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Preface

It seems to be an opportune moment to produce a book on viscoplastic fluid
mechanics. There is a vast amount of material covering the theoretical aspects of the
subject, as well as numerical modelling. When I began this monograph, I was very
surprised to find the treasure that was lying in front of me and this is an account
of the voyage of discovery.

The first chapter lays out the essential features of viscoplasticity through a
detailed study of the flow of a Bingham fluid in a channel. The influence of the yield
stress on the critical pressure drop to sustain the flow, the velocity field, the flow
rate and the inherent nonlinearity of the constitutive model are explored in-depth.
Non-dimensionalisation, and its use in defining the Bingham number and deriving
the Buckingham equation is demonstrated, and the solution to the latter is found.
The next section deals with the nature of free boundary problems, such as the Stefan
problem. The location of the yield surface in the channel flow of the Bingham fluid
is also a free boundary problem, and the corresponding velocity field can be
obtained through the minimum of a suitably chosen functional or the solution of its
equivalent variational inequality. The chapter closes with a brief review of the
experiments which challenge and support the assumption that viscoplastic fluids
exist, and a summary of the aim of the rest of the book.

The next two chapters are concerned with the basic kinematics of the flows of
fluids and the balance equations of continuum mechanics so that this monograph is
self-contained. Chapter 4 examines in-depth the role of pressure in incompressible
media and the formulation of constitutive equations to respond to the incom-
pressibility of a material, treating it as a constraint on a given motion. The extension
to incompressible viscoplastic fluids is made and the consequence of treating the
yield stress effect as a response to a second constraint is explored, leading to the
concept of the viscoplasticity constraint tensor. Next, the constitutive equations for
compressible viscoplastic fluids are derived. Finally, the correspondence between
one-dimensional Bingham, Herschel-Bulkley and Casson models and their three-
dimensional versions is exhibited.
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Chapter 5 is concerned mostly with the steady shearing flows of Bingham fluids
with a brief mention of modelling the effects of heat transfer. Chapter 6 deals with
the unsteady shearing flow in a channel. The lateral movement of the yield surface
in the initiation of this flow is described, and the broad question regarding the
kinematics and dynamics of this lateral motion is answered through an application
of Hadamard’s theory of propagating singular surfaces.

Chapter 7 is a sample of analytical approximation techniques to understand the
flows of viscoplastic fluids. The lubrication paradox and its resolution through an
examination of the flow of a Bingham fluid in a wavy channel are discussed. Next,
the equations governing the axisymmetric and asymmetric Hele-Shaw flows of
viscous and viscoplastic fluids are derived. Finally, a summary of the results
obtained in the study of the linearised stability of the channel and helical flows of a
Bingham fluid is given.

In Chap. 8, variational principles and variational inequalities associated to the
flows of incompressible viscoplastic fluids are derived through the principle of
virtual power. A summary of the results from convex analysis needed to understand
this material is included and the equivalences, when they exist, between the
minimiser of a functional, the solution of the corresponding variational inequality
and that of the equations of motion are explored. Simplifications of the variational
inequality occur in several flows and these are listed. Finally, a basic inequality is
derived to model the flows of compressible viscoplastic fluids. In Chap. 9, the
variational principle is applied to obtain the minimum pressure drop per unit length
to sustain the steady flow of a Bingham fluid in a pipe of arbitrary cross-section.
Next, the roles of the variational principle and the associated variational inequality
are examined to understand when bubbles remain static in viscoplastic fluids, and
when rigid bodies move in such materials. Proofs are also provided to show that
steady shearing flows in a Bingham fluid come to rest in a finite time when the
driving mechanism falls below a critical value, emphasising the role of variational
inequalities. Finally, the energy principles are employed in the nonlinear stability
analysis of the flow of a Bingham fluid in a channel and a pipe of circular cross-
section.

The final chapter is concerned with numerical modelling through the applica-
tions of the augmented Lagrangian and the operator-splitting methods. Since the
solution of the minimisation problems in finite dimensions through the augmented
Lagrangian method leads naturally to its extension to the flow problems in Bingham
fluids, this method is described in detail in the first two sections. Next, the operator-
splitting method is introduced and employed to study the thermally driven cavity
flow of a Bingham fluid. The chapter closes with a section on numerical modelling
of flows of compressible viscoplastic fluids with a study of the lid-driven cavity
flow of a weakly compressible viscoplastic fluid. Some comments on the use of
regularised models in numerical modelling are also offered.

And, the last word. Viscoplastic fluid mechanics means yield stress and the
location(s) of yield surface(s). That is, free boundary problems, variational
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principles, variational inequalities and convex analysis with augmented Lagrangian
and operator-splitting methods following from them. In writing this book, apart
from including solutions to problems obtained through traditional approaches to
fluid mechanics, my aim has been to emphasise the pre-eminence of the modern
approach to this subject.

Adelaide, December 2014 Raja R. Huilgol
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Chapter 1
The Basic Features of Viscoplasticity

1.1 Bingham Fluid at Rest in a Channel

Consider an incompressibleBinghamfluid at rest between twoparallelwalls.Assume
that the domain Ω of the fluid can be described through a region symmetrical about
the x-axis as follows:

Ω = {(x, y) : −∞ < x < ∞, −H ≤ y ≤ H}. (1.1.1)

See Fig. 1.1. Let a constant pressure gradient be applied to the fluid in the x-direction
so that we can describe the pressure field in the fluid through p(x, y) = −Gx + f (y),
where G > 0 is the constant pressure drop per unit length and f (y) is a function of y,
which is irrelevant here. Ignoring any body force, the equations of equilibrium lead to

− ∂p

∂x
+ ∂σ

∂y
= 0, (1.1.2)

where σ is the shear stress in the fluid. This equation can be integrated for the shear
stress and one obtains

σ = −Gy + b, (1.1.3)

where b is the constant of integration. Since the domain is symmetrical about the
x-axis, one can assume that b = 0. Thus, σ = −Gy.

The ability of a Bingham fluid to remain at rest under a constant pressure drop
per unit length G, albeit for a limited range, requires further investigation, especially
since the shear stress distribution in the channel is given by σ = −Gy for both purely
viscous and viscoplastic fluids. The former class of fluids will flow regardless of how
small G is, whereas the latter will not move unless the pressure drop per unit length
G exceeds a critical value Gc, which depends on the yield stress of the fluid. To
determine Gc, an explanation regarding the change in sign of the shear stress across
the channel is given, paving the way for a formula relating Gc to the yield stress τy

of the fluid.
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2 1 The Basic Features of Viscoplasticity

Fig. 1.1 Shear stress distribution across a channel due to a constant applied pressure gradient, with
external shear stress vectors and external unit normals

1.2 Sign of the Shear Stress

One can see that the shear stress is negative above the x-axis and is positive below
it. This needs some explanation. First of all, as the pressure drop tries to move the
fluid in the positive x-direction, the shear stresses on the two walls oppose it. See
Fig. 1.1. While a more detailed description of Cauchy’s stress principle is provided
in Chap.3, at present it is sufficient to assume that the stress tensor T in the fluid is
symmetric and two-dimensional, given in matrix form through:

T =
[

T11 T12
T21 T22

]
, T12 = T21. (1.2.1)

On the plane y = H, the external unit normal n = j is oriented towards the positive
y-direction. Cauchy’s stress principle says that the external stress vector t on this
plane is given by t = Tn. So,

t =
[

T11 T12
T21 T22

] [
0
1

]
=

[
T12
T22

]
=

[−σw

T22

]
, (1.2.2)

where σw is the magnitude of the shear stress at the wall. Since this external stress
points in the negative x-direction, the shear stress T12 < 0 in the fluid. This negative
value persists till it changes from a negative to a positive value, as one moves from
the plane y = H to the plane y = −H. Now, why is the shear stress on the plane
y = −H positive? This is because on this plane, the external unit normal is given by
n = −j. So, the external stress vector is given by

t =
[

T11 T12
T21 T22

] [
0

−1

]
=

[−T12
T22

]
=

[−σw

T22

]
. (1.2.3)

http://dx.doi.org/10.1007/978-3-662-45617-0_3


1.2 Sign of the Shear Stress 3

Obviously, the shear stress T12 > 0 here.
Once again, note that the sign of the shear stress is independent of the constitutive

equation and applies to all continuous media.

1.3 Critical Pressure Drop and the Constitutive Relation

Now, let the pressure drop G be increased slowly. The shear stress will grow in
magnitude till the magnitude of the wall shear stress, σw, equals the yield stress, τy,

of the fluid. That is σw = τy. Consider the axial force acting on the fluid over a cube
of height 2H in the y-direction, unit width in the z-direction and unit length in the
x-direction. This force is given by 2GH. Opposing it are the forces on the boundaries
of the channel at the top and bottom. Per unit length in the x-direction and unit width
in the z-direction, these forces are given by 2τy. Thus, the flow is incipient when the
critical pressure drop per unit length is given by

Gc = τy

H
. (1.3.1)

Note that the fluid does not flow till this critical value has been exceeded. If the
pressure drop per unit length G is increased beyond Gc, the fluid will flow with the
yielding occurring at the wall at first. Assuming that the transient effects have died
away and that the flow is steady, there will be a boundary layer of the Bingham fluid
moving as a liquid, while away from the wall, the Bingham material will flow as a
solid plug; these phenomena require some explanation.

The yield stress and the adherence condition at the wall together prevent the
Binghamfluid from undergoing a deformation, i.e., shearing, till themagnitude of the
shear stress at the wall, due to the applied pressure gradient, exceeds the yield stress.
Elsewhere in the flow domain, the yield stress prevents the fluid from undergoing a
deformation, i.e., shearing, where the magnitude of the shear stress is less than or
equal to the yield stress. From Figs. 1.1 and 1.2, one sees that this situation arises
in a symmetrical region around the centre of the channel. Since there is no fixed
boundary at the centre, the only way the fluid can undergo zero deformation is to
move as a solid plug.

To understand these matters in detail, let the flow occur in the x-direction with a
velocity field given byu = u(y).Since a plugflowexists around the x-axis,we see that

u(y) = u(0), 0 ≤ y ≤ h, (1.3.2)

where h is the semi-width of the plug. Note that in the rigid core, du/dy = 0. In
h ≤ y ≤ H, the fluid moves like a viscous liquid. Obviously, one does not know the
exact nature of the velocity distribution in this boundary layer. Clearly, one needs a
constitutive equation to proceed.

The commonly used constitutive assumption is that the magnitude of the shear
stress in the plug is less than or equal to the yield stress τy, while in the yielded
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Fig. 1.2 Steady flow in a channel due to a constant applied pressure drop per unit length, with a
moving rigid core and yielded zones next to the walls

domain, the magnitude of the shear stress exceeds the yield stress, augmented by a
shear rate dependent stress. So, we have

du/dy = 0, |σ | ≤ τy, (1.3.3)

And,

σ = η
du

dy
+ τy

|du/dy|
du

dy
, (1.3.4)

where η is the viscosity of the fluid. Since the velocity in the fluid increases from
zero at the boundary to the plug velocity at y = h, it is clear that du/dy ≤ 0 in the
yielded region, h ≤ y ≤ H. So, we can write the constitutive equation as

− τy ≤ σ ≤ 0, 0 ≤ y ≤ h, (1.3.5)

− τy + η
du

dy
= σ, h ≤ y ≤ H. (1.3.6)

Keeping in mind that the pressure drop per unit length G > Gc > 0 is a constant,
one is faced with the following questions:

1. How wide is the plug, or how can one find h?
2. What is the constant speed u(0) of the plug?
3. What is the velocity distribution u = u(y) in h ≤ y ≤ H?
4. What are the boundary conditions on u = u(y) at the interface between the plug

flow and the boundary layer?

The answers to these questions can be found easily in the problem at hand as can
be seen next.
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1.4 The Solution

Once again, ignoring the body force and realising that the acceleration field is zero
when u = u(y), the equation of motion is the same as (1.1.2). Thus, the shear stress
is given by σ = −Gy again. Since this is a continuous function of y, it follows that
at the interface between the rigid core and the yielded region

σ(h−) = σ(h+) = −τy = −Gh, (1.4.1)

which means that the semi-width of the plug is given by h = τy/G. The constitutive
Eqs. (1.3.5) and (1.3.6) lead to the condition that du/dy = 0 at y = h. This is one of
the boundary conditions at the yield surface located at y = h.

In h < y < H, the constitutive relation (1.3.6) can be replaced by

η
du

dy
= −Gy + τy, (1.4.2)

since σ = −Gy. It is easy to integrate Eq. (1.4.2) and one obtains:

u(y) = − G

2η
y2 + τyy + b, (1.4.3)

where the constant b has to be determined. Since the fluid adheres to the boundary
y = H which is at rest, one has u(H) = 0. Thus,

b = G

2η
H2 − τyH. (1.4.4)

The velocity field in the yielded region now has the form

u(y) = G

2η
(H2 − y2) − τy

η
(H − y), h ≤ y ≤ H. (1.4.5)

Note that the first part of the velocity field is the same as that in a Newtonian fluid;
the second part is that due to the yield stress. The influence of the yield stress is to
cause the parabolic velocity field of the Newtonian fluid to become flatter.

Next, the second boundary condition on the velocity field u(y), located at y = h,

is that it be continuous. Thus, one obtains the velocity of the plug through u(y) =
u(h), 0 ≤ y ≤ h, where the latter can be found from (1.4.5). Thus,

u(y) = G

2η
(H − h)2, 0 ≤ y ≤ h. (1.4.6)

Now thatu = u(y)has been found, it can be seen thatu′(H) < 0 and thatu′(−H) > 0.
These results are in accord with the earlier assertion that the shear stress σ(H) < 0,
σ(−H) > 0. Finally, the symmetry of the velocity field about the x-axis means that
the velocity field is known throughout −H ≤ y ≤ H.
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1.5 Flow Rate

The flow rate Q in the channel can be calculated quite readily through integration by
parts as follows. Since the flow is symmetric about the x-axis, and u(y)y = 0 at both
y = 0 and y = H,

Q = 2

H∫
0

u dy = −2

H∫
0

yu′ dy. (1.5.1)

Thus, using (1.4.5) with τy = Gh, one obtains

Q = −2

H∫
0

yu′ dy = 2G

η

H∫
h

y(y − h) dy, (1.5.2)

because u′ = 0 in 0 ≤ y ≤ h. Hence,

Q = 2GH3

3η

[
1 − 3

2

(
h

H

)
+ 1

2

(
h

H

)3]
. (1.5.3)

Now, the fact that σ = −Gy in Ω means that τy = Gh, and the magnitude of the
wall shear stress σw = GH. Thus, h/H = τy/σw. Hence, (1.5.3) becomes

Q = 2H2σw

3η

[
1 − 3

2

(
τy

σw

)
+ 1

2

(
τy

σw

)3]
. (1.5.4)

1.6 Inherent Nonlinearity

Since the velocity field satisfies a linear differential equation, it would appear that
linearity would prevail and the principle of superposition should apply. That is,
if u1 = u1(y, G1), u2 = u2(y, G2) are two velocity fields under the constant
pressure drops per unit length G1, G2 respectively, superposition would mean that
u(y, G1 + G2) = u1(y, G1) + u2(y, G2). However, this is false because the location
of the yield surface is not a linear function of the pressure drop, and the vanishing
of the shear rate at the yield surface is crucial in determining the velocity field. To
be precise, let the location of the yield surfaces under the pressure drops G1, and G2
be h1 and h2 respectively. Thus,

h1 = τy

G1
, h2 = τy

G2
. (1.6.1)

However, the yield surface due to the pressure drop (G1+G2) is located at h, given by

h = τy

G1 + G2
�= h1 + h2. (1.6.2)
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A different way of understanding the nonlinearity is to look at (1.4.5). Without loss
of generality, let G1 ≥ G2, and consider y such that this point lies within the yielded
zone whether the pressure drop per unit length is G2, G1, or G1 + G2. That is

τy

G1 + G2
<

τy

G1
≤ τy

G2
< y < H. (1.6.3)

Given this,

u1(y, G1) + u2(y, G2) = G1 + G2

2η
(H2 − y2) − 2

τy

η
(H − y),

u(y, G1 + G2) = G1 + G2

2η
(H2 − y2) − τy

η
(H − y),

�= u1(y, G1) + u2(y, G2). (1.6.4)

In fact, u(y, 2G) �= 2u(y, G).This loss of linearity rules out the application of Laplace
transformmethods to solve initial-boundary value problems in the flows of Bingham
fluids; for additional reasons, see Sect. 6.1.3.

1.7 Non-dimensionalisation

There are two distinct length, time and velocity scales associated with a Bingham
fluid. One is the intrinsic set arising from the material properties, viz. the density ρ,

the viscosity η and the yield stress τy. The second is induced by a given flow and we
shall return to this later.

It is simple to note that an intrinsicmassM, lengthL and time scalesT are given by

M ∼ η3/

√
ρτ 3y , L ∼

√
η2/ρτy, T ∼ η/τy. (1.7.1)

The characteristic velocity U derived from the above length and time scales is:

U ∼ √
τy/ρ. (1.7.2)

The scales recorded here are not used, if at all, for the flow induced entities are to be
preferred.

That is, when solving initial-boundary value problems, it is preferable to replace
the length, velocity, the pressure and stresses and time through non-dimensional
quantities, which are induced by the flow under consideration. As an example, con-
sider the flow in a channel. Using the width H of the channel and a characteristic
velocity U related to the flow rate, say, one can render the (x, y) coordinates, the
velocity u, and time t in a non-dimensional form as follows:

x̃ = x/H, ỹ = y/H, ũ = u/U, t̃ = Ut/H. (1.7.3)

http://dx.doi.org/10.1007/978-3-662-45617-0_6
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As far as the pressure p, and the wall shear stress σw are concerned, we need a
characteristic stress. This is provided by ηU/H, for U/H has the dimension of shear
rate. Thus, one obtains

p̃ = pH/ηU, σ̃w = σwH/ηU. (1.7.4)

Since theBinghamnumberBn plays a significant role in viscoplastic fluidmechanics,
its definition follows next:

Bn = τyH/ηU. (1.7.5)

The Bingham number is a measure of the importance of the yield stress relative to
the viscous stress.

To demonstrate how non-dimensionalisation works, consider the following where
the relationship between ∂p/∂x and ∂ p̃/∂ x̃ is made explicit, i.e.,

∂p

∂x
= ηU

H

∂ p̃

∂ x̃

∂ x̃

∂x
= ηU

H2

∂ p̃

∂ x̃
. (1.7.6)

As a second example, we can express the flow rate Q in (1.5.4) as Q = H2UQ̃. Thus,

Q̃ = 2σ̃w

3

[
1 − 3

2

(
Bn

σ̃w

)
+ 1

2

(
Bn

σ̃w

)3]
. (1.7.7)

Finally, consider a typical equation of motion:

− ∂p

∂x
+ ∂σ

∂y
= ρ

∂u

∂t
. (1.7.8)

We obtain
ηU

H2

[
− ∂ p̃

∂ x̃
+ ∂σ̃

∂ ỹ

]
= ρU2

H
· ∂ ũ

∂ t̃
. (1.7.9)

Dividing through by ηU/H2, the right side becomes the Reynolds number Re =
ρUH/η. Thus, the equation of motion can be put into the non-dimensional form:

− ∂ p̃

∂ x̃
+ ∂σ̃

∂ ỹ
= Re

∂ ũ

∂ t̃
. (1.7.10)

After this non-dimensionalisation, the usual procedure is to drop the tildes with the
understanding that every entity in the equation has zero dimension. This results in
the following:

− ∂p

∂x
+ ∂σ

∂y
= Re

∂u

∂t
. (1.7.11)

In viscoplastic fluid mechanics, quite often one is not interested in the effect of the
Reynolds number on the velocity field. In this case, one can eliminate the Reynolds
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number from the above equation by choosing a different form for t̃ in (1.7.3). That
is, let

t̃ = η

ρH2 t. (1.7.12)

Then, (1.7.9) has the form

ηU

H2

[
− ∂ p̃

∂ x̃
+ ∂σ̃

∂ ỹ

]
= ηU

H2

∂ ũ

∂ t̃
. (1.7.13)

Dropping the tildes, one obtains a different version of the equation of motion:

− ∂p

∂x
+ ∂σ

∂y
= ∂u

∂t
. (1.7.14)

1.8 The Buckingham Equation

The flow rateQ in (1.5.4) can bewritten in a different form by substituting y0 = h/H,

and introducing the average velocity U so that Q = 2UH. Since GH = τy/y0, a
partial transformation of (1.5.4) leads to the following:

U = τyH

3ηy0

[
1 − 3

2
y0 + 1

2
y30

]
. (1.8.1)

Using the Bingham number Bn, defined in (1.7.5), one finds that (1.8.1) becomes

3y0
Bn

=
[
1 − 3

2
y0 + 1

2
y30

]
. (1.8.2)

This leads to the Buckingham equation:

y30 − 3

(
1 + 2

Bn

)
y0 + 2 = 0. (1.8.3)

We know that 0 < y0 < 1. However, when Bn = 3 in (1.8.3), the resulting equation

x3 − 5x + 2 = 0, (1.8.4)

has a root x = 2. The other two roots are: −(
√
2 + 1), (

√
2 − 1). Clearly, the last

root is the desired one.
Thus, it is essential to prove that the Buckingham equation (1.8.3) has only one

positive, real root less than 1. To establish this, consider the general cubic equation

ax3 + bx2 + cx + d = 0, (1.8.5)
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where a, b, c, d are all real. The roots of the equation depend on the discriminant	 :
	 = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2. (1.8.6)

In particular, if 	 > 0, the roots of (1.8.5) are all real and distinct. Determining the
value of 	 for the Buckingham equation (1.8.3), we find that

	 = −4c3 − 108 = 108

(
1 + 2

Bn

)3

− 108 > 0. (1.8.7)

Hence, the roots of the Buckingham equation are all real and distinct. If these roots
are α, β, γ, it is obvious that

α + β + γ = 0, −αβγ = 2. (1.8.8)

Thus, only one root must be negative while the other two are positive; suppose that
γ < 0, α > 0, β > 0. From (1.8.8)2 it follows that

αβ(α + β) = 2. (1.8.9)

Hence, it is easy to see that 0 < α < 1, β > 1. Obviously, out of the two positive
roots, one chooses y0 = α as the desired solution. These derivations are clearly in
accord with the roots of the equation x3 − 5x + 2 = 0 in (1.8.4).

Finally, the width of the plug disappears as the Bingham number Bn → 0, for
the Bingham fluid turns into a Newtonian fluid; and (1.8.3) implies that the width
of the plug approaches 1 as Bn → ∞. These two observations can be employed to
perform a regular perturbation analysis of y0 in (1.8.3), and it will be found that [1]:

y0 ∼ 1

3
Bn − 1

6
Bn2 as Bn → 0. (1.8.10)

Assuming that as Bn → ∞,

y0 ∼ 1 + a1Bn
−p + a2Bn

−q + · · · , q > p, (1.8.11)

one can prove that p = 1/2, q = 1, a1 = −√
2, a2 = 2/3. That is, the following

asymptotic expansion [1] holds for large Bn :

y0 ∼ 1 −
√
2

Bn1/2
+ 2

3 Bn
+ O(Bn−3/2). (1.8.12)

1.9 Free Boundary Problems

The problem discussed above in Sect. 1.3 and its solution in Sect. 1.4 are typical of
the behaviour of the flow of Bingham and other viscoplastic fluids. That is, one has
to find the width of the plug or its exact shape; it may well be that there are regions,
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Fig. 1.3 Steady flow in a pipe of square cross-section due to a constant pressure drop per unit
length, with a moving rigid core in the centre, and symmetric, stagnant regions at the corners

especially in corners, where the fluid is at rest. For example, see Fig. 1.3, where
the flow in a pipe of square cross-section is shown with a plug flow in the middle
and regions of rest in the corners. Thus, the velocity field has to be found and the
interface(s) between the yielded and unyielded regions have to be determined as a
part of the solution. This is an example of a free boundary problem; this expression
is used to describe the following:

• determination of a stationary boundary or boundaries as part of a steady state
problem,

• unsteady problems where the position and shape of the moving boundary has to
be determined as a function of space and time.

Such problems are not easy to solve, especially when the flow is unsteady. There
are numerous examples of these in engineering and mathematical physics. Here, we
shall mention two only.

One of the first example of a free boundary problem involves the change of phase
and is called the Stefan problem. In simple terms, let the half-space y > 0 be filled
with ice at a temperature of zero degree centigrade. At t = 0, the wall at y = 0
is placed and kept thereafter at a constant temperature T0 > 0. It is clear that the
ice near the wall will start melting and the melting front, a free boundary, will start
propagating into the frozen ice. Suppose that the melting front is located at y = δ(t)
at time t ≥ 0,with δ(0) = 0. The problem now is to find the temperature distribution
T = T(y, t) in 0 ≤ y ≤ δ(t), as well as the location of the moving front at y = δ(t).
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Since the temperature distribution satisfies the heat equation in the molten liquid,
viz., water, one has the following problem to solve:

∂T

∂t
− a

∂2T

∂y2
= 0, 0 < y < δ(t), t > 0, (1.9.1)

where a is the diffusivity. Turning to the boundary conditions, the first boundary
condition is obtained from that at y = 0; the second from the fact that at the molten
front, the water and the ice ahead of it are both at zero degree centigrade. Thus,

T(0, t) = T0, T(δ(t), t) = 0, t ≥ 0. (1.9.2)

This is not all, for the molten front will not move unless it melts the ice with which
it comes into contact. From Fourier’s law of heat conduction, this process requires
that the temperature gradient at y = δ(t)− be non-zero; in fact it is negative because
of the fall in the temperature from the wall to the molten front. Assuming that the
mass density of ice is ρ, the latent heat of melting is ν, and k is the heat conductivity
coefficient, the heat balance equation shows that

− k
∂T

∂y
(δ(t)−, t) = νρ

dδ(t)

dt
. (1.9.3)

The crucial point to note is that at the free boundary, i.e., at the molten front, two
boundary conditions have to be imposed.

The solution of the Stefan problem is well known and can be found in several
places; for example, see Stakgold [2], from which one finds that

T(y, t) = T0 − T0

erf α
erf

(
y

2
√

at

)
, (1.9.4)

where α is the solution of the equation:

e−α2

erf α
=

(
νρa

kT0
π1/2

)
α. (1.9.5)

Finally,
δ(t) = 2α

√
at. (1.9.6)

In sum, the temperature distribution in water along with the location of the molten
front have now been found.

While it took several decades to recast the Stefan problem as a variational inequal-
ity [3], the theoretical development of this method began with the solution of the
obstacle problem: a brief description follows next. Suppose that a membrane is
stretched over a circular ring, lying in the (x, y) plane with its centre at (0, 0). Let
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this membrane be pushed up by a rod with a hemispherical top. Assuming that the
diameter of the hemisphere is less than that of the ring, it is clear that as more
force is applied, the membrane will stretch further. And, the curve of mutual contact
between the membrane and the obstacle pushing it will increase in size. This bound-
ary of mutual contact is another example of a free boundary. Thus, the solution of
the deflection problem requires finding both the shape of the deformed membrane
as well as the free boundary. Once again, on this boundary, one imposes two condi-
tions: the first says that the deflection of the membrane is the same as the height of
the obstacle above the (x, y) plane, and the second says that the gradients of the two
surfaces are equal along this curve.

In the obstacle problem, spurious and unphysical solutions may exist. To under-
stand this, consider the equivalent, one-dimensional version. Here, an elastic string
lying between 0 ≤ x ≤ L is pushed up by an obstacle. See Fig. 1.4. In this case, the
correct solution can be obtained by inspection, as shown by the dotted line. How-
ever, a spurious solution may exist. To demonstrate this, let the obstacle function
ψ = ψ(x) cross the x-axis at two points x = α, β.An unphysical solution u = u(x),
describing the deflection of the string, would take the form:

u(x) =
⎧⎨
⎩

0, 0 ≤ x ≤ α,

ψ(x), α ≤ x ≤ β,

0, β ≤ x ≤ L.

(1.9.7)

x

z

O

(x)

L

Fig. 1.4 Deflection of an elastic string by an obstacle. True solution: - - - - . Spurious solution:
Thick line
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In order to rule out such unacceptable solutions, the theory of variational inequalities,
based on using either the principle of virtualwork or virtual power,was developed [4].
Typically, in steady flow problems of viscoplastic fluids, elliptic variational inequal-
ities arise; in unsteady flows, parabolic inequalities appear. For a detailed exposi-
tion, see Baiocchi [4], Kinderlehrer [5], Baiocchi and Capelo [6] and Duvaut and
Lions [7, 8].

Obviously, there is a great deal of similarity between the obstacle problem and
the flow of a Bingham fluid in a channel, say. Just as in the case of the obstacle
problem, the solution of this flow problem in a Bingham fluid requires two boundary
conditions at the yield surface: the continuity of the velocity field and the vanishing
of the velocity gradient. Whereas in the former, the coincidence set describing the
contact between the obstacle and the membrane is enlarged as the force is increased,
in the latter the size of the plug flow decreases with an increase in the pressure drop
per unit length. Following upon the publication of the treatise by Duvaut and Lions
[7, 8] demonstrating the application of the variational inequality approach to the
solution of flow problems in Bingham fluids, a great amount of research was done.
Several of these investigations will be examined in depth from Chap. 8 onwards,
although a short version applicable to the channel flow will be discussed next.

1.10 The Minimiser and the Variational Inequality

In order to introduce the concept of a variational inequality, consider the problem
of finding the minimum of y = f (x), x ∈ [a, b], where f (x) is continuously differ-
entiable over its domain, with one sided derivatives at the end points. For the sake
of argument, let f (x0) be the unique minimum, where x0 ∈ [a, b]. In this case, it is
clear that derivative f ′(x0) satisfies one of the following conditions:

f ′(x0) =

⎧⎪⎨
⎪⎩

≥ 0, x0 = a,

0, a < x0 < b,

≤ 0, x0 = b.

(1.10.1)

Hence, it follows that

f ′(x0) · (x − x0) ≥ 0, x ∈ [a, b]. (1.10.2)

Thus, one can seek the minimum of y = f (x) as: find x0 such that it is the solution
of the inequality (1.10.2).

Similarly, it will be shown in Chap. 8 that that flow of the Bingham fluid in a
channel is the minimiser of the following functional:

Φ(v) = 1

2
ηa(v, v) + τyj(v) − (G, v), (1.10.3)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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where v = v(y) is sufficiently smooth and vanishes on the boundary of the channel,
i.e., v(±H) = 0. Here, the three functionals appearing in (1.10.3) are given by

a(v, v) =
H∫

−H

v′2 dy, (1.10.4)

j(v) =
H∫

−H

|v′| dy, (1.10.5)

(G, v) =
H∫

−H

Gv dy. (1.10.6)

Again, in Chap.8, it will be shown that theminimiser satisfies the variational inequal-
ity (cf. (1.10.2)):

ηa(u, v − u) + τy[j(v) − j(u)] ≥ (G, v − u), (1.10.7)

where u = u(y) is the solution velocity field, and v = v(y) is any sufficiently smooth
velocity field such that v(±H) = 0.

From this inequality, one can obtain the energy equation satisfied by the solution
u = u(y) as follows. If one chooses v = 2u, it can be seen that (1.10.7) becomes

ηa(u, u) + τyj(u) − (G, u) ≥ 0, (1.10.8)

while choosing v = 0 results in

− ηa(u, u) − τyj(u) + (G, u) ≥ 0. (1.10.9)

Now, a real number α cannot satisfy both of the inequalities α ≥ 0 and −α ≥ 0,
unless α = 0. So, the solution velocity field u = u(y) satisfies the equation of energy
balance:

ηa(u, u) + τyj(u) = (G, u). (1.10.10)

This energy equation is important for it serves as a check on the numerical scheme
employed to minimise either Φ(v), or to solve the variational inequality in (1.10.7).
Note that the integrals in (1.10.4)–(1.10.7) are all defined over −H ≤ y ≤ H, and
not over a sub-interval. So, even if u′ = 0 in the rigid core, the integrals are always
non-negative. Obviously, they are all zero if the pressure drop G < Gc.

The energy equation shows that the minimum of the functional Φ(v) is not zero.
Rather, it is given by

min
v �=0

Φ(v) = −1

2
ηa(u, u) < 0. (1.10.11)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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If the flow is unsteady, that is u = u(y, t), the energy equation can be derived
from the corresponding variational inequality, which is

ρ

(
∂u

∂t
, v − u

)
+ ηa(u, v − u) + τy[j(v) − j(u)] ≥ (G, v − u). (1.10.12)

Following the procedure used when the flow is steady, one obtains the energy
equation:

ρ

(
∂u

∂t
, u

)
+ ηa(u, u) + τyj(u) = (G, u). (1.10.13)

Given this equation, one can consider the following problem: suppose that a Bingham
fluid is undergoing a steady flow in a channel. At time t = 0+, let us say that the
pressure drop per unit length G is reduced to zero, forcing the Bingham fluid to
come to rest eventually due to the effects of viscous and yield stress dissipation.
In a Newtonian fluid, the corresponding problem can be solved analytically and it
can be shown that the extinction time is infinite. Surprisingly, this extinction time
is finite in Bingham and other viscoplastic fluids. This is another major distinction
between purely viscous and viscoplastic fluids, a discovery made by Glowinski [9]
in connection with the cessation of flows in a pipe of arbitrary cross-section. In these
cessation problems, the dynamics behind the lateral movement of the yield surface,
while the velocity field goes to zero, needs a detailed explanation. These matters will
be explored in depth in Chaps. 6 and 9.

In sum, this book presents a collection of solutions to problems for the flows of
Bingham fluids which can be solved analytically. And, when that is not possible, it
shows how to tackle these problems through numerical simulation of the relevant
variational principles and inequalities.

1.11 Effects of Wall Slip

Navier (c. 1827) seems to have been the first to recognise that a fluidmay not adhere to
the bounding wall in amotion; instead, it may slip along it with a wall slip velocity uw

proportional to thewall shear stress σw.However, common experiencewithmoving a
heavy object along a floor suggests that a stick-slipmechanism is to be preferred. That
is, the fluid does not slip until the wall shear stress exceeds a critical value, τc. When
σw increases beyond this critical value, there is a nonlinear relationship between the
new wall shear stress and the slip velocity uw. Thus, consider the following stick-slip
model:

uw = 0, σw ≤ τc; σw = τc + f (uw)uw, σw > τc. (1.11.1)

This boundary condition is very similar to that of the constitutive relation of the
Bingham fluid and is due to Fortin et al. [10], who based their assumptions on the

http://dx.doi.org/10.1007/978-3-662-45617-0_6
http://dx.doi.org/10.1007/978-3-662-45617-0_9
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critical wall shear stress observed by Ramamurthy [11] in a capillary rheometer.
These experiments, performed on non-viscoplastic fluids, showed that the critical
wall shear stress τc is relatively insensitive to molecular characteristics, such as
molecular weight, MWD and chain branching, as well as the melt temperature and
the detailed design of the capillary. However, in blown film fabrication, materials
of construction for the die land region have a significant influence on melt fracture.
Hence, in general, the critical wall shear stress τc is not an intrinsicmaterial property;
rather, it is allied to the process under consideration.

Nevertheless, in the sequel, τc will be regarded as a material property; without
such an assumption, it is not possible to study the influence of wall slip in the flows
of viscoplastic fluids. Turning to (1.11.1), one notes that the usual separation of the
boundary of the flow domain into a part on which the velocity is prescribed and
another on which the stress vector is given is no longer valid. The former disappears
and is replaced by that part on which the wall shear stress is defined, as in (1.11.1).
Secondly, the critical value τc may be quite different from the yield stress τy in a
Bingham fluid; hence, whether a flow exists with or without wall slip depends on the
relative strengths of these two properties.

Turning to the flow of a Bingham fluid in a channel, we shall assume that in
(1.11.1), the velocity dependent wall shear stress is given by f (uw)uw = Dus

w,where
D is a constant and the exponent s > 0. Introduce the non-dimensional variables

h̃ = h

H
, ũw = uw

U
, G̃ = GH

τy
, Sc = τc

τy
, Sn = DUs

τy
, (1.11.2)

and denote by G̃, the non-dimensional pressure drop per unit length; next Sc is the
critical yield stress number and, finally, Sn is called the slip number. Of course, U is
the characteristic velocity andH is the length scale. Dropping the tildes and assuming
that f (uw)uw = Dus

w, the non-dimensional form of (1.11.1) is given by

uw = 0, σw ≤ Sc; σw = Sc + Snus
w, σw > Sc. (1.11.3)

In practice, it is better to recast the above as follows:

uw =
⎧⎨
⎩

0, σw ≤ Sc,(
(σw − Sc)/Sn

)1/s

, σw > Sc.
(1.11.4)

One is faced with four distinct possibilities, as far as the steady flow in a channel
is concerned.1 Noting that the non-dimensional critical pressure drop per unit length

1 In [12], the stick-slip model has been used to examine the initiation and cessation of the flows of
viscoplastic fluids in a pipe of circular cross-section. The treatment given above is influenced by
that work.
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is given by G̃c = GcH/τy = 1,where (1.3.1) has been employed, the following may
occur:

• Suppose that G < min(Sc, 1). In this case, no flow can occur.
• Let G > max(Sc, 1). In this situation, there is the usual channel flow with wall
slip; this is similar to the flow in a pipe of circular cross-section, considered in
[10]. That is, the wall shear stress σw = G, and the velocity field is given by

u(y) = uw + G

2

{
(1 − h)2, 0 ≤ y ≤ h,

(1 − y2) − 2h(1 − y), h ≤ y ≤ 1,
(1.11.5)

where the slip velocity

uw =
(

G − Sc

Sn

)1/s

, (1.11.6)

and the yield surface is located at

h = τy

σw
< 1. (1.11.7)

• Next, let 1 < G < Sc. The Bingham fluid will flow without slip, i.e., uw = 0 in
(1.11.5).

• Finally, let Sc < G < 1. The fluid will slip along the wall and flow as a rigid body
with a constant velocity uw, given by (1.11.6).

The stick-slip model can be used to derive a new variational principle and a
variational inequality; this matter is covered in Sect. 8.5. Finally, one can use it to
examine the cessation of the steady flow of a Bingham fluid in a channel or in a pipe
of circular cross-section; see Sect. 9.4.7.

1.12 Experimental Support

While the theory behind the fluidmechanics of viscoplastic fluids is elegant andworth
studying it in its own right, it would be desirable to find experimental evidence to
justify the pursuit of this knowledge. Here, we shall summarise some of the evidence
based on various review articles available in the literature.

The very first evidence of viscoplasticity was found by Schwedoff in the 1890s,
when he performed experiments on colloidal gelatin solutions using aCouette device.
Interestingly, his experiments seem to be the first set of measurements of non-
Newtonian behaviour, for his data indicated a nonlinear relationship between the
torque and angular velocity in this instrument. In particular, he had to incorporate a
yield value to describe his results [13]. Subsequently, thework of Bingham andGreen
in the 1920s led to widespread acceptance that some fluids exhibit yield stress behav-
iour [14]. In particular, manymaterials of industrial importance, such as concentrated

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_9
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suspensions, redmud residues, pastes, foodstuffs, emulsions, foams,waxy crude oils,
fibre reinforced plastics and other composites are viscoplastic. However, doubts have
been raised that fluids regarded as yield stress materials do not possess a true yield
stress. For example, Barnes [15] is of the opinion that these materials should be
regarded as fluids which creep with a constant value of viscosity, of the order of
106 Pa. s, when the applied shear stress is exceedingly small; that they flow like liq-
uids with a much lower viscosity when the shear stress is quite large; and that the
transition from one regime to another occurs quite often across a very narrow range
of the applied stress. Thus, these materials should not be considered as viscoplastic
although they are routinely regarded as such. Here, we shall offer some comments
regarding the experimental evidence both in support of and in opposition to the view
that some materials are viscoplastic.

As remarked by Nguyen and Boger [16], the controversy over the existence of a
true yield stress is not new; it appeared very soon afterBinghamandGreen discovered
that paint was not a truly viscous liquid. More recently, it has resurfaced with the
experiments performed by Barnes and Walters [17] which show that several fluids
deemed to be viscoplastic do not possess a true yield stress. Essentially, in their
experiments, Barnes and Walters found that when a conventional rheometer, such as
the Weissenberg Rheogoniometer, was used to measure the dependence of the shear
stress on the shear rate, they could not obtain accurate results at shear rates below
about 10−2 s−1, and certainly not below 10−3 s−1. In this rheometer, the plot of shear
stress versus the shear rate produces a graph which seems to intersect with the shear
stress axis at a yield stress value of τy = 9.5Pa. See Fig. 3a in [17].

On the other hand, when the same fluid was subjected to shearing in a constant
stress rheometer, such as the Deer Rheometer Mk II capable of producing shear rates
as low as 10−6 s−1, it was found by Barnes and Walters [17] that the viscosity of
the liquid attained a Newtonian plateau. See Fig. 4 in [17]. That is, while the fluid
exhibited non-Newtonian behaviour, it did not possess a true yield stress. In the
last few years, devices capable of completing a revolution every few days or few
years have appeared on the market. It has been found that even at these slow speeds
of rotation, many fluids suspected of being viscoplastic do not seem to possess a
true yield stress. The obvious question to ask is this: if an instrument is capable of
completing a revolution every 20years, is the fluid in the rheometer being sheared in
this infinitesimally slow process? Granting this occurs, a fluid which exhibits creep
has to be modelled as a non-Newtonian, viscous fluid, especially if an industrial
process exists in which such time scales are important.

Thus, one is faced with the following contentious issue: do there exist any fluids
which are truly viscoplastic? The answer to this question depends on the time scale of
the industrial processwhich onewishes to study either through theory or experiments.
One simple example of the importance of the time scale comes from rubber. The
experiments done by Rivlin during 1948–1952 showed that a theoretical basis for
describing the data exists if one models rubber as an incompressible, elastic solid
undergoingfinite deformations; for a review, see [18].While this is true for reasonably
slow deformations, it is also known that under fast processes, rubber crystallises
and, in this process, it cannot be described as a finitely elastic material [19]. So, the
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theory of finite deformations of rubber applies under some conditions only. That is,
depending on the circumstances, one has to choose different constitutive equations
to characterise rubber.

In a similar vein, Astarita [20] argued that yield stress was an engineering reality.
That is, the flow behaviour of many materials used in several industrial processes
could be best described and understood if they were regarded as viscoplastic fluids.
While this view is shared by many, it is obvious that it would be desirable to find a
material and perform experiments on it in the laboratory to show that it exhibits a true
yield stress behaviour. Such a task has been accomplished byTabuteau et al. [21],who
studied the motion of falling spheres in Carbopol gels. They observed three regimes
of motion in these experiments. Spheres of high density reached a constant terminal
velocity, as in Newtonian fluids. Below a critical density, a sphere would come to a
complete stop, indicating the existence of a yield stress. In the intermediate regime,
the sphere continued to move with a velocity decreasing steadily with time.The
yielding criterion and the drag force on the sphere were found to be in excellent
agreement with the theoretical predictions of Beris et al. [22], and those of Beaulne
and Mitsoulis [23]; see Figs. 3–7 in [21]. For a further discussion of this matter, see
Chap.9 where applications of variational principles are examined.

1.13 Summary

To summarise the argument so far: if the flow of a material occurs under a set of
infinitesimally slow conditions, it may well be that the fluid is not viscoplastic; on
the other hand, under many industrial processing conditions, the very same materials
would be seen to possess a yield stress. Tomodel the latter processes, there aremathe-
matically exact constitutive equations to characterise viscoplastic fluids. The analysis
of the flows of such materials, in particular that of the Bingham fluid, forms the basis
of this monograph. In this connection, it is relevant to note that regularised models,
such as the Papanastasiou model [24], do not deliver analytical solutions in a straight
forward manner even in the case of simple steady flow problems. While their use has
been widespread in order to overcome the problem of locating the yield surface in
numerical simulations, it would be preferable to avoid such models, for they mask
the true effects of yield stress. Instead, the use of precise numerical schemes, such as
the augmented Lagrangian method and the operator-splitting method expounded in
Chap.10, to model the flows of viscoplastic fluids must be preferred to understand
the real influence of the yield stress.
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Chapter 2
Kinematics of Fluid Flow

The study of kinematics has flourished as a subject where one may consider
displacements and motions without imposing any restrictions on them; that is, there
is no need to ask whether they are dynamically feasible in the physical world. Of
course, the dynamical nature of a flow is impossible to ascertain a priori, because
a flow which is possible in one fluid need not exist in another. However, in dis-
cussing viscoplastic fluid mechanics, memory effects are ignored, which means that
the amount of material needed to understand the kinematics of the flows of such
fluids is relatively modest.1

To begin, we introduce the concepts of the motion of a particle and relate it to the
velocity and acceleration of the particle and extend these to a field description over
the whole body. Defining the deformation and velocity gradients, a simple matrix
differential equation is derived to relate them to one another. In turn, this equation
solves the problem of determiningwhen a velocity field in the Lagrangian description
is steady in the Eulerian sense. Since this result may have applications in numerical
modelling in the future, it has been mentioned in this chapter.

Next, the velocity gradient is introduced alongwith the first Rivlin-Ericksen tensor
[2], denoted byA1.The latter is twice the symmetric part of the former, and it is shown
that this symmetric tensor is a measure of the rate of stretching at a point in the flow.
The skew-symmetric part of the velocity gradient is called the spin tensor W, and it
is closely related to the vorticity vector. The two tensors A1 and W determine when
a fluid particle experiences a rigid motion, which is of importance in understanding
the behaviour of a rigid core which may exist in a given flow domain.

Finally, the Appendix lists some basic results:

• The forms taken by the divergence and curl of a vector in Cartesian, cylindrical
and spherical coordinates.

• The physical components of the first Rivlin-Ericksen tensor in Cartesian, cylin-
drical and spherical coordinates.

1 Much of the material in this chapter, including the Appendix, follows the treatment in Huilgol
and Phan-Thien [1].
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24 2 Kinematics of Fluid Flow

• The physical components of the spin tensor and their relation to the physical
components of the curl of the velocity vector.

2.1 Kinematical Preliminaries

Let X be a particle of a body (a continuous medium) B, and let X occupy a point
in the three-dimensional Euclidean space R

3, at a fixed instant t = 0. We shall
call this configuration occupied by the body B, the reference configuration BR .
The coordinates Xα , of the point where X is at that fixed instant, are the material
coordinates of the particle. The position vector of X at t = 0 will be denoted by X.

Let X trace out a path in E3. We shall denote this path by the curve

x = M (X, t) , xi = Mi (
Xα, t

)
(2.1.1)

in the Euclidean space. Here t , the time coordinate, acts as a parameter and as t varies
over a given time interval I , the function M(·, t) describes the path. Traditionally,
the curve (2.1.1) is called the Lagrangian or material description of the motion of
the particle. Note that X = M(X, 0), because X is the initial value for the motion.

Now, we are interested in the motion of the whole body B rather than a single
particle. So, the domain of M is the Cartesian product BR × I , where the time
intervalI may or may not be finite. In other words, changing X in M(X, ·) gives us
the path of another particle of B so that, at time t, M(X, t), X ∈ BR , gives us the
spatial configuration of B.

We usually demand that M be continuously differentiable twice with respect to X
and t , or M ∈ C2,2, though on the boundary M may be C1,1. Hence the motion M is
required to have a continuous gradient with respect to X. We shall demand a stronger
condition on this gradient: ∇Xx has a positive determinant everywhere. One notes
that this guarantees that the inverse

X = M−1 (x, t) (2.1.2)

exists and is unique, locally at least. The stronger assumption of global inversion is
made in continuum mechanics, on a piecewise basis if necessary; for without this
assumption,many results of continuummechanicswhich depend on the possibility of
recasting a function, originally given inmaterial coordinates, into spatial coordinates,
become very difficult to establish. Indeed, this assumption of global invertibility is
needed next in connectionwith the velocity field and laterwith theReynolds transport
theorem, for example.

The velocity v and the acceleration a of a particle are defined in the material or
Lagrangian description through the functions:

v̂ = ∂

∂t
M (X, t) , v̂i = ∂ Mi

∂t

∣∣∣∣
X

, (2.1.3)
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â = ∂2

∂t2
M (X, t) , âi = ∂2Mi

∂t2

∣∣∣∣
X

. (2.1.4)

Hence, if the velocity v is defined over the body by the function v̂ (X, t), the accel-
eration a is given by

â = ∂

∂t
v̂ (X, t) . (2.1.5)

However, we usually find it more convenient to express the velocity of X at time t in
terms of the coordinates it occupies at time t. Such a description leads to an Eulerian
or a spatial field v (x, t).

Let us now give the velocity a Lagrangian description as well as an Eulerian
representation:

v = v̂α
(
Xβ, t

)
Gα = vi

(
x j , t

)
gi , (2.1.6)

where Gα and gi are the base vectors at Xα and xi , respectively, and the summation
convention on repeated indices is employed. Then the spatial formof (2.1.5) becomes

ai = ∂vi

∂t
+ vi

; j v j , (2.1.7)

where the semi-colon (;) denotes the covariant derivative. In (2.1.7), we have come
across the velocity gradient vi

; j , identified by the symbol L. Thus, the mixed and
covariant components of ∇v = L are given by

Li
j = vi

; j Li j = vi; j . (2.1.8)

Hence the acceleration a has the following spatial representation:

a = ∂v
∂t

+ Lv. (2.1.9)

Using the format of (2.1.7), we call the derivative

d

dt
(·) = ∂(·)

∂t
+ (·); j v j , (2.1.10)

the material derivative of a spatial field (·).
A velocity field is said to be steady if v = v(x), or it is independent of t when

expressed according to (2.1.6)2; it is unsteady if the velocity field depends explicitly
on time, i.e., v = v(x, t). For unsteady flows, the term ∂v/∂t represents the local
acceleration, which is the acceleration measured at a fixed point in space; of course,
it is zero in steady flows. For both steady and unsteady flows, Lv represents the
convected termswhich arise because the fluid particle is being convected from a point
with one velocity vector to a second point where the velocity vector is different. Thus,
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convected terms may arise either because the magnitude of the velocity is changing
along the path of a particle or because the base vectors suffer a change of magnitude
or direction, or both.

2.2 Relation Between the Velocity and Deformation
Gradients

The gradient of x with respect to X is called the deformation gradient. We shall
denote it by F and write:

F = ∇Xx, Fi
α = ∂xi

∂ Xα
= xi

,α. (2.2.1)

Note that the above definition means that

F(X, 0) = 1, (2.2.2)

where 1 is the identity matrix. Next, due to the fact that det F (det denotes the
determinant) is the Jacobian of the mapping and hence the measure of the ratio of
the volumes in the X and x spaces, we demand that det F > 0. This ensures that the
mapping (2.1.1) is not degenerate, i.e., the conservation of mass is assured, and that
the inversion in (2.1.2) is locally possible, as already remarked.

Now, there is a very simple relation between the two tensors F and L. This arises
from the equality of the mixed partial derivatives:

∂

∂ Xα

∂ Mi

∂t
= ∂

∂t

∂ Mi

∂ Xα
. (2.2.3)

Equivalently,
∂ v̂i

∂ Xα
= ∂

∂t
Fi

α. (2.2.4)

Expressing the velocity as a spatial field, we have

∂ v̂i

∂ Xα
= ∂vi

∂x j

∂x j

∂ Xα
= Li

j F j
α . (2.2.5)

Using the convention of the superposed dot as the material derivative, (2.2.4) and
(2.2.5) may be combined and rewritten as

Ḟ = LF. (2.2.6)

This differential equation due to Noll [3] has numerous applications in nonlinear
continuum mechanics.
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In particular, the above identity solves the following problem: given a motion
x = M(X, t), what is the necessary and sufficient condition that the velocity field be
steady in an Eulerian description? To answer this, let v̂ = v̂(X, t) be the Lagrangian
form of the velocity field derived from the motion through (2.1.3). Suppose that the
velocity of a particle at times t and 0 are related through

v̂(X, t) = F(X, t)v̂(X, 0). (2.2.7)

Differentiating both sides with respect to t and using Ḟ = LF, one finds that

â(X, t) = L(x(X, t), t)v̂(X, t). (2.2.8)

In turn, in the Eulerian description, this is nothing but the statement that a = Lv, or
the flow is steady. Retracing the steps backwards, one finds that if the flow is steady
in the Eulerian sense, then

˙̂v(X, t) = Ḟ(X, t)F−1(X, t)v̂(X, t), (2.2.9)

has the solution given by (2.2.7); see [4].

2.3 Rigid Motion

From analytical mechanics, it is well known that a rigid body moves in such a way
that it translates and rotates about an axis as it does so. In continuum mechanics, one
says that a material particle experiences a rigid motion if

x(X, t) = Q(t)X + c(t), (2.3.1)

where Q(t) is a time-dependent orthogonal tensor signifying the rotation and c(t) is
the translation vector. The velocity vector is given by

v̂(X, t) = Q̇(t)X + ċ(t), (2.3.2)

which has the following spatial representation:

v(x, t) = Q̇(t)QT (t)

(
x − c(t)

)
+ ċ(t), (2.3.3)

from which it follows that the velocity gradient has the form L(t) = Q̇(t)QT (t).
Here, the superscript T denotes the transpose. Since the orthogonality ofQ(t) implies
that Q(t)QT (t) = 1, where 1 is the identity tensor, one obtains the following:

d

dt

(
Q(t)QT (t)

)
= 0 (2.3.4)
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for all t. Clearly,

d

dt

(
Q(t)QT (t)

)
=

(
d

dt
Q(t)

)
QT (t) + Q(t)

d

dt

(
QT (t)

)
= 0. (2.3.5)

However,

d

dt

(
QT (t)

)
=

(
d

dt
Q(t)

)T

. (2.3.6)

Thus,

(
d

dt
Q(t)

)
QT (t) = W(t), (2.3.7)

whereW(t) is skew-symmetric. That is,W(t) = −W(t)T .Equivalently, the velocity
gradient L(t) associated to the velocity field (2.3.3) is skew-symmetric.

2.4 Polar Decomposition, Spin and Stretching

Using the polar decomposition theorem [5], the deformationgradientF canbedecom-
posed into the product:

F = RU, (2.4.1)

where R is an orthogonal tensor, or it signifies a rotation, and U is positive definite
and symmetric, or it denotes stretching. That is, the effect of F on an infinitesimal
element is to stretch it and rotate it. Now, the relative deformation gradient Ft (τ ) is
defined through

Ft (τ ) = F(τ )F(t)−1. (2.4.2)

It too has the polar decomposition:

Ft (τ ) = Rt (τ )Ut (τ ), Rt (t) = 1, Ut (t) = 1. (2.4.3)

Now, employing (2.2.6) in (2.4.2), it follows that

d

dτ
Ft (τ ) = L(τ )Ft (τ ), (2.4.4)

whence
d

dτ
Ft (τ )|τ=t = L(t). (2.4.5)
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From (2.4.3), we can see that

d

dτ
Ft (τ ) =

(
d

dτ
Rt (τ )

)
Ut (τ ) + Rt (τ )

(
d

dτ
Ut (τ )

)

=
(

d

dτ
Rt (τ )

)
Rt (τ )T Ft (τ ) + Rt (τ )

(
d

dτ
Ut (τ )

)
. (2.4.6)

Here, in the first term

(
d

dτ
Rt (τ )

)
Rt (τ )T (2.4.7)

is skew-symmetric; see (2.3.7) above. Thus, from (2.4.5) it follows that

L(t) =
(

d

dτ
Rt (τ )

)
|τ=t

+
(

d

dτ
Ut (τ )

)
|τ=t

= W(t) + D(t), (2.4.8)

where W(t) is skew-symmetric and D(t) is symmetric. Since W(t) is the derivative
of a rotation tensor, it is called the spin tensor, while D(t) is called the rate of
deformation or rate of stretching tensor. Note that

W(t) = 1

2

(
L(t) − L(t)T

)
, D(t) = 1

2

(
L(t) + L(t)T

)
. (2.4.9)

In viscoplastic fluid mechanics, it is preferable to use

A = L + LT , (2.4.10)

which is called the first Rivlin-Ericksen tensor [2]. The first Rivlin-Ericksen tensor
is usually denoted by A1. Since one does not need higher order Rivlin-Ericksen
tensors in viscoplasticity, we shall use the notation A for the first order ten-
sor in this book and simply refer to it as the Rivlin-Ericksen tensor. In indicial
notation,

Ai j = vi; j + v j;i . (2.4.11)

Clearly, one can see that the tensor A, which is twice the symmetric part of the
velocity gradient, is a measure of the rate of stretching in a given motion.

The vorticity vector ωωω = curl v is defined through:

ωi = εi jkvk; j , (2.4.12)
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where εi jk = ei jk/
√

g, g = det gi j , where gi j = gi · g j . The tensor ei jk = ei jk is
the usual permutation tensor, which satisfies

ei jk = ei jk =

⎧⎪⎨
⎪⎩
1 if {i, j, k} is an even permutation of 1, 2, 3,

0 if {i, j, k} is not a permutation,

−1 if {i, j, k} is an odd permutation.

(2.4.13)

There is a close relation between the vorticity vector and the spin tensor:

ωi = εi jk Wkj . (2.4.14)

Finally, we can adduce the following equivalent conditions for a particle to
undergo a rigid motion:

• The velocity gradient is skew-symmetric, i.e., L(t) = W(t).
• The Rivlin-Ericksen tensor A(t) = 0.

• The trace of A2(t) is zero.

In viscoplastic fluidmechanics, one comes across several situationswhere the flow
is rigid in one part of the domain or other. We have already seen such an example
in Chap.1 where the flow in a channel of a Bingham fluid has been studied. This
example and others seem to suggest that a fluid particle once entrained in a rigid
motion cannot escape from it; conversely, a fluid particle in a shearing flow cannot
enter a zone where the flow is rigid. This is false because the necessary and sufficient
conditions for a fluid particle to undergo a rigid motion are local conditions. That
is, they apply to a particle at a point in space and at a particular time. Hence, there
is no reason why a fluid particle cannot undergo both shearing and rigid motions
along its trajectory. Such an example has been adduced by Frigaard and Ryan [6] in
connection with the flow of a Bingham fluid in a wavy channel; see Sect. 7.2.

2.5 Steady Velocity Fields and Their Rivlin-Ericksen Tensors

Here,we list a number of steadyvelocity fields and the correspondingRivlin-Ericksen
tensors. These are obtained from the results in (A2.7)–(A2.9) in the Appendix. In
each example,

A : A = tr A2 = 2γ̇ 2, (2.5.1)

where γ̇ ≥ 0 is the rate of shear.

1. Simple Shear Flow: The velocity field in a simple shearing flow is given in
Cartesian coordinates through

ẋ = γ̇ y, ẏ = ż = 0, γ̇ > 0, (2.5.2)

and is supposed to occur between two parallel plates located at y = 0 and y = H
respectively. The bottom plate at y = 0 is at rest, while the top plate moves with

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_7
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a speed γ̇ H in the x-direction. From (A2.7), we obtain

A =
⎡
⎣0 u,y 0

· 0 0
· · 0

⎤
⎦ =

⎡
⎣0 γ̇ 0

γ̇ 0 0
0 0 0

⎤
⎦ , γ̇ > 0. (2.5.3)

2. Channel Flow: As discussed at length in Chap.1, the velocity field in a channel
flow is given by

ẋ = u(y), ẏ = ż = 0, (2.5.4)

and is supposed to occur between two parallel planes located at y = −H and
y = H respectively, with u(±H) = 0. From (A2.7), we obtain

A =
⎡
⎣0 ∂u/∂y 0

· 0 0
· · 0

⎤
⎦ =

⎡
⎣ 0 u′ 0

u′ 0 0
0 0 0

⎤
⎦ , γ̇ = |u′|. (2.5.5)

3. Flow in a Pipe of Circular Cross-section: This flow, also known as a Poiseuille
flow, occurs along the length of the pipe and the velocity distribution is axisym-
metric. Using cylindrical coordinates, it is described through

ṙ = 0, θ̇ = 0, ż = w(r), 0 ≤ r ≤ R, (2.5.6)

where R is the inner radius of the pipe. Because of the adherence condition,
w(R) = 0. From (A2.8), we find that

A =
⎡
⎣ 0 0 ∂w/∂r

0 0 0
∂w/∂r 0 0

⎤
⎦ =

⎡
⎣ 0 0 w′
0 0 0
w′ 0 0

⎤
⎦ , γ̇ = |w′|. (2.5.7)

4. Flow in an Annulus: The flow in a concentric annulus is similar to that in a pipe
of circular cross-section, except that the axial flow occurs in the annulus defined
through R1 ≤ r ≤ R2, where R1 is the radius of the inner pipe, and R2 is the
radius of the outer pipe. Except that w(R1) = w(R2) = 0, the velocity field
and the corresponding Rivlin-Ericksen tensor are given by (2.5.6) and (2.5.7)
respectively.

5. Flow in a Pipe of Arbitrary Cross-section: This is again an axial flow along the
length of a pipe, with the velocity field defined in terms of the coordinates (x, y)

which lie in the plane of the cross-section of the pipe. That is,

ẋ = ẏ = 0, ż = w(x, y). (2.5.8)

Through (A2.7) we obtain

A =
⎡
⎣ 0 0 ∂w/∂x

0 0 ∂w/∂y
∂w/∂x ∂w/∂y 0

⎤
⎦ . (2.5.9)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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This leads to

γ̇ =
[(

∂w

∂x

)2

+
(

∂w

∂y

)2]1/2
≥ 0. (2.5.10)

6. Couette Flow: The Couette flow arises from the azimuthal flow between two
concentric rotating cylinders, of radii R1 and R2 respectively, with R2 > R1. We
describe this through

ṙ = 0, θ̇ = ω(r), ż = 0, ω(R1) = Ω1, ω(R2) = Ω2. (2.5.11)

The Rivlin-Ericksen tensor associated to this flow can be obtained from (A2.8)
where v = rω, and

A =
⎡
⎣ 0 rω′ 0

rω′ 0 0
0 0 0

⎤
⎦ , γ̇ = r |ω′|. (2.5.12)

7. Helical Flow: Finally, helical flow of spiral flow, is a superposition of the Couette
flow on the flow in an annulus. The velocity field is given by

u = 0, v = rω(r), w = w(r), R1 ≤ r ≤ R2, (2.5.13)

with w(R1) = w(R2) = 0, and the angular velocity ω(r) is prescribed on the
cylindrical surfaces through ω(R1) = Ω1, ω(R2) = Ω2. The Rivlin-Ericksen
tensor associated to this flow is given by

A =
⎡
⎣ 0 rω′ w′

rω′ 0 0
w′ 0 0

⎤
⎦ , γ̇ = (r2ω′2 + w′2)1/2. (2.5.14)

In Chap.5, we shall exhibit analytical solutions to the above velocity fields for Bing-
ham fluids.

Appendix

In this Appendix, we list some basic results which are used in this monograph as
required.

1. Divergence and curl of vectors. We list below the divergence and curl of vectors
in the three coordinate systems.
Divergence: div v = ∇ · v.

Cartesian: Physical components: u, v, w.

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
. (A2.1)

http://dx.doi.org/10.1007/978-3-662-45617-0_5
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Cylindrical: Physical components: u, v, w.

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
+ ∂w

∂z
. (A2.2)

Spherical: Physical components: u, v, w.

∂u

∂r
+ 2u

r
+ 1

r

∂v

∂θ
+ v

r
cot θ + 1

r sin θ

∂w

∂φ
. (A2.3)

curl: ωωω = curl v = ∇ × v.

Cartesian:

ωωω =
⎡
⎣w,y − v,z

u,z − w,x

v,x − u,y

⎤
⎦ , (A2.4)

where w,y = ∂w/∂y, etc.
Cylindrical:

ωωω =
⎡
⎢⎣

1
r w,θ − v,z

u,z − w,r

(v/r) + v,r − (1/r)u,θ

⎤
⎥⎦ . (A2.5)

Spherical:

ωωω =
⎡
⎢⎣

(1/r)w,θ + (w/r) cot θ − (1/r sin θ)v,φ

(1/r sin θ)u,φ − (w/r) − w,r

(v/r) + v,r − (1/r)u,θ

⎤
⎥⎦ . (A2.6)

2. Components of the Rivlin-Ericksen Tensor. The physical components of the
Rivlin-Ericksen tensor A are listed in Cartesian, cylindrical and spherical coor-
dinates below, in terms of the physical components of the velocity field v.
Cartesian:

A =
⎡
⎢⎣
2u,x (u,y + v,x ) (u,z + w,x )

· 2v,y (v,z + w,y)

· · 2w,z

⎤
⎥⎦ . (A2.7)

Cylindrical:

A =
⎡
⎢⎣
2u,r [(1/r)u,θ + v,r − (v/r)] (u,z + w,r )

· (2/r)(u + v,θ ) (v,z + (1/r)w,θ )

· · 2w,z

⎤
⎥⎦ . (A2.8)
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Spherical:

A =
⎡
⎣2u,r [(1/r)u,θ + v,r − (v/r)] [(1/r sin θ)u,φ + w,r − (w/r)]

· [(2/r)(u + v,θ )] [(1/ sin θ)v,φ + w,θ − w cot θ ]/r
· · 2/r sin θ

(
w,φ + u sin θ + v cos θ

)
⎤
⎦ .

(A2.9)

In (A2.7)–(A2.9), the dots denote the symmetry of the tensor.
3. Components of the Spin Tensor. Finally, we note that the velocity field v gives rise

to the vorticity ωωω through curl v = ωωω. Since we know the physical components
of ωωω in various coordinates, the physical components of the spin tensor W =(
L − LT

)
/2, where L is the velocity gradient, can be found from

W = 1

2

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎤
⎦ . (A2.10)
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Chapter 3
Fundamental Equations

The four fundamental equations of continuum mechanics are:

1. The conservation of mass;
2. The balance of linear momentum, which is Cauchy’s first law of motion for

continuous media extending Newton’s second law and Euler’s law of motion for
rigid bodies;

3. The balance of angular momentum, which is Cauchy’s second law of motion,
extending Euler’s law applicable to the rate of change of angular momentum;

4. Finally, the energy equation.

In deriving the pointwise equations from the above equations in integral form,
sufficient smoothness of the various scalar and vector fields is assumed, as in Chap.2.
The derivation of the relevant equations is based on Reynolds’ transport theorem,
which is stated next without proof. A proof of this theorem is available in many
books on continuum mechanics; for example, see Huilgol and Phan-Thien [1].

Reynolds Transport Theorem Let Φ(x, t) be an nth order tensor field defined over
the volume V occupied by the body B at time t. Then,

d

dt

∫
V

Φ dv =
∫
V

(Φ̇ + Φ ∇ · v) dv, (3.0.1)

where the material derivative Φ̇ is given by

Φ̇ = ∂Φ

∂t
+ ∇Φ · v. (3.0.2)

In Cartesian indicial notation, this means that

Φ̇i1...in = ∂Φi1...in

∂t
+ Φi1...in,jvj. (3.0.3)

© Springer-Verlag Berlin Heidelberg 2015
R.R. Huilgol, Fluid Mechanics of Viscoplasticity, DOI 10.1007/978-3-662-45617-0_3

35

http://dx.doi.org/10.1007/978-3-662-45617-0_2


36 3 Fundamental Equations

The difficulty in proving Reynolds transport theorem arises from the fact that the
volume V occupied by the body is, in general, changing with time t. This is over-
come by converting the integral to that defined over the volume in the reference
configuration, performing the time derivative in this setting and then reverting to the
current one.

Applying the divergence theorem, one finds that

d

dt

∫
V

Φ dv =
∫
V

(Φ̇ + Φ∇ · v) dv =
∫
V

∂Φ

∂t
dv +

∫
S

(Φv) · n dS, (3.0.4)

whereS is the surface bounding the volume V and n is the unit external normal to
this surface. The above result is another form of Reynolds’ transport theorem.

3.1 Conservation of Mass

In continuum mechanics, the conservation of mass is assumed to be a postulate. In
other words, for all material volumes V , i.e., those containing the same particles for
all times,

d

dt

∫
V

ρ dv = 0, (3.1.1)

where ρ = ρ(x, y, z, t) is the density at the point (x, y, z) at time t. By the transport
theorem, the above equation reduces to

∫
V

[
∂ρ

∂t
+ ∇ · (ρv)

]
dv = 0. (3.1.2)

Since the size and shape of thematerial volume is arbitrary, a necessary and sufficient
condition for the conservation of mass is the continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = ρ̇ + ρ ∇ · v = 0, (3.1.3)

where, as usual, the superposed dot denotes the material derivative.
In incompressible materials, only isochoric, i.e., volume preserving motions are

possible and, since ρ is a constant everywhere, conservation of mass implies and is
guaranteed by

∇ · v = vj;j = 0. (3.1.4)

However,

∇ · v = tr L = 1

2
tr A, (3.1.5)



3.1 Conservation of Mass 37

where L is the velocity gradient and A is the first Rivlin-Ericksen tensor. Thus
an assertion equivalent to the conservation of mass in isochoric motions is that
tr L = tr A = 0.

3.2 Cauchy’s First Law

In Newtonian mechanics, external forces act on a body and the rate of change of the
linear momentum of the body is due to these forces. In Lagrangian mechanics, the
external forces are classified into forces of constraint and the remainder. In continuum
mechanics, the outside world acts on a body through contact forces, i.e., by direct
touch with the surface of a body, and non-contact forces, which act at a distance; the
latter are grouped together as body forces.

Let V denote the volume occupied by the body B at time t, t the contact force
per unit area on its surfaceS exerted by the outside world, and b the body force per
unit mass. Then Newton’s second law of motion in an inertial frame of reference, as
modified by Cauchy, states that the rate of change of the linear momentum is equal
to the external forces on the body, i.e.,

d

dt

∫
V

ρv dv =
∫
S

t dS +
∫
V

ρb dv. (3.2.1)

Using Reynolds’ transport theorem, one finds that the left side is

∫
V

[(
dρ

dt
+ ρ∇ · v

)
v + ρa

]
dv. (3.2.2)

If one assumes that mass is conserved, one can see immediately from (3.1.3) that the
equation of motion for a continuous medium now becomes

∫
V

ρa dv =
∫
S

t dS +
∫
V

ρb dv. (3.2.3)

We wish to convert the surface integral in (3.2.3) to a volume integral through the
divergence theorem in order to obtain a differential equation for the balance of linear
momentum. To achieve this, note that on the boundary, the stress vector is given by

t = t(x, t, n) x ∈ S . (3.2.4)

The real problem is how does this vector t depend on n? Is the dependence linear
in n or is it of a nonlinear1 kind? Leaving aside the proof for the moment, let us

1 An example of nonlinear dependence is t = f (x · n)n, where f is an arbitrary, scalar valued
function.
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accept Cauchy’s stress principle that the stress vector and the unit normal are related
linearly through the stress tensor T. This is embodied in the following statement:

t(x, t, n) = T(x, t)n. (3.2.5)

The meaning of Cauchy’s stress principle is as follows:

1. Over the whole body, a stress tensor field T(x, t) is defined.
2. If one wishes to find the force per unit area t exerted by the external world on the

body, the above relation defines the stress vector at a point x on the boundary in
terms of the stress tensor and the unit external normal at that boundary point.

Substituting the formula (3.2.5) into (3.2.3), we obtain:

∫
V

ρa dv =
∫
S

Tn dS +
∫
V

ρb dv. (3.2.6)

Appealing to the divergence theorem, the surface integralmaybe turned into a volume
integral: ∫

S

Tijnj dS =
∫
V

Tij,j dv, (3.2.7)

where Tij,j is the divergence of the stress tensor field. Hence we have Cauchy’s first
law of motion: ∫

V

ρa dv =
∫
V

∇ · T dv +
∫
V

ρb dv, (3.2.8)

from which one obtains the differential equations of motion:

∇ · T + ρb = ρa, (3.2.9)

Tij,j + ρbi = ρai. (3.2.10)

The proof of Cauchy’s stress principle is fairly complicated and an account can be
found in many treatises on continuum mechanics; for example, see [1].

To put it in a more familiar context, let us adopt the convention that Tij is the ith
component of the stress vector acting on the outward (positive) side of the plane xj =
const. Consider the plane x = 0 through the origin. Choose n = i, the unit vector in
the x-direction. Then, the components of t are T11, T21, T31, which is in accord with
the rules ofmatrixmultiplication. Thus, in general, we find that t(n)k = Tkmnm, where
the quantities Tkm are independent of n and depend on (x, t) only. By the quotient
law of tensors, Tkm are the components of a Cartesian tensor of second order, and in
general tensor notation,

tk
(n) = Tkmnm , t(n) = Tn. (3.2.11)
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Given the existence of the stress tensor, the equations ofmotion in the formgiven in
(3.2.9) and (3.2.10) are valid. The important point to note is that there is no assumption
of the symmetry of the stress tensor in the derivation of the above equations.

3.3 Cauchy’s Second Law

Assuming that there do not exist any internal angular momentum, body couples, and
couple stresses in the body, the balance of angular momentum equation with respect
to an inertial frame for amaterial volumeV says that the rate of change of the angular
momentum is equal to the external torque on the body. There are two torques: those
arising from the surface tractions and those from the body forces. Hence, this balance
equation may be written as

d

dt

∫
V

x × (ρv) dv =
∫
S

x × t dS +
∫
V

x × (ρb) dv, (3.3.1)

where x is the position vector of a particle from the fixed origin of the coordinate
frame, and S is the surface of the volume V . Using the transport theorem, we find
that the left side of (3.3.1) takes the form

d

dt

∫
V

x × (ρv) dv =
∫
V

(ρ̇ + ρ∇ · v) (x × v) dv +
∫
V

x × (ρa) dv, (3.3.2)

when the identity ẋ × v = v × v = 0 is used, along with the fact that the material
derivative of the velocity vector v is the acceleration vector a.The continuity equation
(3.1.3) shows that the first integral on the right is zero and hence the rate of change
of the angular momentum is equal to the momentum of the inertia, i.e.,

d

dt

∫
V

x × (ρv) dv =
∫
V

x × (ρa) dv. (3.3.3)

Examining the first integral on the right side of (3.3.1), the existence of the stress
tensor T means that we may write this integral as

∫
S

x × t dS =
∫
S

(x × Tn) dS. (3.3.4)

Introducing Cartesian coordinates for convenience, the right side of (3.3.4) is

∫
S

eijk xj Tkm nm dS, (3.3.5)
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where eijk is the alternating tensor; see (2.4.13). By the divergence theorem, we have

∫
S

eijk xj Tkm nm dS =
∫
V

(
eijk xj Tkm

)
,m dv

=
∫
V

(
eijk δjm Tkm + eijk xj Tkm,m

)
dv

=
∫
V

(
eijk Tkj + eijk xj Tkm,m

)
dv. (3.3.6)

Introducing the axial vector tA corresponding to T through

(tA)i = eijk Tkj, (3.3.7)

the balance of angular momentum equation now reads

∫
V

x × (ρa) dv =
∫
V

(
tA + x × ∇ · T

)
dv +

∫
V

x × (ρb) dv. (3.3.8)

Assuming that the balance of linear momentum holds in V , i.e.,

∇ · T + ρb = ρa, (3.3.9)

Eq. (3.3.8) reduces to ∫
V

tA dv = 0. (3.3.10)

Since V is arbitrary, we conclude that tA = 0 or that

eijk Tkj = 0. (3.3.11)

Because of the property of the alternating tensor, it follows from the above that the
stress tensor is symmetric, i.e.,

T = TT . (3.3.12)

Hence, in the absence of internal angular momentum, body couples and couple
stresses, the necessary and sufficient condition for the balance of angular momen-
tum, when the conservation of mass and balance of linear momentum equations are
satisfied, is that (3.3.12) shall apply. This is Cauchy’s second law of motion.

In this book it will always be assumed that the stress tensor is symmetric and
thus the second law of motion is automatically satisfied. In engineering applications,
there are occasions when one is called upon to calculate the angular momentum of

http://dx.doi.org/10.1007/978-3-662-45617-0_2
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a fluid mass and equate it to the external torque to gain an additional insight into the
flow field.

3.4 Conservation of Energy

Let K be the kinetic energy of the body and E its internal energy so that for any
material volume V ,

K =
∫
V

1

2
ρ|v|2 dv , E =

∫
V

ρε dv, (3.4.1)

where ε is the specific energy per unit mass. The mechanical power exerted by the
outside world on the body is given by the rate at which the surface tractions and the
body force do work on the body. These two are

∫
S

t · v dS +
∫
V

ρb · v dv. (3.4.2)

Let the efflux of energy out of S be q per unit area and the energy supply be r per
unit mass. Then one postulates the balance of energy equation as

d

dt

⎧⎨
⎩

∫
V

(
1

2
ρv · v + ρε

)
dv

⎫⎬
⎭ =

∫
S

(t · v − q · n) dS +
∫
V

(ρr + ρb · v) dv.

(3.4.3)
Using the existence of the stress tensor, one obtains:

d

dt

⎧⎨
⎩

∫
V

(
1

2
ρv · v + ρε

)
dv

⎫⎬
⎭ =

∫
S

(v · Tn − q · n) dS +
∫
V

ρ (b · v + r) dv.

(3.4.4)

Assuming that mass is conserved and using the transport theorem, the left side of
(3.4.4) can be written as ∫

V

ρ(v · a + ε̇) dv, (3.4.5)

where a is the acceleration and the superposed dot is the material derivative. The
divergence theorem may be applied to the surface integral on the right side of (3.4.4)
and, using Cartesian tensor notation to make the derivation easier, we find that
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∫
S

(vi Tij nj + qi ni) dS =
∫
V

(Tij,j vi + Tij vi,j − qi,i) dv. (3.4.6)

Hence, Eq. (3.4.4) now becomes

∫
V

ρ(v · a + ε̇) dv =
∫
V

[v · (∇ · T) + tr TLT − ∇ · q] dv

+
∫
V

ρ(v · b + r) dv, (3.4.7)

where LT is the transpose of the velocity gradient and tr denotes the trace. Using the
balance of linear momentum equation and the symmetry of the stress tensor implied
by the balance of angular momentum, one finds that (3.4.7) may be simplified to

∫
V

ρε̇ dv =
∫
V

(tr TD − ∇ · q + ρr) dv, (3.4.8)

where D is the symmetric part of the velocity gradient. From this follows the differ-
ential equation of energy balance:

ρε̇ = tr TD − ∇ · q + ρr. (3.4.9)

This can be replaced by

ρε̇ = 1

2
tr TA − ∇ · q + ρr. (3.4.10)

In (3.4.10), the term tr TA/2 is called the stress power.
The reader will note that the conservation of mass equation was basic. This is

needed in obtaining Cauchy’s first law of motion, and these two together are needed
for Cauchy’s second law of motion. All three are necessary to obtain the energy
equation in the form given.

In dealing with constitutive relations, it is useful to replace trCDwith the notation
C : D. Thus, tr A2 = A : A. In addition, one defines the second invariant II(M) of
a symmetric tensor M through

II(M) = 1

2
tr M2 = 1

2
M : M = 1

2
||M||2. (3.4.11)

In fact, the non-negative square root of the invariant II(M) turns out to be more
useful. And, in connection with this matter, we introduce the kinematic invariant or
the second invariant K(A) of the Rivlin-Ericksen tensor A. This is defined through
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K(A) = [II(A)]1/2 = 1√
2
||A|| ≥ 0. (3.4.12)

When deemed necessary, K(A(v)), where A(v) is derived from the velocity field v,

is expressed as K(v). Note that in viscometric flows such as those listed in Sect. 2.5,
it follows that

K(A) = γ̇ , (3.4.13)

where γ̇ is the shear rate.

3.5 Control Volume and Control Surface

In several fluid mechanical problems encountered in engineering, the terms control
volume and its bounding surface, control surface, are used quite regularly. The control
volume is taken as a volume fixed in space, e.g., a pipe flow system, or one moving
with a constant velocity, e.g., a jet engine. In order to apply the fundamental equations
of continuum mechanics to the control volume cv, the basic idea is to assume that
a material volume V occupies the control volume at a given time t. It is further
assumed that the material is incompressible and that the flow is steady. In this case,
there is no change in the mass of the fluid in the control volume, and the density ρ

is a constant.
Thus, using the divergence theorem, (3.1.2) becomes

∫
cv

ρ(∇ · v) dv =
∫
cs

ρ(v · n) dS = 0. (3.5.1)

In essence, this equation says that the mass efflux into and out of the control volume
occurs through the control surface cs, and that the net efflux is zero. If the control
volume is moving with a constant velocity vc, one can assume that v = vc + w,

where w is the relative velocity field. Clearly, one finds that (3.5.1) takes on the form:

∫
cv

ρ(∇ · v) dv =
∫
cs

ρ(w · n) dS = 0. (3.5.2)

Now, the acceleration vector is given by

ai = vi,jvj = (vivj),j, (3.5.3)

for the flow is steady and the material is incompressible, i.e., vj,j = 0. Thus,

∫
V

ρai dv =
∫
cs

ρvivjnj dS. (3.5.4)

http://dx.doi.org/10.1007/978-3-662-45617-0_2


44 3 Fundamental Equations

Hence, the rate of change of the linear momentum of the material volume V can
be written as the efflux of the linear momentum into and out of the control volume
through the control surface. Or, we obtain

∫
V

ρa dv =
∫
cs

v(ρv · n) dS. (3.5.5)

This can be equated to the external forces acting on the control volume at that instant;
see (3.2.3).

Clearly, when v = vc + w,

∫
V

ρa dv =
∫
cs

w(ρw · n) dS, (3.5.6)

since dv/dt = dw/dt.
Finally, the rate of change of angular momentum is the integral of the integrand

(x×ρa) over thematerial volumeV ; see (3.3.3). Now, using the incompressibility of
thematerial, the fact that the velocity field is steady and the property of the alternating
tensor, it follows that

eijkxjak = eijkxjvk,mvm = eijk(xjvkvm),m. (3.5.7)

Hence, using the divergence theorem,

∫
V

eijkxj(ρak) dv =
∫
cs

eijkxjvk(ρvmnm) dS. (3.5.8)

Thus, ∫
V

x × (ρa) dv =
∫
cs

x × v(ρv · n) dS, (3.5.9)

which is the efflux of the angular momentum into and out of the control volume
through the control surface; it can be equated to the external torques acting on the
control volume at that instant through (3.3.1). Obviously, when v = vc + w, one
finds that ∫

V

x × (ρa) dv =
∫
cs

x × w(ρw · n) dS. (3.5.10)

In the context of pumps and turbines, one obtains the Euler turbomachine equations
from (3.3.1) and (3.5.9), or (3.3.1) and (3.5.10) depending on the specific nature of
the problem.
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Appendix

For the moment, assume that the total stress tensor T = −p1 + S, where p is the
pressure and S is the extra stress tensor. The equations of motion (3.2.9) become

− ∇p + ∇ · S + ρb = ρa, (A3.1)

which have the following indicial form:

− p,i + Sij;j + ρbi = ρai, i, j = 1, 2, 3, (A3.2)

in curvilinear coordinates. In (A3.2), Sij, p,i, bi and ai are the covariant components
of the extra stress tensor, the pressure gradient vector, the body force vector and
the acceleration vector respectively and the semi-colon (;) denotes the covariant
derivative. The set of three equations in (A3.2) have to be cast in their respective
physical component forms when problems in cylindrical or spherical coordinates
have to be solved. For a complete coverage of these matters, see [1]. We list below
the equations in Cartesian, cylindrical and spherical coordinateswhich are employed,
as necessary, in the sequel.

Cartesian Coordinates

− ∂p

∂x
+ ∂Sxx

∂x
+ ∂Sxy

∂y
+ ∂Sxz

∂z
+ ρbx = ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
, (A3.3)

− ∂p

∂y
+ ∂Sxy

∂x
+ ∂Syy

∂y
+ ∂Syz

∂z
+ ρby = ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
, (A3.4)

− ∂p

∂z
+ ∂Sxz

∂x
+ ∂Syz

∂y
+ ∂Szz

∂z
+ ρbz = ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
. (A3.5)

Cylindrical Coordinates

−∂p

∂r
+ ∂Srr

∂r
+ 1

r

∂Srθ

∂θ
+ ∂Srz

∂z
+ Srr − Sθθ

r
+ ρbr

= ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)
, (A3.6)

−1

r

∂p

∂θ
+ ∂Srθ

∂r
+ 1

r

∂Sθθ

∂θ
+ ∂Sθz

∂z
+ 2

r
Srθ + ρbθ

= ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂θ
+ w

∂v

∂z
+ uv

r

)
, (A3.7)



46 3 Fundamental Equations

−∂p

∂z
+ ∂Srz

∂r
+ 1

r

∂Sθz

∂θ
+ ∂Szz

∂z
+ 1

r
Srz + ρbz

= ρ

(
∂w

∂t
+ u

∂w

∂r
+ v

r

∂w

∂θ
+ w

∂w

∂z

)
. (A3.8)

Spherical Coordinates

−∂p

∂r
+ ∂Srr

∂r
+ 1

r

∂Srθ

∂θ
+ 1

r sin θ

Srφ

∂φ
+ 1

r
[2Srr − Sθθ − Sφφ + cot θ Srθ ] + ρbr

= ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂θ
+ w

r sin θ

∂u

∂φ
− v2 + w2

r

)
, (A3.9)

−1

r

∂p

∂θ
+ ∂Srθ

∂r
+ 1

r

∂Sθθ

∂θ
+ 1

r sin θ

Sθφ

∂φ
+ 1

r
[3Srθ + cot θ(Sθθ − Sφφ)] + ρbθ

= ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂θ
+ w

r sin θ

∂v

∂φ
+ uv

r
− w2 cot θ

r

)
, (A3.10)

− 1

r sin θ

∂p

∂φ
+ ∂Srφ

∂r
+ 1

r

∂Sθφ

∂θ
+ 1

r sin θ

Sφφ

∂φ
+ 1

r
[3Srφ + 2 cot θ Sθφ] + ρbφ

= ρ

(
∂w

∂t
+ u

∂w

∂r
+ v

r

∂w

∂θ
+ w

r sin θ

∂w

∂φ
+ uw

r
+ vw cot θ

r

)
.

(A3.11)

Typically, in fluid mechanics, the body force is assumed to be derived from a
potential χ, or it is zero. In the former case, b = −∇χ so that we have to solve the
equations

− ∇p + ∇ · S = ρa, (A3.12)

where p includes the ρχ term. Of course, when the body force is zero, we have to
examine

− ∇p + ∇ · S = ρa. (A3.13)
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Chapter 4
Constitutive Equations

In this chapter, we begin with a detailed examination of the response of a continuous
medium to the constraint of incompressibility. It is shown that a unique isotropic
tensor arises as a consequence; its non-zero component is commonly known as the
pressure. From the existence of the pressure, it follows that in an incompressible
medium, the total stress tensor is decomposed into this isotropic part and a traceless
extra stress tensor, with the latter being defined through the kinematics of the motion.

In viscoplastic fluids, the extra stress tensor is undefined in the unyielded zone,
while in the yielded region, it is a function of the Rivlin-Ericksen tensor and an
explicit form, depending on the viscosity and the yield stress is proposed through
a constitutive relation. In the unyielded zone, the rigid motion is a more severe
restriction than that due to incompressibility, for the former is equivalent to A = 0,

while the latter is defined through tr A = 0; clearly, the former implies the latter
trivially. Thus, one can replace the extra stress tensor in the rigid zone through
a second constraint tensor, aptly termed the viscoplasticity constraint tensor. This
tensor can be extended into the yielded region through the constitutive term for the
relevant viscoplastic fluid involving the yield stress only. Hence, the constitutive
relation for the viscoplastic fluid can be modified to consist of the pressure term,
the viscous stress tensor and the viscoplasticity constraint tensor. The importance of
this modification lies in the fact that the corresponding constitutive relation leads to
efficient numerical schemes, explored later on in Chap.10.

Next, two regularised models which have been developed to overcome the dif-
ficulties inherent in numerical modelling of viscoplastic fluids are discussed in
Sect. 4.4. However, with the introduction of the augmented Lagrangian method and
the operator-splitting scheme for the solution of the flow problems in viscoplastic
fluids, it would appear that regularised models may become less relevant in the near
future.

In Sect. 4.5, the constitutive relations for compressible viscoplastic fluids are de-
rived. It is shown that the viscoplasticity constraint tensor plays a significant role
here as well.
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Finally, in Sect. 4.6, one dimensional models for Bingham, Herschel-Bulkley and
Casson fluids are listed along with their velocity and stress potentials. From these,
their three dimensional analogues are obtained. These results are of importance in
Chaps. 8 and 9.

4.1 Pressure and Incompressibility

What is the true meaning of pressure in the rheology of incompressible materials,
whether they be elastic solids, or viscoelastic fluids or viscoplastic substances? Can
it be defined uniquely? Further, can this pressure be incorporated into a constitutive
equation? The answers to the above questions are found in Lagrangian mechanics,
as applied to rigid bodies [1].1

To begin, consider the following decomposition of the total stress tensor Tij in an
incompressible fluid:

Tij = −pδij + Sij, (4.1.1)

where Sij is the extra stress tensor, defined through a constitutive relation, and p is
the pressure. In order for the decomposition to be meaningful, it is essential to show
that

1. The pressure at any point in an incompressible fluid can be defined uniquely, and
it has a permanent significance.

2. A uniquely defined pressure imposes a restriction on the trace of the extra stress
tensor in every deformation.

3. Just because the density of an incompressible fluid is not affected by pressure,
it is not true that pressure has no effect on rheological properties. In fact, there
exists a fully developed theory to incorporate this dependence [2].

We shall now turn to Lagrangian mechanics to demonstrate its relevance to rhe-
ology and its use in establishing the above three claims.

4.1.1 The Meaning of Pressure

In Lagrangian mechanics, the forces acting on a rigid body are split into two classes:
those forces which arise due to externally imposed constraints and the rest, usually
described as given forces. This decomposition, along with the associated kinematics,
is sufficient to understand the definition of pressure in an incompressible body.Here is
a simple example from dynamics which has a direct correspondence with continuum
mechanics.

1 The material in this section is a summary of that appearing in Huilgol [1].

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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1. Assume that a rigid box is dragged along a rough horizontal surface; this is the
kinematical constraint on the motion.

2. In turn, the surface of constraint exerts a force of constraint, i.e., a normal reaction
N on the body. All that can be said, at this point, is that this force N is parallel to
the normal to the surface. Subsequently, the equations of motion reveal that the
force N opposes the weight of the body. This point that the equations of motion
determine whether N opposes the weight or not has its counterpart in continuum
mechanics as will be shown below. Clearly, N does no work in this motion.

3. The body is acted on by a force which lies along the surface of constraint. This
force F, due to friction, has to be defined by an equation. Typically, F is assumed
to be that of the Coulomb type, i.e., F = μN, or it is proportional to the force of
constraint. The frictional force is part of the non-constraint forces.

4. The dragging force D and the weight of the body also form part of the non-
constraint forces.

We shall nowmake the connection between themotionof a rigid body, as described
above, and the continuummechanics of an incompressible body transparent. In doing
so, we draw upon the work by Rajagopal and Srinivasa [2].

1. The kinematical constraint on the motion is given by the requirement that the
velocity field v has zero divergence everywhere, i.e., ∇ · v = 0.

2. The surface of constraint exerts a stress on the body, given byCij,which is parallel
to the normal to the surface of constraint. At this point, it is not obvious whether
this tensor is of the compressive or tensile type.

3. The extra stress tensor is defined to lie along the surface of constraint; it is defined
through a constitutive relation.

4. The body is acted upon by surface tractions and body forces.

Thus, the first question is this: can one define the constraint tensor in an incom-
pressible material? Is this unique?

One approach, used extensively in continuum mechanics, is based on an exten-
sion of the fact that the reaction N does no work when the rigid body is dragged
along the surface. So, one demands that the total stress tensor Tij be determined to
within a stress tensor πij which produces zero stress power in anymotionmeeting the
kinematical constraint. So, let the total stress tensor Tij be decomposed into two parts:

Tij = Sij + πij. (4.1.2)

The stress power ofπij is given by (1/2)πijAij,whereA is the first Rivlin-Ericksen
tensor. Since vi,i = ∇ · v = 0 is the same as Aii = 0, the condition that πij produces
zero stress power in any motion meeting the latter constraint is that

πijAij = 0 for all Aii = 0. (4.1.3)

The solution for πij in Eq. (4.1.3) is well known; for example, see [3]. Thus,

πij = pδij. (4.1.4)
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Unfortunately, as remarked byRajagopal and Srinivasa [2], one can add amultiple
of the Kronecker delta to Sij in Eq. (4.1.2) and subtract it from πij without affecting
the requirement of zero stress power. So, this method does not lead to a unique
definition of p. In fact, this non-uniqueness has led to a general feeling that what one
calls as the pressure is not very important, when one is dealing with incompressible
materials. Just about every part of the stress proportional to the Kronecker delta is
dumped into the pressure term. It is obvious that this practice causes no difficulties
when the decomposition (4.1.1) is not crucial. This is not the situation in viscoplastic
fluids and so, it behooves us to define the meaning of pressure precisely. It is this
matter to which we turn next.

Once again, let us decompose the total stress tensor into two parts [2]:

Tij = Sij + Cij, (4.1.5)

where the stress tensor Cij arises due to the incompressibility constraint Aii = 0. Let
us write the latter as defining the surface of constraint:

φ(A) = Aii = 0. (4.1.6)

Just as the level surface f (x, y, z) = 0 has a normal defined through ∇f , we
can define a normal N, which is a symmetric second order tensor, to the surface of
constraint through:

N = ∂φ

∂A
, Nij = ∂φ

∂Aij
. (4.1.7)

Then, any motion of an incompressible material occurs on the surface of con-
straint, and the constitutive equation for the extra stress tensor defines it on this
surface; see [2] for a discussion of this matter.

Since the tensor Cij must be parallel to the normal Nij, we have the unique de-
composition of the total stress tensor Tij, with Cij = λNij:

Tij = Sij + λNij, SijNij = 0. (4.1.8)

Hence, the Lagrange multiplier λ is given by

λ = TijNij

NklNkl
. (4.1.9)

It follows from (4.1.6) and (4.1.7) that the tensor Nij = δij, so that one obtains:

Tij = Sij + λδij, (4.1.10)

Sijδij = Sii = 0, (4.1.11)

λ = 1

3
Tii. (4.1.12)
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So, λ exists and is uniquely defined through an application of Lagrangian mechanics
to continuum mechanics. Usually, one replaces λ by −p, and calls p, the pressure.

In conclusion, the pressure p, now defined as the negative of the mean normal
stress through Eq. (4.1.12), has a fundamental significance. It arises as a unique
response due to the kinematic constraint on the velocity field in an incompressible
material. So, we arrive at the following unambiguous decomposition of the total
stress tensor in all incompressible bodies, including viscoplasticity:

Tij = Sij − pδij, Sii = 0. (4.1.13)

Thus, we have a unique, working definition of pressure. It is common to call

p = −1

3
Tii (4.1.14)

as the mechanical pressure. We note that as a consequence of the decomposition
described above, the trace of the extra stress tensor Sij is zero in all motions of an
incompressible body. While the definition of the entity, called pressure, is unique,
one has to determine it as a field through the equations of motion. This situation is
similar to that in determining the normal force N in the example from rigid body
mechanics mentioned earlier.

One point worth mentioning is that the pressure field p in a motion need not be
positive everywhere, although in a fluid at rest it is always positive. An example of a
flow where the pressure field is negative, one can refer to the flow of a Bingham fluid
in a channel. Another example where the pressure is negative at the surface occurs
in the flow of a viscoelastic fluid [4].

4.2 Incompressible Viscoplastic Fluids

Let the total stress tensor in an incompressible yield stress fluid be written as T. As
is well known, the flow domain is decomposed into two disjoint sets; one where the
fluid has yielded andA �= 0, and the other where the fluid has not yielded andA = 0.

Let us examine the consequences of this demarcation closely next.

1. If the fluid has yielded, it has been shown in Sect. 4.1 above that there exists a
uniquely defined pressure p such that p = −(1/3)Tii. Thus, the decomposition
of T = −p1 + S is unique since the motion occurs under the constraint of
incompressibility.

2. If the fluid has not yielded, the motion does not occur on the plane Aii = 0; rather,
it occurs in the six-dimensional space Aij = 0. Hence, it is not possible to prove
that the total stress tensor must have the unique decomposition T = −p1 + S,
for the existence of a uniquely defined pressure p cannot be established. To cir-
cumvent this ambiguity, one extends the definition of p = −(1/3)Tii from the
yielded zone into the unyielded zone. That is, the pressure p is now a continuously
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defined entity in the whole flow domain. Consequently, it is possible to accept that
one may express the total stress tensor as T = −p1 + S. Next, one connects the
second invariant T(S) of the extra stress tensor S with the rigidity of the flow
through

A = 0, T(S) ≤ τy, T(S) = (1/
√
2)||S||. (4.2.1)

The above equation states that the fluid experiences a rigidmotion, which includes
being at rest as well, when the magnitude of the extra stress tensor stress is less
than or equal to the yield stress. Note that the second invariant of the stress tensor,
T(S), is derived from (3.4.11).

When the magnitude of the extra stress tensor exceeds the yield stress, one defines
S as a function of the Rivlin-Ericksen tensor A. So, let

S = f(A), T(S) > τy. (4.2.2)

It is well known that this function must satisfy the principle of frame indifference.
That is, for all orthogonal tensors Q, this requirement leads to the following:

Qf(A)QT = f(QAQT ). (4.2.3)

The solution of this restriction is also well understood and results in the following
expansion:

f(A) =
2∑

i=0

αiAi, A0 = 1. (4.2.4)

Each coefficientαi, i = 0, 1, 2, is a function of the following three invariants I, II, III
of A:

I(A) = tr A, II(A), III(A) = detA. (4.2.5)

In viscoplastic fluid mechanics, it is customary to assume that the coefficients α0
and α2 are zero. And that the coefficient α1 depends on the invariant II(A), or K(A)

only. Thus,
S = α1A, (4.2.6)

where
α1 = η(K(A)) + τy

K(A)
. (4.2.7)

Hence, the extra stress tensor is given by

S = η(K(A))A + τy

K(A)
A, T(S) > τy, (4.2.8)

where η(K(A)) and τy are, respectively, the viscosity and the yield stress, of which
only the former is assumed to depend on the invariant K(A) ≥ 0; i.e., it is shear rate

http://dx.doi.org/10.1007/978-3-662-45617-0_3


4.2 Incompressible Viscoplastic Fluids 53

dependent. Obviously, the extra stress tensor S has zero trace in an incompressible
fluid, as required, since I(A) = tr A = 0 in such materials. And, in a simple shearing
flow (2.5.2), it is obvious that

K(A) =
[
1

2
tr A2

]1/2
= γ̇ ≥ 0. (4.2.9)

Thus, one says that the viscosity η(K(A)) depends on γ̇ ≥ 0, or is shear rate
dependent.

Usually, one assumes that the viscosity is of the power law type:

η(γ̇ ) = kγ̇ m−1, (4.2.10)

where γ̇ is the shear rate in a viscometric flow, the consistency index k > 0 is a
constant, and 0 < m ≤ 1. Since the constitutive equation of a Bingham fluid is given
by

S = ηA + τy

K(A)
A, T(S) > τy, (4.2.11)

where η is a constant, the viscosity function in Eq. (4.2.10) reduces to that of a
Bingham fluid when one chooses m = 1 and k = η.

When 0 < m < 1, the fluid is said to be of the Herschel-Bulkley type. In these
fluids, one notes that the viscosity η(γ̇ ) → ∞ as γ̇ → 0, while the shear stress
σ(γ̇ ) → 0.

In Casson fluids, the shear stress σ in a steady shearing flow is given by:

√
σ = √

τ y + √
kγ̇ , k > 0, (4.2.12)

which may be rewritten as:

σ = τy + [k + 2
√

kτy γ̇ −1/2]γ̇ . (4.2.13)

Clearly, this results in the following viscosity function for the Casson fluid:

η(γ̇ ) = k + 2

(√
kτy

)
γ̇ −1/2. (4.2.14)

Of course, both the viscosity and the yield stress may depend on the temperature
and such dependence is easily understood. However, the experimentally known fact
that amaterial property such as viscosity depends on the pressure in an incompressible
material needs some explanation. Once again, one recalls from the sliding motion
of a rigid body on a plane that the force of constraint N acts normally to the plane.
The frictional force F acting on the body is usually assumed to be of the Coulomb
type, i.e., it is given by F = μN . That is, the force F is a function of the force of
constraint, N, and it is defined on the surface of constraint, viz. the plane.

http://dx.doi.org/10.1007/978-3-662-45617-0_2
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As explained in Sect. 4.1, the motion of an incompressible fluid occurs on the
surface of constraint, defined by (4.1.6), and the constitutive equation for the stress
tensor S is defined on this surface only. Thus, it is possible that the constitutive equa-
tion can depend on the incompressibility constraint tensor−p1, or on the pressure p.

In fact, Antman [5] has developed a comprehensive theory to explain the dependence
ofmaterial properties onmaterial constraints, such as incompressibility. That is, there
are theoretical justifications to admit constitutive equations for incompressible fluids
in which the viscosity and the yield stress may depend on the pressure.

4.2.1 Equations of Motion for Incompressible Materials

Now that the pressure term p has been unambiguously defined, one can replace the
total stress tensor T by −p1 + S. The equations of motion (3.2.9) become

− ∇p + ∇ · S + ρb = ρa, (4.2.15)

which have the following indicial form:

− p,i + Sij;j + ρbi = ρai, i, j = 1, 2, 3. (4.2.16)

4.3 Viscoplasticity Constraint Tensor

Incompressibility is a material property and is equivalent to the condition ∇ · v = 0
on the velocity field, or that the Rivlin-Ericksen tensor A is traceless. In turn, the
latter leads to a constraint on the stress tensor throughout the body as demonstrated in
Sects. 4.1 and 4.2. That is, the total stress tensorT is decomposed intoT = −p1 + S,

in which the constraint tensor is given by −p1, and the extra stress tensor S has zero
trace, i.e., 1 : S = 0.

In an incompressible viscoplastic fluid, another material property, known as the
yield stress τy, induces an additional constraint on the extra stress tensor S. In fact,
this property divides the flow domain into unyielded and yielded regions. In the
former, A = 0. Under this restriction on A, the extra stress tensor S cannot be
defined through a constitutive relation. However, using (4.2.1) as a guide, consider
the following constraint on S:

T(S) < τy, when A = 0. (4.3.1)

Since S is unknown, there is no loss of generality in replacing it by

S = √
2 τy ΛΛΛ, 1 : ΛΛΛ = 0, when A = 0. (4.3.2)

http://dx.doi.org/10.1007/978-3-662-45617-0_3
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The advantage of defining the tensorΛΛΛ lies in the fact that

ΛΛΛ : ΛΛΛ < 1 when A = 0. (4.3.3)

Whenever A �= 0, we know that (4.2.11) applies. Here, we note that

|| A
K(A)

|| = √
2. (4.3.4)

Thus, we can replace the constitutive relation (4.2.11) by

S = ηA + √
2 τy ΛΛΛ, 1 : ΛΛΛ = 0, (4.3.5)

with the requirement that

ΛΛΛ : ΛΛΛ = 1 when A �= 0. (4.3.6)

In sum, one can assume that a constitutive equation for an incompressible vis-
coplastic fluid holds throughout the flow domain and is given by

S(v) = ηA(v) + √
2 τy ΛΛΛ, 1 : ΛΛΛ = 0, (4.3.7)

where one may call the second order, symmetric, tensor ΛΛΛ the viscoplasticity con-
straint tensor. Note that the traceless condition 1 : ΛΛΛ = 0 has been imposed on this
tensor so that the stress tensor S satisfies the condition tr S = 0. SinceΛΛΛ : ΛΛΛ < 1 in
the unyielded zone and ΛΛΛ : ΛΛΛ = 1 in the yielded region, it follows that on the yield
surface, where A = 0, the tensorΛΛΛ must satisfy the conditionΛΛΛ : ΛΛΛ < 1. Thus, one
can require that the tensorΛΛΛ meet the following conditions:

ΛΛΛ : ΛΛΛ =
{

< 1, A = 0,

1, A �= 0.
(4.3.8)

These conditions have been derived from those imposed on the stress tensor, viz.,
T(S) ≤ τy when A = 0, and τy < T(S) when A �= 0. The problem of determining
where the flow is rigid andwhere it is liquid-like has been shifted to finding the tensor
ΛΛΛ in the flow field such that is satisfies Eq. (4.3.8). Moreover, just as the magnitude
of the shear stress σ satisfies 0 ≤ σ < τy in the rigid core in a shearing flow, it is
found that 0 ≤ ||ΛΛΛ|| < 1 in the rigid core regions.

What has been proposed is important for the following reasons:

1. The constitutive Eqs. (4.3.7) and (4.3.8) are defined over the entire flow domain,
not just where the fluid has yielded.

2. One searches for the solution velocity field u and the viscoplasticity constraint
tensor ΛΛΛ to determine the yielded/unyielded regions. There are no singularities
because one is not trying to find the location of the yield surface(s) as the limit
of A/K(A) as A → 0.
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3. However, the equations of motion now involve two unknown fields: a vector
field u, and a symmetric tensor field ΛΛΛ. The latter requires that there should
exist a connection between the velocity field u andΛΛΛ. Under Dirichlet boundary
conditions, it is possible to prove such a relation; see Sect. 8.9.

4. Given this, the problem of finding u can be decoupled from that of determining
where ||ΛΛΛ|| < 1 and where ||ΛΛΛ|| = 1. This forms the basis of the operator-
splitting method discussed in Chap.10.

4.4 Regularisation

A glance at the constitutive equation (4.2.8) of a general viscoplastic fluid, or the
Bingham fluid (4.2.11), shows that in numerical modelling, it is difficult to find the
location of the free boundary separating the yielded zone from the unyielded zone,
since A = 0 on this boundary. One way to circumvent this is to employ (4.3.7)
as the constitutive relation. The second one is to choose a non-Newtonian viscous
fluid which mimics the existence of a yield stress. While there are a number of such
models, only two will be highlighted here. The first is the bi-viscosity model [6] and
the second is the Papanastasiou model [7]. These models are known as regularised
models; they disguise the existence of the yield stress through two different types of
non-Newtonian viscosity functions. A brief description of these follows next.

In the bi-viscosity model to approximate a Bingham fluid [6], the dependence of
the shear stress σ on the shear rate is linear and very steep around γ̇ = 0, so that

σ = η0γ̇ , γ̇ < γ̇c, (4.4.1)

where γ̇c is a critical shear rate. Beyond this, the shear stress is assumed to be given
by

σ = τy + ηpγ̇ , γ̇ > γ̇c. (4.4.2)

See Fig. 4.1 for an explanation of η0 and ηp, where these are identified as the respec-
tive slopes of the shear stress-shear rate curves. Typically, one sets η0 = 1000ηp to
perform numerical simulations. Thus, the constitutive equation for a Bingham fluid
is replaced by

S =
⎧⎨
⎩

η0A, K(A) ≤ γ̇c,[
ηp + τy

K(A)

]
A, K(A) > γ̇c.

(4.4.3)

The major drawback of this model is that the viscosity function is not smooth at the
critical shear rate γ̇c; see Fig. 4.1.

In the Papanastasiou model [7], the constitutive equation for an incompressible
Bingham fluid is once again replaced by that of a material with a non-Newtonian
viscosity. See Fig. 4.2. That is,

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_10
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Fig. 4.1 The Bingham and
Bi-viscosity models σ

γ̇γ̇c

τy

η0

ηp

Fig. 4.2 The Bingham and
Papanastasiou models σ

γ̇

τy

S = η(K(A))A, (4.4.4)

where the viscosity η is the sum of the constant Newtonian viscosity η0, and a
parameter dependent term. To be specific,

η(K(A)) = η0 + τy

K(A)

[
1 − exp(−mK(A))

]
, (4.4.5)
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where m > 0 is the parameter which can be chosen arbitrarily. In a simple shearing
flow in the x-direction described through u = u(y), the viscosity η(γ̇ ) and the shear
stress σ are given by

η(γ̇ ) = η0 + τy

γ̇
[1 − exp(−mγ̇ )], σ = η0

du

dy
± τy[1 − exp(−mγ̇ )], (4.4.6)

where the + (resp.−) sign applies if the shear rate du/dy is positive (resp. negative);
note that γ̇ = |du/dy| > 0 here. As the parameter m increases, exp(−mγ̇ ) → 0 and
the shear stress approaches that of the Bingham fluid, which explains the presence
of τy in the constitutive Eq. (4.4.5). Note that the viscosity function in (4.4.6) is a
smooth function of the shear rate |γ̇ |.

As far as numerical modelling is concerned, one can employ (4.4.5) and choose
an appropriate value for the parameter m. A search through the literature shows that
m can be larger than 104; see Sect. 10.6.

4.5 Compressible Viscoplastic Fluids

In developing constitutive equations for compressible viscoplastic fluids, one has
to include the density and the temperature as additional variables right from the
beginning. Thus, one begins by writing the constitutive equation of a compressible
viscoplastic fluid as

T = −p1 + S, (4.5.1)

where the thermodynamic pressure p, the density ρ and the absolute temperature Θ

satisfy an equation of state:
f (p, ρ,Θ) = 0. (4.5.2)

From the above implicit equation, we assume that we can solve for the density as a
function of the pressure and the temperature, i.e.,

ρ = ρ(p,Θ). (4.5.3)

This equation permits one to replace the density ρ by the independent variables
(p,Θ) as required.

Let the non-thermodynamic stress tensor S in a compressible yield stress fluid be
given by:

A(v) = 0, T(S) ≤ τy, (4.5.4)

S(p,Θ, v) = α(p,Θ, I, II, III)1 + η(p,Θ, I, II, III)A(v)

+ τy(p,Θ)

K(v)
A(v), T(S) > τy. (4.5.5)

http://dx.doi.org/10.1007/978-3-662-45617-0_10
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In Eq. (4.5.5), for brevity, we have introduced the following notation for the
non-thermodynamic isotropic component α and the viscosity η:

α(p,Θ, I, II, III) = α(p,Θ, I(A(v)), II(A(v)), III(A(v))), (4.5.6)

η(p,Θ, I, II, III) = η(p,Θ, I(A(v)), II(A(v)), III(A(v))), (4.5.7)

In Eqs. (4.5.6) and (4.5.7), the invariants I, II, III appear and they have been defined
earlier through (4.2.5).

To derive a fundamental inequality in Sect. 8.10, one has to impose the following
constitutive restriction:

α(p,Θ, 0) = 0. (4.5.8)

This says that when A(v) = 0, i.e., when the fluid particle is at rest or undergoing
a rigid body motion, such as in a plug flow, the non-thermodynamic isotropic term
is zero. On physical grounds, it would appear to be a very reasonable assumption,
which has been employed by others as well. In the theory of laminar boundary layers
in compressible fluids [8], it is common to demand that

α(p,Θ, A(v)) = 1

2
(ξ − 2

3
η)I(A(v)), (4.5.9)

which means that Eq. (4.5.8) holds true. A similar assumption has been made by
Vinay et al. [9]. Thus, without loss of generality, one can assume that in a state of
rest, or in a rigid motion, α(p,Θ, 0) = 0.

As far as compressible fluids are concerned, one can make the same assumption
as in Eq. (4.3.7) regarding the viscoplasticity constraint tensor, and propose the
following as the constitutive equation:

S(p,Θ, v) = α(p,Θ, I, II, III)1 + η(p,Θ, I, II, III)A(v)

+ √
2 τy(p,Θ)ΛΛΛ(v), (4.5.10)

which is valid throughout the domain of the flow. Numerical modelling using the
above form of the constitutive equation has been attempted; see Chap.10.

4.6 Analogues for Incompressible Viscoplastic Fluids

In this section, one dimensional models along with their extensions to fully invariant,
three dimensional models are listed. These extensions will be useful, in particular in
Chap.8, where variational principles and variational inequalities are derived.

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_10
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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4.6.1 One Dimensional Models

For the Bingham, Herschel-Bulkley and Casson models, the constitutive equations
for the shear stress, the velocity and stress potentials are non-zero provided the shear
rate γ̇ > 0, or equivalently, the magnitude of the shear stress |σ | > τy.

1. Velocity Gradient:
du

dy
. (4.6.1)

2. Shear Rate:

γ̇ =
∣∣∣∣du

dy

∣∣∣∣ ≥ 0. (4.6.2)

3. Constitutive Equation—Bingham fluid:

du

dy
= 0, |σ | ≤ τy, (4.6.3)

σ = η
du

dy
+ τy

γ̇

du

dy
, |σ | = ηγ̇ + τy > τy. (4.6.4)

4. Velocity Potential—Bingham fluid:

φ(γ̇ ) =
{

0, γ̇ = 0,
1
2ηγ̇ 2 + τyγ̇ , γ̇ > 0,

(4.6.5)

and
dφ

dγ̇
= |σ |, γ̇ > 0. (4.6.6)

5. Stress Potential—Bingham fluid:

Γ (|σ |) = 1

8η

(
|σ − τy| + σ − τy

)2

, (4.6.7)

and
dΓ

d|σ | = γ̇ , |σ | > τy. (4.6.8)

6. Constitutive Equation—Herschel-Bulkley fluid:

du

dy
= 0, |σ | ≤ τy, (4.6.9)

σ = kbγ̇
m−1 du

dy
+ τy

γ̇

du

dy
, |σ | = kb(γ̇ )m + τy > τy. (4.6.10)
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7. Velocity Potential—Herschel-Bulkley fluid:

φ(γ̇ ) =
{

0, γ̇ = 0,
(kb/(m + 1))γ̇ m+1 + τyγ̇ , γ̇ > 0,

(4.6.11)

and
dφ

dγ̇
= |σ |, γ̇ > 0. (4.6.12)

8. Stress Potential—Herschel-Bulkley fluid:

Γ (|σ |) = m

(m + 1)2(m+1)/m

(
1

kb

)1/m(
|σ − τy| + σ − τy

)(m+1)/m

, (4.6.13)

and
dΓ

d|σ | = γ̇ , |σ | > τy. (4.6.14)

9. Constitutive Equation—Casson fluid:

√|σ | = √
kcγ̇ + √

τy, (4.6.15)

σ =
[

kc + 2

√
kcτy√
γ̇

]
du

dy
+ τy

γ̇

du

dy
, |σ | = [√kcγ̇ + √

τy]2. (4.6.16)

10. Velocity Potential—Casson fluid:

φ(γ̇ ) =
⎧⎨
⎩

0, γ̇ = 0,[
1
2kcγ̇ + 4

3 (kcτyγ̇ )1/2 + τy

]
γ̇ , γ̇ > 0,

(4.6.17)

and
dφ

dγ̇
= |σ |, γ̇ > 0. (4.6.18)

11. Stress Potential—Casson fluid:

Γ (|σ |) =
⎧⎨
⎩

0, |σ | ≤ τy,

1
kc

[
1
2 |σ | − 4

3 (τy|σ |)1/2 + τy

]
|σ |, |σ | > τy,

(4.6.19)

and
dΓ

d|σ | = γ̇ , |σ | > τy. (4.6.20)
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4.6.2 Some Results from Tensor Analysis

To motivate the introduction of velocity and stress potentials in a three dimensional
setting, we shall establish some simple results from tensor analysis next. Using
Cartesian tensor notation, one finds that

∂Aij

∂Amn
= 1

2

(
∂Aij

∂Amn
+ ∂Aji

∂Amn

)

= 1

2

(
δimδjn + δinδjm

)
. (4.6.21)

Hence,
∂(AijAji)

∂Amn
= ∂Aij

∂Amn
Aji + Aij

∂Aji

∂Amn
= 2Amn. (4.6.22)

That is,
∂

∂A
(A : A) = 2A. (4.6.23)

Recalling (3.4.12) and noting that 2K2(A) = A : A, one finds that

∂

∂A
(2K2(A)) = 4K(A)

∂K(A)

∂A
= 2A. (4.6.24)

That is,
∂K(A)

∂A
= A

2K(A)
. (4.6.25)

Similarly, for the extra stress tensor,

∂T(S)

∂S
= S

2T(S)
. (4.6.26)

The velocity potentialφ(K(A)) is defined so that it satisfies the following conditions:

φ(K(A)) = 0, K(A) = 0, (4.6.27)
dφ

dK(A)
= T(S), K(A) > 0. (4.6.28)

The stress potential Γ (T(S)) is defined so that

Γ (T(S)) = 0, T(S) ≤ τy, (4.6.29)

dΓ

dT(S)
= K(A), T(S) > τy. (4.6.30)
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4.6.3 Three Dimensional Models

To derive the three dimensional versions from one-dimensional models, one replaces
du/dy by A; the shear rate γ̇ by K(A); the shear stress σ by S; and, finally, the
magnitude of the shear stress |σ | by T(S).

1. Rivlin-Ericksen tensor:
A. (4.6.31)

2. Kinematic or Second Invariant of the Rivlin-Ericksen tensor:

K(A) = 1√
2
||A||. (4.6.32)

3. Constitutive Equation—Bingham fluid:

A = 0, T(S) ≤ τy, (4.6.33)

S = ηA + τy

K(A)
A, T(S) > τy, (4.6.34)

T(S) = ηK(A) + τy > τy. (4.6.35)

4. Velocity Potential—Bingham fluid:

φ(K(A)) =
{

0, A = 0,
1
2ηK(A)2 + τyK(A), K(A) > 0.

(4.6.36)

5. Stress Potential—Bingham fluid:

Γ (T(S)) = 1

8η

(
|T(S) − τy| + T(S) − τy

)2

. (4.6.37)

6. Constitutive Equation—Herschel-Bulkley fluid:

A = 0, T(S) ≤ τy, (4.6.38)

S = kbK(A)m−1A + τy

K(A)
A, T(S) > τy, (4.6.39)

T(S) = kbK(A)m + τy > τy. (4.6.40)

7. Velocity Potential—Herschel-Bulkley fluid:

φ(K(A)) =
{

0, A = 0,

(kb/(m + 1))K(A)m+1 + τyK(A), K(A) > 0.
(4.6.41)
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8. Stress Potential—Herschel-Bulkley fluid:

Γ (T(S)) = m

(m + 1)2(m+1)/m

(
1

kb

)1/m(
|T(S) − τy| + T(S) − τy

)(m+1)/m

.

(4.6.42)
9. Constitutive Equation—Casson fluid:

A = 0, T(S) ≤ τy, (4.6.43)

S =
[

kc + 2

√
kcτy√

K(A)

]
A + τy

K(A)
A, T(S) > τy, (4.6.44)

T(S) =
[√

kcK(A)1/2 + √
τ y

]2
, T(S) > τy. (4.6.45)

10. Velocity Potential—Casson fluid:

φ(K(A)) =
⎧⎨
⎩

0, A = 0,[
1
2kcK(A) + 4

3

(
kcτyK(A)

)1/2

+ τy

]
K(A), K(A) > 0.

(4.6.46)
11. Stress Potential—Casson fluid:

Γ (T(S)) =
⎧⎨
⎩

0, T(A) ≤ τy,

1
kc

[
1
2T(S) − 4

3 (τyT(S))1/2 + τy

]
T(S), T(S) > τy.

(4.6.47)
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Chapter 5
Analytic Solutions: Steady Flows

In this chapter, a collection of analytic solutions to the steady flows of Bingham
fluids is presented. First of all, the steady velocity fields in a simple shearing flow,
the flow down an inclined plane, that in a pipe of circular cross-section, in a con-
centric annulus, and in a Couette flow are derived. In each case, the role of the yield
stress is emphasised. Next, the helical flow of a Bingham fluid is analysed and a
general method to find a complete solution of this problem is presented. Attention
is also drawn to the steady flows of non-Bingham fluids. Later on, a simple prob-
lem involving heat transfer in a shearing flow between parallel walls is included to
illustrate the role played by the Nusselt number. Subsequently, attention is drawn
to results pertaining to entry flows and those far downstream in a circular tube and
between parallel walls in the presence of heat transfer.

In each shearing flow, except in the simple shearing flow, one is faced with the
following difficulty which arises from the constitutive equation for the Bingham
fluid. From (4.2.11), we see that

S = ηA + τy

K(A)
A, T(S) > τy. (5.0.1)

In a Bingham fluid, the viscosity is constant and in a shearing flow, such as that in a
channel (2.5.4) where the velocity field is given by ẋ = u(y), Eq. (5.0.1) turns into
a simple expression for the shear stress S12 = S21, given by

S12 = ηu′ + τy

γ̇
u′ = ηu′ + τy

|u′|u′. (5.0.2)

This formula shows that
S12 = ηu′ − τy, (5.0.3)

if u′ < 0, and
S12 = ηu′ + τy, (5.0.4)

if u′ > 0. The following examples depend on the descriptions of the shear stresses
given above in the yielded zones. In the rigid core, the sign of the shear stress changes
in a continuous manner from a positive value to a negative one as required.
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5.1 Simple Shearing Flow

The velocity field in a simple shearing flow is given in Cartesian coordinates through

ẋ = γ̇ y, ẏ = ż = 0, γ̇ > 0. (5.1.1)

It occurs between two plates at y = 0 and y = H. Later on, we shall consider the
situation when the shearing flow is supposed to occur in the half-space 0 ≤ y < ∞
in the context of an initial value problem. At present, it is easy to see that there is no
unyielded region in 0 ≤ y ≤ H and the shear stress is given by

S12 = S21 = ηγ̇ + τy (5.1.2)

throughout the region of the flow. The pressure function p(x, y, z) may be assumed
to be a constant, if body forces are ignored.

5.2 Flow in a Channel

The flow in a channel has been discussed at length in Chap. 1. To recall, the velocity
field is given by

ẋ = u(y), ẏ = ż = 0, −H ≤ y ≤ H. (5.2.1)

Depending on the pressure drop per unit length G > Gc, the latter being the critical
value, this shearing flow occurs with a plug in the centre, situated between y = ±h,

moving as a rigid body. The shear stress changes sign from a positive value at y = −H
to a negative one at y = H, as shown earlier. That is:

S21 = S12 =
⎧⎨
⎩

ηu′ + τy, −H ≤ y ≤ h,

−τyy/h, −h ≤ y ≤ h,

ηu′ − τy, h ≤ y ≤ H.

(5.2.2)

Note that S21 = S12 = 0 at y = 0 and that u′ = 0, −h ≤ y ≤ h. The pressure
field is given by p(x, y, z) = −Gx + f (y, z), where f (y, z) may be considered to be
a constant when there are no body forces.

5.3 Flow Down an Inclined Plane

The flow down an inclined plane can be considered to be similar to that in the bottom
half of a channel. See Fig. 5.1.

Let theBinghamfluidflowdown the inclinemaking an angleαwith the horizontal.
The depth of the flow is H and, by positioning the x-axis along the free surface and
the y-axis normal to it, one can see that the shear stress S21 = S12 = σ(y). Thus, the
equations of motion are given by

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Fig. 5.1 Flow down an inclined plane

− ∂p

∂x
+ ∂σ

∂y
+ ρg sin α = 0, (5.3.1)

−∂p

∂y
− ρg cosα = 0. (5.3.2)

These can be integrated and one obtains p(x, y) = −ρgy cosα, σ (y) = b−ρgy sin α,

where b is a constant of integration. Assuming that the angle of inclination α is large
enough, there will be a plug flow region at the top with a shearing flow below it. So,
the shear stress distribution is given by

σ(y) =
{ −τyy/h, −h ≤ y ≤ 0,

ηu′ + τy, −H ≤ y ≤ −h.
(5.3.3)

Note that on the free surface at y = 0, there is no shear stress as it should be. Thus,
σ(y) = b − ρgy sin α leads to the result that b = 0. The only matter of concern now
is to determine the depth of the flow H or the width of the plug h, for a given value
of α. To find this, we see that

τy = σ(−h) = ρgh sin α. (5.3.4)

Hence, h has been found.
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We shall now obtain a relationship between the flow rate Q and the depth H as
follows. Integration by parts, using u(−H) = 0 due to the adherence condition and
that u′ = 0, −h ≤ y ≤ 0, leads to

Q =
0∫

−H

u dy = −
−h∫

−H

yu′ dy. (5.3.5)

Next, in −H ≤ y ≤ −h, one has

σ(y) = −ρgy sin α = ηu′ + τy = ηu′ + ρgh sin α. (5.3.6)

Thus,

u′ = −ρg sin α

η
(y + h), −H ≤ y ≤ −h. (5.3.7)

Hence,

Q = ρg sin α

η

−h∫
−H

(y2 + hy) dy (5.3.8)

= ρgH3 sin α

3η

[
1 − 3

2

(
h

H

)
+ 1

2

(
h

H

)3]
. (5.3.9)

Since the wall shear stress has the magnitude σw = ρgH sin α, one can recast this in
the form

Q = H2σw

3η

[
1 − 3

2

(
τy

σw

)
+ 1

2

(
τy

σw

)3]
. (5.3.10)

Comparing this with (1.5.4), we see that this flow rate is exactly half of that for the
flow in a channel as asserted earlier.

5.4 Flow in a Pipe of Circular Cross-Section

The axial flow in a pipe of circular cross-section is quite different from that in a
channel because the shear stress field is negative throughout the cross-section. Of
course, therewill be a rigid plug in the centre of the pipe provided the applied pressure
drop per unit length G exceeds the effect of the yield stress on the boundary of the
pipe of inner radius R. The force acting on the Bingham fluid at rest per unit length
of the pipe is given by G × πR2, while the yield stress τy opposes it with the force
τy×2πR.Thus, the critical pressure drop per unit length to initiate the flow is given by

Gc = 2τy

R
. (5.4.1)
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Since the axial velocity field in a pipe of circular cross-section is best described
through cylindrical coordinates, the steady flow has the form

ṙ = 0, θ̇ = 0, ż = w(r), 0 ≤ r ≤ R, −∞ < z < ∞, (5.4.2)

withw(R) = 0.Realising that there is no acceleration, the equation ofmotion relevant
to the problem at hand is given by

− ∂p

∂z
+ ∂Srz

∂r
+ Srz

r
= 0, (5.4.3)

when the body force is ignored; or, if the flow is in a vertical direction, the body
force can be incorporated into the pressure term.

If the pressure drop per unit length along the axis is G > Gc > 0, one sees that
p(r, θ, z) = −Gz + f (r, θ), where the latter function may be taken to be a constant,
preferably zero. Thus, the shear stress distribution is given by

Srz = −Gr

2
+ B

r
, (5.4.4)

where the constant B has to be found. If one assumes that the shear stress is bounded
in 0 ≤ r ≤ R, it follows that B = 0. Thus,

Srz = −Gr

2
, 0 ≤ r ≤ R. (5.4.5)

This shear stress is negative throughout the domain of the flow because on the surface
of the pipe, the unit external normal n is radial. Since the shear stress σw on the wall
opposes the flow, it is acting upstream. Thus, using Cauchy’s stress principle, it
follows that

[t] =
⎡
⎣−p + Srr Srθ Srz

Srθ −p + Sθθ Sθz

Srz Sθz −p + Szz

⎤
⎦

⎡
⎣1
0
0

⎤
⎦ (5.4.6)

=
⎡
⎣−p + Srr

Srθ

Srz

⎤
⎦ =

⎡
⎣ −p

0
−σw

⎤
⎦ . (5.4.7)

This shows clearlywhy the shear stress Srz in the fluid is negative throughout. Assum-
ing that the central plug has a radius ρ, we can describe the shear stress distribution
through

Srz(r) =
{ −τyr/ρ, 0 ≤ r ≤ ρ,

ηw′ − τy, ρ ≤ r ≤ R, w′ = dw/dr.
(5.4.8)



70 5 Analytic Solutions: Steady Flows

Next, the shear stress reaches the value τy on the boundary of the plug of radius
ρ, when

τy = Gρ

2
. (5.4.9)

Thus, the radius of the plug is given by ρ = 2τy/G, whence it is easy to see that
τy/σw = r/R. These preliminaries provide enough information to determine the
velocity distribution in the pipe and the flow rate. First of all, from (5.4.5), (5.4.7)
and (5.4.8), we see that

ηw′ = G

2
(ρ − r), ρ ≤ r < R. (5.4.10)

Hence,

w(r) = Gr

4η

[
2ρ − r

]
+ B. (5.4.11)

Since w(R) = 0, the constant of integration B is given by

B = GR

4η

[
R − 2ρ

]
, (5.4.12)

whence

w(r) = GR2

4η

(
1 − r2

R2

)
− GρR

2η

(
1 − r

R

)
, ρ ≤ r ≤ R. (5.4.13)

Using (5.4.9), this can be rewritten as

w(r) = GR2

4η

(
1 − r2

R2

)
− τyR

η

(
1 − r

R

)
, ρ ≤ r ≤ R. (5.4.14)

This velocity distribution is parabolic and the velocity in the plug is a constant
given by

w(r) = GR2

4η

(
1 − ρ

R

)2

, 0 ≤ r ≤ ρ, (5.4.15)

because τy = Gρ/2. Finally, integration by parts and w′ = 0, 0 ≤ r ≤ ρ, shows
that the flow rate is given by

Q =
R∫

0

2πrw(r) dr = −
R∫

ρ

πr2w′ dr (5.4.16)

= πG

2η

R∫
ρ

r2(r − ρ) dr (5.4.17)
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= πGR4

8η

[
1 − 4

3

(
ρ

R

)
+ 1

3

(
ρ

R

)4]
(5.4.18)

= πGR4

8η

[
1 − 4

3

(
τy

σw

)
+ 1

3

(
τy

σw

)4]
. (5.4.19)

5.4.1 The Buckingham Equation

To obtain the Buckingham equation, set r0 = ρ/R.Next, from (5.4.9), it follows that
G = 2τy/Rr0. Defining the Bingham number Bn through

Bn = τyR

ηU
, (5.4.20)

where U = Q/πR2 is the velocity scale, Eq. (5.4.18) leads to the following Buck-
ingham equation for r0:

r40 − 4

(
1 + 3

Bn

)
r0 + 3 = 0. (5.4.21)

To show that there is a unique solution r0 such that 0 < r0 < 1, we consider the
fourth order equation:

x4 − 4

(
1 + 3

Bn

)
x + 3 = 0. (5.4.22)

The discriminant � of this equation is given by

� = 6912 − 6912

(
1 + 3

Bn

)4

< 0. (5.4.23)

Hence, (5.4.22) has four roots out of which two are real and the other two are
complex conjugates. To prove that the real roots are both positive, consider the
function:

f (x) = x4 − 4

(
1 + 3

Bn

)
x + 3. (5.4.24)

Since f (0) = 3, f (1) < 0, it follows that there is a unique root of (5.4.22) given by
x = r0, such that 0 < r0 < 1. Moreover, f (1) < 0 and f (x) → ∞ as x → ∞ imply
that the second, real root of (5.4.22) is larger than 1.

Finally, as in Sect. 1.8, the plug disappears as the Bingham number Bn → 0; and
the radius of the plug approaches 1 as Bn → ∞. A regular perturbation analysis of
(5.4.21) yields the result that [1]:

r0 ∼ 1

4
Bn − 1

12
Bn2 as Bn → 0. (5.4.25)
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Similarly, using the method employed in (1.8.11), one can prove that the following
asymptotic expansion [1] holds for large Bn:

r0 ∼ 1 −
√
2

Bn1/2
+ 1

3 Bn
+ O(Bn−3/2). (5.4.26)

5.5 Axial Flow in a Concentric Annulus

The axial flow in a concentric annulus is similar to that in a pipe of circular cross-
section. The steady flow has the form

ṙ = 0, θ̇ = 0, ż = w(r), R1 ≤ r ≤ R2, −∞ < z < ∞, (5.5.1)

where R1 < R2 are the radii of the surfaces between which the flow occurs and
w(R1) = w(R2) = 0.

Since there is no acceleration, the equation of motion relevant to the problem at
hand is given by

− ∂p

∂z
+ ∂Srz

∂r
+ Srz

r
= 0, (5.5.2)

where the existence of the body force is dealt with in a manner similar to that in
the flow of the Bingham fluid in a circular pipe. If the pressure drop per unit length
along the axis is G > Gc > 0, one sees that p(r, θ, z) = −Gz + f (r, θ), where the
latter function may be taken to be a constant, preferably zero. Thus, the shear stress
distribution is again given by

Srz = −Gr

2
+ B

r
, (5.5.3)

where the constant B has to be found. Since the flow occurs between the surfaces at
r = R1 and r = R2, the constantB 	= 0. In fact, as in the case of the flow in a channel,
the shear stress Srz > 0 on the surface r = R1 and Srz < 0 on r = R2. This stress
distribution means that the constant B > 0 and thus dSrz/dr < 0 in R1 < r < R2.

The latter has the following consequence: it is not possible for a flow to occur with
the shear stress Srz(R2) < −τy and 0 < Srz(R1) < τy. To understand this, consider
the following argument:

1. Let 0 < Srz(R1) < τy, Srz(R2) < −τy.

2. Since the shear stress is a monotonically decreasing function of r, it follows that
at some value of r = R0, the stress Srz(R0) = −τy.

3. If the flow were to occur in the annular region R0 ≤ r ≤ R2, Cauchy’s stress
principle proves that Srz(R0) > 0. So, there is a contradiction.

In a similar fashion, one can show that there is no flow if −τy < Srz(R2),
τy < Srz(R1).

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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In other words, the critical pressure drop per unit length Gc needed to initiate the
flow must satisfy

− Gc
R1

2
+ B

R1
= τy, (5.5.4)

−Gc
R2

2
+ B

R2
= −τy. (5.5.5)

Adding the two equations, one obtains

B = GR1R2

2
. (5.5.6)

Thus,

Gc = 2τy

R2 − R1
. (5.5.7)

A different derivation of the same result using the Mosolov and Miasnikov Lemmas
will be presented in Sect. 9.1.

Now, let G > Gc so that a steady flow occurs in the concentric annulus. In
order to determine the velocity field, which will contain a concentric annular plug
flow within it, one has to find the radii ρ1, ρ2 of the plug such that ρ1 < ρ2;
see Fig. 5.2. There will be a shearing flow within R1 < r < ρ1, and within ρ2 <

r < R2, and the velocity distribution has to be found inside both of these annular
domains.

Once again, the shear stress has the distribution:

Srz(r) = −Gr

2
+ B

r
, R1 ≤ r ≤ R2. (5.5.8)

As far as the plug between ρ1 ≤ r ≤ ρ2 is concerned, its boundaries are subjected
to the yield stress τy in magnitude. Hence, one obtains:

B = Gρ1ρ2

2
, G = 2τy

ρ2 − ρ1
. (5.5.9)

In other words, we have derived a relation between ρ1 and ρ2, which is:

ρ2 − ρ1 = 2τy

G
. (5.5.10)

We need another to find these two radii. Here, we use the constitutive equations:

ηw′ + τy = −Gr

2
+ B

r
, R1 ≤ r ≤ ρ1, (5.5.11)

ηw′ − τy = −Gr

2
+ B

r
, ρ2 ≤ r ≤ R2. (5.5.12)
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R

R

1

2

1

2

Fig. 5.2 Axial flow in a concentric annulus

That is:

ηw′ = −Gr

2
− G

2
(ρ2 − ρ1) + B

r
, R1 ≤ r ≤ ρ1, (5.5.13)

ηw′ = −Gr

2
+ G

2
(ρ2 − ρ1) + B

r
, ρ2 ≤ r ≤ R2. (5.5.14)

Using the conditions that w(R1) = w(R2) = 0, one can integrate both and obtain:

ηw(r) = −G

4
(r2 − R2

1) − G

2
(ρ2 − ρ1)(r − R1)

+ Gρ1ρ2

2
ln

(
r

R1

)
, R1 ≤ r ≤ ρ1, (5.5.15)
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ηw(r) = G

4
(R2

2 − r2) − G

2
(ρ2 − ρ1)(R2 − r)

+ Gρ1ρ2

2
ln

(
r

R2

)
, ρ2 ≤ r ≤ R2. (5.5.16)

Using the fact that the plug moves with a constant speed, one has w(ρ1) = w(ρ2).

This results in the second relationship between the radii ρ1 and ρ2, viz.,

ρ1ρ2 ln

(
ρ1

R1

)
− 1

2
(ρ2

1 − R2
1) − (ρ2 − ρ1)(ρ1 − R1)

= ρ1ρ2 ln

(
ρ2

R2

)
+ 1

2
(R2

2 − ρ2
2 ) − (ρ2 − ρ1)(R2 − ρ2). (5.5.17)

Let R1 = αR2, ρ1 = β1R2, ρ2 = β2R2. Define the Bingham number to be given by
Bn = τy/GR2. From Eq. (5.5.10), we see that

β1 = β2 − Bn. (5.5.18)

Dividing Eq. (5.5.17) through by R2
2, one obtains:

β1β2 ln

(
β1

α

)
− 1

2
(β2

1 − α2) − (β2 − β1)(β1 − α)

= β1β2 ln β2 + 1

2
(1 − β2

2 ) − (β2 − β1)(1 − β2). (5.5.19)

Using (5.5.18), one can obtain an equation for β2, which is

2β2(β2 − Bn) ln

(
β2 − Bn

αβ2

)
+ 2Bn(1 − β2) = 1 − (Bn + α)2. (5.5.20)

This equation has to be solved for β2.Assuming that this has been done and β1 found
from (5.5.18), the flow rate can be obtained through integration by parts and using
w(R1) = w(R2) = 0. One is led to the following:

Q =
R2∫

R1

2πrw(r) dr (5.5.21)

= −
ρ1∫

R1

πr2w′(r) dr −
R2∫

ρ2

πr2w′(r) dr. (5.5.22)
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After much effort, one obtains:

Q = πGR4
2

8η

[
(1 − α)4 − 2β2(β2 − Bn)(1 − α2)

− 4

3
(1 + α3)Bn + 1

3
Bn(2β2 − Bn)3

]
. (5.5.23)

A complicated set of solutions exist when the inner wall at r = R1 moves along its
axis with a steady speed U0. This motion may be in the direction of the pressure drop
G or in the opposite direction. Given G and U0, it has been found by Liu and Zhu [2]
that eight different solutions exist depending on whether a plug flow region exists
adjacent to the inner or the outer wall, or in between as discussed here, or whether
the fluid is completely sheared in the annulus.

5.6 Couette Flow

The Couette flow is an azimuthal flow which occurs between two concentric circular
cylindrical surfaces of infinite length. That is, the domain of the flow is given by

Ω = {(r, θ, z) : R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π, −∞ < z < ∞}. (5.6.1)

The velocity field is described through

ṙ = 0, θ̇ = ω(r), ż = 0. (5.6.2)

There are a number of possibilities for the angular velocityω; one of the two surfaces
at r = R1 and r = R2 may be stationary, or both may rotate in the same direction or
in opposite directions. The principle behind all of these flows is the same, viz., for
a given set of boundary conditions, to determine the angular velocity distribution in
the interior; in particular, to find the location of the rigid core, if any.

Regardless of the different boundary conditions, one can make some predictions
about the flow field in (5.6.2). First of all, omitting the body force, the equations of
motion are:

− ∂p

∂r
= −ρω2r, (5.6.3)

−1

r

∂p

∂θ
+ ∂Srθ

∂r
+ 2

r
Srθ = 0, (5.6.4)

−∂p

∂z
= 0, (5.6.5)
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Note that these equations have been derived from (A3.6)–(A3.8), with v = rω;
various stress components are zero because of the form of the tensor A in (2.5.12).

Since there are no pressure gradients in the azimuthal or the axial direction, the
only equation of interest is (5.6.4) from which the velocity field ω = ω(r) has to be
found. Once this is known, one can find p = p(r) from (5.6.3). Since (5.6.4) turns
into the ordinary differential equation

dSrθ

dr
+ 2

r
Srθ = 0, (5.6.6)

its solution is given by

Srθ = C

r2
, (5.6.7)

where C 	= 0 is a constant, which is positive or negative.
Now, suppose that the magnitude of the applied moment per unit height on a

cylindrical surface of radius r be M > 0. Thus,

M = |Srθ (r)| · 2πr · r, (5.6.8)

which means that

|C| = M

2π
. (5.6.9)

This relation permits one to define the radial position R0 of the yield surface through

R0 =
(

M

2πτy

)1/2

. (5.6.10)

Hence, one finds that

1. If R0 ≤ R1, the fluid has to remain rigid. That is, no flow can occur.
2. If R1 < R0 < R2, there will be a flow with part of the fluid moving as a rigid

body.
3. If R2 ≤ R0, the fluid flows like a viscous liquid.

We shall now consider two separate cases depending on the sign of the constantC.

C > 0.
If C > 0, the shear stress is bounded as follows:

M

2πR2
2

≤ Srθ ≤ M

2πR2
1

. (5.6.11)

The constitutive equation for the shear stress leads to the result that

Srθ = ηrω′ + τy = M

2πr2
, (5.6.12)

http://dx.doi.org/10.1007/978-3-662-45617-0_2
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or
ηrω′ = M

2πr2
− τy. (5.6.13)

Obviously, the yield surface is located at the radius R0 given by

M

2π
= τyR2

0. (5.6.14)

Thus,

ω′ = T

2ηπr

[
1

r2
− 1

R2
0

]
, R1 < r < R0, (5.6.15)

which proves that ω′ > 0 in R1 < r < R0, reaching zero at r = R0. That is, the
yielded zone exists next to the inner cylinder and extends into the fluid. Between
R0 ≤ r ≤ R2, the fluid is in a state of rigid motion.

Now, when is C > 0, or when is Srθ > 0 in R1 ≤ r ≤ R2? A simple answer is
when the inner cylinder is stationary and the outer one rotates, i.e.,

ω(R1) = 0, ω(R2) = Ω2 > 0. (5.6.16)

Note that in this situation, the outer cylinder exerts a counter-clockwise shear stress
on the fluid in the direction of rotation, while the inner cylinder exerts a shear stress
in the clockwise direction. Using Cauchy’s stress principle, one sees that the unit
external normal on the outer cylindrical surface is radially outwards and thus, the
shear stress in the fluid is positive at that surface. Similarly, it is positive on the inner
cylindrical surface as well.

The angular velocity field is now given by

ω(r) = A − M

4ηπ

[
1

r2
+ 2

R2
0

ln r

]
, R1 ≤ r ≤ R0. (5.6.17)

The constant of integration A can be found from ω(R1) = 0. Thus,

ω(r) = M

4ηπ

[
1

R2
1

− 1

r2
+ 2

R2
0

ln

(
R1

r

)]
, R1 ≤ r ≤ R0. (5.6.18)

Since the fluid moves as a rigid body in R0 ≤ r ≤ R2, one finds that ω(R0) = Ω2.

Hence,

Ω2 = M

4ηπ

[
1

R2
1

− 1

R2
0

+ 2

R2
0

ln

(
R1

R0

)]
. (5.6.19)

C < 0.
Obviously, when C < 0, the shear stress Srθ < 0 in R1 ≤ r ≤ R2. Here, the inner

cylinder rotates and the outer one is at rest, i.e.,

ω(R1) = Ω1 > 0, ω(R2) = 0. (5.6.20)
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In this situation, the constitutive equation for the shear stress leads to the result that

Srθ = ηrω′ − τy = − M

2πr2
, (5.6.21)

or

ηrω′ = τy − M

2πr2
. (5.6.22)

Obviously, the yield surface is located at the radius R0 given by

M

2π
= τyR2

0, (5.6.23)

Thus,

ω′ = M

2ηπr

[
1

R2
0

− 1

r2

]
, R1 < r < R0, (5.6.24)

which proves that ω′ < 0 in R1 < r < R0, reaching zero at r = R0. That is, once
again, the yielded zone exists next to the inner cylinder and extends into the fluid.
Between R0 ≤ r ≤ R2, the fluid is in a state of rigid motion. The above equation can
be integrated as before; the details are omitted.

The interesting feature of the above two flows is that the rigid core lies next to
the outer cylindrical surface. That is, the core has the same angular velocity as that
of the outer cylinder.

When the cylinders rotate in the same or opposite directions, the resulting flow
can also be studied in the manner indicated here. Finally, in order to complete the
solution of the Couette flow problem, it is essential to find the pressure field p = p(r)
by integration of (5.6.3). That is,

p(r) = D +
∫

ρω2(r)r dr, (5.6.25)

where D is a constant.

5.7 Helical Flow

In the helical flow or spiral flow, the velocity field is a superposition of Couette flow
on the flow in a concentric annulus. Thus,

ṙ = 0, θ̇ = ω(r), ż = w(r), R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π, −∞ < z < ∞,

(5.7.1)

where w(R1) = w(R2) = 0, and ω(R1) = Ω1, ω(R2) = Ω2. The boundary
conditions on w(r) can be changed to include axial sliding of one or both cylinders;
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see Peng and Zhu [3] for the case when w(R1) = U, w(R2) = 0, and there is no
pressure gradient along the axis of the pipe.

In the helical flow, there are two non-zero shear stresses, viz., Srθ and Srz, and
the equations of motion can be obtained from a combination of (5.5.2) and (5.6.3)–
(5.6.5). Thus,

− ∂p

∂r
= −ρω2r, (5.7.2)

−1

r

∂p

∂θ
+ ∂Srθ

∂r
+ 2

r
Srθ = 0, (5.7.3)

−∂p

∂z
+ ∂Srz

∂r
+ Srz

r
= 0. (5.7.4)

Let the pressure drop per unit length G exceed the critical value Gc = 2τy/(R2 −R1)

derived above in (5.5.7). The shear stress Srz in once again given by (5.5.3), i.e.,

Srz = −Gr

2
+ B

r
. (5.7.5)

The second shear stress Srθ is the same as that in (5.6.7), i.e.,

Srθ = C

r2
, |C| = M

2π
, (5.7.6)

where M > 0 is magnitude of the applied moment per unit height on a cylindrical
surface of radius r.

Note that the shear stress Srz decreases from a positive maximum at r = R1 to a
negativeminimumat r = R2 as before, thereby attaining the value of zero somewhere
in (R1, R2), say at r = ρ0. Around this radius, there will be a domain in which this
shear stress lies between −τy and τy. However, this is not the width of the rigid core
due to the existence of the second shear stress Srθ which is either positive or negative
across the annular gap. Now, the stress invariant T(S) is given by

T(S) = [S2
rθ + S2rz]1/2. (5.7.7)

Hence, the width of the core has to be found by solving the algebraic equation
T2(S) = τ 2y , or the following:

G2π2r6 − 4π2(GB + τ 2y )r4 + 4B2π2r2 + M2 = 0. (5.7.8)

It is sufficient to look for the solutions of the cubic equation:

G2π2ξ3 − 4π2(GB + τ 2y )ξ2 + 4B2π2ξ + M2 = 0. (5.7.9)
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It is easy to see that the three roots ξ1, ξ2, ξ3 are such that

ξ1 + ξ2 + ξ3 = 4π2(GB + τ 2y ), ξ1ξ2ξ3 = −M2. (5.7.10)

Hence, the three roots are all real, with one negative root; or, there are two complex
conjugate roots with positive real parts, and the third is real and negative. In general,
a cubic equation will possess all real, distinct roots if its discriminant (cf. (1.8.6))
� > 0; if � = 0, it has three real roots, of which two coincide. In the case of helical
flow, one is interested in the situation when ξ1 > 0, ξ2 > 0 only, for these lead to
ρ1 = (ξ1)

1/2 > 0, ρ2 = (ξ2)
1/2 > 0. If the roots exist such that ρ1 < ρ2, one can

see that when ρ1 > R2, the Bingham fluid will flow like a viscous fluid; there is
no flow if ρ2 < R1. If ρ1 < R1 < ρ2 < R2, partial rigid body motion and partial
shearing will occur. We shall analyse the simplest situation next.

Suppose that for a given G and M, there exist two meaningful roots ρ1 and ρ2,

such that R1 < ρ1 < ρ2 < R2. While these roots depend on the constant B as
in the case of the flow in an annulus (cf. (5.5.9)), a simple relationship is hard to
find. In fact, the determination of the constant B in a shear rate dependent viscous or
viscoelastic non-Newtonian fluid, without a yield stress, is also a difficult problem.
Using the viscometric fluidity function,1 an iterative procedure has been proposed
in [4], with a summary appearing in [5]. Thus, it is not surprising that a complete
analysis of the helical flow in a viscoplastic fluid is yet to be found. As far as the
physics of the problem is concerned, the axial pressure gradient on its own forces
the Bingham fluid to yield next to both cylinders, while the Couette flow causes the
fluid to rotate rigidly next to the outer cylinder. It is this conflicting interplay which
has to be addressed in solving the problem.

Assuming that the fluid has yielded in R1 < r < ρ1 and in ρ2 < r < R2, the
azimuthal and axial velocity fields have to be found by solving the following coupled,
nonlinear equations in these domains, when C = M/2π > 0 :

Srθ = M

2πr2
=

(
η + τy

γ̇

)
rω′, (5.7.11)

Srz = −Gr

2
+ B

r
=

(
η + τy

γ̇

)
w′, (5.7.12)

γ̇ = [r2ω′2 + w′2]1/2 > 0. (5.7.13)

Of course, the relevant boundary conditions on ω(r) and w(r), along with ω(ρ1) =
ω(ρ2), w(ρ1) = w(ρ2), need to be applied to obtain the solution.

1 The viscometric fluidity function plays a crucial role in Hele-Shaw flows as well; see Sect. 7.3.

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_7
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It is possible to decouple the differential equations as follows. First of all, when
the fluid has yielded, the constitutive equation for the Bingham fluid is given by

S = ηA + τy

K(A)
A, T(S) > τy. (5.7.14)

From (4.6.35), we see that K(A) = [T(S) − τy]/η. In the helical flow, K(A) = γ̇ .

Thus, in (5.7.11) and (5.7.12),

γ̇ = [S2
rθ + S2rz]1/2 − τy

η

=

[(
M/2πr2

)2

+
(

− Gr/2 + B/r

)2]1/2
− τy

η
. (5.7.15)

Thus, one obtains a nonlinear equation for ω = ω(r) and another one for w = w(r),
which are decoupled and, in principle, these problems can be solved. Replacing the
annulus by a plane slot reduces the complexity of the problem at hand and such
solutions exist [6].

As an example of a flow problemwithout any approximation, consider the motion
of a Bingham fluid caused by the rotation of the cylindrical surfaces and the axial
movement of the inner cylinder, in the absence of a pressure gradient [3]. In such a
flow, the fluid outside the yield surface will be in a state of rigid body rotation only.
Thus, the boundary conditions become:

ω(R1) = Ω1, ω(R2) = Ω2, w(R1) = U, w(ρ0) = w(R2) = 0, (5.7.16)

where the yield surface is located at r = ρ0, R1 < ρ0 < R2. The location of the
yield surface can be found from solving the following equation (cf. (5.7.9)) for ξ :

4π2τ 2ξ2 − 4B2π2ξ − M2 = 0, (5.7.17)

which has a positive and a negative root. The former is given by

ξ1 = 1

2τ 2y

[
B2 +

(
B4 + (M2τ 2y /π2)

)1/2]
= ρ2

0 . (5.7.18)

Provided R1 < ρ0 < R2, it is found that the fluid lying between ρ0 and R2 rotates as
a rigid body. The fluid is sheared in the axial direction between R1 and ρ0.

Of course, no solution is complete without determining the pressure field:

p(r, z) = D − Gz +
∫

ρω2(r)r dr, (5.7.19)

where D is a constant.

http://dx.doi.org/10.1007/978-3-662-45617-0_4
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5.8 Steady Flows of General Viscoplastic Fluids

It is not easy to find closed form solutions to Herschel-Bulkley or Casson fluids,
since the relationship between the shear stress and the shear rate is nonlinear when
the fluid has yielded. Apart from the few steady flows listed in the Table IV of the
review article [7], two longitudinal shear flow, mixed boundary value problems have
been solved by Craster [8], demonstrating the complex nature of the methods used.

5.9 Heat Transfer Problems

Heat transfer between a fluid and its surroundings is usually assumed to fall into two
separate categories: in the first one, the surroundings are at fixed temperatures, and
in the second one, the heat transfer flux is constant. In both of these problems, the
Nusselt number plays a crucial role and we shall examine a simple example of the
first kind to illustrate this point.

5.9.1 Heat Transfer Between Two Parallel Plates

Let a Bingham fluid undergo a steady flow under the following conditions. The plate
at x = 0 is fixed and maintained at a constant temperature T0; the plate at x = H is
moving with a constant speed U in the x-direction and is at a fixed temperature T1.

The velocity field is that due to simple shear and is given by u = Uy/H, 0 ≤ y ≤ H.

If one ignores the effects of viscous heating, the temperature profile would be entirely
due to conduction and given by

T − T0

T1 − T0
= y

H
. (5.9.1)

The viscous heating changes this linear profile and it is this aspect we shall examine
next.

Since the flow is steady, the energy equation (3.4.10) takes on a very simple form:

1

2
TijAij − qi,i = 0. (5.9.2)

Here, the shear stress distribution and the shear rate are given by

T12 = τy + η
du

dy
= τy + η

U

H
, A12 = U

H
. (5.9.3)

The heat conduction occurs in the y-direction and this is given by q = −k(dT/dy),
where k > 0 is the conductivity coefficient andT = T(y) is the unknown temperature

http://dx.doi.org/10.1007/978-3-662-45617-0_3
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profile. Assuming that the physical properties of the fluid, viz., η, τy, k, are all
constants, the energy equation becomes

k
d2T

dy2
+ Dv = 0, Dv = τy

U

H
+ η

(
U

H

)2

, (5.9.4)

whereDv is the viscous dissipation rate. The differential equation for the temperature
T = T(y) can be solved quite easily and one obtains:

T − T0

T1 − T0
= y

H
+ DvH2

2k(T1 − T0)

[(
y

H

)
−

(
y

H

)2]
. (5.9.5)

Note that in this flow, it would appear that the yield stress does not play a significant
role; the overall effect is as if the fluid possesses a non-Newtonian viscosity. This
is not strictly true, for the yield stress is important in determining whether the heat
transfer is dominated by conduction or convection. This will become transparent
with the introduction of the Nusselt number which follows next.

5.9.1.1 Nusselt Number

Suppose that the temperature at the wall is Tw in a flow which occurs along the z-
axis normal to a cross-section in the (x, y)-plane. Under steady flow conditions, the
velocity field is given by u = u(x, y), and the temperature through T = T(x, y). The
bulk temperature Tb is defined as the ratio of the temperature flux in the direction of
motion divided by the volumetric flux. That is,

Tb =
∫
A T(x, y)u(x, y) da∫

A u(x, y) da
, (5.9.6)

where A represents the domain of the cross-section. Appealing to Newton’s law of
heat transfer by convection, the heat flux qw through the wall is given by

qw = h(Tw − Tb), (5.9.7)

where h is the heat transfer coefficient, named after Newton. If, on the other hand,
one were to consider the fluid as being stagnant, heat transfer at the wall would be
due to conduction alone. In this case, the heat flux has the form

qw = k
(Tw − Tb)

L
, (5.9.8)

where L is a characteristic length, such as the gap H between parallel plates.
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The Nusselt number, Nu, for the flow under consideration is defined as the ratio
of the heat transfer due to convection divided by that due to conduction. Thus,

Nu = 2hL(Tw − Tb)

k(Tw − Tb)
= 2hL

k
. (5.9.9)

A Nusselt number of order unity means that the flow is very sluggish and is equiv-
alent to heat transfer by conduction. A large Nusselt number means that convection
is very efficient; in the turbulent flow in a pipe, the Nusselt number is of the order
of 100–1,000. These are the reasons why the Nusselt number is important in heat
transfer problems.

In viscoplastic fluids, the Bingham number determines whether the flow is dom-
inated by viscosity or the yield stress. A small Bingham number would mean that
viscous effects are dominant and heat transfer occurs due to convection. A large
Bingham number means that the fluid behaves more like a solid and heat conduction
is likely to occur. This observation is confirmed by the numerical modelling of the
thermally driven flow of a Bingham fluid in a cavity; see Fig. 10.4 and Sect. 10.3.4.

5.9.2 More General Problems

We shall mention briefly some of the results available in the literature.

Flow in Circular Tubes: The basic assumptions in solving the heat transfer problems
in a circular tube are: at the entry to the tube, the velocity field is that of a fully
developed flow and the temperature is uniform. The wall of the tube is maintained
at a constant temperature or the heat flux at the wall is constant. In either of the two
cases, asymptotic solutions are obtained for small z along the axis of the flow, which
means that only the radial conduction is considered. For large z, heat conduction is
assumed to occur both radially and axially, with convection in the axial direction
only. For these problems one can determine the Nusselt numbers, since the Bingham
fluid acts as a non-Newtonian fluid. Full details of the methods of calculation have
been published by Bird et al. [9]. These calculations are applicable to the Bingham
fluid for the reasons just mentioned; see Bird et al. [7].

Flow between Parallel Plates: The basic assumptions in solving the heat transfer
problem between parallel walls are the same as above. At the entry to the space
between the parallel plates, the velocity field is that of a fully developed flow and the
temperature is uniform. The walls are maintained at identical, constant temperatures
or the heat flux at both walls is the same and constant. In either of the two cases,
asymptotic solutions are obtained for small z along the axis of the flow, which means
that conduction across the flow is considered. For large z, heat conduction is assumed
to occur both across the flow and axially, with convection in the axial direction only.

http://dx.doi.org/10.1007/978-3-662-45617-0_10
http://dx.doi.org/10.1007/978-3-662-45617-0_10
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For these problems one can determine the Nusselt numbers, since the Bingham fluid
acts as a non-Newtonian fluid. For a complete description, see Bird et al. [7, 9].

Temperature Dependence: If the viscosity and the yield stress depend on the tem-
perature, there is a vast literature on their influence on heat transfer. These are listed
in Tables IX and X in the review article by Bird et al. [7].

Summary:Whether one is interested in free or forced convection problems, one finds
that the analytical solutions are usually approximations to the exact solutions. If one
looks at the numerical methods, the published results can be improved enormously
because the earlier work was not based on the finite element method.
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Chapter 6
Analytic Solutions: Unsteady Shearing Flows

In this chapter, we shall begin by studying the initial value problem of the start-up
of the flow of a Bingham fluid in a channel from rest due to a constant applied pres-
sure gradient; see Sect. 6.1. The material presented is mostly based on the work of
Safronchik with some simplifications as needed. It is also shown that this problem
cannot be solved through an application of the Laplace transform. Later on, a sum-
mary of the work done by Safronchik on the initiation of a Couette flow, followed
by that in a pipe of circular cross-section is provided in Sect. 6.2.

The above unsteady flow problems have an interesting feature, viz., that the yield
surface propagates into the fluid with a finite speed. Due to the incompressibility of
the fluid, themotion of the yield surface is lateral to itself. And, across the propagating
yield surface, not all of the temporal derivatives and spatial gradients of the velocity
field and the shear stress distribution are continuous. Indeed, it turns out that the
velocity and the acceleration are both continuous across the yield surface, while the
derivative of the acceleration, known as the jerk, suffers a jump. These aspects of
the kinematics have a corresponding impact on the shear stress and its temporal and
spatial derivatives. These matters are fully explored in Sect. 6.3 through the theory
of singular surfaces in motion.

6.1 Unsteady Flow in a Channel

Consider an incompressible Bingham fluid at rest in an infinitely long channel in
the x-direction. The channel is symmetric about this axis and has a width 2H in the
y-direction. Equivalently, the domain of the fluid is the infinite strip −∞ < x < ∞,

−H ≤ y ≤ H. Suppose that the fluid is set in motion at time t = 0+ with a suddenly
applied, constant pressure drop of G > 0 per unit length in the x-direction. Assuming
the velocity field to be given by ẋ = u(y, t), the problem is to find the subsequent
velocity field given the following initial and boundary conditions:

u(y, 0) = 0, −H ≤ y ≤ H ; u(±H, t) = 0, t ≥ 0. (6.1.1)
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The equation of motion for the problem is

− ∂p

∂x
+ ∂σ

∂y
= ρ

∂u

∂t
, (6.1.2)

where p = −Gx is the pressure due to the constant pressure drop per unit length
G, and σ = σ(y, t) is the shear stress and ρ is the density of the fluid. Assuming
that G > Gc, where the critical pressure drop per unit length Gc = τy/H, an
unsteady flow will be initiated and will develop into a shear flow u = u(y, t) across
the cross-section of the channel. Since the flow is symmetric about the x-axis, it
is sufficient to solve the problem in the upper half only. Thus, we have to find
u = u(y, t), 0 ≤ y ≤ H, t ≥ 0, satisfying the initial condition u(y, 0) = 0, and
the adherence condition u(H, t) = 0.

The flow will commence at the edge of the channel with a rigidly flowing core
away from the wall and as time progresses, the fluid will accelerate with the core
shrinking laterally until the flow become steady. This final velocity profile is that
which appears in Sect. 1.4., viz.,

u(y) =
{

G[(H2 − y2) − 2h(H − y)]/2η, h ≤ y ≤ H,

G(H − h)2/2η, 0 ≤ y ≤ h.
(6.1.3)

Returning to the unsteady flow conditions, the shear stress distribution is linear
in the rigid core. That is

σ = − τy

h(t)
y, 0 ≤ y ≤ h(t), (6.1.4)

where h(t) is the width of the core; it is assumed that 0 ≤ h(t) < H. And, in this
core, the velocity u = u(t) only, whence the equation of motion reduces to

du

dt
= 1

ρ

[
G − τy

h(t)

]
, (6.1.5)

which can be integrated with respect to T and one obtains:

u(t) = 1

ρ

[
Gt −

t∫
0

τy

h(ξ)
dξ

]
. (6.1.6)

Of course, u(y, t) = u(t), 0 ≤ y ≤ h(t).
In the sheared region, the shear stress is given by

σ = η
∂u

∂y
− τy, h(t) ≤ y ≤ H, t ≥ 0. (6.1.7)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Consequently, the equation of motion is given by the following:

η
∂2u

∂y2
= ρ

∂u

∂t
− G. (6.1.8)

Noting that the flow commences from rest, the adherence condition at the wall of
the channel and the fact that the velocity gradient is zero at the edge of the core, this
partial differential equation has to be integrated with the following conditions:

u(y, 0) = 0, 0 ≤ y ≤ H ; u(H, t) = 0, t ≥ 0; ∂u

∂y
(h(t), t) = 0, t > 0.

(6.1.9)

The relevant equations can now be put in a non-dimensional form using the change
of variables similar to those adopted in Sect. 1.7. That is:

x̃ = x

H
, ỹ = y

H
, t̃ = η

ρH2 t, δ(t̃) = h(t)

H
, (6.1.10)

ũ = u

U
, σ̃ = H

ηU
σ, G̃ = H2

ηU
G. (6.1.11)

The partial differential equation (6.1.8) becomes:

∂2ũ

∂ ỹ2
= ∂ ũ

∂ t̃
− G̃. (6.1.12)

After dropping the tildes, we obtain:

∂2u

∂y2
= ∂u

∂t
− G, δ(t) < y < 1, t > 0. (6.1.13)

The following conditions apply:

u(y, 0) = 0, 0 ≤ y ≤ 1; u(1, t) = 0, t ≥ 0; ∂u

∂y
(δ(t), t) = 0, t > 0.

(6.1.14)

Regarding the velocity in the core, consider (6.1.6). Using (6.1.10, 6.1.11), we find
that

Gt

ρ
= 1

ρ
· ηU

H2 G̃ · ρH2

η
t̃ = U G̃t̃ . (6.1.15)

Next, in analogy with t = (ρH2/η)t̃, we let ξ = (ρH2/η)ξ̃ . Then,

1

ρ

t∫
0

τy

h(ξ)
dξ = 1

ρ

t̃∫
0

τy

Hδ(ξ̃ )

ρH2

η
d ξ̃ =

t̃∫
0

τy H

ηδ(ξ̃ )
d ξ̃ . (6.1.16)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Let the Bingham number be Bn = τy H/ηU. Hence, the right side becomes

t̃∫
0

G H2

ηδ(ξ̃ )
d ξ̃ = UBn

t̃∫
0

1

δ(ξ̃ )
G̃ d ξ̃ . (6.1.17)

Since u = Uũ, we can now drop the tildes from (6.1.15) and (6.1.17). The velocity
in the core is given by (cf. (6.1.6)):

u(t) = Gt − Bn

t∫
0

1

δ(ξ)
dξ. (6.1.18)

The required equations have now been assembled. They are (6.1.13) and (6.1.14);
their solution provides the velocity in the core (6.1.18), valid in 0 ≤ y ≤ δ(t).

In order to solve the problem at hand, it is desirable to define a new function
λ(y, t) so that

u(y, t) = Gt + λ(y, t). (6.1.19)

Noting the initial condition u(y, 0) = 0, the new function satisfies the following
equations:

∂2λ

∂y2
= ∂λ

∂t
, δ(t) < y < 1, 0 < t ≤ t0, (6.1.20)

lim
t→0+ λ(y, t) = 0, (6.1.21)

lim
y→1− λ(y, t) = −Gt, (6.1.22)

lim
y→δ(t)+

λ(y, t) = −Bn

t∫
0

1

δ(ξ)
dξ = φ(t), (6.1.23)

lim
y→δ(t)+

∂λ

∂y
= 0, (6.1.24)

where the function φ(t) has been introduced in (6.1.23) for convenience. Obviously,
one has to find λ(y, t) as well as the location of the yield surface at y = δ(t) as parts
of the solution, with δ(0) = 1. Note that the boundary condition (6.1.22) means that
the method of solution cannot be valid for all t ∈ (0,∞), or it is valid for a finite
interval of time only.

6.1.1 The Solution

The solution to the problem of finding the function λ(y, t) is due to Safronchik [1],
who based it on the method of Kolodner [2]; the latter had shown that in linear
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partial differential equations with free surfaces, it was possible to derive a functional
equation to determine the location of the free surface without knowing the solution
of the partial differential equation. Subsequently, this solution could be derived. It
is this method that was applied by Safronchik to find a nonlinear integral equation
satisfied by the position of the yield surface. From this, the velocity in the core and
in the yielded region would follow. In fact, Safronchik considered a much more
general problem than the one being discussed here; for instance, the Bingham fluid
could begin the flowwith a non-zero velocity profile, and the pressure gradient could
be time dependent as well. Having obtained the solution for this extremely general
case, Safronchik simplified his results to apply to the initial-boundary value prob-
lem listed in (6.1.20)–(6.1.24) above. It is this aspect of his solution that will be
summarised here.

First of all, the domain of the sheared flow is given by

D+ = {δ(t) < y < 1, 0 < t < t0}. (6.1.25)

Since the position of the free surface at y = δ(t) is unknown, the domain of the flow
will be extended into its complement, viz.,

D− = {−∞ < y < δ(t), 0 < t < t0}. (6.1.26)

Thus, the problem will now be solved in the semi-infinite strip

D = {−∞ < y < 1, 0 < t < t0}. (6.1.27)

The important point to note is that the domain D is unaffected by the exact location
of the yield surface at y = δ(t).

The relevant equations are:

∂2λ

∂y2
= ∂λ

∂t
, −∞ < y < 1, 0 < t < t0, (6.1.28)

lim
t→0+ λ(y, t) = 0, −∞ < y ≤ 1, (6.1.29)

lim
y→1− λ(y, t) = −Gt, 0 ≤ t ≤ t0, (6.1.30)

lim
y→−∞ λ(y, t) = 0, 0 ≤ t ≤ t0. (6.1.31)

We can decompose the solution into two parts:

λ+(y, t) = λ(y, t), (y, t) ∈ D+, (6.1.32)

λ−(y, t) = λ(y, t), (y, t) ∈ D−, (6.1.33)

with y = δ(t) forming the boundary between D+ and D−.

The problem posed in (6.1.28)–(6.1.31) has a solution given by

λ(y, t) = I1(y, t) + I2(y, t) + I3(y, t), (6.1.34)
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where the three functions are integrals depending on heat kernels as follows:

I1 = − 1

2
√

π

t∫
0

Gσ(1 − y)

(t − σ)3/2
exp

[
− (1 − y)2

4(t − σ)

]
dσ, (6.1.35)

I2 = 1√
π

t∫
0

{
φ(σ)

[
y − δ(σ )

4(t − σ)3/2
− δ′(σ )

2(t − σ)1/2

]

× exp

[
−[y − δ(σ )]2

4(t − σ)

]}
dσ, (6.1.36)

I3 = − 1√
π

t∫
0

{
φ(σ)

[
2 − y − δ(σ )

4(t − σ)3/2
− δ′(σ )

2(t − σ)1/2

]

× exp

[
−[2 − y − δ(σ )]2

4(t − σ)

]}
dσ, (6.1.37)

for t > σ, and λ(y, t) ≡ 0 for σ ≤ t.
In his solution, Safronchik1 proved the following results:

1. The integral I1 has the following limiting behaviour:

I1(1, t) = 0, 0 ≤ t ≤ t0 (6.1.38)

lim
t→0+ I1(y, t) = 0, −∞ < y ≤ 1, (6.1.39)

lim
y→1− I1(y, t) = −ct, 0 ≤ t ≤ t0. (6.1.40)

lim
y→−∞ I1(y, t) = 0, 0 ≤ t ≤ t0. (6.1.41)

2. The derivative ∂ I1/∂y is bounded in the closure of D, or in the region {−∞ <

y ≤ 1, 0 ≤ t ≤ t0}. In fact, it is continuous in this region.
3. The integral I2 has the following limiting behaviour:

I2(1, t) = 0, 0 ≤ t ≤ t0 (6.1.42)

lim
t→0+ I2(y, t) = 0, −∞ < y ≤ 1, (6.1.43)

lim
y→1− I2(y, t) = 0, 0 ≤ t ≤ t0, (6.1.44)

lim
y→−∞ I2(y, t) = 0, 0 ≤ t ≤ t0. (6.1.45)

1 In comparing the integrals listed here with those in [1] it must be noted that the integrals I1, I2, I3
correspond to J1, J2, J4 respectively, with modifications due to the fact the initial condition is
assumed to be zero here. For this reason, the integral J3 is not needed, for it is zero.
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4. While the integral I2 is bounded in {−∞ < y ≤ 1, 0 ≤ t ≤ t0}, it has a
discontinuity across the curve y = δ(t). That is,

lim
y→δ(t)+

I2(y, t) = I2(δ(t), t) + 1

2
φ(t), (6.1.46)

lim
y→δ(t)−

I2(y, t) = I2(δ(t), t) − 1

2
φ(t). (6.1.47)

Hence,
lim

y→δ(t)+
I2(y, t) − lim

y→δ(t)−
I2(y, t) = φ(t). (6.1.48)

5. However,

lim
y→δ(t)+

∂ I2
∂y

(y, t) = lim
y→δ(t)−

∂ I2
∂y

(y, t). (6.1.49)

6. Finally, the integral I3 has the following limiting behaviour:

I3(1, t) = 0, 0 ≤ t ≤ t0 (6.1.50)

lim
t→0+ I3(y, t) = 0, −∞ < y ≤ 1, (6.1.51)

lim
y→1− I3(y, t) = 0, 0 ≤ t ≤ t0. (6.1.52)

lim
y→−∞ I3(y, t) = 0, 0 ≤ t ≤ t0. (6.1.53)

7. The derivative ∂ I3/∂y is bounded in {−∞ < y ≤ 1, 0 ≤ t ≤ t0}. In fact, it is
continuous in this region.

Ifwe examine the above conditions in detail, it will be found thatλ(y, t) = I1(y, t) +
I2(y, t) + I3(y, t) satisfies all of the Eqs. (6.1.28)–(6.1.31). Now, one has yet to
determine where the yield surface y = δ(t) is located.

To answer this, we note that the condition (6.1.47) can be used to demand that
the solution λ−(y, t) → 0 as y → δ(t)−. In fact, one can prove from this that
λ−(y, t) ≡ 0 in D−, for this function satisfies the heat equation, has a zero initial
condition, and vanishes as y → −∞. Hence, it follows that

lim
y→δ(t)−

∂λ−(y, t)

∂y
= 0. (6.1.54)

Conversely, if the function λ−(y, t) satisfies the heat equation, has zero initial con-
dition, vanishes at infinity and zero flux enters it at the other boundary (cf. (6.1.54)),
then λ−(y, t) ≡ 0 in D−. So, there are two ways to determine the location of the
yield surface.

Sinceλ−(y, t) = λ(y, t) inD−, the firstmethod is to solve the following equation:

lim
y→δ(t)−

λ(y, t) = lim
y→δ(t)−

[
I1(y, t) + I2(y, t) + I3(y, t)

]
= 0. (6.1.55)
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Noting that the partial derivatives of the three integrals with respect to y do not suffer
a jump at the yield surface, the second approach is to solve:

lim
y→δ(t)

∂λ(y, t)

∂y
= 0. (6.1.56)

The latter equation will now be considered. To simplify it, one proceeds as follows:

1. In (6.1.35), let

β = 1 − y

2
√

t − σ
, y < 1, t ≥ 0. (6.1.57)

Thus,
dβ

dσ
= 1 − y

4(t − σ)3/2
. (6.1.58)

Hence,

d

dσ

β∫
∞

e−α2
dα = (1 − y)

4(t − σ)3/2
exp

[
− (1 − y)2

4(t − σ)

]
. (6.1.59)

Consequently, using integration by parts,

I1 = 2G√
π

t∫
0

( β∫
∞

e−α2
dα

)
dσ. (6.1.60)

Thus,

∂ I1
∂y

= − G√
π

t∫
0

1√
t − σ

exp

[
− (1 − y)2

4(t − σ)

]
dσ. (6.1.61)

2. In a similar fashion, one can rearrange I2 and obtain

I2 = − 1√
π

t∫
0

φ′(σ )

( z1(y,σ )∫
z1(y,t)

e−β2
dβ

)
dσ, (6.1.62)

where

z1(y, σ ) = y − δ(σ )

2
√

t − σ
, (6.1.63)

and

z1(y, t) =
⎧⎨
⎩

∞, y > δ(t),
0, y = δ(t),

−∞, y < δ(t).
(6.1.64)
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Thus,

∂ I2
∂y

= − 1

2
√

π

t∫
0

φ′(σ )√
t − σ

exp

[
− [y − δ(σ )]2

4(t − σ)

]
dσ. (6.1.65)

3. Finally,

I3 = 1√
π

t∫
0

φ′(σ )

( z2(y,σ )∫
z2(y,t)

e−β2
dβ

)
dσ, (6.1.66)

where

z2(y, σ ) = 2 − y − δ(σ )

2
√

t − σ
, (6.1.67)

and

z2(y, t) =
⎧⎨
⎩

∞, y > δ(t),
0, y = δ(t),

−∞, y < δ(t).
(6.1.68)

Thus,

∂ I3
∂y

= − 1

2
√

π

t∫
0

φ′(σ )√
t − σ

exp

[
− [2 − y − δ(σ )]2

4(t − σ)

]
dσ. (6.1.69)

Hence, one obtains the following integral equation to determine the location of the
yield surface at y = δ(t):

G

t∫
0

1√
t − σ

exp

[
− [1 − δ(t)]2

4(t − σ)

]
dσ −

t∫
0

φ′(σ )

2
√

t − σ

×
{
exp

[
− [δ(t) − δ(σ )]2

4(t − σ)

]
+exp

[
− [2 − δ(t) − δ(σ )]2

4(t − σ)

]}
dσ = 0.

(6.1.70)

This is Kolodner’s functional equation to determine the location of the yield surface
at y = δ(t). As noted earlier, this equation does not require the velocity field in
0 ≤ y ≤ 1 to solve for δ(t). Even so, this nonlinear integral equation has never been
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solved. So, we shall obtain an approximate solution when t is very small, or when
the yield surface δ(t) is close to 1.

6.1.2 Approximate Solution

From (6.1.23), it follows that φ′(σ ) = Bn/δ(σ ). Thus, (6.1.70) becomes:

G

t∫
0

1√
t − σ

exp

[
− [1 − δ(t)]2

4(t − σ)

]
dσ = Bn

2

t∫
0

1

δ(σ )
√

t − σ

×
{
exp

[
− [δ(t) − δ(σ )]2

4(t − σ)

]
+ exp

[
− [2 − δ(t) − δ(σ )]2

4(t − σ)

]}
dσ. (6.1.71)

For small values of t, assume that δ(σ ) = δ(0) = 1 on the right side, whence the
exponential terms can be replaced by the integer 2. Thus, the right side becomes

Bn

t∫
0

1√
t − σ

dσ = 2Bn
√

t . (6.1.72)

Hence, we are left with

t∫
0

1√
t − σ

exp

[
− [1 − δ(t)]2

4(t − σ)

]
dσ = 2Bn

G

√
t . (6.1.73)

Now, let us introduce another substitution:

α(σ) = 1 − δ(t)

2
√

t − σ
. (6.1.74)

The left side of (6.1.73) can now be integrated by parts to obtain:

t∫
0

e−α2 1√
t − σ

dσ = −
[
2e−α2√

t − σ

]t

0

+2

t∫
0

√
t − σ

(
d

dσ
e−α2

)
dσ. (6.1.75)

Since

2α(σ)
√

t − σ = 1 − δ(t) = 2α(0)
√

t, (6.1.76)
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one can write the integral on the right side of (6.1.75) as

2

t∫
0

√
t − σ

(
d

dσ
e−α2

)
dσ = −4α(0)

√
t

∞∫
α(0)

e−β2
dβ. (6.1.77)

Substituting the above into (6.1.73), cancelling
√

t, it follows that we have to deter-
mine α(0) as the solution of the transcendental equation:

exp

{
− [α(0)]2

}
− 2α(0)

∞∫
α(0)

e−β2
dβ = Bn

G
. (6.1.78)

Since δ(t) < 1 for t > 0, it follows that this equation must have a positive solution
for α(0). Assuming that this has been found, we obtain the position of the yield
surface, valid for a very short interval of time only. This is given by

δ(t) = 1 − 2α(0)
√

t, 0 ≤ t ≤ 1

4[α(0)]2 . (6.1.79)

From (6.1.19) and (6.1.23), we see that the velocity of the rigid core is given by

u(t) = Gt + φ(t) = Gt − Bn

t∫
0

1

δ(ξ)
dξ

= Gt − Bn

t∫
0

1

1 − 2α(0)
√

ξ
dξ

= Gt − Bn

√
t∫

0

2σ

1 − 2α(0)σ
dσ

= Gt + Bn
1

α(0)

√
t + Bn

1

[2α(0)]2 ln
[
1 − 2α(0)

√
t

]
. (6.1.80)

Having found δ(t), it is possible to find the velocity field u(y, t) in δ(t) ≤ y ≤ 1;
however, following Safronchik, this is omitted.

In sum, it is important to realise that as soon as the flow starts, a plug forms within
the fluid; it occupies the region 0 ≤ y ≤ δ(t). The velocity of the fluid in the plug
is given by u(t) above. In Sect. 6.3, the underlying kinematics and dynamics of the
moving yield surface are examined using the theory of propagating singular surfaces
due to Hadamard.
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6.1.3 Laplace Transform

Given the partial differential equation in (6.1.13):

∂2u

∂y2
= ∂u

∂t
− G, δ(t) < y < 1, t > 0, (6.1.81)

can one apply the Laplace transform to solve this equation? The answer is in the
negative, for in order to apply this transform, every y ∈ (δ(t), 1) must be in the
yielded part of the flow for all t > 0. This is clearly impossible, for as the yield
surface moves laterally from y(0) = 1, points which lie in the unsheared region
enter the yielded region at separate times.

To understand this, let the final width of the plug be δ∞ < 1. Consider a layer of
fluid at y = y1 such that y1 = δ(t1) > δ∞. This layer of fluid will lie in the sheared
region for all t > t1 only. Hence, the material in y1 < y < 1 satisfies (6.1.81) for
t > t1 only; and, the initial velocity distribution across this domain is not given by
u(y, 0) = 0, y1 ≤ y ≤ 1. Rather, the latter depends on when the fluid layer enters
the sheared zone; prior to that, this layer of the fluid experiences a plug flow.

6.1.4 Application of Maximum Principles

Using the maximum principles2 for parabolic equations, Comparini [4] obtained
bounds on the velocity, its spatial and temporal gradients in the initiation of the
channel flow. Let y = h be the location of the yield surface when the flow has
reached steady state and let u∞(y) be this velocity field given by (1.4.5, 1.4.6).
Further, let there be an initial velocity distribution u(y, 0) = u0(y) such that

u0(1) = 0, u′
0(y) ≤ 0, u′′

0(y) ≤ 0, 0 < h0 ≤ y ≤ H. (6.1.82)

Note that this requires the initial velocity distribution u0 = u0(y) to be such that it
has a yield surface at y = h0. Further, it must satisfy the following conditions:

u′
0(y) ≥ −G

η

(
y − τy

G

)
, (6.1.83)

u′′
0(y) ≥ −G

η
. (6.1.84)

2 Protter and Weinberger [3] have written a highly readable introduction to maximum principles.

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Assuming that h < h0 < H, Comparini proved the following results:

τy

G
< h(t), (6.1.85)

0 ≤ u(y, t) ≤ u∞(y), (6.1.86)

−G

η

(
y − τy

G

)
≤ uy(y, t) ≤ 0, (6.1.87)

0 ≤ ut (y, t) ≤ G

ρ
, (6.1.88)

where h < h(t) < h0. Note that τy/G < h(t) in (6.1.85) is simply a restatement
of h < h(t), meaning that the yield surface approaches the steady state value from
above. The next one (6.1.86) says that the velocity u(y, t) is evolving towards the
steady velocity field u∞(y) from below; and, this leads to the result that the velocity
gradient is less negative than the final one (6.1.87). The last one becomes transparent
when one looks at the equation of motion (6.1.2) and puts G = −∂p/∂x > 0, and
notes that ∂σ/∂y ≤ 0 in the upper half of the channel.

Several other results including a global existence theorem for the solution, its
asymptotic behaviour and the effects of a time dependent pressure gradient have also
been derived by Comparini [4].

6.2 Unsteady Couette and Poiseuille Flows

After solving the problem of the channel flow described above, Safronchik [5] con-
sidered the Couette flow problem. Let a rod of radius R, immersed in an infinite sea
of Bingham fluid with an initial angular velocity distribution, be given a time depen-
dent velocity starting at t = 0+. Assuming that the angular velocity ω(r, t) → 0 as
r → ∞, this initial-boundary value problem was solved, after the location of the
yield surface at r = ρ was found through another application of Kolodner’s method.

If one is interested in solving the flow in a concentric annulus of radii R1 and
R2 > R1, Safronchik pointed out that the solution for the infinite vat is also the
solution to this problem as long as the location of the yield surface at r = ρ is such
that ρ < R2 and ω(R2) = 0. Having pointed out that the method of solution fails
for the case when ρ ≥ R2, he did not proceed further with it. In fact, as shown by
Comparini and De Angelis [6], there are numerous possibilities. For instance, there
may be regions where the shear rate becomes zero and changes sign. These aspects
have also been explored by Comparini [7]. Simply put, it is not easy to predict what
happens in an unsteady Couette flow in a concentric cylinder viscometer.

Turning next to the initial-boundary value problem of the flow in a pipe of circu-
lar cross-section, Safronchik [8] has also solved this problem. Again, the Bingham
fluid has an initial velocity distribution w(r, 0) = F(r), and is subjected to a time
dependent pressure gradient beginning at t = 0+. The subsequent flow was fully
determined, basing the location of the yield surface on Kolodner’s method. There
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is much wealth of analysis and detail in this work, making it difficult to summarise
it here.

6.3 Unsteady Flow in a Half-Space

In this section, an unsteady flow of a Bingham fluid in the half-space −∞ < x <

∞, 0 ≤ y < ∞ is explored in depth. The flow begins as a steady, simple shearing
flow with a constant shear rate γ̇ > 0. At time t = 0+, the magnitude of the shear
stress on the boundary at y = 0 is reduced to a value below that of the yield stress.
This reduction causes a plug to form adjacent to this boundary and the size of the
plug increases with time, since the flow as y → ∞ is not affected by this change in
the shear stress.

There are two aspects to the solution to this problem. The first one is to find
the velocity field in the plug flow and the yielded region [9] and this is studied in
Sect. 6.3.1. The second one is to examine the continuity and discontinuity in the
velocity and the shear stress fields and their temporal and spatial gradients across the
yield surface, and the interrelations between them. In particular, it will be shown that
the velocity and the local acceleration are continuous, while the time derivative of
the acceleration, known as jerk, suffers a jump across the yield surface. These results
[10] are obtained by applying the theory of propagating singular surfaces, originally
due to Hadamard. A full exposition of the theory and its applications is provided
below in Sects. 6.3.2–6.3.4.

6.3.1 An Initial Value Problem

In this sub-section, the initial value problem solved by Sekimoto [9] will be consid-
ered. Here, one begins by considering the shearing flow u = u(y, t) of a Bingham
fluid in the semi-infinite region y > 0. In the absence of a pressure gradient, the
equation of motion becomes

ρ
∂u

∂t
= ∂σ

∂y
. (6.3.1)

The initial condition for the velocity field is that of a steady, simple shearing flow:

u(y, 0) = γ̇ y, 0 ≤ y < ∞, (6.3.2)

where γ̇ > 0 is a constant shear rate. On the boundary y = 0, the shear stress is
given by σ(0, t) = ηγ̇ + τy for t < 0. At t = 0+, we reduce this stress to a constant
value τ0 so that subsequently

σ(0, t) = τ0, t > 0, (6.3.3)

where |τ0| < τy .
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To complete the specification of the problem, it is assumed that the velocity field
as y tends to infinity is not affected by this diminution in the shear stress so that

|u(y, t) − γ̇ y| → 0, y → ∞. (6.3.4)

Now, the reduction in the magnitude of the shear stress on the boundary will
cause the fluid adjacent to the boundary to move as a plug, with the width of the plug
increasing in time; and, it is the speed of propagation of the yield surface that is also
of interest. Importantly, it will be seen below that this speed is finite for t > 0.Hence,
the yield surface is supposed to be at y = yc(t) for t ≥ 0; the fluid is expected to
move as a plug in 0 ≤ y < yc(t) and to undergo a shearing flow in yc(t) < y < ∞.

Since the equation of motion Eq. (6.3.1) becomes the heat equation

∂u

∂t
= ν

∂2u

∂y2
, yc(t) < y < ∞, (6.3.5)

where ν = η/ρ is the kinematic viscosity, the solution is of the form:

yc(t) = θ · (νt)1/2, (6.3.6)

u(y, t) = γ̇ y f

(
y

(νt)1/2
, θ

)
, yc ≤ y < ∞, (6.3.7)

where θ > 0 is a dimensionless parameter to be determined along with the function
f (·, ·). In order to do so, we shall use the fact that the velocity u(y, t) is continuous
at the yield surface and that ∂u/∂y = 0 on this surface.

In the rigid core, the acceleration ∂u/∂t is independent of y. Hence, the equation
of motion Eq. (6.3.1) leads to the result that the shear stress distribution in the core
is linear, i.e.,

σ(y, t) = τy − τ0

yc(t)
y + τ0, 0 ≤ y ≤ yc(t). (6.3.8)

That is, the gradient of the shear stress ∂σ/∂y = (τy − τ0)/yc(t) in the core. Using
this, integrating (6.3.1), noting that u(0, 0) = 0 and that

u(yc(t), t) = γ̇ yc f (θ, θ), (6.3.9)

we obtain

ργ̇ yc f (θ, θ) =
t∫

0

τy − τ0

yc(σ )
dσ = 2

τy − τ0

θ2ν
yc(t). (6.3.10)

Define the constant

ζ = τy − τ0

ηγ̇
. (6.3.11)
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Using η = ρν, (6.3.10) turns into a relationship between θ and the function f (θ, θ):

θ2 f (θ, θ) = ζ. (6.3.12)

At the yield surface y = yc(t), the velocity gradient ∂u/∂y = 0 as y → yc(t)−
since the velocity gradient is zero in the rigid zone. Since the shear stress is equal to
the yield stress on the yield surface, one finds that ∂u/∂y = 0 as y → yc(t)+. Thus,
from (6.3.7), we obtain:

f (θ, θ) + θ f ′(θ, θ) = 0, (6.3.13)

where f ′(s, θ) = ∂ f (s, θ)/∂s. Obviously, Eqs. (6.3.12, 6.3.13) provide a set of
conditions which f (s, θ) must meet. And, (6.3.4) says that

lim
s→∞ f (s, θ) = 1. (6.3.14)

However, one needs a differential equation which must be satisfied by f (s, θ).Here,
one uses the fact that the shear stress is given by

σ = τy + η
∂u

∂y
, yc(t) < y < ∞, (6.3.15)

which can be used in the equation of motion (6.3.1) to obtain:

η
∂2u

∂y2
= ρ

∂u

∂t
, yc(t) < y < ∞. (6.3.16)

From (6.3.7), one finds that

ρ
∂u

∂t
= −1

2
ηγ̇

1

(νt)1/2
s2 f ′(s, θ), (6.3.17)

η
∂u2

∂y2
= ηγ̇

1

(νt)1/2

[
2 f ′(s, θ) + s f ′′(s, θ)

]
, (6.3.18)

where f ′′(s, θ) = ∂2 f (s, θ)/∂s2. Hence, the function f (s, θ) satisfies the differen-
tial equation:

s f ′′(s, θ) +
[

s2

2
+ 2

]
f ′(s, θ) = 0. (6.3.19)

The solution of this equation is given by

f (s, θ) = 1 + 2 exp(−s2/4) − s
√

π erfc(s/2)

s
√

π erfc(θ/2)
, (6.3.20)
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where erfc(x) is the complementary error function defined through

erfc(x) = 2√
π

∞∫
x

exp(−t2) dt. (6.3.21)

Hence, the velocity field u = u(y, t) has now been found.
The condition (6.3.12) can now be made more explicit:

ζ = θ exp(θ2/4)√
π erfc(θ/2)

. (6.3.22)

It can be shown that one can find the following asymptotic relations for θ :

θ =
{

ζ
√

π, ζ << 1,
(2ζ )1/2, ζ >> 1.

(6.3.23)

We shall now explore the kinematics and dynamics of the lateral motion of the yield
surface through the study of singular surfaces in motion.

6.3.2 Singular Surfaces in Motion

Suppose that in the shearing flow of an incompressible fluid in the x-direction defined
through the velocity field u = u(y, t), there is a surface at y = yc(t), across which
certain kinematical and stress related quantities suffer jumps. If this singular surface
propagates through the fluid, it must do so laterally; this is a consequence of the
incompressibility of the material; see p. 525 in [11]. The following nomenclature
applies to different types of singular surfaces in motion:

1. Propagating Vortex Sheet. This is a singular surface across which the shearing
velocity u = u(y, t) suffers a jump, along with the shear stress σ = σ(y, t). An
example of such a motion can be found in the solution of the Rayleigh problem
due to Huilgol [12, 13] for the Lodge model [14], which is of importance in the
flows of viscoelastic fluids.

2. Acceleration Wave. This is a surface across which u = u(y, t) and σ = σ(y, t)
are continuous while ∂u/∂t, ∂u/∂y, ∂σ/∂t and ∂σ/∂y suffer jumps. Examples
of such waves arise in viscoelastic materials [15–17].

3. JerkWave. This is a surface across which u = u(y, t), σ = σ(y, t), and their first
order derivatives ∂u/∂t, ∂u/∂y, ∂σ/∂t and ∂σ/∂y are all continuous, while the
second order derivatives ∂2u/∂t2, ∂2u/∂t∂y, ∂2u/∂y2, and ∂2σ/∂t2, ∂2σ/∂t∂y
and ∂2σ/∂y2 all suffer jumps.Using two specific examples, it will be shownbelow
that the lateral movement of the yield surfaces in both of these flows of a Bingham
fluid satisfies all of the above requirements. Moreover, the description of such a
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wave as a jerk wave is appropriate, for the time derivative of the acceleration
a = ∂u/∂t is known as jerk, and ∂a/∂t = ∂2u/∂t2. It is further shown that a jerk
wave propagation occurs in the shearing flows of all viscoplastic fluids.

The speed of propagation U = U (t) of a singular surface obeys a compatibility
condition proved in a Lemma due to Hadamard; see p. 492 in [11]. To describe this,
let the jump [ f ] of an entity f = f (y, t) across the singular surface be defined
through [

f

]
(t) = f + − f −, (6.3.24)

where
f + = lim

y→y+
c

f (y, t) (6.3.25)

is the limiting value as y approaches y = yc(t) from above, while

f − = lim
y→y−

c

f (y, t) (6.3.26)

is the limiting value as y approaches y = yc(t) from below. Then, Hadamard’s
Lemma states that

d

dt

[
f

]
=

[
ḟ

]
+ U

[
∂ f/∂y

]
, (6.3.27)

where ḟ is the material derivative of f, and U = U (t) is the speed of propagation of
the singular surface. In the shearing flow under consideration, ḟ = ∂ f/∂t, and one
obtains:

d

dt

[
f

]
=

[
∂ f/∂t

]
+ U

[
∂ f/∂y

]
. (6.3.28)

Some consequences of the Hadamard Lemma as it affects unidirectional shearing
flows will be derived next.

6.3.3 Hadamard Lemma and Unsteady Shearing Flows
in Viscoplastic Fluids

Consider the unsteady shearing flow u = u(y, t) of a viscoplastic fluid in the x-
direction. The equation of motion is given by

ρ
∂u

∂t
= ∂σ

∂y
− ∂p

∂x
, (6.3.29)
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where ρ is the density of the fluid. Clearly, ∂p/∂x = P(t), where P(t) is a function
of time t only. Thus, we have to consider

ρ
∂u

∂t
= ∂σ

∂y
− P(t). (6.3.30)

At time t, let the yield surface be located at y = yc(t). On the yield surface, the
velocity field is continuous and the shear stress is equal to the yield stress. That is,

[
u

]
(t) = 0,

[
σ

]
(t) = 0. (6.3.31)

If the yield surfacemoveswith a finite speedU = dyc/dt such that 0 < |U (t)| < ∞,

it follows from the Hadamard Lemma Eq. (6.3.28) that

d

dt

[
u

]
=

[
∂u/∂t

]
+ U

[
∂u/∂y

]
= 0, (6.3.32)

d

dt

[
σ

]
=

[
∂σ/∂t

]
+ U

[
∂σ/∂y

]
= 0. (6.3.33)

At the yield surface, it is known that ∂u/∂y = 0, or

[
∂u/∂y

]
= 0. Hence,

Eq. (6.3.32) shows that the local acceleration is also continuous at the yield sur-

face, or

[
∂u/∂t

]
= 0. If one applies the jump condition to the equation of motion

Eq. (6.3.30), one obtains

[
∂u

∂t

]
=

[
∂σ

∂y

]
= 0, (6.3.34)

for the pressure gradient P(t) is independent of y. That is, at the moving yield
surface, the gradient of the shear stress is continuous, which in turn implies through

Eq. (6.3.33) that

[
∂σ/∂t

]
= 0 as well.

Hence, we conclude that in a unidirectional, unsteady shearing flow of a vis-
coplastic fluid in which the yield surface propagates with a finite speed, all of
the first order temporal and spatial derivatives of u and σ are continuous i.e.,[
∂u/∂t

]
= 0,

[
∂u/∂y

]
= 0,

[
∂σ/∂t

]
= 0,

[
∂σ/∂y

]
= 0. Thus, Hadamard’s

Lemma implies that at the propagating singular surface, the following equationsmust
hold true:

d

dt

[
∂u

∂t

]
=

[
∂2u/∂t2

]
+ U

[
∂2u/∂t∂y

]
= 0, (6.3.35)
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d

dt

[
∂u

∂y

]
=

[
∂2u/∂t∂y

]
+ U

[
∂2u/∂y2

]
= 0, (6.3.36)

d

dt

[
∂σ

∂t

]
=

[
∂2σ/∂t2

]
+ U

[
∂2σ/∂t∂y

]
= 0, (6.3.37)

d

dt

[
∂σ

∂y

]
=

[
∂2σ/∂t∂y

]
+ U

[
∂2σ/∂y2

]
= 0, (6.3.38)

where U = U (t) 
= 0 is the finite speed of propagation of the wave.
As an example where the above conditions are met, let us reconsider the unsteady

shearing flow of a Bingham fluid studied in Sect. 6.3.1. One possible method to
prove that the above four equations are satisfied lies in determining the six sec-
ond order derivatives from the solutions already obtained, find their jumps across
the yield surface and verify that Eqs. (6.3.35)–(6.3.38) hold true. A more ele-
gant method is to observe that if one of the derivatives, say ∂2u/∂y2, suffers a
jump across the yield surface, which has a finite, non-zero speed of propagation,
then automatically the above conditions will be met. This is because a jump in
∂2u/∂y2 leads to discontinuities in ∂2u/∂t∂y and ∂2u/∂t2 through Eqs. (6.3.35,
6.3.36).

Next, from the equation of motion Eq. (6.3.30), it is obvious that

ρ

[
∂2u

∂t2

]
=

[
∂2σ

∂t∂y

]
. (6.3.39)

Thus, the discontinuity of ∂2u/∂t2 implies the discontinuities in the other sec-
ond order derivatives, viz., ∂2σ/∂t∂y, ∂2σ/∂t2 and ∂2σ/∂y2 through Eqs. (6.3.37,
6.3.38), which means that the yield surface propagates as a jerk wave.

So, one is led to discover the mechanism for ∂2u/∂y2 to suffer a jump. A simple
explanation, valid for all viscoplastic fluids follows next.

1. In the core region, ∂u/∂y = 0 which means that (∂2u/∂y2)− = 0.
2. In the core, if the fluid has a constant yield stress τy, the shear stress distribution

is linear in y, and ∂σ/∂y 
= 0 and is a function of t only. Moreover, Eq. (6.3.34)
shows that this gradient is continuous at the yield surface.

3. Using the constitutive equation of a viscoplastic fluid, one can show that ∂σ/∂y 
=
0 at the yield surface implies that (∂2u/∂y2)+ 
= 0.

4. In the absence of a pressure gradient, the equation of motion Eq. (6.3.30) shows
that ∂σ/∂y 
= 0 is equivalent to ∂u/∂t 
= 0. Hence, in such a flow, a non-zero
acceleration of the core and a change in its size is sufficient for the propagating
yield surface to be termed a jerk wave.

We shall now apply the above reasoning to the flow covered in some detail in
Sect. 6.3.1.
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6.3.4 Implications of the Continuity of ∂σ/∂ y
at the Yield Surface

In this part, we shall examine the solution to the unsteady shearing flow problem in
Sect. 6.3.1 and the implications arising from the fact that ∂σ/∂y is continuous on the
yield surface.

From Eq. (6.3.7), it is obvious that the yield surface propagates into the fluid with
a velocity U (t) = θ · (ν/t)1/2/2 > 0, t > 0. In the rigid core, the acceleration
∂u/∂t is independent of y. Recalling that the shear stress distribution in the core is
linear, i.e.,

σ(y, t) = τy − τ0

yc(t)
y + τ0, 0 ≤ y ≤ yc(t), (6.3.40)

the gradient of the shear stress ∂σ/∂y = (τy − τ0)/yc(t) in the core. Consequently,
the limiting value at the yield surface is given by

(
∂σ

∂y

)−
= τy − τ0

yc(t)
> 0, t > 0. (6.3.41)

Now, we know from Eq. (6.3.34) above that ∂σ/∂y is continuous at the yield surface.
Hence,

∂σ

∂y
=

(
∂σ

∂y

)+
=

(
∂σ

∂y

)−
= τy − τ0

yc(t)
> 0, t > 0. (6.3.42)

Now, from the constitutive relation Eq. (6.3.15), it follows that

(
∂2u

∂y2

)+
= 1

η

∂σ

∂y
= τy − τ0

ηyc(t)
> 0, t > 0. (6.3.43)

Since U (t) > 0, it is obvious that the yield surface moves as a jerk wave through
the fluid.

6.3.5 Extensions to Other Shearing Flows

So far, a single shearing flow in an unbounded domain has been used to show that the
yield surface propagates as a jerk wave in a Bingham fluid. In this section, we shall
examine whether it is possible to identify other unsteady, unidirectional shearing
flows where the yield surface moves as a jerk wave. In a bounded domain, the
flows in a channel, or a circular pipe or the Couette flow between concentric circular
cylinders fall into the class of unidirectional shearing flows. In an unbounded domain,
the solution to the shearing flow provided by Sekimoto [9], the Couette flow studied
by Safronchik [1], or the Rayleigh problem [18] belong here.
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The above flows can be separated into two classes: those where the width of the
rigid zone is finite, and where it is not. In the former category, one sees that the
flows in a channel, and a circular pipe will contain a symmetric region of unyielded
fluid in the middle. In a Couette flow, the situation can be very complicated indeed
for, as shown by Comparini and De Angelis [6], multiple liquid-rigid-liquid-rigid
zones may exist. In an unbounded domain, we have already examined the flow by
Sekimoto as falling into this class of flows. In the work of Safronchik [5], one can
find the Couette flow induced by a rotating rod in a sea of Bingham fluid; that is,
an infinite zone of unyielded fluid remains. Similarly, in the Rayleigh problem when
the plane at y = 0 acquires a constant velocity in the x-direction, it is clear that an
infinite amount of unsheared fluid must lie ahead of the moving yield surface, if it
exists.

Clearly the start-up from rest of the flow of a Bingham fluid in a channel under a
suddenly applied, constant pressure gradient has a finite core which contracts with
time. To be specific, as explained in Sect. 6.1, the location of the yield surface is
given, over a short time period, by

yc(t) = H − 2α(νt)1/2, 0 ≤ t ≤ H2/4αν. (6.3.44)

In Eq. (6.3.44), H is the half-channel width, and α(0) > 0 is the solution of the
transcendental equation:

exp[−α(0)2] − 2α(0)

∞∫
α(0)

e−β2
dβ = Bn/G. (6.3.45)

As mentioned earlier, the solution in Eq. (6.3.44) is valid for a short time period
only, i.e., as long as 0 ≤ yc(t) ≤ H. The speed of propagation of the yield surface is
given by U (t) = −α(0)(ν/t)1/2 < 0, t > 0 which corresponds to the yield surface
moving from the channel wall into the fluid with a finite speed.

In the core, the shear stress is given by

σ(y, t) = − τy

yc(t)
y, 0 ≤ y ≤ yc(t), (6.3.46)

so that (∂σ/∂y)− = −τy/yc(t) < 0. In the yielded region, it is clear that (∂σ/∂y)+ =
η(∂2u/∂y2)+. Since, ∂σ/∂y is continuous at y = yc(t), we note that

[
∂2u

∂y2

]
(t) =

(
∂2u

∂y2

)+
= − τy

ηyc(t)
< 0, t > 0, (6.3.47)

or ∂2u/∂y2 suffers a jump across the yield surface, whichmeans that the yield surface
moves as a jerk wave. The same argument can be made regarding the cessation of a
flow in the channel, for the core expands to choke off the flow in a finite amount of
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time. Obviously, in other viscoplastic fluids, such as Casson and Herschel-Bulkley
fluids, the jerk wave phenomena persist in the channel flow.

As an example where a propagating yield surface does not exist, consider the
Rayleigh problem for a Bingham fluid. Here, the fluid occupies the half-space y > 0.
At time t = 0+, let the plane at y = 0 acquire a constant velocity V in the x-direction
and let this boundary condition be maintained for all t > 0. Let us begin by assuming
that the yield surface propagates into y > 0 with a speed U (t) > 0. If at time t, the
yield surface is located at y = yc(t),we see that the fluid is at rest in yc(t) ≤ y < ∞.

This means that u(y, t) and all of its temporal and spatial gradients are all zero in
the rigid core. This requires that the shear stress σ(y, t) = τy in yc(t) ≤ y < ∞, or
there is no gradient of the shear stress ahead of the moving front; so, (∂σ/∂y)+ = 0.
By the continuity of this gradient or that of ∂u/∂t at the yield surface, it follows that
(∂2u/∂y2)− = 0 behind the wave front. Hence, the yield surface cannot propagate as
a jerk wave. In fact, it has been shown that it cannot move as a wave of higher order
either. That is, the flow of the Bingham fluid is identical to that of the Newtonian
fluid in this initial value problem [18].

6.3.6 Open Ended Problems

Arising from the jerk wave analysis, one can pose the following questions:

1. Given a set of initial conditions with a yield surface, will the latter propagate or
remain stationary?

2. What is the asymptotic nature of the velocity field near a point where the yield
surface begins to propagate?

3. What can be said in more than one space dimension?

We offer the following comments:

1. TheHadamardLemmahas the simple formgivenbyEq. (6.3.28) above in a special
class of shearing flows only, for thematerial particles situated on themoving yield
surface do not possess a velocity component in the direction of propagation. In
order for this propagation to occur, the examples in the literature show that if the
flow domain is finite, the fluid must be set in motion by the sudden movement of
a boundary, or through a suddenly imposed pressure gradient; if the flow domain
is infinite, the core has to be finite in size. Examples of propagating yield surfaces
in these situations are available in the channel flow studied by Safronchik, the
cessation of the channel flow and that in a pipe of circular cross-section, and the
flow examined in Sect. 6.3.1. Numerical simulation of the cessation of a simple
shearing motion, channel and Poiseuille flows using the Papanastasiou model
shows that the yield surface moves laterally and expands till the fluid comes to
a halt [19]. Clearly, in these motions, the movement of the yield surface can be
classified as a jerk wave. When the flow domain is infinite and the core is also
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infinite and at rest, as in the Rayleigh problem, propagation of a yield surface
cannot occur as shown above.

2. There is no unique answer to the asymptotic nature of the velocity field near
a point where the yield surface begins to propagate. Since the velocity field is
continuous across the yield surface, it suffices to consider the velocity in the core
only. For instance, one may turn to the study of the initiation of the flow in a
channel discussed above in Sect. 6.1. It has been mentioned that the velocity in
the core has the form

u(t) = Gt + Bn
1

α(0)

√
t + Bn

1

[2α(0)]2 ln
[
1 − 2α(0)

√
t

]
. (6.3.48)

Clearly, the velocity in the core is not directly proportional to t1/2. If we now
compare the above with that obtained from Eq. (6.3.7) in the examination of the
unsteady simple shear flow in an unbounded domain, one finds that the velocity
in the core is given by:

u(t) = γ̇ θ f (θ, θ)(νt)1/2, (6.3.49)

which is proportional to t1/2.
3. The start-up of the flow of a Bingham fluid in a pipe of square cross-section

provides an example of a two dimensional flow. When the flow starts, pockets
of fluid at rest in the corners arise with a moving plug at the centre, which will
be surrounded by the yielded material. It is impossible to show analytically that
the yield surfaces propagate into the corners and towards the centre of the pipe
as jerk waves. Clearly, this start-up flow provides an opportunity to test the jerk
wave hypothesis through numerical simulation. This is because the shape and
location of each one of the propagating surfaces, which is likely to be curved,
is unknown, as is its instantaneous speed of propagation relative to the material
particles situated on it. Obviously, the numerical modelling will have to meet
the kinematical and dynamical compatibility conditions, derived by Hadamard in
1903. For a more recent exposition, see pp. 492–530 in [11]. A simplified version,
applicable to elastic solids, has also been provided by Eringen [20].
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Chapter 7
Analytical Approximation Techniques

Convened by The Institution of Mechanical Engineers, London, a committee headed
by Beauchamp Tower was asked to investigate the lubrication of journal bearings.
In its report, submitted in 1883, the committee came to the conclusion that profuse
hydrodynamic lubrication of the bearings reduced the friction to an extremely small
value. Moreover, at the end of the oil bath experiments, the committee was surprised
to realise, quite by accident, that the lubricating oil developed considerable pres-
sure around the periphery of the bearing and that this pressure was responsible for
supporting the load.

It was left to Reynolds [1] to put Tower’s findings on a rigorousmathematical basis
and to explain the action of the hydrodynamic forces which produced the necessary
lift. In doing so, he derived the now famous partial differential equation for the
pressure distribution around the circumference of the bearing, connecting the film
thickness and pressure at any point, the viscosity of the oil, and the velocities of the
rubbing surfaces and their normal velocity.1 For a journal bearing under a steady
load, he simplified this equation to the following:

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂z

(
h3 ∂p

∂z

)
= 6ηU

∂h

∂x
. (7.0.1)

It is assumed here that the x-axis lies along the fixed surface of the outer casing, the
z-axis is along the axis of the bearing and that the very small film thickness lies in
the y-direction, given by h = h(x, z). Of course, p = p(x, z) is the pressure, U is
the azimuthal speed of the bearing and η is the viscosity of the fluid.

In order to obtain (7.0.1), Reynolds assumed that the flow is essentially two-
dimensional, is well described by the velocity components (u, w) in the (x, z) direc-
tions respectively, and that the Navier-Stokes equations reduce to:

1 This equation has received much attention in the literature. For the first solution of the problem
of full film lubrication in a bearing of finite length, see Tao [2]. For a solution including cavitation
effects and employing a variational inequality, see Cimatti [3].
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∂2u

∂y2
= 1

η

∂p

∂x
, (7.0.2)

∂2w

∂y2
= 1

η

∂p

∂z
. (7.0.3)

That is, while u = u(x, y, z), w = w(x, y, z), the only derivatives that matter are
∂2u/∂y2, ∂2w/∂y2; the rest can be ignored. Using the boundary conditions to inte-
grate these two equations and employing the continuity equation, Reynolds was able
to produce (7.0.1). Clearly, this is the beginning of the lubrication approximation.

In this chapter, this approximation is used to examine the lubrication paradox
which leads to the conclusion that a plug flow will exist in a Bingham fluid provided
the walls of a channel are parallel and not otherwise. In order to disprove this, the
steadyflowof aBinghamfluid in a small amplitude, longwavelength perturbation of a
uniform channel is explored. Next, theHele-Shawflow equations are derived through
the viscometric fluidity function which is applicable to both viscous and viscoplastic
fluids. Recently, these equations have been applied to injection moulding problems.

Finally, the stability of the channel flow of a Bingham fluid is examined when
subjected to one, two or three dimensional disturbances which may be modal or
non-modal. A summary of the available results is offered. Simply put, it is found
that instability depends on the Bingham number with the critical Reynolds number
increasing almost linearly with it. That is, the Bingham fluid is more stable in this
flow than its Newtonian counterpart. Surprisingly, the opposite is true in the case of
a helical flow.

7.1 The Lubrication Paradox

If one were to apply the lubrication approximation to the one-dimensional flow of
a Bingham fluid in a symmetric channel of varying width, say −H(x) ≤ y ≤
H(x), −∞ < x < ∞, the equations of motion are:

− ∂p

∂x
+ ∂σ

∂y
= 0, (7.1.1)

where p = p(x) only. If there is a yield surface at y = h(x), it is easy to see that

h(x) = −τy/p′, p′ = dp/dx . (7.1.2)

Suppose that the velocity field u = u(x, y) across the gap. Since the flow is
symmetric about the x-axis, it is quite straightforward to show that (cf. (1.4.5)):

u(x, y) = − p′

2η

(
H2(x) − y2

)
− τy

η

(
H(x) − y

)
, h(x) ≤ y ≤ H(x). (7.1.3)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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The plug velocity given by u p = u(x, h(x)) is a constant in 0 ≤ y ≤ h(x) and,
using the continuity of u = u(x, y) at the yield surface, one has

u p = − p′

2η

(
H2(x) − h2(x)

)
− τy

η

(
H(x) − h(x)

)
, 0 ≤ y ≤ h(x). (7.1.4)

Since h(x) = −τy/p′, one can rewrite the above as

2ηu p = τyh(x) − 2τy H(x) − p′H2(x). (7.1.5)

Since the fluid is incompressible, the flow rate Q per unit width is constant and
given by

Q = 2u ph(x) + 2

H(x)∫
h(x)

u dy. (7.1.6)

Substituting (7.1.2) and (7.1.3) in the above, one finds that

3ηQ = −3τy H2(x) − 2p′ H3(x) − p′h3(x). (7.1.7)

Hence, we have three equations, viz., (7.1.2), (7.1.5) and (7.1.7), which connect
p′, h(x), H(x). It is conceivable that these are indeed non-constant functions of x .

It will be shown next that this is impossible [4], for it leads to a contradiction. The
proof is more direct than that advanced in [5].

The first step is to multiply (7.1.5) by p′, use (7.1.2) and suppress the dependence
on x for convenience, leading to

H2 p′2 + 2(ηu p + τy H)p′ + τ 2y = 0. (7.1.8)

This is a quadratic equation for p′. Let its roots be α and β. Clearly these roots must
satisfy

α + β = −2(ηu p + τy H)

H2 , αβ = τ 2y

H2 . (7.1.9)

Note that the two roots are both real and negative; this is as is should be, for the
pressure gradient p′ < 0.

Secondly, multiply (7.1.7) by p′2 and obtain the cubic equation

2H3 p′3 + 3(τy H2 + ηQ)p′2 − τ 3y = 0. (7.1.10)

If there is a set of unique solutions to p′, then the roots of (7.1.10) are the two
previous roots α, β and a new one, γ. It follows quite easily that

α + β + γ = −3(τy H2 + ηQ)

2H3 , αβγ = τ 3y

2H3 . (7.1.11)
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Comparing (7.1.9)2 and (7.1.11)2, we find that p′ = γ = τy/2H > 0. This is
a contradiction, for the pressure gradient cannot be positive. Note that (7.1.5) and
(7.1.7) reduce to tautologies if, for example, H(x) is constant.

Hence, a plug flow in an incompressible Bingham fluid cannot occur, within the
lubrication approximation, if the channel boundary is not parallel to the x-axis. This is
the lubrication paradox and confirms the view expressed by Lipscomb and Denn [5].
Of course, one cannot rule out the existence of a plug flow if the lubrication approx-
imation is not used. This is illustrated in the next section through an examination of
the flow in an undulating channel.

7.2 Steady Flow in a Wavy Channel—The Periodic Case

Apart from resolving the lubrication paradox, the problem to be studied here is of
interest in several industries; for example, in studying the effects of uneven well
bore geometry on drilling and primary cementing processes in oil and gas well
construction, as well as in food processing. The occurrence of fouling layers [6],
i.e., those deposits which lie in the recesses of the walls and do not move, is not an
acceptable outcome in such situations. In order to model this situation, the flow of a
Bingham fluid in a slowly varying channel with a periodic boundary is studied here;
see Fig. 7.1. The half-width of the channel is H and the period of the wavy channel
is L . Scaling all lengths with respect to H, it is assumed that the boundary of the
channel is given by y = yw(x) = 1 − h cos 2πx . The flow is two-dimensional with
the velocity field given by u = u(x, y)i + v(x, y)j. The boundary conditions are:

v = 0, Sxy = 0, y = 0, (7.2.1)

u = 0, v = 0, y = 1 − h cos 2πx . (7.2.2)

Fig. 7.1 Slowly varying
channel geometry

x

( )xy w=

y

h

hL >>

1=y

y



7.2 Steady Flow in a Wavy Channel—The Periodic Case 117

The Reynolds and Bingham numbers are given by

Re = ρU H

η
, Bn = τy H

ηU
, (7.2.3)

where U is the average velocity along the channel. Let the aspect ratio δ be given by

δ = H

L
. (7.2.4)

Scaling the pressure p and the shear stress Sxy with ηU/H, and the normal stresses
Sxx = −Syy with δηU/H, one can derive the following set of non-dimensional
equations:

− ∂p

∂x
+ δ2

∂Sxx

∂x
+ ∂Sxy

∂y
= δ Re

(
u

∂u

∂x
+ v

∂u

∂y

)
, (7.2.5)

−∂p

∂y
+ δ2

∂Sxy

∂y
+ δ2

∂Syy

∂y
= δ3 Re

(
u

∂v

∂x
+ v

∂v

∂y

)
, (7.2.6)

∂u

∂x
+ ∂v

∂y
= 0. (7.2.7)

The non-dimensional form of the extra stress tensor in a Bingham fluid is given by

S =
(
1 + Bn

K (A)

)
A, T (S) > Bn, (7.2.8)

where

Axy = ∂u

∂y
+ δ2

∂v

∂x
, (7.2.9)

Axx = 2
∂u

∂x
= −2

∂v

∂y
= −Ayy, (7.2.10)

K (A) =
[

A2
xy + δ2A2

xx

]1/2
, T (S) =

[
S2

xy + δ2S2
xx

]1/2
. (7.2.11)

Finally, the scaled velocity u = u(x, y) is such that

yw(x)∫
0

u(x, y) dy = 1. (7.2.12)

In order to seek a solution, one assumes that as h → 0, the velocity field must
reduce to that in a channel with straight walls. Secondly, there will be a yielded flow
next to the wall; this is an outer solution. In the centre of the channel, there will
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be a plug flow moving with a speed u p which has to be determined. The transition
from one solution to the other occurs at an approximate position of the perturbed
yield surface found by an inner solution and matching conditions; see Frigaard and
Ryan [7]. A summary follows next.

7.2.1 Zeroth Order Solution

The zeroth order solution u0(x, y) is given by

u0(x, y) =
⎧⎨
⎩

Bn (yw − yy)
2/2yy, y ∈ [0, yy],

Bn

[
(yw − yy)

2 − (y − yy)
2
]
/2yy, y ∈ (yy, yw]. (7.2.13)

where the location of the pseudo-yield surface yy is found from:

yy = Bn

|p0,x | . (7.2.14)

Next, it can be shown that yy = yw/ξ, where ξ = ξ(B∗) is the single root of the
Buckingham equation:

2ξ3 −
(
3 + 6

B∗

)
ξ2 + 1 = 0, B∗ = Bn yw, (7.2.15)

with the requirement that ξ > 1 and B∗ = Bn y2w.Replacing y0 by 1/ξ, this equation
can also be obtained from (1.8.3).

The pressure gradient p0,x is now found from (7.2.14) and the velocity field from
(7.2.13). Thus, the entire leading order solution depends on the Bingham number
Bn and the function defining the wall, yw(x). The interesting conclusion is that the
pressure gradient adjusts itself to maintain the unit flow rate through the narrower
parts of the channel; in turn, the pseudo-plug is narrower.

The axial variation in the velocity is similar to that in the centre of the channel. If
the pseudo-plug velocity is u pp(x), it must equal that at the edge of the plug, i.e.,

u pp(x) = u0(x, yy) = Bn

2yy
(yw − yy)

2. (7.2.16)

Next, one notes from yw = 1 + O(δ) that the perturbed Bingham number B∗ =
Bn + O(δ) and, thus ξ = (1/y0) + O(δ), where y0 is the location of the yield
surface in the flat, plane channel. Hence, the location of the pseudo-yield surface,
yy(x), and the pseudo-plug velocity, u pp(x) are O(δ) perturbations of the flat, plane
channel values. In sum, the solution is similar to that of the flow in a flat, plane
channel; the variations lie in the fact that the channel walls are periodic with a very

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Fig. 7.2 Composite asymptotic solution compared with the zeroth order outer approximation

shallow depression. In Fig. 7.2, which is Fig. 7c in [7], the curve with the mark ‘×’
is the curve yy(x), when δ = 0.05, h = 0.01 and Bn = 2. The pseudo-yield surface
is almost parallel to the undulating wall surface. The region y ∈ [0, yy] is not a
true plug domain, since the leading order velocity u0(x, y) varies in the x-direction,
which is another manifestation of the lubrication paradox for yield stress fluids.

Since the pseudo-yield surface is almost parallel to the wall, one can see that
yy(0) < yy(±1/2). From (7.2.16), one can observe that the pseudo-plug veloc-
ity u pp(0) > u pp(x) for any x ∈ (0, 1/2). That is, the pseudo-plug velocity is a
maximum when the wavy wall is closest to the centre of the channel.

Now, we turn to the first order corrections to show that there is a true plug across
the channel.

7.2.2 First Order Corrections

The first assumption is that for sufficiently small h = O(δ), there is a true plug
which is intact along the length of the channel and is bounded by the yield surface
y = yT (x).Next, this surface may be assumed to lie within O(δ) of the pseudo-yield
surface yy(x). Now, the true plug velocity u p is a constant which means that one
can expect it to equal a particular value of the pseudo-plug velocity. Since the flow
is symmetric about the centreline of the channel, there exists x p ∈ [0, 1/2] such that

u p = u pp(x p), x ∈ [−1/2, 1/2]. (7.2.17)
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It is easy to observe that for the corrected velocity field, the largest velocity at each
x will be the plug velocity u p, reached at yT (x).

Now, at any fixed x, consider the case when u pp(x) > u p. From the observation
made earlier, this means that |x | < x p.This leads to the outer solution u0 being faster
than the true plug solution in the pseudo-plug. To correct this situation, the first order
correction must be such that it increases the velocity in the sheared layer, or the true
plug must be wider than the pseudo-plug in |x | < x p. The opposite happens when
u pp(x) < u p. That is, one has |x | > x p.

Consider the first case: u pp(x) < u p, yT (x) < yy(x). Assume that

yy(x) ∼ yT (x) + δξT (x) + O(δ2). (7.2.18)

Here, ξT (x) is the first order perturbation from yy(x). The two outer solutions are
matched in a transition layer of order O(δ) by the composite solution of the form:

u ∼
⎧⎨
⎩

u p, 0 ≤ y ≤ yT ,

u p + δ2ui
2(x, y) + · · · , yT < y ≤ yy,

u0(x, y) + δu1(x, y) + δ2u2(x, y) + · · · , yy < y ≤ yw.

(7.2.19)

The outer solutions u1 and u2 and the inner solution ui
2 are found by paying careful

attention to the required matching conditions. Since the majority of interest lies at
the yield surface, the results for the inner solution ui and the outer solution u are;

ui (x, yy) ∼ u p − δ2
Bn

2yy
ξ2T + O(δ3), (7.2.20)

u(x, yy) ∼ u pp(x) + δu∗
1 + δ2u∗

2 + O(δ3), (7.2.21)

u∗
1 = 1

δ
[u p − u pp(x)], (7.2.22)

u∗
2 = − Bn

2yy
ξ2T , (7.2.23)

ξT = u∗
1(yy + 2yw)

u pp
. (7.2.24)

The conclusions that can be drawn from the above are as follows:

• The first order velocity correction u∗
1 in (7.2.22) compensates for the discrepancy

in the plug speeds. This is positive,while the second order correction u∗
2 is negative.• The yield surface correction ξT is O(1) and positive. That is, the yy > yT in

(7.2.18) as required.

The solution for the second case: u pp(x) > u p, yT (x) > yy(x) has a structure
similar to the first one. Finally, the solutions depend on the true plug speed u p which
has to be determined. This leads to the solution of the following equation for x p:
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F(x p) =
1/2∫
0

(
[yT (x) − yy(x)]∂p0

∂x
(x) + δyT (x)

∂p1
∂x

(x)

)
dx = 0. (7.2.25)

In order to find the solution x p ∈ (0, 1/2), the pressure gradients ∂pi/∂x, i = 0, 1,
have to be found [7]. Finally, one notes that x p delivers the true plug velocity u p

through u pp(x p) = u p. Interestingly, the width of the true plug is larger in the
narrow portion of the channel and smaller in the wider part; see Fig. 7.2, reproduced
from Fig. 7c in [7]. Numerical solution [8] of the wavy channel flow confirms the
above theoretical predictions, viz., that there is a true rigid plug in a small amplitude,
long wavelength perturbation of the uniform channel.

7.2.3 Breaking the Unyielded Plug

Suppose that there is a critical value of the amplitude hc so that if h > hc, the plug
will break. That is, the plug will be replaced by a pseudo-plug. Within the broken
pseudo-plug, the flow will be of an extensional character and one can determine the
corresponding stresses, viz., Sxx . At a fixed point xb ∈ [0, 1/2], define the mean
extensional stress integral:

I (xb) = δ

xb∫
0

Sxx (xb, y) dy. (7.2.26)

A sufficient condition for the plug to break at a point x = xb is that

|I (xb)| > Bn yT (xb). (7.2.27)

This result can be improved further to lead to the following condition:

∣∣∣∣
x p∫
0

[
p0,x (x)

[yt (x) − yy(x)]
δ

+ p1.x (x)yT (x)

]
dx

∣∣∣∣ > Bn yT (xb). (7.2.28)

Numerical modelling [8] shows that these predictions are fairly accurate.

7.3 Hele-Shaw Flow Problems

In order to explain the phenomenon of viscous fingering where a fluid of lower
viscosity, e.g., water, protrudes into a fluid of higher viscosity, e.g., oil, in a pressure
driven flow, Saffman and Taylor [9] employed the Hele-Shaw flow equations; it was
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assumed that this intrusion was due to a symmetric flow occurring between two
parallel planes of infinite extent of a Newtonian fluid.2 In the symmetric case, the
Hele-Shaw flow approximation is based on the lubrication theory as follows:

1. The flow is essentially two dimensional with a velocity field given by u = ui+vj,
where

u = u(x, y, z), v = v(x, y, z), (7.3.1)

in a Cartesian coordinate system with −H ≤ z ≤ H. Here, 2H denotes the
gap between the parallel plates. The velocity field vanishes along the plates, i.e.,
u(x, y,±H) = 0. Moreover, the velocity gradient is zero along the mid-plane,
i.e., ∂zu(x, y, 0) = 0.

2. The rate of change of the velocity field with respect to the coordinates x and y
can be ignored when compared with that associated with the z coordinate.

3. The effects of body forces and inertia are irrelevant.
4. The flow is isothermal and the material properties are not dependent on the shear

rate history either.

Hence, one may ignore the equation of motion in the z-direction completely and
the resulting equations are:

∇2 p = ∂zs, (7.3.2)

where ∇2 is the two-dimensional gradient operator i∂(·)/∂x + j∂(·)/∂y. The shear
stress vector on the right side is given by s = sxz i + syzj. It too vanishes along the
mid-plane, i.e., s(x, y, 0) = 0.

The next step is to define the average velocity field u through

u(x, y) = 1

2H

H∫
−H

u(x, y, z) dz. (7.3.3)

The Hele-Shaw equations connect u with ∇2 p through a constitutive relation be-
tween the stress vector s and the velocity gradient ∂zu.

When the flow is asymmetric, it takes place between two curves defined by z =
h−(x, y) and z = h+(x, y). Here, the datum z = 0 lies along the cavity centreline,
with z = h+(x, y) lying above the mid-plane and z = h−(x, y) lying below it. That
is, instead of Eq. (7.3.3), we have

u(x, y) = 1

h+ − h−

h+∫
h−

u(x, y, z) dz. (7.3.4)

Note that we do not have to assume that h+(x, y) = −h−(x, y) to obtain the average
velocity field.

2 For experimental results on viscous fingering in a yield stress fluid, see [10].
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7.3.1 The Viscometric Fluidity Function

In a viscometric flow, such as the channel, Couette and Poiseuille flows, the visco-
metric fluidity function [11, 12] appears and it provides a way of defining the shear
rate in terms of the shear stress. That is, let γ̇ be the shear rate, and the viscosity
η = η(|γ̇ |). The shear stress σ in a viscometric flow is given by σ = η(|γ̇ |)γ̇ . The
viscometric fluidity function φ is a function of the magnitude of the shear stress |σ |,
and we define it through

γ̇ = φ(|σ |)σ. (7.3.5)

In purely viscous fluids, it follows from (7.3.5) that

γ̇ = φ(|σ |)σ = φ(|σ |)η(|γ̇ |)γ̇ , (7.3.6)

which means that the viscometric fluidity function is the reciprocal of the viscosity
function.

In viscoplastic fluids, this reciprocity does not hold because the shear rate is zero
till the shear stress exceeds the yield stress. Nevertheless, the shear rate is a unique
function of the shear stress in such fluids; see Fig. 7.3. That is, for viscoplastic fluids,
there is a unique relation between γ̇ and the shear stress σ through the function
φ(|σ |) even when the fluid has not yielded. This is exploited in what follows through
several examples.3

Fig. 7.3 The fluidity
function for a Bingham fluid

3 The material in the remainder of this section is derived from [13], with minor modifications and
additions.
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In a power law fluid, the two functions are:

η(|γ̇ |) = K |γ̇ |m−1, φ(|σ |) =
(
1

K

)1/m

|σ |(1−m)/m, (7.3.7)

where K > 0 is a constant and m > 0 is the power law index. For m = 1, we get
the Newtonian fluid and K = η, the constant viscosity of the fluid.

If the fluid is viscoplastic, then the shear rate is zero when the magnitude of
the shear stress is below the yield stress, and is non-zero otherwise. Hence, the
viscometric fluidity function must be zero in the former instance and non-zero when
the magnitude of the shear stress exceeds the yield stress. So, in a Bingham fluid,
the fluidity function is defined through

φ(|σ |) = 0, |σ | ≤ τy, φ(|σ |) = |σ | − τy

η|σ | , |σ | ≥ τy, (7.3.8)

whereη is the viscosity and τy is the yield stress.Both of these are constants, of course.
In a Herschel-Bulkley fluid, the corresponding fluidity function can be obtained from
the constitutive relation for the shear stress-shear rate, which is:

σ = τy + kb|γ̇ |m−1γ̇ , σ ≥ τy . (7.3.9)

Thus,

φ(|σ |) = 0, |σ | ≤ τy, φ(|σ |) =
( |σ | − τy

kb

)1/m

· 1

|σ | , |σ | ≥ τy . (7.3.10)

Clearly, the Bingham model is recovered if m = 1 and kb = η. Next, for the Casson
fluid, the constitutive relation is given by:

√
σ = √

τy + √
kcγ̇ , (7.3.11)

where γ̇ ≥ 0. Thus, the fluidity function is

φ(|σ |) = 0, |σ | ≤ τy, φ(|σ |) =

(√|σ | − √
τy

)2

kc|σ | , |σ | ≥ τy . (7.3.12)

7.3.2 Papanastasiou Model

The Papanastasiou model requires some analysis because one has to invert an expo-
nential function. Recall from (4.4.6) that the shear stress is given by

http://dx.doi.org/10.1007/978-3-662-45617-0_4
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σ = η0γ̇ + τy[1 − exp (−mγ̇ )], (7.3.13)

when γ̇ ≥ 0. The non-dimensional form of the above equation is to be preferred
here and introducing a characteristic length scale L and a velocity scale U, the
Bingham number Bn = τy L/η0U, and scaling the shear stress accordingly, the
non-dimensional form of the above equation becomes:

|σ | = |γ̇ | + Bn [1 − exp (−m|γ̇ |)]. (7.3.14)

Thus,
|γ̇ | + Bn − |σ | = Bn exp (−m|γ̇ |). (7.3.15)

Multiplying throughout by m exp

[
m

(
|γ̇ | + Bn − |σ |

)]
, one obtains

m

(
|γ̇ |+Bn−|σ |

)
exp

[
m

(
|γ̇ |+Bn−|σ |

)]
= m Bnexp

[
m

(
Bn−|σ |

)]
. (7.3.16)

This equation is of the form W eW = z, where z may be complex. The solution
W = W (z) is called the Lambert W function [14], and we find that [15]

m

(
|γ̇ | + Bn − |σ |

)
= W

(
m Bn exp

[
m

(
Bn − |σ |

)])
. (7.3.17)

Thus,

|γ̇ | = |σ | − Bn + 1

m
W

(
m Bn exp

[
m

(
Bn − |σ |

)])
. (7.3.18)

Since |γ̇ | = φ(|σ |)|σ |, it follows that the fluidity function is given by

φ(|σ |) = 1

|σ |
[
|σ | − Bn + 1

m
W

(
m Bn exp

[
m

(
Bn − |σ |

)])]
. (7.3.19)

Some comments are in order here. First of all, on the right side of Eq. (7.3.16), the
numbersm,Bn and exp[m(Bn−|σ |)] are all positive. Hence, in (7.3.17), the Lambert
W function is such that W = W (x) > 0, since x > 0 [14]. In this situation, it is
also known that the Lambert W function is single valued as well. Thus, one does not
have to consider multiple branches of this function.

Secondly, if |σ | = 0 in Eq. (7.3.18), one has

|γ̇ | = −Bn + 1

m
W

(
m Bn exp [m Bn]

)
. (7.3.20)

Now, it is known that W (α exp [α]) = α. Using this, one can see that |γ̇ | = 0 in
(7.3.20). In other words, just as Eq. (7.3.14) shows that |σ | = 0 when |γ̇ | = 0, the
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solution (7.3.18), expressed in terms of the Lambert W function, proves the converse,
as it should.

7.3.3 The Symmetric Case

Let us now return to Eq. (7.3.2) and integrate it to obtain

s(x, y, z) = z∇2 p(x, y), (7.3.21)

where the vanishing of the shear stress vector along the centreline, i.e., s(x, y, 0) = 0
has been used. The above equation tells us that |s| = |z∇2 p| is defined, which permits
us to extend the definition of the viscometric fluidity function to two-dimensional
flows so that

∂zu = φ(|s|)s. (7.3.22)

Noting that in the one-dimensional shear flow, the velocity u = u(z) is positive when
−∂p/∂x = G > 0, it follows from Eqs. (7.3.2), (7.3.21) and (7.3.22) that

u(x, y, z) = −
( z∫

−H

φ(|ζ∇2 p|)ζ dζ

)
∇2 p, (7.3.23)

where we have used the fact that the velocity field vanishes at z = −H. Hence, we
obtain the average velocity field:

u(x, y) = − 1

H

( 0∫
−H

φ(|z∇2 p|)z dz

)
∇2 p, (7.3.24)

where the symmetry of the velocity field about z = 0 has been employed. From this
result, we find that ∇2 · u = 0 leads to a partial differential equation for p = p(x, y)

as in the case of the Newtonian fluid [9].

7.3.4 The Average Velocity Field in the Symmetric Case

In order to derive the average velocity field, we turn to a unidirectional Hele-Shaw
flow with a constant pressure gradient G > 0. That is, let u = u(z)i, where −H ≤
z ≤ H. The equation of motion now becomes

∂p

∂x
= −G = ∂σ

∂z
. (7.3.25)
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Thus,
σ = −Gz, −H ≤ z ≤ H. (7.3.26)

Next, the average velocity is given by

u = 1

H

0∫
−H

u(z) dz = − 1

H

0∫
−H

zu′(z) dz, (7.3.27)

where we have used integration by parts and that u(−H) = 0. Now, it is obvious
that in −H ≤ z ≤ 0, the shear stress σ = −Gz ≥ 0, and u′ ≥ 0 as well. Hence,
in this region, u′ = φ(σ)σ. Thus, for a viscous fluid, we obtain the average velocity
field:

u = 1

G2H

σw∫
0

φ(σ)σ 2 dσ, (7.3.28)

where σw = G H is the shear stress at the wall.
For a power law fluid, we use Eqs. (7.3.7) and (7.3.28) to obtain

u = Hm

1 + 2m

(
G H/K

)1/m

. (7.3.29)

From this, one can solve for G:

G = K (1 + 2m)mum

Hm+1mm
, (7.3.30)

which has been derived by Alexandrou and Entov [16]; see their Eq. (5).
In order to convert (7.3.29) to a form suitable for the averaged velocity field u,

one writes G1/m = G(1−m)/m · G, where G = −∂p/∂x > 0. Thus, one obtains

u = −
[

Hm

1 + 2m

(
H/K

)1/m

|∇2 p|(1−m)/m
]
∇2 p, (7.3.31)

a result obtained by Aronsson and Janfalk [17]. In particular, for a Newtonian fluid,
m = 1 and K = η0, the constant viscosity. Thus,

u = − H2

3η0
∇2 p, (7.3.32)

which means that the averaged velocity field is derivable from a potential.
If the fluid is viscoplastic with a constant yield stress τy, then u′ = 0 in the region

−h ≤ z ≤ 0, where h = τy/G ≤ H. In this case, we find that
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u = 1

G2H

σw∫
τy

φ(σ)σ 2 dσ. (7.3.33)

For a Bingham fluid, the average velocity can deduced from Eqs. (7.3.8) and
(7.3.33):

u = Hσw

3η

[
1 − 3

2

(
τy

σw

)
+ 1

2

(
τy

σw

)3]
, σw > τy . (7.3.34)

Of course, one can rewrite Eq. (7.3.34) by using σw = G H and derive

u = G H2

3η

[
1 − 3

2

(
τy

G H

)
+ 1

2

(
τy

G H

)3]
, G H > τy . (7.3.35)

From the above result, it is obvious that u = 0 if |∇2 p| ≤ τy/H, and

u = − H2

3η

[
1 − 3

2

(
τy

H |∇2 p|
)

+ 1

2

(
τy

H |∇2 p|
)3]

∇2 p, |∇2 p| > τy/H. (7.3.36)

Needless to say, the corresponding results for the Herschel-Bulkley and Cas-
son fluids can be established in a manner similar to that used in the derivation of
Eqs. (7.3.33) and (7.3.34). However, the task of obtaining the average velocity field u
for the Papanastasiou model has yet to be completed. Note that one has to substitute
the expression for φ(|σ |) into (7.3.28) to obtain the average velocity field.

7.3.5 Hele-Shaw Flow Equations

If the material is an incompressible Newtonian fluid, the Hele-Shaw flow equations
canbederived from (7.3.32) andonefinds that the pressurefield satisfies theLaplace’s
equation:

∇ · u = ∂2 p

∂x2
+ ∂2 p

∂y2
= 0, ∇2

2 p = 0. (7.3.37)

Of course, the average velocity field can also be obtained from the stream function
ψ = ψ(x, y), such that u = ∂ψ/∂y, v = −∂ψ/∂x . Since p is harmonic, it follows
that ψ is also harmonic, and these two functions are conjugate functions of each
other.

In the case of a power law fluid, one obtains [17]

∇2 ·
(

|∇2 p|(1−m)/m∇2 p

)
= 0. (7.3.38)



7.3 Hele-Shaw Flow Problems 129

The stream function satisfies

∇2 ·
(

|∇2ψ |m−1∇2ψ

)
= 0. (7.3.39)

For a comprehensive discussion of the solutions of these equations, see [17].

7.3.6 The Asymmetric Case

In several applications of injection moulding [18], the Hele-Shaw flow is assumed to
occur between two parallel planes at z = ±H once again; however, adjacent to each
wall, there is a frozen layer of material so that the molten plastic flows between two
curves z = h−(x, y) and z = h+(x, y). The equations of motion are again given by

∇2 p = ∂zs. (7.3.40)

Integration with respect to z leads to

s(z) = z∇2 p + s(h−) − h−∇2 p, (7.3.41)

where, for brevity, we have suppressed the dependence on (x, y) so that s(z) =
s(x, y, z), h− = h−(x, y), and so on. Applying the viscometric fluidity function
and letting φ(z) stand for φ(|s(z)|), we find that

∂zu = −φ(z)z∇2 p − φ(z)A, (7.3.42)

where A = A(x, y) is the vector

A = s(h−) − h−∇2 p. (7.3.43)

Thus, using the no-slip condition at z = h−, we obtain the velocity field:

u(z) = −∇2 p

( z∫
h−

φ(ζ )ζ dζ

)
− A

z∫
h−

φ(ζ ) dζ. (7.3.44)

Since u = 0 on z = h+ as well, we find that

∇2 p

( h+∫
h−

φ(z)z dz

)
+ A

h+∫
h−

φ(z) dz = 0. (7.3.45)
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It is now obvious that the vector A arises when the flow is not symmetric about the
centreline z = 0. To prove this, let us consider the symmetric case where h+ =
−h− = H and φ(z) = φ(−z), 0 ≤ z ≤ H. It is easy to see that the integrand φ(z)z
is an odd function of z. Hence,

H∫
−H

φ(z)z dz = 0. (7.3.46)

Consequently, from Eq. (7.3.45), we see that the vector A = 0 under symmetric flow
conditions and we recover Eq. (7.3.23) for the velocity field u(z) from Eq. (7.3.44).

Returning to the asymmetric case and assuming that the flow is not totally frozen,
i.e., that

h+∫
h−

φ(z) dz �= 0, (7.3.47)

we find from Eq. (7.3.45) that the vector A = −C∇2 p, where the function C =
C(x, y) is given by

C =
∫ h+

h− φ(z)z dz∫ h+
h− φ(z) dz

. (7.3.48)

Hence, Eq. (7.3.39) may be rewritten as

u(z) =
[ z∫

h−
φ(ζ )ζ dζ − C

z∫
h−

φ(ζ ) dζ

]
∇2 p. (7.3.49)

From this, the average velocity field u can be obtained as follows:

[h+ − h−]u =
[ h+∫

h−

( z∫
h−

φ(ζ )ζ dζ

)
dz − C

h+∫
h−

( z∫
h−

φ(ζ ) dζ

)
dz

]
∇2 p. (7.3.50)

Integration by parts shows that

h+∫
h−

( z∫
h−

φ(ζ )ζ dζ

)
dz =

h+∫
h−

φ(z)[h+z − z2] dz, (7.3.51)



7.3 Hele-Shaw Flow Problems 131

and
h+∫

h−

( z∫
h−

φ(ζ ) dζ

)
dz =

h+∫
h−

φ(z)[h+ − z] dz. (7.3.52)

Consequently,

[h+ − h−]u =
[ h+∫

h−
φ(z)[h+z − z2] dz − C

h+∫
h−

φ(z)[h+ − z] dz

]
∇2 p. (7.3.53)

Replacing C by its form in Eq. (7.3.48), we obtain

[h+ − h−]u =
[

−
h+∫

h−
φ(z)z2 dz +

( ∫ h+
h− φ(z)z dz

)2

∫ h+
h− φ(z) dz

]
∇2 p. (7.3.54)

In injection moulding, this relation is expressed through the fluidity function S2 as
follows:

u = − 2S2
h+ − h− ∇2 p, (7.3.55)

where

S2 = 1

2

[ h+∫
h−

φ(z)z2 dz −

(∫ h+
h− φ(z)z dz

)2

∫ h+
h− φ(z) dz

]
. (7.3.56)

The derivation of S2 given here follows closely that in Sect. 5.3 of the book by
Kennedy [18]. In it, attention is focussed on viscous fluids only and the viscosity
function η(|γ̇ |) is employed instead of the viscometric fluidity function. Clearly,
the derivation of the relevant equations for the Hele-Shaw flows, as presented here,
applies to both viscous and viscoplastic fluids.

It is obvious that one can obtain the fluidity function S2 for the symmetric case
from Eq. (7.3.56), which leads to

S2 = 1

2

H∫
−H

φ(z)z2 dz. (7.3.57)

For purely viscous fluids, this takes the familiar form [9, 18]

S2 = 1

2

H∫
−H

z2

η(z)
dz, (7.3.58)
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because, as demonstrated in Eq. (7.3.6) above, the viscometric fluidity function is the
reciprocal of the viscosity in this case.

At present, there are no applications of the viscometric fluidity function to the
Hele-Shaw flows of viscoplastic fluids. However, it has been used to study the filling
problem in injection moulding; see Chap.3 in [19].

7.4 Linearised Stability Analysis

In the linearised theory of stability, time dependent disturbances of order O(ε) are
imposed on a given steady main flow and the stability of the latter is examined.4 For
example, consider the steady flow of a Newtonian fluid in a channel under a constant
pressure drop per unit length. The linearised stability theory of this flow is classical
and a great deal of research has been done due to the large discrepancy which exists
between the critical Reynolds number computed for linearised stability and those
observed experimentally. For the channel flow, Squire’s theorem[21] implies that
three-dimensional infinitesimal disturbances are more stable than two-dimensional
disturbances for all wave numbers. Accurate numerical solution of the corresponding
Orr-Sommerfeld problem, due to Orszag [22], gives the linearised stability limit for
the Reynolds number Re* = 5722.4, where Re* is computed from the maximal
velocity in the channel and its half-width. Experimental observations indicate that
instability occurs at Re* ≈ 1,000. Attempts to remove this discrepancy resulted in
research into weakly nonlinear stability theory and additional work on linearised
stability theory, with the latter being more successful in explaining the transition to
turbulence. See Chapman [23] for a comprehensive discussion of this matter. Thus,
the study of the linearised stability of the channel flow of a Bingham fluid has a great
deal of merit and is important.

To begin, consider the steady flow of a Binghamfluid in a channel under a constant
pressure drop per unit length. The velocity field is given by (1.4.5) in the sheared
region and by (1.4.6) in the plug, with the location of the yield surface derived in
(1.4.1). For a channel of width H, which is the chosen length scale, and a wall shear
stress of magnitude σw, a velocity scale can be chosen through

U0 = Hσw

2η

(
1 − τy

σw

)2

. (7.4.1)

One can now scale the pressure and stress fields with respect to ρU 2
0 .

The Reynolds number is Re = ρU0H/η, and the Bingham number is Bn =
τy H/ηU0. Let A be the non-dimensional form of the first Rivlin-Ericksen tensor.
Using this, the non-dimensional form of the constitutive equation for the Bingham
fluid is more conveniently written as

4 An excellent introduction to linearised hydrodynamic stability theory of the flows of Newtonian
fluids has been written by Lin [20].

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
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S = 1

Re
η(K (A)), η(K (A)) = η + Bn

K (A)
, T (S) >

Bn

Re
, (7.4.2)

with

A = 0, T (S) ≤ Bn

Re
. (7.4.3)

Finally, the base flow solution has the pressure field given by

P(x) = −σw

τy
· Bn
Re

x, (7.4.4)

and the velocity field U = U0(y)j, where

U0(y) =
⎧⎨
⎩

1, 0 ≤ |y| ≤ τy/σw,

1 −
(

[|y| − τy/σw]/[1 − τy/σw]
)2

, τy/σw ≤ |y| ≤ 1.
(7.4.5)

Now, consider an infinitesimal disturbance of the form (εp, εu), ε << 1, superim-
posed on the primary flow (P, U) described above. The perturbed flow field satisfies
the following equations [24]:

∇ · [U + εu] = 0, (7.4.6)

εut +
(

(U + εu) · ∇
)(

U + εu
)

= −∇(P + εp) + ∇ · (S + εS∗). (7.4.7)

Whenever T (S + εS∗) > Bn/Re, one notes that S is derived from the base flow and
S∗ is obtained from the disturbance to the primary velocity field. The equations of
motion for the linearised disturbances can be derived, retaining terms of order ε only.
These are:

∇ · u = 0, (7.4.8)

ut + vUy + Uux = −px + 1

Re
∇2u + Bn

Re

(∇2u − uyy − vyx

K (u)

)
, (7.4.9)

vt + Uvx = −py + 1

Re
∇2v

+ Bn

Re

(
2vy

d

dy

[
1

K (u)

]
+ ∇2v − vxx − uyx

K (u)

)
, (7.4.10)

wt + Uwx = −pz + 1

Re
∇2w

+ Bn

Re

(
(vz + wy)

d

dy

[
1

K (u)

]
+ ∇2w

K (u)

)
, (7.4.11)

where ∇2 is the three dimensional Laplacian, and Uy = dU/dy, ux = ∂u/∂x, etc.
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At the fixed boundaries of the flow region, there is no slip, i.e., u = 0 on y = ±1.
The perturbation (εp, εu) is assumed to be periodic in the x- and z-directions, say
with periods 2X and 2Z respectively. Just as in the case of the flow in awavy channel,
it is assumed that the yield surfaces change slightly to

y+ = (τy/σw) + εh+(x, z, t), y− = (τy/σw) + εh−(x, z, t), (7.4.12)

where h+ and h− are also periodic in x and z. The linearisations for the temporal and
spatial derivatives of the perturbations are quite complicated to obtain, for one has
to consider the perturbation of the yield surface as well as the equations of motion.
The first requirement is that at the yield surface, the following holds:

K (A(U + εu)) = 0, at y = y+, y−. (7.4.13)

Writing A(U + εu) = A(U) + εA(u), the components of the latter tensor can be
determined at the locations (x,±(τy/σw), z, t). It turns out that each component is
zero, except

Axy(x, τy/σw, z, t) = uy(x, τy/σw, z, t) + vy(x, τy/σw, z, t)

= 2h+(x, z, t)

(1 − τy/σw)2
, (7.4.14)

Axy(x,−τy/σw, z, t) = uy(x,−τy/σw, z, t) + vy(x,−τy/σw, z, t)

= − 2h−(x, z, t)

(1 − τy/σw)2
. (7.4.15)

The second is that Cauchy’s equations of motion, viz.,

∫
Ω

ρ
d(U + εu)

dt
dv =

∫
∂Ω

Tn d S (7.4.16)

be linearised as well. Here, we note that dU/dt = 0 for the base flow. Hence, the
total stress tensor meets ∇ · T(U) = 0, where T (U) = −P1 + S(U) is the stress
tensor associated to the base flow. Of course, for the perturbed flow, one has

T (U + εu) = −P1 − εp1 + S(U + εu). (7.4.17)

In addition, one has to realise that the unit normal vector n to the perturbed yield
surface occurs in (7.4.16), and that d(εu)/dt = ε∂u/∂t + O(ε2).

Next, the periodicity of the perturbation u in x and z permits one to obtain the
value of d(εu)/dt by averaging over the volume:−X ≤ x ≤ X,−(τy/σw +εh−) ≤
y ≤ (τy/σw + εh+),−Z ≤ z ≤ Z . Thus, to the first order,
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X∫
−X

Z∫
−Z

τy/σw+εh+∫
−τy/σw−εh−

d(εu)

dt
dv = ε

8X Zτy

σw

∂u
∂t

(x,± τy

σw
, z, t) + O(ε2). (7.4.18)

The unit external normal n to the upper perturbed surface has the components:

n =
(

ε
∂h+
∂x

, 1, ε
∂h+
∂z

)
+ O(ε2), (7.4.19)

while that normal to the lower surface has the components:

n =
(

ε
∂h−
∂x

, 1, ε
∂h−
∂z

)
+ O(ε2). (7.4.20)

Omitting additional details, the outcome of the linearisation is:

ut (x,±τy/σw, z, t) = σ 2
w Bn

τ 2y Re

1

8X Z

X∫
−X

Z∫
−Z

[h+(x ′, z′, t)

+ h−(x ′, z′, t)] dx ′ dz′, (7.4.21)

vt (x,±τy/σw, z, t) = σw

τy

1

8X Z

X∫
−X

Z∫
−Z

[p(x ′,−τy/σw, z′, t)

− p(x ′, τy/σw, z′, t)] dx ′ dz′, (7.4.22)

wt (x,±τy/σw, z, t) = 0. (7.4.23)

The final results are:

• Consider one-dimensional perturbations of the type:

(p, u, h+, h−) ∼ (p(y), u(y), h+, h−)eσ t , σ = μ + iν. (7.4.24)

If σ = 0, the flow is simply a variant of the steady channel flow with a change in
u(y) due to a variation of the pressure drop per unit length. This normal mode
corresponds to a straightforward expansion or contraction of the plug region.
If σ �= 0, it turns out that μ < 0 for all values of the Reynolds number. In
conclusion, this normal mode is unconditionally linearly stable.

• If two dimensional perturbations are to be examined, introduce a stream function
ψ = ψ(x, y, t) and let u = ∂ψ/∂y, and v = −∂ψ/∂x . In normal mode, the
solution may be written as

(ψ, p, h+, h−) = ( f (y), p(y), h+, h−)eiα(x−σ t). (7.4.25)
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Considering the case when α > 0, this leads to an Orr-Sommerfeld equation for
the Bingham fluid which has to be solved numerically to find the phase velocity σ.

Note that the flow will be stable if the imaginary part of σ is negative, i.e., ν < 0.
• The minimum Reynolds number for the two dimensional perturbations increases
almost linearly with increasing Bingham number i.e., Re = O(Bn). That is, the
flow in a channel of a Bingham fluid is more stable than that of a Newtonian fluid
with Bn = 0.

• The linear stability bounds provide a theoretical upper bound on the Reynolds
number needed for transition [25]; see Sect. 9.5.

If one considers three dimensional disturbances, where each component of the
perturbation has the form:

q(x, y, z, t) = f (y)ei(αx+βz−σ t), (7.4.26)

the following results can be obtained [26]:

• For short wave lengths, the flow in a Bingham fluid will be more stable for larger
Reynolds numbers than that for a Newtonian fluid.

• As the Bingham number Bn → ∞, the critical Reynolds number is of the form
Re = O(Bn3/4).

• For long wave lengths, this bound can be improved to Re = O(Bn), which is
identical to the result obtained in the study of two-dimensional disturbances.
Additional research [27] into the stability of the flow in a channel using bothmodal
and non-modal disturbances has led to the following conclusions:

• The modal approach shows that the channel flow is linearly stable. In particular, if
one considers streamwise perturbations, i.e., changes to (v, w) only are considered
with β = 0 in (7.4.26), the effect of the Bingham number is less significant than
that for span wise perturbations for (u, v) with α = 0, and oblique perturbations
of either (u, v) or (v, w) when α �= 0, β �= 0.

• Regarding non-modal disturbances, it is found that the Bingham yield stress dissi-
pation terms reduce the degree of non-normality. This is because the vanishing of
the disturbances at the yield surface and the increased viscous dissipation reduce
the energy transient growth compared with that in a Newtonian fluid for all wave
numbers. In particular, the effect of the Bingham number is much weaker for a
stream wise perturbation than for a span wise or oblique one.

In conclusion, one can assert that the channel flow of a Bingham fluid is more
stable than that in a Newtonian fluid, and that the critical Reynolds number Re
increases with the Bingham number Bn.

Thus, it is surprising to discover that the helical flow of a Bingham fluid due to a
co-rotating regime and the axial motion of the inner cylinder is less stable than that
of a Newtonian fluid [28, 29]. To make this precise, denote the azimuthal, basic flow
by v = V (r) in the cylindrical geometry. Let the velocity perturbations in the radial,
azimuthal and axial directions along with that of the pressure be of the modal form:

(u, v, w, p) ∼ (u(r), v(r), w(r), p(r))ei(kz−σ t). (7.4.27)

http://dx.doi.org/10.1007/978-3-662-45617-0_9
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Deriving the relevant eigenvalue problems for (u, v), it has been found that the
critical inner Reynolds number does not increase monotonically with the Bingham
number Bn, over a range of small to moderate Bn. The reason for the reduction in the
Reynolds number is due to an increase in the rate of strain of the basic flow which, in
turn, amplifies the transfer of energy to the perturbation through the inertial terms in
the energy equation [28, 29]. For larger Bn, the yielded region contracts as expected
and the inertial energy transfer is bounded by the yield stress dissipation, similar to
that found in the case of non-modal disturbances of the channel flow.

7.5 Summary

To pose the problem concerned with the flow in a wavy channel, or the Hele-Shaw
flows, or that concerned with the linearised stability of a channel or a helical flow
is, as shown above, not an easy task. Their solution requires, once again, a great
deal of ingenuity and hard analysis, followed by some highly challenging numerical
implementation.
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Chapter 8
Variational Principles and Variational
Inequalities

In this chapter, we shall derive two variational principles and variational inequalities
for incompressible viscoplastic fluids. There is a variational principle for the velocity
field and another one for the stress tensor; in both, it is necessary to ignore inertia
as shown in Sect. 8.1. Surprisingly, variational inequalities can be derived even if
both the body force and inertia are present under the assumption that there exists a
velocity field which satisfies the equations of motion; see Sect. 8.2. This derivation is
purely formal and does not address the questions of existence and uniqueness of the
relevant solutions. From this inequality, it is shown in Sect. 8.3 that a general energy
balance equation can be derived under fairly general conditions on the velocity field.
Next, the fundamental inequality is extended to non-isochoric trial velocity fields in
Sect. 8.4, and to flows in the presence of wall slip in Sect. 8.5.

In Sect. 8.6, questions regarding the existence and uniqueness of solutions to
the variational principles and the variational inequality are answered through an
appeal to convex analysis. In broad terms, the solution found from one is the same
as that found from the other, i.e., they are equivalent when inertia is ignored; see
Sect. 8.6.5. In the next section Sect. 8.7, it is shown that under certain conditions
the solution of the variational inequality satisfies the equations of motion when the
fluid has yielded; this derivation complements that found earlier in Sect. 8.6.5. In
addition, the boundary conditions under which the variational inequality and the
trilinear functional associated to the convected acceleration terms can be simplified
are addressed in Sect. 8.8.

Next, the viscoplasticity constraint tensor ΛΛΛ is reintroduced in Sect. 8.9 and rela-
tions between this tensor, the solution velocity field u and any admissible velocity
field v are mentioned. In turn, the use of this tensor leads to an operator-splitting
method for the solution of Dirichlet type boundary value problems, a topic covered
in Sect. 10.3.

Finally, the fundamental inequality is extended to compressible viscoplastic fluids
in Sect. 8.10. Applications of this are discussed later in Sects. 10.4 and 10.5.
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8.1 Minimum and Maximum Principles for Incompressible
Viscoplastic Fluids

It is well known that in continuum mechanics, there are two different variational
principles for incompressible fluids. While a precise description of the various terms
will be given later, here are the statements of these principles:

1. Of all kinematically admissible velocity fields v, the solution velocity field u
minimises a functional Φ(v), defined for all v.

2. Of all statically admissible stress fields T∗, the solution stress field T maximises
a functional Ψ (T∗), defined for all T∗.

In the first one, the solution velocity field u arises as a minimum of a suitably
chosen functional, whereas in the second one, the actual stress field T maximises a
totally different functional. Thus, we have to define these functionals and prove the
two principles enunciated above, with the functionals varying from one material to
another; the primary focus here is on viscoplastic fluids, of course. To begin, one has
to define a kinematically admissible velocity field and a statically admissible stress
field.

8.1.1 Basic Definitions and Principle of Virtual Power

Suppose that an incompressible fluid occupies a domain Ω with a smooth boundary
∂Ω. This boundary is decomposed into two mutually disjoint subsets ∂Ωu and ∂Ωt

such that
∂Ω = ∂Ωu ∪ ∂Ωt; ∂Ωu ∩ ∂Ωt = ∅. (8.1.1)

On the part ∂Ωu, the velocity vector U is given, whereas on ∂Ωt, the external stress
vector t is prescribed. We are now in a position to define a kinematical admissible
velocity field and a statically admissible stress field.

1. DefinitionAkinematically admissible velocity field is continuous, and has piece-
wise continuous partial derivatives with respect to x ∈ Ω and all t > 0, obeys
the boundary condition on ∂Ωu, and is divergence free.

2. Definition A statically admissible stress field is continuous, and has piecewise
continuous partial derivatives with respect to x ∈ Ω and all t > 0, satisfies the
equations of motion in the absence of inertia, and obeys the boundary condition
on ∂Ωt .

To prove the variational principles, one needs the principle of virtual power which
follows next.

Consider any stress field T which satisfies the equations of motion in the absence
of inertia; let the solution velocity field be u. Using

Tij,j + ρbi = 0, (8.1.2)
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form the dot product of this equation with an arbitrary velocity field v, and integrate
the equation over the domain Ω. One obtains:

∫
Ω

Tij,j(u)vi dv =
∫
Ω

(Tij(u)vi),j dv −
∫
Ω

Tij(u)vi,j dv

=
∫

∂Ω

Tij(u)vinj dS − 1

2

∫
Ω

Tij(u)Aij(v) dv, (8.1.3)

where Aij(v) = (vi,j + vj,i). Hence, (8.1.2) leads to the following:

1

2

∫
Ω

Tij(u)Aij(u) dv =
∫

∂Ω

Tij(u)vinj dS +
∫
Ω

ρbivi dv. (8.1.4)

Using the fact that Tijnj = ti, which is the stress vector on the boundary ∂Ω, we
obtain the principle of virtual power:

1

2

∫
Ω

Tij(u)Aij(v) dv =
∫

∂Ω

ti(u)vi dS +
∫
Ω

ρbivi dv. (8.1.5)

In direct notation,

1

2

∫
Ω

T(u) : A(v) dv =
∫

∂Ω

t(u) · v dS +
∫
Ω

ρb · v dv. (8.1.6)

In incompressible materials, T = −p1 + S, and all velocity fields are divergence
free. The principle of virtual power becomes:

1

2

∫
Ω

S(u) : A(v) dv =
∫

∂Ω

t(u) · v dS +
∫
Ω

ρb · v dv. (8.1.7)

It follows readily from this that

1

2

∫
Ω

S(u) : [A(v)− A(u)] dv =
∫

∂Ω

t(u) · [v − u] dS +
∫
Ω

ρb · [v − u] dv. (8.1.8)

A second version of the principle of virtual power can be proved under the assumption
that two separate stress fields T and T∗ satisfy the equations of equilibrium subject
to the same body force field b. If the respective, corresponding extra stress tensor
fields are S and S∗, one finds from (8.1.7) that

1

2

∫
Ω

[S − S∗] : A(u) dv =
∫

∂Ω

[t − t∗] · u dS. (8.1.9)



142 8 Variational Principles and Variational Inequalities

8.1.2 The Velocity and Stress Functionals

To be specific, the solution velocity field u is kinematically admissible and gives rise
to a stress tensor field T(u) which satisfies the equations of motion in the absence of
inertia; the body force b is assumed to be non-zero. Thus,

∇ · T(u) + ρb = 0. (8.1.10)

Let us now consider viscoplastic fluids, such Herschel-Bulkley or Casson fluids,
which are different from the Bingham fluid. It is known that these fluids have a shear
rate dependent viscosity and a constant yield stress. Can the minimum andmaximum
principles, originally proved by Prager [1] for Bingham fluids, be extended to such
fluids? This matter will be considered next.

To begin, let the constitutive equation be expressed in terms of the tensorA derived
from the velocity field v as follows:

A = 0, T(S) ≤ τy, (8.1.11)

S = η(K(A))A + τy

K(A)
A, T(S) > τy. (8.1.12)

Thus,

T(S) ≤ τy, K(A) = 0; T(S) = η(K(A))K(A) + τy, K(A) > 0. (8.1.13)

From (8.1.11) and (8.1.12), it is obvious that the stress tensor S(u), defined through
A = A(u), and the kinematic tensor A(u) are parallel. Thus, replacing K(A(u)) by
K(u) for the sake of simplicity, one obtains:

S(u) : A(u) = ||S(u)|| · ||A(u)|| = 2T(S(u))K(u), (8.1.14)

whereas, from the Cauchy-Schwarz inequality,

S(u) : A(v) ≤ 2T(S(u))K(v), (8.1.15)

where v is any admissible velocity field.
The velocity potential φ(K(A)) is defined, as in Sect. 4.6, so that it satisfies the

following conditions:

φ(K(A)) = 0, K(A) = 0, (8.1.16)

dφ

dK(A)
= T(S), K(A) > 0. (8.1.17)

Since T(S) is a function of K(A) when the fluid has yielded, it is convenient to
use a simpler notation and let K(A) = ξ, T = T̂(ξ), ξ > 0, so that

T̂(ξ) = η(ξ)ξ + τy, ξ > 0. (8.1.18)

http://dx.doi.org/10.1007/978-3-662-45617-0_4
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The potential associated to the stress tensor in (8.1.12) is given by (cf. (8.1.16) and
(8.1.17)):

φ(K(A)) =
K(A)∫
0

T̂(ξ) dξ. (8.1.19)

Now, define a new stress power functional Φ(v) in which one subtracts from the
potential in (8.1.19), the power due to the body force b and the external power due to
the surface traction vector t,which acts on the boundary ∂Ωt of the domainΩ. Thus,

Φ(v) =
∫
Ω

φ(K(v)) dv −
∫
Ω

ρb · v dv −
∫

∂Ωt

t · v dS. (8.1.20)

The minimum principle asserts that:

Theorem 8.1.1 Of all kinematically admissible velocity fields v, the solution veloc-
ity field u minimises the functional Φ(v).

Clearly, the proof of the above Theorem is complete if one can show that Φ(v) ≥
Φ(u), which requires that T(ξ) be a convex function, i.e., it meets the following
condition [2, 3]:

dT(ξ)

dξ
≥ 0, ξ > 0. (8.1.21)

See Sect. 8.1.3 below for a proof of the minimum principle using this condition.
In order to derive a maximum principle, one requires a stress potential Γ (T(S)),

similar to that defined in Sect. 4.6. It must satisfy the following conditions:

Γ (T(S)) = 0, T(S) ≤ τy, (8.1.22)

dΓ

dT(S)
= K(A), T(S) > τy. (8.1.23)

Such a functional can be constructed provided one can invert (8.1.13)2 and express
K(A) in terms of T(S). To make this transparent, consider the case of the Herschel-
Bulkley fluid and recall that (cf. (4.6.40)):

T(S) = kbK(A)m + τy, K(A) > 0, 0 < m ≤ 1. (8.1.24)

This can be inverted and one obtains

K(A) =
(

T(S) − τy

kb

)1/m

, T(S) > τy. (8.1.25)

Thus, in general, K(A) will be assumed to be a function of the invariant T(S),
when T(S) > τy. Expressing this as K̂(τ ), T(S) = τ > τy, we define the stress
potential as follows:

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Γ (T(S)) =
T(S)∫
τy

K̂(τ ) dτ. (8.1.26)

The maximum principle states that:

Theorem 8.1.2 Of all statically admissible stress fields, the true stress field
T = −p1 + S will maximise the stress power functional

Ψ (T∗) =
∫

∂Ωu

t∗ · U dS −
∫
Ω

Γ (T(S∗)) dv. (8.1.27)

In order to prove this, one has to demand that the function K̂(τ ) be a non-decreasing
function, i.e., it meets the following condition [2, 3]:

dK̂(τ )

dτ
≥ 0, τ > τy. (8.1.28)

This inequality holds once again for the Herschel-Bulkley fluid; see (8.1.25) above.
Finally, the result in (8.1.14) can be given another useful interpretation. One can

consider the area of a rectangle of the kinematic and stress norms, i.e., K(A)×T(S),

and observe that it can be split into two sub-areas as in Fig. 8.1, leading to

K(A) × T(S) =
K(A)∫
0

T̂(ξ) dξ +
T(S)∫
τy

K̂(τ ) dτ = φ(K(A)) + Γ (T(S)). (8.1.29)

Fig. 8.1 The kinematic and stress norm rectangle
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8.1.3 Proofs of the Theorems

In this sub-section, detailed proofs are provided for the two theorems stated above.
The first one is the minimum principle which asserts that:

Theorem 8.1.1 Of all kinematically admissible velocity fields v, the solution veloc-
ity field u minimises the stress power functional Φ(v), given by

Φ(v) =
∫
Ω

φ(K(v)) dv −
∫

∂Ωt

t · v dS −
∫
Ω

ρb · v dv. (8.1.30)

Clearly, the proof of the above Theorem is complete if one can show that Φ(v) ≥
Φ(u).

Proof First of all, one recalls that the solution velocity field u satisfies the equations
of motion given above in (8.1.2). On the surface of the body, the traction vector t
is prescribed on ∂Ωt only. However, it is related to the stress tensor T(u) which
exists throughout the body, and the unit, external normal n defined everywhere on
the bounding surface ∂Ω through

t = t(u) = T(u)n. (8.1.31)

Since v = u = U on the complement of ∂Ωt, that is on the set ∂Ωu, it follows that

∫
∂Ωt

t(u) · (v − u) dS =
∫

∂Ω

t · (v − u) dS. (8.1.32)

Using the principle of virtual power (8.1.7), we are led to proving that

Φ(v) − Φ(u) =
∫
Ω

[
φ(K(v)) − φ(K(u))

− 1

2
S(u) : [A(v) − A(u)]

]
dv ≥ 0, (8.1.33)

where S(u) is derived from the constitutive equation (8.1.11), using the relevant
tensor A(u).

In fact, appealing to (8.1.13) and (8.1.14), it follows that one has to prove

Φ(v) − Φ(u) ≥
∫
Ω

[
φ(K(v)) − φ(K(u))

− T(S(u))[K(v) − K(u)]
]

dv ≥ 0. (8.1.34)
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From its definition in (8.1.18), it is easy to see that the integrand in (8.1.34) is
itself expressible as the following integral:

I =
K(v)∫

K(u)

[
T̂(ξ) − T(S(u))

]
dξ. (8.1.35)

In verifying the above, note that T(S(u)) is constant, as far as the integration with
respect to ξ is concerned. Thus, it is sufficient to show that I ≥ 0.

We shall now impose the condition mentioned earlier in (8.1.21):

dT̂(ξ)

dξ
≥ 0, 0 < ξ < ∞, (8.1.36)

which is equivalent to demanding that T̂(ξ) is a non-decreasing function of ξ.

Examination of (8.1.35) shows that there are three cases to consider:

• At a point in the flow domain, the two invariants are equal, i.e., K(u) = K(v). In
this case, the integral I = 0.

• Next, suppose that K(v) > K(u) ≥ 0. Then, the inequality (8.1.36) proves that
I ≥ 0.

• Finally, let K(u) > K(v) ≥ 0. Then, not only is the integrand in (8.1.35) non-
positive, the lower limit in (8.1.35) is larger than the upper one. Thus, the integral
I ≥ 0.

In conclusion, it has been established that

Φ(v) − Φ(u) ≥
∫
Ω

I dv ≥ 0, (8.1.37)

which proves theminimumprinciple. That is, of all kinematically admissible velocity
fields v, the solution vector u minimises the functional Φ(v).

Remark From (8.1.33), it follows that one can replace the functional Φ(v) by the
following:

Φ(v) =
∫
Ω

[
φ(K(v)) − 1

2
S(u) : A(v)

]
dv. (8.1.38)

Thus, the solution vector field u minimises the above functional.

We shall now turn to the proof of the maximum principle, which is:

Theorem 8.1.2 Of all statically admissible stress fields, the true stress field
T = −p1 + S will maximise the stress power functional

Ψ (T∗) =
∫

∂Ωu

t∗ · U dS −
∫
Ω

Γ (T(S∗)) dv, (8.1.39)
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where the stress potential Γ (T(S∗)) has been defined for all admissible stress fields
S∗ in (8.1.22), (8.1.23) and (8.1.26).

Proof Let T be the admissible stress tensor which is the true solution. By definition,
every admissible stress field gives rise to the same external stress vector on ∂Ωt .

Appealing to the principle of virtual power (8.1.7) and observing that for any velocity
field u which equals U on ∂Ωu, one finds that

∫
∂Ωu

(t − t∗) · U dS =
∫

∂Ω

(t − t∗) · u dS = 1

2

∫
Ω

[S − S∗] : A(u) dv. (8.1.40)

Hence, we have to prove that

Ψ (T) − Ψ (T∗) =
∫
Ω

1

2
(S − S∗) : A(u) dv

−
∫
Ω

[Γ (T(S)) − Γ (T(S∗))] dv ≥ 0. (8.1.41)

Now, let u be the solution velocity field. Appealing once again to (8.1.13) and
(8.1.14), the proof reduces to showing that

Ψ (T) − Ψ (T∗) ≥
∫
Ω

[T(S) − T(S∗)]K(u) dv

−
∫
Ω

[Γ (T(S)) − Γ (T(S∗))] dv ≥ 0. (8.1.42)

Consider the integrand above and use (8.1.26) to obtain:

I = [T(S) − T(S∗)]K(u) − [Γ (T(S)) − Γ (T(S∗))]

=
T(S)∫

T(S∗)

[
K(u) − K̂(τ )

]
dτ. (8.1.43)

As in the case of the minimum principle, there are three cases to consider.

• At a point in the flow domain, the two invariants are equal, i.e., T(S) = T(S∗). In
this case, the integral I = 0.

• Next, suppose thatT(S) > T(S∗).Then, the inequality (8.1.28) proves thatI ≥ 0.
• Finally, let T(S∗) > T(S). Then, not only is the integrand non-positive, the lower
limit in (8.1.43) is larger than the upper one. Thus, the integral I ≥ 0.
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Thus, it has been established that

Ψ (T) − Ψ (T∗) ≥
∫
Ω

I dv ≥ 0, (8.1.44)

which proves the maximum principle. That is, of all admissible stress fields T∗, the
solution stress tensor T maximises the functional Ψ (T∗).

Remark Just as in the case of the minimum principle, an examination of (8.1.41)
shows that the true stress field T = −p1 + S maximises the functional

Ψ (S∗) =
∫
Ω

[
1

2
S∗ : A(u) − Γ (T(S∗))

]
dv. (8.1.45)

8.1.4 Equality of Φ(u) and Ψ (T)

Let us assume that the velocity field u minimises the stress power functional, Φ(v),

and that the stress field T maximises the corresponding stress power functional,
Ψ (T∗). Appealing to (8.1.30) and (8.1.39), one finds that

Φ(u) − Ψ (T) =
∫
Ω

φ(K(u)) dv −
∫

∂Ωt

t · u dS −
∫
Ω

ρb · u dv

−
∫

∂Ωu

t · U dS +
∫
Ω

Γ (T(S)) dv. (8.1.46)

Now, one can combine the stress power integrals to obtain the stress power over the
whole body, i.e., ∫

∂Ωt

t · u dS +
∫

∂Ωu

t · U dS =
∫

∂Ω

t · u dS. (8.1.47)

Next, the relationship between T(S(u)) and K(u) in (8.1.14) and (8.1.29) leads to
the result that∫

Ω

φ(K(u)) dv +
∫
Ω

Γ (T(S)) dv =
∫
Ω

K(u) × T(S(u)) dv

= 1

2

∫
Ω

S(u) : A(u) dv. (8.1.48)

From the principle of virtual power (8.1.7), (8.1.46) and (8.1.47), it is easy to see
that Φ(u) = Ψ (T).
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The two principles just proven can be summarised as:

Ψ (T∗) ≤ Ψ (T) = Φ(u) ≤ Φ(v) (8.1.49)

for all statically admissible stress fields T∗ and all kinematically admissible velocity
fields v.

8.1.5 Shear Rate Dependent Yield Stress

In a couple of papers [3, 4], it has been claimed that the minimum and maximum
principles hold even if the yield stress depends on the shear rate, i.e., that τy =
τy(K(A)) is valid. If one looks at the definition of the potential associated with the
stress tensor in (8.1.18) and (8.1.19), there is no difficulty in replacing a constant
yield stress τy by one that depends on the shear rate and modifying the proof of the
minimum principle. However, when one looks at the stress potential in (8.1.26), the
lower limit of the integral, viz., τy, cannot be shear rate dependent; otherwise, the
proof of the maximum principle will fail. Consequently, incorporating the shear rate
dependence of the yield stress into the constitutive equations of viscoplastic fluids
fails to deliver the result that Φ(u) = Ψ (T).

8.1.6 Steady Flow in a Pipe of Uniform Cross-Section

As an application of the variational principle for the velocity field, consider the flow
of a Bingham fluid along the axis of a pipe of uniform cross-section due to a constant
pressure drop per unit length G > Gc > 0. Assuming that the axis of the pipe points
in the z-direction, we may assume without loss of generality that each permissible
velocity field has the form v = w(x, y)k, with the proviso that w(x, y) is zero on the
boundary of the pipe. Considering a unit length of the pipe, the external unit normal
vectors at the inlet and outlet are given by n = ±k, with the positive sign indicating
that this vector points in the direction of the flow. Now, the stress distribution on the
end planes is given by

t = ±(Sxzi + Syzj − pk), (8.1.50)

where p = −Gz is the pressure. Across the end planes at z = z2, z = z1, with
z2 − z1 = 1, one finds that

t · v|z=z2
− t · v|z=z1

= Gw(x, y). (8.1.51)

From (2.5.9), we see that

2K2(A) = A(v) : A(v) = 2

[(
∂w

∂x

)2

+
(

∂w

∂y

)2]
= 2∇w · ∇w. (8.1.52)

http://dx.doi.org/10.1007/978-3-662-45617-0_2
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Next, one notes from (8.1.19) that in a Bingham fluid,

φ(K(A)) = 1

2
ηK(A)2 + τyK(A). (8.1.53)

Thus, the stress power functional to be minimised becomes:

Φ(w) = 1

2
ηa(w, w) + τyj(w) − (G, w), (8.1.54)

where

a(w, w) =
∫
Ω

∇w · ∇w da, (8.1.55)

j(w) =
∫
Ω

|∇w| da, (8.1.56)

(G, w) =
∫
Ω

Gw da, (8.1.57)

with Ω representing the cross-section of the pipe. A much simpler version of the
functional Φ(w) arises when one considers the flow in a channel, leading to (1.9.3)–
(1.9.5).

For Herschel-Bulkley and Casson fluids, one can appeal to (4.6.41) and (4.6.46)
respectively to determine the relevant functional Φ(w) to be minimised.

8.2 Virtual Power and the Basic Inequality for
Incompressible Viscoplastic Fluids

As mentioned in Chap.1, the flow of a Bingham fluid in a channel is governed by
a variational inequality. In this section, we shall derive a fundamental inequality for
the flows of viscoplastic fluids, which are more general than Bingham fluids. It will
be shown that the inequality includes both inertia and the body force, based on the
derivation by Huilgol [5] closely. The procedure is purely formal and produces a
general inequality, employing the Cauchy-Schwarz inequality as its basic tool.

8.2.1 A Point-Wise Inequality: Isochoric Velocity Fields

In order to obtain such an inequality, we shall use the constitutive relations
Eqs. (4.2.1)–(4.2.8) as follows. Let the flow domainΩ be a bounded or an unbounded
set in the three dimensional Euclidean space in general, and let it be decomposed
into two disjoint subsets Ω1 and Ω0, such that

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Ω = Ω1 ∪ Ω0, Ω1 ∩ Ω0 = ∅, (8.2.1)

where

Ω1 = {x ∈ Ω : A(u) �= 0}, Ω0 = {x ∈ Ω : A(u) = 0}. (8.2.2)

That is, Ω1 is the region where the fluid has yielded, and Ω0 is where it moves as a
rigid body or is at rest. Note that in Eq. (8.2.2), either Ω1 or Ω0 may be empty.

Now, suppose that u is the velocity field which satisfies the equations of motion
in Ω , i.e.,

∇ · T(u) + ρb = ρa, a = ∂u
∂t

+ u · ∇u, (8.2.3)

where ρ is the density of the fluid, which is assumed to be incompressible, a is
the acceleration vector derived from u, and b is the body force. Let v be any other
velocity field that is isochoric, i.e., ∇ · v = 0. Then, in the set Ω1, where the fluid
has yielded, one finds from the constitutive equation (4.2.8) that the pseudo-stress
power is given by:

1

2
T(u) : A(v) = 1

2
S(u) : A(v) = 1

2
η(K(u))A(u) : A(v)

+ 1

2

τy

K(u)
A(u) : A(v). (8.2.4)

Employing the Cauchy-Schwarz inequality on the term involving the yield stress
contribution, we find that in the set Ω1,

1

2
T(u) : A(v) ≤ 1

2
η(K(u))A(u) : A(v) + τyK(v). (8.2.5)

On the other hand, in the set Ω0, one uses Eq. (4.2.1) and the Cauchy-Schwarz
inequality to derive that

1

2
T(u) : A(v) ≤ τyK(v). (8.2.6)

Thus, Eq. (8.2.5) applies in Ω0 as well, because A(u) = 0 in that set. In other words,
Eq. (8.2.5) is valid in the whole region Ω.

The corresponding results for the solution velocity field u can be obtained quite
easily. One finds that in the set Ω1, the true stress power is given by:

1

2
T(u) : A(u) = 1

2
η(K(u))A(u) : A(u) + τyK(u) (8.2.7)

while in the set Ω0,
1

2
T(u) : A(u) = 0. (8.2.8)

Thus, Eq. (8.2.7) is valid in Ω.

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Consequently, at every point in the entire flow domain Ω ,

1

2
T(u) : [A(v) − A(u)] ≤ 1

2
η(K(u))A(u) : [A(v) − A(u)]

+ τy[K(v) − K(u)]. (8.2.9)

Now, the definition of the tensor A means that

A(v) − A(u) = A(v − u). (8.2.10)

Thus, we obtain

1

2
T(u) : A(v − u) ≤ 1

2
η(K(u))A(u) : A(v − u)

+ τy[K(v) − K(u)]. (8.2.11)

This point-wise inequality, which is a hybrid measure of the stress power in the trial
and actual velocity fields, will be used below to derive a fundamental inequality
that applies to all flows of yield stress fluids. The crucial point to observe is that
the point-wise inequality has been obtained by replacing the yield stress term by its
upper bound, for the yield stress term is not a differentiable function of its argument
K when K = 0, depending as it does on the square root of the second invariant of
the Rivlin-Ericksen tensor.

8.2.2 The Integral Inequality

Now, turn to the equations of motion Eq. (8.2.3) and take its dot product with the
vector (v − u). We obtain

ρ(a − b) · (v − u) + 1

2
T(u) : A(v − u) − ∇ · [(v − u) · T(u)] = 0. (8.2.12)

Using the inequality Eq. (8.2.11), we can convert Eq. (8.2.12) into the following:

ρ(a − b) · (v − u) + 1

2
η(K(u))A(u) : A(v − u) + τy[K(v) − K(u)]

≥ ∇ · ((v − u) · T). (8.2.13)

This inequality holds at all points in the flow domain, and will be transformed into
one that applies over the flow region by integration with respect to its volume.

To accomplish this, following Duvaut and Lions [6, 7], let us define some func-
tionals. First of all, the viscous dissipation rate integral for any scalar field K(u),
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and two velocity fields v and w is:

a(K(u), v, w) = 1

2

∫
Ω

η(K(u))A(v) : A(w) dv. (8.2.14)

It should be noted that a(K(u), v, w) is always linear in its second and third arguments
v and w, and not in its first argument K(u) unless the viscosity, η, is a constant. Next,
the yield stress dissipation rate integral is:

τyj(v) = τy

∫
Ω

K(v) dv. (8.2.15)

Also, the bilinear functional is the familiar inner product, i.e.,

(v, w) =
∫
Ω

v · w dv. (8.2.16)

Finally, the trilinear functional for any three vector fields u, v and w is:

b(u, v, w) =
∫
Ω

ujvi,jwi dv. (8.2.17)

Expressing the acceleration vector a in terms of u as in Eq. (8.2.3), one can integrate
Eq. (8.2.13) over the flow domain Ω , and derive

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) + a(K(u), u, v − u)

+ τy[j(v) − j(u)] ≥
∫
Ω

∇ · ((v − u) · T) dv. (8.2.18)

Employing the divergence theorem on the right side, one finds that

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) + a(K(u), u, v − u)

+ τy[j(v) − j(u)] ≥
∫

∂Ω

(v − u) · Tn dS, (8.2.19)

where n is the external unit normal to the boundary ∂Ω of the flow domain.
Decomposing the boundary ∂Ω into the union of two disjoint subsets ∂Ωu,where

the velocity vector U is prescribed, and ∂Ωt,where the stress vector Tn = t is given,
one sees that ∫

∂Ω

(v − u) · Tn dS =
∫

∂Ωt

(v − u) · t dS. (8.2.20)
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Thus, in any given flow, the exact form of the stress power difference, which is the
integral on the right side of Eq. (8.2.20), leads to the specific form of the inequality
applicable to that flow.Thus, inwhat follows,we shall refer to the following inequality
repeatedly:

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) + a(K(u), u, v − u)

+ τy[j(v) − j(u)] ≥
∫

∂Ωt

(v − u) · t dS. (8.2.21)

The integral inequality in Eq. (8.2.19) is in the form of a variational principle, for
it says that for all trial velocity fields v, the left side is never less than the right side,
and in the event that v = u, an equality results. As long as the assumed solution
vector u exists, there is an inequality for the flow under investigation, with the latter
following directly from the Cauchy-Schwarz inequality applied to the yield stress
dissipation rate integral. Note that the derivation of (8.2.19), the basic inequality,
has been accomplished without any initial/boundary conditions being imposed on
the solution vector u, or the trial velocity field v. Further, the non-differentiability
of j(u) at u = 0 is not a matter of concern either.

8.3 A General Energy Balance Equation
for Viscoplastic Fluids

In a number of problems, the function spaces are such that in the fundamental inequal-
ity (8.2.19), one can replace the trial velocity field v by either v = 2u, or v = 0. In
the former instance, the inequality becomes

ρ

(
∂u
∂t

, u
)

+ ρb(u, u, u) − ρ(b, u) + a(K(u), u, u)

+ τyj(u) ≥
∫

∂Ω

u · Tn dS. (8.3.1)

On the other hand, if one puts v = 0, the inequality has the form

−
[
ρ

(
∂u
∂t

, u
)

+ ρb(u, u, u) − ρ(b, u) + a(K(u), u, u)

+ τyj(u)

]
≥ −

∫
∂Ω

u · Tn dS. (8.3.2)
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Hence, one is led to the general energy balance equation:

ρ

(
∂u
∂t

, u
)

+ ρb(u, u, u) − ρ(b, u) + a(K(u), u, u)

+ τyj(u) −
∫

∂Ω

u · Tn dS = 0. (8.3.3)

An example of this will be exhibited in Sect. 8.8.2; another example appears in
Sect. 9.2 in examining the motion of a Herschel-Bulkley fluid due to a rising bubble.
A third one occurs in the motion of a solid body under creeping flow conditions; see
Sect. 9.3.

8.4 Fundamental Inequality: Non-isochoric Trial
Velocity Fields

In numerical modelling, it is quite often necessary to consider trial velocity fields
which may be non-isochoric. That is, a trial velocity field v is such that ∇ · v = 0
may not be satisfied. Hence, we consider afresh the equations of motion satisfied by
the solution vector u:

− ∇p + ∇ · S(u) + ρb = ρa, ∇ · u = 0. (8.4.1)

Thus, instead of (8.2.11), we obtain:

1

2
T(u) : A(v − u) ≤ −p∇ · (v − u) + 1

2
η(K(u))A(u) : [A(v − u)]

+ τy[K(v) − K(u)]. (8.4.2)

This leads to two separate inequalities, one for the extra stress tensor S and another
one for the total stress tensor T:

∫
Ω

1

2
S(u) : A(v − u) dv ≤ a(K(u), u, v − u)

+ τy[j(v) − j(u)], (8.4.3)

and
∫
Ω

1

2
T(u) : A(v − u) dv ≤ −

∫
Ω

p∇ · (v − u) dv + a(K(u), u, v − u)

+ τy[j(v) − j(u)]. (8.4.4)

http://dx.doi.org/10.1007/978-3-662-45617-0_9
http://dx.doi.org/10.1007/978-3-662-45617-0_9
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The latter inequality will be employed later on in Sect. 10.2.2 under the assumption
that both u and v obey the same boundary conditions on ∂Ω. That is, one has
(cf. (8.2.19)):

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) −
∫
Ω

p∇ · (v − u) dv

+ a(K(u), u, v − u) + τy[j(v) − j(u)] ≥ 0. (8.4.5)

For an incompressible Bingham fluid, the above inequality has the form:

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) −
∫
Ω

p∇ · (v − u) dv

+ 1

2
η

∫
Ω

A(u) : A(v − u) dv + τy[j(v) − j(u)] ≥ 0. (8.4.6)

8.5 Variational Principles and Fundamental Inequality
in the Presence of Wall Slip

The task of incorporating the effect of wall slip in the flow of an incompressible
Bingham fluid in a channel has been illustrated in Chap.1. This example leads to
one partition the boundary ∂Ω of the flow domain Ω into three disjoint subsets: two
subsets on which the stress vector is prescribed, while the velocity is tangential to the
bounding surface on one and arbitrary on the second, and the third subset on which
the velocity vector is given. The first one may be termed the slip boundary and the
second the flow boundary, with the last being the velocity boundary. That is, in the
case of a channel of finite length, the slip boundary consists of its walls and the flow
boundary consists of the entry and exit regions; there is no velocity boundary. The
shear stress on the bounding walls determines whether the fluid slips or not, while
the applied pressure drop across the flow boundaries causes the flow to occur; for
emphasis, see Sect. 1.11.

Hence, in general, the boundary ∂Ω of the flow domain is decomposed into three
disjoint subsets as follows:

∂Ω = ∂Ωu ∪ ∂Ωt ∪ ∂Ωs; ∂Ωu ∩ ∂Ωt ∩ ∂Ωs = ∅. (8.5.1)

Here, on ∂Ωu, the velocity is prescribed; on ∂Ωt, the stress vector is given whereas
on ∂Ωs, the slip boundary conditions are stated. In order to describe them, let n be
the external, unit normal to the surface ∂Ωs. It will be assumed that on this part of
the boundary, the velocity vector is orthogonal to it, i.e.,

u · n = 0. (8.5.2)

http://dx.doi.org/10.1007/978-3-662-45617-0_10
http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Hence, the tangential component ut = u− (u ·n)n = u on ∂Ωs.Next, the tangential
component of the traction vector tt is given on this surface through

tt = Tn − (Tn · n)n. (8.5.3)

Hence, it is obvious that t · u = tt · ut on ∂Ωs.

The boundary conditions to be imposed on ∂Ωs are similar to those in (1.11.1).
That is:

ut = 0, |tt | ≤ g(0) = τc, (8.5.4)

tt = −
(

cf (|ut |) + g(|ut |)
|ut |

)
ut, |tt | > g(0). (8.5.5)

Here, g(0) = τc is the critical value of the shear stress on the wall which determines
whether slip will occur. And, just as in (1.11.4), it will be assumed that (8.5.5) can
be inverted so that there is a unique solution for ut in terms of tt .

It is a simplematter to recast theminimumandmaximumprinciples to incorporate
the presence ofwall slip.Out of all admissible velocityfieldv,one seeks theminimum
of (cf. (8.1.20)):

Φ(v) =
∫
Ω

φ(K(v) dv −
∫

∂Ωt

t · v dS −
∫

∂Ωs

tt · vt dS −
∫
Ω

ρb · v dv. (8.5.6)

To obtain a maximum principle, one has to modify the definition of the class of
statically admissible stress fields as follows:

Definition A statically admissible stress field is continuous, and has piecewise con-
tinuous partial derivatives with respect to x ∈ Ω and all t > 0, satisfies the equa-
tions of motion in the absence of inertia, and obeys the boundary conditions on ∂Ωt

and ∂Ωs.

Using this definition, one can state that out of all statically admissible stress fields
T∗, one finds the maximum of (cf. (8.1.27)):

Ψ (T∗) =
∫

∂Ωu

t∗ · U dS −
∫
Ω

Γ (K(S∗)) dv. (8.5.7)

The proofs of the two principles are omitted for they are similar to those provided
in Sect. 8.1.3.

As far as the integral inequality (8.2.19) is concerned, no modification is required
for it has been derived without any reference to the imposed boundary conditions.
Thus, the fundamental inequality in (8.2.19) is unchanged. However, it can be

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
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modified as in (8.2.21) to obtain:

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) + a(K(u), u, v − u)

+ τy[j(v) − j(u)] ≥
∫

∂Ωt

(v − u) · t dS −
∫

∂Ωs

(vt − ut) · tt dS. (8.5.8)

Now that the variational principle and the fundamental inequality have been
derived for various conditions, it is necessary to explore the questions concerning
the existence and uniqueness of solutions when they are employed. These matters
are explored through convex analysis next.

8.6 Convex Analysis and Its Applications

It has been shown in Sect. 8.1.6 that the steady velocity field of a Bingham fluid in a
pipe of uniform cross-section minimises the stress power functional

Φ(w) = 1

2
ηa(w, w) + τyj(w) − (G, w), (8.6.1)

subject to the condition w(x, y) = 0 on the boundary of the pipe.
A number of questions arise:

1. Is there a function that minimises the functional Φ(w)? This is an existence
problem.

2. If such a function exists, is it the only one? This is the uniqueness problem.
3. If there exists a unique function which minimises Φ(w), is this function the

solution of the original problem? That is, in which sense does the minimiser
satisfy the equations of motion governing the flow of the Bingham fluid in a pipe
of uniform cross-section?

4. It is likely that in the cross-section of the pipe, one can observe the existence of
rigid zones where the fluid may be at rest, or move as a plug. How smooth is the
boundary separating a yielded zone from its neighbouring unyielded region?

5. To which function space does the solution belong?

As far as the inequality (8.2.19) or (8.2.21) is concerned, the questions posed
above arise as well as the following.

1. Does it have to meet any specific conditions before one can it a variational
inequality?

2. If it satisfies the required conditions, is it equivalent to any other, more useful
forms?

Indeed, the answers exist. However, providing the detailed proofs is not attempted
here, for these are available in the literature. Instead, we shall provide a summary
documenting the relevant references where the answers can be found.
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The first item in this list is the importance of lower semi-continuity and this is
illustrated through its role in the Direct Method which follows next.

8.6.1 The Direct Method

Riemann investigated whether there exists a function u = u(x, y) that has continuous
second order partial derivatives and satisfies Laplace’s equation:

∂2u

∂x2
+ ∂2u

∂y2
= 0 (8.6.2)

in a given domainΩ and coincides with a given continuous function on the boundary
of the specified region. Since the Laplace’s equation is the Euler equation for the
functional

J(u) =
∫ ∫

Ω

[(
∂u

∂x

)2

+
(

∂u

∂y

)2]
dx dy, (8.6.3)

which assumes non-negative values only, Riemann considered it as obvious that the
functional J(u) has a minimum, and that this proved the existence of a solution to
(8.6.2), satisfying the given boundary conditions. This idea was called the Dirichlet
principle by Riemann, a student of Dirichlet.1

Weierstrass found a serious flaw in Riemann’s argument. He pointed out that a
functional bounded from below implies only that it has a greatest lower bound; it does
not ensure that this lower bound is the minimiser of the functional in the given class
of functions. To be specific, consider the following example due to Weierstrass. Let

J(y) =
1∫

−1

x2y′2 dx, y(−1) = −1, y(1) = 1. (8.6.4)

Choose the following admissible function:

ya(x) = arctan(x/a)

arctan(1/a)
, a > 0. (8.6.5)

Then,

J(ya) = a2

[arctan(1/a)]2
1∫

−1

x2

(x2 + a2)2
dx

1 The material in this sub-section is based on the exposition in Akhiezer [8].
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<
a2

[arctan(1/a)]2
1∫

−1

1

(x2 + a2)2
dx

= 2a

arctan(1/a)
. (8.6.6)

As a → 0, the right side approaches zero implying that this particular calculus of
variations problem has no solution.

To overcome Weierstrass’s objection, the Direct Method came into being in the
calculus of variations. This method is based on the assumption that a functional J(y)
is finite and that it has a greatest lower bound which is actually attained on one of the
admissible functions. That is, letD be the set of admissible functions and assume that

inf
y∈D

J(y) = L > −∞. (8.6.7)

According to the definition of the lower bound, there exists a sequence of functions
y1, y2, . . . , yn . . . , known as the minimising sequence Σ, such that

lim
n→∞ J(yn) = L. (8.6.8)

Suppose that the limiting function ŷ of the sequence exists and belongs to D . If the
equation

J(ŷ) = lim
n→∞ J(yn) (8.6.9)

holds, it follows that
J(ŷ) = L, (8.6.10)

which means that the function ŷ furnishes an absolute minimum. Obviously, (8.6.10)
holds if J(y) is a continuous functional, i.e., if the inequality

|J(y) − J(ŷ)| < ε (8.6.11)

is met by every function y in some ε-neighbourhood of ŷ. Unfortunately, J(y) may
not be a continuous functional. Indeed, it was noted by Lebesgue that lower semi-
continuity is sufficient for the proof of (8.6.10). In the sequel, lower semi-continuity
is denoted by l.s.c.

Now, suppose that J(y) is l. s. c and that there exists a minimising sequence Σ

which converges to ŷ ∈ D . The definition of L means that

L ≤ J(ŷ), (8.6.12)

while lower semi-continuity ensures that

J(yn) ≥ J(ŷ) − ε̂, (8.6.13)
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if yn lies in a sufficiently small neighbourhood of ŷ. Since (8.6.13) holds for any ε̂,

we may write
L ≥ J(ŷ) − ε̂. (8.6.14)

Comparing (8.6.12) and (8.6.14), we see that

J(ŷ) = L. (8.6.15)

In sum, the direct method consists of the following four steps:

1. Proving the existence of the greatest lower bound for the given functional.
2. The construction of a minimising sequence within the chosen class of admissible

functions. Great advances were made by Ritz and Galerkin to construct such
sequences; in particular, Galerkin’s ideas led to the finite and spectral element
methods.

3. Proof that the limiting function of this sequence lies in the class of admissible
functions.

4. Proof of the lower semi-continuity of the functional at this limiting function.

These matters are discussed next.

8.6.2 Convex Set and Convex Functionals

In any numerical scheme, questions regarding the choice of the set of admissible
functions have to be settled. In fluid mechanics, the flow problems fall into three
separate categories. In the first case, the velocity is prescribed over the boundary, i.e.,
one has a Dirichlet problem. In the second class, the external normal derivative of the
velocity is defined over the boundary, i.e., one has a Neumann problem; for example,
on a free boundary, this normal derivative is zero. In the third category, the boundary
consists of the union of two mutually disjoint sets and on one part the Dirichlet
boundary condition is prescribed, and in the other the Neumann condition is given.

The function space that is relevant in all of the above problems is the Sobolev
space Wm,p of integer order m ≥ 0 on Lp(Ω), where Ω is an open set in R

d, and
d denotes the dimension of the space, d ∈ [2, 3]. In brief, one needs the following:
1. Lp(Ω) is the space of measurable functions f such that for 1 ≤ p < ∞,

||f ||Lp(Ω) =
( ∫

Ω

|f (x)|p dx

)1/p

< ∞. (8.6.16)

2. By Dαv, one means

Dαv = ∂α1+···+αn

∂xα1
1 . . . ∂xαn

n
v, α = {α1, . . . , αn}. (8.6.17)
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That is, Dαv is a partial, perhaps mixed, derivative of v of order α. Note that
0 ≤ αj ≤ d, j = 1, . . . , d. Of course, it is understood that D0v = v. That is, the
zeroth derivative of a function is itself. Next, D1v = Dv is the gradient of v, and
so on. Moreover, the derivatives in (8.6.17) have to be regarded in the sense of
distributions.

3. Let

|α| =
d∑

j=1

αj. (8.6.18)

4. The Sobolev space of orderm on Lp(Ω), denoted byWm,p(Ω), is defined through

Wm,p(Ω) = {v|v ∈ Lp(Ω), Dαv ∈ Lp(Ω), |α| ≤ m}. (8.6.19)

5. With the norm

||v||Wm,p(Ω) =
( ∑

|α|≤m

||Dαv||pLp(Ω)

)1/p

, (8.6.20)

the space Wm,p(Ω) is a Banach space. Since reflexivity of the Banach space is
required in Sect. 8.6.5, it will be assumed that 1 < p < ∞.

6. If one sets m = 1, p = 2 one defines the Hilbert space H1(Ω), which is of great
importance in the flow of Bingham fluids. To be explicit,

(u, v)H1(Ω) =
∫
Ω

[
uv +

d∑
j=1

∂u

∂xj

∂v

∂xj

]
dv, (8.6.21)

with the norm

||u||H1(Ω) =
( ∫

Ω

[
u2 + |∇u|2

]
dv

)1/2

. (8.6.22)

That is, both u ∈ L2(Ω) and |∇u| ∈ L2(Ω).

7. The trace of a function v is the set of its boundary values. As remarked by Duvaut
and Lions [7], the knowledge of v on the boundary ∂Ω implies the knowledge of
its tangential derivatives on the boundary. Thus, one can define the trace γ v as
the set:

γ v = {v, ∂v/∂n} ∈ L2(∂Ω), if v ∈ H1(Ω), (8.6.23)

where ∂v/∂n is the normal derivative.
8. The space H1

0 (Ω) is the space of functions in H1(Ω) such that v = 0 on the
boundary ∂Ω.

The above material is relevant to scalar valued functions only. In viscoplastic
fluid mechanics, we have to consider vector and tensor valued functions, and their
derivatives. This extension is not unduly problematic, for we can assume that if vi

are the components of a velocity field and that vi,j are the components of its gradient,
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then each one is an element of L2(Ω). Thus, the norm in (8.6.22) is replaced by

||v||(H1(Ω)d) =
( ∫

Ω

[ d∑
i=1

|vi|2 +
d∑

i,j=1

|vi,j|2
]

dv

)1/2

, (8.6.24)

where d ∈ [2, 3] represents the two or three-dimensional space in which the problem
is posed.

For other viscoplastic fluids, the selection of the function space is determined by
the integrability of the derivative of the highest order in a given problem. In simple
terms, this guarantees the integrability of the lower order derivates as well as that
of the function itself. Here, the integrability of an exponent of K(u) is required, as
illustrated by the following two cases:

1. In connection with the integrability of the velocity functional:

∫
Ω

φ(K(u)) dv. (8.6.25)

2. The viscous and yield stress dissipation rate integrals:

a(K(u), u, v) = 1

2

∫
Ω

η(K(u))A(u) : A(v) dv, (8.6.26)

j(v) =
∫
Ω

K(v) dv. (8.6.27)

For Bingham fluids, the viscosity is constant and the relevant function space is
either (H1(Ω))d or (H1

0 (Ω))d . For Herschel-Bulkley fluids, one can observe from
(4.6.39) and (4.6.41) that the integrability of K(v)m+1 is important. Here, excluding
the casem = 1,which corresponds to theBinghamfluid, one is facedwithm ∈ (0, 1).
That is, the function space is now W1,p, where p = m + 1. For Casson fluids, one
can see from (4.6.44) and (4.6.46) that p = 2. Thus, assuming p > 1, the relevant
norm is given by

||v|| =
( ∫

Ω

[ d∑
i=1

|vi|p +
d∑

i,j=1

|vi,j|p
]

dv

)1/p

. (8.6.28)

Next, the class of admissible functions may form a subspace or belong to a convex
set in the chosen function space. Recall that a setS is convex whenever for any two
elements in it, the elements that lie along the line joining them also belong to S .

That is, w ∈ S , whenever

w = (1 − t)u + tv ∈ S , 0 ≤ t ≤ 1, ∀u, v ∈ S . (8.6.29)

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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As an example, consider the Dirichlet problem, and assume that two functions u and
v satisfy the given boundary conditions. Clearly, any function w = (1 − t)u + tv,
0 ≤ t ≤ 1 satisfies the given boundary conditions as well.

The final piece in the jigsaw puzzle is to define the conditions which must be
met by a functional Φ defined over S . Firstly, it must be convex. That is, for every
u, v ∈ S ,

Φ((1 − t)u + tv) ≤ (1 − t)Φ(u) + tΦ(v), 0 ≤ t ≤ 1, (8.6.30)

whenever the right-hand side is defined. The functionalΦ is said to be strictly convex,
if it is convex and ∀u, v ∈ S , u �= v, the above inequality is strict, i.e.,

Φ((1 − t)u + tv) < (1 − t)Φ(u) + tΦ(v), 0 < t < 1. (8.6.31)

The above definition is an extension of what one learns in the calculus of a function
of a single variable. That is y = f (x) is strictly convex over [a, b] means that the
graph of the function lies below the straight line joining [a, f (a)] to [b, f (b)]. In this
case, one notes further that the function y = f (x) attains its global minimum at a
single point in [a, b]; this reasoning applies here too.

Next, a convex functional is said to be proper, meaning that it nowhere takes the
value −∞ and is not identically equal to +∞.

8.6.3 Existence and Uniqueness

Here, we shall recall the fundamental theorem governing the existence and unique-
ness of the solution to the problemofminimising a functionalΦ overS .Suppose that

Φ is convex, l.s.c. and proper. (8.6.32)

In addition to the above condition, the fundamental theorem assumes the following:

Either the set S is bounded, (8.6.33)

or that the functional Φ is coercive over S , i.e., that

limΦ(u) = +∞, u ∈ S , ||u|| → ∞. (8.6.34)

This theorem says that there exists at least one solution to the problem of minimising
Φ(u), u ∈ S . If the functionalΦ is l.s.c, proper and strictly convex over S, the min-
imisation problem has a unique solution. For a proof, see Proposition1.2, Chap. II,
in [9].

In fluid mechanics, in general, the setS is not bounded, and thus one has to prove
that the functional Φ is coercive over this set.
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For example, this argument applies when one wishes to prove the existence and
uniqueness of the minimiser of the functional Φ(w) in (8.1.54), which arises when
one considers the steady flow of a Bingham fluid in a pipe of arbitrary cross-section
due to a constant pressure gradient.

To be precise, we can now formulate this problem as follows: Find theminimumof

Φ(w) = 1

2
ηa(w, w) + τyj(w) − (G, w), ∀ w ∈ H1

0 (Ω), (8.6.35)

where Ω is the cross-section of the pipe.

8.6.4 Variational Inequality

Turning next to the basic inequality (8.2.21), here are the requirements before one
can call it a variational inequality.

1. The vector fields u, v, w must be elements of W1,p(Ω) × (0, T), where (0, T)

denotes the time interval. Note that if p = 2, the linear space is H1(Ω).

2. Every element of W1,p(Ω) × (0, T) is divergence free.
3. Each velocity field satisfies the same boundary condition on ∂Ω × (0, T), with

a prescribed initial condition in Ω. That is, each velocity field lies in a subspace
or a convex set.

4. Recall the viscous dissipation rate integral (8.2.14):

a(K(u), v, w) = 1

2

∫
Ω

η(K(u))A(v) : A(w) dv, (8.6.36)

where η is the viscosity which depends on the second invariant of the Rivlin-
Ericksen tensor A, derived from the velocity field u. In simple shearing flows,
this invariant is simply the shear rate γ̇ ; see (2.5.1) and (3.4.12). Using this idea,
it will be assumed that the shear stress σ = η(γ̇ )γ̇ is a non-decreasing function
in γ̇ ≥ 0 satisfying

c1γ̇
m−1 ≤ η(γ̇ )γ̇ ≤ c2γ̇

m−1, (8.6.37)

for some positive constants c1, c2 and m > 1. See Kato [10] for the reasons
behind this requirement. Obviously, the Bingham, Herschel-Bulkley and Casson
fluids meet (8.6.37).

5. Next, recall the yield stress dissipation rate integral given by (8.2.15):

τyj(v) = τy

∫
Ω

K(v) dv. (8.6.38)

This functional has to be proved to be l.s.c, proper and convex. For the hint of a
proof when v ∈ (H1

0 (Ω))2, see p. 78 in [11].

http://dx.doi.org/10.1007/978-3-662-45617-0_2
http://dx.doi.org/10.1007/978-3-662-45617-0_3
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The existence and uniqueness of the solution to a given variational inequality is
a topic which requires an enormous amount of space and cannot be explained in
simple terms. However, the above requirements, strengthened by demanding that the
shear stress η(γ̇ )γ̇ is strictly convex in γ̇ ≥ 0, seem to be sufficient; see Ekeland
and Temam [9], Lions [12] and Kato [10].

If a given problem does not meet the above conditions, the basic inequality may
still be solvable through numerical methods. In this situation, all that can be said is
that one is performing numerical experiments [13].

8.6.5 Equivalence of the Minimiser and the Solution
of the Variational Inequality

It would be desirable to prove that the minimiser u of the functional Φ(v) in (8.1.30)
is the same as the solution u of the variational inequality (8.2.21); obviously, inertia
has to be ignored to proceed. The reasons behind the congruence of the solutions are
discussed below.

First of all, the functional Φ is split into Φ = Φ1 + Φ2, where both Φ1, Φ2 are
l.s.c convex functionals withΦ1 being Gateaux-differentiable with a differential Φ ′

1.

Thus, consider the situation when

Φ1(v) =
∫
Ω

( K(v)∫
0

η(ξ)ξ dξ

)
dv. (8.6.39)

Formally, recalling from Sect. 4.6 that ∂K/∂A = A/2K, and given some smoothness
assumptions, one can show that Φ ′

1 leads to the following:

〈Φ ′
1(u), w〉 = 1

2

∫
Ω

η(K(u))A(u) : A(w) dv

= a(K(u), u, w). (8.6.40)

The reason behind this lies in the fact that the Gateaux derivative is a directional
derivative and produces a functional by its action on w. To see this clearly, consider
the Bingham fluid with

Φ1(v) = 1

2
η

∫
Ω

K2(A(v)) dv. (8.6.41)

Now,

lim
ε→0

K2(A(u + εw)) − K2(A(u))

ε
= A(u) : A(w). (8.6.42)

That is, (8.6.40) is valid.

http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Next, define the l.s.c functional

Φ2(v) = τyj(v) −
∫

∂Ωt

t · v dS −
∫
Ω

ρb · v dv. (8.6.43)

The basic result is that the minimiser u of Φ(v) is the same as the solution of the
variational inequality

〈Φ ′
1(u), v − u〉 + Φ2(v) − Φ2(u) ≥ 0. (8.6.44)

For a proof, see Proposition 2.2 in Chap. II [9]. Here , the reflexivity of the underlying
Banach space W1,p is required, meaning that 1 < p < ∞.

As an example, consider the steady flow of a Bingham fluid in a pipe of arbitrary
cross-section under a constant pressure gradient. The solution w to this problem
can be obtained by minimising the functional Φ(v) in (8.1.54), repeated here for
convenience:

Φ(v) = 1

2
ηa(v, v) + τyj(v) − (G, v), ∀ v ∈ H1

0 (Ω), (8.6.45)

where Ω is the domain defining the cross-section of the pipe.
From (8.2.21), it can be shown that the corresponding variational inequality for

the solution w is given by

ηa(w, v − w) + τy[j(v) − j(w)] ≥ (G, v − w), ∀ v, w ∈ H1
0 (Ω). (8.6.46)

Here the three functionals appearing in (8.6.45) and (8.6.46) are:

a(w, v) =
∫
Ω

(∇w · ∇v) da, (8.6.47)

j(w) =
∫
Ω

|∇w| da, (8.6.48)

(G, w) =
∫
Ω

Gw da. (8.6.49)

Hence, the solution of w obtained from (8.6.45) will be identical to that derived from
(8.6.46).

More generally, if the flow is steady and inertia is ignored, one can subtract the
energy equation (8.3.3) from the equation satisfied by the minimiser (cf. (8.1.30)) to
obtain

Φ(u) = Φ1(u) − a(K(u), u, u) +
∫

∂Ωu

U · t dS. (8.6.50)

Obviously, if U = 0, a further simplification of this result occurs.
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8.7 Equivalence of the Solution of the Variational
Inequality and the Equations of Motion

In 1948, Rivlin proved that for any chosen, static, finite deformation to be possible in
an incompressible, isotropic elastic body, it was sufficient to exhibit a pressure field
which satisfied the equations of equilibrium.2 Subsequently, this ideawas exploited in
non-Newtonian fluid mechanics and has made its way into finite element modelling.
Thus, for an assumed velocity field to be possible in a viscoplastic fluid, one has
to demonstrate that a pressure field exists which satisfies the equations of motion.
As shown in Sect. 4.1, the pressure term can be defined uniquely when the fluid has
yielded. And, of course, in such a domain, the viscoplastic fluid satisfies a constitutive
relation which makes the task easier.

As shown above, if a solution vector u satisfies the equations of motion in a given
problem, it satisfies the variational inequality (8.2.19). Conversely, if one can prove
that a velocity field u, which meets the variational inequality, satisfies the equations
of motion as well for it leads to the existence of a pressure field in a given problem,
the two solutions are identical. The demonstration of this equality is based on two
separate ideas.

• Suppose that φ is scalar and that v is any velocity field such that ∇ · v = 0 in a
domain Ω, and v · n = 0 on its boundary ∂Ω. In this situation, the divergence
theorem leads to the result that∫

Ω

∇φ · v dv =
∫
Ω

∇ · (φv) dv =
∫

∂Ω

φ(v · n) dS = 0. (8.7.1)

Is it possible to establish the converse? That is, suppose that f is any vector field
such that for all divergence free vector fields v, satisfying the given boundary
condition, the following holds:

∫
Ω

f · v dv = 0. (8.7.2)

Can one now prove that f is the gradient of a scalar φ? In principle, the proof of this
result has been given by Ladyzhenskaya [15] in connection with Navier-Stokes
equations which describe the flows of incompressible Newtonian fluids.

• The second idea is to assume that a solution u to the variational inequality exists
and to turn the inequality into an equality. Now, suppose that Sij(u) are the corre-
sponding components of the extra stress tensor in a viscoplastic fluid such that the
following holds true for all divergence free vector fields v:

∫
Ω

[
(Sij(u)),j + ρbi − ρ

(
∂ui

∂t
+ ui,juj

)]
vi dv = 0. (8.7.3)

2 For a survey, see [14].

http://dx.doi.org/10.1007/978-3-662-45617-0_4


8.7 Equivalence of the Solution of the Variational Inequality … 169

Assuming that the above holds, it follows that the vector fi given by

fi = (Sij(u)),j + ρbi − ρ

(
∂ui

∂t
+ ui,juj

)
(8.7.4)

is the gradient of a scalar p, which is commonly known as the pressure. That is,
the solution u of the variational inequality is the same as that of the equations of
motion. The following example, based on that in [7], illustrates the method. The
proof is formal and assumes that on the boundary, the velocity field is zero.

Suppose that in such a flow, the variational inequality has the form (8.2.21) with
a = ∂u/∂t + (u · ∇)u, and u = v = 0 on ∂Ω. Hence, we obtain

ρ(a, v − u) − ρ(b, v − u) + a(K(u), u, v − u) + τy[j(v) − j(u)] ≥ 0. (8.7.5)

Next, replace v by u + εv. Thus, when A(u) �= 0, one can derive the following
(cf. (4.6.25)):

lim
ε→0

j(u + εv) − j(u)

ε
=

∫
Ω

1

2K(u)
A(u) : A(v) dv. (8.7.6)

Hence, replacing v by u + εv in (8.7.5), dividing by ε and taking the limit as ε → 0,
we obtain:

ρ(a, v − u) − ρ(b, v − u) + a(K(u), u, v)

+ τy

∫
Ω

1

2K(u)
A(u) : A(v) dv ≥ 0. (8.7.7)

Replacing v by −v, which is permissible, one finds that the solution u of the varia-
tional inequality now satisfies the following equation:

ρ(a − b, v) + a(K(u), u, v) + τy

∫
Ω

1

2K(u)
A(u) : A(v) dv = 0, (8.7.8)

where
a(K(u), u, v) = 1

2

∫
Ω

η(K(u))A(u) : A(v) dv. (8.7.9)

The constitutive equation for the visoplastic fluid under consideration is given by

Sij(u) =
[
η(K(u)) + τy

K(u)

]
Aij(u). (8.7.10)

Now, v = 0 on ∂Ω means that∫
Ω

[Sij,jvi + Sijvi,j] dv =
∫
Ω

[Sijvi],j dv =
∫

∂Ω

Sijnjvi dS = 0. (8.7.11)

http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Hence,

−
∫
Ω

(Sij(u)),jvi dv =
∫
Ω

Sij(u)vi,j dv = 1

2

∫
Ω

Sij(u)Aij(v) dv. (8.7.12)

Comparing (8.7.8), (8.7.9) and (8.7.12) and suppressing the dependence on u for
brevity, it has been proved that

∫
Ω

[
ρai − ρbi − Sij,j

]
vi dv = 0 (8.7.13)

for all divergence free velocity fields v, vanishing on ∂Ω . Hence, the velocity field
u is such that

ρai − ρbi − Sij,j = p,i, (8.7.14)

where p is a scalar. In other words, the solution u of the variational inequality is also
the solution of the equations of motion in the given problem. Such a problem has
been named the reservoir problem in [7].

• A different method to prove that the solution of the variational inequality for the
steady flow in a pipe of uniform, arbitrary cross-section satisfies the equations of
motion in a Bingham fluid appears in [9]; see Chap. IV, Sect. 3.

Thus, while there are some results which prove the equivalence, there is no uni-
versal theorem guaranteeing that the solution of a variational inequity is congruent
with that obtained from the equations of motion in all problems. Nevertheless, there
is enough substantive support to accept that the two are identical in several problems
of interest.

8.8 Special Cases of the Variational Inequality

In this section, it is shown that a simplification of the variational inequality (8.2.21)
occurs in a number of flows. These are examined next.

8.8.1 Flows with Zero Stress Power Difference

The right side of Eq. (8.2.19) or (8.2.21) is zero in number of problems of interest.
Consequently, one has:

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u)

+ a(K(u), u, v − u) + τy[j(v) − j(u)] ≥ 0. (8.8.1)
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Here is a list of such flows.

1. Let both u and v meet the same boundary conditions, i.e., one has a Dirichlet
problem, e.g., in the lid driven flow in a cavity, or in a reservoir where the velocity
is zero. The reservoir problem appears in [7].

2. Consider the case of a solid body, or a number of bodies, at rest in a flow with
the velocity given by U(t)i at infinity. Then, Ω is the unbounded domain with a
rigid body, or many such bodies, inside of it. It is now easy to see that the surface
integral in Eq. (8.2.21) vanishes on the boundary of every solid, because the trial
velocity field v, and the true velocity field u are both zero on it. Also, at infinity,
every kinematically admissible field is equal to U(t)i, or v = u there. Hence, the
surface integral in Eq. (8.2.21) is zero over the entire flow domain as required,
and Eq. (8.8.1) is the correct form of this inequality.

3. Finally, let us turn to a class of free surface problems. Here, the boundary ∂Ω

consists of two disjoint parts: ∂Ωu, where the velocity vector is prescribed, and
∂Ωt, where the stress vector is prescribed. On the part ∂Ωu, where the velocity
is prescribed, it is clear that v − u = 0. If the remaining part, ∂Ωt, is such that it
is open to the atmosphere, i.e., it is a free surface, then the stress vector will be
zero on it. Hence, Eq. (8.8.1) is valid.

An example of such a flow arises in the unsteady squeezing disk flow,where the
top and bottom platesmove together with a prescribed speed, while the lateral sur-
face is open to the atmosphere. The same argument can be applied to the torsional
flow. Other instances include the flow in a capillary rheometer, the slump test, the
weir rupture test and the mud flow down an incline. In every flowmentioned here,
there exist parts of the boundary where the velocity is prescribed, while on the
remaining parts of the boundary, the stress vector is zero. For example, consider
the mud flow down an incline as an initial value problem. Here, the velocity is
prescribed upstream, it is zero on the inclined plane, and the mud surface open to
the atmosphere is stress free. Interestingly enough, in all of the free surface flows
mentioned here, the domain Ω occupied by the fluid changes with time.

8.8.2 Flows with Non-zero Stress Power Difference

Consider the unsteady axial flow in an infinitely long pipe of uniform cross-section,
which may be simply or multiply-connected, and in which all velocity fields, such as
u and v, have a non-zero component in the axial direction only. That is, the solution
velocity field is given by u = w(x, y, t)k, and v = v(x, y, t)k. In this case, it is easily
shown that the shear stresses Sxz and Syz depend on (x, y, t) only, while the normal
stress Szz = 0. The pressure term is given by p = −G(t)z, where G(t) > 0 is the
pressure drop per unit length and the pressure is measured from a datum where it
may be set to zero. Next, consider a pipe of unit length, lying between z = 0 and
z = 1. Now, it is easily seen that on these end planes, n = ±k, and

t = Tn = ±(Sxzi + Syzj − pk). (8.8.2)
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Using the above and the adherence condition by which the velocity fields u and v
vanish on the surface of the pipe, it is found that

∫
∂Ω

(v − u) · t da = G(t)
∫
Ω

(v(x, y, t) − w(x, y, t)) da, (8.8.3)

where Ω is the domain of cross-section of the pipe. Note that it is not essential
that one knows the shear stresses Sxz and Syz; what is needed is the inner product
(v − u) · t.

Let us now derive the complete form of the variational inequality for unsteady
flows in a pipe. For the assumed velocity fields,

A(u) : A(v − u) = 2∇w · ∇(v − w), (8.8.4)

and
K2(w) = ∇w · ∇w, (8.8.5)

where ∇ is the two-dimensional gradient operator.
Now, set the body force b = 0, or absorb it into the pressure term, if the body

force is that due to gravity. Also, note that the acceleration vector is given by

a = ∂w

∂t
k, (8.8.6)

which means that the trilinear functional in Eq. (8.2.21) vanishes. Let us now define
four new integrals which follow from Eqs. (8.2.14)–(8.2.17). They are:

a

(
K(w), w, v − w

)
=

∫
Ω

η

(
K(w)

)
∇w · ∇(v − w) da, (8.8.7)

τy[j(v) − j(w)] = τy

∫
Ω

[
|∇v| − |∇w|

]
da, (8.8.8)

(
G(t), v − w

)
=

∫
Ω

G(t)(v − w) da, (8.8.9)

(
∂w

∂t
, v − w

)
=

∫
Ω

∂w

∂t
(v − w) da. (8.8.10)

Thus, one is led to the fundamental inequality for the unsteady flows in a pipe:

ρ

(
∂w

∂t
, v − w

)
+ a

(
K(w), w, v − w

)
+ τy[j(v) − j(w)]

≥
(

G(t), v − w

)
, ∀v, w ∈ (H1

0 (Ω))2. (8.8.11)
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In the above inequality, the trial velocity field v may be steady or unsteady. All that
is needed is that v must obey the same smoothness and boundary conditions as those
applicable to w. From this inequality, the equations of energy balance can be derived
as in (8.3.3) above and this results in the following:

ρ

(
∂w

∂t
, w

)
+ a

(
K(w), w, w

)
+ τyj(w) =

(
G(t), w

)
. (8.8.12)

Additional examples where the stress power difference is non-zero arise in the
rise of bubbles and in the motions of rigid bodies in viscoplastic fluids. These matters
are discussed fully in Sects. 9.2 and 9.3 below.

8.8.3 The Trilinear Functional Involving Acceleration Terms

When one looks at Eq. (8.2.21), the trilinear functional b(u, u, v − u) is seen to
appear. By its definition in Eq. (8.2.17), this has the form

b(u, u, v − u) =
∫
Ω

ujui,j(vi − ui) dv, (8.8.13)

and includes the convected terms of the acceleration vector. We shall examine how
one may replace the above integral by another one to develop a suitable numerical
scheme. Additionally, as shown by Duvaut and Lions [6, 7] and Kato [10], for
example, a crucial step in proving the existence and uniqueness of solutions relies
on replacing the functional b(u, u, v) by b(u, v, u), because the term ui,j is replaced
by the known gradient vi,j of the trial velocity field. It is seen that such a replacement
is possible in some instances, and we shall discuss this next.

Suppose thatu, v andw are any three smooth vector fieldswhich are all divergence
free. Then, it is trivial to verify that

∫
Ω

(ujviwi),j dv = b(u, v, w) + b(u, w, v). (8.8.14)

Consequently, by the divergence theorem,

b(u, v, u) + b(u, u, v) =
∫

∂Ω

(v · u)(u · n) dS. (8.8.15)

Thus,

2b(u, u, u) =
∫

∂Ω

(u · u)(u · n) dS. (8.8.16)

http://dx.doi.org/10.1007/978-3-662-45617-0_9
http://dx.doi.org/10.1007/978-3-662-45617-0_9
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Since,
b(u, u, v − u) = b(u, u, v) − b(u, u, u), (8.8.17)

we obtain:

b(u, u, v − u) = 1

2

∫
∂Ω

[(2v − u) · u](u · n) da − b(u, v, u) (8.8.18)

in any given problem, which is valid in all continuous media. The crucial point is that
the integral involving the local acceleration term, i.e., (∂u/∂t, v − u), is quadratic
in u. With the above modification, the functional b(u, u, v − u), which is of a cubic
order inu, can be replaced by b(u, v, u), that is also quadratic inu,with an additional
term given by a surface integral. It turns out that the latter is known in many cases.

Clearly, it is desirable to investigate when

1

2

∫
∂Ω

[(2v − u) · u](u · n) dS = 0. (8.8.19)

There are several examples which satisfy the above condition. We shall mention
some of them only. They are:

1. The reservoir problem, where u = v = 0 on the boundary.
2. The cavity driven flow, where on three parts of the boundary, the u = v = 0, and

on the moving part, u · n = 0.
3. The third example is the flow past a body/bodies at rest in a uniform flow at

infinity. Here, v = u = U(t)i, and u · n = ±U(t) at infinity. And, on each solid
surface, u · n = 0.

4. The next one is the case of the torsional flow, where u ·n = 0 on the rotating disks,
and on the free surface. Hence, Eq. (8.8.19) holds true. Moreover, it holds true in
the case of a pipe flow, whether it is steady or unsteady. Given this, it would seem
that in these five flows, it might be possible to prove existence and uniqueness
theorems for general visco-plastic fluids. As far as the flow of a Bingham fluid in
a pipe is concerned, such theorems do exist [6, 7, 13].

Now, let us look at those situations when the surface integral in Eq. (8.8.18) is not
zero. In the case of a mud flow down an incline, the integral is determined fully by
prescribing the upstream velocity whereby v = u; note that on the inclined plane and
the free surface, u · n = 0, and the contribution to this integral from these two parts
of the boundary is zero. Thus, in the energy inequality for mud flows, it is possible
to replace b(u, u, v) by b(u, v, u), with an additional known term.

Turning now to the case of the squeezing disk flow, it is worth recalling that on
the free surface, two sets of boundary conditions are needed for all fluids–Newtonian
or non-Newtonian. In the flow under discussion, the following two sets of boundary
conditions have to be imposed on the free surface: the first is a global condition
determined by the conservation of mass, which equates the rate of fluid squeezed by
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the movement of the disks with the rate at which the free surface is bulging outwards;
the second one arises from demanding that the stress vector be zero at every point
on the surface. Thus, in the squeezing disk flow, the surface integral in Eq. (8.8.18)
cannot be determined à priori. This would suggest that this particular flow is likely
to cause problems in developing a numerical scheme for its solution as shown by the
numerous attempts to solve it.

8.9 Viscoplasticity Constraint Tensor: The Final
Equivalence

It has been shown earlier that in an incompressible material, the constraint of incom-
pressibility leads to the existence of the pressure p, and the total stress tensor T
is determined to within an isotropic stress tensor −p1; see (4.1.13). Similarly, the
existence of the yield stress is a constraint on the response of an incompressible
viscoplastic fluid to a given motion. That is, one may expect a second constraint
tensor ΛΛΛ to arise in these materials. This matter has been explored earlier in Sect. 4.4
to explain why and how such a tensor can arise and why it is important.

As noted in Sect. 4.3, one has to establish a connection between the solution
velocity field u and the tensorΛΛΛ to solve a given flow problem. Unfortunately, such a
connection is hard to find, even in the case of a Bingham fluid. For such a fluid, it was
proved by Duvaut and Lions that the tensor ΛΛΛ exists under zero Dirichlet boundary
conditions; see Sect. 9, Chap.VI in [7], where this tensor is identified as themultiplier
m. Moreover, this tensor, when it exists, satisfies the following conditions:

ΛΛΛ : ΛΛΛ ≤ 1, (8.9.1)

ΛΛΛ : A(v) ≤ [A(v) : A(v)]1/2, (8.9.2)

ΛΛΛ : A(u) = [A(u) : A(u)]1/2, (8.9.3)

where v is any trial velocity field and u is the solution velocity field. Note that
Eq. (8.9.3) provides the crucial relation betweenΛΛΛ and u; this cannot be established
by arguments based on constraints alone, a fact recognised in Sect. 4.3.More recently,
Glowinski [13] has pointed out that the tensor ΛΛΛ may be non-unique; the proof of
its existence is harder if the boundary conditions are non-zero. However, ∇ · ΛΛΛ is
unique [16], a fact that is crucial in connection with the equations of motion; see
(8.9.6) below.

Obviously, there is much to be gained when one employs the tensorΛΛΛ in solving a
given flow problem, for its magnitude separates the yielded zone from the rigid zone
in the following fashion. To be specific, let ΛΛΛ : ΛΛΛ < 1. In this situation, Eq. (8.9.3)
and the Cauchy-Schwarz inequality show that:

[Aij(u)Aij(u)]1/2 = ΛijAij(u) ≤ [ΛklΛkl]1/2[Aij(u)Aij(u)]1/2

< [Aij(u)Aij(u)]1/2. (8.9.4)

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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The only solution to this inequality is that Aij(u) = 0. That is, whereverΛΛΛ : ΛΛΛ < 1,
the motion must be rigid. Thus, the domain of the flow can be decomposed into two
mutually disjoint sets: one whereΛΛΛ : ΛΛΛ < 1 and the flow is rigid; and, another where
ΛΛΛ : ΛΛΛ = 1 and the fluid has yielded, as shown earlier in Sect. 4.3.

In sum, under Dirichlet boundary conditions, one may adopt the constitutive
equation of a Bingham fluid to be given by (4.3.7), viz.,

S(v) = ηA(v) + √
2 τy ΛΛΛ(v), 1 : ΛΛΛ = 0, (8.9.5)

withΛΛΛ obeying (8.9.1)–(8.9.3). Since the constitutive equation (8.9.5) holds through-
out the flow domain, onemay substitute it into Cauchy’s equations of motion (4.2.15)
to solve this class of flow problems. Thus, one obtains:

− ∇p + η∇ · A(v) + √
2τy∇ · ΛΛΛ + ρb = ρa. (8.9.6)

Let us assume that this problem has a unique solution u. Substituting this into the
fundamental inequality (8.2.19) and using (8.9.2) and (8.9.3), one can show that u
satisfies the following variational inequality:

ρ

(
∂u
∂t

, v − u
)

+ ρb(u, u, v − u) − ρ(b, v − u) + 1

2
η

∫
Ω

A(u) : A(v − u) dv

+ τy[j(v) − j(u)] ≥ 0, (8.9.7)

because v = u on the boundary ∂Ω.

It was shown by Duvaut and Lions [7] that the solution of this variational
inequality, under zero Dirichlet boundary conditions, is equivalent to solving the
problem using (8.9.1)–(8.9.3), (8.9.5) and (8.9.6); for non-zero boundary conditions,
the congruence of the two solutions has been established by Glowinski [13]. This
is the final equivalence, and it will be exploited in the context of operator-splitting
methods in Chap. 10.

For all non-Bingham incompressible viscoplastic fluids, the existence of the ten-
sor ΛΛΛ under Dirichlet boundary conditions has not been proved, which means that
numerical modelling is of an experimental nature, once again.

8.10 The Basic Inequality for Compressible
Viscoplastic Fluids

The derivation of the the variational inequality for compressible fluids follows the
same procedures as that for the incompressible fluid, drawing upon the work of
Huilgol and You [17]. Once again, let the flow domain Ω be a bounded or an
unbounded set in the three dimensional Euclidean space in general, and let it be
decomposed into two disjoint subsets Ω1 and Ω0 as in Eq. (8.2.2) above. That is, Ω1
is the region where the fluid has yielded, and Ω0 is where it moves as a rigid body
or is at rest. Note that either Ω1 or Ω0 may be empty.

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_10
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Using the constitutive equation for a compressible viscoplastic fluid, it follows
that the pseudo-stress power is given by:

1

2
T(p,Θ, u) : A(v) = −p∇ · v + 1

2
S(p,Θ, u) : A(v)

= [α(p,Θ, I, II, III) − p](∇ · v)

+ 1

2
η(p,Θ, I, II, III)A(u) : A(v)

+ 1

2

τy(p,Θ)

K(u)
A(u) : A(v), (8.10.1)

where the invariants I, II, III depend onA(u).Next, by theCauchy-Schwarz inequal-
ity, it follows that in the set Ω1,

1

2
T(p,Θ, u) : A(v) ≤ [α(p,Θ, I, II, III) − p](∇ · v)

+ 1

2
η(p,Θ, I, II, III)A(u) : A(v)

+ τy(p,Θ)K(v)). (8.10.2)

As in the case of incompressible fluids, it can be shown that Eq. (8.10.2) is valid in
the whole region Ω.

Once again, the corresponding results for the solution velocity field u can be
obtained quite easily. One finds that in the set Ω1, the true stress power is given by:

1

2
T(p,Θ, u) : A(u) = [α(p,Θ, I, II, III) − p](∇ · u)

+ 1

2
η(p,Θ, I, II, III)A(u) : A(u)

+ τy(p,Θ)K(u). (8.10.3)

One can show, yet again, that Eq. (8.10.3) is valid in Ω. Hence, following the proce-
dure for incompressible fluids, we obtain

ρ(a − b) · (v − u) + [α(p,Θ, I, II, III) − p]∇ · (v − u)

+ 1

2
η(p,Θ, I, II, III)A(u) : A(v − u)

+ τy(p,Θ)[K(v)) − K(u)]
≥ ∇ · ((v − u) · T). (8.10.4)
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This inequality holds at all points in the flow domain, and can be transformed into
one that applies over the flow region by integration with respect to its volume just as
in the case for incompressible fluids.

To accomplish this, a couple of changes are necessary. First of all, the viscous
dissipation rate integral for any three velocity fields u, v and w is:

a

(
u, v, w

)
= 1

2

∫
Ω

η(p,Θ, I, II, III)A(v) : A(w) dv. (8.10.5)

Next, the yield stress dissipation rate integral is:

j(v) =
∫
Ω

τy(p,Θ)K(v) dv. (8.10.6)

Recalling the earlier definitions in Eqs. (8.2.16) and (8.2.17), one can integrate
Eq. (8.10.4) over the flow domain Ω , and derive

ρ

(
∂u
∂t

, v − u
)

+ ρb

(
u, u, v − u

)
− ρ

(
b, v − u

)

+
∫
Ω

[α(p,Θ, I, II, III) − p][∇ · (v − u)] dv + a

(
u, u, v − u

)

+ j(v) − j(u) ≥
∫
Ω

∇ · ((v − u) · T) dv. (8.10.7)

Employing the divergence theorem on the right side, one finds that

ρ

(
∂u
∂t

, v − u
)

+ ρb

(
u, u, v − u

)
− ρ

(
b, v − u

)

+
∫
Ω

[α(p,Θ, I, II, III) − p][∇ · (v − u)] dv + a

(
u, u, v − u

)

+ j(v) − j(u) ≥
∫

∂Ω

(v − u) · Tn dS, (8.10.8)

where n is the external unit normal to the boundary ∂Ω of the flow domain.
Once again, decomposing the boundary ∂Ω into the union of two disjoint subsets

∂Ωu, where the velocity vector U is prescribed, and ∂Ωt, where the stress vector
Tn = t is given, one sees that

∫
∂Ω

(v − u) · Tn dS =
∫

∂Ωt

(v − u) · t dS. (8.10.9)
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Thus, in any given flow, the exact form of the stress power difference, which is the
integral on the right side of Eq. (8.10.9), leads to the specific form of the inequality
applicable to that flow. Thus, we arrive at the following inequality:

ρ

(
∂u
∂t

, v − u
)

+ ρb

(
u, u, v − u

)
− ρ

(
b, v − u

)

+
∫
Ω

[α(p,Θ, I, II, III) − p][∇ · (v − u)] dv + a

(
u, u, v − u

)

+ j(v) − j(u) ≥
∫

∂Ωt

(v − u) · t da. (8.10.10)

Now, we shall turn to the continuity and energy equations. The former is given by

dρ

dt
+ ρ∇ · u = 0, (8.10.11)

which in view of Eq. (4.5.3) becomes:

∂ρ

∂p

dp

dt
+ ∂ρ

∂Θ

dΘ

dt
+ ρ(p,Θ)∇ · u = 0. (8.10.12)

Recalling the balance of energy equation as:

ρ
de

dt
= 1

2
T : A − ∇ · q + ρr, (8.10.13)

where e is the internal energy function, q is the heat flux vector and r is the radiation
supply, one finds that constitutive equations for e and q are needed. Here, in analogy
with Eq. (4.5.6), we assume that

e = e(p,Θ, I, II, III), (8.10.14)

q = −k(p,Θ, I, II, III)∇Θ, (8.10.15)

where k > 0 is the conductivity coefficient.
In injection moulding, one finds that the energy equation is replaced by

ρcp
dΘ

dt
= 1

2
T : A − ∇ · q, (8.10.16)

where cp is the heat capacity at constant pressure.
Now, all of the main equations, including the basic inequality for the velocity field

u, have been assembled. From these, one can devise a numerical scheme to solve
flow problems of interest.

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Chapter 9
Energy Methods in Action: Equality,
Inequality and Stability

This chapter is concerned with five types of problems in which energy principles
play a significant role. The first one is to determine the minimum pressure drop per
unit length to initiate a steady flow of a Bingham fluid in a pipe of arbitrary cross-
section; here, it is found that the variational principle developed in the previous
chapter furnishes the necessary tool. In the next two sections, the conditions under
which bubbles remain static when trapped in a viscoplastic fluid and the motion of a
rigid body in such a fluid are discussed. Subsequently, the initiation and cessation of
unsteady shearing flows in a channel or a pipe of arbitrary cross-section are examined
through the application of variational inequalities. The time estimate for the fluid to
attain a steady flow is found to be infinitely large; in contrast, the steady flow in a
Binghamfluid comes to rest in a finite amount of time provided the pressure drop falls
below a critical value. The latter result, as mentioned earlier in Chap. 1, provides a
crucial difference between the cessation behaviour ofNewtonian andBinghamfluids.
Similar outcomes have been proven for more general viscoplastic fluids and attention
is drawn to them as well.

Finally, the Orr-Sommerfeld energy equation is used to investigate the nonlinear
stability of the steady flow of a Bingham fluid in a channel or a circular pipe.

9.1 Axial Flow in a Pipe of Arbitrary Cross-Section

In this section, a formula for the minimum pressure drop per unit length Gc > 0 to
initiate a steady flow in a pipe of arbitrary cross-section is derived. Next, assuming
such a flow occurs, the shape of a stagnant zone next to the boundary of a pipe with
corners is depicted, and bounds on the magnitude of the core and the maximum
velocity in it are also obtained.
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9.1.1 The Minimum Pressure Drop per Unit Length
to Initiate a Steady Flow

Consider a pipe of arbitrary cross-section defined through Ω in (x, y) coordinates,
with its boundary defined by Γ. Suppose that a steady axial flow of a Bingham fluid
exists in this pipe with the velocity field defined through

ẋ = 0, ẏ = 0, ż = w(x, y) ≥ 0, w(x, y)

∣∣∣∣
Γ

= 0. (9.1.1)

This flow is assumed to occur under a constant pressure drop, i.e., ∂p/∂z =
−Gz, G > 0. The relevant Rivlin-Ericksen tensor for the velocity field (9.1.1) is
given by (2.5.9); it implies that two shear stresses exist in the yielded region. They are

Sxz = Szx = ηw,x + τy

|∇w|w,x, Syz = Szy = ηw,y + τy

|∇w|w,y, (9.1.2)

since (cf. (2.5.10)):
K(A) = |∇w|, (9.1.3)

where
∇w = w,xi + w,yj. (9.1.4)

Obviously, shear stresses exist in the unyielded regions as well and in them, they
obey the inequality:

0 ≤ T(S) =
[

S2
xz + S2yz

]1/2
≤ τy. (9.1.5)

The main problem for the flow in a pipe of arbitrary cross-section may now be posed:
Is there a minimum pressure drop per unit length to initiate the flow? The answer
to this question can be found from the Lemmas 2.2 and 2.3 proved by Mosolov and
Miasnikov [1]. In order to apply these Lemmas, one has to begin with the energy
equation for the flow of a Bingham fluid in a pipe of arbitrary cross-section. Thus,
modifying the energy equation (8.8.12) as necessary for the steady flow of of a
Bingham fluid, one obtains:

1

2
η

∫
Ω

|∇w|2 da + τy

∫
Ω

|∇w| da =
∫
Ω

Gw da. (9.1.6)

The basic idea is to turn the above into an inequality by replacing the right side by
an upper bound. In order to achieve this, two Lemmas will now be stated.

Lemma 1 If h(x, y) is a smooth function satisfying the condition

h(x, y)

∣∣∣∣
Γ

= 0, (9.1.7)

http://dx.doi.org/10.1007/978-3-662-45617-0_2
http://dx.doi.org/10.1007/978-3-662-45617-0_2
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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where Γ is the boundary of the cross-section, then

M
∫
Ω

|∇h| da ≥
∫
Ω

h da, M = sup
Ω ′⊆Ω

A(Ω ′)
P(Ω ′)

. (9.1.8)

Here,Ω ′ is an arbitrary sub-domain ofΩ with a boundaryΓ ′.Next,A(Ω ′) is the area
of this sub-domain and P(Ω ′) is its perimeter. One notes that there is no restriction
that Ω should possess a symmetric cross-section. This Lemma can be applied to the
right side of (9.1.6) and results in the following inequality:

1

2
η

∫
Ω

|∇w|2 da + τy

∫
Ω

|∇w| da ≤ MG
∫
Ω

|∇w| da. (9.1.9)

Obviously, there will be an infinite number of sub-domains of Ω. Unless one finds a
specific sub-domain which delivers the bound M, the above Lemma is not of much
use. The following Lemma provides the clue regarding the shape of this sub-domain.

Lemma 2 There exists a sub-domain Ω1 with boundary Γ1 for which

M = A(Ω1)

P(Ω1)
, (9.1.10)

where, if Q is a point on Γ1 not on Γ, then the connected part of the set Γ1\Γ,

containing Q, is the arc of a circle touching Γ.

This says in essence that if a point Q lies on the boundary Γ1 and not on the
boundary Γ, then the arc on which Q lies is circular and this arc is tangential to Γ

when it meets it. See Fig. 9.1. The procedure to find M relies on this observation.
Note that the given domain Ω may, in itself, be the optimal one as in the case of a
circular disk. Otherwise, an interior one exists which furnishes M.

The importance of finding the sub-domain Ω1 and its boundary Γ1 arises from
the fact that in 1967, Mosolov and Miasnikov [2] proved in Theorem 5 the following
result:

Theorem Let Ω be a simply connected domain in which the supremum M is obtained
on a single closed curve Γ1 bounding the sub-domain Ω1. Then, if the motion exists
in a Bingham fluid, the stagnant zones must lie outside Ω1.

Thus, a stagnant zone, when it exists, lies in the corner of a pipe and a circular
arc separates it from the rest of the pipe.

Turning to the inequality (9.1.9), one notes that the constant M depends on the
shape of the cross-sectionΩ only and is a geometric property. Rewriting this inequal-
ity as

1

2
η

∫
Ω

|∇w|2 da ≤ (MG − τy)

∫
Ω

|∇w| da, (9.1.11)
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1

Q

Fig. 9.1 Subdomain with a circular arc

one sees that if MG − τy ≤ 0, then

η

∫
Ω

|∇w|2 da ≤ 0. (9.1.12)

Since |∇w| ≥ 0, the only way to satisfy the above inequality is to demand that
∇w = 0 throughout Ω. That is, w(x, y) = C, a constant; however, the vanishing of
this velocity field on the boundary Γ means that w(x, y) ≡ 0 in Ω. In simple terms,
if MG − τy ≤ 0, then no flow can occur. Hence, we have arrived at the following:

Conclusion: A pressure drop per unit length G will sustain the steady flow in a
pipe of arbitrary cross-section if

G > Gc = τy

M
, (9.1.13)

where Gc is the critical pressure drop per unit length.
Obviously, for a given cross-section, the task is now to find M. While this is not

simple in all cases, one can use Lemma 2 of Mosolov and Miasnikov to obtain the
critical pressure drop per unit length in a few pipes of symmetric cross-section quite
easily as shown by Huilgol [3].

To illustrate this method, consider a pipe of square cross-section with a side of
length a each. See Fig. 9.2.
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a

a/2

l

l

a

Fig. 9.2 Determining the constant M in a pipe of square cross-section

The domain Ω is defined by the square. According to Lemma 2, the boundary
Γ1 of its sub-domain Ω1, which furnishes M, must consist of four straight lines and
four circular arcs, each of which is a quarter circle. Now, choose a sub-domain Ω ′
with four straight edges of length (a − 2l) each, and four quarter circles of radius l
each. The problem is to find l so that the ratio

A(Ω ′)
P(Ω ′)

(9.1.14)

is a maximum. Writing the area and the perimeter in terms of l, one finds that

A(l) = a2 + (π − 4)l2, P(l) = 4a + 2(π − 4)l, 0 ≤ l ≤ a/2. (9.1.15)
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Thus, one has to maximise the ratio A(l)/P(l). Solving the simple equation

d

dl

(
A(l)

P(l)

)
= 0 (9.1.16)

requires finding l∗ so that A(l∗) = P(l∗)l∗, which provides the critical value:

l∗ = 2 − √
π

4 − π
a = a

2 + √
π

. (9.1.17)

Thus, the optimum values are:

A(l∗) = 2a2
√

π

2 + √
π

, P(l∗) = 2a
√

π, M = a

2 + √
π

, Gc = Mτy. (9.1.18)

Now that the shape of the sub-domainΩ1 has been found, the Proposition ofMosolov
andMiasnikov says that the stagnant zones of theBinghamfluid lie in the four corners
of the square pipe, outside Ω1. It is important to see that M is greater than the ratio
of the area of the square to its perimeter, which is a2/4a = a/4. Obviously,

M = a

2 + √
π

>
a

4
. (9.1.19)

In the work cited [3], one can find the values of M for the following symmetric
cross-sections.

1. For a pipe of circular cross-section of radius R, if the disk is itself the optimum
domain, the optimal value is given by

M = πR2

2πR
= R

2
. (9.1.20)

If the disk of radius R is not the optimum domain, it will contain an optimal
sub-domain such that part of its boundary will consist of that of the circle with
the remaining forming circular arcs inside it. See Fig. 9.3 for an example of such
a domain. This clover-leaf shaped region will have an area less than that of the
disk, while its perimeter is larger than that of the disk. So, the ratio of its area to
the perimeter will be less than R/2. As the number of such intersecting circular
arcs, which may be of different radii, increases, the ratio of the enclosed area to
its perimeter will approach R/2.
In fact, the critical pressure drop to initiate the flow in a pipe of circular cross-
section has been shown earlier in (5.4.1) to be Gc = 2τy/R, which means that
one should obtain M = R/2 again through the Mosolov-Miasnikov Lemmas.
Obviously, this has now been demonstrated.

2. In a similar manner, one can prove that for an annular region bounded by two
concentric circles of radii R1 and R2 > R1, the value of M = (R2 −R1)/2, Gc =
Mτy. This value was derived earlier in (5.5.7) through a different argument.

http://dx.doi.org/10.1007/978-3-662-45617-0_5
http://dx.doi.org/10.1007/978-3-662-45617-0_5
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R

R/2

Fig. 9.3 Determining the constant M in a pipe of circular cross-section

3. For a rectangular cross-section of sides a and b < a,

M = ab

a + b + √
(a − b)2 + πab

, Gc = Mτy. (9.1.21)

See Fig. 9.4. Clearly, letting a = b, one can recover (9.1.19) from (9.1.21).
4. For an equilateral triangle of side a each,

M =
√
3

2

[
3 +

√
π

√
3

]a ≈ 0.162a, Gc = Mτy. (9.1.22)

See Fig. 9.5.
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a

b/2

b/2

l

l

b/2

Fig. 9.4 Determining the constant M in a pipe of rectangular cross-section

5. For an L−shaped cross-section of arms of length L and of width b,

M =
4L −

[
16l2 − 20(2lb − b2)(1 − (π/4))

]1/2

10(1 − (π/4))
, Gc = Mτy. (9.1.23)

See Fig. 9.6. This formula holds for 0 < b < L/2 only. See the Table below as
well for a list of the optimal values of l∗/L for a given ratio of b/L (Table9.1).

6. The cross-section of the runner in an experimental injection moulding machine
has an igloo shaped cross-section; see Fig. 9.7. Since the cross-section is symmet-
rical about the z-axis, only the right side is depicted. Note that there is a circular
arc at the top with D as its centre and two straight lines joining B to A and O to A.
The coordinates of the relevant points, suitably scaled, are given in the following
(Table9.2).
The constantM for this shape is found by locating the optimal position of Gwhich
lies on the bisector of ∠OAB, and forms the centre of a circular arc of radius l
joining E to F. The optimal value has been found [4] to be M = 2.02. Note that
the line AD does not play a role in the determination of M; rather, it is relevant
in calculating the area of the original cross-section.
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a a

a

l l

Fig. 9.5 Determining the constant M in a pipe of an equilateral triangular cross-section

9.1.2 Existence of Stagnant Zones

Suppose that the cross-section of a pipe is neither circular nor a concentric annulus.
Assuming that a steady flow occurs, can one be certain that stagnant zones exist at
the corners, say, in a pipe which has a simply connected cross-section? To answer
this, consider the following argument. If there are no stagnant zones, then on the
boundary Γ of the pipe, not only is the velocity w = 0, the magnitude of the shear
stress on it is less than or equal to the yield stress. Hence,

G × A(Ω) ≥ τy × P(Ω), or G ≥ τy

(
A(Ω)

P(Ω

)−1

. (9.1.24)
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l1 l1

l1

l1

b

b

L

l2

b/2

L

Q

P

Fig. 9.6 Determining the constant M in a pipe of an L-shaped cross-section

Table 9.1 Optimal values b/L l∗/L

0.1 0.048

0.2 0.092

0.3 0.132

0.4 0.168

0.5 0.198

Thus, a stagnant zone will exist in such a pipe provided

τy

(
A(Ω)

P(Ω

)−1

> G. (9.1.25)
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Fig. 9.7 Determining the constant M for an igloo shaped cross-section

Recall that the inequality (9.1.13) provides a lower bound to G. Thus, for example,
stagnant zones exist in a pipe of square cross-section provided

τy

(
a

4

)−1

> G > τy

(
a

2 + √
π

)−1

. (9.1.26)

This is the content of Theorem 2 in [2].
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Table 9.2 Igloo shaped
cross-section

Point y-coordinate z-coordinate

O 0 0

A 4.5 0

B 6.21 3.54

C 0 8

D 0 4.70

9.1.3 Bounds on the Magnitude of the Core
and Its Maximum Velocity

Now suppose that the cross-section of the pipe is simply connected with a rigid core
moving with the flow; on the boundary of the core, the shear stress is equal to the
yield stress in magnitude. If the core has an area A(C) and its perimeter is P(C), the
previous argument shows that

P(C) ≤ G

τy
A(C). (9.1.27)

The next question is to estimate the size of this core; rather, estimate the radiusR of the
largest circular disk which can lie wholly inside the core region. Since the magnitude
of the shear stress on the boundary of themoving core is τy everywhere, it follows that
inside the core, the shear stress σ is less than or equal to τy in magnitude. Thus, on a
disk of radiusR inside the core, the balance of forces usingπR2G ≤ 2πRτy shows that

R2 = 2τy

G
≥ R. (9.1.28)

In Theorem 3 in [2], one finds the following lower bound to R:

R ≥ R1 = 2τy

G

[
1 +

(
1 − 4πτ 2y

G2A(Ω)

)1/2]−1

. (9.1.29)

Turning to the maximum velocity wC in the core, it is easy to see that the flow rate
through a core of radius R1 is less than or equal to the flow rate Q through the pipe.
Thus,

πR2
1wC ≤ Q =

∫
Ω

w da. (9.1.30)

This flow rate Q can be estimated from the inequality (9.1.9) as follows. Using
Cauchy-Schwarz inequality, one has that

∫
Ω

|∇w| da ≤
( ∫

Ω

|∇w|2 da

)1/2

A(Ω)1/2, (9.1.31)



9.1 Axial Flow in a Pipe of Arbitrary Cross-Section 193

where A(Ω) is the area of cross-section. Using this in (9.1.9), we find that

1

2

η

A(Ω)

( ∫
Ω

|∇w| da

)2

+ (τy − MG)

∫
Ω

|∇w| da ≤ 0, (9.1.32)

from which it follows that
∫
Ω

|∇w| da ≤ 2A(Ω)

η
(τy − MG). (9.1.33)

Next, employing (9.1.8), we obtain

Q =
∫
Ω

w da ≤ M
∫
Ω

|∇w| da ≤ 2MA(Ω)
(τy − MG)

η
. (9.1.34)

Thus, one finds, through (9.1.30), the following bound on the maximum velocity wC

in the core:

wC ≤ 2MA(Ω)

πR2
1

(τy − MG)

η
. (9.1.35)

9.2 Static Bubbles in Viscoplastic Fluids

Suppose that a bubble of gas of arbitrary shape is injected into a viscoplastic fluid at
rest. If one knows the volume V of the bubble, one can derive a length scale R from
it by assuming that the volume is equivalent to that of a sphere of radius R. That is

V = 4

3
πR3. (9.2.1)

The pressure pg in the gas, as it rises slowly, is uniform, or it is assumed to depend
on time only; thus pg = pg(t). Next, on the surface of the bubble, the velocity
vector in the fluid and that of the bubble are assumed to be continuous, and there are
no tangential shear stresses. The difference between the pressure in the bubble and
the normal stress exerted by the fluid on the bubble is balanced by surface tension
effects. Given these conditions, the aim here is understand the interplay between the
buoyancy force acting on the bubble and the yield stress in the fluid. To achieve this,
a variational inequality for a rising bubble is derived from (8.2.19) ignoring inertial
effects. It turns out that the energy equation derived from it is violated when the
Bingham number exceeds a certain value; in other words, such a flow cannot exist
or the bubble cannot rise. This is how the condition for a bubble to remain at rest in
a Herschel-Bulkley fluid has been obtained by Dubash and Frigaard [5].

Suppose that an incompressible viscoplastic fluid, bounded by the walls of a
container, is subject to a motion created by a rising bubble. On the surface of the

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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bubble, the fluid exerts a normal stress tn given by tn = −pL + Snn, where pL is the
pressure in the fluid and Snn is the extra stress in the normal direction. That is, the
stress vector t along the unit normal n pointing into the bubble is t = Tn = tnn.

Since the pressure in the gas must exceed this normal stress, it follows that

pg − (pL − Snn) = σ

(
1

R1
+ 1

R2

)
, (9.2.2)

where σ is the surface tension, and R1 and R2 are the principal radii of curvature of
the surface of the bubble at a given point.

Let Ω denote a finite region bounded by the container; on its walls, the fluid is at
rest. One can argue that a viscoplastic fluid far removed from the rising bubble is at
rest even if the domain is infinite; in this case, one truncates the velocity field insideΩ.

Let the density of the gas be ρg, that of the liquid be ρ, and assume that ρg � ρ.

The buoyancy stress on the bubble, i.e., the bouyancy force per unit area, can be taken
to be ρgR, where g is the acceleration due to gravity. Let the constitutive equation
for the viscoplastic fluid be that of the Herschel-Bulkley type, i.e., we assume that
the yield stress τy is a constant and that the viscosity is given by

η(γ̇ ) = kbγ̇
m−1, 0 < m < 1, (9.2.3)

where kb is the consistency index andm is the power-law index. From this, we can find
the velocity scale U as follows. Since the shear stress is given by kbγ̇

m, γ̇ = U/R,

balancing the buoyancy stress and the viscous stress, one obtains:

ρRg

kbUm/Rm
= 1, (9.2.4)

leading to the velocity scale:

U =
(

ρgRm+1

kb

)1/m

. (9.2.5)

The Bingham number Bn can now be defined as the ratio of the yield stress to the
viscous stress, or equivalently as the ratio of the yield stress to the buoyancy stress
which is the preferred choice. Hence,

Bn = τyRm

kbUm
= τy

ρgR
. (9.2.6)

The non-dimensional form of the constitutive equation can now be obtained by
scaling the stress tensor with respect to the buoyancy stress. It is given by

A(v) = 0, T(S) ≤ Bn, (9.2.7)

S(v) =
(

K(v)m−1 + Bn

K(v)

)
A(v), T(S) > Bn. (9.2.8)
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Finally, the surface tension coefficient can be put in a non-dimensional form through

β = σ

ρgR2 . (9.2.9)

Thus, the relevant equations are (9.2.5)–(9.2.8). Of course, the velocity field must
satisfy the continuity equation ∇ · v = 0.

Let us now turn to the fundamental inequality (8.2.19). In it, assume that the
solution velocity field u and the trial velocity field v vanish on the walls of the
container. Omit the inertial terms and assume that the non-dimensional form of the
body force is vertically downwards, i.e., b = −k. Since the volume of the bubble is
small compared with that of the container, one has that

(b, v − u) = −
∫
Ω

k · (v − u) dv. (9.2.10)

Next, the surface bounding the fluid is in two parts: one comprises the walls and the
other the surface of the bubble, ∂Ωb. Let the unit normal n to the surface point into
the bubble so that it is the exterior normal to the fluid surface. Thus,

∫
∂Ω

(v − u) · Tn dS =
∫

∂Ωb

(v − u) · Tn dS. (9.2.11)

Here, in non-dimensional form,

Tn = tnn, tn = −pL + Snn == −pg + β

(
1

R1
+ 1

R2

)
, (9.2.12)

where the radii R1, R2 have been scaled with respect to R. Using the divergence
theorem, it follows that pg, which depends on t only, makes no contribution to the
right side of (9.2.11). Hence,

∫
∂Ωb

(v − u) · Tn dS = β

∫
∂Ωb

(v − u) ·
(

1

R1
+ 1

R2

)
n dS. (9.2.13)

Consequently, the variational inequality (8.2.19) now becomes

a(K(u), u, v − u) + Bn[j(v) − j(u)] ≥ L(v − u), (9.2.14)

where, with ∇ · u = 0, ∇ · w = 0, the three functionals are:

a(K(u), u, w) = 1

2

∫
Ω

K(u)m−1A(u) : A(w) dv, (9.2.15)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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j(w) =
∫
Ω

K(w) dv, (9.2.16)

L(w) = −
∫
Ω

k · w dv − β

∫
∂Ωb

(
1

R1
+ 1

R2

)
w · n dS. (9.2.17)

If u is the solution velocity field, both v = 2u and v = 0 are permissible. Thus,
appealing to (8.3.3), the energy balance equation can be derived and one obtains:

a(K(u), u, u) + Bnj(u) = L(u). (9.2.18)

If one looks at the functional Φ(v) in (8.1.30) and employs (4.6.41), it is easy to see
that the minimiser satisfies the equation:

Φ(u) = 1

m + 1
a(K(u), u, u) + Bnj(u) − L(u). (9.2.19)

Comparing (9.2.18) with (9.2.19), it follows that theminimumvalue of the functional
Φ(u) is given by

Φ(u) = − m

m + 1
a(K(u), u, u). (9.2.20)

9.2.1 Critical Value of the Bingham Number
to Prevent Bubble Motion

Since the viscous dissipation term a(K(u), u, u) ≥ 0, it follows that j(u) ≤ L(u) for
the solution u. That is, for a solution to exist

Bn ≤ L(u)∫
Ω

K(u) dv
. (9.2.21)

Consequently, suppose that for all non-trivial admissible velocity fields v,

Bn ≥ Bnc = sup
v �=0

L(v)∫
Ω

K(v)) dv
, (9.2.22)

where Bnc is a critical value. The only possible solution is that u = 0 in the fluid.
That is, if the Bingham number exceeds the critical value, the bubble will not move.

While this is an interesting result, it is not easy to find this number, or even a lower
bound to it. For instance, suppose that the bubble is of spherical shape and v is any
admissible velocity field. In this instance, R1 = R2 = 1, a constant, and thus

∫
∂Ωb

(
1

R1
+ 1

R2

)
v · n dS = 2

∫
∂Ωb

v · n dS = 0. (9.2.23)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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This simplification is not enough, for it is difficult to find an admissible velocity field
which is divergence free and vanishes on the boundary of a given container. Thus, a
different approach is required and this will be discussed next.

9.2.2 Critical Value from Stress Maximisation

In order to obtain a second lower bound for the critical Bingham number, one turns
to the maximum principle in Sect. 8.1.3. Using the stress potential (4.6.42) for a
Herschel-Bulkley fluid and (8.1.27) and non-dimensionlisation, one can prove that
the true stress field maximises the functional:

Ψ (S∗) = − m

(m + 1)2(m+1)/m)

∫
Ω

(
|T(S∗) − Bn| + T(S∗) − Bn

)(m+1)/m

dv.

(9.2.24)

Note that the walls of the container form the velocity boundary, ∂Ωu, and on this
part U = 0. Next, the admissible stress field is defined to be T∗ = −p∗1 + S∗,
if the following conditions are satisfied:

− ∇p∗ + ∇ · S∗ − k = 0 in Ω, (9.2.25)

(S∗n) · t = 0 on ∂Ω, (9.2.26)

−p∗ + (S∗n) · n = −pg + β

(
1

R1
+ 1

R2

)
on ∂Ω. (9.2.27)

Here, n points into the bubble and t is any unit vector tangential to the surface of the
bubble.

Now, for any admissible stress field, let the maximum of the stress invariant T(S∗)
over the flow domain Ω be given by

T̃(S∗) = sup
x∈Ω

T(S∗(x)). (9.2.28)

Now, suppose that Bn ≥ T̃(S∗). In this situation, (9.2.24) proves that the functional
Ψ (S∗) = 0 for all admissible stress fields, including the true stress field S. However,
from Sect. 8.1.4, is it known that the maximum value of the functional Ψ (S∗) is the
same as the minimum value of the functional Φ(v). Hence, it follows from (9.2.20)
that

Ψ (S) = − m

m + 1
a(K(u), u, u) = 0. (9.2.29)

Since the viscous dissipation integral is non-negative, this leads to the result that
u = 0 in Ω.

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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For a spherical bubble, there exists one admissible stress field which satisfies the
equations of motion (9.2.25) and the boundary conditions (9.2.26) and (9.2.27). To
understand this, consider the stream function for the flow outside the bubble:

ψ(r, θ, φ) = Cr sin2 θ, 1 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (9.2.30)

The velocity fields in the radial (u) and meridional directions (v) are given by:

u = − 1

r2 sin θ

∂ψ

∂θ
= −2C

r
cos θ, (9.2.31)

v = 1

r sin θ

∂ψ

∂r
= C

r
sin θ. (9.2.32)

There are no shear stresses and the normal stresses, with a unit value for the viscos-
ity, are:

S∗
rr = 4C

r2
cos θ, S∗

θθ = S∗
φφ = −2C

r2
cos θ. (9.2.33)

The equations of motion are satisfied with the pressure field:

p(r, θ) = −2C

r2
cos θ − r cos θ + p0, (9.2.34)

where p0 is a constant. Now, on the surface of the sphere, r = 1, and (9.2.27)
results in:

[2C + 1 + 4C] cos θ + p0 = pg − 2β, (9.2.35)

since R1 = R2 = 1 as well. The right side is a constant and thus, C = −1/6. Using
this value,

2T2(S∗) = S∗
rr
2 + S∗

θθ
2 + S∗

φφ
2 = 2

3r4
cos2 θ, r ≥ 1, (9.2.36)

whence the maximum value of T(S∗) = 1/
√
3 when r = 1. This result shows that

the critical Bingham number Bnc ≥ 1/
√
3 and that a spherical bubble will not rise

if the Bingham number exceeds the critical value [5].
A second method to determine the critical value is to assume that the bubble is

axisymmetric and that its shape lies vertically between 0 < z1 < z2 < L, where L
is the height of a cylindrical column. In this case, it can be shown that [5]

−
∫
Ω

k · v dv ≤ 1

2
√
2

∫
Ω

K(v) dv. (9.2.37)

In particular, for a bubble of spherical shape, the integral involving β in (9.2.17)
vanishes because R1 = R2 = 1 and the velocity field v has zero divergence. Finally,
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z+ − z− = 2, which means that

Bnc = 1√
2

≈ 0.71. (9.2.38)

That is, the bubble is entrapped if the Bingham number exceeds this value.
A third approach to obtaining the critical value is to assume that the bubble is

spherical, consisting of an incompressible viscous fluid with a viscosity η. In this
case, the constantC is given by theHadamard-Rybczynski formula. FromEqs. (4.9.9)
and (4.9.28) in [6], we find that

C = 2η + 3η

4(η + η)
. (9.2.39)

Assuming that the density ρ and the viscosity η of the gas in the bubble are exceed-
ingly small, or letting ρ/ρ → 0, η/η → 0, one finds that C = 1/2. Thus, by
redefining the class of admissible stress tensor fields, one finds the critical Bingham
number to be

√
3.

However, numerical modelling [7], using the Papanastasiou model, leads to
the conclusion that the critical Bingham number is 0.143. Thus, the theoretical
bounds obtains from (9.2.36) and (9.2.37) are too small, while that derived from
the Hadamard-Rybczynski formula is too large.

For non-spherical, axisymmetric bubbles or long cylindrical bubbles, bounds on
the critical Bingham numbers have been derived; see [5]. These have been compared
with experiments on bubbles resembling inverted tear drops [8]. The critical Bingham
number has been found to lie in the range 0.01–0.15.While the upper limit falls close
to the value 0.143 mentioned earlier, there is still a great deal of difference between
bounds obtained from variational principles, numerical modelling and experiments.
As far as experiments are concerned, the internal stresses in the viscoplastic fluid
arising from its structural origin and the flow history, play a major role in bubble
formation and propagation [9] meaning that in order to diminish the discrepancy
between theory, modelling and experiment, a great deal of additional research is
required.

9.2.3 A Condition for a Bubble to Move: An Upper
Bound for the Bingham Number

So far, lower bounds for the critical Binghamnumber have been derived; these bounds
tell us when the bubble is not going to move. If the bubble does rise, can one obtain
an upper bound for the Bingham number? The answer can be found by considering
the velocity field uN in a Newtonian fluid due to a rising bubble, when there is no
surface tension. The compelling reason to assume that the surface tension coefficient
β = 0 in a viscoplastic fluid is that it does not affect the result from the maximisation
of the stress functional; see (9.2.24).



200 9 Energy Methods in Action: Equality, Inequality and Stability

Thus, for the sake of simplicity, consider a Bingham fluid and a Newtonian
fluid with the same viscosity η, with the two true velocity fields given by u and
uN respectively. The minimiser u satisfies (9.2.19) with m = 1 and one redefines
a(u, u) ≡ a(1, u, u). Thus,

Φ(u) = 1

2
a(u, u) + Bnj(u) − L(u). (9.2.40)

The velocity field uN is also the minimiser of its own functional and meets:

ΦN (uN) = 1

2
a(uN, uN) − L(uN). (9.2.41)

Now, in the absence of surface tension, a bubble will always rise in a Newtonian
fluid and the balance of energy equation leads to the following:

a(uN , uN ) = L(uN ) > 0. (9.2.42)

Thus, taking due care, one obtains:

ΦN (uN ) + Bnj(uN ) = Φ(uN ) ≥ Φ(u), (9.2.43)

since uN is any admissible velocity field as far as the functional Φ(·) is concerned.
Now, from (9.2.20), we know that the minimum values of the two functionals are:

Φ(u) = −1

2
a(u, u), ΦN (uN ) = −1

2
a(uN , uN ). (9.2.44)

Thus, (9.2.40) and (9.2.41) lead to the following result:

ΦN (uN ) + Bnj(uN ) = −1

2
a(uN , uN ) + Bnj(uN ) ≥ −1

2
a(u, u). (9.2.45)

Consequently,
a(u, u) ≥ a(uN , uN ) − 2Bnj(uN ). (9.2.46)

By the Cauchy-Schwarz inequality,

j(uN ) ≤ V(Ω)1/2a(uN , uN ), (9.2.47)

where V(Ω) is the volume of the region Ω. Thus, (9.2.46) delivers the following
inequality:

a(u, u) ≥ a(uN , uN )1/2[a(uN , uN )1/2 − 2BnV(Ω)1/2]. (9.2.48)

Now, whenever there is a flow in a Bingham fluid due to a rising bubble, the viscous
dissipation a(u, u) > 0. Since a bubble will always rise in a Newtonian fluid with a
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velocity field uN whenever there is no surface tension, the bubble will also rise in a
Bingham fluid provided

Bn <
a(uN , uN )1/2

2V(Ω)1/2
. (9.2.49)

While this result is elegant, it implies that a bubble will rise in a Bingham fluid if
the Bingham number is small. Indeed, one can make this as small as one pleases by
increasing the volume of the container, or by marginalising the yield stress.

In conclusion, there is a need to obtain better values for lower and upper bounds
on the Bingham number Bn for a bubble to remain static or to move.

9.3 Motions of Rigid Bodies in Viscoplastic Fluids

Themotion of a rigid body in a fluid leads two types of problems: the first one, termed
the resistance problem, is to prescribe the translational and angular velocities of the
body and to seek the subsequent forces and torques acting on the body. The second
one, the mobility problem, is to define the force and torque acting on the body and
obtain the translation and rotation of the body. The resistance problem has received
much attention, beginning with the work of Stokes (c. 1851) on the drag experienced
by a sphere moving with a constant speed VN in an unbounded sea of Newtonian
fluid. Stokes showed that in a creeping flow, the drag DN experienced by a sphere
of radius R is given by DN = 6πηVN R, where η is the viscosity of the Newtonian
fluid. For non-Newtonian fluids, such as Bingham or second-order fluids, the drag
may be significantly different from DN .

For instance, in a viscoplastic fluid, the drag increases with the yield stress, ulti-
mately approaching infinity and forcing the sphere to stay put. This is the conclusion
reached by Beris et al. [10] that in a Bingham fluid, there is a limiting value for a
yield-stress parameter beyond which the sphere cannot move or is entrapped.

To be specific, consider a solid sphere of radius R moving with a constant speed
U due to the force of gravity in an unbounded domain of a Bingham fluid. This is
now a resistance problem. If the density of the sphere is ρs and that of the fluid is
ρ(< ρs), the drag experienced by the sphere is the same as the nett force acting on
it, given by

F = 4

3
πR3(ρs − ρ)g = 4

3
πR3ρs(1 − ρr)g, ρr = ρ/ρs < 1, (9.3.1)

where g is the acceleration due to gravity. In [10], the number NB and the Stokes
drag coefficient Cs are defined respectively as follows:

NB = 2τyR

ηU
, Cs = F

6πηUR
. (9.3.2)
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The ratio of the yield stress contribution to the external force can be defined through
the yield-stress parameter Yg:

Yg = 2τyπR2

F
, (9.3.3)

leading to NB = 6CsYg, with Yg = 0 corresponding to a Newtonian fluid. The
relation between the Bingham number Bn = τy/ρsRg and Yg can be established and
one finds that

Yg = 3

2(1 − ρr)
Bn. (9.3.4)

Hence, as ρr → 0, it will be seen that Yg → 3/2 Bn.
Since it is not possible to find an analytical solution to the problemof a solid sphere

moving through a Bingham fluid with a constant speed under gravity, numerical
methods have to be employed. The first attempt is due to Beris et al. [10] based on
the finite element method using the Papanastasiou model, and assuming that solid
regions exist at the front and back of the settling sphere because of stagnation points
in the flowwithin a large domain. Note that the assumption of the flow being stagnant
far away from the sphere is consistent with the existence of a yield stress.

The important result from the modelling is that the sphere will fall if Yg < 0.143.
That is, the resistance becomes infinitely large as this limit is approached from below.
The number 0.143 is intriguing for it appears as the limiting value for the entrapment
of both the solid sphere [10] and the spherical bubble in a Bingham fluid [7]; in
the case of a spherical solid, numerical modelling suggests that Yg = 0.143 =
(3/2(1 − ρr)) Bnc, while the corresponding result for a spherical bubble is Bnc =
0.143. Thus, the former critical Bingham number is not 2/3 times the latter unless
ρr � 1. Nevertheless, it is clear that the no-slip condition on a solid sphere requires
a smaller amount of yield stress to entrap it when compared with that required to
prevent a spherical bubble from rising; the latter is based on the assumption that the
bubble surface is free of shear stresses [7].

This number 3/2 appears again when one considers the correlation between the
rising velocityVb of a bubble and the settling velocityVs of a solid sphere through the
Hadamard-Rybczynski solution [6] and the result due to Stokes. The former shows
that the drag experienced by a spherical bubble of vanishing density and viscosity is
given by D = 4πηVbR, while the drag on a solid sphere is given by D = 6πηVsR.

That is, Vb = (3/2)Vs.

The second conclusion from the numerical modelling [10] is that the Newtonian
limit of zero yield stress is singular in the sense that for a small value of Yg,

there is a region of flow away from the sphere where both the yield stress and the
Newtonian viscous contributions are equally important. However, the calculations
for the approach of the flowfield to Stokes’ result are in good agreementwith scalings
derived from the matched asymptotic expansion valid in the limit.

In sum, the modelling of the flow of a Bingham fluid around a falling sphere is
not an easy task, with extensions to other bodies being even more difficult. Neverthe-
less, one can derive a variational inequality for such problems which can be solved
numerically; see Putz and Frigaard [11]. These matters are discussed below.
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Let the density of the rigid body be ρs and that of the Bingham fluid be ρ, with
ρs > ρ. Choosing a length scale L based on the dimension of the particle, the
characteristic velocity U is defined to be

U = ρs
(1 − ρr)gL

η
, ρr = ρ

ρs
< 1, (9.3.5)

where η is the viscosity of the fluid. The Bingham number, as usual, is defined by
Bn = τyL/ηU. Assuming that the finite domain Ω occupied by the fluid is exceed-
ingly large and that the fluid is at rest far away from the rigid body, one can assume
that the velocity field is zero on its boundary, i.e.,

u = 0, on Γ. (9.3.6)

In the resistance problem [R], the motion of the particle is specified. Thus, if the
particle occupies a region P with a boundary ∂P, it follows that

u = U0 + ω × x, on ∂P. (9.3.7)

The force F and the moment M exerted on the particle by the fluid are given by

F =
∫
∂P

Tn da, (9.3.8)

M =
∫
∂P

x × Tn da, (9.3.9)

where n is the unit normal to ∂P pointing into the fluid.
In order for a particle to be in steady motion, it is necessary that F and M must

balance the nett rate of linear momentum and the buoyancy momentum Mb respec-
tively; note that Mb vanishes under symmetry conditions on the particle. Hence, for
a steady motion to occur, the following equations must be satisfied for a particle with
a volume VP:

F − ρsVPg = 0, (9.3.10)

M − Mb = 0. (9.3.11)

However, for a specified U0 and ω, there is no guarantee that (9.3.10) and (9.3.11)
are met, i.e., the assumption that the flow is steady may prove to be incorrect.

In the mobility problem [M], one prescribes a force F0 and a moment M0 such
that (9.3.10) and (9.3.11) are satisfied with F = F0, M = M0. These conditions
are to be used to determine the velocity field in the fluid along with the rigid body
motion, U0 and ω. In such a situation, as the problem evolves in time, the particle
may change its orientation with respect to g so that the flow may not be steady.



204 9 Energy Methods in Action: Equality, Inequality and Stability

In order to simplify matters, only the mobility problem [M] will be considered
for axisymmetric bodies here. In addition, it is assumed that the external moment
M0 = 0.This is not unduly restrictive, for it is difficult to impose an external moment
on the body unless one considers electro-rheological materials.

Scaling all stresses through the viscous scale ηU/L, or equivalently through the
buoyancy scale ρs(1 − ρr)gL, one arrives at the following set of equations:

− ∇p + ∇ · S + ρr

1 − ρr
eg = 0, in Ω \ P, (9.3.12)

∇ · u = 0, (9.3.13)

u = 0 on Γ, (9.3.14)

with the following constitutive relation for the Bingham fluid:

A(v) = 0, T(S) ≤ Bn, (9.3.15)

S(v) =
(
1 + Bn

K(v)

)
A(v), T(S) > Bn. (9.3.16)

Further, eg denotes the unit vector in the direction of gravity, i.e., eg = −k. In
addition, one recalls that the domain Ω is bounded and large enough so that the
Bingham fluid is at rest on its boundary Γ.

Now, the imposed force F0 on the body is essentially due to gravity, i.e.,

F0 = VP
1

1 − ρr
eg, (9.3.17)

where VP is the scaled particle volume.
Let VM be the subspace of H1(Ω \ P)]d, d ∈ [2, 3], consisting of divergence

free vector fields satisfying the far-field condition (9.3.14). Employing the various
scaling factors listed above, the fundamental inequality (8.2.19) leads to the following
variational inequality satisfied by the solution vector u and all trial velocity fields v:

a(u, v − u) + Bn[j(v) − j(u)] ≥ LM(v − u), (9.3.18)

where

a(u, w) =
∫

Ω\P

A(u) : A(w) dv, u ∈ Vm, ∀w ∈ VM , (9.3.19)

j(w) =
∫

Ω\P

K(A(w)) dv, (9.3.20)

LM(w) = ρr

1 − ρr

∫

Ω\P

eg · w dv +
∫
∂P

U0 · Tn dS, (9.3.21)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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where the unit vector n points into the solid, since the rigid bod is exerting a force
on the fluid. Now U0 is a constant vector means that

∫
∂P

U0 · Tn dS = U0 · F0 = VP

1 − ρr
U0 · eg. (9.3.22)

As shown above in Sect. 8.6.5, the solution of the inequality (9.3.18) is the same as
the minimisation of the functional Φ(v) over VM , where

Φ(v) = 1

2
a(v, v) + Bnj(v) − LM(v), v ∈ VM . (9.3.23)

In order to employ the stress maximisation principle, one notes that on the velocity
boundary ∂Ωu = Γ, the velocity is zero. Thus, the true stress tensorSfieldmaximises
the functional (cf. (4.6.37) and (8.1.39)):

Ψ (T∗) = −1

8

∫
Ω\P

[
|T(S∗) − Bn| + T(S∗) − Bn

]2
dv, (9.3.24)

where each admissible stress tensor field S∗ satisfies the equation of motion (9.3.12)
and the force condition (9.3.17). Equivalently, the true stress tensor minimises

∫
Ω\P

[
|T(S∗) − Bn| + T(S∗) − Bn

]2
dv. (9.3.25)

Suppose that the Newtonian fluid problem has a solution uN , with an admissible
stress tensor SN . Define a critical number BN,c through the maximum of T(SN ) or
its L∞ norm:

BN,c = ||T(SN )||L∞(Ω\P). (9.3.26)

Once again, if Bn ≥ BN,c, the integral (9.3.25) is zero and thus, the velocity field
u = 0 in a Bingham fluid. This result is similar to that obtained earlier in connection
with the motion of a rising bubble; see Sect. 9.2.2.

Now, is there a critical value Bnc for a Bingham fluid below which the Bingham
fluid will flow? To answer this, assume that u1 and u2 are the solutions of (9.3.18)
for the Bingham numbers Bn1 and Bn2(>Bn1) respectively. Since each velocity field
is a test function for the other, one can insert them into (9.3.18) and sum the two
resulting inequalities leading to:

[Bn1 − Bn2][j(u2) − j(u1)] ≥ a(u2 − u1, u2 − u1)] ≥ 0, (9.3.27)

where one uses the fact that the viscous dissipation integral is non-negative. This
inequality may be used, as in Chap.VI, Sect. 5 in [12], to prove that the solution

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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u approaches continuously the Newtonian solution uN as the Bingham number Bn
→ 0. Since uN is non-zero, there must be a minimal Bingham number below which
the yield stress fluid will begin to flow. Let this number be Bnc, so that there is a
flow if Bn < Bnc and none if Bn ≥ Bnc.

In (9.3.27), let Bn2 > Bn1. Thus, in order that this inequality to hold, increasing
the Bingham number Bn must result in decreasing the functional j(·), or the critical
Bingham number Bnc is unique. To see this, we know that j(u) = 0 at this critical
number Bnc and that j(u) = 0 for all Bn > Bnc.

Next, suppose that Bn2 = Bnc. Consider the limit as B = Bn1 →Bn−
c . Since

j(u2) = 0, it follows that

[Bnc − B]j(u) ≥ a(u, u) ≥ 0, (9.3.28)

where j(u) is associated to the number B. Since j(u) ≤ C[a(u, u)] from the Cauchy-
Schwarz inequality, with C depending on the domain Ω \ P only, one finds that as
B → Bn−

c , the following relations hold:

a(u, u) = O(|Bnc − B]2), (9.3.29)

j(u) = O(Bnc − B), (9.3.30)

j(u) ≥ a(u, u)/[Bnc − B] ≥ 0. (9.3.31)

Finally, the balance of energy equation given by

a(u, u) + Bnj(u) = LM(u) (9.3.32)

shows that as B → Bn−
c , the viscous functional goes to zero faster than the yield

stress term. Thus,
Bj(u) ∼ LM(u). (9.3.33)

Once again, one can obtain a value for the critical Bingham number from the
energy equation (9.3.32). Rewrite the latter as:

a(u, u) = j(u)

[
LM(u)

j(u)
− B

]
, (9.3.34)

≤ j(u)

[
Bnc − B

]
, (9.3.35)

where

Bnc = sup
v∈VM ,v �=0

LM(v)

j(v)
. (9.3.36)

If B > Bnc, one must have a(u, u) = 0, for this functional cannot be negative.
Finally, turning to numerical modelling, the velocity field u can be found by min-

imising the functional Φ(v) in (9.3.23) based on the augmented Lagrangian method
or by the fictitious domain method; see Sect. 10.2 for a discussion of these matters.

http://dx.doi.org/10.1007/978-3-662-45617-0_10
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9.4 Initiation and Cessation of Unsteady Shearing Flows

9.4.1 The Approach to the Steady State

Suppose that the constant pressure drop per unit length G > 0 is sufficient to over-
come the yield stress effect in a Bingham fluid. Further, under this pressure drop, let
the fluid attain a steady velocity field w∞ = w∞(x, y) in a pipe of arbitrary cross-
section, defined by Ω in the x − y plane. Further, let us assume that for every initial
value w0 = w0(x, y), the unsteady pipe flow with the same, constant pressure drop
per unit length G > 0, has a unique solution w(t) = w(x, y, t).

In a start-up problem, we are interested in how the L2 norm of the difference
||w∞ − w(t)|| tends to zero as t → ∞. That is, if v(t) = w∞ − w(t) is the unique
solution to the time-dependent flow problemwith an initial value v(0) = w∞−w(0),
the problem that has to be investigated is the rate of decay of ||v(t)|| as t → ∞ under
a zero pressure drop. If the fluid were Newtonian, it can be shown that v(t) → 0 as
t → ∞; for example, see pp. 193–195 in [6]. Note that this is a result concerning
the pointwise convergence of v(t) to zero from which its norm limit tending to zero
can be proved trivially.

Here, we recall the variational inequality for the unsteady flow, viz., (8.8.11)
simplified for the case of the Bingham fluid. That is

ρ

(
∂w

∂t
, v − w

)
+ ηa(w, v − w) + τy[j(v) − j(w)] ≥ (G, v − w), (9.4.1)

where v is any trial velocity field, and the three functionals are given by

a(u, v) =
∫
Ω

∇u · ∇v da, j(u) =
∫
Ω

|∇u| da, (G, u) =
∫
Ω

Gu da. (9.4.2)

To proceed further, let us non-dimensionalise the problem. Choose a length scale L,

a velocity scale U so that x = Lx̂, y = Lŷ, w = Uŵ. Further, let the cross-section
be scaled so that Ω = L2Ω̂ . After this has been accomplished, one drops the hat
notation and considers the eigenvalue problem over the modified cross-section:

∂2w

∂x2
+ ∂2w

∂y2
+ λw = 0, w|∂Ω

= 0. (9.4.3)

Note that each eigenvalue is dimensionless and positive. Indeed, if λ1 > 0 is the
least eigenvalue, it is known that λ1 ≥ J20,1, where J0,1 = 2.4048 . . . is the first zero
of the Bessel function J0(x) of order zero, with the equality holding if and only if
the pipe has a circular cross-section of unit radius.

Using the maximum-minimum principle for finding the eigenvalues [13], one can
prove that the viscous dissipation term obeys the coercive inequality:

a(w∞ − w(t), w∞ − w(t)) ≥ λ1||w∞ − w(t)||2. (9.4.4)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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The proof of the inequality (9.4.4) is not given here, for it is nothing but a statement
about the variational characterisation of the least eigenvalue of the Laplacian; for
example, see [13], or Theorem 4.2 in [14].

In the inequality (9.4.1), scale the pressure drop through G = ηUL−2Ĝ, choose
the time scale T = ρU2/ηλ1 and the Bingham number Bn = τyL/ηU. Finally,
divide through by ηU2 and obtain the non-dimensional form of the inequality:

λ1

(
∂w

∂t
, v − w

)
+ a(w, v − w) + Bn[j(v) − j(w)] ≥ (G, v − w). (9.4.5)

This will be employed next to prove an energy inequality.

9.4.2 The Proof of the Energy Inequality

First of all, if we put v = w∞ in (9.4.5), we find that

λ1

(
∂w(t)

∂t
, w∞ − w(t)

)
+ a(w(t), w∞ − w(t))

+ Bn[j(w∞) − τyj(w(t))] ≥ (G, w∞ − w(t)). (9.4.6)

When the flow is steady with the velocity field given by w∞, the inequality has the
form

a(w∞, v − w∞) + Bn[j(v) − j(w∞)] ≥ (G, v − w∞), (9.4.7)

where, once again, v is any trial velocity field. Thus, if we put v = w(t) in (9.4.7),
we obtain

a(w∞, w(t) − w∞) + Bn[j(w(t)) − j(w∞)] ≥ (G, w(t) − w∞). (9.4.8)

Since w∞ is independent of time t, it follows that

−
(

∂(w∞ − w(t))

∂t
, w∞ − w(t)

)
=

(
∂w(t)

∂t
, w∞ − w(t)

)
. (9.4.9)

Employing (9.4.9) in (9.4.6), adding (9.4.8) to the latter and taking care of the negative
quantities, one obtains:

λ1

(
∂(w∞ − w(t))

∂t
, w∞ − w(t)

)
+ a(w∞ − w(t), w∞ − w(t)) ≤ 0. (9.4.10)

In (9.4.10), one can use (9.4.4) and eliminate the eigenvalue λ1 and obtain the energy
inequality:

(
∂(w∞ − w(t))

∂t
, w∞ − w(t)

)
+ ||w∞ − w(t)||2 ≤ 0. (9.4.11)
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Next, it is obvious that(
∂(w∞ − w(t))

∂t
, w∞ − w(t)

)
= 1

2

d

dt
||w∞ − w(t)||2

= ||w∞ − w(t)|| d

dt
||w∞ − w(t)||. (9.4.12)

Thus, the inequality (9.4.11) now becomes

d

dt
||w∞ − w(t)|| + ||w∞ − w(t)|| ≤ 0. (9.4.13)

This proves that ||w∞ − w(t)|| ≤ ||w∞ − w(0)||e−t, (9.4.14)

which shows the way the norm ||v(t)|| of the difference v(t) approaches zero as
t → ∞. This result appears in [15] and in [16], with a detailed proof given in [17].
The version given here is to be preferred for it is succinct.

While the inequality (9.4.14) is not ideal for it does not depend on the yield stress,
it is an important application of the variational inequality for the flow of a Bingham
fluid in a pipe of arbitrary cross-section. These results have been generalised to
viscoplastic fluids with a shear rate dependent viscosity in [18].

9.4.3 Cessation of the Steady Flow in a Channel

Consider the steady flow of a Bingham fluid in a channel of width H. Orient the
axes so that the flow occurs in the x-direction and the channel walls lie at y = 0 and
y = H. Let the velocity field be described through u = u(y), with u(0) = u(H) = 0.
Non-dimensionalise the problem using H as the length scale, U as the velocity scale
and let the pressure drop per unit length G = τyĜ/H, with the Bingham number
Bn = τyH/ηU. Thus, after dropping the hat notation, the energy equation (1.10.10)
turns into the following:

1

Bn
a(u, u) + j(u) = (G, u), u(0) = u(1) = 0. (9.4.15)

Here,

a(u, u) =
1∫

0

(
du

dy

)2

dy, j(u) =
1∫

0

∣∣∣∣du

dy

∣∣∣∣ dy, (G, u) =
1∫

0

Gu dy. (9.4.16)

Next, define a non-dimensional constant β through

β = min
v �=0

∫ 1
0 |dv/dy| dy

||v|| , ||v|| =
( 1∫

0

v2 dy

)1/2

, v(0) = v(1) = 0. (9.4.17)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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The constant β > 0. If it were zero, then v �= 0 leads to dv/dy = 0; however, the
boundary conditions would force v(y) = 0, which contradicts the assumption that
v �= 0.

The constant β appeared for the first time in the cessation of the steady flow of a
Bingham fluid in a pipe of arbitrary cross-section and led to the proof that the flow
comes to a halt in a finite amount of time, if the pressure drop per unit length G drops
below the critical value Gc, a result due to Glowinski [19]; since Gc > 0, one can set
G = 0, for example. It is well known that the flow takes an infinite amount of time
to come to a halt in a Newtonian fluid when the pressure gradient is set to zero. Thus,
the foregoing result is remarkable for it delineates one of the fundamental differences
between a Newtonian fluid and a Bingham fluid.

Returning to the channel flow, one can see that (9.4.17) implies that

β||u|| ≤ j(u). (9.4.18)

Moreover,
(G, u) ≤ ||G|| · ||u||, (9.4.19)

where the constancy of G > 0 means that

||G|| =
( 1∫

0

G2 dy

)1/2

= G. (9.4.20)

Hence the energy equation (9.4.15) becomes the inequality:

1

Bn
a(u, u) + (β − G)||u|| ≤ 0. (9.4.21)

If the constant β is such that β − G ≥ 0, it follows that a(u, u) ≤ 0 which, together
with the boundary conditions u(0) = u(1) = 0, means that the steady flow cannot
exist in the channel. Thus, the minimum value of β must be such that β − G < 0.
Now for the flow to exist, the pressure drop per unit length G must exceed Gc,where
Gc is the critical value. Hence, β = Gc. In the channel flow, it can be shown quite
easily through balancing the pressure and shearing forces that Gc = 2; for an earlier
demonstration, see Sect. 1.3. Thus, β = 2. This result will be used next to examine
the cessation of the steady flow in a channel when the applied pressure drop per unit
length G < β.

The energy equation for the unsteady flow in a channel is given by (1.10.13). It
can be put in a non-dimensional form as follows. Let H be length scale, U be the
velocity scale; set G = τyĉGH, and the time scale T = ρU2/ηπ2. Note that the
least eigenvalue for the non-dimensional form of the flow in a channel is obtained
from the following differential equation:

d2w

dy2
+ λw = 0, w(0) = w(1) = 0. (9.4.22)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1


9.4 Initiation and Cessation of Unsteady Shearing Flows 211

Obviously, the least eigenvalue is λ1 = π2, which explains the choice of the time
scale. The final result is the following energy inequality:

d||u||
dt

+ ||u|| ≤ Bn

π2 (G − 2), G < 2. (9.4.23)

Let us define a non-dimensional number Hb, called the halting number [18], through

Hb = 1

π2 (2 − G), G < 2, (9.4.24)

where Hb has been defined as an entity on its own, for it depends upon the geometry
of the region. The inequality in (9.4.23) can now be integrated and one obtains:

||u(t)|| + HbBn ≤
[
||u(0)|| + HbBn

]
e−t, (9.4.25)

where ||u(0)|| is the norm of the steady velocity field in the channel. Clearly, both
sides of the inequality (9.4.25) are non-negative; however, the right side decreases
rapidly because of its exponential dependence on time. At a certain instant, say
t = Tf , it will be found that

HbBn =
[
||u(0)|| + HbBn

]
e−Tf , (9.4.26)

which means that ||u(Tf )|| = 0. That is, the fluid has come to rest in the channel. It
is impossible to re-start the flow, for the pressure drop per unit length G has fallen
below the critical value. Thus, it has been proved that Tf provides an upper bound to
the extinction time, or the time when a steady flow in the channel comes to rest due
to the sudden lowering of the pressure drop per unit length below its critical value.
As mentioned earlier, this is a major point of difference between a Newtonian fluid
and a Bingham fluid, for the former will take an infinite amount of time to come to
rest in a channel when the pressure gradient vanishes.

It is easy to obtain a formula for Tf from (9.4.26):

Tf = ln

[
1 + ||u(0)||

HbBn

]
. (9.4.27)

9.4.4 Cessation of Steady Simple Shear Flow

Here, assume that a steady simple shear flow, defined through us(y) = γ̇ y, 0 ≤
y ≤ H, γ̇ > 0, comes to rest if the upper plate is brought to rest suddenly and
held stationary for all t ≥ 0. It is easy to show that the energy inequality is given by
(9.4.23), except that the pressure gradient G = 0. Using the fact that Hb = 2/π2 in



212 9 Energy Methods in Action: Equality, Inequality and Stability

this situation, one finds that

Tf = ln

[
1 + π2||u(0)||

2Bn

]
. (9.4.28)

9.4.5 Cessation of Steady Flow in a Pipe

Suppose that a steady flow of a Bingham fluid exists along the axis of a pipe of
arbitrary cross-section due to an applied pressure drop per unit length G > 0. Let
the velocity field be defined through u = w(x, y)k, where the z-axis lies along the
direction of the flow.

Suppose that at time t = 0+, the pressure gradient falls below the critical value
Gc. The flow will now become unsteady and employing the non-dimensionalising
procedure in Sect. 9.4.1, it can be shown that the energy equation (8.8.12) leads to
the following:

d||w||
dt

+ ||w|| ≤ Bn

λ1
(G − β), G < Gc. (9.4.29)

Here, λ1 > 0 is the least eigenvalue of the problem (9.4.3), and

||v|| =
( ∫

Ω

v2 da

)1/2

, Bn = τyL

ηU
, (9.4.30)

β = min
v �=0

∫
Ω

|∇v| da

||v|| , v|∂Ω
= 0. (9.4.31)

In this formulation, the number Hb is given by (cf. (9.4.24)):

Hb = 1

λ1
(β − G), G < β. (9.4.32)

The differential inequality (9.4.29) can be integrated and one obtains a result very
similar to that in (9.4.25) above. That is, the flowwill come to a halt in a finite amount
of time with an upper bound Tf , given by

Tf = ln

[
1 + ||w(0)||

HbBn

]
. (9.4.33)

It is simple to verify that

∫
Ω

v da ≤ A(Ω)1/2||v||, (9.4.34)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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where A(Ω) is the area of the cross-section of the pipe. Thus,

β ≤
∫
Ω

|∇v| da

||v|| ≤ A(Ω)1/2

∫
Ω

|∇v| da∫
Ω

v da
. (9.4.35)

From the definition of M in (9.1.8), it follows that

1 ≤ M

∫
Ω

|∇v| da∫
Ω

v da
. (9.4.36)

Hence [3],

β ≤ MA(Ω)1/2
(∫

Ω
|∇v| da∫
Ω

v da

)2

, (9.4.37)

for all v = v(x, y) such that it is sufficiently smooth and v = 0 on the boundary of the
pipe. Thus, one can obtain a bound on β, ifM is known. In practice, however,M is not
easy to find in all instances and thus the task of estimating β is not trivial. Neverthe-
less, thefinite extinction timeproperty of theBinghamfluid is a remarkable discovery.

If one considers more general viscoplastic fluids with a constant yield stress, it
has been shown that [18] steady flows in a pipe come to rest in a manner mimicking
the Bingham fluid if the pressure gradient falls below the critical value.

9.4.6 Cessation of Steady Couette Flow

In Sect. 5.6, the steady, Couette flow of a Bingham fluid between two concentric
circular cylinders of radii R1 and R2,where R1 < R2, has been discussed. Of interest
here is the case when the outer cylinder is at rest and the inner cylinder rotates with a
constant angular velocityΩ.Assuming that the steady angular velocity field is given
by ωs = ωs(r), R1 ≤ r ≤ R2, one can consider a fluid mass lying between these
two cylindrical surfaces of unit height in the z-direction. The stress power is given by

1

2
tr SA1 = ηr2

(
dωs

dr

)2

+ τyr

∣∣∣∣dωs

dr

∣∣∣∣. (9.4.38)

If the external moment per unit height is given by M, the energy equation has the
simple form [20]:

ηa(ωs, ωs) + τyj(ωs) = ΩM, M > 2πR2
1τy, (9.4.39)

where

a(ωs, ωs) =
R2∫

R1

2πr3
(

dωs

dr

)2

dr, j(ωs) =
R2∫

R1

2πr2
∣∣∣∣dωs

dr

∣∣∣∣ dr. (9.4.40)

http://dx.doi.org/10.1007/978-3-662-45617-0_5
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Now, suppose that at t = 0+, the inner cylinder is brought to rest and remains at rest
subsequently. The power input to the fluid vanishes and the corresponding energy
equation for the unsteady Couette flow, u = rω(r, t)eθ , is given by:

ρ

(
∂ω

∂t
, ω

)
+ ηa(ω, ω) + τyj(ω) = 0, (9.4.41)

where ω(R1) = ω(R2) = 0, and

(
∂ω

∂t
, ω

)
=

R2∫
R1

2πr3
∂ω

∂t
ω dr. (9.4.42)

Of course, a(ω, ω) and j(ω) are obtained from (9.4.40) simply by replacing dωs/dr
with ∂ω/∂r.

The Eq. (9.4.41) can be put into a non-dimensional form easily. Set r = R(1+ x),
where R = (R1 + R2)/2 is the mean radius and R1 = R(1 − α), R2 = R(1 + α).

Next, scale the angular velocity so that ω = Ωω̂, and set the time t = T t̂, where
the time scale T has to be determined. Introduce these into (9.4.41), drop the hat
notation and divide through by 2πΩ. One obtains:

α∫
−α

(1 + x)3
∂ω

∂t
ω dx + ηT

ρR2

α∫
−α

(1 + x)3
(

∂ω

∂x

)2

dx

+ τyT

ρΩR2

α∫
−α

(1 + x)2
∣∣∣∣∂ω

∂x

∣∣∣∣ dx = 0. (9.4.43)

Next, consider the eigenvalue problem

d2y

dx2
+ λy = 0, y(−α) = y(α) = 0. (9.4.44)

The least eigenvalue is given by λ1 = π2/4α2. Thus, the coercive inequality implies
that α∫

−α

(
∂ω

∂x

)2

dx ≥ π2

4α2

α∫
−α

ω2 dx. (9.4.45)

A simple calculation shows that

α∫
−α

(1 + x)3
(

∂ω

∂x

)2

dx ≥ (1 − α)3

α∫
−α

(
∂ω

∂x

)2

dx

≥ π2(1 − α)3

4α2(1 + α)3

α∫
−α

(1 + x)3ω2 dx. (9.4.46)
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From this inequality one can infer that the norm of ω = ω(x) should be defined
through

||ω|| =
( α∫

−α

(1 + x)3ω2 dx

)1/2

. (9.4.47)

Hence, one finds that

α∫
−α

(1 + x)3
∂ω

∂t
ω dx = d||ω||

dt
||ω||. (9.4.48)

Finally, define the constant β through:

β = min
ω �=0

∫ α

−α
(1 + x)2|dω/dx| dx

||ω|| , (9.4.49)

where ω(−α) = ω(α) = 0. Once again, the constant β > 0.
Consequently, after cancelling ||ω||, the energy equation (9.4.43) is turned into

the inequality:

d||ω||
dt

+ ηTπ2(1 − α)3

4ρR2α2(1 + α)3
||ω|| + βτyT

ρΩR2 ≤ 0. (9.4.50)

The time factor T and the halting number Hb can now be chosen as follows:

T = 4ρR2α2(1 + α)3

ηπ2(1 − α)3
, Hb = 4βα2(1 + α)3

π2(1 − α)3
. (9.4.51)

The inequality (9.4.50) takes on the simple form:

d||ω||
dt

+ ||ω|| ≤ −BnHb, (9.4.52)

where the Bingham number Bn = τy/ηΩ. Integrating the above differential inequal-
ity, it follows that the flow in the Couette viscometer comes to rest in a finite time
with the following upper bound for the extinction time:

Tf = ln

[
1 + ||ω(0)||

BnHb

]
. (9.4.53)

From (9.4.51), it can be seen that the constant β is essential to determine Hb. Just as
in the case of the flow in a pipe of arbitrary cross-section, it is not possible to find β.
However, by choosing ω(x) = (α2 − x2) in (9.4.49), it can be shown that [20]

β ≤ (2 + α2)
√
105

4 + √
7α + 3α3

. (9.4.54)
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If the viscometer has a very narrow gap, i.e., α is very small, one can deduce that

β ≤
√

15

4α
. (9.4.55)

9.4.7 Effects of Wall Slip

The previous examples demonstrate that one may derive bounds on the cessation
times provided the fluid adheres to the bounding walls, such as in a channel or a
pipe. Using the channel flow as an example, suppose that the Bingham fluid slips
along its walls under steady flow conditions with yielded/unyielded zones across the
channel under a constant pressure drop per unit length G; it is further assumed that
the critical yield stress number Sc = 0. At time t = 0+, let this pressure drop G
be reduced to zero suddenly. Because the shear stress at the wall is now less than
before, the slip velocity will decrease and the fluid will adhere to the wall at some
time t = tc, and continue to decelerate till it comes to stop across the channel with
the cessation spreading inwards from the walls.

The energy inequality (9.4.23) has to modified and is given by

d||u||
dt

+ ||u|| ≤ −2
Bn

π2 , t > tc. (9.4.56)

The halting number Hb = 2/π2 and integrating the inequality above, one obtains
(cf. (9.4.25)):

||u(t)|| + HbBn ≤
[
||u(tc)|| + HbBn

]
e(t−tc), t ≥ tc. (9.4.57)

While this leads once again to an upper bound Tf to the cessation time as in (9.4.26)
and (9.4.27), one cannot determine Tf explicitly. The main reason is that one does
not know when the steady velocity field u(y) in the channel becomes unsteady and
adheres to the pipe at t = tc; that is, the velocity field u(y, tc), which acts as the
initial condition to the subsequent retardation of the flow, is also unknown.

However, if the original steady flow be uniform across the whole channel while
slipping along its walls, one can determine the extinction time explicitly. To derive
this result, one begins by noting that (1.11.3)2 is replaced by

σw = Snus
w. (9.4.58)

Suppose that at time t = 0+, the pressure drop G is reduced to zero suddenly.
Except for an infinitesimally narrow gap near the walls, one may assume that the
fluid velocity is time dependent and uniform. Thus the rate of change of the linear
momentum per unit length of the channel, across its gap of two units, is due to the

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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shear stresses σw acting on the two walls. One obtains [21]:

duw

dt
= −σw = −Snus

w, t > 0. (9.4.59)

If s = 1, one finds that the extinction time is infinite:

uw(t) = uw(0)e−Snt . (9.4.60)

If s �= 1,

uw(t) =
[

uw(0) − (1 − s)Snt

]1/(1−s)

. (9.4.61)

Hence, it is easy to see that uw(t) → ∞ as t → ∞, when s > 1.
Finally, if 0 ≤ s < 1, one obtains that the cessation time tf is finite and given by

tf = uw(0)

(1 − s)Sn
. (9.4.62)

In the casewhen theBinghamfluid experiences a uniformflow in a pipe of circular
cross-section and slips along the wall, it is easy to show that [21]

duw

dt
= −2σw = −2Snus

w. (9.4.63)

This equation leads to predictions similar to those in (9.4.60)–(9.4.61).

9.5 Nonlinear Stability Analysis

Nonlinear stability analysis depends on proving that the mean kinetic energy E(t) of
an arbitrary perturbation to a basic flowgoes to zero as t → ∞.This idea originated in
the work of Reynolds (c.1895) and was developed further by Orr (c. 1907) in inves-
tigating the stability of the flows of Newtonian fluids. Hence, once the base flow has
been selected, one derives the Reynolds-Orr energy equation satisfied by E(t).

To be specific, consider the steady flow of a Bingham fluid in a channel or in a
pipe of circular cross-section. Let the components of this velocity field U be denoted
by (0, 0, W). Following the work of Nouar and Frigaard [22], consider the flow in a
channel of width 2H. Let U0 be the mean axial velocity in the z-direction with the
velocity field given by W = W(y). The Reynolds number is given by Re= ρU0H/μ

and the Bingham number Bn = τyH/ηU0. Let y∗ be the solution of the Buckingham
equation (1.8.3). The magnitude of the pressure gradient dp/dz is related to this root
through

y∗ = Bn

Re|dp/dz| . (9.5.1)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
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Scaling the velocity with U0, the velocity field is given by

W(y) =
{

Bn
2y∗ (1 − y∗)2, 0 ≤ |y| ≤ y∗,

Bn
2y∗ [(1 − y∗)2 − (|y| − y∗)2], y∗ ≤ |y| ≤ 1,

(9.5.2)

and the scaling with respect to the mean velocity requires that

1∫
0

W(y) dy = 1. (9.5.3)

The velocity field in (9.5.2) is written in a slightly unorthodox form in order to
employ the asymptotic relations in (1.8.12) as Bn→ ∞.

Now, let the perturbation velocity field u be three dimensional with the compo-
nents (u, v, w) and themeankinetic energy of the perturbation be given by Joseph [23]

E(t) = 1

|Ω|
∫
Ω

|u|2
2

dv = 1

|Ω|
∫
Ω

u2 + v2 + w2

2
dv. (9.5.4)

The averaging operation of integrating over the domainΩ and dividing by its volume
|Ω| is denoted by the symbol 〈·〉, so that E(t) ≡ 〈|u|2〉/2. For the plane channel flow,
the Reynolds-Orr energy equation is given by Joseph [23]

d

dt
E(t) = −

〈
vw

dW

dy

〉
− 1

Re

〈
1

2

[
S(U + u) − S(U)

]
: A(u)

〉
, (9.5.5)

where the constitutive equation for the Bingham fluid is in its standard format:

A(v) = 0, T(S) ≤ Bn, (9.5.6)

S(v) =
[
1 + Bn

K(v)

]
A(v), T(S) > Bn. (9.5.7)

It is assumed that the region Ω is large enough in any direction in which the channel
is infinite, i.e., in the x and z directions. Any perturbation velocity v belongs to the
set V0 if it satisfies the following conditions:

• The velocity field is divergence free, i.e., ∇ · v = 0 in Ω, and v = 0 on ∂Ω.

• Borrowing the ideas from Newtonian fluid mechanics [23], v has compact support
in the y-direction because 1 ≤ y ≤ 1; it is almost periodic (AP) in the x- and
z-directions. For such functions, the integrals (9.5.4)–(9.5.5) exist as |Ω| → ∞.

• v ∈ C∞(Ω).

• Finally (cf. (8.6.24)):

V0 = closure of V0 with respect to the norm || · ||H1(Ω) : ||v|| =
〈
vivi + vi,jvi,j

〉
.

(9.5.8)

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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Since vi,i = 0, it follows that

K2(A(v)) = 1

2
[vi,j +vi,j)(vi,j +vi,j] = vi,jvi,j +vi,jvj,i = vi,jvi,j + (vi,jvj),i. (9.5.9)

If v ∈ V0, integrating the above expression over Ω, using the boundary condition
on ∂Ω and the divergence theorem, it will be found that

〈K2(A(v))〉 = 〈vi,jvi,j〉. (9.5.10)

Thus, it is assumed that for all v ∈ V0,

〈K2(A(v))〉 = 〈vi,jvi,j〉, (9.5.11)

taking the limit as |Ω| → ∞, to eliminate the boundary integral remainders for
almost periodic conditions.

9.5.1 Dissipation Terms

The dissipation term in (9.5.5) is rewritten as:

〈I(U, u)〉 = −
〈
1

2

[
S(U + u) − S(U)

]
: A(u)

〉
. (9.5.12)

Bounds on the integrand I(U, u) have to be obtained in four distinct regions of flow
intowhich, at anyfixed time, the domainΩ can be subdivided. These four sub-regions
need not be simply connected and are:

• Region A, where both the basic and perturbed flows are unyielded, i.e., T(S(U)) ≤
Bn and T(S(U + u)) ≤ Bn.

• Region B, where the basic flow is unyielded, while the perturbed flow has yielded,
i.e., T(S(U)) ≤ Bn and T(S(U + u)) > Bn.

• Region C, where the basic flow is yielded, while the perturbed flow is unyielded,
i.e., T(S(U)) > Bn and T(S(U + u)) ≤ Bn.

• Region D, where both the basic flow and the perturbed flows have yielded, i.e.,
T(S(U)) > Bn and T(S(U + u)) > Bn.

The following results can be proved:

1. In region A, A(u) = 0. Hence, I(U, u) = 0 and this is the same as

I(U, u) ≤ −K2(u) = 0, (9.5.13)

where, for the sake of simplicity, one puts K(u) ≡ K(A(u)).
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2. In region B, we have A(U) = 0. Hence, by the linearity property of the first
Rivlin-Ericksen tensor, it follows that A(U + u) = A(u). Thus,

I(U, u) = −
[
1 + Bn

K(U + u)

]
1

2
A(U + u) : A(u)) + S(U) : A(u)

≤ −
[
1 + Bn

K(u)

]
1

2
A(u) : A(u)) + BnK(u) = −K2(u). (9.5.14)

Note that we have used 2K2 = A : A and the Cauchy-Schwarz inequality to
replace S(U) : A(u) by Bn K(u).

3. In a similar fashion, one can show that in both of the sub-regions C and D,
I(U, u) ≤ −K2(u).

Thus, appealing to (9.5.11), it follows that

〈I(U, u)〉 ≤ 〈K2(u)〉 = 〈ui,jui,j〉. (9.5.15)

9.5.2 Global Stability Bounds

The next step is to obtain bounds on the inertial terms in (9.5.5). From the solution
(9.5.2), it follows that

−
∫
Ω

dW

dy
vw dv = Bn

y∗

∫
Ω(y∗)

sgn(y)(|y| − y∗)vw dv

≤ (1 − y∗)Bn
2y∗

∫
Ω(y∗)

(v2 + w2) dv, (9.5.16)

where sgn(·) stands for the signum function, Ω(y∗) denotes the region |y| > y∗, and
one uses the simple fact that v2 + w2 ≥ 2vw.

Consider when y > y∗. Here, one observes that

v2 =
[ y∫

1

∂v

∂s
(x, s, z, t) ds

]2
≤ (1 − y∗)2

1∫
y∗

[
∂v

∂s
(x, s, z, t)

]2
ds (9.5.17)

by the Cauchy Schwarz inequality. Similar bounds can be derived for v2 in y < −y∗
as well as those for w2. Finally, one obtains

∫
Ω(y∗)

[v2 + w2] dv ≤ (1 − y∗)2
∫
ω

ui,jui,j dv. (9.5.18)
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Combining this with the bound for dissipative terms, the energy equation (9.5.5)
becomes

d

dt
E(t) ≤ −

[
1

Re
− Bn(1 − y∗)3

2y∗

]
〈ui,jui,j〉. (9.5.19)

Let ReGB stand for the global bound:

ReGB = 2y∗

Bn(1 − y∗)3
. (9.5.20)

The result in (9.5.17) proves that an arbitrary initial perturbation decreases monoton-
ically to zero provided

Re < ReGB. (9.5.21)

Now, the global bound is not very sharp as Bn → 0. In fact, from (1.8.10), one finds
that in this limit, ReGB = 2/3. However, as Bn → ∞, one finds from (1.8.12) that

ReGB ∼ (Bn/2)1/2. (9.5.22)

That is, for a sufficiently large value of the Bingham number Bn, the flow in a
channel of a Bingham fluid will be more stable than the corresponding flow of a
Newtonian fluid, obtained by putting Bn = 0. This result in [22] supports the common
experimental observation of the difference between Bingham and Newtonian fluids.

In [22], one can find the bounds obtained for the stability of the Poiseuille flow
of a Bingham fluid in a pipe of circular cross-section as well. The global bound is
given by

ReGB = 4(r∗)2

Bn(1 − r∗)3(1 + r∗)
, (9.5.23)

where r∗ is the root of the Buckingham equation (5.4.21). The asymptotic value of
r∗ as Bn → 0 in (5.4.25) proves that ReGB → 0; as Bn → ∞, the global bound
behaves as in (9.5.22).

9.5.3 Conditional Stability

In order to improve the bound obtained as Bn → ∞, it is essential to restrict the size
of admissible perturbations. Note that such an assumption is necessary in developing
a linear theory of stability. The bound considered in [22] is:

|Sij(U + u) − Sij(U)| ≤ a, (9.5.24)

where a has to be found. The basic idea behind obtaining such a value for a is to
require that there is an unyielded region of fluid in the perturbed flow. This matter
will be discussed next.

http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_1
http://dx.doi.org/10.1007/978-3-662-45617-0_5
http://dx.doi.org/10.1007/978-3-662-45617-0_5
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First of all, in the base flow, there are only two non-zero shear stresses, viz., S23 =
S32 = Gy,whereG > 0 is the non-dimensional pressure drop per unit length. Hence,

|Sij(U + u)| ≤ a, ij �= 23, 32. (9.5.25)

Next, using the simple geometric inequality |α| = |α −β +β| ≤ |α −β| + |β|, one
can see that

|Sij(U + u)| ≤ |Sij(U + u)− Sij(U)| + |Sij(U)| ≤ a + G|y|, ij = 23, 32. (9.5.26)

Hence,

T(S(U + u)) =
[
1

2

3∑
i,j=1

S2
ij(U + u)

]1/2
≤

[
(G|y| + a)2 + 7

2
a2

]1/2
. (9.5.27)

Now, one selects a and y so that T(S(U + u)) < Bn, i.e.,

(G|y| + a)2 + 7

2
a2 < Bn2 = (Gy∗)2. (9.5.28)

Defining β = a/G, the disturbed flow must be unyielded provided |y| < y2, which
is the larger root of

(G|y| + a)2 + 7

2
a2 < Bn2 − (Gy∗)2 = 0. (9.5.29)

It is easy to derive that

y2 = −β +
√

(y∗)2 − 7

2
β2. (9.5.30)

Since one requires the discriminant above to be positive and y2 > 0, the following
must hold:

y∗ >
3√
2
β ⇔ a < (2/9)1/2Bn. (9.5.31)

Thus, we have found a criterion for the disturbed flow to be unyielded. Now, define
a layer thickness h through

h = y∗ − y2. (9.5.32)

In sum, it has been established that

T(S(U + u)) ≤ Bn, |y| ≤ y∗ − h, (9.5.33)

T(S(U + u)) > Bn, |y| > y∗ + h. (9.5.34)

Using this, after much effort, it is shown in [22] that perturbations of size

|Sij(U + u) − Sij(U)| ≤ a ≤ (2/9)1/2
Bn(1 − y∗)

ReB
(9.5.35)
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will decay monotonically provided the Reynolds number Re < ReB, where the
conditional bound is given by

ReCB = 2y∗ReB/Bn(1 − y∗)

f

(
y∗,ReB

) , (9.5.36)

and ReB = 99.207 is the constant obtained first by Busse [24] in his derivation of an
energy stability criterion for the channel flow of a Newtonian fluid. Moreover,

f

(
y∗,ReB

)
= [1 + (2/9)1/2(y∗/ReB)]2[1 + (2/9)1/2y∗ + (2/9)1/2(y∗/ReB)].

(9.5.37)
As Bn → ∞, the conditional bound behaves as follows:

ReCB ∼ (Bn/2)1/2ReB
[1 + (2/9)1/2ReB]2[1 + (2/9)1/2 + (2/9)1/2ReB] . (9.5.38)

These theoretical results for the conditional bound are conservative, for one order
of magnitude separates them from actual transition. Several remarks concerned with
the choice of the norm ||u|| of the perturbation and the bounds for the flow in a pipe
of circular cross-section, along with comparison with phenomenological criteria are
discussed at length in [22]. From the latter, it is found that no phenomenological
prediction shows a rate of increase in the critical Reynolds number less than Bn1/2

as Bn → ∞.

Finally, questions of transition and and flow instability are perfectly well defined
theoretically. However, both the linear theory discussed in Sect. 7.4 and the nonlinear
theory covered here do not provide deep insight into the actual instability mecha-
nisms. In addition, the dissipation terms in (9.5.15) do not depend on the Bingham
number Bn, similar to that found in the initiation and approach to the steady state of
the flow in a pipe of arbitrary cross-section of a Bingham fluid, discussed above in
Sect. 9.4. At present, there is no known method which includes an explicit contribu-
tion of the yield stress to these flow problems.
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Chapter 10
Numerical Modelling

In this chapter,we shall summarise and apply twopowerful techniques for the solution
of flow problems in Bingham and other viscoplastic fluids. The first one is known as
the augmented Lagrangian method and the second is the operator-splitting method.
Much of the material in this chapter is sourced from the publications of Glowinski
and his collaborators. In particular, one may refer to [1] for an early treatment of the
numerical methods for Bingham fluids, followed by the theoretical underpinnings
of the augmented Lagrangian and operator-splitting methods [2]. Moreover, there is
an encyclopaedic volume on numerical methods for fluid mechanics [3] and more
recently, there is a very long article on numerical methods for viscoplastic fluids
[4]. Obviously, this chapter has to be seen as providing the barest summary of the
material developed at length and breadth in the books and articles just mentioned.

Numerical modelling of the steady flows of a Bingham fluid in pipes of arbitrary
cross-section can be traced back to Cea and Glowinski [5] in 1972 where the vis-
coplasticity constraint tensor was used in computations. Subsequent research over
the last 40 years has shown that there are two powerful, robust numerical meth-
ods for Bingham fluids. Given a steady flow, the first is one based on defining an
augmented Lagrangian for the flow and solving it through the saddle point method,
originally developed by Arrow et al. [6] to problems arising in linear and non-linear
programming.1 Subsequently, this algorithm has been adapted to solve problems in
viscoplasticity and other materials [2]; see [3, 4] as well.

In this chapter, a brief description of the use of the Lagrangian and the saddle
point method to solve a constrained minimisation problem in Rn is presented first in
Sect. 10.1. The second procedure to solve the same problem is the quadratic penalty
method and, since it suffers from some drawbacks, the original Lagrangian and the
penalty function are combined to obtain an augmented Lagrangian functional with
improved convergence properties. In turn, this leads to the solution of the flows of
Bingham fluids in various geometries and a summary of this is given in Sect. 10.2.

1 Uzawa’s papers deal with finding the maximum of concave functions subject to constraints; see
Chaps. 3, 5, 7 and 10 in [6]. The algorithm for solving the saddle point problem appears in Chap.10.
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R.R. Huilgol, Fluid Mechanics of Viscoplasticity, DOI 10.1007/978-3-662-45617-0_10

225



226 10 Numerical Modelling

The second powerful technique is the operator-splitting method and its use is
described in full in Sect. 10.3, which deals with the thermally driven cavity flow of
an incompressible Bingham fluid. In Sect. 10.4, numerical methods for compressible
viscoplastic are described and as an application, the lid driven cavity flow of a weakly
compressible viscoplastic fluid is studied in Sect. 10.5. The last application has to be
seen as a numerical experiment for reasons which are made explicit below. Finally,
somecomments are offered inSect. 10.6 on the use of regularisedmodels in numerical
computations.

10.1 Augmented Lagrangian Methods:
Finite Dimensional Case

To understand the augmented Lagrangian method, it is essential to recall the solution
to the minimisation of a function of several variables, subject to equality constraints,
commonly known as the constrained problem.2 First of all, consider the following
minimisation problem in Rn:

f (x) ≤ f (y), ∀y ∈ H = {y|g(y) = 0}, (10.1.1)

where H is the set of constraints in Rm, such that m < n.

The classical method to solve the problem above is originally due to Lagrange
(c. 1804–1806) and is known as the Lagrange multiplier method. Here, one defines
a Lagrangian functional dependent on a vector λλλ:

L (x,λλλ) = f (x) + λλλ · g(x), (10.1.2)

and finds the extrema of the above functional regarding it as an unconstrained prob-
lem. In practice, one obtains a system of (n + m) equations by finding the par-
tial derivatives of the Lagrangian functional with respect to xi, i = 1, . . . , n, and
λj, j = 1, . . . m, and setting these to zero. That is:

∂L

∂xi
= ∂f

∂xi
+

m∑
j=1

∂gj

∂xi
λj = 0, i = 1, . . . n, (10.1.3)

∂L

∂λj
= gj(x1, . . . , xn) = 0, j = 1, . . . , m. (10.1.4)

The basic question now is the following: do the multipliers exist at the extremal point
x∗ of f (x)? These multipliers exist provided the m gradient vectors of g are linearly
independent. For a comprehensive proof of this, see Theorem 13.12 in Apostol [8].

2 A very readable introduction to these ideas is contained in Nocedal andWright [7]. See Chaps. 12
and 17 for the quoted results.
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Consider the following example. This is a two-variable problem with a single
equality constraint:

min f (x1, x2) = x1 + x2, such that g(x1, x2) = x21 + x22 − 2 = 0. (10.1.5)

There are two extrema. One is theminimiser given by x∗ = (−1,−1),with λ = 1/2;
the maximum occurs when x∗ = (1, 1) and λ = −1/2. Note that at each extremal
point, ∇g = (±2,±2), or the gradient vector is linearly independent from the zero
vector.

The modern approach to solve the problem in (10.1.1) relies on the saddle point
method. To describe this, suppose that f and g are Ck, k ≥ 0, and that (x∗,λλλ∗) is a
saddle point of L over Rn × R

m. Then, one can prove that x∗ is a solution of the
minimum problem (10.1.1) as follows. First of all, by the definition of a saddle point
from the calculus of the function of several variables, one finds that3:

L (x∗,μμμ) ≤ L (x∗,λλλ∗) ≤ L (y,λλλ∗), ∀{y,μμμ} ∈ R
n × R

m. (10.1.6)

Inserting the Lagrangian in (10.1.2) into the left inequality above, one obtains:

μμμ · g(x∗) ≤ λλλ · g(x∗), ∀μμμ ∈ R
m, (10.1.7)

which implies that the maximum of the left side is less than or equal to that of the
right side, i.e.,

sup
μμμ∈Rm

μμμ · g(x∗) ≤ λλλ · g(x∗). (10.1.8)

Now, the supremum of the left side is +∞, if g(x∗) 	= 0. Thus, the inequality in
(10.1.8) can only be satisfied provided

g(x∗) = 0, (10.1.9)

or the vector x∗ satisfies the constraint conditions, i.e., x∗ ∈ H. Using this result on
the right side of (10.1.6) and noting that g(y) = 0, one finds that

L (x∗,λλλ∗) = f (x∗) ≤ f (y), ∀y ∈ H. (10.1.10)

That is, x∗ is a solution of the problem (10.1.1).
The converse, namely that the solution x∗ of (10.1.1) satisfies the saddle point

condition (10.1.6) requires that f be convex, lower semi-continuous and proper,
emphasising once again the importance of these conditions (cf. (8.6.32)). The proof
of this converse is once again easy if f is differentiable and g is affine, i.e.,

g(x) = Ax + b, (10.1.11)

3 The proof given here follows that in Chap.4, Sect. 19 in [3].

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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where A is an m × n matrix and b ∈ R
m is a vector. Note that the affine function is

convex, for it satisfies the convexity condition in (8.6.30). Since x∗ satisfies (10.1.1),
it is obvious from (10.1.2) that

L (x∗,μμμ) = f (x∗) = L (x∗,λλλ∗). (10.1.12)

The functional
L (y,λλλ∗) = f (y) + λλλ∗ · g(y) (10.1.13)

is continuously differentiable and convex over Rn, since f is assumed to be convex.
Now,

∇yL (y,λλλ∗) = ∇f (y) + ∇g(y)Tλλλ∗, (10.1.14)

and (10.1.3) can be written as ∇yL (x∗,λλλ∗) = 0. Since the functional in (10.1.13)
is convex,

L (x∗,λλλ∗) ≤ L (y,λλλ∗), ∀y ∈ R
n. (10.1.15)

This inequality and (10.1.12) establish the required result, viz., (x∗,λλλ∗) is a saddle
point of L over Rn × R

m.

A different method to solve the minimisation problem is the quadratic penalty
method [7]. Here, we replace the Lagrangian functional with a quadratic penalty
function:

Q(x, r) = f (x) + r

2

m∑
i=1

g2i (x), (10.1.16)

where r > 0 is the penalty parameter. The basic idea is that any vector x which
violates a constraint has a positive penalty added to the function f . By letting the
parameter r → ∞, the constraint violation can be penalised severely. Thus, one
may consider a sequence {rk} with rk → ∞ as k → ∞, and seek the approximate
minimiser xk of Q(x, rk) for each k. Since the function f as well as the penalty
terms in (10.1.16) are continuously differentiable, one is now faced with seeking the
minimum of an unconstrained problem.

In practice, there are two hurdles which have to be overcome. The first one is the
initial choice of rk in the sequence, as demonstrated by the following example.

min f (x1, x2) = −5x21 + x22, such that g(x1, x2) = x1 − 1 = 0. (10.1.17)

The penalty function is given by

Q(x, r) =
(

r

2
− 5

)
x21 + x22 − rx1 + r

2
, (10.1.18)

whose minimum is unbounded for r < 10, while the solution of (10.1.17) is given
by x∗ = (1, 0). Thus, quadratic penalty functions suffer from some deficiency quite
often.

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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Secondly, the approximate minimisers xk of Q(x, rk) are unlikely to satisfy the
constraints g(x) = 0.However, if (x∗,λλλ∗) exist and satisfy the Karush-Kuhn-Tucker
conditions, it can be proved that [7]

gi(xk) ≈ λ∗
i /rk . (10.1.19)

That is, gi(xk) → 0 as rk → ∞. The drawback here is that as rk → ∞, the
Hessian of the quadratic penalty function Q becomes ill-conditioned. Thus, it would
be desirable to alter the function Q(x, r) so that the approximate minimisers satisfy
the constraint equations more nearly than before, even for moderate values of rk .

This leads us to the augmented Lagrangian functional where an explicit estimate of
the multipliers is made using (10.1.19).

Thus, consider the following augmented Lagrangian functional, which is a com-
bination of the Lagrangian functional and the quadratic penalty function:

L (x,λλλ, r) = f (x) + λλλ · g(x) + r

2

m∑
i=1

g2i (x). (10.1.20)

Suppose thatxk are the approximateminimiser ofL (x,λλλk, rk), fromwhich it follows
that

∇f (xk) +
m∑

i=1

[λk
i + rkgi(xk)]∇gi(xk) ≈ 0. (10.1.21)

Thus,
λ∗

i ≈ λk
i + rkgi(xk), (10.1.22)

or

gi(xk) ≈ 1

rk
(λ∗

i − λk
i ). (10.1.23)

Thus, whenever λλλk is close to the optimal vector λλλ∗, the constraint equations
g(xk) = 0 are more nearly satisfied when compared with the earlier estimate
(10.1.19). Employing (10.1.22), we can choose the next value of the multiplier as
follows:

λk+1
i = λk

i + rkgi(xk), (10.1.24)

and pick rk+1 ≥ rk . Using the updated (λk+1
i , rk+1), one finds the new approximate

minimiser xk+1, and iterations continue till the desired tolerance is achieved. Natu-
rally, if it so happens that for a given value of rk, the constraint equations g(xk) ≈ 0
to within the desired level of tolerance, there is no pointing in increasing the penalty
parameter further. Thus, it is enough that r be sufficiently large [7].

Having introduced the saddle point property of the Lagrangian and the augmented
Lagrangian functional, we turn to the application of these ideas in solving the flow
problems in viscoplastic fluids.
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10.2 Augmented Lagrangian Methods for Bingham Fluids

In this section, we recall that in a steady flow of a viscoplastic fluid where inertia is
ignored, the solution of the variational inequality and that obtained from minimising
the relevant functional are identical; see Sect. 8.6.5. This equivalence leads to the
augmented Lagrangian method to be discussed next.

To begin, consider the steady flow of a Bingham fluid in a pipe of arbitrary cross-
section. The solution w of the variational inequality problem satisfies:

ηa(w, v − w) + τy[j(v) − j(w)] ≥ (G, v − w), ∀v, w ∈ H1
0 (Ω), (10.2.1)

where, for convenience, the three functionals in (10.2.1) are repeated from (8.6.47)–
(8.6.49):

a(w, v − w) =
∫
Ω

∇w · ∇(v − w) da,

j(v) =
∫
Ω

|∇v| da, (10.2.2)

(G, v − w) =
∫
Ω

G(v − w) da, ∀v, w ∈ H1
0 (Ω),

Here, Ω is the domain defining the cross-section of the pipe and G > Gc > 0 is the
pressure drop per unit length.

The classical method to solve the problem (10.2.1) and (10.2.2) is based on the
Uzawa type algorithm due to Cea and Glowinski [5]; see pp. 529–531 in [4] as well.
It reduces the solution to solving a sequence of linear Dirichlet problems for the
Laplacian −η∇2 and a simple projection operator for the viscoplasticity constraint
tensorΛΛΛ: − η∇2w − τy∇ · ΛΛΛ = G in Ω, ΛΛΛ · ∇w = |∇w| (10.2.3)

for allΛΛΛ ∈M ,where M = {
μμμ|μμμ = (μij)1≤i,j≤2 ∈ (L2(Ω))2, ||μμμ|| ≤ 1 a.e. on Ω

}
.

Define the projection operator PM through

PM (q) = q
max(1, |q|) , a.e. in Ω, ∀q ∈ (L2(Ω))2. (10.2.4)

Thus, let ΛΛΛ0 be given, say it is 0. If ΛΛΛn is known, compute wn and ΛΛΛn+1 by the
following iterative procedure. Firstly, solve in H1

0 (Ω):

− η∇2wn = τy∇ · ΛΛΛn + G, wn = 0 on ∂Ω, (10.2.5)

and use the projection:

ΛΛΛn+1 = PM

(
ΛΛΛn + rτy∇wn

)
. (10.2.6)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8
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Successive iterations are performed till convergence is achieved to the desired level
of accuracy. Note that the yield surface is the boundary between ||ΛΛΛ|| < 1 and
||ΛΛΛ|| = 1. Hence, the solution of the boundary value problem delivers in the limit
both the velocity field as well as the shape and location of the yield surface. For
an application of this method to the flow in an eccentric annulus and an L-shaped
region of a Bingham fluid, see [9]; for the solution of the steady flows of Casson and
Herschel-Bulkley fluids in pipes of circular and square cross-sections, see [10].

A second method to solve the flow problem arises from the fact that in a Bingham
fluid, the velocity field w = w(x, y) ∈ H1

0 (Ω) is also the minimiser of the functional
Φ(v) defined through:

Φ(v) = 1

2
η

∫
Ω

(∇v · ∇v) da + τy

∫
Ω

|∇v| da −
∫
Ω

Gv da, ∀v ∈ H1
0 (Ω). (10.2.7)

That is, Φ(w) ≤ Φ(v). This equivalence between the two methods has been estab-
lished earlier in Sect. 8.6.5. Obviously, one can introduce a suitable augmented
Lagrangian functional for the solution of (10.2.7), as in Sect. 10.1 above. This is
described next.

The basic idea is to decouple the nonlinearity and the gradients. This is done by
treating ∇w as an independent variable q and then forcing the relation ∇w − q = 0
by quadratic penalisation and the use of a Lagrange multiplier. The procedure, repro-
duced here from pp. 541–543 in [4], is as follows:

1. Let
Q = {q | q ∈ (L2(Ω))2}. (10.2.8)

2. Define W and F(·, ·) through

W = {{v, q} | v ∈ H1
0 (Ω), q ∈ Q, ∇v − q = 0}, (10.2.9)

and

F(v, q) = 1

2

∫
Ω

η|∇v|2 da + τy

∫
Ω

|q| da −
∫
Ω

Gv da. (10.2.10)

3. Note that if w is the solution and p is its gradient vector, it is obvious that
{w, p} ∈ W. Thus, the minimisation problem is the same as solving:

F(w, p) ≤ F(v, q), ∀{v, q} ∈ W. (10.2.11)

4. This suggests the introduction of an augmented Lagrangian functional over
(H1

0 (Ω) × Q) × Q with r > 0:

Lr({v, q},μμμ) = F(v, q) + 1

2
r
∫
Ω

|∇v−q|2 da +
∫
Ω

μμμ·(∇v−q) da. (10.2.12)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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If {{w, p},λλλ} is a saddle point of Lr, that is it satisfies (cf. (10.1.6)):

Lr({w, p},μμμ) ≤ Lr({w, p},λλλ) ≤ Lr({v, q},λλλ) (10.2.13)

for all {{v, q},μμμ} ∈ (H1
0 (Ω) × Q) × Q, then the pair {w, p} is a solution of the

minimisation problem, and conversely.

Now, the task is to find a sequence {{wn, pn},λλλn} to solve the saddle point prob-
lem (10.2.13). The following Uzawa type algorithm is recommended in [4] for this
purpose. Essentially, it assumes a given value wn−1 and λλλn for n ≥ 0, and seeks the
gradient pn through the solution of the minimisation problem:

Lr({wn−1, pn},λλλn) ≤ Lr({wn−1, q},λλλn), ∀q ∈ L2(Ω))2. (10.2.14)

The second step is to solve for wn through

Lr({wn, pn},λλλn) ≤ Lr({v, pn},λλλn), ∀v ∈ H1
0 (Ω). (10.2.15)

The third step is to update λλλn:

λλλn+1 = λλλn + r(∇wn − pn). (10.2.16)

For the iterations to converge to the desired solution {w,∇w}, the choice of r is very
critical as shown by the example in (10.1.17) and (10.1.18). For a discussion of this
matter, see pp. 182–183 in [1] and pp. 102 in [2] where it is demonstrated that r = 1
is a suitable value.

Here, one may seek an answer to the following question: what is the relation
between the solution {w, p} of the saddle point problem and that which follows from
the equations of motion and the constitutive relation for the Bingham fluid? The
answer lies in examining the properties of the augmented Lagrangian functional at
these optimal conditions. First of all, the Gateaux derivatives of this functional exist
in the direction h for all h ∈ H1

0 (Ω) at w, and in the direction ξξξ for all ξξξ ∈ Q at
λλλ. Note that this functional is not differentiable with respect to q at q = 0. These
matters are discussed next.

10.2.1 Optimality Conditions of the Augmented Lagrangian
Functional

To find the Gateaux derivative of the functional in (10.2.12) at {{w, p},λλλ} in the
direction h ∈ H1

0 (Ω), replace v by (w + εh) while keeping the other two vectors
fixed. Then, find the derivative of the resulting functional with respect to ε at ε = 0.
This results in four functionals, which are:

1

2
η

∫
Ω

∇w ·∇h da, −
∫
Ω

Gh da, r
∫
Ω

∇h ·(∇w−p) da,

∫
Ω

λλλ ·∇h da. (10.2.17)
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Here, the first and the last two integrals involve the dot product of ∇h with another
vector, say m. In each case, it is obvious that

∫
Ω

∇h · m da =
∫
Ω

∇ · (hm) da −
∫
Ω

h∇ · m da

=
∫

∂Ω

h m · n ds −
∫
Ω

h ∇ · m da

= −
∫
Ω

h ∇ · m da, (10.2.18)

where n is the external unit normal to the boundary and, since h ∈ H1
0 (Ω), this func-

tion h vanishes on the boundary of the flow domain. Hence, the Gateaux derivative
leads to:〈

∂

∂v
Lr({w, p},λλλ), h

〉
=

∫
Ω

[
−(η+r)∇2w−G+∇ ·(λλλ−rp)

]
h da = 0. (10.2.19)

This is essentially the variational form of the equation of motion.
The condition Lr({w, p},λλλ) ≤ Lr({w, q},λλλ) leads to the following inequality:

τy

∫
Ω

|q| da −
∫
Ω

λλλ · q da + r

2

∫
Ω

|∇w − q|2 da

≥ τy

∫
Ω

|p| da −
∫
Ω

λλλ · p da + r

2

∫
Ω

|∇w − p|2 da, ∀q ∈ Q. (10.2.20)

This is equivalent to

r

2

∫
Ω

q · q da + τy

∫
Ω

|q| da −
∫
Ω

(λλλ + r∇w) · q da

≥ r

2

∫
Ω

p · p da + τy

∫
Ω

|p| da −
∫
Ω

(λλλ + r∇w) · p da ∀q ∈ Q. (10.2.21)

We now use the fact that, for any fixed p ∈ Q and ∀q ∈ Q, the inequality q · q −
p · p ≥ 0 is equivalent to 2(q − p) · p ≥ 0. Hence, the following implies (10.2.21)
and vice versa:

r
∫
Ω

(q − p) · p da + τy

∫
Ω

|q| da − τy

∫
Ω

|p| da

−
∫
Ω

(λλλ + r∇w) · (q − p) da ≥ 0, ∀q ∈ Q. (10.2.22)



234 10 Numerical Modelling

The solution of this variational inequality is given by

p =
⎧⎨
⎩

1
r

(
1 − τy

|λλλ+r∇w|
)

(λλλ + r∇w), if |λλλ + r∇w| > τy

0, if |λλλ + r∇w| ≤ τy.

(10.2.23)

This is equivalent to the constitutive equation of the Bingham fluid in terms of the
Lagrange multiplier.

One can make the solution (10.2.23) more transparent when one derives an equa-
tion of energy balance associated to the inequality (10.2.22). The procedure is similar
to that in deriving (8.3.3) and consists of setting q = 2p and q = 0. This results in
the equation:

r
∫
Ω

p · p da + τy

∫
Ω

|p| da −
∫
Ω

(λλλ + r∇w) · p da = 0. (10.2.24)

Since p · p ≥ 0, it is obvious that the solution of this energy equation is given by
(10.2.23).

Finally, using the method in deriving (10.2.19), we find that

〈
∂

∂μμμ
Lr({w, p},λλλ),ξξξ

〉
=

∫
Ω

(∇w − p) · ξξξ da = 0, (10.2.25)

which is the variational form of the equation of constraint.

10.2.2 More General Problems

In the steady flow of a Bingham fluid in a pipe of arbitrary cross-section, there is no
acceleration and the pressure field is known. However, in a majority of problems,
inertia is present and the pressure field has to be found. As a typical example, consider
the following problem:

∇ · u = 0 in Ω, (10.2.26)

ρ
∂u
∂t

+ ∇ · S − ∇p = f, in Ω, (10.2.27)

u = g on ∂Ω × (0, T), (10.2.28)

with
∫

∂Ω

g(t) · n = 0, a.e. on (0, T) (10.2.29)

u|t=0 = u0, ∇ · u0 = 0, (10.2.30)

with the usual constitutive equation for the Bingham fluid. Note that the body force,
if any, is included in f . The variational inequality formulation of the problem now

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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becomes (cf. (8.4.6)):

ρ

∫
Ω

∂u
∂t

· (v − u) dv + ρ

∫
Ω

(u · ∇)u · (v − u) dv

+ 1

2
η

∫
Ω

A(u) : A(v − u) dv + τy[j(v) − j(u)]

−
∫
Ω

p∇ · v dv ≥
∫
Ω

f · (v − u) dv, ∀v ∈ (H1(Ω))d, (10.2.31)

with v = g on ∂Ω. We have to find {u, p} ∈ (H1(Ω))d × L2(Ω), with ∇ · u = 0.
If we assume further that the velocity field v also satisfies ∇ · v = 0, the pressure
term drops out of the above inequality. This means that p has to be reintroduced
as a Lagrange multiplier as in Sect. 4.1. And, a new symmetric tensor q has to be
introduced to satisfy the constraint A(v) − q = 0. The augmented Lagrangian is
derived at length in Chap.3, Sect. 20 in [4] and the procedure to solve the saddle
point problem is also listed therein.

Essentially, the augmented Lagrangian functional has to be such that at the opti-
mality conditions it delivers the following set of equations:

• The equations of motion, similar to (10.2.19).
• The continuity equation; for an example, see (10.3.25) below.Asmentioned earlier,
this did not arise in the steady flow of the Bingham fluid in a pipe of arbitrary cross-
section.

• The constitutive equation in terms of the Lagrange multiplier, similar to (10.2.23).
• The equation of constraint similar to (10.2.25).

For another example of these equations, see the simulation of the non-isothermal
flows of viscoplastic waxy crude oils in [11].

In order to solve other problems such as the settling motion of a rigid body in
a Bingham fluid, one can either use the augmented Lagrangian method [12] or the
fictitious domain method employed in [13]. The latter method has been combined
with an operator-splitting scheme in [4] to solve the sedimentation problem. It is to
the operator-splitting method to which we turn next.

10.3 Operator-Splitting Method for Thermally Driven Flows

In this section, the operator-splitting method is explained and applied to the flow of a
Bingham fluid in a square cavity with two vertical walls at different temperatures. To
begin, as is well known, the isothermal fluid flow of an incompressible Newtonian
fluid is governed by the Navier-Stokes equations, which need to be solved together
with appropriate boundary conditions to find the flow quantities, i.e., the velocity

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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field u and the pressure field p. Since the convected acceleration terms (u · ∇)u are
nonlinear, an efficient way of solution is to split the original problem into two sub-
problems which are much easier to deal with. The first sub-problem is of the Stokes
type, where the pressure field p and the velocity field u are determined by omit-
ting the nonlinear convection terms (u · ∇)u, while retaining the incompressibility
condition ∇ · u = 0. The second sub-problem incorporates the nonlinear convected
acceleration terms (u · ∇)u to determine u, using the velocity field derived from the
first sub-problem as an initial condition. The solution u from the second sub-problem
now forms the initial value for the first one, along with the previously determined
p in the next iteration. This is the spirit of the operator-splitting method applied to
Navier-Stokes equations; see Li [14] and Glowinski and Pironneau [15].

To incorporate the yield stress into the numerical scheme, the viscoplastic fluid
can be thought of as the sum of a viscous and a viscoplastic constraint part4 as in
Sect. 8.9. Having solved the viscous flow problem in two sub-routines as mentioned
above, one determines the viscoplastic constraint tensor field ΛΛΛ from the updated
velocity field. Thismethod has been applied to the lid driven cavity flowof aBingham
fluid by Sanchez [17] as well as by Dean and Glowinski [18], and in the study of
particle sedimentation in Bingham fluids by Yu and Wachs [13].

When the temperature Θ is taken into account, the energy equation for the non-
isothermal flow has to be included in the governing equations. In this case, the
flow quantities u, p and Θ give rise to two sets of governing equations (10.3.5)
and (10.3.6), and an iterative, operator-splitting scheme is the natural choice for
their solution. Using the two sub-problems for the isothermal flow as a basis, the
temperature of the non-isothermal flow in the current step can be found from the
energy equation using the velocity field in the previous step. Next the viscoplasticity
tensor is also determined from the velocity field as in the isothermal case. Iteration
proceeds till convergence to the desired accuracy of the solution is attained. Note
that the constitutive model employed in this section is the viscoplasticity constraint
tensor as described above in Sect. 8.9.

Turning to the examples in the literature regarding non-isothermal flows of yield
stress fluids, we are aware of the existence and uniqueness theorems by Duvaut and
Lions [19] for a Bingham fluid with a temperature dependent viscosity and a constant
yield stress; those of Kato [20] for a yield stress fluid with a power-law viscosity and
a yield stress, both of which are temperature dependent. In the problem discussed
here, both the viscosity and yield stress are assumed to be constant.

10.3.1 The Flow Problem and Mathematical Formulation

The natural convection flow of a Binghamfluid is supposed to take place in an upright
square cavity with an edge of length of L. The horizontal walls are insulated, and the

4 In viscoelastic fluid mechanics, splitting the constitutive equation into a viscous and an elastic
part was conceived and applied to Oldroyd-B fluids in 1977; see [16].

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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vertical left and right walls are at temperatures Θh and Θc < Θh, respectively. The
flow velocity is zero on the walls. The gravity vector g = −ge2 is directed in the
negative y-coordinate direction, with e2 the relevant unit vector. Following the con-
ventional Boussinesq approximation [21], we consider small temperature variations
only, i.e., the relative change in temperature δΘ/Θ � 1. The density ρ, thermal
conductivity k, the heat capacity cp and viscosity η are set to be constants here.

Employing the equations of motion (8.9.6) involving the constraint tensor Λ, the
relevant equations are

∇ · u = 0, (10.3.1)

ρa + ∇p − η∇ · A(u) − √
2τy∇ · ΛΛΛ = ρb, (10.3.2)

where the body force b is the sum of that due to gravity and the buoyancy effects.
Thus, using the average temperatureΘr = (Θh +Θc)/2 as the reference temperature
and β as the coefficient of thermal expansion, we obtain:

b = [1 + β(Θr − Θ)]g, g = −ge2. (10.3.3)

Now, let the pressure p be written as the sum p = ps + pd, with the static part ps

accounting for gravity, and pd is the dynamic part. That is:

∇ps = ρg, (10.3.4)

so that ps = −ρgy. Hence, the momentum equation incorporates the dynamic part
only, and is of the form

ρ

[
∂u
∂t

+ (u · ∇)u
]

+ ∇pd − η∇ · A(u) + √
2τy∇ · ΛΛΛ = ρβ(Θr − Θ)g, (10.3.5)

where u is the unknown velocity field. Next, the energy equation is given by

ρcp

[
∂Θ

∂t
+ (u · ∇)Θ

]
− k∇2Θ = 0, (10.3.6)

where ∇2 is the two-dimensional Laplacian.
Note that the right hand side of Eq. (10.3.5) accounts for the buoyancy effect under

the Boussinesq approximation, in which temperature deviations from the reference
temperature have to be small.

10.3.2 Non-dimensionalisation

Letting L be the length scale, the average temperature Θr be the temperature scale,
and δΘ = Θh − Θc, we define the buoyancy velocity scale U = √

gLβδΘ , and the

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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Bingham (Bn), the Rayleigh (Ra) and the Prandtl (Pr) numbers as follows:

Bn =
√
2τyL

ηU
, Ra = gβρL3δΘ

αη
, Pr = ηcp

k
, (10.3.7)

where α = k/ρcp is the thermal diffusivity. Next, set

u = Uu∗, x = Lx∗, t = L

U
t∗, pd = ηU

L
p∗, Θ = Θr + δΘ · Θ∗. (10.3.8)

Finally, we define the local Nusselt number Nu and the averaged Nusselt number
Nuavg through

Nu = −dΘ

dx |x=0
, Nuavg =

1∫
0

Nu dy. (10.3.9)

The following non-dimensional governing equations, where the asterisks have
been omitted for convenience, are easily derived:

∇ · u = 0, (10.3.10)

√
Ra

Pr

[
∂u
∂t

+ (u · ∇)u
]

− ∇ · A(u) + ∇p − Bn ∇ · ΛΛΛ

=
√
Ra

Pr
Θe2, (10.3.11)

∂Θ

∂t
+ (u · ∇)Θ − 1√

RaPr
∇2Θ = 0. (10.3.12)

Now, let the flow domain Ω = (0, 1)× (0, 1), and the boundary Γ = ∂Ω , with a
subset Γ1 = {x|x = {x, y} , 0 ≤ x ≤ 1, y = 0 or 1}. The boundary condition for the
velocity is straightforward: u|Γ = 0. The thermal boundary conditions are

Θ(0, y, t) = 1

2
, Θ(1, y, t) = −1

2
,

∂Θ

∂y
∣∣∣∣
Γ1

= 0, t ≥ 0. (10.3.13)

The initial conditions are of the form:

u(x, y, 0) = 0, Θ(x, y, 0) = 1

2
− x, (x, y) ∈ Ω. (10.3.14)

First of all, it is worth noting that if the Bingham number Bn = 0, one recovers
the Newtonian fluid model. Thus, there is no need to find the viscoplastic constraint
tensor ΛΛΛ. It can be put to zero everywhere in the numerical scheme developed for
the Bingham fluid which means that there is no need to produce a separate routine
for the Newtonian fluid.
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Next, as mentioned earlier, the relation (8.9.3) between the tensor ΛΛΛ and the
solution vector u was proved by Duvaut and Lions [22, 23] for isothermal flows with
zero boundary conditions on the velocity field. Subsequently, they proved that [19]
the tensor ΛΛΛ exists in non-isothermal flows provided the velocity field vanishes on
the boundary and it meets (8.9.3) once again. Thus, the operator-splitting method
can be used in the buoyancy driven flow in a square cavity with confidence.

Now, we turn to the determination of the constraint tensor ΛΛΛ. It is based on the
classical Uzawa type algorithm [5] as mentioned earlier. In this method, ΛΛΛ can be
obtained from a simple projection operation as follows [3, 13, 24]:

ΛΛΛ = PM

(
ΛΛΛ + rτyA(v)

)
, ∀r > 0, (10.3.15)

where M = {
μμμ = μμμT |μμμ = (μij)1≤i,j≤2 ∈ (L2(Ω))4, ||μμμ|| ≤ 1 a.e. on Ω

}
and

PM : (L2(Ω))4 → M (10.3.16)

is the projection operator defined so that PM (μμμ) = μμμ, if ||μμμ|| < 1, and PM (μμμ) =
μμμ/||μμμ|| otherwise. Note that in the context of Eq. (10.3.15), the tensor μμμ =
ΛΛΛ + rτyA(v) and it is symmetric. Further, the tensor μμμ and rτyA(v) must both
be dimensionless for ΛΛΛ is also dimensionless. The exact form taken by the product
rτyA(v) can be determined as follows.

Since A(v) is of dimension U/L = T−1,where T denotes time, one can find quite
easily that r has the dimension M−1LT−3. The question is how one can define this
constant r. Recalling Eq. (10.3.7), it is easy to show that

Bn · Pr = cp

k
·
√
2τyL

U
. (10.3.17)

Obviously,

k

cp
· Bn · Pr√

2
· U2

L2 = τy
U

L
. (10.3.18)

Since U = √
gLβδΘ, we find that rτy(U/L) is dimensionless if

r =
√
2cp

k
· L2

U2 =
√
2cp

k
· L

gβδΘ
. (10.3.19)

When we want to replace τy by Bn, and A(v) by its non-dimensional version, we
begin with ∇xv and obtain that it is equal to (U/L)∇x∗v∗, where the latter gradient
is of zero dimension.

Thus,

rτyA(u) = rτy(U/L)A∗(u∗) = r∗BnA∗(u∗), (10.3.20)

http://dx.doi.org/10.1007/978-3-662-45617-0_8
http://dx.doi.org/10.1007/978-3-662-45617-0_8


240 10 Numerical Modelling

from which it follows that

r∗ = ηU2

√
2L2

r = ηU2

√
2L2

·
√
2cp

k
· L

gβδΘ
= ηcp

k
= Pr. (10.3.21)

That is, the constant r∗ is the Prandtl number.
There is one final question to answer, viz., does the finite element numerical

scheme converge? Currently, there are no restrictions on the value of r∗. However,
in the isothermal, lid driven cavity flow problem, one finds a sufficient condition for
the parameter r in (10.3.15) in Eq. (17.58) [4]:

0 < r <
η

2τ 2y
. (10.3.22)

Since rτyA(u) is dimensionless and A(u) ∼ U/L, one sees that the condition above
is equivalent to ||rτyA(u)|| <1/(2 Bn). This bound can be improved; see Eq. (17.64)
in [4].

10.3.3 Numerical Procedure

In this subsection, we shall explain the numerical scheme employed in [25] to solve
the thermally driven cavity flow problem, basing it on the operator-splitting method
developed for isothermal problems [13, 14, 21, 24]. This new scheme has been
designed to examine the non-isothermal viscoplastic problem, and the algorithm is
written in a variational form in order to facilitate its finite element implementation.

Let Δt be the time step and f n denote the value of function f (t) at time t = tn. As
usual, tn+γ = (n + γ )Δt. Assuming that un, pn,Θn,Λn are known, the numerical
scheme works in the following iterative manner:

1. The temperature problem:

Solve the energy equation together with the boundary conditions for Θn+1:

1

Δt

∫
Ω

(Θn+1 − Θn)ϕ da +
∫
Ω

(un · ∇)Θn+1ϕ da

+ χ

∫
Ω

∇Θn+1 · ∇ϕ da = 0, ∀ϕ ∈ H1
0 (Ω). (10.3.23)

2. The generalised Stokes problem:

Find
{
un+1/3, pn+1

} ∈ (H1
0 )

2 × L2 such that
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α

Δt

∫
Ω

(un+1/3 − un) · v da + 1

3

∫
Ω

∇un+1/3 : ∇v da −
∫
Ω

pn+1∇ · v da

= α

∫
Ω

Θn+1 + Θn

2
e2 · v da, ∀v ∈ (H1

0 (Ω))2, (10.3.24)

∫
Ω

∇ · un+1/3q = 0 da, ∀q ∈ L2(Ω). (10.3.25)

3. The convected derivative problem:

Solve for un+2/3 ∈ (H1
0 )

2:

α

Δt

∫
Ω

(un+2/3 − un+1/3) · v da + α

∫
Ω

(un+1/3 · ∇)un+2/3 · v da

+ 1

3

∫
Ω

∇un+2/3 : ∇v da = 0, ∀v ∈ (H1
0 (Ω))2. (10.3.26)

Note that in Eq. (10.3.26), (un+1/3 · ∇)un+2/3 is the linearised form of the original
nonlinear term (un+2/3 · ∇)un+2/3. By this simplification, we can take advantage
of saving the computational cost without losing any accuracy [3].

4. The viscoplasticity constraint tensor problem:

Given un+2/3, solve for
{
un+1,ΛΛΛn+1} ∈ (H1

0 )
2 × M :

α

Δt

∫
Ω

(un+1 − un+2/3) · v da + 1

3

∫
Ω

∇un+1 : ∇v da

+ Bn
∫
Ω

ΛΛΛn+1 : ∇v da = 0, ∀v ∈ (H1
0 (Ω))2, (10.3.27)

ΛΛΛn+1 = PM

(
ΛΛΛn + Pr · BnA(un+2/3)

)
. (10.3.28)

One should note that we have taken α = √
Ra/Pr in Eqs. (10.3.24), (10.3.26) and

(10.3.27), and χ = 1/
√
Ra · Pr in Eq. (10.3.23) for convenience.

As mentioned below Eq. (10.3.16), the new value of ΛΛΛn+1 depends on the mag-
nitude of ΛΛΛn + Pr · BnA(un+2/3). That is, we use PM (μμμ) = μμμ, if ||μμμ|| < 1, and
PM (μμμ) = μμμ/||μμμ|| otherwise, to find the new value ofΛΛΛn+1.

Again, recall that if the Bingham number Bn = 0, then one can put ΛΛΛn = 0 in
Eq. (10.3.28). Then, it follows that ΛΛΛn+1 = 0 automatically and in Eq. (10.3.27),
we can omit the integral involving this tensor. Thus, Eq. (10.3.27) becomes a
sub-problem for finding un+1 only.
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It is clear that the original complicated problem has been split into four subprob-
lems in each time step and solved by the iterative algorithm. InStep 1, the newupdated
temperatureΘn+1 is calculated from the values ofΘn and un obtained in the previous
time step. Then the pressure pn+1 in the new time step is updated and the intermediate
velocity un+1/3 is solved in Step 2. Step 3 gives the intermediate velocity un+2/3 and,
finally, the velocity in the new time step un+1 together withΛΛΛn+1 is updated in Step
4. The stopping criterion for the iteration is

∥∥un+1 − un
∥∥

L2 + ∥∥Θn+1 − Θn
∥∥

L2 < ε,
in which ε is a convergence parameter.

10.3.4 Discussion of the Results

The description of the results follows closely that in [25] with some minor changes.
Overall, the convection problem has been investigated at different Rayleigh numbers,
Ra = 103−105,Prandtl numbers, Pr = 0.1−10 and theBinghamnumbers between1
and 27. The operator-splitting method based on FEM has been utilised to perform the
numerical simulations. A uniform triangulationmesh has been applied to the problem
with the maximum length of the edges fixed at h = 0.01. Moreover, the time step is
selected to be �t = 0.001, and the convergence parameter is ε = 10−6. To check
the accuracy of the results, the present code has been validated for a Newtonian fluid
with published studies on natural convection in a cavity.

Figure10.1 illustrates the isotherms, the streamlines and the yielded/unyielded
zones for different Rayleigh numbers at Bn = 3 and Pr = 0.1. At Ra = 103, the
temperature contours are parallel to the wall which demonstrates that conduction
is dominant in the enclosure. As the Rayleigh number increases, the movements of
the isotherms between the cold and hot walls change significantly and they become
progressively curved. Moreover, the gradient of temperature on the hot wall rises
with the rise of Rayleigh number, for the thermal boundary layer thickness on the
side walls decreases with increasing Rayleigh number. The streamlines show that
the convection process has been enhanced by the growth of Rayleigh numbers as the
core of the streamline changes from the circular shape to an elliptical one gradually
and the streamlines traverse further into the cavity. The last column displays the
yielded (White) and unyielded (Black) regions for the studied Rayleigh numbers at
Bn = 3. It is clear that the proportion of the yielded sections in the enclosure has
been enhanced markedly with the increase of the Rayleigh number. Therefore, for
constant Bingham and Prandtl numbers, the increase in the Rayleigh number causes
the unyielded zones to decline.

Figure10.2 shows the temperature across the cavity, the vertical velocity along the
horizontal mid-plane of the cavity and the local Nusselt number on the hot wall for
differentRayleigh numberswhenBn=3 andPr =0.1.WhenRa=103, the distribution
of the temperature is nearly linear and the vertical velocity component is essentially
negligible due to a very weak flow, as the buoyancy forces are dominated by viscous
effects. In this situation, the heat transfer takes place entirely by conduction across
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Fig. 10.1 Comparison of the isotherms, streamlines and yielded/unyielded zones for various
Rayleigh numbers at Bn = 3 and Pr = 0.1. Black unyielded zone and white yielded zone

the enclosure. While the vertical velocity does indeed augment with an increase of
the Rayleigh number, the temperature profile becomes increasingly non-linear with
the strengthening of convective transport for higher values of the Rayleigh number.
The local Nusselt number on the hot wall for Ra = 103 is roughly equal to one which
demonstrates that the heat transfer takes place due to conduction being dominant, in
agreement with the comments about the Nusselt number in Sect. 5.9.1. Moreover, the
effects of buoyancy forces strengthen in comparison with the viscous effects, as the
Rayleigh numbers increase. Therefore, as the Rayleigh number rises, the magnitude
of the local Nusselt number is enhanced.

The influence of the rise in the Bingham number on the isotherms, streamlines
and the proportion of the yielded/unyielded regions has been depicted in Fig. 10.3 for
Ra = 105 and Pr = 0.1. It shows that the curved shapes of the isotherms decline with
the rise of the Bingham number. This process causes the gradient of the temperature
on the hot wall to drop and therefore heat transfer decreases with the rise of Bingham
numbers. The streamlines demonstrate this decrease in the convection process with

http://dx.doi.org/10.1007/978-3-662-45617-0_5
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Fig. 10.2 Temperatures and vertical velocities in the middle of the cavity and local Nusselt number
on the hot wall for different Rayleigh numbers at Bn = 3 and Pr = 0.1

the growth of the Bingham number, for the inclined elliptical form in the core of the
cavity alters to a circular shape. In addition, the maximum strength of the streamlines
|ψmax| or the vortex intensity [26], the maximum horizontal and vertical velocities
all decrease as the Bingham number is increased. As a result, the convection process
decreases with the enhancement of Bingham number. The unyielded sections occupy
more spaces in the cavity as the Bingham number augments and the rise of the
Bingham number causes the yielded regions to disappear gradually. In other words,
there is a criticalBinghamnumberBnc abovewhich the fluid is completely unyielded.
An empirical relationship between the critical value of the Bingham number and the
Prandtl and Rayleigh numbers can be derived:

Bnc = 0.152Ra0.37Pr−0.39. (10.3.29)
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Fig. 10.3 Comparison of the isotherms, streamlines and yielded/unyielded zones for various Bing-
ham numbers at Pr = 0.1 and Ra = 105. Black unyielded zone and white yielded zone

Thus, the critical Bingham number increases with the Rayleigh number for a fixed
Prandtl number, while it decreases with the Prandtl number for a fixed Rayleigh
number in line with the definitions of these numbers in (10.3.7).

Next, in Fig. 10.4, the temperature and vertical velocity along the horizontal mid-
plane of the cavity and the local Nusselt number are shown for different Bingham
numbers between 1 and 27, when Ra = 105 and Pr = 0.1. The temperature profile
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Fig. 10.4 Temperatures and vertical velocities in the middle of the cavity and local Nusselt number
on the hot wall for different Bingham numbers at Pr = 0.1 and Ra = 105

becomes linear when the Bingham number increases which clarifies the Bingham
number effect, for the convection process decreases. This pattern is also mirrored by
thevertical velocity in themiddle of the cavitywhere itsmagnitudedrops significantly
with the increase in the Bingham number. The local Nusselt number also decreases
with the enhancement of theBinghamnumber. In fact, for high values of theBingham
number, the yield stress effects overcome the buoyancy force and as a result of this, no
significant flow is induced within the enclosure which is to be expected. The mode
of heat transfer and the relationship between the Bingham and Nusselt numbers
observed here are also in accord with the observations made earlier in Sect. 5.9.1.

Figure10.5 shows the isotherms, the streamlines and the yielded/unyielded zones
for various Prandtl numberswhenBn= 1 andRa = 105. It can be seen that the gradient
of the isotherms on the hot wall decreases as the Prandtl number increases. This trend
can been confirmed by examining the streamlines of the core which demonstrate
that the convection process decreases with the rise of the Prandtl number. Further,
it can be seen that the unyielded section for the chosen Bingham and Rayleigh

http://dx.doi.org/10.1007/978-3-662-45617-0_5
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Fig. 10.5 Comparison of the isotherms, streamlines andyielded/unyielded zones for variousPrandtl
numbers at Bn = 1 and Ra = 105. Black unyielded zone and white yielded zone

numbers increases with the augmentation of the Prandtl number. In fact, the increase
of the unyielded sections at higher Prandtl numbers causes the heat transfer to drop
(cf. (10.3.29)).

The influence of altering the Prandtl number can be observed on the temperature,
the vertical and horizontal velocities in the middle of the cavity in Fig. 10.6. It is
evident that the effect of the Prandtl number on the temperature is marginal, although
the increase in this number declines the curved shape of the temperature slightly
and therefore reduces the convection process. The vertical and horizontal velocity
distributions in themiddle of the cavity indicate that the growth of the Prandtl number
decreases the velocity in the cavity drastically. The results demonstrate that the
development of the unyielded sections, which increases at higher Prandtl numbers,
causes the velocities to drop markedly.



248 10 Numerical Modelling

Fig. 10.6 Temperatures, vertical and horizontal velocities in the middle of the cavity for different
Prandtl numbers at Bn = 1 and Ra = 105

Overall, it is found that the rise of the Rayleigh number increases the heat transfer
for it causes the unyielded zones to decline for variousBingham and Prandtl numbers.
The increase in the Bingham number decreases the heat transfer as it augments the
unyielded sections. The unyielded regions are also enhanced with the augmentation
of the Prandtl number for certain Rayleigh and Bingham numbers. These results
are qualitatively similar to those in Figs. 10.7, 10.8 and 10.9 in [26], derived by
using the augmented Lagrangian method. To be specific, the streamline patterns in
Fig. 10.3 and those in Fig. 10.7 [26] are similar for increasing values of the Bingham
number; the temperature variation along the horizontal axis and the vertical velocity
distribution at the middle of the cavity in Fig. 10.8 [26] mirror those in Fig. 10.2; and,
finally, in Fig. 10.9 [26], one can see that the average Nusselt number and the vortex
intensity decline with an increase in the yield stress, similar to that found here and
depicted in Fig. 10.2.
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Fig. 10.7 Square cavity and
mesh system
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Fig. 10.8 Flow pattern in
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Putting these comparisons aside, it is not possible at present to discernwhich of the
two methods, viz., the augmented Lagrangian method or the operator-splitting one
is superior; in fact, Glowinski andWachs [4] make the following remark on p. 504 of
their review article: “The computational methods derived from either the augmented
Lagrangian method or orthogonal projection approaches are fairly modular, making
them relatively easy to implement.” The italics are in the original. Note that the
operator-splitting method is derived from the orthogonal projection approach; see
Eq. (10.3.28) above. Clearly, more comparative studies are called for to decide which
one of the two methods is preferable.
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Fig. 10.9 Streamlines
corresponding to the flow
pattern

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

10.4 Compressibility Effects: Numerical Experiments

Much of the material in this section is derived from [24] with some modifications
and a summary is offered here.

10.4.1 Operator-Splitting Methods: Compressible
Viscous Fluids

Asaprelude to discussing viscoplastic fluids,we shall follow the treatment in [24] and
beginwith compressibleNewtonian fluids.As iswell known, numerical simulation of
the flows of compressible viscous fluids is not as advanced as it is for incompressible
fluids. A couple of schemes exist for isentropic flows and low Mach number flows
and we shall discuss them next.

The constitutive equation for a viscous fluid is taken to be the compressible
Newtonian fluid, viz.,

S = −p1 + λ(∇ · u)1 + ηA, (10.4.1)

where p is the thermodynamic pressure which depends on the density ρ and the
temperature Θ. The material properties λ and η are the Lamé viscosity coefficients,
which depend on ρ,Θ and the invariants of A(u) as well. No numerical schemes
are available for solving flow problems at this level of generality. So, we shall look
at two special cases.

1. The isentropic case

Here, we assume that the flow is isothermal and ignore the energy equation. Next,
we assume that Stokes’ relation holds, i.e., 3λ + 2η = 0. Also, we demand that
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η is a constant and that ρ − ρ0 = εp, where ρ0 > 0 and ε is a “small” parameter.
Assuming that Ω is a bounded domain, conservation of mass implies that

∫
Ω

p(x, t) dv = 0. (10.4.2)

The equations of motion are:

ρ

[
∂u
∂t

+ (u · ∇)u
]

− ∇ · η[A(u) − 2

3
(∇ · u)1]

+ 1

ε
∇ρ = ρb, (10.4.3)

where we have replaced ∇p by ∇ρ/ε. This form of the equations of motion have
been studied by Lions [27, 28]. Turning to the numerical scheme [3], the solution
is sought as a perturbation in ε, i.e.,

u = u0 +
∞∑

k=1

εkuk, (10.4.4)

ρ = ρ0 +
∞∑

k=1

εkρk, (10.4.5)

p = p0 +
∞∑

k=1

εkpk . (10.4.6)

Then, for k = 0, 1, 2, . . . , one can derive a sequence of Navier-Stokes equations,
applicable to incompressible fluids, and these can be solved. For the case when
k = 0, 1, 2, see Glowinski [3].
When the perturbation method is applied to viscoplastic fluids, the Rivlin-
Ericksen tensor has the following expansion:

A(u) = A(u0) +
∞∑

k=1

εkA(uk). (10.4.7)

At a given point in the flow, it is possible that the flow is rigid up to a certain order
in ε, and may not be so at the next order of perturbation. That is, the perturbation
of the velocity field may change the location and shape of the yielded/unyielded
regions. To keep track of these changes in developing a numerical scheme is cum-
bersome and would appear to be insurmountable. Indeed, the difficulties associ-
ated with solving problems using a perturbation method have been highlighted in
discussing the flow in a wavy channel and the linearised stability of the flow in a
channel; see Sects. 7.2 and 7.4 respectively. From the foregoing, it would appear

http://dx.doi.org/10.1007/978-3-662-45617-0_7
http://dx.doi.org/10.1007/978-3-662-45617-0_7
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that the above method of solution for a viscoplastic isentropic flow is not viable.
We shall now turn to a discussion of low Mach number flows.

2. Low Mach number flows

Low Mach number flows are of interest in modelling the flows of viscoplastic
fluids in the start-up of the flow in a pipe of circular cross-section of a weakly
compressible Bingham fluid; for example, see [4, 29, 30]. For a discussion of
the scaling procedures needed to derive the relevant Navier-Stokes equations for
compressible fluids, see p. 11 of [27].
To begin, we need a definition of the Mach number M, given by [27]

M = |u|
c

, c = √
p′(ρ). (10.4.8)

Next, it is known that if the Mach number is small, the continuity equation

dρ

dt
+ ρ∇ · u = ∂ρ

∂t
+ ∇ · (ρu) = 0 (10.4.9)

and the momentum equations lead to acoustic waves. That is, these disturbances
propagate at the speed of sound c and contaminate the solution u.

In examining low Mach number flows, Lions [27] has shown that the pressure
term p should be of the form

p(x, t) = P(t) + εP1(t) + ε2pd(x, t). (10.4.10)

Here, P(t), which is the thermodynamic pressure, and P1 are independent of
x. However, the numerical schemes which have been developed depend on the
following decomposition of the pressure p:

p(x, t) = pT (t) + pd(x, t), (10.4.11)

where pT is the thermodynamic pressure and the dynamic pressure pd << pT . It
has been shown by Horibata [31] that in this case, acoustic waves do not exist. To
proceed further, we shall follow Li and Glowinski [21] and assume that the total
pressure obeys the equation of state

p = RρΘ, (10.4.12)

where R is a constant and Θ is the absolute temperature. From this, it is obvi-
ous that

1

ρ

dρ

dt
= 1

p

dp

dt
− 1

Θ

dΘ

dt
. (10.4.13)

From the continuity equation, we see that dρ/dt = −ρ∇ · u. Thus, the above
equation can be written as

dp

dt
+ p∇ · u = Rρ

dΘ

dt
. (10.4.14)
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Since p(x, t) = pT (t)+pd(x, t), pd << pT , we now put pT = RρΘ and replace
dp/dt by dpT /dt in Eq. (10.4.14) and integrate over the flow domain Ω. This
results in an ordinary differential equation for pT :

|Ω|dpT

dt
+

( ∫
Ω

∇ · u dv

)
pT = R

∫
Ω

ρ

(
∂Θ

∂t
+ u · ∇Θ

)
dv, (10.4.15)

where |Ω| is the volume of Ω. Note that we have used the assumption that pT =
pT (t) above. In addition to this equation, we collect below the remaining Navier-
Stokes equations for compressible fluids in the non-isothermal case. They are:

∂ρ

∂t
+ ∇ · (ρu) = 0, (10.4.16)

ρ

[
∂u
∂t

+ (u · ∇)u
]

− ∇ · η[A(u) − 2

3
(∇ · u)1] + ∇pd

= ρb, (10.4.17)

ρCp

(
∂Θ

∂t
+ u · ∇Θ

)
− ∇ · k∇Θ = dpT

dt
+ Q, (10.4.18)

pT = RρΘ. (10.4.19)

Note that the viscosity η and the thermal conductivity coefficient k are functions
of the temperature Θ. And, Q = (1/2)SijAij is the volumetric heat source due to
dissipation. As well, we have assumed that the Lamé coefficients λ and η obey
3λ + 2η = 0.

Before proceeding further, let us make the following changes to the continuity
equation and the equation of state respectively:

∇ · u = W (Z, u) = −
(

∂Z

∂t
+ u · ∇Z

)
, Z = ln ρ, (10.4.20)

ρ = ρ(pT ,Θ). (10.4.21)

Next, define a new dynamic pressure term through

p∗
d = pd + 2

3
η∇ · u. (10.4.22)

Having defined p∗
d, we drop the asterisk in what follows.

Assuming that ρn, Θn, ηn, kn, pn
T , Zn, un, pn

d are known, the method of
solution works as follows:

1. Solve for Θn+1 the heat equation:

ρnCp

(
∂Θ

∂t
+ un · ∇Θ

)
− ∇ · kn∇Θ = Q + pn

T − pn−1
T

�t
. (10.4.23)
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2. Compute ηn+1 = η(Θn+1) and kn+1 = k(Θn+1).

3. Solve the ordinary differential equation for pn+1
T :

|Ω|pn+1
T − pn

T

�t
+

( ∫
Ω

∇ · un dv

)
pn+1

T

= R
∫
Ω

ρn
(

Θn+1 − Θn

�t
+ un · ∇Θn+1

)
dv. (10.4.24)

4. Compute ρn+1 = ρ(pn+1
T ,Θn+1) and Zn+1 = ln ρn+1.

5. Next, obtain ρn+1/2 = (ρn+1 + ρn)/2 and Zn+1/2 = ln ρn+1/2.

6. Solve the following Navier-Stokes equations for un+1 and pn+1
d :

ρn+1/2
[
∂un+1

∂t
+ (un · ∇)un+1

]
− ∇ · ηn+1A(un+1) + ∇pn+1

d

= ρn+1/2b, (10.4.25)

∇ · un+1 = W (Zn+1/2, un), (10.4.26)

where

W (Zn+1/2, un) = −
(

Zn+1 − Zn

�t
+ un · ∇Zn+1/2

)
. (10.4.27)

Finally, as observed by Li and Glowinski [21], the discrete solution pn+1
T of step 3

above does not, in general, preserve global conservation of mass exactly, although
the deviation is usually small. So, one has to apply a correction to pn+1

T to ensure
global mass conservation. Denoting the discrete solution pn+1

T of step 3 above by p∗
T

and noting that p∗
T is spatially uniform, the correction can be accomplished through

the following steps:

(i) Calculate the initial mass:

M0 =
∫
Ω

ρ0 dv.

(ii) Compute the new density and the new mass:

ρ∗ = ρ(p∗
T ,Θ), M∗ =

∫
Ω

ρ∗ dv.
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(iii) Compute the correction �p through:

�p = M0 − M∗

M∗ p∗
T .

(iv) Reset pn+1
T = p∗

T + �p.

10.4.2 Compressible Viscoplastic Fluids: Isothermal Case

Clearly, one can replace the constitutive equations for the compressible Newtonian
fluid with equations relevant to compressible viscoplastic fluids from Sect. 4.5.
Instead of pursuing this in detail, let us consider a more modest isothermal flow
problem for a viscoplastic fluid with a variable density, viscosity and yield stress
assumed to depend on (x, t) only. That is, while the viscosity depends on the pres-
sure, the three invariants of A as well as the absolute temperature, and the yield
stress is a function of the pressure and the absolute temperature only, we simplify
this by assuming that these material properties depend on (x, t), borrowing an idea
from [3, 21] where a similar assumption has been made regarding the viscosity of a
compressible Newtonian fluid. The relevant equations, with a viscoplastic constraint
tensor (4.5.10), are:

ρ

(
∂ui

∂t
+ ui,juj

)
− (ηAij(u)),j − √

2(τyΛij),j + p,i = ρbi. (10.4.28)

Since we will be considering weakly compressible fluids in the sequel, the continuity
Eq. (10.4.20) is modified so that

∇ · u = W (u). (10.4.29)

This has the effect of simplifying the viscous term in (10.4.28) as we shall see next.
Clearly,

(ηui,j),jvi = (ηui,jvi),j − ηui,jvi,j. (10.4.30)

Hence, using the divergence theorem,

∫
Ω

(ηui,j),jvi dv =
∫
Γ

ηui,jnjvi dS −
∫
Ω

ηui,jvi,j dv

=
∫

∂Ω

η
∂u
∂n

· v dS −
∫
Ω

η∇u : ∇v dv. (10.4.31)

http://dx.doi.org/10.1007/978-3-662-45617-0_4
http://dx.doi.org/10.1007/978-3-662-45617-0_4
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Next

(ηuj,i),jvi = η,juj,ivi + ηuj,jivi

= ∇η · (v · ∇)u + η(v · ∇)W (u), (10.4.32)

where we have used uj,ij = uj,ji. Thus,

∫
Ω

(ηuj,i),jvi dv =
∫
Ω

(
∇η · (v · ∇)u + η(v · ∇)W (u)

)
dv. (10.4.33)

Next,

∫
Ω

(τyΛij),jvi dv =
∫
Ω

(τyΛijvi),j dv −
∫
Ω

τyΛijvi,j dv

=
∫

∂Ω

τyv · ΛΛΛn dS − 1

2

∫
Ω

τyΛΛΛ : A(v) dv. (10.4.34)

Finally, noting that v · n = n · v, one obtains

∫
Ω

p,ivi dv =
∫
Ω

[
(pvi),i − pvi,i

]
dv

=
∫

∂Ω

pn · v dS −
∫
Ω

p∇ · v dv. (10.4.35)

Thus, the equivalent variational problem of solving Eqs. (10.4.28) and (10.4.29) is
the following:

∫
Ω

ρ
∂u
∂t

· v dv +
∫
Ω

η∇u : ∇v dv +
∫
Ω

ρ(u · ∇)u · v dv

−
∫
Ω

p∇ · v dv + 1√
2

∫
Ω

τyΛΛΛ : A(v) dv

=
∫
Ω

(∇η) · (v · ∇)u dv +
∫
Ω

η(v · ∇)W (u) dv

+
∫
Ω

ρb · v dv +
∫

∂Ω

η
∂u
∂n

· v dS

+ √
2

∫
∂Ω

τyv · ΛΛΛn dS −
∫

∂Ω

pn · v dS, (10.4.36)
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for all admissible trial velocity fields v. To the above, we add:

∫
Ω

(∇ · u)q dv =
∫
Ω

W (u)q dv, (10.4.37)

for all q ∈ L2(Ω). Two types of boundary conditions which have been considered
by Li and Glowinski [21] are:

1. The enclosed flow (BC1):

u = 0 on ∂Ω,

∫
Ω

q dv = 0. (10.4.38)

Thus, all of the boundary terms in equation (10.4.36) vanish because v = 0 on ∂Ω.

2. Open or partly open flow (BC2), where the velocity is prescribed on one part and
the normal stress on the other part of the boundary:

u = g on ∂Ω0, −pn + η
∂u
∂n

= g1 on ∂Ω1, (10.4.39)

where ∂Ω0 ∪ ∂Ω1 = ∂Ω, ∂Ω0 ∩ ∂Ω1 = ∅. The second condition is imposed
because the term η(∂u/∂n) − pn appears in (10.4.36).

Note that in the case of BC2, if ∂Ω1 = ∅, one lets v = g on ∂Ω. If ∂Ω1 	= ∅,

one lets v = 0 on ∂Ω0. Assuming the latter,

∫
∂Ω

[
η
∂u
∂n

− pn
]

· v dS =
∫

∂Ω1

g1 · v dS. (10.4.40)

Let us now obtain the final set of equations for BC2:

∫
Ω

ρ
∂u
∂t

· v dv +
∫
Ω

η∇u : ∇v dv +
∫
Ω

ρ(u · ∇)u · v dv

−
∫
Ω

p∇ · v dv + 1√
2

∫
Ω

τyΛΛΛ : A(v) dv

=
∫
Ω

(∇η) · (v · ∇)u dv +
∫
Ω

η(v · ∇)W (u) dv

+
∫
Ω

ρb · v dv +
∫

∂Ω1

g1 · v dS + √
2

∫
∂Ω1

τyv · ΛΛΛn dS, (10.4.41)

∫
Ω

(∇ · u)q dv =
∫
Ω

W (u)q dv. (10.4.42)
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We note that in the case of BC1 or when ∂Ω1 = ∅ in BC2, one has:

∫
Ω

(ηAij(u)),jvi dv =
∫
Ω

(ηAij(u)vi),j dv −
∫
Ω

ηAij(u)vi,j dv

=
∫

∂Ω

ηAij(u)vinj dS − 1

2

∫
Ω

ηAij(u)Aij(v) dv

= −1

2

∫
Ω

ηAij(u)Aij(v) dv, (10.4.43)

because v = 0 on ∂Ω. Thus, instead of Eq. (10.4.41), we get

∫
Ω

ρ
∂u
∂t

· v dv + 1

2

∫
Ω

ηA(u) : A(v) dv +
∫
Ω

ρ(u · ∇)u · v dv

−
∫
Ω

p∇ · v dv + 1√
2

∫
Ω

τyΛΛΛ : A(v) dv

=
∫
Ω

ρb · v dv. (10.4.44)

10.4.3 Operator-Splitting Method

We are now in a position to describe an operator-splitting method to solve the prob-
lems in Eqs. (10.4.41) and (10.4.42). This method is similar to that used above in
Sect. 10.3, except that there are no thermal effects. Thus, it consists of three steps
only and they are:

1. The generalised Stokes problem:

Given un, pn for n ≥ 0, find un+1/3, pn+1 through

∫
Ω

ρ
un+1/3

�t
· v dv + 1

3

∫
Ω

η∇un+1/3 : ∇v dv

−
∫
Ω

pn+1∇ · v dv =
∫
Ω

ρfn · v dv +
∫

∂Ω1

gn
1 · v dS, (10.4.45)

∫
Ω

(∇ · un+1/3)q dv =
∫
Ω

W (un)q dv. (10.4.46)
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Here, for all n ≥ 0,

fn = b + un

�t
in Ω, gn

1 = g1 on ∂Ω1. (10.4.47)

2. The convected derivative problem:

Ignoring the yield stress terms and using the previously determined un+1/3, find
un+2/3 through

∫
Ω

ρ
un+2/3 − un+1/3

�t
· v dv + 1

3

∫
Ω

η∇un+2/3 : ∇v dv

+
∫
Ω

ρ(un+1/3 · ∇)un+2/3 · v dv =
∫
Ω

(∇η) · (v · ∇)un+1/3 dv

+
∫
Ω

η(v · ∇)W (un+1/3) dv. (10.4.48)

Once again, note that we have used the linearised form (un+1/3 ·∇)un+2/3 instead
of the nonlinear term (un+2/3 ·∇)un+2/3; this simplification has been used earlier
in (10.3.26) as well.

3. The viscoplasticity constraint tensor problem:

Ignoring the convected acceleration and pressure terms, find un+1 and the multi-
plierΛΛΛn+1 through

∫
Ω

ρ
un+1 − un+2/3

�t
· v dv + 1

3

∫
Ω

η∇un+1 : ∇v dv

+ 1√
2

∫
Ω

τyΛΛΛ
n+1 : A(v) dv = √

2
∫

∂Ω1

τyv · ΛΛΛnn dS, (10.4.49)

ΛΛΛn+1 = PM (ΛΛΛn + √
2rτyA(un+2/3)). (10.4.50)

At this point, one notes that there is no proof that the viscoplasticity constraint
tensor ΛΛΛ in a compressible viscoplastic fluid satisfies (8.9.3) and that it can be
obtained through the projection operation as in (10.3.15) and (10.3.16). This explains
the reason behind labelling the results of numerical simulation presented next in
Sect. 10.5 as performing numerical experiments; for instructive cases, see Chap.X
of [3]. Clearly, the development of numerical codes for compressible viscoplastic
fluids presents a serious challenge and a golden opportunity for fundamental and
innovative research.

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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10.5 Flow in a Cavity: Weakly Compressible Fluid

The flow of a weakly compressible Bingham fluid that we study takes place in a
lid driven, square cavity. Assume that the flow domain Ω = (0, 1) × (0, 1), and
the boundary Γ = ∂Ω . To make a comparison with the available results, we have
applied the regularised boundary conditions used in [3] and [18], which are slightly
different from the standard boundary conditions in the cavity problem. Letting ΓN =
{x|x = {x, y} , 0 < x < 1, y = 1}, we impose the following boundary conditions:

uΓ (x) =
{

0 if x ∈ Γ \ΓN ,

16
{
x2 (1 − x)2 , 0

}
if x ∈ ΓN .

(10.5.51)

For the slightly compressible Bingham fluid, we suppose that the density ρ is a
function of the pressure p only. The viscosity η and the yield stress τy are constants.
The set of parameters used in the computation are:

α = 1

�t
, β = Bn

Re
, ν = 1

3Re
. (10.5.52)

The density ρ is defined in terms of the pressure difference p − p0, where p0 is a
reference pressure, and a reference density ρ0. Now, let us consider the following
two models:

Model 1: Linear Model

In the linearmodel, the density and pressure variations are proportional to one another
as follows:

ρ − ρ0 = c1 (p − p0) , (10.5.53)

where c1 is a constant, p0 is a reference pressure, and ρ0 is the value of density
corresponding to p0. Without losing generality, we set p0 = 0, then obtain a simple
form of Eq. (10.5.53) by dividing throughout by ρ0:

ρ∗ = 1 + c∗
1p∗. (10.5.54)

The asterisks are dropped hereafter for simplicity and we get the final form

ρ = 1 + c1p. (10.5.55)

Model 2: Exponential Model

In the exponential model, the density ρ is related to the density variation as follows:

ρ = ρ0 exp
[
c2 (p − p0)

]
, (10.5.56)
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where c2 is another constant. Once again, we divide by ρ0 and get

ρ∗ = exp
(
c∗
2p∗) . (10.5.57)

Dropping the asterisks, we have

ρ = exp (c2p) . (10.5.58)

In what follows, we choose c1 = c2 = 10−3, which correspond to weakly com-
pressible fluids. Using the operator-splitting method discussed above in Sect. 10.4.3,
we perform numerical simulations for the flows of these two weakly compressible
fluids. The standard P2–P1 finite element method is employed for the space discreti-
sation. The following discrete spaces are introduced:

Ph =
{

qh|qh ∈ C0 (
Ω

)
, qh|T ∈ P1,∀T ∈ Th

}
, (10.5.59)

Vh =
{

vh|vh ∈
(

C0 (
Ω

))2
, vh|T ∈ (P2)

2 ,∀T ∈ Th

}
, (10.5.60)

V0h = {vh|vh ∈ Vh, vh = 0 on Γ } , (10.5.61)

Vgh = {vh|vh ∈ Vh, vh = uΓ on Γ } . (10.5.62)

After appropriate discretisation in finite element spaces, the variational forms of
the three sub-problems are obtained:

1. The generalised Stokes problem:

uh ∈ Vgh, ph ∈ Ph,

α

∫
Ω

ρ (ph) uh · vh da + ν

∫
Ω

∇uh : ∇vh da −
∫
Ω

ph∇ · vh da

=
∫
Ω

fh · vh da, ∀vh ∈ V0h, (10.5.63)

∫
Ω

∇ · uhqh da =
∫
Ω

W (uh) qh da, ∀qh ∈ Ph.

Here, we have W (uh) = −uh · ∇ ln ρ (ph) .
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2. The convected derivative problem:

uh ∈ Vgh,

α

∫
Ω

ρ (ph) uh · vh da + ν

∫
Ω

∇uh : ∇vh da (10.5.64)

+
∫
Ω

ρ (ph) (uh · ∇) uh · vh da =
∫
Ω

fh · vh da, ∀vh ∈ V0h.

3. The viscoplasticity constraint tensor problem:

uh ∈ Vgh, ΛΛΛh ∈ Lh,

α

∫
Ω

ρ (ph) uh · vh da + ν

∫
Ω

∇uh : ∇vh da + β

∫
Ω

λh : ∇vh da

=
∫
Ω

fh · vh da, ∀vh ∈ V0h, (10.5.65)

ΛΛΛh = PM (ΛΛΛh + rβA (uh)) ,

whereLh=
{

qh = qh
T |qh ∈ (

L2 (Ω)
)4

, qh|T ∈ R
4,∀T ∈ Th

}
.Naturally, we apply

the standard Uzawa algorithm to solve the problem (10.5.65) [3, 17, 18].
We have taken Δt = 10−3, the same as in [3] and [18]. The non-dimensional

numbers are Re = 0.53 and Bn = 0.1, corresponding to U = 1, μ = 1, g = 0.1 in
[3] and [18], with a mesh of size 128 × 128. Since a coarser mesh of size 32 × 32
has been used here (see Fig. 10.7), the lid driven cavity flow has been modelled for
the incompressible Bingham fluid first using the relevant sub-problems. Details are
to be found in [24].

The flow pattern is visualised in Fig. 10.8 and the streamlines of the computed
solution are given in Fig. 10.9, which is identical to Fig. 6.2b in [18] and Fig. 50.2b
in [3]. In Fig. 10.10, the yielded and unyielded regions can be clearly found. The
fluid is considered unyielded at the bottom left and right hand corners as well as
in the core near the top (black zone). Elsewhere the fluid has yielded (white zone).
Figure6.2c in [18] and Fig. 50.2c in [3] show the same result. It is assumed that the
yielded region corresponds to ||ΛΛΛ|| = 1, while ||ΛΛΛ|| < 1 in the unyielded region.
The distribution of the norm of ΛΛΛ can be seen in Fig. 10.11, or 6.2d in [18] and
Fig. 50.2d in [3], alternatively. Comparison of the three sets of results shows a good
agreement between them to proceed to the problem for the compressible fluid.

For the compressible fluid, the problems (10.5.63)–(10.5.65) combined with
the models (10.5.55) and (10.5.58) respectively are solved in the cavity domain
numerically using the schemes mentioned above. It is also worth remarking that in
the compressible fluid, the zero trace property of the tensor ΛΛΛ is not conserved, as



10.5 Flow in a Cavity: Weakly Compressible Fluid 263

Fig. 10.10 Yielded (white)
and unyielded (black) regions
in the incompressible fluid
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Fig. 10.11 Norm of the
viscoplastic constraint tensor
for the incompressible fluid
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in the incompressible case, since the trace of A(u) is not always zero in all flows
of a compressible fluid. Nevertheless, the trace of ΛΛΛ plays no part in the numerical
simulation, just like that in incompressible fluids [18]. This permits one to begin by
setting the initial value ofΛΛΛ to be zero in the iterations.

The distribution of the density ρ using Model 1 is shown in Fig. 10.12 and the
yielded and unyielded regions obtained using Model 1 are shown in Fig. 10.13. With
Model 2, we find the profile of ρ in Fig. 10.14, and the yielded/unyielded regions in
Fig. 10.15. Comparing Figs. 10.13 and 10.15with Fig. 10.10, we find that the location
of the rigid core near the top is unchanged. However, Model 1 leads to a larger core
area than the incompressible model does, and Model 2 even larger. The effects of the
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Fig. 10.12 Distribution of density in Model 1 across the cavity
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Fig. 10.13 Yielded (white) and unyielded (black) regions using Model 1

two compressible models on the bottom rigid corners are not remarkable. As to the
distribution of the density, it can be seen in Figs. 10.12 and 10.14 that the magnitude
of the density reaches its minimum at the top left corner and reaches its maximum
at the top right corner. This is reasonable because the top lid of the cavity moves
from left to right and the pressure is smaller at the top left corner and larger at the
top right corner. Figure10.16 provides a comparison of the densities between Model
1 and Model 2 along the top lid, where 0 ≤ x ≤ 1, y = 1. It is seen that with the
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Fig. 10.14 Distribution of density in Model 2 across the cavity
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Fig. 10.15 Yielded (white) and unyielded (black) regions using Model 2

similar trends of variation, the values of ρ obtained from Model 1 are smaller than
those from Model 2.

Turning to the velocity, we have compared the profiles of the two components u
and v in Figs. 10.17 and 10.18 respectively. Figure10.17 gives the u profile along the
vertical centre line, where x = 0.5, 0 ≤ y ≤ 1. Except at the top, bottom boundaries
and the core centre, the values of u of the incompressible fluid are smaller than
those of the compressible fluids, in which Model 2 predicts a greater effect than
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Fig. 10.16 Comparison of densities along the top lid

Fig. 10.17 Velocity u along the vertical line at x = 0.5.

Model 1. Figure10.18 shows the v profile along the horizontal centre line, where
0 ≤ x ≤ 1, y = 0.5. The fluctuation of v of the incompressible fluid is larger than
that of the compressible fluids, with Model 2 showing a weaker effect than Model 1.
All the models lead to the same value v = 0 at the left and the right boundaries
and the core centre. Comparison of the pressure along the top lid shows that the
incompressible fluid has the largest value of p while Model 1 has the least.
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Fig. 10.18 Velocity v along the horizontal line at y = 0.5.

As mentioned earlier, while the numerical iterations converge and seem to
agree with one another, it has to be emphasised that results are in the nature of
numerical experiments because there is no proof that the viscoplasticity constraint
tensorΛΛΛ exists in the flow of a compressible viscoplastic fluid under Dirichlet boun-
dary conditions.

10.6 Regularised Models

There are numerous examples of modelling the flows of Bingham fluids using either
the bi-viscosity model or the Papanastasiou model. The regularised models have
been employed to overcome the numerical modelling difficulties associated with the
non-differentiable yield stress dissipation functional (cf. (8.2.15)):

j(v) =
∫
Ω

K(v) dv, (10.6.66)

at K(v) = 0. Since the latter value determines the region and its boundary where
the viscoplastic fluid is unyielded, the regularised models smooth out this singularity
either by assuming that the fluid has a very high viscosity when the shear rate is very
small as in the bi-viscosity model, or by a nonlinear viscosity function in the case of
the Papanastasiou model. Given that there now exist two robust numerical methods,
viz., the augmented Lagrangian method and the operator-splitting method, to solve
the flow problems using the exact visoplastic fluid models, such as the Bingham
fluid, it can be argued that the use the non-exact models needs a re-evaluation.

http://dx.doi.org/10.1007/978-3-662-45617-0_8
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Indeed, there are other compelling reasons arising from a comprehensive review
of the convergence of the regularised solutions to those corresponding to exact
models [32], which points out many of the shortcomings of using inexact constitutive
relations. As an illustration, consider a two-dimensional flow in a bounded domain
Ω, driven by a body force b and Dirichlet boundary conditions. If uε is the solution
of the problem using a regularised model and u is that produced by employing the
Bingham fluid, it can be shown that norm convergence in the following sense occurs:

||u − uε||H1(Ω) ≤ 2Bn|Ω|
CΩ

ε1/2, (10.6.67)

where |Ω| is the area of Ω , and CΩ is a constant that depends on the domain.
As an example of such norm convergence, suppose that the flow of a Bingham

fluid in a channel is steady under an applied pressure drop G per unit length. Further,
at time t = 0+, let this be reduced so that G < β, where β = 2 is the constant
which appears in Sect. 9.4.3. In this situation, it has been proved earlier that the flow
of the Bingham fluid comes to rest in a finite amount of time, with its upper bound
given by Tf in Eq. (9.4.27). When the Papanastasiou model is used to model this
initial/boundary value problem [33], it is found that the flow never comes to rest;
indeed, in the Papanastasiou model, a steady velocity profile persists corresponding
to a small but non-zero volumetric flow rate. That is, while norm convergence occurs,
the regularised model does not reproduce the finite extinction time property of the
Bingham fluid.

In [32], it is also shown that the regularised models generate maximum errors in
lubrication and thin-film flows; that stability characteristics are incorrectly predicted
for a large class of problems. In addition, on p. 944 of his encyclopaedic article [3],
Glowinski has pointed out that when K(u) is small,

||j′′(uε)|| ≈ 1/ε. (10.6.68)

That is, for uε to be good approximation to u, the parameter ε has to be small;
on the other hand, an initial/boundary value problem is badly conditioned for those
situations where the set Ω0, on which A(x, t) = 0, is large. This has been confirmed
by the numerical simulation of a steady bubble rise in Herschel-Bulkley fluids using
the augmented Lagrangian method and comparing the results with that using the
Papanastasiou model [34]. These computations show that as the Bingham number
increases and the size of the unyielded region becomes bigger, much larger values of
the parameter m in the Papanastasiou model are needed; indeed, m can exceed 104.

Of course, a great deal of insight has been obtained into the flows of viscoplastic
fluids so far by the use of the regularisedmodels. Here, onemaymention the solutions
to creeping flow problems [35–38], entry flows [39], extrudate swell [40], fountain
flow effects [41], finite extinction results [33, 42], rising bubbles [43] and thermally
driven cavity flows [44]. While a couple of results using the regularised models have
been mentioned in this monograph, the existence of robust numerical schemes for
the exact models has overcome the need to provide a detailed exposition.

http://dx.doi.org/10.1007/978-3-662-45617-0_9
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