj 

g -jhg 

h-jh 

(2-25) 

(2-26) 

DS,/..6) = c(.f(hhg).f(hg)ed)c(.f(hg).f(g)ed)c(.f(g)ed)c(ed)c(d)ba (2-27) 

Stage k = 7 is shown in Figure 2-8. 
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d 

b a 

9 9 

LCSLCSLS 
Fig. 2-8. Developmental stage k = 7 of DSN = b d J h 

a, ,C, ,e ,g, 

b) The reader will verify that adding a third C 

DSo = LCSLCSLCSS 
a,b,c,d,e ,J,g ,h,i 

produces sub-subbranches of finite length and adding a third L 

DS = LCSLCSLCSLS 
p a,b,c,d,e,j,g,h,i,j 

causes the sub-subbranches also to grow indefinitely. 

B) REMOVING C 

§2.1.2-B 

(2-28) 

(2-29) 

Conversely a developmental system whose generating word has no C 
(and no R) operation develops only in one direction. Such was the case for 
DSA (eq. 1-2) of Paragraph 1.2.1. Such is also, e.g. , the case for 

DSp = LBSS 
a,b,c,d 

(2-30) 

where the C of (1-11) has been replaced by a B. 
The reader will easily check that 

DSp(6) = cdcdcdcdcdba (2-31) 

which confirms that the C operation is responsible for the system develop
ing in two dimensions. 
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2.1.3 Symmetrical patterns 
A) PRINCIPLE 

31 

The branch configuration of Figures 2-2 to 2-8 differs from the 
symmetry which characterizes many living organisms, at least as a first 
approximation. 

It can be easily seen that symmetry can be accounted for by introduc
ing dichotomy into the elementary operations of the generating word (Gille, 
W~grzyn and Vidal, 1988). 

Consider the two symmetric developmental systems 

LCaSLS 
X=---

i,j,k,l,m 

_ LC_aSLS 
X =----

i,j,k,l,m 

adapted from DS H (eq. 2-7) and differing from each other by the fact that 
the C bifurcation of the X system implies a change of direction ex but that of 
the X system implies the change of direction - ex. We shall write, using 
parentheses for the former and square brackets for the latter(l): 

Ca j ~ k(l) 

C- a j ~ k[l] { 
The development of the X and X systems is thus defined by 

X 
A 

r " r 
~ji L ~ji 

I 
j ~k(l) C+ a j ~ k[l] 

k ~k S~ k ~k 

I ~ml L I ~ml 
I 

m~ m S m~m 

and their k = 5 developmental stage is respectively 

X(5) = k(mmml)k(mml)k(ml)k(l)ji 

X(5) = k[mmml]k[mml]k[ml]k[flji 

X 
" " L 

I 

f\" 
L 
I 
S 

(') It should be mentioned that as early as 1975 G.T. Herman and G. Rozenberg 
(p. 50), after having written "we have not bothered to distinguish between the sides on 
which the branches may lie", immediately add: "this could have been done by the use of 
different types of brackets." 
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j j 

k k 

k k 1 

k k 

k k 

Fig. 2-9. Symmetrical development of two systems (k = 5). 

The symmetry between the development of the X and X systems 
appears on the latter expressions and on Figure 2-9. If by some means X 
and X are properly combined as subsystems of a composite system, the 
latter will evince symmetry. One manner of implementing such a combina
tion will be shown in the next paragraph. 

B) EXAMPLE 

Now consider the developmental system shown in Figure 2-10 where 
the X and X subsystems are those of the foregoing section and the Y sub
system is defined as (Fig. 2-11) 

Y = LS 
r,s 

L 
I 
S 

The whole system can be described as 

r-1sr 

S-1S 

DS = BBBCCTTSCTS 
a,b,c,el,e2,Xk,Xk,j,d'Yk,g 
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Fig. 2-10. Complex developmental system made up of symmetric subsystems. 

s s s s s r 
o coo 0 0 

LS 
Fig. 2-11. k = 8 developmental stage of subsystem Y = -. 

r,s 

the operations being (l) 

a -7bc B Xk -7 Xk+l T 
I I 

b -7 del B X k -7 Xk+l T 
I I 

c -7 e2d B j -7j S 
I I 

el -7j\Xkl C d -7 glYk \ C 
I I 

e2 -7j\ Xkl C Yk -7 Yk+l T 
I 

g -7g S 

33 

where the horizontal direction from left to right is considered as the main 
developmental direction and the perpendicular directions are denoted by the 
symbols \ / (below to above) and / \ (above to below) respectively. 

Symmetry is obvious in Figure 2-12, which shows the k = 8 develop
mental stage 

DS(8) = g / sssssr \ j \ k(mmml)k(mml)k(ml)k(l)jilj \ k 

[mmml]k[mml]k[ml]k[k]jil g / sssssr \ 

(2) Here T should be understood as a generalized T operation in the sense that it is 
applied not to a single cell (eq. 1-21), but to all the cells of a subsystem Xk or Xl: each 
cell goes over from its state at the k-th developmental stage to its state at the (k + l)th 
stage. 
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i 

k 

k 

k 

k 

9 f f 9 

s s 

s s 

s s 

s s 

S s 

r r 

Fig. 2-12. k = 8 developmental stage of the symmetric system of Figure 2-10. 

2.2 STRUCTURAL PROPERTIES 

Some structural properties of developmental systems without feedback 
will now be investigated. They are a consequence of the binary-tree shape 
of the graph of the generating word and of the resulting hierarchy that exists 
inside the system (Gille, W~grzyn and Vidal, 1984; W~grzyn, Gille and 
Vidal, 1984; W~grzyn, Vidal and Gille, 1985). 

2.2.1 Hierarchical decomposition 
A) GENERAL 

The generating word of a developmental system is made up of letters, 
each of which symbolizes an elementary operation. Now it often happens 
that a certain group of letters inside the generating word has enough 
autonomy and enough importance to deserve being considered as an 
autonomous entity, as a subword, which is a part of the whole word, in 
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particular is actuated by the operations (letters) preceding it. The relation of 
such a subword to an isolated letter S, T, L, R, B, C is the same as the 
relation of a macroinstruction to a simple instruction in a computer 
language. Such a subword can be considered as the generating word of a 
developmental subsystem: the subsystem that it generates is a pattern inside 
the whole developmental system. 

The presence of subsystems having a common pattern within biolog
ical systems ("morphogenetic repetition") has been noted since long by 
biologists (e.g. Maresquelle and Sell, 1965). A. Lindenmayer (1975, p. 34-35) 
and D. Frijters and A. Lindenmayer (1976) discussed patterns inside a 
developmental system and studied recursive relations between the develop
mental stages thereof, but they did not elaborate the concept of a subword 
inside a generating word. 

The purpose of the present paragraph is to show in what manner a 
generating graph can be broken down into subgraphs, then the subgraphs 
into sub-subgraphs, etc. down to the stagnation symbols - and to suggest 
an analogy with an organism which consists of organs: organs contain 
tissues; tissues are made up of cells (Gille, W~grzyn and Vidal, 1984; 
Vidal, W~grzyn and Gille, 1984; W~grzyn, Gille and Vidal, 1988, p. 89-91). 

B) HIERARCHICAL DECOMPOSITION OF A SYSTEM 

A developmental system DS is described by a generating word GW 
that is a sequence of operations Ai acting on the cells ai 

m 
(1-18) GW = AaAb" .Am = SEQ Ai 

i = a 

The fIrst letter can be isolated by writing 

m 
GW = A SEQA. 

a i = b I 
(2-32) 

If Aa is an L, an R or a T, i.e., an operation without bifurcation, the 
SEQ at the right hand of (5) can be treated as one subword X 

GW = AaX (2-33a) 

If Aa is a B or a C, i.e., a bifurcation, the word sequence consists of 
two subwords X and Y: 

X 
GW=Aa( 

Y 
(2-33b) 

The procedure described by (2-33a) or (2-33b) can then be applied to 
the fIrst letter of X (or of X and y), etc. in a recursive manner until the 
remaining sequence X or Y is nothing but an S (see Figure 2-13). 
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x 

Fig. 2-13. Hierarchical breakdown of a generating word without feedback accord
ing to whether the first operation Aa is T, L, R (left: A~ or is B, C (right: AaXY). 
Note: the indexes of the terminal A (stagnations) on the last line cannot be specified 
a priori, except the last one which is m. 

More precisely, we have the following (see Figure 2-14) . 

(a) If the first operation Aa is an L (linear generation), the develop
ment of the system starting from one a cell as its initial condition is 
described as 

a --1 DSX<k)a 

DSX<k) --1 DSX<k + 1) 

where the motive DSx is the developmental subsystem whose generating 
word is X. 

Hence 

k = 0, DS(O) = a 

k-) 
k > 0, DS(k) = SEQ DS(k - 1) a 

i =) 

In other words the system generated by LX consists of a chain of 
subsystems whose generating word is X. 
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Fig. 2-14. Result of the action of operation L, T on subsystem X and of operation B 
on subsystems X and Y. 

If Aa is an R (rotative generation) the same holds, except that the chain 
has a spiral form. 

(b) If Aa is a T (differentiation), the development is described by 

a -7 DSik) 

DSik) -7 DSik + 1) 

whence 

k = 0, DS(O) = a 

k> 0, DS(k) = DSx(k - 1) 

i.e. , the system generated by TX has the same development as X but shifted 
by one developmental stage. 

(c) If Aa is a B (bifurcation) the operations are 

a -7 DSx(k)DS/k) 

DSik) -7 DSx(k + 1) 

DS/k) -7 DS/k + 1) 
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whence 

k = 0, DS(O) = a 

k > 0, DS(k) = DSx(k - l)DS/k - 1) 

In other words the developmental system generated by BXY consists of 
two motives DSx and DSy the generating word of which are X and Y 
respectively and which are shifted with respect to each other by one stage. 

If Aa is a C (bifurcation with change of direction) the same holds, 
except that the shift is oblique in direction. 

2.2.2 "Tissues" and "organs" 
When obtaining the successive developmental stages of a system 

numerically it often appears that a certain group of letters within the 
generating word has enough autonomy and enough importance to merit 
consideration as an autonomous entity. This is because a subword, which is 
a part of the whole word, is actuated in particular by the operations (letters) 
preceding it. As was stated in the foregoing paragraph, such a subword can 
be considered as being the generating word of a developmental subsystem, 
of a pattern inside the whole developmental system. 

In a similar manner sub-subwords can sometimes be isolated within a 
subword and they generate sub-subsystems inside subsystems. 

Such a hierarchy may be compared with the hierarchy that exists in 
complex organisms: the whole organism consists of systems of organs; 
organs contain tissues; tissues are made up of cells. 

Example 1. First consider the extremely simple case 

GW=LX X=S 
If the initial conditions are DS(O) = a, DSx(O) = b the development 

occurs as follows: 

k = 0, DS(O) = a 

k = 1, DS(1) = ba 

k > 1, DS(k) = bb ... ba 
"-"" 

k 
Figure 2-15 shows the k = 7 stage: it can be interpreted as a tissue 

consisting of b cells. 

If X is slightly less simple, e.g. 

GW = LX X = CSS 
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bb bbbb ba 

Fig. 2-15 . System LS at stage k = 7: rectilinear "tissue" of b cells . 

the development which starts from the initial conditions DS(O) = a, 
DSx(O) = b, DSx(1) = c(d) is 

k = 0, DS(O) = a 

k = 1, DS(l) = DS/O) = ba 

k> 1, DS(k) = DS/k - 1) .. . DS/l)DS/O)a = c(d)c(d) ... c(d)ba 
, 4 I 

k 

c c c c c c b a 

d d d d d d 

Fig. 2-16. System LeSS at stage k = 7 : rectilinear "tissue" of c and d cells. 

Figure 2-16 shows the k = 7 stage: a "tissue" consisting of cellular 
couples c(d) . If L is replaced by R 

GW = RX X = CSS 

one obtains a similar "tissue", but with a spiral form . The k = 11 stage is 
shown in Figure 2-17. 

Example 2. Consider the more complex developmental system DSQ, 
the generating word of which is 

(2-34) 
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d 

Fig. 2-17. System RCSS at stage k = 14: spiral "tissue" of c and d cells. 

where the subsystems T1 and T2 are respectively 

LC90 S S 
T1 =--

d,e,j,g 

The sequence of operations is: 

a ~bc 

b ~m(d) 

c ~ m(h) 

m~m 

d~ed 

e ~f(g) 

LC_90 SS 
T2 =----

h,i,j,g 

h ~ih 

~f[g] 

The k = 6 developmental stage (Fig. 2-18) 

DSQ = m(f(g}ftg)f(g)ed)m(j[g]f[g]f[g]ih) 

can be looked upon as an "organ" (3) consisting of two "tissues". 

2.2.3 Cloning. Grafting 

(2-35) 

It is possible to combine two generating words by placing the "root" of 
one graph at an external node of the other (W~grzyn, Vidal and Gille, 
1981; W~grzyn, Gille and Vidal, 1986). This makes it possible to 
"construct" complex developmental systems. Such a recombination is the 

(3) What is meant here by "organ" is a composite tissue. In Physiology an organ is 
primarily defined by its function (causa finalis) and secondly by its cellular structure 
(causa jormalis), but our model only takes the latter into account. 
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Tl Tz 
-------a n------

e f 

9 
f f 

9 

9 
f f 

9 

9 9 

m m 

Fig. 2-18. System (2-34) at stage k = 6 : rectilinear "tissues" Tl and T2 
and m, m cells . 

41 

image of the procedure of cloning, which consists of inserting a fragment of 
DNA into the genome of a host cell, thus resulting in a combination of 
genes. 

Consider the developmental system (Example C of Paragraph 1.2.3) 

GWc LCSS 
(1-11) DSc = -- = --

Zc a,b,c,d 

and suppose the P = LCSS fragment of another generating word extended 
over the Z = {d,e,j,g} cell set is introduced into GWc at the last S. The 
result of this cloning procedure is the more complex system 

DSc = LCSP = LCSLCSS 
a,b,c,Z a,b,c,d,e,j,g 

The k = 7 developmental stages are respectively (see Figure 2-19) 

DSc (7) = c(d)c(d)c(d)c(d)c(d)c(d)ba 

DSc(7) = c(ftg)ftg)j(g)ftg)ed)c(ftg)j(g)ftg)ed)c(ftg)ftg)ed) 

c(ftg)ed)c(ed)c(d)ba 
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d,e,f,9 

DEVELOPMENTAL SYSTEMS 

d d d 
/=c /=c_~ 
~ d d d 

Fig. 2-19. Developmental system before (left) and after (right) cloning. 

§2.2.3 

Note the difference between cloning and grafting (Gille, W~grzyn and 
Vidal, 1989). The latter procedure consists of extracting a fragment of an 
organism and inserting it into another organism. 

If for example the third d cell of the k = 4 stage of the above DSc 
system 

DSc(4) = c(d)c(d)c(d)ba 

is replaced by the initial cell e of the developmental system 

LCSS 

e,f,g,h 

a new system is obtained 

DSc = L C S S L C S S 
a,b,c,d,e,f,g,h 

with the initial condition 

DSc(O) = c(d)c(d)c(e)ba 

The k = 4 developmental stage 

DSc(4) = c(d)c(d)c(g(h)g(h)g(h)fe)c(d)c(d)c(d)c(d)ba 

corresponds to the k = 8 developmental stage of the original system DSc 
(prior to grafting) : see Figure 2-20. 
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a 

Fig. 2-20. Developmental system before (left) and after (right) grafting. 

2.2.4 Influence of initial conditions on development: 
regeneration 

43 

Consider the five-letter generating word of Figure 2-21. If the initial 
state is one a cell the five cell categories will be present after the k = 5 
developmental stage and will undergo the associated operations. But if the 
initial condition is one d or e cell, then no a, b or c cell will ever appear. If 
the initial condition is one b cell, no a cell will ever be found. 

a-ba 

c-c 
d-ed 

e-e 

Fig. 2-21. System LCSLS. 

More generally if the generating word is rectilinear the system will 
develop its full structure only if the initial condition consists of a cell(s) 
associated to the first operation of the generating word, i.e. to the root of 

a 
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the graph . If the initial condition consists of i cell(s) (i = b,c, ... ,m) only 
the pattern generated by the subword the initial letter of which is Ai 

m 
~EQAj 
]=1 

(2-37) 

will develop (Gille, W ~grzyn and Vidal, 1986). 

For the system shown in Figure 2-22 the correspondence is given in 
Table 2.1 

b a 

d 

Fig. 2-22. System LCSTLCSTLS (see eq. 2-38) at stage k = 9. 

Table 2.1. Subsystems parts of the system shown in Figure 2-17 which develop 
depending on the initial state. 

Initial condition Z(k) , k > m 

a AaAbAcAdAe 

b AbAcAdAe 

c Ac 

d AdAe 

e Ae 

This fact has an important consequence concerning the possibility of 
regeneration of a developmental system with a rectilinear generating word. 
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Suppose that all the cells of such a system have been destroyed except 
the stagnant cells (i.e. the cells associated with stagnation operations S: 
they constitute a sort of permanent structure in the sense that they do not 
develop any more and are independent of the generating word) and except 
one i cell associated with the Ai operation. As a consequence of the above 
only the subsystem generated by the subword (2-37) having its root at Ai 
will be regenerated. Depending on the location of the said operation in the 
generating word a more or less important portion of the system will 
regenerate, but not the entire system (except of course if the surviving cell 
is an a cell associated with the ftrst operation Aa of the generating word). 

Fig. 2-23. Partial destruction of system (2-38): only the stagnant cells and one i 
cell survive. 

For example the structure of the k = 9 developmental stage of the 
system 

L a -1ba 
I 
C b -1 c(d) 

S~ c -1 c 

T d-1e 
I 
L e -1fe 

(2-38) I 
C f -1 g(h) 

S~ g-1g 

T h -1 i 
I 
L -1ji 
I 
S j -1j 

is shown in Figure 2-22. 



46 DEVELOPMENTAL SYSTEMS §2.2.5 

Now suppose that all the cells have been destroyed with the exception 
of the stagnant cells and of one i cell (see Figure 2-23), belonging to the 
meristem. Only the subsystem 

L i~ji 
I 
S j~j 

will develop, i.e., only a "tissue" consisting of j cells will regenerate (see 
Figure 2-24). 

j 

Fig. 2-24. Regeneration of system (2-38) after the partial destruction shown in 
Figure 2-23. 

2.2.5 Mutation 
Suppose that a change occurs in the generating word of a develop

mental system in the sense that one operation Ai is replaced by a different 
one A;. In order that the conditions (1-26) be still satisfied it is necessary 
that: 

(a) aT, L or R operation be changed to another operation which can only 
be followed by one letter (i.e., a T, L or R, not a B or C); 

(b) a B or C operation be changed to another operation which can only 
be followed by two letters (i.e. , a C or B, not a T, L or R); 

(c) S operations remain S. 
If the generating word is rectilinear it is clear as a consequence of the 

principle of hierarchy (§ 2.2.2) that such a change will only affect the 
subsystem generated by the subword (2-37) having its root at the modified 
letter Ai (W~grzyn, Vidal and Gille, 1985 and 1986). 
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This will be shown on one example. Consider the generating word 

L a --.tba 
I 
C b --.t c(d) 

s~ c --.t c 

T d--.te 
I 
S e --.t e 

and suppose the T operation is replaced by an L, so that the modified 
system (the mutant) is 

L a --.tba 
I 
C b --.t c(d) 

s~ c --.t c 

T d --.ted [modified operation] 
I 
S e --.t e 

b a 

b a 

e 
d 

Fig. 2-25 . Top: system LeSTS at stage k = 6. Bottom: the same after the 
substitution (mutation) T -7 L. 
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If the initial condition is one a cell, the k = 7 developmental stage is 
for the initial system 

DS(6) = c(e)c(e)c(e)c(e)c(d)ba 

and for the modified system 

DSm(6) = c(eeeed)c(eeed)c(eed)c(ed)c(d)ba 

It is apparent in Figure 2-25 that the mutation does not alter the 
structure of the whole system (a tree with equally spaced branches) but only 
affects the branches: instead of having finite length they now grow 
indefinitely. 

2.3 QUANTITATIVE GROWTH 

2.3.1 General 
The volume of a developmental system varies in time (growth of the 

"organism") as well as its cellular composition (cells of certain categories 
proliferate, others disappear). The growth has given rise to a great number 
of studies (Szilard, 1973; Paz and Salomaa, 1973; Berstel and Nielsen, 
1976; Herman and Vitanyi, 1976; Rozenberg and Salomaa, 1976 and 
1980; Salomaa, 1976 and 1981; Soittola, 1976; Vitanyi, Karhumaiki, 
Ehrenfeucht and Rozenberg, 1981; see also: Herman and Rozenberg, 1975, 
pp. 269-283; Salomaa and Soittola, 1978, pp. 95-117), often carried out at 
a high level of abstraction and generality . We shall show that the growth 
and the cellular composition of the developmental systems considered here 
can be analyzed by very simple methods. 

Given a developmental system the generating word of which consists 
of n operations, the numbers of the cells of each category at the k-th 
developmental stage will be respectively noted a(k) , b(k) , ... , n(k), the 
cellular composition being the row matrix 

Y(k) = [a(k) b(k) n(k)] (2-39) 
The total number of cells is the size or volume of the system 

V(k) = a(k) + b(k) + ... + n(k) (2-40) 

Obviously V(k) is the product of Y(k) by the column matrix consisting 
of nones: 

V(k) = Y(k) [1 (2-41) 
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2.3.2 Numerical approach 
The numerical values of a(k), ... , n(k) and of V(k) can be obtained by 

computing DS(k) at each k on the basis of the elementary operations (§ 
1.3.1). From this it is sometimes possible (in the case of very simple 
systems) to obtain the analytical expression of Y(k) and V(k). 

Such was the case for DSA (eq. 1-5) and for DSB or DSc (eq. 1-10). 
For DSK it is immediately inferred from the successive DS(k) (see eq. 2-1S) that 

V(k) = 2k (2-42) 
In the case of systems DSG, DSH and DSL (which have the same quantitative 

behavior) it is apparent from (2-6) that 

a(k) = 1 b(k) = u(k - I) c(k) = d(k) = (k - l)u(k - 2) 
} (2-43) 

e(k) = [I + 2 + 3 + ... + (k - 2)]u(k - 3) = 1 (12 - 3k + 2)u(k - 3) 

where u(x) is the unit-step function 

{ °1 u(x) = 
x<O 

(2-44) 

x;;;' ° 
Hence for k;;;. 3 

V(k) = 1 + 1 + 2(k _ 1) + 12 - 3k + 2 = 12 + k + 2 (2-45) 
2 2 

For system DSj consideration of the successive DS(k) (see eq. 2-12) shows that 

a(k) = b(k) = 1 c(k) = d(k) = (k - 2)u(k - 2) } 
(2-46) 

e(k) = .f(k) = [I + 2 + ... + (k - 2)]u(k - 3) = 1(12 - 3k + 2)u(k - 3) 

whence 

V(k) = k2 + k + 2 (2-47) 

For system DSN considering the successive DS(k) (see eq. 2-24) yields 

a(k) = b(k) = 1 c(k) = d(k) = (k - I)u(k - 2) 

1 (2-48.) e(k) = (k - 2)u(k - 3) 

.f(k) = g(k) = [I + 2 + ... + (k - 3)]u(k - 4) = 1(12 - 5k + 6)u(k - 4) 

and (less easily) 

g(k) = t (tJ - 912 + 26k - 24)u(k - 5) (2-4Sb) 

whence for k;;;. 5 

V(k) = t (tJ - 312 + 14k) (2-49) 

But in most cases the mathematical form of Y(k) and V(k) can be 
found only be resorting to a matrix or to a transform approach. 
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2.3.3 Matrix approach 
A) GENERAL 

§2.3.3-A 

Consideration of the evolution matrix M of the developmental system 
is especially adequate for a quantitative evaluation of Y(k) and V(k). Recall 
that M is the matrix associated to the graph that expresses the generating 
word in explicit form. Each row of the matrix corresponds to one level (one 
operation) of the graph. 

The following examples are self-explanatory. 

L 
I 

s\ 
L 
I 
T 
I 

R 
I 
S 

s~ 
S 

a~ba 

b ~c(d) 

c~c 

d ~e(d) 

e~e 

a~ba 

b~c 

c~de 

e~e 

000 

o 0 0 

M= 0 0 0 0 

000 

o 000 

000 

o 0 0 0 

M = 0 0 0 

o 0 0 0 

o 000 

The manner in which the location of the ones is related to the 
operations which compose the generating word was explained in Paragraph 
1.3.2-B. 

The system transition from state DS(k - 1) to state DS(k) is a 
consequence of the operations of the generating word, which are applied to 
DS(k - 1). Quantitatively the cellular composition is affected according to 

Y(k) = Y(k - l)M (2-50) 

The reader will easily verify this relation with the help of the examples DSA , DSB 
and DSc (§ 1.2, Fig. 1-10) or of DSF (eq. 2-3), DSG (2-6), DSH (2-9), DSM (2-24). 

As a consequence the cellular composition at the k-th developmental 
stage is given in terms of the initial cellular composition YeO) by 

I Y(k) = YeO) Mk I (2-51) 

and the system size is (see eq. 2-41) 

V(k) = YeO) Mk [1 1 (2-52) 
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The initial state is usually assumed to be one cell of the first category, 
i.e. 

YeO) = [1 o o (2-53) 

Then 

Y(k) = first row of Mk (2-54) 

V(k) = sum of elements of first row of Mk (2-55) 

Analyzing the evolution of the cellular composition and of the size of 
the system thus essentially consists of evaluating Mk as a function of k. 
According to eqs. (2-50), (2-51) and (2-55) the evolution matrix M of the 
system could also be termed its growth matrix. 

B) DIRECT COMPUTATION OF Mk 
In some very simple cases Mk is easily obtained directly. 
For DSA (§ 1.2.1) 

M = G : ] Mk = G ~ ] 
whence by (2-54) and (2-55) 

(l-4b, 1-5) Y(k) = [1 k] 

For DSB or DSc (§ l.2.2, l.2.3) 

whence by (2-54) and (2-55) 

(l-9b, 1-10) Y(k) = [1 k - 1 

V(k) = k + 1 

k - 1] 

o 
o 
o 

C) USE OF THE CAYLEy-HAMILTON THEOREM 

k - 1 

o 

V(k) = 2k 

In most cases obtaining Mk is not so easy (Winiarczyk, 1981). Using 
the Cayley-Hamilton theorem for evaluating growth functions, as was 
proposed by A. Salomaa (1973), is advantageous in the present case of a 
developmental system with a rectilinear generating word (Gille, Vidal, 
W~grzyn and Ouellet, 1982; Gille, Vidal and W~grzyn, 1983). 

As a consequence of the Cayley-Hamilton theorem (for example, 
Gantmacher, 1959, pp. 83, 113-116) Mk can be, however great k may be, 
obtained as a linear combination of the identity matrix In and of the first 
(n - 1) powers of M: 
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Mk = !-LoIn + !-LIM + !-L2M2 + ... + !-Ln_IMn - 1 

where the !-L are scalar quantities that depend on k. 
Premultiplying by YeO) one obtains 

§2.3.3-C 

Y(O)Mk = !-LoY(O) + !-LIY(O)M + !-L2Y(O)M2 + ... + !-Ln_IY(O)Mn-1 

whence, taking (2-51) into account: 

Y(k) = !-Lo YeO) + !-LI Y(1) + !-L2 Y(2) + ... + !-Ln-I Yen - 1) 

and from (2-52) 

V(k) = !-Lo YeO) + !-LI V(1) + !-L2 V(2) + ... + !-Ln _ I V(n - 1) 

(2-56) 

In other words, once Y(1), Y(2), ... , Yen - 1) have been numerically 
computed (step by step, as was shown on several examples in sections 1.2, 
2.1 and 2.2) Y(k) is obtained for any subsequent k as a linear combination 
of them ... provided the !-L are known. 

From the viewpoint of developmental processes this fact can be looked 
upon as a consequence of the idea that the genetic code of an organism -
which has completely "come to light" after the n-th developmental step -
determines all its future context-free development. 

In the present case of a developmental system without feedback this 
method has practical value because the evolution matrix M is triangular and 
therefore its characteristic values are the figures found on the main 
diagonal, i.e. 0 and 1 (see Figure 1-16). The order of multiplicity of 0 is 
the number p of the B, C and T operations; the order of multiplicity of 1 is 
the number q of the L, Rand S operations. The caracteristic polynomial of 
M is thus 

peA) = AP(A - 1)q 

where p and q are the numbers of the B, C, T and L, R, S operations 
respectively (denoted by small letters): 

p=b+c+t q=l+r+s p+q=n 

peA) = Ab+c+t(A - 1)I+r+s 

According to a classical theory of linear algebra (e.g. Gille and 
Clique, 1988, p. 10-23) the first p coefficients !-L 

!-Lo. !-Ll' f.L2' ... , !-Lp - I 

are obtained by substituting A = 0 into the equation 

Ak = f.Lo + !-LIA + f.L2A2 + ... + !-Ln_IAn - 1 

and into the equations obtained by differentiating it (p - 1) times with 
respect to A. Adding the supplementary condition k;a. p (in order that all 
the left-hand sides be zero). this yields: 
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fJ.o = 0 fJ.l = 0 fJ.2 = 0 ... , !J.p-l = 0 
The remaining q coefficients !J. 

!J.p' !J.p+l' !J.p+2' ... , !J.p+q-l = !J.n-l 
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are obtained in a similar manner by substituting A = 1 into the same 
equation 

Ak = !J.pW' + !J.P+IAP+1 + ... + !J.n_1An - 1 

(recall that !J.o = fJ.l = ... = !J.p-l = 0) and into the equations obtained by 
differentiating it (q - 1) times with respect to A. This yields for any 
positive k, after some algebraic manipulation: 

_ (k - p)(k - p - 1) ... (k - i + 1)(k - i-I) ... (k - n + 1) 
!J.i - (i - p)(i - P - 1) ... (1)( -1) ... (i - n + 1) 

n-l k - j 
fJ.i = II -.-. 

j=p l - J 
i = p, p+ 1, ... , n-l 

j"'i 

i.e. !J.j(k) is the Lagrange interpolation polynomial of degree (q - 1) which 
is equal to one for k = i and to zero for k = p, p+ 1, ... , i-I, i-I, ... , 
n-I. 

Hence the procedure for obtaining the cellular composition of the 
system at its k-th stage of development (k ~ p) is the following: 

a) evaluate Y(1), Y(2), ... , Y(n - 1) numerically, 
b) then obtain Y(k) from (2-56), in which the first p coefficients !J. are 

zero and the last q ones are given by the above formula. 

Example. For the system 

(2-7) DS _ LCSLS 
H - a,b,c,d,e 

one has 

b=O c=1 t=O 1=2 r=O s=2 

whence 

p=1 q=4 

The first five Y(k) are (see equations 2-9a) 

a Y(O) = [1 0 0 0 0] 

ba Y(I) = [1 0 0 0] 

c(d)ba Y(2) = [1 0] 

c(ed)c(d)ba Y(3) = [1 2 2 1] 

c(eed)c( ed)c(d)ba Y(4) = [1 3 3 3] 
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Hence 

.... 0 = 0 

(k - 2)(k - 3)(k - 4) -12 + 912 - 26k + 24 
.... 1 = (1 - 2)(1 - 3)(1 - 4) = 6 

(k - 1)(k - 3)(k - 4) 12 - 812 + 19k - 12 
.... 2 = (2 - 1)(2 - 3)(2 - 4) = 2 

(k - 1)(k - 2)(k - 4) -12 + 712 - 14k + 8 
.... 3 = (3 - 1)(3 - 2)(3 - 4) = 2 

(k - 1 )(k - 2)(k - 3) 12 - 612 + 11k - 6 
.... 4 = (4 - 1)(4 - 2)(4 - 3) = 6 

whence for k ~ 1 by (2-56), where n = 5: 

Y(k) = .... IY(1) + .... 2Y(2) + .... 3Y(3) + .... 4Y(4) 

(2-43) Y(k) = [1 k - 1 k _ 1 12 - 3k + 2] 
2 

(2-45) 

D) DISCUSSION 

V(k) = k2 + k + 2 
2 

§2.3.3-D 

The /oLj are polynomial functions of k. Such are also therefore a(k), 
b(k) , ... , n(k) and V(k). The growth of the system is said to be of the 
polynomial type. 

Since the /oL are polynomials of degree q - 1, it might seem at first 
sight that the growth occurs at a power of k equal to 

q-l=l+r+s-l 

However this does not always hold: the highest power of k may be smaller 
as a consequence of algebraic simplifications. (Such is the case for the 
example computed in Paragraph C: degree 3 for the /oLi' degree 2 for e(k), 
and for V(k).) 

The reason is the following. The above theory can be repeated with the 
minimal polynomial P min('A.) of the matrix M, which is also an annihilating 
polynomial. Now it may happen that the power of ('A. - 1) in the minimal 
polynomial is smaller than in the caracteristic polynomial: 

P min('A.) = '}..P' ('A. -l)Q' q' < q 

The theory then leads to a polynomial growth with a power 

q' - 1 < I + r + s - 1 

Note that only the first p' + q' « n) developmental stages need to be 
computed. 
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The minimal polynomial of M cannot be written immediately. But it is 
possible readily to write 

PintO' .. ) = >..t+ b+c().. - l)Z+r = >,.p().. - l)q+ i-s 

which can be shown to be an annihilating polynomial of M. If there is more 
than one stagnation S in the generating word (i.e., if there is at least one 
bifurcation operation B or C) its degree is lower than the degree of the 
characteristic polynomial. The said polynomial is then so to speak "inter
mediate" between the characteristic polynomial and the minimal polynomial 
(in some cases it is identical to the latter). Using it for obtaining Y(k) and 
V(k) leads to /J. functions the degree of which is 

q-s=l+r 

and demands that only n + 1 - s « n) developmental stages be numer
ically computed. 

Example. For the developmental system DSH considered above (Paragraph C) 

p = I q + 1 - s = 3 Pinl)...) = )...()... - 1)3 

(In this particular case Pinl)...) is precisely the minimal polynomial.) Hence 

(k - 2)(k - 3) k2 - 5k + 6 
1-'-0 = 0 1-'-\ = (1 - 2)(1 - 3) = 2 

(k - I)(k - 2) k2 - 3k + 2 
1-'-3 = (3 - 1)(3 - 2) = 2 

= (k - 1)(k - 3) = -k2 + 4k _ 3 
1-'-2 (2 - 1)(2 - 3) 

(Note the degree 2.) 
Y(k) and V(k) for k;;. 1 are obtained on the basis of Y(O), Y(1), Y(2) and Y(3) 

only: 

Y(k) = 1-'-0Y(O) + I-'-\Y(1) + 1-'-2Y(2) + 1-'-3Y(3) 

V(k) = 1-'-0 V(O) + 1-'-\ V(1) + 1-'-2 V(2) + 1-'-3 V(3) 

Of course, the same expressions are finally found as in Paragraph C in fine. 

E) RESULTS 

The reader is referred to our two articles quoted in Paragraph C for the 
mathematical proofs and for a detailed discussion. Hereafter are given some 
general results. 

1) The functions a(k) , b(k) , ... , n(k) , i.e. the elements of Y(k) and 
also their sum V(k) , are polynomial functions of k: the growth is of 
polynomial type. 

2) In the absence of any Land R operation all the i(k) (i = a, ... , n) 
remain finite, i.e. the growth is bounded. 

3) The highest power of k which appears in the i(k) and in V(k) is at 
most the total number of Land R operations present in the generating word. 
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The reader should verify these results with the help of the examples computed in 
foregoing sections. 

The size of DSF (eq. 2-3) remains bounded because the generating word contains 
no active operation. 

The growth occurs as the frrst power of k for systems DSA (see eq. 1-4, 1-5), DSB 
and DSc (see eq. 1-9, 1-10) and also for systems DSx (eq. 2-17) and DSp (eq. 2-30) 
because only one L is present in the generating word. 

The growth occurs as fi2 for systems DSG and DSH (see eqs. 2-6 and 2-9) whose 
generating words have two L. Such is also the case for DSM (eq. 2-22). 

For the system DSN, whose generating word has three L, it was found (eq. 2-49) 
that the growth occurs as k!. But for DS1 it occurs only as fi2 (eq. 2-47) although the 
generating word also has three L. (This difference of behavior will be clear for the 
reader after he has read the next paragraph.) 

2.3.4 Transform approach 
The easiest method for evaluating and interpreting the evolution of the 

cellular composition of a developmental system consists in obtaining the 
sequence 

{i(k)} i(1),i(2), ... ,i(k), ... i = a, ... , n 

through its z-transform 

.( ) = .(0) + i(1) + i(2) + + i(k) + IZ I 2 ••• Jr ••• 
z z z~ 

i = a, ... , n 

or equivalently through its discrete Carson transform (Vidal, W~grzyn and 
Gille, 1983; Winiarczyk, 1983; W~grzyn, Gille and Vidal, 1984; Gille, 
W~grzyn and Vidal, 1985). 

The {a(k)} sequence (number of the cells of the fIrst category) is 
immediately obtained by observing that 

1) if the fIrst operation Aa is T, B or C, then 

{ao(k)} = 1, 0, 0, ... , 0, ... ao(z) = 1 (2-57a) 

2) if the fIrst operation Aa is L or R, then 

{ao(k)} = 1, 1, 1, ... , 1, ... 
z 

ao(z) = --1 
z-

(2-57b) 

Note: the subscript 0 specifies that the system has no feedback. [It will be seen 
later (§ 3.4.3) that a(k) is modified when the generating word is circular.] 

Now consider two cell categories i and j, the former immediately 
preceding the latter on the graph which represents the generating word. (i 
may be any a, b, ... , m; j may be b, c, ... , n, but not a.) 

a) If the j cell is generated by a T, B or C operation Ai' then 

j(k + 1) = i(k) 
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b) If it is generated by an L, R or S operation, then 

j(k + 1) = i(k) + j(k) 
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Hence, z-transforming and noting that j(O) = 0 (no j cell was present 
at k = 0, since j "* a): 

I j(z) = ~ i(z) 

j(z) = _1_ i(z) 
z - 1 

if 

if 

Aj = T,B,C (2-58a) 

Aj = L,R,S (2-58b) 

In other words, the z-transform of {j(k)} is obtained by mUltiplying the 
z-transform of {i(k)} by a z-transfer function Diz) 

1 

Dlz) ~ I ~ 
z - 1 

Aj = T,B,C 

(2-59) 

Aj = L,R,S 

This concept of z-transfer function D/z) applies to any cell category 
except to the first cell ("root") a, which has no antecedent. However, the 
following notation will be introduced, for consistency's sake: 

Aa = T,B,C (2-60a) 

(2-60b) 

(The usefulness of Da(z) will become clear in the next chapter: see 
Paragraph 3.4.3-A.) 

It results from (2-58) and (2-59) that 

j 
j(z) = a(z) II Dj(z) 

path:a 
(2-61) 

where the product term denotes the product of the Dj(z) pertaining to the 
operations met on the path leading from a to j on the graph of the 
generating word, the operation D a(z) being excluded. 

Equation (2-61) yields the explicit expression for j(z) (j = b,c, ... ,n) 
since ao(z) is known (eq. 2-57). The first operation of the generating word 
can be intuitively considered as a "source" which injects a(z) at the input, 
the system consisting of the successive z-transfer functions Db(z), ... , Dn(z) 
disposed as shown in the graph. 
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a-+ba L a a-+ba 

b-+cd T b b-+c 

c-+c T c c-+d 

R d -+ e(d) T d d-e 

e-+e 5 e e-+e 

a-bc a-ba 

L b-+db b-cd 

c-+e c-ec 
5 d-+d d L d -+fd 

e R e-+f(e) L e e-ge 

5 f-f 
f L f-hf 

f 
5 9 g-g 

h 5 h-h 

Fig. 2-26. Graph and elementary operations for the four rectilinear generating 
words LCSRS, LTITS, CLSTRS and LBLLSLLS. 

j 

It should be emphasized that the product term is not ;lIPi(z) in the 
usual sense, since the latter product would include D a(z) and all operations 
from i = a to i = j. 

Let us illustrate this by the examples shown in Figure 2-26. For the first of the four 
systems shown, for example 

for the third 

for the fourth 

d 1 1 
II Dj(z) = Db(z)D iz) = ---

path:a z z - 1 

e 
II Dj(z) = D c(z)D e(z) = -;-;-=-t 

path:a 

[C,R] (2-62) 

[T,R] (2-63) 

[B,L,L,S] (2-64) 
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ell 
n Dj(z) = Db(z)Dc(z)D/z) = - --2 [B,L,L] (2-65) 

path:a z (z - 1) 

In conclusion the sequences U(k)} (j = b, ... ,n) can be explicitely 
obtained by inverse-transforming (2-61). Here follow some general results. 

If aj and I3j are the numbers of T,B ,C and of L,R operations 
respectively located on the graph between Aa and Aj including Aa, one 
obtains from (2-61) and (2-57) 

J(z) = 1 or z 
zaj(z - 1)l3j 

(2-66) 

As a consequence of the properties of the z-transform, j(k) is a 
polynomial function of k, the degree of which is (l3j - 1). This fact justifies 
the denomination "active operation" (§ 2.1.1-F in fine) for L and R. 

The size V(k) of the system is also a polynomial function of k, the 
degree of which is 

s~p I3j - 1 (2-67) 
J 

i.e. is the greatest number of L, Rand S operations to be found in cascade 
on the graph minus one - or equivalently (since the last operation of any 
"branch" of the graph is always an S) the greatest number of active 
operations (L,R) to be found in cascade on the graph. 

The reader should check these results with the help of the examples computed or 
commented on in Paragraphs 2.3.2 and 2.3.3. 

a) The absence of any active operation (l3j = 0 V J) causes the size of DSF to 
remain bounded. 

b) The growth occurs as the first power of k in the case of the systems DSA , DSB, 

DSc' DSK and DSp , the generating words of which contain only one k. 

c) The size of DSG, DSH , DSL and DSM grows as t2 because their generating words 
have two L (or one L and one R) in cascade on the graph. 

d) The generating words of systems DSr and DSN have three L. In the latter the 
three L but in the former only two of them are located in cascade on the graph. 
Therefore DSN grows as 12 (eq. 2-49) but DS[ grows only as t2 (eq. 2-47), as was stated 
in Paragraph 2.3.3 in fine. 

* 
To summarize: the main properties of synchronous developmental 

systems without feedback are the following. 
1) Each cell has one antecedent, except the first one, which has none. 
2) The generating word has the shape of a binary tree. The evolution 

matrix is upper-triangular. 
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3) The system can be hierarchically broken down into subsystems, the 
subsystems into sub-subsystems, etc., in the same manner as the generating 
word can be broken down into subwords, sub-subwords, etc. 

4) After partial destruction only a subsystem is regenerated. 
5) The system is not very sensitive to mutation: changing one letter of 

the generating word does not alter the overall structure. 
6) The growth function is of the polynomial type, with a power equal 

to the greatest number of active (L and R) operations found in cascade on 
the graph. 

REFERENCES 

J. BERSTEL and M. NIELSEN (1976), The growth range equivalence problem for 
DOL systems is decidable in L. LINDENMAYER and G. ROZENBERG (eds.), 
Automata. Languages. Development. At the crossroads of biology, mathematics 
and computer science, North-Holland Publishing Co., Amsterdam and American 
Elsevier, New York, pp. 161-178. 

D. F'RuTERs and A. LINDENMAYER (1976), Developmental descriptions of branch
ing patterns with paracloidal relationships in A. LINDENMAYER and G. ROZEN
BERG, Automata. Languages. Development, North-Holland Publishing Co., 
Amsterdam and American Elsevier, New York, pp.57-73. 

F.R. GANTMACHER (1959), The Theory of Matrices, vol. 1, Chelsea Publ. Co., 
New York, 374 p. 

J.C. GILLE and M. CUQUE (1988), Calcul matriciel et Introduction Ii l'analyse 
fonctionnelle, vol. 2, 4th ed., Lidec, Montreal, 116 p. 

J.C. GILLE, P. VIDAL and S. WJ;GRZYN (1987), On some models for developmental 
systems. Part VIII: systems with and without feedback, structural properties, 
International Journal of Systems Science, vol. 18, pp. 1195-1216. 

J.C. GILLE, P. VIDAL and S. W~RZYN (1983), Calcul de la composition cellulaire 
et fonction de croissance d'un systeme evolutif, Revue fran~aise d' automatique, 
d'informatique et de recherche operationnelle (Automatique), vol. 17, pp. 87-98. 

J.C. GILLE, P. VIDAL, S. W~RZYN and Y. OUELLET (1982), On some models for 
developmental systems. Part II: evolution of the cellular composition, Interna
tional Journal of Systems Science, vol. 13, pp.379-397. 

J.C. GILLE, S. WijGRZYN and P. VIDAL (1984), Motifs et structures dans les 
systemes evolutifs, Podstawy sterowania, vol. 14, pp.287-300. 

J.C. GILLE, S. W~GRZYN and P. VIDAL (1985), Grammaire des mots createurs et 
proprietes des systemes evolutifs correspondants etudies par la transformation de 
Carson discrete, Zentralblatt fUr Mathematik, vol. 538, p. 350. 

J.C. GILLE, S. WijGRZYN and P. VIDAL (1986), Le principe de la regeneration dans 
la theorie des systemes evolutifs. Extrapolations biologiques, Bulletin of the 
Polish Academy of Sciences (Technical Sciences), vol. 34, pp.91-101. 

J.C. GILLE, S. W~GRZYN and P. VIDAL (1988), Dichotomie des operations 
elementaires et symetrie des systemes evolutifs, Bulletin of the Polish Academy 
of Sciences (Technical Sciences), vol. 36, pp.261-264. 



Ref WITHOUT FEEDBACK 61 

J.e. GILLE, S. W~GRZYN and P. VIDAL (1989), Clonage, greffe et transplantation 
dans les systemes evolutifs, Bulletin of the Polish Academy of Sciences (Techni
cal Sciences), vol. 37 [to appear]. 

G.T. HERMAN and G. ROZENBERG with a contribution by A. LINDENMAYER (1975), 
Developmental Systems and Languages, North-Holland Publishing Co., Amster
dam and American Elsevier, New York, 363 p. 

G.T. HERMAN and P.M.B. VITANYI (1976), Growth function associated with 
biological development, American Monthly, vol. 83, pp. 1-15. 

H.J. MARASQUELLE and Y. SELL (1965), Les problemes physiologiques de la 
floraison descendante, Bulletin de la Societe franraise de Physiologie vegetale, 
vol. 11, pp.94-98. 

H.M. MARTINEZ (1976), Automaton-theoretic models of cellular development in A. 
LINDENMAYER and G. ROZENBERG (eds.), Automata. Languages. Development, 
North-Holland Publishing Co., Amsterdam and American Elsevier, New York, 
pp.125-137. 

A. PAZ and A. SALOMAA (1973), Integral sequential word functions and growth 
equivalence of Lindemayer systems, Information and Control, vol. 23, pp. 313-
343. 

G. ROZENBERG and A. SALOMAA (1976), The mathematical theory of L systems in 
J. Tou (ed.), Advances in Information Systems Science, Plenum Press, New 
York, vol. 6, pp. 161-205. 

G. ROZENBERG and A. SALOMAA (1980), The Mathematical Theory of L Systems, 
Academic Press, New York, 352 p. 

A. SALOMAA (1973), On exponential growth in Lindenmayer systems, In
dagationes matematicae, vol. 35, pp. 23-30. 

A. SALOMAA (1976), Growth functions of Lindermayer systems: some new 
approaches in A. LINDENMAYER and G. ROZENBERG (eds.), Automata. Lan
guages. Development, North-Holland Publishing Co., Amsterdam and American 
Elsevier, New York, pp.271-282. 

A. SALOMAA (1981), Jewels of Formal Language Theory, Computer Science Press, 
Rockville, 144 p. 

A. SALOMAA and M. SOITTOLA (1978), Automata-theoretic aspects of formal 
power series, Springer, New York, 171 p. 

M. SOITTOLA (1976), Remarks on growth sequences, Revue franraise d'automati
que, d'informatique et de recherche operationnelle (Automatique theorique) , 
vol. 10, pp. 23-34. 

A.L. SZILARD (1971), Growth functions of Lindenmayer systems, Technical Report 
4, Dept. of Computer Sciences, University of Western Ontario, London (On
tario), 44 p. 

P. VIDAL, J.e. GILLE and S. W~GRZYN (1986), Structure hierarchique et principe 
de decomposition des systemes evolutifs, Bulletin of the Polish Academy of 
Sciences (Technical Sciences), vol. 34, pp. 111-119. 

P. VIDAL, S. W~GRZYN and J.e. GILLE (1983), On some models for developmental 
systems. Part III: another approach for evaluating the cellular composition, 
International Journal of Systems Sciences, vol. 14, pp.753-763. 

P. VIDAL, S. WijGRZYN and J.e. GILLE (1986), One some models for develop
mental systems. Part VI: patterns in developmental systems, International 
Journal of Systems Science, vol. 17, pp.559-567. 



62 DEVELOPMENTAL SYSTEMS Ref 

P.M.B. VrrANYI, J. KARHUMAKI, A. EHRENFEUCHT and G. ROZENBERG (1976), 
Growth functions in J. Tou (ed.), Advances in Information System Science, 
Plenum Press, New York, pp. 104-141. 

S. W~GRZYN, J.C. GILLE and P. VIDAL (1982), On some models for developmental 
systems. Part I: organism structure on the basis of elementary transformations, 
International Journal of Systems Science, vol. 13, pp.359-378. 

S. W~GRZYN, J.C. GILLE and P. VIDAL (1984), Sur les proprietes des systemes 
evolutifs engendres par un mot createur boucle, Revue franfaise d' automatique, 
d'informatique et de recherche operationnelle (Automatique), vol. 18, pp. 79-94. 

S. WijGRZYN, J.C. GILLE and P. VIDAL (1986), Clonage et principe de la 
recapitulation dans la theorie des systemes evolutifs, Bulletin of the Polish 
Academy of Sciences (Technical Sciences), vol. 34, pp. 103-109. 

S. W~GRZYN, P. VIDAL and J.C. GILLE (1981), Graphes et matrices des systemes 
evolutifs, Podstawy sterowania, vol. 11, pp. 325-336. 

S. WIiGRZYN, P. VIDAL and J.e. GILLE (1985), Quelques proprietes structurales 
des systemes evolutifs et des organismes vivants, Podstawy sterowania, vol. 15, 
pp. 239-260. 

S. W~GRZYN, P. VIDAL and J.e. GILLE (1986), Mutations et theorie des systemes 
evolutifs, Bulletin of the Polish Academy of Sciences (Technical Sciences), 
vol. 34, pp. 121-124. 

R. WINIARCZYK (1981), 0 funkcji wzrostu procesow rozwojowych [Growth func
tion of developmental processes], Podstawy sterowania, vol. 11, pp. 313-324. 

R. WINIARCZYK (1983), 0 syntezie slowa tworzllcego w systemach ewolucyjnych 
[Constructing the generating word of a developmental system], Podstawy 
sterowania, vol. 13, pp. 65-74. 



Chapter 3 

SYNCHRONOUS DEVELOPMENTAL 
SYSTEMS WITH FEEDBACK 

3.1 GENERAL 
To the best of our knowledge the concept of feedback in develop

mental systems was fIrst introduced by Luck and Luck, 1976 (see also 
Gille, W~grzyn and Vidal, 1981). 

A generating word has feedback if the fIrst cell a is regenerated by a 
certain operation Ah 

or Ah (h) = ah or Ah(a) = a(h) (3-1) 

so that all the letters of such a generating word, including the fIrst one, 
have an antecedent. 

Feedback may be introduced from any letter except from a letter which 
was originally a B or a C: 

(a) an S operation (h ~ h) can become either a T operation (h ~ a) or an 
L or R operation [h ~ ah or h ~ a(h)]; 

(b) a T operation (h ~ i) or an L or R operation [h ~ ih or h ~ i(h)] can 
become a B or a C [h ~ ia or h ~ i(a)]. 

In Figure 3-1: h is fed back to a, the operation T (h --7 i) becoming a B (h --7 ia). 
Other examples will be given later. 

The generating graph of such a system possesses a loop around the 
AhAa path; it will be termed circular. If Ah was the last letter of the 
generating word before feedback was introduced, we shall speak of a global 
loop; if not, of local loop. In the condensed writing of the generating word 
the letter Ah of the operation from which the feedback starts will bear an F 
(for feedback) superscript. - In contrast a generating word without 
feedback will be called linear or rectilinear. 

For the four systems shown in Figure 3-2 (to be compared to Figure 2-25) the 
circular generating words are respectively: 

LCSRTF and LTTTLF (global loops) 

CLBFSRS and LBLLBFLSS (local loops) 
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T a T a 

C b C b 

T c L.: d T c 
=> 

S e! 
B 

S e 
f 

S g T h S T h 
g 

S S 

Fig. 3-1. Feedback (from h towards a) in a developmental system. 

a- ba L a- ba a 

b - cd T b b--+ c 

c- c T c c - c 

d --+ e(d) T d d - e 

e-a L e e--ae 

a--bc L a--ba 
a 

L b--db 
b B b --+ cd 

c --+ea 
S d d--d L 

c --+ec 
c 

R e e --+ fee) d L d--fd 
e B e--ga 

S f f--f f L f--hf 

9 S 9 --+g 

h S h --+h 

Fig. 3-2. Graph and elementary operations for the four generating graphs shown in 
Figure 2-26 after feedback has been introduced. 
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Note. - Feedback towards another operation than the fIrst will not be 
considered here because it would violate our axiom that each cell should 
have only one antecedent. 

For example, in the case of the system 

B a --7 b(c) 0 0 0 0 0 

sI\ b--7b 0 0 0 0 0 0 

L c --7 de 0 0 0 0 0 
I 

[! 
d--7e M= 0 0 0 0 0 0 

e --7/ 0 0 0 0 0 0 

/ --7dg 0 0 0 0 0 
I 
T g--7C 0 0 0 0 0 0 

it is easily seen that a C and a d cell would have two antecedents (b and g; c and /, 
respectively). Note that the evolution matrix is not upper-triangular as a consequence of 
the presence of ones anywhere in the lower-left part (not only in the fIrst column). 

3.2 ANALYSIS AND SYNTHESIS 

The evolution of developmental systems with feedback can be ana
lyzed by the same numerical methods as the evolution of systems with a 
linear generating word. Reciprocally, generating words with feedback can 
be constructed in order to reproduce some predetermined patterns (either 
desired or found in natural organisms) (W~grzyn, Gille and Vidal, 1982, 
p. 373-378). 

3.2.1 Example I 
Consider the system 

LC±45STF 
DSR =---

a,b,c,d 

b ~ c(d) 

c~c 

d~a 

(3-2) 

(3-3) 

which differs from DSc (§ 1.2.3) by the introduction of feedback from the 
second S (now a T) operation. 
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a 

LesT" 
Fig. 3-3. k = 7 developmental stage of DSR = b d 

a, ,e, 

§3.2.2 

If the initial condition is one a cell , the development proceeds as 
follows: 

DSR(O) = a DSR(l) = ba DSR(2) = c(d)ba DSR(3) = c(a)c(d)ba 

DSR(4) = c(ba)c(a)c(d)ba DSR(5) = c(c(d)ba)c(ba)c(a)c(d)ba 

DSR(6) = c(c(a)c(d)ba)c(c(d)ba)c(ba)c(a)c(d)ba 

DSR(7) = c(c(ba)c(a)c(d)ba)c(c(a)c(d)ba)c(c(d)ba)c(ba)c(a)c(d)ba 

The k = 7 developmental stage is shown in Figure 3-3 . 

(3-4) 

Comparison with Figure 1-3 and equations 1-8, 1-9 shows that: 
1) the generated "tree" has branches and subbranches, although the 

generating word contains only one C operation; 
2) the growth is faster than before feedback was present : 

V(4) = 9 V(5) = 14 

V(8) = 46 

V(6) = 21 

V(9) = 68 

V(7) = 31 

(No analytidal expression for V(k) is apparent. See Paragraphs 3.4.1 in fine 
and 3.4.3 B.2 in fine .) 

Note in passing the resemblance between Figures 3-3 and 2-22. 
However the number of cell categories is smaller in the present case. 

3.2.2 Example II 
Consider the developmental system 

DSS = LTTTBSCFS 
a,b,c,d,e,j,g,h 

(3-5) 
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L a ~ba 
I 
T b~c 
I 
T c~d 
I 
T d~e 
I 

B e ~fg 

s/l f~f 
I 

(3-6) 

C g ~ h(a) 
I 

S h~h 

The first developmental stages are one-dimensional (rectilinear) fila
ments: 

DSs(O) = a DSs(l) = ba DSs(2) = cba 

DSs(3) = dcba DSS<4) = edcba DSs(5) = fgedcba 

With DSs(6) the feedback [g ~ h(a)] sets in and starts creating 
branches: 

DSs(6) = fh(a)fgedcba DSs(7) = fh(ba)fh(a)fgedcba 

From DSs(12) on, subbranches are generated by the CF operation 
acting on the g cells of the branches: 

DS s(12) = fh(fh(a)fgedcba )fh(fgedcba )fh( edcba )fh(dcba )fh( cba) 
fh(ba)fh(a)fgedcba 

DS s( 13) = fh(fh(ha )fh(a )fgedcba )fh(fh(a )fgedcba)fh(fgedcba )fh( edcba) 
fh(dcba)fh(cba)fh(ba)fh(a)fgedcba 

The interest of this system lies in the fact that Lindenmayer (see 
Herman and Rozenberg, 1975, p.31-35) used it as a model for the 
vegetative development of Syringa vulgaris. Our DSs(13) pattern (Fig. 3-4) 
is identical to the one published by him. 

3.2.3 Example III 
It is possible to generate a developmental system DST in which the first 

three branches have no subbranches but the subsequent branches evince 
indefinite-order subdivision. We shall do so by means of the following 
word with feedback 

(3-8) 
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Fig. 3-4. k = 13 developmental stage of system DSs (eq. 3-6). 

in which the letter M stands for a subword defined by 

M=BCLS 

" S S 
i.e. by the following sequence of cell transformation 

m~sg 

g ~ s(h) 

h ~hs 

B\ 
C 

I\f 
s ~s S S S 

The elementary cell transformations of the overall system are 

a~mb B 

b~mc 

c~md 

d~ed 

e ~sf 

f ~ s(a) 

/I 
MB 

/1 
MB 

/I 
ML 

1 
B 
1 

C 

§3.2.3 

(3-9) 
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The sequence of states 

DST(O) = a DST(1) = mb DST(2) = sgmc 

DST(3) = ss(h)sgmd DST(4) = ss(sh)ss(h)sged 

DST(5) = ss(ssh)ss(sh)sfed 

DST(6) = ss(sssh)ss(ssh)ss(sh)ss(a)sfed 

is generated according to 
Procedure P(n) 

n = 0, a 
n = 1, mb 
n = 2, sgmc 
n = 3, ss(h)sgmd 
n = 4, ss(sh)ss(h)sged 
n = 5, ss(ssh)ss(sh)ss(h)sfed 

[(a) = loop] I 

n > 5, ss(A(n - 3»ss(A(n - 4»ss(A(n - 5)ssB(n - 6)sfed 

Procedure A(n) 

n = 1, sh 
n> sA(n - 1) 

Procedure B(n) 

n = 0, (P(1» 
n > 0, (P(n»ssB(n - 1) 

Figure 3-5 shows the structure of DST(13). 

69 

(3-10) 

Note that Rozenberg (see Hennan and Rozenberg, 1975, p.43-52) 
accounted for the development of Callithamnion Roseum by constructing 
the model based on the following elementary cell operations 

d~ed 

f ~s(a) 
a~mb 

b~mc 

c~md 

e ~sf 

s ~s 

m~sg 

g ~s(h) 

h ~sh 

(3-11) 

which model is equivalent to ours. The structure of Figure 3-5 is identical 
to that published by him. 
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Fig. 3-5. k = 13 developmental stage of system DSr (eq. 3-9). 

3.3 STRUCTURAL PROPERTIES 

It will now be seen that developmental systems with feedback in their 
generating word have structural properties that differ from those of develop
mental systems without feedback. Essentially, the concept of hierarchy 
does not apply any more; systems with feedback are apt to total regenera
tion after quasi total destruction and are extremely sensitive to mutation. 

3.3.1 Hierarchy, Patterns 
The existence of hierarchy inside developmental systems without 

feedback (§ 2.2.1) is a consequence of the fact that the Ai operations are 
executed in the natural order of their indexes, which is expressed by the 
binary-tree shape of the generating graph. If the generating word has 
feedback from a letter Ah towards the first letter Aa , the principle of 
hierarchy does not hold any more because of the interference of the 
recurrently renewed generation of the subword Aa ... Ah • 

Therefore subsystems are more difficult to identify. For example, by 
comparing Figures 2-31 and 3-3 the reader will notice that the cellular 
composition of the branches of the latter does not suggest the idea of an 
organ composed of definite tissues as do the branches of the former. 
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It is possible, however, to identify patterns inside some classes of 
developmental systems with feedback. For this subject the reader is referred 
to our articles: W~grzyn, Vidal and Gille, 1984; W~grzyn, Gille and 
Vidal, 1986. 

3.3.2 Cloning, Grafting 
The possibility of "constructing" complex developmental systems J>y 

combining two generating words exists also in the case of circular generat
ing words. Recall that it consists in placing the "root" of one graph at an 
external node of the other: such a recombination is the image of the 
procedure of cloning (see Paragraph 2.2.3). 

Consider the developmental system (see Paragraph 1.2.4) 

GWD2 LCFS 
(1-14) DSD = -- = --

2 ~D2 a,b,c 

and suppose that the P = LCSS fragment of another generating word 
extended over the ~ = {c,d,el} cell set is introduced in GWD2 at the last S. 
The result of this cloning procedure in the more complex system 

DSD = L CF P = L CF L C S S 
3 a,b,~ a,b,c,d,eJ 

The k = 5 developmental stages are respectively 

DSD2(5) = ba(c)a(c)baca(c)ba(c)ba(c)a(c)ba 

DSD3(5) = ba(dc)a(c)ba(e(f)e(f)dc)a(c)ba(e(f)dc)ba(dc)a(c)ba 

They are shown in Figure 3-6. 

The difference between cloning and grafting should be emphasized. 
Grafting consists of extracting a fragment of an organism and inserting it 
into another organism. 

If for example the c cell for the k = 2 stage of the above DS D2 system 
[DSD2(2) = a(c)ba] is replaced by the initial cell d of the developmental 
system (adapted from DSF , eq. 2-1) 

DS = LCSS 
D4 d,eJ,g 

a new developmental system is obtained 

LCFSLCSS 
DSDS = -----

a,b,c,d,eJ,g 

with the initial condition 

DSDS(O) = a(d)ba 
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b b a 

Less 

/ d,e,f,g 

b a 

Fig. 3-6. k = 5 developmental stage of DSm system before and after cloning. 

The k = 3 developmental stage 

DSD5(3) = ba(f(g)ed)a(c)ba(c)a(c)ba(c)ba(c)a(c)ba 

corresponds to the k = 5 developmental stage of the original system DSm 
(prior to grafting): see Figure 3-7. 

3.3.3 Influence of initial conditions; regeneration 
Consider the developmental system the generating word of which is 

shown in Figure 3-8. Suppose the initial state is one a cell : the k = 1,2,3 
stages are the same as if the generating word were the rectilinear word 
AaAbAcAdAeS but at the k = 6 stage the operation Af (f ---j a) reintroduces 
the initial cell a, from which a new development starts. The same holds if 
the initial condition consists of a, b, c, f cell(s), i.e. , of cells subjected to 
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c c c c 

b a 
c c c 

dE LeSS 
/ d.e.f,g 

c 

~ 
a b a 

b b a 
c c c 

DS5 (3) 

Fig. 3-7. k = 5 developmental stage of DSD2 system before and after grafting . 

A.=L a-ba 

Ab=C b -c(d) 

Ac=L c - ec 

Ad=L d-fd 

A.=S e-e 

Af=T f-a 

Fig. 3-8. System with feedback (circular generating graph). 
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operations located on the AaAbAdAt path, which is a part of the feedback 
loop : once the A, node has been reached the cell a appears and a new 
development starts. However if the initial condition consists of cell(s) c 
associated with the operation Ac' the node At will never be reached : only 
the pattern generated by the subword AcAe will develop. 

In other words the structure developed is independent of the initial 
condition provided the latter consists of cell(s) associated to (an) opera
tion(s) lying on the feedback loop . 

As a consequence if the system is destroyed but one such cell survives, 
complete regeneration will take place. 

Consider e.g. the system DSR (eq. 3-2), the k = 7 developmental stage 
of which is shown in Figure 3-3. 

Fig. 3-9. Partial destruction of system DSR (Fig. 3-3): only the stagnant cells and 
one b cell survive. 

Suppose now that, as a consequence of some external circumstances, 
all the cells have been destroyed except (see Fig. 3-9) the stagnant cells 
(outlined in the figure) and one cell of category b. Regeneration will occur 
and the k = 9 developmental stage will be (Fig. 3-10) 

DSi9) = cc(c(ba)c(a)c(d)ba)c(c(a)c(d)ba)c(c(d)ba)c(ba)c(a)c(d)ba 

It is known that the ability to regenerate completely after important, 
even quasi total destruction, is characteristic of lower organisms. (Account
ing in a more detailed manner for the complex phenomena of regeneration 
in biology would require more sophisticated mathematical models, e.g. 
models including internal feedback loops.) 

3.3.4 Mutation 
The consequences of changing one letter in the generating word are 

much more drastic if the latter has feedback than in the rectilinear case. 
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a 

Fig. 3-10. Regeneration of system with feedback DSR after the partial destruction 
shown in Figure 3-9. 

Consider for example the developmental system the generating word 
of which is 

a----1b 

b ----1 c(a) (3-12) 

C----1C 

and suppose the T operation has become an L, so that the "mutant" is 
DSm 

0-14) ~J 
I 

S 

a ----1 ba (modified operation) 

b ----1 c(a) 

C----1C 

(3-13) 

If the initial condition is one a cell, the k = 6 developmental stage 
consists, for the initial system, of one spiral chain (Fig. 3-11 left) 

c(c(c(a))) 

but for the modified system it consists of a complete tree with branches and 
subbranches (see end of Paragraph 1.2.4): 
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a 

a 

b a 

b 
Ii 

TCFS 
Fig. 3-11. System with feedback -- at k = 6 stage before (left) and after 

a,b,c 
(right) the substitution (mutation) T ~ L inside the loop. Note the complete change 
of structure. 

DSD2(6) = c(c(c(a)ba)c(ba)c(a)ba)c(c(ba)c(a)ba)c(c(a)ba)c(ba)c(a)ba 

(Fig. 3-11 right) . 
It is thus observed that the structure of systems generated by a 

generating word with feedback can be entirely altered by one change of 
letter in the generating word, provided the change affects an operation lying 
on the feedback loop. 

In other words, developmental systems with feedback are much more 
sensitive to changes in the generating word than are systems without 
feedback. 

Note that the complete change of structure observed in Figure 3-11 has occurred 
because the altered operation lies inside the feedback loop. In fact, altering an operation 
lying outside the loop causes modifications of the system but does not alter its structure. 
Figure 3-12 show the two developmental systems 

~I 
I tJ 
s 

a ~b(c) 

b~d 

c~a 

d~d 

L~I 
I tJ 
s 

at their k = 7 developmental stage: respectively 

d(d(d(b(c)))) and ddddddb(ddddb(ddb( d( c)))) 

a ~b(c) 

b~db 

c~a 

d~d 

It is observed that only the relative size of the segments of the system, not its structure, 
has been altered. 
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d b 

~ 
b 

d d c b 

b 

Fig. 3-12. Effect of mutation (T --7 L outside the loop) on a developmental system 
with feedback. The structure remains unaltered. 

3.4 QUANTITATIVE GROWTH 

It was shown in Section 2.3 that developmental systems with a linear 
generating word grow at a polynomial rate at a power which primarily 
depends on the number of active (L and R) operations. It will now be seen 
that developmental systems with feedback generally grow exponentially, 
the number of active operations still playing a fundamental role. (Refer
ences: Gille, Vidal and W~grzyn, 1985; W~grzyn, Gille and Vidal, 1985.) 

3.4.1 Numerical approach 
The evolution of the cellular composition and of the size can be 

analyzed by step by step computing a(k) , b(k) , ... , n(k). But litteral 
analytical expressions for Y(k) and V(k) can be found only in exceptional 
cases. 

LLLF 
Example I: DSu = -

a,b,c 

IJ 
The successive stages are: 

a ba cbba accbcbba 

a --7 ba 

b --7 cb (3-14) 

c --7 ac 

baacaccbaccbcbba (3-15) 
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At each step each cell generates two cells; therefore the size is multiplied by 2. 
Hence 

LrF 
Example II: DSv = -

a,b 

V(k) = 2k (3-16) 

By incorporating feedback into DSA (§ 1.2.1) the following system is obtained 

a~ba 

b~a 

The successive stages are 

a ba aba baaba ababaaba baabaababaaba 

ababaababaabaababaaba 
The sequences 

baabaababaabaababaababaabaababaaba 

a(k): 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, .. . 

b(k): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, .. . 

are obviously Fibonacci sequences(I): 

a(k + 1) = a(k) + a(k - 1) b(k + 1) = b(k) + b(k - 1) 

V(k + 1) = V(k) + V(k - 1) 

(3-17) 

.. .l (3-18) 

This fact, frrst observed by Szilard (1971, p. 37), is a consequence of the recursive 
equations 

a(k + 1) = a(k) + b(k) b(k + 1) = a(k) 

Example Ill: DSw = L TT ... TrF 
a,b,c, ... ,t,n 

More generally, consider the following generating graph, consisting of one L and 
of (n - 1) T, with feedback from the last of them: 

L a~ba 
I 
T b~c 
I 
T c~d 
I (3-19) 

i 
T t ~u 
I 
T u~a 

already investigated by the present authors (W~grzyn, Gille and Vidal, 1982, pp. 373-
374). 

(') The importance of Fibonacci sequences in phyllotaxy has been pointed out by 
Roger Jean (1978, pp.41--3). 
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The first n developmental stages (k = 0, 1, ... , n - 1) are 

a ba cba tsr cba utsr cba 

then the P' (u -j a) operation starts acting, whence 

aut cba baut 

cba dcbaut 

The cellular composition is thus 

Y(O) = [1 

Y(l) = [1 

Y(2) = [1 

Y(n - 1) = [1 

and for k;;;: n 

Y(n) = [2 

Y(n + 1) = [3 

Y(n + 2) = [4 

It is observed that 

0 

2 

3 

0 

0 

2 

cba 

cba 

0 

0 

0 

Y(n) = Y(O) + Y(n - 1) 

and more generally 

Y(k + n) = Y(k + n - 1) + Y(k) 

cbaut 

0 

0 

0 

0] 

0] 

0] 

1] 

1] 

1] 

1] 

(3-20a) 

} (3-20b) 

(3-21) 

In other words, all the i(k) are generalized Fibonacci sequences, i.e. solutions of 

x(k + n) = x(k + n - 1) + x(k) (3-22) 

with 

x(O) = x(l) = ... = x(n - 1) = 1 

LCSrF 
Example N: DS R = 

a,b,c,d 

The successive developmental stages have been computed in Paragraph 3.2.1 
(eq. 3-4). The evolution of the cellular composition is: 

Y(O) = [1 0 0 0] V(O) = 1 V(O) - c(O) = 1 

Y(1) = [1 0 0] V(1) = 2 V(I) - c(l) = 2 

Y(2) = [1 1] V(2) = 4 V(2) - c(2) = 3 

Y(3) = [2 2 1] V(3) = 6 V(3) - c(3) = 4 

Y(4) = [3 2 3 1] V(4) = 9 V(4) - c(4) = 6 

Y(5) = [4 3 5 2] V(5) = 14 V(5) - c(5) = 9 

Y(6) = [6 4 8 3] V(6) = 21 V(6) - c(6) = 13 
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Y(7) = [9 6 12 4] V(7) = 31 V(7) - c(7) = 19 

Y(8) = [13 9 18 6] V(8) = 46 V(8) - c(8) = 28 

Y(9) = [19 13 27 9] V(9) = 68 V(9) - c(9) = 41 

It is seen that a(k), b(k) and d(k) - the numbers of the cells acted upon by the 
operations (L,C,T) lying inside the loop - are generalized Fibonacci sequences 

j(k + 3) = j(k + 2) + j(k) j = a,b,d 

Such is also their sum, which is 

a(k) + b(k) + d(k) = V(k) - c(k) 

(But V(k) is not a Fibonacci sequence, because of the c(k) term.) 

3.4.2 Matrix approach 
When the generating graph possesses a loop, the evolution matrix is 

not upper-triangular any more: the feedback from the Ah operation is 
expressed by the presence of a one at the intersection of the h-th row (the 
last row if the loop is a global loop) and the first column. 

The matrices of the four systems shown in Figure 3-2 are: 

000 

000 

M(LCSRP') = 0 0 00 

000 

o 0 0 0 

o 000 

o 0 0 0 

000 0 
M(CLBFSRS) = 0 0 0 0 0 

o 0 0 0 

o 0 0 0 0 

The fundamental relation 

000 

o 0 0 0 

M(LTITLF) = 0 0 0 0 

o 000 

o 0 0 ·1 

o 0 

o 0 0 0 0 0 

o 0 0 0 

00000 0 

000 0 0 0 

00000 0 

o 000 0 0 

000 000 0 

000 000 0 

(2-51) Y(k) = Y(O)Mk 

still holds. But, since M is not triangular any more, its characteristic values 
AI' ... , An are no longer 0 and 1. Therefore the growth occurs no more at a 
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polynomial rate (as was the case for systems without feedback), but 
exponentially as 

where the "dominant mode" is 

Asup = sup( I All, I A21 , ... , I An I ) 
Some infonnation on Asu can be obtained by means of Gershgorin's theorem (for 

example, Legras 1963, pp. 58-61 or Marcus and Minc 1964, pp. 145-150) or by means 
or Frobenius's theorem on non-negative matrices (for example, Gantmacher 1959, 
pp. 53-54, 64-65). 

In fact: (1) all the elements of M that lie in the main diagonal are zeros and ones, 
and (2) each row is made up of zeros and of one or two (not more) ones. 

Thus from Gershgorin' s theorem 

i = 1, ... ,n 

whence 

Asup';; 2 

As a consequence of Frobenius' theorem the characteristic value which has the 
greatest absolute value is real, positive, has simple order of multiplicity and satisfies 

1 .;; Asup .;; 2 
In conclusion, the rate of growth is not Jaster than 2k. 
This result, which was first established by paz and Salomaa (1973, p. 333), is not 

surprising, since at any stage of development one cell can at most generate two cells 
(according to the definition of the elementary operations that constitute the generating 
word). 

Altogether the easiest method for investigating the growth of develop
mental systems with feedback consists of resorting to the z (or to the 
discrete Carson) transform, which will be done in the next paragraph. 

3.4.3 Transform approach 
A) THEoRY 

The relation that exists between the z-transforms of the sequences 
{i(k)} and {j(k)} of two cell categories which immediately follow each other 
on the generating graph was established in Paragraph 2.3.4: 

(2-58) 

where 

(2-59) 
1 l).(z) = -] z 

j(z) = l)j(z)i(z) 

or 
1 l).(z) =--

] z - 1 

according to whether the operation is T,B,C or is L,R,S. 
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Hence the fundamental relation 

j 
(2-61) j(Z) = a(z) II D;(z) 

path:a 

still holds. 
Recall that the II on the right-hand side is the product of the z-transfer-functions 

D;(z) pertaining to the operations found on the path leading from a to j on the generating 
graph, the operation D a(z) being excluded. 

For the systems shown in Figure 3-2: equations (2-62), (2-63) and (2-64) still hold, 
but for the fourth system 

ell 1 1 1 
II D;(z) = Db(z)DC<z)De(z) = - -- - = ---

path:a z z - 1 Z z2 Z - 1 
[B,L,B] 

should be written instead of (2-65). 

The difference with the case of a linear generating word lies in the fact 
that a(z) is no longer given by 

(2-57) or 
z 

ao(z) =-
z - 1 

according to whether Aa is T,B,C or is L,R, but is given by (see proof 
below) 

ao(z) 
a(z) = I - F(z) (3-23) 

where F(z) is the product of the z-transfer-functions Di(z) of the operations 
met on the loop path, Da(z) (eq. 2-60) being included. 

If u is the number of T,B ,C operation and v the number of L,R 
operations located on the loop path, then 

I I 
F(z) = - ( 1)V zU z-

(3-24) 

For the four systems shown in Figure 3-2, respectively: 

F (z) = _1_ ~ _1_ ~ = 1 
1 Z - 1 z z - 1 Z z2(z - 1)2 

[LCRT: u=2, v=2] 

F z<z) = _1_ ~ ~ ~ _1_ = 1 
z - 1 z z z z - 1 z\z - 1)2 

[LTTTL: u = 3, v = 2] 

1 1 1 
Flz) = -- =-

z z z2 
[C B: u = 2, v = 0] 

F (z) = _1_ ~ _1_ ~ = 1 
4 Z - 1 z z - 1 Z z2(z - 1)2 

[LBLB: u=2, v=2] 
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Combining (2-61) and (3-23) finally yields the z-transfonn of any 
j(k) (j=b,c, ... ,n): 

ao(z) j 
j(z) = II Di(z) 

1 - F(z) path:a 

Proof of equation 3-23. 
If feedback is introduced, the difference equation governing a(k) is 

a(k + 1) = h(k) 

in the first operation in the generating word is T, B or C, and is 

a(k + I) = a(k) + h(k) 

if it is L or R. 

(3-25) 

Taking the z-transform, remembering the initial condition a(O) = I and taking 
equation (2-61) into account yields 

in the second case. 

h 

za(z) - z = a(z) II Dj(z) 
path:a 

h 
za(z) - z = a(z) + a(z) II Dj(z) 

path:a 

(3-26a) 

(3-26b) 

In these expressions the last factor is the product of the z-transfer-functions of the 
operations met on the loop path, D aCz) being excluded. In other words 

h 
II D.(z) = F(z) 

path:a I D a(z) 

Solving (3-25) with respect to a(z) and taking (3-26) into account yields 

in the frrst case, and 

in the second case. 

z 
a(z) =--

F(z) 
z---

Diz) 

z 
a(z) =-----

z - 1 _ F(z) 
DaCz) 

(3-27) 

(3-28a) 

(3-28b) 

Expressions (3-28) can be brought to a unique form by multiplying their numerators 
and denominators by Da(z), i.e. by liz (according to equation 2-6Oa) in the first case 

1 
a(z) ---

I - F(z) 
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and by 1/(z - 1) (according to equation 2-60b) in the second case 

z 
z - 1 

a(z) = 1 - F(z) 

Both expressions are equivalent (see equations 2-57) to 

ao(z) 
a(z) - ---

I - F(z) 
(3-23) 

B) CONSEQUENCE 

§3.4.3-B 

Expression (3-25) gives the explicit z-transforms of any j(k) 
(j = a,b, ... ,n). In theory the sequencesj(k) themselves can be computed by 
performing the inverse transformation; but for systems of high order of 
complexity this leads to considerable work. Fortunately, essential informa
tion on j(k) is obtained from the knowledge of the poles of j(z). 

Explicitly from (3-23) and (3-24) 

ao(z) 
a(z) = ----I--

I- ---
ZU(z - 1)v 

and from (3-25) for any j = b,c, ... ,n 

ZU(z - 1)v 
-----ao(z) 
ZU(z - 1)v - 1 

ZU(z - I)V j 
j(z) = ao(z) II Di(z) 

ZU(z - 1)v - 1 path:a 

(3-29) 

(3-30) 

It is thus seen that, as a consequence of the presence of feedback, the 
poles are no longer only 0 and 1: also present as poles are the roots of 

ZU(z - 1)v - 1 = 0 (3-31) 
The consequence is that the growth does not occur at a polynomial rate 

any more, but (in the general case) at an exponential rate depending on the 
root of (3-31) which has the greatest absolute value zsup' i.e. occurs as 

z~up (3-32) 

Several methods exist for numerically computing zsup (for example, 
Demidovitch and Maron 1973, p. 424-431). The fact that, as a consequence 
of Frobenius's theorem on non-negative matrices (for example, Gantmacher 
1959, p. 53-54, 64-65), the root of (3-31) with greatest absolute value is 
always real and positive, makes it possible to obtain it directly without 
completely solving the equation. For u and v ranging from 1 to 10 the 
results are given in Table 3.1. 

It is seen that zsup ranges from 1 to 2, as was to be expected (§ 3.4.2). 
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C) SPECIAL CASES 

Three particular cases deserve special mention. 

1. First particular case: u = 0 (only active operations on the loop 
path) 

Then 

Zsup = 2 

The rate of growth (2k) is as high as possible in a manner compatible with 
the assumption made on the cell operations which constitute the generating 
word (one cell generates at most two cells). 

LLLF 
Example: system DSu =-

a,h,c 

It was found in Paragraph 3.4.1 that this system grows as 2k (eq. 3-16). One has: 

u=o 

z 
ao(z) =-

z - 1 

h(z) = a(z) _1_ = z(z - 1) 
z - 1 (z - 1)3 - 1 

v=3 F(z) _ 1 
(z - 1)3 

z(z - 1)2 
a(z) = -'-----':...-

(z - 1)3 - 1 

lIz 
c(z) = a(z) -- -- = ----

z - 1 z - 1 (z - 1)3 - 1 

The poles of these three z-transforms are 

1 . V3 -+1-
2 2 

1 . V3 
--1-
2 2 

2 = zsup 

2. Second particular case: v = 1 (one active operation on the loop 
path) 

Equation (3-31) then has the form 

zU+l-zU-l =0 

It can be solved in a rigorous manner by means of Mellin's hy
pergeometric-function expansion (Belardinelli 1960, pp. 40, 56-57; W~grzyn, 
Gille and Vidal 1985, Appendix B). 

The denominator of a(z) (eq. 3-29) and usually of some other j(z) 
(j = b, ... ,n) is 

zU+l-zU-l 

which is characteristic of generalized Fibonacci sequences (if u = 1, of 
ordinary Fibonacci sequences): see examples below. 
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LTF 
Example I: system DSv = --(eq. 3-17) 

a,b 

u = 1 v = 1 

z 
ao(z) =-

z - 1 

1 
F(z) = --

z(z - 1) 

Z2 
a(z) =---

z2- z -1 

1 z 
b(z) = a(z) - = -2---

z z-z-1 

The z-transforms of Fibonacci sequences are recognized 

a(k + 2) = a(k + 1) + a(k) a(O) = a(l) = 1 

The growth occurs (see u = v = 1 in the Table) as 1.6180k . 

LTT ... TP' 
Example II: system DSw = (eq. 3-19) 

a,b,c, ... ,t,u 

u=n-l v = 1 

zn 
a(z) =----

zn_zn-I-I 

1 
F(z) =---

zn - I(z - 1) 

b(z) = a(z) 
z 

z 
ao(z) =-

z - 1 

u(z) = a(z) 
zn - 2 

87 

The sequences a(k), b(k + 1), 
quences, 

u(k + n - 2) are generalized Fibonacci se-

x(k + n) = x(k + n - 1) + x(k) x(O) = x(l) = ... = x(n - I) = I 

The growth occurs as z~up where zsup appears in the first column of the Table. (All the 
poles of a(z), b(z), ... , u(z) can be exactly evaluated.) 

LCSTF 
Example Ill: system DSR = (eq. 3-2) 

a,b,c,d 

u = 2 v = 1 
1 

F(z) = --
z2(z - 1) 

z 
aiz) =-

z - 1 

1 z2 
b(z) = a(z) - = 3 2 

z z-z-1 

1 1 z2 
c(z) = a(z) - -- = -------

z z - 1 (z - 1) (z3 - z2 - 1) 

liz 
d(z) = a(z) - - = ----

zz z3_ z2_1 

a(k), b(k) and d(k) are generalized Fibonacci sequences (see Paragraph 3.4.1 in fine). 

3. Third particular case: v = 0 (no active operation on the loop path) 
In that exceptional case equation (3-31) reduces to 

zU-l=O whence 
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The growth is not exponential; the stimulating effect of feedback on growth 
occurs via introducing an additional pole z = I into all the D/z) and hence 
increasing the power of k at which the growth occurs. 

csrF 
Example: system DSx =-

a,b,c 

This system is obtained by introducing feedback into the developmental system 
(§ 2.1.1-A) 

(2-1) DSF = CSS 
a,b,c 

The sequence of the operations is 

s~l 
a---') b(c) 

b---')b 

and the fIrst developmental stages are 

a b(c) 

b(b(b(b(c)))) 

b(a) b(b(c» 

b(b(b(b(a»))) 

b(b(a» b(b(b(c))) b(b(b(a») 

b(b(b(b(b(c))))) b(b(b(b(b(a»))) 

According to the general theory 

u=2 v=O 
1 

F(z) = - ao(z) = 1 
z2 

Z2 
a(z) =-

z2 - 1 

1 z2 
b(z) = a(z) -- = -----

z - 1 (z + 1) (z - 1)2 

1 z 
c(z) = a(z) - = --

Z z2 - 1 

Taking the inverse transforms: 

a(k) = 1 + (-I)k 
2 

b(k) = 2k + 1 + (_I)k - 1 

4 

The total number of cells at the k-th stage is 

c(k) = 1 + (-I)k - 1 

2 

V(k) = k + 2 + .1 [1 + (-I)k - 1] 
2 4 

{V(k)} = {1,2,2,3,3,4,4,5,5,6,6,7,7 ,8,8,9,9, ... } 
Whereas the size of system DSF remained bounded (eq. 2-3), the introduction of 

feedback has caused system DSx to grow indefInitely, the growth rate being not 
exponential in this exceptional case (v = 0), but polynomial (fust power of k). 

* 
To summarize: the essential properties of synchronous developmental 

systems with feedback are the following, in contrast with systems without 
feedback. 

1) Each cell has one antecedent. 
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2) The presence of feedback involves: (i) the presence of a loop in 
the generating word, which is of the circular type: (ii) the presence of a 
one in the first column of the evolution matrix, which is no longer upper
triangular . 

3) After partial destruction, complete regeneration occurs if at least 
one cell associated to an operation lying inside the feedback loop has been 
preserved. 

4) The system is extremely sensitive to mutation: changing one 
operation lying inside the feedback loop may completely alter the structure 
of the system. 

5) The growth is exponential (except in one exceptional case). The 
rate depends on the number of active (L, R) and passive (B, C, T) 
operations in the feedback loop; it is 2k if the latter comprises only active 
operations. 
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Chapter 4 

DEVELOPMENTAL SYSTEMS WITH 
OPERATING SYSTEM 

4.1 GENERAL 
The model for developmental systems commented on in Chapters 2 

and 3 is based on the idea that the development of a system is the result of 
elementary operations acting on its elements. It is in agreement with the 
following assumptions of cellular biology: (1) organisms are composed of 
cells, (2) each cell is derived from a preexisting cell and (3) a cell can give 
rise to at most two cells. This is the reason why it accounts for many facts 
concerning living organisms: quantitative growth, internal hierarchy, regen
eration, cloning, mutation. 

However the said model implicitly assumes that cells are independent 
of one another, which is not the case for living organisms. As a conse
quence it is subjected to two limiting hypotheses: 

a) synchronicity, i.e. all Ai (a j ) operations are performed simultaneously 
at each developmental step; 

b) context-free development, i.e. the operations grouped in the generat
ing word are executed after one another independently of external circum
stances. 

In order better to account for the complex facts of living organisms a 
more elaborate model will now be proposed which is not limited by the 
above two assumptions. It was suggested by our present knowledge of the 
DNA structure, in particular by Jacob and Monod's theory of the regulation 
of protein synthesis by DNA in E. Coli (e.g. Suzuki et ai., 1981, pp. 585-
608; Watson, 1976, pp. 379-410): the action of the structural (or develop
mental) genes which are responsible for protein synthesis is controlled by 
other genes that initiate or block the synthesis (Fig. 4-1) depending on the 
context (e.g. on temperature, on the chemical cell composition). These 
latter genes are located on DNA in a control area before the structural genes 
(in the sense that the DNA program is read from left to right). 
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control area structural genes 
r-____ ~A ____ ~',r __ ----~A~------~ 

fX) 

~ 
! 

context 

control area 
" 

I 
~ 

! 
context 

structural genes 
" 

~ "-"'-' ~ 

1 1 1 
protein synthesis 

§4.1 

Fig. 4-1 . Control of protein synthesis by DNA. Depending on context, 
synthesis is blocked (above) or takes place (below). 

These facts have suggested to us a generalization of the initial model. 
It consists of having each Aj elementary operation preceded by a control 
operation OJ' thus resulting in a generalized elementary operation denoted 

OjAj (4-1) 

The Aj (structural part) is responsible for the transformations un
dergone by the a j cell (see Paragraph 1.3.2); the OJ controls when and why 
(depending on time and on internal and external context) the Aj operation is 
initiated or blocked. 

Examples were quoted in Paragraph 1.2.5. 
If an L operation acting on an a cell is perfonned only six times and then the a cell 

remains unaltered, we note 

(1-15) °aL(a) = { bab 

if 

if 
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where na is the number of times the L operation has been performed. For brevity's sake 
we shall simply write 

6L 

H a b cell undergoes the S operation ten times and then disappears 

(1-16) 
if nb,:;;l0 

if nb >0 

where nb is the number of times the S operation has been performed. More briefly we 
write 

lOS 
A generating word made up of generalized operations will be called a 

generalized generating word, e.g. 

or 6L lOS (4-2a) 

GW = At 02A2A3 04A4 (4-3a) 
To make the reading easier, parentheses will be introduced which 

isolate the two symbols of each generalized operation, i.e., the above 
generating words will be written 

(6L) (lOS) (4-2b) 

(4-3b) 

Note that the said parentheses introduce no additional information. Like in 
computers, expressions of the (4-2a, 4-3a) type, consisting of a sequence of operation 
symbols and argument symbols without parentheses ("Polish notation"), should be read 
directly from left to right. 

To summarize: introducing control operations OJ into a simple 
generating word 

n 
(1-18) GW = SEQA.(a.) 

j = t I I 

results in a generalized generating word 

n 
(1-27) GW = SEQ O-A· (a.) 

j = t I I I 
(4-4) 

If the generating word is looked upon as the program of a computer, 
the OJ constitute an operating system, as in many multiprogrammed 
processes. 

4.2 SENSITIVITY TO EXTERNAL CONTEXT 

Context-bound development of a system can be accounted for by a 
real-time operating system. 
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Consider for example the developmental system DSG (eq. 2-4) which 
was found in Paragraph 2.2.1-B to have the shape of a tree with indefinitely 
growing branches. Now suppose that the system environment is charac
terized by the succession of day and night and some operations present in 
the generating word are performed only during day time (subscript D) 
whereas others are performed only at night (subscript N): 

LD a -1 ba Day 
I 

s~ : : :d) Night 

LD d -1 ed Day 
I 
S e-1e 

The generalized generating word is 

GW = (OaL) (ObC) S (OdL) S 

and the developmental system is 

where 

(OaL) (ObC)S(OdL)S 
DS = --------

Y a,b,c,d,e 

0dL(d) = { :d 

In day time the development is: 

Day 

Night 

Night 

Day 

Day 

Night 

a ba bba bbba bbbba bbbbba 

(4-5) 

(to be specific it is assumed that five b have been generated). Then at night 

c(d)c(d)c(d)c(d)c(d)a 

is obtained. Hence the next day 
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b b a 

Fig. 4-2. Modifications of the development of system DSG when a real-time 
operating system causes the L operations to be active during day time and the C 
operation to be active at night. 

c( ed)c( ed)c( ed)c( ed)c( ed)ba 

c(eed)c(eed)c(eed)c(eed)c(eed)bba 

c(eeed)c(eeeed)c(eeed)c(eeed)bbba 

c(eeeed)c(eeeed)c(eeeed)c(eeeed)bbbba 

(4-6) 

It is observed (Fig. 4-2) that the presence of the operating system has 
modified the shape of the developmental system: the respective dimensions 
of the "organs" (stem, branches) have been modified, but the fundamental 
structure has not been altered. 

4.3 SENSITIVITY TO INTERNAL CONTEXT 

Examples will now be given of operating systems which control the 
execution of some of the Ai operations (i) either according to the number of 
times the (or another) operation has been performed (ii) or according to the 
number of cells of a given category which are present in the system or have 
been generated by a certain operation. 

4.3.1 Example I: limitation of cell number 
Consider again the developmental system 

(2-4) 
LC±45LSS 

DSG =---
a,b,c,d,e 
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(tree with indefinitely growing branches). Now suppose that an operating 
system modifies the execution of the two L operations in such a manner that 
the number of cells generated by each of the L operations is limited to four, 
i.e. the L operations become stagnations S after they have been active four 
times. In other words 

{ :a 
if na~4 

OaL(a) = 
if na>4 

{ ed if nd~4 
°dL(d) = e 

if nd>4 

The system thus modified is 

4L a~ ba limited to 4 operations 
I 

l\ 
b ~ c(d) 

c~c (4-7) 

4L d~ed limited to 4 operations 
I 
S e ~e 

Fig. 4-3. Limitation of branch growth. 

The first developmental stages are 

DSz(O) = a DSz<l) = ba DSz<2) = c(d)ba 

DSz(3) = c(ed)c(d)ba DSz(4) = c(eed)c(ed)c(d)ba 

DSz(5) = c(eeed)c(eed)c(ed)a 

DSz<6) = c(eeed)c(eeed)c(eed)a 
(4-8) 

DSz<7) = c(eeed)c(eeed)c(eeed)a 

DSz(8) = DSz(9) = ... = DSz(7) 
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Figure 4-3 shows the final state of the system (k> 7): it is observed 
that the number of the branches is limited and their length remains equal to 
4 cells. 

4.3.2 Other examples: semi-synchronous systems 
Systems will now be considered in which the Aj(a) operations are 

performed at instants which differ froin one another but are all instants at 
which a new developmental stage is initiated. Such a strategy characterizes 
what may be called a semi-synchronous system. 

A) SWWING OOWN OF BRANCH GROWTH 

Considering the system DSH (tree with indefinitely growing branches) 

LC±4SS LS 
DSH =----

a,b,c,d,e 
(2-7) 

again, it is possible to slow down the growth of the branches without 
altering the growth of the stem by prescribing that the second L operation 
(d --) ed) be performed only after the first L operation (a --) ba) and the C 
operation [b --) c(d)] have been performed four times. The generating word 
will be written 

LCS(OL)S 

and the developmental system DS AA 

L C S (OdL) S 
DSAA =----

a,b,c,d,e 

where 0 dL should be understood as follows: 

°dL(d) = { 
d nL < 4 

ed nL;:' 4 

(4-9a) 

where nL is the number of times the first L operation has been performed. 
The operation sequence is 

L a --) ba 
I 

C b --) c(d) 

S~L c--)c (4-9b) 

d--){d d ed 
I 
S e --) e 
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b a 

Fig. 4-4. Slowing down of branch growth. 

The first developmental stages are 

DSAA(O) = a DSAAO) = ba DSAA(2) = c(d)ba 

DSAA(3) = c(d)c(d)ba DSAA(4) = c(d)c(d)c(d)ba 

DSAA(5) = c(d)c(d)c(d)c(d)ba 

At k = 6 the condition for 0 dL to be an L operation has been fulfilled 
so far as the first d is concerned, whence 

DSAA(6) = c(ed)c(d)c(d)c(d)c(d)ba 

At k = 7 this applies also to the second d: 

DSAA(7) = c(eed)c(ed)c(d)c(d)c(d)c(d)ba (4-10) 

(see Figure 4-4), etc. 

B) SLOWING DOWN OF BRANCH GENERATION 

Suppose now that the C ±45 [b ~ c(d)] operation is executed only after 
the first L (a ~ ba) operation has been performed four times: 

where 

L(ObC)SLS 
DS88 =----

a,b,c,d,e 

°bC(b) = { 
b if 

c(d) if nL;:::' 4 

(4-11) 

nL = number of times the first L operation has been performed. 

The operation sequence is 

a~ba 

(4-12) 

d~ed 
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b b b b a 

Fig. 4-5. Slowing down of branch generation. 

During the first four stages only the stem grows (ObC = S): 

DSBB(O) = a DSBB(l) = ba DSBB(2) = bba 

DSBB(3) = bbba DSBB(4) = bbbba 

Then abc becomes a C operation, whence 

DSBB(5) = c(d)bbbba DSBB(6) = c(ed)c(d)bbbba 

DSBB(7) = c(eed)c(ed)c(d)bbbba 

The k = 7 pattern is shown in Figure 4-5. 

C) SLOWING OOWN OF STEM GROWTH 

99 

Suppose finally that the first L operation is executed (1) for k = 1, 2, 
3 and (2) later only after the second L operation (d -j ed) has been 
performed four times: 

(OaL)CSLS 
DScc =----

a,b,c,d,e 

where 

! b(a) 

OaL(a) = a 

b(a) 

The operation sequence is 

O~ 

I 

s~ 
T 
S 

k = 1, 2, 3 

k> 3 nL < 4 

nL ~4 

c-jc 

d -j ed 

e-je 
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a 

Fig. 4-6. Slowing down of stem growth. 

The first six stages of development are (see Figure 4-6) 

DScc(O) = a DScc(l) = ba DScc(2) = c(d)ba 

DScc(3) = c(ed)c(d)ba DScc(4) = c(eed)c(ed)a 

DScc(5) = c(eeed)c(eed)a 
(4-14) 

DScc(6) = c(eeeed)c(eeed)a 

D) COMMUNICATION BETWEEN CELLS 

There exists inside a living organism a solidarity between the cells. 
The cells are interrelated between one another from the triple viewpoint of 
energy, of substance and of information, the activity of any cell being 
influenced by the state of other cells. Such exchanges are performed 
through the cellular membrane (Popot, 1987) and by molecules which 
circulate from one cell to another (Berridge, 1985; Snyder, 1985). 

In our six-operation model such a type of coupling can be realized by an 
operating system which prescribes that the Ai operation on the ai cell should 
be performed or not depending on a message originating from the ak cell 
(k *' i): 

{
a. in the absence of any message from ak 

O(ak)·A.(a) = ' 
, " A,.(a,.) . th f f 10 e presence 0 a message rom ak 

This will be illustrated by the simple example of a developmental 
system consisting of two subsystems each of which has a generating 
subword of the LCSLS (eq. 2-7) type: one subsystem (the "stem") is 
directed upward, the other (the "root") is directed downward. 

The initial cell will be denoted ct. The cells which constitute the 
system will bear index 1 when they belong to the stem (a I' ... ,e ,) and index 
2 when they belong to the root (a2 , ••• ,e2). Synchronization between the two 
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subsystems will be obtained by assuming that the initial cell al of the stem 
generates another cell [D(a l ) -j b2a l ] only once an e2 cell has appeared in 
the root. In other words the development of the stem is postponed 
[stagnation S(al) -j all so long as the root has not developed enough. 

The system is thus defined as 

where 

B[O(e2)L]L C C SLSLS S 
DSDD = ----=-------

a,al ,bl,c I ,dl ,el ,a2,b2,c2,d2,e2 

if at least one e2 element is present 

(4-16) 

{ 
a2al 

O(e2)L(a l ) = 
a l if no e2 element is present 

The sequence of the elementary operations is the following: 

B- a-jala2 

I r 
A 

" a l -j {b2al if 3 e2 -L a2 -j~b2 O(e2)L if i!I e2 I I 
a l 

C bl -j cl(dl) C b2 -j (d2)C2 

S~ c i -j c i S~ c2 -j c2 

L dl -j eldl L d2 -j e2d2 
I I 
S el -jel S e2 -j e2 

"- ,,/ "- # ., .. 
[stem] [root] 

The following developmental stages, starting from one initial cell, are 
obtained. (Recall that the "root" grows downward and the stem grows 
upward; the instructions are to be read from right to left for the former and 
from left to right for the latter.) See Figure 4-7. 
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k=1 k=2 k=3 k=4 k=5 

k=8 

Fig. 4-7. The stem starts developing only after one e2 cell has appeared 
in the root. 

k=6 

k=7 

k = 0 ex 

k = 1 a2 a\ 

k = 2 a2b2 a\ 

k = 3 a2b2(d2)c2 a\ 

k=5 

a2b2( d2)ci d2e2)ci d2 e2e2)ci d2e2e2e2)c 2 

a2b2(d2)c2(d2e2)cid2e2e2)c2(d2e2e2e2)c2 
( d2e2e2e2e2)c2 

root 

a\ 

b\a\ 

c\(d\)b\a\ 

C \ (e \d\)c(d\)b\a\ 

stem 
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It is observed that the stem development is blocked during the first 
stages: since no e2 cell yet exists in the root, the O(e2)L operation acting on 
the a, cell is a stagnation (see equation 4-12). The situation changes at the 
k = 4 developmental stage: the root then has grown enough, more precise
ly, an e2 cell has been generated; as a consequence the O(e2)L operation 
becomes a linear generation (eq. 4-12), i.e. the stem starts developing in its 
tum. 

In all the above examples it should be noted that the presence of the 
operating system modifies the respective proportions of the system compo
nents but does not alter its structure. 

4.4 DWINDLING AND REGROWTH 

The developmental systems considered till now (except DSE of 
§ 1.2.5) grow monotonically and indefinitely. It will now be shown that a 
model with operating system enables one to account for the property of 
living organisms to decay after they have reached their "adult" size and to 
reproduce in the form of a new or of many new system(s). 

4.4.1 Ephemeral developmental systems 
In a developmental system the generating word of which has no 

operating system the Aj operation is repeated so long as at least one aj cell 
is present. Therefore no decay ever appears. In fact: (1) if at least one Lor 
R operation is present in the generating word the growth is indefinite, and 
(2) if there is none, the growth stops and the system indefinitely keeps the 
maximum size it has reached, as a consequence of the S operations. 

This suggests that developmental systems which decay after they have 
reached their maximum size may be obtained if the generating word 
contains an operating system which prescribes that the generative opera
tions L, R and the stagnation operations S be performed only a limited 
number of times. The said operations will be noted mL, mR and mS 
respectively. They are defined as follows. 

II The mL or mR operation is defined by (see eq. 1-15) 

a. ~ { ajaj or a/aj) nai .::::; m 

I aj na. > m 
I 

(4-17) 

where na. is the number of times the operation has been performed on the a j 

cell and Ion the descendants thereof. 

21 The mS operation is defined by (see eq. 1-16) 

{
an :S;;;m 

aj~ ~ aj 

na.>m 
I 

(4-18) 
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where na. is the number of developmental stages during which aj has 
been preSent in the system and the dash means that the a j cell disappears 
("dies"). 

If the generating word is linear, it can be easily seen that such a 
system does not grow indefinitely: after a certain number of developmental 
steps its size decreases and finally the system dwindles away. 

This will be illustrated by the following developmental system 

x = (4L) C (14S) 3L (9S) 
a,b,c,d,e 

(4-19) 

(adapted from DSH , eq. 2-7), the development of which is controlled by the 
following operations: 

4L 
I 

C 

14S~ 
3L 
I 

a -14 times ba, then b 

b -1 c(d) 

c -114 times c, then 

d -1 3 times ed, then d 

9S e -19 times e, then -

(4-20) 

The successive developmental stages starting from one initial a cell 
can be computed step by step on the basis of the above relations (4-20). It 
is found that 

X(O) = a X(1) = ba X(2) = c(d)ba 

X(3) = c(ed)c(d)ba X(4) = c(eed)c(ed)c(d)ba 

At the next step, the 4L operation, which has acted four times on the a 
cell, acts as a -1 b. Thus 

X(5) = c(eeed)c(eed)c(ed)c(d)b 

At the next step the 3L operation, which has acted three times on the d 
cell, acts as d -1 e. Thus 

X(6) = c(eeee)c(eeed)c(eed)c(ed)c(d) 

The system still grows, as a consequence of the 3L operation: 

X(9) = c( eeee )c( eeee)c( eeee )c( eeee )c( eeed) 

Then 

X(10) = X(11) = X(12) = c(eeee)c(eeee)c(eeee)c(eeee)c(eeee) 
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X(O) X (2) X (4) XeS) X(10) 

e e 

e e 
e 

.•.. . .• 9. ~.~.~ .•.•...... ~: ~ .••••••• :t..~ ... ~c .... £o .. . .. .. --

X(14) X(16) X(18) X(19) X(20) X(21) 

Fig. 4-8. Growth and decay of a developmental system. 

After X(12) the e cells gradually vanish away, as a consequence of the 
9S operation when ne > 9 : 

X(13) = c(eee)c(eeee)c(eeee)c(eeee)c(eeee) 

X(14) = c(ee)c(eee)c(eeee)c(eeee)c(eeee) 

X(15) = c(e)c(ee)c(eee)c(eeee)c(eeee) 

Then the c cells vanish in their tum (14S operation): 

X(18) = cc(e)c(ee) X(19) = cc(e) X(20) = c 

and for k ~ 21 the system disappears. 
The patterns at some typical developmental stages are shown in Figure 

4-8. The manner in which the system size (i.e., the number of cells) varies 
as a function of k is shown in Figure 4-9. 
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Number 
of 30 

II living II 

cells 
25 

20 

15 

10 

5 

o 5 10 15 20 

Developmental stage 

Fig. 4-9. Number of "living" cells of developmental system (4-19) 
(see Figure 4-8) . 

4.4.2 "Reproduction" of a developmental system 
Systems with a circular generating word will now be analyzed. 

A) SIMPLE REPRODUCTION 

Consider a developmental system differing from the X system (eq. 4-19) 
by the presence of an additional ftrst operation B and of an additional last 
operation T with feedback from the latter towards the former. Furthermore, 
suppose that the T operation is performed only after the 25th developmental 
stage; it will therefore be denoted D25T, where D stands for "delay": 

na. < 25 
I 

(4-21) 
n = 25 ai 
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The developmental system thus constructed is 

Y = B X (D25T'Y = B (4L) C (145) 4L (9S) (D25T'Y (4-22) 
a,a,b,c,d,~ a,a,b,c,d,~ 

which expresses the following operations: 

B a~a~ 

4L a ~4 times ba, then b 
I 
C b ~c(d) 

14S~ c ~ 14 times c, then (4-23) 

3L d~3 times ed, then e 
I 

9S e ~9 times e, then -

D25T ~ ~ a with 25 stage delay 

From eqs. (4-23) the successive developmental stages starting from the 
initial condition Y(O) = a are easily computed (Fig. 4-10). The fIrst stages 
are quite comparable to the development of the X system of the foregoing 
paragraph: 

i.e. 

one: 

Y(O) = a Y(1) = a~ = x(O)~ Y(2) = ba~ = X(1)~ 

Y(3) = c(d)ba~ = X(2)~ Y(4) = c(ed)c(d)ba~ = X(3)~ 

Y(i) = X(i - 1)~ 1:;;;; i:;;;; 25 

Thus 

Y(20) = cc(e)~ = X(19)~ Y(21) = c~ = X(20)~ 

Y(22) = Y(23) = Y(24) = Y(25) = ~ 

Then the D25T operation becomes active: 

Y(26) = a = Y(O) 

From then on a new developmental cycle begins, identical to the fIrst 

Y(27) = e~ = Y(l) Y(28) = ba~ = Y(2) 

in general 

Y(i) = Y(i - 26) 
Overall, the development is periodic with a period equal to 26 steps. 

During each period the system grows, then dwindles down to one cell -
from which "germ" the next cycle starts. In a certain sense, such a system 
can be termed "immortal". 
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YeO) Y(3) yeS) Y(10) Y(1S) 

.B 
a 

... ~1t .... .It.. ..... ~ .......... ~ ......... IL .... d.~.:. ~ .. :.e.~. 
Y(19) Y(21) Y(2S) Y(26) Y(27) Y(31) 

Fig. 4-10. Dwindling and regrowth of a developmental system. 

B) MULTIPLE REPRODUCTION 

Now suppose that feedback has been introduced into the generating 
word of the X developmental system (eq. 4-19) from a final D25T 
operation, but the B operation which was present in the Y system (eq. 4-22) 
is no more the first operation: 

Z = (4L) C (14S) B (4L) (98) (D25DF 

a,b,c,a.,d,e,j3 
(4-24) 

The operation sequence is 



§4.4.2-B WITH OPERATING SYSTEM 

4L ~ __ -----, 
I 
C 

a -j 4 times ba, then b 

14S~ 
b -j c(a) 

c -j 14 times c, then -

3f~ 
9S \ e -j 9 times e, then -

a-jd~ 

d -j 3 times ed, then e 

D25T ~ -j a with a 25 stage delay 
The first developmental stages are (Fig. 4-11) 

Z(O) = a Z(1) = ba Z(2) = c(a)ba 

Z(3) = c(d~)c(a)ba Z(4) = c(ed~)c(df3)c(a)ba 

after which the 4L operation acts as a -j b: 

Z(5) = c(eed~)c(edf3)c(d~)(c(a)b 
Then 

Z(6) = c(eeed~)c(eed~)c(eed~)c(edf3)c(d~) 
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(4-25) 

During the next four steps the 3L operation acts on certain d as d -j e : 

Z(7) = c(eeee~)c(eeed~)c(eed~)c(ed~)c(d~) 

Z(11) = Z(12) = Z(13) = c(eeee~)c(eeee~)c(eeee~)c(eeeef3)c(eeee~) 

After k = 13 the e cells [operation 9S] gradually disappear, as do the c 
cells after k = 16 [operation 14S] , so that the system size decreases: 

Z(14) = c(eee~)c(eeee~)c(eeee~)c(eeeef3)c(eeee~) 

Z(16) = c(~)c(e~)c(ee~)c(eee~)c(eeeef3) 

Z(18) = (~)(~)(e~)c(ee~)c(eee~) 
Z(20) = (~)(~)(~)(~)(ef3) 

until the system is reduced to five separate cells: 

Z(21) = ... = Z(27) = (f3)(~)(~)(f3)(~) 
At this stage the D25T operation becomes active: 

Z(28) = (a)(a)(a)(a)(a) 

Each of the five separate a cells ("germs") then gives rise to a new 
cycle, identical to the previous one. 
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Z(O) Z(2) Z(5) Z(12) 

oc: o 
a ooc: 

a o 
oc: o 

a o 
ooc: 

oc: o 

--------------- ~----- --- ----------~-----------------:--- ----- ---
Z(16) Z(28) Z(30) 

Fig. 4-11. Dwindling and reproduction of a developmental system_ 

Altogether the development is periodic, with a period of 28 steps and 
multiplication by 5 at each cycle. 

4.5 MULTILEVEL DEVELOPMENT 

4.5.1 General 
It is possible to construct developmental systems the development of 

which occurs in several successive phases, in the sense that one part 
develops fIrst and then remains "dormant" while other parts develop in their 
turn (W~grzyn, Vidal and Gille, 1990). 

Consider for example the system 

(OaL) S B (OdR) S (OeR) S 
DSEE = --------

a,b,c,d,eJ,g,h 
(4-26) 
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where 

if 

if na > 6 

and, using the notations of equations (4-17) and (4-18): 

i.e. 

i.e. ! g[ge] 
OeR(e) = 

if 

if 

nd:::;;; 5 

nd>5 

if ne:::;;; 5 

if ne > 5 
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(4-27) 

(4-28) 

(4-29) 

In the latter equations the parentheses denote a change of direction 
towards the left and the square brackets denote a change of direction 
towards the right (see Paragraph 2.1.3). 

The operation sequence is thus: 

°aL a~ba then c 

S~ b~b 

B c~de 

3R\ d~f(d) then f (4-30) 

I 3R e ~ g(e) then g 

S I f~f 

S g~g 

The first developmental stages are characterized by the activity of the 
a meristem (see Paragraph 2.1.1-C) until na = 6. During these first stages 
DSEE behaves as the simple developmental system DSA (eq. I-I): 

DSEE(O) = a DSEE(I) = ba DSEE(3) = bbbbbba 

Then the 0aL becomes a T operation (eq. 4-27) 

DS EE(7) = bbbbbbc 

and two symmetric subsystems are generated, the meristems of which are d 
and e respectively: 

DSEi8) = bbbbbbde DSEi9) = bbbbbb./td)g[e] 

DSEi I4) = bbbbbbf(J(f(f(f(f)))g[g[g[g[g[g]]]]] 

'Ilk> 14 
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.......... 
Ie 

c \..d .... .. ' 
b b 
b b 
b b 
b b 

:1 b b 
b b 

DS1 
b 

k=O 1 7 8 9 13 

v 

First phase Second phase 

Fig. 4-12. Two-level development of system DSEE (eqs. 4-26, 4-30). 

In other words (see Figure 4-12): 
1) During the fIrst phase (k = 1 to 7) a subsystem DS) develops 

which consists of a rectilinear "tissue" of b cells (as in Figures 1-2 and 
2-15). 

2) During the second phase (k = 8 to 14) two symmetrical subsystems 
DS2 , DS3 develop; they consist of spiral "tissues" of f and g cells 
respectively. The DS) subsystem plays the part of a passive "carrier". 

4.5.2 Example 
A) ANALYSIS 

These considerations will now be illustrated by a developmental 
process that results in Figure 4-13, which can be considered as the fIrst 
approximation of the shape of an "adult" maple leaf (Fig. 4-14). It consists 
of six patterns which are assumed, for simplicity's sake, to be symmetric. 

1) Pattern 1 can be generated by 

DS - (lOL)S 
FF - a b , 

(4-31) 

which has been adapted from DSA (eq. 1-1) by limiting to 10 the number of 
times the L operation is performed : 

{ 
ba 

IOL(a) = a 
if 

if 
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1 

Fig. 4-13. Breaking down a maple leaf into six patterns. 

Fig. 4-14. A maple leaf. 
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a 
b 

b 
b 
b 
b 
b 
b 
b 
b 
b 

(lOL) S 
Fig. 4-15. k = 10 and 11 developmental stages of DFF = -

a,b 

1rhus (Fig. 4-15) 

DSFF(10) = bbbbbbbbbba (4-32) 

2) Patterns 2 to 6 can be generated by the developmental system DS H 

of Paragraph 2. 1.1-C. It is seen in Figure 4-16 that its k = 7, 11 and 16 
developmental stages provide satisfactory approximations respectively for 
the leaf patterns: 2 and 6; 3 and 5; 4. 

B) SYNTHESIS 

1rhe six-pattern approximation shown in Figure 4-13 can be obtained 
as the result of a three-level development. 

1) First phase: pattern 1 is obtained exactly as the DS) subsystem of 
Paragraph 4.5.1. It consists of the k = 11 developmental stage of DSFF , the 
latter system being modified by replacing IOL by OJ-

if na::::; 10 

if na > 10 
(4-33) 

(see eq. 4-27). 1rhus 
DS FF(1l) = bbbbbbbbbbc (4-34) 

2) Second phase: the terminal cell c divides into five cells, each of 
which will later generate one of the remaining patterns (2 to 6). 

1rhis can be implemented by having c be the initial condition of the 
developmental system 

B B C±90C_90S S S S S 
DSGG = -------

c,eJ,g,d,h,i,j,k 
(4-35) 
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which is characterized by the operation sequence 

B c -7ed 

B e -7fg 

c'\ f -7 h(i) 

s0 c~ g -7 j[kJ 

S d-7d 

h-7h 

S i -7 i 

j -7j 

S k-7k 

whence (Fig. 4-17) 

DSGG(O) = c DSGG(1) = ed DSoo(2) = fgd 

DSGG(3) = h(i)j[kJd 
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(4-36) 

(4-37) 

3) Third phase: each of the five cells obtained gives rise to a 
developmental process of the type shown in Figure 4-16. 

This can be implemented by DSH systems (§ 2.1.1-C) modified by an 
operating system which "freezes" the development after the m-th stage, i.e. 
the L and C operations become stagnations after k = m: 

(4-38) 

where 

{ :a 
k~m 

OaL(a) = 
k>m 

{ :(c) k~m 
°bC(b) = 

k>m 
(4-39) 

{ :d 
k~m 

°dL(d) = 
k>m 

Thus (see Figure 4-18) 

patterns 2 and 6 = DSH7(k) for k~7 

patterns 3 and 5 = DSHl1(k) for k~ 11 

pattern 4 = DSHI6(k) for k~ 16 
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Fig. 4-16. k = 7, 11 and 16 developmental stages of 
DS = LCSLS 

H a,b,c,d,e 

d 

jY ~ k 
i~ 

Fig. 4-17. Division of c cell into five cells (eqs. 4-36, 4-37). 

The global generating word is finally 

GWHH = (OaL) B Bee 
I ""- ~~ 

GWHl6 GWH7 GWH7 GWHII GWHI1 

§4.5.2-B 

(4-40) 

The k-th developmental stage (k ~ 16) is shown in Figure 4-19. 
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Fig. 4-18. Obtaining the configuration shown in Figure 4-13 
with DSFF (eq. 4-33) and DSHm (eq. 4-38). See figure 4-19. 

4.6 ON GLOBAL OPERATING SYSTEMS 
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The operating systems considered so far consist of modifications of the 
elementary operations of the generating word 

n 
(4-4) GW = SEQO.A. 

i = I I I 

Now, the elements of a developmental system are grouped in subsys
tems in the same manner as the cells of a living organism are organized in 
tissues and organs (see Paragraph 2.2.2). This suggests the possibility of a 
global operating system which controls all the operations of a subsystem 

m p n 

GW = 0gl (SEQ Ai) 0g2 ( SEQ Ai) 0g3 ( SEQ Ai) 
i=l i=m+l i=p+l 

(4-41) 
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Fig. 4-19. k = 16 developmental stage of system DSHH (eq. 4-40). 

or of the whole system 

n 

GW = Og (SEQ Ai) 
i = 1 

(4-42) 

Such global controls finally involve modifications of the individual Ai 
operations. Hence (4-42) can be broken down into 

n n 

Og(~EQAi) = ~EQOgiAi 
I = I I = I 

(4-43) 
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An example was given in Paragraph 4.5.2: the global development of 

(2-7) DSH = LCSLS 
a,h,c,d,e 

is "frozen" after k = m if the L and C operations are modified according to (4-39). In 
other words 

(4-44) 

A generating word of the (4-41) or (4-42) type can thus be expressed 
as a sequence of control symbols 0gi and of operation symbols Ai without 
any parenthesis, just as an instruction to a computer. (Recall that the 
parentheses on the right-hand side of (4-44) have been merely inserted for 
clarity and have no semantic signification: see Section 4.1.) 

4.7 CONCLUSION 

The proposed model, despite its simplicity, accounts for many prop
erties which developmental systems have in common with living organ
isms. In its original form (the generating word consists of letters B, C, L, 
R, T, S) it accounts for the properties of growth in size, of internal 
hierarchy, of regeneration after partial destruction, of mutation and for the 
possibility of cloning or grafting a system on another. If an operating 
system is introduced into the generating word, other properties can be 
accounted for, such as decay and dwindling, regrowth, "reproduction", 
sensitivity to external and to internal context, multilevel developement. 

These facts are a consequence of the conformity of our axioms with 
some fundamental assumptions of cellular biology, the generating word of 
our model being the analog of the genetic code present in each cell of an 
organism. 

We hope that with more sophisticated models, which we are now 
trying to develop, it will be possible to account for more complex 
properties of living organisms - and that our models will some day 
suggest new ideas and hypotheses to biologists. 

REFERENCES 

M.J. BERRIDGE (1985), Les molecules de communication dans la cellule, Pour la 
science, n. 98, pp. 134-146. 

J.C. GILLE, S. W~RZYN and P. VIDAL (1988), Les phenomenes de repousse et de 
semailles dans les systemes evolutifs de mot genetique circulaire, Bulletin of the 
Polish Academy of Sciences (Technical Sciences), vol. 36, pp.291-296. 

J.C. GILLE, S. W~RZYN and P. VIDAL (1988), On some models for development 
systems. Part IX: generalized generating word and genetic code, International 
Journal of Systems Science, vol. 19, pp.845-855. 



120 DEVELOPMENTAL SYSTEMS Ref 

J.C. GILLE, S. W~GRZYN and P. VIDAL (1989), On some models for developmental 
systems. Part X: growth, decay and regrowth of developmental systems, Interna
tional Journal of Systems Science, vol. 20, pp.97-105. 

J.L. POPOT (1987), La structure des proteines membranaires, La Recherche, 
vol. 18, pp. 1170-1181. 

D.T. SUZUKI, A.J.F. GRIFFITHS and R.C. LEWONTIN (1981), An Introduction to 
Genetic Analysis, 2nd ed., Freeman, San Francisco, 919 p. 

P. VIDAL, J.C. GILLE and S. WijORZYN (1987), Mot genetique de systeme evolutif 
et programme d'ADN, Bulletin of the Polish Academy of Sciences (Technical 
Sciences), vol. 35, pp.61-70. 

P. VIDAL, J.C. GILLE and S. WIiGRZYN (1988), On some properties of develop
mental systems and their modelling, Systems Analysis, Modelling, Simulation, 
vol. 6, pp. 279-291. 

P. VIDAL, S. WijORZYN and J.C. GILLE (1988), Accroissement et deperissement 
des systemes evolutifs a mot genetique lineaire, Bulletin of the Polish Academy 
of Sciences, vol. 36, pp.285-290. 

P. VIDAL, S. WijORZYN and J.e. GILLE (1989), On some models for developmental 
systems. Part XI: communication between the elements of a developmental 
system, International Journal of Systems Science, vol. 20, pp. 1795-1800. 

J.D. WATSON (1976), Molecular Biology of the Gene, 3rd. ed., Benjamin, Menlo 
Park,739p. 

S. WijORZYN, P. VIDAL and J.C. GILLE (1990), On some models for developmental 
systems. Part XII: More on internal context sensitivity, International Journal of 
Systems Science, vol. 21 [to appear]. 



OTHER BOOKS BY THE SAME AUTHORS 

Genetyka proces6w rozwoju [The Genetics of Developmental Processes], Polish 
version of this monograph (Polytechnic of Silesia Press, Gliwice, 1988, 70p.). 

In collaboration with O. Palusinski: 
Introduction Ii I'etude de la stabilite dans les espaces metriques (Dunod, Paris, 1971, 

73 p.). First published in Polish (1970). 

Books by S. W~grzyn: 
Calcul operationnel en electrotechnique (Gauthier-Villars, Paris, 1967, 295p.). First 

published in Polish (1955; 2nd ed. 1960). Also in Slovak (1958) and in German 
(1962). 

Przebiegi nieustalone w elektrycznych liniach i uktadach tancuchowych [Transients 
in electrical lines and chain networks] (Panstwowe Wydawnictwo Naukowe, 
Warsaw, 1958, 140 p.). . 

Podstawy informatyki [Fundamentals of Computer Science] (Panstwowe Wydawnictwo 
Naukowe, Warsaw, 1982, 394p.). 

In collaboration with A. Bukowy and Z. Pogoda: 
Les Bases de I'automatique industrielle (Dunod, Paris, 1965, 328 p.). First published 

in Polish (1963; 5th ed. 1980). 

Books by J.C. Gille: 
Introduction aux systemes asservis non lineaires (Dunod, Paris, 1977; 2nd ed. 1984, 

126 p.). 

In collaboration with P. Decaulne and M. P€legrin: 
Feedback Control Systems. Analysis, Synthesis, and Design (McGraw-Hili, New 

York, 1959,793 p.). First published in French (1956). Also in Polish (1961) and in 
Russian (1961). 

Theorie et Calcul des asservissements (Dunod, Paris, 1958; 3rd ed. 1963, 321 p.). 
Also in German (1960, 3rd ed. 1968), in Rumanian (1963), in Italian (1966) and in 
Spanish (1967, 2nd ed. 1971). 

Les Organes des systemes asservis (Dunod, Paris, 1959; 3rd ed., 1965, 463p.). Also 
in German (1962; 2nd ed. 1967) and in Rumanian (1963). 

Dynamique de la commande Iineaire (Dunod, Paris, 1967; 8th ed. 1988, 524 p.) 
Theorie et Calcul des asservissements lineaires (Dunod, Paris, 1967; 9th ed. 1990, 

489 p.). 
Systemes asservis non lineaires (Dunod, Paris, 1967; 5th ed., 1987,3 vol., 163 + 

151 + 219 p.) 
Introduction aux systemes asservis extremaux et adaptatifs (Dunod, Paris, 1976, 

92p.). 

In collaboration with P. Decaulne, M. Carpentier and M. P€legrin: 
Problemes d'asservissements avec solutions (Dunod, Paris, 1959; 4th ed. 1971, 

256 p.). Also in Polish (1961) and in German (1963; 2nd ed. 1967). 
. .. / . 



122 OTHER BOOKS BY THE SAME AUTHORS 

In collaboration with M. Clique: 
La Representation d'etat pour I'etude des systemes dynamiques (Eyrolles, Paris, 

1975, 2 vol., 192 + l09p.). 
Calcul matriciel et Introduction a I'analyse fonctionnelle (Lidec, Montreal, 1979; 4th 

ed. 1989, 3 vol., 163 + 116 + 124p.). Also in Polish (1977; 2nd ed. 1986, 
320p.). 

Systemes lineaires. Equations d'etat (Eyrolles, Paris, 1984; 2nd ed. 1990, 203 p.). 
Calcul matriciel. Exercices et problemes (Lidec, Montreal, 1984; 2nd ed. 1988, 

223 p.) 

Books by P. Vidal: 
Non-Linear Sampled-Data Systems (Gordon and Breach, New York, 1967, 346 p.). 

Also in French (1968) and in Russian (1974). 
Non-Linear Sampled-Data Systems. Exercizes and Problems (Gordon and Breach, 

New York, 1972, 103 p.). First published in French (1970). 
Aide-Memoire d'automatique (Dunod, Paris, 1978; 2nd ed. 1985, 196p.). 
Editor of the series Automatique and Robotique (Techniques de l'ingenieur, Paris, 

since 1982). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




