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Chapter 1

Introduction

Michael Levitt

I first encountered ribonucleic acid in October 1968 (see early history of Computa-

tional Structural Biology, Levitt 2001). I worked on RNA for a few years and

published three out of my five first papers on RNA (Levitt 1969, 1972, 1973) before

abandoning the system as being too simple and not nearly as interesting as protein

folding. This was my first of several career-level mistakes. In 1976, I also refused to

get involved in the analysis of DNA sequences when Bart Barrell brought me the

DNA sequence of jX174 bacteriophage (Smith et al. 1977; Levitt 2001). What I

find most surprising about these mistakes is that the decisions seemed very easy

when I made them and regrets came much more slowly but lasted longer. In 2008,

RNA caught my fancy again thanks to a HFSP International collaboration

spearheaded by Michael Kiebler (Medical University of Vienna), and I have now

come full circle with four of my five most recent papers involving RNA.

This background made the pleasure afforded me by the request to write this

Introduction especially great both as a way to reflect on the past and also to look

forward to the future. The first paper in the book entitled “Introduction to RNA

Modeling” by Eric Westhof and Neocles Leontis provides a wonderful summary

and a very useful table that summarizes the methods used to model RNA structure.

This made me understand better why I moved from RNA to proteins almost

40 years ago: very little structural data was available for RNA then, whereas

much more was available for proteins. With the determination of the atomic

structure of the ribosome, this situation has changed: today a lot more is known

about the structures that RNA adopts.

Comparing the history of structure predictions of protein with that of RNA can

be very informative. Most methods used for both cases consist of the same choices.

What is the best representation? What is the best method to generate and change

structures? What is the best way to score the resulting structures so as to select those

M. Levitt (*)
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most native-like? Everyone wants detailed all-atom structures as they help deter-

mine function. The need to reduce computational complexity led to the first coarse-

grained studies of protein folding in 1975, and such coarse graining (Levitt and

Warshel 1975), in which several atoms are grouped into one interaction center, is

now popular for RNA, being used for 5 of the 19 methods in the Westhof-Leontis

Table (The Table). This immediately requires methods to add back atomic details,

and such methods have matured enormously for proteins since the earliest methods

by Ponder and Richards (1987), Holm and Sander (1991), and Levitt (1992). The

latest version of Dunbrack’s Scwrl method (Krivov et al. 2009) is able to place

missing side chains with uncanny accuracy. Similar methods exist for RNA but are

likely to undergo additional development.

The molecular representation is intimately connected to interatomic forces and,

hence, the energy of the system. With all the atoms present, molecular mechanics or

even quantum mechanical energy functions can be used. With coarse graining, such

potentials can be derived from the chemical structures of the groups involved (e.g., do

they stack, base-pair, etc.), paralleling what was done in the original protein course-

grainingwork (Levitt andWarshel 1975).Asmore structural data ismade available by

structural biologists, statistical or knowledge-based potentials are a very useful alter-

native. Such potentials have a long history for proteins starting with Tanaka and

Scheraga (1976) and extending to Summa and Levitt (2007). As the amount of protein

structure grew exponentially, it became possible to use better representations and

more atom types, extending from contact potentials between 20 amino acids (210

number) in 1976 to smooth, closely sampled distance-dependent functions for almost

200 atom types (over fivemillion numbers).While knowledge-based energy functions

are frustrating in their neglect of so much physics and even statistics (interactions are

not independent but are assumed to be), they dowork best at refining proteins (CASP7

to CASP9, Chopra et al. 2010). One can expect a continuous trend that leads to ever

more complicated but better RNA knowledge-based functions.

Three physical methods are used to change molecular conformations: energy

minimization (as used to refine my 1969 model of tRNA), molecular dynamics, and

Monte Carlo random moves. The first two methods are thought to be more efficient

for systems with many degrees of freedom, but they suffer from a massive

drawback: the need for smooth differentiable energy functions. The Monte Carlo

method has been very successfully used to model proteins by swapping a fragment

of the main chain for a different, known native fragment and then keeping the result

if it satisfies the Monte Carlo criterion (Simons et al. 1997). This process is clearly

discontinuous. We have developed a new method called Natural Move Monte Carlo

(Minary and Levitt 2010) that allows much more efficient sampling of both proteins

and RNA. Surprisingly, more methods described in Table 2.1 use molecular

dynamics instead of Monte Carlo to change conformation. This is expected to

change in the future, except perhaps for refinement of detailed RNA structures or

modeling of RNA dynamics. Fragment-based methods have also been very suc-

cessful for RNA structure prediction. A major drawback is their dependence on

what has already been seen and the impossibility of proper thermodynamic

2 M. Levitt
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sampling. Some of the problems associated with Monte Carlo moves have been

solved in a very recent paper from our group (Sim et al. 2012).

Once one has an ensemble of putative structures, they need to be scored so

as to pick out the best ones. Often such scoring is preceded by clustering, aimed at

selecting representative structures from each energy basin. Clustering is a surpris-

ingly tricky business, and we are pleased to have been able to develop a new method

that seems to aid selection of near-native structures (Sim and Levitt 2011).

In conclusion, I am in complete agreement with the many groups who have

contributed to the very impressive book: RNA structure prediction has clearly come

of age and promises to make dramatic advances in the next few years. As such

the publication of this book on RNA Structure Analysis and Modeling could not

have been timed better!
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Chapter 2

Modeling RNA Molecules

Neocles Leontis and Eric Westhof

Chercher plutôt la rigueur dans l’enchaı̂nement de la pensée plutôt que la précision dans les

résultats. Le modèle le plus crédible n’est pas nécessairement le plus réaliste, car il

demande l’éxagération des traits caractéristiques par rapport aux traits contingents.

—Abraham Moles, Les sciences de l’imprécis, Paris, Seuil (1990)

Strive for rigor in the logical train of thought rather than in the precision of the results. The

most enlightening scientific model is not necessarily the most realistic one, because it is

necessary to exaggerate the characteristic features with respect to the contingent ones.

—Translated by the authors

2.1 Introduction

A primary activity of scientific work is the construction of models to represent the

nature and workings of phenomena we observe in the world around us. Models that

represent the molecular components of living system in three dimensions (3D) and

at atomic resolution are highly valued in molecular and structural biology. For

example, the decipherment of the 3D structures of ribosomes, the complex protein-

synthesizing nanomachines of the cell, represents a tremendous achievement,

recently recognized with the Nobel Prize in Chemistry (http://nobelprize.org/

nobel_prizes/chemistry/laureates/2009/). Nonetheless, this phenomenal success is
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tempered by the realization that even now, over 10 years after the first ribosome

structures were solved, we still do not understand fully several aspects of their

functioning. For all who have grappled with the complexities of ribosome

structures, Richard Feynmann’s pithy statement, “What I cannot create, I do not

understand,” rings especially true (Hawking 2001). This physics-based realization

contrasts with another point of view of modeling. To paraphrase R. W. Hamming,

who said, “The purpose of computing is insight, not numbers” (Hamming 1971), we

should remember that the purpose of molecular modeling is functional insight, not

detailed atomic models per se. Therefore, as we seek to improve our abilities to

construct 3D models for molecules for which we do not yet have experimental

atomic-resolution structures, we should bear in mind that it may not be necessary to

achieve some arbitrary precision in the atomic coordinates to provide insight into

biological function. Rather, we should think carefully to identify those predicted

features that yield important insights (Table 2.1).

Thus, for those engaged in RNA modeling, critical questions to ponder include:

What do biologists, who are trying to unravel the roles of RNA in complex

biological processes (growth and development, learning and cognition, immune

and stress responses, and disease), really need to know about the 3D structures of

the RNA molecules they study, and in what form do they need it? In this context,

how deep do we need to go into atomic details to gain useful insights? How can

knowledge of RNA 3D structure be applied to infer RNA function? It is crucial to

bear in mind that, historically, some imprecise models have been richer in

biological insight than other, very precise ones. The famous, original 3D model

for double-stranded DNA of Watson and Crick stands out in this respect.

With these fundamental issues as background, we turn to the reasons for

renewed interest in RNA 3D modeling: New high-throughput experimental

approaches, developed in the postgenomic era, have revealed the pervasive role

of noncoding RNA molecules in all aspects of gene expression, from chromosome

remodeling and regulation of epigenetic processes to transcription, splicing, mRNA

transport and targeting, and translation and its regulation. Furthermore, while the

number of protein-coding genes has changed little from the genome of the tiny

1,000-cell nematode Caenorhabditis elegans to that of our own species, H. sapiens,
the number of ncRNAs has exploded and appears to scale with biological complex-

ity (Taft et al. 2007). Evidence is building that many of these ncRNAs, like those

involved in splicing and translation, which have been known for many years,

function at least in part by forming complex 3D structures to interact specifically

with proteins, other nucleic acids, and a wide range of small molecules.

2.2 Defining the Problem

For RNA molecules that form discrete 3D structures, the folding problem can be

simply stated: What is the mapping from sequence space to three-dimensional

space? As many biologically active RNA molecules are very long (up to thousands

6 N. Leontis and E. Westhof
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of nucleotides), this question is relevant for those portions of RNA sequence that

adopt stable architectures, required for their function during at least some period of

time. In other words, given a sequence, produce a set of 3D coordinates for the

nucleotides, that is biologically relevant and that satisfies the stereochemistry and

physical chemistry of RNA molecules.

2.2.1 RNA Modeling Compared to Protein Modeling

In this regard, the parallels and contrasts between RNA and protein structure

prediction and folding are apparent. Like proteins, RNA molecules are flexible

linear polymers with astronomical conformational possibilities. Unlike proteins,

RNA structures generally partition quite cleanly between secondary and tertiary

hierarchical levels (Brion and Westhof 1997; Woodson 2010, 2011). Thus, as a

rule, the first step in successful 3D modeling of RNA passes through a high-quality

prediction of the main secondary structure elements. The state of the art in RNA

secondary structure prediction is reviewed by Steger and coauthors in the third

chapter of this volume. At the present state of our modeling efforts, the nature of the

input data can play a decisive role at this stage of the process. Indeed, despite

significant advances in 2D structure prediction, current methods still rely on

theoretical approximations and an incomplete set of empirical energy parameters.

Thus, working on a single RNA sequence may lead to incorrect evaluation of the

importance or the role of one or more structural elements. The idiosyncrasies

contained in single sequences can, however, often be ironed out by the use of

multiple homologous sequences. Moreover, for RNA molecules, in contrast to

proteins, one can obtain many additional experimental data containing much 3D

information, using chemical or enzymatic probing and footprinting, small-angle

X-ray scattering (SAXS), and cross-linking. The incorporation and computer use of

such data changes the tractability of the problem. The chapters by Laederach, Wang

and Fabris, and their coauthors (Chapters 15–17) address some of these issues and

illustrate the challenges and power of integrating modern experimental data collec-

tion with modeling methods.

2.2.2 Defining the Inputs for RNA 3D Modeling

Inputs for the modeling of RNA 3D structure include, in addition to the sequence of

the target RNA, the derived secondary structure and the sequences of available

homologues, as well as all available experimental data. The database of known

RNA 3D structures should also be considered an important resource for 3D

modeling. This is especially the case for those approaches relying on a modular

view of RNA architecture with the resulting assembly of RNA elements and

modules (Jossinet et al. 2010; Westhof et al. 2011).
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2.3 3D Modeling Methods and Approaches

A variety of modeling approaches are represented in the contributions to this

volume. Some common themes emerge and will be summarized briefly with

reference to specific chapters. As will become apparent to readers, promising

approaches are rapidly adopted by multiple research groups, although specific

implementations vary in ways that are usually not easy to discern. This volume

focuses on methods that aim to achieve automaticity in 3D modeling, in the sense

that they should require very little human intervention in the modeling process,

beyond defining the inputs for the specific problem. The effort, rather, is focused

“up front” on designing the algorithms and extracting and compiling relevant

knowledge concerning RNA structure from structure databases for automated use

by the implemented algorithms.

2.3.1 Homology Modeling

Automated methods generally address one or both of two distinct problems in

biological structure prediction, namely, homology modeling and de novo predic-

tion. Homology modeling concerns building atomically accurate 3D models

of RNA molecules using at least one homologous 3D structure as template.

RNA homology modeling draws on vast experience with protein homology

modeling, and so considerable progress has been made already. The contributions

of Altman, Bujnicki, and Santa Lucia focus, at least in part, on homology modeling

and, between them, exhaustively address the issues involved.

2.3.2 De Novo Modeling

De novo prediction is necessary when no homologous 3D structure is known that

can serve as a template for modeling. It is considerably more challenging than

homology modeling, as it often requires generating a brand new 3D architecture

from any known heretofore. As the goal is to do this without expert human input,

the general approach is to generate large numbers of possible architectures and then

to evaluate them, using what is already known about RNA structure. Automated, de

novo 3D modeling approaches are therefore distinguished operationally by the kind

of algorithm employed to generate potential 3D structural models, and also by the

nature of the encapsulated knowledge concerning RNA structure that is used to

score and rank models to arrive at a small set of predicted 3D structures, or in the

favorable case, a single structure. The models generated by conformation-sampling

algorithms are called “decoys” by practitioners. For the final output, most programs

produce an all-atom predicted structure, which is generally quite “correct” in its
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local, stereochemical detail, in the sense that bond lengths and angles are within

allowed ranges and the model contains no unphysical nonbonded contacts. But this

local precision, which most programs achieve routinely, should not mislead users of

predicted 3D models into assuming the model is accurate on larger, biologically

relevant length scales, ranging from structures of modular motifs to overall folds

and architectures.

The contributions of Altman (Chapter 8), Bujnicki (Chapter 5), Chen (Chapter

10), Das (Chapter 4), Dokhalyan (Chapter 9), Santa Lucia (Chapter 6), and Shapiro

and their coworkers (Chapter 7) address de novo 3D modeling and among them

cover the major methods in use today. All of these methods deploy some kind of

algorithm to sample conformation space and some kind of knowledge-based

methods to score and rank proposed solutions to the 3D prediction problem. In

addition, most approaches rely on some kind of reduced representation of the RNA

structure (“coarse graining”) to speed up the calculations and allow more thorough

exploration of conformational space with available computer resources. Coarse

graining is an art that requires striking the right balance between speed of calcula-

tion and sufficiently detailed representation of RNA structure to capture the molec-

ular features that stabilize the active conformations. Other ways to speed up

conformational sampling involve modification of the algorithms that propagate

the dynamics, as represented by the discrete molecular dynamics (DMD) method

reported by Dokhalyan and coworkers.

2.3.3 Defining the Outputs of Different Modeling Approaches

The outputs of modeling studies depend on the modeling approach and the aim of

the study. Indeed, output data can be full atomic coordinates for every single

nucleotide or, in the case of coarse-grained methods, coordinates for only a subset

of atoms or even a single pseudoatom representing each nucleotide. The different

outputs are directly related to the granularity of the modeling approach. Nonethe-

less, nominally atomic-resolution models, when poorly refined or badly assembled,

may be no better or even worse than coarse-grained models, if the characteristic

base-pairing and base-stacking interactions of the structures are not represented

accurately.

2.3.4 Precision of Models vs. Accuracy of Models

There is no necessary correlation between precision and accuracy, and models with

comparable precision can differ substantially in the accuracy with which they

predict the important interactions between nucleotides that define the RNA 3D

structure. Thus, low-precision models can be very accurate (e.g., the original

Watson–Crick model for DNA) and highly precise ones can be partly or totally
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inaccurate and thus misleading. Clearly, less-accurate models may not be at all

pertinent for structural biology, while less-precise models can be very rich and

enlightening. Still, these considerations should not be taken as license for not using

in model building, whenever possible, high-resolution building blocks that are

precise with respect to bond lengths and angles within nucleotides, and H-bond

distances, van der Waals contacts, and relative orientations within base pairs and

other interactions.

2.4 Databases for Extracting Knowledge

All of the precise structural data regarding RNA comes ultimately from atomic-

resolution X-ray structures of nucleotides, oligonucleotides, and various biologi-

cally relevant structures, ranging in size from individual helical elements to the full

ribosome. These data comprise all our basic knowledge of bond lengths, angles, and

stereochemistry, as well as interaction preferences, including all types of base pairs

and most stacking and base–backbone interactions. This information is used to

build force fields and to infer rules for assembly of molecular moieties. These force

fields and energetic rules are then used for producing and optimizing structures,

sampling the conformational space, or simulating molecular dynamics. The quality

and general value of the deduced force fields will strongly depend on the number

and variety of structures available. In addition, the quality of the structures is of

primary importance; it is directly related to the crystallographic resolution of the

X-ray data and on the refinement process since a minor fraction of X-ray structures

are obtained at true atomic resolution. One key parameter for compiling reference

databases for knowledge extraction is the nonredundancy of the structures that are

included in order to avoid bias in the deduced parameters. The chapter by Leontis

and Zirbel (Chapter 14) addresses these issues and details a nonredundant database

of structures extremely valuable for extracting knowledge about RNA as well as for

benchmarking modeling strategies. In this respect, it is worth noting that less than

100 nonredundant RNA structures have been solved at 2-Å resolution or better.

2.5 Evaluating Models or “The Proof of the Pudding

Is in the Eating”

As discussed above, 3D models are produced either to monitor our progress in the

understanding and use of the physicochemical rules governing RNA architecture or

to provide insight and help to experimentalists in the interpretation and meanings of

biological data and in the design of new experiments. Although objectives

may differ, in every case the models produced should be evaluated to assess

their relevance to biological reality. Models that make testable predictions are
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especially valuable and, as emphasized above, need not be particularly precise.

Additional experiments devised on the basis of a given model will provide the

relevant tests for evaluating it. Depending on the outcome, the model may be

retained and perhaps “tweaked,” or it may be rejected and radically revised, leading

to new biological insight and further experimental tests. On the other hand, to assess

the validity of force fields as well as other empirical assembly rules, precise

numerical comparisons have to be performed in a systematic way. This highlights

the need for discriminating and meaningful metrics to compare and evaluate

predicted vs. experimental structures.

2.5.1 Metrics for Evaluating Models

The most common metric is the root mean square deviations (RMSDs) on

corresponding atoms between the predicted and experimental models. RMSDs are

easy to compute and yield a simple measure. However, to interpret RMSD values,

some critical length scales in RNA structures should be kept in mind for comparison:

First, stacking distance between bases is about 3.4 Å; second, successive P–P distance

in RNA helices is about 7 Å. While RMSD values below 3.4 Å are of real value,

RMSD values beyond 8 Å must be treated with caution. In addition, RMSDs, as

generally calculated with rigid-body fitting, spread the errors between two sets of

coordinates over the whole ensemble. Consequently, even correctly modeled regions

will not superimpose properly and thus will also contribute to the overall RMSD

value. Therefore, RMSD values should be supplemented with local structural

comparisons, including, for example, the numbers of correct base stackings and of

correct Watson–Crick base pairs and, especially for 3D architectures, the number of

non-Watson–Crick pairs, correct both with respect to pairing partners and base-pair

types (Leontis and Westhof 2001). For a summary of the types of non-Watson–Crick

base pairs, see the Appendix of this volume. We stress the importance of predicting

the correct non-WC pairings as well as the correct base stackings, both of which are

key because there is no three-dimensional architecture without non-Watson–Crick

pairs and additional stackings between pairs. While a simple mapping of the 2D

structure into a 3D structure does lead to a three-dimensional fold, such a fold will

lack the additional stackings or RNA–RNA contacts that are characteristic of the

complete 3D architecture. In short, correct predictions imply correct choices of new

base stackings between single-stranded nucleotides and helices as well as new long-

range base-pair contacts. For these reasons, two new metrics particularly suitable to

RNA were introduced: the deformation index and the deformation profile (Parisien

et al. 2009). The deformation index monitors the fidelity of the interaction network

and encompasses base-stacking and base-pairing interactions within the target struc-

ture. The deformation profile highlights dissimilarities between structures at the

nucleotide scale for both intradomain and interdomain interactions. These tools

demonstrate that there is little correlation between RMSD and interaction network

fidelity. To improve force fields or modeling approaches, it is mandatory to assess the
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origins of the errors. The deformation profile is a very useful tool for identifying the

origins of incorrect modeling decisions.

2.5.2 Necessity for Objective Evaluation of Modeling Efforts:
RNA–CASP

Structure prediction methods for proteins were boosted and consolidated by the

CASP project (Critical Assessment of techniques for protein Structure Prediction),

a systematic and worldwide evaluation of the predictions of new structures, prior to

their publication (Kryshtafovych et al. 2005; Moult et al. 2009). CASP has proven

extremely useful, productive, and constructive for benchmarking the progress made

in the generation of new ideas and the objective assessment of the newly developed

techniques. We believe that setting up a similar process will prove very healthy for

the RNA structure-modeling field. To do so, several hurdles need to be overcome.

In the case of RNA prediction, two levels would have to be distinguished, namely,

the prediction of secondary structure and the modeling of 3D (tertiary) structure.

The main issue, however, is how to establish efficient communication between

research groups that determine RNA structures, whether at the secondary or tertiary

structure levels, and research groups that predict RNA structures, so the latter can

register their predictions before the structures are published. Clearly, despite the

amazing advances in all aspects of the production of 3D RNA structures by X-ray

crystallographic, NMR, or cryo-EM methods, the number of new structures pro-

duced per year remains rather low. The proposed process would follow these lines:

(1) A structural group working on a new RNA structure (X-ray, NMR, chemical

probing, cryoelectron microscopy, or mass spectroscopy) makes known their will-

ingness to “play the game.” (2) The group sends the sequence of the RNA under

investigation to the coordinator. (3) The coordinator, without disclosing the identity

of the experimental laboratory or the function and origin of the RNA, distributes the

sequence to the theoreticians ready to tackle the challenge. Each theoretical group

must agree not to disclose the sequence or distribute it further or to disclose its own

progress or results in any fashion before publication of the structure by the experi-

mental group. (4) The deadline for submitting structure predictions to the coordi-

nator is agreed upon at the outset and generally will coincide with the date the

experimental group submits their structures for publication. (5) During a special

meeting, the coordinator discloses the theoretical results, and they are compared

with the published experimental structures. (6) Special guidelines and rules for the

comparisons will be agreed upon before the writing and publication of the analysis.

Several laboratories dedicated to RNA bioinformatics around the world have

expressed their keen interest to participate in such regularly held contests. The

success and real progress generated by CASP in protein structure prediction should

encourage us all to pursue this endeavor in the form of an ongoing RNA–CASP

process. A first test of RNA–CASP was initiated at the end of 2010 and is now in the

process of being published (Cruz et al. 2012).
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2.6 Complications Limiting Modeling Approaches

Biological reality is complicated, and the applicability of physicochemical

approaches based fundamentally on assumptions of thermodynamic equilibrium

should always be properly evaluated as part of the theoretical modeling process.

First, RNA molecules begin folding almost immediately as they are transcribed

(cotranscriptional folding) so the issue of kinetic vs. equilibrium control in forma-

tion of biologically relevant structures is always a real one (Cruz and Westhof

2009). When the first structure to form is not the biologically relevant one,

chaperone molecules are observed to play additional important roles. RNA

molecules rarely act alone; on the contrary, they almost always act by binding to

other RNA molecules or to proteins, and very frequently they bind to both types of

macromolecules, if not also to small molecules.

An especially complicated problem is that of “induced fit,” which occurs when

the conformation adopted by an RNA molecule in isolation is not identical to that

found in a complex with a small molecule ligand, antibiotic, or another RNA or a

protein (Williamson 2000). Even small ligands, like hydrated magnesium ions, are

difficult to treat in an appropriate fashion. Magnesium ions are especially difficult

to treat when they bind, not as outer-sphere complexes (with a full share of

coordinated water molecules), but instead as an inner-sphere complexes, with the

loss of one or more water molecules and direct coordination to the RNA, generally

in a state different from the original magnesium-free ion state (see Chapter 11 by

P. Auffinger). Treating induced fit, at minimum, requires that the full dynamics of

an RNA fragment be known in order to be able to select the proper conformation

binding a given ligand. And it is not at all proven that the range of conformations

accessible by the usual methods of molecular dynamics simulations, for example,

actually covers the states obtained in the presence of the ligand or protein. Thus,

one can study the dynamics of the A-site of the ribosome alone or in complex with

an antibiotic (because crystal structures exist for all those different states), but the

docking of an antibiotic to the A-site starting from an “empty state” (which is not

the same as the state of the bound complex minus the ligand) has not been achieved

yet (Moitessier et al. 2006).

2.7 Challenges for the Future: Dealing with Massive Data

Streams and Connecting to Biology

Several main questions of great potential for biology continue to be actively

pursued, and yet we have barely scratched the surface. One is the use of modeling

predictions, firstly for searching noncoding RNAs in genomes and secondly for

choosing among genomic regions those that are susceptible to fold into architec-

tural domains or fragments (e.g., as riboswitches do). Another major question is the

prediction of protein-binding sites along RNA sequences. Some consensus binding
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sequences are known, but in most cases, only knowledge of the RNA 3D fold allows

the full understanding of the binding surface and RNA–protein contacts.

2.8 Conclusion

For modeling to be relevant to twenty-first century biological research, data

pipelines need to be developed, maintained, and intelligently monitored to deal

with the massive data streams produced by modern high-throughput sequencing

methods. This means aiming for full automaticity at all steps of the computations.

In this way, one should be able to link computational predictions with the experi-

mental high-throughput technologies being constantly developed and refined.

The establishment of such links between experimental and computational high-

throughput techniques will bring us closer to the establishment of complete “RNA

structuromes” for a given microbial or multicellular organism (Underwood et al.

2010; Weeks et al. 2011).
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Chapter 3

Methods for Predicting RNA Secondary

Structure

Kornelia Aigner, Fabian Dreßen, and Gerhard Steger

Abstract The formation of RNA structure is a hierarchical process: the secondary

structure builds up by thermodynamically favorable stacks of base pairs (helix

formation) and unfavorable loops (non-Watson–Crick base pairs; hairpin, internal,

and bulge loops; junctions). The tertiary structure folds on top of the thermody-

namically optimal or close-to-optimal secondary structure by formation of

pseudoknots, base triples, and/or stacking of helices. In this chapter, we will

concentrate on available algorithms and tools for calculating RNA secondary

structures as the basis for further prediction or experimental determination of higher

order structures. We give an introduction to the thermodynamic RNA folding

model and an overview of methods to predict thermodynamically optimal and

suboptimal secondary structures (with and without pseudoknots) for a single

RNA. Furthermore, we summarize methods that predict a common or consensus

structure for a set of homologous RNAs; such methods take advantage of the fact

that the structures of noncoding RNAs are more conserved and more critical for

their biological function than their sequences.

3.1 Introduction

In this review, we will concentrate on software tools intended for prediction of

secondary structure(s) of a given RNA sequence. The first such computational tool

available was mfold (Zuker and Stiegler 1981); in the past 30 years, however, it was

improved and refined several times (Zuker 2003). It is still commonly used, but it is

now replaced by the UNAfold package (Markham and Zuker 2008), which includes

several features not available in mfold. The two major alternative packages of
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comparable or even greater scope are the Vienna RNA (Hofacker 2003) and the

RNAstructure (Reuter and Mathews 2010) packages. All rely on a simplifying

thermodynamic model of nearest-neighbor interaction; we will briefly summarize

this model in Sect. 3.2.1. In Sect. 3.2.2, we present some of the available tools.

Because all tools use the same basic thermodynamic model and associated

thermodynamic parameters, they “know” about special features of certain loops:

for example, parameters of thermodynamically extra-stable hairpin loops (for a

review, see Varani 1995) or small internal loops with non-Watson–Crick base pairs

are taken into account (e.g., see Xia et al. 1997), but no tool mentions such details in

its output. More complex arrangements, for example, stacking of helices in multi-

branched loops, are not taken into account, by and large, because of the increased

computational complexity and the lack of relevant parameters. Furthermore, all of

the abovementioned tools disregard pseudoknots, which are important structural

features in many noncoding as well as messenger RNAs. Thus, we will turn to the

prediction of pseudoknotted RNA structures in Sect. 3.3.

In those cases where a set of two or more homologous RNA sequences is

available, comparative sequence analysis methods can be applied to predict a

consensus structure common to all sequences in the set. Such approaches, which

we review in Sect. 3.4, are based on the observation that in many cases, RNA

secondary and tertiary structures are more conserved than primary sequence and are

of greater importance for the biological function.

We apologize to all authors whose methods and tools we have not mentioned in

this review for lack of space.

3.2 RNA Secondary Structure Prediction Based

on Thermodynamics

3.2.1 Overview of RNA Secondary Structure Formation

A secondary structure of an RNA sequence R consists of base stacks and loops. It is

defined—at least in the context of this chapter—as

R ¼ r1; r2; . . . ; rN;

with the indices 1 � i � N numbering the nucleotides ri 2 fA;U;G;Cg in the

50 ! 30 direction. Base pairs are denoted by ri:rj or, for short, i:j with 1 � i<j � N.
Allowed base pairs are cis-Watson–Crick (WC; A:U, U:A, G:C, C:G) and wobble

pairs (G:U, U:G). Formation of base pairs belonging to a given secondary structure

is restricted by

j � 4þ i; (3.1)
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which gives the minimum size of a hairpin loop, and the order of two base pairs i:j
and k:l has to satisfy

i ¼ k and j ¼ l; (3.2)

or

i< j< k< l; (3.3)

or

i< k< l< j: (3.4)

Condition (3.2) allows for neighboring base pairs but disallows any triple strand

formation; a base triple j:k:l would force i ¼ k and j 6¼ l. Condition (3.3) allows for
formation of several hairpin loops in a structure. Condition (3.4) explicitly

disallows “tertiary” interactions; such interactions do, in fact, occur in many

RNAs, for example, in pseudoknots (see Sect. 3.3).

Structure formation—from an unfolded, random coil structure, C, into the folded

structure, S—is a standard equilibrium reaction with a temperature-dependent

equilibrium constant, K:

C Ð S;

K¼ S½ �
C½ � ;

DG0
T ¼ �RT lnK ¼ DH0 � T � DS0:

At the denaturation temperature Tm ¼ DH0=DS0 (melting temperature or mid-

point of transition), the folded structure S has the same concentration as the unfolded

structure (K ¼ 1;DG0
Tm

¼ 0). This is only true if the structure S denatures in an all-

or-none transition. In most cases, however, structural rearrangements and/or partial

denaturation take place prior to complete denaturation, as temperature is increased.

The number of possible secondary structures of a single sequence grows expo-

nentially ( � 1:8N) with the sequence length N (Waterman 1995). Accordingly, all

possible structures Si of a single sequence coexist in solution with concentrations

dependent on their free energies DG0ðSiÞ; that is, each structure is present as a

fraction given by (3.5):

fSi ¼ exp
�DG0

TðSiÞ
RT

� �
=Q: (3.5)

The partition function, Q, for the ensemble of all possible structures, is given

by (3.6):

Q ¼
X

all structures Si

exp
�DG0

TðSiÞ
RT

� �
: (3.6)
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The structure of lowest free energy is called the optimal structure or structure of

minimum free energy (mfe). It is possible for a single sequence to fold into quite

different structures with nearly identical energies. This is of special biological

relevance for RNA switches (Garst and Batey 2009; Nagel and Pleij 2002). Thus,

one should not assume that an RNA folds into a single, static structure.

The free energy DG0
T of a single structure S is calculated as a sum over the free

energy contributions (enthalpy DH0 and entropy DS0) of all structural elements i
and j of S at temperature T:

DG0
T ¼

X
i

DH0
stack � TD S0stack

� �þX
j

DH0
loop � TD S0loop

� �
: (3.7)

In this calculation, a nearest-neighbor model with base-pair stacking and loop

formation is assumed to be sufficient. Energetic contributions of adjacent base pairs

are favorable (DG0<0) due to their stacking on top of each other to form regular

helices. Formation of loops is often but not necessarily unfavorable (DG0>0); exact

values depend on loop type, nucleotides neighboring the loop-closing base pair(s), as

well as on the exact sequence of the loop and whether the loop nucleotides form a

stable, structured motif. Loop types are classified according to the number of loop-

closing base pair(s): a single base pair closes hairpin loops, two base pairs close bulge

loops (with no nucleotides in one strand) and interior loops (with symmetric or

asymmetric numbers of nominally unpaired nucleotides in both strands), and three

or more base pairs close multiloops (also called bifurcations or junctions). Note that

for a given interior loop of n nucleotides, there are up to 6� 6� n4 different sequence
combinations with possibly different energetic contributions, when taking into

account the six possibilities for each of the closing base pairs. The parameter set

measured by the group of D. Turner is used almost universally (Mathews et al. 1999,

2004; Xia et al. 1998). Parameters are known only within certain error limits; because

these errors are smallest near T ¼ 37	C, mostly DG0
37	C values are reported.

A loop should not be thought of as a floppy structural element: in many cases,

loop nucleotides form distinct structures due to stacking and/or non-Watson–Crick

(non-WC; Leontis et al. 2002; Stombaugh et al. 2009) interactions with other loop

nucleotides. Famous examples are loop E of eukaryotic 5S rRNA and the multiloop

of tRNA. Eukaryal loop E, which is the same as the sarcin/ricin loop, is an

asymmetric internal loop of four and five bases in its parts; all nucleotides are

involved in non-WC interactions including one triple-base interaction (Wimberly

et al. 1993). In tRNA, stacking of multiloop-closing base pairs across the multiloop

is a major energetic contribution to the stability of the cloverleaf and is critical for

formation of the tRNA tertiary structure.

Compensation of the negatively charged phosphate backbone of nucleic acids by

positively charged counter ions M+ leads to stabilization of structural elements

according to

Cþ n �Mþ Ð S

K ¼ S½ �
C½ � � M½ �n :

(3.8)
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From this expression, a logarithmic dependence between denaturation tempera-

ture Tm and salt concentration (ionic strength) follows

dTm
dln M½ � ¼ �n

RT2
m

DH0
: (3.9)

All thermodynamic parameters for RNA structure formation were determined in

1 M NaCl. This is not far from the ionic conditions in cells, except when specific

interactions with divalent cations play a role (Draper 2008; Ramesh and Winkler

2010). If necessary, however, values for the ionic strength dependence of a structure

or a structural element may be found in the literature, including functions for G:C-

content of the RNA, or for dependence upon various types of buffers (e.g., TRIS/

borate) and cosolvents like formamide or urea (Klump 1977; Michov 1986;

McConaughy et al. 1969; Record and Lohman 1978; Riesner and Steger 1990;

Sadhu and Gedamu 1987; Shelton et al. 1999; Steger et al. 1980).

3.2.2 Tools for RNA Secondary Structure Prediction Based
on Thermodynamics

Most users seek to predict the mfe structure for a given (single) sequence. For the

answer, the most widely used tools (see Table 3.1) rely on (3.7); that is, their basic

algorithm solves the optimization problem of finding the mfe structure of a given

single sequence in the haystack of thermodynamically possible secondary

structures via dynamic programming (Bellman and Kalaba 1960; Nussinov et al.

1978; Zuker and Stiegler 1981). The computational effort grows with the cube of

the sequence length N, that is, OðN3Þ.
All tools except UNAfold rely on the same recent set of thermodynamic

parameters, which only allows for calculation of DG0
37	C; UNAfold uses a parame-

ter set of enthalpy and entropy values that makes possible calculations at any

relevant temperature.

Knowledge of the mfe structure might not be sufficient due to several reasons:

• Minor errors in the thermodynamic parameter set can lead to incorrect prediction of

the mfe structure; nonetheless, the “true” mfe structure may be one of the subopti-

mal structures close in energy to the calculated mfe structure. While a further

improvement of the accuracies of experimentally determined parameters is

unlikely, improvements in secondary structure prediction by statistical evaluations

of known structures look promising (Andronescu et al. 2007; Wu et al. 2009).

• Quite often, the mfe structure only accounts for a very tiny fraction of all possible

structures; that is, a cluster of suboptimal structures, which are nearly identical to

each other but different from the mfe structure, might account for a much higher

fraction of all possible structures and thus be of higher (biological) relevance.

• Usually, it is assumed that structure formation is a hierarchical process: the tertiary

structure builds on top of the most favorable secondary structure(s) (Brion and
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Westhof 1997; Cho et al. 2009; Tinoco and Bustamante 1999). But as long as the

free energy of the RNA decreases upon tertiary structure formation, this structure

may also able to fold starting from suboptimal secondary structures.

• Site-specific binding of multivalent ions, small molecules, or macromolecules,

including proteins or RNAs, might influence the process of structure formation.

Note, however, that the thermodynamic stability of even short RNA helices is

larger than that of most proteins.

Consequently, the programs of Table 3.1, also predict individual, suboptimal

secondary structures (like mfold, which is able to generate the thermodynamically

best structure for each admissible base pair) or, alternatively, predict the probability

of any base pair possible for a certain sequence by using (3.5) and (3.6) (like

RNAfold); the prediction is usually represented as a dot plot (see Fig. 3.1b). This

base-pairing probability matrix is easily converted to a plot showing the probability

of each nucleotide to be paired or unpaired; this allows, for example, for compari-

son to chemical or enzymatic mapping data. In case certain bases are experimen-

tally known to pair or to remain unpaired, mfold as well as RNAfold allow

imposition of the corresponding constraints, so that the predicted structures and

the dot plot satisfy the known constraints (see help and man pages of mfold and

RNAfold, respectively, and Steger 2004).

Enumeration of all secondary structures is possible (Waterman and Byers 1985;

Wuchty et al. 1999), but one must be aware of the huge number of structures that

result, many of which are very similar to each other. In many cases, the algorithm

implemented in RNAshapes (see Table 3.1) is more useful: it classifies all

Table 3.1 Tools for prediction of RNA secondary structure

Package name Addressa Reference

UNAfold C: dinamelt.bioinfo.rpi.edu/download.phpb,c,d Markham and Zuker (2008)

W: dinamelt.bioinfo.rpi.edu/ Markham and Zuker (2005)

Mfolde C: mfold.bioinfo.rpi.edu/download/b,c Zuker (1989)

W: mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi Zuker (2003)

Vienna RNA C: www.tbi.univie.ac.at/~ivo/RNA/b,d Hofacker et al. (1994)

W: rna.tbi.univie.ac.at/ Hofacker (2003)

RNAstructure C: rna.urmc.rochester.edu/RNAstructure.htmlb,c,d Reuter and Mathews (2010)

RNAshapes C: bibiserv.techfak.uni-bielefeld.de/rnashapes/b,c,d Steffen et al. (2006)

W: bibiserv.techfak.uni-bielefeld.de/rnashapes/ Giegerich et al. (2004)

CentroidFold C: http://www.ncrna.org/centroidfold/ Hamada et al. (2009)

W: http://www.ncrna.org/centroidfold/

Sfold W: http://sfold.wadsworth.org/srna.pl Chan et al. (2005)

The Vienna RNA, RNAstructure, and UNAfold packages include, for example, programs for

prediction of the mfe structure and for partition function folding of a single sequence and for

bimolecular structure prediction
aC, source code and binary are available at given address; W, address of Web service
bUnix, Linux
cMacOSX
dWindows
eMfold is replaced by UNAfold
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structures into “abstract shapes” and predicts a “shape representative” (shrep) of

each “shape class”; shreps differ significantly from each other (for a deeper insight

into these terms see Giegerich et al. 2004). For example, the sequence shown in

Fig. 3.1a is able to fold into two different shape classes; one is a stem loop and the

other is a Y-shaped structure.

An alternative approach is to extract from the partition function the structure of

“maximum expected accuracy” by maximizing the sum of the probabilities of base-

paired (BP) and single-stranded (SS) nucleotides:

X
ði;jÞ2BP

g � 2pbpði; jÞ þ
X
k2SS

pSSðkÞ: (3.10)

Equation 3.10 indicates that the pairing probabilities can be weighted by a factor g.
This approach, including prediction of suboptimal structures, is implemented in

MaxExpect (Lu et al. 2009), which is part of RNAstructure (see Table 3.1).

MaxExpect was shown to improve the percentage of predicted pairs that are in

known structures to the same level of sensitivity as free energy minimization

(Lu et al. 2009). Similar approaches are implemented in CentroidFold and Sfold

(see Table 3.1).
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Fig. 3.1 Predicted secondary structures of an artificial RNA. (a) Output of RNAshapes: structures

that are optimal in their shape class, from left to right: free energy (in kcal/mol at 37	C), probability of
structure, structure in bracket-dot representation, probability of all structures in that shape class, and
shape representation. (b) Dot plot produced byRNAfold: the mfe structure is represented in the lower
left triangle and the probability of all possible base pairs in the top right triangle; the area of each dot is
proportional to the pairing probability of this base pair. (c) Planar drawings of the mfe (left) and the
optimal Y-shaped structure by ConStruct. The second line in (a), the dots in the lower left triangle of
(b), and the left drawing in (c) represent the identical structure (with minimum of free energy); the

third line in (a) and the right drawing in (c) represent also the identical, suboptimal structure, which

consists of base pairs shown in the upper right triangle of (b)
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3.3 Pseudoknots

A pseudoknot is an RNA structure characterized by WC base pairing between

nucleotides in a loop with complementary residues outside the loop. In contrast to

proteins (Taylor 2007), no knots are known in RNA. Pseudoknots are a tertiary

structural motif that occurs widely in RNA. They were first detected nearly 30 years

ago as part of tRNA-like structures in plant viral RNAs (Rietveld et al. 1982). Some

pseudoknots play a role in ribosomal frameshifting, while others are essential for

the three-dimensional topology (and function) of many structured RNAs. In the

following, we will give a description of pseudoknots and sequence constraints on

their biophysical stability.

Databases on structural, functional, and sequence data related to RNA

pseudoknots are maintained by PseudoBase (http://www.ekevanbatenburg.nl/

PKBASE/PKBABOUT.HTML; van Batenburg et al. 2001) and PseudoBase++

(http://pseudobaseplus.utep.edu/; Taufer et al. 2008).

3.3.1 Conformation

A classical or H-type (hairpin-type) pseudoknot consists of two helical regions

named S1 and S2 (or H1 and H2) and three loop regions L1, L2, and L3 (see

Fig. 3.2). In sequence, the serial arrangement of these elements is S1, L1, S2, L2,

S10 (complement of S1), L3, and S20 (complement of S2). The crossing order

S1<S2<S10<S20 fulfills the definition of base pairs in a tertiary structure [see

Sect. 3.2.1, (3.4)]. In many cases, the loop region L2 is absent and the two helices

coaxially stack as shown in Fig. 3.2.

In the classical pseudoknot, the loops L1–L3 contain only unpaired nucleotides.

There are, however, more complicated pseudoknots, in which these regions contain

structured parts, including non-WC pairs and base triples; an example of a double

pseudoknot with a stem-loop structure in L3 is shown in Fig. 3.3.

In the absence of L2, the helices S1 and S2 generally stack coaxially forming a

structure closely resembling an uninterrupted A-form helix. Consequently, the loops

L1 and L3 are not equivalent: L1 crosses the deep (major) groove and L3 the shallow

(minor) groove of the double helix (see Fig. 3.2 right and Fig. 3.4 left). In a WC base

pair, the distance between the phosphates (P00 and P0 in Fig. 3.4) is about 1.7 nm; this

distance can be bridged, for example, by a minimum of three nucleotides in a hairpin

loop. In anRNAdouble helix, theminimal distance between a given phosphate on one

strand and a phosphate on the opposite strand is about 1 nm when crossing the deep

groove (e.g., P00 to P�7; see Fig. 3.4). The smallest distance bridging the shallow

groove is about 1.1 nm, the distance between P0
0 and P2 or P3. These distances fit well

to the sizes of small pseudoknots with coaxial helix stacking: 3–7 base pairs in stem

regions bridged by loops of at least 2 nucleotides. A loop L2 and smaller L1 and/or L3

tend to introduce a bend in between the two stems. The shallow andwideminor groove
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of S1 allows for tertiary contacts, triple pairs, and hydrogen bonds between

nucleotides of S1 with those of L3 (Batey et al. 1999; Nissen et al. 2001).

3.3.2 Thermodynamic Parameters for Pseudoknots

Our knowledge of thermodynamic parameters for pseudoknot formation is low.

According to the end-to-end distances of a stem (see P–P distances in Fig. 3.4),

energies are neither linearly dependent on loop length nor on stem length. Experimen-

tal determination of the parameters is quite complex due to the huge number of feasible

pseudoknots with variable combinations of stem and loop lengths and sequence, and

1
1
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3
4
5
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Fig. 3.3 Example of a double pseudoknot with base pairs in loop regions. As shown in lines 2 and

3, the first pseudoknot consists of helices S1 (nucleotides 1–4 paired to 16–13) and S2 (6–10 with

34–30) with loops L1 (nucleotide 5), L2 (11–12), and L3 (17–29). As shown in lines 4 and 5, the

second pseudoknot consists of S2 (6–10 with 34–30) and S3 (25–29 with 72–68) with L1 (11–24)

and L3 (35–67). Line 6 summarizes both pseudoknots and shows the additional stem-loop in loop

region 35–67. Example modified from PseudoBase PKB173 (van Batenburg et al. 2001)
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Fig. 3.2 Principle of RNA pseudoknotting. Top left: The sequence consists of complementary

regions S1 and S10 (black boxes) and S2 and S20 (gray boxes) with intervening loop regions L1, L2,
and L3; in this example, L2 is absent. Bottom left: In this circular graph, the two helical regions S1
and S2 lead to crossing lines connecting the base pairs. Bottom right: Formation of a pseudoknot is

sketched as a series of steps consisting of formation of a hairpin with helix S2 and hairpin loop S10

and L2, formation of the second helix S1, and finally a rotation of one of the helices by 180	 which
leads to coaxial stacking of the two helices. Modified from Pleij et al. (1985)
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the difficulties inherent in evaluating parameters from overlapping and/or coupled

unfolding transitions by optical melting or calorimetry (Gluick and Draper 1994;

Gultyaev et al. 1999; Nixon and Giedroc 1998, 2000; Qiu et al. 1996; Soto et al.

2007; Theimer and Giedroc 1999, 2000; Theimer et al. 1998; Wyatt et al. 1990).

The total free energy of a pseudoknot is assumed to be the sum over free energies

of stems, coaxial stacking, loop lengths and sequences, tertiary interactions, and

assembling (Liu et al. 2010):

DG0
pseudoknot ¼

X
DG0

stems þ DG0
coaxial stacking � T

X
DS0loops þ DG0

loop sequences

þ DG0
tertiary interactions þ DG0

assemble:

DG0
stems and DG0

coaxial stacking can be calculated with experimentally determined

nearest-neighbor parameters (Xia et al. 1998) and coaxial stacking parameters

(Walter et al. 1994), respectively. Several computational models have been

established for the remaining parameters (Cao and Chen 2006, 2009; Dirks and

Pierce 2003, 2004; Gultyaev et al. 1999; Rivas and Eddy 1999). The models

particularly determine the loop length dependence of DS0loops. Taking into account

volume exclusion effects of the loop strands and considering the loop length with
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Fig. 3.4 Distance constraints on pseudoknots. Shown are the minimum distances between a

certain phosphate P0
0 to phosphates P located opposite on the other strand. Indices are negative

for phosphates located in 50 direction of the opposing strand and positive in 30 direction. Left:
Three-dimensional model of a helix. Top: Two-dimensional model of a helix; the arrows symbol-

ize the distance from P0
0 to the corresponding phosphate. Bottom: A graph with distances from P0
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to phosphates in the opposing strand. According to Pleij et al. (1985)
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respect to the length of the associated stem resulted in improvement of the models

(statistical polymer model; Cao and Chen 2006, 2009). Details of DG0
loop sequences are

currently neither determined experimentally nor does a computational model exist.

This energy does, however, contribute to the total energy, even if the loop sequence

is not involved in tertiary interactions, as demonstrated experimentally by Liu et al.

(2010). DG0
tertiary interactions accounts for possible interactions between loops and

stems; it is currently neither determined experimentally nor does a computational

model exist. In some cases, tertiary interactions are more favorable than the

maximum number of canonical base pairs (Liu et al. 2010). DG0
assemble is assessed

to account for the entropy change as the two subunits (the two stems with their

associated loops) are assembled into the pseudoknot (Cao and Chen 2006).

3.3.3 Ionic Strength Dependence of Pseudoknots

For their formation, most pseudoknots need a relatively high ionic strength includ-

ing the presence of divalent cations like Mg2+ (Gluick et al. 1997). Considering the

structure of a simple pseudoknot, as depicted in Fig. 3.2 right, the reason for this is

quite obvious: the stabilizing interactions realized upon formation of stems 1 and

2 and stacking of stem 1 on stem 2 are partly counteracted by the necessary loop

formation and the close approach of four negatively charged phosphate backbones.

To compensate for this increased charge density, “diffuse” (fully hydrated) Mg2+

ions seem generally to be sufficient; binding of dehydrated ions (inner-sphere

complexes) to specific positions is not necessary (Soto et al. 2007).

3.3.4 Prediction Methods for Pseudoknots

None of the tools mentioned in Sect. 3.2.2 are capable of predicting pseudoknots or

any form of tertiary interactions due to the restrictions in their dynamic programming

algorithms. Expanding these algorithms to general pseudoknot prediction is difficult;

actually, Lyngsø and Pedersen (2000) have proven that the general problem of

predicting RNA secondary structures containing pseudoknots is NP complete for a

large class of reasonable models of pseudoknots. Thus, several heuristic approaches

were developed. In the following, we will mention several of the recent tools able to

detect pseudoknots and other tertiary interactions in structure predictions; an incom-

plete list of available tools is summarized in Table 3.2.

PKNOTS, developed by Rivas and Eddy (1999), is the first dynamic programming

algorithm that finds optimal, pseudoknotted RNA structures. Due to its compu-

tational effort of OðN6Þ, its use is restricted to short sequences.

pknotsRG (Reeder and Giegerich 2004; Reeder et al. 2007) predicts the structure of

an RNA sequence, possibly containing pseudoknots. Energies of possible
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structures are calculated as sum of the energies of the two pseudoknot helices

and some not described loop folding energies. Suboptimal foldings up to a user-

defined energy threshold can be enumerated, and for large scale analysis, a fast

sliding window mode is available.

ILM (Ruan et al. 2004) combines dynamic programming (mainly maximizing

number of base pairs) and comparative information to find iteratively high-

scoring helices, adds them to the structure, and removes the corresponding

sequence segments from the sequence. Due to the removal step, there is no

restriction on the type of pseudoknot. The thermodynamic approach uses energy

parameters for helix stacking from the Vienna package.

Table 3.2 Tools for prediction of tertiary interactions

Name Addressa Effortb Reference

ConStruct C: http://www.biophys.uni-duesseldorf.

de/construct3/

Wilm et al. (2008b)

DotKnot W: http://dotknot.csse.uwa.edu.au Sperschneider and

Datta (2010)

HotKnots C: http://www.cs.ubc.ca/labs/beta/

Software/HotKnots

Ren et al. (2005)

W: http://www.rnasoft.ca/cgi-bin/RNAsoft/HotKnots/hotknots.pl

HPknotter W: http://bioalgorithm.life.nctu.edu.tw/HPKNOTTER/ Huang et al. (2005)

ILM C: http://www.cse.wustl.edu/~zhang/

projects/rna/ilm/
OðN3Þ � OðN4Þ Ruan et al. (2004)

W: http://cic.cs.wustl.edu/RNA/

KNetFold W: http://knetfold.abcc.ncifcrf.gov/ Oðn2Þc Bindewald and

Shapiro (2006)

KnotSeeker C: http://knotseeker.csse.uwa.edu.au/

download.html

Sperschneider and

Datta (2008)

W: http://knotseeker.csse.uwa.edu.au/

NUPACK W: http://nupack.org/ Oðn5Þ Dirks and Pierce

(2003)C: http://nupack.org/downloads

PKNOTS C: ftp://selab.janelia.org/pub/software/

pknots/
� OðN6Þ Rivas and Eddy

(1999)

pknotsRG C: http://bibiserv.techfak.uni-bielefeld.de/download/

tools/pknotsrg.html

Reeder et al. (2007)

W: http://bibiserv.techfak.uni-bielefeld.

de/pknotsrg
OðN4Þ Reeder and Giegerich

(2004)

PSTAG C: http://phmmts.dna.bio.keio.ac.jp/

pstag/download.html
Oðon4 þ mn5Þd Matsui et al. (2005)

W: http://phmmts.dna.bio.keio.ac.jp/

pstag/

vsfold5 W: http://www.rna.it-chiba.ac.jp/

~vsfold/vsfold5
OðN4:7Þ Dawson et al. (2007)

aW, address of Web service; C, code is available at given address
bComputing effort; N, length of sequence
cn, length of alignment
dn, length of unfolded pair of sequences; m, o, nodes on structure tree
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HotKnots (Ren et al. 2005) expands the idea of ILM by considering several

alternative secondary structures and returning a fixed number of suboptimal

folding scenarios. The program uses Turner parameters (Mathews et al. 1999;

Serra and Turner 1995) together with those of Dirks and Pierce (2004) and Cao

and Chen (2006) for pseudoknotted loops to determine the energy of a structure.

According to its authors, HotKnots outperforms STAR (Gultyaev 1991),

PKNOTS, pknotsRG, and ILM.

KnotSeeker was described by Sperschneider and Datta (2008) as capable of

detecting pseudoknots in long RNA sequences. The algorithm combines the

output of several known programs for prediction in a serial fashion. According to

the authors, KnotSeeker has higher sensitivity and specificity in detection of

pseudoknots than pknotsRG, ILM, and HPknotter (Huang et al. 2005).

DotKnot (Sperschneider and Datta 2010) predicts a wide class of pseudoknots

including bulged stems (not accessible for pknotsRG) by consulting probability

dot plots, from which probable stems are inferred. These are assembled to

compose pseudoknot candidates by employing bulge-loop and multiloop

dictionaries. After free energy calculations with one of three different energy

models, chosen according to the length of the interhelix loop, “reliable”

pseudoknots are retained. This approach also manages long sequences with

complex pseudoknotted structures.

The authors of each of the abovementioned programs tested their programs with

restricted datasets, and the programs are not benchmarked by an independent group.

However, new experimental results on free energies for specific pseudoknots from

Liu et al. (2010) show that (1) it is not sufficient to calculate pseudoknot energies

just by summing nearest-neighbor interactions within the component helices; (2)

conformational entropy parameters for loops give the best approximation to loop

entropies; (3) the lack of parameters for tertiary interactions is best compensated for

by building as many cisWC base pairs as possible, although crystal structures show

that these are sometimes replaced by favorable tertiary interactions.

3.4 Prediction of Consensus Structures

The accuracy of (mfe) secondary structure prediction for a single RNA sequence is

relatively low. This is due to several factors including simplifications in the

underlying model, uncertainties of the energy parameters (especially with stacking

in larger loops and junctions), ignorance of kinetic factors (which are of increasing

importance with increasing sequence length), and disregard of energy contribu-

tions of tertiary interactions. Values of accuracy for predicting correct base

pairs range from as low as (45 
 16)% up to (83 
 22)% mostly depending

on the tested sequence families (see Doshi et al. 2004; Mathews et al. 1999;

Wilm et al. 2006, 2008b). A formidable improvement in prediction accuracy

can be achieved, however, by using the additional information from sufficiently
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diverged homologous sequences. This approach is based on the fact that the

secondary and tertiary structure of a noncoding RNA changes more slowly than

the sequence during evolution. Mutations in base-paired regions are mainly

compensated by further mutations that retain the pairing scheme. Due to the

isostericity of all WC pairs (and other groups of non-WC pairs; see Leontis et al.

2002; Stombaugh et al. 2009), the structure common to homologous RNAs can

easily be conserved while their sequences might differ from each other to a large

extent.

The common structure for a set of homologous sequences is called the consensus

structure. To find it, one would like to perform simultaneously a sequence and

structure alignment, which has a prohibitive computational cost of OðN3mÞ for m
sequences of length N (Sankoff 1985). Hence, several simplifying and more

pragmatic approaches for consensus structure prediction have been developed

(see Table 3.3) that can be classified as follows (Gardner and Giegerich 2004):

1. Align the sequences first and then predict the structure common to the aligned

sequences (Bernhart et al. 2008; Bindewald and Shapiro 2006; Wilm et al.

2008b). For the primary alignment step, pure sequence alignment programs or

one of the sequence + structure alignment programs (see below) can be used.

Dynamic programming (Bernhart et al. 2008; Wilm et al. 2008b) (for secondary

structure prediction) or “maximum weighted matching” (for secondary structure

prediction including pseudoknots or base triples; Tabaska et al. 1998; Wilm et al.

2008b) might be used in the structure prediction step given the fixed alignment.

Several RNA sequence + structure editors are available (e.g., Griffiths-Jones

2004; Jossinet and Westhof 2005; Seibel et al. 2006; Wilm et al. 2008b) that

allow a user to refine the initial alignment.

2. Predict structures for all single sequences and then align these structures (Dalli

et al. 2006; H€ochsmann et al. 2004; Moretti et al. 2008; Xu et al. 2007).

3. Align and predict structures at the same time, using heuristics and/or restrict the

alignment to two sequences to lower the computing cost of Sankoff’s algorithm

(Bauer et al. 2007; Harmanci et al. 2007, 2008; Hofacker et al. 2004; Holmes

2005; Katoh and Toh 2008; Kiryu et al. 2007; Lindgreen et al. 2007; Perriquet

et al. 2003; Torarinsson et al. 2007; Will et al. 2007; Yao et al. 2005).

This separation of approaches should not to be taken too strictly; for example,

several of the Sankoff-like approaches first restrict the sequence + structure search

space by taking into account a sequence alignment and partition functions for the

individual sequences. Other approaches do also exist: for example, RNAcast

predicts an abstract shape common to all sequences (Reeder and Giegerich

2005), where each shape of an RNA molecule comprises a class of similar

structures and has a representative structure of minimal free energy within the

class. That is, RNAcast predicts a consensus structure but does not align the

sequences.

In general, all methods for consensus structure prediction outperform the single-

sequence methods, but several prerequisites have to be met:
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Table 3.3 Tools for prediction of RNA consensus secondary structure

Name Addressa Reference

CARNAC C: http://bioinfo.lifl.fr/RNA/carnac/index.php Perriquet et al. (2003)

W: http://bioinfo.lifl.fr/RNA/carnac/carnac.php Touzet and Perriquet

(2004)

CMfinder C: http://bio.cs.washington.edu/yzizhen/CMfinder/ Yao et al. (2005)

W: http://wingless.cs.washington.edu/htbin-post/unrestricted/CMfinderWeb/

CMfinderInput.pl

Consan C: http://selab.janelia.org/software.html Eddy and Dowell (2006)

ConStruct C: http://www.biophys.uni-duesseldorf.de/

construct3/

Wilm et al. (2008b)

Dynalign C: http://rna.urmc.rochester.edu/dynalign.html Harmanci et al. (2007)

foldalignM C: http://foldalign.ku.dk/software/index.html Torarinsson et al. (2007)

KNetFold C: http://www-lmmb.ncifcrf.gov/~bshapiro/

downloader_v1/register.php

Bindewald and Shapiro

(2006)

W: http://knetfold.abcc.ncifcrf.gov/

LARA C: https://www.mi.fu-berlin.de/w/LiSA/ Bauer et al. (2007)

LocARNA C: http://www.bioinf.uni-freiburg.de/Software/

LocARNA/

Will et al. (2007)

MAFFT W: http://align.bmr.kyushu-u.ac.jp/mafft/online/

server/

Katoh and Toh (2008)

MASTR C: http://mastr.binf.ku.dk/ Lindgreen et al. (2007)

Murlet W: http://murlet.ncrna.org/murlet/murlet.html Kiryu et al. (2007)

MXSCARNA C: http://www.ncrna.org/software/mxscarna/

download/

Tabei et al. (2008)

W: http://mxscarna.ncrna.org/mxscarna/mxscarna.

html

PARTS C: http://rna.urmc.rochester.edu/ Harmanci et al. (2008)

Pfold W: http://www.daimi.au.dk/~compbio/rnafold/ Knudsen and Hein (2003)

PMcomp/

PMmulti

C: http://www.tbi.univie.ac.at/~ivo/RNA/PMcomp/ Hofacker et al. (2004)

W: http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl

R-Coffee C: http://www.tcoffee.org/Projects_home_page/

r_coffee_home_page.html

Wilm et al. (2008a)

W: http://www.tcoffee.org/ Moretti et al. (2008)

RNAalifold C: http://www.tbi.univie.ac.at/~ivo/RNA/ Hofacker et al. (2002)

W: http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.

cgi

Bernhart et al. (2008)

RNAcast C: http://bibiserv.techfak.uni-bielefeld.de/rnacast/ Reeder and Giegerich

(2005)W: http://bibiserv.techfak.uni-bielefeld.de/

rnashapes/submission.html

RNAforester C: http://bibiserv.techfak.uni-bielefeld.de/

rnaforester/

H€ochsmann et al. (2004)

W: http://bibiserv.techfak.uni-bielefeld.de/

rnaforester/submission.html

RNAmine W: http://rnamine.ncrna.org/rnamine/ Hamada et al. (2006)

RNASampler C: http://ural.wustl.edu/~xingxu/RNASampler/

index.html

Xu et al. (2007)

SCARNA W: http://www.scarna.org/scarna/ Tabei et al. (2006)

SimulFold C: http://www.cs.ubc.ca/~irmtraud/simulfold/ Meyer and Miklós (2007)

StemLoc C: http://biowiki.org/StemLoc Holmes (2005)

(continued)
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http://bioinfo.lifl.fr/RNA/carnac/index.php
http://bioinfo.lifl.fr/RNA/carnac/carnac.php
http://bio.cs.washington.edu/yzizhen/CMfinder/
http://wingless.cs.washington.edu/htbin-post/unrestricted/CMfinderWeb/CMfinderInput.pl
http://wingless.cs.washington.edu/htbin-post/unrestricted/CMfinderWeb/CMfinderInput.pl
http://selab.janelia.org/software.html
http://biophys.uni-duesseldorf.de/construct/
http://biophys.uni-duesseldorf.de/construct/
http://rna.urmc.rochester.edu/dynalign.html
http://foldalign.ku.dk/software/index.html
http://www-lmmb.ncifcrf.gov/~bshapiro/downloader_v1/register.php
http://www-lmmb.ncifcrf.gov/~bshapiro/downloader_v1/register.php
http://knetfold.abcc.ncifcrf.gov/
https://www.mi.fu-berlin.de/w/LiSA/
http://www.bioinf.uni-freiburg.de/Software/LocARNA/
http://www.bioinf.uni-freiburg.de/Software/LocARNA/
http://align.bmr.kyushu-u.ac.jp/mafft/online/server/
http://align.bmr.kyushu-u.ac.jp/mafft/online/server/
http://mastr.binf.ku.dk/
http://murlet.ncrna.org/murlet/murlet.html
http://www.ncrna.org/software/mxscarna/download/
http://www.ncrna.org/software/mxscarna/download/
http://mxscarna.ncrna.org/mxscarna/mxscarna.html
http://mxscarna.ncrna.org/mxscarna/mxscarna.html
http://rna.urmc.rochester.edu/
http://www.daimi.au.dk/~compbio/rnafold/
http://www.tbi.univie.ac.at/~ivo/RNA/PMcomp/
http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl
http://www.tcoffee.org/Projects_home_page/r_coffee_home_page.html
http://www.tcoffee.org/Projects_home_page/r_coffee_home_page.html
http://www.tcoffee.org/
http://www.tbi.univie.ac.at/~ivo/RNA/
http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi
http://bibiserv.techfak.uni-bielefeld.de/rnacast/
http://bibiserv.techfak.uni-bielefeld.de/rnashapes/submission.html
http://bibiserv.techfak.uni-bielefeld.de/rnashapes/submission.html
http://bibiserv.techfak.uni-bielefeld.de/rnaforester/
http://bibiserv.techfak.uni-bielefeld.de/rnaforester/
http://bibiserv.techfak.uni-bielefeld.de/rnaforester/submission.html
http://bibiserv.techfak.uni-bielefeld.de/rnaforester/submission.html
http://rnamine.ncrna.org/rnamine/
http://ural.wustl.edu/~xingxu/RNASampler/index.html
http://ural.wustl.edu/~xingxu/RNASampler/index.html
http://www.scarna.org/scarna/
http://www.cs.ubc.ca/~irmtraud/simulfold/
http://biowiki.org/StemLoc


• The performance of most (iterative) programs improves with an increasing

number of input sequences and decreasing identities of sequences. Optimal

values might be five sequences with an average pairwise sequence identity

(APSI) of 55–70%.

• Only the structure alignment programs (approach 3 or RNAcast) might give

reasonable results for a sequence set with an APSI below 55%, but most of these

programs are very demanding in computer resources.

• While even a single compensating base-pair change might hint to a certain

structure, a pure statistical analysis [e.g., via information theory (Chiu and

Kolodziejczak 1991; Wilm et al. 2008b); for other methods see Gruber et al.

(2008)] needs more than ten sequences and still does not reach the accuracy of

thermodynamic-based approaches.

3.5 Conclusions

In concluding this review, we propose the following approach for constructing an

RNA alignment for consensus structure prediction:

1. We assume at least one and probably no more than a few closely related

sequences are known.

2. First, use pure sequence search methods (like BLAST) to find more homologues

of the sequence(s) from step 1. Due to the use of pure sequence search, the found
homologues will be closely related to the already known sequences. For an

overview and benchmark of selected RNA search tools, see Freyhult et al. (2007).

3. Next, create an alignment of the sequences and a consensus structure using an

alignment program appropriate for the lengths and number of sequences; for

example, MAFFT (in mode Q-INS-i; Katoh and Toh 2008) or StrAl (Dalli et al.

2006) accepts more and longer sequences than StemLoc (Holmes 2005) or

LocARNA (Will et al. 2007). This preliminary consensus structure should be

checked for consistency (and refined accordingly) by means of ConStruct (Wilm

et al. 2008b) or RNAalifold (Bernhart et al. 2008).

4. Use the preliminary consensus structure to create either a pattern (see, e.g.,

Dsouza et al. 1997; Gautheret and Lambert 2001; Gr€af et al. 2006; Macke et al.

2001; Mosig et al. 2009) or a covariance model (see Klein and Eddy 2003;

Table 3.3 (continued)

Name Addressa Reference

StrAl C: http://www.biophys.uni-duesseldorf.de/stral/

about.php

Dalli et al. (2006)

W: http://www.biophys.uni-duesseldorf.de/stral/

advancedForm.php

WAR W: http://genome.ku.dk/resources/war/ Torarinsson and

Lindgreen (2008)
aC, source code is available at given address; W, address of Web service
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Nawrocki and Eddy 2007). Use either model to search more specifically for

further members of the RNA group under inspection. Alternatively, reiterate

from step 2.

5. Check the refined model for consistency with ConStruct or RNAalifold using

thermodynamics and covariation analysis. If this gives new information—especially

in terms of tertiary interactions and/or base triples—reiterate from step 4, otherwise,

this final model could be refined further by verification from wet lab experiments.

If additional experimental data is available, for example, from chemical or

enzymatic mapping (Ehresmann et al. 1987; Tullius and Greenbaum 2005), the

initial structure prediction by RNAfold or mfold can accordingly be constrained

and thus incorporated into the model (Deigan et al. 2009). If in addition information

on the three-dimensional structure of one of the sequences from the set is available

from X-ray or NMR analysis, the use of an editor like S2S (Jossinet and Westhof

2005) is advantageous.
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Chapter 4

Why Can’t We Predict RNA Structure

At Atomic Resolution?

Parin Sripakdeevong, Kyle Beauchamp, and Rhiju Das

Abstract No existing algorithm can start with arbitrary RNA sequences and return

the precise three-dimensional structures that ensure their biological function. This

chapter outlines current algorithms for automated RNA structure prediction

(including our own FARNA–FARFAR), highlights their successes, and dissects

their limitations, using a tetraloop and the sarcin/ricin motif as examples. The

barriers to future advances are considered in light of three particular challenges:

improving computational sampling, reducing reliance on experimentally solved

structures, and avoiding coarse-grained representations of atomic-level interactions.

To help meet these challenges and better understand the current state of the field, we

propose an ongoing community-wide CASP-style experiment for evaluating the

performance of current structure prediction algorithms.

4.1 RNA as a Model System

Predicting the three-dimensional structures of biopolymers from their primary

sequence remains an unsolved but foundational problem in theoretical biophysics.

This problem lies at the frontier of modern biological inquiry, encompassing

questions from folding of individual protein and RNA domains to the fiber assem-

bly of histone-compacted DNA genomes. However, a predictive, atomic-resolution
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understanding of these three-dimensional processes is presently out of reach.

Attaining such an understanding will likely require simple starting points, and we

view the folding of small RNA systems as the most tractable of these unsolved

puzzles.

Beyond validating and refining our physical understanding of biomolecule

behavior, a general algorithm to model RNA structure would have immediate

practical implications. Riboswitches, ribozymes, and new classes of functional

noncoding RNAs are being discovered rapidly, through RNA secondary structure

prediction algorithms, bioinformatic tools, and a large suite of experimental

approaches. Accurate and fast tools for predicting three-dimensional structure

would not only accelerate these discoveries but also lead to richer experimentally

testable hypotheses for how these molecules sense the cellular state and bind recogni-

tion partners. Furthermore, accurate three-dimensional RNA models would expand

the use of RNA as a designer molecule, with potential applications ranging from the

control of organisms [see, e.g., (Win et al. 2009)], the engineering of nano-scaffolds

[see, e.g., (Jaeger and Chworos 2006)], the development of aptamer-based therapeu-

tics [see, e.g., (Nimjee et al. 2004)], and the emerging fields of nucleic acid computa-

tion and logic [see, e.g., (Stojanovic and Stefanovic 2003)].

This chapter discusses the present state of computational modeling of three-

dimensional RNA structure, highlighting successes and describing the barriers to

future progress. Our hope is that dissecting the limitations of the field will hasten

the development of atomic accuracy methods for modeling RNA structures without

extensive experimental input.

4.2 Is the RNA Structure Prediction Problem Well Defined?

RNA, despite its small four-letter alphabet, is now recognized to perform a multi-

tude of roles in the cell, including information transfer, catalysis (Nissen et al.

2000), gene regulation, and ligand sensing (Mandal and Breaker 2004). The

attainment of a small set of unique three-dimensional states has been a hallmark

of previously characterized functional biomolecules, from catalytic proteins to

information-storing DNA double helices. Do RNA molecules of the same type

have structures agreeing at atomic resolution, up to the fluctuations expected of a

biomolecule in solution? Is the information necessary to specify these structures

contained in the RNA sequence alone?

We now know that the answer to both questions is “yes” for a broad range of

natural and in vitro selected RNA sequences, although there are also examples of

both unstructured RNAs and RNAs guided into functional conformations by

partners [induced fit; see, e.g., (Ferre-D’amare and Rupert 2002; Hainzl et al.

2005)]. In the 1960s, studies of transfer RNA sequences defined a conserved

secondary structure [see, e.g., (Holley et al. 1965; Shulman et al. 1973 ; Rich and

RajBhandary 1976)]—the pattern of classic Watson–Crick base pairs—and then

defined interhelical tertiary interactions mediated by noncanonical base–base
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contacts [see, e.g., (Levitt 1969; Kim et al. 1974)]. These pioneering studies

established a paradigm of theoretical investigation and experimental decipherment

that has been followed for each novel class of RNAs that has been discovered in

subsequent decades. In many respects, it now appears that RNA is easier to fold

than other biopolymers. For example, unlike proteins, which typically require at

least a dozen residues to form well-defined structures, the simplest RNAs with well-

defined, recurrent structures are as small as eight residues (Jucker et al. 1996).

These simple molecules include hairpin loops, single strands that fold back on

themselves to form short Watson–Crick helices. In some cases, the loops contain

only four nonhelical bases—the so-called tetraloops (Varani 1995), with two

classes, UUCG and GCAA (with their respective homologues), being the most

extensively studied (see Fig. 4.1a) (Antao and Tinoco 1992; Jucker and Pardi 1995;

Molinaro and Tinoco 1995; Jucker et al. 1996; Correll et al. 2003). These motifs

have been observed in isolation, as single strands of RNA (Jucker et al. 1996), and

as segments within larger RNA structures. Spectroscopic, crystallographic, and

thermodynamic experiments indicate that these tetraloops form stable structures

that are largely conserved among homologous sequences.

Larger RNA systems exhibit well-defined three-dimensional folds as well, and

work over the last decade has yielded a rich trove of crystallographic structures of

ligand binding aptamers, riboswitches, and ribozymes. Most famously, ribosomal

subunits of several organisms have been crystallized by several groups (Ban et al.

2000; Wimberly et al. 2000; Harms et al. 2001; Yusupov et al. 2001), and the

resulting structures are remarkably similar. For example, the conserved structural

core shared by the respective 16 S and 23 S rRNAs of Escherichia coli and Thermus
thermophilus, two bacteria that diverged early in evolution, comprises 90% or more

of these molecules, despite extensive sequence differences (Zirbel et al. 2009).

Similar stories of intricate structures shared across homologues are now plentiful

[see, e.g., (Lehnert et al. 1996; Golden et al. 1998, 2004; Adams et al. 2004; Batey

et al. 2004; Serganov et al. 2004)]. Such structural conservation implies that the

structure prediction problem is a meaningful one for functional RNA sequences—

the three-dimensional structures of these molecules are well defined and indeed

critical for understanding their biological function and evolution.

This chapter focuses on recent ideas for predicting the structure of an RNA

sequence without experimental input. RNA secondary structures have been rou-

tinely ascertained prior to atomic-resolution experiments, often making use of

phylogenetic covariation studies or easily obtained chemical footprinting profiles

(Staehelin et al. 1968; Nussinov and Jacobson 1980; Zuker and Stiegler 1981). We

therefore focus on the more difficult problem of modeling three-dimensional

structures, especially regions involving noncanonical base–base and base–backbone

interactions. Further questions, such as the existence of alternative structures, the

thermodynamics of these different states, the kinetics of self-assembly, and binding to

proteins and other macromolecular partners, are also important for understanding the

biological behavior of RNA. While some current modeling approaches provide

partial answers to these questions (Bowman et al. 2008; Ding et al. 2008), few

rigorous experimental comparisons of simulations and nonstructural experimental
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Fig. 4.1 Models of the GCAA tetraloop structure. Secondary structure annotations follow the

convention of Leontis and Westhof (2001) and were prepared with the aid of RNAmlView (Yang

et al. 2003) and FR3D (Sarver et al. 2008). (a) NMR structure (PDB: 1ZIH). (b) Model with the

lowest energy score among 5,000 FARNA models (2.1 Å RMSD). (c) Plot of FARNA energy
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data (e.g., folding rates) have been reported. As with the much longer-studied but still

unsolved problem of protein folding, we feel that the RNA structure prediction

problem—involving comparison of hundreds of predicted atomic-level RNA

coordinates to high resolution experimental models—currently provides the most

appropriate test of computational approaches.

4.3 3D RNA Modeling Inspired by Protein Structure

Prediction

Following efforts by several labs to produce manual 3Dmodeling packages [see, e.g.,

(Mueller and Brimacombe 1997; Massire and Westhof 1998; Martinez et al. 2008)],

several automated modeling algorithms have become available. The methods differ

greatly in their search methods and also in the assumptions made to approximate the

physics of RNA self-assembly. Each algorithm offers a partial solution to the RNA

tertiary folding problem; within the proper domain of application, each method

reproduces existing experimental structures for at least some small systems. In this

section, we first focus on the fragment assembly approaches studied in our group.

Our approaches draw inspiration from the most successful strategies taken in

“knowledge-based” protein structure modeling: they make full use of approximate

sequence homology, known structural motifs, and PDB-derived base-pair contact

distributions. Fragment Assembly of RNA (FARNA) directly applies the Rosetta

approach for de novo protein modeling (Das and Baker 2007) to RNA, a Monte

Carlo conformational search making use of trinucleotide fragments drawn from a

~3,000-nucleotide crystal structure of the large ribosomal subunit (Ban et al. 2000).

The assembly is guided by a coarse-grained scoring function, with parameters

ascertained from the same ribosome crystal structure. The choice of using a

knowledge-based potential was motivated by two considerations, both based on

past experience with 3D protein modeling. First, we expected that deriving such a

term from the database would ensure inclusion of physical terms that might be

incorrectly modeled in a bottom-up, “physics-based” derivation of the potential.

For example, high-level effects of base aromaticity on hydrogen bond strength and

the influence of the hydrophobic effect remain difficult to compute and to calibrate,

as they are for proteins (Simons et al. 1997).

The base–base interaction potential dominates the FARNA scoring function. We

constructed this potential for each base interacting with the others, inspired by

�

Fig. 4.1 (continued) score vs. RMSD to the NMR structure for all 5,000 FARNA models. The

lowest energy score model is highlighted with a red circle. (d) Model with the lowest RMSD

among 3 MC-Sym models (1.7 Å RMSD). The lowest energy secondary structure as determined

by MC-Fold was used as MC-Sym’s input. (e) Model with the lowest RMSD among 20 DMD

models (1.9 Å RMSD). Reported RMSDs were calculated over all heavy atoms with respect to the

first member of the NMR ensemble
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previous studies on classifying these interactions (Leontis andWesthof 2001; Sykes

and Levitt 2005). After fixing one nucleobase at the origin, a total of six rigid body

degrees of freedom describe the other base’s orientation, three translational and

three rotational. However, if this six-dimensional space is binned, the available

statistics for base-pairing orientations in experimental structures is sparse; some

bins have only one or two instances, and derived potentials can be noisy. A desire

for a smooth landscape during the coarse Monte Carlo search led us to choose a

two-dimensional reduction. (A similar choice was made in the Rosetta low-

resolution potential for protein beta strand-pairings.) Thus, base pairing frequencies

were tallied as a function of x and y, i.e., the displacement of the centroid of the

second base along directions parallel to the first base’s plane (cf. Fig. 4.2a, b).

Fig. 4.2 Comparisons of the knowledge-based potential used in Fragment Assembly of RNA

(FARNA) to base–base orientations generated by enumerative sampling. The distribution of uracil

bases around adenosine (filtered for configurations in which the base normals are antiparallel),

based on (a) the crystal structure of the large ribosomal subunit (PDB: 1JJ2), as used in the

FARNA scoring function (Das and Baker 2007); and (b) a calculation enumerating all physically

reasonable base–base orientations, scored with the high-resolution Rosetta force field. The three

common antiparallel A-U configurations are seen with both approaches. In contrast, the distribu-

tion of parallel guanosine–guanosine base pairs as inferred from the ribosome (c) does not

recapitulate all physically allowed configurations (d). Additionally, counts in (c) have been scaled

by 8-fold but are still barely visible
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Following a common (but not formally rigorous) recipe (Simons et al. 1997), a

scoring function was derived by taking the log-ratio of the observed frequencies of

these base–base orientations generated in de novo decoys compared to the

frequencies seen in the ribosome structure. Separate terms favoring the appropriate

base stagger (z) and colinearity of base normals were also implemented. Adding

these terms one-by-one to further favor “RNA-like” base–base arrangements led

empirically to more accurate conformations of a test hairpin loop (Das and Baker

2007), at the expense of added computation to sample the more complex energy

landscape. In fact, we also tested a higher dimensional representation including

base–base rotation information that we expected to give better accuracy

(parameterized on x and y, as before, but also the base–base “twist” in the x–y
plane), but fragment assembly with thousands of Monte Carlo cycles was unable to

efficiently sample even simple hairpin loop conformations in this more complex

energy landscape.

Besides base pairing, a second critical term was a potential increasing with

decreasing distance separating two atoms, preventing them from overlapping. The

functional form matches that successfully used in protein low-resolution modeling.

Explicitly, the form is proportional to ðd2 � d20Þ2 for distances below a cutoff d0
(3–5 Å, parameterized from the distance of closest approach seen in the ribosome

crystal structure). Two other terms had less effect: i) a compaction term, propor-

tional to radius-of-gyration, favors the well-packed conformations characteristic of

experimentally observed RNA structures, but such conformations are already well-

favored by the base–base interaction potential. ii) a base-stacking term favors base

stacks that have colinear base normal vectors; here, the stacking geometries already

ensured by constructing models from ribosome fragments made the additional

potential largely superfluous.

As should be apparent from the description above, derivation of a knowledge-

based scoring function is a heuristic procedure, and the best test of such potentials is

whether they result in more accurate de novo models. In favorable cases (under 20

residues), FARNA can sample and select out moderate resolution (2–4 Å all-atom

root-mean-square-deviation, RMSD) models, as is illustrated for the GCAA hairpin

loop in Fig. 4.1b, c (PDB: 1ZIH) (Jucker et al. 1996). Nevertheless, many contain

steric clashes and poorly optimized hydrogen bonds. Furthermore, in larger

systems, the scoring function fails to discriminate these <4 Å accuracy

conformations from nonnative decoys, although the accuracy can be improved by

using experimental data (Das et al. 2008).

As with Rosetta approaches for protein structure prediction, the FARNA

approach to RNA modeling is computationally expensive. The computational

time to create a single model for a 12-nucleotide motif like the GCAA hairpin

loop is approximately 10 s on an Intel Xeon 2.33 GHz processor; typical runs,

however, involve the generation of at least 5,000 models, requiring 14 CPU-hours.

The computational expense for generating single models of larger sequences scales

approximately as the number of nucleotides.

The most rigorous test of FARNA has been the blind modeling of a 74 nucleotide

RNA transcript containing three stems from a bacterial ribosome, for
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Critical Assessment of Prediction of Interactions (CAPRI) target T33, a com-

plex of this RNA and a methyltransferase. Biochemical data suggested a large

conformational difference between the structure of this RNA when bound to

RlmAII compared to its known structure within the ribosome (Fig. 4.3a). We

therefore applied automated de novo modeling to the RNA, with the hopes of

selecting an accurate conformation through post facto docking to the protein

component.

Although the modeling did not converge at high resolution (<2 Å RMSD),

low energy configurations shared an overall global fold that was distinct from the

ribosome-bound fold, especially in the helix–helix geometry at the molecule’s

three-way junction (Fig. 4.3b). Subsequent release of the protein-bound RNA

crystallographic model revealed that a conformational rearrangement indeed

occurs. The blind prediction was accurate at modest resolution, 5.4 Å RMSD

over C40 atoms (residues 694–702, 730–737, and 759–767), compared to 12.4 Å

in the previously available ribosome-bound conformation (Fleishman et al.

2010). (The unavailability of the crystallographic coordinates to the public at

the time of writing preclude presentation of the protein-bound model in this

chapter.)

Fig. 4.3 De novo modeling of target T33 in the Critical Assessment of PRotein Interactions

(CAPRI) trials, the complex of an rRNA segment and a methyltransferase (Fleishman et al.

2010) (a) The previously available structure of the three-helix junction in the context of the

E. coli ribosome. (b) Representative de novo model generated by Fragment Assembly of RNA

(FARNA) suggested a large conformational change, with additional support from full-atom

refinement as well as low-resolution docking simulations with the protein target (not shown).

The subsequently released crystallographic model of the RlmAII-bound RNA confirmed the

conformational rearrangement but cannot be presented here because the coordinates are not yet

publicly available
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4.4 A Wealth of 3D RNA Modeling Approaches

There are now several algorithms for de novo modeling of RNA structure in

addition to the fragment assembly approach described in the previous section,

spanning a spectrum from more knowledge-based methods to more physics-based

methods. Before discussing limitations of our fragment assembly approach, we

survey these alternative methods, comparing results on one widely modeled

sequence, the GCAA tetraloop, and, in the next section, the sarcin–ricin loop.

Like FARNA, the accuracy of the MC-Fold/MC-Sym pipeline (Parisien and

Major 2008) depends on the available set of experimentally solved RNA structures.

MC-Fold uses small RNA building blocks (nucleotide cyclic motifs, NCM) that are

pieced into a two-dimensional representation of the RNA. The result is essentially

an extended secondary structure (2D–3D) that includes both canonical and nonca-

nonical non-Watson–Crick base pairs; it is the optimum of a Bayesian scoring

function derived from the previously tallied frequencies of NCMs in experimental

structures. This two-dimensional model is then submitted to MC-Sym (Major et al.

1991), a pioneering modeling method that generates three-dimensional

structures consistent with the inputted secondary structure, often with outstanding

accuracy (better than 2 Å all-atom RMSD; Fig. 4.1d). Like FARNA, the MC-Fold/

MC-Sym method does not require prior determination of secondary structure or

experimental constraints but can accept and benefit from these additional data

(McGraw et al. 2009).

While both FARNA and MC-Fold/MC-Sym reward previously seen base-

pairing geometries, several algorithms are less reliant on the existing databases.

For instance, discrete molecular dynamics (DMD) (Ding et al. 2008) uses an

efficient molecular dynamics engine to sample coarse-grained RNA structures. In

numerous cases, DMD achieves native-like structures (~4 Å C40 RMSD, with some

models as low as 1.9 Å; Fig. 4.1e) without explicit calibration on any RNA

conformations aside from canonical helices; energetic parameters are calibrated

to classic thermodynamic experiments on RNA helix formation (Xia et al. 1998).

Similarly, NAST (Jonikas et al. 2009a, b) uses coarse-grained molecular dynamics

with a force field parameterized to reproduce canonical helices. Both of these

approaches use molecular dynamics strategies that, by construction, do not explic-

itly model noncanonical regions. The accuracy of these methods can be improved

through the use of experimental constraints (Gherghe et al. 2009; Jonikas et al.

2009a, b).

At the other end of the spectrum, all-atom molecular dynamics approaches do

not make use of information from structural databases, aside from corrections to the

underlying energy function to stabilize experimental conformations (Foloppe and

MacKerell 2000). For example, all-atom molecular dynamics simulations

have been used (Sorin et al. 2002; Bowman et al. 2008; Garcia and Paschek

2008) to investigate small RNA hairpin loops. Experimental hairpin loop structures

appear to be stable in several solvation models (Sorin et al. 2002; Bowman et al.

2008), and the native-like secondary structure appears to be reachable from
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randomized conformations. Nevertheless, the precise details of noncanonical

loop geometry may not be recapitulated by presently available force fields

[see, e.g., (Ditzler et al. 2010)].

4.5 Case Study: Sarcin–Ricin Loop Suggests Limitations

of Current Methods

The preceding survey of methods suggests that residue-level, and occasionally

atomic-level, accuracy can be achieved in three-dimensional RNA modeling by a

multitude of approaches. Yet, the RNA structure prediction problem is far from

solved. The computational methods described so far cannot reliably produce high-

quality models of an arbitrary RNA, a point we demonstrate with a long-studied

model system. The structure of the sarcin–ricin loop, revealed in exquisite detail by

X-ray crystallography (Figs. 4.4a and 4.5, PDB: 1Q9A), contains a tightly

intermeshed array of hydrogen bonds. Within the seven nucleotides that form

the core of this motif, there are 11 hydrogen bonds present (6 base–base,

4 base–phosphate, and 1 base–sugar), resulting in an average of 1.57

hydrogen-bonds per nucleotide, greater even than the 1.50 hydrogen-bonds

per nucleotide in a repeating GC helix. The structural stability of this small

motif has made it a paradigmatic system for experimental studies (Endo et al.

1991; Seggerson and Moore 1998) and a test case for evaluating current

computational algorithms.

Applying FARNA to the sarcin–ricin loop yields mixed results. While FARNA

produces native-like models (under 2 Å RMSD), the knowledge-based scoring

function fails to distinguish these models from incorrect models (Fig. 4.4b, c).

The same motif proves a challenge for other algorithms as well. Each of the top 20

models produced by MC-Fold has an incorrect base pair, suggesting limitations in

the knowledge-based scoring function (Fig. 4.4d). As was the case with FARNA,

several of the poorer scoring MC-Fold models (Fig. 4.4e) contain the correct base

pairs and topology. Interestingly, using slightly different homologous sequences

leads to better performance with both FARNA (unpublished data, PS, RD) and MC-

Fold/MC-Sym (Parisien and Major 2008).

DMD, followed by all-atom reconstruction (Sharma et al. 2008), likewise cannot

reproduce this structure at high resolution (Fig. 4.4f). These three algorithms use

very different modeling strategies for RNA conformational sampling—a smoothed

energy landscape (FARNA), a two-dimensional NCM description (MC-Fold), and a

coarse-grained representation (DMD). Yet, all three algorithms fail on the same

model system. A final class of algorithms, all-atom molecular dynamics

simulations, satisfy a basic consistency check: the sarcin–ricin loop structure is

stable in several tested force fields over the nanosecond time scale (Spackova and

Sponer 2006). However, such simulations have not yet been carried out on the long

timescales necessary for folding and discriminating complex RNA structures de
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Fig. 4.4 Models of the sarcin–ricin loop structure. The depicted three-dimensional structures

focus on the bulged-G motif region (red box in secondary structure) where all three algorithms fail.

Interestingly, all three algorithms predict that G9 and C20 form a Watson–Crick base pair (red
circle) which is absent in the crystal structure. (a) Crystal structure (PDB: 1Q9A). (b) Model with

the lowest energy score among 50,000 FARNA models (6.2 Å RMSD). (c) The knowledge-based

FARNA scoring function incorrectly ranks the non-native model (red) as having better energy

score than the near-native model (green). (d) Model with the lowest RMSD among 100 MC-Sym

models (3.8 Å RMSD). (e) The lowest energy secondary structure as determined by MC-Fold was

used as MC-Sym’s input. This first-ranked secondary structure contains incorrect base-pairings,

and the native (correct) secondary structure is ranked #24 (red) by MC-Fold. (f) Model with the

lowest RMSD among 20 DMD models (4.7 Å RMSD). Reported RMSDs were calculated over all

heavy atoms with respect to the crystal structure
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novo (Pérez et al. 2007). Thus, it is presently unclear whether (and at what

resolution) molecular dynamics can recapitulate larger experimental structures in

simulations started from random conformations; indeed, a few cautionary tales

have suggested that noncanonical motifs are unstable in existing MD force fields

(Fadrná et al. 2009).

Fig. 4.5 Hydrogen bonding network at the bulged-Gmotif in the crystal structure of the sarcin–ricin

loop (PDB: 1Q9A). Base-phosphate hydrogen bonds in the bulged-G motif region are annotated

following a recently proposed convention (Zirbel et al. 2009). (a) Upper section of the motif. (b)

Lower section of the motif. To display all the hydrogen bonds, the views in (a) and (b) are rotated by

180� with respect to each other. The experimentally observed hydrogen bonds are shown as red
dashed lines. Within the seven nucleotides which form the core of this motif (A8-G9-U10-A11/G18-

A19-C20), there are 11 unique hydrogen bonds (6 base–base, 4 base–phosphate, and 1 base–sugar),

averaging to 1.57 hydrogen bonds per nucleotide. This is slightly greater than the number of

hydrogen bonds in a repeating GC helix (1.50 hydrogen bonds per nucleotide). In contrast, none

of the models generated by DMD, FARNA, or MC-FOLD shown in Fig. 4.4 have greater than 1.0

hydrogen bonds per nucleotide in this same region. Furthermore, in the models generated by these

three algorithms, very few of the hydrogen bonds are of the base–phosphate or base–sugar type
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4.6 What Are the Bottlenecks?

The situation inRNAstructure prediction bears some similarities to the state of protein

modeling. Several algorithms are able to reproduce a handful of known small

structures at reasonable resolution. Nevertheless, foundational bottlenecks prevent

the prediction of known complex structures, as described above, despite the diversity

of approaches being applied. The failure on known structures lowers our confidence

that the existing approaches can be used to accurately predict new structures. Here, we

describe three hypotheses for bottlenecks that need to be overcome.

4.6.1 Computational Sampling

Despite their differences, all RNA modeling algorithms proposed to date share a

major difficulty in computational sampling, especially if they seek atomic resolu-

tion. For example, the trial runs on the sarcin/ricin loop above were made possible

by the small size (<30 residues) of the tested motif; modeling of larger segments of

the ribosome, much less the entire large ribosomal subunit, is presently difficult.

The root of this problem was first discussed more than 40 years ago, when Levinthal

noted that the conformational space available to a biomolecule is astronomical

(10100) and grows exponentially with the number of residues (Levinthal 1968).

Forty years later, algorithms—for protein as well as RNA structure modeling—

continue to face Levinthal’s Paradox, as they typically involve a near-random

search through conformation space.

As noted above, the difficulty of conformational sampling has prevented all-atom

molecular dynamics approaches from demonstrating de novo recapitulation of RNA

structure at high resolution. Other approaches are less expensive, but still require high

performance computing. For example, FARNA calculations, even though constrained

by experimental data, required approximately 10,000 CPU-hours on the

Rosetta@Home distributed computing project to model the P4–P6 domain of

the Tetrahymena ribozyme (160 residues) to ~13 Å accuracy (Das and Baker 2007).

The barrier of ~100 nucleotides is particularly worrisome because several of the most

biologically and medically important RNAs—including viral genomes (Watts et al.

2009) and untranslated regions of mRNA transcripts [see, e.g., (Penny et al. 1996;

Birney et al. 2007)]—can exceed thousands of residues in length. Several methods

(MC-Sym, DMD, NAST) appear significantly less expensive than FARNA; neverthe-

less, each algorithm is expected to encounter a conformational sampling bottleneck for

some length of RNA.Detailed presentations of these length limits are not yet available

but would certainly be valuable for users of the algorithms.

4.6.2 Overeliance on Existing Structures

One common approach to ameliorate the computational sampling bottleneck is to

restrict the search to torsion angles of base pairing combinations drawn from the
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experimental database of known RNA structures. On one hand, the success with the

tetraloop motif can perhaps be attributed to not just its simplicity but its overall

frequency in the database of experimental RNA structures. On the other hand, we

might expect poor performance on novel sequence motifs if they exhibit torsional

geometries that are at low frequency or are absent in current databases.

As an extreme illustration, the FARNA method fails to recover high resolution

models for motifs such as the kissing loop from the purine-binding riboswitch,

unless this structure or its homologues are included as sources of fragments

(Fig. 4.6). The intricate base-pairing and base-stacking network formed by the

Fig. 4.6 The L2–L3 tertiary interaction from the purine riboswitch is poorly sampled using

FARNA. (a) The crystal structure (PDB: 2EEW). (b) Model with the lowest energy score

among 5,000 FARNA models. (c) Secondary structure annotation of the crystal structure. (d)

Plot of FARNA energy score vs. RMSD to the crystal structure shows that FARNA fails to

generate models that are closer than 5 Å RMSD. Examination of the large ribosomal subunit

fragment library reveals the lack of near-native fragments at many nucleotide positions
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two loops requires the individual nucleotides to adopt highly specific

conformations. Consistent with this observation, the backbone conformations of

three nucleotides in this motif are not on the list of commonly observed backbone

rotamers compiled by the RNA Ontology Consortium (Richardson et al. 2008). The

lack of native-like fragments in the fragment library prevents FARNA from

generating models that are within 5 Å RMSD of the crystal structure.

Beyond adversely limiting the conformational space, reliance on existing

structures can also cause problems in ranking models by available scoring

functions. A widely studied RNA motif involves a quadruplex of G nucleotides

forming parallel base pairs [see, e.g., (Mashima et al. 2009)], yet available ribosome

crystal structures contain no such guanosine arrangements. This leads to a known

deficiency in FARNA (cf. Fig. 4.2c, d); namely, some known G–G base interactions

are not rewarded by the FARNA scoring function, and quadruplexes cannot be

modeled. The scoring function can be reparameterized with the entire nonredundant

crystallographic RNA data set (rather than just a single ribosomal structure), but

will continue to miss important interactions, such as those involving protonated C’s

or A’s, which are important for stabilizing RNA motifs but that are rare in the entire

set of RNA structures. Consequently, while the ultimate goal of structure prediction

is to model motifs that have not yet been observed experimentally, it is these novel

structures that knowledge-based algorithms have the most difficulty predicting.

4.6.3 Simplified Representation

Perhaps the central shared bottleneck of the various de novo approaches discussed so

far is the use of a simplified representation. Searching RNA conformations in all-atom

detail requires attention to hydrogen bonds and packing interactions at the Angstrom

level; algorithms to directly and efficiently sample conformations at this level of detail

are not available. Instead, as is the case in protein structure modeling, de novo RNA

modeling algorithms typically resort to a coarse-grained representation to carry out

large-scale conformational search. In FARNA, the energy function is highly smoothed;

MC-Fold uses a two-dimensional secondary-structure-like representation; and NAST

and DMD both use reduced-atommodels to accelerate molecular dynamics sampling.

These methods inevitably neglect certain details of RNA structure—but in the

case of the sarcin–ricin bulged-G motif, these details cannot safely be ignored.

Because the FARNA scoring function represents base-pairing and base-stacking

interactions at the base-centroid level, the atomic details of individual hydrogen

bonds are not represented, leading to an inability to select the native conformation

of this motif (Fig. 4.4c).

The discrimination of realistic RNA conformations should be possible using all-

atom physical potentials, and indeed such potentials have been the key feature in

recent blind de novo Rosetta predictions of protein structure at near-atomic accu-

racy (Rohl et al. 2004). For RNA, the backbone torsional combinations seen in real

structures are those physically allowed by sterics and torsional constraints; further,

base pairing patterns follow the “laws” of hydrogen bonding as well (Leontis and

4 Why Can’t We Predict RNA Structure At Atomic Resolution? 57



Westhof 2001). (See also Fig. 4.2b, d, which were generated by exhaustively

sampling base–base arrangements, scored with the Rosetta full-atom potential.)

Recognizing the power of all-atom potentials, several groups have explored the

refinement of automatically generated pools of low-resolution structures with all-

atom potentials (Sharma et al. 2008; Jonikas et al. 2009a, b).

In our own recent work (Das et al. 2010) we have found that the full-atom

Rosetta RNA force field can correctly refine and discriminate near-native structures

for more than a dozen noncanonical motifs, including the bulged-G region of the

sarcin–ricin loop structure (Fig. 4.7). The Rosetta RNA force field is essentially the

same as used in protein structure prediction, with physics-based van der Waals

(Rohl et al. 2004) and hydrogen bonding terms (Kortemme et al. 2003)

supplemented with a torsional potential inferred from the ribosome a, b, g, d, e,
z, and w torsion angles; a desolvation penalty for polar groups that models how

neighbor atoms occlude water; and a weak carbon–hydrogen bonding term. (The

latter two terms appear to improve protein structure prediction as well.) The overall

Fig. 4.7 Successful modeling of the sarcin–ricin loop with Fragment Assembly of RNAwith Full-

Atom Refinement (FARFAR). Previous attempts to model the sarcin–ricin loop with FARNA

failed due to inaccuracies in the knowledge-based FARNA scoring function (see Fig. 4.4). (a) In

contrast, the Rosetta full-atom force field used in FARFAR more accurately models the energetics

of the hydrogen bonding network in the bulged-G motif. After the 50,000 FARNA models were

refined (minimized) and scored in the full-atom force field, the near-native model (green) was
correctly ranked as the lowest energy state. (b, c) This near-native model has a 1.798 Å RMSD

with respect to the whole sarcin–ricin crystal structure and even a lower local RMSD of 1.038 Å

when aligned just over the bulged-G motif nucleotides
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structure modeling procedure (Fragment Assembly of RNA with Full-Atom Refine-

ment, FARFAR) doubles the time of the previous FARNA method, to 21 s on an

Intel Xeon 2.33 GHz processor for the 12-residue GCAA hairpin loop. Further

independent tests of the approach, involving the “re-design” of RNA sequences that

stabilize known backbone conformations, gave higher native sequence recoveries

than low resolution potentials (Das et al. 2010). Most importantly, the calculations

gave blind predictions for thermostabilizing noncanonical mutations that were

validated in subsequent experiments (Fig. 4.8). We hope that the free availability

of these algorithms to academic users (as part of the Rosetta software suite) will

encourage their testing and development in the broader community.

The demonstrations of atomic accuracy structural modeling and design are

exciting steps, but also confirm that conceptual advances in conformational sam-

pling are much needed. In the published benchmark (Das et al. 2010), the structures

Fig. 4.8 Automated “redesign” of an RNA noncanonical motif. (a) The crystal structure of the

most conserved domain of the signal recognition particle RNA (PDB: 1LNT). Sidechains from this

structure were completely stripped away and then rebuilt, sampling all possible sequences, guided

by the Rosetta full-atom force field. (b) Two mutations (highlighted with arrows) were discovered
in the library of designs that occurred more frequently than in an alignment of natural sequences

from all three kingdoms of life. (c) The corresponding secondary structure of the wild type and the

mutant. (d) Experimental structure mapping measurements verify the stabilization of the motif by

the two mutations (less Mg2+ required for folding) (Das et al. 2010)
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of half of the 32 noncanonical motifs could be recovered at atomic accuracy. For

most cases in the other half, sampled models produced scores worse than the

experimental structure, indicating that conformational sampling was not efficient.

In particular, motifs beyond approximately 12 residues in length are still difficult to

sample at the Angstrom-level resolution required for high accuracy discrimination;

a similar conformational sampling issue remains the major bottleneck in de novo

prediction of protein structure and docking (Das et al. 2009; Kim et al. 2009; Raman

et al. 2009). We also expect there to be missing physics in the all-atom Rosetta

energy function, due to the neglect of explicit metal ions and water, of terms to

modulate the strength of base stacking, of long-range electrostatic effects, and of

conformational entropy. However, more effective conformational search

procedures will be needed to establish whether these effects are critical for discrim-

inating high-accuracy models from nonnative models. Based on the three major

issues discussed above, we are currently focusing on approaches that enumeratively

search realistic conformations of biomolecules, are independent of previously

solved structures, and bypass coarse-grained search stages.

4.7 Future Directions/Community Wide RNA Experiments

Given the promising algorithms currently under development, it is reasonable to

expect improved de novo methods for (small) RNA structure prediction in the next

few years. However, once such novel algorithms are developed, they must be

rigorously tested before they will be accepted and used by the wider RNA

community.

In particular, the present cycle of algorithm development, testing, and publica-

tion inevitably pressures scientists to present their results in an optimistic and

sometimes uncritical fashion. A blind, CASP-style competition to systematically

assess the performance of RNA 3D structure prediction algorithms will therefore be

crucial for future progress. We pledge – and request the cooperation of other

experimentalists – to make available, prior to publication of an experimental

atomic-resolution RNA structure, the nucleotide sequence of the solved molecule

and to provide a deadline for modelers to submit solutions. We expect that objective

evaluation of such trials will encourage thoughtful and open discussion of the

strengths and limitations of current approaches and engender new collaborations

between modelers and experimentalists.

For a CASP-style experiment to be interesting and useful, truly novel targets

must be included. We note that at least three classes of such targets are already

available to the modeling community. First, the growing interest in functional

RNAs has led to crystallographic analyses of several new, large riboswitches.

Although the sizes of these RNAs (>100 residues) puts them out of the reach of

current algorithms, submotifs (such as internal loops and junctions) may fold in a

manner largely independent of ligand binding or other interactions. The L2–L3

motif from the adenine riboswitch is such an example and is stable independent of
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adenine binding (Mandal and Breaker 2004; Serganov et al. 2004). Biochemical

identification of these subpuzzles, combined with the rapid rate at which these

functional molecules are being crystallized, suggest that they are excellent targets

for blind prediction.

Using in vitro evolution to redesign existingmotifs provides another class of novel

targets (Fig. 4.9a). A compelling example comes from the determination of optimal

receptormotifs that specifically bindGNRA tetraloops (Costa andMichel 1997;Geary

et al. 2007). These new motifs are less than a dozen residues in size, and most have

presently unknown structure, making them ideal targets for current modeling

approaches. Furthermore, these targets offer the prospect of rapid experimental

validation. Given the growing number of ribozyme and riboswitch structures with

the classic 11-nucleotide receptor motif for GAAA, the experimental structures of the

alternate tetraloop-receptors may be attained by their substitution into RNA scaffolds

that are known to be crystallizable (Pley et al. 1994; Cate et al. 1996; Ye et al. 2008).

Fig. 4.9 Examples of novel RNAmotifs with unknown structure. These motifs’ small size, lack of

homology to known structures, and potential ease of experimental validation make them ideal tests

for computational algorithms. (a) The naturally occurring GAAA/11-nucleotide tetraloop receptor

with known experimental structure (Pley et al. 1994; Cate et al. 1996; Ye et al. 2008). (b) In vitro

selected tetraloop receptor motifs (Costa and Michel 1997). The binding affinities and specificities

of these tetraloop receptors are markedly different from those of known naturally occurring

tetraloop receptors. It is postulated that these novel binding specificity patterns are due to some

(as yet undetermined) interactions between the second base of the tetraloop (red) and the

nucleotides in the asymmetric loop of the receptor (green). (c) Binding site of an in vitro selected

L-tryptophan binding aptamer (Majerfeld and Yarus 2005)
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Finally, there is a large body of work focused on sequences that bind small and

large molecules, again isolated through in vitro evolution. Many of these functional

sequences are small—only 13 nucleotides in the case of an L-tryptophan aptamer

(Majerfeld and Yarus 2005) (Fig. 4.9b)—again bringing them close to the reach of

all-atom computational modeling. Furthermore, their small size should permit their

rapid experimental characterization by modern NMR approaches, ensuring a nearly

unending supply of targets for blind trials.

4.8 Conclusions

Predicting the structure of an arbitrary RNA sequence remains an unsolved problem.

A number of algorithms can rightly claim success in specific cases, including some

blind tests; but a general solution has yet to appear, even for small sequences. Present

methods are limited by computational sampling, over-reliance on previously solved

experimental structures, and the use of coarse-grained or reduced representations.

Recent progress, especially in all-atom refinement and design, makes us particularly

excited about the future; a solution to RNAstructure prediction appearsmore andmore

feasible.We propose that the time is ripe for the creation of a community-wide CASP-

style experiment, where groups compete to produce blindmodels of RNAs about to be

solved by crystallography orNMR. The prospect of such blind trials bodes well for the

maturing and eventual practical impact of the RNA structure prediction field.

Note added in proof Since the time of writing (2010), we have described a method called

stepwise assembly that appears to resolve the conformational sampling bottleneck for small RNA

loops (Sripakdeevong et al. 2011). Further, we and others have initiated RNA-Puzzles, a series of
community-wide blind trials for RNA structure prediction (Cruz et al. 2012).

References

Adams P et al (2004) Crystal structure of a self-splicing group I intron with both exons. Nature 430

(6995):45–50

Antao VP, Tinoco I Jr (1992) Thermodynamic parameters for loop formation in RNA and DNA

hairpin tetraloops. Nucleic Acids Res 20(4):819

Ban N et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A

resolution. Science 289(5481):905–920

Batey R et al (2004) Structure of a natural guanine-responsive riboswitch complexed with the

metabolite hypoxanthine. Nature 432(7015):411–415

Birney E et al (2007) Identification and analysis of functional elements in 1% of the human

genome by the ENCODE pilot project. Nature 447(7146):799–816

Bowman GR et al (2008) Structural insight into RNA hairpin folding intermediates. J Am Chem

Soc 130(30):9676–9678

Cate JH et al (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing.

Science 273(5282):1678–1685

62 P. Sripakdeevong et al.



Correll CC et al (2003) The common and the distinctive features of the bulged-G motif based on a

1.04 A resolution RNA structure. Nucleic Acids Res 31(23):6806–6818

Costa M, Michel F (1997) Rules for RNA recognition of GNRA tetraloops deduced by in vitro

selection: comparison with in vivo evolution. EMBO J 16(11):3289–3302

Cruz JA et al (2012) RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure

prediction. RNA 23:23

Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc

Natl Acad Sci USA 104(37):14664–14669

Das R et al (2008) Structural inference of native and partially folded RNA by high-throughput

contact mapping. Proc Natl Acad Sci USA 105(11):4144–4149

Das R et al (2009) Simultaneous prediction of protein folding and docking at high resolution. Proc

Natl Acad Sci USA 106(45):18978–18983

Das R et al (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat

Methods 7(4):291–294

Ding F et al (2008) Ab initio RNA folding by discrete molecular dynamics: from structure

prediction to folding mechanisms. RNA 14(6):1164–1173

Ditzler MA et al (2010) Molecular dynamics and quantummechanics of RNA: conformational and

chemical change we can believe in. Acc Chem Res 43(1):40–47

Endo Y et al (1991) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis.

J Mol Biol 221(1):193
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Chapter 5

Template-Based and Template-Free

Modeling of RNA 3D Structure: Inspirations

from Protein Structure Modeling

Kristian Rother, Magdalena Rother, Michał Boniecki, Tomasz Puton,

Konrad Tomala, Paweł Łukasz, and Janusz M. Bujnicki

Abstract In analogy to proteins, the function of RNA depends on its structure and

dynamics, which are encoded in the linear sequence. While there are numerous

methods for computational prediction of protein 3D structure from sequence, there

have been however very few such methods for RNA. This chapter discusses

template-based and template-free approaches for macromolecular structure predic-

tion, with special emphasis on comparison between the already tried-and-tested

methods for protein structure modeling and the very recently developed “protein-

like” modeling methods for RNA. As examples, we briefly review our recently

developed tools for RNA 3D structure prediction, including ModeRNA (template-

based or comparative/homology modeling) and SimRNA (template-free or de novo

modeling).

ModeRNA requires, as an input, atomic 3D coordinates of a template RNA

molecule and a user-specified sequence alignment between the target to be modeled

and the template. It can model posttranscriptional modifications, a functionally

important feature analogous to posttranslational modifications in proteins. It can

model the structures of RNAs of essentially any length, provided that a starting

template is known.

SimRNA can fold RNA 3D structure starting from sequence alone. It is based on

a coarse-grained representation of the polynucleotide chains (only three atoms per
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nucleotide) and uses a Monte Carlo sampling scheme to generate moves in the 3D

space, with a statistical potential to estimate the free energy. The current imple-

mentation based on simulated annealing is able to find native-like conformations

for RNAs <100 nt in length, with multiple runs required to fold long sequences.

5.1 Introduction

RNAs and proteins are linear polymers composed of a limited set of building blocks

(ribonucleotide and amino acid residues, respectively). Despite the fundamental

chemical differences of these building blocks, the higher-order structure of RNA

and protein molecules can be described with similar terms. Each residue comprises

two parts: one is common to the given type of a macromolecule and is used to form

a continuous “backbone” and the other is variable and forms a “side chain”. The

order of building blocks held together by covalent bonds is called the primary

structure, the local conformation of the chain stabilized mostly by hydrogen bonds

(by the backbone in proteins and by side chains in RNA) is the secondary structure,

while the path of the chain in three dimensions resulting from various long-range

interactions is the tertiary structure. Most RNA and protein molecules fold sponta-

neously into complex three-dimensional shapes that provide a framework for their

biological functions. These functions typically involve interactions with various

molecules in the cell, including other proteins and RNAs. Thus, the function of both

proteins and RNAs depends on the three-dimensional structure and dynamics,

which in turn is encoded in the linear sequence of individual molecules.

The knowledge of structure is very important for the understanding of RNA and

protein function. However, experimental sequence determination of genes and

entire genomes, from which the sequences of RNAs and proteins can be reliably

inferred, is much cheaper and simpler than experimental determination of

structures. As a consequence, the rate of macromolecular structure determination

lags behind the rate of determination of new sequences and the gap between the

number of known structures and known sequences continues to widen. It is unlikely

and unnecessary that structures will be solved experimentally for all protein and

RNA molecules. Understanding of the “1D-3D code” provides an opportunity for

theoretical prediction of protein and RNA structures from their sequences. This has

proven to be a very difficult task; however, a few successful strategies have been

identified, which now allow for reasonably accurate (practically useful) predictions

of 3D structures. Most methods have been developed initially for proteins only; the

reader is referred to numerous review articles and books devoted to this topic, e.g.,

the volume edited by one of the authors of this article (Bujnicki 2008) or the series

of articles in the special issue of proteins devoted to the CASP experiment (Moult

et al. 2009). However, essentially the same principles have been recently

demonstrated to be applicable for modeling of RNAs.
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5.2 Classification of Methods for Macromolecular

3D Structure Prediction

Methods for 3D structure prediction can be divided into those based on “first

principles,” i.e., the fundamental laws of physics that govern the process of folding,

and those based on information about other structures available in databases.

5.2.1 Template-Free, Ab Initio Structure Prediction

One approach to 3D structure prediction is based on the thermodynamic hypothesis

formulated by Anfinsen, according to which the native structure of a protein

corresponds to the global minimum of the free energy of the system comprising

the macromolecule (Anfinsen 1973). Accordingly, physics-based methods model

the process of folding by simulating the conformational changes of a macromole-

cule while it searches for the state of minimal free energy [review: (Hardin et al.

2002)]. The “score” of each conformation is calculated as the true physical energy

based on the interactions within the macromolecule and between the macromole-

cule and the solvent (Scheraga 1996). Since the same basic laws of physics apply to

all types of molecules, one can postulate that analogous methods could work for

RNA as well.

The ab initio approach is, however, plagued by serious problems. In particular,

the atomic model of the molecular structure has a large number of degrees of

freedom (Natoms�3–6), which makes the search space enormous, and the function

with which to calculate the energy of the system is very complex. As a result, both

the sampling and energy calculations are very costly in terms of computational

power required. Typically, the free energy landscape is extremely rugged, i.e., it

possesses multiple local minima, and it is essentially impossible to perform an

exhaustive evaluation of all these minima to identify the one with the globally

lowest value. Further, some of the components of the free energy function (e.g., the

entropy) are very difficult to calculate and may be not inferred accurately for large

molecules. For these reasons, the use of ab initio methods is limited to very small

molecules, and even then the user cannot be sure whether a native-like conforma-

tion has been generated during the folding simulation and whether it was scored

better than the less native-like ones. To increase the efficiency of computations,

full-atom models may be replaced by coarse-grained models, which treat groups of

atoms as single interaction centers, so that a smaller number of interactions need to

be evaluated [review: (Tozzini 2009)]. An example of a coarse-grained method for

ab initio RNA 3D structure modeling is DMD (Ding et al. 2008). However, it must

be emphasized that simplification of the model and the energy function usually

leads to reduced accuracy. As of today, it is not practical to expect that a folding

simulation for a protein or RNA molecule comprising more than 100 residues

would confidently predict a native-like structure with a correctly estimated energy.
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5.2.2 Template-Based Structure Prediction

At the other end of the methodological spectrum are approaches based on the

principles of evolution. After experimental determination of the first handful of

protein structures, it became clear that evolutionarily related (homologous) proteins

usually retain the same three-dimensional fold (i.e., the 3D arrangement and

connectivity of elements of secondary structure) despite the accumulation of

divergent mutations (Chothia and Lesk 1986). It was also found that structural

divergence is much slower than sequence divergence, although these two features

are strongly correlated. Thus, methods have been developed to align the sequence

of one protein (a target) to the structure of another protein (a template), model the

overall fold of the target based on that of the template, and infer how the target

structure will change due to substitutions, insertions, and deletions (indels), as

compared with the template [reviews: (Cohen-Gonsaud et al. 2004; Krieger et al.

2003)]. The process of identification of a structurally related template has been

termed “fold recognition”, while the transformation of atomic coordinates of the

template structure into the target has been typically referred to as “homology

modeling” or “comparative modeling” (the latter takes into account a possibility

that the template does not have to be homologous, as long as it is structurally similar

to the target). This entire approach has been termed “template-based modeling.”

Comparative analyses of evolutionarily related RNAs [see e.g., (Dror et al.

2005)] revealed patterns of conservation that are analogous to those observed in

proteins: the secondary and tertiary structure is usually more conserved than

sequence, and core regions important to stability and function tend to be more

conserved at all levels. In general, it can be stated that in families of homologous

RNAs, the 3D fold is often conserved, and alignment of sequences and secondary

structure patterns can be used to recognize such structural conservation, enabling

template-based modeling.

Template-based modeling has two main limitations. First, the modeling of the

“target” structure starts with another known structure of a structurally similar mole-

cule to be used as a “template”; hence, if such a structure does not exist or cannot be

identified reliably, then the model cannot be built or almost certainly will be

completely wrong. Further, each element of the target sequence must be aligned to

the structurally equivalent element in the template sequence/structure. In particular,

homologous residues should be aligned with each other. High sequence similarity is

not a prerequisite for template-based modeling. In fact, it is possible to create good

homology models even if the sequence identity between the target and the template is

zero (Chothia and Gerstein 1997). However, on the average, molecules with higher

sequence similarity tend to exhibit more similar structures (Chothia and Lesk 1986).

Besides, for highly similar sequences, it is generally easier to generate a correct

alignment (to find homologous residues between the target and the template). There-

fore, using templates with higher sequence similarity is recommended. Apart from

sequence divergence, structures may also change because of environmental factors,

e.g., the binding of other molecules or the composition of the solution (salt, pH)
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(Kumar et al. 2000). This is particularly true for RNA,where the binding ofmetal ions

is often a key factor enabling a stable tertiary structure (Pyle 2002). It is generally the

responsibility of the user of the homology modeling software to choose a template,

whose biological state corresponds best to the desired biological state of the target to

be modeled. With an incorrectly chosen template and/or wrong alignment, the model

will be always very far from the native structure. These limitations concern all

homology modeling tools, as templates and alignments are always necessary in this

approach (Fiser et al. 2002).

Finally, it must be noted that like proteins, homologous RNAs need not retain the

same structure in all details. Topological variability (e.g., preserving the overall 3D

structure while changing the pattern of secondary structure elements) has been

observed in many protein families (Grishin 2001), as well as in RNA families, with

one prominent example being the RNA subunit of RNase P from Escherichia coli
(type A) and Bacillus subtilis (type B) (Krasilnikov et al. 2004). However, methods

for automated template-based modeling of macromolecules assume that the overall

fold is conserved between the template and the target, and special intervention of

the user is usually required to model topological variations. There exist methods for

interactive (user-guided) modeling of macromolecular structures based on assem-

bly of large fragments derived from various structures that are homologous to

different parts of the template and may or may not be homologous to each other.

The approach that allows the user to rearrange and recombine multiple template

structures has been particularly widely used in the RNA modeling field, with

methods such as S2S/Assemble (Jossinet et al. 2010; Jossinet and Westhof 2005)

or ERNA-3D (Zwieb and Muller 1997). However, similar methods have been also

applied to model protein structures (Kosinski et al. 2003) [review: (Bujnicki 2006)].

Thus, it can be concluded that comparative modeling of proteins and RNAs

presents analogous opportunities and challenges.

5.2.3 Template-Free, De Novo Structure Prediction

In the protein structure prediction field, the most successful approach combines the

features of physics-based folding and the use of previously solved structures as

templates. According to the recent editions of the CASP benchmark, the best

methods do simulate the folding but use a simplified (coarse-grained) model and

a scoring function that replaces (at least partially) the physical energy with terms

describing the frequency of occurrence of certain features in the database. These

methods, exemplified by ROSETTA (Simons et al. 1997), TASSER (Zhang and

Skolnick 2004a), and CABS (Kolinski and Bujnicki 2005), improve the efficiency

of the conformational search by using small fragments derived from other (not

necessarily homologous) known structures and/or by discretizing the search space

from continuous to lattice-based [review: (Bujnicki 2006)]. This variant of

template-free structure prediction is often termed “de novo modeling.” A number

of methods based on similar principles have been recently proposed also for RNA
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3D modeling, including FARNA/FARFAR (Das and Baker 2007; Das et al. 2010)

and MC-Fold|MC-Sym (Parisien and Major 2008).

De novo methods for structure prediction share many problems with the ab initio

approach, including a high computational cost of the conformational sampling and

uncertainty as to which of the large number of alternative conformations generated

is the most native-like structure.

5.3 ModeRNA, a New Method for Template-Based RNA

Structure Modeling

Inspired by the SWISS-MODEL method for protein structure modeling (Schwede

et al. 2003), we have developed ModeRNA, a scriptable tool for automatic prediction

of RNA 3D structures by template-based modeling (Rother et al. 2011b).

As a minimal input, ModeRNA requires the 3D coordinates of a template

structure and a pairwise sequence alignment between the sequences of the template

and the target RNA to be modeled. The problem of obtaining the sequence

alignment is discussed in the following section. For each position in the

target–template sequence alignment, ModeRNA infers a set of operations necessary

to generate the model of the target from the structure of the template. These include

copying coordinates of residues that are invariant between the target and the

template, introducing substitutions for aligned residues that differ, adding or

removing posttranscriptional modifications, processing, insertions/deletions, and

adding structural fragments for short regions without a template. ModeRNA

generates coordinates of the modeled target RNA and a report with detailed

information about all steps of the modeling process. Figure 5.1 shows an example

of a model built with ModeRNA, compared to the native structure.

The main advantages of ModeRNA are that it can be run in a fully automated

mode, it is very fast and can be used in a batch mode (e.g., to model hundreds or

thousands of structures from one RNA family), and it can model RNAs with

modified nucleotides that are specified in the sequences to be modeled. There is

no restriction on size of the molecules to be modeled. The ModeRNA software and

detailed descriptions of commands, examples, as well as a tutorial can be found on

the Bujnicki laboratory website, URL: http://iimcb.genesilico.pl/moderna.

ModeRNA is implemented in Python, free for all users, and released under theGPL

open source license, which means that it can be customized and integrated with other

software. Implementations forUNIX (includingMacOSX) andWindows systems are

available. The program requires Python and the Biopython library (Cock et al. 2009).

Several functions for numerical calculations that are part of the PyCogent library

(Knight et al. 2007) have been included in the ModeRNA code. For Windows, an

executable version is available that does not require installation of any additional

software. ModeRNA does not require large computational resources, for instance, one

tRNAmodel can be built in 2–20 s on a standard PCwith one 2.4 GHz processor, with
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the exact time dependingmostly on the number and size of indels thatmust bemodeled

by the fragment insertion procedure.

5.3.1 ModeRNA Requires User-Defined Alignments
and Templates

ModeRNA does not infer the alignment by itself; the alignment must be supplied by

the user. Needless to say, the accuracy of the alignment will ultimately determine the

quality of the resulting model—exactly as in the case of all methods for comparative

modeling of protein structure. Although the PDB database covers many important

families of structured RNAs, it may be difficult to find a proper template molecule for

a particular target. A structurally related template may not exist at all, rendering

comparative modeling impossible, or it may not be detectable with the existing

Fig. 5.1 An example template-based model built by ModeRNA, compared to the experimentally

determined structure. Light gray: the experimentally determined structure of tRNA(Phe) from

Saccharomyces cerevisiae (PDB code: 1EHZ, chain: A). Dark gray: a model of tRNA(Phe) from

S. cerevisiae built with ModeRNA, based on tRNA(fMet) from Thermus thermophilus (PDB code

2 V46, chain W) as a template. The root-mean-square deviation between the model and the

experimentally determined structure is only 2.43 Å, while the sequence identity between the target

and the template is only 38%
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methods. And if a template structure is available, a critical issue is to create an

accurate, biologically relevant target–template sequence alignment. However, we

must emphasize that searching for solutions to these problems is not a part of a

comparative modeling program per se. As mentioned earlier, in the protein structure

prediction field, specialized fold recognition methods exist for template identification

and calculation of target–template alignments (Godzik 2003). We believe that such a

division of efforts between fold recognition and comparativemodeling is also justified

in the case of RNA template-basedmodeling, especially given thatmany programs for

RNA sequence alignment and sequence–structure alignment already exist.

Precalculated alignments are already available for many RNA families, e.g., in

the Rfam database (Gardner et al. 2009). When no suitable template is known, a

database search must be carried out. Simple homology searches with tools like

nucleotide BLAST on a set of RNA sequences extracted from PDB files (Sayers

et al. 2009) can identify only very closely related templates. It is also possible to

build RNA secondary structure profiles or covariance models, if a 2D structural

alignment is available for a given family, and then use the covariance models for

searching a database for putative homologs (Nawrocki et al. 2009). Freyhult et al.

(2007) carried out a comparative analysis of programs for searches of homology

among non-protein-coding RNAs (ncRNA) and found that the three best-

performing methods were Infernal (Eddy 2002), RSEARCH (Klein and Eddy

2003), and RaveNnA (Weinberg and Ruzzo 2006).

For cases where no precalculated alignment exists, but a template structure is

known (or a particular template is arbitrarily selected by the modeler), a number of

tools exist for RNA sequence alignment. Programs utilizing sequence information

alone perform poorly; hence, the use of methods that combine sequence and

secondary structure information is recommended. Examples of such methods

include Consan (Dowell and Eddy 2006) for pairwise alignments, and LocaRNA

(Otto et al. 2008), FoldalignM (Torarinsson et al. 2007) or Stemloc (Holmes 2005)

for multiple alignments. A more comprehensive list of available tools is discussed

in the article describing the R-Coffee method (Wilm et al. 2008).

ModeRNA allows for modeling based on multiple templates, with different parts

of the target sequence aligned to different templates or their fragments. This

advanced feature goes in the direction of interactive modeling because it requires

the user to specify not only all local alignments but also the mutual orientation of all

template fragments.

5.3.2 Modeling of Nucleotide Substitutions by ModeRNA

For residues that are identical between the template and the target, the coordinates

of all atoms are copied from the template residue to the model, without any changes

(at least initially). When a substitution in the alignment occurs, coordinates are also

copied for the whole residue, followed by a base exchange. The target base is

loaded into the model and superimposed onto three atoms of the template base
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adjacent to the glycosidic bond (e.g., N9, C8, and C4 for adenine); then the atoms of

the template base are removed (Fig. 5.1a). Both transversions (replacement of

purine by purine and pyrimidine by pyrimidine) and transitions (replacement of

purine by pyrimidine and vice versa) are modeled this way. This operation

preserves the conformation of the backbone (ribose and phosphate) as well as the

torsion angle w of the glycosidic bond.

5.3.3 Modeling of Posttranscriptionally Modified Nucleosides
by ModeRNA

One of the features of ModeRNA that distinguishes it from most other modeling

programs is that it can recognize modified nucleosides in the template structure and in

the sequence alignment and preserve, add, or remove them accordingly in the model-

building process. Posttranscriptional modifications of nucleosides are crucial for the

function of RNAs; they appear to be as important as posttranslational modifications

are for the function of many proteins. In tRNA, by far the most abundantly modified

RNA, they aid in folding into a well-defined tertiary structure, in fine-tuning the

recognition by aminoacyl tRNA synthetases, and allow for multicodon specificity

for the anticodon loop (Grosjean 2009). In rRNA, modifications also increase the

efficiency of translation and play a role in bacterial resistance to ribosome-targeting

antibiotics (Poehlsgaard and Douthwaite 2005). Modifications have also been

observed in mRNA and various types of noncoding RNAs, including snRNA, snoRNA,

and miRNA. To date, 115 different nucleotide modifications have been characterized,

and this number is still growing (Czerwoniec et al. 2009). About half of these are

methylations, which can occur at almost every position of standard bases and/or at the

ribose 20OH group. More complex modifications such as aminoacylations,

formylations, sulfurylations, isoprenylations, and combinations of multiple

modifications have also been observed. In most modifications, functional groups

are added or substituted (e.g., O to S, NH2 to O), but, e.g., pseudouridine formation

requires an isomerization, and queuosine formation requires a complete replacement

of the original base by an independently synthesized modified base in the course of a

transglycosylation reaction.

Several different abbreviation schemes for nucleotide modifications have been

used, e.g., for the base 5-methylcytidine, the abbreviations 5mC, m5C, m5C, mC5,

and mC have been used in literature. For representation at the sequence level, one-

letter abbreviations for some modified bases have been introduced by Sprinzl and

coworkers (Juhling et al. 2009), but the number of currently known modifications

greatly exceeds the number of letters in the Latin alphabet. To allow for alignments

containing all possible modified nucleotides, ModeRNA can recognize not only the

one-character symbols but also an unambiguous numbering scheme recently

introduced in the MODOMICS database (Czerwoniec et al. 2009). The PDB is

also inconsistent in naming different modified residues (e.g., in the PDB entry 1F7U
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1-methyladenosine from chain B residue 958 is named “1MA,” while the chemi-

cally identical residue from the PDB entry 1OB2, chain B, residue 58 bears the

name “MAD”). To recognize modified nucleotides in RNA structures, a subgraph

matching algorithm that matches the topology of atoms in each residue to patterns

representing each of the 115 modifications was implemented in ModeRNA. Thus,

modified nucleosides with nonstandard or even incorrect names can be identified

based on their chemical structures. In the output file, ModeRNA applies the names

of modifications that most frequently occur in the PDB, by default.

For adding modifications to standard bases, a set of 67 small fragments covering all

chemical groups occurring in the set of currently known 115modified nucleosides has

been created. Each such fragment contains atoms belonging to a modification and a

triplet of connecting atoms that are used to fit the fragment onto an existing standard

base (Fig. 5.2b). For removing modifications (or atoms that are replaced in the course

of a modification), either the extra atoms are removed (e.g., for a small functional

group such as a methyl) or an unmodified base is added by superimposing it onto the

original base, followed by removal of the original base (Fig. 5.2c).

5.3.4 Modeling of Insertions and Deletions by ModeRNA

Modeling of indels is probably the most challenging and crucial step in comparative

modeling. In the case of insertions in the target sequence (gaps in the template),

additional nucleotide residues must be introduced to the RNA model being created.

Examples of such situations include the introduction of a bulge into a helical stem,

loop enlargement, extension of a helix or of a terminal tail, or even introduction of

an entire new element of secondary structure. In the case of deletions in the target

sequence (gaps in the target), the relevant residues have to be removed from the

Fig. 5.2 Basic template-based modeling operations of ModeRNA. (a) Nucleotide substitution.

(b) Addition of a modification (ribose methylation). (c) Removal of a modification: deletion of an

isopropyl chain to restore an unmodified adenosine residue
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template, and the resulting ends must be sealed to restore the continuity of the

backbone. Such operations may involve the replacement of a longer segment of

sequence (e.g., a loop) by a shorter one that has a more extended conformation.

Indel modeling in ModeRNA follows the fragment insertion approach, similar to

the one widely used in comparative modeling of proteins (Michalsky et al. 2003),

and implemented, e.g., in SWISS-MODEL (Schwede et al. 2003). A similar

approach has been validated as a reliable method for modeling of 3–32-nt-long

loops by another group (Schudoma et al. 2010). A fragment includes the residue(s)

to be inserted and counterparts of residues that flank the indel in the template. The

default distribution of the ModeRNA software allows for inserting fragments up to

17 residues long (not counting the flanks). The choice of the maximum length was

conditioned by the size of the library file (20 MB). The standard fragment library

includes 128,169 fragments (n-grams) of RNA structure that are 2–19 residues long

and have a continuous backbone. It has been derived from the representative set of

172 RNA tertiary structures in the RNADB2005 set (Richardson et al. 2008), which

provides manually curated, nonredundant RNA structures from different families,

including large structures, e.g., the ribosome, and is expected to cover all known

types of local RNA structure. For modeling of longer insertions, a larger library

covering fragments up to 100 nt long, derived from the same database, is available

for download from the ModeRNA website.

For each indel, ModeRNA attempts to identify a backbone fragment with the

appropriate length and superimposes its flanking residues onto the corresponding

residues flanking the indel in the template structure so as to maximize its fit to the

anchor and tominimize steric clasheswith the rest of themolecule. The fragment search

includes a prefiltering stage, where the geometry of the flanking residues is compared to

all fragments of appropriate length from a library, and a fitting stage where the 50 most

promising candidates are evaluated by inserting them into the model. The best-fitting

candidate is retained. By default, the two residues flanking the insertion site are retained

in the template versions, so their counterparts from the fragment are deleted.

If the gap cannot be closed by the above-mentioned procedure, e.g., if an

extended fragment of the template is to be deleted and the resulting ends are too

far from each other, ModeRNA will generate a model with an unsealed gap and

generate a warning that the model is discontinuous. Such situations often occur

when modeling is attempted using an incorrectly chosen template or in regions

where the target–template alignment is erroneous.

5.3.5 Refinement of Models Generated by ModeRNA

Possible discontinuities in the backbone (resulting, e.g., from an imperfect match of

fragment ends to the flanking regions of the template) are repaired using the full

cyclic coordinate descent (FCCD) algorithm that connects two ends with a minimal

number of operations (Boomsma and Hamelryck 2005). ModeRNA rebuilds

coordinates of the RNA backbone atoms between two residues, aiming to restore
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the following native-like features, ordered according to the priority: (1) acceptable

bond lengths, (2) absence of interatomic clashes, (3) acceptable bond angles, and

(4) acceptable torsion angles. Acceptable values of bond lengths and angles have

been taken from a statistical analysis of structures in our fragment library (described

above). Acceptable torsion angles were directly taken from Richardson et al.

(2008). To avoid clashes, 42 RNA suites defined by Richardson et al. (2008) are

tried one after another as starting conformations, until the first clash-free loop

closure is found. If all variants exhibit clashes, then the variant with the smallest

number of clashes is selected. Subsequently, the positions of the most flexible P and

O50 atoms are optimized by a simple stochastic search algorithm trying to satisfy

angle and dihedral constraints. For generating coordinates at various stages of the

procedure, the NeRF algorithm used in ROSETTA (Parsons et al. 2005) has been

implemented. In case the entire procedure fails to close the backbone, details about

the kind of distortion for the residues flanking the problematic site are reported.

For more extensive remodeling and searching for structures that are close to the

global energy minimum, the user is expected to use other specialized software.

ModeRNA contains a script to use the external molecular dynamics package

MMTK (Hinsen 2000) for model optimization. It can be applied to perform

conjugate gradient energy minimization using the AMBER force field to refine

the model. The optimization may be restricted to particular regions of the model, in

order to lower calculation time. Alternatively, any other molecular dynamics

program or statistical potential for RNA can be used. ModeRNA is also compatible

with the Adun package (Johnston et al. 2005) for molecular simulations.

5.4 SimRNA, a New Method for Template-Free RNA

Structure Modeling

The development of SimRNA has been inspired by the success of the template-free

protein modeling methods CABS (Kolinski 2004) and REFINER (Boniecki et al.

2003). It uses a simplified (coarse-grained) model of the RNA structure, samples

the conformational space using the Monte Carlo simulated annealing approach, and

evaluates the energy of conformations using a statistical potential, derived from

analysis of experimentally solved RNA structures. SimRNA can model the folding

of RNA molecules comprising single or multiple chains and can predict the

structure based on sequence information alone, although it can also utilize starting

structures provided by the user and additional distance restraints.

SimRNA is implemented in C++. It is available for UNIX systems, and it is

distributed only in the executable version (the current prototype can be obtained from

the authors upon request). SimRNA requires considerably larger computational

resources compared toModeRNA, and therefore, the length of sequences to bemodeled

de novo, without any restraints, is limited. The folding simulation of an RNAmolecule

of approximately 50 residues on a single processor ~2 GHz takes about 5–10 h.
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5.4.1 Coarse-Grained Representation of RNA in SimRNA

SimRNA represents the nucleotide chain using only three atoms per nucleotide

residue. The backbone is represented by atoms P of the phosphate group and C40 of
the ribose moiety, whereas the base is represented by just one nitrogen atom of the

glycosidic bond (N9 for purines or N1 for pyrimidines). The remaining atoms are

neglected. Such a simplistic representation allows to retain the main characteristics

of the RNA molecule such as base pairing and stacking, and a spiral shape of the

backbone in helices, while it significantly lowers the computational cost for con-

formational transitions and energy calculation.

Our approach relies on the previously proposed concept that the RNA backbone

conformation can be described through two effective virtual bonds P-C40 and C40-P
(Olson and Flory 1972). This is possible because the RNA backbone is rotameric

and both the P-O50-C50-C40 bonds and the C40-C30-O30-P bonds tend to be approxi-

mately planar (Duarte and Pyle 1998; Murray et al. 2003). The atom representing

the base has been chosen arbitrarily. Its position with respect to the backbone is

established by defining a local coordinate system that depends on the backbone

conformation with its origin on the C40 atom.

5.4.2 Statistical Energy Function in SimRNA

Dealing with a reduced representation requires the energy function to capture the

essential characteristics of the entire nucleotide chain that encompass also the atoms

that are not explicitlymodeled. This task can be accomplished by employing statistical

potentials derived from frequency distributions of geometrical parameters observed in

experimentally determined RNA structures. Terms of the SimRNA energy function

were generated using reverse Boltzmann statistics (Sippl 1993):

EðpÞ ¼ � ln fobservedðpÞ=fexpectedðpÞ
� �

; (5.1)

where E(p) is the energy of a geometrical parameter p, fobserved(p) is the frequency
at which this is observed in a certain bin in the dataset, and fexpected(p) is a reference
frequency value assuming an unbiased distribution in all bins.

In SimRNA, short-range energy terms control the lengths of virtual bonds along

the backbone (P-C40 and C40-P), flat angles (P-C40-P and C40-P-C40), and torsion

angles (P-C40-P-C40 and C40-P-C40-P). All short-range energy terms are sequence

independent. The values of adjacent torsion angles are correlated (Duarte and Pyle

1998); therefore, this term was treated as a function of two variables, while terms

corresponding to bond lengths and angles were defined as independent functions.

For long-range base–base interactions, we employed a similar approach to the

one used in FARNA (Das and Baker 2007). For each type of a standard nucleotide

(A, C, G, U), we collected information about its spatial neighbors in the
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representative set of 172 RNA tertiary structures from the RNADB2005 set

(Richardson et al. 2008). We defined a second local coordinate system based on

the conformation of the N-C40-P unit with the origin on the C40 atom and calculated

the frequency of occurrence of the nitrogen atom of the interacting base, indepen-

dently for each combination of base types. The spatial distributions were mapped

onto 3D grids and converted into 3D histograms independently for each combina-

tion of interacting bases. This procedure allowed to calculate the relative

preferences for all types of nucleotide–nucleotide interactions, including stacking

and canonical (Watson–Crick) as well as noncanonical base pairing.

SimRNA models the total energy of RNA as the linear combination of three

short-range terms that assess the local geometry of the chain and a single term that

assesses all interactions between nucleotide residues. In doing so, we implicitly

assume that the total energy of the system can be partitioned as the sum of

independent contributions of the following terms:

Etotal ¼ Ebonds þ Eflat angles þ Etorsion angles þ Epair interactions: (5.2)

5.4.3 Conformational Sampling in SimRNA

For searching the conformational space, we employed Monte Carlo dynamics. The

simulation is controlled by an asymmetric Metropolis method (Metropolis and

Ulam 1949) that accepts or rejects new conformations depending on the energy

change associated with the conformational change. The chance of a move being

accepted is also related to the “temperature” of the system. The probability of

acceptance of the trial move is:

1when DE is � 0 or e�DEb when DE is > 0; (5.3)

where DE is the energy change associated with the conformational change and b�1

is the reduced temperature (T*). Thus, energetically favorable changes are always

accepted, while energetically unfavorable changes may be accepted depending on

the temperature. In order to find the global energy minimum, the conformational

sampling is subjected to simulated annealing (SA), which involves a gradual

decrease of the temperature of a system. The dependency is such that conformations

are allowed to change almost randomly when T* is large, but the conformational

freedom is progressively restricted to low-energy variants as the system is cooled

down. A properly parameterized simulation is expected to guide the system into a

global energy minimum. The allowance for moves that increase the energy allows

for crossing energy barriers between low-energy conformations and prevents the

system from becoming stuck in local energy minima.
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The Monte Carlo dynamics requires a set of procedures that modify positions and

orientations of atoms (a “move set”). The basic conformational change is a small

translation of a randomly selected atom, in a random direction. Theoretically, a very

long series of suchmovesmay be sufficient to sample the entire conformational space,

but certain operations likemutual rotation of two substructures are unlikely to occur as

a result of a concertedmove of single atoms. Therefore, we implemented a set ofmore

sophisticated moves including a concurrent move of two adjacent backbone atoms,

changing the direction of a chain fragment, rotating a chain fragment, and translating

the nitrogen atom in the local coordinate system that corresponds to a conformational

change of a base moiety and/or a ribose moiety. All types of moves are applied with

certain probabilities that attempt to mimic the relative mobility of atoms in the native

molecule. Currently, the relative frequencies of differentmoves are defined arbitrarily,

but they can be fitted to values established experimentally or from all-atommolecular

dynamics simulations.

5.4.4 The Use of Spatial Restraints in SimRNA

SimRNA allows for simulations that employ only the sequence information,

starting from an extended structure. However, for many RNA molecules, there

exists a great deal of experimental data, from which secondary structure, solvent

accessibility, and short-range or long-range interactions can be inferred. In such

cases, the use of restraints significantly reduces the conformational space of possi-

ble solutions to be sampled and therefore decreases the computational cost of

modeling. In particular, restraints on secondary structure allow the correct base

pairs to be formed early in the simulation and to use the computational time mostly

for sampling potential tertiary contacts. SimRNA simulations can be run with

restraints that specify distances or allowed distance ranges for user-defined atom

pairs and introduce specific penalties for the violation of a given restraint.

5.4.5 SimRNA Generates Funnel-Like Energy Landscapes
for Small RNAs

SimRNA models the process of folding by simulating the conformational changes

of an RNA molecule while it searches for the state of minimal free energy. In order

to achieve this, the energy landscape that describes the relationship between the

conformation and the energy should have a funnel-like shape. More explicitly,

when plotting the energy versus RMSD for a large ensemble of conformers, there

should be a funnel-shaped tip at the bottom left corner of the plot. In particular, the

native structure should exhibit the lowest energy, and the farther a given conforma-

tion is from the native structure, the higher its energy should be. Further, the
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variability of energies for conformations of approximately the same degree of

deviation from the native structure should increase with increasing deviation.

Ideally, this relationship between the value and variability of energies and deviation

from the native structure should hold across the entire range of possible

conformations. Such properties of the energy function should generate a funnel-

shaped energy landscape.

While our knowledge about energy landscapes of RNA molecules is insufficient

to state with confidence that the folding of all or most RNAs is governed by

thermodynamics and that it should exhibit funnel-like characteristics (Thirumalai

and Hyeon 2005), the thermodynamic hypothesis provides a testable working

model for RNA structure prediction. Our tests demonstrated that for small RNA

molecules (<40 residues), SimRNA is able to fold the RNA chain from a

completely extended conformation into a native-like conformation and that the

Fig. 5.3 An example

template-free model built by

SimRNA, compared to the

experimentally determined

structure in the 3-atom

representation. Light gray: the
experimentally determined

structure of 23 S ribosomal

RNA hairpin 35 (1MT4 in

PDB), dark gray: a theoretical
model obtained in the course

of de novo folding

simulations as a conformation

of the lowest energy, based

only on sequence

information, without using

any restraints or information

about the native structure
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energy landscape often exhibits the funnel-like shape. Figure 5.3 shows an example

of a model built by SimRNA in the course of a restraint-free simulation (based on

sequence information only), while Fig. 5.4 illustrates a typical relationship between

the energy of conformations sampled and their deviation from the native

conformation.

5.4.6 Reconstruction of the Full-Atom Representation

We have developed a method called RebuildRNA to generate and optimize full-

atom models of RNA, starting with the reduced models generated by SimRNA.

Briefly, RebuildRNA compares three-nucleotide units of the model with a database

of full-atom fragments derived from known structures and combines the middle

nucleotides from all top matches and additional nucleotides at the termini to

generate a full-atom structure. Collisions and gaps are detected and removed by

introducing alternative nucleotide conformers from fragments with progressively

more distant matches to the model. RebuildRNA can optionally conduct a Monte

Carlo simulated annealing simulation, attempting to improve the local geometry of

the model. The energy function is composed of statistical potentials (all-atom

versions of those in SimRNA) combined linearly with two physical energy terms:

a Lennard–Jones potential and a hydrogen bonding potential. A single move

corresponds to replacement of a randomly selected single nucleotide unit with an
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Fig. 5.4 Funnel-like relationship between the energy of conformations calculated by SimRNA

(E) and their deviation from the native structure root-mean-square deviation in Å calculated for all

atoms in the SimRNA representation. (Example: RNA hairpin of eel LINE UnaL2, 2FDT in PDB)
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additional phosphate group (i.e., a mononucleotide 3050-bisphosphate) with a ran-

dom variant with the same base from a database of known structures. Figure 5.5

illustrates the result of full-atom reconstruction for the structure modeled by

SimRNA (compare with Fig. 5.3).

5.5 Critical Assessment and Benchmarking of RNA

Structure Prediction

For a very long time, the field of RNA 3D structure modeling has been dominated

by methods based on interactive graphical interfaces such as S2S/Assemble

(Jossinet et al. 2010; Jossinet and Westhof 2005), ERNA-3D (Pentafolium Soft.),

or RNA2D3D (Martinez et al. 2008) that allow human experts to manipulate

sequences and structures in 3D. Only recently have a number of automated methods

been developed, many of which are based on concepts previously used with success

Fig. 5.5 A full-atom

reconstruction of a SimRNA

model, compared to the

experimentally determined

structure. The structures are

oriented in the same way as in

Fig. 5.3. Light gray: the
experimentally determined

structure of 23 S ribosomal

RNA hairpin 35 (1MT4 in

PDB), dark gray: SimRNA

model subjected to full-atom

reconstruction and

optimization by RebuildRNA
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in the protein 3D structure modeling field. The development of useful methods for

protein structure prediction has been driven by the benchmarking experiments, in

which blind predictions are objectively compared to the experimentally solved

structures. In the protein structure prediction community, there are periodic evalu-

ation experiments that rigorously test the accuracy of prediction methods, e.g.,

CASP (biannually; http://www.predictioncenter.org/casp9/) and Livebench (con-

tinuously; http://meta.bioinfo.pl/livebench.pl). The ability to objectively assess the

structure prediction methods, their relative performance, as well as the typical

accuracy of predictions using an established set of measures (Moult et al. 2009)

has proven indispensable for progress in this field of research.

The assessment of model accuracy requires reliable and meaningful metrics for

comparisons between the models and the experimentally determined structures

used as a “gold standard”. One of the measures used commonly for comparison

of macromolecular models is the root-mean-square deviation (RMSD) between

pairs of equivalent atoms in the optimally superimposed structures. Typically, only

backbone atoms are considered, e.g., Ca in protein structures or P in RNA

structures, but RMSD can be also calculated for any (or all) atoms. However,

RMSD is not a perfect measure. A small perturbation in just one part of the structure

(e.g., a hinge movement of two domains) can create a large RMSD suggesting that

the two structures are very different overall. To take into account both local and

global structural similarities, several metrics have been developed. The global

distance test (GDT_TS) score (Zemla 2003) and the template matching (TM)

score (Zhang and Skolnick 2004b) are examples of metrics developed for compari-

son of protein structures that have been generally accepted in the protein structure

prediction field and used by assessors in the CASP experiment; they can be also

applied to compare RNA structures and measure the accuracy of RNA models.

The GDT_TS score is defined as the average coverage (fraction of superimposed

residues) of one structure by another in superpositions carried out with four different

distance thresholds: 1, 2, 4, and 8 Å. The exact per-residue deviation values are

ignored (e.g., residues with deviations ranging from 4.1 to 8.0 Å from native have

identical contributions to the score). The GDT_TS score as well as the RMSD and

many other metrics of structural similarity are dependent on the molecule size: if

randomly selected molecules of the same size are compared, the score deteriorates

with the molecule size. To eliminate the dependence on protein size, Levitt and

Gerstein converted the structure similarity score into the P-value, i.e., a statistical

significance score, based on the statistics of random structure comparisons (Levitt and

Gerstein 1998). The TM score extends the approaches used in the Levitt–Gerstein

score and in the GDT_TS score and attempts to eliminate the dependence on protein

size by taking into account the radii of gyration of compared structures (Zhang and

Skolnick 2004b). The value of the TM score always lies in range (0, 1), with better

templates having higher TM scores. Recently, Hajdin et al. have analyzed the depen-

dence of the structure similarity on the molecule size in small RNAs (<161 nt length)

with relatively complex tertiary structures. They found that the compactness of folded

RNAmolecules is slightly lower than for proteins with the same mass. Based on their
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analysis, they defined an expression relating RMSD with the P-value that describes
prediction significance (Hajdin et al. 2010).

Measures of structural similarity developed for protein models are not always ideal

for RNA structures. They may capture the general 3D shape, local deviations of the

structure, intradomain deformation, or interdomain deviations but are agnostic about

important features that are unique to RNA, i.e., the base-pairing and base-stacking

patterns. Parisien et al. developed an RNA 3D structure comparison measure called the

deformation index (DI), which evaluates and indicates the deviations between two

RNA 3D structures with both RMSDs and base interactions (stacking and pairing)

(Parisien et al. 2009). They also developed anothermeasure called a deformation profile

(DP) that highlights dissimilarities between structures at the residue level for both

intradomain and interdomain interactions. The DP score can be also used for proteins.

The number of crystal and NMR structures solved for RNA molecules that are

sufficiently large for meaningful analysis is probably still too small to provide a

sufficient number of targets for CASP-like intense modeling over a few months

every year. While “CASP for RNA” has not fully developed yet, there have been

several initiatives aiming at objective assessment of different methods and approaches

for RNA modeling. One question is how these methods compare to each other when

run in a fully automated mode, and how well they perform in the hands of different

users. First, in the fall of 2010, Eric Westhof and Neocles Leontis organized a CASP-

like RNA prediction challenge, with just three targets for a few groups of human

predictors. At the time of thewriting of this article, the results remained confidential, as

the experimentally solved structures of the targets have not been published yet. Second,

organizers of theCASP experiment expressed interest in includingRNA structures as a

possible new type of predictions, perhaps in CASP-10 (to be organized in 2012). Third,

in the meantime, we have started a project similar to Livebench (again, an inspiration

from the field of protein structural bioinformatics), which aims to become an objective

benchmark of fully automatedmethods forRNA structure prediction. TheCompaRNA

web server (http://comparna.amu.edu.pl, T.P., K.R., Łukasz Kozłowski, Ewa

Tkalińska, J.M.B., manuscript in preparation) provides a continuous benchmark for

stand-alone and web server methods. Currently, it addresses only fully automated

methods forRNA2Dstructure prediction, butwe intend to extend it to includemethods

for RNA 3D structure prediction that will become available as public web servers and/

or local installations that can be run in a fully automated mode with default parameters

and do not require large computing resources. This approach excludes expert-based

modeling and methods that are not yet fully automated or require high-performance

computing; hence, it is complementary to CASP-like modeling by human experts. We

are convinced that these (and perhaps other) efforts will significantly stimulate the

progress in the RNA structure prediction field.

5.6 Note

In the section devoted to ModeRNA software, this article includes extended passages

from a research article “ModeRNA: A tool for comparative modeling of RNA 3D

structure,” (Rother et al. 2011b)#M.R., K.R., T.P., J.M.B. 2010. After this chapter
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has been submitted, we have used its elements (with permission) in a review article

“RNA and protein 3D structure modeling: similarities and differences” (Rother et al.

2011a). Before publication of this book, the results of the CASP-like "RNA Puzzles"

prediction challenge have been published (Cruz et al. 2012).
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Chapter 6

The RNA Folding Problems: Different Levels

of sRNA Structure Prediction

Fredrick Sijenyi, Pirro Saro, Zheng Ouyang, Kelly Damm-Ganamet,

Marcus Wood, Jun Jiang, and John SantaLucia Jr.

Abstract RNA 3D structure prediction is analogous to the protein folding prob-

lem, particularly the astronomical size of the conformational search space and the

challenge of appropriately scoring native versus decoy alternatives. However, RNA

presents important differences compared to proteins, notably the existence of a low-

energy secondary structure intermediate on the pathway to tertiary folding. The

availability of a secondary structure facilitates de novo prediction using assembly

of fragments. RNA mutants and close homologs are readily predicted with high

accuracy using homology modeling. Evolutionarily distant RNAs often require

a combination of homology and de novo modeling approaches. The greatest

challenges to RNA structure prediction are posed by multihelix loops, certain

types of pseudoknots, and multidomain packing. There are also a variety of partial

folding problems for RNA and opportunities for whole database structure predic-

tion. Herein we describe a unified suite of programs called “RNA123” for the

analysis and prediction of RNA structure.
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6.1 Introduction

RNA performs diverse functions in the cell, including catalysis of protein synthesis,

catalysis of RNA processing (e.g., cleavage, splicing, editing, chemical modifica-

tion, silencing, and degradation), binding of small-molecule ligands, interactions

with proteins, and regulation of gene expression at the transcription and translation

levels. More than half of the human genome is transcribed into noncoding RNAs

such as small interfering RNAs (siRNA) and microRNAs (miRNA) that participate

in gene regulation, and yet, structures are available for only a small fraction of

noncoding RNAs. Messenger RNAs (mRNA) also contain interesting secondary

structures within the coding regions, introns, and in the 50 and 30 untranslated
regions (UTR); additional functional RNAs include ribozymes, riboswitches, and

in vitro selected aptamers. Many RNAs must form complex three-dimensional (3D)

structures to carry out their functions. Thus, knowledge of the tertiary structure of

these RNAs is essential to unraveling their roles in the cell.

Current experimental methods for three-dimensional structure determination are

difficult and slow compared to the pace of discovery of interesting RNA sequences

from genome sequencing projects. For example, the PDB currently (as of February

2010) contains only 1,730 RNA-containing structures of which 759 are RNA-only

structures, but there are more than three million RNA sequences in the RefSeq and

fRNAdb (Mituyama et al. 2009) databases and greater than 1.1 million RNAs in the

curated Rfam database (Gardner et al. 2009). In the future, the number of functional

RNAsdiscovered is expected to grow exponentially.Of this number,most are relatively

simple structures or repetitive examples of similar folds. Thus, there is a compelling

need to develop tools for 3D structure prediction based only on the sequence and any

available experimental constraint information. Although several approaches and

associated software tools have been developed to address this need (Das and Baker

2007; Ding et al. 2008; Jonikas et al. 2009; Lu and Olson 2003; Maier et al. 1999;

Massire and Westhof 1999; Mueller and Brimacombe 1997; Parisien and Major 2008;

Tan et al. 2006), general solutions with high accuracy are yet to be achieved.

Two of the major hurdles in RNA structure prediction continue to be the formula-

tion of an accurate free-energy function and a conformational searching or sampling

methodology that is capable of locating the energy minima (Das and Baker 2008).

Consequently,mostwork has focused on the prediction of small RNAswith fewer than

100 nucleotides (nts) due to the computational complexity associated with conforma-

tional sampling for larger RNAs. Our goal is to increase the accuracy and size limit of

predicted RNA structures. We have developed the software package RNA123, which
contains a suite of tools for analyzing RNA structures, performing structure-based

sequence alignments, secondary structure prediction, and 3D homology modeling of

RNA structures (and protein complexes) as large as the bacterial ribosome. A proto-

typemodule inRNA123 for de novo prediction ofRNAswith single-domain structures

consisting of helices, bulges, internal loops, and hairpin loops has also been completed.

Addition of functionality in the de novo module for predicting multihelix loops and

multidomain structures is underway but will not be discussed in this contribution.
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6.2 Comparison of Protein and Nucleic Acid Folding

Problems

Tremendous progress has been made on the “protein folding problem” in the past

30 years (Ben-David et al. 2009; Blum et al. 2010; Pandit et al. 2010; Raman et al.

2010). Nonetheless, it is still very challenging to accurately predict protein structure

from sequence information alone, particularly for protein sequences longer than

100 amino acids, and rational protein design is still in its infancy (Kaufmann et al.

2010). Some aspects of the folding problem are easier to solve for RNA than for

proteins (Tinoco and Bustamante 1999), while others are harder (Shapiro et al.

2007). Considering a protein and an RNA structure that have the same number of

residues, the conformational search space for RNA is vastly larger than that for

proteins due to the fact that each RNA residue has six backbone dihedrals, com-

pared to only two in proteins. However, RNA only has four different residues, all of

which contain a heterocyclic aromatic base, while proteins have 20 different amino

acids with diverse chemical functionality (i.e., apolar, charged, sulfhydryl, aro-

matic, etc.) and diverse conformational freedom (e.g., glycine, proline, alanine, and

lysine have different numbers of side-chain dihedrals and functional groups, and

thus, they have very different conformational preferences). The limited RNA

alphabet allows for easy determination of the library of preferred dimer confor-

mations (Das and Baker 2007; Murray et al. 2005). In addition, RNA has strong

pairing rules (G–C and A–U), while there are no such rules for proteins. The strong

pairing rules result in a well-defined hierarchy of folding in RNA in which most of

the folding free-energy change is due to secondary structure formation (Draper

2008; Jaeger et al. 1990; Mathews and Turner 2006; Tinoco and Bustamante 1999;

Turner and Mathews 2010; Turner et al. 1988). Thus, the neglect of tertiary

interactions is a reasonable first approximation for nucleic acids, making accurate

prediction of secondary structure generally possible (described below). This contrasts

with proteins where secondary structures are much weaker and multiple secondary

structures are transiently sampled en route to the folded conformation (Alm et al.

2002; Duan and Kollman 1998; Karanicolas and Brooks 2003; Krivov and Karplus

2004). The strong pairing rules of nucleic acids also result in well-defined secondary

structure boundaries (i.e., the beginnings and ends of helices) that are readily

predicted by comparative sequence analysis even when the primary sequence simi-

larity is low (which is not the case for proteins). The a-helical and b-strand elements

of proteins exhibit significant variable bending, which is difficult to predict. In

contrast, double helices in folded RNAs are fairly rigid and usually in A-form

conformation, and structural flexibility is achieved through the connecting single-

stranded loops (e.g., bulges, non-Watson–Crick base pairs, internal loops, multihelix

loops, and exterior loops that connect domains). In addition, secondary structure

in proteins involves local symmetry among residues that are close in the sequence

(i.e., approximately twofold helical symmetry for b-strand and 3.6-fold helical sym-

metry for a-helices), while in RNA, secondary structure involves double helices that
involve hydrogen bonds (H-bonds) between residues that are far apart in sequence.

6 The RNA Folding Problems: Different Levels of sRNA Structure Prediction 93



Thus, the notion of secondary structure for RNA is related to protein supersecondary

structure topology (e.g., the antiparallel b-sheet), which describes interactions among

secondary structure elements. This qualitative difference in secondary structure

makes it possible to deconstruct a large RNA fold into a set of smaller fragments

that are coupled and subject to certain topological and steric constraints.

The nature of tertiary packing in RNA and globular proteins is also quite

different. In proteins, secondary structure elements (a-helices and b-sheets) are

stabilized by H-bonds between backbone atoms while side chains radiate outwards.

Additionally, globular protein tertiary folding largely excludes water and is

stabilized by weak cumulative interactions including London dispersion, hydropho-

bic effect, electrostatics, and H-bonds. By contrast, RNA secondary structure is

stabilized by H-bond and stacking interactions (i.e., London dispersion interactions)

on the inside of the double helix and by a cloud of nonspecific solvent and counterion

interactions on the outside of the duplex. RNA tertiary structure is stabilized by a high

degree of solvation and complex networks of H-bond and stacking interactions of

loop residues from different parts of the sequence. Additional stabilization is

contributed by specific interactions of hydrated magnesium ions particularly at

locations of high phosphate density. RNA stacking is enthalpically driven and does

not exhibit the classical hydrophobic effect (Bloomfield et al. 2000); all of the

common bases A, C, G, and U are polar, though the modified nucleotides can

potentially form small pockets of hydrophobic interactions. The lack of hydrophobic

effect moieties in RNA significantly simplifies RNA packing compared to proteins.

Note, however, that ligand binding to RNA (e.g., drugs, substrates, and proteins) can

provide nonpolar surface area that is buried upon complex formation. This creates

a hydrophobic component to such interactions that cannot be neglected. Interestingly,

in RNA, there appears to be no concept analogous to “fold classification” (e.g., TIM

barrel, Greek key, and beta-sandwich) (though there it is possible that RNA coaxial

stacking and side-by-side helical packing may be amenable to fold classification).

Thus, the threading approach that sometimes applies to evolutionarily unrelated

protein folds cannot be applied to whole RNAs that are not evolutionarily related

but does apply to individual loop motifs (i.e., many different sequences of unrelated

function can have similar loop folds). As such, this principle is utilized extensively in

our de novomodeling approach. However, the concept of threading for evolutionarily

related RNAs (i.e., two RNAs that have a close common ancestor) forms the basis of

our homology modeling approach.

6.3 Structure Prediction of RNA

Macromolecular tertiary structure prediction can be accomplished by four different

approaches: folding pathway simulation, conformational sampling, fragment

assembly, or threading (including homology modeling). RNA has a huge confor-

mation space of ~37N (where N is the number of nucleotides, 7 is the total number of
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RNA backbone and base dihedrals per residue, and 3 is the assumed number of

conformational minima for each dihedral angle). This vast conformational space

renders pathway and sampling methods computationally intractable for large N.
The folding process for RNA is complex with numerous intermediates, but the

formation of secondary structure occurs very quickly, often during transcription

(Herschlag 2009; Koculi et al. 2006; Misra et al. 2003). The existence of a distinct

low-energy secondary structure intermediate on the folding pathway for most

RNAs makes RNA particularly suited to an approach that combines a dynamic

programming algorithm (DPA) for secondary structure prediction and a 3D motif

assembly algorithm for construction of tertiary structures. Secondary structure

base-pairing constraints can be inferred from chemical probing experiments or

from phylogenetic covariation analysis (Gutell et al. 2002) or from free-energy

minimization-based secondary structure prediction algorithms (Mathews and

Turner 2006; SantaLucia and Hicks 2004). Challenges to accomplishing accurate

tertiary structure prediction using secondary structure restraints in this pathway are

discussed at length below. The threading approach forms the basis for homology

modeling, which is well suited to RNA structure prediction whenever the structure

of a close homolog is available.

6.3.1 Types of RNA Structure Prediction

Figure 6.1 shows the different types of RNA structure prediction arranged by

difficulty and the amount of experimental data included to aid the prediction. The

simplest type of modeling involves analyzing an experimentally determined 3D

structure to identify and correct regions that contain modeling errors; we refer to

this as structure “conditioning,” “regularization,” or “preparation” (Davis et al.

2004). Somewhat harder is to complete a partially solved structure by performing

de novo structure prediction on the unknown portions of the structure subject to the

constraints of the known parts of the structure. More difficult still is to complete

a full de novo prediction. The most challenging of all is de novo prediction of

protein–RNA complexes (i.e., quaternary structure). Homology modeling, on the

other hand, can be performed if a 3D template structure is available that has a high

level of sequence or secondary structure similarity with the query. If the template

has a low level of homology with the query (i.e., evolutionarily distantly related

RNAs), then a combination of homology modeling of conserved portions of the

secondary structure and de novo prediction of diverged regions can be performed.

Generally, once the structure of a single RNA of a given type is known, then, in

principle, homology modeling can be used to predict the 3D structures of an entire

sequence database of that RNA type. For example, there are currently five known

3D structures for 5S rRNA, while GenBank contains >60,000 examples of 5S

rRNA from different organisms (though a significant fraction of these sequences are

currently incorrectly annotated). Thus, it is now possible to use RNA123 to predict

atomic 3D models for all known 5S rRNA sequences.
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We have begun using RNA123 to construct complete homology models for

entire bacterial 30S ribosomes (including the proteins). Even for such large

complexes as the ribosome (as described in Sect. 1.7.4), the homology models

have global RMSDs <4 Å when compared to the published crystal structures,

contain most of the tertiary H-bonds, and are free of steric clashes or bond gaps.

Note that a significant portion of the observed global RMSD for homology models

is due to different functional states of different crystal forms rather than actual

errors in modeling. The RNA123-generated homology models often have near

crystal structure quality as judged by global RMSDs less than 2 Å. In some

instances, the homology models from RNA123 appear to be better than published

crystal structures because the models from RNA123 correct modeling errors

(described in Sect. 1.7.2) in the template and also complete regions of the structures

that are disordered in the crystals. It will be more challenging, however, to homo-

logy model eukaryotic ribosomes because they contain large variable insertion

regions, though the recently published low-resolution structure of the yeast ribo-

some will be helpful (Taylor et al. 2009). For some of these inserts, the correct

secondary structures are not even known.

Achieving accurate de novo structure prediction is more challenging than

homology modeling because much less information is available to guide the

prediction and much more conformational sampling is required. There are a variety

of experimental techniques that provide information that can improve the accuracy

of the predictions accompanied by a decrease in the amount of conformational

sampling required. The experimental methods include FRET distances, psoralen

or UV cross-linking (Jaeger et al. 1993), hydroxyl radical footprinting (Sclavi et al.

1997), chemical modification reactivity, cryo-EM electron density (Lasker et al.

2009), and small-angle X-ray scattering (SAXS) (Forster et al. 2008; Lamb

et al. 2008). Lastly, there is the inverse folding problem in which the goal is to

predict a sequence that can fold into a designed 3D structure. This has been

Fig. 6.1 Different levels of RNA folding problems arranged by difficulty (horizontal axis) and
amount of experimental data used as restraints (vertical axis)
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achieved for a few proteins (Dahiyat and Mayo 1997; Godzik et al. 1993; Hellinga

1997; Kuhlman et al. 2003; Looger et al. 2003), DNAs (Sherman and Seeman

2006), and RNAs (Nasalean et al. 2006).

6.3.2 Secondary Structure Prediction

There are several methods of obtaining restraints and constraints to aid secondary

structure prediction ranging from phylogenetic covariation studies (Gutell et al.

2002), experimental techniques such as SHAPE analysis (Merino et al. 2005),

chemical probing experiments (Jaeger et al. 1993), and free-energy minimization

methods using nearest-neighbor thermodynamic data (Mathews et al. 2004; Turner

et al. 1988). For an RNA of length N, there are approximately 1.86N possible

secondary structures (Zuker and Sankoff 1984). This fact makes the brute force

search for the global optimum intractable for N > 50. Fortunately, the discrete

nature of base pairing makes it possible to apply dynamic programming algorithms

(DPA) to RNA folding. DPAs are very efficient; the global minimum and subopti-

mal structures are guaranteed to be found with calculation time proportional to N3

and memory proportional to N2, which is computationally tractable for N < 10,000

with desktop computers (Zuker 1989). The current parameterization of DPAs in

programs such as MFold, RNAstructure, and Visual OMP result in approximately

73% or 90% correct secondary structure prediction of RNA (Mathews et al. 1999)

and DNA (SantaLucia and Hicks 2004), respectively. The accuracy of secondary

structure prediction can be dramatically improved with the addition of experimental

restraint information from chemical probing (Mathews et al. 2004), SHAPE analy-

sis (Deigan et al. 2009), and microarray hybridization (Kierzek et al. 2006).

The DPA in RNA123 has been engineered for fast performance and minimized

memory usage, includes pairing and nonpairing restraints, allows for setting differ-

ent temperatures and solution conditions, has thermodynamic parameters for dif-

ferent strand types (DNA, RNA, 20-O-methyl-RNA, PNA, phosphorothioates), and

accounts for many modified nucleotides (LNA, inosine, riboT, diaminopurine, etc.).

Such modified nucleotides are widely found in natural RNAs and are used in

biotechnology applications of RNA including siRNA and antisense oligonucleotide

design. In addition, the DPA in RNA123 contains a novel algorithm for including

“fuzzy restraints” in which a nucleotide is constrained to pair within a specified

range of nucleotides, allowing for a rough secondary structure fold to be imposed

on a given sequence and bias the prediction to be consistent with those restraints.

Even without experimental restraints, when the suboptimal RNA secondary

structures that are within a 2% energy window are examined, one of the suboptimal

structures is typically >90% correct (Mathews et al. 1999). However, currently,

there is no way to distinguish the correct from incorrect structures, although work

has been done to specify the most reliable regions of the prediction (Zuker 1989).

In comparison, current protein secondary structure predictions claim about 80%
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accuracy (Jones 1999). The accuracy for RNA secondary structure prediction is

more impressive than for proteins, however, because the secondary structure of

RNA involves double helices with interactions that are far apart in sequence,

whereas protein secondary structure (i.e., including b-strands but not including

b-sheets) is purely local. The main drawback of using DPAs, however, is that RNA

residues are represented by letters rather than 3D atomic structures. In addition,

incorrect secondary structure predictions are generally the result of approximate

and incomplete thermodynamic rules (i.e., neglect of the sequence dependence of

the free-energy changes of loop motifs), neglect of the stabilizing effects of tertiary

interactions (including “pseudoknots,” coaxial stacking, tertiary H-bonds, and

stacking), neglect of protein interactions, kinetically trapped folding (i.e., the

functional structure is not the free-energy minimum structure), and neglect of

metal ion and solvent interactions. We hypothesize that representation of the full

atomic detail and force field energy of 3D models corresponding to suboptimal

secondary structures will result in a more accurate energy ranking of the alternative

secondary structures. An underlying assumption of this hypothesis is that the

correct secondary structure is supplemented by a network of non-Watson–Crick

hydrogen bonds and stacking and tertiary interactions (selected by evolution) that

stabilize the functional structure. Incorrect secondary structures, however, cannot

form such a network of stabilizing interactions and may also have steric clashes in

3D. An important question, however, is whether it is possible to model tertiary

structure accurately enough to discover the native network of stabilizing non-

Watson–Crick and tertiary interactions that would improve the ranking of second-

ary structures.

6.3.3 Tertiary Structure Prediction

As noted above, the prediction of a tertiary structure from a corresponding second-

ary structure is theoretically more difficult for RNA than for proteins due to the vast

size of the conformational landscape available to RNA with its six backbone

dihedrals per residue. The approximate number of backbone conformations for

RNA is 36N. This rough estimate is verified by the conformational entropy change

for the formation of Watson–Crick base pairs from random coils in both DNA and

RNA (SantaLucia 1998; Xia et al. 1998). If half of the residues are known to be in

A-form geometry (i.e., the secondary structure is given), then the dependence

becomes approximately 33N, which is still astronomical for large N, and worse

than the combinatorial explosion for proteins of about 32N (only considering phi and

psi angles). These considerations suggest that nucleic acid backbones are more

flexible than proteins, which implies that the tertiary folding problem is more

difficult for RNA than proteins. Importantly, however, RNA secondary structure

provides additional long-range (i.e., far apart in sequence) 3D constraints from

Watson–Crick pairs. Full-atom classical molecular dynamics (MD) simulations are

incapable of widely searching the conformation space due to limitations on
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computational resources. As a result of the limited searching, classical MD

simulations rarely find the native structure when starting with an extended or

random structure (Ding et al. 2008; Duan and Kollman 1998). The implementation

of coarse-grained methods, however, can dramatically improve the sampling for

a given amount of CPU time, albeit at a cost in accuracy (Das and Baker 2007;

Jonikas et al. 2009; Tan et al. 2006).

6.3.4 Current Software for Tertiary Structure Predictions
of Nucleic Acids

Sparked by the intense interest in RNA 3D structural modeling, a host of computa-

tional tools have been developed in recent years. The field has come a long way

given that the first large all-atom RNA structure prediction was published in 1990

by Michel and Westhof (Michel and Westhof 1990). They predicted the structure of

a group I intron by manual modeling based on available experimental biochemical

and genetic data (Michel and Westhof 1990). Later, the Westhof group developed

the program MANIP, which allows an expert user to manually link together 3D

fragments and place them into a desired location (Massire and Westhof 1999).

MANIPwas used to create a model of ribonuclease P (Massire et al. 1998; Tsai et al.

2003). Recently, the Westhof group published a program named ASSEMBLE that

has an intuitive GUI that aids in the manipulation and modeling of 3D structures of

RNA (Jossinet et al. 2010). MC-SYM predicts the full atomic structures of small

RNAs with fewer than 100 nts using nucleotide cyclic motifs (Parisien and Major

2008). These tools iteratively mix and match base pairs (bothWC and non-WC) and

dimer rotamers from a structure database using force field energy to rank candidate

structures (Gautheret et al. 1993; Major et al. 1991) Sklenar’s group has developed

JUMNA to perform conformational searches in small hairpin loops (Maier et al.

1999). Macke and Case developed the Nucleic Acid Builder (NAB) tool (Macke

1998), which allows users to link together motifs to create rough structures suitable

for AMBER refinement. ERNA-3D was written by Mueller and Brimacombe to

model the ribosome (Mueller and Brimacombe 1997; Mueller et al. 2000) and has

been used to generate a structure of the signal recognition particle receptor (SRP)

RNA (Zweib and Muller 1997). However, ERNA-3D also requires manual inter-

vention to generate structural models. Olson’s group has developed the software

3DNA to assemble double helical structures given helical parameters and also

model single-stranded structures and complex motifs found in nucleic acids (Lu

and Olson 2003). FARNA was developed by the Baker group, which developed

ROSETTA, a leading program for protein folding, and is one of the more recent

automated methods that can predict structures of small RNA fragments with

complex folds stabilized by base triples and pseudoknots (Das and Baker 2007;

Jonikas et al. 2009). FARNA employs a knowledge-based approach that uses

trinucleotide torsion angle libraries in modeling; however, it is limited to prediction
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of small RNAs (~30 nts) due to severe computational demands for conformational

searches. FARNA’s prediction performance, although respectable, reveals the need

for improvement in RNA structure prediction algorithms.

Other recent prediction tools have focused on enhancing the conformational

searches by incorporating a coarse-grained molecular representation and conforma-

tional searching before full atomic computations to allow the modeling of large

RNAs in a reasonable computation time. YUP, developed by Tan et al. (2006), is

a flexible molecular mechanics framework that can incorporate coarse-grained and

full atomic models and associated energy potentials and has been used to model

RNA, DNA, and protein structures. DMD, developed in 2008, is also a coarse-

grained molecular dynamics tool that utilizes an energy function to account for

base-pairing and base-stacking interactions terms (Ding et al. 2008). NAST is the

latest of the recent fully automated coarse-grained tools. Developed by Altman and

coworkers in 2009, NAST employs an RNA-specific knowledge-based potential

within a coarse-grained molecular dynamics engine to generate candidate structures

(Jonikas et al. 2009). NAST has been successfully used to model yeast phenylala-

nine tRNA (76 nts), the P4–P6 domain of the T. thermophila group I intron (Cate

et al. 1996; Murphy and Cech 1993) (158 nts), and to model missing loops in the

Azoarcus and Twort ribozyme crystal structures.

6.4 RNA123 Software for 3D Structure Prediction

Existing software packages do not contain force fields that are sufficient for optimi-

zation of nucleic acids that contain modified nucleotides, gaps from deletions,

overlaps from nucleotide insertions, or model building errors and are inefficient at

optimizing highly distorted geometries. For example, AMBER and CHARMM

often fail to optimize gaps and atom overlaps generated in preliminary models

because of the huge energy penalties from long covalent bond lengths and close

van der Waals contacts. Both gaps and overlaps can cause numerical convergence

problems or break chemical bonds, which terminatesmolecular dynamics simulations

and energy minimization algorithms. In all fairness, however, classical simulations

are designed to model real chemical systems, whereas starting structures in homology

modeling and de novo prediction contain gaps and overlaps that are artificial.We have

created a new force field called NA_FF (nucleic acid force field) that is optimized for

RNA but also allows for inclusion of proteins and small-molecule ligands. The force

field takes into account the charged phosphate backbone of RNA, planar preference

for hydrogen bonding to aromatic bases (Chen et al. 2004), gauche effect of the

gamma dihedral (Perez et al. 2007), preferred non-Watson–Crick H-bonding

interactions (Leontis andWesthof 2001), optimized atomic partial charges [including

modified nucleotides (Aduri et al. 2007)], optimized weighting of van der Waals and

electrostatic interactions, novel pseudopotential for gaps, and a variety of structural

restraints. RNA123 also contains a general hierarchical strategy for conformational

optimization (i.e., energy minimization) that works in torsion angle space and is
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computationally efficient for all classes of biopolymers (DNA, RNA, proteins, and

carbohydrates). This algorithm is called DSTA (discrete sampling of torsion angles).

The DSTA search is multidimensional and utilizes a novel method for modeling the

local potential energy surface and finding an analytical minimum. As a measure of

capability, the DSTA algorithm can optimize the conformation of an entire 16S rRNA

(~1,540 nucleotides) homology model in about 2 h on a single core of a 2.0-GHz

Centrino Duo laptop computer. However, the DSTA algorithm is limited to local

conformational optimization and is not capable of searching vastly different confor-

mational folds to find global minima. Methods for global conformational searching in

the de novo module of RNA123 are currently under development. The protein

community has utilized structure decoys to optimize the balance of force field terms

so that scoring functions can discriminate native from decoy folds (Jagielska et al.

2008). For RNA, however, there is a need to develop such a database of high-quality

decoy structures to enable the testing and evaluation of scoring functions.

6.4.1 RNA123 Visualization GUI

RNA123 has a “smart” graphical user interface (GUI) that automatically accepts

commonly used coordinate file formats (old and new PDB, AMBER, Xplor, mol2,

mmCIF, etc.) and converts the file into standard PDB format on the fly once the

coordinate file is loaded. The RNA123 GUI, shown in Fig. 6.2, automatically

analyzes the 3D coordinates and computes the secondary structure (including

Watson–Crick and non-Watson–Crick paired bases, and also lists distorted pairs)

and identifies all of the tertiary contacts (pseudoknots, base triples and quartets, and

other tertiary H-bonds, and tertiary stacking interactions). These pairs are then

classified and annotated by type based on the nomenclature of Leontis and Westhof

(2001). The tertiary structure visualization component of RNA123 is derived from

RasMol (Sayle and Milner-White 1995). The program was redesigned and

encapsulated as a reusable software component that can be seamlessly used by

a Windows application or embedded into Web pages. Optimized coding, scripting

language, and enhanced features for RNA/DNA structures allow researchers to utilize

RNA123 to visualize and manipulate macromolecules on personal computers. Based

on this visualization component, RNA123 also offers intuitive tools for editing

structure, evaluating structure superimposition, and tracking conformation changes

during the structural modeling process.

6.4.2 Structure Conditioning

Accurate 3D coordinates are a prerequisite for RNA structures to be used as

templates in homology modeling and also for the creation of a reliable motif library

or use in de novo structure prediction. The majority of the structures deposited in
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the PDB (Protein Data Bank), however, have modeling errors such as nonstandard

bond lengths or bond angles, residues with steric clashes, and incorrect base

conformation where the chi dihedral is syn when instead it should be anti, distorted
base pairs, missing atoms, missing residues, stereochemical errors, etc. Many of

these errors are noted in the remarks section of the PDB entry (generated by the

Procheck, NUCheck, SFCheck, and other programs) (Laskowski et al. 1993;

Vaguine et al. 1999; Wheeler et al. 2007) but nonetheless are not corrected and

cause problems for force field-based methods. A significant source of these

modeling errors in X-ray crystal structures is a consequence of the neglect of

hydrogen atoms in the modeling process. The later addition of hydrogen to

heavy-atom-only structures often reveals steric clashes that are inconsistent with

known van der Waals radii (Word et al. 1999). In addition, annotation errors, such

as nonstandard naming of atoms or residues, or changing the order of atoms can also

cause problems for many force fields.

For evaluating protein structures, Richardson’s lab has developed methods for

detecting errors in the side-chain conformations of asparagine, glutamine, and

histidine (Word et al. 1999) as well as remodeling of structures with rare/high-

energy rotamers (Murray et al. 2005). For RNA, similar modeling errors are

apparent in a majority of the X-ray structures deposited in the PDB that are modeled

using only heavy atoms. Richardson’s lab has developed online tools for the

analysis and correction of structural errors in nucleic acids (Davis et al. 2004).

Such errors are within the Luzzati error of the structure determination, but they can

cause problems for modeling. For instance, if one naively uses a crystal structure

that contains errors as a source of folding motifs for RNA, then upon threading the

original sequence into the backbone structure, a poor force field energy is obtained

Fig. 6.2 Snapshot of RNA123 GUI showing secondary structure, pseudoknots, and tertiary

structure of the tRNAphe from yeast (PDB ID: 1EHZ)
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for the correct fold. Energy minimization can help to reduce this problem, but it is

by no means a general solution because the structures are often trapped in local

minima and thus remain in a poor energetic conformation. Similarly, NMR

structures also often exhibit poor global geometry, especially if the structural

refinement was carried out without residual dipolar couplings (Zhou et al. 2000).

The application of simulated annealing as part of the modeling process for

NMR structures can result in distorted geometries for Watson–Crick and non-

Watson–Crick base pairs particularly for residues with sparse experimental

restraints. In addition, NMR structures can also exhibit poor backbone modeling

for residues, and 31P chemical shifts are not available to restrain alpha and zeta

dihedrals (Gorenstein 1984), where proton-phosphorus J-couplings are not avail-

able for restraining the beta and epsilon dihedrals (Lankhorst et al. 1984), or where

gamma dihedrals are not restrained due to severe spectral overlap that precludes

measurement of H40-H50/H500 J-couplings.
To correct the structural errors mentioned above, RNA123 contains an automated

feature for identifying and fixing the majority of modeling and nomenclature errors

in PDB structures. The process of correcting these structures using this RNA123
feature is referred to as “structure conditioning,” and it is an essential part of

obtaining accurate de novo structure predictions using the fragment and motif

assembly approach. During structure conditioning, residues with nonstandard

bond lengths or bond angles are replaced with standard residues and geometry

optimized with the DSTA algorithm. In addition, the RNA123 conditioning algo-

rithm detects steric clashes and residues with rare conformers (such as a syn

geometry base) and attempts to remodel such structures with an alternative lower

energy conformer, if such a structure is possible. We used this algorithm on the

entire PDB to create a database of 453 conditioned RNA structures (out of 1,730

total in the PDB as of February, 2010).

6.4.3 Development of an Extensive Motif Library

Once “conditioned” structures are obtained, a complete library of coordinates for

all possible RNA motifs (base pairs—both WC and non-WC, hairpin loops, bulges,

internal loops, and multihelix loops) of various lengths and sequences is generated

for de novo modeling using the fragment and motif assembly approach. Figure 6.3

illustrates the overall process for constructing the motif database in RNA123. The
motif identification and extraction algorithm analyzes the 3D coordinates of the

given “conditioned” structures and automatically determines the secondary

structures of the RNAs and all the motifs present in the structures (hairpin loops,

bulges, internal loops (including mismatches), and multihelix loops). Then the

algorithm stores the backbone coordinates of those motifs in a library, including

annotations such as the PDB_ID, base dihedrals, nucleotide sequence, and popula-

tion of the motif. To avoid redundancy, each new candidate motif is superimposed

on those already in the library; if the candidate motif is not present in the library
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(i.e., all RMSDs >1.0 Å), it is added. Additionally, the algorithm parses the

structures into fragments of given lengths and stores these in a separate fragment

library (e.g., a library of all unique dimers, trimers, and tetramers). The current library

is presented in Table 6.1. An important point for de novo prediction is the need for

a complete database of all possible structural folds for each type and size of motif

(e.g., all possible examples of hairpin loops of length 8). Our current motif library

(Table 6.1) has 35 entries for hairpin loops of length 8. This is likely an incomplete

representation of all the structures that can form hairpin loops of length 8. The same

Fig. 6.3 Constructing the motif and fragment databases for de novo structure prediction.

The library of PDB structures is first conditioned to fix modeling and other errors. The conditioned

library of structures is then used to extract fragments of different lengths and motifs including

bulges, internal loops, hairpin loops, and multibranched loops

Table 6.1 Summary of the contents of the current motif and fragment database in RNA123

Hairpinsa Bulges Internal loops Fragments Multiloops

Length Number Length Number Length Number Length Number Branches Number

3 18 1 64 1 � 1 30 1 11 3 155

4 109 2 23 1 � 2 34 2 212 4 56

5 62 3 17 1 � 3 28 3 1,241 5 25

6 64 4 3 1 � 4 13 4 2,545 6 9

7 49 5 2 1 � 5 2 5 3,771 7 4

8 35 6 4 1 � 6 4 6 4,964 9 1

9 28 11 1 2 � 2 14 7 6,223 10 2

10 22 – – 2 � 3 27 8 7,420 – –

11 14 – – 2 � 4 14 9 8,539 – –

12 8 – – 2 � 5 3 10 9,548 – –

13 10 – – 2 � 7 1 – – – –

14 5 – – 3 � 3 34 – – – –

15 7 – – 3 � 4 56 – – – –

16 3 – – 3 � 5 7 – – – –

17 6 – – 3 � 6 8 – – – –

19 3 – – 3 � 7 4 – – – –
aThis database was generated from 453 conditioned RNA structures from the PDB. The database

contains more entries for larger internal loops up to size 16 � 17, but they are not listed in the table

due to limited space. An RMSD cutoff of 1 Å is used to identify distinct motifs
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applies to all the other motifs. The goal of de novo structure prediction is not just to
put together known motifs into new structures but also to find completely new
structural folds and new motifs that are not yet present in the PDB. Thus, there is

a need to fill in gaps in the motif libraries by performing structure predictions on

individual motifs using a global conformational search approach.

6.4.4 Homology Modeling in RNA123

Figure 6.4 illustrates the flowchart of steps involved in homology modeling. The

current RNA123 software has the capacity to homology model large biomolecules

for which a crystal structure of a closely related homolog is available. The homol-

ogy modeling protocol starts with the input of the query sequence (either with or

without knowledge of the secondary structure) and the coordinates of a known

homologous template. The next step is an alignment of these two sequences using

a novel algorithm called structure-based sequence alignment (SantaLucia, unpub-

lished) that properly accounts for the secondary structure in both the template and

query. SBSA uses a suboptimal version of the Needleman–Wunsch global sequence

alignment method (Needleman andWunsch 1970) that fully accounts for secondary

structure in the template and query and utilizes two separate substitution matrices

that are optimized for RNA helices and single-stranded regions that are similar to

BLOSUM for matrices used for proteins. The SBSA algorithm is a major advance

for RNA as it provides >90% accurate sequence alignments even for structures as

large as bacterial 23S rRNA (~2,800 nts). To account for cases where the automated

SBSA alignment is not reliable, RNA123 allows the user to manually manipulate

the alignment.

Rather than presenting the absolute alignment score, we prefer to present the

SBSA percentage score [see (6.1)], where template vs. query score is the alignment

score obtained when you align the template sequence and the query sequence, while

template vs. template score is the alignment score that is obtained if the template

was to be aligned with itself, corresponding to a perfect alignment.

% SBSA score ¼ template vs. query score

template vs. template score
� 100: (6.1)

For RNA, this is a better criterion than percent nucleotide identity because

nucleotide identity is not usually conserved in helical regions, but instead base

pairing is conserved, and this is accounted for in the SBSA score. In our experience,

RNAs that have %SBSA scores above 60% usually provide reliable homology

models. Alignment of two bacterial rRNAs will often meet this criterion. However,

the reliability is lower for alignment of a eukaryotic rRNA against a bacterial rRNA

due to their distant evolutionary relationship, which results in large insertions.

Finally, a homology model is generated by employing a series of algorithms that

account for substitutions, insertions, deletions, and gap closing before performing a
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final energy minimization. Motifs that have more than one substitution and regions

that have inserted or deleted base pairs, bulges, and internal loops are constructed

using the de novo algorithm of RNA123 (described below) subject to the steric

constraints of the rest of the homology modeled structure. Part of the homology

modeling process in RNA123 is to identify tertiary H-bond interactions that are

conserved in both the template and query and use them as restraints, which helps the

modeled structure to achieve good overall geometry and packing. RNA123
determines conserved tertiary interactions by noting those tertiary interactions in

the template where all nucleotides participating in the interaction are both aligned

and unsubstituted. In addition, for cases where a tertiary interaction in the template

has nucleotide substitutions, the program determines if the substituted positions can

form isosteric structures (Leontis et al. 2002). Such tertiary restraints are applied

with caution and removed if there are inserted or deleted base pairs between the

nucleotides that participate in the tertiary interaction.

The largest complex that has been homology modeled using RNA123 so far is the
P. aeruginosa 30S ribosomal subunit (16S rRNA + 20 rProteins) as shown in

Fig. 6.5. This model was generated using an E. coli crystal structure (PDB ID:

2AVY), which was conditioned using RNA123 to fix modeling errors and then used

as the template. The P. aeruginosa sequence obtained from GenBank was used as

the query. These two organisms are evolutionary related as reflected in the 85.6%

sequence identity and SBSA score of 93.79%. The resulting P. aeruginosa ribo-

some homology model structure appears to form all the expected base pairs (both

WC and non-WC) and tertiary H-bond and stacking interactions and does not

contain any gaps or steric clashes.

Fig. 6.4 Flowchart for homology modeling in RNA123
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RNA123 has also been used to accurately homology model a variety of other

RNAs such as tRNAs, 5S rRNAs, a riboswitch, and an RNase P (Fig. 6.6). A cross-

validation study using the three available bacterial 5S rRNAs (from E. coli,
T. thermophilus, and D. radiodurans) to homology model each other in all

permutations (e.g., using E. coli 5S rRNA to predict T. thermophilus 5S rRNA

and vice versa) resulted in homology models that have <2 Å RMSD on average

between the model and its representative crystal structure. A validation study of the

whole 16S rRNA of E. coli and T. thermophilus has been similarly successful (See

Tables 6.2 and 6.3).

Fig. 6.5 All-atom homology model of the P. aeruginosa 30S ribosomal subunit generated by

RNA123. rRNA is shown in blue. rProteins are shown in green. Only backbones are shown for

clarity
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Modeling of other RNAs such as 23S rRNA, group I and group II introns,

riboswitches, siRNAs, and microRNAs is possible in principle provided that

a homologous crystal or NMR structure is available. However, there are many

interesting RNA sequences that have no closely solved homologous structures

available (e.g., the deluge of noncoding RNAs). In addition, the existing homology

modeling module in RNA123 cannot currently predict widely divergent RNAs that

have large insertions, particularly involving changes in complex multihelix loops.

For example, consider the ribosome field where there are now structures available

Fig. 6.6 Superposition of the complete model of the B. stearothermophilus RNase P structure

(in green) modeled using RNA123 and the X-ray crystal structure (PDB: 2A64, in blue). The
labeled regions (P5, P9, P10, P15, and P19) were not resolved in the crystal structure and thus were

modeled using RNA123. P10 and P12 helices were predicted using RNA123 homology modeling

utilizing the specificity domain from B. subtilis (PDB: 1NBS) as the template. Helices P9, P15, and

P19 were predicted using the de novo module of RNA123

Table 6.2 Homology modeling results for the four domains of E. coli 16S rRNA

16S rRNA domain Alignment

scorec (%)

No. of nucleotidesb RMSD between homology model

and 2AVY crystal structurea (Å)

50 Domain 82.0 560 3.91

Central domain 86.4 351 1.84

30 Major domain 90.7 482 5.90

30 Minor domain 79.5 134 3.67

Averages 84.7 – 3.83
aThe RMSD of the homology models are compared to the 2AVY crystal structure
bThe T. thermophilus structure (2J00) was used as the homology modeling template
cThe alignment score is from the SBSA algorithm
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for the bacterial 70S, bacterial 50S, and archaeal 50S subunits. To date, there are no

high-resolution ribosome structures available for any eukaryotes (the solved Sac-
charomyces cerevisiae 80S ribosome is a homology model based on a 8.9 Å cryo-

EM map of Thermomyces lanuginosus ribosome) and no 30S subunits available for

any archaea. This is an excellent opportunity for a homology modeling project.

Unfortunately, the eukaryotic and archaeal ribosomes have many large variable

insertion regions (Taylor et al. 2009) that are very different than those found in

bacteria; hence, the bacterial crystal structures are not sufficient by themselves for

such distant homology modeling. Nonetheless, the available low-resolution elec-

tron density maps will be very helpful to provide global restraints for improved

modeling. However, conserved base pairs and single-stranded residues often form

the core of the structure of large RNAs and can be homology modeled, while the

regions that are distinctly different (i.e., the large insertion regions) can be predicted

using the de novo algorithm subject to the steric constraints of the core elements of

the secondary structure and conserved proteins. As far as we know, RNA123 is the

only currently available program that has the dual functionality for homology

modeling and de novo prediction to allow for such generation of complexes like

the ribosome. The homology modeling capability of RNA123 is not only useful for

modeling the structure of related organisms but also for modeling the effects of

natural mutations that cause drug resistance and artificial mutations that are utilized

for studies of RNA function.

6.4.5 de Novo Structure Prediction in RNA123

Given the current sparse number of RNA 3D structures in the PDB, there is no

doubt that many interesting RNA folds remain to be discovered. Discovery of new

folds requires de novo structure prediction methods. As previously described, RNA

displays a folding hierarchy in which a distinct thermodynamically stable second-

ary structure intermediate is formed on the pathway from random coil to tertiary

structure. Based upon this observation, we have combined a dynamic programming

Table 6.3 Homology modeling results for the four domains of T. thermophilus 16S rRNA

16S rRNA domain Alignment

scorec (%)

No. of nucleotidesb RMSD between homology model

and 2J00 crystal structurea (Å)

50 Domain 82.0 544 3.91

Central domain 86.4 344 1.96

30 Major domain 90.7 487 3.39

30 Minor domain 79.5 129 3.01

Averages 84.7 – 3.08
aThe RMSD of the homology models are compared to the 2J00 crystal structure
bThe E. coli structure (2AVY) was used as the homology modeling template
cThe alignment score is from the SBSA algorithm

6 The RNA Folding Problems: Different Levels of sRNA Structure Prediction 109



algorithm (DPA) for secondary structure prediction with a BUILDER algorithm for

generating tertiary structures (Fig. 6.7). The secondary structure provides a guide-

line for the BUILDER algorithm to determine which motifs to retrieve from

a fragment and motif databases and how to link them together. If the secondary

structure is known (e.g., from phylogeny), then only that secondary structure is

considered. When the secondary structure is not known, our protocol is to use a

dynamic programming algorithm to predict multiple secondary structures (Step 1).

BUILDER is then used to construct 3D models (Step 2) for all of the secondary

structures that are within some free-energy window (typically 2–10% of the free-

energy minimum or a larger percentage for small RNAs). This strategy allows for

a selective search of different plausible global conformations. The tertiary

structures are then reranked (Step 3) according to their RNA123 force field energies.
We hypothesize that the 3D fold corresponding to the correct secondary structure

will have more favorable H-bonds and stacking interactions than the 3D folds

corresponding to wrong secondary structures. Finally, in Step 3, the structure

with the lowest RNA123 force field energy is refined in two stages. A rough

refinement is done using energy minimization with the discrete sampling of torsion

angles (DSTA) algorithm (P. Saro and J. SantaLucia, unpublished). In the second

refinement stage, energy minimization and molecular dynamics simulation are

performed using a modern force field such as AMBER or CHARMM.

6.4.6 3D Model Construction by BUILDER Algorithm

The BUILDER algorithm in RNA123 works in three steps: (1) the predicted

secondary structure is decomposed into its constituent motifs (e.g., base pairs,

hairpin loops, bulges, internal loops, etc.) and used to generate a hierarchal tree

(e.g., with hairpin loops as the leaves, internal loops and bulges as the branches, and

multihelix loops and bifurcations as roots), (2) candidate 3D structures for each

motif are retrieved from a motif database, and (3) the motifs are geometrically

linked together in the order specified by the tree. A flowchart for the algorithm is

provided in Fig. 6.8. We have written prototype code that accomplishes all of these

Fig. 6.7 Flowchart for de novo structure prediction
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steps and was used to generate the structure in Fig. 6.9. The BUILDER, however,
requires added functionality to encompass our full vision. While the current

BUILDER strategy is effective for simple single-domain unbranched RNA

structures (i.e., those with only helices, bulges, base pairs, internal loops, and

Fig. 6.8 Flowchart of the BUILDER algorithm

Fig. 6.9 The BUILDER strategy and results for a simple secondary structure. (a) The secondary

structure motifs are labeled, and the number of examples for each motif type and size in our library

are given. (b) Superimposition of one of the predicted 3D structures (in green, RMSD ¼ 1.26 Å)

and the crystal structure PDB ID: 1Q9A (in orange)
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a single hairpin loop), it is naı̈ve about three crucial points: (1) it relies on only the

motifs that are in the motif library, which is currently limited to those extracted

from known structures in the PDB, (2) it cannot build multihelix loops, and (3) it

neglects interactions between motifs that occur in complex structures such as

multihelix loops, pseudoknots, and multiple domains. Work on RNA123 is currently
underway to address each of these issues.

6.4.7 The Combinatorial Explosion Problem for Multihelix Loops

Perhaps the most difficult aspect of the RNA folding problem is dealing with

multihelix loops, although multidomain packing and pseudoknots are also chal-

lenging. There are currently only 252 unique multihelix loops in our motif database,

which represents most of what is available in the PDB (Table 6.1). Shapiro’s group

has recently published a database of multihelix junctions (Bindewald et al. 2008).

However, these 252 multihelix loops are a tiny fraction (less than one millionth) of

the number possible. There are billions of permutations of multiple helices

connected by different length single-strand linkers. As an example, consider a six

helix junction with six linking single-stranded regions. If the single strands are

allowed to vary in length between 0 and 9 nucleotides each, then there are exactly

one million permutations, and each of those permutations can form multiple

structures for different sequences. Multihelix loops with up to ten branches are

found in bacterial 23S ribosomal RNAs, and even larger multihelix loops are

present in some eukaryotic ribosomal RNAs. When a candidate RNA sequence

contains a multihelix loop that is found in the database, then it can be assembled

with BUILDER in the same fashion as other motifs (like hairpin loops, bulges, and

internal loops). A multihelix loop can be considered a circular motif if the closing

base pairs are considered to be connected. RNA123 contains a novel algorithm to

align a candidate multihelix loop in the query with circular permutations of those

present in the motif library. This ensures that the multihelix loop is assembled in the

proper orientation by the BUILDER algorithm. However, since the database vastly
underrepresents the possible multihelix loops, there is a high probability that the

database does not contain a correct structure for a new sequence. Thus, RNA123
also assembles many trial multihelix loop structures from fragments (from the

fragment library) subject to certain topological and steric constraints. This is an

area that is currently under development within RNA123.

6.4.8 Case Study of the De Novo Algorithm in RNA123

To test the 3D structure prediction functionality of our preliminary de novo tool, we

predicted the 3D structure of a 27 mer (PDB ID: 1Q9A), corresponding to the

sarcin/ricin domain from E. coli 23S rRNA crystal structure solved at 1.04 Å
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resolution (Correll et al. 2003). In this study, we first used the dynamic programming

algorithm in RNA123 to predict 20 secondary structures (optimal and suboptimal

folds). Next, using the predicted secondary structures, the de novo BUILDER
algorithm assembled the structure from the base pairs, internal loops, and hairpin

loops in its motif library (but not including any motifs from 1Q9A). Figure 6.9a

illustrates the fragment approach that BUILDER sequentially follows by

constructing: (1) helix 1, (2) UU mismatch, (3) 1 � 2 internal loop, (4) helix 2,

and (5) the hairpin loop. For each motif, the actual sequence was threaded into all of

the candidate conformers (each of which are energy minimized using DSTA),

and the one conformer with the lowest NA_FF energy was used to build the

structure. The computation took ~20 min to run using a standard laptop computer.

Structures generated from the top three optimal folds had the best structures with an

RMSD of 1.26, 1.39, and 1.14 Å, respectively, compared to the crystal structure

(Fig. 6.9b). This result inspires confidence that the RNA123 force field can correctly
score native folds over decoys and also that BUILDER can assemble complete

structures. We are currently implementing algorithms for predicting multibranched

loop structures and multiple domains, which will enable predictions of larger RNAs.

To date, the CASP (critical assessment of structure predictions) competition has

only assessed protein-based modeling tools; however, the RNA community is

currently discussing such a competition for RNA predictions. The goal of the

CASP competition is to assess the current state of the structure prediction field

and bring to light areas where improvement is needed. As such, it will be the

ultimate test for structure prediction tools from the community and described

throughout this book.

6.5 Conclusion

RNA123 is a software package developed primarily for secondary and tertiary

structure prediction and analysis of RNA (though it can handle DNA and protein

as well). Several algorithms have been developed in RNA123; main components

include a platform for de novo prediction and homology modeling of RNAs. Other

functionalities include structure-based sequence alignment and a host of RNA

structure visualization and analysis tools. RNA123 is a product from DNA Soft-

ware, Inc., and is available by licensing to academic (with discounted pricing),

nonprofit, and industrial users (see http://www.dnasoftware.com for more informa-

tion). RNA123 is written in C++ and currently runs on Windows operating systems

with implementations for Linux and Web access under development.
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Chapter 7

Computational Prediction and Modeling Aid

in the Discovery of a Conformational Switch

Controlling Replication and Translation

in a Plus-Strand RNA Virus

Wojciech K. Kasprzak and Bruce A. Shapiro

Abstract This chapter presents computational tools used to predict the secondary

structure and model the 3D structure of a novel translation enhancer element found

within the 30-UTR of the Turnip crinkle virus (TCV). Our Massively Parallel

Genetic Algorithm program (MPGAfold) was used to predict the secondary struc-

ture, including one H-type pseudoknot, of the translation enhancer element. The

results were confirmed and augmented by experiments. The combined secondary

structure information was used to create a 3D model of the enhancer element with

the aid of our program RNA2D3D. The 3D structure resembles that of tRNA, while

its secondary structure is different from canonical tRNAs. It is the first such element

found within a 30-UTR, and it is a part of a conformational switch involved in the

control of translation and transcription. It is possible that similar mechanisms may

exist in other eukaryotic genomes.

7.1 Introduction

This chapter describes the computational tools we have developed and applied to

elucidate the structure and mechanism of a translational enhancer element in the

30-UTR of the Turnip crinkle virus (TCV). The study was conducted in close

cooperation between computational and experimental groups, and involved predic-

tion of the secondary structure of the 30-UTR of TCV with the aid of our stochastic

secondary structure prediction Massively Parallel Genetic Algorithm (MPGAfold)
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(Shapiro and Navetta 1994; Shapiro and Wu 1996, 1997; Shapiro et al. 2001b; Wu

and Shapiro 1999). The predicted secondary structure, including a novel H-type

pseudoknot, was combined with an experimentally elucidated pseudoknot, and this

composite 2D structure model was used as the input information to our interactive,

geometry-driven 2D to 3D modeling program RNA2D3D (Martinez et al. 2008).

A 3D shape resembling a tRNA emerged in modeling and suggested a possible

functional role for the new tRNA-shaped structure (TSS) as a ribosome binder.

Experiments verified this hypothesis and, in addition, led to discovering a func-

tional structural switch between translation and replication of TCV. The structural

stability of the TSS was evaluated by subjecting it to molecular dynamics (MD)

simulations, which indicated areas of particular flexibility in one of its elements.

The TSS model and the MD data showed good agreements with the solution of the

TSS structure in solvent, based on data from small angle X-ray scattering and

residual diploar coupling (SAXS/RDC) (Wang et al. 2009; Zuo et al. 2010).

TCV is a Carmovirus from the family Tombusviridae. It has a single short

(4,045 nt) RNA plus strand genome and is well suited for the study of the switching

between the alternative mechanisms of translation and replication. Figure 7.1

depicts the genomic layout of TCV. Its five partially overlapping open reading

frames (ORFs) encode proteins required for replication (p28 and a readthrough p88,

which encodes the RNA-dependent RNA polymerase, RdRp), cell-to-cell move-

ment of the virus (p8 and p9) and encapsidation (coat protein p38 or “CP”).

In the prevailing eukaryotic translation mechanism, a 50-capped and

30-polyadenylated mRNA template is brought together to form a circular structure

with the help of initiation factor proteins (eIF) and a poly(A)-binding protein.

Recruitment of the small (40S) and the large (60S) ribosomal subunits leads to

the full ribosome assembly and translation (Merrick 2004; Preiss and Hentze 2003).

Alternative mechanisms to recruit ribosomes via internal ribosome sequences

(IRES) have been found for RNA viruses missing the 50-cap (Dreher and Miller

2006; Fechter et al. 2001; Fraser and Doudna 2007; Hellen and Sarnow 2001;

Lancaster et al. 2006). For many plant viruses lacking the 50-cap, translation
initiation mechanisms involve cap-independent translational elements (CITEs)

located in their 30-UTRs (Miller et al. 2007). TCV is among the viruses which are

neither 50-capped nor polyadenylated. Prior experimental data indicated the exis-

tence of an unidentified element within the 30-UTR which enhances translation in

synergy with the 50-UTR. However, the structure and mechanism of this element

were not known (Qu and Morris 2000; Yoshii et al. 2004).

Computational structure prediction, in-line probing, and mutagenesis of the

RNA were used to predict and verify its secondary structure. The RNA secondary

structure of the enhancer element was predicted by our MPGAfold to contain one

Fig. 7.1 TCV genomic layout showing the relative positions of the five overlapping ORFs coding

for proteins, as well as the flanking 50 and 30 untranslated regions (UTRs). The translational

enhancer element is found within the 30-UTR
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pseudoknot (C3 in Figs. 7.3 and 7.4), the existence of which was experimentally

verified (McCormack et al. 2008; Zhang et al. 2006). In addition, pseudoknot C2,

shown in Fig. 7.4, was identified experimentally (Zhang et al. 2006). Pseudoknot

C1 pairs the 3
0 side of the large symmetric loop (LSL) in H5 with the 30 terminal

residues past the Pr stem-loop. The above-mentioned structures play roles in

translation and transcription (McCormack and Simon 2004; McCormack et al.

2008; Sun and Simon 2006; Wang et al. 2009). The self-contained and functional

subdomain corresponding to the sequence between the pseudoknots C3 and C2,

shown in Fig. 7.4, was selected for 3D modeling (McCormack et al. 2008).

Using as input the secondary structure pairing information of the central region

of the 30-UTR between pseudoknots C3 and C2, our modeling program,

RNA2D3D, very rapidly produced a 3D structure resembling a tRNA (TSS). This

result was unexpected since the elucidated secondary structure, including the two

pseudoknots, did not have the typical cloverleaf shape of the canonical tRNA

secondary structure. The shape of the 3D structure immediately suggested the

hypothesis that the TSS could function as a translational enhancer by potentially

binding ribosomes or ribosomal subunits.

Further refinement of the model followed, and, in tandem, ribosome binding

experiments were performed on various 30-UTR fragment sizes containing the TSS,

as well as some additional surrounding sequence context. The ribosome binding

experiments were successful and revealed that the 60S subunit binds better to the

TSS than the full 80S does. In addition, the 43S ribosomal subunit was shown to bind

to the 50-UTR of TCV. These results suggested a model for translation initiation

whereby the 50-bound 43S ribosomal unit in combination with the 30-bound 60S

ribosomal unit aid in cyclizing the 50 and 30 ends of TCV, thereby initiating

translation. In addition, the experimental results indicated that the TSS element

binds strongly to the P site of the ribosome, but with lower affinity than canonical

tRNAs, an important property required for successful completion of the translation

initiation process (Stupina et al. 2008). Further studies showed that the translation

product necessary for the replication (by RdRp) causes reversible structural changes

in the 30-UTR region, involving elements of the TSS structure (Yuan et al. 2009).

Thus, the TSS structure is a part of a conformational switch controlling the func-

tional use of the genomic template for translation or for replication.

7.2 Computational Prediction of the TCV TSS

Several software packages developed by our group were used to elucidate the

structure of the tRNA-shaped translation enhancer element (TSS) found in the

30-UTR of TCV. These programs, MPGAfold, StructureLab and RNA2D3D, will

now be described in some detail with specific illustrations of how they were used to

determine the tRNA-shaped motif. Together with many other programs, all the

tools mentioned in this chapter are publicly available on our Web site: http://www.

ccrnp.ncifcrf.gov/~bshapiro/sl.
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7.2.1 MPGAfold

It has been reported that the folding of RNA in many circumstances is

hierarchically determined (Tinoco and Bustamante 1999). That is, the secondary

structure of the RNA forms first and this is followed, usually in the presence of

magnesium ions, by collapse to a state containing tertiary interactions. This is the

model of folding we are assuming for this chapter, although there is evidence for

nonhierarchical transient interactions and that folding and tertiary interactions may

form cooperatively as an RNA molecule is transcribed (Cruz and Westhof 2009;

Ding et al. 2008; Heilman-Miller and Woodson 2003; Wilkinson et al. 2005). Using

this hierarchical assumption, we first generate an RNA secondary structure given a

sequence, which then serves as the starting point for predicting its three-

dimensional structure. Several algorithms exist for predicting RNA secondary

structure. These algorithms fall into two broad categories, those which are deter-

ministic, e.g., dynamic programming based, and those which are stochastic, e.g.,

genetic algorithm based. The algorithm that was applied in this case was

MPGAfold, a massively parallel genetic algorithm for secondary structure predic-

tion that was developed by our group (Shapiro and Navetta 1994; Shapiro and Wu

1996, 1997; Shapiro et al. 2001b; Wu and Shapiro 1999).

MPGAfold is based on the principles of genetic algorithms (GA), as originally

described by Holland (1992). GAs can be used as optimization procedures to search

large solution spaces for results that are “best” or near optimal. In the case of RNA

secondary structure determination, we are optimizing an objective function that

estimates the free energy of the folded RNA secondary structure. In other words, we

are looking for an RNA fold such that the free energy of the folded structure is optimal

or near the optimal free energy possible for the given sequence and a given set of

energy rules. The strength of the algorithm lies in its Boltzman-like characteristics,

preferring the most probable solutions over the strictly lowest energy ones (Wu and

Shapiro 1999). As such, the algorithmmust be run repeatedly (usually 20–25 times) to

determine the consensus solution ofmultiple runs. InMPGAfold, the alphabet consists

of all possible contiguous fully base-paired stems (stem pool), the fundamental

building elements of the algorithm that are derived (precomputed) from the given

sequence. These stems may be shortened by a conflict-driven peel-back operator (see

below). Also, added to the alphabet are motifs that consist of two stems that together

can form bulge loops or internal loops of sizes 1 � 1, 1 � 2, and 2 � 2 (i.e., loops

with combinations of one or two nucleotides in their 50 and/or 30 sides). The basic GA
operators ofmutation, recombination, and selection are applied in sequence to generate

new RNA secondary structures that reside on a rectangular (or square) grid

representing a population that is a power of two in size (see Fig. 7.2). Typically grid

sizes range from as low as 2K to as high as 128K. The size range is normally chosen as

a function of the size of the sequence being folded. Longer sequences usually require a

broader range of sizes. Each population element in the grid, which consists of an RNA

secondary structure, can “see” its eight neighbors (N, S, E, W, NE, NW, SE, and SW).

The grid is toroidally wrapped so that all population elements have eight neighbors.

Thus, for example, the West neighbor of a population element on the left edge of the
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grid will be an element on the right edge of the grid, etc. The algorithm is implemented

to run on a parallel cluster computer, distributing the population across a set of power

of 2 processors. MPGAfold’s speed scales almost linearly with the addition of more

processors. Figure 7.2 illustrates a portion of the grid layout of the population elements.

The three GA operators are mutation, recombination, and selection:

1. Mutation—Stems are drawn from the stem pool at random. As a precursor to

each recombination step (see below), two child structures are initialized with

some stems mutated in from the stem pool.

2. Recombination—Each population element and its nine nearest neighbors (see

above) are placed in a sorted array of nine elements. The sorting is done from the

lowest energy structure to the highest. Two “parent” structures are chosen with a

biased sampling from the array (low energy structures have a higher probability of

being chosen than high energy structures). Stems from the parents are distributed to

the two child structures (which will already contain some stems previously added

by the mutation operator). Both mutation and crossover operators incorporate a

probablilistic conflict-driven peel back mechanism to resolve potential conflicts

(overlapping base pairs) between stems being added to a structure and the ones

already a part of it. Thus, instead of being completely rejected, a conflicting stem

can be peeled back (i.e., shortened, or have some base pairs removed) in order to fit

into the existing structure. The use of thismechanism improves the resolution of the

algorithm, allowing structures to contain single base pair stems, while at the same

time permitting the drawing from a precomputed stem pool consisting of only

maximum-sized contiguous stems.

3. Selection—An objective function calculates the free energy of the two child

structures. The child structure that has the lower free energy then replaces the

element that is in the center of the 3 � 3 mesh window.

These three GA operators are iteratively applied in parallel across the entire

population grid. Thus, after each GA cycle, a population of 16 K may contain 16 K

new elements (secondary structures). An annealing mutation operator is applied

Fig. 7.2 Schematic

representation of the

rectangular MPGAfold

population layout. Population

sizes are powers of two and

typically run between 4 and

128 K. The central element of

each 3 � 3 neighborhood is

replaced at each generation in

parallel
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that gradually lowers the mutation rate. As a consequence of this, after multiple

iterations, the population stabilizes resulting in termination of the algorithm.

Several kinds of solution structures can be output from MPGAfold. Typically,

either the population-wide consensus structure is output as a solution or the lowest

(best) energy structure. The population-wide consensus structure corresponds to the

most frequent entry in a histogram of free energy values calculated for an evolving

population at each generation. Also, since MPGAfold is a stochastic algorithm, it is

run multiple times (20–25 times) in order to obtain the consensus folding patterns

from the final or intermediate outcomes of multiple runs for the given sequence.

It is often useful to run MPGAfold using different population sizes for a given

sequence (4–128 K, for example) because the algorithm has the demonstrated

property of terminating with what may be significant intermediate folds at lower

population sizes (Gee et al. 2006; Kasprzak et al. 2005; Linnstaedt et al. 2006, 2009;

Shapiro et al. 2001a). These intermediate folds are usually seen as transient

structures that exist in larger population runs.

7.2.1.1 H-Type Pseudoknots

BecauseMPGAfold uses stems as the alphabet for the algorithm, it is relatively easy to

generate pseudoknotted structures. However, because of the limited knowledge

regarding the energies of complex pseudoknots, the algorithm is currently restricted

to generating only H-type pseudoknots, i.e., base pair interactions between a simple

hairpin loop structure and a flanking single stranded region, forwhich the free energies

can be calculated and used in the objective function. In principle, however,MPGAfold

is capable of considering more complex structures. MPGAfold does not implement

any 3D constraints on pseudoknot formation at this time. However, a scheme of

geometric constrains recently implemented in our CyloFold algorithm (and Web

server) is being considered for inclusion into MPGAfold (Bindewald et al. 2010).

7.2.1.2 Miscellaneous Information Regarding MPGAfold

The MPGAfold program suite provides other facilities proven to be very valuable

for predicting and interpreting the results obtained from the algorithm (Shapiro

et al. 2001b, 2006):

1. Co-transcriptional folding—Since RNA is normally transcribed in the 50- to 30-
direction, the structure into which an RNA folds can depend on the transcription

(elongation) process, resulting in different secondary structures than would be

obtained by folding the entire sequence at once.MPGAfold has the ability to explore

the secondary structures that form while the sequence strand elongates. The rate of

elongation can also be changed to study its impact on the maturation of a predicted

structure (Linnstaedt et al. 2009; Shapiro et al. 2001a). One has to keep in mind that

the rate of elongation parameter was not designed to mimic known experimental

transcription rates. It controls how fast bases are made available for consideration at
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the 30-end per generation of the algorithm and thus, how fast stems with the

increasing 30-end interactions can be used by the mutation and recombination

operators. It does not explicitly control how quickly structures propagate throughout

the evolving population or become the population-wide consensus structures.

2. Folding visualization—MPGAfold can be run in conjunction with a Java-based

interactive front-end visualizer. Color-coded two-dimensional maps of the

population grid can be viewed and manipulated while the algorithm is running.

Population energy distributions, pseudoknots, and the existence of predefined

stems can be monitored in real time. In addition, whenMPGAfold is run with the

Visualizer and StructureLab (see below), drawings of individual RNA secondary

structures from the population can be displayed (Shapiro et al. 2006).

Since MPGAfold is stochastic in nature, with no two runs for the same sequence

following exactly the same folding intermediate conformations, it is impossible to

describe its performance as a function of the input sequence length. Sequences of

the same length may display very different folding characteristics, i.e., long con-

vergence (high number of generations) to the final answers, or very rapid folds.

Finding such differences, especially when the stable intermediates may be biologi-

cally functional, is the main advantage of MPGAfold (Linnstaedt et al. 2006, 2009;

Shapiro et al. 2001a). In the studies cited here the biologically significant

intermediates, as well as the final answers, reached the status of population-wide

consensus structures. By comparison, the algorithms sampling the DPA solution

spaces for the same sequences either missed the structures of interest or assigned

extremely low probabilities to them. On the other hand, MPGAfold cannot compete

with the DPA-based programs in terms of execution times. To give the reader a

rough idea of its performance, a 368-nt long fragment of HIV-1 (nl43) 50-UTR
subjected to 20 runs at the 16 K population level takes 10:01 min on an 8 processors

of an Intel Nehalem 2.8 GHz machine. The algorithm scales approximately linearly

with the changes in the population size. Dependence on the number of processors is

not perfectly linear and depends on the efficiency of communication between

processors (Shapiro et al. 2001b). For example, almost linear scaling can occur

when the algorithm is run on symmetric multiprocessors with uniform memory

access. MPGAfold can be obtained by contacting us directly.

7.2.2 StructureLab

StructureLab is a graphical data mining program that permits interactive exploration

of databases of RNA secondary structures (Kasprzak and Shapiro 1999; Shapiro and

Kasprzak 1996; Shapiro et al. 2006). These structures may be derived from dynamic

programming algorithms such as Mfold (Mathews et al. 1999; Zuker 2003),

RNAstructure (Mathews et al. 1999, 2004), the Vienna package RNAfold (Hofacker

2003; Hofacker et al. 1994) or from MPGAfold described above. Also, see reviews

(Mathews and Turner 2006; Shapiro et al. 2007). The ability to explore multiple

structures is very useful for gaining a perspective on the diversity of structures
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obtained from the various folding algorithms. For a complete description of the

functions available in StructureLab, the reader is referred to Kasprzak and Shapiro

(1999) and Shapiro et al. (2006). StemTrace is an important and useful tool within

StructureLab that was employed in this TCV study, and so it will be described here.

StemTrace produces an interactive two-dimensional plot that represents the

stems that are found in RNA secondary structures. Each position along the X-axis
represents an RNA secondary structure. Each position along the Y-axis represents a
unique stem found in one or more of the plotted structures. By unique stem we mean

a unique triplet of values describing the 50-start position of a stem, its 30-stop
position, and its size (i.e., number of base pairs). The position of a stem along the

Y-axis can determine either by the order in which it is generated (i.e., the first

appearance in the predicted structures), or by a user-selected sort criterion, for

example, the increasing 50-start positions of the stems. Thus a vertical line drawn

from a specific position along the X-axis will intersect all the points representing

stems present in an RNA secondary structure. Frequently a StemTrace plot displays

horizontal bands appearing at specific Y-positions. These bands indicate stems that

re-occur as one moves along the X-axis (i.e., the stems appear in multiple

structures). The bands are color coded to represent the frequency of occurrence of

individual stems within the displayed set of structures. StemTrace can be used in a

variety of ways to depict the emergence of a single RNA secondary structure (in one

MPGAfold run, for example) or to permit the comparison of thousands of RNA

secondary structures derived from a single sequence or from several sequences in a

family. Four of the more commonly used arrangements are described below.

1. StemTrace can display the evolution of an RNA secondary structure generated by

a singleMPGAfold run. In this case, stems plotted for the lowerX-axis values will
together correspond to relatively immature RNA secondary structures in the early

stages of development. As one proceeds along the X-axis, the RNA secondary

structure “matures” (gains more stems and achieves a lower free energy). Typi-

cally by the end of an MPGAfold run, the structures plotted by StemTrace

become constant indicating that the population of solutions converges to a single,

dominant, and stable structure.

2. StemTrace can display the final (converged) structures from multiple runs of

MPGAfold. In this case a StemTrace could represent, for example, 20 structures

that are generated in 20 independent MPGAfold runs of a given RNA sequence.

3. StemTrace can display the final (converged) structures for a family of related

sequences. In this representation, the solutions for each sequence are depicted as a

block of contiguous runs along the X-axis (e.g., 20). The Y-axis position for stems

from different sequences of the family can be adjusted to account for sequence

insertions and deletions, therebymaintaining the properY-axis ordinate for the stems.

4. StemTrace can display the output from a dynamic programming algorithm such

as Mfold, RNAstructure or RNAfold. Here, for example, the optimally folded

structure can occupy the left-most position along the X-axis with suboptimal

solutions occupying succeeding higher positions along the X-axis.

StemTrace can be used interactively by placing the cursor at any position on the

graph and by clicking different mouse buttons to retrieve and display individual
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stem information or full structural information and, optionally, to draw the

corresponding secondary structure by automatically passing this information to

another tool from StructureLab.

7.3 Prediction and Analysis of the Secondary Structure

of the TCV tRNA-Shaped Domain

We applied MPGAfold to the region containing the TCV translational enhancer (the

last 216 nucleotides from the 30-UTR; 3,839–4,054 in the TCV genome). MPGAfold

was run 20 times to obtain a consensus structure (as defined above and illustrated in

Fig. 7.3). It was known from previous experiments that a base pair interaction existed

between the 30-most four bases and the four nucleotides corresponding to the central

four positions in the 30 side of the H5 large symmetric loop (LSL). Because it was

believed that this interaction,C1, was not important for translation and was part of a

switch induced by RdRp, this interaction was removed from consideration in

subsequent runs (McCormack et al. 2008; Zhang et al. 2006). Figure 7.3 depicts the

StemTrace plot for 20 runs of MPGAfold and shows the dominant structure obtained

from the plot. It should be noted that this plot is sorted, with the stems along the Y-axis
depicted in increasing 50 order. The StemTrace and drawing color codes reflect the

Fig. 7.3 Secondary structure depiction and StemTrace plot from StructureLab of MPGAfold

predicted structures. (a) Color-coded dominant secondary structure derived from the StemTrace

plot indicated by the vertical dotted line in the StemTrace plot shown in (b). The color-coding

scale is displayed in the upper-right corner. (b) All the stems shown in the dominant structure are

either purple or blue indicating that they appear at least 70% of the time in 20 MPGAfold runs
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frequency of occurrence of the individual stems. The magenta stems appear in all 20

runs. The blue stems appear in 13 or 14 out of the 20 runs. One of them, the stem that is

involved in the C3 pseudoknot, consists of 5 base pairs in 13 runs (light blue in

Fig. 7.3) and 4 base pairs in 1 run (red in Fig. 7.3). Experiments support existence of

this pseudoknot and indicate its role in ribosome binding (McCormack et al. 2008;

Stupina et al. 2008). In addition, the adenylates upstream ofC3 appear to stabilize it

(Yuan et al. 2009). Another pseudoknot was found experimentally that involves the

loop bases in stem H4b and the bases downstream of stem loop H5. The initial region

of interest resides between base 72 and 171. Stem Pr is part of a promoter structure and

stem H4 is important for RdRp binding and is also part of a structural switch to be

discussed later. Figure 7.4 shows the secondary structure of the translational enhancer

element with the two pseudoknots. In-line probing experiments and site-directed

mutagenesis studies that included compensatory base pair mutations verified the

structure that is shown (McCormack et al. 2008; Zhang et al. 2006).

Fig. 7.4 Secondary structure

representation of TCV

enhancer element. Two key

pseudoknots C2 and C3 are

shown. (Copyright #
American Society for

Microbiology, Journal of

Virology, 82(17), 2008,

pp. 8706–8720, doi:10.1128/

JVI.00416-08)
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7.4 Computational Determination of the 3D Structure

of the TCV Translational Enhancer Element

7.4.1 RNA2D3D

To understand how the secondary structure depicted in Fig. 7.4 facilitates translation,

we modeled the 3D structure of this element. The program RNA2D3D accepts

primary RNA sequences and their secondary structure representations as input

(Martinez et al. 2008). The secondary structure description may include pseudoknots.

The program then rapidly generates a first-pass, three-dimensional model from the

secondary structure. Because of its speed, RNA2D3D can be used interactively to

quickly explore alternative 3D conformations. Further refinements of the models are

usually necessary due to the limitations of the idealized geometry approach (see

below), but in many cases the first pass model will give significant clues as to how

to proceed. Some of the capabilities of this program will be described in detail in this

section, along with illustrative examples using the secondary structure model

indicated in Fig. 7.4. In brief, the program facilitates manipulation of the whole

molecule or selected subparts. With the secondary and 3D structures displayed side

by side, as shown in Figs. 7.5 and 7.6, one can interactively select a region of interest in

either of the depictions, whichever is easier to work with, and take actions affecting

both the 2D and 3Dmodels. Addition or deletion (opening) of individual base pairs is

possible, as well as coaxial stacking and “compactification” of paired regions

(see below). One can interactively edit bond angles, as well as “clean up” the model

via calls to energy minimization and short molecular dynamics runs. Incorporation

of known motifs from a database, such as PDB for example, is also possible.

Some aspects of RNA-based nano-scale structure design are also serviced by the

RNA2D3D tools. Quick exploration of alternatives is aided by the capability to save

and retrieve multiple models. The program features rapid interactive, geometrically

driven exploration with heuristic stacking of stems and pseudoknots in a 3D

RNA structure to facilitate manual modeling by a user having sufficient expertise in

modeling to identify modular motifs and structure fragments to substitute in the

preliminary, automatically generated model. No capabilities are provided for auto-

matic, knowledge-based augmentation of the initial model.

RNA2D3D first generates a secondary structure representation from the provided

base pairing data. Pseudoknots are automatically arranged as coaxially stacked stems.

The secondary structure drawing acts as a starting point for the 3D rendering. The 2D

structure representation can be thought of as a graph whose nodes represent base

positions and arcs represent backbone covalent bond connections and noncovalent

hydrogen bond base pair interactions. The graph contains two bond length

components. One is the connection from one base to the next along the backbone.

This is defined here as the distance between two successive phosphates. The other

important distance is the one between the two phosphates that constitute the

nucleotides involved in a base pair. Loop regions in the drawing are represented by
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Fig. 7.5 Depiction of the secondary structure layout (left panel) and its initial 3D rendering

(right). The pseudoknot layout is shown horizontally in both panels. The pseudoknots consisting of
stems H4a and H4b coaxially stack on each other, while stem H5 is near perpendicular. The right
panel also shows the initial winding of the A-form helices and the embedding of the nucleotides in

the stems as provided by the secondary structure information. Labels shown correspond to the

labels in Fig. 7.4

Fig. 7.6 Depiction of the “compactification” operation. The left panel shows how the original

internal loops have now been incorporated in a stem with induced base pairing indicated by the

dotted lineswithin the H5 stem-loop. The right panel shows the 3D rendering of this operation. The

entire H5 is highlighted in red in both panels, which indicates that it has been interactively selected
for further manipulation. The segment highlighted in red can be translated and/or rotated around

the axis shown as a dashed green line between the 50 and 30-most positions of the selected segment

(indicated by the black arrow for added clarity). Many other editing options exist (see the text)
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circular arc segments that are interrupted by protruding base-paired stems. Using the

well-known geometries of individual nucleotides and base pairs, i.e., A, C,G, andU as

well as A–U, G–C, and G–U, an embedding is performed that places these objects, as

rigid bodies, at their corresponding positions in the secondary structure-based graph

[for details, please refer to (Martinez et al. 2008)].

Once the embedding is completed, base-paired stems are “wound “ (transformed)

into standard A-form double stranded helices, which are commonly found in many

experimentally determined RNA structures (Duarte and Pyle 1998; Wadley et al.

2007). The individual bases that are found in loops are placed such that their plane is

oriented in a direction that bisects the line that joins the base position in the secondary

structure drawing that precedes and succeeds the base being embedded. Figure 7.5

illustrates this first step. During the 3D transformation, the loop regions along with

their bounding base pairs are treated as rigid bodies. This simplified and incorrect

geometry of the loop regions is the first pass approximation, to be dealt with by the

modeler later with the aid of structure editing tools, substitutions with experimental

PDB structures and energy minimization of the single stranded regions, structure

fragments, or the full structure model. The process of “winding” is done recursively,

emanating out, for example, from a multibranch loop, transforming stems in order as

the algorithm proceeds. It should be noted that dangling ends, i.e., single strands that

do not contain any base pairs and are not part of loops, also follow an A-form

geometry. The procedure described above is very fast and can be accomplished in

less than a second for a structure that contains over 1,600 nucleotides. Figure 7.5

illustrates the process just described for the TCV enhancer domain shown in Fig. 7.4.

The left panel shows the rendering of the secondary structure with the two

pseudoknots, C2 and C3, and the right panel shows the initial 3D modeling results

after embedding and “winding.” Pseudoknots C2 and C3, which are composed of

stems H4b and H4a respectively, coaxially stack on each other, while stem H5 is

roughly perpendicular to these pseudoknots. At this point in themodeling protocol, the

model is improved by applying interactively driven modifications. After examin-

ing the initial 3D rendering of TCV, it becomes fairly obvious that the existence

of the large internal loop appears to be somewhat artifactual. RNA2D3D contains

a tool called compactification which extends helical stems into loop regions

which may or may not involve canonical interactions. The result of this type of

operation applied to TCV can be seen in Fig. 7.6. The dashed lines indicate these

induced base pairs.

Upon closer examination of the structure, it was found that the junction between

the “vertical” and “horizontal” sections contained steric conflicts and unrealistic

backbone angles. Since interactive model editing can be accomplished quite rapidly

with RNA2D3D, the H5 arm was rotated �75� with respect to the horizontal stack

of stems, immediately resulting in a T-shaped structure. In addition, a series of

minor translations were performed. These operations significantly relieved the

apparent stresses and collisions present in the first depiction. H5 was selected for

further manipulation via translations and rotations around the axes or points of

reference chosen by the user, such as the axis between the 50 and 30-most positions

of the selected segment, pointed to by the black arrow in Fig. 7.6. Other minor
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adjustments (rotations and translations) were applied to several small fragments of

the structure.

The model was further refined by editing in a GNRA tetraloop from the PDB

database (PDB ID:1F9L) to the end of the H5 stem loop structure, as shown in Fig. 7.7.

This illustrates the philosophy of utilizing known motifs in the modeling process

whenever possible, which can be accomplished with a “Replacement tool.” As

RNA2D3D can be used to operate on two models in parallel, it is possible to read in a

reference PDB structure, such as the 1F9L, into one of these model spaces, and then

select in both of them the corresponding subsets (the program can operate at the level of

thewholemolecule, branches, and user-defined subsets).Once the corresponding subsets

have been defined, one can replace the 3D coordinates of the modeled subset with the

data from the reference structure. Ideally, an overlap of twomatching nucleotides within

a paired-up helix should be used to assure the correct alignment of the reference subset

with themodeled structure.However, in the case of 1F9Lwe could use only the base pair

closing the tetra loop due to sequence discrepancy with the TCV. The results were

satisfactory and nearly identical to a more extensive match performed with the aid of

other tools, which, however, required far more tedious substitution procedures. For all

practical purposes one can define a structure subset to be an up to n � 1-long fragment

within a structure of n nucleotides, allowing for a lot of flexibility inmixing the elements

of known structures or alternative models via 3D coordinate substitutions.

Fig. 7.7 Interactive refinement of the 3D TCV model. The 3D drawing shows the result of

rotating the H5 stem by �75� around the closing base pair 50–30 axis (green dashed line in

Fig. 7.6) and translating the stem with respect to the horizontal pseudoknot motif. These operations

and several other minor adjustments were performed to alleviate steric conflicts. In addition, a

GNRA tetraloop from the PDB database was used to replace the equivalent structure in the

RNA2D3D-generated model at the bottom of H5. The red inset window shows the PBD entry

1F9L with the fragment used highlighted in red. Finally, small adjustments to the 50 and 30

pseudoknots were made and molecular mechanics was employed to clean up the model shown
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A next set of steps used the “refinement” tools that are part of RNA2D3D. This

set of tools essentially connects RNA2D3D to the “Tinker” package which applies

molecular mechanics and dynamics to the generated 3D coordinates (Ponder 2006).

Energy minimization was performed with the Tinker’s MINIMIZE module, with

Na+ ions placed along the backbone to neutralize phosphate group charges. First,

RNA2D3D steps through each single stranded segment (including those that may

be part of the compactification process) minimizing its energy based only on its

local context. The results of this step are depicted as the green-colored structure in

Fig. 7.8a. After this, further single strand minimizations may be performed or one

can interactively pick a segment and minimize it, allowing only the picked segment

to move, but in this operation, the minimization process sees its global context. This

step, however, was not needed in the refinement of TCV. Finally, a global minimiza-

tion was applied, the results of which are illustrated in Fig. 7.8a as the blue-colored

structure. This was followed by a 1 picosecond molecular dynamics run, which was

then followed by a global minimization. The results of this refinement phase did not

alter the model significantly and are not depicted, to keep Fig. 7.8a as readable as

possible. These last steps were applied to clean up bond length issues and/or steric

clashes. Another round of interactive editing, mostly with respect to the two

pseudoknot regions, followed by dynamics and minimization runs was performed to

produce the result illustrated in Fig. 7.8b. Since the shape of the TCV structure that

Fig. 7.8 Refinement of the 3D TCV model with the help of molecular mechanics (minimization)

and dynamics. (a) The left panel shows, in green, the results of single strand refinements for the

starting structure shown in Fig. 7.7. The results of global minimization of the entire structure are

depicted in blue. This was followed by a short molecular dynamics run (not shown). The gray,
right-hand side panel shows the many refinement options that can be applied to the entire structure

or its user-defined subsets. (b) Modeling state after another round of minor interactive edits to the

50 and 30 pseudoknot regions followed by molecular mechanics and short molecular dynamics

applied to the full structure
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emerged from the modeling looked strikingly similar to a tRNA, the final few minor

changes in the relative positions of the structure elements were guided by the phenyl-

alanine tRNA PDB structure, as shown in Fig. 7.9. The sequence of steps presented

above is not a rigid protocol, but an outline of options. After each step, one should

examine the results and accept or reject them and performmoremanual refinements as

needed. It has to be stressed that the use of molecular mechanics and short molecular

dynamics runs is intended as a “touch-up” procedure, to be followed by longer MD

runs with help of tools independent of RNA2D3D.

In general, editing options offer a lot of flexibility by providing the 50–30 axis and
another one linking the middle point of the 50–30 axis (MP) with the center of mass of

the selected segment (COM). In addition, pivot points located at the 50, 30, MP, and

COM locations can be selected, and rotations and translations in the Cartesian space

with the origin of the X, Y, Z axes located at these points are available to the user.

Selected segments can be grouped together for further manipulations as a rigid body.

The combination of the choices of segments and groups to be worked on with the

many points of reference around which one can translate and rotate the selected

fragments of the molecule allows for a flexible and rapid generation of alternative

conformations. Combined with an option to store the current state, as a so-called

3DM file, one can pursue multiple modeling choices with a quick option to return to

the last satisfactory state, in case one reaches a dead-end branch in a tree of choices.

While stem stacking was accomplished automatically in the TCV modeling, this is

an option that the system user can control interactively and add or remove stacking

based on his or her knowledge or modeling insight. Another editing feature of the

program, which adds to its overall flexibility, is the ability to add or remove base

pairs to the model produced from the initial secondary structure input. In cases in

Fig. 7.9 Depiction of the front and side (50 end toward the viewer) views of the TCVmodel and an

overlay of the model with the phenylalanine tRNA. The striking resemblance to the Phe tRNA is

readily apparent. Copyright # American Society for Microbiology, Journal of Virology, 82(17),

2008, pp. 8706–8720, doi:10.1128/JVI.00416-08)
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which one does not have a reference structure to be substituted for terminal loops, an

option of shaping such loops by extending the A-form helix geometry into a loop

from its 30 end up to a user-selected point within the loop is provided. Such loop

shaping, combined with base-pairing options makes it possible to approximate

kissing loop interactions that may bring together not only distant parts of a large

model but also multiple molecules (RNA chains), which may be used as building

blocks for nano-scale RNA assemblies. This can be accomplished interactively or

via topology descriptor files. Thanks to these features, RNA2D3D has been proven

capable of modeling nanostructures such as tectosquares and tectosquare meshes in

which building blocks connected by kissing loop interactions can form programma-

ble shapes (Chworos et al. 2004; Jaeger and Chworos 2006; Martinez et al. 2008).

7.4.2 The Enhancer Element Is tRNA-Like in Appearance
and Function

Once the three-dimensional model was realized, it became apparent that the shape

of the defined element bears a striking resemblance to tRNA, as shown in the

overlay in Fig. 7.9 between phenylalanine tRNA and the TCV element, aligning the

C3 pseudoknot with the amino-acceptor stem of the tRNA. This further reinforced

our idea that this element acts as a translational enhancer by recruiting ribosomes.

Experiments were performed which verified this hypothesis. These experiments

found that the 60S ribosomal subunit bound somewhat more preferentially to the

element than the 80S. It was also found that the 40S subunit bound to the 50-UTR of

the virus, thus suggesting a potential role for cyclization of the virus whereby the 30

and 50 ends come together with the aid of the formation of the 80S ribosomal

complex by the interaction of the 60S unit with the 40S unit.

7.4.3 Molecular Dynamics Simulations of the TCV TSS Element
and the H5 Stem Loop Structure

In order to better understand the stability and the dynamic nature of the TSS

enhancer element, molecular dynamics simulations (MD) were performed on the

entire TSS element as well as the H5 alone. Amber 9 was used for the full TSS

simulation, using the Cornell force field for RNA (Case et al. 2005; Wang et al.

2000). The entire TSS was run for 50.3 ns using the Particle Mesh Ewald method

for determining electrostatics (Essmann et al. 1995). 99 Na+ counterions were

added to neutralize the RNA. An additional 63 Na+ and Cl� pairs were added

with 28,075 TIP3P water molecules, yielding a 0.1 mol/L relative salt concentra-

tion. The system of 87,666 atoms in total was maintained at the temperature of

300 K throughout the MD run.
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An interesting finding from the dynamic simulation is the relative flexibility of

the H5 stem loop structure compared to the rest of the TSS element. The flexibility

seems to be derived, at least in part, from the mobility of C3994 (full genome

numbering) found in the large symmetric internal loop (LSL). The higher mobility

observed for this base, compared to the flanking nucleotides, is consistent with

results from in-line probing experiments (McCormack et al. 2008). Figure 7.10

Fig. 7.10 Flexibility of the H5 stem-loop structure and the mobility of C3994. (a) Illustrates two

conformations of H5 selected from the 50.3 ns trajectory. The position of base C3994 is shown.

(b) A polar plot of the dihedral angle variations between G3993 and C3994 during the full MD

trajectory. The dihedral angle was measured for atoms G3993(N1), G3993(C30), C3994(C30),
C3994(N3). The radial lines correspond to the MD simulation time, starting from the center and

increasing outwardly. The angles range from �180� to +180�. The dotted red line indicates a

reference dihedral angle (measured for the same four atoms—refer to the text) for a neighboring

G–C base pair found in an ideal A-form helix. [Panel (a): Copyright # American Society for

Microbiology, Journal of Virology, 82(17), 2008, pp. 8706–8720, doi:10.1128/JVI.00416-08]
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illustrates two of the orientations of H5 observed during the 50.3 ns simulation.

Also depicted is a plot of the dihedral angle of C3994 over the full trajectory

showing that C3994 samples almost all possible angles and switches rapidly

between stable states (i.e., persistent intervals of smaller angular variations).

The neighboring relatively stable nucleotide G3993 serves as a reference point

for the measurement, and the results capture nearly exclusively the motions of

the C3994.

It is important to note that experiments have shown that the LSL within H5 also

interacts with the 30-most nucleotides of the TCV genomic template (Zhang et al.

2006). In another interaction, the H5 LSL and the hairpin loop in the H4 stem-loop

structure (see Fig. 7.3) form pseudoknot C4, which inhibits ribosome binding

(Stupina et al. 2008). All these elements appear to be part of a structural switch

that changes conformations as a function of RdRp binding. In other words, two

mutually exclusive conformations serve two mutually exclusive functions (transla-

tion and replication) (Yuan et al. 2009). The dynamic nature of H5 may therefore

play a role in the functionality of the switch.

The dynamic properties of the H5 domain were explored further in a 63-ns

long MD simulation of just the H5 stem-loop (42 nt) extracted from the model of

the full TSS (100 nt). Amber 10 was used with the same Cornell force field for

RNA, using the Particle Mesh Ewald (Case et al. 2008; Essmann et al. 1995;

Wang et al. 2000). Forty-one Na+ counterions were added to neutralize the RNA,

and an additional 24 Na+ and Cl� pairs with 28,075 TIP3P water molecules were

added to solvate the RNA to a 0.1 mol/L relative salt concentration. The system

of 31,279 atoms was simulated at 300 K. One has to keep in mind that MD runs

will not produce identical results, unless given identical starting conditions

(parameters). Thus the full TSS and H5 MD simulations differed in some details

or the amplitudes of movements, but they shared the same key large movement

characteristics within the H5 domain. These included bending of the entire

domain around the LSL, loss of ideal A-form helicity (uncoiling) in the central

region (LSL), and intermittent coaxial contraction and elongation. While less

pronounced than in the full TSS MD simulation, the rotational mobility of C3994

was also outstanding, leading to sharp local bends in the backbone and appearing

to be the main cause of the full domain bending. Using the data from the entire

trajectory and the most stable interval of the MD simulation (the last 18 ns), we

measured the angle between the proximal and distal helices of the corresponding

average structures to be 158� and 144�, respectively, showing good agreement

with the latest experimental measurements (see below).

In the context of the MD results, it is not unreasonable to speculate that the

measured lower affinity of the TCV translational enhancer for ribosomes in com-

parison to that of regular tRNAs may be related not only to the fact that the TSS is

missing the anticodon loop, but also to the flexibility of the equivalent but longer

H5 stem loop offering a less than perfect fit or a fit limited to a subset of dynamic

states of TSS (Stupina et al. 2008).
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7.5 TSS Structure in Solution

The global structure of the TSS in solvent was recently solved experimentally using

a novel protocol combining data from SAXS/RDC (Wang et al. 2009; Zuo et al.

2010). The methodology allows one to elucidate relatively large RNA structures

and is presented in detail in Chap. 16. In a nutshell, SAXS provides an envelope for

the structure, while the RDC data allows one to determine orientations of helices

within the structure. The combination of the two constraints leads to a globally

correct structure with respect to the mutual orientations of the molecule’s helical

regions. The overall T-shape of the TCV translational enhancer was confirmed, and

more data was obtained on the angles between the different domains of the TSS.

Bending of the H5 domain was observed and measured to be 140 � 30�, based on

the low resolution envelope calculated from the SAXS data, and 159 � 2� based on
the top simultaneous RDC fits (Zuo et al. 2010).

7.6 Current Model of the Functional Role of the TSS Element

in Translation and Replication

Guided by the structure modeling, and grounded in the experimental results

(McCormack et al. 2008; Stupina et al. 2008; Yuan et al. 2009; Zhang et al. 2006;

Zuo et al. 2010), the following model of the functional role of the TSS is proposed. In

the absence of the accumulated RdRp, the TCV genomic template maintains a stable

conformation within its 30-UTR which includes the TSS element capable of binding

ribosomes. During the translation initiation process, the 60S ribosomal subunit binds

to the TSS. How the 50 and 30 ends are brought together is still under investigation

(Stupina et al. 2008; Yuan et al. 2009). However, it appears that the 43S subunit binds

to the 50-UTR and advances to the start codon, where it comes in contact with the large

subunit bound to the 30 TSS, thus affecting cyclization of the RNA template. It is also

possible that the overall secondary structure of the genomic RNA brings the two ends

in proximity to each other, helping to achieve this bridging. For the full ribosome

assembly to be properly accomplished, the TSS has to be released from the P-site to

allow the initiator tRNA to be properly positioned there. The observed preference in

the binding affinity of the ribosome for the initiator tRNA over the TSS should

facilitate this process. In the repeated process of translation, aided by the TSS’s

continual recruitment of ribosomal subunits, the RNA-dependent RNA polymerase

(RdRp) from the p88 fragment of the genome (see Fig. 7.1) is produced, and its local

concentration begins to rise. Above a threshold concentration the newly translated

RdRp binds in the vicinity of the TSS and induces a conformational change within

the translation enhancer region, disrupting interactions within the TSS and between

the TSS and its flanking regions extending from H4 to the 30 end (Yuan et al. 2009).

The changed structure, the 3D picture of which remains to be solved, can no longer

bind to the ribosomal subunit. Rather, transcription (replication) of the complementary

strand of the TCV virus is initiated. Repeated transcriptions deplete the RdRp, since
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it is bound to the minus strand following the process and leaves the immediate vicinity

of the plus strand template. Once the RdRp concentration falls below the threshold

level required for binding to the translation enhancer region, the structure switches

back to the more stable conformation with the TSS element in it, and the positive

strand is once more open for translation initiation.

7.7 Summary

In summary, we presented a study of the translational enhancer element within the

30-UTR of the TCV, stressing the importance and the integral role of the computa-

tional secondary structure prediction and 3D modeling in the study. Our MPGAfold

program predicted a new pseudoknot as part of the secondary structure of the last 216

30 nucleotides. 3D molecular modeling of the central region of the 30-UTR enclosed

between pseudoknotsC2 andC3, performed with our program RNA2D3D, yielded a

TSS starting from a secondary structure that differs from that of tRNA. The 3Dmodel

of the TSS suggested a translation enhancement mechanism related to ribosome

binding. Themodel was tested bymutagenesis, in-line probing, and ribosome binding.

Recently, the solution structure of the TSS was elucidated experimentally using a

novel method combining SAXS and RDC data. Thus the study of the TCV

30 translation enhancer demonstrated the first tRNA-shaped domain internal to a

30-UTR, capable of ribosome binding and central to a larger structural switch

controlling translation and replication of a viral genome. It is possible that similar

structural elements will be found in other 30-UTRs.
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Chapter 8

Methods for Building and Refining 3D Models

of RNA

Samuel C. Flores, Magdalena Jonikas, Christopher Bruns, Joy P. Ku,

Jeanette Schmidt, and Russ B. Altman

Abstract Interest in RNA has grown tremendously in recent years as we uncover

more and more roles for RNA in the cell. Investigation of RNA function is often

hampered by the absence of even a tentative 3D structure which can guide

experiments. Experimental structure determination is difficult because of RNA’s

large size, high charge and flexibility, propensity for kinetic trapping, and the lack

of the distinctive surface features necessary for crystallization. Computational

structure prediction is challenging for mostly the same reasons. In this work, we

describe three methods which are used in different ways to predict the structure and

dynamics of RNA. RNABuilder is an “erector set” for constructing RNA molecules

based on experiments, hypotheses, or other information known to the user. NAST

quickly produces ensembles of coarse-grained molecules based on the statistics of

backbone conformation. Lastly, Zephyr uses the graphical processing unit rather

than the CPU to speed up conventional molecular dynamics calculations.

8.1 Introduction

We are currently witnessing an explosion in the known roles of RNA, along with an

increased recognition of its importance. While proteins perform most physiological

functions in the cell, RNA plays a possibly dominant role in determining when and

how much protein is produced, and even configures proteins through alternative

splicing. An important aspect to understanding RNA function in these processes is

the role of its 3D structure. Yet, structural information is lacking for many RNAs

due to both experimental and theoretical challenges. Their size, long folding times,

propensity for kinetic trapping, charge, flexibility, and lack of distinctive surface
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features (Ferre-D’Amare et al. 1998) make crystallography, as well as computa-

tional prediction, difficult.

RNAs range in size from a single residue (e.g., ATP) to thousands of residues

(e.g., the ribosome). In between are many RNAs of biological interest, including

tRNA with ~75 residues and various group I introns with hundreds of residues.

Further, experimental folding times for RNAs tend to be too long for simulation.

For example, the ~350 residue RNase P folds in ~400 s (Furtig et al. 2007) while

current full atomic resolution molecular dynamics methods can simulate events on

the microseconds scale. Depending on parameters used, such methods would take

several thousand years to simulate 400 s. In addition, explicit-water and -ion

simulations may be necessary to treat the effect of backbone charges (Bowman

et al. 2008) further increasing the computational complexity.

In response to these challenges, a variety of approaches have been proposed to

simplify the structure prediction problem. Some seek to reduce the computational cost

by coarsening the granularity of the problem (Atilgan et al. 2001) modeling multiple

atoms as a single unit. Others are using knowledge-based potentials (Ayton et al.

2007), forces that are empirically derived from experimental data, to drive their

structure predictions, in contrast to physics-based potentials that are derived from

theoretical principles of physics. These approaches, although computationally effi-

cient, have some shortcomings.

Coarse-grained methods will inevitably have limited accuracy, and so in recent

years a consensus has emerged that it is beneficial to work at more than one level of

resolution, often simultaneously, in an approach known as multi-resolution

modeling (MRM). MRM is an emerging paradigm for efficiently modeling large

molecules. By treating them at coarse resolution when possible and at fine

resolutions when necessary, we can benefit from the efficiency of the coarse-

grained modeling and the accuracy of the atomic models.

MRM schemes are sometimes classified into serial and parallel, depending on

whether the different granularities exist at separate times (serial) or simultaneously

(parallel). Serial schemes often involve two sequential stages. The first stage is a

parameterization stage, in which short-timescale molecular dynamics simulations,

molecular knowledge, or thermodynamics are used to derive coarse-grained simula-

tion parameters. This is followed by a dynamics stage, in which the derived simulation

parameters are used to carry out a long-timescale coarse-grained simulation of the

molecule of interest. In a parallel scheme, two ormoremodels can run simultaneously

at different levels of granularity, exchanging conformations from the simulations at

different resolutions from time to time (resolution exchange); alternatively, different

regions of a single model can have different granularities (Ayton et al. 2007).

Computational approaches can also be differentiated by the type of force field

used: knowledge-based (KB) versus physics-based. A force field is generally

considered to be physics-based if it induces the behavior of large molecules

from the behavior of its smallest pieces, which are sufficiently well understood

on a physical level. A KB force field works in the opposite direction; it deduces

forces empirically from observations of the structure or behavior of large systems

(Sippl 1993).
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While both approaches enable modeling of the physical world and could poten-

tially yield the same solution, there are necessarily trade-offs between the two. Since

a KB approach models the behavior of a molecule based on parameters derived from

observations of large systems, it may work even when the underlying physics is not

well understood. A KB force field can also be designed to be computationally faster

because a subset of atoms can be used instead of all atoms, as is required for a

physics-based approach; also the interactions can be simpler in form and shorter in

range. Lastly, conformational transitions may occur in less simulation time in the

thus-simplified system. The biggest disadvantage of KB approaches is that they are

only designed to reproduce the phenomena they were trained on and cannot predict

previously unobserved phenomena. In contrast, physics-based force fields can, in

principle, predict the correct thermodynamics, kinetics, and free energies of a novel

system and are thus more widely applicable. Also, while a KB force field can be used

to reproduce an observed behavior, a physics-based force field can be used to reveal
why that behavior occurs, since it is inductive rather than deductive.

It is important to note that the distinction between KB and physics-based is not

absolute but depends on the kind of investigation being performed. For example, a

classical physics-based force field actually derives from observed aggregate behav-

ior of quantum physical effects, and thus would appear to be knowledge-based from

the point of view of a quantum physicist. Classical physics is unable to make

predictions about novel quantum systems for which it is not “trained.” What

makes a force field KB is the use of it to perform investigations at the same level

at which the knowledge was acquired. So if a force field was trained on RNA

structures and is then used to produce an RNA structure, it is KB.

Below, we describe in detail two 3D RNA structure modeling tools we have

developed, RNABuilder and Nucleic Acid Simulation Tool (NAST). These two

examples illustrate the trade-offs of different approaches. RNABuilder is a KB,

single-model parallel MRM scheme. Within a simulation, some fragments of the

model are set to be rigid while others are flexible. RNABuilder allows users to

incorporate information from disparate sources, such as coevolution, functional

assays, single molecule experiments, homology, and secondary structure predic-

tion, and gives users a large degree of flexibility in building a model. NAST is also

KB, but it uses a serial MRM method. It represents RNA structures with a single

particle per residue, deriving its coarse-grained force field from statistical analysis

of known structures. A primary goal of NAST is to generate a plausible 3D structure

in much less than 1 day. NAST has a complementary tool, Coarse to Atomic (C2A)

for adding in full-atomic detail. Both NAST and RNABuilder are intended to model

large molecules in a computationally efficient manner.

We will also discuss OpenMM Zephyr, which provides a graphical user interface

for molecular dynamics simulations at atomic resolutions. Contrary to RNABuilder

and NAST discussed above, OpenMM Zephyr’s goal is not to introduce new

methodologies but rather to bring existing advanced molecular dynamics

capabilities to users with little experience with those techniques. Currently

OpenMM Zephyr provides an interface to a modified version of GROMACS (van

der Spoel et al. 2005; Hess et al. 2008), a versatile software package for performing
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molecular dynamics, i.e., simulations based on the Newtonian equations of motion

for systems with hundreds to millions of particles (a physics-based approach).

Though this is a computationally expensive approach, as explained earlier,

GROMACS has built-in efficiencies and an emphasis on performance. In addition,

by using the OpenMM library, the modified version of GROMACS has recently

been implemented to run on the graphics processing units (GPUs) that come with

most modern computers. Zephyr provides an interface to this accelerated version of

GROMACS (Friedrichs et al. 2009). We will discuss how Zephyr complements

existing 3D RNA modeling tools, allowing users to extend their research with full

atomic dynamic simulations without extensive set-up times. NAST and its com-

panion program C2A take advantage of Zephyr.

Significant time and resources have been spent developing and validating the

above described methods. To ensure the scientific community benefits from these

tools, we have invested substantially to make them broadly available and have

provided easy-to-use interfaces. RNABuilder, NAST, C2A, and OpenMM Zephyr

are all freely available on https://simtk.org, along with clear documentation and

practical test cases, enabling other researchers to experiment with the tools inde-

pendently. They are able to test the different approaches on a larger variety of

problems, discovering their limitations and advantages, and importantly, build upon

the existing methods in the true spirit of scientific research. It is a new, exciting

chapter in our investigations of RNA, and with it, we hope comes a renewed

openness in sharing those scientific results and methods.

8.2 RNABuilder: An Internal Coordinate Mechanics Approach

for Multiresolution Molecular Modeling of RNA

8.2.1 Introduction

RNABuilder is a flexible, open-source tool for combining biological information

from disparate sources to model the structure and dynamics of RNA via base-

pairing interactions. It has been developed to address many of the challenges in

predicting 3D RNA structures mentioned earlier, incorporating a number of

elements to make it computationally efficient. First, RNABuilder is a parallel

multiresolution method (Ayton et al. 2007), designed so that all or part of any

molecule can be selectively rigidified for significant time savings. It uses a KB force

field to translate available molecule-specific experimental information into forces

which drive correct structure formation. Using a KB force field also allows

RNABuilder to describe certain interactions, such as sterics, in a simpler form for

additional computational savings.

With RNABuilder, we have been able to predict the structure of molecules by

applying base-pairing interactions [including any of the types catalogued by Leontis

et al. (2002)] obtained from coevolution, cross-linking, and functional assays.
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RNABuilder can also align a flexible molecule of unknown structure onto rigid

molecular fragments from homologs of known structure. Further, unlike many

methods whose resource requirements explode with molecule size, RNABuilder’s

simulation time is proportional to the number of atoms, suggesting that significantly

larger molecules can be treated economically. This opens the door to modeling the

packaging of viral genomes, ribosomal translation (Tung et al. 2002), and other

phenomena involving large RNA complexes.

Below, we describe RNABuilder in more detail and explain how we have

applied it to model tRNA, the P4/P6 domain of the Tetrahymena ribozyme, and

the entire Azoarcus ribozyme.

8.2.2 Using RNABuilder and Internal Coordinate Mechanics
to Model Large Molecules

Any method designed to address the folding of large RNA molecules faces the

problem of scaling, or how the time required to compute a fixed number of

simulation steps increases with system size. Methods whose resource requirements

are directly proportional to the number of bodies in the system are said to have

order-N scaling (N being the number of bodies). In a full-atomic system, the

number of bodies would be equal to the number of atoms; in a coarse-grained

representation where, for instance, each residue is represented by a single particle,

the number of bodies is equal to the number of residues.

Many methods have computational requirements which grow faster than this.

For example, in the most naı̈ve implementation of molecular dynamics, the scaling

is order-N2, since the nonbonded electrostatic and van der Waals interactions must

be computed between all pairs of atoms (N atoms interacting with N atoms). Many

larger molecules are well out of practical reach for such methods. An emerging

paradigm for dealing with issues of computational economy is MRM, mentioned

earlier, which seeks to treat molecules at multiple levels of granularity.

RNABuilder follows this paradigm. It provides the flexibility to impose granularity

by region, concentrating resources on the region of interest while spending little

computing time on perhaps large but less important parts of the system.

RNABuilder’s MRM capability comes from its use of the Simbody Internal

Coordinate Mechanics library, which is freely available from http://simtk.org/

home/simbody. Simbody works in internal coordinates, a framework in which

different regions of a system can easily be treated with different degrees of

flexibility. For molecules, bond lengths and angles are often fixed, and dihedral

angles are the only geometric quantity that can change between the two bonded

atoms. Bond dihedral angles can also be fixed, turning the bonded atoms into a

single rigid body.

Simbody provides other features which are key to RNABuilder’s modeling

capabilities, including the basewise force field it uses. This force field pulls pairs
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of bases into specific configurations, in particular any of those documented by

Leontis et al. (2002). Simbody supports this functionality through the concept of

“frames,” or attachment points, associated with each body. In RNABuilder, each

base is a body, and these can be aligned through translations and rotations.

Simbody’s formulation of internal coordinate mechanics computes kinematics

in order-N time, with the consequence that RNABuilder can treat large molecules

without disproportionate increase in cost. The user can also elect to rigidify certain

regions of the molecule as mentioned to decrease the computational costs. Together

these features, as well as others to be described, may enable the user to economi-

cally treat very large molecules. Below, we provide examples and benchmarking

data that support this suggestion.

8.2.3 Enforcing Leontis–Westhof and Other Base Interactions

One of the key elements for generating a 3D structure with RNABuilder is the user-

specified base interactions. In early work, Taketomi et al. (1975) showed that

preferentially applying interactions observed in the native state (the Go model)

led to folding and suggestive thermodynamic behavior of simplified proteins.

In many cases, experimentalists may not know the 3D structure of the native state

but may have extensive knowledge of base-pairing contacts. The knowledge may

come from coevolution (Levitt 1969), functional assays (Tijerina et al. 2006), or

other experiments which are much easier to perform than full 3D structure deter-

mination. This often incomplete or imperfect information can be used to drive

folding to a predicted native state using RNABuilder. Similar forces can also be

used to drive homology modeling (“threading”), another approach to structure

prediction that incorporates information from known, similar 3D structures.

RNABuilder supports a number of different interactions: base pairs, as

catalogued by Leontis et al. (2002), stacking interactions, and a “Superimpose”

force used in threading. These interactions consist of forces and torques which pull

the bases into the desired base-pairing orientation as mentioned earlier.

The task of parameterizing the RNABuilder force field is mostly that of deter-

mining the position and orientation of an attachment frame for each base. An

attachment frame is a coordinate framework such that when it is aligned with the

default (body) frame that RNABuilder defines for a base, the desired base-pairing

geometry is achieved (Fig. 8.1). Parameters have been provided for over 240 base-

pairing interactions, including all those classified by Leontis et al. (2002). This is

sufficient for most users. For users who want to include additional interactions, we

also provide an auxiliary program with the RNABuilder source code distribution,

generate-base-pair-transform. This program extracts the attachment frame co-

ordinates given the 3D structural coordinates of two residues engaged in the desired

interaction, facilitating the description of customized interactions. The attachment
and body frames are then pulled together by an interaction potential in translational

and torsional space (Flores and Altman 2010).
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8.2.4 Approximate Treatment of Sterics

Enforcing base-pairing geometry is not sufficient, however. In most practical cases,

not all base pairs will be known, and further, since such interactions act only on

bases, the backbone may take on incorrect conformations. To partially address

these issues, we use Simbody’s collision-detecting spheres to approximately

recover the effects of steric exclusion. These use a fast collision detection algo-

rithm, which does not calculate interactions between spheres until they are close

enough to make contact. This treatment is a substitute for calculating the pairwise

van der Waals and electrostatic interactions between atoms, which account for

steric exclusion and other phenomena in MD simulations but are more costly

computationally.

Simbody’s contact spheres detect collision by tracking a bounding box around

each sphere and computing interactions only when two such boxes overlap.

RNABuilder allows the user to apply these spheres to every residue or to any

stretch of residues according to various schemes: just to the phosphorus, C4*, and

Fig. 8.1 Enforcing base pairs within RNABuilder. RNABuilder assigns a default body frame to
each residue of a molecule. That frame is associated with the residue’s glycosidic nitrogen. To

describe a base-pairing interaction, an attachment frame is also defined for one of the two

interacting bases. Base pairs are enforced by aligning the attachment frame of one residue with

the body frame of the second residue. Illustration shows initial configuration (a) and equilibrated

configuration (b)
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glycosidic nitrogen or to each heavy atom in each residue. The stiffness and radii of

the spheres can be adjusted by the user. The default parameters have been

optimized to produce duplexes similar to ones generated using James Stroud’s

popular make-na server (Stroud 2010), which is based on Nucleic Acid Builder

(Macke and Case 1998), a computer language for performing various nucleic acid

manipulations. Make-na generates regular helices of idealized geometry.

8.2.5 Building RNA Structures from Experimental Data

As we showed above, a single base pair of any of the supported types can be

enforced. One could imagine that by specifying the interaction between each base

and the next, the structure of an entire motif can be enforced. Below, we show that

we can model various RNA structures, even without knowing all of the base-pairing

contacts.

Using RNABuilder, we modeled a tRNA structure using base-pairing and

stacking contacts obtained from experiments which were, or could have been,

performed without reference to the structural coordinates. There were 85 such

contacts (Flores and Altman 2010), including base-stacking interactions in helices,

which RNABuilder applies automatically. We count each base pair or stacking

interaction as a single contact. In the last stage of the simulation, the molecule

ranged from 8.1 to 11.1 Å RMSD, averaging 9.6 Å RMSD, with respect to the

crystallographically observed structure. To show how the predicted structure can

improve as more base-pairing information becomes available, we then inspected

the crystallographically obtained 3D structure and added or corrected the contacts

as they were observed there. The additions and corrections resulted in a new total of

87 contacts (including automatically applied helical stacking interactions) and

lowered the RMSD to an average of 6.1 Å (ranging from 4.4 to 8.4 Å RMSD) in

the final stage of the simulation.

Similarly, we were able to generate a model of the bigger 160-residue P4/P6

domain of the Tetrahymena ribozyme (Cate et al. 1996). For this molecule, we

manually applied 87 base-pairing and stacking contacts known by various

noncrystallographic means much as before (Flores and Altman 2010), while

RNABuilder automatically applied additional stacking interactions between consec-

utive bases in helices, for a total of 166 base-pairing and stacking contacts. The

applied contacts were extracted from phylogenetic, UV cross-linking, dimethyl

sulfate footprinting assays, NMR, and other noncrystallographic experiments.Motifs

such as the tetraloop receptor are well characterized inmultiple molecules and can be

generated by applying a tightly defined set of noncanonical base-pairing and stacking

interactions (Flores and Altman 2010). We ran for 8 ns of simulation time. In the

latter 4 ns, the RMSD with respect to the crystal structure ranged from 8.7 to 11.3 Å,

with an average of 10.0 Å (Fig. 8.2). However, the crystal structure lacks L2 which is

in contact with P5c; therefore, the orientation of P5c in the crystal is not what it would

be in the full-length ribozyme. The RMSD computed in a similar run without P5c
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was about 8.6 Å. Prior work on this system yielded lower accuracy (Jonikas et al.

2009a, b) and/or required considerable computational expertise (Michel andWesthof

1990). When we enforced all contacts observed by crystal gazing (a total of 185), the

RMSD in the last stage of the simulation decreased to an average of 9.6 Å, with range

from 9.4 to 10.0 Å (Flores and Altman 2010).

8.2.6 Solving Structure by Multiple Template
Homology Modeling

We have described how RNABuilder can use readily available experimental infor-

mation in the absence of 3D coordinates to predict structure. In some cases, the

molecule may be too large to be practically solved by that method. In such cases,

although the structure of the molecule is unknown, various domains or fragments of

the molecule may bear structural similarity to molecules of known structure. These

circumstances call for homology modeling (“threading”).

In a novel approach to threading, we rigidify the templates, or fragments of

known structure, and use RNABuilder’s “Superimpose” force to pull bases from the

molecule of unknown structure, or model, into alignment with corresponding bases

on the templates (Flores et al. 2010). Small regions of the model which have no

suitable template are built up using base interaction forces as before. While other

threading algorithms exist, the algorithm we present here is unique in that it is one

Fig. 8.2 Building P4/P6. Secondary structural and other contacts (left) obtained without reference
to the crystallographically observed structural coordinates were enforced to generate 3D structure

(right, in stereo). RNABuilder generated a model (right, blue) which compares well with the

crystallographically observed structural coordinates (green). Agreement between model and

observed structure averaged 10.0 Å RMSD in the latter half of the simulation

8 Methods for Building and Refining 3D Models of RNA 151



of the few that has been applied to RNA (Tung et al. 2002), and it easily threads one

or more molecules to multiple templates.

We were able to use RNABuilder to solve the structure of the ~200-residue

Azoarcus ribozyme by threading it to templates from Tetrahymena and Twort
(Fig. 8.3). The resulting structure had a 4.6 Å RMSD27 when compared with the

crystal structure, especially remarkable when considering that the sequence identity

between the model and the templates is <50%, much less than what previous

methods appear to have required. A similar structure was previously obtained by

fragment assembly methods (Rangan et al. 2003). Further, the three ribozymes are

connected with multiple tertiary contacts, which is difficult to model with fragment

assembly methods, such as Tung et al. (2002).

8.2.7 Scaling

We have described how RNABuilder can be applied to molecules of up to 200

residues. A natural question is “How much larger can I go?”. The answer depends

on the specifics of the problem, namely, how much of the structure is known, how

much of it can be threaded to known structures, and how much of it matters at all.

The intuition and insight of the user in applying flexibility, sterics, and forces can

often turn a prohibitively difficult problem into a relatively simple one. In this

section, we show that there is no intrinsic barrier to the modeling of very large

molecules.

Fig. 8.3 Threading Azoarcus ribozyme onto templates from Twort and Tetrahymena. A flexible

Azoarcus ribozyme of presumed unknown structure (blue) was aligned onto the construct com-

posed of the core region from Twort (yellow) and tetraloop-receptor fragments from Tetrahymena
(red). The threaded Azoarcus ribozyme agreed with the crystallographically observed 1–4.6 Å

RMSD (Flores et al. 2010)
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The discovery of recursive methods for solving the equations of motion in

internal coordinates in O(n) time (linear in the number of bodies) made the latter

method practical for dynamics. Our benchmarking study verifies that the computa-

tional cost of computing the dynamics for a fixed period of time is linear with the

number of residues (Fig. 8.4); thus, no explosive increase in computational cost

might prohibit modeling very large structures. In addition, we show that rigidifying

molecules drastically reduces expense, indicating that rigidification is a viable thrift

measure when parts of the system are known, converged, or uninteresting. The

benchmark created chains of more than 10,000 residues before exhausting the 4 GB

of memory addressable in a 32-bit system, suggesting very large complexes can be

modeled using modest equipment.

8.2.8 Advantages and Limitations of Modeling with RNABuilder

RNABuilder offers a versatile, computationally efficient, scalable means of

modeling 3D RNA structures. In taking advantage of the features provided by the

multibody dynamics engine Simbody, RNABuilder is able to reduce the computa-

tional cost of modeling 3D RNA structures, as compared with molecular dynamics

codes where cost increases as constraints are added. Unlike many other force fields,

such as those used in MD, the RNABuilder force field only acts between bases

which the user knows to interact in certain ways. This means that RNABuilder

is less general than MD; on the other hand, it saves computer time and more

1

10

100

1000

10000

100000

100 1000 10000 100000

Computer time vs. number of residues

se
co

nd
s

residues

Flexible, no sterics
Rigid, no sterics, no forces
Flexible, with AllHeavyAtomSterics

Fig. 8.4 Scaling of computer time with number of RNA residues. The computational cost

increases linearly with the number of residues for flexible RNA chains without sterics. Residues

with sterics applied incur an increase in cost (not necessarily linear). For rigid chains, the cost is

linear because currently the atomic coordinates are updated at every time step, even within rigid

regions; nonetheless, the overall cost is considerably lower than for flexible regions. Performance

varies with system and simulation parameters. The user can choose the flexibility and sterics by

region for efficient modeling
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importantly it enables the user to impose contacts known from experiments, theory,

or insight.

RNABuilder is perhaps most similar in goals to Nucleic Acid Builder (Macke

and Case 1998), but has the advantage of being able to model large scale confor-

mational changes in a short period of time. In Nucleic Acid Builder, the resulting

structure is achieved using a classical MD force field, AMBER; therefore, just as in

classical MD simulations, although small scale rearrangements can easily be made,

substantial domain motions are out of reach because of the computer time require-

ment. For that reason, with Nucleic Acid Builder the user must have a fairly clear

idea of the final 3D structure before building a model. On the other hand, with

RNABuilder the time required to fold an extended chain into its final configuration

while simultaneously enforcing base-pairing contacts may be quite affordable, and

thus minimal to no 3D information may be needed.

Whereas by some measures MD is the most computationally expensive

modeling technique, very coarse-grained modeling tools like NAST (described in

the next section) are among the least expensive. Fast tools of the latter class enable

many simulations to be done at low cost, but often accuracy is limited, as is the

number and type of constraints that can be applied. RNABuilder takes the middle

road, offering greater diversity in the number and types of constraints available, as

compared with most coarse-grained tools, and while not as fast as them, it does

offer considerable speed ups when compared with MD.

RNABuilder is a dynamical code and thus should be distinguished from

fragment assembly methods such as MC-Sym (Major et al. 1993; Parisien and

Major 2008). These fragment assembly methods sample small RNA fragments

from a database of known 3D structures and, as implied by the name, assembles

them to build complete molecules. At the small scale, this approach generates

structures that have physically reasonable configurations. However, if the mole-

cule is large and has tertiary contacts, the probability of finding just the right

fragments that will close those contacts is small. RNABuilder does not rely on

databases; rather, it works by applying forces to bases, leaving the backbone

flexible, so it is capable of building structures that have never been observed

experimentally. Furthermore, if two or more applied base pairs are not quite

mutually compatible, the bases may equilibrate to a compromise structure rather

than failing altogether.

It should be clear that each approach has advantages for different applications.

RNABuilder, with its use of internal coordinate mechanics and dynamics, provides

users with a flexible, computationally efficient method that is suitable and practical

for modeling large molecules without much prior 3D structural knowledge.

8.2.9 Downloading RNABuilder

RNABuilder can be freely downloaded from https://simtk.org/home/rnatoolbox.
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8.3 Coarse-Grained Molecular Modeling with the NAST

8.3.1 Introduction

The NAST is a KB coarse-grained modeling tool for RNA 3D structures. NAST

primarily addresses the challenge of generating plausible coarse 3D models of RNA

structure within a short amount of time (<<1 day). NAST can be applied to RNA

molecules with two or more known (or predicted) helical regions. It assumes that the

known secondary structure of the molecule adopts the geometry of observed RNA

helices (in crystal structures) and asks how these helices pack together to form a 3D

structure. The result is an ensemble of 3D structures at the nucleotide resolution that

resemble observed RNA geometries at that same resolution while satisfying the

user-specified primary sequence, secondary structure, and tertiary contacts.

NAST simplifies the computationally expensive problem of molecular dynamics

in two ways (1) Reducing the complexity of the molecule to a single point per

residue, thereby significantly decreasing the number of pairwise interactions that

need to be calculated, and (2) using a relatively simple energy function based on

observed nucleotide-level RNA geometries in the Protein Data Bank (PDB). This

energy function implicitly treats a wide variety of phenomena, including the effect

of backbone and counter-ion charges. The simplifications make NAST a good tool

for modeling large RNA structures quickly. Although the resulting model is coarse-

grained, full atomic detail can be added into the model, which can then be energy

minimized with tools such as OpenMM Zephyr (discussed later in this chapter) and

refined to satisfy particular atomic-level interactions with tools such as

RNABuilder. In this section, we will provide a brief description of NAST and its

implementation and show several uses of NAST, including the prediction of

structures and the generation of a diverse ensemble of conformations.

8.3.2 Coarse-Graining and the NAST Energy Function

NAST uses a coarse-graining scheme where each residue is represented by the

position of its C30 atom. This approach significantly reduces the complexity of the

molecule, decreases the amount of time needed to achieve significant conforma-

tional change, and essentially treats the polymer as a “chain of beads.”

The NAST energy function is based on nucleotide-level geometries observed in

ribosomal RNA crystal structures. The only geometric relationships included in the

energy function are distance, angle, and dihedral geometries for C30 to C30 atoms in

sequential residues, and nonbonded distances for all pairs of C30 atoms. The

observed value distributions are empirically fit and each term’s contribution to

the energy function is determined using the Boltzmann relationship between prob-

ability distribution and energy. The nonbonded interactions are modeled with only

the repulsive term of the Lennard-Jones potential. Since the energy function is
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based on observations in ribosomal RNA crystal structures, the resulting NAST

models will satisfy observed RNA geometry at the local residue level, while

remaining flexible enough to explore conformational space and satisfy user-

supplied constraints.

The user provides the secondary structure, which defines additional distances,

angles, and dihedrals needed to constrain an ideal A-form helix. These regions are

strongly constrained to maintain their ideal helical geometries, allowing NAST to

focus on exploring the possible packing arrangements of the helices. Optional user-

specified tertiary contacts are treated as springs, with the rigidity controlled by the

user. Tertiary contacts can also be used to constrain entire regions where the

geometry is known from a crystal structure.

More details about the implementation of NAST can be found in Jonikas et al.

(2009a, b).

8.3.3 NAST’s Role in Understanding RNA

8.3.3.1 Predicting Structures

The simplest use of NAST is to generate a 3D coarse-grained structure model that

satisfies observed nucleotide-level RNA geometry from a primary sequence and

secondary structure. If tertiary contacts are known or predicted, they can also be

included in the modeling process. Given these inputs, NAST will start from an

unfolded conformation of a coarse-grained representation of the target molecule

(Fig. 8.5a). NAST will then attempt to satisfy the user-supplied information, while

also satisfying the energy function derived from observed RNA crystal structure to

generate a model (Fig. 8.5b).

Using only secondary structure and tertiary contact information, we have shown

that NAST can be used to generate and identify representative structures of the

yeast phenylalanine tRNA (a 76-residue structure) and the P4–P6 domain of the

Tetrahymena thermophila group I intron (a 158-residue structure) that have strong

topological similarity to their respective crystal structures (Jonikas et al. 2009a, b).

Our studies used only information that was available before the crystal structures

were solved. The highest ranking cluster of structures generated by NAST had an

average RMSD of 8.0 � 0.3 Å for the yeast tRNA and 16.3 � 1.0 Å for the P4–P6

domain, a significant similarity especially given the resolution of the NAST coarse-

graining. Furthermore, the NAST-generated model for the P4–P6 domain was

achieved despite incorrect secondary structure information; 26% of the base pairs

used as input to NAST were incorrect. This suggests that NAST can be useful even

in cases where the secondary structure information is uncertain and could poten-

tially be employed as a screening tool to determine what additional experimental

data would enhance the 3D modeling of a given RNA.
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8.3.3.2 Combining Information from Several Models

NAST is also useful for combining information from several different models, for

example, for T. thermophila, where the crystal structure is missing several helices.

In Jonikas et al. (2009a, b), we combined geometric information from a full atomic

model generated by experts (Michel and Westhof 1990), with the truncated crystal

structure to build a full-length 3D structure that satisfied both the crystal structure

data and the modeling data for the missing helices and their positions relative to the

rest of the molecule.

8.3.3.3 Generating Diverse Unfolded Conformations

Another use ofNAST is to generate a diverse ensemble of unfolded 3D conformations

of a given primary sequence and secondary structure. In Fig. 8.6, we show26 unfolded

models of the Azoarcus ribozyme generated by NAST, using only primary sequence

and secondary structure information. Because of the stochastic nature of NAST and

the limited 3D information provided to the system, repeating the simulation numerous

times will result in a diverse ensemble of coarse-grained conformations of a molecule

that satisfy the secondary structure provided by the user. These structures can then be

filtered by additional information, such as radius of gyration and solvent accessibility,

to determine a reasonable set of unfolded conformations. These unfolded con-

formations can then be used as starting points for modeling folding pathways by

adding additional distance constraints with NAST.

8.3.4 Using NAST’s Coarse-Grained Models for Further
Simulation and Analysis

The 3D structures generated by NAST are coarse-grained with a single atom (C30)
representation per nucleotide. Although this simple representation allows NAST to

Fig. 8.5 (a) NAST starts the modeling process from an unfolded conformation of a coarse-

grained representation of the target molecule. (b) NAST will seek to satisfy the energy function

derived from observed RNA crystal structure, as well as the secondary structure and tertiary

contacts provided by the user. Because of the stochastic nature of NAST, repeating the process

numerous times will yield an ensemble of low energy models, based on NAST’s energy function.

Residues are colored by index
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build 3D models very quickly, it limits the usefulness of the model. The C2A tool

(Jonikas et al. 2009a, b) is a KB tool for adding full-atomic detail into coarse-

grained models. C2A can be used with any coarse-grained 3D structure model,

including those representations with more than one atom per residue. In Fig. 8.7, we

show nine different full-atomic models that were built using the C2A tool, based on

a single NAST coarse-grained model.

Once full atomic detail has been added to a coarse-grained model, it can be

energy-minimized using the OpenMM Zephyr tool described in the next section of

this chapter. This minimization process will eliminate some of the chemically

unrealistic features of the full atomic structure, in particular unusually long bonds

and unusually small distances between atoms. The resulting energy-minimized

structures can then be used for further simulation and analysis using full-atomic

physics-based modeling tools.

8.3.5 Scaling

Unlike RNABuilder, the computational cost of modeling RNA structures using

NAST is not a straightforward relationship, dependent just on molecule size. Instead,

it depends on a number of factors, including the length of the primary sequence, the

number of helices, the number of base pairs in each helix, and the number of tertiary

contacts. Running a 50-ps NAST simulation (10,000 time steps) of tRNA, which

consists of 76 residues, 4 helices, 22 base pairs and 4 tertiary contacts, takes 3 s ofCPU

Fig. 8.6 Examples of 26 unfolded conformations generated by NAST for the Azoarcus ribozyme.

Only secondary structure was constrained in the generation of these structures. All structures were

aligned to minimize RMSD to help judge the diversity of these unfolded conformations. Residues

are colored by index
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time, running on a single CPU.Meanwhile, the same amount of simulation for P4–P6,

which consists of 7 helices, 58 base pairs, and 2 tertiary contacts, takes 11 s. In the

published results for modeling tRNA and P4–P6 with NAST, we chose to run 300

CPU hours of simulation for eachmolecule to generate a larger diversity of structures.

8.3.6 Advantages and Limitations of Modeling with NAST

The simplified representation used by NAST makes it more appropriate for some

applications than others. The speed gained by the simple representation makes it a

useful tool for fast modeling of large molecules that require large conformational

changes, such as from an unfolded state to a folded state. Additionally, full-atomic

detail may not be as crucial in these cases, although it can be added either with C2A

or by threading with RNABuilder.

There are clearly trade-offs in order to achieve this fast modeling. For instance,

the NAST energy function does not have any physics-based contributions, so on-

the-fly detection of possible base pairing is not feasible. Only those base pairs that

are identified by the user will be constrained. There are no differentiating properties

between different flavors of nucleotides, such as with RNABuilder, FARNA (Das

and Baker 2007), and MC-Sym (Parisien and Major 2008). Every nucleotide is

simply modeled as a sphere, and the entire molecule is essentially a “string of

beads” where each bead behaves the same. Despite these limitations, the ability to

generate large conformational changes in a short amount of time, combined with

the ability to add full atomic detail to the final models, makes NAST a useful tool

for speedy modeling of RNA molecules that are more complex than a single

hairpin-loop structure. Even for structures with only two helical regions, NAST

Fig. 8.7 Addition of full-atomic detail to a NAST tRNA coarse-grained model using C2A. Due to

the KB stochastic nature of C2A, a single coarse-grained model (a) will result in an ensemble of

full-atomic structures (b), all of which are within ~1 Å RMSD of the coarse-grained template
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can help the user explore the conformational space available geometrically based

on the input constraints.

8.3.7 Downloading NAST and C2A

Both NAST and C2A can be freely downloaded. The Web site for NAST is http://

simtk.org/home/nast. The C2A Web site is located at http://simtk.org/home/c2a.

8.4 Molecular Simulation of RNA with OpenMM Zephyr

NAST and RNABuilder introduce novel paradigms for modeling 3D RNA

structures, as described earlier. OpenMM Zephyr’s focus is different. It provides

an interface to full-atomic, molecular dynamics (MD) simulations, complementing

3D RNA modeling tools like NAST and RNABuilder. Although these MD

simulations are typically difficult to set up, requiring a high level of expertise,

OpenMM Zephyr simplifies the process significantly, enabling researchers, even

those without any MD experience, to easily access the most state-of-the-art full-

atomic simulation techniques. These techniques can augment the information and

understanding gained from 3D modeling tools, refining the 3D RNA model or

simulating the dynamics of the structure. Below, we describe the OpenMM Zephyr

application, its design, and how it has been applied to 3D RNA structures.

8.4.1 Zephyr Leverages OpenMM, GROMACS, and VMD

Zephyr is a desktop molecular simulation application based on three tools: the

OpenMM library for accelerating molecular dynamics on GPUs (Friedrichs et al.

2009), GROMACS for the molecular dynamics infrastructure (van der Spoel et al.

2005; Hess et al. 2008), and VMD for visualization (Humphrey et al. 1996). Zephyr

ties these three tools together to provide a productive and educational workflow.

The GROMACS molecular dynamics package, upon which Zephyr is based,

uses a physics-based approach to simulate the dynamics of a molecule over time.

It evaluates the Newtonian equations of motion for systems with hundreds to

millions of particles over tiny increments of time, typically femtoseconds for

molecules, repeating the calculations over and over to simulate the motion of a

molecule. Typically, these types of simulations require setting a large number of

parameters and have a steep learning curve.

OpenMM Zephyr simplifies the process, leading the user through the steps

required to set up and run a simulation, as well as to visualize the simulation results

using VMD, a popular molecular visualization program. In addition, OpenMM

Zephyr displays the specific GROMACS commands being used, enabling motivated
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users to teach themselves how to run GROMACS from the command line so that they

can eventually use the other more advanced options within GROMACS (Fig. 8.8).

Zephyr streamlines the simulation process by automatically chaining together

sequential steps of a molecular simulation. The user specifies an input PDB

molecular structure file and, if desired, can adjust a small number of parameters

for the simulation. At that point, Zephyr manages all the subsequent steps: it

automates the process of transforming the PDB file to match the conventions of

the molecular force field; it invokes several tools to minimize the energy of the

structure, followed by another series of tools to perform the dynamic simulation;

and finally it saves all of the output to a working area previously specified by the

user. In addition, it automatically launches the VMD application and sends the

appropriate information to it, so that the simulation can be viewed live.

8.4.2 GPU Acceleration of Dynamic Simulation

Though physics based, full atomic simulations are computationally intensive,

GROMACS has included many algorithmic optimizations to improve its perfor-

mance. Zephyr is built upon a modified version of GROMACS. Currently,

GROMACS only supports explicit solvent, where the water molecules and ions

Fig. 8.8 OpenMM Zephyr screen during a simulation. Live animation of the simulation trajectory

viewed through Zephyr using the program VMD is shown on the left. The Zephyr user interface is
shown on the right
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surrounding the RNA are modeled as individual particles. We have implemented a

version of GROMACS that supports implicit solvent—a method of representing the

solvent as a continuous medium instead of as individual “explicit” solvent

molecules. Because of this difference, the performance of our modified version

cannot be directly compared to that of GROMACS. In general, implicit solvent

models are inherently faster. Moreover, our modified version of GROMACS

incorporates the OpenMM library, which enables MD simulations to run on

computers with suitable GPUs, yielding another significant speed-up. We can,

however, compare OpenMM Zephyr’s performance to AMBER, a package that

uses the same implicit solvent model as implemented within Zephyr. The OpenMM

Zephyr simulations are over 100 times faster on a GPU as compared to AMBER on

a single CPU (Friedrichs et al. 2009), with even greater speed-ups for large

molecules.

8.4.3 Zephyr and Usability

One of the goals of Zephyr is to make best-of-breed simulation tools, such as

OpenMM and GROMACS, available to a wider audience by simplifying the install

process and by significantly reducing the initial learning curve. A key component of

this is the interface. While academic software engineering projects, particularly

those geared more for experts in the field, typically provide an extensive array of

choices and functionality, Zephyr purposely simplifies its interface, identifying

and allowing users to choose from a minimal set of necessary parameters. In

addition to a well-designed and tested interface and installer, Zephyr provides a

user manual and uses a modern software engineering infrastructure provided

through simtk.org for source code revision control, automated building and

testing of the code, bug tracking, and user communication, e.g., mailings lists

and discussion forums. These features result in a robust, user-friendly software

with ongoing support.

8.4.4 Zephyr’s Guiding Principles: Discoverability, Feedback,
and Convention

Zephyr’s emphasis is on learning. Learning is aided in Zephyr by three guiding

principles: discoverability, feedback, and expert convention. Zephyr emphasizes

ease-of-use, but it is not a black box. Discoverability means that the user is

encouraged to learn more and more about the details of molecular simulation by

investigating the provided interface, which explains the details of each step of the

simulation workflow. Feedback means that the user remains aware of the current

state of the simulation workflow, including error conditions. Both real-time and
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retrospective visualization of trajectories is provided through integration with the

VMD program. Convention means the best practices of expert users are built in to

the default workflow path. By creating a default simulation workflow that follows a

conventional path from model building to energy minimization to dynamic simula-

tion to trajectory analysis, the first-time user can be guided by expert knowledge to

learn to manage a working simulation. The simplest task flow is the conventional

task flow, but it is not the only task flow available within Zephyr.

8.4.5 Using Zephyr with RNA Structures

OpenMM Zephyr is useful for minimizing the energy of a full-atomic RNA model.

The process of energy minimization can eliminate residual geometric oddities in a

structure. This can be useful in situations where a model has been created compu-

tationally. For instance, the C2A fragment construction procedure can create

unrealistic local geometry by connecting unrelated fragments. Zephyr can be used

to relax these unrealistic structures through energy minimization. To do this, simply

run Zephyr with only one step of dynamic simulation. This takes advantage of the

fact that Zephyr automatically minimizes the energy of a structure before beginning

a simulation.

OpenMM Zephyr’s primary use, though, is as a tool for accelerated full-atomic

physics-based simulation of RNA and other molecular structures. The GPU-

accelerated molecular dynamics available through Zephyr is particularly useful

for moderate size RNA structures.

8.4.6 Downloading Zephyr

Zephyr can be freely downloaded from https://simtk.org/home/zephyr forWindows,

Linux, and Mac computers.

8.5 Conclusions

Molecular size, folding time, and charge are important challenges for structural

modeling of RNA today, and a variety of approaches have been proposed to address

them. Coarse-grained and MRMmethods are both able to model large systems with

long folding times by using lower-resolution versions of the molecule. Using KB

force fields is another approach, which can implicitly treat electrostatic charge and

offers speed advantages over a physics-based approach, especially for larger

molecules. With these new methodologies, though, come questions about the

level of accuracy that can be achieved and their applicability to a broad range of
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problems. To address some of these issues and highlight the trade-offs with using

these techniques, we presented two recently developed tools for RNA modeling:

RNABuilder and NAST/C2A.

RNABuilder is a KB approach that builds molecular structure by enforcing

interactions between bases, which the user provides based on experiments,

theory, or even conjecture. We showed that limited experimental data can be

turned into atomic 3D structure with RMSDs ranging from 4.6 to 12 Å,

depending on the molecule and the amount and quality of the experimental

data. Because of its KB force field, RNABuilder is able to implicitly deal with

charge. Importantly, RNABuilder uses the Simbody library, leading to order-N
scaling with system size and thus the potential to treat large systems with long

folding times. Being a single-model parallel MRM method, RNABuilder also

allows converged regions to be rigidified, leading to considerable additional

computational savings.

NAST is able to model 3D RNA structures in a short time (<<1 day) by using a

single pseudo-atom to represent each residue and a KB force field. The KB force

field is limited so that only those base pairs identified by the user will be

constrained, and there are no differentiating properties between different

nucleotides, as with several other modeling programs. However, the KB force

field does allow NAST to capture the effects of charge implicitly. Further, despite

these drawbacks, NAST is able to recapitulate the tRNA coarse-grained structure

with an RMSD of 8.0 � 0.3 Å and the P4–P6 domain with an RMSD of

16.3 � 1.0 Å in a very short amount of time. While NAST only generates coarse-

grained RNA structures, an associated program, C2A, has been developed that can

add the fine-grained atoms back into the model by sampling from a database of

structural fragments.

Lastly, we discussed OpenMM Zephyr, which provides a user-friendly graph-

ical interface to an accelerated modified version of the popular GROMACS MD

engine. The GROMACS MD engine uses a physics-based force field to simulate

the motion of a full-atomic molecule. This type of simulation can be used to

provide insights into the dynamics and function of a molecule, complementing

the structural information obtained from programs like NAST and RNABuilder.

It can also be used to refine the structures obtained from 3D RNA modeling

programs. Basic principles of usability and learning guided the design of

OpenMM Zephyr, bringing state-of-the-art full-atomic simulation techniques to

researchers without experience with MD. It is especially worth noting Zephyr’s

incorporation of the freely available OpenMM library for GPU acceleration,

which yields significant speed improvement over a single-CPU MD implementa-

tion. This provides yet another avenue to the challenge of simulating larger

systems and longer time scales.

While there are many challenges to modeling 3D RNA structures, we are

encouraged by the progress we have observed. New methodologies, such as those

presented here, are being developed to address these challenges, each with their

unique advantages and limitations, and we are excited to see what new knowledge

and understanding they will undoubtedly bring to the field.
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Chapter 9

Multiscale Modeling of RNA Structure

and Dynamics

Feng Ding and Nikolay V. Dokholyan

Abstract We have developed a multiscale approach for RNA folding using dis-

crete molecular dynamics (DMD), a rapid conformational sampling algorithm. We

use a coarse-grained representation to effectively model RNA structures. Bench-

mark studies suggest that the DMD-based RNA model is able to accurately fold

small RNA molecules (<50 nucleotides). However, the large conformational space

and force field inaccuracies make it difficult to computationally identify the native

states of large RNA molecules. We devised an automated modeling approach for

prediction of large and complex RNA structures using experimentally derived

structural constraints and tested it on several RNA molecules with known experi-

mental structures. In all cases, we were able to bias the DMD simulations to the

native states of these RNA molecules. Therefore, a combination of experimental

and computational approaches has the potential to yield native-like models for the

diverse universe of functionally important RNAs, whose structures cannot be

characterized by conventional structural methods.

9.1 Introduction

RNA molecules play a wide range of functional roles in gene expression, from

regulating transcription and translation [e.g., riboswitch regulator motifs (Edwards

et al. 2007)] to decoding genetic messages (tRNA), catalyzing mRNA splicing

[spliceosome RNA or self-splicing introns (Vicens and Cech 2006)] and protein

synthesis (rRNA). Knowledge of the underlying RNA structure in these and many

other molecules is a fundamental prerequisite to a complete understanding of RNA

function. Methods such as X-ray crystallography and NMR spectroscopy offer critical
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insight into the details of RNA structure–function relationships. However, many

RNAs contain both structured and functionally important but flexible elements.

These RNAs are not amenable to structure determination in their intact forms by

crystallography or NMR. Hence, molecular modeling of RNA to predict three-

dimensional structure and dynamics is crucial for our understanding ofRNA functions.

Currently, RNA folding tools focus mainly on predicting RNA secondary

structure (Hofacker 2003; Mathews 2006; Zuker 2003). Using a dynamic program-

ming approach (Eddy 2004), secondary structures are inferred by scoring nearest-

neighbor stacking interactions with adjacent base pairs (Mathews 2006). These

RNA secondary structure prediction methods play an important role in the current

study of RNA. However, in order to model the tertiary structure of RNA molecules,

it is necessary to explicitly model RNA in 3D. Cao and Chen designed a simplified

diamond-lattice model for predicting folded structure and thermodynamics of RNA

pseudoknots (Cao and Chen 2005, 2006). This approach quantitatively predicts the

free energy landscape for sequence-dependent folding of RNA pseudoknots, in

agreement with experimental observations (Cao and Chen 2005, 2006). However,

due to lattice constraints and the dynamic issues associated with predefined Monte

Carlo moves (Baumgartner 1987), off-lattice models are necessary to accurately

model RNA 3D structure.

Computational tools for manually constructing RNA models have been devel-

oped for RNA 3D structure prediction (Shapiro et al. 2007). These methods use

comparative sequence analysis to manually construct 3D models, with or without

reference to a known, homologous 3D structure. Their accuracy is enhanced by use

of experimental probes of secondary or tertiary structure and libraries of modular

3D motifs (Jossinet and Westhof 2005; Major et al. 1991, 1993; Massire et al. 1998;

Massire and Westhof 1998; Shapiro et al. 2007; Tsai et al. 2003). Recently,

significant progress has been made toward ab initio modeling of RNA 3D structures

(Das and Baker 2007; Ding et al. 2008; Parisien and Major 2008). These studies

show that starting only with sequence, it is possible to predict the structures of some

small RNA motifs with atomic-level accuracy. However, as RNA length increases,

the conformational space increases exponentially and the inherent inaccuracies of

the force field accumulate, limiting the ability of current methods to predict the

structures of large RNAs automatically. De novo prediction of large RNA

structures with nontrivial tertiary folds from sequence alone remains beyond the

realm of current ab initio algorithms.

We have developed a multiscale approach (Ding and Dokholyan 2005) for RNA

modeling based on a coarse-grained RNA model for discrete molecular dynamics

(DMD) simulations (Ding et al. 2008). DMD is a special type of molecular dynamics

simulation in which pairwise interactions are approximated by stepwise functions.

This approximation enables DMD to sample conformational space more efficiently

than traditional molecular dynamics simulations (Dokholyan et al. 1998). Using the

coarse-grained RNAmodel with DMD simulations, we were able to accurately fold a

set of 150 small RNA molecules (<50 nt) within 6 Å (a majority within 4 Å) to their

native states (Ding et al. 2008). To solve the folding problem of large RNAmolecules

with complex tertiary 3D structures, we proposed to incorporate experimentally
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derived structural information into our structure determination protocol. Long-range

constraints for RNA modeling can be inferred from a variety of biochemical and

bioinformatic techniques, ranging from chemical footprinting and cross linking to

sequence covariation (Gutell et al. 1992; Juzumiene et al. 2001; Michel and Westhof

1990; Ziehler and Engelke 2001). Experimental constraints derived from these bio-

chemical and bioinformatics techniques are generally of lower than atomic resolution,

but can be readily incorporated into the coarse-grained RNA model for structure

determination. The all-atom RNA model can then be reconstructed from the coarse-

grained structural model.

First, we will describe our coarse-grained representation of RNA models for

DMD simulations. Then, we will describe and evaluate the applications of the

DMD–RNA procedure to ab initio folding of a set of small RNA models and

structure determination using experimental constraints.

9.2 Coarse-Grained RNA Modeling Using Discrete Molecule

Dynamics

We use DMD as the conformational sampling engine. A detailed description of the

DMD algorithm can be found elsewhere (Dokholyan et al. 1998; Rapaport 2004;

Zhou and Karplus 1997). The difference between discrete molecular dynamics and

traditional molecular dynamics is in the interaction potential functions. Interatomic

interactions in DMD are governed by stepwise potential functions (Fig. 9.1a).

Neighboring interactions (such as bonds, bond angles, and dihedrals) are modeled

by infinitely high square well potentials (Fig. 9.1b). By approximating the continu-

ous potential functions with step functions of pairwise distances, DMD simulations

are reduced to event-driven (collision) molecular dynamics simulation. In a DMD

simulation, atoms move with constant velocity until they collide with another atom.

As soon as the potential of interaction between the two atoms changes (i.e., the

pairwise distance is at the step of the stepwise potential function), the velocities of

the two interacting atoms change instantaneously (Fig. 9.1a). These velocity

changes are required to conform to the conservation laws of energy, momentum,

and angular momentum. Each such collision is termed an “event.” The sampling

efficiency of DMD over traditional MD is mainly due to rapid processing of

collision events and localized updates of collisions (only colliding atoms are

updated at each collision). In the limit of infinitesimally small steps, the discrete

step function approaches the continuous potential function, and DMD simulations

become equivalent to traditional molecular dynamics.

We approximate the single-stranded RNA molecule as a coarse-grained “beads-

on-a-string” polymer with three beads representing each nucleotide, one for sugar (S),

one for phosphate (P), and one for nucleotide base (B) (Fig. 9.2a). The P and S beads

are positioned at the centers of mass of the corresponding phosphate group and the

5-atom ring sugar, respectively. For both purines (adenine and guanine) and
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pyrimidines (uracil and cytosine), we represent the base bead (B) as the center of the

6-atom ring. The neighboring beads along the sequence, whichmay representmoieties

that belong to the same or a neighboring nucleotide, are constrained tomimic the chain

connectivity and local chain geometry (Fig. 9.2a). Types of constraints include

covalent bonds (solid lines), bond angles (dashed lines), and dihedral angles

(dotted–dashed lines). The parameters for bonded interactions mimic the folded

RNA structure and are derived from a high-resolution RNA structure database

(Murray et al. 2003) (Table 9.1). Nonbonded interactions are crucial to model the

folding dynamics of RNA molecules. In our model, we include base-pairing

(Watson–Crick pairs of A–U and G–C and Wobble pair of U–G), base-stacking,

short-range phosphate–phosphate repulsion, and hydrophobic interactions, which

are described in the following section with the parameterization procedure.

Base Pairing. Two base-paired nucleotides have bases facing each other with the
corresponding sugar and base beads aligned linearly. We use the “reaction” algorithm

to model the orientation dependence of base-pairing interactions. The details of the

algorithm can be found in (Ding et al. 2003). Briefly, to model the orientation

dependence, we introduce auxiliary interactions in addition to the distance-dependent

interactions between hydrogen bond donor and acceptor atoms (Fig. 9.2b). For

example, when the two nucleotides (e.g., A–U, G–C, or U–G, represented as Bi and

Bj in Fig. 9.2b) approach the interaction range, we evaluate the distances between SiBj

and SjBi, which define the relative orientations of these two nucleotides. A hydrogen

bond is allowed to form only when the distances fall within predetermined ranges.

A schematic of the auxiliary interaction potential is shown in Fig. 9.2c, and the

corresponding interaction parameters are listed in Table 9.2.

Hydrophobic Interactions and Overpacking. Buried inside the double-helix, the

planar surface of bases are hydrophobic in nature. We include a weak attraction
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Fig. 9.1 Discrete molecular dynamics simulations. (a) Schematic of the DMD potential. The

stepwise function used in DMD is the approximation of the continuous function in traditional

molecular dynamics. The insert depicts the collision of two atoms with masses of mi and mj at the

initial position of ri and rj, respectively. The two atoms move with constant velocities (v) until they
meet at distance of Rij. (b) Schematic of the potential energy of bonds in DMD. The atom pairs

remain within the distance range during the simulation
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between all the base beads. Due to the coarse-graining feature of our model, the

assignment of attraction between bases results in overpacking (e.g., the symmetri-

cally attractive interactions tend to form close packing). In order to avoid the

artifact of overpacking, we first evaluate the packing observed in experimental

3D structures (http://ndbserver.rutgers.edu). We compute for each base the number

of neighboring bases within a cutoff distance of 6.5 Å. The histogram of the number

of neighbors is shown in Fig. 9.2d. Indeed, we find that the average number of

neighbors is much smaller than that of close packing, 12. In order to avoid unreal-

istic close-packing due to the coarse-graining process, we introduce an effective

energy term to penalize overpacking of bases:

Eoverpack ¼ dEY nc � nmaxð Þ; (9.1)

Fig. 9.2 Coarse-grained structural model of RNA employed in DMD simulations. (a) Three

consecutive nucleotides, indexed i�1, i, i + 1 are shown. The S, P, and B symbols correspond to

loci of sugar, phosphate, and base beads in the RNA, respectively. Covalent interactions are shown

as thick lines, angular constraints as dashed lines, and dihedral constraints as dashed–dotted lines.
Additional steric constraints are used to model base stacking. (b) Hydrogen bonding in RNA base

pairing. The base-pairing contacts between bases Bi�1:Bj+1 and Bi:Bj are shown in dashed lines. A
reaction algorithm is used (see Methods) for modeling the hydrogen-bonding interaction between

specific nucleotide base pairs. (c) Schematic of the potential function for the auxiliary base-pairing

interactions. (d) Histogram of the number of neighboring bases within a cutoff of 6.5 Å
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where YðxÞ is a step function,

YðxÞ ¼ x x > 0

0 x � 0

�
; (9.2)

nc is number of contacts, and nmax is the maximum number of contacts; dE is the

repulsion coefficient. Based on the histogram of the number of base neighbors

(Fig. 9.2d), we assign the value 4.2 for nmax and 0.6 kcal/mol for dE.
Base Stacking. To model stacking interactions, we assume that each base bead

makes no more than two base–base stacking interactions and that three consecutively

stacked base beads align approximately linearly. To determine the stacking interaction

range between base beads, we compute center-to-center distances between base beads

fromknownRNA structures.We find that distribution depends on base type (purine or

pyrimidine) and identify stacking cutoff distances as 4.65 Å between purines, 4.60

between pyrimidines, and 3.80 Å between purine and pyrimidine. To approximately

model the linearity of stacking interactions, two bases that form a stacking interaction

to the same base are penalized for approaching closer than 6.5 Å. As a result, these

three bases effectively define an obtuse angle. Next, we discuss the energy parameter-

ization of base-stacking, base-pairing, and hydrophobic interactions.

Parameterization of Base-Pairing, Base-Stacking, andHydrophobic Interactions.
In order to determine the pairwise interaction parameters for stacking and hydropho-

bic interactions for all pairs of a base, we decomposed the sequence-dependent free

energy parameters of the individual nearest-neighbor hydrogen bond model (INN-

HB) (Mathews et al. 1999). We assume that the interaction of neighboring base pairs

in INN-HB is the sum of all hydrogen-bond, base-stacking, and hydrophobic

interactions. In a nearest neighboring base-pair configuration (Fig. 9.1), Bi+1 and Bi

(Bj�1 and Bj) on one strand usually stack on top of each other. However, if both bases

Bi+1 and Bj are purines, we found that they tend to stack instead. The distance

between bases Bi and Bj�1 is usually greater than the cutoff distance of 6.5 Å for

hydrophobic interactions. Therefore, we used the following equations to estimate the

strength of pairwise interactions, where the first equation applies when Bi+1, Bj are

both purines and the second equation applies otherwise:

E
50BiBiþ130
30BjBj�150

� �
¼

�
EHB
BiBj

þ EHB
Biþ1Bj�1

�
þ EStack

BjBiþ1
þ Ehydrophobic

BiBiþ1
þ Ehydrophobic

BjBj�1
; (9.3)

E
50BiBiþ13

0

30BjBj�15
0

� �
¼

�
EHB
BiBj

þ EHB
Biþ1Bj�1

�
þ EStack

BiBiþ1
þ Estack

BjBj�1
þ Ehydrophobic

Biþ1Bj
: (9.4)

Here, Estack, EHB, and Ehydrophobic are the interaction strengths of base-stacking,

base-pairing, and hydrophobic interactions, respectively. Given the experimentally

tabulated energies between all possible neighboring base pairs (Mathews et al. 1999),

we were able to determine values of Estack, EHB, and Ehydrophobic that are consistent

with experimental measurements using singular value decomposition (Khatun et al.

2004; Press et al. 2002). The interaction parameters are listed in Tables 9.2 and 9.3.
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Table 9.1 The averages and

standard deviations of the

bonded atom pairs

Bonded atom pair Distance range (Å)

Pi Si 4.55 � 0.09

Si Pi+1 4.10 � 0.07

Si Ai 4.85 � 0.15

Si Ui 3.74 � 0.08

Si Gi 4.81 � 0.14

Si Ci 3.70 � 0.13

Pi Pi+1 6.25 � 0.95

Si Si+1 5.72 � 0.45

Pi Ai 7.45 � 0.45

Pi Ui 5.57 � 0.37

Pi Gi 7.43 � 0.43

Pi Ci 5.57 � 0.37

Ai Pi+1 7.25 � 0.42

Ui Pi+1 6.40 � 0.20

Gi Pi+1 7.20 � 0.43

Ci Pi+1 6.40 � 0.20

Pi-1 Si 9.25 � 0.95

Si-1 Pi+1 8.96 � 0.44

Ai-1 Si 5.68 � 0.68

Ui-1 Si 6.38 þ 0.73

Gi�1 Si 5.68 � 0.68

Ci�1 Si 6.38 � 0.73

Si�1 Ai 7.25 � 0.60

Si�1 Ui 5.66 � 0.54

Si�1 Gi 7.25 � 0.60

Si�1 Ci 5.66 � 0.54

All the bonds, angles, and dihedrals are effectively modeled

using a bonded interaction in the DMD simulations (Fig. 9.1b).

A, U, G, and C corresponds to four types of bases (B)

Table 9.2 The parameters for base pairing, modeled by hydrogen bonds between A–U, G–C,

and U–G

Atom pair dmin (Å) d0, (Å) d1, (Å) dmax (Å)

Ci–Gj base pair

Si Gj 7.70 8.08 8.63 9.00

Ci Sj 9.74 10.10 10.53 10.82

Ai–Uj base pair

Si Uj 9.76 9.94 10.50 10.76

Ai Sj 7.72 7.92 8.82 9.00

Ui–Gj base pair

Si Gj 7.00 7.44 8.24 8.70

Ui Sj 9.50 10.25 10.80 11.35

The details of the DMD algorithm for the hydrogen bond can be found in Ding et al. (2003). The

schematic interaction potential is shown in Fig. 9.2c. The hydrogen bond strengths, EHB, for A–U,

G–C, and U–G are 0.5, 1.2, and 0.5 Kcal/mol, respectively. The interaction potential between the

donor and acceptor is �EHB

9 Multiscale Modeling of RNA Structure and Dynamics 173



Loop Entropy. Loop entropy plays a pivotal role in RNA folding kinetics and

thermodynamics (Tinoco and Bustamante 1999). Hence, RNA folding prediction

methods should take this entropic effect into account, either implicitly as in all-

atomMD simulations (Sorin et al. 2004) or explicitly as in Monte Carlo or dynamic

programming methods (Mathews 2006; Rivas and Eddy 1999). However, the

reduction of degrees of freedom in our simplified RNA model causes entropy to

be underestimated in DMD simulations. For example, we often observe formation of

large loops that traps RNA molecules in nonnative conformations for significant

simulation times. To overcome such artifacts arising from the coarse-graining pro-

cess, we developed a simple modification of DMD simulation to model loop entropy

explicitly. We use the free energy estimations for different types of loops, including

hairpin, bulge, and internal loops (Mathews et al. 1999). Loop free energies were

obtained from experimental fitting for small loops and extended to arbitrary lengths

according to polymer theory. We compute the effective loop free energy in DMD

simulations based on the set of base pairs formed in simulations. Upon the formation

or breaking of each base pair, the total loop free energy changes according to the

changes in either the number or size of loops. We estimate the changes in loop free

energy, DGloop, for each base pair formed during the simulation and determine the

probability of forming such a base pair by coupling to a Monte Carlo procedure using

a Metropolis algorithm with probability p ¼ exp(�bDGloop). If the base pair is

allowed to form stochastically, the particular base pair will form only if the kinetic

energy is sufficient to overcome the possible potential energy difference before and

after the base-pair formation. Upon breaking of a base pair, the stochastic procedure

is not invoked since base-pair breakage is always entropically favorable. The break-

ing of a base pair is only governed by the conservation of momentum, energy, and

angular momentum before and after the base-pair breakage.

Table 9.3 The stacking and hydrophobic interaction strengths, expressed in kcal/mol units

EStack AU UA GC CG GU UG

AU �0.45 �0.50 �0.75 �0.95 �0.42 �0.70

UA �0.50 �0.40 �0.55 �0.60 �0.35 �0.35

GC �0.75 �0.55 �0.81 �0.95 �0.48 �0.92

CG �0.95 �0.60 �0.95 �1.10 �0.47 �0.51

GU �0.42 �0.35 �0.48 �0.47 �0.52 0.62

UG �0.70 �0.35 �0.51 �0.51 0.62 �0.44

EHydrophobic AU UA GC CG GU UG

AU �0.25 �0.40 �0.40 �0.50 �0.25 �0.35

UA �0.40 �0.30 �0.25 �0.25 �0.25 �0.25

GC �0.40 �0.25 �0.25 �0.45 �0.25 �0.41

CG �0.50 �0.25 �0.45 �0.50 �0.25 �0.41

GU �0.25 �0.25 �0.25 �0.25 �0.30 0.25

UG �0.35 �0.25 �0.41 �0.41 0.25 �0.25

The subscript indicates that the base bead is paired. For example, AU is a base bead A that has been

paired with a U bead. The cutoff distance for stacking interactions is 6.0 Å. The cutoff distance for

hydrophobic interactions is 6.5 Å. The hardcore distance between all beads is set as 3.0 Å
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The total potential energy, E, is obtained by adding all interaction terms, as given

in (9.5):

E ¼ EBonded þ EHbond þ EStack þ EHydrophobic þ Eoverpacking þ Gloop; (9.5)

and is used to perform DMD simulations of RNA molecules. The energy landscape

of RNA molecules is very rugged with a vast number of local minima due to the

high degeneracy of nucleotide types (only 4 compared to the 20 different amino

acids found in proteins). In order to efficiently sample the conformational space of

RNAs, we utilize the replica-exchange sampling scheme (Okamoto 2004; Zhou

et al. 2001).

Replica Exchange DMD. In replica exchange computing, multiple simulations

or replicas of the same system are performed in parallel at different temperatures.

Individual simulations are coupled through Monte Carlo-based exchanges of simu-

lation temperatures between replicas at periodic time intervals. For two replicas,

i and j, maintained at temperatures Ti and Tj and with energies Ei and Ej,

temperatures are exchanged according to the canonical Metropolis criterion with

exchange probability p, where p ¼ 1 if D ¼ 1=kBTi � 1� kBTj
� �

Ej � Ei

� � � 0,

and p ¼ exp �Dð Þ, if D>0. For simplicity, we use the same set of eight temperatures

in all replica exchange simulations: 0.200, 0.208, 0.214, 0.220, 0.225, 0.230, 0.235,

and 0.240. The temperature is in the abstract unit of kcal/(mol kB). Note that we

approximate the pairwise potential energy between coarse-grained beads with the

experimentally determined free energy of nearest neighboring base pairs, instead of

the actual enthalpy. As a result, the temperature does not directly correspond to

physical temperatures. In DMD simulations, we maintain constant temperature

using an Anderson thermostat (Andersen 1980).

Since the DMD code is highly optimized, we have found that the computa-

tional timescales linearly with respect to the system size. The folding simulation

of a 50-nucleotide-long RNA sequence (median size of RNA chains in the

sample) for 2 � 106 DMD simulation time units takes approximately 7 h of

total wall-clock time, utilizing eight 2.33-GHz Intel Xeon compute nodes.

9.3 Ab Initio Folding of Small RNA Molecules

For each RNA molecule, we initially generated a linear conformation using the

nucleotide sequence alone. Starting from this extended conformation, we

performed replica exchange simulations at different temperatures as described

above. From the simulation trajectories, we extracted sampled RNA conforma-

tional states, including the lowest energy state, the folding intermediate state, and

the corresponding thermodynamic data. In Fig. 9.3, we illustrate the folding

trajectory of one of the replicas for a turnip yellow mosaic virus (TYMV)

pseudoknot (PDB ID: 1A60). An RNA pseudoknot structure has nonnested base

pairing and minimally comprises base pairing between a loop region and a down-

stream RNA segment. Pseudoknots serve diverse biological functions, including
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formation of protein recognition sites that mediate replication and translational

initiation, participation in self-cleaving ribozyme catalysis, and induction of

frameshifts in translation of mRNA by ribosomes (Staple and Butcher 2005). For

example, 1A60 is composed of a 50-stem and a 30-pseudoknot (Fig. 9.3c). From the

simulation trajectory (Fig. 9.3), we observe folding of the RNA model within 5 Å

root-mean-square deviation (RMSD) to the native state, and the lowest RMSD from

the simulations is 2.03 Å. The lowest potential energy conformation, computed

across all replicas using the effective free energy function in (9.5), has all native

base pairs formed and an RMSD of 4.58 Å to the native state. Interestingly, we find

that during the folding process the RNA molecule samples a stable folding inter-

mediate state (Fig. 9.3a, b). The intermediate state forms a 50-stem and a partially

folded 30-pseudoknot with one of the stems. Our identified folding intermediate

state is consistent with the NMR studies of the solution structures of the TYMV

pseudoknot and its 30-stem (Kolk et al. 1998). Therefore, our DMD simulation not

Fig. 9.3 Folding of a pseudoknot. For one replica, we present the RMSD (a) and energy (b) as the

function of simulation time. Before folding into its native state (c), the molecule samples a folding

intermediate state (d). (e) Specific heat is computed from the replica exchange trajectories using

WHAM. (f) Two-dimensional potential of mean force 2D-PMF (potential mean force) for

pseudoknot folding at T* ¼ 0.245 (corresponds to the major peak in the specific heat). The two

intermediate states and the native state are indicated by I1, I2, and N, respectively. (g) The 2D-PMF

plot at T* ¼ 0.21
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only allows the prediction of the native state but also enables us to identify folding

intermediate states that might be important for the function of the RNA. The

availability of multiple folding trajectories at different temperatures allows quanti-

tative characterization of the folding thermodynamics.

We used the weighted histogram analysis method (WHAM) to calculate folding

thermodynamics. The WHAMmethod utilizes multiple simulation trajectories with

overlapping sampling along the reaction coordinates. The density of states rðEÞ is
self-consistently computed by combining histograms from different simulation

trajectories (Kumar et al. 1992). Given the density of states, the folding specific

heat (Cv) can be computed at different temperatures according to the partition

function, Z ¼ Ð
rðEÞ expð�E=KBTÞdE. To compute the potential of mean force

(PMF) as a function of reaction coordinate A, we compute the conditional proba-

bility P(A|E) of observing A at given energy E, which is evaluated from all

simulation trajectories. Here, the reaction coordinate A can be any physical param-

eter describing the folding transitions, such as the number of native base pairs, the

radius of gyration, or RMSD. The conditional probability P(A|E) can be estimated

from the histogram of parameter A for conformation states whose potential energies

are within the range of [E, E + dE]. The PMF is computed as

PMFðAÞ ¼ � lnð
ð
PðAjEÞrðEÞ expð�E=KBTÞdEÞ þ C: (9.6)

Here, C is the reference constant, and we assign the lowest PMF a value of zero.

Since our simulations start from fully extended conformations, we exclude the

trajectories from the first 5 � 105 time units and use those of the last 1.5 � 106

time units for WHAM analysis. We used the trajectories from all replicas to

compute histograms. In Fig. 9.3e–g, we illustrate the folding thermodynamics of

1A60 using WHAM analysis, including the specific heat and potential mean field.

The specific heat (Fig. 9.3e) has one peak centered at temperature T* ¼ 0.245 and a

shoulder near T* ¼ 0.21, suggesting the presence of intermediate states in the

folding pathway. The thermodynamic folding intermediate species is characterized

by computing the two-dimensional potential of mean force (2D-PMF) as a function

of the total number of base pairs (N) and the number of native base pairs (NN). The
2D-PMF plots at temperatures corresponding to the two peaks in the specific heat

(Fig. 9.3f, g) show two intermediate states with distinct free energy basins: the first

intermediate state corresponds to the folded 50-hairpin, while the second intermedi-

ate corresponds to the formation of one of the helix stems for the 30-pseudoknot. For
example, the 2D-PMF plot at T* ¼ 0.21 (Fig. 9.3g) shows that the shoulder in the

specific heat plot corresponds to the formation of the second intermediate state. The

basins corresponding to the two intermediate states have a weak barrier, resulting in

a lower peak height in the specific heat plot. Therefore, the coarse-grained RNA

model combined with the DMD sampling algorithm allows the modeling of RNA

structure as well as folding thermodynamics.

We benchmarked the DMD–RNAmodel on a set of 153 RNAs with length up to

100 nucleotides (Ding et al. 2008). For a majority of the simulated RNA sequences,
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the lowest energy structures from simulations have a percentage of native base

pairs, or Q-value, close to unity, suggesting the correct formation of native base

pairs in simulations. Here, we only considered the base pairs of A–U, G–C, and

U–G. The other commonly observed Wobble pairing, A–G, was not included in the

benchmark study but will be included in future studies. The average Q-value for all
153 RNA molecules studied is 94%. For comparison with available secondary

structure prediction methods, we also computed the Q-values using Mfold, which

yielded an average Q-value of 91%. Given the high percentage of correctly

predicted base pairs (94%) and the relatively simple topology of the studied RNA

molecules, the average number of incorrectly predicted base pairs is less than one.

The RMSD between predicted and experimental structures is often computed to

evaluate the accuracy of predicted tertiary structures. Although the RMSD calculation

does not provide detailed information on local structural features such as base pairing

and base stacking, it gives a straightforward measure of the overall structure predic-

tion. Recently, we have developed an approach to evaluate the statistical significance

of RNA 3D structure prediction with a given RMSD for different lengths (Hajdin et al.

2010). Alternatively, Parisien et al. (2009) have proposed new metrics to account for

both local and global structural information during structural comparison. However,

their calculation requires the atomic structure of the prediction. To evaluate the overall

3D fold of our coarse-grained models, we computed the RMSD to compare our

predictions with experimental structures. We found that for RNA molecules with

nucleotide length < 50 nt, the RMSD of predicted structures are less than 6 Å.

Predictions of longer RNAs exhibit larger RMSD due to the highly flexible nature

of RNAmolecules. Among the 153 sequences simulated, 84%of the predicted tertiary

structures have an RMSD of <4 Å with respect to the experimentally derived native

RNA structure. The benchmark results highlight the predictive power of the

DMD–RNA methodology, at least for small RNA molecules.

Three out of 153 RNA molecules studied are longer than 65 nucleotides, where

the DMD–RNA method cannot be applied to predict the native secondary and

tertiary structure from sequence alone. The challenges to predict large RNA folding

ab initio arise from the exponentially increasing size of the conformational space

and inaccuracies in the force field. Therefore, it is important to develop new

approaches to predict the 3D fold of large RNA molecules.

9.4 Automated RNA Structure Determination Using

Experimental Constraints

RNA structural information including secondary structure and some tertiary

interactions can often be derived experimentally and computationally prior to the

determination of high-resolution 3D structure. Accurate RNA secondary structures

can be obtained from comparative sequence analysis (Gutell et al. 2002; Michel and

Westhof 1990) and experimentally constrained prediction (Deigan et al. 2009).
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SHAPE chemistry (selective 20-hydroxyl acylation analyzed by primer extension)

was recently shown to be a powerful approach for analyzing secondary structure at

single nucleotide resolution for RNAs of any length (Merino et al. 2005; Wilkinson

et al. 2006). SHAPE exploits the discovery that the 20-OH group in unconstrained or

flexible nucleotides reacts preferentially with hydroxyl-selective electrophilic

reagents. In contrast, nucleotides constrained by base-pairing or tertiary

interactions are unreactive. The resulting reactivity information can be used, in

concert with a secondary structure prediction algorithm, to obtain accurate second-

ary structures (Deigan et al. 2009; Mathews et al. 2004; Mortimer and Weeks 2007;

Wang et al. 2008; Wilkinson et al. 2008). Long-range interactions of RNA

molecules can also be inferred by biochemical and bioinformatic methods, such

as dimethyl sulfate (DMS) modification (Jan and Sarnow 2002; Flor et al. 1989),

hydroxyl radical protection (Murphy and Cech 1994), mutational analysis

(Kanamori and Nakashima 2001; De la Pena et al. 2003; Khvorova et al. 2003;

Murphy and Cech 1994; Wang et al. 1995), and sequence covariation (Cannone

et al. 2002). Therefore, we propose to incorporate experimentally determined

secondary and tertiary structure information into DMD simulations to reconstruct

a conformational ensemble that is consistent with experimental measurements.

In general, existing programs for modeling complex RNAs use either computa-

tionally intensive all-atom reconstruction, which limits their applications to small

RNAs, or overly simplifiedmodels that omit key structural details. Other challenges in

many current approaches are requirements for high levels of expert user intervention

or comparative sequence information and the reliance on chemical intuition derived

from preexisting information on tertiary interactions [reviewed in (Shapiro et al.

2007)]. Here, we developed an approach for accurate de novo determination of

RNA tertiary fold that does not require expert user intervention nor impose heavy

computational requirements, and that is efficient for large RNAs (Fig. 9.4). The

approach takes an input list of base pairs and distance constraints between specific

pairs of nucleotides and outputs a structural ensemble that is consistent with the input

constraints. Starting from the extended conformation, we performed DMD

simulations with biased potential for base-pairing constraints. Iterative DMD optimi-

zation was performed until all base pairs formed. After base-pair formation was

confirmed, long-range interaction constraints were added for DMD simulated

annealing simulations. At the end of each simulated annealing simulation, we devised

filters to evaluate the simulation results, including radius of gyration and/or number of

satisfied long-range constraints. We performed iterative annealing simulations until

all filters were satisfied and, after constructing the structural ensemble from simulation

trajectories, performed cluster analysis to identify representative structures. In all

DMD simulations, only serial computation (instead of replica exchange) was used,

which also reduced the computational requirement.

We tested the automated structure refinement method on tRNAasp (Gherghe et al.

2009). Base pairing from the X-ray crystallography structure was consistent with the

SHAPE-derived secondary structures. Long-range distance constraints were deter-

mined using a site-directed footprinting experiment. An Fe(II)-EDTA moiety was

tethered specifically to RNA using the site-selective intercalation reagent
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methidiumpropyl-EDTA (MPE) (Hertzberg and Dervan 1982). MPE preferentially

intercalates at CpG steps in RNA at sites adjacent to a single-nucleotide bulge (White

and Draper 1987; White and Draper 1989), which can be introduced by mutations in

helical regions. To apply the cleavage information to bias DMD simulations, we

developed a generic approach to interpret each cleavage event as a distance constraint

(Fig. 9.5). The interaction potential features a “soft” energy wall at 25 Å, with smaller

energy bonuses extending out to 35 Å (Fig. 9.5). The 25-Å barrier corresponds to the

distance cutoff within which the nucleotides exhibit strong cleavage and beyond

which the nucleotides have weak cleavage. The interaction strength is assigned

according to the cleavage intensity [E / ln(I/<I>)]. This approach has two

advantages: (1) no user input is required to decide whether a given cleavage is

significant or not and (2) structure refinement is highly tolerant of measurement errors

inherent in any hydroxyl radical footprinting experiment. By using this structure

determination approach (Fig. 9.5), we were able to refine the structure of tRNAasp to

6.4 Å RMSD relative to the crystal structure (Gherghe et al. 2009).

Recently, we applied the structure refinement methodology on four RNAs:

domain III of the cricket paralysis virus internal ribosome entry site (CrPV)

Primary sequence AND
Base-pairs determined by

SHAPE chemistry

DMD Optimization

All base-pair formed?
No

Randomize velocity with DMD
simulation at a high temperature

Add potential for
long-range constraints

Long-range constraints
From experiments

Assign biased potential for
base-pair constraints

Yes

DMD Simulated Annealing

Filters, e.g. Rg
and/or number of long-range

constraint violations,
satisfied?

Randomize velocity with DMD
Simulation at a high temperature

No

Construct the structure ensemble consistent with experimental
measurement and perform the cluster analysis to identify
representative structures for all-atom reconstruction.

Yes

Fig. 9.4 Flowchart of the DMD–RNA structure determination method using experimentally

derived structural information
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(49 nts), a full-length hammerhead ribozyme from S. mansoni (HHR) (67 nts),

S. cerevisiae tRNAAsp (75 nts), and the P546 domain of the T. thermophilia group

I intron (P546) (158 nts). Each of these RNAs has a complex three-dimensional fold,

involving more than simple intrahelix interactions. Prior to publication of the high-

resolution structures (Cate et al. 1996; Costantino et al. 2008;Martick and Scott 2006;

Westhof et al. 1988), significant biochemical or bioinformatic data describing tertiary

interactionswere available for each RNA. The secondary structure was also known to

high accuracy in each case. Only this prior information was used during DMD

refinement. In all cases, we were able to generate a low-RMSD structure. The

RMSD between the predicted structure and the native state for the CrPV, HHR,

tRNAAsp, and P546 RNAs are 3.6, 5.4, 6.4, and 11.3 Å, respectively (Lavender et al.

2010). Calculations were performed on a Linux workstation (Intel Pentium 4 proces-

sor, 3.2 GHz) and the CPU times ranged from 18 (CrPV, 49 nts) to 42 h (P546,

158 nts). Therefore, the combination of efficient DMD simulations and sufficient

biochemical experiments can accurately determineRNA structure of arbitrary length.

9.5 Conclusions

We have developed a multiscale RNA modeling approach to model 3D structure

and dynamics of RNAs having a wide range of lengths. We use a coarse-grained

representation of the RNA to efficiently model the conformational space. For short

RNA molecules (<50 nt), we are able to capture the folded state from the sequence

alone. The availability of replica-exchange simulation trajectories at multiple

temperatures allows for the characterization of folding thermodynamics as well

as capture of the final folded state. To efficiently sample the exponentially increas-

ing conformational space of large RNA molecules, we devised an automated

modeling approach to determine large and complex RNA structures using experi-

mentally derived structural information. A benchmark study (Lavender et al. 2010)

highlights the application of combining DMD simulation and experimental struc-

tural information to yield native-like models for the diverse universe of functionally

important RNAs whose structures cannot be characterized by conventional

methods.

Fig. 9.5 Potential function

used to convert experimental

cleavage information into

DMD potential energy

constraints
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Chapter 10

Statistical Mechanical Modeling of RNA

Folding: From Free Energy Landscape

to Tertiary Structural Prediction

Song Cao and Shi-Jie Chen

Abstract In spite of the success of computational methods for predicting RNA

secondary structure, the problem of predicting RNA tertiary structure folding

remains. Low-resolution structural models show promise as they allow for rigorous

statistical mechanical computation for the conformational entropies, free energies,

and the coarse-grained structures of tertiary folds. Molecular dynamics refinement

of coarse-grained structures leads to all-atom 3D structures. Modeling based on

statistical mechanics principles also has the unique advantage of predicting the full

free energy landscape, including local minima and the global free energy minimum.

The energy landscapes combined with the 3D structures form the basis for quanti-

tative predictions of RNA functions. In this chapter, we present an overview of

statistical mechanical models for RNA folding and then focus on a recently

developed RNA statistical mechanical model—the Vfold model. The main empha-

sis is placed on the physics underpinning the models, the computational strategies,

and the connections to RNA biology.

10.1 Introduction

RNA 3D structure, folding stability, and kinetics underlie RNA functions. The 3D

crystal structures of rRNAs and tRNAs have led to detailed mechanisms of protein

synthesis in the ribosome machinery (Ban et al. 2000; Wimberly et al. 2000;

Yusupov et al. 2001). Recent findings regarding the slow folding kinetics of self-

splicing introns have revealed how their enzymatic activities arise from their global

3D folds (Hougland et al. 2005; Laederach et al. 2007; Pan and Woodson 1998;

Waldsich and Pyle 2008; Woodson 2000; Zarrinkar and Williamson 1994).
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Theoretical and experimental analyses point to a close correlation between the

efficacy of microRNA in gene regulation and the 3D structure and folding stability

(Long et al. 2007; Kertesz et al. 2007) of the microRNA/target complex. RNA

functions highlight the biological significance of RNA folding and the need for

a predictive model for RNA folding.

Existing RNA folding theories mainly focus on secondary structures (Lu et al.

2006; Mathews et al. 2006; McCaskill 1990; SantaLucia and Turner 1997; Zuker

2003). However, RNA functions often involve structures and structural changes

at the tertiary structural level. Phylogenetic modeling (Major et al. 1993; Massire

et al. 1998; SantaLucia et al. 2004) as well as de novo methods (Das and Baker

2007; Das et al. 2007; Jonikas et al. 2009; Parisien and Major 2008; SantaLucia and

Turner 1997; Shapiro et al. 2007; Tyagi and Mathews 2007) combined with atomic

computations (Major et al. 1993;Masquida andWesthof 2006; Mathews et al. 2006)

and experimental constraints (Deigan et al. 2009; Jonikas et al. 2009) have shown

success in predicting RNA 3D structures. However, RNA function is determined not

only by the minimum free energy state of the RNA but also by the folding stability

and the potentially large conformational changes it can undergo. Understanding

RNA function requires models that predict the full free energy landscape.

Recent developments in statistical mechanical modeling of RNA folding have

led to successes in predicting RNA structures, folding stabilities, and folding

kinetics for structures with increasing complexity. The models provide quantitative

predictions and novel insights for a variety of experiments and RNA functions such

as programmed ribosomal frameshifting (Cao and Chen 2009), mRNA splicing

(Cao and Chen 2006a), and microRNA gene regulation (Kertesz et al. 2007; Long

et al. 2007). Despite the success of this approach, several key issues remain. These

issues include the computation of the entropy for RNA tertiary folds and the

extraction of the energy/entropy parameters for noncanonical tertiary interactions

from thermodynamic data and known structures. The primary focus of this chapter is

the application of methods based on statistical mechanics to predict RNA 3D

structures and folding energy landscapes and to gain quantitative understanding of

RNA functions.

10.2 Overview of Computational Models for RNA Folding

An RNA structure, defined by the nested Watson–Crick base pairs and the ter-

tiary contacts contained in the 3D structure, can be conveniently represented by

a polymer graph (Fig. 10.1).

Such a graph (2D structure) usually corresponds to many 3D conformations due

to the flexible conformations of the single-stranded regions. Following Chastain

and Tinoco (1991), tertiary and secondary (2D) structures can be classified as the

polymer graphs with and without cross-links, respectively.

Chemical and enzymatic reagents (Ehresmann et al. 1987) are highly effective

structural probes for nucleic acids because the reactivity of a nucleotide can be
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sensitive to its local conformation and interactions, including base pairing and

stacking, which are reflected in its solvent accessibility. Structure-probing experi-

ments based on chemical and enzymatic reagents, such as the selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE) analysis (Watts et al. 2009) and

synchrotron-generated hydroxyl radical footprinting (Petri and Brenowitz 1997),

give direct information about base pairing and local structures. The experimental

data provide useful input as structural constraints for the computational modeling of

complete 3D structures. In parallel with these, the experimental developments and

de novo computational modeling of RNA folding show continuous improvements

in the accuracy of the predictions of RNA structures, including the structures for

long RNA sequences. Table 10.1 shows a list of the computational models for RNA

structure prediction from single sequence input. For structure predictions from

sequence homology, see references provided in these citations: (Mathews and

Turner 2002; Hofacker et al. 2002).

10.2.1 Secondary Structures

RNA secondary structures contain no cross-links (nonnested interactions) in

the corresponding graphs and thus permit use of efficient dynamic programming

algorithms for conformational enumeration. Structural prediction algorithms based

5’ 3’a b 5’

3’

5’ 3’

3’5’

Fig. 10.1 A 2D structure can be defined by a graph, which consists of vertices (representing

nucleotide monomers), connected by curved links (representing base pairing) and straight lines
(representing the backbone covalent bonds). Any two base pairs on the graph can be nested,

(cross-)linked, or unrelated. RNA structures are described at the secondary and tertiary structural

level. Shown in the figure are the 2D structures and the corresponding graphs for (a) a secondary

structure containing three helices and (b) a pseudoknot (as a simple tertiary structure). In the

pseudoknot structure, the nucleotides within a loop in the secondary structure pair with the

nucleotides external to the loop
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on free energy minimization (Mathews et al. 1999a, b; Nussinov and Jacobson

1980; Williams and Tinoco 1986; Zuker 1989) can predict secondary structures,

starting from a single sequence, with about 70% accuracy. Another type of

approach to structural prediction is based on calculating the statistical mechanical

partition function, which is an average over the conformational ensemble (Hofacker

2003; McCaskill 1990). The strategy is to determine the stable structures from

the Boltzmann ensemble-averaged base-pairing probabilities over all the possible

base pairs. In 2003, Ding et al. developed a statistical sampling algorithm (Sfold)

(Ding and Lawrence 2003) to predict RNA secondary structure. In the algorithm,

1,000 structures are sampled based on the Boltzmann distribution. The cluster

centroids of the 1,000 structures give the predicted structures. The statistical

sampling algorithm is found to give a better prediction than the free energy

minimization method (Ding 2006).

Table 10.1 Computational models for RNA structure predictions

Models URL References

RNA secondary structure

Mfold http://mfold.bioinfo.rpi.edu Zuker (1989) and Mathews

et al. (1999a)

Vienna software http://rna.tbi.univie.ac.at Rehmsmeier et al. (2004)

Vfold http://vfold.missouri.edu Cao and Chen (2005)

Sfold http://sfold.wadsworth.org Ding and Lawrence (2003)

CONTRAfold http://contra.stanford.edu/contrafold Do et al. (2006)

MC-Fold http://www.major.iric.ca/MC-Fold Parisien and Major (2008)

RNA pseudoknot

STAR http://biology.leidenuniv.nl/~batenburg/

STAR.html

Gultyaev et al. (1995)

MPGAfold http://www-lecb.ncifcrf.gov/~bshapiro/

mpgaFold/mpgaFold.html

Shapiro and Wu (1997)

pknotsRE http://selab.janelia.org/software.html Rivas and Eddy (1999)

pknots-RG http://bibiserv.techfak.uni-bielefeld.de/

pknotsrg

Reeder and Giegerich (2004)

NUPACK http://nupack.org Dirks and Pierce (2003)

ILM http://cic.cs.wustl.edu/RNA Ruan et al. (2004)

HotKnots http://www.cs.ubc.ca/labs/beta/Software/

HotKnots

Ren et al. (2005)

Vfold http://vfold.missouri.edu Cao and Chen (2006b)

RNA/RNA complexes

OligoWalk http://rna.urmc.rochester.edu/software.html Mathews et al. (1999b)

DINAMelt http://dinamelt.bioinfo.rpi.edu Dimitrov and Zuker (2004)

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/

rnahybrid

Rehmsmeier et al. (2004)

PairFold http://www.rnasoft.ca/cgi-bin/RNAsoft/

PairFold/pairfold.pl

Andronescu et al. (2005)

Vfold http://vfold.missouri.edu Cao and Chen (2006a)

RNAup http://www.tbi.univie.ac.at/~ivo/RNA M€ukstein et al. (2006)

NUPACK http://nupack.org Dirks et al. (2007)
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While the above methods employ the same empirical thermodynamic para-

meters (the Turner rules) for secondary structural elements based on the nearest-

neighbor base-pair interaction model, other models use knowledge-based scoring

functions. For instance, the CONTRAfold (Do et al. 2006) model uses the energy

parameters derived from a training set, and the MC-Fold (Parisien and Major 2008)

model uses a scoring function that represents the probability of selecting a certain

nucleotide cyclic motif (NCM) for the given sequence. The NCMs in the MC-Fold

include the lone-pair loops and the double-stranded internal/bulge loops, which

are extracted from known PDB structures. Benchmark tests show that CONTRA-

fold and MC-Fold programs give better predictions than Mfold (Do et al. 2006;

Parisien and Major 2008).

Table 10.2 Entropy parameters for loops L1 and L2

Stem size (bp) Loop size (nt)

1 2 3 4 5 6 7 8 9 10 11 12

(S2) L1 (across the major groove of S2)

2 – – – 6.2 6.4 6.4 6.6 6.8 6.9 7.1 7.2

3 – 6.4* 6.4* 6.4 6.6 6.6 6.8 6.9 7.1 7.3 7.5

4 4.5* 4.5* 4.5 5.4 5.6 6.0 6.3 6.6 6.9 7.1 7.3

5 2.3 4.4 4.6 5.7 6.0 6.5 6.9 7.2 7.5 7.8 8.0

6 2.3 4.4 4.8 5.8 6.0 6.5 6.8 7.1 7.4 7.6 7.8

7 2.3 4.4 5.0 5.9 6.2 6.8 7.0 7.3 7.6 7.8 8.0

8 – 4.4 5.2 5.7 6.4 6.7 7.1 7.3 7.5 7.7 7.9

9 – 5.5* 5.5 6.4 6.7 7.2 7.5 7.9 8.1 8.3 8.5

10 – 6.9* 6.9* 6.9 7.5 7.7 8.1 8.3 8.6 8.8 8.9

11 – – – – 8.7 8.8 8.9 9.1 9.2 9.3 9.3

12 – – – – 9.8 9.2 9.5 9.6 9.7 9.8 9.8

(S1) L2 (across the major groove of S1)

2 – – – 7.6 7.0 7.0 7.1 7.2 7.3 7.4 7.5 7.7

3 – 6.5* 6.5* 6.5 6.6 6.7 6.9 7.1 7.2 7.4 7.6 7.7

4 – – 9.2* 9.2* 9.2 8.9 8.9 8.9 9.0 9.0 9.1 9.2

5 – – – 9.8* 9.8* 9.8 9.1 8.9 8.8 8.8 8.8 8.8

6 – – – 11.9* 11.9* 11.9* 11.9 11.0 10.4 10.1 9.9 9.8

7 – – – – 12.4* 12.4* 12.4* 12.4 11.4 11.0 10.7 10.5

8 – – – – 12.1* 12.1* 12.1* 12.1 11.6 11.4 11.2 11.1

9 – – – – – 13.7* 13.7* 13.7* 13.7 12.6 12.0 11.5

10 – – – – – 13.7* 13.7* 13.7 12.7 12.2 11.8 11.5

11 – – – – – – – – 15.9 14.1 13.0 12.4

12 – – – – – – – – 18.7 15.8 14.2 13.2

In the table, an entropy parameter DSloop is given in the form of �DSloop/kB, where kB is the

Boltzmann constant. The asterisk entries in the table indicate the loop conformations that cannot

be realized in the diamond lattice but may be viable for a realistic pseudoknot. These loop

conformations usually have a long stem and short loop. For the entropies of these restricted

loops, we use the values of the minimal loop for the same helix length. The table is adapted

from Cao and Chen (2006b)
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10.2.2 H-Type Pseudoknots: Free Energy Models

A general pseudoknot consists of two helical stems, S1 and S2, and three loops, L1,

L2, and L3 (see Fig. 10.2). Pseudoknots, which are neglected in most software for

secondary structure prediction, play important structural and functional roles

in many biochemical processes, such as viral replication (Brierley et al. 2007,

2008; Draper 1990; Gesteland and Atkins 1996; Giedroc et al. 2000; Giedroc

and Cornish 2009; Staple and Butcher 2005), human telomerase RNA activity

(Chen and Greider 2005; Comolli et al. 2002; Qiao and Cech 2008; Shefer

et al. 2007; Theimer and Feigon 2006), and metabolite-sensing riboswitches

(Kang et al. 2009; Klein et al. 2009; Spitale et al. 2009).

The free energy for a pseudoknot is equal to the sum of the free energies for the

helical stems and loops:DGpk ¼ DGS1 þ DGS2 þ DGCS � TDSloops, where DGS1 and

DGS2 are the free energies of stems S1 and S2 and DGCS is the coaxial stacking energy

between stems S1 and S2. While the helix free energies can be evaluated from the

nearest-neighbor model based on the empirical thermodynamic parameters for base

stacks, to determine the loop entropy, DSloops requires a physical model.

From statistical mechanics, DSloops ¼ �kB lnOCoil=O, where O is the number

of the 3D conformations of the loops and OCoil is the number of the corresponding

coil conformations. The evaluation of the conformational entropy DSloops is

intrinsically a problem embedded in 3D space. The difficulty in the evaluation

of the pseudoknot loop entropy comes from the conformational correlation

between the loop and the helix. Specifically, the viability of a loop conformation

is subject to the presence of the nearby helix due to the loop–helix excluded

volume interaction and the end-to-end distance constraint of the loop set by the

length of the helix. The presence of the nearby helix reduces the accessible space

of the loop configuration and thus decreases the number of the viable loop

conformations.

S1

L3

L1

S2

5’

3’

L2

L3

S2

S1

L1

L2

Fig. 10.2 A 2D structure and the 3D conformations for a pseudoknot with interhelix loop L3
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The most frequently occurring pseudoknots in natural RNAs are the canonical

H-type pseudoknots having a very short (single nucleotide) or completely absent

interhelix loop, L3. For the canonical H-type pseudoknot, the helix stems S1 and S2
have a strong tendency to coaxially stack on each other to form a quasicontinuous

helix. Applying polymer physics theory (Fisher 1966; Jacobson and Stockmayer

1950; Poland and Scheraga 1966), Gultyaev et al. (1999) proposed the following

expressions for the loop entropy:

DSL1
¼ AmajorðS2Þ þ 1:75kB ln 1þ N � Nmin majorðS2Þ

� �
;

DSL2
¼ AminorðS1Þ þ 1:75kB ln 1þ N � Nmin minorðS1Þð Þ;

where Nmin majorðS2Þ and Nmin minorðS1Þ are the shortest allowed lengths for L1 and
L2, respectively. The ad hoc fitting of known pseudoknots with the requirement that

the pseudoknot be more stable than its hairpin components yielded estimates for the

entropy parameters (Gultyaev et al. 1999).

In a canonical H-type pseudoknot, loops L1 and L2 span the major (narrow and

deep) and the minor (shallow and wide) grooves of helices S2 and S1, respectively.

Therefore, the two loops are highly asymmetric (Aalberts and Hodas 2005).

Considering the loop asymmetry, Aalberts and Hodas (2005) used the Gaussian

chain approximation to derive the end-to-end distance distribution (between D and

D þ d) for an N-nt loop:

PGðD;NÞ ¼ 4pD2d
3

2pNa2

� �3=2

e
�3D2

2Na2 ;

where d ¼ 0:1 Å and a ¼ 6:2 Å. The total loop entropy is

DS ¼ kB ln½PGðDL1
; L1 þ 1ÞPGðDL2

; L2 þ 1Þ�;

where DL1
and DL2

are the end-to-end distance for a L1-nt loop L1 and L2-nt loop

L2, respectively. The end-to-end distances for L1 and L2 are determined by stems

S2 and S1, respectively.

Based on the Gaussian chain approximation, Isambert and Siggia derived the

loop entropy, DS, for a general three-loop (noncanonical) pseudoknot (Isambert

and Siggia 2000; Isambert 2009):

DS ¼ kB ln a2
e�A1S

2
1
�A2S

2
2

D3=2

e2A3S1S2 � e�2A3S1S2

4A3S1S2

 !
;

where D ¼ L1L2 þ L1L3 þ L2L3, A1 ¼ 3 L1 þ L2ð Þ=2abD, A2 ¼ 3 L2 þ L3ð Þ=2abD,
A3 ¼ 3L3=2abD and S1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2sin2ðpn1;2=npÞ þ h2ðn1;2=npÞ2

q
. In the calculation,
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a ¼ 6 Å, b ¼ 1:5 nm, np ¼ 11, a ¼ 0.0068, d ¼ 4a, h ¼ 5a, and n1;2 are the

numbers of the base pairs in stems S1 and S2, respectively.

10.2.3 Pseudoknots: Structure Prediction

The early computational methods for RNA pseudoknot prediction (Gultyaev et al.

1995) were based on the genetic algorithm (GA). These methods, such as the STAR

(Gultyaev et al. 1995) and the MPGAfold (Shapiro and Wu 1997) models, predict

the structures with the optimal kinetic accessibility instead of the ones with the

lowest free energies. Other pseudoknot prediction methods based on stochastic

simulations, such as the ILM (Ruan et al. 2004) and the HotKnots (Ren et al.

2005) models, can give low free energy structures. However, due to the nature of

the stochastic conformational sampling, the predicted structure is not guaranteed

to have the lowest free energy.

In 1999, Rivas and Eddy developed a dynamic programming method (pknotsRE)

to predict pseudoknot structure (Rivas and Eddy 1999). Unlike the genetic

algorithm and the other heuristic algorithms, the pknotsRE program, which uses

a highly simplified energy function, is guaranteed to find the lowest energy

pseudoknot. Later, with a more advanced pseudoknot energy model, Dirks and

Pierce developed a partition function method (NUPACK) to predict pseudoknot

structures (Dirks and Pierce 2003). In 2004, Reeder and Giegerich developed

a new algorithm pknots-RG (Reeder and Giegerich 2004), which yields improved

prediction than the original pknotsRE algorithm.

All the above algorithms use simplified nonphysical entropy parameters for

pseudoknot loops. In 2006, Cao and Chen developed a physics-based pseudoknot

prediction model based on a low-resolution structural representation, which is

described below (Vfold, Cao and Chen 2006b). Benchmark tests indicate that the

Vfold-based approach gives much improved predictions for pseudoknots compared

to other models (Cao and Chen 2009).

10.2.4 RNA/RNA Complexes

Functional RNAs often form complexes with RNA cofactors to perform catalytic

and regulatory functions in a variety of RNA machineries, including ribozymes

(Andronescu et al. 2005), spliceosomes (Staley and Guthrie 1998), and miRNA–

Argonaut complexes (Bartel 2009). Early computational models for RNA/RNA

complexes, such as Hyther (Peyret et al. 1999), OligoWalk (Mathews et al.

1999a, b), RNAhybrid (Rehmsmeier et al. 2004), and DINAMelt (Dimitrov and

Zuker 2004), can give the structures and folding thermodynamics, such as the

melting curves and binding affinities, for the simple Watson–Crick-paired RNA

complexes. However, these models cannot treat the formation of intramolecular

base pairs in the binding process and thus cannot treat the interplay between the
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intra- and intermolecular base pairing, which are known to be critical for many

RNA catalytic and regulatory reactions.

In 2005, Andronescu et al. developed the PairFold program (Andronescu et al.

2005), which can explicitly account for both intra- and the intermolecular base

pairs. Tests on 17 experimentally validated structures show an average correct

accuracy of 79%. The PairFold program is based on free energy minimization

and thus does not predict thermodynamic stabilities, which are determined by the

properties of the complete free energy landscape. In 2006, Cao and Chen (Cao and

Chen 2006a) applied the Vfold model to predict RNA/RNA complexes based on the

partition function method. The Vfold model predicts, in addition to the native

structure, all the local minima on the free energy landscape (i.e., metastable states)

as well as thermodynamic properties such as melting curves. By using of a physical

model for conformational sampling to obtain the entropy, as well as properly

including non-Watson–Crick base pairs in the conformational ensemble, the

Vfold model gives improved predictions. Later, based on partition function

calculations, M€uckstein et al. developed the RNAup algorithm (M€ukstein et al.

2006) to compute the base “unpairing” probability. The application of fundamental

theory to the analysis of RNAi target association led to more reliable predictions for

the correlation between the RNAi efficiency and the RNAi target-binding energy.

In 2007, Dirks et al. (Dirks et al. 2007) established a new partition function-based

theory (NUPACK). A unique feature of the theory is its ability to treat multiple

(>2) nucleic acid strands.

Most of the above-mentioned folding programs are restricted to structures

without pseudoknotted folds, although PairFold can treat pseudoknotted com-

plexes, but not with high accuracy due to the use of a simplified free energy

model (Andronescu et al. 2005). In 2006, based on a number of heuristic

approaches to the energy models, Alan et al. (2006) applied the minimum free

energy algorithm to search for the native structure of the pseudoknotted complexes

including the kissing loop complexes. Later, Chitsaz et al. (2009) and Huang et al.

(2009) used the partition function-based algorithm to calculate the structures and

folding stabilities of pseudoknotted complexes. Test of the algorithm by Chitsaz

et al. showed that the algorithm can correctly predict the thermodynamic properties

for RNA/RNA complexes such as the OxyS/fhlA complex (Chitsaz et al. 2009).

10.3 RNA Tertiary Structural Folding: From 2D

Low-Resolution to 3D All-Atom Structures

The partition function stands at the center of statistical mechanical modeling.

The partition function, Q, of an RNA molecule is the Boltzmann sum over all the

possible structures:

Q ¼
X
s

e�DGs=kBT ; (10.1)
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where s denotes an enumeration over all possible 2D structures (polymer graphs;

see Fig. 10.1), DGs is the energy of s, and kB ¼ 1:99 cal/K is the Boltzmann

constant. The calculation of the partition function contains two key ingredients:

sampling of all the possible conformations
P

s and accurate evaluation of the free

energy DGsð¼ DH � TDSÞof each 2D structure. Here DH and DS are the enthalpy

and entropy for the given 2D structures.

The empirical enthalpy and entropy parameters for base stacks and loops (Turner

rules) form the foundation for RNA folding free energy prediction at the secondary

structural level. However, even for simple secondary structures, the answers to

many biologically significant questions require information that goes beyond these

parameters. For example, the stability of a hairpin or internal loop is an average

over many loop conformations which may involve a variety of sequence-dependent

intraloop contacts. The intraloop contacts dramatically reduce the loop entropy.

To understand and predict the loop entropy and stability for a given sequence,

we must dissect the loop entropy for different loop structures with different intra-

loop contacts.

Empirical thermodynamic parameters such as Turner rules cannot give such

entropies. What we need is a theory to calculate the entropy.

Furthermore, most existing RNA folding prediction algorithms are unable

to account for the effect of the cross-linked (i.e., tertiary) contacts. One of the

challenges comes from the entropy evaluation for tertiary folds. The success of

the energy and entropy parameters for the secondary structure models relies on the

additive nearest-neighbor (NN) model. For the conformational entropies, the NN

model assumes that the entropy for a secondary structure is equal to the sum of the

entropies of the subunits (loops, base stacks). Therefore, a parameter database for

the different types of subunits would suffice for the calculation of the total free

energy. However, the additivity rule for secondary structures is doomed to fail for

tertiary folds. This is because the tertiary contacts (cross-links) between the differ-

ent secondary structural motifs (helices, loops) cause interdependence between

the (distant) motifs. As a result, even if we knew the entropies and free energies

of the individual structural subunits, we would still be unable to predict the entropy

and the free energy of a tertiary structure. Therefore, a meaningful database for the

tertiary energy parameters, such as a list of the entropy parameters for loops, must

consider the influence of other subunits. This, in fact, makes the experimental

determination of the parameters impossible. What we need rather is a first princi-

ples model. The recently developed model, called “Vfold,” is such a model.

10.3.1 The Vfold Model

While predictions of the structure and full free energy landscape may not be

possible at the high-resolution atomic scale level, what is well within reach is to

parse the complexity into two parts: to use low-resolution models to account for

the complete conformational ensemble by treating the atomic details implicitly
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and then to construct atomistic 3D (native and alternative) structures from

the low-resolution models. Given the huge conformational space available to an

RNA molecule, such a multiscale approach has several distinctive advantages:

1. At the low-resolution level, many experimental questions are not concerned with

the specific locations of the hydrogen or nitrogen atoms; instead, they are far

more concerned with the global fold, backbone flexibility, and the potential for

large structural rearrangements, as investigated by small-angle X-ray or neutron

scattering and other low-resolution techniques (Chauhan et al. 2005; Deigan

et al. 2009; Gherghe et al. 2009; Russell et al. 2002).

2. The key issue in prediction of the tertiary structural folding concerns the entropy

of the global fold, which is largely determined by low-resolution properties

such as the excluded volume and the chain connectivity effects. The reduced

complexity of the low-resolution model allows us to maintain the rigor in

physical principles when accounting for these properties. As a result, use of a

low-resolution model enables first principles calculations for chain entropy, free

energy, and the full free energy landscape for any given sequence.

3. The low-resolution structure provides a useful scaffold for the final all-atom

folding model through structural refinements.

4. The predicted structure will provide highly needed guidance for experiments.

For example, in NMR structural determinations of RNA, a severe limitation is

that sequential resonance assignments rely heavily on Nuclear Overhauser

Effect (NOE) data to establish connectivities (“NOE walks”), which often

requires several months of data collection and analysis. The information on

the nucleotide spatial proximity from the predicted (low-resolution) structure

can provide useful constraints for enhancement in the efficiency and accuracy of

resonance assignments.

Vfold is a recently developed low-resolution model based on the virtual bond

representation of RNA conformation (Cao and Chen 2005; Cao et al. 2010; Chen

2008). As shown in Fig. 10.3a, the P–O5–C5–C4 and the C4–C3–O3–P dihedrals

tend to be planar and rigid because the torsional angles about the C5–O5 and C3–O3

bonds tend to remain in the relatively rigid trans (t) state. Therefore, the original

six-torsion nucleotide backbone can be reduced to two “virtual bonds” spanning P

to C4 and C4 to the next P in the chain (Olson and Flory 1972; Olson 1975, 1980).

Calculations on the nucleotide atomic structures show that each virtual bond has

a length of 3.9 Å. The third virtual bond (C4–N1 for pyrimidine or C4–N9 for purine)

represents the orientation of the base. In addition, a survey of known RNA

structures suggests that the distance between the N1 (in pyrimidines) or N9 (in

purines) and C4 atoms stays close to 3.9 Å and the torsion angle between plane

Pi–C4–Pi+1 and Pi–C4–N1 (N9), close to the g�1 isomeric state. Thus, the C4–N1

(N9) virtual bond is quite rigid. The three-vector virtual bond model leads to the

following Vfold model for RNA folding:
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1. The virtual bond structure for a helix is constructed from the atomic coordinates

of an A-form RNA helix (Arnott and Hukins 1972).

2. The ensemble of virtual bond structures for loop conformations are generated by

using the usual gaucheþ (gþ), trans (t), and gauche� (g�) rotational isomeric

states for a polymer. A survey on the existing known structures shows that such

rotational isomeric states can well represent RNA loop conformations (Cao and

Chen 2005; Duarte and Pyle 1998; Duarte et al. 2003; Richardson et al. 2008).

The three isomeric states can be realized in the diamond lattice. Therefore, the

virtual bonds of loop conformations are configured on the diamond lattice,
where each lattice bond is a virtual bond (see Fig. 10.3b).

3. At the helix–loop junction, we fit the virtual bonds onto the diamond lattice with

the minimum RMSD.

The Vfold model is fundamentally different from any of the simplified models

such as the simple square or cubic lattice models used in other folding theories.

Vfold is a realistic atomistic structural model because the virtual bonds are the

realistic physical P–C4 and C4–P bonds in the structure, and the discretization

(diamond lattice) of the virtual bond configurations for loop conformations is

based on the principles of polymer physics as well as known RNA structures. So

the Vfold model can directly predict experimentally measurable and biologically

relevant structures and stabilities. The Vfold package is available for Windows and

Unix users (to be released; URL: http://vfold.missouri.edu/chen-software02.html).

For pseudoknotted folds, the CPU time (t seconds) for the Vfold-based structural

prediction grows with the sequence length (l nucleotides) as ln ðtÞ � �24.3 þ 7.7

ln ðlÞ on a Intel(R) Xeon(R) CPU 5150@ 2.66 GHz on Dell EM64T cluster system.
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Fig. 10.3 (a) Each nucleotide has two backbone virtual bonds P–C4–P (blue) and a sugar–base
virtual bond (red) C4–N1 for pyrimidine or C4–N9 for purine. (b) An RNA conformation can be

generated through random walks of the virtual bonds in a diamond lattice. In the diamond crystal,

the four carbon atoms are located at the vertices and center of a tetrahedron. Four such tetrahedral

connected at their vertices fit in a cube. Repetition of such cubes side by side generates a diamond
lattice
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The most time-consuming part of the computation is the enumeration of the differ-

ent stems and loops (2D structures).

10.3.2 Pseudoknot Structure and Stability

The predictive power of the Vfold model is shown by its ability to compute the

entropy for complex folds such as a three-loop pseudoknot (Fig. 10.2). The com-

putation involves three steps:

1. All the possible helix orientations are generated through the enumeration of

(virtual bond) conformations of the loop L3.

2. For each helix orientation, because the probability for a loop bumping into

another loop is relatively small, the loops can be treated with the independent

loop approximation (Cao and Chen 2009; Chen and Dill 2000; Poland and

Scheraga 1970): The total conformational count (O) for the 3-loop system can

be estimated as the product of the conformational count ðOloop LiÞ for each loop.

O ¼
Y

i
Oloop Li ; Sloop ¼ kB lnO: (10.2)

This approach is remarkable because it reduces the 3-loop conformational

enumeration into conformational enumeration for one loop at a time, resulting

in a dramatic reduction in the computer time from TðPn LnÞ to
P

n TðLnÞ, where
Ln is the length of the n-th loop and T(L) is the computer time for counting

conformations for a loop of length L.
3. The volume exclusion between a loop and the helices (grooves) is the key to the

evaluation of the loop entropy. In the Vfold model, this can be explicitly taken

into account by disallowing overlapping virtual bonds when the loop

conformations are generated in the virtual bond diamond lattice.

The Vfold model leads to loop entropy parameter tables for canonical (Cao

and Chen 2006a) 2-loop H-type pseudoknots and noncanonical 3-loop H-type

pseudoknot (Cao and Chen 2009). Table 10.1 gives the entropy parameters for

the canonical (2-loop) H-type pseudoknot. For the noncanonical (3-loop) H-type

pseudoknot, the entropy tables are deposited at http://rnajournal.cshlp.org/content/

15/4/696/suppl/DC1 (Cao and Chen 2009).

These loop entropy parameters allow for calculations of the folding free energy

for a given pseudoknot (Cao and Chen 2006b, 2009; Chen 2008). For example, for

the 3-loop pseudoknot shown in Fig. 10.4, the free energy is DG ¼ DG1 þ DG2 �
TDSðS1; S2; L1; L2; L3Þ ¼ (�7.1) kcal/mol þ (�6.3) kcal/mol þ kBT (14.2) ¼
�4.6 kcal/mol, where S1 and S2 denote the length of stems 1 and 2 and L1, L2,
and L3 are the lengths of loops 1, 2, and 3, respectively. The entropy parameter

DSðS1; S2; L1; L2; L3Þ is transcribed from Table S1 of this reference: (Cao and

Chen 2009).
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Application of the Vfold model to the structure prediction of a pool of biologically

significant RNA molecules ranging in length from 28 to 91 nucleotides (Ren et al.

2005) indicates that the Vfold model gives significant improvements in the accuracy

of the predictions as compared to other existing RNA folding models (Cao and Chen

2009). Furthermore, the successful implementation of the Vfold-predicted entropy

parameters in several other software packages indicates that their use can indeed lead

to significantly improved accuracy in pseudoknot structural prediction (Andronescu

et al. 2010; Sperschneider and Datta 2010; Liu et al. 2010). The calculation of

entropies of more complex pseudoknotted structure is computationally demanding

(Cao and Chen 2006a, 2009). Monte Carlo simulation may be a potentially useful

method to generate virtual bond conformations for the evaluation of the entropy and

free energy of more complex structures (Zhang et al. 2008, 2009).

10.3.3 Loop–Stem Base Triple Interactions

In RNA pseudoknots, the close spatial proximity between loops and stems

facilitates formation of the tertiary contacts between loop and stem nucleotides.

Specifically, a nucleotide in the loop surrounding the major or minor groove is prone

to form base triple interactions with a base pair in the helix stem (see Fig. 10.5a, b).

Analysis of the known X-ray structures reveals a large number of noncanonical

tertiary interactions in RNA molecules (Xin et al. 2008). These tertiary interactions

include A-minor motifs first identified in ribosomal RNA (Nissen et al. 2001),

the base triples seen by X-ray in the pseudoknots (Su et al. 1999), and the ribose

zipper interactions originally found in group I introns (Cate et al. 1996). Nonca-

nonical tertiary interactions can be critical for the stabilization of the structures
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Fig. 10.4 The evaluation of the free energy for a 3-loop (noncanonical) H-type pseudoknot using

the loop entropy parameters in Table S1 of reference (Cao and Chen 2009) and the Turner rule

(Serra and Turner 1995)
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and RNA biological functions. For instance, mutations that disrupt the base triples

can dramatically reduce the biological activity of telomerase (Theimer et al.

2005) and the efficiency of ribosomal frameshifting (Cornish et al. 2005; Kim

et al. 1999; Su et al. 1999).
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Fig. 10.5 (a) Human telomerase RNA (hTR) pseudoknot contains two base triples (blue dashed
lines) between loop L2 and helix stem S1 and three base triples between loop L1 and helix stem S2

(Theimer et al. 2005). (b) The atomic configuration for the base triple between U9 and the U22-

A39 base pair. (c) Theory–experiment test for the melting thermodynamics of five experimentally

measured pseudoknot molecules: PLRV and PEMV-1 (Nixon et al. 2002), BWYV, and the U8

variant (Nixon and Giedroc 2000), ScYLV. The melting of these molecules shows two apparent

transitions. The melting at the lower temperature T3
m and the higher temperature T2

m usually

corresponds to the disruption of the loop–stem tertiary contacts and the secondary structure,

respectively. In the theoretical predictions, the salt-dependent helix stability (in 1 M NaCl) is

modified according to the experimental condition (0.5 KCl, pH 7.0) by using empirical formulas

(SantaLucia 1998; Tan and Chen 2006). (d) The predicted (lowest free energy) 2D structure for

the ScYLV pseudoknot agrees exactly with the NMR structure (Cornish et al. 2005, PDB: 1YG3).

The red lines denote the loop–stem base triples
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There are eight different types of base triples in the known pseudoknot struc-

tures, (A.G–C), A.(C–G), C+.(G–C), C+.(C–G), U.(A–U), U.(U–A), A.(A–U), and

A.(U–A). These base triples belong to different geometric families, defined by the

families to which their component base pairs belong (Almakarem et al. 2011).

Figure 10.6 shows four types of geometric families based on the nomenclature

proposed by Leontis and Westhof (2001). For example, A.(G–C), C+.(G–C),

A.(A–U), and U.(A–U) belong to cis WW/trans SW, cis WW/trans HW, cis
WW/cis SW, and cis WW/cis HW geometric families, respectively. According to

the protonation properties, the eight base triples can be further classified into two

types: the protonated [C+.(G–C) and C+.(C–G)] and the unprotonated base triples.

The classification is based on the fact that the protonated base triples are more
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Fig. 10.6 Configurations of four base triples (a) A.(G–C), (b) C+.(G–C), (c) A.(A–U), and (d) U.

(A–U). They belong to cisW.W./trans S.W., cisW.W./trans H.W., cisW.W./cis S.W., and cisW.

W./cis H.W. geometric families, respectively (Leontis and Westhof 2001; Almakarem et al. 2011)
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stable than the unprotonated base pairs (Cornish et al. 2005) due to strong electro-

static interactions.

Computational prediction of the noncanonical tertiary interactions is extremely

difficult because of the lack of accurate energy parameters for tertiary interactions

and the higher conformational complexity and the larger size of the conformational

space (Das and Baker 2007; Ulyanov et al. 2007; Yingling and Shapiro 2006).

Yingling and Shapiro predicted the base triples in the human telomerase RNA

(hTR) pseudoknot using molecular dynamics simulations (Yingling and Shapiro

2006). Though the predicted structure is not exactly consistent with the NMR

structure (Kim et al. 2008), the simulation was able to provide useful insights into

the interplay between bulge formation and the base triple interactions in telomerase

RNAs. Molecular dynamics simulation often relies on the initial input of the 3D

structure. In contrast, the Vfold model, which uses the nucleotide sequence as the

only input information, does not require any additional structural information.

The Vfold-based prediction of loop–stem tertiary interactions involves the

following steps:

1. Through explicit enumeration of the virtual bond conformations, the Vfold model

gives the loop entropy DSloop as a function of loop length, helix length, and

assignments of base triples (Fig. 10.5a, b). Based on the Vfold-predicted entropy

parameter set, for a given structure that contains loop–stem tertiary contacts, the

free energy DG can be evaluated as

DG ¼ DGhelix � TDSloop þ
Xn
i¼1

ðDhðiÞ � TDsðiÞÞ;

whereDhðiÞ andDsðiÞ are the enthalpyandentropyparameters for loop–stemcontact i.
2. Theory–experiment comparisons for different systems with loop–stem contacts

allow us to extract Dh and Ds parameters. As the lowest order approximation,

we assume two sets of (Dh, Ds) parameters for protonated and nonprotonated

base triples, respectively. Fitting the melting curves for different pseudoknots

that contain loop–stem base triples (Giedroc and Cornish 2009; Nixon et al.

2002; Nixon and Giedroc 2000) converged on the same set of (Dh, Ds)
parameters (Fig. 10.5c) below:

ðDh;DsÞ ¼ ð�7 kcal=mol;�19 cal=mol KÞ for ðA or UÞ
ðA� U or U� AÞ and ðAÞ ðC� G or G� CÞ; (10.3)

and ¼ ð�14 kcal/mol; � 38 cal/mol/KÞðpH 7:0Þ for CþðC� G or G� CÞ:
(10.4)

The above Vfold approach has led to accurate predictions for the loop–stem

tertiary contacts and thermodynamic stabilities for a series of experimentally deter-

mined pseudoknotted structures (Fig. 10.5c) (Cao et al. 2010).
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10.3.4 All-Atom 3D RNA Structures

Predicting RNA 3D structure is not a solved problem (Das and Baker 2007; Ding

et al. 2008; Jonikas et al. 2009; Jossinet and Westhof 2005; Parisien and Major

2008; Shapiro et al. 2007; Tan et al. 2006). Currently, challenges include adequate

treatment of the problem of conformational sampling (Das and Baker 2007) and

the evaluation of the energetic parameters for tertiary contacts (Ding et al. 2008;

Parisien and Major 2008). The Vfold model (Cao et al. 2010) can successfully

predict the 2D structures of pseudoknots, including loop–stem tertiary interactions.
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2D structure. (c) The all-atom 3D structure built from the virtual bond structure. (d) The all-atom
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The Vfold model-predicted virtual bond structure provides a scaffold for the con-

struction of all-atom models of the 3D structure. The prediction of the all-atom 3D

structure from the Vfold-predicted 2D structures involves the following three steps

(see Fig. 10.7):

1. Adding all atoms to the virtual bond structure. For nucleotides in each predicted

helix, atoms are added according to the A-form helix atomic structure. The 3D

conformations of the loop are generated from a combined fragment-based

and diamond lattice-based method: The coordinates of the red nucleotides are

adopted from the PEMV-1 fragment (PDB ID: 1KPX), and the remaining two

nucleotides (blue) are generated by self-avoiding random walks on the diamond

lattice. The method can effectively reduce the numbers of loop conformations

to a few low-energy viable conformations. For nucleotides in the predicted

loop conformations, atoms can be added using helix nucleotides as templates,

by aligning the P, C4, and N1,9 atoms with those of a nucleotide in a helix. This

step results in an “atomistic version” of the Vfold structure.

The product of this initial refinement step is a prerefined atomic structure. The

prerefined structure may contain some atoms/groups that clash sterically with

each other. Such steric clashes can be readily resolved by the subsequent

molecular dynamics simulation in the next step.

2. Energy minimization of the whole atomistic structure using AMBER molecular

dynamics simulations. With the above prerefined structure as the initial state,

molecular dynamics energy minimization with the AMBERmolecular dynamics

package (Case et al. 2005, 2006; Cornell et al. 1995; Pearlman et al. 1995) yield

reliable predictions for all-atom 3D structures. In the energy minimization, the

negative charges on phosphates are neutralized by Na+ cations added to the

solution. The nonbonded interactions are truncated at 12 Å. Water molecules are

treated by the standard TIP3P model included in AMBER software.

As shown in Fig. 10.7, the above strategy gives reliable predictions for the all-

atom 3D structures for simple tertiary folds such as pseudoknots.

10.4 Quantitative Prediction for RNA Function �1

Programmed Ribosomal Frameshifting

A �1 programmed ribosomal frameshift occurs when the reading frame is shifted

by one nucleotide. The change of the reading frame causes the production of

multiple proteins.

Ribosomal frameshifting is a mechanism used by many RNA viruses to regulate

the relative number of copies of viral proteins (gag and pol). Maintaining

a normal ratio of gag and gag–pol proteins is critical for viral replication. Altera-

tion in frameshifting efficiency could lead to an abnormal ratio of gag and
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gag–pol proteins, resulting in reduction or elimination of viral replication (Dinman

et al. 1998).

The ribosomal frameshifting machinery consists of three coupled components

(see Fig. 10.8a, b): (a) the slippery sites (nucleotides in blue color) with the

sequence XXXYYYZ, where X can be any nucleotide, Y is A or U, and Z is A,

U, or C; (b) a spacer (black thick line) that connects the 50 slippery sites and the

30 mRNA structure; and (c) the 30 mRNA structure which can fold into a pseudoknot

structure (nucleotides in red color). According to the mechanical model for frame-

shifting (Hansen et al. 2007; Namy et al. 2006; Plant et al. 2003), the pseudoknot

blocks the entrance of the mRNA into the ribosome and causes ribosomal pausing.

During ribosomal pausing, the 30 ! 50 movement of the tRNA in the A/T to A/A

aa-tRNA accommodation process can generate a tension force in the spacer (Plant

et al. 2003; Yusupova et al. 2001). The tension, if sufficiently strong, could break

the codon–anticodon pair of the 0 frame, causing a 50 ! 30 shift by one nucleotide

of the mRNA chain and the subsequent shift of the codon–anticodon pair by one

nucleotide.

The three components of the ribosomal frameshifting machinery are coupled

through the spacer length m: The tension force in the spacer is a function of spacer

length, which varies with the folding–unfolding of the downstream mRNA. The

tension force in the spacer is also dependent on the end-to-end distance X of the

spacer, which increases from 3.3 to 4.3 nm in the 30 ! 50 movement of the tRNA.

If the downstream mRNA structure is robust against the large tension force,

the spacer would more likely be subject to a large tension to induce frameshifting

before unfolding of the downstream mRNA structure occurs. Otherwise, unfolding

of the downstream mRNA structure would cause the relaxation of the tension,

reducing the likelihood of frameshifting.

Quantitative prediction of ribosomal frameshifting requires modeling of the

folding stability and the structure of the frameshifting machinery. The partition
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function for the 3-component frameshifting machinery is Q(m,X) ¼ Qds Qss Qcodon.

Here Qds, Qss, and Qcodon are the partition functions of the 30 downstream mRNA

structure (“structured” region, excluding the 50 and 30 tails), the (single-stranded)

spacer of length m and end-to-end distance X, and the codon–anticodon base-

pairing duplex (in the slippery region), respectively. While Qss and Qcodon can be

evaluated using the extensible freely jointed chain model (EFJC) (Gerland

et al. 2004; Hyeon and Thirumalai 2005; Liphardt et al. 2001; Smith et al. 1996;

Strick et al. 2000) and the nearest-neighbor model (Serra and Turner 1995),

respectively, the computation of Qds requires a statistical mechanical model such

as the Vfold model. The tension force predicted from the partition function is given

by F(X) ¼ dDG(X)/dX ¼ �kBTd ln
P

m Qðm, X)/dX.

The Vfold modeling for the system leads to an analytical relationship between

the frameshifting efficiency and the mean tension force; see Fig. 10.9. It should

be noted that recent single-molecule experimental data yields a highly similar

relationship (Chen et al. 2009). Furthermore, because the experimental measure-

ment (Chen et al. 2009) for human telomerase RNA and the Vfold-based theoretical

predictions (Cao and Chen 2008) involve different frameshifting systems, the fact

that similar analytical relationships are derived from independent theoretical

and experimental studies suggests that the quantitative results for the frameshifting

efficiency may be valid for a variety of systems.
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10.5 Conclusions

For a long time, the bottleneck for RNA tertiary structural folding has been the

inability to treat the free energy, especially the entropy, of structures with

nonnested, long-range (tertiary) contacts between nucleotides distant in the 2D

structure. Recent advances in the construction of low-resolution conformational

models allow us to predict the entropy and the full free energy landscape for RNA

tertiary global folds, as well as the 2D structures for the local and the global free

energy minima. These 2D structures can further provide scaffolds for the construc-

tion of all-atom 3D models of the stable and metastable RNA folds through

molecular dynamics calculations. Comparisons between theoretical predictions

and experimental data for the 2D and 3D structures and the folding thermodynamics

suggest that the statistical mechanical approach is reliable. One of the key factors

that contribute to the predictive power of the statistical mechanical models is the

rigorous conformational sampling/entropy.

With the rapidly growing size of the database of the experimentally measured

RNA structures, fragment-based methods show promise, especially when the homol-

ogous conformations of modular components of the RNA of interest can be identified

in the PDB database (Cao and Chen 2011; Das and Baker 2007; Parisien and Major

2008). However, compared to the number of the deposited protein structures in the

PDB database, the number of known RNA structures remains relatively small.

Therefore, fragment-based methods for RNA 3D prediction may fail if no known

homologous conformations can be found in the PDB database. In that case, a de novo

construction of the (low-resolution) conformations (especially for the junctions/loops

regions) is the only viable approach. The Vfold model introduced in this chapter is

one such model that can build the conformations de novo.

The current form of the Vfold theory can successfully treat pseudoknotted folds.

However, the problem of predicting more complex pseudoknotted folds, such as the

internal ribosome entry site (IRES) of the cricket paralysis-like viruses (Filbin and

Kieft 2009) and other larger tertiary folds, remains. Further development of the

model should go beyond the simple loop–stem base triples by including more

complex tertiary interactions, such as tetraloop–receptor interactions and kissing

loop interactions (Chitsaz et al. 2009; Huang et al. 2009).
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Chapter 11

Simulating Dynamics in RNA–Protein

Complexes

John Eargle and Zaida Luthey-Schulten

Abstract Simulation of RNA–protein complexes presents new challenges for

computational studies. While the fields of protein folding and docking of protein

complexes have matured sufficiently so that experimental and computational

methods complement and cross-validate each other, methods for RNA folding

and docking of RNA to proteins are still in their infancy. Part of the difficulty lies

in the complex interactions of RNA with ions and water that differ considerably

from those of proteins, due to the extreme electronegativity of RNA, and result in

unique dynamics. Here we address challenging issues in the simulation of RNA and

its interactions with solvent, ions, and proteins. A general discussion of the prepa-

ration and simulation of large RNA–protein systems with divalent cations and

modified bases is given, followed by a critical summary of methods for analyzing

the resulting MD trajectories.

11.1 Introduction

Knowledge of RNA structure and dynamics has been driven largely by biophysical

experiments on components of the universal process of translation. Crystallo-

graphic structures for molecules from tRNA [see review and references in (Alex-

ander et al. 2010)] up to large RNA–protein assemblies such as the ribosome (Ban

et al. 2000; Schluenzen et al. 2000; Wimberly et al. 2000) show that while similar to

DNA, RNA folds into more diverse structures responsible for a wide variety of

biological functions. Given structures and information about ions bound to nucleic
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acids, it is possible to carry out molecular dynamics (MD) simulations that repro-

duce many experimental results for biophysical properties (Auffinger and Westhof

1997; Lee et al. 2009). In addition to the Watson–Crick base pairs that define RNA

secondary structure, RNA molecules contain non-Watson–Crick base pairs and

modified nucleosides that structure complex 3D motifs to provide binding sites

for proteins and other molecules. RNA-binding proteins from several protein

families have been identified, and although we have examples for a wide variety

of RNA–protein complexes, the specificity of each protein for certain RNA

molecules and particular RNA structural motifs is not well understood (Chen and

Varani 2005). Evolutionary analysis of RNA–protein binding interfaces (Eargle

et al. 2008; Alexander et al. 2010) along with global studies of molecular

interactions between nucleic acids and amino acids (Morozova et al. 2006) should

help elucidate the general mechanisms of specificity shown in these complexes.

The folding landscapes for various RNA molecules have revealed a strong

dependence on associated ions, especially the divalent cation Mg2þ (Tinoco and

Bustamante 1999; Lipfert et al. 2010). Different concentrations of monovalent and

divalent cations were shown through single molecule FRET experiments to alter the

folding landscape of the Tetrahymena ribozyme (Russell et al. 2002). Mg2þ ions

interact with unfolded RNAs, allowing them to form tighter, more condensed

structures in which tertiary contacts are made, but the effects of Mg2þ on RNA

folding vary significantly from system to system (Grilley et al. 2006). SAXS and

atomic emission spectroscopy have recently been used to quantify the shape and

composition of the local ion cloud around nucleic acids (Das et al. 2003; Andresen

et al. 2004; Bai et al. 2007; Pabit et al. 2009), and high-resolution X-ray crystal

structures have revealed precise locations of cations directly bound to various RNA

molecules (Silvian et al. 1999; Berk et al. 2006).

There is much room for improvement in RNA–protein simulation. Force field

parameters for RNA and associated cations are under continual development and

will benefit from more detailed models including polarization or explicit quantum

mechanical treatment (Auffinger et al. 2007; Sakharov and Lim 2008; Beššeová

et al. 2009; Jiang et al. 2011). Computational determination of the ion cloud around

RNA, especially locations of Mg2þ, have been carried out (Hermann and Westhof

1998; Eargle et al. 2008; Kirmizialtin and Elber 2010), but more experimental

knowledge about the numbers and locations of ions around RNA under various

buffer conditions is sorely needed for the preparation of more realistic simulations.

As we move to longer time (>100 ns) and length (>20 nm) scales for simulation of

RNA–protein complexes, data handling and analysis challenges require new analy-

sis methods to describe the dynamics in meaningful ways.

Before we discuss the challenges of setting up large RNA–protein systems for

all-atom MD simulation, we begin with a short review of different comparative

analyses that can provide insights into interactions between the RNA and protein

molecules. Viewing simulations of RNA–protein complexes through the lens of

comparative evolutionary analysis highlights features that are highly conserved in

sequence or structure and are critical for interpreting the MD results. We then

proceed to a description of various issues important for the simulation of RNA,
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including the role of modified bases, non-Watson–Crick base pairs, and the extreme

electronegativity of RNA and its relation to interactions with water, ions, and

proteins. The general discussion about preparation of large RNA–protein systems

with divalent cations and modified bases is followed by a critical summary of

methods for analyzing MD trajectories of RNA–protein complexes. We conclude

with a short overview of coarse-grained simulation methods under development to

simulate larger systems over longer times.

11.2 Evolutionary Analysis of Sequence and Structure

Highlighting the evolutionarily conserved features of RNA–protein systems

focuses analysis on specific residues and structural elements that are important

for folding, binding, catalytic activity, and intramolecular signaling. It also allows

one to generalize results to homologous systems. Although it is widely known that

sequence and structure conservation marks those RNA and protein regions that are

functionally important, it remains a challenge to proceed from evolutionary infor-

mation such as sequence and structure homology to an understanding of biomolec-

ular function. Data from evolutionary analysis provide a steady stream of biological

questions that are predominantly addressed through experiment, but this endeavor

would be accelerated if computational techniques could provide more accurate

predictions of function and interaction.

Evolutionary analysis is especially relevant for RNA–protein complexes as

many appear to pre-date the last universal common ancestor and are widespread

across the phylogenetic tree of life. Complexes in information processing are

universal, and their phylogenetic variation follows for the most part the universal

phylogenetic tree established by Woese based on 16 S rRNA (Woese 1987, 2000;

Woese et al. 1990) (see Fig. 11.1a). Agreement with the universal phylogenetic tree

for a particular molecule or group of molecules implies a canonical distribution

across the organisms, and noncanonical distributions indicate possible lateral gene

transfer in response to pressure to acquire additional functions. Canonical across all

three domains of life are the rRNAs, elongation factors, and about half of the

ribosomal proteins (r-proteins). The rest of the r-proteins are domain specific, but

canonical within the particular domain. Since structure is more conserved than

sequence, structure-based sequence alignments have been used extensively in the

study of the translation machinery. For example, sequences of different specificities

of aminoacyl-tRNA Synthetases (aaRS) have such low conservation that they

cannot readily be aligned (Woese et al. 2000), but structure based alignments have

been used to compare different catalytic domains of aaRSs and determine their

phylogenetic divergence before the last universal common ancestor (Landes et al.

1995; O’Donoghue and Luthey-Schulten 2003). The evolutionary significance of

RNA–protein interactions is especially clear when looking at “molecular signatures”

of RNA and protein components of the ribosome (“rRNA” and “r-proteins”).

11 Simulating Dynamics in RNA–Protein Complexes 215



11.2.1 Molecular Signatures in rRNA and r-Proteins

Ribosomal molecular signatures are idiosyncrasies in the ribosomal RNA (rRNA)

and/or r-proteins characteristic of the individual domains of life. As such, insight

into the early evolution of the domains can be gained from a comparative analysis

of their respective signatures in the translational apparatus. Signatures in both the

sequence and structure of the rRNAs contribute roughly 50% of the differences

present in the universal phylogenetic tree providing a “bar code of life” that

determines to which domain a given rRNA sequence belongs (Winker and Woese

1991; Roberts et al. 2008). It has been proposed that the observed ribosomal

signatures are remnants of an evolutionary phase transition that occurred as the

cell lineages began to coalesce, implying that they should also be reflected in

corresponding signatures throughout the fabric of the cell and its genome. The

presence of domain-specific r-proteins can be considered signatures in their own

right, and correlations between the signatures of rRNAs and r-proteins show that the

rRNA signatures coevolved with both domain-specific r-proteins and inserts in

universal r-proteins. The question remains: what roles do these highly conserved

elements play in the assembly and function of the ribosome?

The largest rRNA structural signature interacting with a protein partner appears in

the binding site of the universal r-protein S4 on the bacterial ribosome. Both r-protein

S4 and h16 in the 16 S rRNA contain bacterial signatures (see Fig. 11.1b), and these

signatures interact with one another suggesting that they coevolved within early

bacteria. S4 is known to be critical to the early assembly of the SSU (Held et al.

1974; Mulder et al. 2010), and recent work has been done to characterize its

interactions with rRNA and to explain the role S4·h16 plays in the initial steps of

rRNA folding (Bellur andWoodson 2009; Chen et al. 2010). Further experiments and

simulations are required to determine what functional roles the other ribosomal

signatures play in protein synthesis.
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Fig. 11.1 Signatures in the ribosomal small subunit (a) The universal phylogenetic tree based on

16 S rRNA is shown above a plot of 16 S rRNA signatures. Sequence signatures are colored red
and structure signatures are colored blue. The S4 binding site is circled. (b) Ribosomal protein S4

is shown with its binding site to the five-way junction in the 16 S rRNA (PDB ID 2I2P). The

structural signatures are colored red in S4 and green in h16 (Chen et al. 2009)
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11.2.2 Binding Patterns for tRNA

As tRNA migrates from one complex to the next its binding partners use different

modes of interaction. aaRSs and mRNA discriminate between tRNAs based on

specificity or isoacceptor while EF-Tu and the ribosome must interact with all

tRNAs. To bind these different molecules, each tRNA has evolved elements

associated with particular specificities (Eigen and Winkler-Oswatitsch 1981) as well

as features that are universal to all tRNAs. Based on crystal structures containing

tRNAPhe, Fig. 11.2 shows themolecular interactions that tRNAPhe makes with PheRS,

EF-Tu, and the ribosomal P-site. The dynamic variations in tRNA structure observed

both experimentally and computationally are similar to the different tRNA

conformations seen in various crystal structures (Alexander et al. 2010).

Using sequence and structure data available in online data repositories, it is

possible to construct evolutionary profiles for the proteins and RNAs. An evolu-

tionary profile is an alignment built from a nonredundant set of sequences in order

to represent sequence diversity found throughout the tree of life while minimizing

bias present in the databases (O’Donoghue and Luthey-Schulten 2005; Sethi et al.

2005). Bias in sequence sets occurs because certain groups of organisms are

overrepresented; for example, many human pathogens come from the class

g-proteobacteria so their genomes are more likely to be sequenced. Panels a and

b from Fig. 11.3 show the sequence identity of EF-Tu across evolutionary profiles

for all three domains of life and then for bacteria (Eargle et al. 2008). Coloring the

EF-Tu structure by conservation makes the tRNA-binding interface and GTP-

binding pocket readily apparent. Profiles can also be taken from databases such

as Rfam (Griffiths-Jones et al. 2003) and Pfam (Bateman et al. 2002), but the

sequence sets may not be statistically well balanced (Sethi et al. 2005).
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the base pairs shown which were identified using RNAVIEW (Yang et al. 2003)
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11.2.3 Practical Challenges in RNA Comparative Analysis

Current work with multiple sequence alignments is hampered by the difficulty of

combining heterologous data types. Annotating sequence data with information about

structure, folding, interaction interfaces (Fig. 11.3c, d), and other experimental results

would ease the creation, maintenance, and interpretation of alignments. As suggested
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by the RNA Ontology Consortium1 (Hoehndorf et al. 2011), these sorts of correspon-

dence relations between RNA sequences and their attributes should be incorporated

into new file formats and software applications (Brown et al. 2009). To aid the

description and analysis of RNA–protein complexes, these same ideas should be

extended to protein alignments as well. In addition, more freely available tutorials

(Roberts et al. 2006; Li et al. 2009; Chen et al. 2011) are needed to disseminate

bioinformatic data-handling techniques and analysis methods.

11.3 Molecular Dynamics Simulations of RNA–Protein

Complexes

Even though the computational power of existing machines as well as improvements

inmethodology now allow all-atomMDsimulationswith explicit solvent to reach tens

of microseconds for the folding of small proteins, probing of characteristics of

RNA–protein complexes at atomic resolution is still limited to timescales of hundreds

of nanoseconds. Bacterial protein synthesis proceeds at approximately 20 amino acids

per second which makes it out of the reach of current all-atom simulations, but lower

level processes that occur in hundreds of nanoseconds in the translation pathway

include molecular recognition and binding (Eargle et al. 2008), the onset of tRNA

migration (Black Pyrkosz et al. 2010), the formation of interaction networks in

RNA–protein complexes (Sethi et al. 2009), and tRNA accommodation into the

ribosomal binding sites (Sanbonmatsu et al. 2005; Trabuco et al. 2010). The ultimate

goal is to understand how thermal fluctuations and motion at the molecular scale are

rectified to produce directed motion of tRNAs and mRNA during protein synthesis,

which, in turn, is influenced by hydrolysis of GTP, the interactions with the ions, and

the presence or absence of modified bases.

Long simulations of protein folding have helped to probe existing force fields

(Freddolino et al. 2009; Klepeis et al. 2009), revealing their weaknesses so that further

improvements can bemade.Advances in hardware and software now allowsimulations

extending to hundreds of nanoseconds for RNA systems (Garcia and Paschek 2008;

Beššeová et al. 2010; Kirmizialtin and Elber 2010). Long-time simulations of isolated

tRNA have shown that it experiences structural configurations similar to those found in

tRNA on the ribosome (Li and Frank 2007). Due to their computationally intensive

nature, it is challenging to set up and runMDsimulations of large systems.Every step in

the preparation takes proportionally greater effort, and the resulting data trajectories

become unwieldy, requiring analysis using large computing clusters.

Many RNA–protein structures have been crystallized in buffers containing

concentrations of salt and/or polyamines that are far above physiological levels.

Also, RNA transcripts are frequently used because it is more difficult to obtain

1 http://code.google.com/p/rnao/.
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RNA with its full complement of modified nucleosides. Many RNA molecules are

posttranscriptionally modified, and these modifications can modulate their resulting

structure and dynamics.

11.3.1 Influence of Modified Nucleosides on RNA Dynamics

More than 100 different nucleoside modifications have been identified2 (Limbach

et al. 1994; Dunin-Horkawicz et al. 2006) with the majority appearing in various

tRNAs and ribosomes. Modified nucleosides are frequently ignored because RNA

samples prepared through in vitro transcription or expression in a different organism

from the original host will not contain the wild-type modifications. However, many of

these modifications are evolutionarily conserved and are interesting in their own right.

Another issue related to the plethora of natural modified bases concerns their represen-

tation.Attempts to standardize the nomenclature and description of interaction patterns

are being made through the RNA Ontology Consortium (Hoehndorf et al. 2011).

Modified bases can affect the structure, dynamics, and possible interaction

partners of RNA molecules. For example, tRNA modifications are used by aaRSs

to discriminate tRNAs of different specificities (Giege et al. 1998). In the tRNA

anticodon, base modifications are frequently used in the wobble position to ensure

correct interaction with cognate mRNA codons. Reviews of tRNA structure and

dynamics (Helm 2006; Alexander et al. 2010) have covered howmodified bases can

change the secondary structure of tRNA by blocking the Watson–Crick edge and

directing base pairing to form nonWatson–Crick base pairs involving the

Hoogsteen or Sugar edges, as in the N1-methylation of the conserved adenosine

in the T–C–C loop. Nucleoside modifications in tRNA are shown in the secondary

structure representation for the EF-Tu bound tRNAPhe in Fig. 11.2 and on the three-

dimensional structure for tRNACys in Fig. 11.4.

Modified nucleosides affect RNA structural stability in various ways, depending

on the surrounding nucleic acid sequence and structure, and no simple

generalizations can be made about their roles in RNA function. They can both

stabilize and destabilize local structures through interaction with nearby bases,

water, or ions as exemplified by dihydrouridine (D) and pseudouridine (C), two

common modifications found in tRNA and rRNA. Dihydrouridine, which occurs in

the D loop of tRNAs, is generated by fully saturating the C5–C6 double bond of

uridine, by addition of two hydrogens. This nonplanar base is more flexible than

uracil and does not stack well on other bases. Therefore it prefers to remain single

stranded and unpaired. Pseudouridine is a C-glycoside isomer of uridine created by

removing the uracil base and reattaching it at C4. It can stabilize local RNA

structure by interacting with backbone phosphates through a high residency

2 http://rna-mdb.cas.albany.edu/RNAmods.
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bridging water molecule (Auffinger and Westhof 1997; Charette and Gray 2000).

Hypermodified bases have been shown by both NMR experiments and computation

to be important for maintaining the anticodon loop conformation in tRNAPhe and

tRNACys by disrupting base pairs that could occur between unmodified A37 and

A38 with U32 and U33 (Cabello-Villegas et al. 2002; Eargle et al. 2008).

Incorporating modified nucleosides into MD simulations requires force field

parameters for the specific modifications. While most force fields have parameters

for the standard DNA and RNA nucleotides (Pranata et al. 1991; Foloppe and

MacKerrell 2000; Oostenbrink et al. 2004), only AMBER has parameters for most

of the known modified nucleotides (Wang et al. 2004). Otherwise, a literature

search can reveal nucleoside parameters developed by various laboratories, or

one can parametrize them through quantum chemistry calculations or by analogy

with molecules already present in the force field.

11.3.2 RNA Interaction with Water and Ions

Energy landscapes of RNA folding are extremely sensitive to solvent and ions

(Russell et al. 2002; Lipfert et al. 2010). Water and cations such as Kþ and Mg2þ

provide the electrostatic screening necessary for the negatively charged phosphate

Mg2+

K+

Fig. 11.4 Cation binding

within tRNA: 5% occupancy

across a 16-ns trajectory is

shown for Mg2+ and K+ which

were present at 38 mM and

117 mM, respectively.

Trajectory frames were

aligned by the tRNA

backbone atoms. Modified

bases are shown in licorice

representation (Eargle et al.

2008)
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backbone to condense and allow secondary and tertiary interactions to form (Draper

2008; MacKerell and Nilsson 2008). Higher water densities around RNA relative to

protein also contribute to RNA flexibility (Roh et al. 2009). The classical force

fields underestimate the interactions between hexahydrated Mg2þ and RNA

(Ditzler et al. 2010), but the fact remains that physiological Mg2þ plays an

enormous role in RNA structure and dynamics.

In mammalian cells, cytosolic concentrations of Kþ, Naþ, and free Mg2þ are

around 140, 10, and 1mM, respectively. However, if all Mg2þ associatedwith nucleic

acids is considered, the total concentration of Mg2þ within cells is closer to 30 mM

(Cowan 1995). Magnesium ions bound to nucleoside triphosphates account for much

of the difference, but local Mg2þ concentration is higher around DNA and large RNA

molecules as well. The high charge density of Mg2þ results in very stable solvation

shells. The exchange rate for water molecules in the first solvation shell of Mg2þ

occurs at greater than ms timescales (Ohtaki 2001) so Mg2þ ions tend to remain with

the water or RNAmolecules they are initially bound to in MD simulations (Auffinger

and Vaiana 2005). Due to its 12 potential hydrogen bond donors and relatively large

radius, hexahydrated Mg2þ diffuses more slowly and has higher residency times

around RNA than either Kþ or Naþ. Since Mg2þ is important for RNA structure

and dynamics in vivo, it is frequently included in RNA simulations, but it must be

handled with care, especially during the system preparation.

There are many open questions about the nature of Mg2þ bound to nucleic acids.

For a given molecule, how many Mg2þ ions are directly bound, and where are their

binding sites? How many are diffusely bound, hexahydrated but still associated

with the nucleic acid through the second or third solvation shell? The small radius

of Mg2þ makes its determination difficult for X-ray crystallography, but sometimes

the presence of the distinct octahedral arrangement of atoms in the first solvation

layer lends support to assignment of Mg2þ to the central peak of the solvent

electron density. Recent work has been done to elucidate the thermodynamics of

Mg2þ binding (Grilley et al. 2006; Leipply and Draper 2010) and describe the ionic

clouds around DNA in various buffers (Bai et al. 2007).

11.3.3 Challenges in the Set-Up of All-Atom Simulations

As there have been recent detailed protocols written for the set-up of RNA MD

simulations (Hashem and Auffinger 2009), here we focus on issues particularly

relevant to simulations of large, RNA–protein complexes. With RNA being such a

highly charged molecule, both hydration and ion placement must be addressed in

the system set-up to avoid a lengthy phase of constrained equilibration. Here we

focus on the software that we use in our own studies, but alternative applications

exist for many of the tasks required for system preparation. Further challenges arise

due to the limited availability of computational tools and scripts for analysis of long

MD simulations of large nucleic acids complexes, especially those containing

modified bases. For example, while VMD (Humphrey et al. 1996) has been
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developed to visualize large assemblies containing millions of atoms, analysis of

changes in RNA secondary structure and motion of RNA helices requires user-

supplied scripts.

11.3.3.1 Preparing the Structure

For simulations based on existing structures, system preparation begins with a PDB

file containing the 3D atomic coordinates for the structures in the system of interest.

Typically, well-resolved water molecules and physiologically relevant ions should

be kept, but unphysiological species such as sulfate or ammonium that are only

present for purposes of crystallization can be removed. Hydration and placement of

ions is described in more detail below. Frequently, mobile tails or loops are missing

from crystal structures and must be modeled, perhaps by making use of existing

homologous structures. To trap enzymes in intermediate states, sometimes

structures contain substrate analogs that should be converted to the true substrate

or removed. For ribosomal systems with available cryo-electron microscopy maps,

models for further simulation have been constructed using MD flexible fitting

(MDFF) whereby atomic structures are fitted to EM density maps while

constraining secondary structure elements (Trabuco et al. 2008; Becker et al.

2009; Armache et al. 2010; Trabuco et al. 2010).

Assignment of the protonation states to titratable amino acids like histidine and

aspartate is sensitive to neighboring residues and solvent accessibility. Local pKa

and protonation states for titratable residues and ligands are predicted by PROPKA

2.0 based on solvent exposure, potential hydrogen-bonding partners, and proximity

to charged groups (Bas et al. 2008). The standard amino acids are included, but

extra work is required to incorporate effects of nucleic acids or ligands. The latest

version allows incorporation of generic chemical groups and their associated pKa

values as well as user knowledge for specific groups. If the bulk pKa is known for a

ligand, the user can provide this information before PROPKA is run. For example,

the phosphate on AMP bound in the active site of GluRS can initially be assigned a

bulk solution pKa of 6.9 which is then modified through the iterative local pKa

calculation (Black Pyrkosz et al. 2010). Adenosine and cytidine may be protonated

within RNA structures, but currently there appears to be no simple way to calculate

protonation states of nucleic acids. A thorough but costly approach is to calculate

local pKa values using Poisson–Boltzmann solvers (Tang et al. 2007). It is good

practice to visually inspect protonation assignments. Once protonation states have

been determined, hydrogens and partial charges are added to the molecules by

programs such as psfgen.

11.3.3.2 Adding Ions

One of the main problems that nucleic acids pose to MD set-up is the requirement

for associated cations.

11 Simulating Dynamics in RNA–Protein Complexes 223



Without compensating positive charges, especially within the deep groove and

other compact regions where phosphates are near each other, electrostatic repulsion

will quickly distort and unfold the RNA. RNA simply placed in a water box with

randomly distributed, neutralizing ions will denature without a costly constrained

equilibration allowing ions to diffuse into the RNA structure. Cations added to the

solvent, typically Mg2þ and either Kþ or Naþ, shield the negative charges of the

sugar–phosphate backbone to allow the RNA to maintain its double-helical form

during simulation. It has been shown that ions around DNA can take on the order of

tens of nanoseconds to equilibrate (Ponomarev et al. 2004). Therefore, it is impor-

tant to place ions as close to equilibrium states as possible when preparing the

simulation.

Ions can be placed with tools like the program ionize.3 Using the previously

assigned atomic partial charges, ionize creates a three-dimensional lattice around

the system and calculates Coulombic interaction energies for the placement of a

charge at each lattice site. An ion is placed at the minimum energy site, and then

lattice energies are regenerated for the next ion. This process is repeated until all

ions have been added to the system. To make this problem tractable for large

RNA–protein systems such as the ribosome, a parallelized version of this ion

placement algorithm has been developed (Stone et al. 2007).

More rigorous but more time-consuming methods for ion placement include the

use of Brownian dynamics (Hermann and Westhof 1998; Serra et al. 2002) or MD

simulations (Kirmizialtin and Elber 2010) in which the RNA is fixed, and the ions

are allowed to diffuse about the system. High-resolution X-ray structures were used

to validate placement of Mg2þ in the coulomb lattice (Eargle et al. 2008), Brownian

dynamics, and MD simulation methods. After placement of neutralizing ions, extra

salt buffer can be added to achieve higher Kþ concentrations. As crystallization

conditions often use higher concentrations for many cations than is seen in vivo,

one should only select a subset of crystal ions corresponding to the lowest energy

sites, when the goal is to simulate systems under physiologically relevant

conditions.

Mg2þ ions diffuse slowly around RNA so their initial placement and hydration is

especially important for the set-up of a stable system. Information from well-

resolved crystal structures can be used to place Mg2þ ions with varying degrees

of hydration in direct contact with the RNA. Closely placed Mg2þ ions, such as

those present in the crystal structure, must be treated carefully. Since the first

solvation shell of Mg2þ is so stable, it is common for initial contacts made with

Mg2þ to remain for an entire MD simulation. If the six members of an Mg2þ atom’s

first solvation shell are not set during system set-up, the missing members will be

pulled in from that atom’s local environment and may result in spurious, long-lived

contacts to the RNA. To prevent this, all Mg2þ ions should be fully solvated before

production runs.

3 http://www.ks.uiuc.edu/Development/MDTools/ionize/.
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11.3.3.3 Hydrating the System

One needs to take into account the difference in water density of the solvent

surrounding RNA and proteins (Roh et al. 2009) when solvating systems containing

RNA–protein complexes. If there are cavities within the system,DOWSER (Zhang

and Hermans 1996) can be used for the first round of solvation to ensure that these

cavities are filled with water molecules. Additional atom dictionary files are needed

for DOWSER to recognize the nucleotides in RNA, and these files are available

through the DOWSER plugin to VMD (Gumbart et al. 2009). The first few layers

of external solvent can be added by Solvate 1.0,4 which uses a PDB file containing

partial charge information to place and orient water molecules next to RNA and

protein. These waters may then be verified for accuracy with SwS (Auffinger and

Hashem 2007). Finally, equilibrated waters are added to fill the three-dimensional

box used to carry out MD simulations with periodic boundary conditions.

11.3.4 Visualization and Analysis of Motions and Energetics

Once MD trajectories have been generated, many different analysis methods are

available to characterize the dynamics. The majority of available analysis programs

werewritten specifically for proteins, fewer have beenwritten for nucleic acids, and even

fewer were built with RNA–protein complexes in mind. While standalone applications

exist to perform specific calculations on trajectory data, more flexible environments are

useful for exploratory analyses and the creation of newmethods.VMD (Humphrey et al.

1996), Chimera (Pettersen et al. 2004), and PyMOL (Schr€odinger) are all equipped

with programming language interpreters that allow access to structure and trajectory data

so that new analysis scripts can be quickly written and tested.

11.3.4.1 Structural Dynamics

Standard analyses for RNA and protein molecules include root mean square deviation

(RMSD) and root mean square fluctuation (RMSF) of atoms in the backbone or in

residue side chains. The RMSD per residue for r-protein S4 is shown in Fig. 11.5.

HighRMSD in the signature region indicates that it is relatively disorderedwhen S4 is

not bound to rRNA. For RNA in particular, base pairing type and geometry can be

calculated from single trajectory frames by programs like RNAView (Yang et al.

2003) and 3DNA (Lu and Olson 2003). Because of relative motions between large

substructures in RNA, it can be difficult to obtain good superpositions, and backbone

RMSD tends to be less meaningful than for proteins (Alexander et al. 2010; Beššeová

4 http://www.mpibpc.mpg.de/home/grubmueller/downloads/solvate/index.html.
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et al. 2010). More useful analysis can be done at the level of individual helices.

Description of the motions of larger RNA features, such as interarm angles, are

routinely obtained through the use of programs like CURVES+ (Lavery et al.

2009), by tracking the smallest principal axis of inertia for RNA helices (Trabuco

et al. 2010), or by following specific atoms participating in the relevant motions

(Beššeová et al. 2010). Figure 11.6 compares the interarm angle between rRNA

helices h16 and h18 calculated for two 100-ns trajectories: one with the rRNA five-

way junction free in solution and the other with S4 bound to the rRNA. Similar results

can be obtained through scripts with calls to VMD’s “measure inertia” procedure.
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Fig. 11.5 Intrinsic disorder in bacterial structural signature of ribosomal protein S4: the first 45

amino acids correspond to the structural signature in S4, which is intrinsically disordered when not

bound to h16 (Chen et al. 2010)
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11.3.4.2 Interaction Energies and Free Energy Landscapes

At RNA–protein-binding interfaces, the nonbonded interaction energy per residue

is a good measure of a residue’s importance for binding. Figure 11.3c, d show plots

for this type of data averaged across a short (16 ns) MD trajectory. The gray lines

represent the underlying energy data while the blue show that data scaled by percent

sequence identity across all three domains of life and then across only bacteria. It is

clear that most of the significant interactions at the EF-Tu·tRNA interface are

conserved across bacteria, and about half are conserved across all of life. Dynamics

are important in this type of analysis because individual contacts such as hydrogen

bonds and salt bridges may regularly break and reform so that any single structure,

such as the original crystal structure or one from a trajectory, does not have the

necessary statistics to describe the average interaction energies.

Binding free energies can be generated from MD trajectories through methods

such as molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) (Froloff

et al. 1997; Kollman et al. 2000; Rocchia et al. 2001; Pogorelov et al. 2007), which has

already been used to calculate free energies for RNA–protein systems (Reyes and

Kollman 2000; Yamasaki et al. 2007; Eargle et al. 2008; Black Pyrkosz et al. 2010)

and systems containingMg2þ ions with high residency times (Gohlke et al. 2003). At

the moment, MM-PBSA requires pooling information gleaned from many different

applications such as Poisson–Boltzmann solvers (Baker et al. 2001; Rocchia et al.

2002), MD programs, and entropy estimations, but long-time simulations of large

systems can push some of these programs beyond their limits and resolution

capabilities. Another drawback is that MM-PBSA is used primarily to predict trends

in binding free energy across several different simulations, but the actual DG values

obtained are not accurate. Other methods for obtaining free energy landscapes or

reaction kinetics such as metadynamics, transition path sampling, forward flux simu-

lation, Markov state modeling, and milestoning are more accurate but are limited to

very small changes, require suitable reaction coordinates to be known beforehand, or

take significantly more time to compute a usable trajectory. For a review of these

methods, see (Schlick 2009).

11.3.4.3 Analysis of Correlated Motions

The dynamics of RNA–protein systems can be analyzed by evaluating the cross-

correlation matrix, using the trajectory file from the simulation as input, to identify

correlated motions of the specific amino acids and nucleotides. These analyses can

be generated quickly by applications like CARMA (Glykos 2006). The correlation,

or normalized covariance, Cij, between two residues i and j is defined:

Cij ¼ hD~riðtÞ � D~rjðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD~riðtÞ2ihD~rjðtÞ2i

q ; whereD~riðtÞ ¼~riðtÞ � h~riðtÞi: (11.1)
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In these expressions, ~riðtÞ is the position vector at time t of an atom chosen to

represent residue i. Typically, this atom is the alpha-carbon for amino acids and the

phosphorus atom for nucleotides, although any atom may be selected. The angle

brackets indicate the time average of the quantity within the brackets, calculated

over the entire trajectory or portions of it. Subsequent analyses of the correlations

from different time segments of long time trajectories can give insight into the

function of the composite systems.

Plotting the cross-correlation gives a high-level view of which parts of the

biomolecular structures have coupled motion. The cross-correlation map for

GluRS·tRNAGlu·Glu-AMP is shown in Fig. 11.7. Regions of the tRNA are strongly

correlated with the GluRS anticodon-binding domain as well as the catalytic

domain. Through principal component analysis (PCA), unnormalized covari-

ance matrices can be used to identify the dominant motions of the system that

capture the majority of the fluctuations within a given time domain. As correla-

tion data contains both the harmonic and anharmonic motions of the complexes

in the presence of solvent and ions, it can also be used to study networks of

interaction in RNA–protein complexes involved in molecular recognition and

docking.

An alternative to the standard correlation is full correlation analysis (FCA)

(Lange and Grubm€uller 2008). Correlation analysis is based on only linear

correlations, but through the use of mutual information, FCA is able to include

nonlinear and higher-order correlations. Although the run time of FCA is signifi-

cantly longer, it returns more complete information about the collective motions

inherent in RNA and protein dynamics.
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11.3.4.4 Dynamical Network Analysis

Allosteric signaling is ubiquitous throughout protein synthesis. For example, during

aminoacylation of tRNA, the aaRSs must receive information about docking of the

tRNA anticodon and transmit it to the active site. The proofreading step that occurs

when EF-Tu·GTP·aa-tRNA docks to the ribosome requires the codon–anticodon base

pairing information before EF-Tu can hydrolyze its bound GTP. Both of these

reactions depend on binding interactions that occur nanometers away from the active

site. Allosteric communication has previously been studied both experimentally

(Goodey and Benkovic 2008) and through covariation analysis of multiple sequence

alignments (S€uel et al. 2002). More recently, signaling through RNA–protein

complexes has been investigated using dynamical network analysis in which local

correlatedmotions are used to identify pathways of communication (Sethi et al. 2009).

Biopolymers can be represented as basic contact networks by treating the

monomers of the polymer (amino acids or nucleotides) as the nodes of the network,

and the physical contacts between monomers as the edges (Aszói and Taylor 1993).

Certain properties of these network models, such as shortest paths between pairs of

nodes or the number of edges attached to a given node, have been shown to provide

insight into biomolecular structure and function. Path lengths in these simple

networks are defined as the number of edges traversed in a path from one node to

another, and the shortest path is therefore the path with the shortest length, i.e.,

smallest number of edges. Analysis of the shortest paths through a network reveal

the relative importance of different residues to molecular communication (del Sol

et al. 2006). This type of analysis was performed on MetRS to find residues along

the path from the anticodon binding site to the active site (Ghosh and Vishveshwara

2007). Similarly, the structure network for bacterial and archaeal rRNA was

analyzed using various network metrics to identify nucleotides important for

ribosomal function (David-Eden and Mandel-Gutfreund 2008).

MD simulation provides a way to refine the simple contact network to generate one

that incorporates dynamical information so as to provide deeper insight intomolecular

communication. The transfer of information fromone residue to a neighboring residue

can be identified with the correlated motion between the two since knowledge of the

movement of one provides knowledge aboutmovement of the other (Sethi et al. 2009).

The edges of a contact network can incorporate standard correlation or FCAdata in the

form of edge weights where smaller weights correspond to tighter coupling between

two nodes. A network representation with correlation-weighted edges was used in the

interpretation of RNA–protein contacts present in the ribosomal L1 stalk and showed

that the L1 stalk is more closely associated with tRNAPhe than with tRNAfMet

(Trabuco et al. 2010) (see Fig. 11.8). The tRNAPhe interface contacts are stronger

and more localized to the G19·C56 base pair that stacks against the rRNA.

With edge weights between nodes i and j defined as wij ¼ �log(|Cij|), shortest

path analysis can be carried out on this weighted network, where path length is the

sum of the edge weights for edges along a path. These shortest paths will tend to

travel through highly correlated residues (see Fig. 11.9a). Another useful metric
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derived from pairwise shortest paths is the “betweenness” of a network edge

(Freeman 1979; Girvan and Newman 2002). Edge betweenness is defined as the

fraction of shortest paths crossing an edge. This gives a measure of how central an

edge is to the various communication pathways in a network.

Pairwise shortest paths are not the only interesting feature of these dynamical

networks. A more global view of structural dynamics shows that groups of residues

cluster together and move in concert with one another giving RNA–protein

complexes a modular structure. In the language of network theory, these clusters

of nodes are called communities, and the nodes in a community have more and
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C56
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A2169

G2112

A2169
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a b

Fig. 11.8 Contacts (blue) between P/E hybrid tRNA and rRNA in the ribosomal L1 stalk (a)

tRNAfMet has slightly more, but weaker, contacts to the rRNA than those between (b) tRNAPhe and

the rRNA (Trabuco et al. 2010). Connections are shown in blue with thickness representing

pairwise correlation

a b c

Fig. 11.9 Dynamic network analysis of GluRS·Glu-tRNAPhe·AMP (PDB ID 1 N78) (a) Shortest,

most highly correlated paths between A76 in the active site and the two identity elements U13 and

U35. (b) The complex colored by community with critical intercommunity connections shown in

red. (c) Top 10% of the edges with the highest betweenness in the total network. Each edge

shown is present in at least 3,000 shortest paths between pairs of nodes (Sethi et al. 2009;

Alexander et al. 2010)
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stronger connections within the community than between communities. Network

algorithms have been developed recently to partition networks into communities

(Girvan and Newman 2002; Palla et al. 2005; Chennubhotla and Bahar 2006), and

these algorithms can be used to elucidate the community structure of biomolecular

complexes (see Fig. 11.9b) (Eargle et al. 2011).

One result of this community structure is that high betweenness edges responsible

for connecting communities to each other are disproportionately important in allosteric

signaling. High betweenness edges have been used previously to identify and visualize

critical features of street maps, such as major roads and highways (Demšar et al. 2008).

They act as communication bottlenecks within the network because shortest paths tend

to flow through the highest correlation edges between communities. Residues

participating in these critical edges have been shown to be highly conserved within

the dynamical networks forGluRS · tRNAGlu (see Fig. 11.9a, b) andLeuRS · tRNALeu

(Sethi et al. 2009). There are similarities between the communicative role played by

nodes involved in critical edges and those previously described as “active centers” in

protein structure networks (Csermely 2008). A subnetwork consisting of edges with

high betweenness is shown in Fig. 11.9c. Although this subnetwork has approxi-

mately one tenth the number of edges as the full network, it contains more than half

of the critical edges connecting pairs of communities.

As these types of structure and dynamical network analyses are relatively new,

they have not yet been fully evaluated. The main quantitative validation has come

through the observed conservation of critical nodes and computational identifica-

tion of residues, such as tRNA identity elements, which have been experimentally

determined to be important for molecular communication (del Sol et al. 2006;

Ghosh and Vishveshwara 2007; Sethi et al. 2009). Other technical details about

network set-up and interpretation will need to be addressed in the future. How many

nodes should represent RNA and protein molecules? Since nucleotides are larger

than amino acids, should they have more nodes? How exactly should nodes be

related to their underlying atomic substructure? Also, a statistical mechanical

framework needs to be developed to connect network properties to experimental

observables such as free energies of binding.

11.4 Reaching Longer Timescales Through Simplified Models

Coarse-grained MD simulations sacrifice atomic detail in order to study larger

systems at longer timescales. Ribosomal assembly and tRNA translocation through

the ribosome are processes that require seconds, and important dynamics occur at

timescales unavailable with current all-atomMDmethods. Two general methods of

coarse graining easily take advantage of the flexibility in existing MD programs:

particle-based coarse graining or force field coarse graining. For a recent review of

coarse graining methods, see Freddolino et al. (2008).

Particle-based coarse graining comes in two flavors, both of which involve reduc-

ing the number of particles in the system. The first systematically replaces sets of
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atomswith single particles. This approach has been used recently to coarse grain RNA

(Cui et al. 2006; Hyeon and Thirumalai 2007) as well as DNA (Sambriski et al. 2009).

Amino acids and nucleotides are reduced to a few beads each; multiple water

molecules or hexahydrated Mg2þ are merged into single beads. This can result in an

order of magnitude decrease in the number of particles representing a system while

maintaining the polymeric structure of the macromolecules as well as an explicit

description of cations. Coarse-grained force fields can be derived from atomistic

simulations through a force matching procedure (Izvekov and Voth 2005).

The second particle reduction scheme is structure-based coarse graining where

the number of particles is specified up front, and the coarse-grained representation

and associated force field parameters are generated automatically (Freddolino et al.

2008). For example, if a researcher wants to use 10–20 beads for each r-protein,

depending on their relative sizes, the set of beads representing a given r-protein

would be scattered throughout the protein’s 3D structure using Voronoi tessellation

where each bead is associated with one Voronoi cell. Then the collective mass and

charge of atoms within that cell are projected onto the bead, and spring-like

connections are strung between beads in adjacent cells. Solvent is approximated

through a continuum dielectric.

Researchers can also coarse grain the energy landscape to reach timescales

relevant for folding and assembly processes. Go-like potentials effectively smooth

folding and binding energy landscapes by biasing the molecules in a given system

toward their native structures. Go potentials have been used extensively to study

protein folding dynamics and more recently to study tRNA movement within the

ribosome (Whitford et al. 2009). Frequently, Go potentials are used in conjunction

with particle-based coarse graining, but all-atom Go potentials have also been used

(Clementi et al. 2003; Pogorelov and Luthey-Schulten 2004;Whitford et al. 2009). Go

is applied through a nonbonded, pairwise contact potential. Beginningwith a reference

structure, native contacts within a set cutoff are given attractive, Lennard–Jones-like

potentials while atoms or beads outside the cutoff receive hard sphere potentials. For

RNA–protein systems, three sets of Go parameters are needed: RNA–RNA for

contacts within the RNA structure, protein–protein for those within the protein, and

RNA–protein for contacts at the interface between the two. Development of appropri-

ate Go parameters for RNA is a continuing process. Although coarse-grained

simulations for systems containing RNA are still in their infancy, the long time and

length scales seen inRNAdynamics require computational scientists to improveRNA

coarse-graining methods.

11.5 Conclusion

Molecular detail is required for characterizing and understanding the dynamics of

RNA–protein complexes. Starting from atomic resolution biomolecular structures,

molecular simulation can be used to verify experimental results, to provide molec-

ular details that explain biomolecular function, and finally to predict outcomes for
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future experiments. The ongoing improvement of all-atom force fields and molecu-

lar simulation techniques is essential to better relate MD trajectories to questions of

mechanism and to reach time and length scales relevant to processes like RNA

folding, macromolecular assembly, and protein synthesis. For more rapid progress

in the field of RNA–protein simulation, it is also essential to create and use

standards for data representation and more effectively communicate and dissemi-

nate the techniques and tools used in data analysis.
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Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of

complex networks in nature and society. Nature 435(7043):814–818

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004)

UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem

25(13):1605–1612

Pogorelov TV, Luthey-Schulten Z (2004) Variations in the fast folding rates of the lambda-

repressor: a hybrid molecular dynamics study. Biophys J 87:207–214

Pogorelov TV, Autenrieth F, Roberts E, Luthey-Schulten ZA (2007) Cytochrome c2 exit strategy:

dissociation studies and evolutionary implications. J Phys Chem B 111(3):618–634

Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations

on DNA. Proc Natl Acad Sci USA 101(41):14771–14775

Pranata J, Wierschke SG, Jorgensen WL (1991) OPLS potential functions for nucleotide bases.

Relative association constants of hydrogen-bonded base pairs in chloroform. J Am Chem Soc

113(8):2810–2819

Reyes CM, Kollman PA (2000) Structure and thermodynamics of RNA-protein binding: using

molecular dynamics and free energy analyses to calculate the free energies of binding and

conformational change. J Mol Biol 297(5):1145–1158

Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and

structure data for evolutionary analysis. BMC Bioinformatics 7:382

Roberts E, Sethi A, Montoya J, Woese CR, Luthey-Schulten Z (2008) Molecular signatures of

ribosomal evolution. Proc Natl Acad Sci USA 105(37):13953–13958

Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson-

Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B

105:6507–6514

Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based

construction of the molecular surface and the use of induced surface charge to calculate

reaction field energies: applications to the molecular systems and geometric objects. J Comput

Chem 23(1):128–137

Roh J, Briber R, Damjanovic A, Thirumalai D, Woodson S, Sokolov A (2009) Dynamics of tRNA

at different levels of hydration. Biophys J 96(7):2755–2762

Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S, Chu S, Herschlag D (2002) Exploring

the folding landscape of a structured RNA. Proc Natl Acad Sci USA 99(1):155–160

Sakharov DV, Lim C (2008) Force fields including charge transfer and local polarization

effects: application to proteins containing multi/heavy metal ions. J Comput Chem

30(2):191–202

Sambriski E, Schwartz D, de Pablo J (2009) A mesoscale model of DNA and its renaturation.

Biophys J 96(5):1675–1690

Sanbonmatsu KY, Joseph S, Tung CS (2005) Simulating movement of tRNA into the ribosome

during decoding. Proc Natl Acad Sci USA 102(44):15854–15859

Schlick T (2009) Molecular dynamics-based approaches for enhanced sampling of long-time,

large-scale conformational changes in biomolecules. F100 Biol Rep 1:51

Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H,

Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal
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Chapter 12

Quantum Chemical Studies of Recurrent

Interactions in RNA 3D Motifs

Jiřı́ Šponer, Judit E. Šponer, and Neocles B. Leontis

Abstract High-quality quantum mechanical (QM) calculations provide physically

based descriptions of molecular systems that are free of empirical parameters. This

contrasts with force-field computations based on simple and entirely nonphysical,

analytical functions that must be completely parametrized for a given purpose. The

costs of high-quality QM computations, however, can be enormous, limiting them

to small model systems with ~50+ atoms. Thus, a major challenge of the QM

approach is how to extrapolate data computed on model systems to intact

biomolecules of biological interest. QM calculations have been used to study the

basic molecular forces in nucleic acids. A notable accomplishment of these studies

has been to clarify the nature of aromatic base stacking. Another important appli-

cation of modern QM computations is to furnish reference data for parametrizing

molecular modeling force fields. In this chapter, we provide a summary of the

nature of QM calculations, their strengths, limitations, and relation to other

methods. Then, we review the use of high-level ab initio (first principles) QM

methods to calculate geometries and energies of fundamental nucleotide inter-

actions in RNA 3D structures.
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12.1 Introduction

In structural biology and bioinformatics, the most commonly applied computational

modeling methods rely on the use of molecular mechanics force fields. These force

fields are simple analytic functions, parametrized to approximate the potential

energies of molecules as functions of their geometries. Computations that use

these force fields are limited by the functional form of the potential energy and

by the accuracy of the parametrization. Force fields are nonphysical models of

molecular systems and always involve considerable approximation of the properties

of real molecules. Moreover, force fields rely heavily on compensation of errors.

Despite these limitations, properly parametrized force fields can generate reason-

able results and provide valuable insight into complex biomolecular systems

(Ditzler et al. 2010). However, the capabilities of force-field calculations should

not be overrated.

First, some properties of real systems cannot be adequately described within the

limits of the technique. For example, the standard force-field approach, describing

divalent cations such as zinc or magnesium as van der Waals Lennard-Jones

spheres with +2 point charges localized in their centers, is very unrealistic (Sponer

et al. 2000; Petrov et al. 2011a, b). The total energy of polarization and charge-

transfer nonadditivities in the first ligand shell of a divalent cation is about 70 kcal/mol,

12 times the gas-phase binding energy of a water dimer (Sponer et al. 2000).

Common biomolecular force fields completely lack appropriate terms for these

effects, which can propagate far beyond the first ligand shell and dramatically affect

the neighborhood of the divalent cation (Katz et al. 1996; Sponer et al. 2000). In

other words, the force-field approximation breaks down completely for divalent

cations such as Mg(II), and so necessarily do the Mg(II) dynamics seen in MD

simulation studies, with the exception of long-range screening effects. This is a fact

rarely acknowledged in the contemporary modeling and simulation literature

(Dudev and Lim 2003, 2008; Ditzler et al. 2010).

Second, modeling the nucleic acid backbone poses even bigger problems for MD

simulation: While multivalent ions are dispensable in simulations, the nucleic acid

backbone is not. As is generally true for biological anions, the electron density of

the phosphate group extends far beyond the nuclei, making it a highly polarizable

chemical entity that is very sensitive to its environment. This sensitivity, together

with the complex anomeric properties of the ribose sugar ring, to which the

phosphate is connected, results in a “deadly cocktail” of electronic structure effects

that are quite beyond the capabilities of simple force fields utilizing conformation-

independent point charges localized at atomic centers. One approach to gain

control over these conformational dependencies is to use dihedral angle profiles,

but this can never be done perfectly (Banas et al. 2010; Mladek et al. 2010;

Zgarbová et al. 2011b).

Quantum chemistry provides an alternative and complementary approach to

describe molecules. Modern quantum chemistry is a mainstream technique of

physical chemistry with major impacts in many areas of chemistry. High-quality
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quantum chemical calculations can now be carried out that provide accurate

assessments of structures and energies of small systems, currently in the range ~50+

atoms. Less reliable QM methods are applicable to describe larger systems,

although the errors of such calculations can exceed those of force-field

computations. In contrast to force-field methods, first-principle ab initio QM

calculations can provide physically correct descriptions of model systems, with

quantitative accuracy. The best QM approaches do not require any

parametrizations. More detailed technical description of QM approaches, including

explanations of the basic terminology and levels of calculations for nonspecialists

working on nucleic acids, can be found in these references (Sponer et al. 2006,

2010; Banas et al. 2009).

When properly interpreted, QM calculations can contribute to our understanding

of RNA structure and energetics by providing physicochemical insight into

local molecular interactions and intrinsic geometrical preferences of molecular

fragments that cannot be obtained by any other theoretical or experimental method

(Hobza and Sponer 1999; Sponer et al. 1996a, b, c, 2001, 2008, 2010; Mladek et al.

2010). QM methods use fundamental principles, based on the time-independent

Schr€odinger equation, to rigorously calculate molecular wave functions. Expert

applications of QM calculations provide rigorous assessments to replace ad hoc

speculations concerning the fundamental nature of stabilizing molecular interactions

or the origins of stereoelectronic effects (Bugg et al. 1971; Hunter 1993; Egli and

Gessner 1995). For example, QM calculations ruled out the hypothesized presence of

specific out-of-plane p–p effects in base stacking (Sponer et al. 1996a). In addition,

QMmethods showed that in sugar–base stacking, there is no specificmolecular orbital

interaction between the O40 atom and nucleobase aromatic rings (Sponer et al. 1997).

Also, QMmethods invalidated the idea of specific attractive forces created by stacking

of polar exocyclic groups of nucleobases with the aromatic rings of adjacent

nucleobases (Sponer et al. 1996a). Rather, these calculations showed that all these

interactions can be understood simply as ordinary van der Waals complexes, well

described by properly parametrizedmolecularmechanics force fields,with no need for

any additional, specific terms.

On the other hand, QM calculations allow for inclusion of effects that are often

overlooked or ignored by structural biologists, owing to the fact that they lie beyond

the applicability of molecular mechanics force fields. These effects include elec-

tronic structure polarization and charge transfer (Sponer et al. 2000; Petrov et al.

2011b), as well as pyramidalization of nucleobase exocyclic amino groups (Sponer

and Hobza 1994a,b, 2003; Luisi et al. 1998; Vlieghe et al. 1999). Due to their

completeness and accuracy, ab initio QM calculations play leading roles in the

parametrization and refinement of modern force fields for nucleic acid MD

simulations (Cieplak et al. 1995, 2009; Cornell et al. 1995), including the latest

refinements of the AMBER Cornell et al. force field (Perez et al. 2007; Banas et al.

2010; Zgarbová et al. 2011b). Regarding force-field parametrization, QM methods

are used to evaluate reference potential energy surfaces, thus linking molecular

structures with energies. The molecular mechanics force field is then fitted to

reproduce the reference QM data as accurately as possible.
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As with other scientific methods, QM calculations have their advantages and

limitations, and these will be discussed below. When the limitations are understood

and respected, the methodology can provide valuable data. In this chapter, we

discuss the applications of QM methods to recurrent nucleotide interactions,

identified in RNA 3D structures by bioinformatic clustering analyses (Leontis and

Westhof 2001; Leontis et al. 2002; Stombaugh et al. 2009; Zirbel et al. 2009). QM

calculations provide further insight into the nature and energetics of these

interactions, as summarized in a recent review (Sponer et al. 2010).

As discussed elsewhere in this book, structured RNA molecules play a wide

range of roles in bacterial as well as eukaryal cells, involving all facets of gene

expression. To carry out their functions, many RNA molecules form complex

structures exhibiting unique, evolutionarily conserved architectures. An important

feature of such structures is the occurrence of modular and recurrent 3D motifs.

Generally, these motifs correspond one to one to the nominally single-stranded

“loops” apparent in RNA secondary structures (hairpin, internal, and multihelix

junction loops). These modular units play important structural and functional roles,

by forming stabilizing tertiary interactions that organize the 3D architectures of

RNA molecules or by directly interacting with other molecules, including other

nucleic acids or proteins, or small molecule substrates and signaling molecules.

Modular motifs are themselves highly structured entities, composed of recurrent

and modular nucleotide interactions, including edge to edge, non-Watson–Crick

base pairs, face-to-face base-stacking interactions, and specific base–backbone

interactions. More complex interaction patterns, such as base triples and quadruples,

can be decomposed into combinations of these interactions (Abu Almakarem et al.

2011). Thus, as we will show, QM calculations provide important baseline data

concerning these interactions, including information about their geometries and

energetics.

At the chemical level, the RNA and DNA backbones differ almost trivially:

RNA possesses a hydroxyl group at the 20-position of the sugar unit where DNA has

a hydrogen atom. This seemingly minor difference has large implications for RNA

architecture. First, it affects the preferred sugar conformation and therefore the type

of helix formed (A-form in RNA vs. B-form in DNA). Second, it makes possible a

range of interactions involving the “sugar edge” of RNA nucleotides. The sugar

edge includes the atoms of each base that are exposed on the minor groove of

canonical double helices: the O2 atoms of cytosine and uracil, C(O2) and U(O2)

and the A(H2), A(N3), G(N2), and G(N3) atoms, in addition to the 20-OH group of

each nucleotide. The sugar edges of RNA nucleotides can interact with the

Watson–Crick, Hoogsteen, or sugar edges of other bases to form unique sets of

base pairs that play important roles in RNA structure, especially in stabilizing tertiary

interactions. Thus, a prime focus of recent QM studies has been those RNA

interactions that involve the sugar edge, which include six base-pair families (Sponer

et al. 2005a, b, c, 2007, 2009; Vokacova et al. 2007; Mladek et al. 2009; Sharma et al.

2010a, b). As previous work on DNA already surveyed many of the non-

Watson–Crick base pairs involving the Hoogsteen edge (Sponer et al. 2004), recent

QM calculations on RNA have focused on the six “sugar edge” base-pair families.
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Note that the differences in electronic structure between U and T are minor, and

therefore, their base pairings at the Watson–Crick edges are similar (Swart et al.

2004; Perez et al. 2005). However, the presence of the 5-methyl group, which U

lacks, serves to prevent Hoogsteen edge pairing in T, while it may enhance the

thermodynamic stability of DNA double helices.

QM analysis of base-pairing interactions involving the Hoogsteen andWC edges

(known as mismatches in DNA) can be found in a reference study (Sponer et al.

2004). QM calculations for other H-bonding interactions in RNA have been

reported from different groups (Brandl et al. 2000, 2001; Oliva et al. 2006, 2007;

Roy et al. 2008; Sharma et al. 2008, 2009, 2010a, b), including structure-energy

analysis of base–phosphate (BPh) interactions (Zirbel et al. 2009; Zgarbova et al.

2011a).

12.2 Overview of the Ab Initio QM Methodology

12.2.1 Comparison to Other Computational Methods

This section aims to explain the basic features of QM methods for nonspecialists.

Because ab initio QM calculations are based on first-principle theory and require no

empirical parameters, they are fundamentally different from semiempirical QM

approaches, as well as all force-field modeling methods (Sponer and Lankas 2006;

Banas et al. 2009). Semiempirical QM approaches also rely extensively on specific

parametrizations and therefore cannot be considered genuine electronic structure

methods. Force-field methods employ effective, but nonphysical, analytic functions

to model molecular forces and rely extensively on specific parametrizations. In

contrast to parametrized computations, the accuracies of ab initio QM calculations

can be systematically improved by (1) concerted and systematic improvement of

the quality of atomic orbital basis sets and (2) by the inclusion of electron correla-

tion effects. However, if the calculations are not properly balanced, they can fail

miserably. It does not make sense to use small basis sets of atomic orbitals with

high-quality electron correlation methods or vice versa. Both basis set size and level

of electron correlation must be adequate to achieve quality computational results, as

explained in detail elsewhere (Sponer and Lankas 2006; Banas et al. 2009). Finally,

in contrast to force-field calculations, QM methods can be used to describe chemi-

cal reactions, which involve the breaking and creation of chemical bonds.

A unique feature of QM approaches is that above a certain level of theory,

the calculations systematically converge to the hypothetical true values, that is, the

values that in principle would be achieved by exact computations, which are

understood to correspond to reality. The required level of theory depends on the

nature of the system. Thus, the fundamental feature of modern ab initio QM

computations is the absence of parameters and the theoretical guarantee of conver-

gence, at least for systems with fully occupied electron shells and no unpaired
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electrons (closed-shell systems). Consequently, it is common practice in theoretical

chemistry to treat high-quality QM computations on a par with reliable experimen-

tal data, although it is always important to specify exactly how the computations are

carried out, especially the geometries utilized. The principle drawback of the

approach is that the first-principle nature of the computations makes them very

costly and they scale poorly with the number of atoms.

Traditionally, the term “ab initio QM calculation” has been applied to conven-

tional, parameter-free, wave-function theory (WFT) computations (Sponer and

Lankas 2006; Banas et al. 2009). The name reflects the fact that the wave functions,

or molecular orbitals, are constructed as linear combinations of atomic orbitals.

The basic level of WFT computations is the Hartree–Fock, self-consistent field

approximation (HF/SCF). This approach is insufficient for most applications as it

completely neglects electron correlation effects. Modest levels of electron correla-

tion are included with the second-order Møller–Plesset method (MP2). For many

applications, MP2 provides sufficient accuracy, especially when used with extrapo-

lation to the complete (infinite) basis set (CBS) of atomic orbitals. CBS extrapolation

is based on two MP2 calculations using large sets of atomic orbitals. The CCSD(T)

variant of the coupled-cluster method includes a large portion of electron correlation

and is the current gold standard for systems with dozens of atoms. The reader can find

more details in our recent reviews (Sponer et al. 2008; Banas et al. 2009).

Conventional WFT QM calculations are now often replaced by cheaper density

functional theory (DFT) methods. There has been a concerted and quite successful

effort to improve DFT in the past few years (Zhao and Truhlar 2008; Banas et al.

2009; Rappoport et al. 2009; Grimme 2011). As a result of the efforts of many

research groups, there are now more than 100 different DFT methods described in

the literature, which consequently is difficult for nonspecialists to penetrate. One

guiding comment is warranted regarding DFT methods: For a given application or

chemical problem, the appropriate DFT method can be of comparable accuracy to the

best WFT computations and at a tiny fraction of computer cost. However, none of the

available DFT methods are sufficiently accurate for all types of applications simulta-

neously, as different DFT approaches were adjusted for different applications. Thus,

the applicability of a given DFT to a new set of problems needs to be tested empiri-

cally. The practical relation of DFT andWFT computations is therefore the following:

The highest-accuracy WFT calculations, such as CCSD(T) extrapolated to CBS,

represent genuine benchmarks for calibrating DFT methods. Thus, benchmark

databases of highly accurate WFT calculations are absolutely essential for tuning

and further developing DFT methods (Jurecka et al. 2006).

12.2.2 Information Obtained from Ab Initio QM Calculations

QM calculations provide molecular wave functions for modeled systems, from

which one can derive numerous physicochemical properties, including vibrational
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spectra, dipole and higher multipole moments, polarizabilities, proton affinities,

and most fundamental NMR parameters, although QM methods do not yet exist to

calculate all desired quantities with satisfactory accuracy. With regard to structural

biology, the main achievement of QM calculations is the description of the nature

of relevant molecular interactions and quantification of their energetics. QM results

complement the purely structural data obtained by X-ray crystallography, the

leading experimental approach of structural biology, from which the energetics of

local molecular interactions can only be inferred indirectly. As noted above,

interpretations of the observed contacts based on chemical intuition or subjective

expectations can lead to inadequate accounts of the interaction patterns seen in

structural data. By contrast, properly executed QM calculations of sufficiently high

level can reliably describe molecular interactions in systems with closed-shell

electronic structure and can be used safely to discuss the role of intrinsic molecular

interactions in different contexts. While NMR studies of nucleic acids can provide

dynamical data for macromolecular equilibria, from which, under suitable con-

ditions, free energies can be determined, such solution experiments are inherently

incapable of dissecting the intrinsic interactions (such as base-stacking and base-

pairing energies) from the overall balance of forces (see below).

12.2.3 Nucleic Acid Systems Amenable to Study by QM Methods

In light of their high computational costs, QM calculations are generally applied to

study small model systems, with the aim of accurately describing specific local

forces that contribute to the structures, dynamics, and functions of macromolecular

systems, including RNA molecules. Typical model systems include individual

hydrogen-bonded base pairs, pairs of stacked bases (“base stacks”), covalently

bonded dinucleotides, and bases interacting with backbone phosphate groups or

with metal cations. Generally, the systems are studied in complete isolation, that is,

in vacuo, the gas-phase condition. Gas-phase calculations reflect the intrinsic

features of the electronic structure of the studied systems, with no perturbation

from any other interactions. The payoff is the high accuracy and physicochemical

completeness of the computational description, which cannot be achieved by any

other technique. The reader should note that “electronic structure features” do not

refer to special “quantum effects,” irrelevant to biomolecular structure, but rather to

the most fundamental descriptors, such as the basic ground state energy of base

pairing and stacking.

12.2.4 Sources of RNA Geometries and Their Optimization
for QM Calculations

QM calculations can provide meaningful energy data only when applied to appro-

priately selected and optimized geometries. Most commonly, one optimizes the
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geometry of the system before calculating the quantum mechanical interaction

energy. The interaction energy is related to the binding energy, and its exact

meaning will be explained below. For many systems, unconstrained gradient

optimization leads to relevant structures. Modern QM software packages make it

easy to carry out such calculations, in which all coordinates (or geometrical

parameters) are optimized with respect to the electronic energy. Thus, the optimi-

zation algorithms locate the geometry on the potential energy surfaces that

corresponds either to the local or the global energy minimum. This approach is

suitable for systems where well-defined intrinsic energy minima of the isolated

model systems correspond to biochemically relevant structures, as is the case for

canonical Watson–Crick base pairs. On the other hand, the stacking patterns seen in

experimental nucleic acid structures do not correspond to minima on the potential

energy surfaces of isolated dimers of stacked nucleobases. In this case, point-by-

point conformational scanning is preferred over geometry optimization (Sponer

et al. 1996a, b, c).

An obvious option is to carry out QM energy calculations on experimentally

determined structures. When they are available, atomic-resolution nucleic acid

structures determined by X-ray crystallography are preferred over NMR structures.

But even for X-ray structures, the atomic coordinates are generally not determined

to sufficient accuracy to permit their direct use in QM energy computations (Sponer

et al. 2008). First, the geometries of the individual monomers in PDB files are

not sufficiently relaxed and will produce high electronic energies. Nonoptimal,

intramolecular geometries can produce electronic distributions with incorrect

(perturbed) electrostatic potentials, which can bias calculations of the intermolecu-

lar forces and binding energies. It is therefore necessary to replace (e.g., by overlay)

the nucleobase monomers in the PDB files with QM-optimized monomer units.

Also, the internucleotide interaction geometries observed in X-ray structures

may cause substantial errors in QM calculations. In particular, uncorrected steric

clashes can produce large errors in the calculated energies. For example, errors arise

because the base stacks in X-ray structures may be compressed or extended in the

vertical direction due to inaccurate determination of the interbase dihedral angles.

In fact, even small errors in the interbase distances, which may be acceptable for

structural analysis, are not acceptable for QM analysis and can lead to considerable

errors in calculated energies. This is true when the geometry falls within a range of

interatomic separation distances where the short-range repulsions begin to domi-

nate, as the calculated energy is a highly nonlinear function of the interatomic

distance (r�6 and e�br dependencies for dispersion attraction and short-range

repulsion, respectively).

Similarly, the energies of H-bonded base pairs are sensitive to errors in the

experimental geometry due to the very close approach of H-bonded atoms. More-

over, a bad geometry can result from the presence of two or more local substates,

which are averaged in the experimentally derived geometry, leading to an unrealis-

tic energy. Thus, models obtained by fiber diffraction cannot be recommended

for direct calculations. Furthermore, caution is needed when using averaged

geometries based on database studies, as they also can have unrealistic structures
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with poor energies. While this does not preclude studying the energies of experi-

mental geometries, it does suggest that it is important to carefully check the

geometries before carrying out energy calculations. In general, it is often necessary

to adjust the starting geometries to eliminate unphysical contacts, while trying to

stay as close as possible to the experimental geometries. The general rule is that all

geometries should be assessed case by case before undertaking expensive QM

calculations. If this is not done, the results are likely to be inaccurate irrespective

of the quality of the QM method.

Furthermore, it is advisable to generate a range of structures around pairing as

well as stacking geometries and to analyze the properties of the potential energy

surfaces. With regard to base-stacking interactions, it remains an open question

whether they can be characterized by a single geometry representing a unique

energy minimum (Svozil et al. 2010). Most likely, stacking states correspond to a

range of populated geometries, as evidenced by the significant coordinate

fluctuations seen for stacked bases in explicit solvent molecular dynamics

simulations, as well as in experimentally determined structures.

In many cases, we are interested in analyzing the local interactions which exist

within a macromolecular complex of biological interest and which are substantially

affected by the overall molecular context. In these cases, the best approach is to fix

the local interaction geometry of interest accordingly and then to relax the

monomers in situ (Vlieghe et al. 1999; Sponer et al. 2003). The intermolecular

geometry can be frozen by fixing the coordinates defining the interaction, for

example, as a set of six coordinates per dimer that includes the intermonomer

distance, the two displacements orthogonal to the vector joining the centers of the

two interacting units, and the three dihedral angles describing their relative

orientations.

The sugar hydroxyl group at the 30-position, which normally is covalently

bonded to the 50-carbon of the next residue, poses problems in QM computations

of RNA base pairs. One option is methylation of the 30-oxygen. In some cases, the

phosphate groups participate in the interactions under study and also need to be

included in the computations. This creates problems due to the strongly ionic nature

of the associated interactions, which, in their biological context, are attenuated by

solvent screening.

QM studies of RNA base or nucleotide interactions often require application of

sophisticated geometrical constraints that need to be implemented case by case, to

maintain the desirable features of the experimental structures. For electrically

charged systems, optimization in the presence of continuum solvent may be a

viable option, despite the limitations noted below. Continuum solvent models use

a continuum dielectric to mimic the water environment (Tomasi et al. 2005). The

continuum is polarized by the solute molecule and creates an electric field, which

back-polarizes the solute electronic structure. The classical counterpart of QM

continuum solvent models is based on Poisson–Boltzmann (PB) theory, or the

simpler generalized born method (GB), which is used in molecular modeling.

Classical force-field calculations obviously do not include polarization of the

solute. While continuum solvent models accurately reflect the effect of solvent
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polarization on the solute electronic structure, they have one major weakness. The

hydration energies are brutally sensitive to parameter settings, such as effective

atomic radii. Inaccuracies in hydration energy estimates transfer to computations of

binding energies, which is the fundamental reason, rarely admitted in the molecular

modeling and simulation literature, that ligand binding energies calculated based on

PB and GB approaches are so inaccurate (Špacková et al. 2003).

As noted above, when investigating complex interaction geometries, it is often

necessary to apply suitable geometrical constraints to maintain a functionally

relevant geometry. In previous work, QM methods were evaluated for their ability

to reproduce experimentally observed structures of non-Watson–Crick base pairs

(Sponer et al. 2005a, b, c, 2007, 2009; Vokacova et al. 2007; Mladek et al. 2009;

Sharma et al. 2010a, b). For some base-pairing geometries, in spite of the use of

geometrical constraints, full agreement with experimental structures was not

obtained, even when taking into account the range of geometries observed experi-

mentally. In these cases, caution is warranted when interpreting the interaction

energies obtained. Thus, in some published work, energies are reported for

structures that do not correspond to geometries seen in real RNA molecules,

including changes in hydrogen-bonding patterns and deviations in intermonomer

distances. Readers should always carefully examine the geometries used in QM

calculations when evaluating the interaction energies obtained. The uncertainty in

geometry concerns only some base-pairing patterns. Often, it is due to differences

between the geometries of relaxed structures, calculated in isolation, and the

geometries adopted by the same interaction in the context of intact, folded and

solvated RNA molecules.

12.2.5 Advantages and Disadvantages of QM Methods

Although the gas-phase nature of QM computations provides the advantages of

accuracy and completeness, it also poses certain disadvantages. The primary

disadvantage is that the results of gas-phase calculations, although very accurate

per se, are difficult to extrapolate to the solution state, to allow comparison with

experimental data of nucleic acid stabilities in biologically relevant states. The

experimental stabilities arise from the complex and context-dependent interplay of

the intrinsic forces, which individually can be determined accurately by QM

methods, with all the other effects that contribute to stability in solution

environments, including solvation-related effects and entropy effects. In fact, the

intrinsic contributions can be entirely masked by these other effects.

Nonetheless, the QM methodology has the advantage that it is the only tool that

can reliably characterize the intrinsic conformational energetics of nucleic acid

fragments and their interactions. Atomic-resolution structural studies reveal

geometries but do not directly yield interaction energies. When two chemical

functional groups are in contact in a structure, this does not necessarily mean

there is a substantial attraction between them, attributable to the electronic
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structure. While solution thermodynamic (TD) measurements of nucleic acid

stabilities provide key data for algorithms that predict secondary structures

(Mathews et al. 1999; Mathews and Turner 2006), these measurements can only

capture the overall stabilities associated with the studied systems and not the

intrinsic base-stacking or base-pairing energies. It is often implicitly assumed in

the literature that the trends in nucleic acid TD measurements can be interpreted in

terms of the intrinsic interactions, even though the measurements cannot be

decomposed into individual contributions. In fact, the relationship between the

TD data and the strengths of intrinsic interactions is not known and has never

been systematically investigated. When a meaningful correlation does not exist

between TD data and the intrinsic forces, as is often the case, this should be clearly

stated, to avoid explanations that are inconsistent with the basic physics of molecu-

lar interactions. The transferability of TD data to different systems, contexts or

experimental conditions, where the balance of forces differs from the original

measurements, is limited, because we do not know the balance between the intrinsic

forces and extrinsic contributions. In fact, we remain far from achieving a true

understanding of the factors that contribute to the measured TD data and parameters

for RNA structure formation (Shankar et al. 2006; Siegfried et al. 2007; Hammond

et al. 2010; Reblova et al. 2010). Interestingly, modern QM results obtained on

these systems are generally not mentioned in the TD literature.

In summary, understanding the link between direct base-to-base interactions and

the TD stabilities of nucleic acids remains a major challenge to which computa-

tional approaches can contribute (Yildirim and Turner 2005, Yildirim et al. 2009;

Kopitz et al. 2008; Koller et al. 2010). The result could improve transferability of

parameters, which is crucial for structure prediction (Yildirim and Turner 2005).

Achieving reliable and quantitatively correct descriptions of the intrinsic

interactions constitutes an important first step in this direction.

12.2.6 Comparison of QM Calculations to Gas-Phase
Measurements of Nucleic Acid Interactions

QM calculations can only be compared directly with gas-phase association studies.

The major advantages of QM calculations of biomolecular fragments over related

gas-phase spectroscopic measurements include (1) that QM calculations allow one to

simultaneously obtain structures and energies, which is not possible using any known

experimental technique, and (2) that QM calculations allow one to directly investi-

gate structures and geometries that are relevant to biology, by matching the

geometries of the studied fragments to those observed in the intact biomolecules.

By contrast, gas-phase experiments typically report on global equilibriumminima of

the fragments of interest in the gas phase, which may be quite different from the

geometries actually adopted in functionally relevant, macromolecular contexts. Field

ionization mass spectrometry, first developed in the 1970s, is the only available
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experiment for measuring the enthalpies of nucleobase complexes in the gas phase,

but it does not provide any information about their geometries (Yanson et al. 1979).

Moreover, this experiment generally reflects amixture of diverse structures and, thus,

not only the expected Watson–Crick arrangement, as subsequently demonstrated by

theoretical QM and force-field simulation studies (Kratochvil et al. 1998, 2000). The

subsequent attempt to measure the energetics of base pairs in the 1990s using IR laser

desorption into molecular beam expansions completely failed to achieve thermody-

namic equilibrium, and the results were in striking disagreement with the earlier mass

spectrometry data, as well as with QM data (Dey et al. 1994). These results were

subsequently invalidated (Hobza et al. 1996). While the most advanced current

experiments, based on laser desorption and IR–UV spectroscopy, do not report the

energetics of base pairing, they do provide indirect information about the populated

structures (Nir et al. 2000), although with some obvious limitations: The structures

populated in the gas-phase experiments are not always the biologically relevant ones.

For example, G and C nucleobases form rare tautomers in the gas phase that they do

not form at all in polar solvents. The process by which the biomolecular building

blocks are introduced into the gas phase (such as laser desorption) can also affect the

structures observed in these experiments. Frequently, this generates excited state

intermediates. Interactions that are important in the liquid phase, for example, base

stacking, may not be significantly populated in the gas phase and, thus, are not

detected spectroscopically. Given the flexible nucleic acids backbone, it is virtually

impossible to execute gas-phase experiments in a manner that samples biochemically

relevant backbone geometries.

In summary, QM is the only technique that can provide the intrinsic energetics of

the nucleic acid molecular building blocks. The most accurate contemporary QM

methods achieve an “expected accuracy” of ~0.5 kcal/mol for base-pairing or base-

stacking interaction energies. Expected accuracy means that it is a qualified esti-

mate with respect to the hypothetical (and intrinsically unknowable) values that can

only be obtained by fully converged QM calculations. For comparison, optimal

values of base-pair stacks are around �10 kcal/mol, while H-bonded base pairs are

typically in the range from �10 to �30 kcal/mol. For comparison, the interaction

energy of a water dimer in the gas phase, representing one hydrogen bond,

is ~�5 kcal/mol (Feyereisen et al. 1996). For simple systems, such as the water

dimer, where (relatively) unambiguous experimental energy data are available, the

agreement between contemporary theory and experiments is, in fact, almost perfect.

12.2.7 Inclusion of Solvent Effects in QM Calculations

Inclusion of solvent effects in QM calculations is possible, but such calculations do

not achieve the quality, accuracy, or reliability of gas-phase computations (Miller

and Kollman 1996; Tomasi et al. 2005; Klamt et al. 2009). Typically, continuum

solvation methods are used to mimic the solvent screening of electrostatic

interactions. Alternatively, a small number of explicit water molecules are included
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to model key water molecules bridging nucleobases or hydrating cations. High-

quality calculations show that polar solvent molecules generally do not substan-

tially perturb the nature of intrinsic molecular interactions (i.e., the direct

interactions between the biomolecular subsystems), although they do tend to

electronically polarize the solute molecules. However, the added solvation free

energy dramatically affects the overall free energy balance. For example, solvent

screening erases large portions of the stabilization of base pairs arising from

H-bonding, which is largely an electrostatic effect, and eliminates the effect of

electrostatics on the dependence of base-stacking energy on the twist angle between

the in-plane dipoles of two stacked bases. In other words, the coulombic parts of

these interactions are counterbalanced by the solvent screening: The intrinsic

base–base electrostatic interaction is still present but is mirrored by the energeti-

cally opposing term due to solvation energy. Base stacks with optimized intrinsic

electrostatic terms have worse solvation energies than stacks with repulsive intrin-

sic electrostatics. The variations in the intrinsic and solvation electrostatic terms

cancel each other (Florian et al. 1999). Water also suppresses the capabilities of

guanine and cytosine to form rare tautomers, among other examples of solvent

effects (Colominas et al. 1996). The recent prediction that guanine is surprisingly

deprotonated in water at its N1 position (shifting the proton to N7) is example of

incorrect solvent calculations (Hanus et al. 2003). It is very unlikely that tautomer

species are substantially populated in biochemically relevant environments. Some

nucleobases such as isoguanosine can readily form tautomers in water, but these

nucleobases were rejected by evolution (Blas et al. 2004). These issues need to be

considered when interpreting and extrapolating from QM calculations to experi-

mental observations. Unfortunately, as noted above, the values of hydration

energies obtained by classical as well as QM-based continuum solvent approaches

are quite sensitive to the specific parametrization, including the choice of atomic

radii. Consequently, we presently lack reliable methods for obtaining consistent and

accurate estimates of hydration energies that are unambiguously applicable to base-

pairing and base-stacking interactions inside nucleic acids. In the simplest QM

approach to solvation, the model complex, for example, two paired or stacked

bases, is fully immersed in a continuum solvent, parametrized to model bulk water.

This leads to almost complete counterbalancing of the electrostatic interactions.

However, within large nucleic acid complexes, the bases are less exposed to

solvent, and we do not presently have any method that adequately accounts for

local structural context to allow us to confidently study the effect of solvent

screening within nucleic acids.

In summary, our current options for modeling solvent effects using continuum

approaches are far from satisfactory. Classical continuum solvent calculations for

modeling nucleic acids, like those known as MM–PBSA schemes (“molecular

mechanics Poisson–Boltzmann surface area”) (Kollman et al. 2000), are inherently

inaccurate and should be used with caution (Ditzler et al. 2010). In light of these

limitations, the best choice may be to avoid biasing accurate QM calculations by

including inherently inaccurate solvent corrections and instead to interpret the QM

results in light of genuine gas-phase data. However, there are situations where at
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least some inclusion of solvent effects is unavoidable, for example, in studying

ionic systems, which contain a net electrical charge and which in the gas phase are

obviously dominated by the electrostatic terms, an unrealistic situation for nucleic

acids. Unfortunately, even the single negative charges of individual phosphate

groups severely compromise our ability to carry out gas-phase calculations in a

way that yields biologically relevant results. Many computational scientists carry

out QM computations on larger and larger systems, in the belief that increasing the

number of atoms increases the biological relevance of the calculations. However,

this is not always the best choice, as increasing the size of the system may amplify

rather than reduce the bias arising from the incompleteness of the studied system

(Mladek et al. 2010). For example, more transferable QM results are obtained for

base pairs by using model systems consisting of two bases rather than two complete

nucleotides, including both phosphate groups.

12.2.8 Quality of QM Calculations

Quantum chemical calculations are based on solving the time-independent

Schr€odinger equation. The aim of the calculations is to achieve the highest possible

accuracy and most physically complete description of the system in a given

geometry or set of geometries. However, there is an unavoidable trade off in

pursuing these goals: On the one hand, on smaller systems, accuracy superior to

any other experimental or theoretical method can be achieved. The best QM

methods achieve spectroscopic accuracy. On the other hand, this may come at the

cost of omitting the larger molecular context.

Our ability to carry out high-quality QM calculations is the result of advances in

computer technologies, both hardware and software. The first truly modern com-

putations of base-pairing and base-stacking interactions between two nucleobases

were published around 1995 (Hobza et al. 1995; Sponer et al. 1996a, b, c).

Previously, such computations were simply not feasible.

The wider scientific community recognized the advances in ab initio and DFT

QM techniques that made calculations such as these possible by awarding the Nobel

Prize in Chemistry in 1998 to J.A. Pople and W. Kohn for establishing the basic

foundations of quantum chemistry (http://nobelprize.org/nobel_prizes/chemistry/

laureates/1998/). This award was made just a few years after the first reliable

computations on chemically interesting systems became feasible. In fact, the

overall impact of quantum chemistry in contemporary science is considerably

larger than the impact of force-field modeling and molecular dynamics simulation.

Moreover, the field has seen a steady improvement of available methods. Since

the middle 1990s, the application of QM methods has become standard practice

in many areas of science, as an indispensable complement to experimental

approaches, often assisting experimentalists in identifying interesting systems for

study. However, QM methods are less frequently applied to structural biology,

largely because of the complexity of the systems of interest to this field. In addition,
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structural biologists are generally less aware of the capabilities of QM methods and

tend to turn to force-field modeling and simulation.

To apply QM to questions relevant to structural biology, the modeled system

must be carefully designed, an adequate level of QM treatment must be selected,

and the resulting data must be properly interpreted, based on in-depth knowledge of

the experimental system of interest. With the ready, off-the-shelf availability of

powerful computers and state-of-the-art software codes, anyone can carry out QM

computations of biomolecular interactions. However, lack of expertise may lead to

errors, including use of inappropriate methods, design of incorrect or irrelevant

systems, and invalid extrapolation of the results to the experimental situation. Such

errors are not uncommon in the contemporary literature and have contributed to the

perception that QM results are not particularly useful in structural biology. How-

ever, the fault lies not in the methodology itself but in errors in its application. We

refer the reader to specialized reviews for technical details regarding how to

appropriately execute QM calculations relevant to nucleic acids (Sponer and

Lankas 2006; Banas et al. 2009). In summary, unlike the results of classical simu-

lations, QM calculations of nucleic acids are not directly comparable to biologically

relevant situations. On the other hand, simulations are not able to achieve the

accuracy of QM calculations.

12.2.9 Physicochemical Interpretation and Meaning
of Ab Initio QM Results

As noted above, high-level QM calculations are carried out on model systems of

interest, for example, stacked or paired bases in complete isolation (“gas phase”),

and thus, the calculations reflect the system’s intrinsic properties. For H-bonded

base pairs, we usually first determine the optimal geometry of the base pair using

gradient geometry optimization of the electronic energy of the whole system

(Sponer et al. 2004). In some cases, the optimization should be executed while

imposing constraints to model geometries observed experimentally.

For base stacking, global gas-phase optimizations generally result in biochemi-

cally irrelevant geometries (Sponer et al. 1996a, b, c, 2001, 2008; Hobza and

Sponer 1999). Thus, stacking calculations are carried out for geometries

constrained to remain close to experimentally observed stacking interactions.

Alternatively, sets of calculations are carried out, with systematic variation of

geometric parameters, to map out a selected region of the potential energy surface

of the interacting dimer.

After the desired geometry for the interacting bases is calculated or selected, the

interaction energy is evaluated. The interaction energy, DEAB, between two

subsystems, A and B, in the given geometry, is the energy difference between the

total electronic energy of the dimer in that geometry, EAB, and the electronic
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energies EA and EB of isolated subsystems separated to infinity where they do not

interact (12.1).

DEAB ¼ EAB � EA � EB: (12.1)

The interaction energy reflects the electronic part of the molecular interaction,

which is chemically the most interesting contribution to the stabilization. This

number reports, for a given geometry, on the interaction between the electronic

structures of the two monomers. The interaction energy calculated in this manner is

equivalent to the energy calculated with force-field methods using the same equa-

tion (12.1). However, the QM method is more rigorous and complete than any

force-field evaluation. Occasionally, the view is expressed that QM calculations are

irrelevant for biological applications because they are primarily designed to capture

specific or marginal quantum effects. This is a misunderstanding, since QM

calculations derive the fundamental energetics, based on first principles, including

all electronic contributions, and with an accuracy that considerably exceeds that of

force-field calculations. In effect, QM calculations provide a tool for determining

the total electronic structure energy, in a given geometry, of hypothetical gas-phase

systems at absolute zero (0 K), from which electronic energy differences between

different geometries can be determined.

12.3 Applications of Ab Initio QM Methods

12.3.1 Fundamental Understanding of the Nature
of Base-Stacking Interactions

We illustrate the range of applicability of QM methods using several examples

from published research, starting with base-stacking interactions, for which QM

calculations were instrumental in obtaining a correct theory (Sponer et al. 1996a, c,

2001, 2008; Hobza et al. 1997; Hobza and Sponer 1999). At the beginning of the

1990s, several mutually contradictory theories of base stacking were circulating in

the literature. One common view proposed that base stacking is a complex interac-

tion in which the p-electron clouds of the bases play an integral role that cannot be

properly captured by standard molecular mechanics force fields with in-plane

charges (Hunter 1993). In 1996, high-level QM calculations demonstrated, quite

unexpectedly, that base stacking can, in fact, be well described to a good approxi-

mation as a combination of the three most common contributions to molecular

interactions: electrostatic attraction, dispersion attraction, and short-range exchange

repulsion (Sponer et al. 1996a, c). The calculations ruled out the existence of any

additional, specific “p–p” interactions that distinguish aromatic stacking from

ordinary, nonaromatic van der Waals interactions. Extensive comparisons of rigor-

ous QM calculations and simple force-field calculations lacking any “p–p” terms
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showed amazingly good agreement over the whole potential energy surface. The

calculations demonstrated that base stacking can be described quite well using force

fields that combine the van der Waals interaction, represented by a Lennard-Jones

potential energy term, with the electrostatic interaction, represented by the Cou-

lomb potential calculated using an appropriate set of atom-centered point charges.

These results did not imply that the derived force fields are perfect, but they did

provide the first theoretical verification supporting the qualitative correctness of

AMBER type of force field, which now dominates contemporary molecular

modeling (Cornell et al. 1995; Hobza et al. 1997), a significant theoretical accom-

plishment. These earlier, reference QM calculations were recently repeated with

much improved methods (Jurecka et al. 2004; Sponer et al. 2006; Morgado et al.

2009). Although the calculated energies were quantitatively shifted to somewhat

more stabilizing values, due to full inclusion of the dispersion energy, the basic

physicochemical picture of base stacking remains unchanged in the light of the new

calculations (see Fig. 12.1). This example nicely demonstrates the convergence of

results obtained by modern quantum chemistry.

12.3.2 Elucidation of Role of Amino-Group Pyramidalization
in Base Pairing

Some of the first QM studies of isolated nucleobases to include electron correlation

revealed that the geometries of A, G, and C exocyclic amino groups are intrinsically

nonplanar, adopting a partially sp3 pyramidal geometry (Sponer et al. 1994). It took

almost a decade to measure this theoretically predicted effect by an appropriate

experiment, using IR spectroscopy and cooling to 0.37 K in liquid helium

nanodroplets (Dong and Miller 2002). Amino-group pyramidalization effects are

entirely neglected by developers of contemporary molecular mechanical force

fields and are rarely considered by structural biologists, who assume that amino-

group hydrogen atoms do not substantially deviate from the base planes, even in the

presence of attractive out-of-plane interactions that can be readily inferred from

structural data. The amino groups that are involved in primary in-plane H-bonds

are, of course, planarized. This is the case for the amino groups in the canonical cis
Watson–Crick (cWW) AU and GC Watson–Crick base pairs, where H-bonding

shifts the electronic structure to essentially complete sp2-hybridization of the amino

nitrogen orbitals. However, the QM calculations showed that amino-group

pyramidalization can stabilize certain less frequent interactions. An important

example for RNA 3D structure is the intrinsically nonplanar cWW AG base pair,

where, in a planar arrangement, the unpaired amino group of guanine would interact

unfavorably with the C2–H group of adenosine. The base pair responds by large

propeller twisting about an axis running along the Hoogsteen edges of the paired

bases, shifting the guanine amino group away from the plane of the adenine, and
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Fig. 12.1 (a) Variation of the base-stacking energy as a function of the twist angle between the

nucleobases in A/A, U/U, C/C, and G/G base–base stacks. The actual twist angle is illustrated by

the geometries of A/A stacks. The solid lines represent force-field calculations using the Cornell

et al. (1995) (AMBER) MM force field. The quantum chemical data (represented by filled
diamond) were obtained at the MP2 level of theory and were extrapolated to the complete basis

set (CBS) of atomic orbitals. The energy data also include correction for higher-level electron

correlation effects. (b) Dependence of the stacking energies on the quality of the theoretical

approximation used. Stacking energies were computed for antiparallel undisplaced face-to-back

arrangements of A/A, U/U, C/C, and G/G stacks. The following theoretical approaches were

considered: MP2/6-31G*(0.25), MP2/aug-cc-pVDZ (ADZ) calculations, MP2/CBS calculations

using aug-cc-pVDZ ! aug-cc-pVTZ (D ! T) and aug-cc-pVTZ ! aug-cc-pVQZ (T ! Q)

extrapolations, and the final MP2/CBS T ! Q calculations corrected for the CCSD(T) contribu-

tion with small basis set (CBS(T)). AXZ(X ¼ D,T,Q) ¼ aug-cc-pVXZ (Sponer et al. 2008)
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resulting in pyramidalization of this amino group, as shown in Fig. 12.2. This

characteristic conformation has been seen many times in both RNA and DNA X-ray

structures but, to the best of our knowledge, in all these studies, the nonplanarity was

incorrectly attributed to the effects of base stacking, under the assumption that the base

pair is intrinsically planar (Prive et al. 1987; Ennifar et al. 1999).

In reality, base stacking opposes the large, observed propeller twisting,

because the intrinsic propeller twist of cWW A/G is so large that it reduces

intrastrand stacking with the adjacent canonical base pairs, which have smaller

propeller twist. By contrast, the canonical Watson–Crick base pairs are intrinsi-

cally planar, and their modest propeller twist is inherent to the A-RNA helix

topology, as the intrastrand overlap of bases improves with helical twisting.

Furthermore, interpretations of the structural studies overlooked the formation

of stabilizing, out-of-plane, cross-strand H-bonds between the guanine 2-amino

group and the O2 keto groups of pyrimidines of adjacent Watson–Crick base

pairs. This example shows that incorrect theoretical premises concerning intrinsic

interactions may easily lead to incorrect interpretations, even of local molecular

interactions evident in atomic-resolution X-ray structures. In fact, out-of-plane

Fig. 12.2 The amino groups of nucleic acid bases are intrinsically nonplanar, that is, their

nitrogens adopt a partial sp3 hybridization in isolation (a) Pyramidalization means that the sum

of the three valence angles around the amino-group nitrogen is less than 360� and a lone electron

pair develops above the nitrogen. The amino groups of isolated nucleobases have two Cs-

symmetry-related (inverted) minima, with the planar arrangement being the transition state

between them. The balance between sp2 and sp3 hybridizations is very sensitive to molecular

interactions with other molecules, that is, the amino groups are very flexible. The amino groups

can form out-of-plane H-bonds as well as amino-acceptor interactions. Molecular mechanics force

fields do not allow to describe the flexibility of the amino-group electronic structure and typically

enforce the sp2 planar arrangement. (b) The cWW AG base pair is intrinsically nonplanar, with

propeller twisting roughly around the O6(G) and N6(A) axis. This, together with amino-group

pyramidalization, alleviates repulsion between H2(A) and the amino group of G. The nonplanar

amino-group hydrogens can then form out-of-plane H-bonds with O2 of GC or AU base pairs

stacked below, as visualized in (c), where the base-pair geometries are taken from experimental

structure while hydrogen positions are determined via QM (Sponer et al. 2003)
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H-bonding interactions involving pyramidalization of 2-amino groups have been

shown to affect the degree of AG to GA covariation in RNA sequences in motifs

that form cWW base pairs and to contribute to the context dependence of the

geometry of the resulting base pair (Sponer et al. 2003), as AG base juxtapositions

adjacent to helices can result in other kinds of base pairs, for example, trans
Hoogsteen/sugar edge (tHS), depending on context (Yildirim et al. 2009). Other

interactions are also known to profit from activation of the partial sp3

hybridization of the exocyclic amino nitrogen atoms of bases, which may even

involve weak amino-acceptor interactions (Sponer and Hobza 1994a, 1994b;

Luisi et al. 1998; Vlieghe et al. 1999).

12.3.3 Applications of QM Calculations: Molecular Mechanics
Force Fields

As noted above, QM calculations play crucial roles as sources of reference data

for the validation and reparametrization of molecular modeling force fields

(Hobza et al. 1997). For current pair-additive force fields, the largest challenge

is the parametrization of the torsion profiles. Bond and angle parameters for force

fields can be derived from structural data, IR, and microwave spectroscopy, in

combination with high-level QM calculations. To determine intermolecular

parameters, relatively straightforward protocols are available. Van der Waals

radii and well depths can be derived by matching experimental densities, while

atomic charges can be parametrized by fitting to QM-derived electrostatic

potentials and energies.

Fitting of the torsional parameters, on the other hand, is difficult because their

actual physical meaning is not clearly defined. They do not directly correspond to

real electronic structure contributions but rather represent ad hoc functions used

to tune the behavior of the force field. Medium-level QM calculations were used to

derive the initial torsional profiles of the Cornell et al. (AMBER) force field, which

is most widely used to model nucleic acids. Recently, modern electron correlation

QM calculations were used to further refine the torsion profiles of the force field.

The a/g torsion profiles were reparametrized in the parmbsc0 force field to prevent

the ladder-like degradation of B-DNA in 10+ ns simulations (Perez et al. 2007).

This reparametrization is valid for both DNA and RNA. Also, the w torsion profile

was reparametrized for RNA in the parmwOL3 force field to prevent ladder-like

degradation of RNA on even longer time scales, as shown in Fig. 12.3 (Banas et al.

2010).

Finally, QM calculations can be combined with empirical force fields, in so-

called quantum-chemical/molecular mechanical (QM/MM) “hybrid” approaches,

to model molecular and chemical dynamics. In these methods, a small but crucial

part of the system, for example, the active site of an enzyme, where chemical
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reactions occur, is treated using QM methods while the rest of the system is

treated using a classical force field. For RNA, this approach is especially use-

ful for studies of ribozyme reaction mechanisms [for a recent review, see (Banas

et al. 2009)].

Fig. 12.3 The performance of molecular simulations force fields is substantially affected by

dihedral terms, which currently are parametrized using advanced QM methods. The figure

shows the full energy profile (calculated by inclusion of a Poisson–Boltzmann water model) of

rotation around the glycosidic bond for (a) rA and (b) rC. The black curve is the original Cornell
et al. force field (parm94–parmbsc0 versions); the red curve is its major refitting using modern QM

methods (parmwOL3 version). Note the difference in the balance of the anti to high-anti regions,
which is critical for stabilizing long RNA simulations, and the change of the position of the syn
minimum, which is critical for stabilizing UNCG tetraloops and eliminating the syn vs. anti bias of
the original force field (Banas et al. 2010)
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12.3.4 Comparison of QM Calculated Energies and Experimental
Gas-Phase Energies

The evaluation of the interaction energy corresponds to a hypothetical in vacuo

dimerization process at absolute zero (0 K) temperature, during which the

interacting monomers are brought from an infinite separation to the specific inter-

action geometry. Geometries obtained by gradient optimization correspond to local

or global electronic energy minima. However, the interaction energy can be calcu-

lated for any geometry of interest. In practice, QM methods are used to assess the

interaction energy for hundreds or even thousands of configurations, since it is a

unique function of the xyz coordinates of the molecular complexes under investiga-

tion. What is the relation of such calculations to actual experiments carried out in

the gas phase? The interaction energy in minimized structures is related to, but not

identical with, the gas-phase binding energy, D0, and the enthalpy of formation of

the complex. Direct comparison of the energy calculated by QM would require an

experiment conducted at absolute zero. The energy measured in such an experiment

would include, however, the zero-point vibrational energy (ZPE). The ZPE can be

calculated, usually within the harmonic approximation, by evaluation of second

derivatives of the energy at the minimum-energy geometry. For comparison to

experiments conducted at nonzero temperatures, the enthalpy and entropy

contributions need to be calculated and added to the QM result. This calculation

is straightforward when assuming harmonicity and the rigid-rotator approximation

(Hobza and Sponer 1999) but becomes quite tedious when it is necessary to

consider the anharmonicity of vibrations around minima (Spirko et al. 1997) or

competition between several structures on the free energy surface (Kratochvil et al.

1998, 2000).

12.4 QM Calculations of RNA Base Pairs

12.4.1 Methodology for QM Calculations of RNA Base Pairs
Involving the Sugar Edge

RNA nucleobases present three edges for base pairing: the Watson–Crick (W),

Hoogsteen (H), and sugar (S) edges. Pairing can occur in two relative orientations

of the glycosidic bonds, cis and trans, resulting in 12 basic types or geometric

families of base pairs (Leontis and Westhof 2001, Leontis et al. 2002). A unique

feature of RNA structure is the occurrence of a large variety of stable base-pairing

interactions. Six of the 12 standard geometric base-pair families involve the sugar

edge of at least one of the interacting nucleotides. As these interactions are unique

to RNA, they are of special interest and all six have been subjected to quantum

chemical calculations. When only one sugar edge is involved, it is sufficient for QM
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calculations to treat model systems consisting of a base and a nucleoside. If the

interaction involves two sugar edges, then two nucleosides are needed. Phosphate

groups are omitted for the reasons discussed above. All geometry optimizations and

subsequent interaction energy calculations are carried out in the gas phase. In some

cases, the interaction energies have been reevaluated with inclusion of solvation

effects in the form of a continuum dielectric, which compensates for the electro-

static part of the intermolecular stabilization, as this tends to be overestimated by

gas-phase calculations compared to the aqueous solution state, as discussed above

in Sect. 12.2.7.

12.4.2 Results of QM Computations on RNA Sugar-Edge Base
Pairs

We begin this section by explaining how QM results obtained for RNA base pairs

are interpreted. It is well established that the biological role and frequency of

occurrence of different RNA base pairs are primarily determined by their shapes,

at least when their energies are comparable. However, the interaction energy

(which is a measure of the intrinsic in vacuo stability of the H-bonding interactions)

also plays an important role in determining molecular structure and functional

properties. Since the RNA base pairs from different geometric families are very

diverse in shape and occur in different structural contexts, we do not expect to

observe a direct correlation between interaction energies and frequencies of occur-

rence of base-pair families per se. However, we suggest that energies can be

important as secondary factors, especially when considering mutually interchange-

able isosteric and near isosteric base pairs belonging to the same geometric family.

In any case, it is useful to know their relative stabilities for a more complete

understanding of their roles in functional RNA molecules.

As discussed below, computations also provide insights regarding the nature of

these base-pairing interactions. The interaction energy consists of two fundamental

parts: the Hartree–Fock (HF) component and the electron correlation component.

The electron correlation term consists mainly of the dispersion attraction, which is

entirely absent from the HF term, supplemented by some corrections to the other

contributions, including electrostatics, exchange repulsion, and induction, that are

at least partially accounted for by the HF term. The ratio of the electron correlation

component to the HF component thus provides an estimate of the relative

contributions of dispersion and electrostatics to base-pair formation. Since the

electrostatic component, as discussed above, is counterbalanced by solvent screen-

ing, while the dispersion energy is not, it is reasonable to suggest that base pairs

with considerable correlation interaction energy behave more hydrophobically

than base pairs clearly dominated by the HF term. Although we intentionally do

not try to quantify this feature, which can be context dependent, we can say that

the biological relevance of this distinction is that base pairs exhibiting more
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“dispersion” or “hydrophobicity” appear predisposed to form effective tertiary

interactions, as these interactions need to compete directly with solvation.

The QM studies we have carried out on RNA base pairs involving sugar–base

contacts confirm that the 20-OH moiety of ribose actively participates in stabilizing

these binding patterns. In addition, decomposition of the interaction energies has

revealed that electron correlation plays a more significant role in base pairing

involving the sugar edge of the nucleotides than in base pairs stabilized purely by

base–base contacts. For example, while in the G/C cWW base pair, the correlation

energy is only 10% of the total gas-phase interaction energy, in some sugar-edge

pairs, it ranges as high as 50%.

The QM calculations also give insights regarding the geometrical features of the

base pairs. For those base pairs where there is a good match between computed and

observed geometries, we can safely conclude that the observed geometries reflect

the intrinsic stabilities of the interactions. However, the more difficult it is to

computationally reproduce the geometry observed experimentally, the more likely

it is that the observed structures result from an interplay between the interacting

nucleosides and the surrounding structural contexts, which can include obligatory

interactions with a third nucleoside to form a base triple.

In fact, we find computationally that some sugar-edge base pairs are not stable

per se in their experimental geometries. In addition, the discrepancy between

computed and observed geometries may indicate the presence of less frequent

alternative geometrical substates which occasionally can form in some specific

contexts. Of course, all these situations need to be judged case by case as the

enormous diversity of the RNA base pairs precludes formulating a universally valid

relation between intrinsically preferred and observed structures.

The QM results obtained for base pairs involving the sugar edge are summarized

in Table 12.1. The results include intrinsically preferred structures and intrinsic

interaction energies and complement structural and frequency-of-occurrence data

obtained by structural bioinformatics. This catalogue can be consulted to obtain

insights into the intrinsic features of these base pairs. Points of agreement, as well as

disagreement, between the computed and observed structures are equally important

and provide information about a given geometric base-pair family (type) or a

specific base combination forming that base-pair type.

In the following sections, we consider each sugar-edge family in turn. The cited

literature can be consulted for more details.

12.4.2.1 The cis Watson–Crick/Sugar-Edge (cWS) Base-Pair Family

At this point, all 16 members of the cWS family combinations have been observed

in RNA crystal structures (Stombaugh et al. 2009), but when the quantum chemical

investigation was carried out (Sponer et al. 2005b), only 13 were known; 12 of these

were found by QMmethods to be intrinsically stable although two of them required

a constrained optimization. By “intrinsically stable,” we mean that the geometry

obtained for the base pair by unconstrained, gas-phase optimization agreed with the
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experimentally observed structure or that, at most, a physically justified constraint

sufficed to maintain the interaction geometry during the optimization. Intrinsically

unstable base pairs are those for which it is difficult to reproduce the experimentally

observed structure by QM calculation in the gas phase, even using constraints. This

is taken as evidence that the observed structure is substantially influenced by factors

“external” to the studied base pair, which by definition includes only the interacting

bases and sugars. This external factor could be an inserted, structural water mole-

cule, an extension of the base pairing by a stabilizing BPh (base-phosphate) interac-

tion (utilizing one of the participating nucleotides), or interaction with a third base to

form a base triple. Indeed, the cWS G/rG base pair utilizes water insertion for

stabilization. With the exception of cWS G/rU, the base-pairing energy ranges

between �16 and �22 kcal/mol, which is comparable to the interaction energy

computed at the same theoretical level for the canonical (cWW) A/U base pair

(�15.3 kcal/mol) but markedly weaker than that obtained for the G/C cWW base

pair (�29.4 kcal/mol). Thus, the majority of the base pairs belonging to the cWS

family can be considered as medium strong. The only exception is the G/rU base pair,

which is classified as weak (�9.4 kcal/mol), comparable, for example, to cWW and

tWW U/U base pairs. In this family, the variations in the sugar–base and base–base

contributions to the interaction energy compensate each other, and as a result, with

the exception of G/rU and G/rG, the interaction energies fall within a fairly narrow

range. Thus, the base pairs of the cWS family are approximately isoenergetic (see

Table 12.1). The most frequent base combinations in this family are cWS A/A, A/C,

and A/U, which have comparable energies.

12.4.2.2 The trans Watson–Crick/Sugar-Edge (tWS) Base-Pair Family

The tWS base-pair family includes 14 members, of which only 10 structures were

known crystallographically at the time the QM calculations were carried out. The

calculations reproduced their geometries and predicted stable structures for the

remaining members of the family (Sponer et al. 2005c), all of which have now been

observed in crystal structures (Stombaugh et al. 2009). In some of the crystal

structures, the C20-endo sugar pucker occurs. In these cases, QM calculations

were done considering both the C20-endo and C30-endo arrangements, and it was

found that C30-endo was in all cases more stable in isolation. Further, for some tWS

base pairs, two structural isomers were found, depending on the orientation of the

20-OH group. In one isomer, the hydroxyl group is involved in a conventional

H-bond; in the other, it forms an amino-acceptor contact with C(N4) or A(N6) of

the other base as shown in Fig. 12.4. Although the X-ray geometries in all cases

support the conventional binding, the amino-acceptor variant cannot be ruled out on

the basis of the energy data.

The energies of the tWS base pairs range from �8 to �28 kcal/mol (see

Table 12.1), a considerably wider range than observed for cWS pairs (�16 to

�22 kcal/mol, see above). Thus, some tWS base pairs are almost as stable as the

cWW G/C base pair (�29.4 kcal/mol when evaluated with the same method)

264 J. Šponer et al.



whereas others are markedly weaker than the A/U cWW pair (�15.3 kcal/mol),

including A/rA, C/rC, C/rU, and U/rA. The characteristic C10-N distances adopted

by tWS base pairs in experimental structures (ranging from 6.5 to 8.7 Å) as well as

in the calculated models (ranging from 6.6 to 8.5 Å) fall within a tighter interval

than for the cWS base pairs, which range from 5.2 to 9.3 Å in structures and from

5.3 to 8.7 Å in the gas-phase calculations. The most common base combinations by

far in the tWS are A/rG, which usually is part of a base triple, and G/rU, which

occurs in the stable UNCG tetraloops, with the G in the syn configuration.

12.4.2.3 The cis Sugar-Edge/Sugar-Edge (cSS) Base-Pair Family

The geometries and intrinsic stabilities of the cSS base pairs are dictated by a

common structural motif, which includes the 20-OH groups of both riboses and at

least one of the nucleobases. For a majority of these base pairs, we find fair

agreement between the computed and experimental geometries, although larger

deviations occur between theory and experiment for experimental geometries that

were not known at the time the quantum chemical calculations were made (Sponer

et al. 2005a). These calculations will need to be revisited in future studies.

Interaction energies in this family are substantial, ranging from �15.7 to

�26.9 kcal/mol. The most stable pair is rC/rG (�26.9 kcal/mol), followed by

rG/rG (�24.3 kcal/mol) and the group rG/rA, rA/rG, rG/rC, and rU/rG (�23 � 1

kcal/mol). Note that all these interactions involve at least one purine, Y/Y cSS

pairs being extremely rare or not observed. Thus, the observed cSS base pairs

provide strong interactions. They are found throughout structured RNA molecules,

stabilizing tertiary architectures. The most common cSS base combination is rA/rC,

which almost invariably occurs as part of a base triple, as in fact do most cSS pairs

(see Table 12.2).

Fig. 12.4 Conventional (a) and amino-acceptor (b) binding modes in the tWS C/rG base pair. The

dotted lines indicate key H-bonding contacts. Geometries were obtained from optimization at

B3LYP/6-31G** level in gas phase (Sponer et al. 2005a, b, c)
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12.4.2.4 The trans Sugar-Edge/Sugar-Edge (tSS) Family

Only eight tSS base pairs have been observed in X-ray structures, and none others are

predicted. The fully optimized geometries of trans rA/rG, rG/rG, and rG/rC base pairs

preserved the main features of the corresponding crystal geometries. The computed

interaction energies (Sponer et al. 2005a) for these base pairs are rather substantial,

ranging from �14 to �21 kcal/mol. In contrast, upon geometry optimization, a

substantial alteration was observed for the less stable tSS base pairs (rA/rA, rA/rC,

rA/rU, and rG/rU), which mainly concerned the angle of their C10-N vectors. When

the crystal geometry was constrained during optimization, the intrinsic stabilities of

these four base pairs deteriorated substantially to �4 to �10 kcal/mol. This is

consistent with the experimental observations that the observed geometries are

stabilized by interactions with additional nucleotides. Thus, like other sugar-edge

pairs, the tSS base pairs largely do not form independent (self-structured) RNA

building blocks but should be considered parts of larger building blocks and motifs.

For example, in some A-minor motifs, the A simultaneously forms a cSS and a tSS

interaction with two cWW-paired bases, usually C and G. In fact, AC is the most

frequent cSS pair and AG the most frequent tSS pair (Stombaugh et al. 2009). Only

the G/G tSS base combination occurs to a significant extent as a free-standing base

pair (see Table 12.2). G/G, along with A/G, is calculated to be the most stable tSS

base combinations, with energies of about �21 kcal/mol each (Table 12.1).

In general, cSS and tSS interactions are primarily stabilized by the correlation

component of the interaction energy. This is reflected by the fact that in many SS

base pairs, the correlation stabilization exceeds the HF term. We can therefore

conclude that the SS interactions are considerably more hydrophobic than standard

base pairs, as the dispersion energy provides the leading stabilization force in many

SS base pairs. In combination with their structural versatility, this makes the SS

base pairs natural candidates for efficient tertiary interactions in RNAs.

12.4.2.5 The cis Hoogsteen/Sugar-Edge (cHS) Family

Except for two base combinations, all predicted members of this family have been

found in crystal geometries (Stombaugh et al. 2009). Base-pairing strengths in this

family vary over a very broad range, from �5.2 to �20.6 kcal/mol (Sharma et al.

2010b). The cHS base pairs are also dominated by the correlation component of the

interaction energy and therefore can be considered as more hydrophobic building

blocks of RNA architectures. They generally occur between adjacent nucleotides in

the sequence, in which case they form “platform” motifs involved in stabilizing

RNA architectures and mediating tertiary interactions by forming docking sites for

hairpin loops. It is evident that the platform base pairs need to be considered in

broader contexts, prompting additional QM computations now are under way

(Mladek et al. 2012).
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12.4.2.6 The trans Hoogsteen/Sugar-Edge (tHS) Family

The tHS base-pair family is sparser, having only ten base combinations that form

base pairs. These ten tHS base pairs form two distinct isosteric subfamilies. One

family has A or C as the Hoogsteen edge and the other has G or U. Base pairs in the

same subfamily are observed to exchange at corresponding positions in homolo-

gous RNA molecules (Stombaugh et al. 2009). Base pairs from different sub-

families are not isosteric and do not exchange one for the other. As in the tWS

base-pair family, base pairs of the first subfamily can form amino-acceptor contacts

between the base and the sugar. Importantly, these amino-acceptor base pairs

exhibit geometric parameters similar to those of the parent structures with conven-

tional H-bonds. Further, both the conventional and amino-acceptor variants possess

approximately the same intrinsic stabilities. Therefore, similar to the tWS base

pairs, tHS base pairing enables a rapid transition between the canonical and the

amino-acceptor variants. At the present time, the suggestion that there is some

involvement of amino-acceptor interactions in RNA base pairs remains largely

speculation. However, it is not clear whether experimentalists would notice such

interactions, if in fact they are present.

The three known members of the second subfamily (U/A, U/G, and G/G) do not

utilize the ribose in the pairing. They are stabilized by an H-bond donated by the

nucleobase of the sugar edge nucleoside to the exocyclic oxo group of the Hoogsteen

edge base. Among them, only the G/G pair exhibits considerable gas-phase stability.

In general, tHS base binding provides weak to medium intermolecular stabiliza-

tion in gas phase, in the range from �1 to �15 kcal/mol (Mladek et al. 2009). The

most stable member of the family is the tHS A/rG (“sheared” AG) base pair, with

MP2/aug-cc-pVDZ interaction energy of �15.1 kcal/mol (�16.7 kcal/mol with the

highest-accuracy method including the CBS extrapolation). Its stability is compa-

rable to that of the A/U cWW base pair (�15.3 and �17.0 kcal/mol with the MP2/

aug-cc-pVDZ and CBS reference methods, respectively). The A/G combination is

by far the most commonly observed tHS base pair in RNA molecules, and one of

the most frequent non-Watson–Crick base pairs regardless of base family

(Stombaugh et al. 2009). It is entirely isosteric with the less frequent tHS A/rA

base pair, which is intrinsically less stable, having a stabilization of�10.2 kcal/mol.

The difference in the frequency of occurrence of the tHS AG and AA base pairs

may be largely determined by the difference in their intrinsic base-pair stabilities.

The AG base combination constitutes almost 70% of tHS base pairs while AA, the

second most common, is only about 9% (Stombaugh et al. 2009).

Othermembers of the tHS family are considerably less stable. In continuum solvent

calculations, the tHS GG pair acquires significant stability, which, like that of tHS

AG, is comparable to the stability computed for theAUcWWbase pair. The rest of the

tHS base pairs are markedly less stable under the same conditions, although

AU constitutes about 8% of all tHS base pairs. In conclusion, the most frequently

observed member of the tHS base-pair family, also known as the “sheared AG base

pair,” exhibits prominent stability both in gas phase and in solution calculations.
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12.4.3 Implications for Force-Field Parametrizations

QM calculations provide genuine benchmarks for comparing the performance of

nucleic acid force fields. Significantly, the QM computations indicate that the

AMBER molecular modeling force field performs in a satisfactory manner for

base pairs involving the sugar edge (Sponer et al. 2005a, b, c), and this is reflected

in the generally good performance of AMBER in simulations of folded RNAs

containing these interactions (Ditzler et al. 2010). Sugar-edge base pairs are

characteristic features of RNA tertiary structures. Note that the interaction energies

reported here and in the original studies were obtained with the RIMP2/aug-cc-

pVDZ method, considered a medium-quality method by present-day standards

(Sponer et al. 2005a, b, c; Mladek et al. 2009; Sharma et al. 2010a, b). This method,

nonetheless, appears to be completely adequate for this purpose. Highest-accuracy

CBS energies for some non-Watson–Crick base pairs are also available in the

literature (Sponer et al. 2009).

In spite of these successes, the accuracy with which current force fields (includ-

ing AMBER) can evaluate intermolecular interactions is limited by the

approach: Molecular mechanical force fields approximate molecular interactions

using Lennard-Jones potentials featuring r�6 attractive and r�12 repulsive terms,

complemented by 1/r electrostatic terms calculated with atom-centered point

charges, where the atomic charges are derived to approximate the electrostatic

potential around the monomers. At H-bond distances and larger separations, the

classic coulombic term approximates the QM coulombic term rather well, while all

the other, very diverse QM terms must be effectively approximated by the Lennard-

Jones term. Note that the force field is inherently not able to capture any electronic

redistribution effects associated with intermolecular interactions. In addition, at

shorter separations, which are also sampled during MD simulation, the agreement

between the QM and classical electrostatic terms breaks down and the repulsive

term only crudely approximates the typically e�r behavior of the real contributions

due to overlap of the electronic clouds. It has been proposed that a better description

can be achieved by combining exponential short-range repulsion with damped

dispersion terms (Zgarbova et al. 2010).

12.5 QM Calculations of Tertiary Interactions

QM computations may also be useful in studies of H-bonded base triples and

quadruples (quartets). So far, only a limited set of computations has been reported,

for key tertiary interactions known as A-minor and packing (P-) interactions.

A-minor interactions are formed by adenine bases interacting via their sugar

edges in the minor grooves of canonical double helices (Nissen et al. 2001). In

an A-minor type I interaction, the adenine, which is generally presented for

interaction with the helix by a hairpin or internal loop, simultaneously forms a
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cSS pair with one base of the cWW base pair and a tSS pair with the other. In the

other highly conserved A-minor interaction (“type II”), the A forms a cSS pair with

one base of the cWW pair in the helix, usually a cytosine. In A-minor interactions,

there is a clear steric preference for adenine as the base interacting in the minor

groove over any other base (Nissen et al. 2001). The gas-phase-optimized geome-

try of the most conserved A-minor interaction (“type I”) perfectly matches the

crystal geometry (Sponer et al. 2007). In contrast, during gas-phase optimization of

the A-minor type II interaction, a significant structural alteration was observed.

However, addition of a water molecule to the computational model restored the

geometry suggested by X-ray structures. We also conclude that the A-minor type II

interaction clearly prefers participation of a water molecule when the primary

interaction is between adenine and cytosine (canonical A-minor type II motif). The

role of the water molecule is to mediate the contact between adenine and the

guanine of the G/C cWW pair. In the significantly less conserved A-minor type

0 and type III contacts, the adenine from the single-stranded segment interacts only

with one nucleotide of the Watson–Crick base pair. The A-minor type III interac-

tion is particularly weak and is considered to be the least specific and biologically

important. In these cases, structural water molecules had to be included in the

computational model to reproduce the crystal geometry in the gas phase.

Optimizations of the A-minor type 0 interaction geometry resulted in stable

structures both with and without structural water molecules, but both optimized

geometries deviated slightly from crystal structures.

The P-interaction brings together a G/U cWW (“wobble”) base pair and a cWW

base pair, usually, but not exclusively, C/G (Mokdad et al. 2006). The P-interaction

is stabilized by an extensive network of H-bonding interactions, and its optimized

geometry was almost identical to that observed in the crystal structure.

The direct (without water mediation) A-minor type I and II tertiary contacts are

very stable (interaction energies �31 and �26 kcal/mol) and are primarily stabilized

by the electron correlation interaction energy term (�17 and �16 kcal/mol). This

again indicates that the A-minor type I and II contacts are much more hydrophobic

than cWW base pairs, which makes them particularly suitable to form stabilizing

tertiary contacts, crucial for RNA architectures. The P-interaction is also very

strong (�25 kcal/mol) and is dominated by the correlation component of the inter-

molecular stabilization (�12.5 kcal/mol). Due to the active participation of the

20-OH of one or more riboses, the A-minor interactions as well as the P-interaction

are stabilized by a remarkably prominent electron correlation component. Thus, the

seemingly large energetic contribution of the electron correlation may be one of the

key physicochemical features that make the A-minor and P-interactions so promi-

nent in stabilizing RNA architectures.

The calculations provide insight into the physical chemistry of the molecular

interactions stabilizing the A-minor type I A/GC interaction, which consists of tSS

A/G and cSS A/C sugar-edge base pairs, in addition to the GC canonical pair. While

the tSS A/G interaction is substantially stabilized by the dispersion term, the

comparably stable cSS A/C interaction is much more electrostatic in nature.

Interestingly, a survey of X-ray structures reveals frequent water insertion in the
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A/C interaction (Razga et al. 2005), which indicates the capability of explicit

hydration to compete with direct H-bonds in highly electrostatic base pairs.

This is consistent with the behavior seen in explicit solvent MD simulations,

which reveal dynamical insertion of long residency water molecules into the

A/C cSS pair in these contexts (and thus fluctuations between water-mediated and

directly H-bonded substrates). The water insertion was suggested to contribute

considerably to the hinge-like flexibility of folded kink turns possessing A-minor

type I A/GC interactions between their canonical and noncanonical stems (Razga

et al. 2005). Further insights into the interplay of A-minor interactions, hydration

and Kink-turn folding topology has been obtained by recent MD simulation study

(Reblova et al. 2011).

12.5.1 Modeling of the BPh (base-phosphate) Interactions

In the above examples of QM calculations on RNA base pairs, the computations

were made a posteriori after the structural bioinformatics base-pair classification

had already been proposed and base pairs not yet observed had already been

predicted on the basis of the classification. Recently, the classification of nucleotide

pairwise interactions was extended to include internucleotide BPh interactions. In

fact, using this classification and extensions to the FR3D motif annotation and

search program to identify these interactions automatically, it was determined that

~12% of nucleotides in the ribosome are involved in BPh interactions, and almost

all of these are highly conserved through evolution (Zirbel et al. 2009). For the BPh

interactions, QM calculations directly complemented the bioinformatics analysis

and aided in the identification and clustering of the interactions. While the bioin-

formatics analysis provided the initial clustering of BPh interactions, the classifica-

tion was refined by QM calculations, which made it possible to identify local energy

minima and to calculate energies for the optimized geometries, as well as to

investigate the positions of the hydrogen atoms. This study well illustrates the

complementarity and mutual benefits of the QM and bioinformatics approaches.

The BPh interactions are quite challenging for computations, due to the involve-

ment of negatively charged phosphate groups. In contrast to the charge-neutral

RNA base pairs, BPh contacts can be described only with electrically charged

models. These are challenging calculations due to the large electrostatic effects of

the uncompensated negative charge of the phosphate group. Another problem is the

difficulty that QM gradient optimization procedures have in finding the global

minimum on the potential energy surface, due to the presence of nearby potential

energy local minima. These problems were basically eliminated by utilizing a

dielectric continuum approach during geometry optimizations and the subsequent

interaction energy calculations. When this is carefully executed, the optimized QM

geometries of BPh interactions reproduced the X-ray structural data perfectly.

Perhaps even more significantly, the computed interaction energies were found to

correlate well with the frequencies of occurrence of various BPh patterns observed
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in the structures by bioinformatics, further confirming that to a certain extent,

evolution takes into consideration (or is sensitive to) the intrinsic energetics of

weak intermolecular interactions (Zirbel et al. 2009).

12.5.2 Application to Base Triples

Recent work shows that almost all base triples observed in the current structure

database can be classified by applying the Leontis–Westhof base-pair classification

system as follows: The central base of the triple is identified as the base that pairs

with each of the other bases of the triple. As an example, if this base forms a tSW

pair with one of the other bases and a cHW pair with the third, then the resulting

triple is assigned to the tSW/cHW (or cWH/tWS) geometric base triple family. A

combinatorial analysis predicts 108 base triple geometric families, but a detailed

structural analysis of the current RNA 3D structure data has only found instances

for 68 of the predicted triple families (Abu Almakarem et al. 2011). At this point,

we do not know how many of the 108 triple families are possible in RNA, much

less, how many distinct triple base combinations form within each family. This

information is crucial for RNA 3D structure modeling and for accurate sequence

alignment and study of RNA evolution.

Looking to the future, we anticipate that the complementary use of QM and

bioinformatic approaches will extend our understanding of base triples and eventu-

ally quadruples and higher order H-bonded arrays. Some of the remaining triple

families may be sterically impossible because of clashes that cannot be avoided by

conformational changes in the backbone. We only observe instances in 3D

structures for about 300 of the 3,938 unique base triples predicted from known

base pairs, each corresponding to a unique three-base combination and geometric

family (Abu Almakarem et al. 2011). A small number of the unobserved triple

combinations can be excluded due to obvious steric clashes between the first and

third bases in the triple. At least 100 more base combinations can be inferred from

ribosomal RNA sequence alignments, but the total, even with these, is far below

that which is predicted. For some of the most frequently occurring base triples, it is

apparent that favorable interactions between the first and third bases contribute to

the overall stability (Abu Almakarem et al. 2011). Purely statistical considerations

are also likely to play a role, as the structure database is still relatively small, and

bioinformatic analysis shows that a large number of the predicted, but not yet

observed, triples are equally as probable as some observed triples, based on the

occurrence frequencies of their component base pairs. We anticipate that QM

studies will help to complete the picture, by providing calculated energies to

indicate which base triples are stabilized and which are destabilized by subtle

stereoelectronic effects.

Calculations of triples are also likely to complete our understanding of base

pairs that are quite unstable as individual base pairs, as indicated by QM

calculations, and which in fact usually occur as parts of base triples or higher
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H-bonded aggregates. As shown in Table 12.2, many base-pair combinations,

especially in sugar-edge base pairs, occur wholly or largely as parts of triples.

The data in this table were generated using FR3D (“Find RNA 3D”) software to

search for all annotated instances of each base pair in nonredundant lists of RNA-

containing PDB files (Petrov et al. 2011a, b). For each possible base combination

in each base-pair family, two searches were performed and collated: first, a two-

nucleotide symbolic search for instances of the base pair and then a three-

nucleotide search, for instance, in which at least one of the bases in the pair also

pairs with a third base, with no restrictions on the type of the second base pair

formed. The values in Table 12.2 are the percentage of instances of each base pair

in which the base pair is part of a base triple. The values in parentheses include

near base pairs with the third base. For example, 99.7% (100% including near

pairs) of the 362 instances of cSS AC base pairs are parts of triples. In other words,

this pair essentially never exists as an independent base pair. In fact, this is true for

most of the cSS base pairs (Table 12.2). By contrast, 62.8% (83.3% including near

pairs) of the 78 instances of tSS GG base pairs are parts of triples, indicating this

pair can exist independently, whereas the other tSS base combinations are almost

always parts of triples.

Finally, a very small number of triples were observed that have intermediate

geometries and therefore were not predicted based on the base-pair classification.

We anticipate detailed QM calculations will elucidate whether these are simply

artifacts of medium- to low-resolution X-ray structures or can, in fact, be expected

to recur in other structures and therefore should be included in the RNA triple

classification. An online database of base triples is now available that includes

observed and predicted triples. See: http://rna.bgsu.edu/Triples/triples.php/.

12.6 Software and Computational Demands

Several quantum chemical program packages are commercially available. The

leading ones include Gaussian, ADF, NWChem, MOLPRO and Turbomole. Gauss-

ian has an excellent optimizer, while Turbomole provides highly accurate MP2

energies with relatively low computational costs, by making use of the resolution of

identity (RI) procedure. Typical runtimes for the optimization of a base pair

consisting of two nucleosides (i.e., ca. 60 atoms) at the DFT level are 1–2 days

on a cluster of four parallel, coupled Opteron 2.6 GHz processors. For the same

system and using the same computer platform, equipped with about 0.5 GB

dynamic memory, computations to obtain the interaction energy at the RIMP2/

aug-cc-pVDZ level can be executed within 2–3 days using the Turbomole code.
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Chapter 13

Nonredundant 3D Structure Datasets for RNA

Knowledge Extraction and Benchmarking

Neocles B. Leontis and Craig L. Zirbel

Abstract The continual improvement of methods for RNA 3D structure modeling

and prediction requires accurate and statistically meaningful data concerning RNA

structure, both for extraction of knowledge and for benchmarking of structure

predictions. The source of sufficiently accurate structural data for these purposes

is atomic-resolution X-ray structures of RNA nucleotides, oligonucleotides,

and biologically functional RNA molecules. All of our basic knowledge of bond

lengths, angles, and stereochemistry in RNA nucleotides, as well as their interaction

preferences, including all types of base-pairing, base-stacking, and base-backbone

interactions, is ultimately extracted from X-ray structures. One key requirement for

reference databases intended for knowledge extraction is the nonredundancy of the

structures that are included in the analysis, to avoid bias in the deduced frequency

parameters. Here, we address this issue and detail how we produce, on a largely

automated and ongoing basis, nonredundant lists of atomic-resolution structures

at different resolution thresholds for use in knowledge-driven RNA applications.

The file collections are available for download at http://rna.bgsu.edu/nrlist.

The primary lists that we provide only include X-ray structures, organized by

resolution thresholds, but for completeness, we also provide separate lists that

include structures solved by NMR or cryo-EM.
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13.1 Introduction: Why Do We Need Nonredundant

RNA Structure Datasets?

Although experimental determination of atomic-resolution RNA 3D structures has

advanced significantly in recent years, it is still by no means routine. Moreover, the

rate at which new RNA sequences are identified through high-throughput genomic

and transcriptomic projects greatly exceeds the rate of 3D structure determination.

RNA 3D structure modeling starting from sequence, like protein modeling, remains

a major unsolved problem in biophysics. Thus, to provide insight into RNA

function and to guide experimental work in biology and biochemistry, we need to

continue developing and improving RNA 3D modeling methods. All theoretical

RNA 3D models, and many experimental ones as well, are ultimately based on

knowledge of 3D structure obtained by X-ray crystallography. Thus, continuing

progress in RNA 3D structure modeling depends, at least in part, on new methods

for extracting and creatively organizing RNA structure information from new and

archival RNA structures.

Other chapters in this book detail approaches to RNA 3D structure modeling.

Here, we focus on the underlying problem of selecting useful, representative, and

sufficiently nonredundant (NR) datasets of 3D structures for RNA knowledge

extraction, data mining, and benchmarking. We emphasize that the choice of files

depends on the intended purpose. For example, if the purpose is force field

development, much more attention must be paid to the issue of resolution and the

method of structure refinement. In fact, for this application, only truly atomic-

resolution structures solved without use of prior information should be included.

While only a few model RNA 3D structures have been solved to sufficient resolu-

tion for force field development, many biologically interesting structures solved

to moderate resolution are available in which internucleotide interactions are

sufficiently well defined for structural classification, statistical investigations,

and data mining.

Indiscriminately using the entire set of structures would bias statistical investi-

gations with features found in the most represented structures, which, by size

and number, are structures of the ribosome or its subunits. It is therefore desirable

to identify the best resolved and modeled representatives of each structure class

for analysis. For example, Richardson and coworkers produced a hand-curated

dataset, RNADB2005, for analysis of RNA backbone conformations (Richardson

et al. 2008). The methods we have developed and implemented aim to dynamically

maintain useful NR datasets that will grow as the PDB/NDB database continues

to grow.

In the next section, we describe the kinds of structural redundancy we observe in

the RNA 3D structure database. Then, we discuss methods designed to eliminate

the uninteresting types of redundancy, while retaining representatives of suffi-

ciently diverged homologous structures. We describe how we select files for NR

datasets at different resolution thresholds to provide users with choices for their

investigations. Next, we provide some statistics describing our NR datasets and
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detail how they are maintained and updated. We conclude by listing issues to

address in future work.

13.2 Sources of Redundancy in the RNA 3D Structure Database

As of May 2011, the PDB/NDB database archived over 2,000 experimentally

determined 3D structures containing RNA. Of these, over 2/3 were solved by

X-ray crystallography, while the rest were solved by NMR or cryoelectron micros-

copy. Many of the RNA 3D structures deposited in the PDB/NDB each year are not

fundamentally distinct from previous ones, as is also the case for protein structures.

In addition, there can be redundancy within individual structure files, depending on

the nature of the asymmetric or biological unit. First, we discuss sources of

redundancy within a given file and then redundancy between file entries in the

PDB/NDB.

13.2.1 Redundancy Within a Given PDB File

Individual 3D structure files may contain redundant structural information. To

understand all the possibilities, we review some basic concepts and terms from

X-ray crystallography. For more details, readers are referred to the PDB Web site:

http://www.rcsb.org/pdb/static.do?p¼education_discussion/Looking-at-Structures/

bioassembly_tutorial.html.

The key ideas are the crystal “asymmetric unit,” the “unit cell,” and the

“biological unit” or “biological assembly.” The asymmetric unit contains the

unique part of a crystal structure, meaning the smallest portion of a crystal structure

from which the complete unit cell can be generated by applying symmetry

operations. The unit cell is the crystal repeating unit, meaning the smallest portion

of a crystal that, when copied and translated, can generate the entire crystal. The

biological unit (or “assembly”) is the structure that is believed to be the functional

form of the macromolecule and is generally the unit of interest. Consequently, the

biological assembly need not be the same as the asymmetric unit. The primary

coordinate file of an X-ray crystal structure contains just one asymmetric unit. The

PDB uses the extension “.pdb” to designate these files. Depending on the position

(s) and conformation(s) of the crystallized macromolecule(s) within the unit cell,

the asymmetric unit may contain (1) a portion of the biological assembly, (2) one

complete biological assembly, or (3) multiple biological assemblies.

In the first case, as the asymmetric unit contains only a portion of the biological

assembly, two or more symmetry-related copies of the asymmetric unit must be

combined to generate the biological assembly. An example is the PDB file 3NJ6.

pdb which contains just one of two identical chains forming a symmetrical ten-

base-pair duplex solved at 0.95 Å (Kiliszek et al. 2010). This duplex contains two
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cis Watson–Crick/Watson–Crick (cWW) AA base pairs. The coordinates of the

symmetrical duplex, the relevant biological assembly, are found in the file “3NJ6.

pdb1.” To extract the well-resolved cWWAA base pairs, the “.pdb1” file is needed.

In the second case, which is the easiest to deal with, the asymmetric unit and the

biological unit are identical. An example is PDB file 3IRW.pdb, the structure of the

wild type, type 1 c-di-GMP riboswitch from V. cholerae (Smith et al. 2009). Here,

the reference PDB file contains all the information needed for structural analysis,

and there is no internal redundancy.

Finally, in the third case, the asymmetric unit contains more than one copy of the

biological unit. Generally, these are very similar in structure and simply occupy

unique positions in the crystal unit, adopting conformations that differ little. In

other cases, the conformational differences may be more significant. In addition, it

is possible that one copy may be more complete due to disorder in certain regions in

the other copies. Thus, when the asymmetric unit contains more than one biological

unit, it must be ascertained whether the differences between the biological units are

significant and, if so, whether one or more units should be included. If the

differences are not significant, it must determined which unit is more complete or

better modeled.

As an example of multiple biological units, PDB file 2QUW.pdb contains an

asymmetric unit comprising two biological assemblies, each of which comprises

a two-stranded, post-cleavage model of the hammerhead ribozyme (Chi et al.

2008). The individual biological units are stored as separate files by PDB,

designated 2QUW.pdb1 and 2QUW.pdb2. To analyze and visualize the contents

of 2QUW.pdb, we generate a circular interaction diagram, as shown in Fig. 13.1, in

which the nucleotides of each chain in the file are arranged around the perimeter of

a circle and the pairwise interactions between nucleotides are represented by

circular arcs (Nussinov et al. 1978; Nussinov and Jacobson 1980). The circular

diagram shows interactions between chains A and B and between C and D only.

Moreover, we see nearly the same pattern of pairwise interactions between chains

A and B as between chains C and D. Thus, chains A and B constitute one biological

unit and chains C and D the other, and these two units are effectively equivalent; if

this file is selected for inclusion in an NR set, only one of them should be retained.

For some very large structures, notably ribosomes, the asymmetric unit is so

large that the PDB data formats are exceeded, and the asymmetric unit, and in some

cases, even the individual biological assemblies, is separated into two or more

different PDB files. This is noted in the resulting PDB files using SPLIT records,

which list all the PDB files composing the asymmetric unit. For example, a SPLIT

record identifies files 2J00, 2J01, 2J02, and 2J03 as forming a single asymmetric

unit, with files 2J00 and 2J01 containing the 30S and 50S ribosomal subunits

forming one Thermus thermophilus 70S ribosome (the biological unit) and 2J02

and 2J03 containing the subunits that form the second (Selmer et al. 2006). At the

present time, we leave the ribosomal subunits in separate files and treat them as

different biological units. In fact, our current NR sets may contain 30S and 50S

subunits from different biological units.
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We treat PDB files that contain more than one biological unit as follows: if all

biological units in the file are structurally equivalent, we simply take the first one

listed. “Structurally equivalent” means they have the same number of nucleotides,

and the nucleotides make the same interactions, as captured by our annotations. We

annotate base pairs according to the Leontis/Westhof system of base-pair classifi-

cation (Leontis and Westhof 2001), using the FR3D program suite, which has been

carefully fine-tuned to identify the base pairs annotated manually (Sarver et al.

2008). When the biological units differ, we establish how they differ and choose the

one that is most suitable for the NR dataset. We structurally align all pairs of bio-

logical units to determine whether there are significant conformational differences,

as measured by the geometric discrepancy between aligned nucleotides, which we

calculate as previously described (Sarver et al. 2008). If the geometric discrepancy

between two biological units exceeds 0.4, it is likely that each unit has valuable,

nonredundant information, and so they are not labeled redundant. Among redun-

dant biological units, one may be better modeled. As a proxy for modeling quality,

we use the number of annotated base pairs per nucleotide to choose the representa-

tive biological unit. A special case, illustrated in the left panel of Fig. 13.2, is when

two of the biological units interact directly by base-pairing. In this case, we keep

both units in order to capture the additional interactions. For each NR dataset file,

we list the chains comprising the biological unit chosen for inclusion (see below).

Fig. 13.1 Circular diagram indicating the pairwise interactions in PDB file 2QUW.pdb (Chi et al.

2008) as annotated by FR3D. Dark blue chords indicate the 42 nested Watson–Crick base pairs,

red chords the 2 nonnested Watson–Crick base pairs, cyan the 2 nested non-Watson–Crick base

pairs, green the 3 nonnested non-Watson–Crick base pairs, yellow the 146 stacking interactions,

magenta the 7 base–phosphate interactions, and orange the 10 base–ribose interactions. The

circular diagrams are reproduced from the entry for 2QUW (see http://rna.bgsu.edu/FR3D/

AnalyzedStructures/2QUW)

13 Nonredundant 3D Structure Datasets for RNA Knowledge Extraction 285

http://rna.bgsu.edu/FR3D/AnalyzedStructures/2QUW
http://rna.bgsu.edu/FR3D/AnalyzedStructures/2QUW


13.2.2 Redundancy Between PDB Files

The PDB/NDB database serves as the international repository of biological macro-

molecular structure investigations. As such, the database contains every published

protein, DNA, or RNA 3D structure. Consequently, for a given macromolecule,

the database may contain more than one file, representing essentially the same 3D

structure. This occurs for a number of reasons. First of all, more than one research

group may have solved essentially the same structure. An example is the cyclic-

di-G type 1 riboswitch, PDB files 3IRW and 3IWN (Kulshina et al. 2009; Smith

et al. 2009). Secondly, once the wild-type structure has been solved, investigators

may be interested to solve structures containing various mutations, to test functional

and structural hypotheses. Each of the resulting structures constitutes a separate

entry in the PDB/NDB. For the c-di-G riboswitch, the database contains structures

for the G20A and C92U mutations, as well as the double mutation, in different

files, 3MUM, 3MUR, and 3MUT (Smith et al. 2010). The mutated residues were

designed to change the specificity of the riboswitch from c-di-G (3MUT) to c-di-A

(3MUV). Except for the mutated residues and the bound analyte, all the RNA

structures are essentially identical to the wild type (3IRW) and thus largely redun-

dant for our purposes. Below we discuss future plans to capture the informative

differences between structures that are mostly, but not entirely, redundant.

A third source of redundancy stems from the interest in seeing how a macro-

molecule interacts with alternative ligands. For example, the lysine riboswitch has

been solved bound to different analytes, in addition to lysine, and with different

metal ions, besides the physiologically relevant magnesium (Garst et al. 2008;
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Fig. 13.2 Different crystal forms of essentially the same RNA motif, here the Sarcin–Ricin loop

(SRL) from rat 28S rRNA. Circular interaction diagrams for PDB files 1Q96 (left panel) and 430D
(right panel). File 1Q96 contains three copies (chains A–C) of the biological unit, with two base

pairs between chains A and C. File 430D has one biological unit and a modified nucleotide

at residue 27 (currently not read by FR3D). For the NR set, 1Q96 chains A and C are chosen to

represent this class; both chains are kept to include the quaternary base pairs between them
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Serganov et al. 2008). Reported structural studies show that the 3D structure of the

lysine riboswitch changes very little when bound to different analytes or ions, and

again, the different PDB/NDB entries for this RNA are largely redundant for our

purposes. In other cases, the differences may be significant and so must be exam-

ined case by case.

A fourth situation pertains to structures of ribozymes. To elucidate the

mechanisms of enzymes, including ribozymes, crystallographers try to capture

“snapshots” of the progress of the chemical reactions they catalyze. For example,

structures of a hammerhead ribozyme, with catalytic residue G12 mutated to A to

slow the reaction, were obtained before (2QUS) and after (2QUW) strand cleavage

(Chi et al. 2008). The cleavage reaction changes the number of distinct chains

in the file. Except for the presence of the cleavage site, the 3D structures of the

RNA in 2QUS and 2QUW are also very similar and largely redundant for our

purposes. Similarly for ribosomes “caught” at different stages of translation.

Fifthly, the PDB/NDB contains structures of homologous RNA molecules.

These are RNA molecules related by evolution via the processes of speciation or

gene duplication and thus share similar functions and 3D structures, while differing

in sequence to variable degrees. Large portions of homologous molecules can be

identical or very similar in structure, if not in sequence. However, when there is

sufficient sequence variation between homologous RNA molecules, the structural

redundancy is actually very interesting, as it documents sequence changes which

are structurally neutral and likely to occur frequently during evolution. So unlike

the other sources of redundancy, which we try to identify and exclude in construc-

ting NR datasets, we seek to retain structural redundancy due to the presence of

different homologs of the same molecule. Our aim, therefore, becomes to identify

and place in our NR datasets the best copy of each distinct homolog in the PDB/

NDB. Thus, our NR datasets contain representative 16S rRNA structures from

Escherichia coli, T. thermophilus, and D. radiodurans, as well as the homologous

18S rRNA from yeast. We also retain representatives of all tRNAs that differ by

species or codon specificity.

A sixth situation arises from the fact that the same motif may be crystallized in

two or more different crystal forms, usually as a consequence of using different

RNA constructs to promote crystallization or to introduce heavy atoms for phasing.

For example, PDB files 430D and 1Q96 both contain structures of the Sarcin–Ricin

Loop (SRL) motif from rat 28S ribosomal RNA. The asymmetric unit in 1Q96

contains three biological units, each a distinct, but very similar, copy of the SRL,

solved to 1.8 Å (Correll et al. 2003). File 430D contains one SRL motif, solved to

2.1 Å (Correll et al. 1998). Figure 13.2 contains circular diagrams showing the

contents of these files. There are small differences between the structures, but they

are largely equivalent. For example, the structure in 430D contains bromocytidine,

which is not currently read by our programs, resulting in a gap at position 27 in the

diagram. More significantly, two of the SRL motifs in 1Q96 (chains A and C) form

an interaction comprising two non-WC base pairs (green chords). We choose file

1Q96 and retain both chains in the NR data, to sample the interaction between them.
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13.3 Identifying Redundant Files in the RNA 3D Structure

Database

Many of the over 2,000 RNA-containing 3D structure files in the PDB/NDB are

largely redundant, for one or more of the reasons described above. In this section, we

describe the procedure that we use to identify and cluster redundant files in the RNA

3D structure database. Our aim is to flag uninteresting redundancy for removal while

retaining interesting sequence variation, such as that between RNA homologs that

are sufficiently different in sequence to justify retaining them. We first flag possible

redundancy between PDB files by sequence comparisons. We then verify redun-

dancy by structural superposition and geometric analysis. Oncewe have clustered all

redundant files in their respective classes, we select one file to represent each class.

Because PDB structure files may contain more than one RNA molecule (chain),

we simplify the procedure by focusing on the longest chains present in each file. For

example, if a file contains a 16S rRNA and one or more tRNA molecules, we focus

on the 16S rRNA and ignore the tRNAs. However, we focus on the tRNA when it is

the largest RNA in the file. In Sect. 13.8.1, we discuss plans for considering also the

shorter chains in making choices of data to include. For NMR files, we use the first

model of the longest chain.

For each file, the longest chain is identified; in case of ties, the first chain is

chosen. While the biological source of this chain is usually provided in the

SOURCE record, in cases where the RNA sequence has been reengineered to

facilitate crystallization, the source is only listed in the PDB as “synthetic.”

When considering redundancy between two 3D structure files, if both files have

biological source information indicating that the longest RNA chains are from

different species, the structures are declared to be nonredundant to each other,

and no further analysis is carried out, as detailed in the following paragraphs.

Next, we proceed to sequence comparisons. For a pair of files with longest

chains X and Y, the number, N, of identical bases in the alignment is counted, and

the smaller of the two lengths, L, is recorded. We make a provisional assignment of

redundancy between the files in a way that depends on N and L and the lengths of

the chains X and Y. The idea is to assign provisional redundancy between chains

when more than 95% of the nucleotides are identical. For chains of length 80 or

less, we loosen this criterion and allow up to four base differences, as 95% sequ-

ence identity allows for very few differences. However, for chains shorter than 19

nucleotides (corresponding to the sizes of the shortest micro-RNAs), we insist on

identical sequences; many of the structures at this length are high-resolution

structures of duplexes containing individual non-Watson–Crick base pairs or 3D

motifs. Here, small differences involving just one or two bases are of interest. Thus,

up to length 18, the longest chains are only compared to other longest chains of

exactly the same length. Chains of length 19 and longer are compared to longest

chains in other files up to twice their length. This is to prevent clustering structural

fragments (e.g., domains of ribosomal RNAs) with the intact structures (e.g.,

complete 16S or 23S rRNA). The sequences of each pair of chains that meet
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these criteria are aligned using the standard Needleman–Wunsch global alignment

algorithm with gap penalty. In summary:

• Long chains. If both chains are longer than 80 nucleotides, they are considered

provisionally redundant if the proportion P of identical bases, defined as P ¼
N/L, is greater than or equal to 0.95. Only chains of length X and Y such that

X � 2Y and Y � 2X are compared.

• Medium chains. If either chain has fewer than 80 nucleotides, they are consid-

ered provisionally redundant if N � L � 4. Only chains of length X and Y such

that X � 2Y and Y � 2X are compared.

• Short chains. If both chains have less than 19 nucleotides, they are considered

provisionally redundant only if they have the same sequence (that is, N ¼ L).
Only chains of the same length are compared.

This sequence-based procedure identifies and clusters most of the uninteresting

kinds of redundancy described above. Nonetheless, sometimes structures with

sequences similar enough to meet the redundancy criterion display interesting

structural differences. Consequently, for each pair of structures that meet the

sequence similarity criteria, we superpose the aligned and identical bases of their

longest chains by rigid-body rotation and calculate the average geometric discrep-

ancy between them. If this value exceeds 0.5 Å per nucleotide, we label them

nonredundant; while the structures share sequence similarity, they present sufficient

geometric differences to be interesting for the purposes of gathering statistics about

RNA 3D structures. If the geometric discrepancy is less than 0.5 Å per nucleotide,

we consider the structures to be redundant. As the use of rigid superposition presents

some problems, we describe a more refined approach in Sect. 13.8.4, future work.

As defined above, redundancy between PDB files is a reflexive and symmetric

relation but is not necessarily transitive. For three structures, A, B, and C, A and B

as well as B and C may meet our criteria for redundancy, but that does not mean that

A and C are similar enough to do so. We extend the redundancy relation by

transitivity, so that all structures connected by a chain of pairwise redundancy

relations are defined to be redundant. Then, redundancy becomes an equivalence

relation on the set of all structures and so partitions the set of all structures into

disjoint equivalence classes.

13.4 Selecting Representative Data for RNA NR Datasets

at Different Resolution Thresholds

Having separated the 3D structure files into equivalence classes by the redundancy

relation, we choose one structure to represent each equivalence class. The selection

criterion we find most useful is the number of FR3D-annotated base pairs per

nucleotide, with ties broken by reported resolution and date of release, preferring

the higher resolution and more recent releases. We count nucleotides and base pairs

in all chains present in the file. Usually the representative with the highest reported
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resolution has the highest base pairs/nucleotides ratio, but there are exceptions,

especially for ribosome structures where the differences in resolution and in the

calculated ratio are small. For example, PDB file 1S72 has reported resolution 2.4 Å

and 1376/2871 ¼ 0.4793 base pairs per nucleotide, while PDB file 1VPQ has

reported resolution 2.2 Å but 1370/2874 ¼ 0.4767 base pairs per nucleotide. Our

procedure selects 1S72, although the selection may be somewhat arbitrary.

To give researchers greater flexibility in searching RNA 3D X-ray structures, we

maintain separate NR lists with resolution thresholds of 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,

and 20 Å (20 Å is a nominal value to include all X-ray and cryo-EM structures

while excluding NMR structures). These lists are generated by retaining structures

that meet the successive resolution thresholds. For each equivalence class with

more than one structure meeting the resolution criterion, a structure is chosen for

inclusion in the NR list using the selection criteria described above.

13.5 Growth of the NR Dataset Over Time

Having applied the analysis described above, we can use the deposition dates

recorded for PDB files to reconstruct the NR lists, as they would have been, between

1993 and 2011. Figure 13.3 charts the growth of the NR sets in two ways, according

to the number of equivalence classes (corresponding to largely distinct structures)

and the number of nucleotides in nonredundant chains of the representatives of each

equivalence class. The graphs show the acceleration in RNA structure determination

that occurred in the late 1990s, coinciding with new successes in crystallizing large

RNAs, including the group I intron and substantial fragments of the ribosome. The

large step increases in the number of nucleotides in the NR datasets indicate

landmarks in ribosome crystallography, starting with the first complete structures,

solved in 2000, and followed by those of additional ribosome homologs, solved in

subsequent years. The graphs drive home the impact that ribosome crystallography

has had on the knowledge base of RNA 3D structure as well as the relatively small

number and size of truly high-resolution RNA structures.

13.6 Characteristics of the NR Dataset

We have analyzed the content of current NR datasets by resolution and present the

results in Table 13.1. The table shows a number of features of the 3D RNA dataset

that should be kept in mind by users of the data. First, there are very few structures

with better than 1.5 Å resolution, and most of these are short RNA duplexes or

quadruplexes. Second, there are a large number of tRNA structures, and many of

these are in fact bound to proteins, so there is some overlap in the table due to the

same structure being annotated in more than one way. Third, the number of unique

ribosome structures is actually not very large, and only two of these are solved to

better than 3.0 Å.
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13.7 Accessing and Using the RNA NR Datasets

The procedure described above has been implemented by the BGSU RNA group in

connection with WebFR3D, the online version of the annotation, classification, and

3D motif-searching tool FR3D (Sarver et al. 2008; Petrov et al. 2011). The system

has been running stably since January 2011. On a weekly basis, server scripts

update the WebFR3D server copies of RNA-containing structures from the PDB

database, download and annotate new structures, remove deprecated structures, and

rerun the NR procedure described in this chapter.

At the Web site http://rna.bgsu.edu/nrlist, we store the lists of RNA-containing

structures in the PDB, which are updated weekly. We plan to maintain the lists

permanently with stable URLs so they can be referenced by articles and software.

The link showing the total number of structures leads to a table listing all RNA-

containing PDB files as of that week, one file per line. The files are grouped by

equivalence class, with the classes listed in the order of decreasing length of the

longest chain, so currently files containing the large ribosomal subunits appear at
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Fig. 13.3 Growth of the reconstructed nonredundant datasets between 1993 and 2011. Left panel
shows number of equivalence classes each comprising essentially redundant structures,

constructed as described in the text. Right panel shows total number of nucleotides in representa-

tive structures, one from each equivalence class. The top curve in each graph corresponds to the

entire nonredundant dataset, including X-ray, cryo-EM, and NMR structures. The second curve

from the top shows the growth of X-ray and cryo-EM structures. The successive curves from top to

bottom correspond to NR sets X-ray structures with resolution thresholds of 4, 3, 2, and 1 Å, which

is just barely visible in the left panel
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the top of the table. Within each equivalence class, the chosen representative is the

first structure listed, and the other structures are listed in decreasing order of the

number of base pairs per nucleotide. Each line of the table provides the PDB ID,

linked to the corresponding PDB resource page, a link to FR3D annotations for the

file, the number of nucleotides and base pairs detected in the file, the NR chains

chosen to represent the file, and the nominal resolution. Also included are metadata

fields including author, deposition date and biological source, where available, and

at the end of each line, the PDB identifier of the structure which currently represents

the equivalence class. Thus, the representative file for each equivalence class is

associated with all members of the class, and the equivalence classes can be

reconstructed from this listing.

Separate links provide tables with NR lists up to resolution thresholds 20, 4.0,

3.5, 3.0, 2.5, 2.0, 1.5, and 1.0 Å. Each line in the NR tables corresponds to a distinct

equivalence class and contains information pertaining to the file representing that

class. The last column of each row lists all the other structures belonging to the

equivalence class, at all resolutions, sorted by decreasing number of base pairs per

nucleotide. To facilitate database searches for recurrent motifs, we have integrated

the NR lists into WebFR3D, the FR3D Web server (see: http://rna.bgsu.edu/

WebFR3D/).

13.8 Issues for Future Work

We anticipate continued improvements in the procedures for maintaining and

refining NR sets for RNA structural analysis. Improvements can be made in (1)

the construction of the equivalence classes, (2) the choice of biological unit within

individual files, and (3) the choice of file to represent the class. We discuss some

ideas to improve each of these steps in turn. In addition, there is the issue of how

to include structurally interesting variation between files belonging to the same

equivalence class, something that we currently overlook. We will conclude by

discussing some ideas to tap this resource as well.

13.8.1 Improving the Construction of Equivalence Classes

The construction of equivalence classes is a problem in clustering and can be

improved by (1) identifying structures that are currently assigned to different

clusters but which essentially represent the same RNAs and which therefore should

be placed in the same equivalence class and (2) identifying structures that are

currently placed in the same class but which really should be separated. This is

an ongoing task that requires further study and then automation. To facilitate the

process, we are developing additional analysis and visualization tools to compare

members of clusters and representatives of different clusters.
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Structures that should be assigned to the same equivalence class. After identi-
fying two structures as provisionally redundant based on sequence similarity,

we check that they are also geometrically similar using rigid-body superposition.

If by this criterion they are deemed geometrically dissimilar, they are placed

in different equivalence classes. However, we have found problems with this

approach. For example, files 3IRW and 3IWN (Kulshina et al. 2009; Smith

et al. 2010) are essentially identical structures of the wild-type cyclic-di-GMP

riboswitch, but they are currently placed by the procedure in different equivalence

classes. This is because, by rigid-body rotation, they have an average geometric

discrepancy of 0.67 Å/nucleotide, which exceeds the 0.5 Å cutoff. The reason for

this is that the structures were solved in different laboratories, and while both

research groups used the same riboswitch from the same organism and even the

same kind of RNA engineering to facilitate crystallization, there is a small differ-

ence in the constructions that is amplified during structure comparison. Although

both groups attached the U1A protein-binding hairpin loop to the same peripheral

helical stem to facilitate crystallization, two extra base pairs were included in the

stem in the construction of the molecule in 3IWN. Consequently, the main body of

the riboswitches and the protein-binding hairpin loops cannot be superposed simul-

taneously, even though individually these domains do superpose well. This results

in an average geometric discrepancy exceeding the threshold.

We have developed a local structural alignment algorithm which we have

implemented in our R3DAlign software and Web application that is able to over-

come this problem (Rahrig et al. 2010), but we have not yet incorporated it in the

NR pipeline. R3DAlign determines a nucleotide-to-nucleotide alignment between

two 3D structures by making 4-nucleotide neighborhoods around each nucleotide

and choosing the alignment that maximizes the number of aligned neighborhoods

that superimpose well. The localized nature of the neighborhoods means that

R3DAlign can align nucleotides even when the global 3D structure does not super-

impose under a single rigid transformation. Applying R3DAlign to 3IWR and

3IWN, we find that the nucleotides that are common to both structures in the

main body of the riboswitch and in the U1A-binding hairpin loop both superimpose

well locally, giving a small overall geometric discrepancy per nucleotide. All the

structural differences are concentrated at the site where the two base pairs are

inserted. By using R3DAlign in the pipeline, these two files will be placed in

the same equivalence class, where they belong. A similar situation occurs with

the lysine riboswitch, again solved by two different groups using slightly different

constructs and consequently placed in different equivalence classes by the current

algorithm (Garst et al. 2008; Serganov et al. 2008).

Structures that should be assigned to different equivalence classes. With regard

to the second issue, the current approach focuses on the longest chain in each

structure file and does not consider unique shorter chains that may be present. For

example, a file containing a ribosome may also contain a bound tRNA or mRNA

fragment that may be unique in the database. Thus, under our current procedures,

a tRNA in a ribosome structure file is not being compared to other tRNAs. Likewise

an mRNA fragment containing, for example, an IRES element, is not being

294 N.B. Leontis and C.L. Zirbel



compared to other such fragments. A separate issue is the fact that the shorter chains

interact with the longer chains (the rRNAs) in potentially interesting ways that are

not being considered in choosing which file to represent the class (see below).

13.8.2 Improving the Choice of Biological Unit

As mentioned above, the asymmetric units of ribosomes contain so many atoms that

they exceed the data formats used by PDB and so are stored in separate PDB files.

The current procedure operates at the level of PDB files, so it creates separate

equivalence classes for the large and small ribosomal subunits, even when they

belong to the same biological unit. While for some applications this may be useful,

for others it may be preferable to place complete ribosomes in one equivalence

class. This would have the advantage that all interactions between different rRNA

molecules and between rRNAs, tRNAs, and mRNAs would be annotated and

documented. We plan to offer this option to users in future versions of the NR sets.

13.8.3 Improving the Choice of File to Represent
the Equivalence Class

The choice of file to represent each equivalence class is the last and perhaps most

important step of the process. In our current procedure, we use the ratio of the

number of annotated base pairs/number of nucleotides (“BP/Nt ratio”) as the

criterion for making this choice. We find that when there is a large difference in

this ratio, there is also an obvious difference in the quality of modeling of the 3D

structure, even when the reported resolution is about the same. The reader can

confirm this by comparing the structures of T. thermophilus 5S or 23S rRNA in the

files 3PYO (3.5 Å resolution, 0.447 BP/Nt) and 2WRO (3.6 Å resolution, 0.346 BP/

Nt) (Schmeing et al. 2009; Zhu et al. 2011). On the other hand, when the value of

this ratio is high and effectively indistinguishable for two structures, it does not

seem warranted to make the choice of representative file solely on the basis of this

criterion, as is done in the current procedure. For example, the procedure currently

chooses 3PYO to represent large subunit T. thermophilus structures in the 3.5 and

4.0 Å NR sets instead of the file 3F1H (Korostelev et al. 2008), which the procedure

chooses to represent the 3.0 Å NR set. The difference in BP/Nt ratio is not

significant (0.447 vs. 0.437), and in fact the 3F1H file has more base pairs because

it includes 71 nucleotides in the L1-binding site (H77/78) that are disordered in

3PYO (nucleotides 2,109–2,180). The procedure could therefore be improved by

using additional criteria, such as assessments of structural completeness, to choose

between structures that are not significantly different by the primary criterion of

BP/Nt ratio.
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In addition to the completeness of the structure, another criterion that can be

considered is the presence of additional RNA molecules in a structure. To give

a specific example, the current method selects the file 1J5E as the representative of

T. thermophilus 16S rRNA (resolution 3.0 Å, 690 base pairs formed by 1,513

nucleotides, giving 0.4560 BP/Nt), over a number of other files which contain in

addition to the 16S, one or more tRNAs and an mRNA fragment, but which have

somewhat lower BP/Nt ratios. These structures contain more biological informa-

tion, and the lower ratio may reflect that tRNA and mRNA have fewer base pairs

per nucleotide, rather than the quality of the structure modeling per se. An alterna-

tive approach would allow users to manually apply additional criteria such as

presence of bound tRNA and mRNA molecules when selecting representative

ribosome structures to include in their analyses.

13.8.4 Identifying and Using Interesting Variation Within
an Equivalence Class

It should be clear from the previous discussion that there is interesting variation

within files assigned to the same equivalence class. A future challenge is to design

statistically valid methods to identify and present this information for analysis

in useful ways. Some of this variation is in the form of mutated or modified

nucleotides. Other variation is in the form of induced fit due to binding of different

ligands, proteins, or other nucleic acids. Methods need to be developed to identify

and present induced fit effects for recurrent or biologically unique sequence motifs.

Where individual structures complement each other, by resolving different regions,

construction of composite structures may be warranted.

As described above, some sources of structural variation are not particularly

interesting. This category includes most changes made to biological RNAs to

facilitate their crystallization. This “crystal engineering” may entail the addition

of protein-binding RNA motifs to peripheral stem-loops of the RNA or the addition

of interaction motifs to facilitate RNA–RNA packing interactions, usually done to

two different RNA molecules one wants to cocrystallize. In 1995, Oubridge et al.

(1994, 1995) introduced a technique, now widely adopted, to facilitate RNA

crystallization. The method involves modifying a peripheral helix of the RNA by

addition of an RNA 10-mer hairpin loop that binds U1A protein. The hairpin loop is

positioned so that the bound protein promotes favorable crystal contacts without

perturbing the rest of the RNA structure. RNAs that have been engineered by

addition of this motif are labeled “synthetic” in the PDB. This motif is used so

often that it is worth identifying its presence in RNA structures to exclude the

residues composing it from further analysis, except for the original structure entry,

solved at 1.9 Å (Oubridge et al. 1994).

An example of the introduction of RNA–RNA interaction motifs is the use of the

GAAA hairpin loop and its cognate loop-receptor (the so-called 11-nucleotide

296 N.B. Leontis and C.L. Zirbel



motif) to facilitate the crystallization of the tRNA/RNaseP substrate–ribozyme

complex, recently reported (Reiter et al. 2010). These motifs are not part of the

wild-type RNaseP or tRNA structures and have already been characterized struc-

turally in the group I intron (Cate et al. 1996). Systematic identification of recurrent

motifs introduced to facilitate crystal engineering is another goal to improve

structure comparison and analysis of NR datasets.

13.9 Conclusions

We have developed methods for identifying a significant amount of the redundancy

present within and between RNA 3D structure files deposited in the PDB/NDB.

We retain representative structures for distinct homologs, but try to reduce other

types of redundancy. We have implemented the method with Web servers that

make available nonredundant lists of PDB files at a series of resolution thresholds,

using the best structure to represent each equivalence class of structures. These lists

are updated weekly, they have stable URLs, and they are being integrated into

WebFR3D to facilitate efficient motif searching as well as statistical analysis of the

contents of the database. Using nonredundant subsets of the PDB will improve

statistical analysis of RNA 3D structures and thus will improve the reliability of

structure–prediction methods that use knowledge extracted from 3D structures.

Furthermore, the equivalence classes can be analyzed to identify suitable targets

for automated benchmarking of structure–prediction methods.
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Chapter 14

Ions in Molecular Dynamics Simulations

of RNA Systems

Pascal Auffinger

Abstract Ions and water molecules are intricately associated with biomolecular

systems and play important structural and functional roles that are still not well

understood. For RNA systems, the functions of these ions are not limited to the

neutralization of the charges carried by the polyanionic backbone, since they also

bind to very specific locations of the RNA 3D fold. Hence, it is essential to include

them with the greatest possible accuracy in 3D structural models and especially

in molecular dynamics (MD) simulations. This review aims at describing some of

the successes achieved in the modeling of monovalent and divalent ions in RNA

systems, as well as to highlight important deficiencies of current force fields and

MD techniques that represent important challenges for future development.

Keywords Molecular dynamics simulation • Crystallography • RNA • DNA •

Solvation • Hydration • Monovalent cation • Divalent cation • Sodium • Potassium •

Magnesium • Na+ • K+ • Mg2+

14.1 Introduction

In addition to water, ions are an integral part of nucleic acid systems and play

a crucial role in RNA stability and folding (Takamoto et al. 2002; Woodson 2005;

Auffinger and Hashem 2007; Auffinger et al. 2011). It is now well documented that

structural and functional properties of nucleic acid systems can be strongly altered

by the type and concentration of the surrounding ionic species. Hence, it is

important to better understand this interplay, both from an experimental and

a theoretical point of view. The aim of this review is to address various issues
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associated with modeling ions in molecular dynamics (MD) simulations of nucleic

acids and, more specifically, of RNA systems.

14.2 Modeling Monovalent Cations (Na+, K+, NH4
+, . . .)

14.2.1 Is a Neutralizing Ionic Atmosphere Sufficient?

Ions were first introduced in MD simulations for the purpose of neutralizing the

negative charge carried by the anionic backbone of these biopolymers. For conve-

nience, co-ions were generally omitted and assumed to be unimportant. Such an

assumption seemed reasonable in the early stages of the development of MD

techniques and led to trajectories acceptable at the time. However, this approxima-

tion does not allow for accurate modeling of subtle effects associated with the

presence of co-ions in different concentration ranges, such as the sequence-

dependent increase of helical twist and reduction of groove width of RNA duplexes

documented by recent MD simulations (Besseova et al. 2009). Differences between

simulations using minimal Na+ or excess KCl salt conditions were also recently

reported (Reblova et al. 2010b). Without doubt, minimal salt models represent

a distant approximation of physiological ionic conditions, not to mention most

experimental in vitro conditions, and do not allow to model recently described

“anion/nucleic acid” interactions (Auffinger et al. 2004b).

Moreover, one has to consider that simulations using minimal salt conditions

suffer from finite size artifacts and from much slower and inappropriate ionic

relaxation times (Chen et al. 2009b). Insidiously, minimal salt conditions were

originally recommended to avoid the formation of NaCl or KCl salt clusters

(Fig. 14.1) observed in MD simulations using some unrefined force-field

parameters (Chen et al. 2009b). With the development of improved ionic force

fields (Chen and Pappu 2007b; Joung and Cheatham 2008, 2009; Lopes et al. 2009;

Yu et al. 2010; Zhang et al. 2010), such salt clustering artifacts (Vaiana et al. 2006;

Auffinger et al. 2007; Chen and Pappu 2007b; Noy et al. 2009) are no longer an

issue and the use of minimal salt models should now definitely be relegated to the

past.

It is worth noting that ionic aggregation occurs in most cases above a specific

transition point located usually between 0.1 and 0.2 M in NaCl or KCl (Auffinger

et al. 2007). Consequently, it is possible to “conceal” this phenomenon by

choosing excess monovalent ion concentrations below this limit. Of course, this

is not advised, since ion/RNA and especially ion/phosphate interactions are still

affected by the use of “deficient” ion parameters, even at low excess salt concen-

tration (Noy et al. 2009). The preceding issue represents a strong incentive for

continuing our efforts to improve nucleic acid force fields and associated ionic

parameters.
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14.2.2 Finite Size Artifacts

A recent study documented finite size artifacts that take place when the box size

surrounding the simulated RNA is too small and too few ions are present. Remark-

ably, one observes significantly different phosphate/Na+ radial distribution function

profiles (Fig. 14.2) in a box of 80 and 120 Å at a constant excess salt concentration

of 800 mMNaCl (Chen et al. 2009b). Another study reported that aqueous solutions

of MgCl2 attain their bulk properties only at a distance larger than 18 Å from the

RNA. Surprisingly, in NaCl, the RNA charges extend their influence on the much

longer 25 Å scale (Kirmizialtin and Elber 2010), setting lower limits to the minimal

solvation shell size that considerably exceed those generally in use. Such effects

have to be taken into consideration in future developments and applications of MD

techniques.

14.2.3 Choice of Monovalent Cations: K+ Versus Na+ or NH4
+

The monovalent Na+, K+, and NH4
+, and marginally, Cs+ cations (Chen et al.

2009a), have been used in MD simulations of RNA systems. It is worth noting

that Na+ cations are used in simulations much more often than K+ or NH4
+ (89 with

Na+, 14 with K+, and 8 MD simulations with NH4
+ cations were listed in a 2007

survey (Hashem et al. 2008). Authors prefer to use Na+ cations because MD

Fig. 14.1 View of a KCl

aggregate formed in the

vicinity of an RNA/antibiotic

complex after 4 ns of MD

simulation using the K+ van

der Waals parameters

implemented in earlier

AMBER force fields. The

largest of these clusters is

marked by a yellow arrow.
AMBER 10 and 11 versions

(Case et al. 2010) include

improved ionic parameters

(Joung and Cheatham 2008,

2009) [reproduced by

permission from (Vaiana

et al. 2006)]
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simulations are mostly based on NMR or crystallographic structures and most of

these are determined in Na+-containing buffers. The preference for Na+ over K+

cations in experimental work seems completely at odds with conditions prevailing

in vivo, since K+ is the major cation found in cells, while Na+ dominates

in extracellular fluids (Auffinger et al. 2011). Hence, for most MD simulations of

intracellular systems, K+ should be the monovalent cation of choice.

NH4
+ cations were sometimes included in MD simulations because they are

considered to favor the crystallization of RNA systems and to stabilize RNA folds.

Yet, there is no documented justification for using NH4
+ over other monovalent

cations. Moreover, NH4
+ cations are cytotoxic and are converted into less toxic

compounds such as urea in mammals. NH4
+ cations are consequently irrelevant to

RNA functions under most in vivo conditions. In bacteria, NH4
+ toxicity must be

evaluated with different criteria (Muller et al. 2006). However, it would be surprising

to uncover ammonium cations contacting RNA systems in in vivo conditions.

Fig. 14.2 RNA phosphate-

counterion radial distribution

functions for a Tar–Tar*

complex in an (a) 80 Å and

(b) 120 Å box of 800 mm

NaCl that illustrate finite size

artifacts. Note the differences

in the short-range P–Na+

profiles and the fact that the

anion concentration is �15%

different at large separation

[reproduced by permission

from (Chen et al. 2009b)]
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14.2.4 Locating Binding Pockets for Monovalent Cations

Monovalent cations are often undetectable by crystallographic methods given

their resemblance to water molecules (Das et al. 2001). Hence, the most common

MD strategy for locating monovalent cation-binding pockets consists in ran-

domly placing, at a certain distance from the RNA, an appropriate number of

monovalent cations and anions (Hashem and Auffinger 2009). In the course of

a short period of time, generally during the equilibration phase, monovalent ions

track down the most electronegative (for cations) or electropositive (for anions)

binding pockets and settle there for extended periods of time, after which they

exchange with nearby cations or water molecules.

A first success of this strategy, and of nucleic acid MD simulations in general,

is associated with early and relatively short simulations (�1.5 ns) of a DNA

duplex that suggested that ions might intrude into DNA grooves (Young et al.

1997). This conclusion was reached before clear experimental evidence of

specific ion binding to nucleic acids was provided and changed our conception

of the structure of the ionic atmosphere surrounding nucleic acids (Auffinger

and Hashem 2007).

14.2.5 Where Do Monovalent Cations Bind?

Monovalent cations are no longer considered to function solely as components of

the diffuse ionic cloud that neutralizes the negative charge carried by the nucleic

acid polyanionic backbone (Manning 1978). Rather, it is now well appreciated that

they can also intrude in a sequence specific manner into nucleic acid grooves

(Auffinger and Westhof 2000, 2001; Kirmizialtin and Elber 2010) where they can

bind to electronegative pockets created by particular RNA folds.

For regular r(CG)12 and r(AU)12 duplexes, r(GpC) and r(ApU) steps were

identified as efficient cation-binding pockets while r(CpG) and r(UpA) steps,

given specific steric and electrostatic factors, are repulsive to cations (Fig. 14.3)

(Auffinger and Westhof 2000, 2001). As observed in numerous crystal structures

(Auffinger et al. 2011) and unpublished MD studies (Hashem and Auffinger),

r(GpG) steps are also important cation-binding sites since cations display a clear

propensity to bind to N7 and O6 guanine sites. All these cation-binding sites

are located in the major groove which can be considered as an “ionophilic groove.”

In contrast, the RNA minor groove exhibits a rather “ionophobic” character as

observed in MD simulations of the 5S ribosomal loop E motif (Reblova et al.

2003b; Auffinger et al. 2004a).

Monovalent-binding sites around complex RNA folds were also described in

following studies (Csaszar et al. 2001; Reblova et al. 2003a, b, 2007; Auffinger

et al. 2004a; Krasovska et al. 2006; Razga et al. 2006). When experimentally

detected Mg2+ cations are removed from the starting model, one or two
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monovalent cations quickly occupy the vacant site during MD simulations

(Huang et al. 2009), but when Mg2+ cations are left in place, adjacent monovalent

cation-binding sites are more weakly occupied (Reblova et al. 2004). For exam-

ple, monovalent cations were found to bind close to experimentally characterized

divalent-binding pockets (Auffinger et al. 2004a; Ditzler et al. 2009) and to

associate with the aminoglycoside-binding pocket of the ribosomal A-site at locations

where charged ammonium groups of the aminoglycoside attach (Romanowska et al.

2008). In the 5S ribosomal loop E motif, it was observed that a monovalent binding

site match the binding site of a lysine ammonium group (Auffinger et al. 2004a).

Hence, MD simulations using monovalent cations are an efficient tool for detecting

potential binding sites of charged functional groups belonging to amino acids

or drugs.

Fig. 14.3 Schematic

representation of K+ ion

binding features for the r

(GpG), r(GpC) and r(CpG)

steps [top figure: Hashem and

Auffinger, unpublished data;

middle and bottom figures

adapted from (Auffinger and

Westhof 2000)]. rC and rG

residues are shown in dark
and light gray, respectively.
Deep groove O, N and K+

atoms are shown in red, blue
and yellow, respectively
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14.2.6 Cation Dynamics

Long monovalent cation residency times were reported for several RNA systems

(Reblova et al. 2003b, 2004; Auffinger et al. 2004a; Krasovska et al. 2006;

Spackova et al. 2010). Estimating ion residency times is particularly difficult

because of: variations due to (1) force field approximations, (2) the nature of the

chosen anions, (3) the ionic concentration dependance (4) or the choice of the

methods used for calculating the residency times themselves (Auffinger et al.

2004a; Krasovska et al. 2006; Eargle et al. 2008; Chen et al. 2009a; Kirmizialtin

and Elber 2010). For the kissing loop Tar–Tar* complex, mean counterion resi-

dency times of 56, 38, and 35 ps were reported for Na+, K+, and Cs+ (Chen et al.

2009a). Earlier studies on RNA duplexes proposed maximum residency times for

K+ around 500 ps (Auffinger and Westhof 2000, 2001). For the ribosomal 5S loop E

motif that displays a highly “ionophilic” major groove, monovalent cation resi-

dency times exceeding 5 ns were noted in two independent sets of MD simulations

(Reblova et al. 2003b; Auffinger et al. 2004a). For more complex binding pockets,

residency times in the 6–13 ns range were reported (Krasovska et al. 2006). Yet,

in most instances, when one ion dissociates from the RNA, it is rapidly replaced by

another, and so occupancies of binding pockets ranging from 80 to 100% are

sometimes reported. This latter fact strongly supports the concept that monovalent

ions are integral components of RNA structures.

14.2.7 K+ Versus Na+ in MD Simulations

A small number of studies have been undertaken comparing the effects of Na+

versus K+ cations on RNA structure. Some of them reported that simulations with

net-neutralizing Na+ and 0.2 M excess salt conditions appear in all aspects equiva-

lent (Razga et al. 2006; Besseova et al. 2010; Spackova et al. 2010), although more

insightful simulations demonstrated that a �0.65 M K+ excess caused a modest

sequence-dependent compaction of canonical A-RNA double helices (Besseova

et al. 2009). Simulations of the ribosomal A-site finger in the presence of K+

revealed a slightly larger propensity for more “closed” structures. The authors

concluded, however, that such an observation might not be significant given the

size of the simulated system and its unusual flexibility (Reblova et al. 2010a).

However, in a study describing a set of simulations of the smaller ribosomal UAA/

GAA internal loop structural element, the same authors reported similar narrowing

of the major groove in the presence of excess KCl (Reblova et al. 2010b). They

suggested that “these results are explained by better screening of phosphate groups

with higher ionic strength which allows their closer approach across the groove”

and concluded that “the stability of the functional H40 conformation may be

affected by ionic conditions or other interactions reducing the interphosphate

repulsion.” Surprisingly, in a third study by this group, RNA simulations of hairpin
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ribozyme structures led to the artifactual generation of irreversible “ladder-like,”

underwound A-RNA structures in one of the external helices in NaCl but not in KCl

excess salt conditions (Mlynsky et al. 2010).

Indeed, if effects induced by the choice of monovalent ions exist, as suggested

by some biophysical experiments (Gluick et al. 1997; Heddi et al. 2007; Vieregg

et al. 2007; Lambert et al. 2009), they are likely to be quite subtle and possibly out

of reach of current MD techniques. In all cases they deserve further in-depth

investigations. For instance, the inversely proportional stability of the Tar–Tar*

complex to the crystallographic radius of the monovalent counterion (Lambert et al.

2009) has been reproduced by MD simulations and is associated with a more

effective calculated condensation of Na+ with respect to K+ cations around RNA

systems (Chen et al. 2009b).

14.3 Modeling Divalent Cations

14.3.1 Magnesium Cations (Mg2+)

Despite the importance of Mg2+ cations for RNA structure and function, few MD

simulations of RNA systems have been carried out using Mg2+ cations (see

Table 14.1). A survey of MD simulations of RNA systems (up to September

2007) revealed that only 22 out of a total of 113 simulations of RNA systems

included Mg2+ cations [(Hashem et al. 2008); the present list comprises 14 addi-

tional references]. The tendency to avoid inclusion of Mg2+ when simulating RNA

is a consequence of the difficulties that persist in modeling these cations. First,

water molecules bound to Mg2+ cations display very long residence times

(2–10 ms) that are several orders of magnitude longer than the residence times of

water molecules bound to monovalent cations (Ohtaki 2001). Hence, current MD

techniques cannot simulate the desolvation process of Mg2+ cations required to

form inner-sphere complexes. Moreover, Mg2+ cations display very slow diffusion

rates and therefore have poor sampling properties. Force-field concerns have also

been raised (McDowell et al. 2007) necessitating the development parameters

reproducing subtle polarization effects (Jiao et al. 2006; Yu et al. 2010) based on

accurate experimental and high-level theoretical data (Markham et al. 2002; Petrov

et al. 2002, 2005; Bock et al. 2006; Harding 2006; Ikeda et al. 2007; Rao et al. 2008;

Oliva and Cavallo 2009; Callahan et al. 2010).

Note that in some instances, it has been reported that outer-sphere bound Mg2+

cations quickly lose a water molecule from their inner coordination sphere and

directly chelate to RNA nucleotides, an observation consistent with the known bias

toward inner-shell binding of Mg2+ cations in RNA simulations due to force-field

approximations (Reblova et al. 2003b, 2006) and in agreement with a recent MD

simulation of solvated Mg2+ cations using a polarizable force field that reported first

solvation shell lifetimes in the order of only hundreds of picoseconds (Jiao et al. 2006).
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Yet, most other MD settings report no first solvation shell water exchange on

current MD time scales (Kirmizialtin and Elber 2010). This point has consequently

to be addressed with great concern given the lack of precise experimental data on

the water exchange mechanism.

Given above-mentioned limitations, only a few studies among those mentioned

in Table 14.1, have addressed the binding properties of Mg2+ cations to RNA and

their influence on RNA structure, function, and dynamics while the others men-

tioned no more than the presence of Mg2+ in their settings without providing further

details.

The roles played by Mg2+ cations on the structure and catalytic mechanism of

the hammerhead ribozyme were addressed several times in attempts to shed some

light on the still elusive roles of these cations (Hermann et al. 1997, 1998; Torres

and Bruice 2000; Torres et al. 2003; Lee et al. 2007, 2009; Lee and York 2008;

Martick et al. 2008; Banas et al. 2009; Park and Boero 2010). Interestingly,

a catalytic mechanism without direct participation of metal ions has recently been

suggested based on crystallographic and MD data (Martick et al. 2008). Yet, much

Table 14.1 List of RNA systems (up to March 2011) that have been studied by MD simulations

using at least one Mg2+ ionic condition

System References

RNA hairpins Sorin et al. (2005)

RNA duplex Kirmizialtin and Elber (2010)

Hiv-1 dimerization initiation site

(DIS)

Reblova et al. (2007)

RNA three way junction Besseova et al. (2010)

RNA kink-turns Razga et al. (2006)

Ribosomal 5S loop E motif Auffinger et al. (2003, 2004a) and Reblova et al. (2003b)

Ribosomal 5S loop E in complex

with L25

Reblova et al. (2004)

Ribosomal A-site Romanowska et al. (2008)

Ribosomal16S helix 44 Reblova et al. (2006)

Ribosomal L1-stalk/tRNA complex Trabuco et al. (2010)

GluRS/tRNA complex Black Pyrkosz et al. (2010)

tRNA/EFTu complex Eargle et al. (2008)

Full ribosome Sanbonmatsu and Tung (2006)

Hammerhead ribozyme Hermann et al. (1997, 1998), Torres and Bruice (2000),

Torres et al. (2003), Lee et al. (2007, 2009), Lee and

York (2008) and Martick et al. (2008)

Hepatitis delta virus ribozyme Krasovska et al. (2005, 2006, Sefcikova et al. (2007) and

Veeraraghavan et al. (2010)

Hepatitis C virus IRES IIId domain Golebiowski et al. (2004)

Hairpin ribozyme Rhodes et al. (2006) and Ditzler et al. (2009)

Guanine riboswitch Villa et al. (2009)

Add-A riboswitch Sharma et al. (2009)

SAM riboswitch Huang et al. (2009), Priyakumar (2010)

L1 ligase molecular switch Giambasu et al. (2010)
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remains to be understood regarding the mechanism of this most intensively studied

RNA ribozyme (Leclerc 2010).

Different effects related to the presence of Mg2+ cations on the structure and

dynamics of two closely related subtypes of the HIV-1 DIS were reported. For

subtype B, the conversion from an open to a closed conformation occurred in the

presence of Mg2+ while the absence of divalent cations led to an increased confor-

mational dynamics. By contrast, the stability of the active site architecture of

subtype A was not affected by the presence or absence of Mg2+ cations (Reblova

et al. 2007).

In line with this observation, several studies concluded that Mg2+ cations have

no significant effects on the structure and dynamics of RNA systems, at least on the

investigated time scales. A study on tetraloops reported that explicit representations

of cations are not necessary to model the folding of these RNA fragments (Sorin

et al. 2005). Simulations of ribosomal RNA kink-turns carried out in the presence of

Mg2+ or K+ cations suggested that changes in ionic conditions do not affect the

flexibility of the RNA (Razga et al. 2006). But such conclusions are certainly

structure dependent and should not be generalized. In a rare occurrence, it was

reported that Mg2+ cations, introduced in an MD model of the ribosomal A-site,

destabilized the RNA structure (Romanowska et al. 2008) suggesting that great care

has to be taken in the initial placement of these cations.

Indeed Mg2+ cations play a significant role in the stabilization and folding

of RNA systems (Draper et al. 2005), but much has still to be learned about the

mechanisms involved. The very specific binding geometry of hydrated Mg2+

cations was investigated (Auffinger et al. 2003). Mg2+ cations are known to display

a high affinity for specific anionic oxygen atoms belonging to phosphate groups, to

which they bind by losing a water molecule from their hexacoordinated hydration

shell. Contrary to the Mg(H2O)
2þ
6 form that displays significant tumbling motions

when bound to RNA, the pentahydrated form establishes a large array of water-

mediated contact with distant RNA residues that stabilizes the entire structure by

acting as a freezing agent (Fig. 14.4). This coordination-clamp mechanism is

probably of universal significance.

14.3.2 Other Divalent Cations (Mn2+, Ca2+, Sr2+, Ba2+, . . .)

Mn2+, Ca2+, Sr2+, and Ba2+ cations are found in crystallographic structures of RNA

systems and are supposed to mimic some properties ofMg2+ cations (Auffinger et al.

2011). Yet, to the best of our knowledge, no MD simulations of RNA systems with

divalent cations other than Mg2+ have been published. The challenges associated

with an accurate modeling of the binding specificities of the softer Mn2+ cations are

particularly delicate and are probably out of reach of classical MD techniques (Bock

et al. 1999). Although both ions display similar ionic radii and charge, Mn2+ prefers

to bind to softer atoms (nitrogen, sulfur) whileMg2+ has a greater affinity for oxygen

atoms. The only MD study referring to Mn2+ cations is that of a hammerhead
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ribozyme in its crystal environment, where all Mn2+ cations were replaced by Mg2+

cations (Martick et al. 2008). In other studies, crystallographic Sr2+ cations

(Priyakumar 2010), Ca2+ cations, (Rhodes et al. 2006) or cobalt(III) hexammine

cations (Ditzler et al. 2009) were replaced byMg2+ cations and in some occurrences,

divalent Mg2+ cations were ignored and replaced by monovalent Na+ cations or

water molecules (Reblova et al. 2003b; Banas et al. 2010). Indeed, crystallographers

often use saturating ionic conditions that lead to an excess of Mg2+ cations bound to

the biopolymeric system and some of these cations, involved in lattice contacts, do

not contribute to the stabilization of the RNA system in solution (Auffinger et al.

2003, 2004a; Auffinger 2006).

Note that a further difficulty in modeling Mg2+ cations is related to the fact that

electron densities are sometimes incorrectly assigned. For instance, in at least two

documented cases, electron densities generated by crystallographic SO2�
4 or Cl�

anions were assigned to Mg2+ cations, which resulted in inaccurate starting models

for MD simulation (Auffinger et al. 2004b; Reblova et al. 2004, 2007; Hashem and

Auffinger 2009; Kieft et al. 2010). Calculated barrier heights for the chemical

reaction of the hepatitis delta virus were shown to be particularly sensitive to the

precise positioning of Mg2+ cations (Banas et al. 2008). Hence, one has to examine

with great care the starting models used for MD studies (Auffinger 2006).

14.4 Modeling Other Cations [Co(NH3Þ3þ6 and Polyamines]

Given the difficulty of the task (related to the scarcity of reliable experimental data

and the lack of accurate force-field parameters), only a few attempts related to

modeling multivalent cations (cobalt hexamine and polyamines) bound to DNA

have been published.

Fig. 14.4 Dynamics of RNA–Mg2+ complexes derived from MD simulations of the 5S rRNA

loop E motif (Auffinger et al. 2003). (right) High mobility of a hexahydrated cation bound to

a Watson–Crick GpG step. (middle) Reduced mobility of a pentahydrated cation interacting with

two guanines of the internal loop. (left) Scheme describing a coordination clamp mechanism

through which pentahydrated Mg2+ cations stabilize RNA systems. A: apical water molecule;

E: equatorial water molecules [reproduced by permission from (Auffinger and Hashem 2007)]
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MD simulations investigating the stabilization of A-DNA by Co(NH3Þ3þ6 ,

reproduced a spontaneous transition from B-DNA to A-DNA forms for a short

duplex in agreement with experimental work and NMR studies. The large hexamine

cation coordinated mainly in the major groove of GpG pockets to promote the

transition to A-forms (Cheatham and Kollman 1997, 2000).

The effects of natural polyamines, including spermine (Spm4+), spermidine

(Spd3+), and putrescine (Put2+) and the synthetic diaminopropane (DAP2+), on

DNA systems was investigated in several studies. Spermine dehydrates the DNA

minor groove by binding to the phosphate groups delimiting the groove and the

hydrophobic methylene groups reduce the organization of water at the positions of

spermine binding (Korolev et al. 2002). But spermine molecules, on account of

their flexibility, do not appear to form long-lived and structurally well-defined

complexes with nucleic acids, which hinders their straightforward detection by

crystallographic methods (Korolev et al. 2001). Other polyamines exhibit signifi-

cant binding differences. For instance, DAP2+ is able to form bridges connecting

neighboring phosphate groups along the DNA strand and a small fraction of DAP2+

and Put2+ localizes to the major groove while Spd3+ does not (Korolev et al. 2003).

It has been suggested that the higher structuring potential of the synthetic DAP2+

compared to the more dynamic character of natural polyamines might explain the

occurrence of the latter in cells, in preference to DAP2+ (Korolev et al. 2004).

14.5 Modeling Anions (Cl�, SO2�
4 , . . .)

To approximate physiological ionic conditions, it is necessary to take into account

anions neutralizing the excess co-ions found around nucleic acid systems. Anions

are commonly considered to have a minimal effect on nucleic acid structure and

function. Yet, anions establish, in specific structural contexts, direct contacts with

electropositive atoms of nucleic acid. In a survey of nucleic acid structures

extracted from the PDB, anion-binding sites were mapped and found to match

binding sites of nucleic acid phosphate groups and side chains of the two negatively

charged aspartic and glutamic amino acids (Auffinger et al. 2004b). Most of these

anion-binding sites were recently identified and characterized in RNA crystal

structures by selenate (SeO2�
4 ) soaking techniques at high but also near biologically

relevant ionic strengths (Fig. 14.5) (Kieft et al. 2010).

Given such recent recognition of their binding potential, anions have rarely been

included in MD models and only a few studies have described direct binding of

chlorides to nucleic acid fragments (Makarov et al. 1998; Feig and Pettitt 1999;

Auffinger et al. 2004b; Kirmizialtin and Elber 2010). Given their binding potential

and their unexplored effects on nucleic acid structure and function, it is obvious that

anions should be included in theoretical models. For that, great care has to be paid

to the choice of force-field parameters to avoid artifacts like ion clustering

(Auffinger et al. 2007; Chen and Pappu 2007a). Recent parameterization studies

(Chen and Pappu 2007b; Joung and Cheatham 2008, 2009) should help alleviate
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such issues and facilitate the investigation of subtle ionic effects on structure and

dynamics. In specific instances, some MD studies demonstrated their ability to

locate known anion binding sites (Feig and Pettitt 1999; Auffinger et al. 2004b;

Kirmizialtin and Elber 2010).

14.6 Toward More Complex Ionic Models?

As usual in science, there is a strong incentive for simplifying models. The first

reported MD simulations of biomolecular systems neglected to take into account

water molecules until we were computationally able to deal with them, incidentally

assessing their fundamental role in structure and function of macromolecular

systems. Similarly, the effects associated with the presence of the surrounding

ionic atmosphere were ignored for a long time and MD was carried out in early

work with minimal salt models. We are now able to acknowledge that the structural

and dynamical effects of these ions are certainly as important, although different,

than those induced by water molecules. Henceforth, we have to design the most

accurate possible “all solvent (water, cations, anions) models”, aiming to approach

in vivo conditions as closely as possible. This is best done using a mixture of K+

and Mg2+ cations, balanced electrostatically with Cl� anions. It is further advised,

to disregard when possible, nonphysiological conditions (no ions, minimal cationic

environment, high Mg2+ conditions, . . .) that are sometimes reported in the litera-

ture. For example, the crystal structure of the ribosomal 5S loop E motif displays

five contacting Mg2+ and no monovalent cations (Correll et al. 1997). The observa-

tion of five Mg2+ cations in the vicinity of this 24-nucleotide RNA fragment results

most probably from the specific ionic conditions needed for crystallization. As MD

Fig. 14.5 Characterization of sulfate (SO2�
4 ) and selenate (SeO2�

4 ) anions bound to the cricket

paralysis virus intergenic region of the internal ribosome entry site (IRES; pdb code: 3MJ3; 3MJA;

3MJB) domain 3 RNA (Kieft et al. 2010). (right) SO2�
4 crystallographic difference map and

(middle and left) SeO2�
4 difference maps at different ionic strengths [reproduced by permission

from (Kieft et al. 2010)]
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simulations suggested (Auffinger et al. 2003, 2004a), only one or two of the deep

groove electropositive sites of loop E are occupied by Mg2+ cations while the others

are occupied by K+ cations. Indeed, saturating so many electropositive RNA sites

with Mg2+ cations, as observed in crystals, probably never occurs in vivo.

14.7 Conclusions

It is now well appreciated that ions are an integral part of nucleic acids. Conse-

quently, great care has to be taken in modeling them. The widespread use of MD

simulation of nucleic acid systems has brought to light some imperfections of

current force fields and prompted significant efforts to improve them. Through

this tedious trial and error process significant knowledge related to the binding of

ions to nucleic acids has been gained, on the basis of which the following

conclusions can be drawn and recommendations made:

1. Minimal salt conditions had their usefulness but should now be replaced by the

use of excess neutralizing salt conditions, to allow modeling more subtle ionic

effects, including those associated with anions. Specific ion-induced effects will

definitely come to light with longer MD simulations using refined force fields.

Furthermore, the use of excess ions should significantly improve the sampling of

the available configurational space.

2. Great care should be paid to recently described finite size artifacts that alter the

distribution of ions around charged groups (i.e., phosphate groups). Simulations

exhibiting finite-size artifacts should not be used to calibrate ionic parameters in

force fields.

3. It is time to recognize that Na+ is not a biologically relevant cation; inside cells,

Na+ is found in low concentration while K+ is found in high concentration.

Consequently, the default choice should be to use K+ (or KCl), even when no

clear differences in dynamics are observed. This conclusion is reinforced by

important studies reporting observable differences between MD simulation in

the presence of K+ versus Na+.

4. As noted above, other studies report a small to insignificant sensitivity of RNA

dynamics on the choice of counterion. Yet, given the fact that biopolymeric

systems exhibit nonlinear behavior and are chaotic by nature, the effects of

specific ionic conditions on a given RNA system are difficult to extrapolate.

In most cases, it is therefore wiser to simply select ionic conditions that match

in vivo conditions.

5. In cells, mixtures of ions of different charges (K+ and Mg2+) are generally

necessary for ensuring biological function. Ionic models should reproduce an

appropriate proportion of both species. Note that crystallographic conditions

include often a level of divalent ions far above the level prevailing in vivo.

6. Inclusion of Mg2+ cations in MD models is considerably more difficult than

inclusion of monovalent cations. Yet, RNA simulations will only realistically
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address folding and other molecular recognition issues when these cations are

fully modeled. Initial placement of Mg2+ cations is crucial.

7. Finally, it is always advisable to check the experimental structures used for

initiating MD simulations since some easily overlooked local structural impre-

cision resulting from inaccurate interpretations of experimental data could ruin

subsequent simulation efforts (Auffinger 2006).

In conclusion, MD simulations have demonstrated their potential to provide

significant insight into ion-binding features of nucleic acids. There is no doubt that

many fascinating prespectives await us, as simulations methodologies continue

to improve, emphasizing the intriguing relations that RNA systems establish with

their surroundings. In response to those who question the large effort that will be

necessary to improve the current solvent models, one can quote the adage: “a chain

is only as strong as its weakest link.”
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Chapter 15

Modeling RNA Folding Pathways and

Intermediates Using Time-Resolved Hydroxyl

Radical Footprinting Data

Joshua S. Martin, Paul Mitiguy, and Alain Laederach

Abstract The analysis of time-resolved hydroxyl radical (•OH) footprinting data

can reveal the complex and rugged folding landscape of an RNA molecule. This

analysis requires the identification and subsequent optimization of a kinetic model

and its parameters. The number of possible kinetic models increases factorially with

the complexity of the molecule, complicating the modeling process. We detail here

a computational approach that allows complex models involving up to five kinetic

intermediates to be run on a desktop computer. Our approach involves an initial

“model-free” analysis of the data, which reduces the computational complexity of

the subsequent kinetic parameter optimization. Our method is able to systematically

identify the best fitting kinetic model and reveals the underlying folding mechanism

of an RNA.

15.1 Introduction

Understanding and predicting the process by which an RNA molecule adopts its

native and active structure remains a contemporary challenge in the biophysical

sciences (Woodson 2002; Vicens et al. 2007; Thirumalai and Hyeon 2005;

Talkington et al. 2005; Takamoto et al. 2004). Ribozymes, including the L-21

Tetrahymena thermophila group I intron, adopt a specific conformation to achieve

their catalytic function in the cell (Laederach et al. 2006, 2007). Many RNAs have
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been identified as changing conformations to regulate various cellular processes

(Tucker and Breaker 2005). The active conformation is achieved by navigating the

complex folding landscape and is highly dependent on many environmental factors

(Russell and Herschlag 2001; Russell et al. 2006; Laederach et al. 2007).

The fact that the RNA is able to traverse this landscape on the timescale of

seconds in vitro illustrates the extent to which it is susceptible to misfolding

(Shcherbakova et al. 2008). The rate-determining steps in RNA folding depend

on many factors, including the electrostatic environment, temperature, and exoge-

nous molecule binding (Russell and Herschlag 2001; Russell et al. 2006; Laederach

et al. 2007). We have shown that changes in the folding conditions (such as

variation of the counterion concentration and mutation) have profound effects on

the observed rate constants, suggesting an intricate relationship between the

sequence, structure, environment, and folding dynamics of an RNA molecule

(Laederach et al. 2006, 2007).

Chemical and enzymatic mapping techniques are particularly well suited for the

study of RNA structure and kinetics because they can probe kinetic details with

single-nucleotide resolution (Wilkinson et al. 2005, 2008; Mitra et al. 2008).

Coupled with novel benchtop approaches to collect kinetic data with millisecond

resolution (Shcherbakova et al. 2006), these experimental approaches produce large

data sets that require advanced modeling. The interpretation and modeling of RNA

kinetic data originally required a distributed computing approach to identify and

optimize the kinetic model and its parameters (Laederach et al. 2006). Due to the

computational complexity of the problem, systems involving more than three

intermediates could not be resolved with this approach.

This chapter outlines algorithmic developments for determining the underlying

kinetic model that best describes the folding of an RNA molecule based on the

analysis of time-resolved hydroxyl radical (•OH) footprinting data (Laederach et al.

2006, 2007). Our algorithm has reduced the number of CPU hours by a factor of

2,000 in comparison to the original KinFold software for a two intermediate system

(Laederach et al. 2006) and has allowed the analysis of larger molecules with up to

five intermediates on a desktop computer (Martin et al. 2009).

15.1.1 Software Availability

The algorithms described in this chapter are implemented in the KinFold software

(version 2.2), which is freely available for download at https://simtk.org/home/

KinFold. The software was created using MathWorks’ Matlab software (version

7.5.0.338) and Python (version 2.5.1) under the OS X operating system and is

compatible on other systems for which Matlab and Python are available (Windows

and Linux). The downloadable zip archive contains the necessary scripts, example

data set, basic instructions, and a graphical user interface (GUI) wrapper for

running KinFold. The GUI consists of four major sections (Fig. 15.1); each section
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can be run individually in Matlab’s command input without invoking the GUI, as

described in the readme file.

15.1.2 Kinetic Models Describe the Folding Reaction

RNA secondary structure is very stable and is formed on the microsecond timescale

(Woodson 2000, 2002; Pan et al. 1997; Heilman-Miller et al. 2001). In this chapter,

we focus on the rate-limiting step in RNA folding, the formation of the catalytically

active tertiary structure.We describe this process using a kinetic model, illustrated in

Fig. 15.2. The RNA folds from the unfolded state, U, through multiple, long-lived

intermediates, I, to reach the final folded state, F (Russell et al. 2006). The concen-

tration of the unfolded state as a function of time is related to the rate constants and

concentrations of the other states being converted to and away from U. For the

Fig. 15.1 Screen shot of the KinFold GUI run using the example data, dateeg.xls, found with the

software package. The GUI is broken down into four distinct independent sections that can be run

in sequence or individually. The programs that are used to carry out the calculations can be run

without the GUI and directly though Matlab’s command line
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example shown in Fig. 15.2 for the L-21 T. thermophila group I intron with two

intermediates, the change in concentration of the unfolded state is described by

dUðtÞ
dt

¼ kI1UI1ðtÞ � kUI1UðtÞ þ kI2UI2ðtÞ � kU12UðtÞ þ kFUFðtÞ � kUFUðtÞ: (15.1)

When (15.1) is written out for every state in a folding process with N
intermediates, we obtain the following set of N + 2-coupled differential equations:

dUðtÞ
dt

¼ kI1UI1ðtÞ � kUI1UðtÞ . . .þ kFUFðtÞ � kUFUðtÞ;
dI1ðtÞ
dt

¼ kUI1UðtÞ � kI1UI1ðtÞ . . .þ kFI1FðtÞ � kI1FI1ðtÞ;

..

.

dINðtÞ
dt

¼ kUINUðtÞ � kINUINðtÞ . . .þ kFINFðtÞ � kINFINðtÞ;
dFðtÞ
dt

¼ kUFUðtÞ � kFUFðtÞ . . .þ kINFINðtÞ � kFINFðtÞ: (15.2)

Equation (15.2) can be written in a more compact matrix form by defining the

state vector
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Fig. 15.2 The unfolded RNA (U state) with only secondary structure elements formed (secondary

structure diagram shown in the left-hand circle) must reach a final folded state (F) which has the

full complement of tertiary interactions(shown in the right-hand circle). The domains of the RNA

are colored for ease of identification, so green corresponds to the P4P6 subdomain, red to the

periphery, and blue to the catalytic core of the molecule. The folding of the RNA has the

possibility to go through multiple intermediates I that populate the pathways from the U state to

the F state putting the folding reaction on the order of hours to go to completion. The transition rate

from state i to state j is given by kij and is indicated with an arrow in the diagram. For clarity, we

only show the major transitions between states which usually correspond to increased folding since

the reverse rates are on average much lower (Figure modified from Martin et al. 2009)
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~xðtÞ ¼

UðtÞ
I1ðtÞ
I2ðtÞ
..
.

INðtÞ
FðtÞ

0
BBBBBBB@

1
CCCCCCCA

(15.3)

and the K and D matrices as:

K ¼

0 kUI1 kUI2 � � � kUF
kI1U 0 kI1I2 � � � kI1F
kI2U kI2I1 0 � � � kI2F

..

. ..
. ..

. . .
. ..

.

kFU kFI1 kFI21 . . . 0

2
666664

3
777775

(15.4)

Dij ¼
i 6¼ j; Kji

i ¼ j; �
Xn
i¼1

Kji

8><
>: ; (15.5)

resulting in the equation

d~xðtÞ
dt

¼ D~xðtÞ: (15.6)

The kinetic model for any RNA folding reaction such as the one illustrated in

Fig. 15.2 can therefore be written in the same form as (15.6) using the proper values

for~xðtÞ and D.

The solution to (15.6) is equivalent to that of finding eigenvalues and

eigenvectors for D. The values of l that satisfies the condition

ðD� lIÞ~x ¼ 0 (15.7)

are the eigenvalues of this problem. Equation (15.7) can only be true for nonzero

values of ~xðtÞwhen the determinant of D� lI is zero. The corresponding eigen-

vector ~Li for the eigenvalue li is found by solving

D~Li ¼ li~Li: (15.8)

By writing the matrix D in the bases of the eigenvectors, we decouple (15.6)

and reduce it to a set of linear first-order differential equations of the form

dxðtÞ
dt

¼ lxðtÞ: (15.9)
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The general solution to a differential equation of the form of (15.9) is xðtÞ ¼ c�
expðltÞ; where c is determined by the initial conditions. By collecting and

rewriting all the solutions to the individual uncoupled differential equations in the

original basis of D, we get the final solution:

~xðtÞ ¼
X
i

ci~Li expðlitÞ: (15.10)

The constants c are found by solving the set of linear equations represented by

(15.10) with the initial conditions of ~xðt ¼ 0Þ.
This solution offers a computationally simple solution in comparison to numeri-

cal methods used to solve (15.6) as previously implemented (Laederach et al.

2006). The curves shown in Fig. 15.3a for the L-21 T. thermophila were generated

using this solution and the reported K matrix (Laederach et al. 2006).
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Fig. 15.3 (a) Resulting state curves ~xðtÞ for U (orange), I1 (magenta), I2 (purple), and F (black)
that describe the relative fraction of each species as a function of time for the folding of the L-21 T.
thermophila group I intron in the presence of 10 mMMgCl2 (Laederach et al. 2006). These curves

are obtained from (15.10). (b)The corresponding •OH footprinting curves (~CPðtÞ) for the folding of
the T. thermophila group I intron in the presence of 10 mM MgCl2. The green curve corresponds
to the P4P6 subdomain, red to the periphery, and blue to the catalytic core of the molecule

matching the color scheme chosen for the structures in Fig. 15.2. (c) The •OH footprinting curve

for the P4P6 subdomain as a linear combination of the I1(t), I2(t), and F(t) state curves. (d) The
•OH footprinting curve for the periphery is a linear combination of the I2(t) and F(t) state curves
(figure modified from Martin et al. 2009)
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15.1.3 Hydroxyl Radical Footprinting Measures the Folding
Reaction

Hydroxyl radical footprinting involves generating a burst of •OH radicals that

selectively cleave the RNA backbone at residues that are exposed to the solution

and not buried within the molecule (Shcherbakova et al. 2006). Hydroxyl radicals

are generated using either synchrotron radiation (Sclavi et al. 1997, 1998a) or the

Fenton reaction (Shcherbakova et al. 2006). As the molecule folds into a compact

structure, some regions become more buried and are thus increasingly protected

from cleavage as folding progresses. Kinetic data is obtained by measuring the

change in accessibility as a function of time as the RNA folds. The RNA fragments

resulting from •OH radical cleavage are then identified using gel electrophoresis

(Das et al. 2005) or a capillary sequencer (Mitra et al. 2008) yielding a time-

dependent change in accessibility for each nucleotide in the RNA. A more detailed

description is beyond the scope of this chapter but can be found in the literature

(Shcherbakova et al. 2006; Sclavi et al. 1997, 1998a, b; Brenowitz et al. 1986, 2002;

Shcherbakova and Brenowitz 2008).

The accessibility changes measured for each nucleotide as the molecule folds are

illustrated in Fig. 15.3b for the L-21 T. thermophila. We label these time progress

curves as ~CðtÞ. The •OH footprinting curves shown in Fig. 15.3b correspond to

individual subdomains of the molecule; in this case, the green curve is the average

change in accessibility of nucleotides in the P4P6 subdomain, while the red curves

correspond to the peripheral helices, and the blue curves correspond to nucleotides

in the catalytic core (Laederach et al. 2006). The subdomain coloring schematic

is consistent throughout this chapter (e.g., between Figs. 15.2 and 15.3).

The progress curves, ~CðtÞ, are created from linear combinations of the state

curves, ~xðtÞ. It can be seen in Fig. 15.3c that the green progress curve from

Fig. 15.3b is made up of the addition of I1(t), I2(t), and F(t), while in Fig. 15.3d,

the red curve is made up of I2(t) and F(t). These progress curves can be written as a
group of equation as

C1ðtÞ ¼ 0UðtÞ þ 0I1ðtÞ þ 0I2ðtÞ þ 1FðtÞ;
C2ðtÞ ¼ 0UðtÞ þ 0I1ðtÞ þ 0I2ðtÞ þ 1FðtÞ;
C3ðtÞ ¼ 0UðtÞ þ 0I1ðtÞ þ 0I2ðtÞ þ 1FðtÞ:

(15.11)

This group of equations can be simplified by writing them in matrix form as

~CPðtÞ ¼P~xðtÞ; (15.12)

where

P ¼
0 0 0 1

0 0 1 1

0 1 1 1

66664
77775: (15.13)
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The matrix P represents the linear combinations of state curves, ~xðtÞ, that
enumerate the progress curves, ~CðtÞ. It should be noted that we simplify the possible

number of P matrices by realizing that the final folded state will have all the

nucleotides folded into their final structure, while the unfolded state will have no

nucleotides folded into the final state. Mathematically, this means that the last

column in P will consist of all 1’s, while the first column will consist of all 0’s. This

property of P makes it possible to extract the sub-matrix P consisting of everything

but the first column of P without losing any information. For example, the Pmatrix

derived from the P from (15.13) is

P ¼
0 0 1

0 1 1

1 1 1

66664
77775: (15.14)

A priori, neither P nor K is known for a given RNA folding reaction, since only

the experimental progress curves can be measured. The problem of identifying the

proper kinetic model for a particular folding reaction thus becomes that of finding

the best P and K matrices that describe the •OH footprinting data.

15.2 Implementation

15.2.1 Experimental Progress Curves

The scaled experimental time progress curves are then clustered which serves the

duel purposes of reducing the number of progress curves and averages out the noise

in the data (Laederach et al. 2006). The number of clusters is determined by the Gap

statistic (Tibshirani et al. 2001). The Gap score is calculated by generating 100

different sets of random time progress curves from a normal distribution of random,

single exponential curves. These curves are then clustered using k-means clustering

to determine the within cluster dispersion ðW�
k Þ for the random set and compared to

the clustered data (Wk) as a function of increasing k. The Gap score is computed

using

Gap(kÞ ¼ 1

B

X
b

logðW�
k Þ � logðWkÞ; (15.15)

where B is the number of random sets of time progress curves (Laederach et al.

2006). The optimal value of kwas chosen such that Gap(kÞ � GapðK þ 1Þ � sk þ 1

where sk þ 1 is the standard deviation of the Gap parameter for the random time

progress curves (Laederach et al. 2006).
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An example of this clustering is shown in Fig. 15.4 for experimental data for

the L-21 T. thermophila collected at 10 mM MgCl2 (Laederach et al. 2006).

Figure 15.4a shows the hydroxyl radical curves after they have been scaled between

zero and one. The Gap statistic determines that three clusters are the optimal, and

we color these green, red, and blue (Fig. 15.4b). The cluster centroids are shown in

black in Fig. 15.4b and correspond to the experimental curves that are used when

performing kinetic modeling.

15.2.2 Factorial Explosion of P

To calculate the state curves~xðtÞ from the progress curves ~CðtÞ, we make use of the

fact that the two sets of curves are related through the Pmatrix as given by (15.12).

Since the rows in the sub-matrix P are linearly independent, we can solve for all but

U(t) in~xðtÞ by inverting P:

Xn
i¼2

xiðtÞ ¼ P�1~CðtÞ: (15.16)

The mass-balance equation allows us to generate U(t) by subtracting the other

state curves from unity,

UðtÞ ¼ 1� I1ðtÞ � I2ðtÞ � � � � INðtÞ � FðtÞ; (15.17)
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Fig. 15.4 Example of the clustering for the L-21 T. thermophila in 10 mM MgCl2 (Laederach

et al. 2006). (a) The time progress curves from hydroxyl radical footprinting after they have been

scaled between zero and unity. The Gap statistic is used to calculate an optimal cluster number of

three (Laederach et al. 2006). (b) The resulting clusters shown as red, green, and blue curves
corresponding to the same colors in the structures shown in Fig. 15.2. The cluster centroids are

shown as heavy black lines and are the time progress curves that are analyzed using the KinFold

algorithm

15 Modeling RNA Folding Pathways 327



and allows the determination of ~xðtÞ. In other words, given the experimental data
~CEðtÞ, we are able to obtain the time progress of the different species in solution

using only the P matrix and mass balance.

The number of different Pmatrices is related to the number of different ways one

can combine the intermediate curves to generate the state curves. These

combinations are equivalent to the number of ways you can pick j items, out of a

set of i items which is described by

I

j

 !
¼ I!

j!ðI � jÞ! : (15.18)

In this situation, the number of ways of selecting 0, 1, 2, . . ., N intermediates

must be summed to obtain the final number of ways of selecting the intermediates:

XI
j¼0

I
j

� �
¼ I

0

� �
þ I

1

� �
þ . . .þ I

I

� �
: (15.19)

These factors are the binomial expansion of order I written as

I
0

� �
XI þ I

1

� �
xI�1 yþ . . .þ I

1

� �
yI ¼ ðxþ yÞI: (15.20)

Equation (15.19) is equal to (15.20) when x ¼ y ¼ 1 resulting in the number of

possible combinations being ðxþ yÞI ¼ 2I. The number of ways to arrange these 2I

vectors into an I + 1 matrix where order matters is also a combinatorial problem

given by

n ¼ 2I

I þ 1

 !
¼ 2I!

ð2I � I � 1Þ! : (15.21)

This combinatorial explosion in the number of P matrices is shown as the

solid blue curve in Fig. 15.5. The original implementation of KinFold reduced the

number of P matrices (as shown in red in Fig. 15.5) using several simplifying

assumptions (Laederach et al. 2006).

15.2.3 Testing P Without Fitting K

Section 15.2.2 described how the number of P matrices increases combinatorially

with the number of intermediates. This increase makes it impractical to find the best

fitting K matrix for every one of these P matrices on a desktop computer for any
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system with more than two intermediates. One can drastically reduce the number of

models that must be fitted by recognizing that not all state curves generated from the

inverse of a given Pmatrix for a given set of progress curves are physically possible.

This reduction is done by carefully inspecting all the P matrices and sets of state

curves,~xðtÞ, generated for a given set of time progress curves, ~CðtÞ. Any set of~xðtÞ
which contains a curve with negative values of the relative fraction of molecules is

not physically realistic and can be disregarded in the analysis. The only way an

individual combination of state curves is eliminated is when all the P matrices

containing that combination are eliminated. This is illustrated in Fig. 15.6 where all

the possible P matrices are generated and used to calculate all the possible state

curves for our example system. Visual inspection of Fig. 15.6 reveals which P

matrices are not physically viable solutions of the system. For example, the matrix-

labeledP1 generates aU(t) state curve that has values that are less than zero, which is
unphysical, so it can be rejected before fitting is attempted. The matrix-labeled P4 is

also an unphysical case because it generates an F(t) state curve that has values less
than zero. The two remaining matrices P2 and P3 are possible models; however, they

are degenerate, meaning that for all practical purposes, they are the same model. In

this particular case, the labeling of I1 and I2 is switched between the two surviving

models. This degeneracy is the result of the interchangeability of the columns of the

Pmatrix for the different combinations of the state curves. Consequently, for a given

set of time progress curves, there are I! possible degenerate matrices.
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Fig. 15.5 Illustration of the combinatorial explosion in the enumeration of all possible Pmatrices

as a function of the number of intermediates I. In blue,we plot the total number of possible models,

n, as given by (15.21). The red curve represents the number of models (P matrices) that are tested

when using the previous implementation of KinFold by nonlinear least-squares optimization

(Laederach et al. 2006). The black curve is the average number of models that now need to be

test based on a sampling of 100 random data sets using our new approach. Error bars represent

three standard deviations, and the light gray shadows the maximum and minimum values of n for

each I for the random data set used. The actual number of models is highly dependent on the data

set (figure from Martin et al. 2009)
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15.3 Validation and Results

15.3.1 Experimentally Acquired •OH Data

To demonstrate the analysis described above on real data, we apply it to the folding

of the L-21 T. thermophila in 10 mM MgCl2, which was previously analyzed

(Laederach et al. 2006). When we apply (15.16) for the four possible P matrices

to the example data shown in Fig. 15.7a, all sets of the resulting~xðtÞ curves have a
curve that dips below zero. However, closer examination of the curves reveals that

certain solutions only result in minor excursions below zero which are easily

accounted for by experimental error, as shown in Fig. 15.7. This can be taken

into account by adjusting the criteria to allow up to 10% of the area under the curve

(AUC) to be negative before we eliminate the corresponding Pmatrix as a potential

model. This results in the identification of a single set of unique state curves

(Fig. 15.7b). If we now optimize K using nonlinear least square regression on the
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Fig. 15.6 Illustration of the application of (15.16) to CE(t) (center panel) to generate possible~xðtÞ
state curves (external panels); colors are identical to those used in Fig. 15.2. Both P�1 and P�1

matrices generate negative state curves allowing us to eliminate them without the need to optimize

K with nonlinear least squares. P�1 2 and P�1 yield identical curve shapes, but I1 and I2 are

inverted. In this case, these two matrices yield degenerate models that are equivalent, such that a

single kinetic model describes the RNA folding reaction (figure from Martin et al. 2009)
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resulting~xðtÞ, we are able to fit these data accurately (Fig. 15.7c). Furthermore, the

values we obtain for K (Fig. 15.7d) are equivalent within error to those obtained

using the original KinFold algorithm (Laederach et al. 2006; Martin et al. 2009).

Adjusting the AUC criteria allows us to fine tune the sensitivity of our

approach. In this particular example, we chose 10% as this correctly identified

the set of state curves corresponding to the folding model. Had we chosen less

stringent criteria, such as 50% AUC, we would have identified additional models

(P matrices) that require testing using nonlinear optimization of the K matrix. In

essence, raising the AUC criteria results in having to test more models with least-

squares optimization and thus makes the problem more computationally inten-

sive. When using our approach with a novel data set, AUC criteria can be selected

such that a minimal number of models need to be tested. In practice however, it is

preferable to test several models to evaluate the significance in the difference in

root-mean-square error (RMSE) of the fit. The AUC criteria allow users of the

algorithm to balance computational cost and desire to comprehensively fit all

models.
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Fig. 15.7 Illustration of current algorithm when applied to actual experimentally obtained •OH

footprinting data; curve colors are consistent with Fig. 15.2. (a) Time progress curves with

experimental noise. (b) Resulting state curves ~xðtÞ determined by applying (15.16) to the raw

data and only selecting the P matrices that satisfy the AUC criteria. (c) Optimized fit using

nonlinear least-squares minimization of K of state curves. (d) K matrices obtained using the old

and new approaches to determining P and K, which yield identical results within error. Error on

the rate values vary between 5 and 20% (figure from Martin et al. 2009)
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15.3.2 Large Systems

As can be seen in Fig. 15.5, the number of possible P matrices increases factorially

with the number of intermediates. For systems with four and five intermediates,

very large numbers of P matrices must therefore be tested. Fortunately, this

approach allows one to first efficiently test all these combinations to determine

which P matrices require nonlinear least-squares optimization to get K. The black

line in Fig. 15.5 reports on the number of surviving models (Pmatrices) that require

testing for computationally generated data as a function of the number of

intermediates (Martin et al. 2009).

For all I, it is clear that the approach described here offers a significant reduction
in the number of models that need to be tested, making this approach computation-

ally tractable for systems with large numbers of intermediates like the ribosome.

Interestingly, the number of models that need to be tested is highly dependent on the

curves, as evidenced by the large standard deviation over the 100 tested models

(and the even larger spread in the min and max values, gray shadow Fig. 15.5). It is

therefore difficult to a priori predict the total number of P matrices that will

produce only positive curves for a given data set. The ability to identify a single

kinetic model that best fits the experimental data will ultimately depend on the

quality of the experimental data.

15.4 Discussion

Our analysis of larger systems with up to five intermediates shows that our approach

will scale and remain computationally tractable even for the largest experimentally

known systems. These results also illustrate one fundamental limitation of the

approach: it may not always be possible for these large systems to identify a single

combination of P andK that fits the data better than all others. This suggests that the

information content of the data is not sufficient and that other sources of data will be

required. In the case of ribosome assembly, methods like pulse-chase mass spec-

trometry (Talkington et al. 2005) reveal the protein’s perspective on the RNA

folding reaction and can provide the additional kinetic information to identify a

single model. Furthermore, time-resolved small angle X-ray scattering can provide

global compaction measures (Pollack et al. 2001; Russell et al. 2002), while

catalytic activity measurements indicate the rate of appearance of the native

molecule (Russell et al. 2006). Taken together, these varied sources of experimental

data have the potential to accurately describe the folding reaction of very large

RNA molecules.

Kinetic modeling, such as the approach we describe here, will be critical in

laying the foundation for addressing many of the unanswered questions that remain

in RNA folding. These include the identification of conserved themes, the role of

counterion concentration, and the role of sequence and kinetic traps in the folding.
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The rate-determining steps in RNA folding depend on many factors including the

electrostatic environment, temperature, and exogenous molecule binding (Russell

and Herschlag 2001; Russell et al. 2006; Laederach et al. 2007). Kinetic models and

new experimental approaches will allow for a better understanding of the mecha-

nism for which the RNA changes conformation in response to regulatory elements

(Tucker and Breaker 2005) and mutations of the sequence that effect the kinetics of

folding.

Our kinetic models provide quantitative and mechanistic insight into the folding

of large RNAs. It is important to be aware of the fact that these models describe the

in vitro folding reaction in the absence of proteins and other cofactors that act as

folding chaperones. Furthermore, we fold fully transcribed RNAs by adding

counterions. In reality, RNA is folded co-transcriptionally in the cell. It is likely

that the presence of chaperones and the co-transcriptional folding process may

simplify and/or accelerate the folding process by eliminating some of the pathways

that lead to long-lived, misfolded intermediates. In fact, there is evidence that the

T. thermophila group I intron folds an order of magnitude faster in vivo than in vitro

(Woodson 2002). It is therefore critical to remember that the folding models we

develop represent possible folding pathways, but do not represent the actual

biological folding mechanism.
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Chapter 16

A Top-Down Approach to Determining Global

RNA Structures in Solution Using NMR and

Small-Angle X-ray Scattering Measurements

Yun-Xing Wang, Jinbu Wang, and Xiaobing Zuo

Abstract RNA plays important roles in many biological processes. RNA functions

are embedded in its structures and dynamics. Structure elucidation of RNA, using

experimental, computational, or combined approaches, remains a major research

challenge and focus of interest in contemporary biology. In this chapter, we present

a method that uses global orientation and shape restraints, which are derived from

experimental NMR measurements and small-angle X-ray scattering (SAXS) data,

to determine global structures of sizable RNAs in solution. The global structures

may be used as initial structures for high-resolution structure determination by

computational or experimental approaches. This chapter outlines the theory and

procedures and presents experimental examples to demonstrate the method. A Web

page is also included for readers to download the program toolkit, calculation

scripts, and examples.

16.1 Introduction

The discovery of the critical roles that RNA plays in the regulation of gene

expression at various levels is one of greatest advances in modern biology. For

example, RNA is an active participant in the regulation of gene expression by
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interference (Fire et al. 1998) or by riboswitches (Tucker and Breaker 2005), in the

processing of RNA introns (Kruger et al. 1982), in the maintenance of chromosome

ends by telomerase (Blackburn 1992), and in protein synthesis by the ribosome

(Moore and Steitz 2002). RNA function is encoded in its dynamics and structure

(Zhang et al. 2006, 2007; Cruz andWesthof 2009), and determining RNA structures

remains a major goal in contemporary biology. In the past decade, despite signifi-

cant advances in determining RNA structure using X-ray crystallography and

solution NMR, as well as in structure prediction (Martinez et al. 2008; Parisien

and Major 2008; Jonikas et al. 2009b), the number of validated bona fide RNA

structures is dwarfed by both the number of protein structures and the growing

number of known functional RNAs. This disparity is due to the difficulty of

growing crystals and/or obtaining phase information and to the size limitations of

structure determination by solution NMR spectroscopy. Clearly, a new strategy for

determining RNA structure is critically needed.

A survey of the current RNA structure databases reveals that RNA structures

consist mainly of duplexes that form the major building blocks punctuated by loops

(Leontis et al. 2006; Wang et al. 2009). Cruz and Westhof recently pointed out that

RNA architectures are dominated by duplexes, arranged through coaxial stacking

and packed in parallel or orthogonal to one another (Cruz and Westhof 2009). The

underlying forces that “glue” various building blocks together are tertiary Watson–

Crick base pairings, such as those observed in kissing loops or pseudoknots and

tertiary non-Watson–Crick base pairings, as observed in loop-receptor and A-minor

interactions and within helical junctions (Leontis et al. 2006; Lescoute and Westhof

2006). However, due to the lack of a clear propensity correlation between a

sequence and tertiary interactions, these interactions, especially noncanonical

base pairings, are difficult to predict based on a sequence alone using a pure

computation modeling approach. One of the links between an RNA primary

sequence and an atomic resolution structure is the global structure of the RNA.

We have developed an experimental method for global structure determination that

may make it feasible to reliably predict intricate tertiary interactions (Leontis and

Westhof 2001, 2002, 2003; Leontis et al. 2006; Jonikas et al. 2009a). Moreover,

this method may also open the door to high-resolution structure determination

of sizable RNAs through the combined use of solution-based NMR spectroscopy

and small-angle X-ray scattering (SAXS) methods.

Since RNA architectures are dominated by duplexes that tend to pack approxi-

mately parallel/antiparallel or orthogonal to each other, and/or to stack coaxially

(Leontis et al. 2006; Cruz and Westhof 2009), determining the global structure may

begin with determining the relative orientations and relative positions of the duplexes.

Both the relative orientation and position of the duplexes can be experimentally

measured, as demonstrated in the following section. Since both the orientation and

position are global measurements, we have called the method global measurements to

global structure (G2G).
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16.2 Theory

16.2.1 Duplex Orientation

Residual dipolar coupling (RDC) in solution is an orientation-dependent, geometri-

cal physical property that can be measured in a weakly aligned medium and

magnetic field using NMR. The application for studying macromolecule

structures was pioneered by Bothner (Gayathri et al. 1982; Bothner 1996).

Tolman et al. were first to measure the orientation-dependent 1H–15N splitting

in paramagnetic myoglobin (Tolman et al. 1995), and Bolton and his colleagues

observed that the magnetic field induced natural alignment of DNA molecules

(Kung et al. 1995). The RDC of spin pairs in a repetitive and periodical structure

is wave-like when it is plotted against the residue numbers. This wave is called a

dipolar wave or more explicitly the RDC–structure periodicity correlation. It was

first reported for a-helices in membrane proteins (Mesleh et al. 2002) and later

for duplexes of RNA molecules (Walsh et al. 2004). The shape of a dipolar wave

depends on the orientation of the repetitive and periodical structure relative to a

reference axis (Fig. 16.1a, b). Therefore, the dipolar wave contains orientation

information and can be used to extract the orientation information of periodical

structural elements in macromolecular structure determination (Walsh and Wang

2005; Wang et al. 2007).

The dipolar coupling splitting, DAB, between two near spin-½ nuclei A and B,

is expressed by (16.1):

DAB ¼ � gAgB�h
4p2r3AB

<3cos2y� 1>; (16.1)

where gi is the gyromagnetic ratio of spin A or B, rAB is the distance between spins

A and B, and y is the angle of the AB internuclear vector with respect to the

magnetic field (Ernst et al. 1987). The angular brackets “< >” indicate averaging

due to overall molecular tumbling and local dynamics. In an isotropic solution,

<3cos2y � 1> ¼ 0. In a weakly aligned rigid system in solution, the equation

simplifies when rewritten in spherical coordinates, as shown in (16.2):

DABðy; ’Þ ¼ Da½ð3cos2y��1Þ þ 3=2Rsin2y cos 2’�; (16.2)

where Da and R are the axial and rhombic components of alignment tenors and

(y, ’) are the azimuthal and polar angles in spherical coordinates describing the

orientation of the internuclear vector. For periodically repetitive structures, such as

a-helixes, b-strands, and DNA or RNA duplexes, DAB can be expressed in terms of

both the orientation (Y,F) of a structural element in the alignment tensor frame and

the orientation (d, r) of the bond vector within this structural element (Fig. 16.1c–e).

(Y, F) are the orientation of the periodical structure axis relative to the global

reference axis (Fig. 16.1e), as demonstrated in the following discussion (Walsh

et al. 2004).
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Fig. 16.1 Simulated RDC–structural periodicity correlation of duplexes and the pictorial definitions

of duplex orientation (F, Y) and phase r0. (a) Three different orientations; (b) their corresponding
RDC–structural periodicity correlation curves; (c) the imino and C10H10 slant angles (d) with respect
to the helix with a vector expression; (d) the C10–H10 period angle r; (e) the definition of the
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In spherical coordinates, the bond vector of the nth residue of a periodically and

repeating structure, such as a nucleic acid duplex, can be expressed in terms of the

bond length, rAB, angle dn to the duplex axis, and the angle rn with the x-axis (in a

coordinate system where Z is along the helix axis and the X–Y plane is perpendicu-

lar to it, see Fig. 16.1c). The angle rn ¼ (an + r0) is given by the phase of the first

bond vector in the duplex, r0, plus a phase offset (or “phase,” for short), which is

characteristic of duplex periodicity: an ¼ 2p(n � 1)/T, n ¼ 1, 2, 3 . . .; T is the

period of the duplex (A-RNA: T ¼ 11; B-DNA: T ¼ 10; a-helix: T ¼ 3.6).

The bond vector in the duplex reference frame is then given by (16.3):

~r
0
AB ¼ rABðsin dn cos rn; sin dn sin rn; cos dnÞ: (16.3)

Rotating this bond vector by the helix orientation angles (Y, F) gives its

orientation in the alignment tensor reference frame.

~rAB ¼ RzðFÞRyðYÞ~r0AB

¼
cosF � sinF 0

sinF cosF 0

0 0 1

0
@

1
A cosY 0 sinY

0 1 0

� sinY 0 cosY

0
@

1
A dAB sin dn cos rn

dAB sin dn sin rn
dAB cos dn

0
@

1
A

¼ rAB

cosFðcosY sin dn cos rn þ sinY cos dnÞ � sinF sin dn sin rn
sinFðcosY sin dn cos rn þ sinY cos dnÞ þ cosF sin dn sin rn

� sinY sin dn cos rn þ cosY cos dn

0
@

1
A: (16.4)

Equation 16.3 can be recast in Cartesian coordinates,

DAB ¼ Da

rAB

3

2
R� 1

� �
x2 � 3

2
Rþ 1

� �
y2 þ 2z2

� �
(16.5)

and substituted in the Cartesian coordinates parameterized in terms of duplex

parameters from (16.4); then the relationship between the RDC of an internuclear

vector, DAB, and the orientation of a repetitive and periodical structural element

can be explicitly expressed by (16.6) (Walsh et al. 2004):

�

Fig. 16.1 (continued) orientation of a duplex (Y, F) and the relationship between a tilted duplex

and a reference axis. Simulated RDC–structural periodicity correlation curves (b) are color-coded

as in (a). The shapes of the RDC–structural periodicity correlation curves (RDC waves) depend on

the orientation (Y, F) and the phase r0 of duplexes. The equation in (e) shows the interconvention
of the bond vector in the alignment tensor reference frame and the duplex reference frame, with an

orientation of (Y, F) with respect to the alignment tensor reference frame (Walsh et al. 2004). (f)

Each ball represents a phosphor atom (P). A bp PP vector stands for the vector from 30 P to 50 P in

the same bp. Black arrow at right indicates the duplex orientation. (g) The vector

DPi
��! ¼ piþ1pjþ1

�����!� pipj
�! belongs to the plane perpendicular to the duplex axis. The cross product

ni ¼ DPi � DPiþ1 is the normal of the plane perpendicular to the duplex axis, which is parallel to

the duplex axis. The duplex orientation is calculated as an average of the normals
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DAB ¼ C1ðY;F; dnÞ cos 2rn þ C2ðY;F; dnÞ sin 2rn
þ C3ðY;F; dnÞ cos rn þ C4ðY;F; dnÞ sin rn þ C5ðY;F; dnÞ;

(16.6)

where Ci (i ¼ 1, 2, . . . 5) are functions of (F, Y, rn) and are given by (16.7):

C1 Y;F; dnð Þ ¼ 3Da=16ð Þ½4þ 6R cos 2Fþ R cos 2ðY� FÞ � 4 cos 2Y

þ R cos 2ðFþYÞ�sin2dn; (16.7a)

C2 Y;F; dnð Þ ¼ �3Da=2Rð Þ cosY sin 2Fsin2dn; (16.7b)

C3 Y;F; dnð Þ ¼ 3Da=4ð ÞðR cos 2F� 2Þ sin 2Y sin 2dn; (16.7c)

C4 Y;F; dnð Þ ¼ �6DaR sinY sinF cosF sin dn cos dn; (16.7d)

C5 Y;F; dnð Þ ¼ Da=32ð Þ½4þ 6R cos 2F� 3R cosðF�YÞ þ 12 cos 2Y
� 3R cos 2ðFþYÞ� 3 cos 2dn þ 1ð Þ: (16.7e)

Equation (16.6) expresses DAB explicitly in terms of the helical global orienta-

tion (Y, F) and phase, r0, of a structural element in the alignment tensor frame.

Equation (16.6) has five unknown variables,Da, R,F,Y, and r0, which can be fitted
by the nonlinear least squares method (Walsh et al. 2004), which is implemented in

the ORIENT program of the G2G toolkit (Wang et al. 2009).

The ORIENT program calculates the duplex axis using the base pair (bp)

phosphate-to-phosphate vectors pipj
�!, where i and j are the bp indices (Fig. 16.1f).

The pipj
�! vector is from the 30 to the 50 strand (Wang et al. 2009). The vectors

DPi
��!ðDPi

��! ¼ piþ1pjþ1
�����!� pipj

�!Þ belong to the plane perpendicular to the duplex axis

(Fig. 16.1g). The plane normal (which is also the duplex axis) is ni ¼ DPi � DPiþ1.

The duplex axis is the average of the plane normal vectors, ~D ¼ Pk
i¼1 ni=k, where

k + 2 equals the number of bps in the duplex. The program allows a choice of fitting

the RDC data either for an individual duplex or for all duplexes simultaneously,

under a rigid-body assumption (Wang et al. 2009).

One of limitations in using RDCs to derive orientation information is the

fourfold degeneracy that occurs if only one independent alignment medium is

available (Fowler et al. 2000; Hus et al. 2001; Walsh et al. 2004). In an RNA

consisting of three duplexes, there are 16 possible orientation combinations of the

three duplexes (Wang et al. 2009). In theory, a second noncollinear alignment

medium is required to resolve ambiguity in the relative orientation of the duplex.

A shortcut solution to this problem can be obtained using SAXS, from which one

can derive a global shape that is indicative of an approximate layout of the

duplexes. Therefore, the shape can be utilized to identify the correct combination

of the relative orientation, as we shall demonstrate in later sections (Wang et al.

2009).
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16.2.2 Shape Derived from SAXS

Next, we briefly summarize the theories and protocols for using SAXS to derive

global shapes of biomacromolecules in solution state, which have been described

extensively in the literature (Svergun and Stuhrmann 1991; Chacon et al. 1998;

Svergun 1999; Walther et al. 2000; Koch et al. 2003). For a molecule, which

consists of N atoms and is randomly tumbling in solution, the scattering intensity,

I, is given as a function of the momentum transfer, q, by Debye’s formula (16.8)

(Debye 1915):

IðqÞ ¼
XN
i¼1

XN
j¼1

fiðqÞfjðqÞ sinðqrijÞ
qrij

; (16.8)

where rij is the distance between pairs of atoms and fj(q) is the scattering factor of
the individual atom, j. Beginning in the 1970s, Stuhrmann, Svergun, and

coworkers developed an ab initio method to semianalytically reconstruct 3D

shapes based on the expansion of q in spherical harmonics (Stuhrmann 1970;

Svergun and Stuhrmann 1991). This approach is very powerful when applied to

globular objects but limited for more complex shapes. In the late 1990s and early

2000s, Monte Carlo-based methods were also developed to reconstruct the low-

resolution molecular envelopes/shapes, based on the idea that objects of arbitrary

shape can be represented by collections of small beads (Chacon et al. 1998;

Svergun 1999; Walther et al. 2000). Among the programs currently in widespread

use, DALAI_GA uses the genetic algorithm (Chacon et al. 1998), the DAMMIN

program uses a simulated annealing algorithm (Svergun 1999), and the Saxs3D

program uses a “give-n-take” algorithm (Walther et al. 2000) to efficiently

generate the bead molecular model that satisfies a given experimental SAXS

profile. These programs also utilize fast algorithms to deconvolute the SAXS

profiles to obtain bead models. For example, DAMMIN uses harmonic expansion,

and GALAI_GA and Saxs3D use distance histogram methods. Bead model

calculations using each of these efficient algorithms can be carried out on a PC

in a few hours. To make the resulting bead models more physically meaningful,

besides the goodness of fit of the SAXS profile, more regularizations have been

imposed in the bead model calculations, such as extra penalties on bead model

looseness and disconnectivity (Svergun 1999). In cases where the symmetry of

the molecular shape is known (e.g., ellipsoidal, oblate, etc.), the programs provide

options to restrain the shape of the bead models accordingly. Furthermore, due to

the intrinsic degeneracy of SAXS, it is recommended that multiple bead model

calculations be performed where the programs take a random seed to initiate

calculations; the most probable model is usually the average of these calculated

bead models.
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16.3 Determining Global Structures of RNAs Using Global

Restraints

16.3.1 A Simulated Case

Given the global orientations of the duplexes and the global shape of an RNA, could

one, in principle, determine its global structure to useful resolution? To answer this

question, we performed a simulation calculation. We used orientations of the three

duplexes of the adenine riboswitch (riboA) from an X-ray crystal structure

(Serganov et al. 2004) and the global dimension measurements of the shape to

calculate an ensemble of global structures of this RNA. The shape of the RNA was

derived from an experimental SAXS profile of a riboA RNA having a slightly

different sequence (Wang et al. 2009). In addition to the orientation and the overall

shape restraints, we applied generic distance restraints to restrain the three duplexes

to the A-form conformation, enforce base-stacking throughout the RNA sequence,

and position the adenine ligand correctly. The distance restraints for the ligand are

readily calculated from the nuclear Overhauser effect (NOE) experiments (see

below) (Wang et al. 2009). We used Xplor-NIH (Schwieters et al. 2003) and a

hybrid rigid-body simulated annealing (SA) refinement protocol similar to that

previously published (Zuo et al. 2008) for the calculation (Web page: https://

ccrod.cancer.gov/confluence/display/public/SAXS). The regularization procedure

available in Xplor-NIH connects linkers with duplex building blocks and removes

any gross covalent geometry distortions before SA refinement. During the calcula-

tion, the orientations and phases of the three duplexes were fixed in space, but

arbitrary linker motions were allowed using the internal variable module (IVM)

facility (Schwieters et al. 2006) of the Xplor-NIH package (version 2.22 or newer).

In addition to the loose distance and torsion-angle restraints that were applied to

maintain the approximate A-form conformation of the duplexes, we used the

following restraints in the calculation: (1) an explicit restraint on the radius of

gyration (Rg), extracted from the SAXS data and (2) uniform distance restraints to

maintain neighboring base stacking throughout the whole chain. The ensemble of

structures using these simulated data is shown in Fig. 16.2. The backbone root-

mean-square deviations (RMSDs) between the average structure of the ensemble

and the X-ray crystal structure are 0.8 Å for residues in the three duplexes and 1.7 Å

for all residues in the structure. This calculation suggests that it is possible, with

accurate global shape information and duplex orientation restraints, to determine

the global structure with a high degree of accuracy.

16.3.2 Experimental Case 1: riboA

The riboA RNA modulates the expression of associated genes in response to

elevated concentrations of the cellular metabolite adenine (Mandal and Breaker
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2004). The crystal structure of a 71-nucleotide (nt) riboA has been determined to a

2.6-Å resolution (PDB access code: 1Y26) (Serganov et al. 2004). In addition to its

importance in regulating gene expression, this 71-nt riboA RNA was selected to test

the method because of its relatively complex fold and large size with respect to the

solution NMR method. Note that the sequence used in our test is slightly different

from that of the crystal structure (Fig. 16.3) (Wang et al. 2009). The secondary

Fig. 16.2 Comparison of the ensemble of the G2G structures of riboA (orange) with the X-ray

crystal structure (green, pdb access code: 1Y26) in three views. The G2G structures were

calculated using the duplex orientations taken from the X-ray structure and the simulated SAXS

profile of the X-ray crystal structure (Wang et al. 2009). Other generic restraints are described

the text

Fig. 16.3 The secondary structure (a) and a SAXS-derived molecular envelope (b) of the riboA

RNA. In (a), A99 denotes an adenine ligand. In (b), the dimensional measures, which are

indicative of the three duplexes aligned in parallel or antiparallel fashion, are depicted in the

two views (Wang et al. 2009)
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structure of the riboA RNA consists of three duplexes, H1, H2, and H3, comprising

9, 7, and 6 bps, respectively. The three duplexes are joined by three short linkers,

consisting of 3, 7, and 2 nt between H1 and H2, H2 and H3, and H3 and H1,

respectively. For details, readers are referred to the original publication (Wang et al.

2009). The following is a brief summary of the experimental aspects of the method,

which we refer to as G2G, or the “global restraints to global structures” method.

The G2G method requires assigning imino proton signals and identifying

hydrogen bonds involved in canonical and noncanonical bps in duplexes. The

assignments of imino signals of the riboA RNA were accomplished by an NOE

walk of the 2D NOESY spectrum of the imino region, aided by the 2D 15N. . .H–15N
HNN-COSY spectrum (Dingley et al. 2000; Wang et al. 2009). As we will show

later, these 2D homonuclear NOESY and HNN-COSY spectra were also sufficient

to assign imino signals of a 102-nt RNA as described in the next section (Zuo et al.

2010).

The experimental RDC data were measured from the in-phase/antiphase (IPAP)

heteronuclear single-quantum coherence spectra (Ottiger et al. 1998), which were

recorded using 15N isotopic RNA samples in isotropic and anisotropic conditions.

The anisotropic riboA sample was prepared by adding about 9.7 mg/ml of pf1

phage to weakly align the RNA molecule (ASLA Biotech, Burlington, NC), which

produced a split of 9.8 Hz in the deuterium signal. RDC values ranged from 2.2 to

22.7 Hz for the imino 15N–1H of riboA. The IPAP spectra of the imino resonance

splitting of the riboA in the alignment medium are shown in Fig. 16.4 (Wang et al. 2009).

Fig. 16.4 A portion of the imino 15N–1H IPAP spectra of the 15N-labeled riboA recorded in an

anisotropic solution containing about 0.5 mM of the riboA RNA and 9.7 mg/ml of pf1 alignment

medium (Wang et al. 2009)
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The imino 15N–1H J-coupling was about 94 Hz, measured with a nonaligned

isotropic sample. The RDC values were calculated with the difference in splitting

recorded in the presence and absence of the alignment medium.

In principle, the unique orientation of each duplex can be determined unambig-

uously by utilizing a second independent alignment tensor (Losonczi et al. 1999).

However, a second, truly independent, alignment medium for RNA is currently

lacking (Latham et al. 2005). One way to get around this problem is to utilize the

shape information that is derived from SAXS data to determine the unique orienta-

tion of each duplex in the molecular frame. In the case of riboA, the overall shape of

the RNA suggests that the three duplexes are packed either parallel or antiparallel,

consistent with the general packing pattern for RNA architectures (Leontis et al.

2006; Cruz and Westhof 2009). The quantitative determination of orientations and

phases of the three duplexes in the riboA was then carried out using the ORIENT

program in the G2G toolkit. In the calculation, the angles between the duplexes

were restrained to either 0� � 30� or 180� � 30� for all three pairs of duplexes to
allow for parallel or antiparallel arrangements. The best simultaneous fit yielded the

axial component Da ¼ �26.4 Hz and the rhombic component R ¼ 0.35 in (16.6),

with orientations and phases (Y, F, r0) of (151�, 281�, 101�), (22�, 97�, 259�), and
(40�, 101�, 63�) for duplexes H1, H2, and H3, respectively; these measurements

represent the angles of 173� between H1 and H2, 169� between H1 and H3, and 18�

between H2 and H3 (Wang et al. 2009). The RDC waves of the fits are shown in

Fig. 16.5. The structural topology of the riboA RNA, based on the orientation and

phase information derived from the above calculations, is depicted in Fig. 16.5.

This topology illustrates the global arrangement of the three duplexes and makes it

possible to build initial 3D coordinates using the BLOCK and PACK programs in

the G2G toolkit. Before the rigid-body refinement, the regularization procedure is

applied by using the IVM facility of the Xplor-NIH package to remove distortions

of the covalent geometry in the linker regions, and especially the joints (Schwieters

et al. 2006). The orientations and phases of the duplexes, but not the linker

segments, were fixed, and only translational movements were allowed during the

regularization and later the hybrid rigid-body SA refinement (Wang et al. 2009).

In addition to the restraints that are described in the simulated case in the last

section, we applied experimental imino RDC restraints for residues in the

nonduplex regions and approximate dimension restraints derived from the enve-

lope of riboA in the form of approximate phosphorus–phosphorus distances. To

avoid gross close contacts, we also added a minimum distance-repulsive restraint,

6.0 Å, which is the approximate sequential phosphorus distance in an A-form

duplex and is generally the shortest possible distance separating any two phosphate

groups in RNA structures (Wang et al. 2009). To speed up the calculation, SAXS

data “sparsening” was carried out using a previously reported protocol (Grishaev

et al. 2005). Specifically, an evenly spaced representative 20 points of the experi-

mental SAXS data, ranging from momentum transfer q ¼ 0–0.3 Å�1, were used

during the refinement. The pseudopotential force constants of various terms were

empirically adjusted. Readers can find a sample script of the hybrid rigid-body

refinement protocol on the Web (https://ccrod.cancer.gov/confluence/display/
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public/SAXS;jsessionid¼7596149C96403A3E9073321879670359). The back-

bone RMSD of the average structure of the top 10% of the lowest energy structures

for the overall structure, excluding the flexible loops from the rigid-body SA

calculation, is about 3.3 Å, compared with the X-ray crystal structure (Fig. 16.6,

top) (Wang et al. 2009). The ensemble of the structures also satisfies the experi-

mental SAXS and RDC data (see the following sections). For a more detailed

assessment of the structures, readers are referred to the original report (Wang et al.

2009).

The initial global structure, shown in Fig. 16.6, led to identification of close

contacts, including hydrogen bonds, in the junction and loop regions (Wang et al.

2009). For example, this initial global structure puts the two loops in H1 and H2

facing each other in space (Fig. 16.5) and led to assignments of a number of

sequential GC pairs, G38–C60 and G37–C61, because they immediately follow

Fig. 16.5 The dipolar waves for H1, H2, and H3 in riboA, and the topological drawing for riboA

based on the duplex orientations extracted from the RDC fits. In (a–c), the RDC data for these

three duplexes are fitted simultaneously. In (d), orientations and phases, (Y, F, r0), depicted in the
riboA topology were obtained from the best simultaneous fit. The broken lines represent linker

residues in arbitrary conformations (Wang et al. 2009)
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the G59–C67 pair in H3 in the imino NOE walk path. Wang et al. (2009) describe

other close contacts in detail. These long-range distance restraints were then

applied to further restrain the structure in the rigid-body SA calculation and

improve structure accuracy. A comparison of the ensemble of the top 10% of the

lowest energy structures and the X-ray crystal structure shows that the backbone

RMSDs of the ensemble of the calculated global structures relative to the X-ray

crystal structure are 3.0 � 0.3 Å for the whole molecule and 2.5 � 0.2 Å for the

three orientation-and-phase-restrained duplexes (Fig. 16.6, bottom).

Fig. 16.6 Top: three views of the initial fold ensemble (orange) of the riboA structure that was

calculated using the rigid-body SA refinement protocol and the Xplor-NIH. In the SA refinement,

no tertiary interaction restraints were used (Wang et al. 2009). The average of the ensemble is

shown in blue, and the X-ray crystal structure (1Y26) (Serganov et al. 2004) is shown in green.
Bottom: the ensemble of the riboA structures that were calculated with experimental junction

interaction restraints (details in text) that were readily assigned with the aid of the initial global

fold (top structures). The average of the ensemble is shown in blue and the crystal structure in

green (Wang et al. 2009). The gray mesh represents the SAXS-derived envelope of riboA
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The agreement between the G2G structure and the experimental RDC and

SAXS data was also examined. The correlation coefficient between the back-

calculated RDCs, based on the ensemble of the top 10% of the lowest energy

structures from the rigid-body calculation and the experimental data, is about 0.83

(Fig. 16.7, bottom). The correlation coefficient between the back-calculated

RDCs, based on the regularized average structure of the ensemble and the

experimental RDCs, is about 0.95 (Fig. 16.7). For comparison, the correlation

coefficient between the RDCs calculated based on the X-ray crystal structure and

the experimental data is about 0.77 (Fig. 16.7). The relatively low correlation

coefficient between the experimental RDCs and the back-calculated ones from the

X-ray crystal structure may be in part due to differences between the structures in

solution and in crystalline states, as well as the sequence difference in duplex H1

that might result in direct or indirect changes in the structure nearby, or even in

the entire structure (Wang et al. 2009). The quality of the G2G structure is also

evaluated by the comparison of the back-calculated SAXS curves with the

experimental ones, and the RMSD between the two, which is about 0.29 � 0.04

(Fig. 16.8). The pair distance distribution function (PDDF) comparison is shown

in Fig. 16.7.

It is possible to estimate the accuracy of the G2G structure using an empirical

formula:

RMSD ¼ a2Pduplex þ b2 1��Pduplex
� �	 
1=2

; (16.9)

where a is the possible RMSD between the “true” and the database-derived duplex

structures in the context of the structure, b is the possible RMSD between the “true”

and the G2G structures of nonduplex regions, such as long linkers and

underdetermined loops, and Pduplex is the %age of duplex residues in the RNA

(Wang et al. 2009). For A-form-like duplexes, a of the individual duplex is well

below 2.0 Å, based on RMSDs from the database (Wang et al. 2009). The value of b
can vary significantly, depending on the length of the nonduplex regions, such as

linkers and loops. In the case of riboA, duplexes make up more than 60% of the total

residues and the linkers between H1 and H2 and H2 and H3 are relatively short; the

overall RMSD between the G2G and the “true” structure is estimated to be about

3.3 Å or better, assuming a and b are about 2.5 and 4.0 Å for duplexes and the long

linker/loops, respectively (Wang et al. 2009).

With knowledge of this global structure, the approximate position of the adenine

ligand can also be determined (Wang et al. 2009). Moreover, the residues that are

involved in the intricate interaction networks in this molecule, including the three-

way helical junction, are all brought together in this global structure, and their

distance restraints can also be extracted from NOE spectra, given this approximate

G2G structure.
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Fig. 16.7 (a) The correlation plots between the imino RDCs that were back-calculated from the

ensemble of the top 10% lowest energy structures (Fig. 16.6, bottom) and the experimental RDCs.

(b) The correlation plot between the imino RDCs that were back-calculated from the regularized

average structure of the ensemble of the top 10% and the experimental RDCs. (c) The correlation

plot between the imino RDCs that were back-calculated from the X-ray crystal structure (1Y26)

(Serganov et al. 2004) and the experimental RDCs. (d) The comparison of experimental (circle),
back-calculated SAXS curves based on the ensemble (red), average (blue), and the X-ray crystal

structure (cyan); the RMSD between the first and the third is about 0.29 � 0.04. (e) The

comparison of experimental PDDF (black) and those for the ensemble (red), the average (blue),
and the X-ray crystal structure (cyan) (Wang et al. 2009)
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16.3.3 Experimental Case 2: The Global Structure of the 102-nt
Ribosome-Binding Structural Element of the Turnip
Crinkle Virus Genomic RNA

The 30 untranslated region (30 UTR) of turnip crinkle virus (TCV) genomic RNA

contains a cap-independent translation element (CITE), which includes a ribosome-

binding structural element (RBSE) (Fig. 16.8) that is involved in recruitment of the

large ribosomal subunit (Stupina et al. 2008; Yuan et al. 2009). This RNA binds to

60S ribosomal subunits with an affinity of about 400 nM and competes with

N-acetylated phe-tRNA for the P-site of the ribosome (Stupina et al. 2008; Zuo

et al. 2010). Mutations that disrupt hairpin H1 repress ribosome binding

(McCormack et al. 2008). The location of hairpin H1 is equivalent to that of the

amino-acceptor arm of a tRNA structure. In addition, RNA-dependent RNA poly-

merase (RdRp) binding to the region causes a substantial conformational switch

that disrupts the H1 region and likely promotes transcription of complementary

strands while suppressing translation (McCormack et al. 2008; Stupina et al. 2008).

A previous computational study suggested that this RNA folds into a structure that

resembles a tRNA-like shape (McCormack et al. 2008) (see Chap. 7 by Shapiro).

To understand the mechanism of 30 UTR participation in translation and replication,

it is important to determine the experimental global structure that outlines the

Fig. 16.8 The secondary structures of the TCV RBSE, subconstruct H3, and overlays of SAXS

derived molecular envelopes of RBSE (blue) with H3 (red). The estimated angles among duplexes

H1, H2, and H3a are depicted on the RBSE SAXS envelope (Zuo et al. 2010)
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spatial arrangements of the three hairpins, H1, H2, and H3. A 3D global structure of

RBSE will also address, in part, the structural basis for the accessibility of the H3

for interaction with surrounding sequences.

The solution structure determination of mid- to large-size RNA molecules with

complex folds is a daunting task. Solution RNA structures of similar-sized RNA

molecules with relatively simpler folding took many years of effort to determine

using the conventional bottom-up approach (Lukavsky et al. 2003; D’Souza et al.

2004). We therefore applied the G2G method to determine the solution global

structure of this RNA.

We first verified the base pairing scheme by the conventional NOE walk method,

aided by HNN-COSY spectra and the spectra of the mutants (Zuo et al. 2010). The

molecular envelope of the RBSE (Fig. 16.8) was derived from the SAXS data using

the DAMMIN program (Svergun 1999) and was found to form a twisted “r” shape,

with approximate angles and dimensions depicted in Fig. 16.8. We identified the

location of hairpin H3 by comparing the envelope shape of the RBSE to that of

hairpin H3 and a number of constructs (Zuo et al. 2010). In particular, the long arm

of the RBSE envelope matches remarkably well with that of the hairpin H3

construct (Zuo et al. 2010). We also assigned the locations of H1 and H2. The

hairpin loop capping H2 contains residues complementary to those in the 30 end of

the RBSE, with which they form a pseudoknot (Stupina et al. 2008). The H2 hairpin

is considerably larger than a simple hairpin. This example clearly illustrates that the

SAXS data alone provide unique information about the global arrangement of the

stem loops that is not attainable using any other method. Therefore, mapping out

the shape using SAXS constitutes a considerable shortcut to the global structures of

large RNAs in solution.

The next step is to derive the atomic coordinates of the global structure, which

requires determining the orientations of the duplexes in the molecules. We deter-

mined the relative orientation and phase for each duplex using the ORIENT

program as described for the riboA RNA in the previous section (Wang et al.

2009). The degenerate combinations of orientations that were not consistent with

the molecular envelope were filtered out in the calculation by using the angle

restrictions between the duplexes with a �30� error range. It is noteworthy that

determining the duplex orientation proved relatively easier in TCV RBSE than in

the riboA RNA, although the former is a larger RNA, as revealed by a clear outline

of the duplexes. This shape-aided orientation determination greatly simplified the

experimental design and the interpretation of RDC data and eliminated the need for

a second independent alignment tensor. The dipolar waves of the RBSE duplexes

are shown in Fig. 16.9, with the average orientations and phases (Y, F, r0) given in
the topology drawing. The standard deviations in the angles are produced from the

top fits with an RDC RMSD cutoff of 1.2 Hz.

The bending angle between H3a and the segment involving H3b in hairpin H3

was determined using a construct H3m, in which the A61–G94 mismatch was

mutated to a C–G Watson–Crick pair in H3a, and H3b was extended by inserting

a stretch of four bps between the triple CGs and the GAAA tetraloop (Fig. 16.10).

This construct provides 7–9 imino RDCs for H3a/H3b, allowing for more accurate
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Fig. 16.9 The dipolar waves and simultaneous fits for H1, H2, and H3a in the TCV RBSE. The

orientations and phases, (Y, F, r0), of these duplexes obtained from the best fit are displayed in

Fig. 16.10 (Zuo et al. 2010)

Fig. 16.10 (a) The secondary structure, (b) the SAXS molecular envelope, and (c) the dipolar

wave fits for H3m, an extended construct of H3. In (a), four inserted bps and a mutation, A61–C61,

compared to H3, are marked in blue. In (b), two views of the SAXS molecular envelope of H3m

(cyan) and the overlays with that of H3 are displayed. In (c), the best simultaneous fit yields that

the orientations and phases of H3a and H3b are (6�, 57�, 307�) and (16�, 256�, 180�), respectively,
and an angle between H3a and H3b is 158� (Zuo et al. 2010)
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orientation and phase determination. The single mutation in H3a and the insertion

of a stretch of four bps after the triple CGs in H3b had little impact on the original

angle between H3a and H3b, as seen in the low-resolution envelope (Fig. 16.10).

The angle between H3a and H3b in the mutated and extended version of H3 is

similar (140� � 30�) to that in the intact RBSE or in the hairpin H3 construct,

judging by the shapes. The top simultaneous RDC fits with an RMSD cutoff of

1.0 Hz produced an average angle between H3a and H3b in this RNA of 159� � 2�;
this angle was considered the approximate angle between H3a and H3b in H3m and

was used to generate a starting structure.

The global shape and the orientations and phases of the duplexes led to elucida-

tion of the topological arrangements of the hairpins and the initial 3D structure

(Fig. 16.11). In addition, the pseudoknot formed between the residues in the

terminal (hairpin) loop of H2 and those at the 30 end of the RNA were restrained

byWatson–Crick pairings and loosely restrained A-form duplex torsion angles. The

linkers between the hairpins were set free without any restraint during the calcula-

tion; their possible structures were only indirectly restrained by the orientations,

phases, and positions of duplexes and directly by the covalent linkages between the

duplexes and linkers. This initial structure was regularized and was subjected to the

hybrid rigid-body SA refinement (Zuo et al. 2010). The ensemble of the refined

global structure of the RBSE is shown in Fig. 16.12a. The “goodness” of the global

structure in terms of the global orientations of the duplexes and the overall shape is

simultaneously benchmarked by the correlation coefficients of RDCs before

(Fig. 16.12b) and after (Fig. 16.12c) the SA refinement and by the SAXS profiles

(Fig. 16.12d) and the PDDF (Fig. 16.12e) curves. These correlation coefficients

before and after the nonrigid-body SA refinement remain similar, suggesting the

orientations of the duplexes are consistent with the SAXS data that restrain the

overall shape of the molecule and indirectly restrain the duplex orientations. The

comparison of the back-calculated SAXS curves based on the refined top 10% of

Fig. 16.11 A 2D topology drawing (left) of RBSE, the initial structure (middle) generated with the
G2G toolkit, and the structure after regularization that fixes the bond breaks (right) using Xplor-

NIH. The orientations and phases, (Y, F, r0), of H1, H2, and H3a, obtained from the best

simultaneous fit, are given in the figure (left). The linker residues are represented with broken

lines in the topology drawing (left), and residue numbers are drawn on the regularized structure

(right) (Zuo et al. 2010)
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Fig. 16.12 The ensemble of global structures of the RBSE determined using the G2G “top-down”

method and SAXS and PDDF curves comparison (Zuo et al. 2010). (a) The front (middle) and side
(left and right) views of the RBSE structural ensemble (top 50% lowest energy) overlaid with the

molecular envelope in gray mesh. (b) The correlation plot of the back-calculated RDCs based on

the starting structure (Fig. 16.11, right), where the orientation of the three duplexes was deter-

mined using the RDC–structural periodicity correlation. Only RDCs in the duplex regions (the

same experimental RDC data as shown in Fig. 16.9) were used in the correlation coefficient
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the structures with the experimental SAXS data is displayed in Fig. 16.12d, and the

RMSD between the two is about 0.20 � 0.01. The comparison of PDDF curves of

the corresponding SAXS profiles is shown in Fig. 16.12e.

As we have discussed in the introduction, due to lack of propensity correlation

between an RNA sequence and its folded tertiary structure, it is not currently

realistic to predict 3D RNA structures solely based on sequence, with the exception

of simple RNA hairpins and duplexes. What we have demonstrated in this chapter is

a novel way to delineate global structures of RNAs using global shape and orienta-

tion restraints. This global structure restrains the relative orientations and positions

of structural elements within the structure and suggests possible tertiary contacts. In

the case of the TCV RBSE RNA, the global structure alone is very intriguing. The

TDV RBSE RNA consists of several structural moieties, shown in Fig. 16.13a. The

global organization of these structural moieties shares a striking resemblance to that

of a canonical tRNA (Fig. 16.13b), even though they differ in overall shape and

sequence.

In summary, the G2G global structure of the TCV RBSE is consistent with

global measurements in terms of overall shape, with the duplexes in their proper

global orientations, and phases and positions that are consistent with the global

measurements in solution. The accuracy of the backbone structure is estimated,

using (16.9), as ~3.5 Å, comparable to that of the riboA structure (Wang et al.

2009).

16.4 Conclusions

The G2G method employs experimental measurements of global shape and

orientations of helices to determine global structures of RNAs in solution. This

experimental method differs in philosophy from previously reported approaches

that are primarily computational (Martinez et al. 2008; Parisien and Major 2008;

Jonikas et al. 2009b). While this method may open the possibility for determining

high-resolution structures of relatively large RNAs in solution using NMR spec-

troscopy, it also poses an interesting challenge to computational RNA biochemists:

Is it possible to compute atomic-resolution structures using motif libraries, given

�

Fig. 16.12 (continued) calculation. The correlation coefficient is approximately 0.97. (c) The

correlation plot of the back-calculated RDCs based on the top 10% lowest G2G structures (see the

text) vs. the experimental ones. The correlation is near unit (Zuo et al. 2010). (d) The comparison

of experimental (circle) and back-calculated SAXS curves (red) based on the top 10% ensemble.

The RMSD between experimental data and the back-calculated curves is 0.20 � 0.01. RMSD is

calculated based on the logarithm of the normalized SAXS intensities. (e) The comparison of

PDDFs of the corresponding experimental SAXS (black) and back-calculated SAXS curves (red)
in (c) (Zuo et al. 2010)
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the G2G global structures (Leontis and Westhof 2001, 2002, 2003; Leontis et al.

2006; Jonikas et al. 2009a)?

All calculations, programs, and scripts used for this chapter can be downloaded

from the author’s Web page: http://ccr.cancer.gov/staff/links.asp?profileid¼5546.

Fig. 16.13 The dissect of the structural elements in the TCV RBSE and the structural parallelism

between the TCV RBSE and a tRNAphe. (a) The TCV RBSE consists of a number of substructural

elements and tertiary interactions, including stacked duplexes, a pseudoknot, an asymmetrical

loop, a symmetrical internal loop, a three-way junction, and a GAAA-tetraloop; (b) the illustration

of equivalency in arrangement of structural elements in the TCV RBSE and tRNAphe. This

comparison clearly demonstrates the parallelism between the two RNAs, even though two RNAs

share little resemblance in sequence and overall molecular shape
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Chapter 17

RNA Structure Determination by Structural

Probing and Mass Spectrometry: MS3D

A.E. Hawkins and D. Fabris

Abstract Recent advances of detection strategies based on mass spectrometry

(MS) have reawakened the interest in chemical methods for RNA structural eluci-

dation by enabling experimental protocols that minimize their typical pitfalls. At

the same time, the development of ever more sophisticated modeling techniques

has helped close the resolution gap by providing atomic-level details that were

previously beyond reach. Here, we describe the integration of MS-assisted struc-

tural probing with appropriate computational techniques, which has been termed

MS3D, and illustrate its application to the elucidation of RNA substrates of

biological significance. We address typical concerns faced by probing applications

and possible solutions supported by the MS platform. We describe strategies for

translating sparse spatial constraints afforded by footprinting and cross-linking

reagents into testable all-atom structures. We also discuss future advances that

would take further advantage of the synergy between experimental and computa-

tional approaches to increase the accuracy of chemical methods and to expand their

scope to progressively larger and more complex targets.

17.1 Introduction

A series of events in the last decade has keenly heightened the interest in the

development of alternative experimental approaches for the investigation of the

structure–function relationships in RNA and its functional assemblies. The com-

pletion of the Human Genome Project (Lander et al. 2001; Venter et al. 2001;
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Consortium 2004) has prompted the observation that, although more than 70% of

the entire genome is transcribed into RNA, less than 1.5% may be coding for actual

proteins, according to conservative estimates (Birney et al. 2007; Pheasant and

Mattick 2007). Extensive reevaluation of sequences that were once dismissed as

“selfish” or “junk” (Doolittle and Sapienza 1980; Orgel and Crick 1980) has led to

the discovery of numerous new classes of non-coding elements (ncRNA) (Mattick

and Makunin 2006; Volff 2006; Zuckerkandl and Cavalli 2007), which taken

together still cannot account for the entire transcribed pool (Claverie 2005). The

elucidation of the mechanism of riboswitch-mediated gene regulation (Winkler

et al. 2002; Nudler and Mironov 2004) has further reinforced the conclusion that

sequence information alone is not sufficient to understand the functions of many

ncRNAs. In fact, riboswitches regulate the expression of downstream genes by

binding specific metabolites that induce conformational changes in the mRNA of

which they are a part and modulate its transcription or translation (Nahvi et al.

2002; Edwards et al. 2007). For this reason, novel approaches are needed to link

knowledge of RNA structure with the identity of cognate ligands, the nature of their

interactions, and the effects of binding on conformational dynamics. Mass spec-

trometry (MS)-based approaches have the ability of providing this type of informa-

tion and, therefore, are poised to play a significant role in the structure–function

investigation of ncRNA (Fabris 2010). In this context, we are exploring MS

technologies, collectively known as MS3D (Young et al. 2000; Yu and Fabris

2003, 2004), which aim at improving the use of chemical probing for RNA structure

determination.

Assessing the susceptibility of functional groups to specific chemical reagents

constitutes a very versatile strategy for obtaining insights into their solvent

accessibility and, by extension, into their proximity to the substrate surface and

local structural context. In the case of nucleic acid structures, reagents targeting

the H-bonding edge of the nucleobases can reveal their participation in base-

pairing interactions (Peattie and Gilbert 1980; Ehresmann et al. 1987; Brunel and

Romby 2000). Monitoring the ability of bifunctional reagents to establish

conjugates that bridge across susceptible groups affords the possibility of deter-

mining their mutual distance in the substrate fold, which can reveal the position

of long-range tertiary interactions between domains brought into contact by the

3D fold (Kenny et al. 1979; Stiege et al. 1983; Yu et al. 2008a). For these reasons,

chemical probing represents a very appealing complement to established techni-

ques for structural determination, which can be successfully utilized to study

species of limited availability, or present in complex sample mixtures, such as

those encountered during in vivo investigations. Furthermore, the concerted

application of advanced strategies for molecular modeling has demonstrated the

possibility of compensating for the intrinsically low resolution of the sparse

spatial constraints afforded by structural probing. Indeed, the utilization of exper-

imental data to guide model building operations can lead to all-atom models that

constitute accurate representations of the substrate structure in solution and

enable the formulation of testable hypotheses that otherwise would be unwar-

ranted (Yu et al. 2005, 2008a).
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Owing to their unique mass signatures, any adduct produced by chemical

probing can be readily characterized by mass mapping and sequencing strategies

(Yu and Fabris 2003, 2004; Kellersberger et al. 2004). Unlike methods that rely on

polyacrylamide gel electrophoresis (PAGE) to identify probed nucleotides, MS

technologies do not require termination of primer elongation or probe-specific

chemistry to induce strand cleavage at the modification site. This favorable feature

encourages the addition of new effective reagents to the available toolkit, which

otherwise would not be considered viable (Zhang et al. 2006). Furthermore, the

applicability of this analytical platform to virtually any type of biopolymer enables

full characterization of protein–RNA as well as RNA–RNA cross-links, thus

supporting the elucidation of ribonucleoprotein assemblies (Jensen et al. 1996;

Urlaub et al. 1997; Golden et al. 1999). Finally, the possibility of implementing

nuclease (and protease) digestion after the probing reaction is complete, which is

aimed at obtaining hydrolytic products that are more readily amenable to mass

mapping and sequencing, extends the accessible size of potential targets far beyond

the practical limits allowed, for example, by NMR. In this chapter, we describe

methods for MS-aided structural probing and provide suggestions on effective

experimental design. We discuss critical issues that need to be considered for

successful probing and provide examples of MS3D structure elucidation.

17.2 Selecting the Proper Approach: Mono- vs. Bifunctional

Probing

Secondary and tertiary structures of nucleic acids are largely defined by base-

pairing interactions between complementary regions that may be located anywhere

in their sequence. Essential elements of secondary structure, such as stem–loop

hairpins, are stabilized by the pairing of strand segments that are adjacent in the

sequence (Fig. 17.1). The annealing of distal sections establishes long-range tertiary

interactions that determine the RNA global fold. Base-pairing between comple-

mentary segments of distinct strands is a very common way for creating intermo-

lecular contacts that define the quaternary structure of multisubunit assemblies.

Therefore, identifying the positions of nucleotides involved in base-pairing

interactions constitutes a very fundamental step toward elucidating RNA structure.

This objective can be achieved by monofunctional probes that are capable of

assessing directly or indirectly the pairing status of susceptible nucleotides.

17.2.1 Footprinting Information from Monofunctional Reagents

A direct reading of pairing status is provided by solvent-accessibility reagents that

only modify the H-bonding edge of a certain nucleotide when that edge is not
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employed in a base-pairing interaction. In the case of the Watson–Crick edge, the

entire nucleotide spectrum can be readily covered by the combination of dimethyl

sulfate (DMS), kethoxal (KT), and 1-cyclohexyl-3-(2-morpholinoethyl) carbo-

diimide metho-p-toluenesulfonate (CMCT) (Fig. 17.2). DMS induces irreversible

methylation of the exposed Watson–Crick edges of adenine (at the N1 position)

and, to a lesser extent, of cytosine (at the N3 position) (Lawley 1957; Brookes and

Lawley 1961; Lawley and Brookes 1963), which results in the formal addition
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(incremental mass, DM) of 14.01 Da to the initial mass of the target. KT modifies

the Watson–Crick edge of unpaired guanine at the N1 and N2 positions (Shapiro

and Hachmann 1966; Shapiro et al. 1969), forming a 1,2-diol with a DM of

130.06 Da. The initial adduct is further stabilized by the formation of a boronate

ester (DM ¼ 138.05 Da) in environments containing boric acid buffer (Akinsiku

et al. 2005). CMCT is active toward N3-uridine and N1-guanine with formation of a

251.21 Da adduct that tends to incorporate an additional water molecule (DM ¼
269.21 Da) upon protracted reaction (Metz and Brown 1969). We have successfully

employed these reagents in individual (Yu and Fabris 2003) and multiplexed

applications (Yu and Fabris 2004) to take advantage of their different mass shifts.

These types of probes have shown to be exquisitely sensitive to subtle structural

motifs, as exemplified by the ability of DMS to modify a critical adenine involved

in an unusual triple-base platform in the stem of HIV-1 stem–loop 3 (SL3) (Yu and

Fabris 2003).

Indirect base-pairing information can be inferred by monitoring the reactivity of

DMS with the N7 position on the Hoogsteen edge of guanine. Reaction at this

position is inhibited by the tightly stacked arrangement assumed by contiguous

pairs in stable double-stranded regions. Nucleotides present in helical structures

may still be susceptible to methylation when they occupy terminal positions that

leave one side of the aromatic system exposed to the solvent or when they are

involved in “wobble” GU pairs that distort the regular stacking pattern of the double

helix (Yu and Fabris 2003). As observed for other footprinting probes, the possibil-

ity of producing modification of nucleotides present in helical structures is

increased by dynamic effects, such as the transient opening and closing of the

H-bonds between nucleotides known as base-pair breathing. In similar indirect

fashion, participation in base-pairing interactions can be detected also by monitor-

ing the susceptibility of the corresponding ribose 20-hydroxyl to acylation by

N-methylisatoic anhydride (NMIA, Fig. 17.2), which is hindered by the 30-phos-
phate group in the puckering conformation imposed by the participation of the

respective nucleotide to a double-helical structure. The position of modified bases is

usually inferred from the ability of NMIA adducts to inhibit strand elongation by

reverse transcriptase, which constitutes the basis for an approach termed selective

20-hydroxyl acylation analyzed by primer extension (SHAPE) (Merino et al. 2005;

Wilkinson et al. 2006, 2008). Automated platforms based on capillary electropho-

resis are subsequently employed to differentiate products terminating at the probed

positions, which enables high-throughput analysis of RNA secondary structure.

Typical challenges faced by this approach are represented by relatively small

targets that may not allow for the stable annealing of short primers and by the

possible inhibition of primer extension by templates with particularly stable sec-

ondary structures. In these cases, the implementation of MS analysis in what has

been termed selective 20-hydroxyl acylation analyzed by mass spectrometry

(SHAMS) (Fabris et al. 2009; Turner et al. 2009) allows one to dispense with the

primer extension process and to directly characterize the NMIA adducts that exhibit

a characteristic DM of 133.05 Da.
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17.2.2 Spatial Contiguity from Bifunctional Probes

The use of monofunctional probes is subject to ambiguous interpretations because

they provide a “negative” snapshot of the actual effects of base pairing, i.e., they

only report reactivity for nucleotides that are not involved in base pairing. In

principle, any steric effects that may reduce the accessibility of susceptible groups,

including the binding of proteins and other ligands, can be expected to produce

results that are indistinguishable from those produced by base pairing. Indeed, these

reagents are broadly classified as footprinting probes because of their ability to

define the interfaces between bound components. If presence of putative ligand(s)

in solution cannot be assessed, careful controls should be performed by repeating

experiments under different conditions, for example, by varying the pH, ionic

strength, or temperature, so as to disrupt weak binding interactions or affect the

initial substrate conformation. Even when these experiments confirm that the

protection effects observed for a certain nucleotide are caused by its participation

in a base pair, solvent-accessibility probes are still incapable of unambiguously

revealing the identity of the base with which such nucleotide may be paired.

Because footprinting data cannot indicate which nucleotides are mutually inter-

acting, their interpretation relies heavily on structure prediction algorithms to find

the best match between experimental results and possible pairing patterns that are

calculated from thermodynamics principles or statistical knowledge of RNA struc-

ture (Zuker 1989; Major et al. 1991; Rivas and Eddy 1999; Mears et al. 2002;

Mathews and Turner 2006). In contrast, cross-linking approaches lock pairs of

susceptible nucleotides in conjugated products that reveal their spatial proximity in

the native structure. Photo-activated techniques that produce zero-length cross-

linking (Stiege et al. 1983; Atmadja et al. 1985; Doring et al. 1991) and bifunctional

reagents that bridge across groups within cross-linking reach (Oste and

Brimacombe 1979; Stiege et al. 1982; Zhang et al. 2006) enable the unambiguous

identification of bases that are placed in direct contact or close mutual proximity by

the 3D fold. In the context of large RNA structures, cross-linking of nucleotides that

are distal in the strand sequence can identify tertiary interactions between discrete

domains. Bridging of nucleotides across annealed strands determines the exact

pairing register between them. This particular feature can help solve possible

ambiguities arising from the ability of large sequences to form alternative pairing

patterns, which may exhibit very similar reactivity profiles when treated with

monofunctional probes.

In our work, we have explored bifunctional reagents that target well-defined

nucleophilic groups present on substrates of both nucleic acid and protein nature.

For example, bis(2-chloroethyl)-methylamine (nitrogen mustard, NM) (Fig. 17.3)

includes two alkylating functions that react with the N7 position of guanine and, to

a lesser extent, N3 of adenine in nucleic acids, as well as with the thiol of cysteine

residues in proteins (Byrne et al. 1996; Zaia et al. 1996). The desired bifunctional

product adds 83.07 Da to the combined masses of the conjugated species. Incom-

pletely reacting monofunctional adducts in which the second 2-chloroethyl function
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fails to react or undergoes hydrolysis to 2-hydroxyethyl exhibit characteristic mass

shifts of 120.02 and 102.09, respectively (Zhang et al. 2006). The conformational

freedom afforded by spacing arms that consist of flexible ethylene units allows for

effective bridging across structures placed within 9.5 � 1.5 Å of each other. With

the objectives of reducing the allowable cross-linked range and increasing the

precision of the corresponding constraint, we have investigated the properties of

reagents based on more rigid aromatic scaffolds, such as 1,4-phenyl-diglyoxal

(PDG) and 4,40-biphenyl-diglyoxal (BDG) (Fig. 17.3) (Zhang et al. 2008). In

analogy with the monofunctional probe KT, the 1,2-dicarbonyl functionalities can

attack the N1 and N2 positions on the Watson–Crick edge of guanine and the side

chain of arginine residues to produce 1,2-diol adducts with characteristic mass

shifts of 190.03 and 266.06 Da for PDG and BDG bridges, respectively. With

effective cross-linking spans of 6.14 � 0.64 Å and 10.44 � 0.80 Å, their aromatic

spacers present decidedly narrower ranges that allow for more precise distance

determinations than those afforded by popular reagents with aliphatic arms. The

utilization of modular cross-linkers with repeating spacer units illustrates the

possibility of developing a nested series of probes capable of bridging across

different spans, which could be employed in multiplexed fashion by taking advan-

tage of their unique mass signatures (Zhang et al. 2008). Finally, we have explored

the utilization of cis-diamminedichloroplatinum (II) (cisplatin, CPT) (Fig. 17.3) as

an example of chemical probe devoid of actual spacer structure (Zhang et al. 2006).

CPT produces stable adducts with purines at their N7 position and, to a lesser

extent, cytosine at their N3 position. The product exhibits a mass shift of 225.99 Da

and a very characteristic isotopic signature associated with the presence of coordi-

nated Pt(II). Adducts are formed between contiguous nucleotides in single- as well

as double-stranded regions, with the latter taking place where base stacking is

disrupted either by non-Watson–Crick pairing or helix breathing. In this case, a

cross-link distance of 2.7 Å corresponds exclusively to the span between coordi-

nated ligands because coordination bonds exhibit significantly fewer degrees of

freedom than aliphatic spacers and their intrinsic dynamics are accounted for during

the energy minimization process.
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each probe are indicated
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17.2.3 Targeted Probing

The choice of probes should be dictated by the overall goal of the investigation. In

general, experimental elucidation of unknown (i.e., unsolved) targets cannot be

accomplished by relying only on a single probe but requires instead the concerted

application of series of mono- and bifunctional reagents to obtain complementary

information. The accuracy of resulting models correlates closely with the number

and diversity of the experimental constraints available for 3D modeling, which are

used to establish the relative positions of nucleotides in 3D space. The level of

confidence in a model increases when independent complementary data corroborate

the spatial arrangement of the different components. In this direction, the applica-

tion of MS-based approaches that overcome the limitations associated with tradi-

tional detection platforms is poised to greatly expand the assortment of chemicals

that can be employed as structural probes (Zhang et al. 2006). The use of a single

probe can still meet the challenge when initial structural information is already

available from previous rounds of probing, other experimental techniques, or

structure prediction algorithms. Similarly, when the goal is to test structural

hypotheses, to confirm the presence of specific structural features, or to assess the

dynamics of a known structure, smaller sets of probes selected for their ability to hit

specific targets will readily provide the data necessary to complete the desired tasks.

17.3 The Intrinsic Hazards of Chemical Probing

The dynamic nature of substrates in solution and the fundamental principles of

chemical probing, which require susceptible groups to be accessible on the substrate

surface, or placed within mutual striking distance, expose these types of approaches

to intrinsic hazards. Footprinting methods tend to be sensitive to transient conforma-

tional changes that may make nucleotides temporarily accessible to the probe. For

known structures, the ability to determine the yield of modification at each position

enables one to identify regions subjected to conformational effects and even to assess

their dynamics in quantitative fashion. For the determination of unknown structures,

however, this characteristic may represent a source of ambiguities brought about by

the possibility that initial chemical modification may itself alter the substrate folding

and make additional sites accessible, which are inaccessible in the folded structure.

In the case of bifunctional cross-linkers, unfavorable matching of substrate dynamics

and reaction kinetics may lead to the permanent bridging of functional groups that are

placed only temporarily within the reagent span, thus artificially amplifying the

detection of sparsely populated conformations. Potential probe-induced distortion

and kinetic traps can lead to constraints that misrepresent the equilibrium structure in

solution. The possibility of producing these types of artifacts cannot be completely

eliminated, but their incidence can be minimized, or at least recognized, through

careful experimental design.
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17.3.1 Fine Tuning the Conditions of Probe Application

The identification of regions involved in prominent dynamics is a very important

facet of structure characterization and a critical stage in the assessment of possible

probe-induced conformational effects. Environmental factors, including pH, ionic

strength, temperature, and ligand concentration, influence substrate dynamics and,

consequently, the outcome of probing experiments. MS detection, unlike PAGE-

based analysis, allows one to accurately determine the number of modifications per

substrate molecule. This capability can be exploited to monitor the overall number

of modifications as environmental factors are systematically varied (Kellersberger

et al. 2004). Sudden increases of the observed number of modifications can reveal

the threshold at which transitions may be triggered by the chemical modification,

thus defining the limits of probe application beyond which structural integrity is

compromised. Additionally, the MS analytical platform enables the implementation

of alternative strategies based on nested bifunctional cross-linkers that include

the same reactive groups at the ends of modular spacers of increasing span (Zhang

et al. 2008). The detection of nucleotides bridged by reagents with widely

different spans signals the ability of these bases to assume widely different

positions in 3D space, which could be attributed to the possible occurrence of

alternative folds or kinetic traps.

The outcome of probing reactions is also influenced by the amount of probe

employed relative to the available substrate, which can be expressed as probe to

substrate ratio (P/S). It is generally accepted that ideal P/S values should lead on

average to only one modification per three substrate molecules, which would

statistically rule out the potential that the same molecule might be hit twice and

might possibly exhibit secondary modifications prompted by structure distortion.

Unfortunately, a priori calculations of “single-hit” concentrations are complicated

by factors that influence general chemical reactivity, in addition to those affecting

substrate dynamics. Viable P/S values can be approximated by considering the total

number of susceptible bases in the sequence regardless of their possible steric

situation (Yu and Fabris 2004; Zhang et al. 2006), the typical reactivity of the

selected probe (Yu and Fabris 2004; Zhang et al. 2006), and the presence of buffers

that may interfere with the reaction (Richter et al. 2004). Experimentally, baseline

conditions for tackling the target substrate could be initially obtained by employing

a known analog with very similar characteristics, which would facilitate the evalu-

ation of individual factors. Titration schemes should be devised in which the P/S is

progressively increased and the number of modifications is determined directly by

MS analysis. In this way, probe-induced disruption of the native RNA structure

would be signaled by readily recognizable jumps in the total number of adducts.

These types of strategies can be employed to safely increase the attainable yields of

modified products beyond the limits prescribed by single-hit statistics. Boosting

adduct production is expected to facilitate the application of MS approaches to

samples of limited availability, overcoming the absence of the advantageous

amplification effects that are characteristic of primer extension platforms.
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17.3.2 Weighing the Validity of Probing Information

The possible occurrence of probe-induced artifacts can be also evaluated during the

processes of structure refinement and validation, which typically take place after at

least one round of modeling has been completed. This type of evaluation is

accomplished, for example, by weighing the reproducibility of each experimental

constraints and its consistency with other constraints and the overall 3D model. If a

cross-link between two domains is not observed under all conditions and conflicts

with other constraints, this is an indication that the structure is subject to prominent

conformational effects. The consistent detection of cross-linked conjugates across

discrete domains supports the possible presence of a long-range tertiary interaction

that stabilizes their placement in mutual proximity. In this case, mutating key

nucleotides so as to abolish the putative interaction can serve to validate the

corresponding constraints. Confidence that the observed cross-link reflects a real

contact in the wild-type structure increases when the cross-link is abolished in the

mutant sequence.

Although these types of experimental controls test actual structural features,

their outcome clearly reports on the validity of the corresponding spatial constraints

that lead to such structure. In general, information associated with cross-linking

products that are invariably detected under a broad range of experimental con-

ditions carry higher confidence than products observed only under more narrowly

defined conditions, which may not represent the most populated fold. Variability

associated with possible substrate dynamics should still be noted as valuable

information about the stability of the putative structure. Sensitivity to environmen-

tal conditions, reproducibility at different probe concentrations, and mutagenesis

confirmation could represent the basis for scoring algorithms designed to rank the

experimental constraints and to guide their selection for subsequent modeling

operations (Yu et al. 2008a). Combined with other statistics pertaining to the

modeling operations, these scores could be employed to express the confidence

level in the final model and to compare the quality of MS3D structures.

17.4 Combining Chemical Probing with MS-Based

Technologies

The intrinsic character of chemical probing, substantiated by the introduction of

stable covalent modifications with unique mass signatures, presents an excellent fit

for MS-based strategies. Indeed, treating target substrates with these types of

reagents resembles exposing photographic film to light. The process leaves a

permanent “impression” of the substrate structure in the form of a modification

pattern specific to the 3D fold, which can be subsequently “developed” by any

suitable means that do not necessarily have to preserve the original fold. This

favorable feature has significant consequences on the applicability of probing
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approaches by allowing for the utilization of the widest possible range of analytical

procedures for product characterization, without considering any associated

denaturing effect. For example, the possibility of submitting probed material to a

wide choice of hydrolytic operations, which are typically performed to obtain the

smaller products necessary to map the modified positions, makes species of virtu-

ally any size accessible to structural elucidation. The possibility of performing

denaturing separation procedures offers the ability of completing probing reactions

in the presence of virtually any type of ligand, salt, or additive that may be required

to ensure the correct folding of the target species, without jeopardizing subsequent

MS characterization. The possibility of devising specific extraction protocols based

on affinity capture and similar strategies, which enables one to isolate and concen-

trate RNA molecules of interest from very heterogeneous samples, could support

in vivo applications calling for the analysis of whole cell lysates or other complex

biological extracts.

17.4.1 MS Analysis of Probing Products

The strategies employed to identify modifications produced by chemical probes

rely on either matrix-assisted laser desorption ionization (MALDI) (Karas et al.

1987; Tanaka et al. 1987) or electrospray ionization (ESI) (Aleksandrov et al. 1984;

Yamashita and Fenn 1984), both of which have become the standard techniques for

the characterization of biomolecules. Numerous reviews have been dedicated over

the years to the MS analysis of nucleic acids, to which we refer the interested reader

(Crain 1990; Limbach 1996; Murray 1996; Nordhoff et al. 1996; Hofstadler et al.

2005; Fabris 2010). It is important, however, to highlight the fact that MALDI

applications are made possible by the utilization of suitable matrices that minimize

possible fragmentation during the desorption process. These matrices are different

from those employed for protein analysis, and their selection depends on the

type of laser available. When UV lasers are utilized, typical matrices are

30-hydroxypicolinic acid (Wu et al. 1993), picolinic acid (Tang et al. 1994), 20, 40,
60-trihydroxyacetophenone (Pieles et al. 1993), and 6-aza-2-thiothymine (Lecchi

et al. 1995). Instead, succinic acid and urea are typically employed with IR lasers

(Nordhoff et al. 1992). The presence of phosphate groups in the biopolymer

backbone, which can afford net negative charges, makes oligonucleotides better

suited for analysis in negative-ion mode, but positive-ion spectra can be also

obtained with lower sensitivity. Owing to the limited charging involved with the

MALDI process, the size of analytes accessible by this ionization technique is

greatly influenced by the available mass analyzer. For example, taking advantage of

the virtually unlimited mass range afforded by time-of-flight (TOF) (Cotter 1997)

analyzers, species comprising up to 2,180 nucleotides (~673 kDa nominal mass)

were determined with better than 1% accuracy and low femtomole sample con-

sumption (Berkenkamp et al. 1998).
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Comparable sensitivity levels can be reached by ESI-MS analysis, especially

when flow rates in the nanoL/min range are employed in the so-called nanospray

mode (Wilm and Mann 1996). Further, the multiply charged character of

electrosprayed ions makes very large nucleic acids readily amenable to analyzers

of limited mass range. This is due to the fact that a certain ion with mass m and

charge z will be detected with progressively lower m/z ratios as charge increases.

Taking advantage of this characteristic, ions produced by the coliphage T4 DNA

(~340,000 nucleotides and ~1.1 � 108 Da nominal mass) were successfully

observed in the 2,700–3,700 m/zmass range (Chen et al. 1995) by Fourier transform

ion cyclotron resonance mass spectrometry (FTICR-MS) (Comisarow and Marshall

1974; Hendrickson et al. 1999). An additional favorable feature of ESI is the ability

to handle samples directly in solution, which enables direct online interfacing with

separation techniques, such as high-performance liquid chromatography (HPLC)

(Pomerantz and McCloskey 1990; Apffel et al. 1997). This characteristic is particu-

larly advantageous for the analysis of complex sample mixtures.

17.4.2 Selecting Proper Sample Handling Procedures

A typical challenge faced by the MS analysis of nucleic acids is posed by the

presence in solution of metal counterions, such as Na+, K+, and Mg2+. Upon transfer

to the gas phase, these cations tend to form stable adducts of unpredictable

stoichiometry, which may significantly reduce the observed resolution and signal-

to-noise ratio (S/N) to the point where the signal may be completely suppressed

(Nordhoff et al. 1996). The irreversible nature of the bonds formed by structural

probes favors the implementation of a wide variety of strategies for overcoming the

potential hurdle. A common remedy consists of replacing metal cations with the

more volatile ammonium ion (Stults et al. 1991; Pieles et al. 1993), which

dissociates in the gas phase into NH3 and H
+ and results in the formal neutralization

of a negatively charged phosphate group (Amad et al. 2000). Adequate ammonium

replacement/desalting is achievable by performing ethanol precipitation (Stults

et al. 1991), adding sequestrating agents (Limbach et al. 1995; Muddiman et al.

1996; Turner et al. 2008), or using ion-exchange resins (Nordhoff et al. 1992),

reversed phase HPLC (Little et al. 1995), and ultrafiltration or microdialysis (Liu

et al. 1996; Xu et al. 1998; Hannis and Muddiman 1999). The utilization of salt-free

solvents, materials, and plasticware reduces the risk of reintroducing unwanted

counter-ions during downstream sample handling. Furthermore, these procedures

are not only capable of minimizing the adverse effects of metal cations on analyti-

cal performance but can also achieve effective reaction quenching by eliminating

unreacted reagent in solution. While some of these procedures may clearly lead to

structure denaturation, none is typically expected to induce degradation of probe

adducts and consequent loss of information.

The desalting levels achieved by the different methods are comparable across the

board; however, sample recovery may vary widely. The fact that HPLC can be
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directly coupled with MS instruments offers the additional advantage of minimizing

possible sample losses and nuclease contamination caused by handling operations.

LC-MS analysis of nucleic acids is typically performed by ion-pairing chromatog-

raphy, which uses tetraethylammonium (TEA) as a pairing agent and hexafluoroi-

sopropanol (HFIP) as an organic additive for increased spray stability (Apffel et al.

1997; Azarani and Hecker 2001). Recently, the specific interactions between phos-

phate groups and stationary phases containing titanium dioxide (TiO2) have been

exploited to separate nucleic acid analytes and to achieve selective enrichment of

peptide–RNA conjugates obtained from cross-linked ribonucleoproteins (Richter

et al. 2009). In general, the absence of a front-end separation step increases the

demands on sample preparation and on the resolving power of the MS platform. In

this case, desalting should be performed as early as possible in the experimental

workflow, while minimizing the utilization of any non-volatile components.

Although MS-friendly divalent substitutes are not currently available for Mg2+,

higher concentrations of ammonium have proven capable of preserving the stability

and binding properties of nucleic acid substrates (Hagan and Fabris 2003; Fisher

et al. 2006). The ability to work with samples containing up to 2.5 M ammonium

acetate (Gapeev et al. 2009), which far exceed the ionic strength observed in the vast

majority of physiological environments, offers great flexibility for the successful

MS analysis of oligonucleotides.

17.4.3 Strategies for Identifying Probed Nucleotides

The position of modified nucleotides is typically obtained through bottom-up

approaches, in which the material is digested with specific nucleases to provide

smaller products that are more suitable for mass mapping and sequencing

(Fig. 17.4) (Fabris 2010). Alternatively, top-down approaches that dispense with

specific hydrolysis can be followed to obtain direct sequence information by

submitting the probed material to tandem mass spectrometry (MS/MS) (McLafferty

1981). The inclusion of a hydrolytic step, however, significantly facilitates the

structural analysis of the larger targets, whereas direct MS/MS analysis can be

hampered by the reduced efficiency of gas-phase fragmentation manifested by

substrates with progressively greater numbers of bonds. Mapping experiments

that provide the accurate mass of digestion products are frequently sufficient to

infer the position of probed nucleotides, knowing the base specificity of probing and

hydrolysis reagents. For example, if a G-specific probe is employed and the

observed product contains only one G, then the position of a single adduct is all

but certain. More frequently, however, multiple susceptible bases are present in the

same hydrolytic product and, therefore, the adduct position cannot be identified

with certainty solely from mapping data. In this case, MS/MS must be applied to

obtain the sequence information necessary to solve the ambiguity.

In a typical MS/MS experiment, the precursor ion of interest is isolated in the

mass analyzer from all the other ions present in the mixture, in what is called
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selection step (McLafferty 1981). Its gas-phase fragmentation is then activated by

imparting energy in the form of collisions with inert gas, irradiation with infrared

photons, or interactions with electrons or other ions (Woodin et al. 1978; Gauthier

et al. 1991; Zubarev et al. 1998). The ensuing dissociation processes produce

characteristic fragment ladders, or ion series, which provide the biopolymer

sequence (Hunt et al. 1986; Biemann and Scoble 1987; McLuckey et al. 1991).

- CID, IRMPD
- ECD, ETD, EDD

Tandem sequencing

3D structureConstraints map

Mass
mapping

Digestion
- nucleases
- proteases
- cocktails

Top down

Structural probing
- chemical footprinting
- bifunctional crosslinking
- UV photo-crosslinking
- probe multiplexing

Target substrate
- pH, ionic strength, Mg2+

- cognate protein(s)
- cofactor(s)

Bottom up

Fig. 17.4 General workflow for 3D structure determination of nucleic acids based on structural

probing and MS analysis (MS3D). The substrate is probed under ideal conditions preserving its

native fold. Characterization of ensuing covalent adducts can be performed under denaturing

conditions, following either bottom-up or top-down approaches. The positions of probed

nucleotides provide spatial constraints that are summarized on 2D maps, from which a complete,

all-atom 3D structure can be generated through established molecular modeling protocols.

Adapted with permission from Fabris (2010)
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In the case of nucleic acids, such fragments are produced by the dissociation of

the phosphodiester group on either side of the phosphorus and oxygen atoms

(Fig. 17.5a) and may involve the additional loss of nucleobase or water (McLuckey

et al. 1991). Products obtained by cleaving the same type of bond in consecutive
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Fig. 17.5 (a) Nomenclature of fragment ions produced by tandem mass spectrometry (MS/MS) of

a single-stranded nucleic acid chain. Nucleobases are represented by Bi and ribose structures by

solid lines. Ion series are numbered starting from the 50 end for a, b, c, and d ions and from the 30

end for w, x, y, and z. (b) Fragment ladders are produced, which start from either end of the

oligonucleotide. The letter indicates the type of cleavage, while the index provides the nucleotide

number counted from the intact end
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nucleotides constitute ion series that are labeled according to both the cleaved

structure and intact end. For example, all ions of the a series share the same type of

cleavage site and contain an intact 50 end (compare a1 and a2 in Fig. 17.5b).

A numerical index denotes the nucleotide number counting from the intact end,

in this case, the 50 end. Conversely, the y series has a different type of cleaved

structure and contains an intact 30 end, which represents also the start for numbering

the series. The fact that each nucleotide has a unique elemental composition, and

therefore incremental mass, ensures that the difference between consecutive ions in

the same series (e.g., between a1 and a2) will unambiguously identify the

intervening nucleotide, thus revealing the oligonucleotide sequence. For this rea-

son, the simultaneous detection of complete a and y series would provide full

sequence information twice for the same species, starting from opposite ends.

Considering that four types of ions series could be potentially formed from each

end (Fig. 17.5a), an oligonucleotide could be sequenced up to eight times in the

same experiment! In reality, complete ion series may not be observed, and different

types of ion series are preferred by different nucleic acids (Nordhoff et al. 1996).

However, the level of redundancy is such that MS/MS data are typically capable of

providing unambiguous sequence determination.

Chemical modifications introduce unmistakable mass shifts in the characteristic

incremental masses of nucleotides, which can immediately reveal the identity and

exact position of modified bases. In the case of the CMCT monoadduct in Fig. 17.6,

d-H2O and y ions are readily detected. More specifically, d2-H2O*, d3-H2O*,
and d4-H2O* include the characteristic mass shift associated with CMCT
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Fig. 17.6 Tandem mass spectrum of a CMCT monoadduct produced by RNase A digestion of

probed C-RNA. The asterisk indicates fragments containing the 251.21 Da mass shift character-

istic of CMCT adducts. The precursor ion is labeled with PI, while its fragments are labeled

according to the standard nomenclature described in Fig. 17.5. Although the hydrolytic product

contains four guanines, the fragmentation pattern (inset) clearly indicates that only one of them

was modified (arrow)
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(i.e., 251.21 Da, as indicated by the asterisk), whereas d1-H2O does not. Proceeding

from the other end of the sequence, y1, y2, and y3 do not contain the mass shift,

which is present in y5*. As summarized in the inset using a compact notation, the

CMCT adduct can be clearly located onto G2 (arrow). The characterization of

cross-linked products is performed in similar fashion, but the interpretation of the

relative data may be significantly complicated by the presence of conjugated

strands that can independently generate overlapping ion series. While software

tools, such as Mongo Oligo Calculator (Rozenski 1999), SOS (Rozenski and

McCloskey 2002), and others have been developed to aid the interpretation of

spectra obtained from unmodified nucleic acids and their monofunctional adducts,

the programs Links and MS2Links (Kellersberger et al. 2004; Yu et al. 2008b) have

been designed to support the characterization of conjugates produced by bifunc-

tional cross-linkers. These algorithms can handle not only RNA–RNA products but

also DNA–DNA, protein–protein, and any of their heteroconjugate combinations.

Links and MS2Links programs are freely available to the public through the ms3d.

org portal, which was established to support a growing community of investigators

interested in alternative approaches to structural determination (Yu et al. 2008b).

17.5 Translating Probing Information into Full-Fledged 3D

Structures

The strategy followed to generate 3D models is dictated by the types of experimen-

tal data and prior structural information that may be available. A range of software

tools can be employed to support the different operations, but no individual package

currently integrates data interpretation, constraint assessment, and model genera-

tion. Although steps in this direction are underway (Yu et al. 2008b), there is still no

replacement for direct experience with the overall process.

17.5.1 Rationalizing Probing Information

Monofunctional probes discriminate nucleotides exposed to the solvent from those

that may be protected by pairing, ligand binding, or other steric effects. At first

sight, the value of this type of information may seem limited, but careful examina-

tion of unreacted/protected stretches can reveal mutually complementary sequences

capable of defining stable elements of secondary and tertiary structure. The process

can be aided by computational tools, such as MFold (Zuker 2003), MC-Fold

(Parisien and Major 2008), PKNOTS (Rivas and Eddy 1999), ILM (Ruan et al.

2004), and many others, which were developed for assessing the folding of

predefined sequences according to rigorous thermodynamics considerations and

statistical information. In contrast, bifunctional cross-linkers identify bases that are

17 RNA Structure Determination by Structural Probing and Mass Spectrometry: MS3D 377



placed within a certain distance from one another, which is determined by the probe

span. Considering that this information can be utilized directly in modeling

operations, its value can be comparable to that of distance determinations provided

by nuclear Overhauser effect spectroscopy (NOESY) or F€orster resonance energy

transfer (FRET) techniques. Additionally, this information can be employed indi-

rectly to corroborate the interpretation of results afforded by monofunctional

probes. This feature is particularly important for larger RNA constructs in which

partially complementary sequences may anneal off-register or produce alternative

pairing patterns, which may lead to ambiguous footprinting data. By conjugating

complementary strand segments, bifunctional cross-links delimit the placement of

the conjugated bases to within a determined distance that can only match a well-

defined annealing register. In this way, the concerted application of mono- and

bifunctional probes can provide experimental confirmation of base-pairing patterns

predicted by folding algorithms.

A first step for rationalizing probing data involves drawing graphic repre-

sentations of the spatial relationships between nucleotides in the target sample.

Detailed 2D maps can be obtained to summarize the inferred base pairings and

observed cross-linked positions in the context of putative secondary structures. For

example, Fig. 17.7a summarizes the probing results for the mouse mammary tumor

virus (MMTV) ribosome frameshifting pseudoknot (Yu et al. 2005). This graphic

representation was completed by placing segments that did not exhibit detectable

reactivity in double-stranded structures, in keeping with the notion that bases

involved in putative Watson–Crick pairs are generally unreactive to chemical

probes targeting the Watson–Crick edges. The only exceptions are bases at the

ends of helices or crossover sites. Conversely, nucleotides that showed susceptibil-

ity to chemical probes were placed in single-stranded loops and hinge regions,

which are readily accessible by the selected reagents. Additional reactivity

observed at the end of double-stranded stems is consistent with typical breathing
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dynamics. The functional groups that were bridged by bifunctional probes are

connected by dashed lines to imply that those points are situated within a certain

distance in 3D space. At the end, the graphic representation obtained from this

exercise in rationalization matched very closely the putative pseudoknot structures

calculated by the folding algorithms PKNOTS (Rivas and Eddy 1999) and

pknotsRG (Reeder et al. 2007), which contributed additional confidence to the

proposed data interpretation.

17.5.2 Generating Full-Fledged 3D Structures

This type of modification map constitutes an excellent starting point for generating

full-fledged 3D structures. Base-pairing relationships and distance information can

be processed directly by constraint satisfaction algorithms to generate all-atom

structures, or employed as filter for selecting the best possible model from a pool

of plausible structures, or decoys, produced by computational methods. In the case

of the MMTV frameshifting pseudoknot, we employed the algorithm included in

the Macromolecular Conformations by SYMbolic programming (MC-SYM) suite

(Major et al. 1991, 1993; Parisien and Major 2008) to obtain initial models for

subsequent refinement. The program is capable of building polynucleotide

structures from fundamental RNA information, such as chemical structure, bond

distances, torsion and dihedral angles, etc., which was extracted from a large

number of high-resolution structures obtained by established techniques. From an

input consisting of the sequence of the MMTV construct, 11 base-pairing

relationships confirmed by structural probing, and 3 additional distance constraints

highlighted in Fig. 17.7a, MC-SYM produced a small set of possible models. Their

examination revealed that the double-stranded stems were indistinguishable from

one another, whereas the single-stranded loops presented rather large variability.

The initial models were submitted to rounds of simulated annealing and Cartesian

molecular dynamics (MD) by using the modules anneal.inp and minimize.inp of the
crystallography and NMR system (CNS) suite (Br€unger et al. 1998). These

calculations were restrained by standard backbone torsion angles, planarity, and

hydrogen-bonding information included in the modified CharmM force field

employed by CNS. The minimized models were averaged together to provide the

final structure shown in Fig. 17.7b, which includes an unpaired purine at the stems

hinge and exhibits all the characteristic features of a classic type-1 pseudoknot (Yu

et al. 2005).

Generating complete models is greatly facilitated by the availability of partial

structural information from other sources. This concept is exemplified by the

elucidation of the HIV-1 packaging signal (C-RNA), an ~120-nt region of viral

RNA involved in genome recognition, dimerization, and packaging (Yu et al.

2008a). While size and flexibility considerations have thus far precluded its com-

prehensive determination by NMR or crystallography, high-resolution structures

have been separately obtained for four putative stem–loops folded by contiguous
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stretches of the C-RNA sequence. Initial probing experiments revealed a global

morphology characterized by well-defined domains that matched the previously

described stem–loops, thus ruling out the possible formation of different secondary

structures by alternative folding of the full-length construct. This observation

allowed us to utilize the high-resolution coordinates of the individual stem–loops,

which are available in the Protein Data Bank (PDB) (Berman et al. 2000), as the

initial building blocks for assembling a full-length model. Single-stranded regions

connecting contiguous domains, for which no high-resolution information was

available, were modeled de novo by MC-SYM, as described. The assembly opera-

tion was accomplished by using the merge_structure.inp module of CNS. Spatial

constraints provided by bifunctional probes were utilized to triangulate the proper

placement of the separate sections in 3D space. In particular, a total of 17

interdomain and 29 intradomain cross-links were used to restrain rounds of

simulated annealing performed in CNS. The distance information provided by the

cross-linking experiments was input to anneal.inp by using the restraint set file that
is typically employed for NOESY constraints. The restraints were enforced

throughout the energy minimization process but were lifted in final rounds to

relieve modeling strain and to test whether the structure would maintain its overall

morphology. The resulting model possessed the atomic-level detail afforded by the

initial high-resolution structures and the global morphology determined by the

cross-linking data (Fig. 17.8) (Yu et al. 2008a).

17.5.3 Model Evaluation

Once a structure has been obtained, evaluation and validation can be accomplished

according to standard methods. In the case of substrates for which high-resolution

structures are available, optimal superimposition of the respective coordinates

enables direct comparisons by calculating their average root mean square deviation

(rmsd). In the example of the MMTV frameshifting pseudoknot (Fig. 17.7b), the

coordinates of all the atoms present in double-stranded regions provided an average

rmsd of ~3 Å from the coordinates of the corresponding atoms in the NMR structure

deposited in the PDB (Shen and Tinoco 1995). This value of rmsd falls within the

range matched by similar comparisons between high-resolution structures obtained

for the same substrate by different instrumentation and data processing methods. It

is important to note that the coordinates of flexible single-stranded loops were

omitted from the rmsd calculation because, in the original NMR report, these

regions had yielded an insufficient number of constraints to support confident

assignment. The omission helped minimize an intrinsic drawback of average

rmsd as a measure of fitness, which is represented by its tendency of spreading

the error over the entire molecule while failing to identify the actual sources of

discrepancy between structures. For this reason, new metrics have been recently

introduced to better account for local deviations, intradomain deformations, and

interdomain discrepancies (Parisien et al. 2009), which should not only enable more
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meaningful comparisons but could also help the refinement process by guiding the

design of additional probing experiments.

Direct comparisons with high-resolution structures are certainly helpful for

assessing the quality of structures obtained by MS-based approaches and, by

extension, for evaluating the performance of such approaches. However, this option

is not feasible for rating structures of species that have not been solved by

established techniques, i.e., the expected targets of alternative technologies. In

this case, structures must be evaluated on their own merits according to objective

criteria, including their conformity to the general knowledge of RNA structure

extracted by surveying the growing collection of available high-resolution data.

SL4 SL4

SL1SL1

SL2SL2

SL3SL3

SL4 SL4

SL1
SL1

SL2SL2

SL3SL3

a

b

Fig. 17.8 Stereoview diagrams of full-length C-RNA viewed from the side (a) and top (b). Red,
SL1; green, SL2; blue, SL3; yellow, SL4. Linker sequences between adjoining stem–loops are

orange. The relatively compact cloverleaf conformation is stabilized by a long-range tertiary

interaction between the apical loop of SL4 and the upper stem region of SL1. Reproduced with

permission from Yu et al. (2008a)
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Aberrant conformations and geometric violations of normal RNA structure

decrease the confidence level in the final results. A second set of criteria regards

internal consistency of the experimental data employed to generate it. In this case,

the confidence level will be increased by the absence of conspicuous steric clashes

and specific structural features that may contradict the actual probing data. Models

that place cross-linked nucleotides out of mutual range, or insert hindering

structures in the space between conjugated bases, do not faithfully reflect the initial

experimental input and raise doubts about the validity of the model or the

corresponding spatial constraints. When planning this type of analysis, it is helpful

to exclude a subset of experimental constraints from model generation, reserving

them only for verification purposes. In the case of C-RNA, an additional set of 16

inter and intradomain constraints were reserved for checking the final structure for

possible inconsistencies. The majority of these cross-links were found to be consis-

tent with the structural context, but a few bridged bases located within range only

when the intrinsic flexibilities of both probe and RNA structure were taken in

account and only one bridged positions that were completely out of range (Yu

et al. 2008a). While it is evident that the confidence level can be greatly increased

by these types of qualitative observations, only the development of an actual

algorithm could provide the means for obtaining unambiguous quantitative

assessments. In combination with typical statistical assessments associated with

modeling operations, this tool could provide the basis for a comprehensive evalua-

tion system, which should account also for the number, type, and quality of

experimental data to reach a more complete evaluation of structures obtained

from chemical probing approaches.

17.6 Connecting the Dots

While RNA secondary structure is predominantly defined by the Watson–Crick

pairing of complementary bases, non-Watson–Crick base pairs involving also the

Hoogsteen and sugar edges contribute to interactions determining tertiary and

quaternary structure. Widely recurring structural motifs, such as base triples/

quadruples, platforms, ribose zippers, loop–receptor interactions, and others, have

been recognized as modular building blocks that shape RNA architecture through

long-range contacts (Batey et al. 1999; Hermann and Patel 1999; Leontis et al.

2006). Ideally, the development of monofunctional reagents targeting the func-

tional groups that are not involved in Watson–Crick pairing could enable direct

correlations between distinctive footprinting patterns and corresponding structural

elements, thus leading to their direct determination by structural probing. Develop-

ment and characterization of probes that react preferentially with functional groups

on the Hoogsteen or sugar edges of each nucleotide would be most useful in this

regard. Future exploration of this type of approach will count on the increasing

availability of suitable reagents made possible by the implementation of MS-based

detection.
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A step toward recognizing the presence of recurring long-range contacts is

afforded by bifunctional cross-linkers, which are capable of identifying their

constitutive components by bridging structures in mutual proximity. In the case

of C-RNA, for example, numerous cross-links placed the single-stranded loop of

the stem–loop 4 (SL4) domain alongside the stem of stem–loop 1 (SL1) (Yu et al.

2008a). The fact that SL4 assumes a typical GNRA tetraloop structure

(Amarasinghe et al. 2001; Kerwood et al. 2001) suggested that its contact with

SL1 may consist of a GNRA loop–receptor interaction (Cate et al. 1996; Costa and

Michel 1997). Based on the loop structure and the effects of Mg2+ on cross-linking

yields, we hypothesized that SL1 may fit the mold of the broad-spectrum class II

receptors indentified by in vitro selection methods (Geary et al. 2008). For these

reasons, we employed one of these receptors as a template for homology modeling

the putative C-RNA interaction (Fig. 17.9). The resulting structure was tested

experimentally by replacing A345 with C, in such a way as to eliminate specific

hydrogen bonding and stacking interactions that contributed to the stability of the

long-range contact. The mutation induced the loss of the specific interdomain cross-

links observed for the wild-type construct, thus providing strong experimental

support to the proposed interaction (Yu et al. 2008a).

The structural elucidation ofC-RNA exemplifies the possible synergies between

chemical probing and computational approaches. In fact, cross-linking information

has the potential to facilitate the stitching together of building blocks provided by

high-resolution techniques or prediction algorithms to build viable 3D models in

modular fashion. Structural elements indentified as putative interacting partners

could be used to search a database of recurring interactions compiled from the ever
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Fig. 17.9 Loop–receptor interaction in C-RNAs. (a) Diagram showing the placement of the SL1

and SL4 domains in the proposed interaction. (b) All-atom model detailing the specific molecular

contacts. Reproduced with permission from Yu et al. (2008a)
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expanding knowledge of RNA structure. Recognized motifs could then constitute

convenient templates for homology modeling or become the starting modules for

assembling the structure of interest. Alternatively, probing data could serve to rank

decoys generated from sequence information by prediction algorithms, course-

grained modeling, or other strategies. Selecting the decoy that best fits the experi-

mental information would be made more stringent by the inclusion of pairwise

constraints afforded by bifunctional reagents. In turn, computational methods could

help fill the resolution gap by providing atomic-level details that are typically

beyond the reach of chemical probing approaches. At the end, these synergistic

strategies would be expected to produce full-fledged models that comply with

rigorous thermodynamic/statistical principles of RNA structure and, at the same

time, maintain a firm grounding in direct empirical observations. Only a sound

confluence of both theoretical and experimental knowledge can provide final

structures possessing the confidence level required by the elucidation of previously

unsolved substrates.

17.7 Conclusions

The examples discussed here offer a glimpse of the great potential afforded

by MS3D for structural elucidation. The effectiveness of chemical probing

approaches will be expected to grow with the continued development of MS

technologies and computational methods. From the experimental point of view,

the broader implementation of MS detection will lead to greater utilization of

bifunctional probes and to the introduction of new reagents, which are not usable

with traditional technologies. Owing to the suitability of this analytical platform

for samples of heterogeneous nature, this approach will find widespread applica-

tion to the structural elucidation of ribonucleoprotein assemblies inaccessible by

established techniques. The capacity of MS-based technologies to handle very

complex sample mixtures will spur an expansion toward in vivo applications. As

the ability of supporting experimental strategies to minimize or eliminate the

pitfalls of chemical approaches will improve, the reliability of the information

afforded by structural probes will also improve. Improvements in our abilities to

accurately determine diverse spatial constraints will stimulate the development of

new computational strategies for their effective utilization. Improved methods

are also needed to assess the quality of these constraints and to take this

information into account when evaluating the final structure. We envision that

these advances will help establish MS3D as the approach of choice for the

structural elucidation of progressively larger substrates immersed in their natural

cellular environments.
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Appendix

The bases of RNA, like DNA, can interact edge-to-edge, when arrays of hydrogen-

bond donors and acceptors on the interacting bases align appropriately. The

resulting, planar arrangements are called base pairs. Analysis of RNA structures

shows that each unmodified RNA base presents three edges for H-bond mediated

pairing, the Watson–Crick (W), Hoogsteen (H), and Sugar (S) edges (see Fig. A1

panel a). RNA base pairs can therefore be conveniently classified according to the

interacting edges of the paired bases. For each pair of interacting edges, two relative

orientations of the glycosidic bonds (cis or trans) are possible (see Fig. A1, panel b),
giving rise to 12 geometric base pairs. These are shown schematically in Fig. A1,

panel c, using triangles to represent each nucleobase. Each base pair family is

named and classified according to the glycosidic bond orientation (cis or trans) and
the interacting edges, as previously described (Leontis and Westhof 2001; Leontis

et al. 2002). For example, pairing between the Watson–Crick edge of one base and

the Hoogsteen edge of a second base with the glycosidic bonds in trans produces a
base pair belonging to the trans Watson–Crick/Hoogsteen or “tWH” base pair

family. The common (AU and GC) Watson–Crick base pairs, as well as the

“wobble” (GU or AC) base pairs, belong to the cis Watson–Crick/Watson–Crick

family, abbreviated as “cWW.” Symbols have also been proposed for annotating

base pairs in 2D diagrams of RNA structure, using circles, squares, and triangles to

represent the interacting Watson–Crick, Hoogsteen, and Sugar edges, respectively

(Leontis andWesthof 2001). cis base pairs are indicated by using filled symbols and

trans pairs with open symbols. The geometric base pair classification has proven

useful in annotating and analyzing RNA 3D structures and understanding

RNA sequence variation and evolution (Leontis et al. 2006; Brown et al. 2009;

Stombaugh et al. 2009; Hoehndorf et al. 2011). Given that base triples are sets of

three nucleotides interacting by hydrogen bonding, this approach can be applied to

systematically group and name base triples (see Fig. A1, panel d) and higher order

nucleo-base clusters (Abu Almakarem et al. 2011).
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Fig. A1 Summary of Leontis/Westhof base pairing classification. (A) Each unmodified RNA

nucleotide presents three edges for base pairing interactions, the Hoogsteen (H), Watson–Crick

(W) and Sugar (S) edges. Therefore, nucleobases can be conveniently represented by triangles as

shown. Note that the sugar edges include the 20-OH group of the riboses. (B) For each pair of

edges, nucleotides can pair in two distinct ways, designated cis and trans, and related by 180�

rotation of one nucleotide about the magenta axis that bifurcates the nucleobases perpendicular to

the interacting edges. The glycosidic bonds of the nucleotides are on the same side of this axis in

the cis configuration, and on opposite sides in the trans configuration (indicated by arrows). (C)

Schematic representations of each of the 12 basic base pair families, using triangles to represent

each base. Symbols for annotating secondary structures of RNA with non-Watson–Crick base

pairs are also provided. The symbols associate circles with W edges, squares with H edges and

triangles with S edges. Filled in symbols represent cis base pairs and open symbols, trans base
pairs. Note that the 12 base pair families result in 18 base pairing relations due to the asymmetry of

some base pairs. (D) Schematic showing a representative regular base triple, AUG tHW/cHS. The

central base (U), numbered base ‘2’, pairs with each of the other two bases of the triple using a

distinct base edge. A is base 1 and G is base 3. The triple is named according to the base pairs

formed by bases 1 and 2 (tHW in this case) and by bases 2 and 3 (cHS in this case)

392 Appendix



References

Abu Almakarem A, Petrov AI, Stombaugh J, Zirbel CL, Leontis NB (2011) Comprehensive survey

and geometric classification of base triples in RNA structures. Nucleic Acids Res. doi:10.1093/

nar/gkr810

Brown JW, Birmingham A, Griffiths PE, Jossinet F, Kachouri-Lafond R, Knight R, Lang BF,

Leontis N, Steger G, Stombaugh J, Westhof E (2009) The RNA structure alignment ontology.

RNA 15:1623–1631, papers://8F282AF1-C00B-4965-8450-641CADBEB600/Paper/p1170

Hoehndorf R, Batchelor C, Bittner T, Dumontier M, Eilbeck K, Knight R, Mungall CJ, Richardson

JS, Stombaugh J, Westhof E, Zirbel CL, Leontis N (2011) The RNA ontology (RNAO): an

ontology for integrating RNA sequence and structure data. Appl Ontol 6:53–89

Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs.

RNA 7:499–512

Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their

associated isostericity matrices. Nucleic Acids Res 30:3497–3531

Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture.

Curr Opin Struct Biol 16:279–287. doi:10.1016/j.sbi.2006.05.009

Stombaugh J, Zirbel CL, Westhof E, Leontis NB (2009) Frequency and isostericity of RNA base

pairs. Nucleic Acids Res 37:2294–2312. doi:10.1093/nar/gkp011

References 393

http://dx.doi.org/10.1093/nar/gkr810
http://dx.doi.org/10.1093/nar/gkr810
http://dx.doi.org/10.1016/j.sbi.2006.05.009
http://dx.doi.org/10.1093/nar/gkp011




Index

A

aaRS. See Aminoacyl-tRNA Synthetases

(aaRS)

Adenine ligand, 342

Adenine riboswitch (riboA), 342

Adun, 78

Alignment, 67, 70, 72–75, 77, 105, 113

AMBER, 78, 221

Aminoacyl-tRNA synthetases (aaRS), 215

Asymmetrical loop, 356

Asymmetric unit, 283

AUC criteria, 331

6-Aza-2-thiothymine, 371

B

Backbone, 68, 75, 77, 79, 81, 85

Base-base, 47

Base-pair breathing, 365

Base pairing geometry, 148

Basepairs, 285

Basepairs per nucleotide, 290

Base triple interactions, 198–202

BDG. See 4,40-Biphenyl-diglyoxal (BDG)
Benchmark(ing), 84–86, 353

Betweenness, 230

Bifunctional probes, cross-linking reagents,

366

Binomial expansion, 328

Biological unit, 283

4,40-Biphenyl-diglyoxal (BDG), 367
bis (2-chloroethyl)-methylamine, nitrogen

mustard (NM), 367

Blind, 49, 60

BLOCK, 345

BLOSUM, 105

Boltzmann, 79

Boronate ester, 365

Bottom-up, 373. See also Top-down

BUILDER algorithm, 112, 113

C

C++, 78

CASP. See Critical assessment of structure

predictions (CASP)

Cations, 221

Chemical and enzymatic mapping techniques,

320

Chimera, 225

Circular diagram, 284

cis-diamminedichloroplatinum (II), 367

Cisplatin (CPT), 367

Cluster centroids, 327

Clustering, 293

CMCT. See 1-cyclohexyl-3-
(2-morpholinoethyl) carbo-diimide

metho-p-toluenesulfonate (CMCT)

CNS. See Crystallography and NMR

system (CNS)

Coarse-grained, 57, 67, 69, 71, 78, 98, 100

Coarse-grained RNA model, 168

Collision, 149

Compactification, 129, 131

Comparative modeling, 70, 71, 73, 77, 86

CompaRNA, 86

Computational sampling, 55

Conformation, 93, 94, 98, 101–103

Conformational change, 80, 81

Conformational differences, 285

Conformational sampling, 169

Consensus structure, 31–34

Constraints, 51, 94, 95, 97, 98, 106, 109, 112

Convention, 162–163

N. Leontis and E. Westhof (eds.), RNA 3D Structure Analysis and Prediction,
Nucleic Acids and Molecular Biology 27, DOI 10.1007/978-3-642-25740-7,
# Springer-Verlag Berlin Heidelberg 2012

395



Correlation, 227

Correlation plots, 349

Co-transcriptional folding, 124–125

CPT. See Cisplatin (CPT)

Critical assessment of structure

predictions (CASP), 60, 68,

71, 85, 86, 113

Crystal engineering, 296

Crystallography and NMR system (CNS), 379

Cyclization, 135, 138

1-Cyclohexyl-3-(2-morpholinoethyl)

carbo-diimide metho-p-
toluenesulfonate (CMCT), 364

D

2D and 3D structures, 206

Databases, 9, 10, 12

Debye’s formula, 341

Decoy, 379

Degenerate matrices, 329

Denaturation temperature, 21

De novo modeling, 7, 10–11, 67, 71

De novo prediction, 92, 95, 100, 104,

109, 113

Desalting, 372

Determining global structures, 341–355

a simulated case, 342

Diamond lattice, 196

Dimethyl sulfate (DMS), 364

Dipolar wave, 337

Dipolar wave fits, 352

Discoverability, 162–163

Discrete molecular dynamics (DMD), 51,

52, 168

Distance-repulsive restraint, 345

DMD. See Discrete molecular dynamics

(DMD)

DMS. See Dimethyl sulfate (DMS)

DPA. See Dynamic programming algorithm

(DPA)

DSTA algorithm, 101

Duplex arrangement, 336

parallel or orthogonal, 336

Duplexes, 150

axis, 339

orientation, 337–340

Dynamic programming algorithm (DPA),

95, 109–110, 113, 125

Dynamic programming method, 192

Dynamics, 368

E

Efficacy, 185

EF-Tu, 217

Electrospray ionization (ESI), 371

Electrostatic, 100

Electrostatic screening, 221

Energy, 69, 71, 78–83

Energy function, 69, 79–80, 82, 83

Energy landscape, 81, 83, 175

Energy minimization, 95, 97, 100, 106,

110, 133, 203

Entropy, 98

Envelope, 351

Equivalence classes, 289

ERNA-3D, 71, 84

ESI. See Electrospray ionization (ESI)

Event-driven, 169

Evolution, 94, 98

Evolutionary analysis, 214

F

FARFAR. See Fragment Assembly of

RNA with Full-Atom

Refinement (FARFAR)

FARNA. See Fragment Assembly of

RNA (FARNA)

Feedback, 162–163

FoldalignM, 74

Folding, 43

ionic strength dependence of, 23

simulation, 69, 78

thermodynamics, 206

visualization, 125

Fold recognition, 70, 74

Forcefield, 98–100, 102, 110, 113

Force field development, 282

F€orster resonance energy transfer (FRET), 378

Fourier transform ion cyclotron resonance

mass spectrometry (FTICR-MS), 372

Fragment assembly, 47

Fragment Assembly of RNA (FARNA), 47, 52,

72, 79

Fragment Assembly of RNA with Full-Atom

Refinement (FARFAR), 72

Fragment library, 77, 78, 104, 112

Frameshifting efficiency, 205

Free energy, 68, 69, 80, 81, 201, 227

Free energy landscape, 186

FRET. See F€orster resonance energy transfer

(FRET)

396 Index



FTICR-MS. See Fourier transform ion

cyclotron resonance mass spectrometry

(FTICR-MS)

Full-atom reconstruction, 84

Funnel, 81–83

G

GA. See Genetic algorithm (GA)

GAAA tetraloop, 351

Gag and gag-pol, 203

Gap statistic, 326

Gaussian chain approximation, 191

Gel electrophoresis, 325

Generic distance restraints, 342

Genetic algorithm (GA), 122, 123

Geometric discrepancy, 285

G2G

accuracy, 348

global structure, 355

structure, 348

toolkit, 340

GNRA tetraloop, 132

Go potential, 232

Graphical processing unit (GPU), 143, 163

H

Hairpin, 45

High-performance liquid chromatography

(HPLC), 372

HIV-1 packaging signal, Psi-RNA, 379

Homologous RNA, 287

Homologs, 147

Homology modeling, 7, 10, 67, 70, 71, 92,

94–96, 100, 101, 105, 106, 108, 113

HPLC. See High-performance liquid

chromatography (HPLC)

H-type pseudoknots, 124, 191

Hybrid rigid-body simulated annealing (SA)

refinement protocol, 342

Hydrogen bonds, 52

Hydroxyl radical footprinting, 325

30-Hydroxypicolinic acid, 371

I

ILM, 377

Incremental mass, 365

Indels, 70, 73, 76

Infernal, 74

Interaction energies, 248, 250, 261–265,

267, 269–271

Intermediate folds, 124

Internal coordinate mechanics, 147

In vitro evolution, 61

K

Kethoxal (KT), 364

Kinetic data, 325

Kinetic model, 323

Kinetic traps, 368

KinFold, 331

Kissing loop complexes, 193

Knowledge-based, 47, 51

KT. See Kethoxal (KT)

L

Larger tertiary folds, 206

Lennard-Jones potential, 83

Levinthal, 55

Ligands, 286

Limitations, 52–54

Links, 377

Livebench, 85, 86

Local structural alignment, 294

LocaRNA, 74

Loop entropy, 174–175, 190

Low-resolution, 195

L-21 Tetrahymena thermophila, 319

M

Macromolecular Conformations by SYMbolic

programming (MC-SYM), 379

MALDI. See Matrix-assisted laser desorption

ionization (MALDI)

Mass-balance equation, 327

Mass mapping, 373

MathWorks’ Matlab, 320

Matrix-assisted laser desorption ionization

(MALDI), 371

MC-Fold, 377

MC-Fold/MC-Sym, 51, 72

MC-SYM. See Macromolecular

Conformations by SYMbolic

programming (MC-SYM)

Metal counterions, 372

Metrics for model evaluation, 13–14

mfe structure. See Minimum free energy

(mfe) structure

Mfold, 125, 126, 377

Minimal salt models, 300

Minimum free energy (mfe) structure, 22

Index 397



ModeRNA, 67, 72–78, 86

Modifications, 67, 72, 75, 76

Modified nucleosides, 220

Modular cross-linkers, 369

Molecular dynamics, 51, 129, 133, 135, 143

Molecular envelope, 341

Molecular interactions, 241, 245, 251, 253,

254, 257, 269, 272

Molecular mechanics, 133

Molecular signatures, 215

Molecular simulations, 78, 259

Mongo Oligo Calculator, 377

Monte Carlo, 49, 68, 78, 80, 81, 83

Motif library, 101, 103–105, 112, 113

MPGAfold, 119, 120, 122–127, 139

MRM. See Multi-resolution modeling (MRM)

ms3d org portal, 377

MS2Links, 377

MS/MS. See Tandem mass spectrometry

(MS/MS)

Multiplexed, 367

Multiplexed applications, 365

Multi-resolution modeling (MRM), 147

Multiscale approach, 168, 195

Mutation, 123

N

Nanospray, 372. See also Electrospray

NAST. See Nucleic acid simulation tool

(NAST)

Network analysis, 229

Nitrogen mustard (NM), bis (2-chloroethyl)-
methylamine, 367

N-methylisatoic anhydride (NMIA), 365

NMIA. See N-methylisatoic anhydride

(NMIA)

NOESY. See Nuclear Overhauser effect
spectroscopy (NOESY)

Non-redundant, 282

Non-redundant lists, 290

Nuclear Overhauser effect spectroscopy

(NOESY), 378

Nucleases, 373

Nucleic acid simulation tool (NAST), 51, 143

Nucleotide modifications, 75

11-Nucleotide motif, 296–297

Nucleotide-to-nucleotide alignment, 294

O

OH footprinting data, 326

OH radicals, 325

OpenMM, 164

ORIENT, 340

Over-packing, 170–172

P

Pair distance distribution function (PDDF), 348

Parallel cluster computer, 123

Partition function, 21

PDDF. See Pair distance distribution
function (PDDF)

1,4-Phenyl-diglyoxal (PDG), 367

Physics-based, 51

Picolinic acid, 371

PKNOTS, 377, 379

pknotsRG, 379

PMF. See Potential of mean force (PMF)

Potential of mean force (PMF), 177

Precision vs. accuracy, 11–12
Predicting RNA 3D structure, 202

Probe-induced distortion, 368

Probe to substrate ratio (P/S), 369

-1 programmed ribosomal frameshift, 203

Programs

DotKnot, 31

HotKnots, 31

ILM, 30

KnotSeeker, 31

MaxExpect, 25

mfold, 19, 24

PKNOTS, 29

pknotsRG, 29–30

RNAcast, 32

RNAfold, 25

RNAshapes, 24

UNAfold, 19, 23

Progress curves, 325

Protein folding, 93, 99

Provisional redundancy, 288

P/S. See Probe to substrate ratio (P/S)

Pseudoknot, 190, 378, 380

H-type, 26

structure and stability, 197–198

Pulse-chase mass spectrometry, 332

PyMOL, 225

Python, 72

Q

Quadruplex, 57

Quantum-chemical computations, 258

Quaternary structure, 95

Query, 95, 105, 106, 112

398 Index



R

RaveNnA, 74

RBSE. See Ribosome-binding structural

element (RBSE)

R-Coffee, 74

R3DAlign, 294

RDC. See Residual dipolar coupling (RDC)

RDC–structure periodicity correlation, 337

RdRp. See RNA-dependent RNA
polymerase (RdRp)

RebuildRNA, 83, 84

Recombination, 123

Redundancy, 282

Regularizations, 341

Residual dipolar coupling (RDC), 120,

138, 139

Restraints, 78, 81, 82

Rfam, 74

riboA. See Adenine riboswitch (riboA)

Ribonucleic acid (RNA), 43, 67–87

base pairs, 247, 260–269, 271

protein binding interfaces, 227

secondary structures, 187, 321

tertiary folds, 186

Ribosomal frameshifting, 199

Ribosome, 45, 213, 282, 332

Ribosome-binding structural element

(RBSE), 350

Ribosome crystallography, 290

Riboswitches, 60, 286

Ribozymes, 287

RNA. See Ribonucleic acid (RNA)

RNA123, 92

RNABuilder, 143

RNA2D3D, 84, 119–121, 129–135, 139

RNA-dependent RNA polymerase (RdRp),

120, 121, 127, 137, 138, 350

RNase P, 71

Rosetta, 58, 71, 78

Rotamers, 57

Rotational isomeric states, 196

RSEARCH, 74

S

Sarcin-Ricin Loop (SRL), 51, 52, 287

SAXS. See Small angle X-ray scattering

(SAXS)

SAXS data “sparsening”, 345

SAXS-derived envelope, 347

SAXS-derived molecular envelope, 343

SAXS molecular envelope, 352

SBSA alignment, 105

Secondary structure, 68, 70, 71, 74, 76

Secondary structure prediction, 119, 122, 139

Selection, 123

Selective 20-hydroxyl acylation analyzed by

mass spectrometry (SHAMS), 365

Selective 20-hydroxyl acylation analyzed by

primer extension (SHAPE), 365

Sequence variation, 287

Sequencing, 373

SHAMS. See Selective 20-hydroxyl
acylation analyzed by mass

spectrometry (SHAMS)

SHAPE. See Selective 20-hydroxyl
acylation analyzed by primer

extension (SHAPE)

SHAPE chemistry, 179

Shape derived from SAXS, 341

Side chain, 68

Simbody, 147

SimRNA, 67, 78–84

Simulated annealing, 68, 78, 80, 83

Simulations, 69, 80, 81, 83, 99, 100

Simultaneous fit, 345

Singular value decomposition, 172

Site-directed footprinting, 179

Slippery sites, 204

Small angle X-ray scattering (SAXS), 120,

138, 139, 332

Solvent accessibility, 81

Solvent-accessibility reagents, 363

footprinting probes, 363–366

SOS, 377

SPLIT record, 284

SRL. See Sarcin-Ricin Loop (SRL)

S2S/Assemble, 71, 84

Stacking, 148

Statistical potential, 68, 78

Stemloc, 74

Stem stacking, 134

StemTrace, 126, 127

Steric clashes, 77

Stochastic algorithm, 124

Structural parallelism, 356

Structural superposition, 288

Structural switch, 120, 128, 137, 139

Structure conditioning, 103

StructureLab, 121, 125–127

Structures, 44

Succinic acid, 371

Index 399



SwissModel, 72, 77

Synthetic, 288

T

Tandem mass spectrometry (MS/MS), 373

TCV. See Turnip crinkle virus (TCV)

Template, 95, 96, 105, 106

Template-based modeling, 70

Template-free structure prediction, 71

Tertiary packing, 94

Tertiary structure, 98–99

Tetraloop, 51

Thermodynamic, 97

Thermodynamic hypothesis, 69, 82

Thermodynamics of RNA folding, 20–23

Thermodynamic stabilities, 201

Time-of-flight (TOF), 371

Time progress curves, 326

TiO2. See Titanium dioxide (TiO2)

Titanium dioxide (TiO2), 373

TOF. See Time-of-flight (TOF)

Top-down, 373. See also Bottom-up

Topology, 345

Transfer RNA, 44

Transitivity, 289

Translational enhancer, 119, 121, 127, 135,

137–139

20,4,060-Trihydroxyacetophenone, 371
tRNA, 72, 73, 75

tRNA-like, 350

TRNA-shaped structure (TSS), 120, 121,

135–139

element, 121, 135, 138

TSS. See TRNA-shaped structure (TSS)

Turnip crinkle virus (TCV), 119, 121–127,

129–139, 350

U

U1A protein-binding hairpin loop, 294

Unit cell, 283

30-Untranslated regions (UTR), 119–121, 127,

138, 139

Urea, 371

UTR. See 30-Untranslated regions (UTR)

V

Van der Waals, 100, 102

Vfold, 192

Vfold package, 196

Virtual bond representation, 195

Visualization GUI, 101

VMD, 163, 225

W

WebFR3D, 291

Weighted histogram analysis method

(WHAM), 177

WHAM. See Weighted histogram analysis

method (WHAM)

Wobble GU pairs, 365

Z

Zephyr, 143

400 Index


	RNA 3D Structure Analysis and Prediction
	Contents
	Contributors
	1 Introduction
	References

	2 Modeling RNA Molecules
	2.1 Introduction
	2.2 Defining the Problem
	2.2.1 RNA Modeling Compared to Protein Modeling
	2.2.2 Defining the Inputs for RNA 3D Modeling

	2.3 3D Modeling Methods and Approaches
	2.3.1 Homology Modeling
	2.3.2 De Novo Modeling
	2.3.3 Defining the Outputs of Different Modeling Approaches
	2.3.4 Precision of Models vs. Accuracy of Models

	2.4 Databases for Extracting Knowledge
	2.5 Evaluating Models or ``The Proof of the Pudding Is in the Eating´´
	2.5.1 Metrics for Evaluating Models
	2.5.2 Necessity for Objective Evaluation of Modeling Efforts: RNA-CASP

	2.6 Complications Limiting Modeling Approaches
	2.7 Challenges for the Future: Dealing with Massive Data Streams and Connecting to Biology
	2.8 Conclusion
	References

	3 Methods for Predicting RNA Secondary Structure
	3.1 Introduction
	3.2 RNA Secondary Structure Prediction Based on Thermodynamics
	3.2.1 Overview of RNA Secondary Structure Formation
	3.2.2 Tools for RNA Secondary Structure Prediction Based on Thermodynamics

	3.3 Pseudoknots
	3.3.1 Conformation
	3.3.2 Thermodynamic Parameters for Pseudoknots
	3.3.3 Ionic Strength Dependence of Pseudoknots
	3.3.4 Prediction Methods for Pseudoknots

	3.4 Prediction of Consensus Structures
	3.5 Conclusions
	References

	4 Why Cant We Predict RNA Structure At Atomic Resolution?
	4.1 RNA as a Model System
	4.2 Is the RNA Structure Prediction Problem Well Defined?
	4.3 3D RNA Modeling Inspired by Protein Structure Prediction
	4.4 A Wealth of 3D RNA Modeling Approaches
	4.5 Case Study: Sarcin-Ricin Loop Suggests Limitations of Current Methods
	4.6 What Are the Bottlenecks?
	4.6.1 Computational Sampling
	4.6.2 Overeliance on Existing Structures
	4.6.3 Simplified Representation

	4.7 Future Directions/Community Wide RNA Experiments
	4.8 Conclusions
	References

	5 Template-Based and Template-Free Modeling of RNA 3D Structure: Inspirations from Protein Structure Modeling
	5.1 Introduction
	5.2 Classification of Methods for Macromolecular 3D Structure Prediction
	5.2.1 Template-Free, Ab Initio Structure Prediction
	5.2.2 Template-Based Structure Prediction
	5.2.3 Template-Free, De Novo Structure Prediction

	5.3 ModeRNA, a New Method for Template-Based RNA Structure Modeling
	5.3.1 ModeRNA Requires User-Defined Alignments and Templates
	5.3.2 Modeling of Nucleotide Substitutions by ModeRNA
	5.3.3 Modeling of Posttranscriptionally Modified Nucleosides by ModeRNA
	5.3.4 Modeling of Insertions and Deletions by ModeRNA
	5.3.5 Refinement of Models Generated by ModeRNA

	5.4 SimRNA, a New Method for Template-Free RNA Structure Modeling
	5.4.1 Coarse-Grained Representation of RNA in SimRNA
	5.4.2 Statistical Energy Function in SimRNA
	5.4.3 Conformational Sampling in SimRNA
	5.4.4 The Use of Spatial Restraints in SimRNA
	5.4.5 SimRNA Generates Funnel-Like Energy Landscapes for Small RNAs
	5.4.6 Reconstruction of the Full-Atom Representation

	5.5 Critical Assessment and Benchmarking of RNA Structure Prediction
	5.6 Note
	References

	6 The RNA Folding Problems: Different Levels of sRNA Structure Prediction
	6.1 Introduction
	6.2 Comparison of Protein and Nucleic Acid Folding Problems
	6.3 Structure Prediction of RNA
	6.3.1 Types of RNA Structure Prediction
	6.3.2 Secondary Structure Prediction
	6.3.3 Tertiary Structure Prediction
	6.3.4 Current Software for Tertiary Structure Predictions of Nucleic Acids

	6.4 RNA123 Software for 3D Structure Prediction
	6.4.1 RNA123 Visualization GUI
	6.4.2 Structure Conditioning
	6.4.3 Development of an Extensive Motif Library
	6.4.4 Homology Modeling in RNA123
	6.4.5 de Novo Structure Prediction in RNA123
	6.4.6 3D Model Construction by BUILDER Algorithm
	6.4.7 The Combinatorial Explosion Problem for Multihelix Loops
	6.4.8 Case Study of the De Novo Algorithm in RNA123

	6.5 Conclusion
	References

	7 Computational Prediction and Modeling Aid in the Discovery of a Conformational Switch Controlling Replication and Translation in a Plus-Strand RNA Virus
	7.1 Introduction
	7.2 Computational Prediction of the TCV TSS
	7.2.1 MPGAfold
	7.2.1.1 H-Type Pseudoknots
	7.2.1.2 Miscellaneous Information Regarding MPGAfold

	7.2.2 StructureLab

	7.3 Prediction and Analysis of the Secondary Structure of the TCV tRNA-Shaped Domain
	7.4 Computational Determination of the 3D Structure of the TCV Translational Enhancer Element
	7.4.1 RNA2D3D
	7.4.2 The Enhancer Element Is tRNA-Like in Appearance and Function
	7.4.3 Molecular Dynamics Simulations of the TCV TSS Element and the H5 Stem Loop Structure

	7.5 TSS Structure in Solution
	7.6 Current Model of the Functional Role of the TSS Element in Translation and Replication
	7.7 Summary
	References

	8 Methods for Building and Refining 3D Models of RNA
	8.1 Introduction
	8.2 RNABuilder: An Internal Coordinate Mechanics Approach for Multiresolution Molecular Modeling of RNA
	8.2.1 Introduction
	8.2.2 Using RNABuilder and Internal Coordinate Mechanics to Model Large Molecules
	8.2.3 Enforcing Leontis-Westhof and Other Base Interactions
	8.2.4 Approximate Treatment of Sterics
	8.2.5 Building RNA Structures from Experimental Data
	8.2.6 Solving Structure by Multiple Template Homology Modeling
	8.2.7 Scaling
	8.2.8 Advantages and Limitations of Modeling with RNABuilder
	8.2.9 Downloading RNABuilder

	8.3 Coarse-Grained Molecular Modeling with the NAST
	8.3.1 Introduction
	8.3.2 Coarse-Graining and the NAST Energy Function
	8.3.3 NAST´s Role in Understanding RNA
	8.3.3.1 Predicting Structures
	8.3.3.2 Combining Information from Several Models
	8.3.3.3 Generating Diverse Unfolded Conformations

	8.3.4 Using NAST´s Coarse-Grained Models for Further Simulation and Analysis
	8.3.5 Scaling
	8.3.6 Advantages and Limitations of Modeling with NAST
	8.3.7 Downloading NAST and C2A

	8.4 Molecular Simulation of RNA with OpenMM Zephyr
	8.4.1 Zephyr Leverages OpenMM, GROMACS, and VMD
	8.4.2 GPU Acceleration of Dynamic Simulation
	8.4.3 Zephyr and Usability
	8.4.4 Zephyr´s Guiding Principles: Discoverability, Feedback, and Convention
	8.4.5 Using Zephyr with RNA Structures
	8.4.6 Downloading Zephyr

	8.5 Conclusions
	References

	9 Multiscale Modeling of RNA Structure and Dynamics
	9.1 Introduction
	9.2 Coarse-Grained RNA Modeling Using Discrete Molecule Dynamics
	9.3 Ab Initio Folding of Small RNA Molecules
	9.4 Automated RNA Structure Determination Using Experimental Constraints
	9.5 Conclusions
	References

	10 Statistical Mechanical Modeling of RNA Folding: From Free Energy Landscape to Tertiary Structural Prediction
	10.1 Introduction
	10.2 Overview of Computational Models for RNA Folding
	10.2.1 Secondary Structures
	10.2.2 H-Type Pseudoknots: Free Energy Models
	10.2.3 Pseudoknots: Structure Prediction
	10.2.4 RNA/RNA Complexes

	10.3 RNA Tertiary Structural Folding: From 2D Low-Resolution to 3D All-Atom Structures
	10.3.1 The Vfold Model
	10.3.2 Pseudoknot Structure and Stability
	10.3.3 Loop-Stem Base Triple Interactions
	10.3.4 All-Atom 3D RNA Structures

	10.4 Quantitative Prediction for RNA Function -1 Programmed Ribosomal Frameshifting
	10.5 Conclusions
	References

	11 Simulating Dynamics in RNA-Protein Complexes
	11.1 Introduction
	11.2 Evolutionary Analysis of Sequence and Structure
	11.2.1 Molecular Signatures in rRNA and r-Proteins
	11.2.2 Binding Patterns for tRNA
	11.2.3 Practical Challenges in RNA Comparative Analysis

	11.3 Molecular Dynamics Simulations of RNA-Protein Complexes
	11.3.1 Influence of Modified Nucleosides on RNA Dynamics
	11.3.2 RNA Interaction with Water and Ions
	11.3.3 Challenges in the Set-Up of All-Atom Simulations
	11.3.3.1 Preparing the Structure
	11.3.3.2 Adding Ions
	11.3.3.3 Hydrating the System

	11.3.4 Visualization and Analysis of Motions and Energetics
	11.3.4.1 Structural Dynamics
	11.3.4.2 Interaction Energies and Free Energy Landscapes
	11.3.4.3 Analysis of Correlated Motions
	11.3.4.4 Dynamical Network Analysis


	11.4 Reaching Longer Timescales Through Simplified Models
	11.5 Conclusion
	References

	12 Quantum Chemical Studies of Recurrent Interactions in RNA 3D Motifs
	12.1 Introduction
	12.2 Overview of the Ab Initio QM Methodology
	12.2.1 Comparison to Other Computational Methods
	12.2.2 Information Obtained from Ab Initio QM Calculations
	12.2.3 Nucleic Acid Systems Amenable to Study by QM Methods
	12.2.4 Sources of RNA Geometries and Their Optimization for QM Calculations
	12.2.5 Advantages and Disadvantages of QM Methods
	12.2.6 Comparison of QM Calculations to Gas-Phase Measurements of Nucleic Acid Interactions
	12.2.7 Inclusion of Solvent Effects in QM Calculations
	12.2.8 Quality of QM Calculations
	12.2.9 Physicochemical Interpretation and Meaning of Ab Initio QM Results

	12.3 Applications of Ab Initio QM Methods
	12.3.1 Fundamental Understanding of the Nature of Base-Stacking Interactions
	12.3.2 Elucidation of Role of Amino-Group Pyramidalization in Base Pairing
	12.3.3 Applications of QM Calculations: Molecular Mechanics Force Fields
	12.3.4 Comparison of QM Calculated Energies and Experimental Gas-Phase Energies

	12.4 QM Calculations of RNA Base Pairs
	12.4.1 Methodology for QM Calculations of RNA Base Pairs Involving the Sugar Edge
	12.4.2 Results of QM Computations on RNA Sugar-Edge Base Pairs
	12.4.2.1 The cis Watson-Crick/Sugar-Edge (cWS) Base-Pair Family
	12.4.2.2 The trans Watson-Crick/Sugar-Edge (tWS) Base-Pair Family
	12.4.2.3 The cis Sugar-Edge/Sugar-Edge (cSS) Base-Pair Family
	12.4.2.4 The trans Sugar-Edge/Sugar-Edge (tSS) Family
	12.4.2.5 The cis Hoogsteen/Sugar-Edge (cHS) Family
	12.4.2.6 The trans Hoogsteen/Sugar-Edge (tHS) Family

	12.4.3 Implications for Force-Field Parametrizations

	12.5 QM Calculations of Tertiary Interactions
	12.5.1 Modeling of the BPh (base-phosphate) Interactions
	12.5.2 Application to Base Triples

	12.6 Software and Computational Demands
	References

	13 Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking
	13.1 Introduction: Why Do We Need Nonredundant RNA Structure Datasets?
	13.2 Sources of Redundancy in the RNA 3D Structure Database
	13.2.1 Redundancy Within a Given PDB File
	13.2.2 Redundancy Between PDB Files

	13.3 Identifying Redundant Files in the RNA 3D Structure Database
	13.4 Selecting Representative Data for RNA NR Datasets at Different Resolution Thresholds
	13.5 Growth of the NR Dataset Over Time
	13.6 Characteristics of the NR Dataset
	13.7 Accessing and Using the RNA NR Datasets
	13.8 Issues for Future Work
	13.8.1 Improving the Construction of Equivalence Classes
	13.8.2 Improving the Choice of Biological Unit
	13.8.3 Improving the Choice of File to Represent the Equivalence Class
	13.8.4 Identifying and Using Interesting Variation Within an Equivalence Class

	13.9 Conclusions
	References

	14 Ions in Molecular Dynamics Simulations of RNA Systems
	14.1 Introduction
	14.2 Modeling Monovalent Cations (Na+, K+, NH4+, ...)
	14.2.1 Is a Neutralizing Ionic Atmosphere Sufficient?
	14.2.2 Finite Size Artifacts
	14.2.3 Choice of Monovalent Cations: K+ Versus Na+ or NH4+
	14.2.4 Locating Binding Pockets for Monovalent Cations
	14.2.5 Where Do Monovalent Cations Bind?
	14.2.6 Cation Dynamics
	14.2.7 K+ Versus Na+ in MD Simulations

	14.3 Modeling Divalent Cations
	14.3.1 Magnesium Cations (Mg2+)
	14.3.2 Other Divalent Cations (Mn2+, Ca2+, Sr2+, Ba2+, ...)

	14.4 Modeling Other Cations [Co(NH3)6 3+ and Polyamines] 
	14.5 Modeling Anions (Cl-, SO4 2-, ...) 
	14.6 Toward More Complex Ionic Models?
	14.7 Conclusions
	References

	15 Modeling RNA Folding Pathways and Intermediates Using Time-Resolved Hydroxyl Radical Footprinting Data
	15.1 Introduction
	15.1.1 Software Availability
	15.1.2 Kinetic Models Describe the Folding Reaction
	15.1.3 Hydroxyl Radical Footprinting Measures the Folding Reaction

	15.2 Implementation
	15.2.1 Experimental Progress Curves
	15.2.2 Factorial Explosion of P
	15.2.3 Testing P Without Fitting K

	15.3 Validation and Results
	15.3.1 Experimentally Acquired OH Data
	15.3.2 Large Systems

	15.4 Discussion
	References

	16 A Top-Down Approach to Determining Global RNA Structures in Solution Using NMR and Small-Angle X-ray Scattering Measurements
	16.1 Introduction
	16.2 Theory
	16.2.1 Duplex Orientation
	16.2.2 Shape Derived from SAXS

	16.3 Determining Global Structures of RNAs Using Global Restraints
	16.3.1 A Simulated Case
	16.3.2 Experimental Case 1: riboA
	16.3.3 Experimental Case 2: The Global Structure of the 102-nt Ribosome-Binding Structural Element of the Turnip Crinkle Virus Genomic RNA

	16.4 Conclusions
	References

	17 RNA Structure Determination by Structural Probing and Mass Spectrometry: MS3D
	17.1 Introduction
	17.2 Selecting the Proper Approach: Mono- vs. Bifunctional Probing
	17.2.1 Footprinting Information from Monofunctional Reagents
	17.2.2 Spatial Contiguity from Bifunctional Probes
	17.2.3 Targeted Probing

	17.3 The Intrinsic Hazards of Chemical Probing
	17.3.1 Fine Tuning the Conditions of Probe Application
	17.3.2 Weighing the Validity of Probing Information

	17.4 Combining Chemical Probing with MS-Based Technologies
	17.4.1 MS Analysis of Probing Products
	17.4.2 Selecting Proper Sample Handling Procedures
	17.4.3 Strategies for Identifying Probed Nucleotides

	17.5 Translating Probing Information into Full-Fledged 3D Structures
	17.5.1 Rationalizing Probing Information
	17.5.2 Generating Full-Fledged 3D Structures
	17.5.3 Model Evaluation

	17.6 Connecting the Dots
	17.7 Conclusions
	References

	Appendix
	References

	Index

