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PREFACE

This is a concise multi-subject handbook, which consists of three major parts: mathe-
matics, physics, and applied and engineering sciences. It presents basic notions, formulas,
equations, problems, theorems, methods, and laws on each of the subjects in brief form. The
absence of proofs and a concise presentation has permitted combining a substantial amount
of reference material in a single volume. The handbook is intended for a wide audience of
engineers and researchers (not specialized in mathematics or theoretical physics) as well as
graduate and postgraduate students.

e The first part of the book contains chapters on arithmetics, elementary and analytic
geometry, algebra, differential and integral calculus, functions of complex variable, integral
transforms, ordinary and partial differential equations, special functions, probability theory,
etc.

e The second part of the book contains chapters on molecular physics and thermo-
dynamics, electricity and magnetism, oscillations and waves, optics, special relativity,
quantum mechanics, atomic physics, etc.

e The third part of the book contains chapters on dimensional analysis and similarity,
mechanics of point masses and rigid bodies, strength of materials, hydrodynamics, mass and
heat transfer, electrical engineering, and methods for constructing empirical and engineering
formulas.

A compact and clear presentation of the material allows the reader to get quick help on
(or revise) the desired topic. Special attention is paid to issues that many engineers and
students may find difficult to understand.

When selecting the material, the authors have given a pronounced preference to practical
aspects; namely, to formulas, problems, methods, and laws that most frequently occur in sci-
ences and engineering applications and university education. Many results are represented
in tabular form.

For the convenience of a wider audience with different mathematical backgrounds,
the authors tried to avoid special terminology whenever possible. Therefore, some of the
topics and methods are outlined in a schematic and somewhat simplified manner, which is
sufficient for them to be used successfully in most cases. Many sections were written so that
they could be read independently. The material within subsections is arranged in increasing
order of complexity. This allows the reader to get to the heart of the matter quickly.

The material of the reference book can be roughly categorized into the following three
groups according to meaning:

1. The main text containing a concise, coherent survey of the most important definitions,
formulas, equations, methods, theorems, and laws.

2. Forthe reader’s better understanding of the topics and methods under study, numerous
examples are given throughout the book.

3. Discussion of additional issues of interest, given in the form of remarks in small
print.

For the reader’s convenience, several long mathematical tables—indefinite and definite
integrals, direct and inverse integral transforms (Laplace, Mellin, and Fourier transforms),
and exact solutions of differential equations—which contain a large amount of information,
are presented in the supplement of the book. Also included are some physical tables and
the periodic table of the chemical elements.

This handbook consists of parts, chapters, sections, and subsections. Figures and ta-
bles are numbered separately in each section, while formulas (equations) and examples
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are numbered separately in each subsection. When citing a formula, we use notation like
(M3.1.2.5), which means formula 5 in Subsection M3.1.2. For the reader’s convenience,
each citation number is preceded by a letter to indicate one of the major parts: mathe-
matics (M), physics (P), engineering sciences (E), or supplements (S). At the end of each
chapter, we present a list of main and additional literature sources containing more detailed
information about topics of interest to the reader.

Special font highlighting in the text, cross-references, an extensive table of contents,
and a detailed index help the reader to find the desired information.

Chapters M1, M2, and M6-M9 were written by V. M. Safrai and A. 1. Zhurov, Chapters
M3-M5, M10, and M14 by A. V. Manzhirov and V. A. Popov, Chapters M11-M13, E1, E4,
ES, E7, and S1-S5 by A. D. Polyanin, Chapters P1-P8 by A. 1. Chernoutsan, Chapter E2 by
V. D. Polyanin, Chapter E3 by B. V. Putyatin, Chapter E6 by A. V. Egorov and Yu. V. Repina,
and Chapters S6 and S7 by A.I. Chernoutsan and A. 1. Zhurov. Part M was edited by A.D.
Polyanin and parts E and S were edited by A.D. Polyanin and A.I. Chernoutsan.

We would like to express our deep gratitude to Vladimir Nazaikinskii for translating
several chapters of this handbook.

The authors hope that this book will be helpful for a wide range of engineers, scientists,
university teachers, and students engaged in the fields of physics, mechanics, engineering
sciences, chemistry, biology, ecology, medicine as well as social and economical sciences.

Andprei D. Polyanin
Alexei I. Chernoutsan
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Chapter M1
Arithmetic and Elementary Algebra

M1.1. Real Numbers
M1.1.1. Integer Numbers

» Natural, integer, even, and odd numbers. Natural numbers: 1, 2, 3, ... (all positive
whole numbers).

Integer numbers (or simply integers): 0, £1, 12,13, ...

Even numbers: 0, 2, 4, ... (all nonnegative integers that can be divided evenly by 2).
An even number can generally be represented as n = 2k, where k=0, 1,2, ...

Remark 1. Sometimes all integers that are multiples of 2, such as 0, +2, 4, ..., are considered to be
even numbers.

Odd numbers: 1, 3,5, ... (all natural numbers that cannot be divided evenly by 2). An
odd number can generally be represented as n =2k + 1, where £k =0, 1, 2, ...

Remark 2. Sometimes all integers that are not multiples of 2, such as *1, 3, +5, .. ., are considered to
be odd numbers.

All integers as well as even numbers and odd numbers form infinite countable sets,
which means that the elements of these sets can be enumerated using the natural numbers
1,2,3,...

» Prime and composite numbers. A prime number is a positive integer that is greater
than 1 and has no positive integer divisors other than 1 and itself. The prime numbers form
an infinite countable set. The first ten prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, ...

A composite number is a positive integer that is greater than 1 and is not prime, i.e.,
has factors other than 1 and itself. Any composite number can be uniquely factored into
a product of prime numbers. The following numbers are composite: 4 =2x2,6 =2 X 3,
8=2%9=32,10=2x%5,12=22x3,...

The number 1 is a special case that is considered to be neither composite nor prime.

» Divisibility tests. Below are some simple rules helping to determine if an integer is
divisible by another integer.

All integers are divisible by 1.

Divisibility by 2: last digit is divisible by 2.

Divisibility by 3: sum of digits is divisible by 3.

Divisibility by 4: two last digits form a number divisible by 4.

Divisibility by 5: last digit is either O or 5.

Divisibility by 6: divisible by both 2 and 3.

Divisibility by 9: sum of digits is divisible by 9.

Divisibility by 10: last digit is 0.

Divisibility by 11: the difference between the sum of the odd-numbered digits (1st, 3rd,
5th, etc.) and the sum of the even-numbered digits (2nd, 4th, etc.) is divisible by 11.
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4 ARITHMETIC AND ELEMENTARY ALGEBRA

Example 1. Let us show that the number 80729 is divisible by 11.

The sum of the odd-numbered digits is ;1 = 8 + 7+ 9 = 24. The sum of the even-numbered digits is
3 =0+2 =2. The difference between them is X; — 3, = 22 and is divisible by 11. Consequently, the original
number is also divisible by 11.

» Greatest common divisor and least common multiple.

1°. The greatest common divisor of natural numbers aq, a, ..., a, is the largest natural
number, b, which is a common divisor to aq, ..., .
Suppose some positive numbers a1, ay, . .., a, are factored into products of primes so
that
_ ok, ki k _ ka1, kn k — pknt, K2 k
ar=p; P, P @ =DID D™ s G = PyTD Dy
Where P1> P2s -5 Pm are different prime numbers and the k‘,-j are nonnegative integer's
(t=12,...,n; 7=1,2,...,m). Then the greatest common divisor b of a1, as, ..., a, is
calculated as
— 01,02 o = min ks
b—p1 Py s U]_lrgz‘ls%k”'

Example 2. The greatest common divisor of 180 and 280 is 2> x 5 = 20 due to the following factorization:
180 = 2* x 3’ x5 =2"x 3" x 5' x 7°,
280=2x5x7 =2°x3"x5" x7".
2°. The least common multiple of n natural numbers a1, ay, .. ., a, is the smallest natural
number, A, that is a multiple of all the ay.
Suppose some natural numbers ay, ..., a, are factored into products of primes just as
in Item 1°. Then the least common multiple of all the ay, is calculated as
A=pp2. . ptm, v; = max k;,;.
pl p2 Pm J 1<i<n v

Example 3. The least common multiple of 180 and 280 is equal to 2° x 3% x 5! x 7! = 2520 due to the
factorization given in Example 2.

M1.1.2. Real, Rational, and Irrational Numbers

» Real numbers. The real numbers are all the positive numbers, negative numbers, and
zero. Any real number can be represented by a decimal fraction (or simply decimal), finite
or infinite. The set of all real numbers is denoted by R.

All real numbers are categorized into two classes: the rational numbers and irrational
numbers.

» Rational numbers. A rational number is a real number that can be written as a fraction
(ratio) p/q with integer p and g (¢ # 0). It is only the rational numbers that can be written
in the form of finite (terminating) or periodic (recurring) decimals (e.g., 1/8 = 0.125 and
1/6 =0.16666. ..). Any integer is a rational number.

The rational numbers form an infinite countable set. The set of all rational numbers is
everywhere dense. This means that, for any two distinct rational numbers a and b such that
a < b, there exists at least one more rational number ¢ such that ¢ < ¢ < b, and hence there
are infinitely many rational numbers between a and b. (Between any two rational numbers,
there always exist irrational numbers.)

» Irrational numbers. An irrational number is a real number that is not rational; no
irrational number can be written as a fraction p/q with integer p and ¢ (¢ # 0). To
the irrational numbers there correspond nonperiodic (nonrepeating) decimals. Here are
examples of irrational numbers: \/§ =1.73205...,7=3.14159...

The set of irrational numbers is everywhere dense, which means that between any
two distinct irrational numbers, there are both rational and irrational numbers. The set of
irrational numbers is uncountable.
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M1.2. Equalities and Inequalities. Arithmetic Operations.
Absolute Value

M1.2.1. Equalities and Inequalities

Throughout Subsection 1.2.1, it is assumed that a, b, ¢, d are real numbers.

» Basic properties of equalities.

1. Ifa=0b,then b = a.

2. If a = b, then a + ¢ = b+ ¢, where c is any real number; furthermore, if a + ¢ = b + ¢, then
a=b.

If a = b, then ac = be, where c is any real number; furthermore, if ac = bc and ¢ # 0, then
a=b.

Ifa=band b=c, thena =c.

If ab = 0, then either a = 0 or b = 0; furthermore, if ab # 0, then a # 0 and b # 0.

»

Basic properties of inequalities.

If a < b, then b > a.

Ifa<band b<a,thena =0b.
Ifa<band b<c thena<c.
Ifa<bandb<c(ora<bandb<c), thena < c.
Ifa<bandc<d(orc=d),thena+c<b+d.
If a £band ¢ >0, then ac < be.

If a £band ¢ <0, then ac = be.
If0<a<b(ora<b<0),thenl/a>1/b.

NN LD =V L

M1.2.2. Addition and Multiplication of Numbers

» Addition of real numbers. The sum of real numbers is a real number.
Properties of addition:
a+0=a (property of zero),
a+b=b+a (addition is commutative),
a+(b+c)=(a+b)+c=a+b+c (addition is associative),
where a, b, ¢ are arbitrary real numbers.
For any real number a, there exists its unique additive inverse, or its opposite, denoted

by —a, such that
a+(-a)=a—-a=0.
» Multiplication of real numbers. The product of real numbers is a real number.
Properties of multiplication:
ax0=0 (property of zero),
ab =ba (multiplication is commutative),
a(bc) = (ab)c = abe  (multiplication is associative),
axl=1xXa=a (multiplication by unity),
a(b+c)=ab+ac  (multiplication is distributive),
where a, b, c are arbitrary real numbers.

For any nonzero real number a, there exists its unique multiplicative inverse, or its
reciprocal, denoted by alorl /a, such that

aa’' =1 (a#0).
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M1.2.3. Ratios and Proportions

» Operations with fractions and properties of fractions. Ratios are written as fractions:
a:b=a/b. The number a is called the numerator and the number b (b # 0) is called the
denominator of a fraction.

Properties of fractions and operations with fractions:

a a ab a:c . . .
—=a, —=—=—— (simplest properties of fractions);
1 b bc b:c

+ dxb
% t % =4 5 c’ % t % =4 bd ¢ (addition and subtraction of fractions);
LN c= %, 4y (multiplication by a number and by a fraction);
b b b d b

d

% ic= %, % : 5 = Z—c (division by a number and by a fraction).

» Proportions. Simplest relations. Derivative proportions. A proportion is an equation
with a ratio on each side. A proportion is denoted by a/b=c/dora:b=c:d.

1°. The following simplest relations follow from a/b = ¢/d:
ad = be, e , a=—, b= —.
c c

2°. The following derivative proportions follow from a/b = ¢/d:

ma+nb mc+nd
pa+qb  pc+qd’
ma+nc mb+nd
pa+qc  pb+gqd’

where m, n, p, q are arbitrary real numbers.
Some special cases of the above formulas:

axb cxd a—b_c—d

b d > a+b c+d

M1.2.4. Percentage

» Definition. Main percentage problems. A percentage is a way of expressing a ratio
or a fraction as a whole number, by using 100 as the denominator. One percent is one per
one hundred, or one hundredth of a whole number; notation: 1%.

Below are the statements of main percentage problems and their solutions.

1°. Find the number b that makes up p% of a number a. Answer: b = %.

2°. Find the number a whose p% is equal to a number b. Answer: a = %.

3°. What percentage does a number b make up of a number a? Answer: p = %%.
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» Simple and compound percentage.

1°. Simple percentage. Suppose a cash deposit is increased yearly by the same amount
defined as a percentage, p%, of the initial deposit, a. Then the amount accumulated after
t years is calculated by the simple percentage formula

x=a(l+%).

2°. Compound percentage. Suppose a cash deposit is increased yearly by an amount defined
as a percentage, p%, of the deposit in the previous year. If a is the initial deposit, then the
amount accumulated after ¢ years is calculated by the compound percentage formula

T = a(l + lg;())t

M1.2.5. Absolute Value of a Number (Modulus of a Number)

» Definition. The absolute value of a real number a, denoted by |al, is defined by the

formula

_Ja if a=20,
|a|‘{ a if a<O.

An important property: |a| > 0.
» Some formulas and inequalities.

1°. The following relations hold true:

ja| = |-a| = Va2, a<]al,
llal = [8]] < Ja+b] < |a] + 0],
llal = 8]] < a—b] < |a] + 8],
jab| = |al [bl, |a/b] = |al/|b].

2°. From the inequalities |a| < A and |b| < B it follows that |a + b| < A+ B and |ab| < AB.

M1.3. Powers and Logarithms
M1.3.1. Powers and Roots

» Powers and roots: the main definitions. Given a positive real number a and a positive
integer n, the nth power of a, written as a'*, is defined as the multiplication of a by itself
repeated n times:

a=axXaxax---Xa.

n multipliers

The number a is called the base and n is called the exponent.
Obvious properties: 0" =0, 1" =1, a! = a.
Raising to the zeroth power: a° = 1, where a # 0.

. . _ 1 . o
Raising to a negative power: a "' = —, where n is a positive integer.
n

a

If a is a positive real number and 7 is a positive integer, then the nth arithmetic root or

radical of a, written as {/a, is the unique positive real number b such that ™ = a. In the
case of n = 2, the brief notation /a is used to denote /a.
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The following relations hold:
%=0, {L/I=1, (%)”:a.
Raising to a fractional power p = m/n, where m and n are natural numbers:
af = g™/'" = Vam, a>0.

» Operations with powers and roots. The properties given below are valid for any real
exponents p and ¢ (a >0, b > 0):

ap
. aPal=aPY, =P,
aP al
a\? af
ab)? = aPbP, <—> =—, (d?=a".
(ab) 7) = @
In operations with roots (radicals) the following properties are used:

Remark. It often pays to represent roots as powers with rational exponents and apply the properties of
operations with powers.

a? =

M1.3.2. Logarithms

» Definition. The main logarithmic identity. The logarithm of a positive number b to a
given base a is the exponent of the power c to which the base ¢ must be raised to produce b.
It is written as log, b = c.

Equivalent representations:

log,b=c <= a°=b,

where a >0,a #1,and b > 0.

Main logarithmic identity:

aloga b =p.
Simple properties:
log,1=0, log,a=1.

» Properties of logarithms. The common and natural logarithms. Properties of
logarithms:

b
log,(bc) =log, b+log, c, log, (—) =log, b—log, c,
c

1

log, (b%) = klog, b, log,r b=—log, b (k#0),
log, b

log, b= b£D, log,b=—2”  (c#1),

log, a log.a

C
where a > 0,a #1, b >0, ¢c> 0, and k is any number.
The logarithm to the base 10 is called the common or decadic logarithm and written as

log;ob=1logb orsometimes log;,b=Igb.
The logarithm to the base e (the base of natural logarithms) is called the natural

logarithm and written as
log, b=1nb,

where e = lim (1+1)" =2.718281...

n—00

The following relations hold:
Inb=2.302591gb, 1gb=0.434291nb
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M1.4. Binomial Theorem and Related Formulas
M1.4.1. Factorials. Binomial Coefficients. Binomial Theorem

» Factorials. Binomial coefficients.

Factorial:
0l=1!=1,
n!l=1x2x3x---X(n-1)xn, n=2,3,4, ...
Double factorial:
onN=11=1,
nH_{(Zk:)!! if n = 2k,
TTLQRE+DN ifn=2k+1,

QW =2%x4%X6x%---x(2k-2)x 2k) = 2"k,
RE+DN=1%x3x5%x---xQRk-1)xQ2k+1),

where n and k are natural numbers.
Binomial coefficients:

k(T _ n! _nn-1)...(n-k+1) 3 )

C"_(k:>_k!(n—k)!_ k! » k=L23...m
-1...(a- 1

nga(a )k‘(a kit ), where k=1,2,3, ...,

where n is a natural number and a is any number.

» Binomial theorem. Let a, b, and ¢ be real (or complex) numbers. The following
formulas hold true:

(atb)? =a>+2ab+ 12,
(atb)® =a®+3a%b+ 3ab> £ b3,
(atb)* = a* +4d°b + 6470 + 4ab® + b*,

The last formula is known as the binomial theorem, where the C¥ are binomial coefficients.

M1.4.2. Related Formulas

» Formulas involving powers < 4.

a? - b = (a—-b)a+b),
A+ = (a+ b)(a2 —ab+ bz),
a-b = (a— b)(a2 +ab+ bz),
4 4 _ 2,312
a’ —b" =(a-0b)a+b)(a”+b),
(a+b+c)2:a2+b2+cz+2ab+2ac+2bc,

at+ a2 + bt = (a2 +ab+ 1)2)(a2 —ab+ bz).
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» Formulas involving arbitrary powers. Let n be any positive integer. Then
a"=b"=(a-b) @ +a" b+ +ab" T+ 0",
If n is a positive even number, then
a"=b" = (a+b)a" —a"Pb+ - +ab" b
=(a=b)(a+b)a" > +a" b+ + a2+ 0.
If n is a positive odd number, then

A"+ 0" =(a+b) @ —a" b+ —abv Y.

M1.5. Progressions
M1.5.1. Arithmetic Progression

1°. An arithmetic progression, or arithmetic sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term plus a constant d, called
the common difference, so that a,+1 = a, +d, n =1,2,3,... In general, the terms of an
arithmetic progression are expressed as

anp=a; +(n-1)d, n=1,2,3, ...,

where a is the first term of the progression. An arithmetic progression is called increasing
if d > 0 and decreasing if d < 0.

2°. An arithmetic progression has the property
ap = %(an—l + Apy1).

3°. The sum of n first terms of an arithmetic progression is calculated as

Sp=ar+---+a, = %(al +ap)n = %[2@1 + (n—1)d]n.

M1.5.2. Geometric Progression

1°. A geometric progression, or geometric sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term multiplied by a constant g,
called the common ratio, so that a,4; = anq, n = 1,2,3,... In general, the terms of a
geometric progression are expressed as

an:alq"_l, n=1,2,3, ...,

where a1 is the first term of the progression.

2°. A geometric progression with positive terms has the property

an =/ 0n-10n+1-

3°. The sum of n first terms of a geometric progression is calculated as (¢ # 1)

Sp=a1+---+a,=a;
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M1.6. Mean Values and Some Inequalities
M1.6.1. Arithmetic Mean, Geometric Mean, and Other Mean Values

The arithmetic mean of a set of n real numbers a1, a, ..., a, is defined as
aj+ay+---+a
My = ——2 n (1.6.1.1)
n
Geometric mean of n positive numbers ap, a, . .., Qy:
mg = (a1az . . . )™ (1.6.1.2)
Harmonic mean of n real numbers aq, ay, ..., an:
n
mp = , ap # 0. (1.6.1.3)
(I/a))+(L/a)+ -+ (1/ay)
Quadratic mean (or root mean square) of n real numbers ay, ap, ..., ay:
2, .2 2
a?+ai+---+a
mq=\/ i . (1.6.1.4)
n
M1.6.2. Inequalities for Mean Values
Given n positive numbers ap, a, .. ., a,, the following inequalities hold true:
mp < mg < my <My, (1.6.1.5)

where the mean values are defined above by (1.6.1.1)—(1.6.1.4). The equalities in (1.6.1.5)
are attained only if a; = ay = -+ - = ay.
To make it easier to remember, let us rewrite inequalities (1.6.1.5) in words as

‘ harmonic mean ‘ < ‘ geometric mean ‘ < ‘ arithmetic mean ‘ < ‘ quadratic mean ‘

M1.6.3. Some Inequalities of General Form

Let aj and by, be real numbers with k =1,2, ..., n.
Generalized triangle inequality:

n

S

k=1

n
<) al.
k=1

Cauchy’s inequality (also known as the Cauchy—Bunyakovsky inequality or Cauchy-
Schwarz—Bunyakovsky inequality):

Minkowski’s inequality:

n l n
<Z |ay + bk|p>p < (Z |ak|p>
=1 P

Sk
Sk

s
\Y
=

+ (}; |bk|P>
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M1.7. Some Mathematical Methods
M1.7.1. Proof by Contradiction

Proof by contradiction (also known as reductio ad absurdum) is an indirect method of
mathematical proof. It is based on the law of non-contradiction (a statement cannot be true
and false at the same time) and includes the following reasoning:

1. Suppose one has to prove some statement S.

2. One assumes that the opposite of S is true.

3. Based on known axioms, definitions, theorems, formulas, and the assumption of
Item 2, one arrives at a contradiction (deduces some obviously false statement).

4. One concludes that the assumption of Item 2 is false and hence the original state-
ment S is true, which was to be proved.

Example. (Euclid’s proof of the irrationality of the square root of 2 by contradiction.)

1. Tt is required to prove that v/2 is an irrational number, that is, a real number that cannot be represented
as a fraction p/q, where p and g are both integers.

2. Assume the opposite: 1/2 is a rational number. This means that /2 can be represented as a fraction

V2=p/q. (1.7.1.1)

Without loss of generality the fraction p/q is assumed to be irreducible, implying that p and g are mutually
prime (have no common factor other than 1).
3. Square both sides of (1.7.1.1) and then multiply by ¢* to obtain

2¢° = p’. (1.7.12)

The left-hand side is divisible by 2. Then the right-hand side, p*, and hence p is also divisible by 2. Consequently,
p is an even number so that
p=2n, (1.7.1.3)

where n is an integer. Substituting (1.7.1.3) into (1.7.1.2) and then dividing by 2 yields
¢ =2 (1.7.1.4)

Now it can be concluded, just as above, that ¢* and hence ¢ must be divisible by 2. Consequently, ¢ is an even
number so that
q=2m, (1.7.1.5)

where m is an integer.
It is now apparent from (1.7.1.3) and (1.7.1.5) that the fraction p/q is not simple, since p and ¢ have a
common factor 2. This contradicts the assumption made in Item 2.

4. It follows from the results of Item 3 that the representation of V/2 in the form of a fraction (1.7.1.1) is
false, which means that v/2 is irrational.

M1.7.2. Mathematical Induction

The method of proof by (complete) mathematical induction is based on the following
reasoning:

1. Let A(n) be a statement dependent on n withn =1, 2, ... (A is a hypothesis at this
stage).

2. Base case. Suppose the initial statement A(1) is true. This is usually established by
direct substitution n = 1.

3. Induction step. Assume that A(n) is true for any n and then, based on this assumption,
prove that A(n + 1) is also true.

4. Principle of mathematical induction. From the results of Items 2-3 it is concluded
that the statement A(n) is true for any n.
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Example.
1. Prove the formula for the sum of odd numbers

14345+--+Qn-1)=n" (1.7.2.1)

for any natural n.

2. For n = 1, we have an obvious identity: 1 = 1.

3. Let us assume that formula (1.7.2.1) holds for any n. To consider the case of n + 1, let us add the next
term, (2n + 1), to both sides of (1.7.2.1) to obtain

1+3+5+ - +n-D+2n+ D =n*+C2n+1) = (n+ 1>~

Thus, from the assumption of the validity of formula (1.7.2.1) for any n it follows that (1.7.2.1) is also valid
forn + 1.
4. According to the principle of mathematical induction, this proves formula (1.7.2.1).

Remark. The first step, the formulation of an original hypothesis, is the most difficult part of the method
of mathematical induction. This step is often omitted from the method.

M1.7.3. Proof by Counterexample

A counterexample is an example which is used to prove that a statement (proposition) is
false. Counterexamples play an important role in mathematics. Whereas a complicated
proof may be the only way to demonstrate the validity of a particular theorem, a single
counterexample is all that is needed to refute the validity of a proposed theorem.

In general, the scheme of a proof by counterexample is as follows:

1. Given a proposition: all elements a that belong to a set A also belong to a set (possess
a property) B.

2. Refutation of the proposition: one specifies an element a, (counterexample) that
belongs to A but does not belong to B.

Example. Proposition: Numbers in the form 22"+ 1, where n is a positive integer, were once thought to
be prime.
These numbers are prime for n = 1, 2, 3, 4. But for n = 5, we have a counterexample, since

27 4 1 = 4294967297 = 641 X 6700417

it is a composite number.
. . n .. . .
Conclusion: When faced with a number in the form 2>” + 1, we are not allowed to assume it is either prime
or composite, unless we know for sure for some other reason.
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Chapter M2
Elementary Functions

Basic elementary functions: power, exponential, logarithmic, trigonometric, and inverse
trigonometric (arc-trigonometric or antitrigonometric) functions. All other elementary
functions are obtained from the basic elementary functions and constants by means of
the four arithmetic operations (addition, subtraction, multiplication, and division) and the
operation of composition (composite functions).

The graphs and the main properties of the basic as well as some other frequently
occurring elementary functions of the real variable are described below.

M2.1. Power, Exponential, and Logarithmic Functions
M2.1.1. Power Function: y = £ (« is an Arbitrary Real Number)

» Graphs of the power function. General properties of the graphs: the point (1,1)
belongs to all the graphs, and y > 0 for = > 0. For a > 0, the graphs pass through the origin
(0,0); for a < 0, the graphs have the vertical asymptote x = 0 (y — +oo as x — 0). For
« = 0, the graph is a straight line parallel to the x-axis.

Consider more closely the following cases.

Case I: y = 22", where n is a positive integer (n = 1, 2, ...). This function is defined
for all real = and its range consists of all ¥ = 0. This function is even, nonperiodic, and
unbounded. It crosses the axis Oy and is tangential to the axis Oz at the origin x =0, y = 0.
On the interval (-o0, 0) this function decreases, and it increases on the interval (0, +c0). It
attains its minimum value y = 0 at z = 0. The graph of the function y = 22 (parabola) is
given in Fig. M2.1 a.

\Y

(b)

Figure M2.1. Graphs of the power function y = ", where n is an integer.

15
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Case 2: y = 2*™*!, where n is a positive integer. This function is defined on the entire

z-axis and its range coincides with the y-axis. This function is odd, nonperiodic, and
unbounded. It crosses the z-axis and the y-axis at the origin x =0, y = 0. It is an increasing
function on the entire axis with no points of extremum, the origin being its inflection point.
The graph of the function y = 23 (cubic parabola) is shown in Fig. M2.1 a.

Case 3: y = x72", where n is a positive integer. This function is defined for all z # 0,
and its range is the semiaxis > 0. It is an even, nonperiodic, unbounded function having
no intersection with the coordinate axes. It increases on the interval (—oo,0), decreases
on the interval (0, +00), and has no points of extremum. The graph of the function has a
vertical asymptote = = 0. The graph of the function y = 22 is given in Fig. M2.1 b.

Case 4: y = 72"+, where n is a positive integer. This function is defined for all = # 0,
and its range is the entire y-axis. It is an odd, nonperiodic, unbounded function with no
intersections with the coordinate axes. This is a decreasing function on the entire axis with
no points of extremum. It has a vertical asymptote = = 0. The graph of the function y = 2!
is given in Fig. M2.1 b.

Case 5: y = z with a noninteger o > 0. This function is defined for all* x > 0 and
its range is the semiaxis y = 0. This function is neither odd nor even and it is nonperiodic
and unbounded. It crosses the axes Oz and Oy at the origin x = 0, y = 0 and increases
everywhere in its domain, taking its smallest value at the point z = 0, y = 0. The graph of
the function y = /2 is given in Fig. M2.2.

Ay
4

) y:x—l/z y=x”2

Ve

o 1 2 3 4 5

Figure M2.2. Graphs of the power function y = “, where « is a noninteger.

Case 6: y = z“ with a noninteger o < 0. This function is defined for all > 0 and its
range is the semiaxis y > 0. This function is neither odd nor even, it is nonperiodic and
unbounded, and it has no intersections with the coordinate axes, which coincide with its
horizontal and vertical asymptotes. This function is decreasing on its entire domain and has
no points of extremum. The graph of the function y = z7'/2 is given in Fig. M2.2.

» Properties of the power function. Basic properties of the power function:
2% = 2B (z12y)* = xxs, (z%)° = 28,

for any « and 3, where x > 0, 1 > 0, 2 > 0.

* In fact, the power function y = 2'/™ with an odd integer n is also defined for all - < 0. Here, however, it
m/n

is always assumed that = 0. A similar assumption is made with regard to the functions of the form y = ™/ ™,
where m is a positive integer and m /n is an irreducible fraction.
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Differentiation and integration formulas:

:L,a+l

(xa)/:aacafl, /wadw= ot +C if a#-1,
e+ C  if a=-1.

The Taylor series expansion in a neighborhood of an arbitrary point zg:

o
% = Z Chay " (x—x0)" for |x—xo| <l|xol,

n=0

ala-1)...(a—=n+1)
n!

where C]) = are binomial coefficients.

M2.1.2. Exponential Function: y = a” (a >0,a #1)

» Graphs of the exponential function. This function is defined for all x and its range is
the semiaxis ¢ > 0. This function is neither odd nor even, it is nonperiodic and unbounded,
and it crosses the axis Oy at y = 1 and does not cross the axis Oz. For a > 1, it is an
increasing function on the entire x-axis; for 0 < a < 1, it is a decreasing function. This
function has no extremal points; the axis Oz is its horizontal asymptote. The graphs of
these functions have the following common property: they pass through the point (0, 1).
The graph of y = a® is symmetrical to the graph of y = (1/a)* with respect to the y-axis.
For a > 1, the function a” grows faster than any power of x as x — +00, and it decays faster
than any power of 1/x as  — —oo. The graphs of the functions y = 2% and y = (1/2)* are

given in Fig. M2.3.

2 -1 O

Figure M2.3. Graphs of the exponential function.

» Properties of the exponential function. Basic properties of the exponential function:

axlal‘z — a:c1+:c2’ al‘bx — (ab)x, (a:cl):cz — al‘lxz‘

Number e, base of natural (Napierian) logarithms, and the function e*:

n—oo n—~o0

1\n T\
e= Lm (1+—) =2718281.... ¢*= lim <1+—> .

n n
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The formula for passing from an arbitrary base a to the base e of natural logarithms:

a® = 6mlna‘

The inequality

x1>ax2 — {w1>x2 ifa>1,
T1<zy 1f O<a<l.
The limit relations for any a > 1 and b > 0:
x

— =0, lim a”c|$|b =0.
T—+00 ‘x’b T——00

Differentiation and integration formulas:

(") = ¢, /eac dx =e" +C;
aSE

@*) =a®Ina, a®dx = +C.
Ina

Power series expansion:
2 3
A A +—+ Z .
2t 3 k!

M2.1.3. Logarithmic Function: y = log, = (a >0, a # 1)

» Graphs of the logarithmic function. This function is defined for all z > 0 and its range
is the entire y-axis. The function is neither odd nor even; it is nonperiodic and unbounded;
it crosses the axis Ox at = 1 and does not cross the axis Oy. For a > 1, this function is
increasing, and for 0 < a < 1, it is a decreasing function; it has no extremal points, and the
axis Oy is its vertical asymptote. The common property of the graphs of such functions is
that they all pass through the point (1, 0). The graph of the function y = log,, x is symmetric
to that of y = log, Ja® with respect to the z-axis. The modulus of the logarithmic function
tends to infinity slower than any power of x as z — +oc and slower than any power of 1/x
as x — +0. The graphs of the functions y =log, x and y = log; /2  are shown in Fig. M2 .4.

AY
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Figure M2.4. Graphs of the logarithmic function.
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» Properties of the logarithmic function. By definition, the logarithmic function is the
inverse of the exponential function. The following equivalence relation holds:

y=log,z <= z=d’,

where a > 0, a # 1.
Basic properties of the logarithmic function:

al%2 % = x. log,,(z112) = log, =1 + log, x2,
log, x

k
log,(z") = klog, z, log,z = log, @'

where £ >0, 21 >0,20>0,a>0,a21,6>0,b= 1.
The simplest inequality:

x1>xy if a>1,
log, x1 > log, 7 = {x1<w2 if 0<a<1.

For any b > 0, the following limit relations hold:

log,, x
lim g,; =0, lim z’log, z =0.
T—+00 x r—+0

The logarithmic function with the base e (base of natural logarithms, Napierian base)

is denoted by
log, z =Inx,

where e = lim (1 + l)n =2.718281...

n—oo n
Formulas for passing from an arbitrary base a to the Napierian base e:

log, & = —*.
Ofa Ina

Differentiation and integration formulas:
, 1
(Inz) = —, Inzxder=xzlnz—-x+C.
x

Power series expansion:

2 3 n

0 k
1n(1+x)=x_%+%_---+(_1)"*1%+--- =;(—1)’“%, 1<z<lL

M2.2. Trigonometric Functions
M2.2.1. Trigonometric Circle. Definition of Trigonometric Functions

» Trigonometric circle. Degrees and radians. Trigonometric circle is the circle of unit
radius with center at the origin of an orthogonal coordinate system Ozy. The coordinate
axes divide the circle into four quarters (quadrants); see Fig. M2.5. Consider rotation of the
polar radius issuing from the origin O and ending at a point M of the trigonometric circle.
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Figure M2.5. Trigonometric circle.

Let o be the angle between the z-axis and the polar radius O M measured from the positive
direction of the z-axis. This angle is assumed positive in the case of counterclockwise
rotation and negative in the case of clockwise rotation.

Angles are measured either in radians or in degrees. One radian is the angle at the vertex
of the sector of the trigonometric circle supported by its arc of unit length. One degree is
the angle at the vertex of the sector of the trigonometric circle supported by its arc of length
7/180. The radians are related to the degrees by the formulas

1 radian = 130 ;o 1°= -
™

» Definition of trigonometric functions. The sine of « is the ordinate (the projection to
the axis Oy) of the point on the trigonometric circle corresponding to the angle of « radians.
The cosine of « is the abscissa (projection to the axis Ox) of that point (see Fig. M2.5).
The sine and the cosine are basic trigonometric functions and are denoted, respectively, by
sin v and cos .

Other trigonometric functions are tangent, cotangent, secant, and cosecant. These are
derived from the basic trigonometric functions, sine and cosine, as follows:

sin « CoS « 1 1
tan o = s cotay = — . sec o = s cosec . = — .
COS sin « COS sin &

Table M2.1 gives the signs of the trigonometric functions in different quadrants. The
signs and the values of sin « and cos o do not change if the argument « is incremented by
+27mn, where n =1, 2, ... The signs and the values of tan a and cot o do not change if the
argument « is incremented by t7n, wheren =1, 2, ...

TABLE M2.1
Signs of trigonometric functions in different quarters.
Quarter Angle in radians sin o cos tan o coto sec o cosec o
1 O<a<? + + + + + +
11 % <a<T + — — _ _ +
1l T<a<3f - - + + - -
v I ca<dn - + - - + -
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TABLE M2.2
Numerical values of trigonometric functions for some angles « (in radians).

Angle o 0 % T 5 z 237r STW 567r .
o | o |y e g 22| o
cos o 1 % % 1 0 _ % _ % B % 1
tan o 0 V3 1 V3 00 3 -1 4 0
cota oo V3 1 % 0 _ % 1 V3 00

Table M2.2 gives the values of trigonometric functions for some values of their argument

(the symbol co means that the function is undefined for the corresponding value of its
argument).

M2.2.2. Graphs of Trigonometric Functions

» Sine: y = sinx. This function is defined for all = and its range is y € [-1,1]. The
sine is an odd, bounded, periodic function (with period 27). It crosses the axis Oy at the
point y = 0 and crosses the axis Oz at the points z = mn, n = 0,+1,12,... The sine is an
increasing function on every segment [-75 +27n, 7 + 27n] and is a decreasing function on

every segment [ 5 + 27, %77 +2mn]. For x = 7 + 2n, it attains its maximal value (y = 1),
and for x = —7 + 27rn it attains its minimal value (y = —1). The graph of the function
y = sinz is called the sinusoid or sine curve and is shown in Fig. M2.6.
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Figure M2.6. Graph of the function y = sinx.
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» Cosine: y = cos x. This function is defined for all x and its range is y € [-1, 1]. The
cosine is a bounded, even, periodic function (with period 27). It crosses the axis Oy at the
point y = 1, and crosses the axis Ox at the points = 7 + 7n. The cosine is an increasing
function on every segment [-7 + 27n, 27n] and is a decreasing function on every segment
[27n, ™+ 2mn], n =0,%1,%2,... For x = 27n it attains its maximal value (y = 1), and for
T =7+ 27n it attains its minimal value (y = —1). The graph of the function y = cosz is a
sinusoid obtained by shifting the graph of the function y = sinz by 7 to the left along the
axis Ox (see Fig. M2.7).

» Tangent: y = tan ax. This function is defined for all x # % +m,n=0,%1,%2,...,
and its range is the entire y-axis. The tangent is an unbounded, odd, periodic function (with
period 7). It crosses the axis Oy at the point y = 0 and crosses the axis Ox at the points
x = 7n. This is an increasing function on every interval (=7 + 7n, 5 + 7n). This function
has no points of extremum and has vertical asymptotes at z = 5 + 7n, n = 0,£1,%2,...
The graph of the function y = tan z is given in Fig. M2.8.
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AY

Figure M2.7. Graph of the function y = cos x.

» Cotangent: y = cot x. This function is defined for all x # 7n, n =0,%1,12, ..., and
its range is the entire y-axis. The cotangent is an unbounded, odd, periodic function (with
period ). It crosses the axis Oz at the points # = 7 + 7n, and does not cross the axis Oy.
This is a decreasing function on every interval (7n, m + 7wn). This function has no extremal
points and has vertical asymptotes at x = 7n, n = 0,+1,%2, ... The graph of the function
y = cotx is given in Fig. M2.9.
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Figure M2.8. Graph of the function y = tan x. Figure M2.9. Graph of the function y = cot x.

M2.2.3. Properties of Trigonometric Functions

» Simplest relations.

sin2m+coszm:1, tanzcotx =1,
sin(—x) = —sin x, cos(—x) = cos ,
sinx cos T
tanx = , cotxr = — )
cosx sin x
tan(—x) = —tan x, cot(—r) = —cotx,
1 1
1+tan’z = 5 l+cot?z = ——.
COS* T sin® x
» Reduction formulas.
sin(z £ 2nm) =sinx, cos(x £2nm) = cos x,
sin(z £ nw) = (-1)" sin z, cos(z £ nm) = (-1)" cos z,
) 2n+1 2n+1 _ )
sin (a: + 7r> =+(-1)" cos z, cos (m + 7r> =F(-1)"sinz,
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sin (:p + %) = ?(sinx tcosx), cos (a: t %) = ?(cos x¥ sin x),

tan(x = nm) = tan x, cot(x xnmw) =cotx,

2n+1 2n+1
tan(aji 77) =-—cotz, cot(aji 7r> =—tanz,
) < +7T> tanx 1 t( +7r) cot r¥l
an(zt — ) = ———, cotfzt—) = ———,

4 1¥tanx 4 1+cotx

wheren=1, 2, ...

» Relations between trigonometric functions of single argument.

. tan x 1
sinz =tV 1-cos?z =1+ =

V1+tanlz Vitcolz

: 1 cotx
cosr=1V1-sin2zx == =

V1+tanlz Vitcolz

sin x V1-cos?zx 1

tanz =t =

V1—sin2z cos T cotx’
V1-sin?z CoS T 1

cotx ==+ =

sinx vV1-cos2y tanx

The sign before the radical is determined by the quarter in which the argument takes its
values.

I+

I+

I+

I+

» Addition and subtraction of trigonometric functions.

+ —
sinw+siny:25in(w2y)cos(xzy),

sinx—siny:Zsin(w;y) cos<x2y>,

+ p—
cosx+cosy=200s<$ y)cos($2y),

COS X —COSY = 25in($+y) sin(x_y>
T 2 2 )

2 2

sin® z — sin’ Y= cos? Yy —cos” x = sin(z + y) sin(x — y),

21— cos? y = —cos(z + y) cos(x —y),

- N
781{1(% £y cotx tcoty = 781{1@ )

sin

tanz *tany =

coszcosy’ sinzsiny’

acosx +bsinx = rsin(x + @) = r cos(z — ).

Here, 7 = Va? + b2, sinp =a/r, cosp =b/r, siny) =b/r, and cosv =a/r.
» Products of trigonometric functions.
sinz siny = %[cos(x —y)—cos(x + )],

COSx COoSY = %[cos(x —y) +cos(x + y)l,

sinz cosy = %[sin(:n —y) + sin(x + y)].
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» Powers of trigonometric functions.

cos?z = %cos2w+ %, smzx——% cos2x+
cos® z = %cos3w+ %cosw, sm3x:—% sm3w+zsmw
costx = %cos4w+ %cos2x+ %, sin*z = é cosdy — 4 5 cos 2z + 3 8,
5. L S 5 5. L _ 3 S g
CO8” T = §¢ €OS Sz + Tg COS 3z + 3 COS T, sin® x = 16 sinSx i sin 3z + 8 sin z,
n
cos>" 22" . cos[Z(n k)x] + ——C5,
cos?™*! 22n Z C’2n+1 cos[(2n — 2k + 1)x],
k=0
2n 1 n—kC 2 k 1 n
sin“" x = 53 Z( 1) ., cos[2(n —k)x] + —— 3 Cons
2 o 2
1
2n+1 n—k .
sin T = > Z( 1) C'2n+1 sin[2n -2k + 1)x].
k=0
k m! . . .
Here,n=1,2,... and C},, = m are binomial coefficients (0! = 1).
'(m—=k)!

» Addition formulas.

sin(zxty) =sinxcosyxcoszsiny, cos(zxy)=coszcosy+sinzsiny,
tanx *tany lI+¥tan x tany

tan(x ty) = ————, cot(xty) = ——.
@ty l¥tanz tany @xy) tanz * tany

» Trigonometric functions of multiple arguments.

cos2x=2cos’xz—1=1-2sin’z, sin2x = 2sinx cos x,
cos 3z = -3 cos z + 4 cos’ T, sin 3z = 3sinz — 4 sin® T,
cos4z =1-8cos®z + 8cos* z, sindx = 4 cos z (sin z — 2 sin’ z),

cos5z =5cosz—20cos’ z+16¢cos’ z, sin5x =5sinz—20 sin® z + 16 sin® T,

)knz(n N D DU (7 ¢ Do) I

cosQnz) =1+ Z( 1

4% sin T,
£ 2k)!
" [(Qn+1)2-11[2n+1)>-3%]...[Qn+1)*-Qk-1)?] .
cos[(2n+1)x]:cosx{1+2( ¥ 0! mz’“x},

k=1

sin(2nx) = 2ncosx {sin T+ Z( 4

)k(n D> =2 (n* = k) sinZk‘lx},
k=1

2k -1)!

[2n+1)2-1][2n+1)*=32] . .. [2n+1)>=(2k-1)?] ket I}

sin[(2n+1)z] =(2n+1){sin x+;(—1)k S
2tanx 3tanx —tan’ 4tanx —4tan z

tan3x = —————,  tandw = 5 T
1-3tan"x 1-6tan“z +tan*

wheren=1, 2, ...
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» Trigonometric functions of half argument.

., x l-cosx & l+cosz
sm®-—= — coO§* — = —
2 2 ’ 2 2 ’
) x sin z 1-coszx t:n sinx 1+cosx
an — = = _ cot = = = :
2 l+cosz sinz 2 l-cosz sin
) 2tan 5 1 —tan? g 2tan 5
Sln$=72x, COSQ}':i”, tan$=72$.
1+tan- £ 1+tan® % 1-tan* £
2 2 2
» Differentiation formulas.
dsinx dcosz . dtan x 1 dcotx 1
=cos z, =—sinx = , = —— .
dz dz ’ dx cos? x dx sin? x
» Integration formulas.
/sinxdx:—cosw+C, /cosxdx:sinw+0,

/tanxd:p:—lnlcosx|+0, /cotazdaz:lnlsina:|+0,

where C is an arbitrary constant.

» Power series expansions.

cosa::1—3—?+j—?—2—?+---+(—1)”(§:;+--- (lz] < 00),
sin:::=x—§—j+§—j—?—:+---+(—1)”%+--- (lz] < 00),
tana::a:+%3+21—3;5+ 13713;_7 ot 22n(22(nz;)1!)|32n| -ty (2l <7 /2),
cotm:%—<§+%+%+m+%xzn1+---> 0 <z <),

where B,, are Bernoulli numbers (see Subsection M13.1.2).

» Representation in the form of infinite products.

2 2 2 2
x x x x
nz=zll-—|(l-—|(l-— ) ... (l-——= | ...

ne=o(1-5) (0-55) (-52) - (-5

4z 4z 4z? 4z
cosr=(l-—||ll-—||l-—— ] ... ([l - ————— ) ...

w2 9?2 2572 Q2n +1)272

» Euler and de Moivre formulas. Relation to hyperbolic functions.

¥ = eY(cosx +isinx), (cosz +isinz)” = cos(nz)+isin(nz), i*=-1,
sin(¢x) = ¢sinhx, cos(ix) =coshz, tan(iz)=7tanhx, cot(ix)=—icothx.
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M2.3. Inverse Trigonometric Functions
M2.3.1. Definitions. Graphs of Inverse Trigonometric Functions

» Definitions of inverse trigonometric functions. Inverse trigonometric functions (arc
Junctions) are the functions that are inverse to the trigonometric functions. Since the trigono-
metric functions sin z, cos x, tan z, cot x are periodic, the corresponding inverse functions,
denoted by Arcsin x, Arccos x, Arctan x, Arccot x, are multi-valued. The following rela-
tions define the multi-valued inverse trigonometric functions:

sin(Arcsinx) = x, cos(Arccos x) = x,

tan(Arctanx) = x, cot(Arccotx) = x.
These functions admit the following verbal definitions: Arcsin x is the angle whose sine is
equal to z; Arccos z is the angle whose cosine is equal to z; Arctan x is the angle whose
tangent is equal to x; Arccotx is the angle whose cotangent is equal to x.
The principal (single-valued) branches of the inverse trigonometric functions are denoted
by
arcsin z = sin”!

arccos * = cos_1 x

arctan x = tan’1 x

(arcsine is the inverse of sine),
(arccosine is the inverse of cosine),
(arctangent is the inverse of tangent),

arccotz = cot ™'z (arccotangent is the inverse of cotangent)

and are determined by the inequalities

1<z <)

(o0 < T < 00).

7 <arcsinz < 7, O<arccosz <7
% < arctan x < %, O<arccotz <

The following equivalent relations can be taken as definitions of single-valued inverse
trigonometric functions:

y=arcsinz, —-1<z<l1 <= 1z =siny, —%5ys%;
y=arccosz, —-1<zx<1 <— =x=cosy, O0Zy<m;
y=arctanr, -o00o<zr<+00 < T =tany, —%<y<g;
y=arccotz, -—-oo<zxr<+o0o <= ax=coty, O<y<m.

The multi-valued and the single-valued inverse trigonometric functions are related by
the formulas
Arcsinz = (-1)" arcsin x + 7n,

Arccos x = *arccos x + 27n,
Arctan x = arctan x + 7n,
Arccot x = arccot x + n,
where n =0, 1, 2, ...
The graphs of inverse trigonometric functions are obtained from the graphs of the

corresponding trigonometric functions by mirror reflection with respect to the straight line
y = x (with the domain of each function being taken into account).
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» Arcsine: y = arcsin . This function is defined for all x € [-1, 1] and its range is
Yy € [—%, %]. The arcsine is an odd, nonperiodic, bounded function that crosses the axes
Oz and Oy at the origin z = 0, y = 0. This is an increasing function in its domain, and it
takes its smallest value y = —7 at the point x = —1; it takes its largest value y = 7 at the
point x = 1. The graph of the function y = arcsin z is given in Fig. M2.10.

» Arccosine: y = arccos x. This function is defined for all z € [-1, 1] and its range is
y € [0, 7]. It is neither odd nor even. It is a nonperiodic, bounded function that crosses the
axis Oy at the point y = 7 and crosses the axis O at the point x = 1. This is a decreasing
function in its domain, and at the point x = -1 it takes its largest value y = 7; at the point
x = 1 it takes its smallest value y = 0. For all = in its domain, the following relation holds:
arccos x = 5 —arcsin z. The graph of the function y = arccos z is given in Fig. M2.11.
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Figure M2.10. Graph of the function y = arcsin z. Figure M2.11. Graph of the function y = arccos z.

» Arctangent: y = arctanax. This function is defined for all z, and its range is
Yy € (—%, %). The arctangent is an odd, nonperiodic, bounded function that crosses the
coordinate axes at the origin x = 0, y = 0. This is an increasing function with no points of
extremum. It has two horizontal asymptotes: y =—7 (as x — —o0) and y = 7 (as & — +00).
The graph of the function y = arctan x is given in Fig. M2.12.

» Arccotangent: y = arccot x. This function is defined for all x, and its range is
y € (0, 7). The arccotangent is neither odd nor even. It is a nonperiodic, bounded function
that crosses the axis Oy at the point y = 7 and does not cross the axis Oz. This is a
decreasing function on the entire z-axis with no points of extremum. It has two horizontal
asymptotes y = 0 (as x — +o0) and y = 7w (as * — —o0). For all z, the following relation

holds: arccot z = 7 —arctan . The graph of the function y = arccot x is given in Fig. M2.13.

y = arccot x
X
,,,,,, Tl i >
2 -10 1
Figure M2.12. Graph of the function y = arctan x. Figure M2.13. Graph of the function y = arccot x.

M2.3.2. Properties of Inverse Trigonometric Functions
» Simplest formulas.
sin(arcsinx) = x, cos(arccos x) = x,
tan(arctan x) = x, cot(arccotx) = x.
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» Some properties.

arcsin(—zx) = —arcsin z, arccos(—x) = 7 — arccos x,
arctan(—x) = —arctan x, arccot(—x) = 7 — arccot x,

T —-2nmw if ZnW—%SxSZn %,

. . ™+
arcsin(sin ) = {—x +2n+Dr if @n+Dr-T<z<2n+Dr+ T,

T -2nmw if 2nwr <2 < 2n+ D,

arccos(cos z) = { —z+2n+Dr if @n+ Dr <z <2n+ D,

arctan(tanz) =z —nn  if nr-F <x<nT+ 7,

arccot(cotx)=x—-nm if nr<zr<n+ ).

» Relations between inverse trigonometric functions.

arcsin x +arccos & = %, arctan z+arccot x = %;
arccos V' 1—a2 if 0<z<1, arcsin V' 1—22 if 0<z<1,
—arccos V' 1—x2 if -1<x<0, m—arcsinvV1-22 if -1<2 <0,
. . 2
= { arctan if -1<z<1 = -z .
arcsin.v 2 > arccos arctan if 0<z <1,
1-x
T
_;rz T .
arccot -7 if -1<z<0; arccot > if -I<z<l;
x 1-x
. T 1
arcsin - for any z, arcsin ———— if 2>0,
1+2 1422
1 . 1
arccos ——— if = 20, m—arcsin if <0
1422 1+22 -
arctan r = 1 arccotx = +x
. 1 .
— arccos W if < 0, arctan — if > 0’
X
1 . 1 .
arccot — if x>0; m+arctan — if z<0.
T T

» Addition and subtraction of inverse trigonometric functions.

arcsin x + arcsiny = arcsin(m\/ 1- y2 +yv1 —wz) for 2+ y2 <1,
arccos x + arccos y = Tarccos [zyF/(1 -22)(1-y?)| for z+y>0,

rT+y

arctan x + arctan y = arctan 1 for zy<1,
r-y
arctan x — arctan y = arctan for zy>-1.
+ 2y
» Differentiation formulas.

. 1 d 1
—arcsin ¥ = ——, — arccos ¥ = —————,
dx V1-g2 dx 1-22

t d t !
—arctanr = ——, — arccotx = — .
dx 1+ 22 dx 1+ x?
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» Integration formulas.
/arcsinxd:c =gzarcsinz + V1-22+C, /arccosa:da: =garccosz—V1-22+C,
1 2 1 2
arctan x dx = x arctan x — 5 In(1+z°)+C, arccotx dx = x arccotx + 5 In(1+z2°)+C,

where (' is an arbitrary constant.

» Power series expansions.

1><3:c5 1x3x5 2’ Ix3x%---x(2n=1) g2"*!

123
ek o Z by o <1),
arcsinz = x 23t 9%xa 5 Taxaxe 7 Ix4x---x(2n) 2n+1 (zl <1
3 3 7 2n-1
arctanx::c—%+x5 —%+-'-+(—1)n71—;n_1 oo (2= D).
11 1 1
. _r 1.1 n— > 1).
arctan x 2 - 3(E3 52 5 ( ) (Zn_l)xZn—l (lxl )

The expansions for arccosz and arccotz can be obtained from the relations arccos x =
7 —arcsinx and arccotx = 5 —arctan .

M2.4. Hyperbolic Functions
M2.4.1. Definitions. Graphs of Hyperbolic Functions

» Definitions of hyperbolic functions. Hyperbolic functions are defined in terms of the
exponential functions as follows:
. et —e™ Tyre? et _ e T4 et
silhr = ———, coshz=———, tanhz=———, cothz=
2 2 et +e@

The graphs of hyperbolic functions are given below.

et —e®

» Hyperbolic sine: y = sinh «. This function is defined for all = and its range is the
entire y-axis. The hyperbolic sine is an odd, nonperiodic, unbounded function that crosses
the axes Ox and Oy at the origin x = 0, y = 0. This is an increasing function in its domain
with no points of extremum. The graph of the function y = sinh x is given in Fig. M2.14.

» Hyperbolic cosine: y = cosh x. This function is defined for all x, and its range
is y € [1,+00). The hyperbolic cosine is an even, nonperiodic, unbounded function that
crosses the axis Oy at y = 1 and does not cross the axis Ox. This function is decreasing on
the interval (—o0, 0) and increasing on the interval (0, +00); it takes its smallest value y = 1
at z = 0. The graph of the function y = cosh x is given in Fig. M2.15.

» Hyperbolic tangent: y = tanh x. This function is defined for all z, and its range is
y € (-1, 1). The hyperbolic tangent is an odd, nonperiodic, bounded function that crosses
the coordinate axes at the origin z = 0, y = 0. This is an increasing function on the entire
z-axis and has two horizontal asymptotes: y = -1 (as x — —o0) and y = 1 (as x — +00).
The graph of the function y = tanh x is given in Fig. M2.16.

» Hyperbolic cotangent: y = cothax. This function is defined for all x # 0, and
its range consists of all y € (-o00,-1) and y € (1,400). The hyperbolic cotangent is an
odd, nonperiodic, unbounded function that does not cross the coordinate axes. This is a
decreasing function on each of the semiaxes of its domain; it has no points of extremum. It
has two horizontal asymptotes: y = -1 (as * — —oo) and y = 1 (as * — +o0). The graph of
the function y = coth x is given in Fig. M2.17.
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Figure M2.14. Graph of the function y = sinh x.

Figure M2.16. Graph of the function y = tanh x.

y=coshx

X
>

2 -1 O 1 2

Figure M2.15. Graph of the function y = cosh z.

A

Figure M2.17. Graph of the function y = coth x.

M2.4.2. Properties of Hyperbolic Functions

» Simplest relations.

cosh? z —sinh? x = 1,
sinh(-x) = —sinh z,

sinh x
tanh z =

coshz’
tanh(-z) = —tanh z,
1

b
cosh? x

1—tanh®z =

tanh x cothx =1,
cosh(—x) = cosh z,

cosh x
cothx = — ,
sinh x
coth(-x) = —coth z,
1
COth2 X — 1 = 72
sinh” x

» Relations between hyperbolic functions of single argument (x > 0).

sinhz = Vcosh?z —1=

tanh x 1

coshz = Vsinh?z +1 =

sinh x
tanh x = =

\/l—tanhzaj B \/cothzaj—l’

1 coth x

\/1—tanh2x B \/cothzw—l’

Vcosh?z —1 1

Vsinh?z +1

cosh x

" cothz’
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Vsinh?z + 1 _ cosh x _ 1

sinh - VeoshZz — 1 " tanhz’
» Addition formulas.

sinh(x * y) = sinh x cosh y £ sinhy coshx, cosh(x £ y) = cosh z cosh y % sinh z sinh y,
tanh x £ tanh y ’ coth(z £ ) = cothx cothy =1 .
1 + tanh x tanh y cothy tcothz

» Addition and subtraction of hyperbolic functions.

iy) ¥y
h(57)-
cos 5

cosh x + coshy = 2008h<x—+y> cosh<ﬂ>,

cothz =

tanh(x £ y) =

sinh  + sinh y = 2 sinh ( z

2 2
coshx —coshy = 2sinh(wT+y) sinh(x;y>,

sinh? z — sinh? y = cosh? 2 — cosh? y = sinh(z + y) sinh(z — v),
sinh? z + cosh? y = cosh(z + y) cosh(x — y),
(cosh z £ sinh )" = cosh(nx) * sinh(nx),

sinh(z * y) 4 sinh(x * y)

cothz *cothy ==+

tanh z * tanhy = , —
4 cosh x cosh y sinh z sinh y

where n =0, £1, £2, ...

» Products of hyperbolic functions.
sinh z sinhy = %[cosh(m +y) —cosh(x — y)],
cosh x coshy = %[cosh(w + 1) + cosh(z — y)],

sinh z coshy = %[sinh(m +y) + sinh(x — y)].
» Powers of hyperbolic functions.

cosh? z =1 cosh 2z + L sinh? z =4 cosh 22— L
2 2 2 2
3,.._1 3 131 3 o
cosh :E—Zcosh3:n+zcosh:p, sinh ;L'—ZSIIlh3l’—Z sinh x,
4 1 1 3 s 14 1 1 3
cosh x—gcosh4x+7cosh2x+§, sinh x—gcosh4:n—7 cosh2x+§,
5.1 5 5 s 151 5 o 5 o
cosh’ = 16 cosh5z+ ic cosh 3z + 3 coshx, sinh’z= 16 sinh SLU—E sinh 3z + 3 sinh x,
1 n-1
n . _ k n
cosh™ x = S E C5,, cosh[2(n— k:)a:]+—C’2n,
k=0

cosh?™! 22n Z a1 COSh[(2n—2k+1)z],

n—1 n
Z( 1)FC5 cosh[2(n— k)x]+(_) cy
k=0

1

2n ., _
sinh“" z = pETE]

sinh?"*! ¢ 22 Z( HECE | sinh[2n—2k+1)z].

Here,n=1,2, ... and C’,’% are blnormal coefficients.
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» Hyperbolic functions of multiple argument.

cosh 2z =2 cosh? z—1, sinh 22 = 2 sinh x cosh z,
cosh 3z = -3 cosh z +4 cosh® z, sinh 3z = 3 sinh 2 + 4 sinh® =
cosh 4z = 1 -8 cosh? x + 8 cosh* z, sinh4x =4 cosh z(sinh x +2 sinh’ ),

cosh 52 = 5 cosh x—20cosh’ z+ 16 cosh’ #,  sinh 52 = 5 sinh z +20 sinh? 2+ 16 sinh’

[n/2]

1 k+1
cosh(nx)=2"" L cosh” 24 = €D Ck_,% 22"‘2]‘3_2(00sh x)" k2
2 E+1 ™
k=0
[(n-1)/2]
sinh(nx) = sinh x Z k- 1Ck _jq(cosh )™ 2k-1
k=0

Here, C* are binomial coefficients and [A] stands for the integer part of the number A.

» Hyperbolic functions of half argument.

,hw_ . coshz —1 hx_ coshx +1
sin 2—s1gnx\/ 5 , cos 2—\/ 5 ,

canh T sinh z coshx -1 h T sinh z coshx +1
anh — = = coth = = =
2 coshz+1 sinhz 2 coshzx-1 sinh z
» Differentiation formulas.
dsinh x dcosh z .
= cosh z, = sinh z,
dx dx
dtanh x 3 1 dcothx 3 1
dz cosh? 2’ dz sinh?

» Integration formulas.

/sinhxdx:coshx+C, /coshwdw:sinhx+0,

/tanhwdw:lncoshw+0, /cothwdw:lnlsinhw|+0,

where C is an arbitrary constant.

» Power series expansions.

2 4 6 2n
coshx_1+%+% 36j—+-~+(§n)!+--- (2] < 00),
. o B 2+l
sinhx = [E+?+§ —+"'+m+ (|$|<OO),
3 7 2nH2n 2n~1
2 22 17z 12727 = D|Boplx
t h - - e _1 n-1 2 5
anhz = w— -+ T - S+ +(=D o)l (x| < 7/2)
1 = 2 23: 227 By |22
thr=—+- - ek (=1 n-1= alr ,
coth z + 3715 945 -+ (=1) 2n)] + (Jz] < m)

where B,, are Bernoulli numbers (see Subsection M13.1.2).
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» Relation to trigonometric functions.

sinh(4x)=¢sinx, cosh(tx)=cosx, tanh(tx)=itanz, coth(ix)=—icotz, it=-1.

M2.5. Inverse Hyperbolic Functions
M2.5.1. Definitions. Graphs of Inverse Hyperbolic Functions

» Definitions of inverse hyperbolic functions. The inverse hyperbolic functions (also
known as the area hyperbolic functions) are the inverses of the respective hyperbolic
functions. The following notation is used for inverse hyperbolic functions:

arcsinh z = arsinh z =sinh ' 2 (inverse of hyperbolic sine),
arccosh z = arcosh z = cosh™ z  (inverse of hyperbolic cosine),
arctanh x = artanh z = tanh ! = (inverse of hyperbolic tangent),

arccoth x = arcoth z = coth ™!z (inverse of hyperbolic cotangent).
Inverse hyperbolic functions can be expressed in terms of logarithmic functions:

arcsinh x = ln(x +VvVar+1 ) (x is any); arccosh x = ln(w +Var-1 ) (x21);

1 1 1
T (lz| < 1); arccothz = 0 In T

1
arctanh x = 5 In (lx] > 1).

1-x -1

Here, only one (principal) branch of the function arccosh x is listed, the function itself being
double-valued. In order to write out both branches of arccosh z, the symbol + should be
placed before the logarithm on the right-hand side of the formula.

The graphs of the inverse hyperbolic functions are given below. These are obtained
from the graphs of the corresponding hyperbolic functions by mirror reflection with respect
to the straight line y = x (with the domain of each function taken into account).

» Inverse hyperbolic sine: y = arcsinh x. This function is defined for all x, and its
range coincides with the y-axis. The arcsinh x is an odd, nonperiodic, unbounded function
that crosses the axes Ox and Oy at the origin « = 0, y = 0. This is an increasing function
on the entire z-axis with no points of extremum. The graph of the function y = arcsinh z is
given in Fig. M2.18.

» Inverse hyperbolic cosine: y=arccosh x. This functionis defined forall x € [1, +00),
and its range consists of y € [0, +00). The arccosh z is neither odd nor even; it is nonperiodic
and unbounded. It does not cross the axis Oy and crosses the axis Oz at the point = = 1. It
is an increasing function in its domain with the minimal value y = 0 at x = 1. The graph of
the function y = arccosh z is given in Fig. M2.19.

AY
Ay
1 v = arcsinh x o)
- h
> = arccosn x
2 o 1 2 1 Y
,1 i
0 1 2 3 4

Figure M2.18. Graph of the function y = arcsinhz.  Figure M2.19. Graph of the function y = arccosh x.
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» Inverse hyperbolic tangent: y = arctanh x. This function is defined for all = €
(-1, 1), and its range consists of all y. The arctanh x is an odd, nonperiodic, unbounded
function that crosses the coordinate axes at the origin « = 0, y = 0. This is an increasing
function in its domain with no points of extremum and an inflection point at the origin. It
has two vertical asymptotes: x = £1. The graph of the function y = arctanh x is given in
Fig. M2.20.

» Inverse hyperbolic cotangent: y = arccoth x. This function is defined for x €
(-00,-1) and = € (1,+00). Its range consists of all y # 0. The arccoth x is an odd,
nonperiodic, unbounded function that does not cross the coordinate axes. It is a decreasing
function on each of the semiaxes of its domain. This function has no points of extremum
and has one horizontal asymptote y = 0 and two vertical asymptotes = = *1. The graph of
the function y = arccoth z is given in Fig. M2.21.

AY AY
| |
| 2 [ | |
| | | |
! ! | N\ V= arccoth x
1
| V= arctanh x | |
[ I x I | X
e T ]
| |
| | | |
| | | |
| | | |
| | | |
| | | |
| |
Figure M2.20. Graph of the function y =arctanh z. Figure M2.21. Graph of the function y =arccoth z.

M2.5.2. Properties of Inverse Hyperbolic Functions

» Simplest relations.
arcsinh(—x) = —arcsinh x,  arctanh(—x) = —arctanh x,  arccoth(—x) = —arccoth x.

» Relations between inverse hyperbolic functions.

. T
arcsinh z = arccosh V22 + 1 = arctanh ———,

2 +1
. 5 Vaz?-1
arccosh = arcsinh Vx* — 1 = arctanh ————,
T
. T 1 1
arctanh x = arcsinh ——— = arccosh ——— = arccoth —.

V1-22 V1-2a2 x

» Addition and subtraction of inverse hyperbolic functions.

arcsinh x £ arcsinh ¢ = arcsinh (3:\/1 + 2 J_ry\/l + 22 ),

arccosh x * arccosh gy = arccosh [wy (@2 -1D(@y?-1) ] ,
arcsinh z * arccosh y = arcsinh [zy £ /(2% + D(y*> - 1) |,

rt zyt1
i , arctanh x * arccoth y = arctanh i
ltzxy

arctanh x t arctanh y = arctanh
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» Differentiation formulas.

1
— arcsinh = ——, — arccosh x = ——,
dz 2 +1 dz 221
d arctanh ( 2 < 1) d arccoth ( zs 1)
— T = x , — T = T .
dx 1—a? dz 1-22
» Integration formulas.
/arcsinh xdr =xarcsinhz -V 1+22+C,
/arccosha:da:=3:arccosha:—\/:n2—1+0,
1 2
arctanh x dx = x arctanh x + zln(l—x )+ C,
1 2
arccothmdx:xarccothx+zln(ac -1+ C,
where C'is an arbitrary constant.
» Power series expansions.
123 1x32° I1x3%x---x@2n-1) z2"*!
nhr=pr— -~ + 2" 2 . ()" 1
AL == 3 ¥ 5345 O e a x @) el (2l < D).
_ 11 1x3 1 Ix3x---x2n-1) 1
ho=InQz)+ = — + —— - 1
arcsinhe =InQ22) + 5 o s * o aaa T T Taxax.x@n) 2naP (21> 1),
11 1x3 1 Ix3x---x2n-1) 1
he=InQz) - —— "> = _ ... _ ... 1
arccosh = In(22) =5 575 = 55 4 40 Ix4x-x@2n) 2nzn (21> 1),
R 2+
arctanhx_:c+7+?+7+---+2n+1+--- (|| < 1),
1 1 1 1 1
arccothrz = — + — + (x| > 1).

— et +
x  3x3 525 727 2n + 1)g2ntl
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Chapter M3
Elementary Geometry

M3.1. Plane Geometry
M3.1.1. Triangles
» Plane triangle and its properties.

1°. A plane triangle, or simply a triangle, is a plane figure bounded by three straight line
segments (sides) connecting three noncollinear points (vertices) (Fig. M3.1a). The smaller
angle between the two rays issuing from a vertex and passing through the other two vertices
is called an (interior) angle of the triangle. The angle adjacent to an interior angle is called
an external angle of the triangle. An external angle is equal to the sum of the two interior
angles to which it is not adjacent.

(b)

Figure M3.1. Plane triangle (a). Midline of a triangle (b).

A triangle is uniquely determined by any of the following sets of its parts:

Two angles and their included side.
Two sides and their included angle.
Three sides.

W=

Depending on the angles, a triangle is said to be:

Acute if all three angles are acute.
. Right (or right-angled) if one of the angles is right.
Obtuse if one of the angles is obtuse.

o =

el

Depending on the relation between the side lengths, a triangle is said to be:

Regular (or equilateral) if all sides have the same length.
Isosceles if two of the sides are of equal length.
Scalene if all sides have different lengths.

el e

2°. Congruence tests for triangles:

1. If two sides of a triangle and their included angle are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

2. If two angles of a triangle and their included side are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

37
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3. If three sides of a triangle are congruent to the corresponding sides of another triangle,
then the triangles are congruent.

3°. Triangles are said to be similar if their corresponding angles are equal and their corre-
sponding sides are proportional.

Similarity tests for triangles:

1. If all three pairs of corresponding sides in a pair of triangles are in proportion, then the
triangles are similar.

2. Iftwo pairs of corresponding angles in a pair of triangles are congruent, then the triangles
are similar.

3. If two pairs of corresponding sides in a pair of triangles are in proportion and the
included angles are congruent, then the triangles are similar.

The areas of similar triangles are proportional to the squares of the corresponding linear
parts (such as sides, altitudes, medians, etc.).

4°. The line connecting the midpoints of two sides of a triangle is called a midline of the
triangle. The midline is parallel to and half as long as the third side (Fig. M3.1b).

Let a, b, and ¢ be the lengths of the sides of a triangle; let o, 3, and ~y be the respective
opposite angles (Fig. M3.1a); let R and r be the circumradius and the inradius, respectively;
and let p = %(a + b + ¢) be the semiperimeter.

Table M3.1 represents the basic properties and relations characterizing triangles.

TABLE M3.1
Basic properties and relations characterizing plane triangles.

No. The name of property Properties and relations
Trianele inequalit The length of any side of a triangle does not exceed
1 & quattty the sum of lengths of the other two sides
Sum of angles of o
2 a triangle a+B+v=180
b
3 Law of sines 2 - 2 - ¢ -op
sinaw  sinf  sinvy
4 Law of cosines & =a* +b* - 2abcos o4
tan[ 1 (a + t( 1
5 Law of tangents atb = an[ % (o ﬂ)] = COI ( zfy)
a-b tanb(a—ﬁ)] tanb(a—ﬂ)]
Theorem on projections _
6 (law of cosines) c=acosS+bcosa
. . sin) =,/ @-0@=b v _ [pP-9)
7 Trigonometric 2 ab 2 ab
angle formulas — —
] = [P0 iy = 2 G ap-ho-0
8 Law of tangents tany = csina _ _csinf
& 7_b—ccosoe_a—ccosﬁ
a+b _ cos[%(a - B)] N cos[%(a —ﬂ)]
c - . 1 - 1 + s
9 Mollweide’s formulas . SH:( 2 ry) C(.)s [ 2 (o ﬁ)]
a-b _sin[3(a-P)] _sin[3(a-p)]
c cos(%y) sin[%(a + ﬂ)]
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Table M3.2 permits one to find the sides and angles of an arbitrary triangle if three
appropriately chosen sides and/or angles are given. From the relations given in Tables M3.1
and M3.2, one can derive all missing relations by cyclic permutations of the sides a, b, and ¢

and the angles «, 3, and ~.

TABLE M3.2
Solution of plane triangles.
No.| Three parts Formulas for the remaining parts
specified
1 Three sides First method.
a,b,c . . . b+ —a?
> One of the angles is determined by the law of cosines, cosa = e
c
Then either the law of sines or the law of cosines is applied.
Second method.
One of the angles is determined by trigonometric angle formulas. Further
proceed in a similar way.
Remark. The sum of lengths of any two sides must be greater than the length of
the third side.
2 Two sides a, b | First method.
and the included| The side c is determined by the law of cosines, ¢ =+/a? + b? —2abcos 7.
angle ~y The angle « is determined by either the law of cosines or the law of sines. The
angle (3 is determined from the sum of angles in triangle, 3= 180° —a — 1.
Second method.
a+ 3 is found from the sum of angles in triangle, o+ 3 = 180° —~;
- -b
a - is found from the law of tangents, tan a-f =2 " cot L.
a
Then « and 3 can be found. The third side c is determined by either the law of
cosines or the law of sines.
3 Aside ¢ The third angle ~ is found from the sum of angles in triangle, v = 180° — a — 3.
and the two Sides a and b are determined by the law of sines.
angles «, 3
adjacent to it
b
4 | Twosides a, b | The second angle is determined by the law of sines, sin 3 = — sina.
a
and the angle o | e yhirg angle is ~ = 180° — o — 3. _
opposite one . L . . sin 7y
of them The third side is determined by the law of sines, ¢ = a— .
sin o
Remark. Five cases are possible:
1. a > b; i.e., the angle is opposite the greater side. Then o > 3, 3 < 90° (the larger
angle is opposite the larger side), and the triangle is determined uniquely.
2. a = b; i.e., the triangle is isosceles and is determined uniquely.
3. a < band bsin« < a. Then there are two solutions, (1 + 3, = 180°.
4. a < b and bsin a = a. Then the solution is unique, 3 = 90°.
5. a < band bsina > a. Then there are no solutions.

» Medians, angle bisectors, and altitudes of a triangle. A straight line through a
vertex of a triangle and the midpoint of the opposite side is called a median of the triangle
(Fig. M3.2a). The three medians of a triangle intersect in a single point lying strictly inside
the triangle, which is called the centroid or center of gravity of the triangle. This point cuts
the medians in the ratio 2 : 1 (counting from the corresponding vertices).

The length of the median m,, to the side a is equal to

1 1
— /21 2 2 — 2 2
Mg = 5 27 +c?)—a* = 2\/a +4b> —4abcosy.

(M3.1.1.1)
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(b)

c

Figure M3.2. Medians (a), angle bisectors (b), and altitudes (c) of a triangle.

An angle bisector of a triangle is a line segment between a vertex and a point of the
opposite side and dividing the angle at that vertex into two equal parts (Fig. M3.2b). The
three angle bisectors intersect in a single point lying strictly inside the triangle. This point
is equidistant from all sides and is called the incenter (the center of the incircle of the
triangle). The angle bisector through a vertex cuts the opposite side in ratio proportional to
the adjacent sides of the triangle.

The length of the angle bisector [, drawn to the side a is given by the formulas

B Vbe[(b + ¢)? — a?] B \/4p(p — a)be

la
b+c b+c
_ZCbCOS(%a) _IR sinfsiny sin(303) sin(37) (M3.1.12)
“ b+c - cos[%(ﬁ—y)] - sin 3 + sin~y

where R is the circumradius (see below).

An altitude of a triangle is a straight line passing through a vertex and perpendicular to
the straight line containing the opposite side (Fig. M3.2¢). The three altitudes of a triangle
intersect in a single point, called the orthocenter of the triangle.

The length of the altitude h,, to the side a is given by the formulas

ha=bsin7=csinﬁ=£,
. ZBR . o B (M3.1.1.3)
ha:Z(p—a)coszcoszcosi:Z(p—b)smzsmzcosi.

The lengths of the altitude, the angle bisector, and the median through the same vertex
satisfy the inequality h, <1, < mg. If hy =1, = mg, then the triangle is isosceles; moreover,
the first equality implies the second, and vice versa.

» Circumcircle and incircle. A straight line passing through the midpoint of a segment
and perpendicular to it is called the perpendicular bisector of the segment. The circle
passing through the vertices of a triangle is called the circumcircle of the triangle. The
center O of the circumcircle, called the circumcenter, is the point where the perpendicular
bisectors of the sides of the triangle meet (Fig. M3.3a). The feet of the perpendiculars
drawn from a point () on the circumcircle to the three sides of the triangle lie on the same
straight line called the Simpson line of () with respect to the triangle (Fig. M3.3b). The
circumcenter, the orthocenter, and the centroid lie on a single line, called the Euler line
(Fig. M3.3c).

The circle tangent to the three sides of a triangle and lying inside the triangle is called
the incircle of the triangle. The center O, of the incircle (the incenter) is the point where the
angle bisectors meet (Fig. M3.4a). The straight lines connecting the vertices of a triangle
with the points at which the incircle is tangent to the respective opposite sides intersect in
a single point GG called the Gergonne point (Fig. M3.4b).
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Figure M3.3. The circumcircle of a triangle. The circumcenter (a), the Simpson line (b), and the Euler line (¢).

(@) (®)
a b a b
0 o
c c

Figure M3.4. The incircle of a triangle (a). The incenter and the Gergonne point (b).

The inradius 7 and the circumradius R satisfy the relations

T:\/(.p_a)(-p_b)(p_c) :ptangtanﬁtanlz(p—c)tanl, (M3114)
v 2 22 2
a b c p . (M3.1.1.5)

= N = ; = N = 1 1 1
2sina 2sinf  2sinvy 4cos(7a) cos(fﬁ) cos(jy)
The distance d between the circumcenter and the incenter is given by the expression

d=VR?*-2Rr. (M3.1.1.6)

» Area of a triangle. The area S of a triangle is given by the formulas

S = %ahu = %absinv =1rp, M3.1.1.7)
S = \/p(p—a)(p— b)(p—c) (Heron’s formula), (M3.1.1.8)
S = j—l;; =2R?*sin asin sin, (M3.1.1.9)
S=Czsmasmﬂ _ , sinasin 3 (M3.1.1.10)

2siny  C 2sin(a+ B)

» Right (right-angled) triangles. A right triangle is a triangle with a right angle. The
side opposite the right angle is called the hypotenuse, and the other two sides are called the
legs (Fig. M3.5).



42 ELEMENTARY GEOMETRY

Figure M3.5. A right triangle.

The hypotenuse ¢, the legs a and b, and the angles « and 3 opposite the legs satisfy the
following relations:

a+3=90°%

. _a o b
sma—cosﬁ—z, s1n6—cosa—z, (M3.1.1.11)

a b

tanao=cotf=—, tan(=cota=—.

b a

One also has

a*+b*> =c¢*> (PYTHAGOREAN THEOREM), (M3.1.1.12)
h* = mn, a* = me, b = ne, (M3.1.1.13)

where £ is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts
the hypotenuse into segments of lengths m and n.

In a right triangle, the length of the median m. drawn from the vertex of the right
angle coincides with the circumradius R and is equal to half the length of the hypotenuse c,
me=R= %c. The inradius is given by the formula r = %(a + b —c). The area of the right

triangle is S = %ahu = %ab (see also formulas (M3.1.1.4), (M3.1.1.5), and (M3.1.1.9)).
» Isosceles and equilateral triangles.

1°. An isosceles triangle is a triangle with two equal sides. These sides are called the legs,
and the third side is called the base (Fig. M3.6a).

(a) (b)

a

Figure M3.6. An isosceles triangle (a). An equilateral triangle (b).

Properties of isosceles triangles:

[

In an isosceles triangle, the angles adjacent to the base are equal.

2. In an isosceles triangle, the median drawn to the base is the angle bisector and the
altitude.

3. In an isosceles triangle, the sum of distances from a point of the base to the legs is

constant.
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Criteria for a triangle to be isosceles:

1. If two angles in a triangle are equal, then the triangle is isosceles.
2. If amedian in a triangle is also an altitude, then the triangle is isosceles.
3. If a bisector in a triangle is also an altitude, then the triangle is isosceles.

2°. An equilateral (or regular) triangle is a triangle with all three sides equal (Fig. M3.6b).
All angles of an equilateral triangle are equal to 60°. In an equilateral triangle, the circum-
radius R and the inradius r satisfy the relation R = 2.

For an equilateral triangle with side length a, the circumradius and the inradius are given

by the formulas R = ?a and r = %a, and the area is equal to S = @az.

M3.1.2. Polygons

» Polygons. Basic information. A polygon is a plane figure bounded by a closed broken
line. The straight line segments forming a polygon are called its sides (or edges). The
points at which two sides meet are called the vertices (or corners) of the polygon. Two
sides sharing a vertex, as well as two successive vertices (the endpoints of the same edge),
are said to be adjacent. A polygon is said to be convex if it lies on one side of any straight
line passing through two neighboring vertices. In what follows, we consider only simple
convex polygons.

An (interior) angle of a convex polygon is the angle between two sides meeting in a
vertex. A convex polygon is said to be inscribed in a circle if all of its vertices lie on the
circle. A polygon is said to be circumscribed about a circle if all of its sides are tangent to
the circle.

For a convex polygon with n sides, the sum of interior angles is equal to 180°(n — 2).

One can find the area of an arbitrary polygon by dividing it into triangles.

Properties of quadrilaterals.

The diagonals of a convex quadrilateral meet.

The sum of interior angles of a convex quadrilateral equals 360° (Figs. M3.7a and b).
The lengths of the sides a, b, ¢, and d, the diagonals d; and d;, and the segment
m connecting the midpoints of the diagonals satisfy the relation a® + b* + > + d* =
d? + d3 +4m?.

4. A convex quadrilateral is circumscribed if and only if a + ¢ = b+ d.

A convex quadrilateral is inscribed if and only if a + vy = 3 + 6.

6. The relation ac + bd = d;d; holds for inscribed quadrilaterals (PTOLEMY’S THEOREM).

wo—V

b

Figure M3.7. Quadrilaterals.

» Areas of quadrilaterals. The area of a convex quadrilateral is equal to

S = %dldz sing = \/p(p—a)(p—b)(p—c)(p—d)—abcdcosz ﬁ;‘;, (M3.1.2.1)

where ¢ is the angle between the diagonals d; and d, and p = %(a +b+c+d).
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The area of an inscribed quadrilateral is

S =/pp—a)p-b)p-c)p-d). (M3.1.2.2)

The area of a circumscribed quadrilateral is

S = \/abed sin? 5;’5. (M3.1.2.3)

1°. A parallelogram is a quadrilateral such that both pairs of opposite sides are parallel
(Fig. M3.8a).

» Basic quadrilaterals.

() (b)

Figure M3.8. A parallelogram (a) and a rhombus (b).

Attributes of parallelograms (a quadrilateral is a parallelogram if):

Both pairs of opposite sides have equal length.
. Both pairs of opposite angles are equal.
Two opposite sides are parallel and have equal length.

N =

el

Properties of parallelograms:

The diagonals meet and bisect each other.

Opposite sides have equal length, and opposite angles are equal.
The diagonals and the sides satisfy the relation d% + d% = 2(a* + b?).
The area of a parallelogram is S = ah, where h is the altitude.

bl e

2°. A rhombus is a parallelogram in which all sides are of equal length (Fig. M3.8b).

Properties of rhombi:

1. The diagonals are perpendicular.
2. The diagonals are angle bisectors.
3. The area of a thombus is S = ah = a*sina = %dldz.
3°. A rectangle is a parallelogram in which all angles are right angles (Fig. M3.9q).
(a) (b)
b b
a d a d

Figure M3.9. A rectangle (@) and a square (b).
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1.
2.

4°,

Properties of rectangles:

The diagonals have equal lengths.
The area of a rectangle is S = ab.

A square is a rectangle in which all sides have equal lengths (Fig. M3.9b). A square is

also a rhombus with right angles.

bl e

5°.

Properties of squares:
All angles are right angles.

The diagonals are equal to d = av/2.
The diagonals meet at a right angle and are angle bisectors.

The area of a square is equal to S = a” = %dz.

A trapezoid is a quadrilateral in which two sides are parallel and the other two sides are

nonparallel (Fig. M3.10). The parallel sides a and b are called the bases of the trapezoid,
and the other two sides are called the legs. In an isosceles trapezoid, the legs are of equal
length. The line segment connecting the midpoints of the legs is called the median of the
trapezoid. The length of the median is equal to half the sum of the lengths of the bases,

m = %(a+b).

o =

>

/[ \

b

Figure M3.10. A trapezoid.

The perpendicular distance between the bases is called the altitude of a trapezoid.

Properties of trapezoids:

A trapezoid is circumscribed if and only if a + b = ¢ + d.

A trapezoid is inscribed if and only if it is isosceles.

The area of a trapezoid is S = %(a +b)h = mh = %dldz sin ¢, where ¢ is the angle
between the diagonals d; and dj.

The segment connecting the midpoints of the diagonals is parallel to the bases and has

the length %(b —a).
Regular polygons. A convex polygon is said to be regular if all of its sides have the

same length and all of its interior angles are equal. A convex n-gon is regular if and only if
it is taken to itself by the rotation by an angle of 27t /n about some point O. The point O is
called the center of the regular polygon. The angle between two rays issuing from the center
and passing through two neighboring vertices is called the central angle (Fig. M3.11).

B

Figure M3.11. A regular polygon.
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Properties of regular polygons:

The center is equidistant from all vertices as well as from all sides of a regular polygon.
. A regular polygon is simultaneously inscribed and circumscribed; the centers of the
circumcircle and the incircle coincide with the center of the polygon itself.
3. In aregular polygon, the central angle is v = 360° /n, the external angle is 5 = 360° /n,
and the interior angle is v = 180° — 3.
4. The circumradius R, the inradius 7, and the side length a of a regular polygon satisfy
the relations

[N

a=2V R>-r? :ZRsin% :Zrtan%. (M3.1.2.4)

5. The area S of a regular n-gon is given by the formula

[\

1
S = — = nr? tan% =nR? sin% = Zna cot%. (M3.1.2.5)

Table M3.3 presents several useful formulas for regular polygons.

TABLE M3.3
Regular polygons (a is the side length).

No. Name Inradius r Circumradius R Area S
a a
1 | Regular polygon D tan & = 2sin T S0
2 Triangle V3 a V3 a V3 &
6 3 4
3 Square 1 a L a 2
2 V2 “
4 Pentagon 5+2V/5 a 5+v5 a V25+10vV3 10V5 a?
20 10 4
5 Hexagon ﬁa a ﬂ 2
2 2
6 Octagon 1 +2\/§a 2;’ V2 a 2(1 +V2)d
7 Enneagon 5+2v5 a 1+V5 a Maz
2 2 2
2 3 3+3
8 Dodecagon +2\/_ a 76 a 32 +V3)d?
M3.1.3. Circle

» Some definitions and formulas. A circle is the set of all points in the plane that are
the same fixed distance R from a fixed point O (Fig. M3.12a). The distance R is called the
radius of the circle and the point O is called its center. A plane figure bounded by a circle,
including its interior, is called a disk. A segment connecting two points on a circle is called
a chord. A chord passing through the center of a circle is called a diameter of the circle
(Fig. M3.12b). The length of a diameter is d = 2R. A straight line that touches a circle
at a single point is called a fangent, and the common point is called the point of tangency
(Fig. M3.12¢). A straight line that cuts a circle at two points, an extended chord, is called a
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(@) (») ©
(D
NS

Figure M3.12. A circle (a), a diameter (b) and a tangent (c) of a circle.

secant. The angle formed by two radii is called a central angle. The angle formed by two
chords with a common endpoint is called an inscribed angle.

Properties of circles and disks:

The circumference is L = 2R = wd = 21/7S.

The area of a disk is S = TR*> = %ﬂ'dz = %Ld.

The diameter of a circle is a longest chord.

The diameter passing through the midpoint of a chord is perpendicular to the chord.
The radius drawn to the point of tangency is perpendicular to the tangent.

An inscribed angle is half the central angle subtended by the same chord, o = %43 ocC
(Fig. M3.13a).

A e

(b)

Figure M3.13. Properties of circles and disks.

7. The angle between a chord, AC, and the tangent to the circle at an endpoint, A, of the
chord is equal to 3 = %ZAOC (Fig. M3.13a).

8. The angle between two chords, BE and CD, is v = %(Bf’ + E\b) (Fig. M3.13b).
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9. The angle between two secants, AD and AFE, is « = %(D\E‘ - B\é’) (Fig. M3.13¢).
10. The angle between a secant, AF, and the tangent, AF’, to the circle at a point, F, is
equal to 3 = %(FE— BF) (Fig. M3.13c¢).
11. The angle between two tangents, AB and AC, is a = %(BEC - BE/C) (Fig. M3.13d).

12. If two chords, BE and C'D, meet, then AC - AD = AB - AE = R —m?, m = OA
(Fig. M3.13b).

13. Forsecants, AE and AD, the relations AC-AD = AB- AE =m?*—R? hold (Fig. M3.13c¢).

14. For atangent, AF’, and a secant, AD, the relation AF' 2= AC- AD holds (Fig. M3.13c¢).

» Segment and sector. A plane figure bounded by two radii and one of the subtended
arcs is called a (circular) sector. A plane figure bounded by an arc and the corresponding
chord is called a segment (Fig. M3.14a). If R is the radius of the circle, [ is the arc length,

(a) (b)

Figure M3.14. A segment (a) and an annulus (b).

a is the chord length, « is the central angle (in degrees), and A is the height of the segment,
then the following relations hold:

a=2V2hR—h? = 2Rsin%,

2
_p_ 2 & _ e X\ O
h=R-\ R -5 R<1 COSz) p g (M3.1.3.1)

2rRa
| = 60 0.01745 Ra.

The area of a circular sector is given by the formula

_E_ﬂRza
T2 7 360

~ 0.00873 R*a, (M3.1.3.2)

and the area of a segment not equal to a half-disk is given by

Si= *SA, (M3.1.3.3)

where S is the area of the triangle with vertices at the center of the disk and at the endpoints
of the radii bounding the corresponding sector. One takes the minus sign for o < 180 and
the plus sign for a > 180.
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The arc length and the area of a segment can be found by the approximate formulas

8b—a 16h2

, l=+1lad’+ ,
3 3 (M3.1.3.4)
h(6a + 8b)

15

| =

Si =

where b is the chord of the half-segment (see Fig. M3.14a).

» Annulus. An annulus is a plane figure bounded by two concentric circles of distinct
radii (Fig. M3.14b). Let R be the outer radius of an annulus (the radius of the outer bounding
circle), and let r be the inner radius (the radius of the inner bounding circle). Then the area
of the annulus is given by the formula

S =m(R:—r?) = %(D2 —d?) = 27 po, (M3.1.3.5)

where D = 2R and d = 2r are the outer and inner diameters, p = %(R + r) is the midradius,
and 6 = R —r is the width of the annulus.

The area of the part of the annulus contained in a sector of central angle , given in
degrees (see Fig. M3.14b), is given by the formula

2R -ty = S2 (D2 - d?) = =2 5, (M3.1.3.6)

- 360 1440 180"

M3.2. Solid Geometry
M3.2.1. Straight Lines, Planes, and Angles in Space
» Mutual arrangement of straight lines and planes.

1°. Two distinct straight lines lying in a single plane either have exactly one point of
intersection or do not meet at all. In the latter case, they are said to be parallel. If two
straight lines do not lie in a single plane, then they are called skew lines.

The angle between skew lines is determined as the angle between lines parallel to them
and lying in a single plane (Fig. M3.15a). The distance between skew lines is the length of
the straight line segment that meets both lines and is perpendicular to them.

///< Y

Figure M3.15. The angle between skew lines (a). The angle between a line and a plane (b).

2°. Two distinct planes either intersect in a straight line or do not have common points.
In the latter case, they are said to be parallel. Coinciding planes are also assumed to be
parallel. If two planes are perpendicular to a single straight line or each of them contains a
pair of intersecting straight lines parallel to the corresponding lines in the other pair, then
the planes are parallel.
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3°. A straight line either entirely lies in the plane, meets the plane at a single point, or has
no common points with the plane. In the last case, the line is said to be parallel to the plane.

The angle between a straight line and a plane is equal to the angle between the line
and its projection onto the plane (Fig. M3.15b). If a straight line is perpendicular to two
intersecting straight lines on a plane, then it is perpendicular to each line on the plane, i.e.,
perpendicular to the plane.

» Polyhedral angles.

1°. A dihedral angle is a figure in space formed by two half-planes issuing from a single
straight line as well as the part of space bounded by these half-planes. The half-planes are
called the faces of the dihedral angle, and their common straight line is called the edge.
A dihedral angle is measured by its linear angle ABC' (Fig. M3.16a), i.e., by the angle
between the perpendiculars raised to the edge DFE of the dihedral angle in both planes
(faces) at the same point.

(b)

Figure M3.16. A dihedral (a) and a trihedral (b) angle.

2°. A part of space bounded by an infinite triangular pyramid is called a trihedral angle
(Fig. M3.16b). The faces of this pyramid are called the faces of the trihedral angle, and the
vertex of the pyramid is called the vertex of a trihedral angle. The rays in which the faces
intersect are called the edges of a trihedral angle. The edges form face angles, and the faces
form the dihedral angles of the trihedral angle. As a rule, one considers trihedral angles
with dihedral angles less than 7 (or 180°), i.e., convex trihedral angles. Each face angle of
a convex trihedral angle is less than the sum of the other two face angles and greater than
their difference.

Two trihedral angles are equal if one of the following conditions is satisfied:

1. Two face angles, together with the included dihedral angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

2. Two dihedral angles, together with the included face angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

3. The three face angles of the first trihedral angle are equal to the respective face angles
(arranged in the same order) of the second trihedral angle.

4. The three dihedral angles of the first trihedral angle are equal to the respective dihedral
angles (arranged in the same order) of the second trihedral angle.

3°. A polyhedral angle OABCDE (Fig. M3.17a) is formed by several planes (faces)
having a single common point (the vertex) and successively intersecting along straight lines
OA, OB, ..., OFE (the edges). Two edges belonging to the same face form a face angle of
the polyhedral angle, and two neighboring faces form a dihedral angle.
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(b)

Figure M3.17. A polyhedral (a) and a solid () angle.

Polyhedral angles are equal (congruent) if one can be transformed into the other by
translations and rotations. For polyhedral angles to be congruent, the corresponding parts
(face and dihedral angles) must be equal.

A convex polyhedral angle lies entirely on one side of each of its faces. The sum
LAOB + ZBOC + - -+ + ZEOA of face angles (Fig. M3.17a) of any convex polyhedral
angle is less that 27 (or 360°).

4°. A solid angle is a part of space bounded by straight lines issuing from a single point
(vertex) to all points of some closed curve (Fig. M3.17b). Trihedral and polyhedral angles
are special cases of solid angles. A solid angle is measured by the area cut by the solid angle
on the sphere of unit radius centered at the vertex. Solid angles are measured in steradians.
The entire sphere forms a solid angle of 47 steradians.

M3.2.2. Polyhedra

» General concepts. A polyhedron is a closed object formed by intersecting planes. In
other words, a polyhedron is a set of finitely many plane polygons satisfying the following
conditions:

1. Each side of each polygon is simultaneously a side of a unique other polygon, which is
said to be adjacent to the first polygon (via this side).

2. From each of the polygons forming a polyhedron, one can reach any other polygon by
successively passing to adjacent polygons.

These polygons are called the faces, their sides are called the edges, and their vertices are
called the vertices of a polyhedron.

A polyhedron is said to be convex if it lies entirely on one side of the plane of any of its
faces; if a polyhedron is convex, then so are its faces.

EULER’S THEOREM. If the number of vertices in a convex polyhedron is v, the number
of edges is e, and the number of faces is f, thenv + f —e = 2.

» Prism. Parallelepiped.

1°. An n-sided prism is a polyhedron in which two faces are equal n-gons (the base faces)
that lie on parallel planes and have respectively parallel sides, and the remaining n faces
(joining or lateral faces) are parallelograms; see Fig. M3.18a. A right prism is a prism in
which the lateral faces are perpendicular to the base faces; otherwise it is an obligue prism.
A right prism is said to be regular if its base faces are regular polygons.

If [ is the lateral edge length, S is the area of the base face, H is the height of the prism
(perpendicular distance between the planes of the bases), Py is the perimeter of a normal
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(a) (b)

b
Y

Figure M3.18. A prism (a) and a truncated prism (b).

section, one perpendicular to a lateral edge, and S is the area of a normal section, then
the area of the lateral surface Sj, and the volume V' of the prism are given by the formulas

Stat = Pyecl
M3.2.2.1
V =SH = Sgl. ( )
The portion of a prism between one of the bases and a plane nonparallel to it is called a
truncated prism (Fig. M3.18b). The volume of a truncated prism is

V = LS, (M3.2.2.2)

where L is the length of the segment connecting the centroids of the base faces and 57 is
the area of the section of the prism by a plane perpendicular to this segment.
The volume of a truncated regular prism (its base being a regular n-gon) is expressed as

L+l +---+1
V = SSBC#’
n
where S is the area of a normal section and [y, I», ..., [, are the lengths of the lateral

edges.

2°. A prism whose bases are parallelograms is called a parallelepiped. All four diagonals
in a parallelepiped intersect at a single point and bisect each other (Fig. M3.19a). A
parallelepiped is said to be rectangular if it is a right prism and its base faces are rectangles.
In a rectangular parallelepiped, all diagonals are equal (Fig. M3.19b).

(@) (b)
7
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Figure M3.19. A parallelepiped (a) and a rectangular parallelepiped (b).

If a, b, and c are the lengths of the edges of a rectangular parallelepiped, then the
diagonal d can be determined by the formula d? = a? + b + ¢*. The volume of a rectangular
parallelepiped is given by the formula V' = abc, and the lateral surface area is Sy = PH,
where P is the perimeter of the base face.

3°. A rectangular parallelepiped all of whose edges are equal (a = b = ¢) is called a cube.
The diagonal of a cube is given by the formula d” = 3a*>. The volume of the cube is V = a?,
and the lateral surface area is Siy = 4a>.
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» Pyramid, obelisk, and wedge.

1°. A pyramid is a polyhedron in which one face (the base of the pyramid) is an arbitrary
polygon and the other (lateral) faces are triangles with a common vertex, called the apex of
the pyramid (Fig. M3.20a). The base of an n-sided pyramid is an n-gon. The perpendicular
through the apex to the base of a pyramid is called the altitude (height) of the pyramid.

(@) (b)
D

E

Figure M3.20. A pyramid (a). The altitude DO, the plane DAFE, and the side BC'in a triangular pyramid (b).

The volume of a pyramid is given by the formula

V= %SH, (M3.2.2.3)

where S is the area of the base and H is the altitude of the pyramid.

If DO is the altitude of the pyramid ABC'D and DA 1 BC, then the plane DAE is
perpendicular to BC' (Fig. M3.200).

If the pyramid is cut by a plane (Fig. M3.21a) parallel to the base, then

SA _SBi SO
AlA - BB 0,0’ M3.22.4)
SABCDEF  _ < SO >2 o

S A\B.CiDIEFy SOy )’

where SO is the altitude of the pyramid.

The altitude of a triangular pyramid passes through the orthocenter of its base if and
only if all pairs of opposite edges of the pyramid are perpendicular.

Given the length of the edges, DA=a, DB=b, DC=c¢, BC=p, AC=q,and AB=r,
of a triangular pyramid (Fig. M3.21b), its volume can be found from the relation

0 r* ¢ a* 1
r2 0 p* v 1
2=% ¢ pPr 0 A& 1], (M3.2.2.5)
a> ¥ 2 0 1
1 1 1 1 O

where the right-hand side contains a determinant.

A pyramid is said to be regular if its base is a regular n-gon and the altitude passes
through the center of the base. The altitude (dropped from the apex) of a lateral face is
called the apothem of a regular pyramid. For a regular pyramid, the lateral surface area is

1
Sat = EPl’ (M3.2.2.6)

where P is the perimeter of the base and [ is the apothem.
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Figure M3.21. The original pyramid and a pyramid cut off by a plane (a). A triangular pyramid (b).

(@) (b) (c)
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Figure M3.22. A frustum of a pyramid (a), an obelisk (b), and a wedge (c).

2°. If a pyramid is cut by a plane parallel to the base, then it splits into two parts: a pyramid
similar to the original pyramid and the frustum (Fig. M3.22a). The volume of the frustum

is
1 1 2
V=<h(S1+8+v/515) = =hS 1+ = +2), (M3.2.2.7)
3 3 A A2
where S and 5, are the areas of the bases, a and A are two respective sides of the bases,
and A is the altitude (the perpendicular distance between the bases).

For a regular frustum, the lateral surface area is
1
S = 5 (P + P, (M3.2.2.8)

where P and P, are the perimeters of the bases and [ is the altitude of the lateral face.

3°. A hexahedron whose bases are rectangles lying in parallel planes and whose lateral
faces form equal angles with the base, but do not meet at a single point, is called an obelisk
(Fig. M3.22b). If a, b and a1, b; are the sides of the bases and h is the altitude, then the
volume of the hexahedron is

V= %[(2& +a))b+ 2a; +a)by]. (M3.2.2.9)

4°. A pentahedron whose base is a rectangle and whose lateral faces are isosceles triangles
and isosceles trapezoids is called a wedge (Fig. M3.22¢). The volume of the wedge is

V= %(2& +ap)b. (M3.2.2.10)

» Regular polyhedra. A polyhedron is said to be regular if all of its faces are equal
regular polygons and all polyhedral angles are equal to each other. There exist five regular
polyhedra (Fig. M3.23), whose properties are given in Table M3.4.
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Tetrahedron Octahedron

&

Dodecahedron Icosahedron

‘

Figure M3.23. Five regular polyhedra.

TABLE M3.4
Regular polyhedra (a is the edge length).
Number of faces | Number Number
No. Name and their shapes | of vertices | of edges Total surface area Volume
3
1 | Tetrahedron 4 triangles 4 6 V3 al_\z/i
2 Cube 6 squares 8 12 64> o3
3
3 | Octahedron 8 triangles 6 12 2a3V3 a 3\/5
3
4 | Dodecahedron | 12 pentagons 20 30 3a21/25 + 10V/5 %(15 +7V/5)
3
5 | Icosahedron 20 triangles 12 30 3a*V3 %(3 +/5)

M3.2.3. Solids Formed by Revolution of Lines

» Cylinder. A cylindrical surface is a surface in space swept by a straight line (the gen-
erator) moving parallel to a given direction along some curve (the directrix) (Fig. M3.24a).

1°. A solid bounded by a closed cylindrical surface and two planes is called a cylinder; the
planes are called the bases of the cylinder (Fig. M3.24b).

If P is the perimeter of the base, P is the perimeter of the section perpendicular to the
generator, S is the area of this section, Sy, is the area of the base, and [ is the length of
the generator, then the lateral surface area S, and the volume V' of the cylinder are given
by the formulas

Stat = PH = Piecl,

V = Spas H = Secl.

In a right cylinder, the bases are perpendicular to the generator. In particular, if the
bases are disks, then one speaks of a right circular cylinder. The volume, the lateral surface

(M3.2.3.1)
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(a)

Figure M3.24. A cylindrical surface (a). A cylinder (b).

area, and the total surface area of a right circular cylinder are given by the formulas

V =rR*H,
Sia = 27RH, (M3.2.3.2)
S =27R(R + H),

where R is the radius of the base.
A right circular cylinder is also called a round cylinder, or simply a cylinder.

2°. The part of a cylinder cut by a plane nonparallel to the base is called a truncated cylinder
(Fig. M3.25a).

(@) (b) ()

Figure M3.25. A truncated cylinder (a), a “hoof” (b), and a cylindrical tube (c).

The volume, the lateral surface area, and the total surface area of a truncated cylinder
are given by the formulas

V=it
2 b

Sat = TR(H 1 + H>),

2
H1+H2+R+\/R2+<@> ]

where H; and H, are the maximal and minimal generators.

(M3.2.3.3)

S=nR
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3°. A segment of a round cylinder (a “hoof”) is a portion of the cylinder cut by a plane that
is nonparallel to the base and intersects it. If R is the radius of the cylindrical segment, h is
the height of the “hoof,” and b is its width (for the other notation, see Fig. M3.25b), then the
volume V and the lateral surface area Sy, of the “hoof” can be determined by the formulas

3 -3
V= % [a(3R2 —a®) +3RYb- R)a] = h% (sin o— Sm3 ? _acos a> ,
(M3.2.3.4)

Sat = #[(b - R)a+al,

where o = %cp is measured in radians.

4°. A solid bounded by two closed cylindrical surfaces and two planes is called a cylindrical
tube; the planes are called the bases of the tube. The volume of a round cylindrical tube
(Fig. M3.25¢) is

V =nH(R?*-r®)=nHQR-7) = nHSQ2r + 6) = 2rHdp, (M3.2.3.5)

where R and r are the outer and inner radii, § = R —r is the thickness, p = %(R + 1) is the
midradius, and H is the height of the pipe.

» Conical surface. Cone. Frustum of cone. A conical surface is the union of straight
lines (generators) passing through a fixed point (the apex) in space and any point of some
space curve (the directrix) (Fig. M3.26a).

(@) (b) (©) (d)

i

Figure M3.26. Conical surface (a). A cone (b), a right circular cone (c), and a frustum of a cone (d).

1°. A solid bounded by a conical surface with closed directrix and a plane is called a cone;
the plane is the base of the cone (Fig. M3.26b). The volume of an arbitrary cone is given
by the formula

1
V= §H5bas, (M3.2.3.6)

where H is the altitude of the cone and Sy, is the area of the base.

A right circular cone (Fig. M3.26¢) has a disk as the base, and its vertex is projected
onto the center of the disk. If [ is the length of the generator and R is the radius of the base,
then the volume, the lateral surface area, and the total surface area of the right circular cone
are given by the formulas

V= észH,

Slat = TRl = WR\/m’ M3.2.3.7)
S =r1R(R+I).
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2°. If a cone is cut by a plane parallel to the base, then we obtain a frustum of a cone
(Fig. M3.26d). The length [ of the generator, the volume V, the lateral surface area Siy,
and the total surface area S of the frustum of a right circular cone are given by the formulas

I=Vh+(R-r),
V= %h(R2 +1% + Rr),
Slat = 7Tl(R + T);

S =nall(R+7r)+R*+r?],
where 7 is the radius of the upper base and A is the altitude of the frustum of a cone.

(M3.2.3.8)

» Sphere. Spherical parts. The torus.

1°. A sphere is the set of all points in space that are the same distance R from a fixed
point O (Fig. M3.27a). The distance R is called the radius of the sphere and the point O
is called its center. A straight line segment that passes through the center of a sphere and
whose endpoints are on the sphere is called a diameter of the sphere. A solid formed by
a sphere together with its interior is called a ball. Any section of the sphere by a plane is
a circle. The section of the sphere by a plane passing through its center is called a great
circle of radius R. There exists exactly one great circle passing through two arbitrary points
on the sphere that are not antipodal (i.e., are not the opposite endpoints of a diameter); the
smaller arc of this great circle is the shortest distance on the sphere between these points.
The surface area S of a sphere and the volume V of the ball bounded by the sphere are

given by
S = 4nR? = nD* = V/367V2,
4rR3 D3 1 /83 (M3.2.3.9)
Ve e TV
where D = 2R is the diameter of the sphere.
(a) (b) (c)
h h
R
2a 2a

Figure M3.27. A sphere (a), a spherical cap (b), and a spherical sector (¢).

2°. A portion of a ball cut from it by a plane is called a spherical cap (Fig. M3.27b). The
width a (base radius), the area S),; of the curved surface, the total surface area S, and the
volume V of a spherical cap can be found from the formulas

a® = h(2R - h),
Sia = 2mRh = m(a* + h?),
S = Siu + ma? = 1QRh + a*) = w(h? + 2a?), (M3.2.3.10)

2
V= %h(3a2 +h?) = %(3}2— h),

where R and h are the radius and the height of the spherical cap.
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3°. A portion of a ball bounded by the curved surface of a spherical cap and the conical
surface whose base is the base of the cap and whose vertex is the center of the ball is called
a spherical sector (Fig. M3.27¢). The total surface area .S and the volume V' of a spherical
sector are given by the formulas

S =71RQ2h + a),
M3.2.3.11
V = %szh, ( )

where a is the width of the spherical cap, A is its height, and R is the radius of the sector.

4°. A portion of a ball contained between two parallel plane secants is called a spherical
segment (Fig. M3.28a). The curved surface of a spherical segment is called a spherical
zone, and the plane circular surfaces are the bases of a spherical segment. The radius R of
the ball, the radii a and b of the bases, and the height h of a spherical segment satisfy the

relation . )2
R =d*+ <$> . (M3.2.3.12)

The curved surface area Sy, the total surface area .S, and the volume V' of a spherical
segment are given by the formulas

Slat = 27TRh,
S = Siyt + m(a® + b2 = TR + a* + ), (M3.2.3.13)
= %h(saz + 307 + h2).
() (b)

/ :/I"~
' 2a ' ' 2a ' ‘

Figure M3.28. A spherical segment (a) and a spherical segment without the truncated cone inscribed in it (b).
A torus (c).

If V1 is the volume of the truncated cone inscribed in a spherical segment (Fig. M3.28b)

and [ is the length of its generator, then V -V} = %lz.

5°. A torus is a surface generated by revolving a circle about an axis coplanar with the
circle but not intersecting it (Fig. M3.28¢). If r is the radius of the circle being rotated and
R is the distance from its center to the axis of revolution (R > r), then the surface area and
the volume of the torus are given by

S =47’ Rr = 7% Dd,
V=2t = TPE
4 b

where d = 2r and D = 2R are the diameters of the generating circle and the circle of
revolution.
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Chapter M4
Analytic Geometry

M4.1. Points, Segments, and Coordinate Plane
M4.1.1. Cartesian and Polar Coordinates on Plane

» Rectangular Cartesian coordinates in the plane. A rectangular Cartesian coordinate
system consists of two mutually perpendicular directed lines, called coordinate axes, each
treated as a number line (see Subsection M6.1.1). The point of intersection of the axes is
called the origin and usually labeled with the letter O, while the axes themselves are called
the coordinate axes. As arule, one of the coordinate axes is horizontal, directed from left to
right, and called the abscissa axis. The other axis is vertical, directed upwards, and called the
ordinate axis. The two axes are usually denoted by X or OX and Y or OY, respectively,
and the coordinate system itself is denoted by XY or OXY. The two coordinate axes
divide the plane into four parts, which are called quadrants and numbered I, II, III, and IV
counterclockwise as shown in Fig. M4.1.

YA
11 1
yo ,,,,, 1M( > yO)
|
I -
o Xo X
i V4

Figure M4.1. A rectangular Cartesian coordinate system.

Each point M in the plane is uniquely defined by a pair of real numbers (xg, yo), called
its coordinates, which specify its projections onto the X- and Y-axes. The numbers xg
and yo are called, respectively, the abscissa and the ordinate of the point M.

Remark. Strictly speaking, the coordinate system introduced above is a right rectangular Cartesian
coordinate system. A left rectangular Cartesian coordinate system can, for example, be obtained by changing

the direction of one of the axes. A right rectangular Cartesian coordinate system is usually called simply a
Cartesian coordinate system.

If A and B are two points in the plane, then the length of the segment AB will be
denoted |AB).

» Polar coordinates. A polar coordinate system is determined by a point O called the
pole, a ray OA issuing from this point, which is called the polar axis, a scale segment
for measuring lengths, and the positive sense of rotation around the pole. Usually, the
counterclockwise sense is assumed to be positive (see Fig. M4.2a).

61
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The position of each point M on the plane is determined by two polar coordinates,
the polar radius p = |OM]| and the polar angle 6 = ZAOM (the values of the angle 6 are
defined up to an additive term 27n, where n is an integer). To be definite, one usually
assumes that 0 < § < 27 or —7 < 0 < 7. The polar radius of the pole is zero, and its polar
angle does not have any definite value.

1

1

1

1

i
X

Figure M4.2. A polar coordinate system (a). Relationship between Cartesian and polar coordinates (b).

» Relationship between Cartesian and polar coordinates. Suppose that M is an
arbitrary point in the plane, (z, y) are its rectangular Cartesian coordinates, and (p, 0) are
its polar coordinates (see Fig. M4.2b). The transformation from one coordinate system to
the other is expressed by the formulas

B — /22 12
x = pcos0, or pP= \/m (M4.1.1.1)

y=psinf tanf = y/x,

where the polar angle 6 is determined with regard to the quadrant where the point M lies.
Example. Let us find the polar coordinates p, 6 (0 < 6 < 27) of the point M whose Cartesian coordinates
arex =-3,y =-3.
-3

From formulas (M4.1.1.1), we obtain p = \/(—3)2 +(=3)2=3v2 and tan = == 1. Since the point M

lies in the third quadrant, we have 6 = arctan 1 + 7 = %ﬂ'.

M4.1.2. Distance Between Points. Division of Segment in Given
Ratio. Area of a Polygon

» Distance between points on plane. The distance d between two arbitrary points
Aq(x1,y1) and Ay(z2, yp) on the plane is given by the formula

d= \/(962—961)2 +(y2 —y1)?,

where z and y with the respective subscripts are the Cartesian coordinates of these points,
and by the formula

d=\/p}+ P~ 2p1p cos(6 — 1),

where p and 6 with the respective subscripts are the polar coordinates of these points.

» Angles between segments. The angle 3 between arbitrary segments A; A and A3A4
joining the points Aj(x1,y1), Ax(x2,y2) and As(zs,y3), As(x4,ys), respectively, can be
found from the relation

(2 —x1) (@4 —23) + (Y2 — Y1) (Wa — Y3)

cos 3 = .
V(@ =202 + @~y (@4 —23)2 + (Y4 — y3)?
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» Division of a segment in a given ratio. Given two points, A(z1,y1) and B(z2, 32),
and a number ), the coordinates of the point M (x,y) dividing the segment AB in the
ratio A = |AM| : |M B| are expressed as

1+ Az + A
-aran AT (M4.1.2.1)
1+ 1+ A
Example. Find the coordinates of the midpoint of a segment AB.
The midpoint of the segment corresponds to A = 1. Substituting this value into (M4.1.2.1) gives x = # ,
it
y="—">5—

» Area of a triangle. The area S of the triangle with vertices A;, A;, and Aj is given by
the formula

1
153 = 5[(332 —z)(W3—y1) — (@3 —21) (Y2 —y1)]

1 3 _ 1%t W 1
_Lt|m-x - ‘ _ Ty oy 1), (M4.1.2.2)
21lx3—71 Ys—y 2 3 y3 1

where x and y with respective subscripts are the Cartesian coordinates of the vertices, and
by the formula

1 . ) .
53 = E[Plpz sin(0 — 01) + pap3 sin(03 — 62) + p3py sin(@ - 03)],  (M4.1.2.3)

where p and 6 with respective subscripts are the polar coordinates of the vertices. In
formulas (M4.1.2.2) and (M4.1.2.3), one takes the plus sign if the vertices are numbered
counterclockwise (see Fig. M4.3a) and the minus sign otherwise.

Figure M4.3. Area of a triangle (@) and of a polygon (b).

» Area of a polygon. The area S, of the polygon with vertices Ay, ..., A, is given by
the formula

1
x5, = 5[(:61 1)W1 +y2) + (w2 —w3) (W2 +y3) + -+ (T — )Y +y1)], (M4.1.2.4)

where x and y with respective subscripts are the Cartesian coordinates of the vertices, and
by the formula

1 ) . .
S, = E[Plﬂz sin(f, — 01) + pap3 sin(@3 —0p) + - - - + pppr sin(fy - 0,,)],  (M4.1.2.5)

where p and 6 with respective subscripts are the polar coordinates of the vertices. In
formulas (M4.1.2.4) and (M4.1.2.5), one takes the plus sign if the vertices are numbered
counterclockwise (see Fig. M4.3b) and the minus sign otherwise.

Remark. One often says that formulas (M4.1.2.2)-(M4.1.2.5) express the oriented area of the corre-
sponding figures.
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M4.2. Straight Lines and Points on Plane
M4.2.1. Equations of Straight Lines on Plane

» Equation of a curve. Given a coordinate system, the set of all points in the plane can
be treated as the set of various pairs of numbers x, y. Relations imposed upon x and y
define subsets of the plane.
A line in the plane is usually defined using an equation relating the Cartesian coordinates
z and y. An equation
F(x,y)=0

is an equation of a curve in the plane if the coordinates of all the points lying on the curve
satisfy the equation and the coordinates of all those points that do not lie on the curve do
not satisfy it.

Example 1. Derive an equation of the line all of whose points are equidistant from the points A(0, 2) and
B4,-2).
Let M(x, y) be a point that belongs to the line. For the distances to A and B, we have

P(A, M) = /22 + (y-2)?, p(B, M) =+/(z-4)*+(y+2)%.

It follows from the relation p(A, M) = p(B, M) that 2+ (y—Z)2 =(z—4)*+ (y+ 2)%. Expanding and collecting
similar terms yields y = « — 2, which is an equation that determines a straight line.

Parametric equations of a curve on the plane have the form

=), y=9v@),

where z and y are treated as the coordinates of some point M for each value of the variable
parameter t.

» Slope-intercept equation of a straight line. The slope-intercept equation of a straight
line in the rectangular Cartesian coordinate system O XY has the form

y=kx+b, (M4.2.1.1)

where k = tan ¢ is the slope of the line and b is the y-intercept of the line, i.e., the signed
distance from the point of intersection of the line with the ordinate axis to the origin.
Equation (M4.2.1.1) is meaningful for any straight line that is not perpendicular to the
abscissa axis (see Fig. M4.4a).

(a) (b)
YA YA
Y =hkx+b xX=a
b
> >
o X 0] ¢ X

Figure M4.4. Straight lines on plane.
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If a straight line is not perpendicular to the O X -axis, then its equation can be written
as (M4.2.1.1), but if a straight line is perpendicular to the O X -axis, then its equation can

be written as
T =a, M4.2.1.2)

where «a is the abscissa of the point of intersection of this line with the OX-axis (see
Fig. M4.4b).
For the slope of a straight line, we also have the formula

=279 (M4.2.1.3)
Ty —T1

where Ai(x1,y1) and Ay(x,,ys) are two arbitrary points of the line.

» Point-slope equation of a straight line. In the rectangular Cartesian coordinate sys-
tem OXY, the equation of a straight line with slope % passing through a point A(z1,y1)
has the form

y—y1 = k(xz —x1). M4.2.1.4)

If we set 1 =0 and y; = b in equation (M4.2.1.4), then we obtain equation (M4.2.1.1).

» Equation of a straight line passing through two given points. The equation of a
straight line passing through two distinct points A;(x1,y1) and Ay (x2,y,) has the form

rT—-21 Y-

= (x1 # 22, Y1 # Y2). (M4.2.1.5)
Ty — T 2-Y

If z; = x,, this equation degenerates into x = z;. If y; = y», the equation becomes y = y;.

Example 2. Let us derive the equation of the straight line passing through the points A;(5, 1) and A»(7, 3).
Substituting the coordinates of these points into formula (M4.2.1.5), we obtain

r-5 y-1
2 T 2

» General equation of a straight line. A linear equation of the form

or y=x-4.

Ar+By+C=0 (A’+B>%0) (M4.2.1.6)

is called the general equation of a straight line in the rectangular Cartesian coordinate

system OXY. In rectangular Cartesian coordinates, each straight line is determined by an

equation of degree 1, and, conversely, each equation of degree 1 determines a straight line.
If B # 0, then equation (M4.2.1.6) can be written as (M4.2.1.1), where k = -A/B and

b=-C/B.
Special cases of equation (M4.2.1.6):

1. If A=0and B # 0, then the equation becomes y = —C/ B and determines a straight line
parallel to the axis OX.

2. If B=0and A # 0, then the equation becomes = = —C'/A and determines a straight line
parallel to the axis OY'.

3. If C' =0, then the equation becomes Az + By = 0 and determines a straight line passing
through the origin.

» General equation of a straight line passing through a given point. In the rectangular
Cartesian coordinate system O XY, the general equation of a straight line passing through
a point M (x1,y1) in the plane has the form

A(x - 1)+ By —y1) = 0. (M4.2.1.7)
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» Parametric equations of a straight line. In the rectangular Cartesian coordinate sys-
tem O XY, a straight line passing through a point M (1, y1) in the plane can be represented
by the parametric equations

r=x1+At, y=y +Bt, (M4.2.1.8)

where A and B are constants and ¢ is a variable parameter.
A straight line passing through two points, Mi(x1, y1) and M;(z3, ), can be represented
by the parametric equations
z=x1(1-1)+xt,

y=y1(1-1)+yt.

» Intercept-intercept equation of a straight line. The general equation of a straight line
can be rewritten in the form

(M4.2.1.9)

r oy

—+==1,

a b
which is called the intercept-intercept equation of a straight line. The numbers a and b are
the x- and y-intercepts of the straight line, i.e., the signed distances from the origin to the

points at which the straight line crosses the coordinate axes (see Fig. M4.5).

YA

~

0 a X

Figure M4.5. A straight line with intercept-intercept equation.

» Equation of a pencil of straight lines. The set of all straight lines passing through a
fixed point M in the plane is called a pencil of straight lines, and the point M itself is called
the center of the pencil. The equation determining all straight lines in the pencil is called
the equation of the pencil.

1°. Given the Cartesian coordinates of the pencil center M (x1, y1), then the equation of any
straight line in the pencil has the form (M4.2.1.7), where A and B are arbitrary constants.

2°. If the equations of two straight lines in the pencil are known, A;z + Biy + C; =0
and A,z + Byy + C, = 0, then the equation of the pencil can be written as

a(Alac + Bly + Cl) + ﬂ(AzI‘ + Bzy + Cz) = 0,

where o and 3 are any numbers that are not simultaneously zero.

M4.2.2. Mutual Arrangement of Points and Straight Lines

» Condition for three points to be collinear. Suppose there are three distinct points,
Mi(zy1,y1), My(x2, 1), and M3(x3, y3), given in the Cartesian coordinate system O XY on
the plane. They are collinear (lie on the same straight line) if and only if

1 oy 1
2 Y 1| =x190 +22y3 + X3Y1 — T1Y3 — T2y1 —23Y2 = 0.
z3 y3 1
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This condition reflects the fact that the area of the triangle with vertices at the above points
is zero; cf. Eq. (M4.1.2.2).

» Distance from a point to a straight line. The distance d from a point M (xg, ) to a
straight line given by the general equation Ax + By + C = 0 can be calculated as

_ \Ax0+By0+C]
VAZ+ B

Example 1. Let us find the distance from the point M (2, 1) to the straight line 3z — 4y + 8 = 0. We use
formula (M4.2.2.1) to obtain

d

(M4.2.2.1)

g 13:2-4-1+8 10

=2.
V32 + 42 5

» Angle between two straight lines.

1°. If two straight lines are given by the equations

y=k713:+b1,
Y =kyx +by,

where k; = tan 1 and k; = tan ; are the slopes of the respective lines (see Fig. M4.6), the
angle a between these straight lines is determined by the formula

ky —kq

t = —
ana 1+k1]€2

(k1ky # -1).

If k1 = k;, the straight lines are parallel (o« = 0).
If k1ky = —1, the straight lines are perpendicular (o = %71).

Figure M4.6. Angle between two straight lines.

Example 2. Given a triangle with vertices A(-2,0), B(2,4), and C(4, 0), derive the equations of the side
BC and the altitude AH.
z-2 y-4

Using (M4.2.1.5), one finds an equation for the side BC" 42 - 0-a

the slope of this straight line is kpc = —2. The above condition for two straight lines to be perpendicular gives

kam = —% = % Using equation (M4.2.1.4), one obtains the equation for the altitude AH: y—0 = %(m +2)
BC
ory=1z+1.

ory = —2x + 8. It follows that
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2°. If two straight lines are defined by the general equations

A1w+Bly+C1 =0,

M4.2.2.2
A2$+Bzy+02=0, ( )

the angle o between them can be calculated from

_ A1By — Ay By
tana—m (A1A2+BlB2¢0).

If A;B, - AyB; =0 (or A1/A; = By/B,), the straight lines are parallel.

If Aj Ay + B1B; =0, the straight lines are perpendicular.
» Point of intersection of straight lines. Suppose that two straight lines are defined by
general equations in the form (M4.2.2.2). Each common solution of equations (M4.2.2.2)

determines a common point of the two lines.
If the determinant of system (M4.2.2.2) is not zero, i.e.,

A By

A, B, =A1B,-A,B; #0,

then the system is consistent and has a unique solution; hence, these straight lines are
distinct and nonparallel and meet at the point A(xg, o), where

_BIC-BC A -ChA,

o= A1By - AyBy’ w= A1By - AyBy

» Distance between parallel lines. The distance between the parallel lines given by
equations
A1£E+B1y+01 =0 and A1:E+Bly+02 =0

can be found using the formula
_la-G

\/A% + Bl2

d

M4.3. Quadratic Curves
M4.3.1. Circle

» Equations of a circle in the Cartesian coordinate system. The canonical equation of
a circle in a rectangular Cartesian coordinate system O XY has the form

22+ =d?, (M4.3.1.1)
where the point O(0, 0) is the center of the circle and a > 0 is its radius (see Fig. M4.7a).
The circle defined by equation (M4.3.1.1) is the locus of points equidistant (lying at the

distance a) from its center.
The circle with radius a and center A(xy, yo) is defined by the equation

(x —x0)* + (y —yo)* = a’. (M4.3.1.2)
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YA (a) y YA (b)
\ I/_
~a 0 ax 0 X
-a / N\

Figure M4.7. Circle.

The circle that passes through three noncollinear points Ai(x1,y1), Ax(x2,y>), and
A3(x3,y3) can be described by the determinant equation

z y 1
x% + y% ry yp 1
wv+yl 1 oy 1 =0.
x% + yg r3 y3 1

The area of the disk bounded by a circle of radius a is given by the formula S = 7a?.

The circumference of this circle is L = 2wa. The area of the figure bounded by the circle
and a chord with endpoints M (xg, yo) and N (xg,—yo), shaded in Fig. 4.7b, is expressed as

2
T . X0
S = —+x0\/a2—$%+a2arcs1n—.
2 a

See also Subsection M3.1.3.
» Other equations of a circle. The equation of the circle (M4.3.1.1) can be represented
in parametric form as
r=acosf, y=asind,

where the polar angle 6§ plays the role of the variable parameter.
In the polar coordinate system, the equation of the circle (M4.3.1.1) becomes

p=a.

Note that it does not contain the polar angle 6.

M4.3.2. Ellipse

» Definition and the canonical equation of an ellipse. An ellipse is the locus of points
in the plane the sum of whose distances to two points, F} and F3, is a constant quantity,
denoted 2a; see Fig. M4.8 a. Either of the points F] and F) is called a focus of the ellipse
and the distance between them, p(F1, F3) = 2c, is called the focal distance.

In the rectangular Cartesian coordinate system where the X-axis is the straight line
passing through the foci, the origin O coincides with the midpoint of the segment F7 F5, and
the Y '-axis passes through O and is perpendicular to the X -axis, as shown in Fig. M4.8 q,
the equation of the ellipse has the simplest form

2 yZ

Y=l (M4.3.2.1)
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Figure M4.8. Ellipse (a). Tangent to an ellipse and the optical property of an ellipse (b).

Equation (M4.3.2.1) is called the canonical equation of the ellipse. Here, it is assumed that
a=b>0.

The positive numbers a and b are called, respectively, the semimajor axis and semiminor
axis of the ellipse, with b = Va2 —c?. The number ¢ = Va?—b?* is called the linear
eccentricity of the ellipse. The number e = c/a = /1 —b?/a? is called the eccentricity or
the numerical eccentricity of the ellipse, with 0 < e < 1. The number p = b%/a is called the
focal parameter (or simply the parameter) of the ellipse.

The point O(0, 0) is called the center of the ellipse. The points of intersection of the
ellipse with the axes of symmetry, Ai(—a,0), A>(a,0) and B1(0,-b), B>(0, b), are called its
vertices. The straight line passing through the foci of an ellipse is known as its major axis
and is sometimes called its focal axis. Either of the straight lines x = a/e (e # 0) is called
a directrix of the ellipse. The focus F5(c,0) and the directrix « = a/e are said to be right,
and the focus Fj(—c, 0) and the directrix = = —a/e are said to be left.

Remark. For a = b (¢ = 0), equation (M4.3.2.1) becomes z?+ y2 = a? and determines a circle.

The area of the figure bounded by the ellipse is given by the formula S'=7wab. The length

of the ellipse can be calculated approximately by the formula L = [1.5 (a+b)—Vab ] .

» Focal and focus-directrix properties of an ellipse. The segments joining a point
M (z,y) of an ellipse with the foci F1(—c,0) and F5(c, 0) are called the left and right focal
radii of this point. We denote the lengths of the left and right focal radii by 1 = |Fy M| and
ry = |F5 M|, respectively (see Fig. M4.8 b). By the definition of an ellipse,

r1+ 1y =2a,

where r; and r satisfy the relations

ri=+/(@+cl+yt=a+er, r=1\/(x-c}+y:=a-ecx.

The ellipse determined by equation (M4.3.2.1) on the plane is the locus of points for
which the ratio of distances to a focus and the like directrix is equal to e:

a |l a|l
rl‘x+—‘ =e, rz‘w——‘ =e.
e e

(A focus and a directrix are said to be like if both of them are right or left simultaneously.)
» Equation of a tangent and the optical property of an ellipse. The tangent to the
ellipse (M4.3.2.1) at an arbitrary point Mo(xg, 9o) is given by the equation

Tor  Yo¥ _4
a? b2 '
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The distances d; and d; from the foci Fi(—c,0) and F;(c, 0) to the tangent to the ellipse
at the point My(xg, yo) are expressed as

d _ 1 _ 1
l—a—N|$0€+a|—a—N, N <330>2 (Z/O)Z
= _— + | — ,
8) a? b2
aN’
where 71 = r1(Mp) and 1 = (M) are the lengths of the focal radii of My (see Fig. M4.8 b,
where M = My).

The tangent at an arbitrary point My(xg, yo) of an ellipse forms acute angles ¢ and ¢,
with the focal radii of the point of tangency, and

d = — — =
2 aN‘er al

. 1 . 2
singp] = — = — singy = — = —.
4 ri.  aN’ v ry  alN

This fact, written as
1= P2,

is known as the optical property of an ellipse. It means that a light ray issued from one
focus of the ellipse will reflect to the other focus (see Fig. M4.8 b, where M = Mp).

» Equations of an ellipse in polar coordinates and parametric equations. In polar
coordinates (p, ), with the pole coinciding with the right focus and the polar axis directed
along the X-axis, the equation of an ellipse has the form

p

p= l+ecosp’

where 0 < ¢ <27, p = b’/a, and e = \/1 —b2/a2. If the pole is taken at the left focus, this
equation becomes

__ P
P l-ecose’

The equation of an ellipse can also be represented in the parametric form
r=acost, y=bsint,

with the parameter ¢ assuming any values from O to 27.

M4.3.3. Hyperbola

» Definition and the canonical equation of a hyperbola. A hyperbola is the locus of
points in the plane the absolute difference of whose distances to two points, F7 and F3, is
a constant quantity, denoted 2a; see Fig. M4.9 a. Either of the points F} and F; is called
a focus of the hyperbola and the distance between them, p(F1, F>) = 2c, is called the focal
distance.

In the rectangular Cartesian coordinate system where the X-axis is the straight line
passing through the foci, the origin O coincides with the midpoint of the segment F7 F5, and
the Y'-axis passes through O and is perpendicular to the X -axis, as shown in Fig. M4.8 q,
the equation of the hyperbola has the simplest form

22 P

-5 -1 (M4.3.3.1)
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Figure M4.9. Hyperbola (a). The tangent to the hyperbola and optical property of a hyperbola (b).

and is called the canonical equation of the hyperbola.

The number « is called the real semiaxis of the hyperbola and the number b is called
its imaginary semiaxis, with b = V'¢* —a?. The number ¢ = Va2 + b? is known as the
linear eccentricity of the hyperbola and the number e = ¢c/a = /1 + b%/a? is its eccentricity,
e > 1. The number p = b*/a is called the focal parameter (or simply the parameter) of the
hyperbola.

The point O(0, 0) is called the center of the hyperbola. The points (—a, 0) and (a, 0) at
which the hyperbola crosses the X -axis are known as the vertices of the hyperbola. Either
of the straight lines z = ta/e is called a directrix of the hyperbola. The focus F5(c, 0) and
the directrix = = a/e are said to be right, while the focus Fj(—c, 0) and the directrix z =-a/e
are said to be left.

A hyperbola consists of two parts, called its branches, lying in the domains x > a and
x < —a. It has two asymptotes, straight lines the hyperbola approaches at large distances
from its center, which are given by

y=—z and y=-——x.
a a

The branches of a hyperbola lie within two vertical angles formed by the asymptotes and
are called its left and right branches. The angle ( between the asymptotes of a hyperbola
is determined by the equation

tan 2 = 2.

2

Remark. If @ = b (e = v/2), then ¢ = 17, In this case, the hyperbola is said to be equilateral or
rectangular and its asymptotes are mutually perpendicular. The equation of an equilateral hyperbola has the
form a2 — y* = a*. If the asymptotes are taken to be the coordinate axes, then the equation of the hyperbola
becomes xy = a*/2; i.e., an equilateral hyperbola represents an inverse proportionality dependence.

» Focal and focus-directrix properties of a hyperbola. The segments joining a point
M (z,y) of the hyperbola with the foci Fj(—c,0) and F>(c,0) are called the left and right
focal radii of this point. We denote the lengths of the left and right focal radii by ry = | F; M |
and r, = |F, M|, respectively (see Fig. M4.9 b). By the definition of a hyperbola,

|r1 — | = 2a,
where 1 and r satisfy the relations

. o, _ fa+er for x>0,
(r+co)y+y _{_a_ex for x <0,

r =
— S 2, :{—a+ew for x>0,
"2 (@=c) +y a—exr for z<O.
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The hyperbola defined by equation (M4.3.3.1) on the plane is the locus of points for
which the ratio of distances to a focus and the like directrix is equal to e:

a |-l a|-!
rl‘m+—‘ =e, 7“2‘:1:——‘ =e.
e e

(A focus and a directrix are said to be like if both of them are right or left simultaneously.)

» Equation of a tangent and the optical property of a hyperbola. The tangent to the
hyperbola (M4.3.3.1) at an arbitrary point My(xg, 7o) is given by the equation

Lor Yoy _ 1
B
The distances d; and dp from the foci Fj(—c,0) and F>(0,c) to the tangent to the
hyperbola at the point My(xo, yo) are expressed as

& = lzoe+al _ i

'TTUN T T eV N:\/(ﬂ>2+<@>2,

i, = |zoe —al _n a? b?
aN aN’

where r; and r, are the lengths of the focal radii of the point My (see Fig. M4.9 b, where
M = My).

The tangent at any point My(zg, yo) of the hyperbola forms acute angles 1 and ¢, with
the focal radii of the point of tangency, and

sin ] = ﬂ = L, siny = % = L
rr  alN . alN
This fact, written as
¥1=$2,

is known as the optical property of a hyperbola. It means that a light ray issued from a
focus of the hyperbola will reflect so as to appear as though issued from the other focus (see
Fig. M4.9 b, where M = Mj).

The tangent to a hyperbola at any point bisects the angles between the straight lines
joining this point with the foci. The tangent to a hyperbola at either of its vertices intersects
the asymptotes at two points such that the distance between them is equal to 2b.

» Equations of a hyperbola in polar coordinates and parametric equations. In polar
coordinates (p, ), with the pole coinciding with the right focus and the polar axis directed
along the X -axis, the equation of the hyperbola has the form

e P
l-ecosyp’

where 0 < ¢ < 2w, p = bz/ a,and e = /1 + bz/ a?. 1f the pole is taken at the left focus, the
equation of the hyperbola becomes

b

p= l+ecosp

A parametric representation for the right branch of a hyperbola is given by the equations
x =acosht, y=bsinht,

with the parameter ¢ assuming any real values.
A parametric representation that covers both branches of a hyperbola is given by the
equations
r=asect, y=btant,

with —r <¢t<mandt ;ti%w.
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M4.3.4. Parabola

» Definition and the canonical equation of a parabola. A parabola is the locus of all
points in the plane equidistant from a given point F' and a given straight line [, with F' ¢ [;
see Fig. M4.10a. The point F' is called the focus of the parabola and the straight line [ is
its directrix.

YA Y, ()
w,
.
0
,g F ONF X

Figure M4.10. Parabola (a). Tangent to a parabola (b). Optical property of a parabola (c).

Let us draw a straight line through the focus F' and perpendicularly to the directrix
and denote the point at which this line crosses the directrix by C'. Introduce the following
Cartesian coordinate system: take the above line to be the X -axis (directed from C to F),
the midpoint of the segment C'F’ to be the origin O, and the perpendicular line through O
to be the Y -axis. In this coordinate system, the parabola is determined by the equation

y* =2pz, (M4.3.4.1)

where p = |FFC| > 0. The number p is called focal parameter and equation (M4.3.4.1) is
called the canonical equation of the parabola.

A parabola consists of an infinite branch symmetric about the X -axis. The point O(0, 0)
is called the vertex of the parabola. The directrix of the parabola is given by the equation
x = —p/2. The number p/2 is known as the focal distance. The segment joining a point
M (z,y) on the parabola with the focus F'(p/2,0) is called the focal radius of the point.

» Focal properties of a parabola. If r denotes the length of the focal radius F'M, then
by the definition of a parabola,
r=z+2.

2

As is apparent from Fig. M4.10a, the number 7 also satisfies the relation

- _£>2 2
r= <3: 5) TV

» Equation of a tangent and the optical property of a parabola. The tangent to the
parabola (M4.3.4.1) at an arbitrary point My(xo, o) is given by the equation

yyo = p(x + xo). (M4.3.4.2)

The angle ¢ between the tangent to the parabola at a point My(xg,yo) and the focal
radius F' My is determined by

Yo

cos p =
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The same relation holds for the angle between the tangent (M4.3.4.2) and the X -axis. This
property of a parabola is called its optical property: alight ray issued from the focus reflects
off the parabola in the direction parallel to the parabola axis (see Fig. M4.10 ¢).

» Equation of a parabola in polar coordinates and parametric equations. In polar
coordinates (p, ), with the pole at the focus of the parabola and the polar axis directed
along the parabola axis, the equation of the parabola has the form

-_r
1-cosy’

where 0 < p < 27.
Parametric equations of a parabola are

x=3pt’, y=pt

with the parameter ¢ assuming any real values.

M4.3.5. Transformation of Quadratic Curves to Canonical Form

» General equation of a quadratic curve. Translation and rotation. A set of points
in the plane whose coordinates in the rectangular Cartesian coordinate system satisfy the
general second-order algebraic equation

allxz + 2a12wy + a22y2 + 2(113% + 2a23y + a3z = 0 (M4.3.5.1)

is called a (bivariate) quadratic curve (or just quadratic); it is also known as a second-order
curve. If equation (M4.3.5.1) does not determine a real geometric object, this equation is
said to determine an imaginary quadratic curve.

Equation (M4.3.5.1) may be simplified using the following transformations of the Carte-
sian coordinate system:

1. Translation:

rT=T+x9, Y=Y+Yo. (M4.3.5.2)

It means that the origin O(0, 0) is transferred to the point O(x, 3o) and the coordinate axes
are moved parallel to the original ones; £ and ¢ denote the new coordinates.
2. Rotation:

T=2cosp—gsing, y=2ITsiny+{cosy. (M4.3.5.3)

The coordinate axes are rotated about the origin, which does not move, by the angle ¢
counterclockwise; 2 and §j denote the new coordinates.

» Canonical equations of quadratic curves. The classification table. With transfor-
mations (M4.3.5.2)-(M4.3.5.3), equation (M4.3.5.1) can be reduced to one of the nine
canonical forms classified in Table M4.1. The first five curves, with § # 0, are nondegen-
erate (their canonical equations contain two quadratic terms proportional to 2> and y?).
The last four curves, with § = 0, are degenerate (their canonical equations contain only one
quadratic term, % or yz). Curves 3, 5,7, 8, and 9, with A = 0, split into straight lines; their
equations can be represented as the product of two factors linear in the coordinates, each
having the form («,x + 3,y + 7»), on the left-hand side and zero on the right-hand side.
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TABLE M4.1
Classification of quadratic curves.
No. Curve name Canonical equation Conditions for invariants

2 2

1 Ellipse LY >0, IA<0
a> b
Imaginary ellipse 2t P

2 (no real points) P + 2T -1 6>0, IA>0

Pair of imaginary straight lines 2t _

3 intersecting at a real point a2 + 2o 0 4>0,A=0
2 P

4 Hyperbola r_¥Y 0<0,A=0
a®> b

Pair of intersecting straight lines z? P _
5 (degenerate hyperbola) a2 b 0 0<0,A=0
6 Parabola y? = 2px §=0,A#0
7 Pair of parallel straight lines 2_adt=0 0=A=0,0<0
Pair of imaginary parallel AL
8 straight lines (no real points) " +a” =0 §=A=0,0>0
9 Pair of coinciding straight lines 2 =0 5=A=0c=0

» Invariants of quadratic curves. Quadratic curves can be studied using the three
invariants

an an ai ain ais
I =ay +an, 5:‘ ‘ A=lap ay x|, (M4.3.5.4)
ain any
a3 ajzs ass

whose values do not change under parallel translations and rotations of the coordinate axes,
and the sign of the quantity

o=|mn an|, o2 @) (M4.3.5.5)
a13  ass a3 as3

The invariant A is called the large discriminant of equation (M4.3.5.1). The invariant
d is called the small discriminant.

The quadratic curves can be classified based on the values of the invariants, specified in
the last column in Table M4.1.
» Characteristic equation of quadratic curves. The properties of quadratic curves can
be studied using the characteristic equation

aip—A  anp

=0 or M-I\+45=0. (M4.3.5.6)
aly axp-A

The roots A\; and A, of the characteristic equation (M4.3.5.6) are eigenvalues of a real
symmetric matrix, [a;;], and hence are real.
The invariants I and ¢ are expressed in terms of the roots \; and )\, as follows:

I= )\1 + )\2, 0= )\1)\2. (M4.3.5.7)

» Nondegenerate case § # 0. Reduction of quadratic curves to canonical form. First,
by applying the translation transformation (M4.3.5.2) with

1
To=——

]

aiz a2

a1 013‘
a3 ay ’

1
" yo__g‘alz a3
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one reduces equation (M4.3.5.1) to the form

A
CL11(E2 +2a1,%Y + azzgz + F =0. (M4.3.5.8)

Then, with the rotation transformation (M4.3.5.3) where & and ¥ are substituted for x and y
and the angle  determined by

2
tan 2 = s <if aj] =ap, then ¢ = z),
ajp —axn 4

equation (M4.3.5.8) is transformed into
A
M2+ 0%+ = =0,

where A\; and \; are the roots of the characteristic equation (M4.3.5.6).
Note the following formulas for an ellipse:
5 1 A A 5 1 A A
Qa ==, = —_— = —
A 0 Al )\ﬁ AL 0 )\% A2
where a and b are the semimajor and semiminor axes of the ellipse.
Similar formulas for a hyperbola have the form
5 1 A A , 1A A
a” = —_— = s = =
/\1 0 /\% )\2 /\1 o /\%/\2
» Degenerate case § = 0. Reduction of quadratic curves to canonical form. If 5 = 0,
equation (M4.3.5.1) can be rewritten as

(az + By)* + 2a132 + 2ax3y + az3 = 0. (M4.3.5.9)

If the coefficients ai3 and a3 are respectively proportional to « and (3, i.e., aj3 = ka and
a3 = k3, then equation (M4.3.5.9) becomes (az + 3y)? + 2k(ax + By) + a3z = 0, and hence

ar + Py =-k* kX —asz3,

which determines a pair of real (or imaginary) parallel straight lines.
If a3 and a,3 are not proportional to « and (3, then equation (M4.3.5.9) can be rewritten

(A1 = \2),

(A1 2 ).

as
(x + By +7)* +2k(Bz —ax +¢) = 0. (M4.3.5.10)

The parameters k, v, and ¢ can be determined by comparing the coefficients in equa-
tions (M4.3.5.9) and (M4.3.5.10). If the line e + By + v = 0 is treated as the axis OX and
the line Sx — ax + g = 0 as the axis OY and the new coordinates are expressed as

Bxr—ax+q ax + By + 7y

PyPea A G

then equation (M4.3.5.10) acquires the form

T =

9% = 2pa,

where p=|k|/\/a? + 2. The axis OX points to the half-plane where the sign of fz—ax+q
is opposite to that of k.

The focal parameter p of a parabola is expressed in terms of the invariants I, §, and A
and the roots A\; and Ay (A\; = \y) of the characteristic equation (M4.3.5.6) as follows:

1 A1 [ A
p—T _T_A_l —A—1>0, )\2—0.
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M4.4. Coordinates, Vectors, Curves, and Surfaces
in Space
M4.4.1. Vectors and Their Properties

» Notion of a vector. A directed line segment connecting an initial point A and a terminal

point B (see Fig. M4.11) is called a vector and denoted AB. The nonnegative number
equal to the length of the segment AB is called the length (or magnitude) of the vector
AB and denoted |A—B) |. The vector BA is said to be opposite to the vector AB; it has the
same magnitude but opposite direction. Vectors are usually denoted by a single lowercase
letter, either with an arrow above (e.g., @) or without (e.g., a); the latter is the most common
notation for vectors, in which case a boldface lowercase letter is used.

B

A
Figure M4.11. Vector AB.

Two vectors are said to be collinear (parallel) if they lie on the same straight line or
on parallel lines. Three vectors are said to be coplanar if they lie in the same plane or
in parallel planes. A vector 0 whose initial and terminal points coincide is called the zero
vector (or null vector); its length is zero (|0| = 0) and its direction is assumed to be arbitrary.
A vector e of length one is called a unit vector.

Two vectors are called equal is they are collinear and have the same magnitude and
direction. It follows that, for any vector a and any point A, there exists a unique vector A
with its start point at A that is equal to a. For this reason, vectors in analytical geometry are
defined up to their position, so that all vectors obtained from each other by parallel transport
are considered to be the same.

» Sum and difference of vectors. The sum a + b of vectors a and b is defined as the
vector directed from the initial point of a to the terminal point of b where the start of b is
placed at the tip of a. This method of the addition of vectors is called the triangle rule (see
Fig. M4.12 a@). The sum a + b can also be found using the parallelogram rule as shown in
Fig. M4.12 b. The difference a —b of vectors a and b is defined as the vector that must be
added tob to get a: b+ (a—b) = a (see Fig. M4.12 ¢).

@ (®)

(©)
= ‘ '

Figure M4.12. The sum of vectors: triangle rule (a) and parallelogram rule (). The difference of vectors (c).

The product A\a of a vector a by a number ) is defined as the vector whose magnitude
is equal to |[Aa| = |A||a| and direction coincides with that of a if A > 0 or is opposite to it if
A<0

Remark. If a = 0 or A = 0, then the resulting product is the zero vector. In this case, the direction of the
product Aa is undetermined.
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Main properties of operations with vectors.

a+b =b + a (commutativity).

a+ (b+c)=(a+Db)+c (associativity of addition).

a + 0 = a (existence of zero vector).

a + (—a) = 0 (existence of opposite vector).

A(a+b) = Aa + \b (distributivity with respect to addition of vectors).
(A + p)a = Aa + pa (distributivity with respect to addition of constants).
A(pa) = (Au)a (associativity of product).

la = a (multiplication by unity).

NN kE LD~V

M4.4.2. Coordinate Systems

» Cartesian coordinate system. Some useful formulas. A rectangular Cartesian
coordinate system (also called just rectangular coordinate system or Cartesian coordinate
system) is defined by three pairwise perpendicular directed straight lines OX, OY, and OZ
(the coordinate axes) concurrent at a single point O (the origin).

Figure M4.13. A point in a rectangular Cartesian coordinate system.

For an arbitrary point M in space, let us draw through it three planes parallel to the
planes OY Z, OXZ, and OXY. These planes will intersect the coordinate axes OX,
OY, and OZ at three points. Denote by xg, yo, and 2o the distances from these points
to the origin O (see Fig. M4.13). The numbers xg, 39, and zq are, respectively, called
the x-coordinate (or abscissa), the y-coordinate (or ordinate), and the z-coordinate of the
point M. One usually uses the notation M (xg, Yo, 29) to specify that the point M has the
coordinates (g, 4o, 20)-

Planes parallel to the coordinate planes are coordinate surfaces on which one of the
coordinates is constant. Straight lines parallel to the coordinate axes are coordinate lines
along which only one coordinate varies and the other two remain constant. Coordinate
surfaces meet at coordinate lines.

Each point M in three-dimensional space uniquely defines a vector OM , which is called
the position vector of the point M. The coordinates of the position vector coincide with

those of M and one usually writes r = OM = (xy, 20 20)-
The distance between two points, Mj(x1,y1, 21) and Mo (x2, Yy, 22), 1S given by the
formula

d= /@21 + -y + (-2 = -1, (M4.4.2.1)

where r, = oM > and r; = oM 1 are the position vectors of the points M; and M>,
respectively (see Fig. M4.14).

Any triple of numbers (z, y, z) can be identified with a point P and a position vector O—P:
whose coordinates are these numbers. An arbitrary vector (x, y, z) can be represented as

(x,y,2) = xi+yj+ 2K,
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Figure M4.14. Distance between points.

where i=(1,0,0), j=(0,1,0), and k = (0, 0, 1) are the unit vectors with the same directions
as the coordinate axes OX, OY, and OZ (basis vectors).
Two vectors r; = (21, Y1, 21) and ry = (22, Y, 22) are equal to each other if and only if
the relations
Ty =22, Y1=%Y, z21=22

hold simultaneously. The coordinates of the sum or difference of vectors and the product
of a vector by a scalar are calculated as

(1, y1,21) £ (12, Y2, 22) = (@1 L 22, y1 T4, 21 T 22),
a(x,y, 2) = (az, ay, az).

If a point M divides a directed segment M M, in a ratio A, then the coordinates of this
point are given by

T+ )\:L'z Yy + )\yz zZ1+ )\zz r, + /\l'2
i — , - e = — M4.4.2.2
1+ A y 1+ ‘ 1+ A o ! 1+ A ( )

where \=|M; M|/|M M,|. The special case where M is the midpoint of M; M, corresponds
toA=1.

The angles a, (3, and ~y between M) M, and the coordinate axes OX, OY, and OZ are
determined by

Ty — T Y2—Y1 2!
————, ¢co ﬁ=7]r2—r1]’ cos7=7‘r2_rl‘,

with
cos® o + cos? 3+ cos® v = 1.

The numbers cos «, cos 3, and cos v are called the direction cosines of the vector My M,;.

The angle ¢ between two vectors M M, and M3 M, defined by the points M1 (x1, y1, 21),
My (22,2, 22), M3(x3,y3, 23), and Ma(x4, ya, z4) can be found from

(12 — 1) (@4 —23) + (Y2 — Y1) Wa — y3) + (22 — 21)(24 — 23)
[ty — 11| [rg — 13 '

Cos ¢ =

The area of the triangle with vertices M, M,, and M3 is given by the formula

1 Y1 2 1 2 Z1 I1 1 2 1 Y 1 2
S = Z Y 22 1] + zZ X2 1] + Ty Y 1
ys 23 1 23 w3 1 r3 yz 1




M4.4. COORDINATES, VECTORS, CURVES, AND SURFACES IN SPACE 81

The volume of the pyramid with vertices M7, My, M3, and My is equal to

1 L2=%1 Y- -2 L
1 =z z

V:g’D\’ D=|z3-z1 ys-y zm-z2|=|, xz o2
T4 —T _ _ 3 Y3 23
4 1 Ya—-Y1 z4a—21 1 24 ysa 2

and the volume of the parallelepiped spanned by vectors M M,, My M;s, and MMy is
equal to
V =|D|.

» Cylindrical coordinates. Cylindrical coordinates are a generalization of polar coor-
dinates (see Subsection M4.1.1) that adds a third dimension. If a point M is specified by
its cylindrical coordinates, they are the polar coordinates p and ¢ of the projection of M
onto a base plane (usually OXY') and the distance (usually z) of M from this base plane
(see Fig. M4.15 a). It is usually assumed that 0 < ¢ < 27 (or -7 < ¢ < 7). For cylindrical
coordinates, the coordinate surfaces are planes z = const perpendicular to the axis OZ,

half-planes ¢ = const bounded by the axis OZ, and cylindrical surfaces p = const with
axis OZ.

Figure M4.15. Point in cylindrical (a) and spherical (b) coordinates.

Let M be an arbitrary point in space with its Cartesian coordinates (x, ¥, z) and cylindri-
cal coordinates (p, i, z). The conversion formulas from Cartesian to cylindrical and from
cylindrical to Cartesian coordinates are as follows:

T = pcosp, p =12+
y = psin ¢, tan p = y/x,
z =z, z=2z,

where the polar angle ¢ is taken with regard to the quadrant in which the projection of the
point M onto the base plane lies.

» Spherical coordinates. The spherical coordinates of a point M are defined as the
length r = ]W | of its position vector, the azimuthal angle ¢ from the positive direction of
the axis OX to the projection of M onto the plane OXY, and the zenithal angle 6 from
the positive direction of the axis OZ to M (see Fig. M4.15 b). It is usually assumed that
0<p<2rand 0 <O <7 (or—m<p<mand 0 <0 < 7). For spherical coordinates,
the coordinate surfaces are spheres r = const centered at the origin, half-planes ¢ = const
bounded by the axis OZ, and cones 6 = const with vertex O and axis OZ.

The conversion formulas from the Cartesian coordinates (x, ¥, 2) to the spherical coor-
dinates (r, ¢, 8) and back are as follows:

x =17 sin 6 cos ¢, r=+/x%+y?+22,

y = rsin 6 sin ¢, tan p = y/x,

z=1cos#, tan 0 = /2% + 12/ 2,
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where the angle ¢ is determined from the same considerations as in the case of cylindrical
coordinates.

M4.4.3. Scalar, Cross, and Scalar Triple Products of Vectors

» Scalar product of two vectors. The scalar product (also known as the dot product) of
two vectors a and b, is defined as the product of their magnitudes by the cosine of the angle
between the vectors (see Fig. M4.16),

a-b = |a||b|cos .

It follows that a - b > 0 if the angle between a and b is acute, a - b < 0 if it is obtuse, and
a-b =0ifitis right.

Remark. The scalar product of a vector a by a vector b is also denoted by (a - b), (a, b), and ab.

b
L,
Figure M4.16. Scalar product of two vectors.

Properties of the scalar product:

—

a-b =b - a (commutativity).

2. a-(b+c)=a-b+a-c(distributivity with respect to addition of vectors). This property
holds for any number of summands.

3. If a and b are collinear, then a - b = £|a||b|. (The plus sign is taken if a and b have the

same direction, and the minus sign is taken if they have opposite directions.)

(Aa) - b = A\(a - b) (associativity with respect to a scalar factor).

a-a= ]a]z. The scalar product a - a is denoted by a? (the scalar square of the vector a).

The magnitude of a vector is expressed via the scalar product as

]a]=\/m:\/;.

Two nonzero vectors a and b are perpendicular if and only ifa-b = 0.
The scalar products of the basis vectors are

AR

>~

i-j=i-k=j-k=0, i-i=j-j=k-k=1.
9. If vectors are given by their coordinates, a = (a,, ay, a;) and b = (b, by, b.), then
a-b = (azi+ayj+a.k)(bzi+byj+b.K)=azb, +ayby,+a.b..
10. The Cauchy-Schwarz inequality
|a-b[ < |al[b].

11. The Minkowski inequality
|a+b| <|a| + |b|.
12. The angle  between vectors a and b is determined by the formula
a-b azby + ayby +azb,

|al[b] \/a§c+a§+a§\/b§c+b§+b§.

cos p =
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» Cross product of two vectors. The cross product of a vector a by a vector b is defined
as the vector ¢ denoted by a x b (see Fig. M4.17), satisfying the following three conditions:

1. Its absolute value (magnitude) is equal to the area of the parallelogram spanned by the
vectors a and b; i.e.,
|c| = |axb| = |a]|b]|sin .

2. It is perpendicular to the plane of the parallelogram; i.e.,¢ 1. aandc L b.
3. The vectors a, b, and ¢ form a right-handed trihedral; i.e., the vector ¢ points to the side
from which the sense of the shortest rotation from a to b is counterclockwise.

c=axb

Figure M4.17. Cross product of two vectors.

Remark. The cross product of a vector a by a vector b is also denoted by ¢ = [a, b].

Properties of cross product:

—

ax b = -b X a (anticommutativity).

2. ax(b+c) =axb+axc (distributivity with respect to the addition of vectors). This
property holds for any number of summands.

Vectors a and b are collinear if and only if a X b = 0. In particular, a xa = 0.

(Aa) xb = ax (Ab) = A(a x b) (associativity with respect to a scalar factor).

The cross products of basis vectors are

s W

ixi=jxj=kxk=0, ixj=k, jxk=i, kxi=j.

6. If the vectors are given by their coordinates a = (az, ay, a;) and b = (b, by, b.), then

i j k
axb=|a; ay a;|=(ayb,—a.byi+ (a by —a,b.)j+ (azby—ay,by)k.
by b, b,

7. The area of the parallelogram spanned by vectors a and b is equal to

\axb\ ‘ay az Ay Gy 2 Qg Gy ‘2
bx b,
8. The area of the triangle spanned by vectors a and b is equal to
|a><b| \/‘ay @ xzz 2+ ag ay|®
z

» Conditions for vectors to be parallel or perpendicular.
A vector a is collinear to a vector b if

b=Xa or axb=0.
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A vector a is perpendicular to a vector b if
a-b=0.

Remark. In general, the condition a - b = 0 implies that the vectors a and b are perpendicular or one of
them is the zero vector. The zero vector can be viewed to be perpendicular to any other vector.

» Scalar triple product of three vectors. The scalar triple product of vectors a, b, and
¢ is defined as the scalar product of a by the cross product of b and c:

[abc] =a- (b Xc).

Remark. The scalar triple product of three vectors a, b, and c is also denoted by abc.

Properties of scalar triple product:

[abc] = [bea] = [cab] = —[bac] = —[cba] = —[acb].

[aab] = [bab] =0 or a-(axb)=b-(axb)=0.

[(a + b)ed] = [acd] + [bed] (distributivity with respect to addition of vectors). This

property holds for any number of summands.

4. [Aabc] = Alabc] (associativity with respect to a scalar factor).

5. If the vectors are given by their coordinates a = (az,ay,a.), b = (b, by,b,), and
¢ = (cz, ¢y, C2), then

W=

az Gy a
by by b

Cr Cy C;

[abc] =

6. The scalar triple product [abc] is equal to the volume V' of the parallelepiped spanned by
the vectors a, b, and ¢ taken with the sign + if the vectors a, b, and ¢ form a right-handed
trihedral and the sign — if the vectors form a left-handed trihedral,

[abc] = £V.

7. Three nonzero vectors a, b, and ¢ are coplanar if and only if [abe] = 0. In this case,
the vectors a, b, and c¢ are linearly dependent; they satisfy a relation of the form
aa+ b +~c=0.

M4.5. Line and Plane in Space
M4.5.1. Plane in Space

» General equation of a plane. In a Cartesian coordinate system, a plane is given by a
first-order algebraic equation.
The general (complete) equation of a plane has the form

Ax+By+Cz+ D =0, M4.5.1.1)

where A2+ B>+ C?* #0.

1. For D =0, the equation defines a plane passing through the origin.

2. For A = 0 (respectively, B = 0 or C' = 0), the equation defines a plane parallel to the
axis OX (respectively, OY or OZ).

3. For A = D =0 (respectively, B =D =0 or C = D = 0), the equation defines a plane
passing through the axis O X (respectively, OY or OZ).

4. For A = B =0 (respectively, A = C =0 or B = C' = 0), the equation defines a plane
parallel to the plane OXY (respectively, OX Z or OY Z).
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» Intercept equation of a plane. A plane Ax+ By+Cz+ D =0 that is not parallel to the
axis OX (i.e., A # 0) meets this axis at a (signed) distance a = —D /A from the origin (see
Fig. M4.18). The number a is called the x-intercept of the plane. Similarly, one defines the
y-intercepts b = —D /B (for B # 0) and the z-intercept ¢ = —-D/C (for C' # 0). Then such a
plane can be defined by the equation

X
_+£+i=1’
a b ¢

which is called the intercept equation of the plane.

Z

C

a
X,

Figure M4.18. A plane with intercept equation.

Remark. A plane parallel to the axis OX but nonparallel to the other two axes is defined by the equa-
tion y/b + z/c = 1, where b and ¢ are the y- and z-intercepts of the plane. A plane simultaneously parallel to
the axes OX and OY can be represented in the form z/c = 1.

» Equation of the plane passing through a point M and perpendicular to a vector N.
The equation of the plane passing through a point My(xo, 3o, z0) and perpendicular to a
vector N = (A, B, C) has the form

A(x —x9)+ By —yo) + C(z - 2z9) =0, or (r-rg) -N=0, (M4.5.1.2)

where r and ry are the position vectors of the points M(x,y, z) and My(xg, Yo, 20), re-
spectively (see Fig. M4.19). The vector N is called a normal vector. Its direction cosines
are

A B c
_— osff=———, cosy= —————.
VA2 + B>+ C? VA2+ B?+C? VA2+ B?+(C?

CoOS @ =

M,

Figure M4.19. Plane passing through a point My and perpendicular to a vector N.
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» Equation of the plane passing through a point and parallel to another plane. The
plane that passes through a point My (g, Yo, 20) and is parallel to a plane Az+By+Cz+D =0
is given by equation (M4.5.1.2).

» Equation of the plane passing through three points. The plane passing through three
points Mi(x1,y1, 21), Ma(x2, 42, 22), and M3(z3,y3, 23) (see Fig. M4.20) is described by
the equation

r—x1 Y-y1 z-z
Ty-x1 YPr-y1 -2 |=0, or (=) —r)rs—r)] =0, (M4.5.1.3)
r3—T1 Y3—-Y1 23—Z21
where r, r;, Iy, and r3 are the position vectors of the points M (z,y, z), Mi(z1,y1, 21),
My (22,92, %), and M3(x3, y3, 23), respectively.

M,

M,

M;

Figure M4.20. Plane passing through three points.

Remark 1. Equation (M4.5.1.3) means that the vectors M; M, M; M,, and M; M3 are coplanar.

Remark 2. Ifthe three points M, (x1, y1, 21), Ma (2, Y2, 22), and M3(x3, y3, 23) are collinear, then equation
(M4.5.1.3) is satisfied identically.

Example 1. Let us construct an equation of the plane passing through the three points M;(1,1,1),
M>(2,2,1), and M3(1,2,2).

Obviously, the points M, M, and M3 are not collinear, since the vectors M M, =(1,1,0) and M, M3 =
(0,1, 1) are not collinear. According to (M4.5.1.3), we have
r-1 y-1 z-1

1 1 0
0 1 1

whence the desired equationis x—y+z—-1=0.

:0,

» Equation of the plane passing through two points and parallel to a straight line.
The plane passing through two points M;(x1,y1, 21) and M>(x2, Y2, 22) and parallel to a
straight line with direction vector R = (I, m,n) (see Fig. M4.21) is given by the equation

r—r Y-y z2-z
x-x1 Y-y z-2|=0, or  [r-rp@r-r)R] =0,  (M4.5.1.4)
l m n

where r, r;, and r; are the position vectors of the points M (z,y, z), Mi(x1,y1, 21), and
M (x2, Y2, 22), respectively.

Remark. If the vectors M; M, and R are collinear, then equations (M4.5.1.4) become identities.

Example 2. Find an equation of the plane passing through the points M(0, 1,0) and M>(1,1,1) and
parallel to the straight line with direction vector R = (0, 1, 1).
According to (M4.5.1.4), we have
z-0 y-1 2z-0
1-0 1-1 1-0
0 1 1
1=0.

:0,

whence the desired equation is —x —y + z +
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R

M, M

M, R

Figure M4.21. Plane passing through two points and parallel to a line.

» Equation of the plane passing through a point and parallel to two straight lines.
The plane passing through a point My(xg, Yo, 20) and parallel to two straight lines with
direction vectors Ry = (I1, m1,n1) and Ry = (I3, my, ny) is given by the equation

T—To Y—Yo Z2—%20
ll mi n1 = 0, or [(l’ - I‘())Rle] = 0,
b my 1)

where r and rg are the position vectors of the points M (x, y, z) and My(zg, yo, 20), respec-
tively.

The equation of the plane passing through a point My(xg, yo, z0) and parallel to two
noncollinear vectors Ry = (I1, m1,n1) and Ry = (I, my, ny) can be represented in the form
(M4.5.1.2) with A, B, and C being the coordinates of the vector R = Ry X R.

Example 3. Find an equation of the plane P that passes through the point My(2,-1, 1) and is perpendicular
to the planes P, and P, defined by 3z +2y—2+4=0andx +y+2-3=0.

The vectors N; =(3,2,-1) and N> =(1, 1, 1) are normal to P; and P, and parallel to P. Their cross product
is
i j k
32 -1
1 1 1

N=N; xN, = =3i—4j+ 1k

The vector N is perpendicular to the desired plane P, which therefore satisfies the equation
(x-2)-4y+D+(z-1)=0 or 3x-4y+2z-11=0.

» Equation of the plane passing through two points and perpendicular to a given
plane. The plane passing through two points Mi(x1,y1, 21) and M>(x2, 2, z2) and per-
pendicular to the plane Ax + By + Cz + D = 0 (see Fig. M4.22) is determined by the
equation

r—-r Y-y <2-z
Ty—x1 YPp-y1 »-z1|=0, or [(r —11)(1r) — rl)N] =0, (M4.5.1.5)
A B C

where r, r;, and r; are the position vectors of the points M (z,y, z), Mi(x1,y1, 21), and
My (z2, Y2, 22), respectively.
Remark. If the straight line passing through the points Mi(x1, y1, z1) and M, (x2, y2, 22) is perpendicular

to the original plane, then the desired plane is undetermined and equations (M4.5.1.5) become identities.

» Equation of the plane passing through a point and perpendicular to two planes.
The plane passing through a point Mj(x1,y1, 21) and perpendicular to two (nonparallel)
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AN

Figure M4.22. Plane passing through two points and perpendicular to a given plane.

planes Ajx + Biy+ C1z+ Dy =0and Ayx + Byy + Chz + Dy = 0 (see Fig. M4.23) is given
by the equation

r=r1 Y-y z2-z
Ay B Cp |=0, or [(r-rpPN|N;] =0, (M4.5.1.6)
Az Bz Cz

where N; = (A1, B1,C}) and Ny = (A4,, By, C>) are normals to the given planes and r and
r; are the position vectors of the points M (x,y, z) and M;(x1, y1, 21), respectively.

Figure M4.23. Plane passing through a point and perpendicular to two planes.

Remark 1. Equations (M4.5.1.6) mean that the vectors M; M, Ni, and N, are coplanar.

Remark 2. If the original planes are parallel, then the desired plane is undetermined. In this case,
equations (M4.5.1.6) become identities.

Example 4. Let us find an equation of the plane passing through the point M (0, 1,2) and perpendicular
totheplanesx—y+z—-3=0and—z+y+2+4=0.
According to (M4.5.1.6), we have

z-0 y-1 2z-2
1 -1 1
-1 1 1

whence the desired equationis x +y—1=0.
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» Equation of planes passing through the line of intersection of planes. The planes
passing through the line of intersection of the planes Ajx + Biy + Ci1z + D; = 0 and
Arx + Byy + Chrz + Dy = 0 are given by the equation

a(Aix+ By + Ciz+ D)+ f(Arx + Boy+ Crz+ Dy) =0,

which is called the equation of a pencil of planes. Here o and 3 are arbitrary parameters
(a? + 3% #0).

M4.5.2. Line in Space

» Parametric equations of a straight line. The parametric equations of the line that
passes through a point Mj(x1,y1, 21) and is parallel to a direction vector R = (I, m, n) (see
Fig. M4.24) are

r=x1+l1lt, y=y1+mt, z=2z+nt, or r=r; +tR, (M4.5.2.1)

where r= OM and r = OM 1. As the parameter ¢ varies from —oo to +o0, the point M with
position vector r = (x, y, 2) determined by formula (M4.5.2.1) runs over the entire straight
line in question. It is convenient to use parametric equations (M4.5.2.1) if one needs to find
the point of intersection of a straight line with a plane.

ZA
—R
M R M
r
0 Y

X

Figure M4.24. Straight line passing through a point and parallel to a direction vector.

The numbers [, m, and n characterize the direction of the straight line in space; they are
called the direction coefficients of the straight line. For a unit vector R = R, the coefficients
l, m, n are the cosines of the angles «, (3, and  formed by this straight line (the direction
vector RO) with the coordinate axes OX, OY, and OZ. These cosines can be expressed
via the coordinates of the direction vector R as

l m n
— 0sff=——, CcOSY= ——————.
VI2+m?2+n? VIZ+m?2 +n? VI2+m?2+n?

» Canonical equations of a straight line. The equations

Cos & =

rT—T1 _ Y-y _ 2—2

, or (r-r) xR =0, M4.5.2.2)
l m n

are called the canonical equations of the straight line through the point M;(x1, y1, 21) with
the position vector r; = (x1, y1, 21) and parallel to the direction vector R = (I, m, n).
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Remark 1. One can obtain canonical equations (M4.5.2.2) from parametric equations (M4.5.2.1) by
eliminating the parameter ¢.

Remark 2. In the canonical equations, all coefficients [, m, and n cannot be zero simultaneously, since
|R| # 0. But some of them may be zero. If one of the denominators in equations (M4.5.2.2) is zero, this means
that the corresponding numerator is also zero.

» General equation of a straight line. The general equation of a straight line in space
defines it as the line of intersection of two planes (see Fig. M4.25) and is given analytically
by a system of two linear equations

A1:E+B1y+01Z+D1 =0,

M4.5.2.3
A2w+B2y+C’22+D2:O. ( )

The normals to the planes are Ny = (A1, B, C1) and Ny = (4,, By, C,). The direction
vector R is equal to the cross product of the normals N; and Nj; i.e.,

R=N;xN,, (M4.5.2.4)

and its coordinates [, m, and n can be obtained by the formulas

I = By 01" Ci Al" A Bl‘.

B, O "Tlo, Al "TlA, B

Remark 1. Simultaneous equations of the form (M4.5.2.3) define a straight line if and only if the coeffi-
cients Ay, Bi, and C in one of them are not proportional to the respective coefficients A,, B>, and C in the
other.

Remark 2. For D; = D, =0 (and only in this case), the line passes through the origin.

Figure M4.25. Straight line as intersection of two planes.

Example. Let us reduce the equation of the straight line
r+2y—-2z+1=0, z-y+2z+3=0

to canonical form.
We choose one of the coordinates arbitrarily; say, = 0. Then

2y—z+1=0, —y+2z+3=0,

and hence y =—4, z =-7. Thus the desired line contains the point M (0,—4,-7). We find the cross product of the
vectors Ni =(1,2,-1) and N, =(1,-1, 1) and, according to (M4.5.2.4), obtain the direction vector R=(1,-2,-3)
of the desired line. Therefore, with (M4.5.2.2) taken into account, the equations of the line become

z _y+4 _ z+7
1~ 2 37
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» Equations of a straight line passing through two points. The canonical equa-
tions of the straight line (see Fig. M4.26) passing through two points Mj(x1,y1, 21) and
My (x2, 42, 22) are
0 _YTUL _FTA or (e X(r—11) =0, (M4.5.2.5)
T2—T1 YP—-Y1 22— Z2

where r, r;, and r; are the position vectors of the points M (z,y, z), Mi(x1,y1, 21), and
My (z2, Y2, 22), respectively.
The parametric equations of this line are

Tz =x1(1-1t)+ xyt,
y=y1(1 —t) +yot, or r=(1-try +tr. (M4.5.2.6)
z=z1(1-1)+ 2t,

Remark. Eliminating the parameter ¢ from equations (M4.5.2.6), we obtain equations (M4.5.2.5).

ZA M

~Y

Figure M4.26. Straight line passing through two Figure M4.27. Straight line passing through a point
points. and perpendicular to a plane.

» Equations of a straight line passing through a point and perpendicular to a plane.
The equations of the straight line passing through a point My(xo, yo, 20) and perpendicular
to the plane given by the equation Az + By + C'z + D = 0 (see Fig. M4.27) are

T —Zo _ Y—Yo _ Z=20
A B C

M4.5.3. Mutual Arrangement of Points, Lines, and Planes

» Angles between lines in space. Consider two straight lines determined by vector
parametric equations r = r; + tR; and r = r; + tR;. The angle ¢ between these lines (see
Fig. M4.28) can be obtained from the formulas

Rl'Rz . _ |R1XR2|

COSp=——"—, SINpY=-—"—"—.
7 Ri|[Ry| 77 R Ry]

If the lines are given by the canonical equations

TTh _YTH _ETA g EER_YTR_ETA (M4.53.1)
b mi ny b my ny
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then the angle ¢ between the lines can be found from the formulas

lllz +mimy +niny

CosS p = ,
\/l%+m%+n%\/l§+m%+n2
+ +
. my n ny b Ly my
sinp =

2 2., .2 /12 2 2
\/l1+m1+n1\/lz+mz+nz

Example 1. Let us find the angle between the lines

r y-2 z+1 r y-2 z+1
=2 _~ = d — =2 = .
) 2 me 0773 4
Using the first formula in (M4.5.3.2), we obtain
1-0+2-3+2-4 14
cosp = =

VE+ 2+ 20+ +8 15
and hence ¢ = 0.3672 rad.

Figure M4.28. Angle between two lines in space.

» Conditions for two lines to be parallel. Two straight lines given by vector parametric
equations r =r; + tR; and r = r; + tR; are parallel if

R, = )\Rl or R, xR; =0,
i.e., if their direction vectors R; and R are collinear. This can be written as
i = mp _ m
L~ my m
Remark. If parallel lines have a common point (i.e., r; = r» in parametric equations), then they coincide.

» Conditions for two lines to be perpendicular. Two straight lines given by vector
parametric equations r = r; + tR; and r = ry + tR; are perpendicular if

R;-R, =0. (M4.5.3.3)
This condition can be written as
lllz +mimy +niny = 0. (M4.5.3.4)
Example 2. Let us show that the lines
x-1 y-3 =z x-2 y+1 =z
R T )

are perpendicular.
Indeed, condition (M4.5.3.4) is satisfied,

2-1+1-2+2-(=2)=0,

and hence the lines are perpendicular.
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» Theorem on the arrangement of two lines in space. Two straight lines in space can:
a) be skew;

b) lie in the same plane and not meet each other, i.e., be parallel;
¢) meet at a point;
d) coincide.

A general characteristic of all four cases is the determinant of the matrix

T2—T1 YP2—Y1 22— 21
ll mi nq , (M4535)

153 my ny

whose entries are taken from the canonical equations of the lines (M4.5.3.1).
In cases a—d of the theorem, for the matrix (M4.5.3.5) we have, respectively:
a) the determinant is nonzero;
b) the last two rows are proportional to each other but are not proportional to the first row;

c¢) the last two rows are not proportional, and the first row is their linear combination;
d) all rows are proportional.

In cases b—d the determinant is zero.
» Angle between planes. Consider two planes given by the general equations

A1w+B1y+Clz+D1 =0,

M4.5.3.6
A2w+B2y+sz+D2:0. ( )

Figure M4.29. Angle between two planes.

The angle between two planes (see Fig. M4.29) is defined as any of the two adjacent
dihedral angles formed by the planes (if the planes are parallel, then the angle between
them is by definition equal to 0 or 7). One of these dihedral angles is equal to the angle ¢
between the normal vectors Ny = (A1, B1, C1) and N; = (4;, By, () to the planes, which

can be determined by the formula
A1A2+Ble+0102 _ N1 -N2

cos p = = )
VA + B + C/AZ+ BI+ 2 INi|INo]

» Conditions for two planes to be parallel. Two planes given by the general equa-
tions (M4.5.3.6) are parallel if and only if the following condition for the planes to be
parallel is satisfied:

Ay _ B _Ci | Dy,

—_— = ;
A2 B, Cz D,
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in this case, the planes do not coincide.

Two planes coincide if they are parallel and have a common point. Two planes given
by the general equations (M4.5.3.6) coincide if and only if the following condition for the
planes to coincide is satisfied:

A _B_G Dy

Az_Bz_CZ_Dz'
» Conditions for two planes to be perpendicular. Planes are perpendicular if their
normals are perpendicular. Two planes determined by the general equations (M4.5.3.6) are
perpendicular if and only if the following condition for the planes to be perpendicular is
satisfied:

A1A2 + Ble + 01C2 =0 or N:-N; = 0, (M4.5.3.7)

where N1 = (A1, By, C1) and N = (A, B;, C,) are the normals to the planes.

Example 3. Let us show that the planes x —y + z = 0and x —y — 22 + 5 = 0 are perpendicular.
Since condition (M4.5.3.7) is satisfied,

114D -(-1)+1-(=2)=0,
we see that the planes are perpendicular.
» Angle between a straight line and a plane. Consider a plane given by the general
equation
Az +By+Cz+D =0 (M4.5.3.8)
and a line given by the canonical equations
r-r _ Y-y _FmA
l m n

The angle between the line and the plane (see Fig. M4.30) is defined as the complemen-
tary angle 6 of the angle ¢ between the direction vector R = (I, m, n) of the line and the
normal N = (A4, B, C) to the plane. For this angle, one has the formula

|AL + Bm + Cnl _IN-R|
VAR +CVE+m2+n2  INIR[

(M4.5.3.9)

sinf =|cos ¢| =

Figure M4.30. Angle between a straight line and a plane.

» Conditions for a straight line and a plane to be parallel. A plane given by the general
equation (M4.5.3.8) and a line given by canonical equations (M4.5.3.9) are parallel if the
following two conditions hold:

Al+ Bm+Cn =0,
Az + By +Cz1+D#0.
The first condition means that the direction vector of the straight line is perpendicular to

the normal to the plane and the second condition means that the line is not contained in the
plane.
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» Condition for a straight line and a plane to be perpendicular. A line given by
canonical equations (M4.5.3.9) and a plane given by the general equation (M4.5.3.8) are
perpendicular if the line is collinear to the normal to the plane (is a normal itself), i.e., if
A B (C
—_— = —=—, or N = AR.
I m n

» Intersection of a straight line and a plane. Consider a plane given by the general
equation (M4.5.3.8) and a straight line given by parametric equations

r=x1+Ilt, y=y1+mit, 2z=2z +nt.

The coordinates of the point My(zg, yo, 20) of intersection of the line with the plane (see
Fig. M4.30), if the point exists at all, are determined by the formulas

xo =1 +1ltg, yo=y1+mty, 20=z1+nlo,

where
A:L'l +By1 +CZl +D

Al+ Bm+Cn
» Distance from a point to a plane. The distance from a point My(xg, Yo, z0) to a plane

given by the general equation (M4.5.1.1) is determined by the formula
de | Az + Byo + Cz9 + D|
Ny vl
» Distance between two parallel planes. We consider two parallel planes given by the

general equations Ax + By + Cz+ Dy =0 and Az + By + Cz + D, = 0. The distance
between them is

to =

D1 - Dy
VA2 + B?+(C?
» Distance from a point to a straight line. The distance from a point My(zg, yo, 20) to
a line given by canonical equations (M4.5.2.2) is determined by the formula
Z21—20 X1—X0

d=\/
VI2+m?2 +n?

» Distance between straight lines. Consider two nonparallel lines given in the canonical
form

d=

2 2 2

l m
T1—Zo Y1—Yo

m n n l

Yr—Y =z1—%20

r—r Y-y _z2—21

ly my ny
r—T2 Y—-Yy 2—-2
153 my ny

The distance between them can be calculated by the formula

T1—T2 Y1—Y 11—
i l1 my ni
l m n,
d= 2 2 2 (M4.5.3.10)
i ma 2 mp; N1 2 ni U 2
L my m2 Ny ny b

(minus sign should be taken if the determinant is negative). The condition that the deter-
minant in the numerator in (M4.5.3.10) is zero is the condition for the two lines in space to
meet.
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M4.6. Quadric Surfaces (Quadrics)
M4.6.1. Quadrics and Their Canonical Equations

» Central surfaces. A segment joining two points of a surface is called a chord. If there
exists a point in space, not necessarily lying on the surface, that bisects all chords passing
through it, then the surface is said to be central and the point is called the center of the
surface.

The equations listed below for central surfaces are given in canonical form; i.e., the
center of a surface is at the origin, and the surface symmetry axes are the coordinate axes.
Moreover, the coordinate planes are symmetry planes.

» Ellipsoid. An ellipsoid is a central surface defined by the equation

2 2 2
A (M4.6.1.1)

JE— + _
a*> b
where the numbers a, b, and c are the lengths of the segments called the semiaxes of

the ellipsoid (see Fig. M4.31 a). The coordinates of all points of the ellipsoid satisfy the
inequalities -a <z <a, -b<y<bh, and —c< z< ¢

Figure M4.31. Triaxial ellipsoid (a) and spheroid (b).

If a # b # ¢, then the ellipsoid is said to be triaxial, or scalene. If a = b # ¢, then the
ellipsoid is called a spheroid; it can be obtained by rotating the ellipse z%/a® + 2%/c? = 1,
y = 0 lying in the plane O X Z about the axis OZ (see Fig. M4.31b). If a = b > ¢, then the
ellipsoid is an oblate spheroid, and if a = b < ¢, then the ellipsoid is a prolate spheroid. If
a = b = ¢, then the ellipsoid is the sphere of radius a given by the equation 2% + y> + 2> = a>.

An arbitrary plane section of an ellipsoid is an ellipse (or, in a special case, a circle).
The volume of an ellipsoid is equal to V' = %mzbc.

Remark. About the sphere, see also Subsection M3.2.3.
» Hyperboloids. A one-sheeted hyperboloid is a central surface defined by the equation

2 2 2
N L
?4-?_? =1, (M4.6.1.2)
where a and b are the real semiaxes and c is the imaginary semiaxis (see Fig. M4.32 a).
A two-sheeted hyperboloid is a central surface defined by the equation
2 Y oz

a2 b 2

2
-1, (M4.6.1.3)
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z (b)

Figure M4.32. One-sheeted (a) and two-sheeted (b) hyperboloids.

where c is the real semiaxis and a and b are the imaginary semiaxes (see Fig. M4.32b). A
two-sheeted hyperboloid consists of two parts whose points lie at z < —c and z > c.
A hyperboloid approaches the surface

LL‘Z yZ 2,2

at b2 2 ’

which is called an asymptotic cone, infinitely closely.

A plane passing through the axis OZ intersects each of the hyperboloids (M4.6.1.2) and
(M4.6.1.3) in two hyperbolas and the asymptotic cone in two straight lines, which are the
asymptotes of these hyperbolas. The section of a hyperboloid by a plane parallel to OXY
is an ellipse. The section of a one-sheeted hyperboloid by the plane z = 0 is an ellipse,
which is called the gorge or throat ellipse.

For a = b, we deal with the hyperboloid of revolution obtained by rotating a hyperbola
with semiaxes a and c about its focal axis 2¢ (which is an imaginary axis for a one-sheeted
hyperboloid and a real axis for a two-sheeted hyperboloid). If a = b = ¢, then the hyperboloid
of revolution is said to be right, and its sections by the planes O X Z and OY Z are equilateral
hyperbolas.

» Cone. A cone is a central surface defined by the equation

2 2 2
LY _E Do (M4.6.1.4)

c2

+—_
az  b?

The cone (see Fig. M4.33) defined by (M4.6.1.4) has vertex at the origin, and for its base we
can take the ellipse with semiaxes a and b in the plane perpendicular to the axis OZ at the
distance c from the origin. This cone is the asymptotic cone for the hyperboloids (M4.6.1.2)
and (M4.6.1.3). For a = b, we obtain a right circular cone.

Remark. About the cone, see also Subsection M3.2.3.
» Paraboloids. In contrast to the surfaces considered above, paraboloids are not central

surfaces. For the equations listed below, the vertex of a paraboloid lies at the origin, the
axis OZ is the symmetry axis, and the planes OX Z and OY Z are symmetry planes.



98 ANALYTIC GEOMETRY

Figure M4.33. A cone.

An elliptic paraboloid (see Fig. M4.34 a) is a noncentral surface defined by the equation
S (M4.6.1.5)

where p > 0 and ¢ > 0 are parameters. All points of an elliptic paraboloid lie in the domain
z20.

Figure M4.34. Elliptic (a) and hyperbolic (b) paraboloids.

The sections of an elliptic paraboloid by planes parallel to the axis OZ are parabolas,
and the sections by planes parallel to the plane O XY are ellipses. If p = ¢, then we have a
paraboloid of revolution, which is obtained by rotating the parabola 2pz = % lying in the
plane O X Z about its axis.

The volume of the part of an elliptic paraboloid cut by the plane perpendicular to its
axis at a height h isequal to V = %ﬂabh, i.e., half the volume of the elliptic cylinder with
the same base and altitude.
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A hyperbolic paraboloid (see Fig. M4.34 b) is a noncentral surface defined by the
equation

where p > 0 and ¢ > 0 are parameters.
The sections of a hyperbolic paraboloid by planes parallel to the axis O Z are parabolas,
and the sections by planes parallel to the plane O XY are hyperbolas.

M4.6.2. Quadrics (General Theory)

» General equation of a quadric. Translation and rotation. A quadric is a set of points
in three-dimensional space whose coordinates in the rectangular Cartesian coordinate system
satisfy a second-order algebraic equation

a11;U2+a22y2+a33z2+2a12:cy+2a13;nz+2a23yz+2a14x+2a24y+2a34z+a44 =0, M4.6.2.1)
or

(an1T +apy + a3z + a1g)x + (a217 + any + a3z + axn)y
+ (a31x + any + a332 + a34)z + a41x + ay + a43z + agq =0,

with symmetric coefficients, a;; = aj; (2,5 = 1,2,3,4); the factors 2 appearing in some
terms are introduced for further convenience. If equation (M4.6.2.1) does not define a real
geometric object, then one says that this equation defines an imaginary quadric.

Equation (M4.6.2.1) can be simplified using the transformations of translation and
rotation.

1. Translation:

r=x+x0, Y=Y+Yo, z=Z2Z+2. (M4.6.2.2)

This transformation means that the origin O(0, 0, 0) is translated to the point O(zo, 3o, 20)
with the new axes of coordinates remaining parallel to the original ones; x, ¥, and Z are the
new coordinates.

2. Rotation:

r=en+engt+esz, y=entt+enitensz, z=e3x+epi+ezz. (M4.6.2.3)

This transformation means that all points are rotated about the origin O, with e;y, €31, €31
being the direction cosines of the axis O X, e13, €1, €35 those of the axis OY ', and eq3, €33, €33
those of the axis OZ in the initial coordinate system O XY Z.

» Classification of quadrics. With successive application of transformations (M4.6.2.2)—
(M4.6.2.3), equation (M4.6.2.1) can be reduced to one of the following 17 canonical forms,
each of which is associated with a certain class of quadrics (see Table M4.2). The first six
surfaces, with § # 0, are nondegenerate; their canonical equations contain three quadratic
terms proportional to 22, yz, and z2. The other surfaces, 7—17, with § = 0, are degenerate;
their canonical equations contain only two (proportional to 2> and %?) or even one (%)
quadratic term. The last five surfaces, 13—17, disintegrate into planes (real or imaginary);
their equations can be represented as the product of two factors linear in coordinates on the
left-hand side and zero on the right-hand side.
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TABLE M4.2
Classification of quadrics.
No. Surface Canonical equation Conditions for invariants
2 2 2
1 Ellipsoid oYy L §#0, A<0, 86>0,T>0
a> b
2 2 2
2 Imaginary ellipsoid LY L 0#0, A>0,5/>0,T>0
a> b
2 2 2
3 Imaginary cone with real vertex r Yy _ 0 60#0, A=0,5>0,T>0
a? b
. 2 2 2 0#0, A>0
_ oy 2 #0, 5
4 One-sheeted hyperboloid = + Foac S5>00rT >0 (not both > 0)
. 2 2 2 0#0, A<O
. oy 2 #0, >
5 Two-sheeted hyperboloid St a T —1 S5>00rT >0 (not both > 0)
2 2 2
oy oz 0#0, A=0,
6 Real cone ?*’ﬁ_?:() S6 >0 or T > 0 (not both > 0)
- . Ty
7 Elliptic paraboloid 4+ 2 =22 (p,g>0) 0=0,A<0,T>0
p q
] ] 2P
8 Hyperbolic paraboloid — -2 =2z (p,g>0) 6=0, A>0,T<0
p q
2 2
9 Elliptic cylinder CLZ + ?;7 =1 8=A=0,T>0, So<0
a
2 2
10 Imaginary elliptic cylinder % + % =-1 6=A=0,T7>0, So>0
a
2 2
11 Hyperbolic cylinder ”3_2 % =1 §=A=0,T<0,0%0
a
12 Parabolic cylinder y* = 2px §=A=0,T=0
2 2
13 Pair of real intersecting planes % % =0 0=A=0,T<0,0=0
a
Pair of imaginary planes 22 A L _
14 intersecting in a real straight line a2 + 2T 0 §=4=0,T>0,0=0
15 Pair of real parallel planes 2% = g2 0=A=T=0,X<0
16 | Pair of imaginary parallel planes 22 = —a? 0=A=T=0,X>0
17 Pair of real coinciding planes =0 0=A=T=0,X=0

» Invariants of quadrics. The shape of a quadric can be identified using four invariants
and two semi-invariants without reducing equation (M4.6.2.1) to canonical form.

The four main invariants are

S =ay +axy +ass,

7| an
a) an
air ap
d=|apn axp
a3 a3
ail an
A=|02 a2
a3 a3
a4 a

(M4.6.2.4)
‘+‘a11 a13‘+‘a22 a23‘, (M4.6.2.5)
a3y as3 asy ass

a13

x|, (M4.6.2.6)
a33

a13 a4

a3 x| (M4.6.2.7)
a3 a4

a4 A44
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whose values are preserved under parallel translations and rotations of the coordinate axes.
The semi-invariants are

o=An+An+As,
ailr a ay a asz a
Z‘,=‘ 11 14‘4_‘22 24‘_'_‘33 34"
(41 Q44 a4y Q44 43 (44
whose values are preserved only under rotations of the coordinate axes, with A;; being the

cofactor of the entry a;; in A.
The last column in Table M4.2 allows the classification of the quadrics in accordance
with the values of the invariants .S, T', §, and A and semi-invariants o and X.

» Characteristic quadratic form of a quadric. The characteristic quadratic form
F(z,y,2) = anz’ + a22y2 + a2 + 2apxy + 201372 + a23Y 2

corresponding to equation (M4.6.2.1) and its characteristic equation

ail — A a1y a13
apy apn-\  axy | =0, or  MN-S\N+T)A-6=0 (M4.6.2.8)
a3 a3 a3z — A

permit studying the main properties of quadrics.

The roots A\;, Ay, and A3 of the characteristic equation (M4.6.2.8) are the eigenvalues of
the real symmetric matrix [a;;] and hence are always real. The invariants S, 7', and ¢ can
be expressed in terms of the roots Aj, A2, and A3 as follows:

S=>\1+>\2+>\3, T=/\1/\2+/\1/\3+/\2>\3, 5=/\1/\2/\3.

The expressions of the parameters of the main quadrics via the invariants 7', §, and A
and the roots A\, A2, and A3 of the characteristic equation are listed in Table M4.3.

TABLE M4.3
Expressions of the parameters of the main quadrics via the invariants
(M4.6.2.4)-(M4.6.2.7) and the roots of the characteristic equation (M4.6.2.8).

Surface Canonical equation Parameters of the quadrics Remarks
Lo LA L 1A Sh>
2 2 2 TN TN @=0=6
Ellipsoid C% + y—z + z—z =1 )1\3 i .
a2 b c L P A=A 2A3>0
A1 d
at = 14 b = 124 >
One-sheeted | 2> ¢ 2° YN VR azb,
. —_t = - — =
hyperboloid | 2+ 7 ~ 2 N Lé 5= AMus A=A >0 A
Az 9
o = ié b= ié
Two-sheeted | 2> 4% 27 | X o A “zb
. _ - — =
hyperboloid | ;2 " 2 T 2 A= _Lé 8= M A>0> X023
AL 9
Elliptic x_2+y_2_zz | x 1 A s p>0, ¢>0,
paraboloid P q p= NV q NV T T AM=2A>\=0
Hyperbolic li yi . R A o A Ty p>0, ¢>0,
paraboloid ) B PEANVTT TTTNVTT TR S0
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Chapter M5
Algebra

M5.1. Polynomials and Algebraic Equations
M5.1.1. Polynomials and Their Properties

» Definition of a polynomial. A polynomial of degree n of a scalar variable x is an
expression of the form

f@) = apz™ + angz"  + - +az+ag  (an #0), M5.1.1.1)

where ag, ..., a, are real or complex numbers (n =0, 1, 2, ...). Polynomials of degree
Zero are nonzero numbers.

Two polynomials are equal if they have the same coefficients of like powers of the
variable.

» Main operations over polynomials.

1°. The sum (difference) of two polynomials f(z) of degree n and g(x) of degree m is the
polynomial of degree | < max{n,m} whose coefficient of each power of z is equal to the
sum (difference) of the coefficients of the same power of x in f(x) and g(z), i.e., if

() = by ™ + by 2™+ -+ bz + by, (M5.1.1.2)

then the sum (difference) of polynomials (M5.1.1.1) and (M5.1.1.2) is

-1

f(w)ig(w):clwl+cl,1x +---+cix+cy, where cp=ar*tb, (k=0,1,...,10.

Ifn>mthenb, 1 =---=b,=0;if n<mthenayy =+ =a,, =0.

2°. To multiply a polynomial f(x) of degree n by a polynomial g(z) of degree m, one
should multiply each term in f(x) by each term in g(z), add the products, and collect
similar terms. The degree of the resulting polynomial is 7+ m. The product of polynomials
(M5.1.1.1) and (M5.1.1.2) is

i+j=k

F@9(@) = Cram@™ ™ + g™ o, = Y by,
4,5=0

where k=0, 1, ..., n+m.

3°. Each polynomial f(x) of degree n can be divided by any other polynomial p(z) of
degree m (p(x) # 0) with remainder, i.e., uniquely represented in the form f(z) = p(x)q(z)+
r(z), where g(x) is a polynomial of degree n — m (for m < n) or q(x) = 0 (for m > n),
referred to as the quotient, and r(z) is a polynomial of degree [ < m or r(x) = 0, referred to
as the remainder.

If r(x) = 0, then f(x) is said to be divisible by p(x) (without remainder).

If m > n, then q(x) = 0 and 7(x) = f(x).

103
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» Methods for finding quotient and remainder.

1°. Horner’s scheme. To divide a polynomial f(z) of degree n (see (M5.1.1.1)) by the
polynomial p(x) = x — b, one uses Horner’s scheme: the coefficients of f(z) are written out
in a row, starting from a,,; b is written on the left; then one writes the number a,, under a,,
the number a,,b + a,,_; = b,_1 under a,,_1, the number b,,_1b + a,,_» = b,_» under a,_, ...,
the number b1b + ag = by under ag. The number by is the remainder in the division of f(x)
by p(x), and @, by_1, - .., by are the coefficients of the quotient.

Remark. To divide f(x) by p(x) = ax + b (a # 0) with remainder, one first uses Horner’s scheme to divide
by pi(x) =x — (—%); now if gi(x) and r; are the quotient and remainder in the division of f(z) by pi(z), then
q(x) = %ql(:c) and r = r; are the quotient and remainder in the division of f(x) by p(z).

Example 1. Let us divide f(z) = 23 -22* - 10z + 3 by p(x) = 2z +5.
We use Horner’s scheme to divide f(x) by pi(z) =z +5/2:

[1 2 -10 3
51,9 5 1

Thus f(z) = p(z)q(x) + r(z), where

) 5)_129 5 1

2 + +
- —xT+ -+, T=—o
2

1
Q(:”)‘E(x 4)°27 T3ty g

POLYNOMIAL REMAINDER THEOREM. The remainder in the division of a polynomial
f(x) by the polynomial p(x) = x —b is the number equal to the value of the polynomial f(x)
atx =b.
2°. Long division. To divide a polynomial f(x) of degree n by a polynomial p(x) of degree
m < n, one can use long division.

Example 2. Let us divide f(z) = ° + 822 + 14z — 5 by p(z) = * + 3z - 1.

We use long division:
2P+ 827 + 14x 5|zt + 3 -1
2 +327 -z x+5

522 +152 -5
522+ 152 -5
0

Thus f(z) = p(x)q(x) + r(x), where g(z) = z + 5 and r(z) = 0; i.e., f(x) is divisible by p(x).

Example 3. Let us divide f(z) = B4t v +1 by p(x) = 22+ 1.

We use long division:
ARy R | P |
o’ +z r—4

_—42? 41
—45> -4
5

Thus f(z) = p(z)q(x) + r(z), where g(x) = x —4 and r(z) = 5.

» Expansion of polynomials in powers of a linear binomial. For each polynomial f(x)
given by equation (M5.1.1.1) and any number ¢, one can write out the expansion of f(z) in
powers of x — c:

f@) =bp(@— )" +by1(x—)" 4+ +by(z =) + by.

To find the coefficients by, ..., b, of this expansion, one first divides f(x) by x — ¢ with
remainder. The remainder is by, and the quotient is some polynomial gg (x). Then one divides
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go(x) by x — ¢ with remainder. The remainder is b;, and the quotient is some polynomial
g1(x). Then one divides g, (z) by = — ¢, obtaining the coefficient b, as the remainder, etc. It
is convenient to perform the computations by Horner’s scheme (see above).

The coefficients in the expansion of a polynomial f(x) in powers of the difference x —c¢
are related to the values of the polynomial and its derivatives at = = ¢ by the formulas

/ " (n)
2(©) z2(€) 2 (C)
bo:f(C), b1=_f1! , bz:T, ., by = —

where the derivative of a polynomial f(z) = apx™ + ap_12™ 1 +- - + a1z + 2o with real or
complex coefficients ag, . . ., a,, is the polynomial f/ ()= napz™ ' +(n—Day,_1 2"+ - +ay,
o (z) = [fi(x)],, etc. (see Subsection M6.2.1).

M5.1.2. Linear and Quadratic Equations

» Linear equations. The linear equation
ar+b=0 (a#0)

has the solution

b
r=——
a

» Quadratic equations. The quadratic equation

ar?+br+c=0 (a#0) (M5.1.2.1)

has the roots
bt Vb —4ac
2a ’

The existence of real or complex roots is determined by the sign of the discriminant
D = —4ac:

Case D > 0. There are two distinct real roots.

Case D < 0. There are two distinct complex conjugate roots.

Case D = 0. There are two equal real roots.

T2 =

VIETE THEOREM. The roots of a quadratic equation (M5.1.2.1) satisfy the following
relations:

o

r1+xT)=——, T1XTy = —.
a a

M5.1.3. Cubic Equations
» Incomplete cubic equation.

1°. Cardano’s solution. The roots of the incomplete cubic equation

v +py+q=0 (M5.1.3.1)

have the form

Y1 =A+B, y2,3=—%(A+B)ii§(A—B),
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where

A= (-24evD)" B=(-2-vD)" D= (B (L), 2=m
2 2 3 2
and A, B are arbitrary values of the cubic roots such that AB = —% p.
The number of real roots of a cubic equation depends on the sign of the discriminant D:
Case D > 0. There is one real and two complex conjugate roots.
Case D < 0. There are three real roots.
Case D = 0. There is one real root and another real root of double multiplicity.

2°. Trigonometric solution. If an incomplete cubic equation (M5.1.3.1) has real coefficients
p and g, then its solutions can be found with the help of the trigonometric formulas given
below.

(a) Letp<0Oand D < 0. Then

Y1 =24 /—% cos%, Y23 = —24 /—% cos(% i%),

where the values of the trigonometric functions are calculated from the relation
q

2/=/37
(b) Letp>0and D > 0. Then

_ p =\ 35 @)=
Y1 —2\/; cotCa), Y23 \/g {COt(z ) Zsin(ZCY) ’

where the values of the trigonometric functions are calculated from the relations

Cosx = —

tan o = (tan§>1/3, tan 3 = %(%)3/2, laf £ %, 16| < %

(c)Letp<0Oand D > 0. Then

P 1 P 1 .
= — —— - +
yi=-2 V' 3 sinQa)’ Y23 V' 3 { sina) ~ w3 cot(2a)] ’

where the values of the trigonometric functions are calculated from the relations

tan o = <tan §)1/3, sinf3 = %(—%)3/2, o] < %, 18] < g

In the above three cases, the real value of the cubic root should be taken.
» Complete cubic equation. The roots of a complete cubic equation
ar® +ba* +cx+d=0 (a#0) (M5.1.3.2)

are calculated by the formulas

b
wk:yk_g, k=1a2739

where y;, are the roots of the incomplete cubic equation (M5.1.3.1) with the coefficients

B g

VIETE THEOREM. The roots of a complete cubic equation (M5.1.3.2) satisfy the following

relations:

c d
r1+xry+r3=—, 1T+ 13 +T2x3 = —, 1,3 =——.
a a a
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M5.1.4. Fourth-Degree Equation
» Special cases of fourth-degree equations.

1°. The biquadratic equation

ax* +bxt+¢=0
can be reduced to a quadratic equation (M5.1.2.1) by the substitution ¢ = x2. Therefore,
the roots of the biquadratic equations are given by

b+ Vb2 -4ac —b—Vb*—4ac

r1p =% B ya—— T34 =7 2a

2°. The reciprocal (algebraic) equation
ax* + b + e’ +br+a=0

can be reduced to a quadratic equation by the substitution

1
y=x+—.
x

The resulting quadratic equation has the form

ay® +by +c—2a =0.
3°. The generalized reciprocal equation

az* + b + ca® + Nz + XN2a =0
can be reduced to a quadratic equation by the substitution
y=x+—.
x

The resulting quadratic equation has the form

ay® +by +c—2a\ =0.
» General fourth-degree equation.

1°. Reduction of a general fourth-degree equation to an incomplete equation. The general
fourth-degree equation

ar* +bxd + e +dr+e=0 (a#0)
can be reduced to an incomplete equation of the form

vt epytHqy+r=0 (M5.1.4.1)
by the substitution
b
r=1Y- E

2°. Descartes—Euler solution. The roots of the incomplete equation (M5.1.4.1) are given
by the formulas

n= WA VEVE), n= VA VE-VE)
= VA VE-VE). = HVA-VEVR),
where z1, z;, 23 are the roots of the cubic equation (cubic resolvent of equation (M5.1.4.1))
2+ 2p2 + (pP —4r)z— ¢ = 0. (M5.1.4.3)
The signs of the roots in (M5.1.4.2) are chosen from the condition

VAVAVE =

The roots of the fourth-degree equation (M5.1.4.1) are determined by the roots of the
cubic resolvent (M5.1.4.3); see Table M5.1.

(M5.1.4.2)
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TABLE MS5.1

Relations between the roots of an incomplete equation of fourth-degree and the roots of its cubic resolvent.

Cubic resolvent (M5.1.4.3) Fourth-degree equation (M5.1.4.1)

All roots are real and positive* Four real roots

All roots are real: one is positive and two are negative* | Two pairs of complex conjugate roots

One real root and two complex conjugate roots Two real roots and two complex conjugate roots

* By the Viete theorem, the product of the roots z1, 22, z3 is equal to ¢* > 0.

3°. Ferrari solution. Let 2y be any of the roots of the auxiliary cubic equation (M5.1.4.3).
Then the four roots of the incomplete equation (M5.1.4.1) are found by solving the following

two quadratic equations:

+ z
- Vay+ e <o,

2 T 2vm

+ Z
Peyay+ oL o,

2 2z

M5.1.5. Algebraic Equations of Arbitrary Degree and Their
Properties

» Simplest equations of degree n and their solutions.

1°. The binomial algebraic equation
" —a=0 (az0)

has the solutions

al/m (cos 2km + 7 sin 21”) for a >0,
n n

Tk+1 =
2k +1 2k +1
lalt/™ <cos Gk + Dm + 4 8in u) for a <0,
n n
where k=0,1,...,n—1and % = -1.
2°. Equations of the form
22" +ax” +b=0,
2" +ax® +ba" +c=0,

2 +ar? + b + ez +d =0

are reduced by the substitution y = 2™ to a quadratic, cubic, and fourth-degree equation,
respectively, whose solution can be expressed by radicals (see Subsections M5.1.2-M5.1.4).

Remark. In the above equations, n can be noninteger.
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3°. The generalized reciprocal (algebraic) equation

2n—1

apr™ + ayx +ot a2 +a,z”

2

F A2+ N2 02" 4+ N g+ A = 0 (ag #0).

can be reduced to an equation of degree n by the substitution

A
y=x+—.
T

Example 1. The equation
az® + bx’ +cx4+d:c3+c:c2+b:c+a=0,
which is a special case of the reciprocal equation with n = 3 and A\ = 1, can be reduced to the cubic equation
ay’ + byt +(c=3a)y +d—-2b=0
by the substitution y = x + 1/x.

» Equations of general form and their properties. An algebraic equation of degree n
has the form

1

anx” +an 12"+ +aix+ap=0 (a, #0), M5.1.5.1)

where aj, are real or complex coefficients. Denote the polynomial of degree n on the
left-hand side in equation (M5.1.5.1) by

P, (x)=apz" +apz" 4+ -+az+ag (an #0). (M5.1.5.2)

A value z = z; such that P,(xz;) = 0 is called a root of equation (M5.1.5.1) (and
also a root of the polynomial P, (x)). A value x = x; is called a root of multiplicity m if
Po(x)=(x—x1)"Qn_m(x), where m is an integer (1 <m <n), and Q,,_,,(z) is a polynomial
of degree n —m such that Q,,_,(x1) # 0.

THEOREM 1 (FUNDAMENTAL THEOREM OF ALGEBRA). Any algebraic equation of degree
n has exactly n roots (real or complex), each root counted according to its multiplicity.

Thus, the left-hand side of equation (M5.1.5.1) withroots x1, 2, . . . , x5 of the respective
multiplicities kq, k», ..., ks (k1 + k2 + - - - + ks = n) can be factorized as follows:

Po(x) = ap(z —2)" (@ —22)™ ... (2 - z5)F.

THEOREM 2. Any algebraic equation of an odd degree with real coefficients has at least
one real root.

THEOREM 3. Suppose that equation (M5.1.5.1) with real coefficients has a complex
root x1 = « + 3. Then this equation has the complex conjugate root xy = o — i3, and the
roots x1, x, have the same multiplicity.

THEOREM 4. Any rational root of equation (M5.1.5.1) with integer coefficients ay, is an
irreducible fraction of the form p/q, where p is a divisor of ay and q is a divisor of a,,. If
an = 1, then all rational roots of equation (M5.1.5.1) (if they exist) are integer divisors of
the free term.

THEOREM 5 (ABEL-RUFFINI THEOREM). Any equation (M5.1.5.1) of degree n < 4 is
solvable by radicals, i.e., its roots can be expressed via its coefficients by the operations of
addition, subtraction, multiplication, division, and taking roots (see Subsections M5.1.2—
M5.1.4). In general, equation (M5.1.5.1) of degree n > 4 cannot be solved by radicals.
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» Relations between roots and coefficients. Discriminant of an equation.
VIETE THEOREM. The roots of equation (M5.1.5.1) (counted according to their multi-
plicity) and its coefficients satisfy the following relations:

)Lk — g (k=1,2, ..., n),

GQnp,
where Sy, are elementary symmetric functions of x1, X3, ..., Tp:
n n n
Sy = E T, Sy = E rixj, S3= E TiTjT, ..., Sp=2T1T2...Ty.
i=1 1<i<y 1<i<j<k

Note also the following relations:

k

n—-Fk)a,_ + Z n-k-Hs; =0 (k=1,2,...,n)
j=1

n .

. . . L — ‘7

with symmetric functions s; = ) z/.
i=1

2n-2

The discriminant D of an algebraic equation is the product of a;’

Vandermonde determinant A(x1, x2, . . ., Z,) of its roots:

and the squared

D =a?[A@y, 2, e =0l [@i— 2™

1<j<isn

The discriminant D is a symmetric function of the roots z1, z», . . ., x,, and is equal to zero
if and only if the polynomial F,(z) has at least one multiple root.

» Bounds for the roots of algebraic equations with real coefficients.

1°. All roots of equation (M5.1.5.1) in absolute value do not exceed

Ne1+ 2 (M5.1.5.3)

[

where A is the largest of |ag|, a1, - . -, lan-1l.
The last result admits the following generalization: all roots of equation (MS5.1.5.1) in
absolute value do not exceed
Ay
Ny = p+—,
|az|

where p > 0 is arbitrary and A; is the largest of

(M5.1.5.4)

1| lan—2|  lan-3l |aol
n—11ls P) 5 pz ey pn—l .

For p = 1, formula (M5.1.5.4) turns into (M5.1.5.3).

Remark. Formulas (M5.1.5.3) and (M5.1.5.4) can also be used for equations with complex coefficients.
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Example 2. Consider the following equation of degree 4:
Py(x) = 92" — 927 — 362 + 1.

Formula (M5.1.5.3) for n = 4, |an| =9, A = 36 yields a fairly rough estimate N = 5, i.e., the roots of the
equation belong to the interval [-5, 5]. Formula (M5.1.5.4) for p =2, n =4, lan| =9, A1 = 9 yields a better
estimate for the bounds of the roots of this polynomial, N; = 3.

2°. A constant K is called an upper bound for the real roots of equation (M5.1.5.1) or the
polynomial P, (x) if equation (M5.1.5.1) has no real roots greater than or equal to K; in a
similar way, one defines a lower and an upper bound for positive and negative roots of an
equation or the corresponding polynomial.

Let

K be an upper bound for the positive roots of the polynomial P,,(x),

K, be an upper bound for the positive roots of the polynomial P,,(—x),

K3 > 0 be an upper bound for the positive roots of the polynomial =" P, (1/x),

K4 > 0 be an upper bound for the positive roots of the polynomial 2" P, (-1/x).
Then all nonzero real roots of the polynomial P, (x) (if they exist) belong to the intervals
(-K3,-1/Ky4) and (1/K3, K1).

Next, we describe three methods for finding upper bounds for positive roots of a
polynomial.

Maclaurin method. Suppose that the first m leading coefficients of the polynomial
(M5.1.5.2) are nonnegative, i.e., a, >0, a1 20, ..., an_m+1 =0, and the next coefficient
is negative, a,_,, < 0. Then

B\1/m
K=1+ (—> (M5.1.5.5)
Gn
is an upper bound for the positive roots of this polynomial, where B is the largest of the
absolute values of negative coefficients of P, (x).

Example 3. Consider the fourth-degree equation from Example 2. In this case, m = 2, B = 36 and
formula (M5.1.5.5)yields K =K, = 1+(36/9)1/2 =3. Now, consider the polynomial P4(-x)= 924922 +367+1.
Its positive roots has the upper bound K> =1+(9/ 9)!/2=2. For the polynomial z* Py(1/x) = x*-362°-92%+9,
we have m = 1, K3 =1+ 36 = 37. Finally, for the polynomial :E4P4(—1/:E) =z +362° —92% +9, we have m =2,
ks =1+9'/% = 4. Thus if Py(z) has real roots, they must belong to the intervals (-2,-1/4) and (1/37, 3).

Newton method. Suppose that the polynomial P,(x) and all its derivatives P, (z), ...,
Pfln)(w) take positive values for x = ¢. Then c is an upper bound for the positive roots
of P, (x).

Example 4. Consider the polynomial from Example 2 and calculate the derivatives
Py(x)=92* -9z - 36z +1, Pj(z)=36x"—-18x-36, P,'(x)=108z>-18, P;"(z)=216z, P,"(z)="216.
It is easy to check that for & = 2 this polynomial and all its derivatives take positive values, and therefore ¢ = 2

is an upper bound for its positive roots.

» Theorems on the number of real roots of polynomials. The number of all negative
roots of a polynomial P,(z) is equal to the number of all positive roots of the polynomial
P, (-z).

1°. The exact number of positive roots of a polynomial whose coefficients form a sequence
that does not change sign or changes sign only once can be found with the help of the
Descartes theorem (rule of signs).

DESCARTES THEOREM. The number of positive roots (counted considering their multi-
plicity) of a polynomial P, (x) with real coefficients is either equal to the number of sign
alterations between consecutive nonzero coefficients or is less than it by a multiple of 2.

Applying the Descartes theorem to P,,(—x), we obtain a similar theorem for the negative
roots of the polynomial P, (z).
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Example 5. Consider the cubic polynomial
Ps(x) = -3z +d (a #0).

Its coefficients have the signs + — +, and therefore we have two alterations of sign. Therefore, the number of
positive roots of P3(x) is equal either to 2 or to 0. Now, consider the polynomial Ps(—z) = —2° + 3z + a®. The
sequence of its coefficients changes sign only once. Therefore, the original equation has one negative root.

2°. A stronger version of the Descartes theorem. Suppose that all roots of a polynomial
P, (x) are real*; then the number of positive roots of P, (x) is equal to the number of sign
alterations in the sequence of its coefficients, and the number of its negative roots is equal
to the number of sign alterations in the sequence of coefficients of the polynomial P,,(—x).

Example 6. Consider the characteristic polynomial of the symmetric matrix

2 -z 1 1
Px)=| 1 l-z 3 |=-2°+14z +20,
1 3 1-z

which has only real roots. The sequence of its coefficients changes sign only once, and therefore it has a single
positive root. The number of its negative roots is equal to two, since this polynomial has three nonzero real
roots and only one of them can be positive.

3°. If two neighboring coefficients of a polynomial P, (x) are equal to zero, then the roots
of the polynomial cannot be all real (in this case, the stronger version of the Descartes
theorem cannot be used).

4°. The number of real roots of a polynomial P,,(x) greater than a fixed c is either equal to

the number of sign alterations in the sequence F,(c), ..., Pfln)(c) or is by an even number
less. If all roots of P, (x) are real, then the number of its roots greater than c coincides with
the number of sign alterations in the sequence Py(c), ..., P,g")(c).

Example 7. Consider the polynomial
Py(x) = 2t = 32% + 22 — 2a*x + d%.

For x = 1, we have Py(1) =—a?, P{(1) =—-1-2a%, P;'(1) = =2, P{"(1) = 6, P;""(1) = 24. Thus, there is a single
sign alteration, and therefore the polynomial has a single real root greater than unity.

M5.2. Determinants and Matrices
M5.2.1. Determinants
» Second-order, third-order, and nth-order determinants.

1°. The second-order determinant is anumber A associated with 4 scalar quantities a11, a2,
a1, a2, arranged in a 2 X 2 square table. It is denoted and calculated as

a a
A= ‘ 11 an
a1 a2
The numbers a1, a1z, az1, and ayy are called elements of the determinant A.

‘ =a11a2 —ana.

2°. The third-order determinant is a number A associated with a 3 X 3 square table of
9 scalar quantities; it is denoted and calculated as

ailr app a3
A=lay axn a3
az  azx a3

= a11a22033 + 12023031 + Q13021032 — @13022031 — 412021033 — A11023032.

* This is the case, for instance, if we are dealing with the characteristic polynomial of a symmetric matrix.
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This expression is obtained by the triangle rule (Sarrus scheme), illustrated by the following
diagrams, where entries occurring in the same product with a given sign are joined by

segments:

3°. The nth-order determinant is a number A associated with an n X n square table of
n? scalar quantities; it is denoted by

aip  ap - Qin
a1 Az - Qap

A=| o 7 . (M5.2.1.1)
Gpl Ap2 - Qpp

The numbers a;; are elements of the determinant A.
The determinant (M5.2.1.1) is calculated using the formulas

A=apAp+apAp+- - +anAin (M5.2.1.2)
= alelj + aszzj +---+ anjAnj
for any ith row and jth column. Here, A;; is the cofactor of the element a;;, which is
defined as A;; = (1) M;;, where M;; is the minor corresponding to a;;. The minor M;;
is defined as the (n—1)st-order determinant of size (n—1)x(n—1) obtained from the original
determinant by removing the ¢th row and the jth column (i.e., the row and the column that
intersect at a;;). It follows from (M5.2.1.2) that the calculation of an nth-order determinant
is reduced to the calculation of n determinants of order n — 1.
The first formula in (M5.2.1.2) is called the cofactor expansion of the determinant along
row 1 and the other one is called the cofactor expansion of the determinant along column j.

» Properties of determinants.

1. If a determinant contains a row (column) consisting of all zeroes, then this determinant
is equal to zero.

2. If a determinant has two proportional rows (columns), then the determinant is zero.

3. If a determinant has a row (column) that is a linear combination of its other rows
(columns), then the determinant is zero.

4. If two rows (columns) are interchanged, the determinant changes its sign.

5. If each element of a row (column) is divisible by a common number, this number can
be factored out of the determinant.

6. The determinant does not change if a linear combination of some of its rows (columns)
is added to another row (column).

Remark. The determinant is equal to zero if and only if its rows (columns) are linearly dependent.

» Calculation of determinants.

1°. Determinants can be calculated using the above properties.
Example 1. Find the determinant

-13 25 17
26 34 -26
36 -33 -24

A =
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We first factor out the common divisor 2 of the elements in the second row, then add the resulting second
row to the first one and then add the second row multiplied by -2 to the third one to obtain

-13 25 17 0 8 4
A=213 -17 -13|=2|13 -17 -13]|.
36 -33 -24 10 1 2

In the last determinant, by adding the third column multiplied by —2 to the second one and by using the cofactor
expansion along the first row, one obtains

0 0 4 3o
A=2[13 9 -13|=2x4|j5 ] =8(-39-90)=-1032
10 3 2

2°. Determinants are often calculated using the cofactor expansion formulas (M5.2.1.2).
To this end, its is convenient to take a row or a column that contains many zero elements.

Example 2. Find the third-order determinant

1 -1 2
A=]6 1 5
2 -1 4

We perform the cofactor expansion along the second column:

3
det A = kZ(—l)’“zakszz = ()" x(=1) x ’g i + (=) x 1 x
=1

1 2 342 1 2
’2 _4’+(—1) x(—l)x‘6 5’

=IX[6X(4)-5X2]+1X[I1X(-4)-2%2]+1X[1Xx5-2%x6]=-49.

M5.2.2. Matrices. Types of Matrices. Operations with Matrices

» Definition of a matrix. Types of matrices. A matrix of size (or dimension) m X n is
a rectangular table with entries a;; (i=1,2, ..., m;j=1, 2, ..., n) arranged in m rows
and n columns:

air  app - aip
a)i axp - G

a=| " ey (M5.2.2.1)
aml Am2 - Gmn

Note that, for each entry a;;, the index ¢ refers to the ith row and the index j to the jth
column. Matrices are briefly denoted by uppercase letters (for instance, A, as here), or by
the symbol [a;;], sometimes with more details: A=[a;;](1=1,2, ..., m;j=1,2, ..., n).
The numbers m and n are called the dimensions of the matrix.

The null or zero matrix is a matrix whose entries are all equal to zero: a;; =0 (2 =
,2,...,m,j=12,...,n).

A column vector or column is a matrix of size m X 1. A row vector or row is a matrix
of size 1 X n. Both column and row vectors are often simply called vectors.

A square matrix is a matrix of size n X n, and n is called the dimension of this square
matrix. The main diagonal of a square matrix is its diagonal from the top left corner to the
bottom right corner with the entries aj; ayy ... ann. Table MS5.2 lists the main types of
square matrices.

» Basic operations with matrices. Two matrices are equal if they are of the same size
and their respective entries are equal.

The sum of two matrices A = [a;;] and B = [b;;] of the same size m X n is the matrix
C = [c;4] of size m x n with the entries

Cij = ajj + bzg
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TABLE M5.2
Some types of square matrices.

Type of square matrix [a;] Entries
Unit (identity) s _JL i=y, .
I =161 aij =05 = {0’ i (6:5 is the Kronecker delta)

. ~_fany, i=7,
Diagonal aij = {O, it
Upper triangular o { any, <7,
(superdiagonal) %5 =90, 1>
Lower triangular o { any, 127,
(subdiagonal) % = 0, 1<j
Symmetric Qij = Aji
Ske\‘)v—symme‘tric aij = —aj;
(antisymmetric)
Hermitian . .
(self-adjoint) aij = aj; (Gj; is the complex conjugate of a number a ;)

The sum of two matrices is denoted by C' = A + B, and the operation is called addition of
matrices.
Properties of addition of matrices:

A+0=A (property of zero matrix),
A+B=B+A (commutativity),
(A+B)+(C=A+(B+C) (associativity),

where matrices A, B, C, and zero matrix O have the same size.
The difference of two matrices A = [a;;] and B = [b;;] of the same size m X n is the
matrix C' = [¢;;] of size m X n with entries

cij:aij—bij (i:1,2,...,m;j:I,Z,...,n).
The difference of two matrices is denoted by C = A — B, and the operation is called
subtraction of matrices.
The product of a matrix A = [a;;] of size m X n by a scalar ) is the matrix C' = [¢;;] of
size m X n with entries

ci=Aa;; (i=1,2,...,m;j=12,...,n).

The product of a matrix by a scalar is denoted by C' = AA, and the operation is called
multiplication of a matrix by a scalar.
Properties of multiplication of a matrix by a scalar:

0A=0 (property of zero),

Aw)A = AM(pA) (associativity with respect to a scalar factor),
AMA+ B)=AA+ A\B (distributivity with respect to addition of matrices),
A+ w)A =X A+ pA  (distributivity with respect to addition of scalars),

where A and p are scalars, matrices A, B, C, and zero matrix O have the same size.
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The product of a matrix A = [a;;] of size m X p and a matrix B = [b;;] of size p X n is
the matrix C' = [¢;;] of size m X n with entries

p
cij= amby; (=12,....m;j=12 .., n
k=1

i.e., the entry c;; in the 7th row and jth column of the matrix C' is equal to the sum of
products of the respective entries in the ith row of A and the jth column of B. Note that
the product is defined for matrices of compatible size; i.e., the number of columns in the
first matrix should be equal to the number of rows in the second matrix. The product of
two matrices A and B is denoted by C' = AB, and the operation is called multiplication of
matrices.

Example 1. Consider two matrices

Az(é —23) and Bz(—oé 41)(.)5 210>'

The product of the matrix A and the matrix B is the matrix

c=a8=(¢ 3)(% o5 )

_< 1x0+2x%x(=6) 1x10+2x(-0.5) 1x1+2x20 )_(—12 9 41)
TA6X0+ (-3)x(-6) 6x10+(-3)x(-0.5) 6x1+(-3)x20/) ~ \ 18 615 -54)°

Properties of multiplication of matrices:

AO =0y (property of zero matrix),

(AB)C = A(BC) (associativity of the product of three matrices),

Al=A (multiplication by unit matrix),

AB+C)=AB+ AC (distributivity with respect to a sum of two matrices),
MAB) = (AA)B = A(AB) (associativity of the product of a scalar and two matrices),
SD=DS (commutativity for any square and any diagonal matrices),

where ) is a scalar, matrices A, B, C, square matrix .S, diagonal matrix D, zero matrices O
and O1, and unit matrix I have the compatible sizes.

Two square matrices A and B are said to commute if AB = B A, i.e., if their multiplication
is subject to the commutative law (in general, this is not the case).

» Transpose, orthogonal, and adjoint matrix. The franspose of a matrix A = [a;;] of
size m x n is the matrix C' = [¢;;] of size n X m with entries

cij=a; (=12,...,n,7=12,...,m).

The transpose is denoted by C' = AT,

Example 2. If A = (a1, az) then AT = (Z;)

Properties of transposes:
A+B)"=AT+ BT, QAT =AT, AT = 4,
AC)! =T AT, o'=0,, =1,

where ) is a scalar; matrices A, B, and zero matrix O have size m X n; matrix C' has size
n X [; zero matrix Op has size n X m.
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THEOREM (DECOMPOSITION OF MATRICES). For any square matrix A, the matrix Sy =
%(A + AT is symmetric and the matrix S, = %(A — AT is skew-symmetric. The represen-
tation of A as the sum of symmetric and skew-symmetric matrices is unique: A = S1 +.5;.

A square matrix A is said to be orthogonal if ATA = AAT =1, ie., AT = A1, where
A1 is the inverse of A (see Subsection M5.2.3).
Properties of orthogonal matrices:
1. If A is an orthogonal matrix, then A” is also orthogonal.
2. The product of two orthogonal matrices is an orthogonal matrix.
3. Any symmetric orthogonal matrix is involutive, i.e., AA = I.

The complex conjugate of a matrix A = [a;;] of size m X n is the matrix C' = [¢;;] of
size m X n with entries

Cij = Qjj t=1,2,....,m;5=1,2,...,n),

where a;; is the complex conjugate of a;;. The complex conjugate matrix is denoted
by C = A.

The adjoint matrix of a matrix A = [a;;] of size m X n is the matrix C' = [¢;;] of size
n X m with entries

Cij = Qjj t=1,2,...,n;,5=1,2,...,m).

The adjoint matrix is denoted by C' = A*.
Properties of adjoint matrices:

(A+ B)* = A*+ B*, (\A)*=)\A*, (A"*=A,
(AC)* = C* A*, O* = Oy, I*=1,

where ) is a scalar; matrices A, B, and zero matrix O have size m X n; matrix C' has size
n X [; zero matrix Op has size n X m.

Remark. If a matrix is real (i.e., all its entries are real), then the corresponding transpose and the adjoint
matrix coincide.

A square matrix A is said to be normal if A*A = AA*. A normal matrix A is said
to be unitary if A*A = AA* = I, ie., A* = A7, where A7! is the inverse of A (see
Subsection M5.2.3).

» Trace of a matrix. The trace of a square matrix A = [a;;] of size n X n is the sum of
its diagonal entries,

n
Tr(A) = Z Qs
i=1
If A is a scalar and square matrices A and B have the same size, then
Tr(A+ B) = Tr(A) + Te(B), Tr(AA) = ATr(A), Tr(AB) = Tr(BA),
» Minors. Rank and defect of a matrix. In a square or rectangular matrix, let us select
k arbitrary rows and k arbitrary columns to make up a square submatrix. The kth-order

determinant formed by the entries where the selected rows and columns intersect is called
a kth-order minor of the matrix.
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The rank of a matrix A is the maximum order of nonzero minors of A. The rank of a
matrix A is denoted rank(A). If all entries of a matrix are zero, the rank of the matrix is
taken to be zero.

Properties of the rank of a matrix:

1. The rank of a matrix does not change if: a row (column) whose entries are all zero
is deleted; some rows (columns) are interchanged; a row (column) is multiplied by a
nonzero number; the entries of one row (column) multiplied by any number are added to
the respective entries of another row (column); and the rows are substituted by columns
while the columns are substituted by the respective rows (for square matrices).

1 2 3 6
Example 3. Find the rank of the matrix A = ( 2 3 1 6) .
31 2 6

Subtract the sum of the first three columns from column 4 and then delete the resulting column, whose
1 2 3

entries are now all zero, to obtain the matrix A; = [ 2 3 1) , which has the same rank as A. Since
31 2
det(A;) =-18 # 0, we have rank(A;) = 3, and hence rank(A) = 3.

2. For any matrices A and B of the same size the following inequality holds:
rank(A + B) <rank(A) + rank(B).

3. For a matrix A of size m X n and a matrix B of size n X k, the Sylvester inequalities
hold:
rank(A) + rank(B) — n < rank(AB) < min{rank(A), rank(B)}.

For a square matrix A of size n X n, the value d = n —rank(A) is called the defect of the
matrix A, and A is called a d-fold degenerate matrix. The rank of a nondegenerate square
matrix A = [a;;] of size n X n is equal to n.

4. Let r be the rank of a matrix; basic minor of this matrix is its nonzero minor of the order
r. Basic rows (columns) of the matrix are the rows (columns) forming the basic minor.

THEOREM ON BASIC MINOR. Basic rows (resp., basic columns) of a matrix are linearly
independent. Any row (resp., any column) of a matrix is a linear combination of its basic
rows (resp., columns).

» Linear dependence of row vectors (column vectors). A row vector (column vector)
B is a linear combination of row vectors (column vectors) Ay, ..., A if there exist scalars
aq, ..., o such that

B=041A1 +"'+OékAk.

Row vectors (column vectors) Ay, ..., Ay are said to be linearly dependent if there
exist scalars «, ..., o (a% +ot ai # 0) such that

1A+ -+ ap A =0,
where O is the zero row vector (column vector).
Row vectors (column vectors) Ay, ..., Ay are said to be linearly independent if, for
any oy, ..., (a%+---+ai¢0)wehave

a1 A+ -+ oA 7 O.

Remark. Row vectors (column vectors) A, ..., Ay are linearly dependent if and only if at least one of
them is a linear combination of the others.
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» Determinant of a matrix. For any square matrix A of the form (M5.2.2.1), one can
calculate its determinant (M5.2.1.1), denoted det A, det(A), or |A|.

The determinant of a matrix has the following properties:

1. The determinant of a triangular (upper or lower) and a diagonal matrices is equal to the
product of its entries on the main diagonal. In particular, the determinant of the unit
matrix is equal to 1.

2. The determinant of the product of two matrices A and B of the same size is equal to the
product of their determinants,

det(AB) = det Adet B.
3. The determinant is invariant under matrix transposition:

det A = det AT

M5.2.3. Inverse Matrix. Functions of Matrices

» Inverse matrices. Let A be an n X n square matrix and let I be the unit matrix of the
same size.
A square matrix A is called nonsingular or nondegenerate if det A # 0.

THEOREM. A square matrix is nondegenerate if and only if its rows (columns) are
linearly independent.

A square matrix A is called invertible if one can find a matrix B such that AB=BA=1.
The matrix B is called the inverse of A and denoted A~!. An invertible matrix A has a
unique inverse.

THEOREM. A square matrix A is invertible if and only if its determinant is nonzero (i.e.,
A is nonsingular).

If the matrix A is defined by the table (M5.2.2.1), then its inverse is calculated as

An Ay . A
det A det A det A
A12 A22 . An2
Al = | detA  detA detA | (M5.2.3.1)
Ain A . Ann
det A det A det A

where A;; is the cofactor of the element a;; of the determinant of A; the definition of A;;
can be found after formula (M5.2.1.2).
Properties of the inverse of a matrix:

ABY'=B1A1, (Al = %A*l,
AN =4, @HT =4, @ =@y,

where the square matrices A and B are assumed to be nonsingular and the scalar \ to be
nonzero.



120 ALGEBRA

» Powers of square matrices. The product of several identical square matrices A can be
written as a positive integer power of the matrix A: AA = A%, AAA = A>A = A3, etc. For
a positive integer k, one defines A¥ = A*1 A as the kth power of A. For a nondegenerate
matrix A, one defines A = AA™' =1, A = (A™1)*. Powers of a matrix have the following
properties:
APAT = AP*L (AP)T = APY

where p and g are arbitrary positive integers and A is an arbitrary square matrix; or p and ¢
are arbitrary integers and A is an arbitrary nondegenerate matrix.

There exist matrices A* whose positive integer power is equal to the zero matrix, even
if A# O. If A¥ = O for some integer k > 1, then A is called a nilpotent matrix.

A matrix A is said to be involutive if it coincides with its inverse: A= Al or A> =1

» Polynomials and functions of matrices. A polynomial with matrix argument is the
expression obtained from a scalar polynomial f(z) by replacing the scalar argument x with
a square matrix X:

fX)=aol +a1 X + ar X% +

where a; (¢ =0, 1, 2, ...) are real or complex coefficients. The polynomial f(X) is a square
matrix of the same size as X.
The exponential function of a square matrix X can be represented as the following

convergent series:
2

X
_1+X+7+?+ —Z

The inverse matrix has the form
X2 X3 > Xk
@) =e¥=1-X+ -t =) (D

Remark. Note that eXe¥ # ¢¥ e, in general. The relation e e¥

matrices X and Y.

= ¢X*Y holds only for commuting

Some other functions of matrices can be expressed in terms of the exponential function:
: 1 . 4 1 . .
sin X = T(e’X —e %), cos X = E(e’X +e ),
i

1 1
sinh X = E(eX —e_X), cosh X = E(eX + e_X).

M5.2.4. Eigenvalues and Characteristic Equation of a Matrix. The
Cayley—Hamilton Theorem

» Eigenvalues and spectra of square matrices. An eigenvalue of a square matrix A is
any real or complex A for which the matrix F'(A) = A — Al is degenerate. The set of all
eigenvalues of a matrix A is called its spectrum, and F'(\) is called its characteristic matrix.
The inverse of an eigenvalue, p = 1/, is called a characteristic value.

A square matrix is nondegenerate if and only if all its eigenvalues are different from
Zero.

A nonzero (column) vector X satisfying the condition

AX =2X

is called an eigenvector of the matrix A corresponding to the eigenvalue A. Eigenvectors
corresponding to distinct eigenvalues of A are linearly independent.
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» Characteristic equation of a matrix. The algebraic equation of degree n

ait—A  ap - Ay
ay — ap-XA - awp
fa(\) =det(A— AI) = det [a;; — \o;] = : : . : =0
ar‘zl an) s arm‘_ A

is called the characteristic equation of the matrix A of size n X n, and f4()) is called its
characteristic polynomial. The spectrum of the matrix A (i.e., the set of all its eigenvalues)
coincides with the set of all roots of its characteristic equation.

Example 1. The characteristic equation of the matrix

4 -8 1
A:(S 9 1
4 6 -1

has the form
4-) -8 1
fA()\)Edet< 5 9-x 1 = A 6N -1 =6 =—(A+ DA +2)(A +3) = 0.
4 -6 -1-X
Therefore the spectrum of the matrix A consists of three eigenvalues: A\; = -1, A, = -2, and \3 = -3.

Let A; be an eigenvalue of a square matrix A. Then:
1) a); is an eigenvalue of the matrix oA for any scalar o
2) Misaneigenvalue of the matrix AP (p=0, %1, ..., =N foranondegenerate A; otherwise,

p=0,1,...,N), where N is a natural number;
3) apolynomial f(A) of the matrix A has the eigenvalue f(\).

o0 [e.e]
The matrix power series > o A” is convergent if and only if the power series > ak)\g‘?
k=0 k=0
is convergent for each eigenvalue \; of A.
Regarding bounds for eigenvalues, see Subsection M5.1.5.

Let the positive integer s; be the multiplicity of the eigenvalue \; of the characteristic
equation of the matrix A of size n X n. Note that ) _ s; = n.

(2
The determinant det A is equal to the product of all eigenvalues of A, each eigenvalue
counted according to its multiplicity, i.e.,

det A = H)\fz

The trace Tr(A) is equal to the sum of all eigenvalues of A, each eigenvalue counted
according to its multiplicity, i.e.,

Tr(A) = Z S

» Cayley—-Hamilton theorem. Sylvester theorem.
CAYLEY-HAMILTON THEOREM. Each square matrix A satisfies its own characteristic
equation; i.e., f4(A) = 0.

Example 2. Let us illustrate the Cayley—Hamilton theorem by the matrix in Example 1:

fa(A)y=-A’—6A*—11A-61

70 -116 19 20 34 -5 4 8 1 1 00
=—<71 -117 19)—6(—21 35 —5)—11(5 -9 1)—6(0 1 O>=O.
64 -102 11 -18 28 -1 4 6 -1 0 01
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A scalar polynomial p(}) is called an annihilating polynomial of a square matrix A if
p(A) = 0. For example, the characteristic polynomial f4()) is an annihilating polynomial
of A. The unique monic annihilating polynomial of least degree is called the minimal
polynomial of A and is denoted by t(A). The minimal polynomial is a divisor of every
annihilating polynomial.

By dividing an arbitrary polynomial f(A) of degree n by an annihilating polynomial p())
of degree m (p(\) # 0), one obtains the representation

J) =pN)gN) +7(N),

where () is a polynomial of degree n —m (if m <n) or g(A\) =0 (if m >n) and r(A) is a
polynomial of degree [ < m or r(\) = 0. Hence

J(A) = p(A)q(A) +r(A),
where p(A) = 0 and f(A) = r(A). The polynomial r(}) in this representation is called the
interpolation polynomial of A.

Example 3. Let
f(A)= A*+4A4% +2A4* ~ 124101,

where the matrix A is defined in Example 1. Dividing f()\) by the characteristic polynomial fa(\) = -\° —
6)% — 11\ — 6, we obtain the remainder r(\) = 322 + 4\ + 2. Consequently,

f(A)=r(A) =34 +4A +2I.
The Cayley—Hamilton theorem can also be used to find the powers and the inverse of a
matrix A (since if f4(A) = 0, then A* f4(A) = 0 for any positive integer k).
Example 4. For the matrix in Examples 1-3, one has
fa(A)=-A*-6A>-11A-6 = 0.

Hence we obtain
Ad=—6A>-11A-6I.

By multiplying this expression by A, we obtain
At =647 - 1147 - 6A.
Now we use the representation of the cube of A via lower powers of A and eventually arrive at the formula
A =2547 + 60A + 361
For the inverse matrix, by analogy with the preceding, we obtain
A fa(A) = AN AT —6A—11A-61)=-A*—6A-111 -6A7" = 0.
The definitive result is

Al = —é(A2 +6A+111).

THEOREM. Every analytic function of a square n X n matrix A can be represented as a
polynomial of the same matrix,

1 n
A) = A, A"

where A(\1, A2, ..., \y,) is the Vandermonde determinant
1 1 ... 1
NN

AQL A A=l M A o A s H(/\i - )

: : - : 1<g<isn
n—1 n-1 .. n—1
Ay A
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and A; is obtained from A by replacing the (i + 1)st row by (f(\1), f(\2), ..., fF(An)).

In some cases, an analytic function of a matrix A can be computed by a formula in the
following theorem.

SYLVESTER’S THEOREM. If all eigenvalues of a matrix A are distinct, then

i (A= AD)

A) = M), Ly = .
A=Y fOWZk, 2y Y.

k=1

M5.3. Systems of Linear Algebraic Equations
M5.3.1. Consistency Condition for a Linear System

» Notion of a system of linear algebraic equations. A system of m linear equations
with n unknown quantities has the form

axTy +apTy+ -+ a1ETE + o+ a1 Ty = by,

a21x1+a22x2+'-'+a2kxk+~-+a2nacn:bz, (M531 1)

Am1T1 + A2 X + o+ Qi+ + ATy = b,

where ai1, a1z, ..., Gmy are the coefficients of the system; by, by, ..., by, are its constant
terms; and x1, x3, . . ., T, are the unknown quantities.

System (M5.3.1.1) is said to be homogeneous if all its constant terms are equal to
zero. Otherwise (i.e., if there is at least one nonzero free term) the system is called
nonhomogeneous.

If the number of equations is equal to that of the unknown quantities (m = n), sys-
tem (M5.3.1.1) is called a square system.

A solution of system (M5.3.1.1) is a set of n numbers x1, x, ..., x, satisfying the
equations of the system. A system is said to be consistent if it admits at least one solution.
If a system has no solutions, it is said to be inconsistent. A consistent system of the
form (M5.3.1.1) is called a determined system if it has a unique solution. A consistent
system with more than one solution is said to be undetermined.

It is convenient to use matrix notation for systems of the form (M5.3.1.1),

AX = B, (M5.3.1.2)

where A = [a;;] is a matrix of size m X n called the basic matrix of the system; X = [z;] is
a column vector of size n; B = [b;] is a column vector of size m.

» Consistency condition for a general linear system. System (M5.3.1.1) or (M5.3.1.2)
is associated with two matrices: the basic matrix A of size m Xn and the augmented matrix
Aj of size mX(n+1) formed by the matrix A supplemented with the column of the constant
terms, i.e.,

aj;  ap ... Ay ajr  app ... ayg by
a ap ... ap a ap ... ayp b

A= . S . A= o . S 1. M5.3.1.3)
aml Am2 - Gmn Am1 Qw2 --- Gmn bm

KRONECKER—CAPELLI THEOREM. A linear system (M5.3.1.1) or (M5.3.1.2) is consistent

if and only if its basic matrix and its augmented matrix (M5.3.1.3) have the same rank, i.e.,
rank(A;) = rank(A).



124 ALGEBRA

» Equivalent systems of equations. The elementary transformations. Two systems
are said to be equivalent if their sets of solutions coincide.

Systems of linear equations can be simplified using the following three types of elemen-
tary transformations:

1. Interchange of two equations (or the corresponding rows of the augmented matrix).

2. Multiplication of both sides of one equation (or the corresponding row of the augmented
matrix) by a nonzero constant.

3. Adding to both sides of one equation both sides of another equation multiplied by
a constant (adding to some row of the augmented matrix its other row multiplied by
a constant).
Under the above elementary transformations, a system of linear equations reduces to an

equivalent system of equations.

M5.3.2. Finding Solutions of a System of Linear Equations

» System of two equations with two unknown quantities. A system of two equations
with two unknown quantities has the form

arx + by = ¢y, (M5.3.2.1)
ayx + by = ;. R

Depending on the coefficients ag, by, ci, the following three cases are possible:
1°. If A = a1by —ayb; # 0, then system (M5.3.2.1) has a unique solution,

c1by — by ajcy —axcy
arby —axby’ arby —axby

2°. f A =ayby —azb; =0 and ay¢y — ape; = 0 (the case of proportional coefficients), then
system (M5.3.2.1) has infinitely many solutions described by the formulas

—aqt
x=t, y=C1b1a1 (by #0),

where t is arbitrary.
3°. If A =a1by—azb; =0and aycp — ae; # 0, then system (M5.3.2.1) has no solutions.

» General square system of linear equations with m = n. A square system of linear
equations has the form (M5.3.1.1) with m = n.

1°. Cramer’s rule. If the determinant of the matrix of system (M5.3.1.1) with m = n is
different from zero, i.e., A = det A # 0, then the system admits a unique solution, which is
expressed by formulas

Al _ AZ An

xIr = K, Ty A , ey Ty = K, (M5322)
where Ag (k =1, 2, ..., n)is the determinant of the matrix obtained from A by replacing
its kth column with the column of constant terms:

air app ... Qg1 b1 Qg1 ... Al

a1 ap ... @1 by apa ... ax
Ap=1 . o . . . .

nl Ap2 .. Gpk1 bp Gpger -0 Qnp
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Example 1. Using Cramer’s rule, let us find the solution of the system of linear equations

2:E1 + I +41’3 = 16,
3:E1 + 21’2 + x3= 10,
T + 31’2 + 31’3 = 16.

The determinant of its basic matrix is different from zero,

2 1 4
A=[3 2 1|=26%0,
1 3 3
and we have
16 1 4 2 16 4 2 1 16
Ar=[10 2 1|=26, Ay=|3 10 1|=52, A;=|3 2 10|=78.
16 3 3 1 16 3 1 3 16
Therefore, by Cramer’s rule (M5.3.2.2), the only solution of the system has the form
g2 M 52, A3 T8
'TA T2 PTA T2 PTA T2 T

2°. System (M5.3.1.1) with m = n can be treated in the matrix form (M5.3.1.2) where A
is a square matrix. If det A # 0, the system has a unique solution

X =A'B,

expressed in terms of the inverse A~!, which can be found by formula (M5.2.3.1).

3°. Reduction of a system to a triangular form (Gaussian method). Suppose that det A #0.
The Gaussian method is based on elementary transformations (see Subsection M5.3.1) used
for the reduction of a given system to an equivalent system having the triangular form

T+ Ty + RT3+ + oy = O,
Ty + 033+ - + Qo = o,

Tp1 + On1nTn = ﬁnfl,
Tn = ﬁn

This system can be easily solved: inserting z,, = 3, (from the last equation) into the
preceding (n — 1)st equation, one finds x,,_;. Then, inserting the values obtained for z,,
T,_1 into the (n—2)nd equation, one finds x,,_. Proceeding in this way, one finally finds x;.
This back substitution process is described by the formulas

n
Tk = Pk - Z apsts (k=n-1,n-2,...,1).
s=k+1

Example 2. Solve the system
xr + :cz—2x3 = —2,

21+ 3w+ x3=09,
31+ 20 +2x3="17.
Multiply the first equation by —2 and add to the second one. Multiply the first equation by —3 and add to
the third one. As a result, the first equation together with the two obtained make up the equivalent system
1+ —23 =-2,
2+ Sx3 =13,
—x2 + 8x3 = 13.
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Adding together the last two equations and dividing the result by 13, one arrives at the triangular system

T+ I —21’3 = —2,
T + 51’3 = 13,

T3 =2.
Solving this system from bottom to top, one finds that
:E3=2, 1’2213—5:E3=3, 1’12—2—IE2+2IE3=—1.

4°. The Jordan—Gauss method. Let us introduce some definitions. An unknown z; is called
resolved or basic if it enters only in one equation of the system with coefficient 1 and is not
contained in the other equations.

If each equation of the system contains a resolved unknown, this system is called
resolved. The unknowns of the system that are not basic are called free.

In order to find all solutions of a consistent system of linear equations, it suffices to find
an equivalent resolved system. If all the unknowns happen to be basic, the resolved system
gives the values of these unknowns. Otherwise, the basic unknowns are expressed in terms
of the free ones.

Description of the method. Let us write down the system of linear equations (M5.3.1.1)
as the table

wl DY wk PEEEY xn

ar EE ak EE ain b1
Qr to Qrl o Qrp br
aml te Umk tet Gmn bm

For aresolving entry a,.;. #0, the following procedure is called the Jordan transformation:

1) multiply the rth row of the table by 1/a,x;

2) add the resulting rth row multiplied by —a, to the first row;

3) add the rth row multiplied by —ay, to the second row; and so on for all remaining
rows.

After that, the unknown x; becomes resolved, with all entries of the kth column equal
to zero except that a,; = 1.

By choosing other resolving entries in different rows and performing the respective
Jordan transformations, one arrives at a resolved system equivalent to the original one.

If, at some point, the coefficients of the unknowns in a row become all zero and the free
term of that row is nonzero, then the system of equations is inconsistent. If all entries of a
row, including the free term, become zero, then this row is crossed out from the table.

Example 3. Solve the system of equations

2:E1 - 31’2 + 51’3 = 1,
T+ 222 — 3w3 =7,
2:E1 + 51’3 = 4.

Rewrite this system as a table and reduce it to a resolved form in six steps:

1|22 | a3 x| 22| s |
o|-7[nf1s — o|-7|11]15
1| 2|-3]|-7 1| 23|
0|-4|11]18 0] 3] 0] 3
o] o |22 | o @ | as |
ol o[22 — oflo[m|2 — ofo]1]2
1| 0]-3|-9 1] 0| -3|-9 1| o] 0[-3
0| 1] o] 1 0] 1] o] 1 0] 1] 0] 1
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In the tables above, the resolving entries are boxed. The following sequence of actions has been performed:
(1) double the second row has been subtracted from the first and third ones, (2) the first row has been subtracted
from the third one, (3) the third row has been divided by 3, (4) the third row multiplied by 7 (resp., by —2)
has been added to the first (resp., second) one, (5) the first row has been divided by 11, and (6) the first row
multiplied by 3 has been added to the second one. Thus, the original system acquires the resolved form
0-x1+0~z2+1-x3= 2,
1-a:1+0~x2+0-:1:3 =—3,
0-x1+1~z2+0-x3= 1.
The resulting solution is 1 = -3, x> = 1, x3 = 2.
Example 4. Solve the system of equations

2:E1 +7l’2 +3l’3 + x4 = 6,
3x1+ 522 + 223+ 24 = 4,
9:E1 +4l’2 + I3 +7l’4 =2.

With Jordan transformations, this system is reduced to the resolved form
{ — 11z =523 + 24 = - 10,
r1+ 912 +4x3 = 8.
Hence, the set of all solutions to the original system is given by
1 =8-9x2 —4x3, x4=-10+11x; + S5x3,
with x, and x3 assuming any real values.

» General system of m linear equations with n unknown quantities. Suppose that
system (M5.3.1.1) is consistent and its basic matrix A has rank r. First, in the matrix A,
one finds a submatrix of size 7 X r with a nonzero rth-order determinant and drops the m —r
equations whose coefficients do not belong to this submatrix (the dropped equations follow
from the remaining ones and can, therefore, be neglected). In the remaining equations,
the n — r unknown quantities (free unknown quantities) that are not involved in the said
submatrix should be transferred to the right-hand sides. Thus, one obtains a system of r
equations with  unknown quantities, which can be solved by any of the methods described
above in the current subsection.

Remark. If the rank r of the basic matrix and the rank of the augmented matrix of system (M5.3.1.1) are
equal to the number of the unknown quantities 7, then the system has a unique solution.

» Existence of nontrivial solutions of a homogeneous system. Consider the homoge-
neous system (M5.3.1.1), with by = by = --- = b, = 0. This system is always consistent,
since it always has the so-called trivial solution x1 =z = --- = x, =0.

THEOREM. A homogeneous system has a nontrivial solution if and only if the rank of
the matrix A is less than the number of the unknown quantities n.

It follows that a square homogeneous system has a nontrivial solution if and only if the
determinant of its matrix of coefficients is equal to zero, det A = 0.

M5.4. Quadratic Forms
M5.4.1. Quadratic Forms and Their Transformations

» Quadratic form with n variables. A real quadratic form is a homogeneous polynomial
of degree 2 in n variables z1, x5, ..., x, of the form

n
An(@1, 20, T0) = Y aiminy, (M5.4.1.1)
i,j=1

with real coefficients a;; satisfying the symmetry condition a;; = a;;.
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The quadratic form (M5.4.1.1) can be conveniently written in short matrix notation
A(X) = XTAX, (M5.4.1.2)

where X = [x;] is a column vector consisting of n elements, X7T is its transpose, and
A =[a;;] is an n X n symmetric matrix, called the matrix of the quadratic form.

A real-valued quadratic form A, (X) is said to be:
a) positive definite (resp., negative definite) if A,(X) >0 (resp., A,(X) <0) for any X #0;
b) indefinite if there exist vectors X and Y such that A4,,(X) > 0and A,(Y) <0;
¢) nonnegative (resp., nonpositive) if A,,(X) =0 (resp., A,(X) £0) for all X # 0.

The determinant det A of the matrix A is called the discriminant of the quadratic form
Ap(X). A quadratic form is called degenerate if its discriminant is zero.

» Criteria of positive and negative definiteness of a quadratic form.

1°. Areal quadratic form A, (X) is positive definite, negative definite, indefinite, nonnega-
tive, nonpositive if the eigenvalues \; of its matrix A =[a;;] are all positive, are all negative,
some are positive and some negative, are all nonnegative, are all nonpositive, respectively.

2°. Sylvester criterion. A real quadratic form A, (X) is positive definite if and only if it
satisfies the conditions

Ai1=ay; >0, AZE‘Z; Z;§‘>O, o, Ap,=detA>D0.

If the signs of the minor determinants alternate,
A1<0, A2>0, A3<0,...,
then the quadratic form is negative definite.

» Transformations of a real quadratic form. Let us find out how the coefficient matrix
changes under a linear transformation of the variables

vi=Y bayr  (G=1,2,...,m), (M5.4.1.3)
k=1

where b;;, are real numbers. In matrix notation, transformation (M5.4.1.3) becomes
X =BY, M5.4.1.4)

where Y = [y;] is a column vector of size n and B = [b;;] is a transformation matrix of size
nXn.
Substituting (M5.4.1.4) into (M5.4.1.2) gives

A, (X)=YTBTABY = YTAY = A,(Y),

where B
A=BTAB. (M5.4.1.5)

It follows that the discriminant of a quadratic form changes according to the rule

det A = det A (det B)2.

In what follows, only nondegenerate transformations of variables are considered, i.e.,
those with det B # 0. The rank of the coefficient matrix remains unchanged under such
transformations. The rank of the coefficient matrix is usually said to be the rank of the
quadratic form.
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M5.4.2. Canonical and Normal Representations of a Quadratic Form

» Canonical representation of a quadratic form. Any real quadratic form (M5.4.1.1)
can be reduced to the form

A,(X) =) Niyp = An(Y) (M5.4.2.1)

i=1

using an appropriate nondegenerate linear transformation (M5.4.1.3).

This representation is called a canonical representation of the quadratic form, the real
coefficients Ay, ..., A, are called the canonical coefficients.

Reduction of the quadratic form (M5.4.1.1) to the canonical form (M5.4.2.1) is not
unique and can be performed using various linear transformations of the form (M5.4.1.3).

LAW OF INERTIA OF QUADRATIC FORMS. The number of terms with positive coefficients
and the number of terms with negative coefficients in any canonical representation of a real
quadratic form does not depend on the method used to obtain such a representation.

The index of inertia of a real quadratic form is the integer v equal to the number of
nonzero coefficients in its canonical representation (this number coincides with the rank
of the quadratic form). Its positive index of inertia is the integer p equal to the number
of positive coefficients in the canonical representation of the form, and its negative index
of inertia is the integer g equal to the number of its negative canonical coefficients. The
integer s = p — q is called the signature of the quadratic form.

A real quadratic form A,(X) is
a) positive definite (resp., negative definite) if p = n (resp., ¢ = n);

b) indefinite if p # 0 and g # 0;
¢) nonnegative (resp., nonpositive) if ¢ =0, p < n (resp., p =0, g < n).

THEOREM. For any real symmetric quadratic form A,,(X) there exists a real orthogonal
transformation (M5.4.1.3), whose matrix B possesses the property BT B = BBT = I, that
reduces the quadratic form to the canonical form (MS5.4.2.1). The canonical coefficients
Als ..., Ay are eigenvalues of the quadratic form matrix A.

» Lagrange’s method of reduction of a quadratic form to a canonical form. For the
canonical form (M5.4.1.1), consider the following two cases.
Case 1. Suppose that @, # 0 for some m (1 £m < n). By letting

n 2
Ap(X) = % <Z amkwk> + A, (X)), (M5.42.2)
mm k=1

one can easily verify that the quadratic form A,_;(X) does not contain the variable x,, (it
contains n — 1 variables or fewer). This method of isolating a perfect square in a quadratic
form can always be applied if the matrix [a;;] (2,7 =1, 2, ..., n) contains nonzero diagonal
elements.

Case 2. Suppose that a,,,,, = ass = 0, but a,,,s # 0. In this case, the quadratic form can
be represented as

1 [ 2
An(X) =5 [Z(amk"'ask)xk] -
k=1

Ums

n 2
[Z(amk—ask)xk] +A52(X), (M5.4.2.3)
k=1

20m.s
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where A,,_»(X) does not contain the variables x.,, and x, (it contains n — 2 variables), and
the linear forms in square brackets are linearly independent (and therefore can be taken as
new independent variables or coordinates).

By combining the above two procedures, the quadratic form A,(X) can always be
represented in terms of squared linear forms; these forms are linearly independent, since
each contains a variable which is absent from the other linear forms. By taking the linear
forms to be new independent variables, one obtains the canonical representation of the
quadratic form (M5.4.2.1).

Note that the main formulas (M5.4.2.2) and (M5.4.2.3) can be rewritten as

2
A (X) = ! 0An + A,_1(X), (M5.4.2.2a)
4am \ OTm
1 04, 0A,\> (04, 0A4,\
A, (X) = - [( Do + Dr. > - ( D On > } +A,5(X). (M5.4.2.3a)

Example. Reduce the quadratic form
A3(X) = 42} + 23 + 25 — 4z 20 — da 1203 + dan T3

to a canonical form.
Using formula (M5.4.2.2a) with m = 1, we get

A3(X) = L Ba1 —4xs — 423)” + 23013 = Qa1 — 12 — 23)” + Ax(X).
Further applying formula (M5.4.2.3a) with m =2 and s = 3 to A2(X) = 2z,x3, we obtain
Ay(X) = 2maws = Q2 + 223)° - § Qa3 - 2m2)° = S (w2 +w3)” = S (w2 - w3).
The two formulas just obtained yield a canonical representation of the original form:
As(X) =yt + 35 - 305,

where
Y1 =221 -T2—T3, YPp=T2+T3, Y3 =T2— T3

» Jacobi’s formula. Introduce the following notation:

k

AT ) DS g,
y 2 - Yk “~
i,7=1

Let

Dk=A(} 2o Z)¢0 k=12 ....1)

where 7 is the rank of the quadratic form (M5.4.1.1). Then the form (M5.4.1.1) admits the
canonical representation

An(X) = 24 2
n(X) = —y; ; IR
where
12 ... k-1k\.
Yk = CkkTk + Ci k+1Tk+1 T * * + CknTn, qu=A<1 7 k-1 q>,

k=1,2,....,7;, g=k, k+1, ..., n.
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» Normal representation of a real quadratic form. Any real quadratic form (M5.4.1.1)
admits the normal representation

An(X) = fjeizf,
i=1

where z1, ..., 2z, are the new variables and €1, ..., &, are coefficients taking the values
-1,0, 1.

A normal representation can be obtained by the following transformations:

1. One obtains the canonical representation (M5.4.2.1), for example, by Lagrange’s
method.

2. With the nondegenerate coordinate transformation

1A zi for \; >0,

7

P = 1 . .
Y T z; for \; <O,
2z for \; =0,

the canonical representation can be converted to a normal representation.
» Simultaneous reduction of two quadratic forms to sums of squares.

THEOREM. Let A,(X) and B, (X) be real symmetric quadratic forms in n variables
and let B, (X) be positive definite. Then there exists a real transformation (M5.4.1.3) that
reduces the two forms to

AX) =) My BXO=) up,

k=1 k=1

where vy;, are new variables. The set of real Ay, ..., )\, coincides with the spectrum of
eigenvalues of the matrix B~'A; this set consists of the roots of the algebraic equation

det(A—\B) = 0.

M5.5. Linear Spaces
M5.5.1. Concept of a Linear Space. Its Basis and Dimension

» Definition of a linear space. A linear space or a vector space over a field of scalars
(usually, the field of real numbers or the field of complex numbers) is a set VV of elements
X, Y, Z, ... (also called vectors) of any nature for which the following conditions hold:
I. There is a rule that establishes correspondence between any pair of elements X,y € V
and a third element z € V), called the sum of the elements X, y and denoted by z=x +y.
II. There is a rule that establishes correspondence between any pair x, A, where x is an
element of VV and A is a scalar, and an element u € V), called the product of a scalar A
and a vector X and denoted by u = Ax.
III. The following eight axioms are assumed for the above two operations:

1. Commutativity of the sum: Xx+y =y +x.
2. Associativity of the sum: (X+y)+z =X+ (y +Z).
3. There is a zero element O such that x + 0 = x for any x.
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For any element x there is an opposite element X’ such that x + x’ = 0.

A special role of the unit scalar 1: 1 - x = x for any element x.
Associativity of the multiplication by scalars: A(ux) = (Ap)X.
Distributivity with respect to the addition of scalars: (A + ()X = AX + ux.
. Distributivity with respect to a sum of vectors: A(X +y) = Ax + \y.

%N oL a

This is the definition of an abstract linear space. We obtain a specific linear space if
the nature of the elements and the operations of addition and multiplication by scalars are
concretized.

Example 1. Consider the set of all free vectors in three-dimensional space. If addition of these vectors
and their multiplication by scalars are defined as in analytic geometry (see Subsection M4.5.1), this set becomes
a linear space denoted by Bj3.

Example 2. Consider the n-dimensional coordinate space R™, whose elements are ordered sets of n
arbitrary real numbers (x1, ..., x,). The generic element of this space is denoted by X, i.e., X = (z1,...,Zn),
and the reals x1, . . ., x,, are called the coordinates of the element x. From the algebraic standpoint, the set R"
may be regarded as the set of all row vectors with n real components.

The operations of addition of elements of R™ and their multiplication by scalars are defined by the following
rules:

(371,- . -,SEn)+(ZJ1,- . yyn) = (1’1 +Y1,...,Tn +yn)a
Az, ..o Tn) = (Ax1, ..., AZR).

Remark. If the field of scalars A, p, ...in the above definition is the field of all real numbers, the

corresponding linear spaces are called real linear spaces. If the field of scalars is that of all complex numbers,

the corresponding space is called a complex linear space. In many situations, it is clear from the context which
field of scalars is meant.

The above axioms imply the following properties of an arbitrary linear space:

The zero vector is unique, and for any element x the opposite element is unique.

The zero vector 0 is equal to the product of any element x by the scalar 0.

For any element x, the opposite element is equal to the product of x by the scalar —1.
The difference of two elements x and y, i.e., the element z such that z + y = x, is unique.

Ll ol e

» Basis and dimension of a linear space. Isomorphism of linear spaces. An element
y is called a linear combination of elements Xy, ..., X; of a linear space V if there exist
scalars o, ..., oy such that

y=o1X; + -+ QpXg.

Elements xi, . . ., X;, of the space ) are said to be linearly dependent if there exist scalars
ai, ..., ap such that Joq | + - - - + |oyg|* # 0 and

a1Xy + -+ apXxg =0,

where 0 is the zero element of V.
Elements xi, . . ., X;, of the space ) are said to be linearly independent if for any scalars
ai, ..., ag such that Jog? + - - - + |oy|* # 0, we have

a1Xq) + -+ apXxg #0.
Remark 1. Elements xi, ..., Xx of a linear space V are linearly dependent if and only if at least one of

them is a linear combination of the others.

Remark 2. If at least one of the elements X, ..., X is equal to zero, then these elements are lin-
early dependent. If some of the elements Xi, ..., X; are linearly dependent, then all these elements are
linearly dependent.



M5.5. LINEAR SPACES 133

Example 3. The elements i; = (1,0,...,0),i,=(0,1,...,0),...,i, =(0,0,...,1) of the space R" (see
Example 2) are linearly independent. For any x = (z1,...,x,) € R", the vectors X, ii,...,1, are linearly
dependent.

A basis of a linear space V is defined as any system of linearly independent vectors
ej, ..., e, such that for any element x of the space V there exist scalars xy, ..., x, such
that

X=x1€+---+x€y.

This relation is called the representation of an element X in terms of the basis ey, ..., €y,
and the scalars z1, ..., x, are called the coordinates of the element x in that basis.

UNIQUENESS THEOREM. The representation of any element x € V in terms of a given
basis ey, ..., e, is unique.

Lete,, ..., e, be any basis in V and vectors x and y have the coordinates x1, ..., z,, and
Y1, - - -, Yy in that basis. Then the coordinates of the vector x + y in that basis are x1 + yj,
..+, Tn + Yn, and the coordinates of the vector \x are Axy, ..., Az, for any scalar .

Example 4. Any three noncoplanar vectors form a basis in the linear space B3 of all free vectors. The n
elements i; = (1,0,...,0),i2=(0,1,...,0),...,i, =(0,0,...,1) form a basis in the linear space R".

Alinear space V is said to be n-dimensional if it contains n linearly independent elements
and any n + 1 elements are linearly dependent. The number n is called the dimension of
that space, n = dim V.

A linear space V is said to be infinite-dimensional (dim) = oo) if for any positive
integer N it contains N linearly independent elements.

THEOREM 1. If V is a linear space of dimension n, then any n linearly independent
elements of that space form its basis.

THEOREM 2. If a linear space V has a basis consisting of n elements, then dimV = n.

Example 5. The dimension of the space B; of all free vectors is equal to 3. The dimension of the space
R™ is equal to n.

Two linear spaces V and V' over the same field of scalars are said to be isomorphic
if there is a one-to-one correspondence between the elements of these spaces such that if
elements x and y from V correspond to elements x” and y’ from ), then the element x +y
corresponds to X’ +y’ and the element \x corresponds to Ax’ for any scalar \.

Remark. If linear spaces ) and V' are isomorphic, then the zero element of one space corresponds to the
zero element of the other.

THEOREM. Any two n-dimensional real (or complex) spaces )V and V' are isomorphic.

» Affine space. An affine space is a nonempty set A that consists of elements of any

nature, called points, for which the following conditions hold:

I. There is a given linear (vector) space V, called the associated linear space.

II. There is a rule by which any ordered pair of points A, B € A is associated with an
element (vector) from V; this vector is denoted by AB and is called the vector issuing
from the point A with endpoint at B.

III. The following conditions (called axioms of affine space) hold:
1. For any point A € A and any vector a € V, there is a unique point B € A such that
AB =a.
2. AB + BC = AC for any three points A, B,C € A.

By definition, the dimension of an affine space A is the dimension of the associated
linear space V, dim A = dim V.
Any linear space may be regarded as an affine space.
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In particular, the space R™ can be naturally considered as an affine space. Thus if A =
(ay,...,ap)and B = (by,...,by,) are points of the affine space R", then the corresponding

vector AB from the linear space R" is defined by AB = (b1 —ai,...,b,—ap).

Let A be an n-dimensional affine space with the associated linear space V. A coordinate
system in the affine space A is a fixed point O € A, together with a fixed basis ey, ...,
e, € V. The point O is called the origin of this coordinate system.

Let M be a point of an affine space .A with a coordinate system Oe; .. .e,. One says
that the point M has affine coordinates (or simply coordinates) 1, . . ., x,, in this coordinate
system, and one writes M =(x1, ..., x,)if z1, ... x, are the coordinates of the radius-vector

OM inthe basis ey, ..., e,,i.e, OM =zie; +- - + Tpe,.

M5.5.2. Subspaces of Linear Spaces

» Concept of a linear subspace and a linear span. A subset £ of a linear space V is
called a linear subspace of V if the following conditions hold:

1. If x and y belong to £, then the sum x + y belongs to L.
2. If x belongs to £ and A is an arbitrary scalar, then the element Ax belongs to L.

The null subspace in a linear space V is its subset consisting of the single element zero.
The space V itself can be regarded as its own subspace. These two subspaces are called
improper subspaces. All other subspaces are called proper subspaces.

Example 1. A subset B, consisting of all free vectors parallel to a given plane is a subspace in the linear
space Bj of all free vectors.

The linear span L(Xy, ..., X,,) of vectors Xy, . . ., X, in a linear space V is, by definition,
the set of all linear combinations of these vectors, i.e., the set of all vectors of the form

arXy + -+ o, Xm,

where oy, . .., a,, are arbitrary scalars. The linear span L(Xy, . . ., X,,) is the least subspace
of V containing the elements xi, . .., X;;.

If a subspace L of an n-dimensional space V does not coincide with V), then dim £ <
n =dim V.

Let elements e, .. ., e; form a basis in a k-dimensional subspace of an n-dimensional
linear space V. Then this basis can be supplemented by elements ey, ..., e, of the space
V), so that the system ey, ..., e, €x1, - . . , €, forms a basis in the space V.

THEOREM ON THE DIMENSION OF A LINEAR SPAN. The dimension of a linear span
L(x1,...,%,,) of elements X, . .., X,, is equal to the maximal number of linearly indepen-
dent vectors in the system Xy, . .., X,.

» Sum and intersection of subspaces. The intersection of subspaces £ and £, of one
and the same linear space V is, by definition, the set of all elements x of V' that belong
simultaneously to both spaces £; and £,. Such elements form a subspace of V.

The sum of subspaces £ and £, of one and the same linear space V is, by definition,
the set of all elements of V that can be represented in the form y + z, where y is an element
of V) and z is an element of £;. The sum of subspaces is also a subspace of V.

THEOREM. The sum of dimensions of arbitrary subspaces L£; and L, of a finite-
dimensional space V is equal to the sum of the dimension of their intersection and the
dimension of their sum.

Example 2. Let B3 be the linear space of all free vectors (in three-dimensional space). Denote by £; the
subspace of all free vectors parallel to the plane OXY, and by £ the subspace of all free vectors parallel to
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the plane OX Z. Then the sum of the subspaces £; and £, coincides with Bj, and their intersection consists
of all free vectors parallel to the axis OX.

The dimension of each space £; and £, is equal to two, the dimension of their sum is equal to three, and
the dimension of their intersection is equal to unity.

M5.5.3. Coordinate Transformations Corresponding to Basis
Transformations in a Linear Space

» Basis transformation and its inverse. Letey, ..., e, and ey, ..., €, be two arbitrary
bases of an m-dimensional linear space V. Suppose that the elements €j, ..., €, are
expressed via ey, ..., e, by the formulas

€] =ajje; +apey+- - +apey,
€ =ayie) +ane) + -+ ayey,

Thus, the transition from the basis e, ..., e, to the basis €y, ..., €, is determined by the
matrix
air app -+ Qlp
azr app -+ Qi
A= . . .
anl Ap2 - Gpn

Note that det A # 0, i.e., the matrix A is nondegenerate.
The transition from the basis ey, ..., €, to the basis ey, ..., e, is determined by the
matrix B = [b;;] = A1, Thus, we can write

n n
€= aje, e=> b€  (iLk=12,... ). (M5.5.3.1)
J=1 J=1
» Relations between coordinate transformations and basis transformations. Suppose
that in a linear n-dimensional space V, the transition from its basis ey, ..., €, to another
basis €j, ..., €, is determined by the matrix A (see above). Let x be any element of
the space V with the coordinates (xi, ..., xy) in the basis ey, ..., e, and the coordinates
(ZT1,..., g)inthe basis ey, ..., €,, ie.,

X=1‘1€1+---+xnen=:’51fél+'”+:’infén.

Then using formulas (M5.5.3.1), we obtain the following relations between these coordi-
nates:

n n
$j=z~€laij, 5k=zﬂflblk, Jok=1,...,n.
i=1 =1
In terms of matrices and row vectors, these relations can be written as follows:
~ ~ ~ ~ -1
(@1, 2n) = (T, .-, Tp)A, (T, .., @) = (1, ..., ) A
or, in terms of column vectors,
T T~ ~ \T ~ ~\T “INT T
(wlv'-"xn) :A (wls"" %’) ] (xh’xn) :(A ) (wl’vwn) B

where the superscript 7" indicates the transpose of a matrix.
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M5.5.4. Euclidean Space

» Definition and properties of a Euclidean space. A real Euclidean space (or simply,
Euclidean space) is a real linear space V endowed with a scalar product (also known as
inner product and dot product), which is a real-valued function of two arguments x € V),
y € V denoted by x-y, and satisfying the following conditions (axioms of the scalar product):

1. Symmetry: X-y=y-X.

2. Distributivity: (X; +X2) -y =X;-y+Xp -Yy.

3. Homogeneity: (Ax) -y = A(x - y) for any real \.

4. Positive definiteness: x - x > 0 for any x, and x - x = 0 if and only if x = 0.

Example 1. Consider the linear space B3 of all free vectors in three-dimensional space. The space Bs
becomes a Euclidean space if the scalar product is introduced as in analytic geometry (see Subsection M4.5.3):

Xy =[xl |yl cos ¢,
where ¢ is the angle between the vectors x and y.

Example 2. Consider the n-dimensional coordinate space R™ whose elements are ordered systems of n
arbitrary real numbers, X = (1, .. ., Z»). Endowing this space with the scalar product
X-y=r1y1+:+ZTnyYn,
we obtain a Euclidean space.

THEOREM. For any two elements x and y of a Euclidean space, the Cauchy—Schwarz
inequality holds:
(x- ¥’ < (x-X)(-Y).
Here equality holds if and only if one of the vectors is 0 or one vector is a multiple of the
other.

A linear space V is called a normed space if it is endowed with a norm, which is a
real-valued function of X € V, denoted by ||x|| and satisfying the following conditions:
1. Homogeneity: ||Ax|| = |\|||x]| for any real \.
2. Positive definiteness: ||x|| =0 and ||x|| = 0 if and only if x = 0.
3. The triangle inequality (also called the Minkowski inequality) holds for all elements
x and y:
I+ vl < ] + ]l (M5.5.4.1)

The value ||x]| is called the norm of an element x or its length.
THEOREM. Any Euclidean space becomes a normed space if the norm is introduced by
IIx|| = v - x. (M5.5.4.2)

COROLLARY. In any Euclidean space with the norm (M5.5.4.2), the triangle inequality
(M5.5.4.1) holds for all its elements X and y.
The distance between elements x and y of a Euclidean space is defined by

dx,y) = [lx-yl.
One says that ¢ is the angle between two elements x and y of a Euclidean space if
Xy
CosSp=—"-0.
(X1l Iyl

Two elements x and y of a Euclidean space are said to be orthogonal if their scalar product
is equal to zero, x -y = 0.

PYTHAGOREAN THEOREM. Let X1, ...X,, be mutually orthogonal elements of a Eu-
clidean space, i.e., X; - X; = 0 for ¢ # j. Then

1+ [P = a2+ x|
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Example 3. In the Euclidean space Bs of free vectors with the usual scalar product (see Example 1), the
following relations hold:
lall =lal, (a-b)* <[a’bI’, |a+b|<la]+][b].
In the Euclidean space R™ of ordered systems of n numbers with the scalar product defined in Example 2,
the following relations hold:

Il = /ot 4+ a2,

@1y1+ -+ Tnyn) S @7+ )L+ Y,

V@ +y2 + @ty SVat e ah Vg o+ gk

» Orthonormal basis in a finite-dimensional Euclidean space. For elements xy, . .., X,
of a Euclidean space, the mth-order determinant det[x; -x;] is called their Gram determinant.
These elements are linearly independent if and only if their Gram determinant is different
from zero.
One says that n elements i, ..., i, of an n-dimensional Euclidean space V form its
orthonormal basis if these elements have unit norm and are mutually orthogonal, i.e.,
i--i-={1 for ¢ = j,
v 0 fori#j.
THEOREM. In any n-dimensional Euclidean space V, there exists an orthonormal basis.

Orthogonalization of linearly independent elements:

Letey, ..., e, ben linearly independent vectors of an n-dimensional Euclidean space V.
From these vectors, one can construct an orthonormal basis of )V using the following
algorithm (called Gram—Schmidt orthogonalization):

7
= —2—, where gize-Y (i) (=L2...n.  (M554.3)
88 =
Remark. In any n-dimensional (n > 1) Euclidean space V), there exist infinitely many orthonormal bases.
Properties of an orthonormal basis of a Euclidean space:
1. Letiy, ..., i, be an orthonormal basis of a Euclidean space V. Then the scalar product
of two elements X = x1i; + - - - + i, and y = y1i; + - - - + y,l, is equal to the sum of
products of their respective coordinates:

Xy =21Y1+ -+ TnYn.
2. The coordinates of any vector X in an orthonormal basis iy, . . ., i,, are equal to the scalar

product of x and the corresponding vector of the basis (or the projection of the element
x on the axis in the direction of the corresponding vector of the basis):

:L'k=X‘ik (k‘=1,2,...,n).

Remark. In an arbitrary basis e;, ..., e, of a Euclidean space, the scalar product of two elements
X=2x1€ + - +2xpey, andy = y1€; + - - - + yn €, has the form

n n

Xy=) Y ayriy;,

i=1 j=1
where a;; =e;-¢e; (4,7=1,2, ..., n).

Two Euclidean spaces ) and V are said to be isomorphic if one can establish a one-to-one
correspondence between the elements of these spaces satisfying the following conditions:
if elements x and y of V correspond to elements X and y of V, then the element x +y
corresponds to X +Y; the element Ax corresponds to AX for any \; the scalar product (X - y)y,
is equal to the scalar product (X - 37);.

THEOREM. Any two n-dimensional Euclidean spaces V and V are isomorphic.
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Chapter M6
Limits and Derivatives

M6.1. Basic Concepts of Mathematical Analysis
M6.1.1. Number Sets. Functions of Real Variable

» Real axis, intervals, and segments. The real axis is a straight line with a point O
chosen as the origin, a positive direction, and a scale unit.

There is a one-to-one correspondence between the set of all real numbers R and the set
of all points of the real axis, with each real = being represented by a point on the real axis
separated from O by the distance || and lying to the right of O for z > 0, or to the left of O
for x < 0.

One often has to deal with the following number sets (sets of real numbers or sets on
the real axis).

1. Sets of the form (a, b), (-0, b), (a, +00), and (—o0, +00) consisting, respectively, of
all z € R such that a < x < b, x < b, x > a, and z is arbitrary are called open intervals
(sometimes simply intervals).

2. Sets of the form [a, b] consisting of all z € R such that a < x < b are called closed
intervals or segments.

3. Sets of the form (a, b], [a, b), (-0, b], [a, +00) consisting of all x such that a < x <,
a<x<b,r<b, x> aare called half-open intervals.

A neighborhood of a point xy € R is defined as any open interval (a, b) containing xg
(a < 29 < b). A neighborhood of the “point” +o0, —00, or oo is defined, respectively, as
any set of the form (b, +00), (—00, ¢) or (—0o,—a) U (a,+o0) (here, a = 0).

» Lower and upper bound of a set on a straight line. The upper bound of a set of real
numbers is the least number that bounds the set from above. The lower bound of a set of
real numbers is the largest number that bounds the set from below.

In more details: let a set of real numbers X € R be given. A number [ is called its
upper bound and denoted sup X if for any « € X the inequality < (3 holds and for any
(1 < [ there exists an x1 € X such that 1 > 5;. A number « is called the lower bound
of X and denoted inf X if for any x € X the inequality x = « holds and for any a1 > «
there exists an 1 € X such that 21 < «g.

Example 1. For a set X consisting of two numbers a and b (a < b), we have
infX=a, supX=h
Example 2. For intervals (open, closed, and half-open), we have

inf(a, b) = inf[a, b] = inf(a, b] = inf[a, b) = a,
sup(a, b) = sup[a, b] = sup(a, b] = sup[a,b) = b.

One can see that the upper and lower bounds may belong to a given set (e.g., for closed intervals) and may not
(e.g., for open intervals).

The symbol +oo (resp., —o0) is called the upper (resp., lower) bound of a set unbounded
from above (resp., from below).

139
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» Real-valued functions of real variable. Methods of defining a function.

1°. Let D and F be two sets of real numbers. Suppose that there is a relation between the
points of D and F such that to each x € D there corresponds some y € F, denoted by
y = f(x). In this case, one speaks of a function f defined on the set D and taking its values
in the set £. The set D is called the domain of the function f, and the subset of E consisting
of all elements f(z) is called the range of the function f. This functional relation is often
denotedby y = f(x), f: D — FE, f:x—y.

The following terms are also used: =z is the independent variable or the argument; y is
the dependent variable.

2°. The most common and convenient way to define a function is the analytic method: the
function is defined explicitly by means of a formula (or several formulas) depending on the
argument x; for instance, y = 2sinx + 1.

Implicit definition of a function consists of using an equation of the form F'(z,y) = 0,
from which one calculates the value y for any fixed value of the argument z.

Parametric definition of a function consists of defining the values of the independent
variable x and the dependent variable y by a pair of formulas depending on an auxiliary
variable ¢ (parameter): x = p(t), y = q(t).

Quite often functions are defined in terms of convergent series or by means of tables or
graphs. There are some other methods of defining functions.

3°. The graph of a function is the representation of a function y = f(x) as a line on the plane
with orthogonal coordinates x, 3, the points of the line having the coordinates x, y = f(x),
where x is an arbitrary point from the domain of the function.

» Single-valued, periodic, odd and even functions.

1°. A function is single-valued if each value of its argument corresponds to a unique value
of the function. A function is multi-valued if there is at least one value of its argument
corresponding to two or more values of the function. In what follows, we consider only
single-valued functions, unless indicated otherwise.

2°. A function f(x) is called periodic with period T (or T-periodic) if f(x+T) = f(x) for
any x.

3°. A function f(z) is called even if it satisfies the condition f(x) = f(-z) for any z. A
function f(x) is called odd if it satisfies the condition f(x) = —f(—x) for any .

» Decreasing, increasing, monotone, and bounded functions.

1°. Afunction f(x)is called increasing or strictly increasing (resp., nondecreasing) on a set
D C Rifforany x1, xy € D such that x; > x,, we have f(x1)> f(xz2) (resp., f(x1) = f(x2)).
A function f(x) is called decreasing or strictly decreasing (resp., nonincreasing) on a set
Difforall x1,x, € D such that x1 >z, we have f(x1) < f(x2) (resp., f(x1) < f(xy)). All
such functions are called monotone functions. Strictly increasing or decreasing functions
are called strictly monotone.

2°. A function f(z) is called bounded on a set D if | f(z)| < M for all z € D, where M is
a finite constant. A function f(x) is called bounded from above (bounded from below) on a
set Dif f(x) < M (M < f(x)) for all x € D, where M is a real constant.

» Composite and inverse functions.

1°. Consider a function u = u(x), x € D, with values u € F, and let y = f(u) be a function
defined on E. Then the function y = f (u(w)), x € D, is called a composite function or the
superposition of the functions f and w.
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2°. Consider a function y = f(x) that maps = € D into y € E. The inverse function of
y = f(x)is a function x = g(y) defined on F and such that z = g(f(x)) for all z € D. The
inverse function is often denoted by g = .

For strictly monotone functions f(x), the inverse function always exists. In order to
construct the inverse function g(y), one should use the relation y = f(x) to express x
through y. The function g(y) is monotonically increasing or decreasing together with f(x).

M6.1.2. Limit of a Sequence

» Some definitions. Suppose that there is a correspondence between each positive integer
n and some (real or complex) number denoted, for instance, by x,,. In this case, one says
that a numerical sequence (or, simply, a sequence) x1, x3, ..., Tp, ...1s defined. Such a
sequence is often denoted by {x,}; z, is called the generic term of the sequence.

Example 1. For the sequence {n2 -2}, wehave x1 = -1, 2, =2, z3 =7, x4 = 14, etc.

A sequence is called bounded (bounded from above, bounded from below) if there is a
constant M such that |x,| < M (respectively, z,, < M, xz,, > M) foralln=1, 2, ...

» Limit of a sequence. A number b is called the limit of a sequence x1, x3, ..., T, ...Iif
for any £ > 0 there is N = N(¢) such that |z, —b| < e foralln > N.
If b is the limit of the sequence {x,}, one writes lim x, =bor x, — basn — oc.
n—oo

The limit of a constant sequence {x,, = c} exists and is equal to ¢, i.e., lim c=c. In
n—oo

this case, the inequality |z,, — ¢| < € takes the form O < € and holds for all n.

Example 2. Let us show that lim L

n—oo 1+ 1

! 1 <5holdsf0ralln>é—1 = N(e).

1 . .
- 1‘ =1 The inequality o

Consider the difference ’ n
n+1

Therefore, for any positive ¢ there exists an N = — — 1 such that for n > [N we have ’ I
€ n+

- 1’ <e.
It may happen that a sequence {z,,} has no limit at all. For example, this is the case for

the sequence {x,,} = {(-1)"}. A sequence that has a finite limit is called convergent.

THEOREM (BOLZANO-CAUCHY). A sequence z,, has a finite limit if and only if for any
€ > 0, there is N such that the inequality

|2y — 2| <e

holds for alln > N and m > N.

» Properties of convergent sequences.

1. Any convergent sequence can have only one limit.

2. Any convergent sequence is bounded. From any bounded sequence one can extract
a convergent subsequence.*

3. If a sequence converges to b, then any of its subsequences also converges to b.

4. If {z,}, {y.} are two convergent sequences, then the sequences {x, Ty, }, {Zn Ynl,
and {x,,/y,} (in this ratio, it is assumed that y,, # 0 and nlerolo yn # 0) are also convergent

* Let {xn} be a given sequence and let {n} be a strictly increasing sequence with k£ and nj, being natural
numbers. The sequence {zn, } is called a subsequence of the sequence {x,}.
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and
lim (x, *y,) = lim x, £ lim y,;
n—oo n—oo n—oo
lim (cxp) = ¢ lim x, (¢ = const);
n—oo n—oo

lim (z,, - y,) = lim x, - lim y,;
n—oo n—oo n—oo

lim x,
Iim — = ——.
n—oo y,  lim y,

n—oo

5. If {x,}, {yn} are convergent sequences and the inequality x,, < y,, holds for all n,
then lim xz, < lim y,.
n—oo

n—oo
6. If the inequalities x,, < y, < z, hold for all n and lim z, = lim z, = b, then
n—oo n—oo
lim y, = 0.
n—oo

» Increasing, decreasing, and monotone sequences. A sequence {x,} is called in-
creasing or strictly increasing (resp., nondecreasing) if the inequality x,,4+1 > x, (resp.,
Tnt+l = xp) holds for all n. A sequence {x,} is called decreasing or strictly decreasing
(resp., nonincreasing) if the inequality z,,+1 < x,, (resp., Tn+1 < y,) holds for all n. All such
sequences are called monotone sequences. Strictly increasing or decreasing sequences are
called strictly monotone.

THEOREM. Any monotone bounded sequence has a finite limit.

I\ . . . -
Example 3. It can be shown that the sequence { (1 + —) } is bounded and increasing. Therefore, it is
n
convergent. Its limit is denoted by the letter e:

e= lim (1+%)" (e =~ 2.71828).

n— oo

Logarithms with the base e are called natural or Napierian, and log, = is denoted by
Inz.

» Properties of positive sequences.

1°. If a sequence x,, (x, > 0) has a limit (finite or infinite), then the sequence
Yn = VX1 Ty, .. 2y
has the same limit.

2°. From property 1° for the sequence

€Ty X3 L, T+l
Tly ——5 5 cee 5
xry X2 Tn-1 T

we obtain a useful corollary

. . Tn+l
lim ¥z, = lim ,

n—0o00 n—oo I,

under the assumption that the second limit exists.
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. n
Example 4. Let us show that lim —= =e.
n—oo {/n!
n

Taking z,, = n_' and using property 2°, we get
n!

lim — = lim “™ = lim <1+l> =e.
n—oo /nl n—oo Inp n— 00 n
» Infinitely small and infinitely large sequences. A sequence x,, converging to zero is
called infinitely small or infinitesimal.

A sequence x, whose terms infinitely grow in absolute values with the growth of n
is called infinitely large or “tending to infinity.” In this case, the following notation is

used: lim z, = oco. If, in addition, all terms of the sequence starting from some number
n—oo

are positive (negative), then one says that the sequence x,, converges to “plus (minus)
infinity,” and one writes lim x, =+00 ( lim x, =—oo). For instance, lim (-1)"n? = oo,
n—oo n—oo n—oo

lim /n =+o0, lim (-n) =—o0.
n—oo n—oo
THEOREM (STOLZ). Letx,, and y,, be two infinitely large sequences, y, — +00, and y,,
increases with the growth of n (at least for sufficiently large n): ypn+1 > yn. Then
. T . Tp — Tp-1
Iim — = lim ——,
n—00 Yp  N—=00 Yn —Yn-1

provided that the right limit exists (finite or infinite).

Example 5. Let us find the limit of the sequence

1" 42k 4. 4 nF

Zn =
nk+l

Taking ©, = 1¥ + 2% + - - + n* and y,, = n**! in the Stolz theorem, we get

k

. L n
A En = I T e
Since (n— 1! = n®! —(k+ Dn® + -+, we have n**! —(n - D*"! = (k + )n* + - - -, and therefore
lim z, = lim n* !
7L~>oon_7l~>oo(k+l)nk+--'_k}+l.

» Upper and lower limits of a sequence. The limit (finite or infinite) of a subsequence
of a given sequence x,, is called a partial limit of x,,. In the set of all partial limits of any
sequence of real numbers, there always exists the largest and the least (finite or infinite).
The largest (resp., least) partial limit of a sequence is called its upper (resp., lower) limit.
The upper and lower limits of a sequence x,, are denoted, respectively,

lim x,, lim x,,.
n—oo n—oo

Example 6. The upper and lower limits of the sequence z,, = (-1)" are, respectively,

lim z, =1, lim z, =-1.
A sequence x,, has a limit (finite or infinite) if and only if its upper limit coincides with
its lower limit:

lim z, = lim z, = lim x,.
n—oo n—oo n—oo
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M6.1.3. Limit of a Function. Asymptotes
» Definition of the limit of a function. One-sided limits.

1°. One says that b is the limit of a function f(x) as x tends to « if for any ¢ > O there is
0 = d(¢) > 0 such that | f(x) — b| < € for all x such that 0 < |z —a| < .
Notation: lim f(x)=bor f(x) — basxz — a.
r—a
One says that b is the limit of a function f(x) as x tends to +occ if for any € > O there is
N = N(g) > 0such that |f(x)-b| < eforall z > N.
Notation: lim f(z)=bor f(x) — basx — +oc.
T—+00
In a similar way, one defines the limits for x — —ooc or x — oo.

THEOREM (BOLZANO-CAUCHY 1). A function f(x) has a finite limit as x tends to a
(a is assumed finite) if and only if for any € > 0 there is 6 > 0 such that the inequality

If(x) - fx)l<e (M6.1.3.1)

holds for all x1, x; such that |x1 —a| < § and |z, — a| < 4.

THEOREM (BOLZANO-CAUCHY 2). A function f(x) has a finite limit as x tends to +00
if and only if for any € > 0 there is A > 0 such that the inequality (M6.1.3.1) holds for all
x1 > A and xy > A.

2°. One says that b is the left-hand limit (resp., right-hand limit) of a function f(x) as z
tends to a if for any € > 0 there is = §(¢) > 0 such that | f(z)-b| < & for a—d < x < a (resp.,
fora <z <a+9).
Notation: lim f(x)=bor f(a—0) =05 (resp., lim f(z)="bor f(a+0)=0b).
z—a-0 r—a+0

» Properties of limits. Let a be a number or any of the symbols co, +00, —00.
1. If a function has a limit at some point, this limit is unique.

2. If cis a constant function of x, then lim ¢ = c.
r—a

3. If there exist lim f(x) and lim g(x), then
r—a r—a

lim [f(2) £ g(@)] = lim f(z)* lim g(z);
lim cf(x) = clim f(z) (c = const);
lim f(z)- g(x) = lim f(z)- lim g(z);

f(z) lim f(x)

r—a

lim

== if g(x) #0, lim g(x) # 0).
r—a g(x) i:n’bg(x) ( g x—»ag )

4. Let f(z) < g(x) in a neighborhood of a point a (z # a). Then lim f(z) < lim g(x),
r—a r—a

provided that these limits exist.
5. If f(x) £ g(x) £ h(x) in a neighborhood of a point ¢ and lim f(x) = lim h(z) = b,
r—a Tr—a

then lim g(z) = b.
r—a
These properties hold also for one-sided limits.
» Limits of some functions.

sin x

First noteworthy limit: lim
z—0 I

1\z
Second noteworthy limit:  lim (1 + —) =e.

r—00
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Some other frequently used limits:

N e | o oapx+ap " vz +ay ap

lim ————— =n, lim - = —,
z—0 T x—00 b, x™ + by_1x™ 1 + - + byx + by b,

. l—-cosx 1 . tanx . arcsinx . arctanx

Iim ——— =—, lim =1, Im—=1, lm — =1,
z—0 ;172 2 r—0 X r—0 x x—0 X
.oet—1 .oa®-1 . In(1+2) . log, (1+x)
lim =1, lim =Ilna, lim ———==1, lim ——— =log,e,
z—0 x z—0 X z—0 x z—0

sinh x . tanhzx . arcsinhzx . arctanh z

im =1, im =1, m-—— =1, m-——- =1,
z—0 x z—0 x z—0 x z—0 X

lim z%lnz =0, lim 2 %lnz =0, lim z%* =0, Ilm 2*=1,
r—+0 T—+00 T—+00 z—+0

where a > 0 and b,, # 0.

» See Subsection M6.2.3, where L’Hospital rules for calculating limits with the help of
derivatives are given.

» Asymptotes of the graph of a function. An asymptote of the graph of a function
y = f(x) is a straight line whose distance from a point (z, ) on the graph of y = f(z) tends
to zero if at least one of the coordinates (, y) tends to infinity.

The line x = a is a vertical asymptote of the graph of the function y = f(x) if at least
one of the one-sided limits of f(x) as * — a £ 0 is equal to +00 or —co.

The line y = kx + b is an oblique asymptote of the graph of y = f(x) if at least one of
the limit relations holds:

liIP [f(x)—kzx-b]=0 or lir_n [f(x)—kx-b]=0.

If there exist finite limits

e @
im —~ =
r—+00 I

koo lim [f(2)-ka]="b, (M6.1.3.2)

then the line y = kx + b is an oblique asymptote of the graph for x — +oo (in a similar way,
one defines an asymptote for x — —00).

Example. Let us find the asymptotes of the graph of the function y = :Ca:

2

1°. The graph has a vertical asymptote = = 1, since lim1 x = o0
z—1 T —

2°. Moreover, for © — oo, there is an oblique asymptote y = kx + b whose coefficients are determined by
the formulas (M6.1.3.2):

2
=1.

k= lim —*— =1, b= lim<x

r—toco I — z—too\ x — 1

—:c) = lim

z—too I — 1

Thus, the equation of the oblique asymptote has the form y = = + 1. Fig. M6.1 shows the graph of the function
under consideration and its asymptotes.
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\ Y

&&LQ\NwLmO\\]‘
Y=

2
Figure M6.1. The graph of the function y =

I and its asymptotes.

M6.1.4. Infinitely Small and Infinitely Large Functions
» Definitions. A function f(x) is called infinitely small for x — a if lim f(z) =0.

A function f(z) is said to be infinitely large for x — a if for any K > 0 the inequality
| f(x)] > K holds for all x # a in a small neighborhood of the point a. In this case, one writes
f(@) = c0asx — aor lim f(x) = co. (In these definitions, a is a finite number or any of

r—a

the symbols 0o, +00, —00.) If f(x) is infinitely large for x — a and f(x) > 0 (f(x) < 0) in
a neighborhood of a (for z # a), one writes lim f(x) = +oo (resp., lim f(x) = —00).
r—a r—a

» Properties of infinitely small and infinitely large functions.

1. The sum and the product of finitely many infinitely small functions for x — a is an
infinitely small function.

2. The product of an infinitely small function f(z) for x — a and a function g(x) which
is bounded in a neighborhood U of the point a (i.e., |g(x)| < M for all z € U, where M >0
is a constant) is an infinitely small function.

3. ;m‘ll f(x)=bif and only if f(x) = b+ g(x), where g(x) is infinitely small for x — a.

4. A function f(x) is infinitely large at some point if and only if the function g(x) =
1/ f(z) is infinitely small at the same point.

» Comparison of infinitely small quantities. Symbols of the order: O and o. Func-
tions f(x) and g(x) that are infinitely small for x — a are called equivalent near a if
o 4@
im ——=
e—a g(z)

Examples of equivalent infinitely small functions:

= 1. In this case one writes f(x) ~ g(x).

1+e)" -1~ ne, a*—-1~c¢lna, log, (1 +¢) ~elog,e,

sine ~¢, tane~e¢g, 1-cose~ %52, arcsine ~ g, arctane ~ &,

where € = £(z) is infinitely small for z — a.
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Functions f(x) and g(x) are said to be of the same order for x — a, and one writes

f(@)=0(g()) if hmf(—))—K 0<|K|<o0.*
g(x
A functionf(x) is of a higher order of smallness compared with g(x) for x — a if
- f@)
lim ——

=0, and in this case, one writes f(z) = o(g(w)).
z—a g(z)

M6.1.5. Continuous Functions. Discontinuities of the First and the
Second Kind

» Continuous functions. A function f(z) is called continuous at a point x = q if it is
defined at that point and its neighborhood and lim f(x) = f(a).
r—a

For continuous functions, a small variation of their argument Ax = x — a results in a
small variation of the function Ay = f(z) - f(a), i.e., Ay — 0 as Ax — 0. (This property
is often used as a definition of continuity.)

A function f(x) is called right-continuous at a point x = q if it is defined at that point
(and to its right) and lim0 f(@) = f(a). A function f(x) is called left-continuous at a point

T—a+

x = a if it is defined at that point (and to its left) and limO f@) = f(a).
r—a—

» Properties of continuous functions.
1. Suppose that functions f(x) and g(x) are continuous at some point a. Then the

functions f(z) * g(x), cf(x), f(x)g(x), f(( ))

2. Suppose that a function f(x) is continuous on the segment [a, b] and takes values of
different signs at its endpoints, i.e., f(a)f(b) < 0. Then there is a point ¢ between a and b
at which f(x) vanishes:

(g(a) # 0) are also continuous at a.

fe)=0 (a<c<b).

3. If f(x)is continuous at a point a and f(a) > 0 (resp., f(a) < 0), then there is § > 0
such that f(x) > 0 (resp., f(z) <0) forall x € (a—4,a+9).

4. Any function f(x) that is continuous at each point of a segment [a, b] attains its
largest and its smallest values, M and m, on that segment.

5. A function f(x) thatis continuous on a segment [a, b] takes any value c € [m, M ] on
that segment, where m and M are, respectively, its smallest and its largest values on [a, b].

6. If f(x)is continuous and increasing (resp., decreasing) on a segment [a, b], then on
the segment [ f(a), f (b)] (resp., [ f), f (a)]) the inverse function x = g(y) exists, and is
continuous and increasing (resp., decreasing).

7. If u(zx) is continuous at a point a and f(u) is continuous at b=w(a), then the composite
function f (u(:n)) is continuous at a.

Remark. Any elementary function is continuous at each point of its domain.

» Points of discontinuity of a function. A point « is called a point of discontinuity of the
first kind for a function f(x) if there exist finite one-sided limits f(a + 0) and f(a —0), but
the relations lim f(z) = hrn f(z) = f(a)do not hold. The value |f(a +0)— f(a—0)|is

r—a+0

called the jump of the functlon at the point a. In particular, if f(a +0) = f(a —0) # f(a),
then a is called a point of removable discontinuity.

* There is another definition of the symbol O. Namely, f(x) = O(g(m)) for z — a if the inequality
|f(x)| £ Klg(z)|, K = const, holds in some neighborhood of the point a (for x # a).
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Examples of functions with discontinuities of the first kind.

1. The function f(x)= { (1) ig; 5 : 8

0 forz#0
1 forz=0

A point a is called a point of discontinuity of the second kind if at least one of the
one-sided limits f(a + 0) or f(a —0) does not exist or is equal to infinity.

has a jump equal to 1 at the discontinuity point z = 0.

2. The function f(x) = { has a removable discontinuity at the point z = 0.

Examples of functions with discontinuities of the second kind.

1. The function f(x) = sin — has a second-kind discontinuity at the point = 0 (since this function has

no one-sided limits as z — +0).
2. The function f(x) = 1/x has an infinite limit as  — 0, so it has a second-kind discontinuity at the point
z=0.

M6.1.6. Convex and Concave Functions
» Definition of convex and concave functions.

1°. A function f(x) defined and continuous on a segment [a, b] is called convex (or convex
downward) if for any x1, x; in [a, b], the Jensen inequality holds:

f<331+332> < f($1)+f(332).
2 2

(M6.1.6.1)

The geometrical meaning of convexity is that all points of the graph curve between two
graph points lie below or on the rectilinear segment joining the two graph points (see
Fig. M6.2 a).

Ay (@) Ay (b)
S (x) F2C | —— |
y=f(x) |
A ) | |
SO0 +f () M 77777777 |
| 3‘21+x2 2 | :
y 2 i :
|
@) )~ f
R
0 0 X1 X tx, X >
2

Figure M6.2. Graphs of convex (a) and concave (b) functions.

If for z; # x, condition (M6.1.6.1) holds with < instead of <, then the function f(x) is
called strictly convex.

2°. A function f(x) defined and continuous on a segment [a, b] is called concave (or convex
upward) if for any x1, x; in [a, b] the following inequality holds:

f<331+332> > f($1)+f(332)'

M6.1.6.2
5 5 ( )
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The geometrical meaning of concavity is that all points of the graph curve between two
graph points lie above or on the rectilinear segment joining the two graph points (see
Fig. M6.2 b).

If for x1 # x;, condition (M6.1.6.2) holds with > instead of >, then the function f(z) is
called strictly concave.

» Some properties of convex and concave functions.

1. The product of a convex (concave) function and a positive constant is a convex
(concave) function.

2. The sum of two or more convex (concave) functions is a convex (concave) function.

3. A non-constant convex (resp., concave) function f(z) on a segment [a, b] cannot
attain its largest (resp., smallest) value inside the segment.

4. A function f(x) that is continuous on a segment [a, b] and twice differentiable on the
interval (a, b) is convex downward (resp., convex upward) if and only if f”(z) > 0 (resp.,
f"(x) £ 0) on that interval.

M6.1.7. Convergence of Functions

» Pointwise, uniform, and nonuniform convergence of functions. Let {f,(z)} be a
sequence of functions defined on a set X C R. The sequence { f,,(x)} is said to be pointwise
convergent to f(x) as n — oo if for any fixed x € X, the numerical sequence {f,(x)}
converges to f(z). The sequence { f,(x)} is said to be uniformly convergent to a function
f(x) on X as n — oo if for any € > O there is an integer N = N(¢) such that for all n > N
and all x € X, the following inequality holds:

|fn(x) - f(@)] <€ (M6.1.7.1)

Note that in this definition, N is independent of x. For a sequence {f,(x)} pointwise
convergent to f(x) as n — oo, by definition, for any € > 0 and any =z € X, there is
N = N(g, z) such that (M6.1.7.1) holds for all n > N(g, x).

If one cannot find such an NV independent of x and depending only on € (i.e., one cannot
ensure (M6.1.7.1) uniformly; to be more precise, there is an € > 0 such that for any N >0
there is a ky > N and o € X such that |f;, (xn) — f(zn)] = €), then one says that the
sequence { f(x)} converges nonuniformly to f(x) on the set X.

» Basic theorems. Let X be an interval on the real axis.

THEOREM. Let f,(x) be a sequence of continuous functions uniformly convergent to
f(x) on X. Then f(x) is continuous on X .

COROLLARY. If the limit function f(x) of a pointwise convergent sequence of contin-
uous functions { f,(x)} is discontinuous, then the convergence of the sequence { f,(x)} is
nonuniform.

Example. The sequence {f,(x)} = {2"} converges to f(x) = 0 as n — oo uniformly on each segment
[0,a], 0 < a < 1. However, on the segment [0, 1] this sequence converges nonuniformly to the discontinuous

) <
function f(zx) = {(1) ;gi g;f <L

CAUCHY CRITERION. A sequence of functions { f,(z)} defined on a set X € R uniformly
converges to f(x) asn — oo if and only if for any ¢ > 0 there is an integer N = N(¢) >0
such that for allm > N and m > N, the inequality | f,,(x) — fin(x)| < € holds for all x € X.

» Geometrical meaning of uniform convergence. Let f,,(x) be continuous functions on
the segment [a, b] and suppose that { f,,(x)} uniformly converges to a continuous function
f(x)asn — oo. Then all curves y = f,(x), for sufficiently large n > N, belong to the strip
between the two curves y = f(x) —e and y = f(x) + ¢ (see Fig. M6.3).
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X
>

o a b

Figure M6.3. Geometrical meaning of uniform convergence of a sequence of functions { f» ()} to a continuous

function f(x).

M6.2. Differential Calculus for Functions of a Single
Variable

M6.2.1. Derivative and Differential: Their Geometrical and Physical
Meaning

» Definition of derivative and differential. The derivative of a function y = f(x) at a
point z is the limit of the ratio

Y= Az Az=0 Az ’

where Ay = f(z+Ax)-f(x) is the increment of the function corresponding to the increment

d d,
of the argument Az. The derivative y’ is also denoted by v., 9, d—z, 1), J;(;) .

Example 1. Let us calculate the derivative of the function f(z) = x>
By definition, we have

2 2
Fw = fim, T = lim @+ A =2s

The increment Az is also called the differential of the independent variable = and is
denoted by dzx.

A function f(x) that has a derivative at a point z is called differentiable at that point.
The differentiability of f(x) at a point x is equivalent to the condition that the increment
of the function, Ay = f(x + dx) — f(x), at that point can be represented in the form
Ay = f'(x) dz + o(dx) (the second term is an infinitely small quantity compared with dx as
dx — 0; see Subsection M6.1.4).

A function differentiable at some point x is continuous at that point. The converse is
not true, in general; continuity does not always imply differentiability.

A function f(x) is called differentiable on a set D (interval, segment, etc.) if for any
x € D there exists the derivative f’(x). A function f(x) is called continuously differentiable
on D if it has the derivative f’(z) at each point x € D and f’(x) is a continuous function
on D.

The differential dy of a function y = f(z) is the principal linear part of its increment Ay
at the point x, so that dy = f'(z)dz, Ay = dy + o(dx).

The approximate relation Ay = dy or f(x + Ax) = f(z) + f'(x)Az (for small Ax) is
often used in numerical analysis.



MS6.2. DIFFERENTIAL CALCULUS FOR FUNCTIONS OF A SINGLE VARIABLE 151

» Physical and geometrical meaning of the derivative. Tangent line.

1°. Let y = f(x) be the function describing the path y traversed by a body by the time x.
Then the derivative f'(x) is the velocity of the body at the instant x.

2°. The tangent line or simply the fangent to the graph of the function y = f(z) at a point
M (xg, yo), where yg = f(xo), is defined as the straight line determined by the limit position
of the secant M N as the point N tends to M along the graph. If « is the angle between
the z-axis and the tangent line, then f’(x() = tan « is the slope ratio of the tangential line
(Fig. M6.4).

AY

Ay
Yo !
y=5x)
14 x
0 X, XotAx

Figure M6.4. The tangent to the graph of a function y = f(x) at a point (xo, Yo).
Equation of the tangent line to the graph of a function y = f(x) at a point (xg, ¥o):
y—yo = f'(@o)(x — xo).
Equation of the normal to the graph of a function y = f(x) at a point (xg, yo):
1
Y—Yo=————(x - o).
J'(20)
M6.2.2. Table of Derivatives and Differentiation Rules

The derivative of any elementary function can be calculated with the help of derivatives of
basic elementary functions and differentiation rules.

» Table of derivatives of basic elementary functions (a = const).

(a) =0, (@) = az"",
(e®) =¢€", @*) =a®Ina,

1
(Inz) = - (log, z) = —
(sinz) = cosz, (cos z) =—sinz,
(tanz) = 5> (cotz) = —— 5>

cos? x sin? x

1 1
(arcsinz)’ = , (arccos ) =— ,
V1-—a2 V1-22
1
(arctan z)’ = , (arccot ) = ——,
x2 1+2x2

(sinh )’ = cosh z,

(coshz)' =sinhz,
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1

(tanh z) = v (cothz) =— .

cosh” x sinh” x

1 1
(arcsinh 7)) = ——, (arccosh ) = ——,
V1+2? x2 -1
1

(arctanh ) = 2 (x2 <1), (arccoth z) = 2 (wz > 1).

» Differentiation rules.
1. Derivative of the sum (difference) of functions:

[uw(x) £ v(@)] = v/ (x) £V (x).
2. Derivative of the product of a function and a constant:
[au(z)] = au/(x) (a = const).
3. Derivative of the product of functions:
[u(x)v(@)] = v (@)v(@) + ul@)v' ().

4. Derivative of the quotient of functions:

[u(w) ] r o (@)o(x) — w@)' (z) ‘

o)l v2(x)

5. Derivative of a composite function:

[flu(@)] = fllun (@),

6. Derivative of a parametrically defined function x = x(t), y = y(t):

7. Derivative of an implicit function defined by the equation F(x,y) = 0:
Yp = —— (F and F}, are partial derivatives).

8. Derivative of the inverse function x = x(y) (for details see footnote*):

1
/

T, = —.
Yooyl

9. Derivative of a composite exponential function:

v
[w(@)"@] = vvu’ + 0w’ Inu = u’ <u'— +7'In u)
u

* Lety = f(x) be a differentiable monotone function on the interval (a, b) and f’(x0) # 0, where zo € (a, b).

Then the inverse function = = g(y) is differentiable at the point 3o = f(x0) and ¢'(10) =

o
o)’
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10. Derivative of a composite function of two arguments:
[ f (u(:n), v(a:))], = fu(u,v)u' + fo(u,v)v (fy and f, are partial derivatives).
11. Logarithmic derivative:
u'(z)

[lnu(z)] = @

Example 1. Let us calculate the derivative of the function

x
. . L . . T+l
Using the rule of differentiating the ratio of two functions, we obtain
( z’ )/ @ Qr+)-2’Qz+1)  22Qz+1)-22" 237 +2z
2r+1/) ~ Qz+1)2 T Qa+l? T Qr+ )
Example 2. Let us calculate the derivative of the function In cos x.
Using the chain rule or the logarithmic derivative formula, we get

(cosz) =—tanzx.

1
(Incosz) =
cos x

Example 3. Let us calculate the derivative of the function . Using the rule of differentiating the
composite exponential function with u(x) = v(x) = x, we have

x-1

@™ =2 Inz+zz” =2"(nz + 1).

M6.2.3. Theorems about Differentiable Functions. L'Hospital Rule

» Main theorems about differentiable functions.

ROLLE THEOREM. If the function y = f(x) is continuous on the segment [a, b], differ-
entiable on the interval (a,b), and f(a) = f(b), then there is a point ¢ € (a,b) such that
f'(e)=0.

LAGRANGE THEOREM. If the function y = f(x) is continuous on the segment [a, b] and
differentiable on the interval (a, b), then there is a point c € (a, b) such that

f) = f(a) = f'(Ob-a).

This relation is called the formula of finite increments.

CAUCHY THEOREM. Let f(x) and g(x) be two functions that are continuous on the
segment [a, b], differentiable on the interval (a,b), and ¢'(x) # 0 for all z € (a,b). Then
there is a point ¢ € (a,b) such that

f®)-f@ _ f©
g)-g(a)  g¢'(©)
» L’Hospital’s rules on indeterminate expressions of the form 0/0 and oo /oco.

THEOREM 1. Let f(x) and g(x) be two functions defined in a neighborhood of a point
a, vanishing at this point, f(a) = g(a) = 0, and having the derivatives f'(a) and ¢'(a), with
g'(a) #0. Then

/
. X a
fim L@ _ 1@
v—a g(x)  g'(a)
T sinz
Example 1. Let us calculate the limit hrr}) oo

Here, both the numerator and the denominator vanish for x = 0. Let us calculate the derivatives
f(x) = (sinz)’ =cosx = f(0)=1,
g@=010-e"" =2 = 4 0)=2#0.

By the L’'Hospital rule, we find that
sine _ f'(0) 1
b 1o g'(0) 2"
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THEOREM 2. Let f(x) and g(x) be two functions defined in a neighborhood of a point
a, vanishing at a, together with their derivatives up to the order n — 1 inclusively. Suppose
also that the derivatives f™(a) and ¢"(a) exist and are finite, ¢ (a) # 0. Then

I f@ ™)
m —-= .
T—a g(gj) g(")(a)

THEOREM 3. Let f(x) and g(x) be differentiable functions and ¢'(x) # 0 in a neighbor-
hood of a point a (x # a). If f(x) and g(x) are infinitely small or infinitely large functions

for x — a, i.e., the ratio

. . . 0
at the point a is an indeterminate expression of the form 0

00
or —, then
00

. f@) . fi(@)
lim = lim
z—a g(x) z—a ¢'(x)
(provided that there exists a finite or infinite limit of the ratio of the derivatives).

Remark. The L’Hospital rule 3 is applicable also in the case of a being one of the symbols oo, +00, —00.
» Methods for interpreting other indeterminate expressions.
1°. Expressions of the form 0-oco and co—oo can be reduced to indeterminate expressions

0 00 ) . .
— or — by means of algebraic transformations, for instance:
o0

0
w(x)v(x) = u@) transformation rule 000 — —
T 1/u(x) 0’
w(x) —v(x) = ! ! : ! transformation rule oo — o0 =
T \u@) w@) ) w@)(x) 0

2°. Indeterminate expressions of the form 1°°, oo®, 0° can be reduced to expressions of

1
the form 0 or x by taking logarithm and using the formulas Inu” = vInu = u
00

/v’
Example 2. Let us calculate the limit linB (cos m)l/ 3”2.

We have the indeterminate expression 1°°. We find that

1/a? . Incosx . (Incosz) . (~tanx) 1
= lim = lim = lim =—.
z—0 2 z—0  (x2) z—0 2x 2

1/z?

In lim (cos x) = lim In(cos x)
z—0 z—0

. /22 _ a1
Therefore, :11510 (cos x) =e = Nh
M6.2.4. Higher-Order Derivatives and Differentials. Taylor’s Formula
» Derivatives and differentials of higher orders. The second-order derivative or the
second derivative of a function y = f(x) is the derivative of the derivative f’(x). The second

d
derivative is denoted by 3" and also by vy, d_g ().

x

The derivative of the second derivative of a function y = f(x) is called the third-order
derivative, y"” = (y"")'. The nth-order derivative of the function y = f(x) is defined as the

derivative of its (n — 1)th derivative:

y" ="y,



MS6.2. DIFFERENTIAL CALCULUS FOR FUNCTIONS OF A SINGLE VARIABLE 155

7’L
The nth-order derivative is also denoted by y;"), T f M)(z).
The second-order differential is the differential of the first-order differential, d’y =
d(dy). If z is the independent variable, then d*y = v - (dz)*. In a similar way, one defines
differentials of higher orders.

» Table of higher-order derivatives of some elementary functions.

@)™ =a(a-1)...(a—n+ 1)z*™", (@®)™ = (Ina)"a®,
1 -1
(n)™ = (1" - 11— og, " = (-1 B0 L
T Ina =z
(sinz)™ = sin <x + %), (cos )™ = cos <w + %),
. () _ fcoshx if nisodd, (n) _ { coshx if niseven,
(sinh 2)™ = { sinhx if n is even, (coshz)™ = sinhx if nis odd.

» Rules for calculating higher-order derivatives.
1. Derivative of a sum (difference) of functions:

[u(z) £ v(@)]™ = u™(z) £ o™ (2).
2. Derivatives of a function multiplied by a constant:
[aw(z)]™ = au™ (x) (a = const).
3. Derivatives of a product:

[u(@)v(@)]" = 4" (z)v() + 24/ () () + u(x)v” (x),

[u@)v@)]” = u" (x)v(z) + 3u" ()0 (z) + 3u' (2)v" () + u(@x)v"” (),

[w(z)v(z)]™ = Z C’,’iu(k)(aj)v(nfk)(x) (Leibniz formula),
k=0

where C’ﬁ are binomial coefficients, uQ(z) = u(x), vV (z) = v(x).
4. Derivatives of a composite function:

[fu(@)]” = fILul)? + flaull,,
[fu@)]” = ;’;uw )+ 3f sty + foulth,.

5. Derivatives of a parametrically defined function x = x(t), y = y(t):

O O G i O
(@)’ (@) 4
6. Derivatives of an implicit function defined by the equation F(x,y) =0
1
" o_

—5 (-F) Foo + 2F, Fy Foy — F1 Fyy),
Yy

/// 1

—5 (=F Fuaw + 3Fy F) Fuwy = 3F F) Fuyy + F FyFyyy + 3F,) FupFly
y
—3F,F FuoFyy —6F Fy F, = 3F, Fo +9F; F,Fp Fy,),

where the subscripts denote the corresponding partial derivatives.
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7. Derivatives of the inverse function x = x(y):

"o__ Yoa mo_ Yowa (7 )2 x(")=i[$(n—1)]/
7 S (7 S 5 A

» Taylor’s formula. Suppose that in a neighborhood of a point x = a, the function y = f(x)

has derivatives up to the order (n + 1) inclusively. Then for all x in that neighborhood, the
following representation holds:

f() f”() f(”)()

f@) = fa)+ (x—a)+ (x—a)* +

where R, (x) is the remainder term in Taylor’s formula.
The remainder term can be represented in different forms:

(x—a)" + Rp(x), (M6.2.4.1)

R, (z) = o[(x - a)"] (Peano),
F (a+ k(@ - a)) w1
R,(x) = t D) (x—a) (Lagrange),
(n+1) k(x —
Ruw) = (a; C20) ke (Cauchy),
(n+1) k(x —
R, (z) = / (a + k(@ a)) (1—k)"1P(z —a)™'  (Schlémilch and Roche),

nlp

(integral form),

R, (z) = % / ' FOY (@ - )" dt

where 0 < k£ < 1 and p > 0; k depends on z, n, and the structure of the remainder term.
The remainders in the form of Lagrange and Cauchy can be obtained as special cases of the
Schlomilch formula with p = n + 1 and p = 1, respectively.

For a = 0, the Taylor’s formula (M6.2.4.1) turns into

(0) "(0) (")(0)
f@r = 1@+ L0 SO SO )
and is called the Maclaurin formula.
The Maclaurin formula for some functions:
33‘2 3 "
"L. —_— — — — —
e _1+1‘+2!+3'+ +n!+Rn(x),
B 7 2n+l
el _ e — ) p— ni
sinx = x — 3 + 517 +---+(=1) ant )l + Rypa1(2),
2 4 6 22
T z
coszr =1 _1+H_§ (= 1)"(2 )‘+R2n($)~

M6.2.5. Extremal Points. Points of Inflection

» Maximum and minimum. Points of extremum. Let f(x) be a differentiable function
on the interval (a, b) and f'(x) > 0 (resp., f'(x) < 0) on (a,b). Then f(x) is an increasing
(resp., decreasing) function on that interval*.

Suppose that there is a neighborhood of a point z( such that for all x # xp in that
neighborhood we have f(x)> f(xg) (resp., f(x) < f(xg)). Then z is called a point of local
minimum (resp., local maximum) of the function f(x).

Points of local minimum or maximum are called points of extremum.

* At some isolated points of the interval, the derivative may vanish.
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» Necessary and sufficient conditions for the existence of extremum. Suppose that
f(x) is continuous in some neighborhood (z¢ — 9, xg + J) of a point z¢ and differentiable
at all points of the neighborhood except, possibly, z.

NECESSARY CONDITION OF EXTREMUM. A function f(x) can have an extremum only at
points in which its derivative either vanishes or does not exist (or is infinite).

FIRST SUFFICIENT CONDITION OF EXTREMUM. If f'(z) > 0 for x € (x9 — 0, xo) and
f'(x) <0 for x € (wo, 1o + ), then xq is a point of local maximum of this function. If
f'(x) <0 forx € (xg—0, xg) and f'(x) >0 for x € (xg, xo+ ), then g is a point of local
minimum of this function.

If f'(x) is of the same sign for all x # xg, x € (x9—0, To+9), then xo cannot be a point
of extremum.

SECOND SUFFICIENT CONDITION OF EXTREMUM. Let f(x) be a twice differentiable
function in a neighborhood of xy. Then the following statements hold:

() f'(xo)=0 and f"(x9)<0 == f(x) has alocal maximum at the point x;
(i) f'(xo)=0 and f"(xg)>0 = f(x) has a local minimum at the point x.

THIRD SUFFICIENT CONDITION OF EXTREMUM. Let f(x) be a function that is n times
differentiable in a neighborhood of a point zo and f'(xq) = f"(xg) = --- = f® D(xg) = 0,
but f™(xq) # 0. Then the following statements hold:

(i) nisevenand f™(x9g) <0 = f(x) has a local maximum at the point x;

(ii) mnisevenand f™(xo)>0 = f(x) has a local minimum at the point x.

If'n is odd, then xy cannot be a point of extremum.

» Largest and the smallest values of a function. Let y = f(x) be continuous on the
segment [a, b] and differentiable at all points of this segment except, possibly, finitely many
points. Then the largest and the smallest values of f(x) on [a, b] belong to the set consisting
of f(a), f(b), and the values f(x;), where x; € (a, b) are the points at which f’(z) is either
equal to zero or does not exist (is infinite).

» Direction of the convexity of the graph of a function. The graph of a differentiable
function y = f(x) is said to be convex upward (resp., convex downward) on the interval
(a, ) if for each point of this interval, the graph lies below (resp., above) the tangent line at
that point.

If the function y = f(x) is twice differentiable on the interval (a, b) and f”(x) < 0 (resp.,
f"(x) > 0), then its graph is convex upward (resp., downward) on that interval. (At some
isolated points of the interval, the second derivative may vanish.)

Thus, in order to find the intervals on which the graph of a twice differentiable function
f(x) is convex upward (resp., downward), one should solve the inequality f”(z) <0 (resp.,

F(x) > 0).

» Inflection points. An inflection point on the graph of a function y = f(x) is defined as
a point (zg, f(zo)) at which the graph passes from one side of its tangent line to another.
At an inflection point, the graph changes the direction of its convexity.

Suppose that the function y = f(x) has a continuous second derivative f”(x) in some
neighborhood of a point zg. If f”(z) = 0 and f”(z) changes sign as z passes through the
point xg, then (xg, f(xp)) is an inflection point.
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M6.2.6. Qualitative Analysis of Functions and Construction of
Graphs

» General scheme of analysis of a function and construction of its graph.
1. Determine the domain in which the function is defined.
Determine whether the function is odd or even and whether it is periodic.
Find the points at which the graph crosses the coordinate axes.
Find the asymptotes of the graph.
Find extremal points and intervals of monotonicity.
Determine the directions of convexity of the graph and its inflection points.
Draw the graph, using the properties 1 to 6.

NNk wN

. . Inz .
Example. Let us examine the function y = —— and construct its graph.
x

We use the above general scheme.

1. This function is defined for all  such that 0 < x < +co.

2. This function is neither odd nor even, since it is defined only for = > 0 and the relations f(-x) = f(z)
or f(-z) = —f(x) cannot hold. Obviously, this function is nonperiodic.

3. The graph of this function does not cross the y-axis, since for = = 0 the function is undefined. Further,
y =0only if z = 1, i.e., the graph crosses the z-axis only at the point (1, 0).

1
4. The straight line x = 0 is a vertical asymptote, since lim 2T 0. We find the oblique asymptotes:

z—+0 T
k= lim 2 =0, b= lim (y—kz)=0.
r—+00 I T—+00

Therefore, the line y = 0 is a horizontal asymptote of the graph.

L 1-Inz . .
5. The derivative 3 = vanishes for Inx = 1. Therefore, the function may have an extremum at

2
T

x =e. For z € (0,¢), we have 3y > 0, i.e., the function is increasing on this interval. For x € (e, +00), we have
y’ < 0, and therefore the function is decreasing on this interval. Atz = e the function attains its maximal value

Ymax = —

One should also examine the points at which the derivative does not exist. There is only one such point,
x =0, and it corresponds to the vertical asymptote (see Item 4).

2Inz-3 32

. . 1" .
6. The second derivative y° = ———— vanishes for z = e 3/2
x

. On the interval (0, ¢*/*), we have y" < 0,

3/2

3
and therefore the graph is convex upward on this interval. For x € (e’/?, +00), we have y”’ > 0, and therefore
the graph is convex downward on this interval. The value = = e corresponds to an inflection point of the
graph, with the ordinate y = %e'y 2,

7. Using the above results, we construct the graph (Fig. M6.5).

AY

1/e]-
3/(2¢*?)
0.2

Olltee? 10 20 30 40"

-0.2

-0.4

Figure M6.5. Graph of the function y = 1.2,

x
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» Transformations of graphs of functions. Let us describe some methods which in
many cases allow us to construct the graph of a function if we have the graph of a simpler
function.

1. The graph of the function y = f(x) + a is obtained from that of y = f(x) by shifting
the latter along the axis Oy by the distance |a|. For a > 0 the shift is upward, and for a < 0
downward (see Fig. M6.6 a).

A
y=fe+a

a>0,"

AY (2 (hy AY
y=1f) A
y=fe | /
w\/'—\/A\/ x / x
o N /T | >
/// \\/< ///'5“ 0 I'\
y=f) Vol y=r

Figure M6.6. Transformations of graphs of functions.

2. The graph of the function y = f(x + a) is obtained from that of y = f(x) by shifting
the latter along the Oz by the distance |a|. For a > 0 the shift is to the left, and for a < 0 to
the right (see Fig. M6.6 b).
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3. The graph of the function y = —f(x) is obtained from that of y = f(z) by symmetric
reflection with respect to the axis Oz (see Fig. M6.6 ¢).

4. The graph of the function y = f(—x) is obtained from that of y = f(z) by symmetric
reflection with respect to the axis Oy (see Fig. M6.6 d).

5. The graph of the function y = f(kx) for £ > 1 is obtained from that of y = f(x)
by contracting the latter k times to the axis Oy, and for 0 < k < 1 by extending the latter
1/k times from the axis Oy. The points at which the graph crosses the axis Oy remain
unchanged (see Fig. M6.6 ¢).

6. The graph of the function y = k f(x) for k > 1 is obtained from that of y = f(x) by
extending the latter & times from the axis Oz, and for 0 < k < 1 by contracting the latter 1/k
times to the axis Ox. The points at which the graph crosses the axis Ox remain unchanged
(see Fig. M6.6f).

7. The graph of the function y = |f(x)| is obtained from that of y = f(z) by preserving
the parts of the latter for which f(x) = 0 and symmetric reflection, with respect to the axis
Oz, of the parts for which f(x) < 0 (see Fig. M6.6 g).

8. The graph of the inverse function y = f~(x) is obtained from that of y = f(x) by
symmetric reflection with respect to the straight line y = x (see Fig. M6.6 h).

M6.2.7. Approximate Solution of Equations
(Root-Finding Algorithms for Continuous Functions)

» Preliminaries. For a vast majority of algebraic (transcendental) equations of the form
f(x) =0, (M6.2.7.1)

where f(x) is a continuous function, there are no exact formulas for the roots.

When solving the equation approximately, the first step is to bracket the roots, i.e., find
sufficiently small intervals containing exactly one root each. Such an interval [a, b], where
the numbers a and b satisfy the condition f(a)f(b) < 0 (which is assumed to hold in what
follows), can be found, say, graphically.

The second step is to compute successive approximations x, € [a,b] (n =1, 2, ...) to

the desired root ¢ = lim =z, usually by one of the following methods.
n—oo

» Bisection method. To find the root of equation (M6.2.7.1) on the interval [a, b], we

+b +b +b
bisect the interval. If f(a 5 ) =0, then ¢ = a 5 is the desired root. If f(a—> #0,

2
b b
then of the two intervals [a, %] and [%, b] we take the one at whose endpoints the

function f(z) has opposite signs. Now we bisect the new, smaller interval, etc. As a result,
we obtain either an exact root of equation (M6.2.7.1) at some step or an infinite sequence
of nested intervals [a, b1], [az, b2], ... such that f(a,)f(b,) < 0. The root is given by the

formula ¢ = lim a, = lim b,, and the estimate
n—oo n—oo

1
0Lc—a,< z—n(b—a)
is valid.

The following two methods are more efficient.

» Regula falsi method (false position method). Suppose that the derivatives f’(x) and
f"(x) exist on the interval [a, b] and the inequalities f'(x) # 0 and f”(z) # 0 hold for all
z € [a,b].
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If f'(a)f"(a) > 0, then we take x¢ = a for the zero approximation; the subsequent
approximations are given by the formulas

B f(l'n)
"f) - f(zn)

If f'(a)f"(a) < 0, then we take z9 = b for the zero approximation; the subsequent
approximations are given by the formulas

 f@)
f(a)= F(zn)

The regula falsi method has the first order of local convergence as n — oo, that is,

(b—xp), n=0,1, ...

Tn+1 =T

T4l = T, (a—xy), n=0,1, ...

[Tp41 — | < Elzy, —d,

where k is a constant depending on f(x) and c is the root of equation (M6.2.7.1).

The regula falsi method has a simple geometric interpretation. The straight line (secant)
passing through the points (a, f(a)) and (b, f(b)) of the curve y = f(x) meets the abscissa
axis at the point x1; the value x,,. is the abscissa of the point where the line passing through
the points (g, f(xo)) and (z,, f(x,)) meets the x-axis (see Fig. M6.7 ).

Ay ®)
f(®)

A
1 (®)

S

0|

f(a) f(a)

Figure M6.7. Graphical construction of successive approximations to the root of equation (M6.2.7.1) by the
regula falsi method (@) and the Newton—Raphson method (b).

» Newton—Raphson method. Suppose that the derivatives f/(x) and f”(z) exist on the
interval [a, b] and the inequalities f’(z) # 0 and f”(z) # 0 hold for all z € [a, b].

If f(a)f"(a) > 0, then we take xo = a for the zero approximation; if f(b)f”(b) > 0, then
xo = b. The subsequent approximations are computed by the formulas

 f@n)
f@n)’
If the initial approximation x is sufficiently close to the desired root ¢, then the Newton—
Raphson method exhibits quadratic convergence:

Tnsl = Tn n=0,1, ...

M
|wn+l - Cl < % |wn - Clz,

where M = max |f”(z)| and m = min |f'(z)|.
asz<b alz<b

The Newton—Raphson method has a simple geometric interpretation. The tangent to the
curve y = f(z) through the point (x,,, f(z,)) meets the abscissa axis at the point x,,, (see
Fig. M6.7 b).

The Newton—Raphson method has a higher order of convergence than the regula falsi
method. Hence the former is more often used in practice.
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M6.3. Functions of Several Variables. Partial Derivatives
M6.3.1. Point Sets. Functions. Limits and Continuity

» Sets on the plane and in space. The distance between two points A and B on the plane
and in space can be defined as follows:

P(A,B) = \/@a - 1) + (Wa -y (on the plane),

p(A, B) = \/(xA —xB)* +(Wa—-yB)*+(24—2B)* (in three-dimensional space),

(A, B) = /(14 —218)* + - - + (Tna — Tnp)? (in n-dimensional space),

where x4, ya and xp, yp, and x4, ya, 24 and xpB, YyB, 2B, and x14, ..., Tpa and
1B, ..., Typ are Cartesian coordinates of the respective points.

An e-neighborhood of a point My (on the plane or in space) is the set consisting of all
points M (resp., on the plane or in space) such that p(M, My) < €, where it is assumed
that € > 0. An e-neighborhood of a set K (on the plane or in space) is the set consisting
of all points M (resp., on the plane or in space) such that Mian p(M, Mp) < €, where it is

0€

assumed that € > 0.

An interior point of a set D is a point belonging to D, together with some neighborhood
of that point. An open set is a set containing only interior points. A boundary point of a
set D is a point such that any of its neighborhoods contains points both inside and outside D.
A closed set is a set containing all its boundary points. A set D is called a bounded set
if p(A, B) < C for any points A, B € D, where C' is a constant independent of A, B.
Otherwise (i.e., if there is no such constant), the set D is called unbounded.

» Functions of two or three variables. A (numerical) function on aset D is, by definition,
a relation that sets up a correspondence between each point M € D and a unique numerical
value. If D is a plane set, then each point M € D is determined by two coordinates z, v,
and a function z = f(M) = f(x,y) is called a function of two variables. 1f D belongs to
a three-dimensional space, then one speaks of a function of three variables. The set D on
which the function is defined is called the domain of the function. For instance, the function
z = /1 —22 -2 is defined on the closed circle 2> + 3> < 1, which is its domain.

The graph of a function z = f(x, y) is the surface formed by the points (z, y, f(x, y)) in
three-dimensional space. For instance, the graph of the function z = ax + by + c is a plane,

and the graph of the function z = \/1 — 22 — y? is a semisphere.

A level line of a function z = f(x,y) is a line on the plane x, y with the following
property: the function takes one and the same value z = c at all points of that line. Thus, the
equation of a level line has the form f(x,y) = c. A level surface of a function v = f(z,y, 2)
is a surface on which the function takes a constant value, u = c; the equation of a level
surface has the form f(z,y, 2) = c.

A function f(M) is called bounded on a set D if there is a constant C' such that
|f(M)| < Cforall M € D.

» Limit of a function at a point and its continuity. Let M be a point that comes infinitely
close to some point My, i.e., p = p(My, M) — 0. It is possible that the values f(M) come
close to some constant b.

One says that b is the limit of the function f(M) at the point My if for any (arbitrarily
small) € >0, there is § > 0 such that for all points M belonging to the domain of the function
and satisfying the inequality 0 < p(My, M) < §, we have |f(M) —b| < €. In this case, one

writes lim M) =0b.
p(M,Mo)eof )
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A function f(M) is called continuous at a point My if  lim  f(M) = f(Mp). A
(M, Mg)—0

function is called continuous on a set D if it is continuous at each point of D. Any
continuous function f(M) on a closed bounded set is bounded on that set and attains its
smallest and its largest values on that set.

M6.3.2. Differentiation of Functions of Several Variables

For the sake of brevity, we consider the case of a function of two variables. However, all
statements can be easily extended to the case of n variables.

» Total and partial increments of a function. Partial derivatives. A rotal increment of
a function z = f(x,y) at a point (z, y) is

Az = fx+Az,y+ Ay) - f(z,y),
where Az, Ay are increments of the independent variables. Partial increments in x and in
y are, respectively,
Agz = f(x+Az,y) - f(z,y),
Ayz = @,y +Ay) - f(@,y).
Partial derivatives of a function z with respect to = and to y at a point (x, y) are defined

as follows:
0z . Az 0z 5 Ayz

Dr  Avmo Az’ oy - Agl;rEO Ay
(provided that these limits exist). Partial derivatives are also denoted by z, and z,, 0,z
and Oyz, or fy(x,y)and f,(x,y).

» Differentiable functions. Differential. A function z = f(x,y) is called differentiable
at a point (x, y) if its increment at that point can be represented in the form

Az = Az, y)Ax + B(x, y)Ay + o(p), p=1/(Ax)? + (Ay)?,

where o(p) is a quantity of a higher order of smallness compared with p as p — 0 (i.e.,
o(p)/p — 0 as p — 0). In this case, there exist partial derivatives at the point (x, y), and
2z = Az, ), zy = B(x, ).

A function that has continuous partial derivatives at a point (x, y) is differentiable at that
point.

The differential dz of a function z = f(x,y) is defined as follows:

dz = fa(z, ) Az + fy (2, y)Ay.
Taking the differentials dx and dy of the independent variables equal to Az and Ay,
respectively, one can also write dz = f,(z,y)dx + fy(x,y) dy.
The relation Az = dz + o(p) for small Az and Ay is widely used for approximate
calculations, in particular, for finding errors in numerical calculations of values of a function.

Example 1. Suppose that the values of the arguments of the function z = z*y° are known with the error
x=2%0.01,y =1+0.01. Let us calculate the approximate value of the function.

We find the increment of the function z at the point x = 2, y = 1 for Az = Ay = 0.01, using the formula
Az=dz=2-2-1°-0.01+5-2*-1*-0.01 = 0.24. Therefore, we can accept the approximation z = 4  0.24.

If a function z = f(x, y) is differentiable at a point (xg, o), then
f(x,y) = f(xo,y0) + fz(To, Yo)(@ — x0) + fy(x0,Y0)(y — o) + o(p).
Hence, for small p (i.e., for x = xg, y = yg), we obtain the approximate formula
f(x,y) = f(xo,y0) + fz(x0, yo) (@ — x0) + fy(T0, Y0) (Y — Yo)-

The replacement of a function by this linear expression near a given point is called lin-
earization.
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» Composite function. Consider a function z = f(z,y) and let z = z(u, v), y = y(u, v).
Suppose that for (u, v) € D, the functions z(u, v), y(u, v) take values for which the function
z = f(x,y) is defined. In this way, one defines a composite function on the set D, namely,
z(u,v)=f (m(u, v), y(u, v)) . In this situation, f(z,y)is called the outer function and x(u, v),
y(u, v) are called the inner functions.

Partial derivatives of a composite function are expressed by

0:_0j0s 010y
Ou Ox du Oy Ou’
0= _ 01 0x 05 dy
v Oxdv Iy ov’

For z = 2(t,z,y), let z = z(t), y = y(t). Thus, z is actually a function of only one
variable ¢. The derivative % is calculated by

dz 0z 8zd_x 873@

"ot Tordt T ayar

This derivative, in contrast to the partial derivative &, is called a total derivative.
p ot

» Second partial derivatives and second differentials. The second partial derivatives
of a function z = f(x, y) are defined as the derivatives of its first partial derivatives and are
denoted as follows:

822' 822’

oz " =Gade as = Fay = (Galy
azz 82Z

m = Zye = (2y)z> a—yz = Zyy = (2y)y.

The derivatives z,, and z,, are called mixed derivatives. If the mixed derivatives are
continuous at some point, then they coincide at that point, zzy = 2yz.

In a similar way, one defines higher-order partial derivatives.

The second differential of a function z = f(x,y) is the expression

d*z = d(dz) = (d2), Az + (dz)yAy = 2o (AT + 22y AxAy + zyy(Ay)z.

In a similar way, one defines A3z, d*z, etc.

» Implicit functions and their differentiation. Consider the equation F'(z,y) = 0 with
a solution (o, o). Suppose that the derivative F (z,y) is continuous in a neighborhood
of the point (o, o) and Fy(x,y) # 0 in that neighborhood. Then the equation F'(z,y) =0
defines a continuous function y = y(x) (called an implicit function) of the variable x in a
neighborhood of the point xg. Moreover, if in a neighborhood of (x, o) there exists a

continuous derivative F, then the implicit function y = y(x) has a continuous derivative
expressed by Ir 7,

Consider the equation F'(x,y, z) = 0 that establishes a relation between the variables
x,y, z. If F'(xg,yo, 20) =0 and in a neighborhood of the point (g, yo, 2¢) there exist contin-
uous partial derivatives F;, I, I, such that I (x¢, yo, 20) # 0, then equation F'(z,y, z) =0,
in a neighborhood of (zg, 1), has a unique solution z = ¢(x, y) such that ¢(xg, yo) = 20;
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moreover, the function z = p(x,y) is continuous and has continuous partial derivatives
expressed by

0z Fy 0z Fy
or F,’ oy F.°
Example 2. For the equation zsiny + z + e® =0 we have F, = 1+ e* # 0. Therefore, this equation
defines an implicit function z = (z, y) on the entire plane, and its derivatives have the form % =- IST;JZ ,
0z TCosy
oy T T 1te

» Jacobian. Dependent and independent functions. Invertible transformations.

1°. Two functions f(x,y) and g(z, y) are called dependent if there is a function ®(z) such
that g(z, y) = ©(f(x, y)); otherwise, the functions f(x, y) and g(x, y) are called independent.

The Jacobian is the determinant of the matrix whose elements are the first partial
derivatives of the functions f(x,y) and g(z, y):

af  of
of.9) |or oy

= M6.3.2.1
Oy | s on (M6.3.2.1

1) If the Jacobian (M6.3.2.1) in a domain D is identically equal to zero, then the
functions f(x,y) and g(x,y) are dependent in D.

2) If the Jacobian (M6.3.2.1) is nonzero in D, then the functions f(x,y) and g(x, y) are
independent in D.

2°. Functions fr(x1,x2,...,2n), k=1,2,...,n, are called dependent in a domain D if
there is a function ®(z1, 23, . . ., z,) such that

(fi(z1 22, .. 20), fo@1 22, ), fa(@ 20, 20)) =0 (in D);

otherwise, these functions are called independent.
The Jacobian is the determinant of the matrix whose elements are the first partial

derivatives: o 1 3 of
( 15255 n )
= det . M6.3.2.2
o1, 22, ..., 2p) © <8:L'j> ( )
The functions fi(z1,x2,...,x,) are dependent in a domain D if the Jacobian (M6.3.2.2)
is identically equal to zero in D. The functions fi(z1,x2,...,2y) are independent in D if
the Jacobian (M6.3.2.2) does not vanish in D.
3°. Consider the transformation
ye = fr(x1, 22, ..., xn), k=1,2,...,n. (M6.3.2.3)

Suppose that the functions f; are continuously differentiable and the Jacobian (M6.3.2.2)
differs from zero at a point (z{, 23, ..., x;). Then, in a sufficiently small neighborhood of
this point, equations (M6.3.2.3) specify a one-to-one correspondence between the points
of that neighborhood and the set of points (y1,¥s,...,¥yn) consisting of the values of
the functions (M6.3.2.3) in the corresponding neighborhood of the point (y7,v5, .., yp)-
This means that the system (M6.3.2.3) is locally solvable in a neighborhood of the point
(w‘l’, wg, ..., Zy), 1.e., the following representation holds:

wk:gk(ylvy27ayn)’ k=192""9n’

where g; are continuously differentiable functions in the corresponding neighborhood of
the point (y7, 43 - - - Yp)-
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M6.3.3. Directional Derivative. Gradient. Geometrical Applications

» Directional derivative. One says that a scalar field is defined in a domain D if any
point M (x, y) of that domain is associated with a certain value z = f(M) = f(x,y). Thus,
a thermal field and a pressure field are examples of scalar fields. A level line of a scalar
field is a level line of the function that specifies the field (see Subsection M6.3.1). Thus,
isothermal and isobaric curves are, respectively, level lines of thermal and pressure fields.

In order to examine the behavior of a field z = f(z,y) at a point My(xo, o) in the
direction of a vector a = {aj,ay}, one should construct a straight line passing through
My in the direction of the vector a (this line can be specified by the parametric equations
x =x0+ait, y =yo+ayt) and study the function z(t) = f(zo+ait, yo+ast). The derivative
of the function z(t) at the point M (i.e., for ¢t = 0) characterizes the change rate of the field
at that point in the direction a. Dividing 2’(0) by |a| = v/ a% + a2, we obtain the so-called
derivative in the direction a of the given field at the given point:

of 1
da  |a
The gradient of the scalar field z = f(x, y) is, by definition, the vector-valued function

grad f = fu(x,y)i + fy(xa Vi
where i and j are unit vectors along the coordinate axes x and y. At each point, the
gradient of a scalar field is orthogonal to the level line passing through that point. The
gradient indicates the direction of maximal growth of the field. In terms of the gradient, the
directional derivative can be expressed as follows:
g—:: = % grad f.
The gradient is also denoted by V f = grad f.

Remark. The above facts for a plane scalar field obviously can be extended to the case of a spatial scalar
field.

[ a1 fo(z0,y0) + az fy (0. o) |-

» Geometrical applications of the theory of functions of several variables.
1. The equation of the tangent plane to the surface z = f(z,y) at a point (xg, %o, 20),
where zg = f(zg, yo), has the form
z = f(@o,y0) + fa(z0, yo)(@ — o) + fy(z0, Yo)(¥ — yo).
The vector of the normal to the surface at that point is
n = {~fz(z0, Y0), —fy(z0,Y0), 1}
2. If a surface is defined by the equation ®(x, y, 2) = 0, then the equation of its tangent
plane at the point (xg, 4o, 2z0) has the form
D, (20, Yo, 20)(x — o) + Py (0, Yo, 20)(Y — Yo) + P~ (x0, Yo, 20)(2 — 29) = 0.
A normal vector to the surface at this point is
n = {®, (20, Yo. 20), Py(0, Y0, 20), (0, Y0, 20)}
3. Consider a surface defined by the parametric equations
z=z(u,v), y=yu,v), =z==z2u,v)
or, in vector form, r =r(u, v), wherer={x, y, 2}, and let M (:L'(’LL(), v9), y(ug, vo), z(ug, vo))
be the point of the surface corresponding to the parameter values u = ug, v = vg. Then the
vector of the normal to the surface at the point M, can be expressed by

or or |1 1 Kk
n(u,v) = 5 X 5 =Ty Yu Zul>
xU y’l) ZU

where all partial derivatives are calculated at the point M.
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M6.3.4. Extremal Points of Functions of Several Variables
» Conditions of extremum of a function of two variables.

1°. Points of minimum, maximum, or extremum. A point (x, yo) is called a point of local
minimum (resp., maximum) of a function z = f(x, y) if there is a neighborhood of (g, yo)
in which the function is defined and satisfies the inequality f(z,y) > f(xo,y0) (resp.,
f(x,y) < f(xo,y0)). Points of maximum or minimum are called points of extremum.

2°. A necessary condition of extremum. If a function has the first partial derivatives at a
point of its extremum, these derivatives must vanish at that point. It follows that in order
to find points of extremum of such a function z = f(z, y), one should find solutions of the
system of equations

fo(z,y) =0, fy(z,y)=0.

The points whose coordinates satisfy this system are called stationary points. Any point of
extremum of a differentiable function is its stationary point, but not every stationary point
is a point of its extremum.

3°. Sufficient conditions of extremum are used for the identification of points of extremum
among stationary points. Some conditions of this type are given below.

Suppose that the function z = f(x, y) has continuous second derivatives at a stationary
point. Let us calculate the following quantity at this point:

A= fxxfyy - mzy'
The following statements hold:

1) If A>0, fu:>0, then the stationary point is a point of local minimum;
2) If A>0, fi:<0, then the stationary point is a point of local maximum:;
3) If A<, then the stationary point cannot be a point of extremum.

In the degenerate case, A = 0, a more delicate analysis of a stationary point is required. In
this case, a stationary point may happen to be a point of extremum and may not.

Remark. In order to find points of extremum, one should check not only stationary points, but also points
at which the first derivatives do not exist or are infinite.

4°. The smallest and the largest values of a function. Let f(x,y) be a continuous function
in a closed bounded domain D. Any such function takes its smallest and its largest values
in D.

If the function has partial derivatives in D, except at some points, then the follow-
ing method can be helpful for determining the coordinates of the points (Zmin, Ymin) and
(Tmax, Ymax) at which the function attains its minimum and maximum, respectively. One
should find all internal stationary points and all points at which the derivatives are infinite
or do not exist. Then one should calculate the values of the function at these points and
compare these with its values at the boundary points of the domain, and then choose the
largest and the smallest values.

» Extremal points of functions of three variables. For functions of three variables,
points of extremum are defined in exactly the same way as for functions of two variables.
Let us briefly describe the scheme of finding extremal points of a function u = ®(x, y, 2).
Finding solutions of the system of equations

¢"E($7y7z)=0’ ¢y(xay’ Z) =07 ¢Z(maya Z) =07
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we determine stationary points. For each stationary point, we calculate the values of

Ar=0u Do=|gm go[, A= |0y @ O
w vy Tz <I>yz (I)zz

The following statements hold:

D If A;>0, Ay >0, Az >0, then the stationary point is a point of local minimum;
2) If A1<0, Ay >0, A3 <0, then the stationary point is a point of local maximum.

» Conditional extremum of a function of two variables. Lagrange function. A point
(xo, 7o) is called a point of conditional or constrained minimum (resp., maximum) of a
function

z=f(z,y) (M6.3.4.1)

under the additional condition*
o(z,y) =0 (M6.3.4.2)

if there is a neighborhood of the point (¢, yo) in which f(z,y) > f(xo, yo) (resp., f(z,y) <
f(xo, yo)) for all points (x, y) satisfying the condition (M6.3.4.2).
For the determination of points of conditional extremum, it is common to use the
Lagrange function
Oz, y, N) = f(@,y) + Aoz, ),

where A is the so-called Lagrange multiplier. Solving the system of three equations (the
last equation coincides with the condition (M6.3.4.2))

0 0 0P 0P
or Oy oX
one finds stationary points of the Lagrange function (and also the value of the multiplier \).
The stationary points may happen to be points of extremum. The above system yields
only necessary conditions of extremum, but these conditions may be insufficient; it may
happen that there is no extremum at some stationary points. However, with the help of other

properties of the function under consideration, it is often possible to establish the character
of a critical point.

0, 0,

Example 1. Let us find an extremum of the function
z=a"y, (M6.3.4.3)

under the condition
rT+y=a (@>0, n>0, =20, y=0). (M6.3.4.4)

Taking ¢(x,y) =  + y — a, we construct the Lagrange function
Oz, y, ) =z "y + Mz +y—a).
Solving the system of equations
s=nz"ly+A=0,
b, =z"+ =0,
Pry=x+y—a=0,
we find the coordinates of a unique stationary point,

b an _a . an \"
T h+l YT v °T \n+1/)"

an+1 nn

(n+ 1w’

which corresponds to the conditional maximum of the given function, Zmax =

* This condition is also called a constraint.
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Remark. Inorder to find points of conditional extremum of functions of two variables, it is often convenient
to express the variable y through z (or vice versa) from the additional equation (M6.3.4.2) and substitute the
resulting expression into the right-hand side of (M6.3.4.1). In this way, the original problem is reduced to the
problem of extremum for a function of a single variable.

Example 2. Consider again the extremum problem of Example 1 for the function of two variables
(M6.3.4.3) with the constraint (M6.3.4.4). After the elimination of the variable y from (M6.3.4.3)-(M6.3.4.4),
the original problem is reduced to the extremum problem for the function z = ™ (a — x) of one variable.

» Conditional extrema of functions of several variables. Consider a function u =
f(xq,...,z,) of n variables under the condition that zy, ..., z, satisfy m equations
(m < n):

(101(:1:1’ .. 75L'n) = 07

pr(xy,...,xy) =0,

‘pm(l'ly- . -,xn) = 0

In order to find the values of x1, ..., x, for which f may have a conditional maximum or
minimum, one should construct the Lagrange function

D1, T AL A) = f AL+ r + e+ Ao

and equate to zero its first partial derivatives with respect to the variables x1, . .., z, and the
parameters Ap, ..., Ay,. From the resulting n + m equations, one finds xy, .. ., z,, (and also
the values of the unknown Lagrange multipliers Aq, ..., A;,). As in the case of functions of

two variables, the question whether the given function has points of conditional extremum
can be answered on the basis of additional investigation.

Example 3. Consider the problem of finding the shortest distance from the point (xo, Yo, 20) to the plane
Ax+By+Cz+ D =0. (M6.3.4.5)

The squared distance between the points (zo, ¥o, 20) and (z, y, 2) is equal to
R*= (@ —-20)* + (Y —10) + (2 — 20)*. (M6.3.4.6)

In our case, the coordinates (x, y, z) should satisfy equation (M6.3.4.5) (this point should belong to the plane).
Thus, our problem is to find the minimum of the expression (M6.3.4.6) under the condition (M6.3.4.5). The
Lagrange function has the form

<I>=(:c—mo)2+(y—yo)2+(z—zo)2+)\(A:c+By+C’z+D).

Equating to zero the derivatives of ® with respect to z, y, z, and \, we obtain the following system of algebraic
equations:

20x—x0)+AN=0, 2(y-yo)+BA=0, 2(z-20)+CA=0, Ax+By+Cz+ D =0.

Its solution has the form

_ 1 _ 1 _ 1 _ 2(A1’0+Byo+CZ()+D)
$—$0—EA/\, y—yo—EB/\, z—zo—EC’)\, A= T+ 5102 . (M6.3.4.7)

Thus we have a unique answer, and since the distance between a given point and the plane can be realized at a
single point (z, y, z), the values obtained should correspond to that distance. Substituting the values (M6.3.4.7)
into (M6.3.4.6), we find the squared distance

_ (Axo+ Byo+ Czo + D)2

2
R A2+ B2 +C?
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M6.3.5. Differential Operators of the Field Theory

» Hamilton’s operator and first-order differential operators. Hamilton’s operator,
commonly known as the nabla vector operator or the gradient operator, is the symbolic

vector P P
V=ai—+j—+k—.
ox J oy 0z
This vector can be used for expressing the following differential operators:
1) gradient of a scalar function u(z, y, z):

ou ., 0Ou ou
du=i—+j—+k— =Vu;
grad u l(%c +j 3y + 57 u;
2) divergence of a vector fielda= Pi+ Qj+ Rk:
: orP 0Q OR
d = —-— —_— _ :V-
ivas= o+ 9y t a

(scalar product of the nabla vector and the vector a);
3) rotation of a vector fielda = Pi+ Qj+ Rk:

i J k
curla = a% a% % =Vxa
P Q@ R

(vector product of the nabla vector and the vector a).
Each scalar field u(z,y, z) generates a vector field gradu. A vector field a(z, y, 2)
generates two fields: the scalar field div a and the vector field curl a.

» Second-order differential operators. The following differential identities hold:
1) curlgradu=0 or (VxV)u=0,
2) diveurla=0 or V-(Vxa)=0.

The following differential relations hold:

0*u R 0*u R 0*u

ox?  Oyr 0227

2) curlcurla = graddiva— Aa,

1) divgradu=Au=

where A is the Laplace operator, Au =V - (Vu) = V2u.
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Chapter M7
Integrals

M7.1. Indefinite Integral
M7.1.1. Antiderivative. Indefinite Integral and Its Properties

» Antiderivative. An antiderivative (or primitive function) of a given function f(x) on
an interval (a, b) is a differentiable function F'(z) such that its derivative is equal to f(x) for
all x € (a, b):

F(z) = f(x).

Example 1. Let f(z) = 2z. Then the functions F'(x) = 2% and Fi(z) = z* — 1 are antiderivatives of f(x),
since () = 2z and (z* - 1)’ = 2z.

THEOREM. Any function f(x) continuous on an interval (a, b) has infinitely many con-
tinuous antiderivatives on (a, b). If F'(x) is one of them, then any other antiderivative has
the form F'(x) + C, where C' is a constant.

» Indefinite integral. The indefinite integral of a function f(x) is the set, F'(x) + C, of
all its antiderivatives. This fact is written as

/f(:n)d:c =F()+C.

Here, f(x) is called the integrand (or the integrand function). The process of finding an
integral is called integration. The differential dx indicates that the integration is carried out
with respect to x.

Example 2. / 62 dz = 22° + C, since (2z°)’ = 622.

» Mostimportant corollaries of the definition of the indefinite integral. Differentiation

is the inverse of integration:
d
d—</f(w)dw> = f().
x

Integration is the inverse of differentiation:*

/f’(x) de = f(x)+C.

The latter formula serves to make up tables of indefinite integrals. The procedure is
often reversed here: an integral is first given in explicit form (i.e., the function f(x) on the
right-hand side is prescribed), and then the integrand is obtained by differentiation.

* Integration recovers the function from its derivative, to an additive constant.

171
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M7.1.2. Table of Basic Integrals. Properties of the Indefinite Integral.

Examples of Integration

» Table of basic integrals. Listed below are most common indefinite integrals, which are
important for the integration of more complicated expressions:

g xa+1
/x“dm: +C (a#-1),
a+1

dx

TR =7arctan—+C
2 +a a

arcsmE +C,
Va2 B a
e“dr=e"+C,
Inzxdr=xzlnz-x+C,

sinxdxr =-cosxz +C,

tanz dx = —In|cos x| + C,

dx

—1n tan—’ +C,
sinw

e
7=
/
/
/
/
/
IE=
/
/
/
/
[
/
/

=-—cotx+C,

arcsinx dx = x arcsinz + V1 -22 + C,
arctanmd:c—:carctanm—zln(l +x )+C

sinh z dx = coshx + C,

tanh x dx = Incoshz + C,

t h—’ +C,
s1nh:r an

5 —cothx + C,
sinh” x

arcsinh x dox = x arcsinhz — V1 + 22+ C,

1
/arctanh xdr = xarctanhz + = In(1 - :cz) +C,

2

where C is an arbitrary constant.

/ﬁzlnleC,
T

dx 1 r—a
/:762—(12 _Eln’x+a’+c’
=1n’x+\/:r2+a’+C,

x

a
+C,
a

dxr
vat+a

a® dx =

lna:cd:c—:clna:c z+C,
cosrxdx =sinx + C,

cotz dx =In|sinx|+ C,

dzx T 7
=1’t (—+—>’+C,

cos nan2 4

d

f =tanz + C,

cos? x

arccos z dx = xarccost — V1 -2+ C,
1 2
arccot x dx = x arccot x + 5 Inl+x2%)+C,

coshxdx =sinhz + C,

coth rdr =In|sinhz|+ C,

dx
=2arctane” + C,
coshz
dx
>— =tanhz + C,
cosh

arccosh z do = z arccoshz — Va2 -1+ C,

1
arccoth x dr = x arccoth x + 5 ln(:c2 -D+C,

A more extensive table of indefinite integrals can be found in Section S1.1.

» Properties of the indefinite integral.

1. A constant factor can be taken outside the integral sign:

/af(:z:) dx = a/f(:n) dr (a = const).

2. Integral of the sum or difference of functions (additivity):

/ L)+ g(a)) da = / @) da+ / o) e
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3. Integration by parts:

/ f@)g (@) dw = f(a)g(x) - / f(@)g(x) dz.

4. Repeated integration by parts (generalization of the previous formula):

/ f@) g™ (@) dr = f2)g™ (@) - f(@)g" @)+ + D" f P (2)g(x)

+ (-t / FO* D) g(z) de, n=0,1,...

5. Change of variable (integration by substitution):

/ f(@)dx = / fle@) '@ dt, x=p(t).

On computing the integral using the change of variable z = (t), one should rewrite
the resulting expression in terms of the original variable z using the inverse substitution

t=¢ (@)
» Examples of direct integration of elementary functions.

1°. With simple algebraic manipulation and the properties listed above, the integration may
often be reduced to tabulated integrals.

Example 1. 2“;"/_51 d:r:/(z\/_—%) dm=2/x1/2dx_/x*1/2dx= %x3/2—2x1/2+0.

2°. Tabulated integrals can also be used where any function ¢(x) appears in place of x; for
example,

/em dr=e"+C = /e*”(f”) dp(z) = e?9 + O

/d—$=1n|gjl+0 — /dsm:n =In|sinx| + C.
T

sin z

The reduction of an integral to a tabulated one may often be achieved by taking some
function inside the differential sign.

sinzx dz =/ —dcosx =_/ dcosx =-In|cosz| + C.

Cosx Cosx

Example 2. / tanx dx = /
. . cosx

3 can be computed by making

d d
°. Integrals of the form / 7&5’ / @
ar® +bx +c Vazr*+br+c

a perfect square:
2 b \?
ax +bx+c:a<w+—) -—+c
2a
Then one should replace dx with the equal differential d(:p + %) and use one of the four
formulas in the second and third rows in the table of integrals given at the beginning of the
current subsection.

dzx dzx d(x-1) .
E le 3. — = = = -D+C.
xample / Cy—— / \/1 P \/1 —ao1 arcsin(x — 1) +
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4°. The integration of a polynomial multiplied by an exponential function can be accom-
plished by using the formula of integration by parts (or repeated integration by parts) given
above.

Example 4. Compute the integral / Bz +1) ¥ dz.

Taking f(x) = 3z + 1 and ¢'(x) = €°°, one finds that f'(z) = 3 and g(z) = %62”. On substituting these
expressions into the formula of integration by parts, one obtains

3

/(3x+1)ezzd:r= %(3x+1)ezz—%/ezzdx= %(3x+1)ezz—zezz+0= (éx—l) e+ C.

2 4

Remark 1. More complex examples of the application of integration by parts or repeated integration by
parts can be found in Subsection M7.1.6.

Remark 2. Examples of using a change of variable (see Property 5 above) for the computation of integrals
can be found in Subsections M7.1.4 and M7.1.5.

M7.1.3. Integration of Rational Functions

» Partial fraction decomposition of a rational function. A rational function (also
known as a rational polynomial function) is a quotient of polynomials:

_ Py

Bo=4 @

(M7.1.3.1)

where
P,(x) =apx™ +--- +a1x + ag,

Qm(x) =bpz™ + - - + b1z + bo.
The fraction (M7.1.3.1) is called proper if m > n and improper if m < n.
Every proper fraction (M7.1.3.1) can be decomposed into a sum of partial fractions. To

this end, one should factorize the denominator (),,,(x) into irreducible multipliers of the
form

(x — ;)P i=1,2.. .k (M7.1.3.2a)
(@ +Bjz+y)¥, j=12,...,s, (M7.1.3.2b)

where the p; and g; are positive integers satisfying the condition py+- - - +pg+2(q1 +- - - +q5) =
m; 6]2. —4~; <0. The rational function (M7.1.3.1) can be represented as a sum of irreducibles
and to each irreducible of the form (M7.1.3.2) there correspond as many terms as the power
p; Or g;:

Ao, 2 P (M7.1.3.3a)
r—a; (z-—0y)? (x —a;)Pi
Bjax+Dj1  Bjaw+ D Biy+ Dja, (M7.1.3.3b)

+ Fooet .
2+ Bjx+7y; (@ + Bz +5)? (@2 + Bz + ;)P

The constants A;;, Bj,, D;, are found by the method of undetermined coefficients.
To that end, one should equate the original rational fraction (M7.1.3.1) with the sum of
the above partial fractions (M7.1.3.3) and reduce both sides of the resulting equation to a
common denominator. Then, one collects the coefficients of like powers of x and equates
them with zero, thus arriving at a system of linear algebraic equations for the A;;, B, .,
and Dj .
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Example 1. This is an illustration of how a proper fraction can be decomposed into partial fractions:

bsl’s + b41’4 + b3:E3 + bzl’z + b1:c + bo _ A1’1 A2’1 Az,z A2,3 Bx+D
(z + a)(x + c)’(x? + k?) T z+a z+c (@+c?  (x+c¢)P  2r+k2

» Integration of a proper fraction.

1°. To integrate a proper fraction, one should first rewrite the integrand (M7.1.3.1) in the
form of a sum of partial fractions. Below are the integrals of most common partial fractions
(M7.1.3.3a) and (M7.1.3.3b) (with ¢; = 1):

/ A dx =Aln|z-q, /de:— A ,
-« (r —a)p (p - D(x—a)r!

Bx+D B 2D-B 2
/de=—1n(3:2+ﬁ:n+7)+7ﬁarctan z+b

Pfzey 2 Vi

The constant of integration C' has been omitted here. More complex integrals of partial
fractions (M7.1.3.3b) with ¢; > 1 can be computed using the formula

/ Be+D . _ P M/d—x (M7.1.3.5)

(22 +Bx+7) (22 + Bz +~)! 22+ Bx+y’

M7.1.3.4)

where P(x)is a polynomial of degree 2¢—3. The coefficients of P(z) and the constant A can
be found by the method of undetermined coefficients by differentiating formula (M7.1.3.5).

Remark. The following recurrence relation may be used in order to compute the integrals on the left-hand
side in (M7.1.3.5):

/ Bx+D - 2D - BpB)x+ DB -2By . 2q-3)2D - Bp) / dz

@+ Bz +7)7 " (g- D@y =)@+ B+ (g-D@y =) ) (@2 + Bz e+t
. " 3at—x -2

Example 2. Compute the integral . / T dx.

Let us factor the denominator of the integrand, 23 +8=(x+2)(z? -2z +4), and perform the partial fraction
decomposition:
3z*-z-2 A Bz + D
+2)@2-2z+4)  x+2 x2-2z+4

Multiplying both sides by the common denominator and collecting the coefficients of like powers of x, we
obtain

(A+B—3):c2+(—2A+2B+D+1)m+4A+2D+2=O.

Now equating the coefficients of the different powers of = with zero, we arrive at a system of algebraic equations
for A, B, and D:

A+B-3=0, 2A+2B+D+1=0, 4A+2D+2=0.

Its solution is: A =1, B =2, D = -3. Hence, we have

327~z -2 1 2 -3
———dx= | ——d —————d
/ 3 +38 v /:c+2 JU+/:cz—2x+4 v
=1n|x+2|+1n(:c2—2x+4)—Larctanx

V3 V3

+C.

Here, the last integral of (M7.1.3.4) has been used.
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2°. The integrals of proper rational functions defined as the ratio of a polynomial to a power
function (x — )™ are given by the formulas

FPr(x) = P® )
— 7 dr=- C. y
@—ayn " gk!(m—k—l)(;p—a)m—k—l + m>n+
"  dr=- | ) C’
(13 a a)n+1 ! k‘z(; k! (’I’L — k,‘)(m — Oé)nfk + n! n |l’ al +

where P, (x) is a polynomial of degree n and Pflk)(a) is its kth derivative at x = a.

3°. Suppose the roots in the factorization of the denominator of the fraction (M7.1.3.1) are
all real and distinct:

Qm@) =bpz™ + -+ bz +by =bp(r—a)(@-—) ... (T —am), o #q;.

Then the following formula holds:

In|z - ax| + C,

Po(@) . _ ’Z”: Do)
Qm (l‘ ) k)=1 m(ak‘ )
where m > n and the prime denotes a derivative.
» Integration of improper fractions.

1°. In order to integrate an improper fraction, one should first isolate a proper fraction by
division with remainder. As a result, the improper fraction is represented as the sum of a
polynomial and a proper fraction,

S ™ L4+ sz + S0
bpx™ + -+ + b1z + by

anx" + - +a1x+ag _
" =Cpr "+t +

= >
b ™ + -+ - + bz + by (n2m),

which are then integrated separately.

2
mldx.

Example 3. Evaluate the integral [ = /

2

Let us rewrite the integrand (improper fraction) as the sum of a polynomial and a proper fraction: =
T —

z+1+

1 .
1.Hence,]:/(:c+1+

1
[)do=1a’ +a sz -1+ C.

2°. The integrals of improper rational functions defined as the ratio of a polynomial to a
simple power function (z — )™ are evaluated by the formula

P |~~~ PP feme1 . PP
@ — o)™ dx_g:nk!(k—m+l)(w_a) tmor Mlr-al
g e
kI (m—k-D(@-aymkt

where n > m.

Remark 1. The indefinite integrals of rational functions are always expressed in terms of elementary
functions.

Remark 2. Some of the integrals reducible to integrals of rational functions are considered in Subsections
M7.1.5 and M7.1.6.
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M7.1.4. Integration of Irrational Functions

The integration of some irrational functions can be reduced to that of rational functions using
a suitable change of variables. In what follows, the functions R(z,y) and R(z, ..., ;) are
assumed to be rational functions in each of the arguments.

» Integration of expressions involving radicals of linear-fractional functions.

1°. The integrals with roots of linear functions

/R a:n+b)d:£

are reduced to integrals of rational functions by the change of variable z = Vax + b.

Example 1. Evaluate the integral I = / zV1-zdx.

With the change of variable v/1 — = 2, we have z: = 1—2” and da =—2z dz. Substituting these expressions
into the integral yields

I=—2/(1—z2)z2dz——§z +§z5+c_-—\/(1—:c)3+ ZVa-zy+C.

2°. The integrals with roots of linear-fractional functions
n +b

/ R<w, ar > dzx
cxr+d

are reduced to integrals of rational functions by the substitution z =

nlax+b
cx+d’

3°. Integrals containing the product of a polynomial by a simple power function of the form
(x - a)ﬁ are evaluated by the formula

Pk
/P (x)(x — CZ)B dx = Z quil)(x _ a)k+6+1’

where P, (z) is a polynomial of degree n, P,(Lk)(a) is its kth derivative at x = a, and (3 is any

positive or negative proper fraction (to be more precise, 5 #-1,-2,...,-n—1).

» Euler substitutions. Trigonometric substitutions. We will be considering integrals
involving the radical of a quadratic trinomial:

/R(:L’, V/ a:£2+b:1:+c) dex,

where b” # 4ac. Such integrals are expressible in terms of elementary functions.

1°. Euler substitutions. The given integral is reduced to the integral of a rational fraction
by one of the following three Euler substitutions:

) Varl+br+c=tFxv/a if a>0;
2) Varl+br+c=att\/c if ¢>0;
3) Varl+br+c=tx-=z;) if 4ac—b* <0,
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where x1 is a root of the quadratic equation az? +bx +c = 0. In all three cases, the variable =

and the radical Vax? + bx + c are expressible in terms of the new variable ¢ as (the formulas
correspond to the upper signs in the substitutions):

t?—c Vat? +bt+cv/a Vat? +bt+cv/a
=" Varl+br+c= , dx =2 dt;
armrorTe 2/at+b v Q/at+by>

2 - 2_ £2_
2) m—m Vax+br+c= Vet bt+c\/5’ aiac=2\/E bt+c\/adt'

a-t2 ° a—12 (a—12)? ’
2
3) x= (t +a)x1+b’ /7a3:2+b3:+c= (2ax1+b)t’ e =_2(2aw1+b)t it
t2—a t2_q (tZ_a)Z

2°. Trigonometric substitutions. The function V'az? + bz + ¢ can be reduced, by making a
perfect square in the radicand, to one of the three forms:

) Var/(x-pP+¢ if a>0;

2) Var/(x-pP-¢* if a>0;

3) V-ar/@P-(x-p)? if a<0,

where p = —% b/a. Different trigonometric substitutions are further used in each case to
evaluate the integral:

dt
1) z-p=qtant, \/(m—p)2+q2= q , dr= q :
cost cos? t
sint dt
2) ﬂf—p=—q . A\/(x—-p)*-¢* =qtant, d:c:qi;
cost cos? t
3) x-p=gsint, y/¢*—(x—p)>=qcost, dx=qcostdt.

Example 2. Evaluate the integral / V6 +4x 22 dz.

This integral corresponds to case 3 with a = -2, p =1, and ¢ = 2. The integrand can be rewritten in the

form:
V6 +4x—232 =V2V3+ 2w —2> = V2\/4— (- 1)~

Using the trigonometric substitution x—1=2sint¢ and the formulas V3 + 2z — 22 =2cost and dx =2 cos t dt,
we obtain

/v6+4x—2x2d:r=4\/§/cosztdt=2\/§/(l+0052t)dt

z—
2

-1

2

=22t +V2sin 2t + C = 2v/2 arcsin ! +V2sin (2 arcsin

z-1 V2
2 2

)+c

= 2+v/2 arcsin

(@-1V4-(x-12+C.

» Integral of a differential binomial. The integral of a differential binomial,

/wm(a + bx™P dx,
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where a and b are constants, and n, m, p are rational numbers, is expressible in terms of
elementary functions in the following three cases only:

1) If pis an integer. For p = 0, removing the brackets gives the sum of power functions.
For p < 0, the substitution x = t", where r is the common denominator of the fractions
m and n, leads to the integral of a rational function.

2) If mT“ is an integer. One uses the substitution a+bz™ =t*, where k is the denominator
of the fraction p.

3) If mT” + p is an integer. One uses the substitution az™ + b = t¥, where k is the
denominator of the fraction p.

Remark. In cases 2 and 3, the substitution z = 2™ leads to integrals of the form 3° above.

M7.1.5. Integration of Exponential and Trigonometric Functions
» Integration of exponential and hyperbolic functions.
1. Integrals of the form | R(eP*, e¥*)dx, where R(x,y) is a rational function of its

arguments and p, ¢ are rational numbers, may be evaluated using the substitution 2" = e”,
where m is the common denominator of the fractions p and ¢. In the special case of integer
p and ¢, we have m = 1, and the substitution becomes z = e”.

ez
et +2°
This integral corresponds to integer p and ¢: p = 1 and g = 3. So we use the substitution z = ¢”. Then

Example 1. Evaluate the integral /

x=Inzand dx = % Therefore,
z

. 3z - 2 .
etdr [ Zdz 4 _1, Ll s @
/6”2_/ Z+2—'/<z—2+z+2>dz—2z 2e44nfz+20+C = ¥ -2 +4In(e” +2)+ C.

2. Integrals of the form / R(sinh ax, cosh ax)dx are evaluated by converting the

hyperbolic functions to exponentials, using the formulas sinhaz = %(e“x — e %) and
coshazx = %(eax + e7%"), and performing the substitution z = e**. Then

1 21 22+1\d
/R(sinhaw, coshax)dx:E/R<Z il >_Z

22 7 2z z
az
Alternatively, the substitution ¢ = tanh (7) can also be used to evaluate integrals of

the above form. Then

2 2t 1+t2\ dt
/R(sinh ax, coshax)dr = — /R , hl .
a 1-t2" 1-t2) 12

» Integration of trigonometric functions.

1. Integrals of the form / R(sin ax, cos ax) dx can be converted to integrals of rational

. . . . o ax
functions using the fundamental trigonometric substitution ¢ = tan (7>

2 2t 112 t
/R(sinaw, cosazx)dr = —/R , d .
a 1+827 1+t2 ) 1+¢2




180 INTEGRALS

Example 2. Evaluate the integral / dim
J 2+sinx

Using the fundamental trigonometric substitution ¢ = tan 7 we have

/ dx _2/ dt _/ dt_, [ _det+1)
i - - 2 - 2
2 +sinz <2+ 2t )(1+t2) t22+t+1 Qt+1)2+3
1+t

= i arctanzt—-'-1 +C = i arctan(itanE + L) +C.

V3 V3 V3 V323

2. Integrals of the form / R(sin2 az, cos’ ax, tan ax) dx are converted to integrals of

rational functions with the change of variable z = tan ax:

2
/R(sin2 azx, cos® ax, tan ar)dr = l /R( i ! ) dz
a

, , 2 )
1+22° 1+22 1422

3. Integrals of the form
/ sin ax cos bz dx, / cos ax cos bx dzx, / sin ax sin bx dx

are evaluated using the formulas

sinwcos 3 = %[sin(oz + ) + sin(a. — B)],
cosacos 3 = %[cos(a + (3) + cos(a.— B)],

sinasin 3 = %[cos(a - B)—cos(a + B)].

4. Integrals of the form / sin™ x cos™ x dx, where m and n are integers, are evaluated

as follows:
(a) if m is odd, one uses the change of variable cosx = z, with sinx dx = —dz;
(b) if n is odd, one uses the change of variable sinx = z, with cos x dx = dz;
(c) if m and n are both even nonnegative integers, one should use the degree reduction
formulas

2 2

sin“ x = %(1 —cos2x), cos“x = %(1 +cos2x), sinxcosx = % sin 2.
Example 3. Evaluate the integral / sin’ z d.

This integral corresponds to odd m: m = 5. With simple rearrangement and the change of variable
cosx = z, we have

/sinsccd:c=/(sinzm)zsin:cd:c=—/(1—coszcc)zdcosm=—/(1—z2)2dz

3 5 3
=212 -2+C=2cos

1.5
3 3 x—3c0s z—cosz+C.

Remark. In general, the integrals / sin? z cos? z dx are reduced to the integral of a differential binomial

by the substitution y = sin z.
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M7.1.6. Integration of Polynomials Multiplied by Elementary
Functions
Throughout this section, P,,(x) designates a polynomial of degree n.

» Integration of the product of a polynomial by exponential functions. General
formulas:

/ (n)
/ Pn(x)e“””d:v:e”[Pn(x) L@ ey (””)]w,

a CL n+1

P, (x) P”(I)
a a3
P, (x) P”(I)
a a’

] —cosh(ax) [ P’/;(ZI) PZEI) ] +C,

] —sinh(a )[Pl n (@) P’/‘;ix) +] +C.

These formulas are obtained by repeated integration by parts; see Property 4 from Subsection
M7.1.2 with f(x) = P, (x) for ¢V (z) =, ¢"*D(2) = cosh(ax), and ¢"*V(z) =sinh(azx),

/ P, (z) cosh(ax) dx = sinh(ax) {

/ P, (z) sinh(ax) dr = cosh(ax) {

respectively.
In the special case P,(x) = ™, the first formula gives
n
—1)"* n|
/ 2" dr = ey (am)l_k %xk +C. (M7.1.6.1)
k=0 )

» Integration of the product of a polynomial by a trigonometric function.

1°. General formulas:
Pp(x) P”(:C)

a3

} + cos(ax) [ Pi(zx) Pl;fx) } +C,

/ P, (z)sin(az) dz = sin(az) {P i(f) P /;fc) ] —COS(a:z:)[P ”(f“’) L ;g‘”) ] +C.

/P (x) cos(ax) dx = sin(ax )[

These formulas are obtained by repeated integration by parts; see Property 4 from Subsection
M7.1.2 with f(z) = P,(x) for ¢™*V(z) = cos(ax) and g™V (x) = sin(ax), respectively.

2°. To evaluate integrals of the form

/ P,(x)cos™(ax) dux, / P, (x)sin(ax) dx,

withm =2, 3, ..., one should first use the trigonometric formulas
| H
cos?*(azx) = C= Z CZk cos[2(k —i)ax] + PP Cé“k (m = 2k),
=0
cos™ ! (az) = 2% Z C, ., cos[(2k — 2i + 1azx] (m =2k +1),
=0
k-1
sin?*(ax) = 3T Z( l)k_’C’k cos[2(k —i)ax] + 22k Czk (m = 2k),
i=0
sin?**!(ax) = 22'f Z( DS, | sin[(2k —2i + Daz] (m =2k +1),
i=0

thus reducing the above integrals to those considered in Item 1°.
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3°. Integrals of the form

/ P, (x) e*® sin(bx) dz, / P,(z) e* cos(bx) dz

can be evaluated by repeated integration by parts.
In particular,

n+l1
/:E"eax sin(bx) = e Z D™ n! 2" sin(bz + kO) + C
S -k+ D (a2 + )R ’ "
*
n+l (—l)k“n ol
n_ax br) = 4% ’ n=r+ bxr + k0)+ C,
/:L' e™ cos(bxr) =€ 2(n—k+l)!(a2+bz)’f/2x cos(bx )
where ;
sinf) = ——— cosf = a4

Va2 + 2 Va2 + b2
» Integrals involving power and logarithmic functions.

1°. The formula of integration by parts with ¢'(x) = P, (z) is effective in the evaluation of
integrals of the form

/P"(x) In(ax) dx = Qp41(z) In(ax) — a/ w dz,

where Qp41(x)= / P,(x) dx is apolynomial of degree n+ 1. The integral on the right-hand

side is easy to take, since the integrand is the sum of power functions.

Example. Evaluate the integral / Inz dzx.
1 o . .
Setting f(z) = Inx and g'(x) = 1, we find f’(m) = — and g(x) = z. Substituting these expressions into
T

the formula of integration by parts, we obtain / Inzdr=zlnz- / de=zlnz-z+C.

2°. The easiest way to evaluate integrals of the more general form
n m
= /Zln’(a:n) (Z bijazﬁ”) dx,
i=0 =0
where the (3;; are arbitrary numbers, is to use the substitution z = In(ax), so that

Z] (,37;'+1)z
/ Z ( e )dz.

By removing the brackets, one obtains a sum of integrals like / et dz, which are easy
to evaluate by formula (M7.1.6.1).
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M7.2. Definite Integral

M7.2.1. Basic Definitions. Classes of Integrable Functions.
Geometrical Meaning of the Definite Integral

» Basic definitions. Let y = f(x) be a bounded function defined on a finite closed interval
[a, b]. Let us partition this interval into n elementary subintervals defined by a set of points
{zo,x1,..., 2} suchthat a = g < z1 < --- < x, = b. Each subinterval [xj_;, ;] will be
characterized by its length Axy = 2 —x_; and an arbitrarily chosen point & € [x_1, Zk].
Let us make up an integral sum (a Cauchy—Riemann sum, also known as a Riemann sum)

sn= Y fEDATL  (wp <& < ).

k=1

If, as Az — 0 for all k£ and, accordingly, n — oo, there exists a finite limit of the
integral sums s,, and it depends on neither the way the interval [a, b] was partitioned, nor

b
the selection of the points &, then this limit is denoted / f(x) dz and is called the definite
a
integral (also the Riemann integral) of the function y = f(x) over the interval [a, b]:

b
/ f(@)dr = lim s, (max Az — 0).

1<k<n

In this case, the function f(x) is called integrable on the interval [a, b].

» Classes of integrable functions.

1. If a function f(x) is continuous on an interval [a,b], then it is integrable on this
interval.

2. If abounded function f(z) has finitely many jump discontinuities on [a, b], then it is
integrable on [a, b].

3. A monotonic bounded function f(x) on [a, b] is always integrable on [a, b].

» Geometric meaning of the definite integral. If f(z) > 0 on [a, b], then the integral

b

/ f(x)dz is equal to the area of the domain D = {a<x <b, 0<y < f(z)} (the area of the
a

curvilinear trapezoid shown in Fig. M7.1).

AY

x

0] a b

Figure M7.1. The integral of a nonnegative function f(z) on an interval [a, b] is equal to the area of the shaded
region.
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M7.2.2. Properties of Definite Integrals and Useful Formulas

» Qualitative properties of integrals.

1. If a function f(z) is integrable on [a, b], then the functions ¢f(z), with ¢ = const, and
| f(x)] are also integrable on [a, b].

2. If two functions f(x) and g(x) are integrable on [a, b], then their sum, difference,
and product are also integrable on [a, b].

3. If a function f(x) is integrable on [a, b] and its values lie within an interval [c, d],
where a function g(y) is defined and continuous, then the composite function g(f(x)) is also
integrable on [a, b].

4. If a function f(x) is integrable on [a, b], then it is also integrable and on any subin-
terval [a, 8] C [a,b]. Conversely, if an interval [a,b] is partitioned into a number of
subintervals and f(x) is integrable on each of the subintervals, then it is integrable on the
whole interval [a, b].

5. If the values of a function are changed at finitely many points, this will not affect the
integrability of the function and will not change the value of the integral.

» Properties of integrals in terms of identities.
1. The integral over a zero-length interval is zero:

/af(az)dx =0.

2. Antisymmetry under the swap of the integration limits:

b a
/ f(x)dx =—/ f(z)dx.
a b

3. Linearity. If functions f(x) and g(x) are integrable on an interval [a, b], then

b b b
/[Af(a:)iBg(m)]dm=A/ f(:L')dSL'i‘B/ g(x) dx

for any numbers A and B.
4. Additivity. If c € [a,b] and f(z) is integrable on [a, b], then

b c b
/ J) da = / fa)da + / @) de.

Remark. This property is also valid in the case where ¢ ¢ [a, b].

5. Differentiation with respect to a variable upper limit. If f(x) is continuous on [a, b],
x

then the function ®(x) = / f(t)dt is differentiable on [a, b], and ®'(x) = f(x). This fact
a

can be written as J N
([ rwi) =
T a

6. Newton—Leibniz formula:

b b
/ f@yde = F)| = F) - Fa)

where F'(x) is an antiderivative of f(zx) on [a, b].
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7. Integration by parts. If functions f(x) and g(x) have continuous derivatives on [a, b],
then

b b b
/ F@)g (@) dz = [f(w)g@c)]\a— / Fl@)g(@) da.

8. Repeated integration by parts:
b b
/ f@g @ dr = [ f@)g™@ - f@g" @)+ + OO @)

b
+ (- / O D@)g(z) da, n=0,1,...

9. Change of variable (substitution) in a definite integral. Let f(x) be a continuous
function on [a, b] and let x(¢) be a continuously differentiable function on [«, 3]. Suppose
also that the range of values of x(t) coincides with [a, b], with z(«) = a and x(3) = b. Then

b 3
/ f@)dz = / f(z@®) 2'@t) dt.

dxr
Example. Evaluate the integral / _—
P & 0o (x-8)VvVx+1

Perform the substitution z + 1 = 2, with dz = 2t dt. Wehavet = latz =0and ¢t = 2 at z = 3. Therefore,

3 5

/3 dx _(* 2tdt _2/
o @-8Vz+1 Ji -9t L -9 9~ t+3

M7.2.3. Asymptotic Formulas for the Calculation of Integrals

Below are some general formulas, involving arbitrary functions and parameters, that may
be helpful for obtaining asymptotics of integrals.

» Asymptotic formulas for integrals with weak singularity as e — 0. We will consider
integrals of the form
* 2P f()

0 (.Z' +E)a

I(e) =

>

where 0 < a < o0, 8 >0, f(0) 0, and € > 0 is a small parameter.
The integral diverges as € — 0 for o = 3, that is, lirr(l) I(e) = co. In this case, the leading
E—

term of the asymptotic expansion of the integral I(¢) is given by

I(e) = Mf(O)Eﬁ’O‘ +0(@E%) if a>p,
I'(a)
I(e) =-f(0)Ine + O(1) if a=p,

where I'(() is the gamma function and ¢ = min[G — « + 1, 0].

» Asymptotic formulas for Laplace integrals of special form as A — +oo. Consider
a Laplace integral of the special form

I\ = /a P exp(—)\wo‘)f(x) dx,
0

where 0 < a < 0o, @ >0, and 3 > 0.
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The following formula, called Watson’s asymptotic formula, holds as A — +0c:

L~ SO Lk +BY \wesrja o -msBen/a
I(/\)=EZ = F(T))‘(MW + O (N B ).

Remark. Watson’s formula also holds for improper integrals with a = oo if the original integral converges
absolutely for some A\g > 0.

» Asymptotic formulas for Laplace integrals of general form as A — +oo. Consider
a Laplace integral of the general form

b
I\ = / f(z) exp[A\g(x)] dz, (M7.2.3.1)

where [a, b] is a finite interval and f(x), g(x) are continuous functions.

Leading term of the asymptotic expansion of the integral (M7.2.3.1) as A — +oo.
Suppose the function g(z) attains a maximum on [a, b] at only one point xg € [a, b] and is
differentiable in a neighborhood of xg, with ¢’'(x¢) =0, ¢” (x¢) #0, and f(x¢) # 0. Then the
leading term of the asymptotic expansion of the integral (M7.2.3.1), as A — +o0, is given
by

2
I = f(ao)y |- Ag,,z;o) explhg@o)l  if a<mo<b,
(M7.2.3.2)
1 27 .
I\ = Ef(:EO) _/\g”(mo) exp[Ag(xzg)] if xg=a or xg=0b.

Note that the latter formula differs from the former by the factor 1/2 only.
Under the same conditions, if g(x) attains a maximum at either endpoint, o = a or
xo = b, but ¢'(xo) # 0, then the leading asymptotic term of the integral, as A\ — +oo, is

_ J@o 1
l9'@o)l A

For more accurate asymptotic estimates for the Laplace integral (M7.2.3.1), see below.

I(\)

exp[Ag(xg)], where x¢9=a or xg=0>. (M7.2.3.3)

» Asymptotic formulas for a power Laplace integral. Consider the power Laplace
integral, which is obtained from the exponential Laplace integral (M7.2.3.1) by substituting

In g(x) for g(x):
b
I\ = / F@)g@)] da, (M7.2.3.6)

where [a, b] is a finite closed interval and g(x) > 0. It is assumed that the functions f(x)
and g(x) appearing in the integral (M7.2.3.6) are continuous; g(x) is assumed to attain a
maximum at only one point g = [a, b] and to be differentiable in a neighborhood of x = z,
with ¢'(x0) =0, g"(x0) #0, and f(z9) # 0. Then the leading asymptotic term of the integral,
as A — 400, is expressed as

2
1) = fao) |~ @2 if a <<,

1 2
I\ = Ef(mon/—w—fxo) [g(zo)™*/? if 2o =a or z=Db.

Note that the latter formula differs from the former by the factor 1/2 only.
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Under the same conditions, if g(x) attains a maximum at either endpoint, o9 = a or
xo = b, but ¢'(xg) # 0, then the leading asymptotic term of the integral, as A — +00, is

I = f(xo) 1

= o) )\[g(aco)]Ml/z, where zo=a or zp=0>.

M7.2.4. Mean Value Theorems. Properties of Integrals in Terms of
Inequalities

» Mean value theorems.

THEOREM 1. If f(x) is a continuous function on [a, b], there exists at least one point
c € (a, b) such that

b
/ J(@) dz = f()b—a).

The number f(c) is called the mean value of the function f(z) on [a, b].

THEOREM 2. If f(x) is a continuous function on [a,b], and g(x) is integrable and of
constant sign (g(x) = 0 or g(x) <0) on [a, b], then there exists at least one point ¢ € (a, b)
such that

b b
/ f@)g(x)dx = f(c) / g(x)dx.

» Properties of integrals in terms of inequalities.
1. Estimation theorem. If m < f(x) £ M on [a, b], then

b
m(b—a)S/ fl@)dx < M@®-a).

2. Inequality integration theorem. If p(x) < f(x) < g(x) on [a, b], then

b b b
/ () di < / fa) da < / o) d.

b
In particular, if f(z) > 0 on [a, b], then / f(x)dx > 0.

Further on, it is assumed that the integrals on the right-hand sides of the inequalities of
Items 3-6 exist.

3. Absolute value theorem (integral analogue of the triangle inequality):

b b
/ f@)dz]| < / ()| d.

4. Bunyakovsky’s inequality (Cauchy—Schwarz—Bunyakovsky inequality):

b 2 b b
( / f(w)g(w)dw) < / fA(x)dx / g*(x) da.

5. Cauchy’s inequality:

b 1/2 b 1/2 b 1/2
</ [f(a:)+g(3:)]2dac> S</ fz(:n)d:c> +</ gz(m)dx> .

6. Minkowski’s inequality (generalization of Cauchy’s inequality):

b % b % b
( / If(ﬂc)+g(x)|”dw> s< / If(ﬂc)lpdx> +< / |g<x)|pda:> . op2l

D=
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M7.2.5. Geometric and Physical Applications of the Definite Integral

» Geometric applications of the definite integral.

1. The area of a domain D bounded by curves

y = f(x) and y = g(x) and straight lines x = a and x = b in the zy-plane (see Fig. M7.2 a)
is calculated by the formula

b
S= / [f @)= g(@)] da.

If g(x) = 0, this formula gives the area of a curvilinear trapezoid bounded by the x-axis, the
curve y = f(x), and the straight lines « = a and x = b.

Ay (a) A (b)
y=f(x)

D

X
L.

O ay=ge—" b~

Figure M7.2. (a) A domain D bounded by two curves y = f(x) and y = g(x) on an interval [a,b]; (b) a
curvilinear sector.

2. Area of adomain D. Let x = x(t) and y =y(t), with t; <t <t,, be parametric equations
of a piecewise-smooth simple closed curve bounding on its left (traced counterclockwise)
a domain D with area S. Then

ty ty 1 ty
S =— / y(t)x'(t) dt = / 2ty () dt = > / [z(t)y (t) —y(®)a' ()] dt.
t t1 ty

3. Area of a curvilinear sector. Let a curve p = f(y), with ¢ € [, (], be defined in the
polar coordinates p, ¢. Then the area of the curvilinear sector {a < p < 3; 0< p < f(9)}
(see Fig. M7.2 b) is calculated by the formula

1 [P 5
5= / LT de.

4. Area of a surface of revolution. Let a surface of revolution be generated by rotating
acurve y = f(x) 20, x € [a, b], about the x-axis; see Fig. M7.3. The area of this surface is

calculated as )
S = 277/ f@/1+[f'(x))?da.

5. Volume of a body of revolution. Let a body of revolution be obtained by rotating
about the z-axis a curvilinear trapezoid bounded by a curve y = f(x), the x-axis, and straight
lines x = a and = = b; see Fig. M7.3. Then the volume of this body is calculated as

b
V= w/ [f(x))? dz.
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AY

Y=

Figure M7.3. A surface of revolution generated by rotating a curve y = f(z).

6. Arc length of a plane curve defined in different ways.
(a) If acurve is the graph of a continuously differentiable function y = f(x), x € [a, b],
then its length is determined as

b
L:/ \/ 1+ [f(2)]*dx.

(b) If a plane curve is defined parametrically by equations x = z(t) and y = y(t), with
t € [, 8] and z(t) and y(t) being continuously differentiable functions, then its length is
calculated by

B
L= [ Vworiyora

(c) If a curve is defined in the polar coordinates p, ¢ by an equation p = p(¢), with
p € [a, {], then its length is found as

3
L= / \ PP@) + [0 ()] dep.

7. The arc length of a spatial curve defined parametrically by equations x = x(t),
y=y(t),and z = z(t), with t € [, 5] and x(t), y(t), and z(t) being continuously differentiable
functions, is calculated by

B
L:/‘VW®F+W®F+W®FM

» Physical applications of the integral.

1. Work of a variable force. Suppose a point mass moves along the z-axis from a point
x = a to a point x = b under the action of a variable force F'(x) directed along the x-axis.
The mechanical work of this force is equal to

b
A:/ F(x)dx.
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2. Mass of a rectilinear rod of variable density. Suppose a rod with a constant cross-
sectional area S occupies an interval [0, [] on the z-axis and the density of the rod material
is a function of x: p = p(x). The mass of this rod is calculated as

l
m= S/ p(x)dz.
0

3. Mass of a curvilinear rod of variable density. Let the shape of a plane curvilinear rod
with a constant cross-sectional area S be defined by an equation y = f(z), with a < z < b,
and let the density of the material be coordinate dependent: p = p(x,y). The mass of this

rod is calculated as )
m=S / p(. F@)\/1+ [y @) da.

If the shape of the rod is defined parametrically by x = x(t) and y = y(t), then its mass
is found as

b
m= S/ p(a:(t), y(t)) \/[$l(t)]2 + [y ()] dt.

4. The coordinates of the center of mass of a plane homogeneous material curve whose
shape is defined by an equation y = f(x), with a < x < b, are calculated by the formulas

b b
re=7 [[afis@ran =g [ foy/te@prd.

where L is the length of the curve.
If the shape of a plane homogeneous material curve is defined parametrically by x = x(t)
and y = y(t), then the coordinates of its center of mass are obtained as

b b
Te = % /a :c(t)\/ [2’®F + [y O dt,  ye = % /a y(t)\/ [2'®))* + [y ®)]* dt.

5. The coordinates of the center of mass of a homogeneous curvilinear trapezoid
bounded by a curve y = f(x), the x-axis, and the straight lines x = a and x = b (see
Fig. M7.1) are given by

1 P 10 2 ’
:L'c=§/a z f(x)dz, yc=ﬁ/a[f($)] dz, S=/a f(x)dz,

where S is the area of the trapezoid.

M7.2.6. Improper Integrals with Infinite Integration Limits

An improper integral is an integral with an infinite limit (limits) of integration or an integral
of an unbounded function.

» Integrals with infinite limits.
1°. Lety = f(z) be a function defined and continuous on an infinite interval a < x < co. If
b
there exists a finite limit blim / f(x)dz, then it is called a (convergent) improper integral
—0o0 Ja

of f(x) on the interval [a, c0) and is denoted
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/ * f(x)dz. Thus, by definition
a

/ f(@)dr = hrn f(:c)d:c (M7.2.6.1)

If the limit is infinite or does not exist, the improper integral is called divergent.

The geometric meaning of an improper integral is that the integral / = f(x)dz, with
a

f(x) =20, is equal to the area of the unbounded domain between the curve y = f(x), its
asymptote y = 0, and the straight line x = a on the left.

2°. Suppose an antiderivative F'(x) of the integrand function f(z) is known. Then the
improper integral (M7.2.6.1) is
(i) convergent if there exists a finite limit lim F'(x) = F'(c0);
r—00

(ii) divergent if the limit is infinite or does not exist.

In case (i), we have

/ f@)de = F()|" = F(c0) - F(a).

Example 1. Let us investigate the improper integral [ = / i—f, a>0.
~1 a

I eV # L Depending on the value of the

The integrand f(x) = 2~ has an antiderivative F(z) =

parameter A\, we have

. R A _ 0 if A>1,
Jim F@)= =y Jim o= {0 17T
>
Therefore, if A > 1, the integral is convergent and is equal to I = F'(c0) — F'(a) = I and if A < 1, the

integral is divergent. It is easy to show that the integral is also divergent if A = 1.

3°. Improper integrals for other infinite intervals are defined in a similar way:

b b
| rwde= im_ [ i,

/w Fa) da = / fa) da + /w Fa) da,

where c is an arbitrary number. Note that if either improper integral on the right-hand side
of the latter relation is convergent, then, by definition, the integral on the left-hand side
is also convergent. If at least one of the integrals on the right-hand side is divergent, the
integral on the left is called divergent.

4°. Properties 2—4 and 6-9 from Subsection M7.2.2, where a can be equal to —oo and b can
be 0o, apply to improper integrals as well; it is assumed that all quantities on the right-hand
sides exist (the integrals are convergent).

» Sufficient conditions for convergence of improper integrals. In many problems, it
suffices to establish whether a given improper integral is convergent or not and, if yes,
evaluate it. The theorems presented below can be useful in doing so.
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THEOREM 1 (CAUCHY’S CONVERGENCE CRITERION). For the integral (M7.2.6.1) to be
convergent it is necessary and sufficient that for any € > 0 there exist a number R such that

the inequality
8
/ f(x)dx
[0

THEOREM 2. If 0 £ f(x) < g(x) for x = a, then the convergence of the integral

<€

holds for any 3 > a > R.

[ee] [e.e] [e.e]
/ g(x) dx implies the convergence of the integral / f(x) dz; moreover, / f@)dz <
a a a
/ = g(x) dx. If the integral / = f(x)dz is divergent, then the integral / = g(x) dx is also
a a a

divergent.

THEOREM 3. If the integral / h | f(z)| dz is convergent, then the integral / h f(x)dx
a a
is also convergent; in this case, the latter integral is called absolutely convergent.

sinx
22

. . o0 i . . 1
Example 2. The improper integral / Lz is absolutely convergent, since ’ ’ < — and the
1 x

72
. <1 .
integral / — dx is convergent (see Example 1).
Lz

THEOREM 4. Let f(x) and g(x) be integrable functions on any finite interval a < x < b
and let there exist a limit, finite or infinite,

im @ =K
z—o0 g(x)
Then the following assertions hold:
1. If 0 < K < o0, both integrals
e} e el
/ f(x)dz, / g(z) d (M7.2.6.2)
a a

are convergent or divergent simultaneously.

2. If 0 £ K < oo, the convergence of the latter integral in (M7.2.6.2) implies the
convergence of the former integral.

3. If 0< K < o0, the divergence of the latter integral in (M7.2.6.2) implies the divergence
of the former integral.

THEOREM 5 (COROLLARY OF THEOREM 4). Given a function f(x), let its asymptotics
for sufficiently large x have the form

f@=22 so).

%)
Then: (i) if A > 1 and p(x) < ¢ < oo, then the integral / = f(x)dz is convergent; (ii) it
a
A <1 and p(x) = ¢ > 0, then the integral is divergent.

THEOREM 6. Let f(x) be an absolutely integrable function on an interval [a, o0) and let
g(x) be a bounded function on [a, c0). Then the product f(x)g(x) is an absolutely integrable
function on [a, 00).

THEOREM 7 (ANALOGUE OF ABEL’S TEST FOR CONVERGENCE OF INFINITE SERIES). Let
f(x) be an integrable function on an interval [a,c0) such that the integral (M7.2.6.1) is
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convergent (maybe not absolutely) and let g(x) be a monotonic and bounded function on
[a, 00). Then the integral

/'OO f(@)g(x) dx (M7.2.6.3)
is convergent.

THEOREM & (ANALOGUE OF DIRICHLET’S TEST FOR CONVERGENCE OF INFINITE SE-
RIES). Let (i) f(x) be an integrable function on any finite interval [a, A] and

<K< (a £ A< 00);

‘/GAf(m)dac

(ii) g(x) be a function tending to zero monotonically as x — oo: lim g(x) = 0. Then the
r—00

integral (M7.2.6.3) is convergent.

Example 3. Let us show that the improper integral / ST 1 is convergent for a > 0 and A > 0.

A

Set f(z) = sinzx and g(x) = z™ and verify conditions (i) and (ii) of Theorem 8. We have

-A
/ sin x dx
a

(ii) since A > 0, the function 2™ is monotonically decreasing and tends to zero as  — co.

@

=|cosa—cos A| £2;

So both conditions of Theorem 8§ are met, and therefore the given improper integral is convergent.

M7.2.7. Improper Integrals of Unbounded Functions
» Basic definitions.

1°. Let a function f(x) be defined and continuous for a < z < b, but lirl?—o flx)=o00. If
Tr—

A
there exists a finite limit )\lirlgl_o / f(x)dz, it is called the (convergent) improper integral
— a

of the unbounded function f(x) over the interval [a, b]. Thus, by definition

b A
/a f(:E)d$=Alir}£0/Ll f(z)dz. M7.2.7.1)

If no finite limit exists, the integral is called divergent.
If lim f(x) = oo, then, by definition, it is assumed that

r—a+0

b b
/ f(@)dz = lim / f(x)dx.
a y—a+0 5

Finally, if f(x) is unbounded near a point ¢ € (a, b) and both integrals / * f(z)dx and
a

b
/ f(x) dx are convergent, then, by definition,
C

b c b
/ Fa)de = / Fyda + / @) de.

If at least one of the integrals on the right-hand side is divergent, the integral on the left-hand
side is called divergent.
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2°. The geometric meaning of an improper integral of an unbounded function and also
sufficient conditions for convergence of such integrals are similar to those for improper
integrals with infinite limit(s).

» Convergence tests for improper integrals of unbounded functions. Presented below
are theorems for the case where the only singular point of the integrand function is the right
endpoint of the interval [a, b].

THEOREM 1 (CAUCHY’S CONVERGENCE CRITERION). For the integral (M7.2.7.1) to be
convergent it is necessary and sufficient that for any € > O there exist a number § > 0 such
that for any 6, and 0, satisfying 0 < d; < § and 0 < §, < ¢ the following inequality holds:

b6

f@)dz

<Ee.

b-0;
THEOREM 2. If 0 £ f(x) £ g(x) for a £ x < b, then the convergence of the inte-
b b b
gral / g(x) dx implies the convergence of the integral / f(x)dz, with / f@)ydz <
a a a

b b b
/ g(x)dx. If the integral / f(x)dz is divergent, then the integral / g(x)dz is also
a a a
divergent.

1
dxr
Example. For any continuous function ¢(x) such that (1) = 0, the improper integral / _—
P g 7 7 POPEEINE )y @ vi-a
. . 1 1 . . /1 dr .
is convergent and does not exceed 2, since < , while the integral is
g o)+ V1-z Vi-z g Jo V1-z

convergent and is equal to 2.

THEOREM 3. Let f(x) and g(x) be continuous functions on [a, b) and let the following
limit exist:
[ (@)

Iim — =K 0 < K <00).
z—b g(T)

Then both integrals
b b
| f@da, [ g@)da

are either convergent or divergent simultaneously.

THEOREM 4. Let a function f(x) be representable in the form

f@=E 0o

where () is continuous on [a, b] and the condition p(b) # 0 holds.
b
Then: (i) if XA <1 and p(z) < ¢ < oo, then the integral / f(x)dz is convergent; (ii) if
a
A 21 and p(x) = ¢ > 0, then this integral is divergent.

M7.2.8. Approximate (Numerical) Methods for Computation of
Definite Integrals

b
For approximate computation of an integral like / f(x)dz, let us break up the interval
a

b-a
[a, b] into n equal subintervals with length h = ——. Introduce the notation: x¢ = a, =1,
n
.., Ty, = b (the partition points), y; = f(z;),t=0, 1, ..., n.



M?7.3. DOUBLE AND TRIPLE INTEGRALS 195

1°. Rectangle rules:

b
/ f@)dz = h(yo +y1 + - - + Yn-1),

b
/ f@)de = h(yy+y2+ - +yn).
a
The error of these formulas, R,,, is proportional to & and is estimated using the inequality
IR < $h(b—-a)Mj, My = max | f'(z)|.
a<z<b

2°. Trapezoidal rule:

b
+Yn
/f(x)dwzh<y02y +y1+yz+---+yn71>.

The error of this formula is proportional to 2% and is estimated as
IRl < 5 h*(b—a)M, M, = max | f"(z)|.
asz<b

3°. Simpson’s rule:

b
/ f@)dz = Lhlyo+yn + 41 +ys+ -+ yn-) + 202 + ya + - + Y],

where n is even. The error of approximation by Simpson’s rule is proportional to h*:
1 34 - “
IRl < gh*(b— )My, My = max | fO(@)].

Simpson’s rule yields exact results for the case where the integrand function is a polynomial
of degree two or three.

M7.3. Double and Triple Integrals
M7.3.1. Definition and Properties of the Double Integral

» Definition and properties of the double integral. Suppose there is a bounded set of
points defined on the plane, so that it can be placed in a minimal enclosing circle. The
diameter of this circle is called the diameter of the set. Consider a domain D in the xy-
plane. Let us partition D into n nonintersecting subdomains (cells). The largest of the cell
diameters is called the partition diameter and is denoted \ = A\(D,,), where D,, stands for
the partition of the domain D into cells. Let a function z = f(x, y) be defined in D. Select
an arbitrary point in each cell (z;,y;), 72 =1, 2, ..., n, and make up an integral sum,

sn= f@ny) AS;,
i=1

where AS; is the area of the ith subdomain.
If there exists a finite limit, 7, of the sums s,, as A — 0 and it depends on neither the

partition D,, nor the selection of the points (z;, ¥;), this limit is denoted / /D flx,y)dx dy
and is called the double integral of the function f(x,y) over the domain D:

//D f(x,y)drdy = lim sy,.

This means that for any € > 0 there exists a § > 0 such that for all partitions D,, such that
AD,,) < 6 and for any selection of the points (x;, ¥;), the inequality |s,, — J| < € holds. In
this case, the function f(x,y) is called integrable over the domain D.
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» Classes of integrable functions. Further on, it is assumed that D is a closed bounded
domain. -
1. If f(x,y) is continuous in D, then the double integral / /D f(x,y) dx dy exists.

2. If f(x,y)is bounded and the set of points of discontinuity of f(x,y) has a zero area
(e.g., the points of discontinuity lie on finitely many continuous curves in the xy-plane),
then the double integral of f(x,y) over the domain D exists.

» Properties of the double integral.
1. Linearity. If functions f(x,y) and g(z, y) are integrable in D, then

// laf(x,y) +bg(x, y)] dwdy=a// f(w,y)dwdyib// gz, y) d dy,
D D D

where a and b are any numbers.
2. Additivity. If the domain D is split into two subdomains D; and D, that do not have
common internal points and if the function f(z, y) is integrable in either subdomain, then

// F.y) d dy = / fe.y) dedy + / F.y) dz dy.
D Dy D,

3. Estimation theorem. If m < f(x,y) < M in D, then

mSS// f(x,y)dxdy < MS,
D

where S is the area of the domain D.
4. Mean value theorem. If f(x,y) is continuous in D, then there exists at least one
internal point (Z, ) € D such that

/ /D ey dedy = f(2.5) 5.

The number f(Z, ) is called the mean value of the function f(z,y)in D.
5. Integration of inequalities. If o(z,y) < f(x,y) < g(x,y) in D, then

// cp(x,y)dxdyﬁ// f(w,y)dwdyﬁ// g(zx,y) dx dy.
D D D

In particular, if f(z,y) = 0in D, then //D flx,y)dxdy = 0.

6. Absolute value theorem
< // ‘f(x,y)‘ dx dy.
D

‘//Df(x,y)dxdy

» Geometric meaning of the double integral. Let a function f(x,y) be nonnegative
in D. Then the double integral / /D f(x,y)dx dy is equal to the volume of a cylindrical

body with base D in the plane z = 0 and bounded from above by the surface z = f(x, y);
see Fig. M7.4.
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AY z=f(x,y)

Y=

— p
7

z

Figure M7.4. A double integral of a nonnegative function f(x,y) over a domain D is equal to the volume of
a cylindrical body with base D in the plane z = 0 and bounded from above by the surface z = f(z, y).

M7.3.2. Computation of the Double Integral
» Use of iterated integrals.

1°. Ifadomain D is defined in the xy-plane by the inequalities a<x <band y;(z) <y <yr(x)
(see Fig. M7.5 a), then*

b h(z)
/ f(x,y)dx dy :/ dz /y flx,y)dy. M7.3.2.1)
D a y1(x)

The expression on the right-hand side is called an iterated integral. Note that the variable =
in the inner integral is considered constant when integrating.

AY y=yx (@) J (b)
d
E x=x()
L y=n) | ¢
E L X X
0] a b 0] o

Figure M7.5. Computation of a double integral using iterated integrals: (a) illustration to formula (M7.3.2.1),
(b) illustration to formula (M7.3.2.2).

2. D ={cLy<d, z1(y) <z < x(y)} (see Fig. M7.5 b), then

z2(y)
/ / [, y)dxdy = / dy / ! f(x,y)dz. (M7.3.2.2)
z1(y)

Example 1. Compute the integral
/ / dx dy
b (az+by)?’

where D ={0<x <1, 1<y <3}isarectangle, a >0, and b > 0.

* It is assumed that in (M7.3.2.1) and (M7.3.2.2) the double integral on the left-hand side and the inner
integral on the right-hand side exist.
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Using formula (M7.3.2.2), we get

// Cdaxdy /3d /‘1 dx
D(aax+by)2 . y,o (ax + by)?”
z=1_ l i 1
ac:O_a by by+a)’

1 371 1 1. 3(a+b)
I_E/1<@_by+a>dy_%m a+3b "’

3°. Consider a domain D inscribed in a rectangle {a < x < b, ¢ <y < d}. Let the boundary
of D, within the rectangle, be intersected by straight lines parallel to the coordinate axes
at two points only, as shown in Fig. M7.6 a. Then, by comparing formulas (M7.3.2.1) and
(M7.3.2.2), we arrive at the relation

b y2(T) d z2(y)
/ dz / Fey)dy = / dy / J@.y)da.
a y1(z) c z1(y)

which shows how the order of integration can be changed.

(a) AV (b)

Compute the inner integral:
B 1
o (az+by)? alazx +by)

It follows that

X
>

)

Figure M7.6. Illustrations to the computation of a double integral in a simple (a) and a complex (b) domain.

4°. In the general case, the domain D is first split into subdomains considered in Items 1°
and 2°, and then the property of additivity of the double integral is used. For example, the
domain D shown in Fig. M7.6 b is divided by the straight line x = a into three subdomains
Dy, D,, and Ds. Then the integral over D is represented as the sum of three integrals over
the resulting subdomains.

» Change of variables in the double integral.

1°. Let © = x(u,v) and y = y(u,v) be continuously differentiable functions that map
one-to-one a domain D; in the uv-plane onto a domain D in the zy-plane, and let f(z,y)
be a continuous function in D. Then

//D fx,y)dxdy = //D f(x(u, v), y(u, v)) |J(u, v)| du dv,

where J(u, v) is the Jacobian (or Jacobian determinant) of the mapping of D; onto D:

w2 Qe | S| _wdy oedy
’ A(u,v) gy % Ooudv Ov Ou

The fraction before the determinant is a common notation for a Jacobian.
The absolute value of the Jacobian characterizes the extension (contraction) of an
infinitesimal area element when passing from z, y to u, v.



M?7.3. DOUBLE AND TRIPLE INTEGRALS 199

2°. The Jacobian of the mapping defining the change from the Cartesian coordinates x, y
to the polar coordinates p, ,

T =pcosp, Yy=psiny, M7.3.2.3)
is equal to

J(p, ) = p. M7.3.2.4)

Example 2. Given a sphere of radius R and a right circular cylinder of radius a < R whose axis passes
through the sphere center, find the volume of the figure the cylinder cuts out of the sphere.
The volume of this figure is calculated as

V=2// V R?—x?—y? dz dy.
o :L'2+y2Sa2

Passing in the integral from z, y to the polar coordinates (M7.3.2.3) and taking into account (M7.3.2.4), we

obtain )
V=2/ / \/Rz—pzpdpdgo:%[RS—(RZ—aZ)WZ].
JOo JO

M7.3.3. Geometric and Physical Applications of the Double Integral

» Geometric applications of the double integral.
1. Area of a domain D in the xy-plane:

S=// dx dy.
D

2. Area of a surface defined by an equation z = f(x,y) with (x,y) € D (the surface is
projected onto a domain D in the zy-plane):

s= [[ &Y +(Zy 41 way

3. Calculation of volumes. If a domain U of the three-dimensional space is defined by
{(3:, e D, fx,y) <z < g, y)}, where D is a domain in the xy-plane, the volume of U

is calculated as
V= //D [9(@,y) - f(z,y)] dz dy.

The three-dimensional domain U is a cylinder with base D bounded by the surface z = f(z, i)
from below and the surface z = g(x, y) from above. The lateral surface of this body consists
of segments of straight lines parallel to the z-axis.

4. Area of a surface defined parametrically by equations x = x(u,v), y = y(u,v),
z = z(u,v), with (u,v) € Dx:

S:// vV EG - F? dudv.
D,

A oy 2 02\
£=(5) (o) * (&)
oz \* oy 2 02\
o=(5) (o) * (3)-
T Oudv Oudv Oudv’

Notation used:
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5. Area of a surface defined by a vector equation r = r(u,v) = x(u,v)i+ y(u,v)j +

z(u, v) K, with (u,v) € Dq:
S=// In(u, v)| du dv,
D,

where n(u, v) = r, Xr, is a normal vector to the surface; the subscripts u and v denote the
respective partial derivatives.

Remark. The formulas from Items 4 and 5 are equivalent—they define one and the same surface in two
forms, scalar and vector, respectively.

» Physical applications of the double integral. Consider a flat plate that occupies a
domain D in the zy-plane. Let y(x, y) be the surface density of the plate material (the case
v = const corresponds to a homogeneous plate).

1. Mass of a flat plate:
m = // Y(z,y) dz dy.
D

2. Coordinates of the center of mass of a flat plate:

1 1
Te=— // xy(x,y)drdy, y.=— // yy(,y)dx dy,
m D m D

where m is the mass of the plate.
3. Moments of inertia of a flat plate about the coordinate axes:

I, = / / vy, y)dedy, I,= / / 22y (z, y) dz dy.
D D

The moment of inertia of the plate about the origin of coordinates is calculated as Io=1,+1,.

M7.3.4. Definition and Properties of the Triple Integral

» Definition of the triple integral. Let a function f(z,y, z) be defined in a domain U of
the three-dimensional space. Let us break up U into n subdomains (cells) that do not have
common internal points. Denote by A = A(Uf,,) the diameter of the resulting partition U,,, i.e.,
the maximum of the cell diameters (the diameter of a domain in space is the diameter of the
minimal sphere enclosing the domain). Select an arbitrary point, (z;, ¥;, 2;),t=1, 2, ..., n,
in each cell and make up an integral sum

$n= > f@iyiz) AV,

i=1

where AV is the volume of the ith cell. If there exists a finite limit of the sums s,
as A(U,,) — 0 that depends on neither the partition U4, nor the selection of the points
(x;,v5, %), then it is called the triple integral of the function f(x,y, z) over the domain U

and is denoted
// f(z,y,z)dxdydz = lim s,.
U A—0

» Properties of the triple integral. The properties of triple integrals are similar to those
of double integrals.
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1. Linearity. If functions f(z,y, z) and g(z, y, 2) are integrable in a domain U, then

/// [af(m,y, z)* bg(ac,y,z)] dz dy dz
U

=a// f(m,y,z)dxdydzib///g(m,y,z)dmdydz,
U U

where a and b are any numbers.
2. Additivity. If a domain U is split into two subdomains, U; and U,, that do not have
common internal points and if a function f(x,y, z) is integrable in either subdomain, then

/// f(z,y,z)dxdydz = // f(:n,y,z)d:cdydz+// flx,y,z)dxdydz.
U Uy U,

3. Estimation theorem. If m < f(z,y, z) £ M in a domain U, then

mVS/// fx,y,2)dedydz< MV,
U

where V is the volume of U.
4. Mean value theorem. If f(x,y, z) is continuous in U, then there exists at least one
internal point (Z, %, Z) € U such that

// fx,y,2)dedydz = f(Z,5,2) V.
U

The number f(Z, 4, Z) is called the mean value of the function f in the domain U.
5. Integration of inequalities. If p(z,y, 2) < f(x,y, 2) < g(x,y, z) in a domain U, then

/// gp(w,y,z)dwdydzﬁ// f(w,y,z)dwdydzﬁ/// g(x,y, z)dx dy dz.
U U U

6. Absolute value theorem:
< /// ‘f(:n,y,z)!d:cdydz.
U

‘/// flx,y,z)dxdydz
U

M7.3.5. Computation of the Triple Integral. Some Applications.
Iterated Integrals and Asymptotic Formulas

» Use of iterated integrals.

1°. Consider a three-dimensional body U bounded by a surface z = g(z, ) from above and
a surface z = h(x, y) from below, with a domain D being the projection of the body onto the
zy-plane. In other words, the domain U is defined as {(z,y) € D : h(z,y) <z < g(x,y)}.

Then )
9(z.y
// f(a:,y,z)dxdydz=// dmdy/ f(z,y,2)dz.
U D h(z,y)

2°. If, under the same conditions as in Item 1°, the domain D of the xy-plane is defined as
{a<z<b, yi(x) Sy < ya(2)}, then

b ya2(x) 9(z.y)
// f(z,y,z)dxdydz = / dm/ dy/ flx,y,2)dz.
U a y1(z) h(z.y)
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» Change of variables in the triple integral.

1°. Let x = x(u, v, w), y = y(u,v,w), and z = z(u, v, w) be continuously differentiable
functions that map, one to one, a domain §2 of the u, v, w space onto a domain U of the
x,y, 2 space, and let a function f(x,y, z) be continuous in U. Then

/// fx,y,2)dx dy dz:///f(w(u,v,w), y(u, v, w), z(u,v,w)) |J(u, v, w)| du dv dw,
U Q

where J(u, v, w) is the Jacobian of the mapping of ) onto U:
9z Oz Oz
v Ov ow

o
_ 0@z oy oy oy

- — | Ou ov ow
A(u, v, w) 9z 02 0z
ou ov ow
The expression in the middle is a common notation for a Jacobian.
The absolute value of the Jacobian characterizes the expansion (or contraction) of an

infinitesimal volume element when passing from z, y, 2z to u, v, w.

J(u, v, w)

2°. The Jacobians of some common transformations in space are listed in Table M7.2.

TABLE M7.2
Some curvilinear coordinates in space and the respective Jacobians.
Name of coordinates Transformation Jacobian, J
Cylindrical coordinates p, ¢, 2 T=pcosp, y=psing, z=2 p
Generalized cylindrical o= apcos —bpsino. z=z ab
coordinates p, p, z T apcosy, y=opsimp, 2= p
Spherical coordinates 7, ¢, 6 x=rcosy sinf, y=rsiny sinb, z = rcos @ r2sin @
Generalized spherical x = arcosp sind, y =brsinp sin6, ber sin 0
coordinates 7, ¢, 6 2= crcos 0 aber” sin
Parabolic cylinder _ 1,2 2 _ )
coordinates o, T,z T=o07, y=3(m-07), z2=2 o +T

» Some geometric and physical applications of the triple integral.

1. Volume of a domain U
V=/// dx dy dz.
U

2. Mass of a body of variable density v = ~(x,y, z) occupying a domain U':

m:/// vydx dydz.
U

3. Coordinates of the center of mass:

ZEC:i/// zy dz dy dz, yc=i/// yydxdydz, zc=i/// zydz dy dz.
m U m U m U

4. Moments of inertia about the coordinate axes:

Ix:/// pizfydwdydz, [y=/// P2y dz dy dz, IZ=/// piyfydxdydz,
U U v

where péz = y* + 22, pfcz =22 + 2%, and piy =22 +y%
If the body is homogeneous, then ~ = const.
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Example. Given a bounded homogeneous elliptic cylinder,

$2 y2

PR
find its moment of inertia about the z-axis.
Using the generalized cylindrical coordinates (see the second row in Table M7.2), we obtain

2
I, = // («* +y)d:rdydz— ///p(a cos’ <p+b sin’ p)abpdp de dz

faby/ (a® cos® <p+b sin’ p)dpdz = labfy/ (a® cos® <p+b sin’ p)dzdy
00

=1, 0<Lz<h,

2w
= Zabh’y / (a2 cos? @+ b sin’ p)dy = %ﬂ'ab(a2 + bz)hv.
0
5. Potential of the gravitational field of a body U at a point (z, y, 2):

dédnd
b= [[[ 2€n0BTR, oo rwmnree-on

where v = (&, 1, () is the body dens1ty A material point of mass m is pulled by the
gravitating body U with a force F. The projections of F onto the z-, y-, and z-axes are
given, respectively, by

Fx:kmg—i:km///ljv(&%Cg

00 -
Fy=kma—=km/// y&m O dg ande,
Y U r

Fo= S =k [ [[ €055 agandc
z U r

where k is the gravitational constant.

M7.4. Line and Surface Integrals
M7.4.1. Line Integral of the First Kind

» Definition of the line 1ntegral of the first kind. Let a function f(x,y, z) be deﬁned

on a piecewise smooth curve AB in the three-dimensional space R3. Let the curve AB
be divided into n subcurves by points A = My, My, My, ..., M, = B, thus defining a
partition £,,. The longest of the chords MyMi, M1 M,, ..., M,_1 M, is called the diameter

of the partition L,, and is denoted A = A(L,,). Let us select on each arc MZ: M; an arbitrary
point (x;,v;,2;), 2 =1, 2, ..., n, and make up an integral sum

n
n= Z [ (@i, yi, 2) Al;,
i=1
where Al; is the length of MZ:MZ
If there exists a finite limit of the sums s,, as A(L,,) — 0 that depends on neither the
partition £,, nor the selection of the points (x;, y;, z;), then it is called the line integral of

the first kind of the function f(x,y, z) over the curve AB and is denoted

dl =1 n-
/AB f(x,y, 2) lim s

A line integral is also called a curvilinear integral or a path integral.
If the function f(x,y, z) is continuous, then the line integral exists. The line integral

of the first kind does not depend of the direction the path AB is traced; its properties are
similar to those of the definite integral.
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» Computation of the line integral of the first kind.
1. If a plane curve is defined in the form y = y(x), with « € [a, b], then

b
/AB Sl y)dl = / fa,y@) V1+(y,) de.

2. If a curve AB is defined in parametric form by equations =z = z(t), y = y(¢), and
z = z(t), with t € [«, 5], then

3
f@,y,2)dl = / f(z@®), y(@®), 2(t)) \/ (@)? + (y))* + (2))* dt. (M7.4.1.1)

AB a

If a function f(x,y) is defined on a plane curve x = x(t), y = y(t), with t € [«, 5], one
should set z; = 0 in (M7.4.1.1).

Example. Evaluate the integral / xy dl, where ABisa quarter of an ellipse with semiaxes a and b.
AB
Let us write out the equations of the ellipse for the first quadrant in parametric form:

x=acost, y=bsint O0O<t<w/2).

We have /(z})? + (y4)? = y/a? sin2 t + b2 cos? ¢. To evaluate the integral, we use formula (M7.4.1.1) with
!
2z =0:

. /2
/ :cydl:/ (acost)(bsint)\/a?sin®t + b2 cos? t dt
AB Jo

" ’ : 1 2,12 )
=%b./0 sin2t\/%(1—0052t)+%(1+0052t)dt=%b./_l a ;rb +b 2@ wdu

_ab_ 2 2/d+b bp-a NV
T4 2-a?3 2 2

_aba’+ab+¥’
3 a+b

-1

» Applications of the line integral of the first kind.
1. Length of a curve AB:
L= / dl.
AB

2. Mass of a material curve AB with a given line density v = y(z, y, 2):

m= v dl.
AB

3. Coordinates of the center of mass of a material curve AB:

1 1 1
Te= — xydl, Y= —/ yydl, ze=— zydl.
m JAB m JAB m JAB

To a material line with uniform density there corresponds y = const.
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M7.4.2. Line Integral of the Second Kind

» Definition of the line integral of the second kind. Let a vector field

a(zr,y,z) = P(x,y,2)i+Q(z,y,2)j+ R(z,y, 2) K

and a piecewise smooth curve AB be defined in some domain in R3. By dividing the curve
by points A = My, My, M>, ..., M, = B into n subcurves, we obtain a partition £,. Let

us select on each arc M;  M; an arbitrary point (x;, y;, 2;), ¢ = 1,2,...,n, and make up a
sum of dot products
n
—_—
Sp = Z a(w;, Yi, z;) - M1 M;
i=1
called an integral sum.
If there exists a finite limit of the sums s, as A(L,,) — 0 (X is the diameter of the
partition; see Subsection M7.4.1) that depends on neither the partition £,, nor the selection
of the points (x;, y;, 2;), then it is called the line integral of the second kind of the vector

field a(zx, y, 2) along the curve AB and is denoted

/a~dr, or / Pdx+Qdy+ Rdz.
AB AB

The line integral of the second kind depends on the direction the path is traced, so that

/ a~dr:—/ a-dr.
AB BA

A line integral over a closed contour C is called a closed path integral (or a circulation)
of a vector field a around C and is denoted

fa-dr.
1§

Physical meaning of the line integral of the second kind: /AB a- dr determines the work

done by the vector field a(z, y, z) on a particle of unit mass when it travels along the arc AB.

» Computation of the line integral of the second kind.

1°. For a plane curve A\é defined as y = y(x), with = € [a, ], and a plane vector field a,
we have

b
/AB a-dr= / [P(w,y(w)) + Q(m,y(m))y;(x)] dx.

2°. Let AB be defined by a vector equation r = r(t) = z(t)i + y(t)j + z(t)k, with t € [a, §].
Then

/a-dr:/ Pdrx+Qdy+ Rdz
AB AB

3
= / [P(z(t), y(t), 2(0))z () +Q (x(t), y(1), 2(1) )y () + R (x(t), y(t), 2(1)) 2, ()] dt.  (M7.4.2.1)

For a plane curve AB and a plane vector field a, one should set 2/(t) = 0 in (M7.4.2.1).
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» Potential and curl of a vector field.

1°. A vector field a = a(z, y, z) is called potential if there exists a function ®(z, y, z) such
that

o, 0P, 0P
=—i+—j+—k.

= do, =
a = gra or 83:1 3y 52

The function ®(z,y, z) is called a potential of the vector field a. The line integral of the
second kind of a potential vector field along a path AB is equal to the increment of the

potential along the path:
a-dr=9o|,-9|,.
/AB ‘B |A

2°. The curl of a vector field a(x, y, z) = Pi+ Qj + Rk is the vector defined as

_(OR 0Q\. (0P OR\., (0Q 0P\ _
Cuﬂa_<8y_8z>l+<8z_8x>']+<8x_8y>k_

 Fo =
QO &3|Q> e
5 Yo =

The vector curl a characterizes the rate of rotation of a and can also be described as the
circulation density of a. Alternative notations: curla =V X a = curl a.

» Necessary and sufficient conditions for a vector field to be potential. Let U be a
simply connected domain in R3 (i.e., a domain in which any closed contour can be deformed
to a point without leaving U) and let a(z, y, 2) be a vector field in U. Then the following
four assertions are equivalent to each other:

(1) the vector field a is potential;

(2) curla=0;

(3) the circulation of a around any closed contour C € U is zero, or, equivalently,
fc a-dr=0;

(4) the integral A s dr is independent of the shape of ABe U (it depends only on

the initial and final points).

M7.4.3. Surface Integral of the First Kind

» Definition of the surface integral of the first kind. Let a function f(x, y, z) be defined
on a smooth surface D. Let us break up this surface into n elements (cells) that do not have
common internal points and let us denote this partition by D,,. The diameter, A\(D,,), of a
partition D,, is the largest of the diameters of the cells (see Paragraph M7.3.4-1). Let us
select in each cell an arbitrary point (x;,y;, 2;), ¢ = 1, 2, ..., n, and make up an integral
sum

sn= Y [@iyi2) AS;,
i=1

where A.S; is the area of the ith element.
If there exists a finite limit of the sums s, as A\(D,) — 0 that depends on neither the
partition D,, nor the selection of the points (z;, y;, 2;), then it is called the surface integral

of the first kind of the function f(z,y, z) and is denoted / /D f(x,y,2)dS.
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» Computation of the surface integral of the first kind.

1°. If a surface D is defined by an equation z = z(x, y), with (z,y) € Dy, then

// f(x,y,2)dS = // f(a:, y, 2(x, y)) A1+ ()% + (zg’J)2 dz dy.
D D,

2°. Ifasurface D is defined by a vector equationr =r(x, y, z) = (u, v) i+y(u, v) j+z(u, v) K,
where (u,v) € D,, then

// f(x,y,2)dS = // f(x(u, v), y(u, v), z(u, v))\n(u, v)| du dv,
D D,

where n(u,v) = r, Xr, is a normal to the surface D; the subscripts u© and v denote the
respective partial derivatives.

» Applications of the surface integral of the first kind.

sp=[[ ds.

2°. Mass of a material surface D with a surface density v = y(z, y, 2):

m = // Y(x,y, z)dS.
D

3°. Coordinates of the center of mass of a material surface D:

1 1
wcz—// xydS, yC:—// yydS, zC:i// zydS.
mJJp mJJp mJJp

To the uniform surface density there corresponds ~ = const.

1°. Area of a surface D:

M7.4.4. Surface Integral of the Second Kind

» Definition of the surface integral of the second kind. Let a vector field a(z, y, 2) =

Pi+@Q j+ Rkbe defined on a smooth oriented surface D. Let us perform a partition, D,,, of

the surface D into n elements (cells) that do not have common internal points. Also select

an arbitrary point M;(x;, y;, 23), ¢ = 1,2, ..., n, for each cell and make up an integral sum
n

Spo= > a(Ti, Vi, 2i) - n’ AS;, where AS; is area of the ith cell and n; is the unit normal to
i=1
the surface at the point M, the orientation of which coincides with that of the surface.

If there exists a finite limit of the sums s, as A(D,,) — 0 (A is the diameter of the
partition, see Subsection M7.4.3) that depends on neither the partition D,, nor the selection
of the points M;(x;, y;, 2;), then it is called the surface integral of the second kind (or the
flux of the vector field a across the oriented surface D) and is denoted

// a(a:,y,z)wﬁ, or // Pdydz+ Qdrdz+ Rdx dy.
D D

Note that the surface integral of the second kind changes its sign when the orientation of
the surface is reversed.
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» Computation of the surface integral of the second kind.

1°. If a surface D is defined by an equation z = z(z, y), with (x,y) € D, then the normal
n(x,y) =r; Xr, = —2,i— 2z,j + K orients the surface D “upward,” in the positive direction
of the z-axis; the subscripts x and y denote the respective partial derivatives. Then

//Dawﬁ:i//[) (=22 P - 2,Q + R) dx dy,

where P = P(:p, Y, z(x, y)), Q= Q(aj, vy, z(x, y)), and R = R(:p, Y, z(x, y)). The plus sign
is taken if the surface has the “upward” orientation, and the minus sign is chosen in the
opposite case.

M7.4.5. Integral Formulas of Vector Calculus

» Ostrogradsky—Gauss theorem (divergence theorem). Let a vector field a(x,y, z) =
P(z,y,2)i+ Q(x,y,2)j + R(z,y, 2) k be continuously differentiable in a finite simply
connected domain V' C R3 and let S denote the surface of V oriented by an outward
normal. Then the Ostrogradsky—Gauss theorem (or the divergence theorem) holds:

//Sa~cﬁ=///vdivadmdydz,

where div a is the divergence of the vector a, which is defined as follows:

. oP 0Q OR
diva= — + — + —.
v or Oy 0z
Thus, the flux of a vector field across a closed surface in the outward direction is equal
to the triple integral of the divergence of the vector field over the volume bounded by the
surface. In coordinate form, the Ostrogradsky—Gauss theorem reads

//dedz+dedz+Rdwdy ///<8P 8Q %R>dxdydz
z

» Stokes’s theorem (curl theorem).

1°. Let a vector field a(z,y, z) be continuously differentiable in a domain of the three-
dimensional space R? that contains an oriented surface D. The orientation of a surface
uniquely defines the direction in which the boundary of the surface is traced; specifically,
the boundary is traced counterclockwise when looked at from the direction of the normal to
the surface. Then the circulation of the vector field around the boundary C of the surface D
is equal to the flux of the vector curl a across D:

jia-dr=//Dcurla-cﬁ.

In coordinate notation, Stokes’s theorem reads

_ R _0Q OF OR oQ_or
7£Pdm+Qdy+Rdz—//D<ay—az>dydz+<az—ax>dmdz+<ax—ay>dmdy.

2°. For a plane vector field a(z,y) = P(z,y)i+ Q(z,y)j, Stokes’s theorem reduces to

Green’s theorem: 5 op
%Pdm+@dy=//< Q >d dy,
Isd D 8[17 8y

where the contour C of the domain D on the xy-plane is traced counterclockwise.
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Chapter M8
Series

M8.1. Numerical Series and Infinite Products
M8.1.1. Convergent Numerical Series and Their Properties.
Cauchy’s Criterion

» Basic definitions. Let {a,,} be a numerical sequence. The expression
o0
a1+a2+---+an+-~=Zan
n=1

is called a numerical series (infinite sum, infinite numerical series), a,, is the generic term
of the series, and

n
Sp=a1+ay+---+ap = E ag
k=1

is the nth partial sum of the series. If there exists a finite limit lim s, = .5, the series
n—oo

is called convergent, and S is called the sum of the series. In this case, one writes

o0

> a,=5. If lim s, does not exist (or is infinite), the series is called divergent. The

n—00
n=1

Series Gn4+1 + Gn42 + Any3 + - - - is called the nth remainder of the series.

oo
Example 1. Consider the series Y aq™™! = a+aq+aq® + - - - whose terms form a geometric progression
n=1
with ratio g. This series is convergent for |g| < 1 (its sum has the form S = &) and is divergent for |g| = 1.

» Necessary condition for a series to be convergent. Cauchy’s criterion.

o0
1. A necessary condition for a series to be convergent. For a convergent series » | ay,
n=1
the generic term must tend to zero, lim a, =0. If lim a, #0, then the series is divergent.
n—oo n—oo

& 1
Example 2. The series ) cos — is divergent, since its generic term a,, = cos — does not tend to zero as
n n

n=1
n — oQ.

The above necessary condition is insufficient for the convergence of a series.

. | . . 1 .
Example 3. Consider the series >, —. Its generic term tends to zero, lim —= = 0, but the series
n=1 n n—oo \/ﬁ
> 1
>~ —— is divergent because its partial sums are unbounded,
n=1 \/ﬁ
s ! + ! 44 ! >n ! Vn—oo as n— oo
=+ — 4+ — — = — — .
SRV VRGN

o

2. Cauchy’s criterion of convergence of a series. A series »_ aj, is convergent if and
n=1

only if for any € > 0O there exists an N = N(¢) such that for all n > N and any positive

integer k, the following inequality holds: |ap1 + - -+ + anykl < €.

211
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» Properties of convergent series.
1. If a series is convergent, then any of its remainders is convergent. Removal or
addition of finitely many terms does not affect the convergence of a series.
2. If all terms of a series are multiplied by a nonzero constant, the resulting series
preserves the property of convergence or divergence (its sum is multiplied by that constant).
o o

3. If the series Y a, and ) b, are convergent and their sums are equal to S; and S5,

n=1 n=1
(o]
respectively, then the series Y (ay, t b;,) are convergent and their sums are equal to S} +.5,.
n=1

4, Terms of a convergent series can be grouped in successive order; the resulting series
has the same sum. In other words, one can insert brackets inside a series in an arbitrary
order. The inverse operation of opening brackets is not always admissible. Thus, the series
(1-1)+(1-1)+-- - is convergent (its sum is equal to zero), but, after removing the brackets,
we obtain the divergent series 1 —1+1—1+--- (its generic term does not tend to zero).

M8.1.2. Convergence Criteria for Series with Positive (Nonnegative)
Terms

» Basic convergence (divergence) criteria for series with positive terms.
1. The first comparison criterion. If 0 < a,, < b, (starting from some n), then the
o o

convergence of the series Y b,, implies the convergence of > a,; and the divergence of
n=1 n=1

o0 [e.e]
the series ) _ a,, implies the divergence of > b,,.
n=1 n=1
2. The second convergence criterion. Suppose that there exists a finite limit

[e.e] [e.e]
where 0 < 0 < co. Then ) a, is convergent (resp., divergent) if and only if > b, is
n=1 n=1
convergent (resp., divergent).
Corollary. Suppose that a,41/a, < byy1/by, starting from some N (i.e., for n > N).

o0 o0
Then convergence of the series » b, implies convergence of > a,, and divergence of
n=1 n=1

o0 o0
> a, implies divergence of ) by,.
n=1 n=1
3. D’Alembert criterion. Suppose that there exists the limit (finite or infinite)

an+1

lim =D.
n—oo QG
o0
If D < 1, then the series Y ay, is convergent. If D > 1, then the series is divergent. For
n=1

D =1, the d’ Alembert criterion cannot be used for deciding whether the series is convergent
or divergent.

o0
Example 1. Let us examine the convergence of the series > n*x™ with > 0, using the d’ Alembert

n=1

criterion. Taking a, = n*z", we get

An+l

k
1

=(1+— )] x—x as n — oo.
an n
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Therefore, D = x. It follows that the series is convergent for z < 1 and divergent for z > 1. The series is
divergent for = = 1, since a,, does not tend to zero as n — co.

4. Cauchy criterion. Suppose that there exists the limit (finite or infinite)

Iim Ya, =K.

n—oo

o0

For K < 1, the series »_ a,, is convergent; for K > 1, the series is divergent. For K =1,
n=1

the Cauchy criterion cannot be used to establish convergence of a series.

Remark. The Cauchy criterion is stronger than the d’ Alembert criterion, but the latter is, in many cases,
simpler than the former.

5. Gauss’s criterion. Suppose that the ratio of two consecutive terms of a series can be
represented in the form

a 1
i =)\+ﬁ+o — as n — oo.
An1 n n

o0
The series Y a,, is convergent if A> 1 orif A =1 and p > 1. The series is divergent if A < 1

n=1
orif A\=1and < 1.
6. Maclaurin—Cauchy integral criterion. Let f(r) be a nonnegative nonincreasing
continuous function on the interval 1 <x < co. Let f(1)=aq, fQR)=ay, ..., f(R)=ay, ...

o0 je e}

Then the series Y a, is convergent if and only if the improper integral /1 f@)dz is
n=1

convergent.

=1+

oo
+ = +--- is divergent, since the integral / —dzis
1 xr

S|
W] —

Example 2. The harmonic series >,
n=1

g 1=

1
ne

divergent. In a similar way, one finds that the series Z is convergent for o > 1 and divergent for o < 1.

n=1

M8.1.3. Convergence Criteria for Arbitrary Numerical Series.
Absolute and Conditional Convergence

» Arbitrary series. Leibniz, Abel, and Dirichlet convergence criteria.
o

1. Leibniz criterion. Suppose that the terms a,, of a series > a,, have alternating signs,

n=1
their absolute values form a nonincreasing sequence, and a,, — 0 as n — oo. Then this
“alternating” series is convergent. If S is the sum of the series and s, is its nth partial sum,

then the following inequality holds for the error |S — s,| < |Gn41].

Example 1. The series 1 — 2—12 + 3—13 - 4—14 + 5i5 — -+ is convergent by the Leibniz criterion. Taking
S=s4=1- 2—12 + 3% TS we obtain the error less than as = 5—15 =0.00032.
2. Abel criterion. Consider the series

Zanbn=a1b1+a2b2+---+anbn+---, (M8.1.3.1)

n=1

where a,, and b,, are two sequences or real numbers.
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Series (M8.1.3.1) is convergent if the series
o0
D bp=byAbytetby e (M8.1.3.2)
n=1

is convergent and the a,, form a bounded monotone sequence (Ja,| < K).
3. Dirichlet criterion. Series (M8.1.3.1) is convergent if partial sums of series
(M8.1.3.2) are bounded uniformly in n,

‘Zbk‘sM (=12 ..
k=1

and the sequence a,, — 0 is monotone.

o0
Example 2. Consider the series Y a,, sin(nz), where a,, — 0 is a monotonically decreasing sequence.
n=1

Taking b,, = sin(nx) and using a well-known identity, we find the partial sum

sp=Y  sin(ka) =
k=1
This sum is bounded for x # 2m:

cos(%:c) —cos[(n + %)x]
ZSin(%x)

(x#2mm; m=0,£1,%£2,...).

1
[sin(3)|
(o=}
Therefore, by the Dirichlet criterion, the series Y | an sin(nz) is convergent for any x # 2mr. Direct verification

n=1
shows that this series is also convergent for x = 2mm (since all its terms at these points are equal to zero).

[snl <

Remark. The Leibniz and the Abel criteria can be deduced from the Dirichlet criterion.

» Absolute and conditional convergence.
o

1. Absolutely convergent series. A series Y a,, (with terms of arbitrary sign) is called

n=1
oo

absolutely convergent if the series ) |ay| is convergent.
n=1

Any absolutely convergent series is convergent. In order to establish absolute conver-
gence of a series, one can use all convergence criteria for series with nonnegative terms
given in Subsection M8.1.2 (in these criteria, a,, should be replaced by |a,,]|).

1 1

Example 3. The series 1 + ErRC TR + 5 + r R is absolutely convergent, since the series with

the absolute values of its terms, % is convergent (see the second series in Example 2 of Subsection M8.1.2

n=1
for a = 2).

o
2. Conditionally convergent series. A convergent series Y . a,, is called conditionally
=1
oo n
convergent if the series ) |ay| is divergent.
n=1

. 1 1 . .. . .
Example 4. The series 1 — 7 + 377 + - - - is conditionally convergent, since it is convergent (by the

Leibniz criterion), but the series with absolute values of its terms is divergent (it is a harmonic series; see
Example 2 in Subsection M8.1.2).

Any rearrangement of the terms of an absolutely convergent series (in particular, a
convergent series with nonnegative terms) neither violates its absolute convergence nor
changes its sum. Conditionally convergent series do not possess this property: the terms of
a conditionally convergent series can be rearranged in such order that the sum of the new
series becomes equal to any given value; its terms can also be rearranged so as to result in
a divergent series.



M8.2. FUNCTION SERIES 215

M8.1.4. Multiplication of Series. Some Inequalities
» Multiplication of series. Cauchy, Mertens, and Abel theorems. A product of two
o o0

infinite series Y a, and ) b, is understood as a series whose terms have the form a,by,
n=0 n=0

(n, m=0, 1, ...). The products a,b,, can be ordered to form a series in many different

ways. The following theorems allow us to decide whether it is possible to multiply series.

[e.e] o0
CAUCHY THEOREM. Suppose that the series >, ay, and Y b, are absolutely convergent
n=0 n=0
and their sums are equal to A and B, respectively. Then any product of these series
is an absolutely convergent series and its sum is equal to AB. The following Cauchy

multiplication formula holds:

<§:an>< > bn> = i( 3 ambnm>. (M8.1.4.1)
n=0 n=0 n=0 >m=0

MERTENS THEOREM. The Cauchy multiplication formula (M8.1.4.1) is also valid if

[e.°] o0

one of the series, Y ay or Y by, is absolutely convergent and the other is (condition-
n=0 n=0
ally) convergent. In this case, the product is a convergent series, possibly, not absolutely

convergent.

ABEL THEOREM. Consider two convergent series with sums A and B. Suppose that the
product of these series in the form of Cauchy (M8.1.4.1) is a convergent series with sum C'.
Then C' = AB.

» Inequalities.
1. Generalized triangle inequality:

o o
D an] <Dl
n=1 n=1

2. Cauchy inequality (Cauchy—Schwarz—Bunyakovsky inequality):

(ganbnf < (i@) (f; 2).

3. Minkowski inequality:

(g |an, + bn|P)% < (g |an|p)% + (ni:; |bn|”>%, b3 1.

In all these inequalities it is assumed that the series on the right-hand sides are convergent.

M8.2. Function Series
M8.2.1. Pointwise and Uniform Convergence of Function Series

» Convergence of a function series at a point. Convergence domain. A function series
is a series of the form

ur (@) +up(@) + - U () + =Y un(a),
n=1
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o
where u,,(x) are functions defined on a set X C R. The series Y u,(x) is called convergent

n=1
oo

at a point xo € X if the numerical series ) u,(z) is convergent. The set of all z € X for
n=1
which the function series is convergent is called its convergence domain. The sum of the
series is a function of x defined on its convergence domain.
In order to find the convergence domain for a function series, one can use the convergence
criteria for numerical series described in Subsections M8.1.2 and M8.1.3 (with the variable x

regarded as a parameter).
o0 [e.e]

A series ) uy(x) is called absolutely convergent on a set X if the series Y |un ()| is
n=1 n=1
convergent on this set.

Example. The function series

l+z+a”+25+ -

. . . .. 1
is convergent for—1 <z < 1 (see Example 1 in Subsection M8.1.1). Its sum is defined on this interval, S =

-2
o o

The series >, wuy(x) is called the remainder of a function series » . uy(x). For a series
k=n+1 n=1

convergent on a set X, the relation S(x) = s,,(z) + (), where s,,(z) is the partial sum of
the series and r,(x) is the sum of its remainder, implies that lim r,(z) =0 forx € X.
n—oo

» Uniformly convergent series. Condition of uniform convergence. A function series
is called uniformly convergent on a set X if for any ¢ > 0 there exists an N (dependent on €
but not on x) such that for all » > NN, the inequality

[e.9]

Z ug(z)

k=n+1

<¢

holds for all x € X.

A necessary and sufficient condition of uniform convergence of a series. A series
o0
>~ un(z) is uniformly convergent on a set X if and only if for any € > O there exists an N
n=1

(independent of x) such that for all n > N and all m =1, 2, ..., the inequality

n+m

> u@)

k=n+1

<eg

holds for all x € X.

M8.2.2. Basic Criteria of Uniform Convergence. Properties of
Uniformly Convergent Series

» Criteria of uniform convergence of series.
[e.e]

1. Weierstrass criterion of uniform convergence. A function series » wuy(x) is uni-

n=1
00

formly convergent on a set X C R if there is a convergent number series » . a,, with
n=1
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nonnegative terms such that |u,(x)| < a,, for all sufficiently large n and all z € X. The

[o¢] (o]
series Y ay, is called a majorant series for | un(x).
n=1 n=1
— pSinnT . n SINNT 1
Example. The series Y (1) >— is uniformly convergent for —co <z < oo, since |(-1) — <=
n=1 n n

> 1
and the numerical series > — 1s convergent (see the second series in Example 2 in Subsection M8.1.2).
n=1 T

2. Abel criterion of uniform convergence of function series. Consider a function series

o
D Un(@)on(@) = ur (@ (@) + up(@)va(@) + -+ up(@op(@) +--- . (MB.2.2.1)
n=1
where u,(x) and v, (x) are sequences of functions of the real variable = € [a, b].
Series (M8.2.2.1) is uniformly convergent on the interval [a, b] if the series

o0
D vn(@) = 01(@) + 02(x) + - -+ vp(@) + - (M8.2.2.2)
n=1
is uniformly convergent on [a, b] and the functions u,,(x) form a monotone sequence for
each x and are uniformly bounded (i.e., |u,(x)| £ K with a constant K independent of n, x).
3. Dirichlet criterion of uniform convergence of function series. Series (M8.2.2.1) is
uniformly convergent on the interval [a, b] if the partial sums of the series (M8.2.2.2) are
uniformly bounded, i.e.,

n
‘Zv;&x)‘ﬁM:const (x € [a,b], n=1,2,...),
k=1
and the functions u,(z) form a monotone sequence (for each x) that uniformly converges
to zero on [a, b] as n — oc.

[e.e]
» Properties of uniformly convergent series. Let > w,(z) be a function series that
n=1
is uniformly convergent on a segment [a, b], and let S(z) be its sum. Then the following
statements hold.

THEOREM 1. If all terms u.,,(x) of the series are continuous at a point xg € [a, b], then
the sum S(z) is continuous at that point.

THEOREM 2. If the terms u,,(x) are continuous on [a, b], then the series admits term-
by-term integration:

b b 00 [eS) b
/ S(x)dx = / (Z un(:L")) dx = Z / U, () dz.
a a n=1 n=1 7%

Remark. The condition of continuity of the functions u,, () on [a, b] can be replaced by a weaker condition
of their integrability on [a, b].

- THEOREM 3. If all terms of the series have continuous derivatives and the function series

> w),(x) is uniformly convergent on [a, b], then the sum S(x) is continuously differentiable
n=1
on [a, b] and

S'(x) = (Z un(w)> =) @)
n=1 n=1

(i.e., the series admits term-by-term differentiation).
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M8.3. Power Series
M8.3.1. Radius of Convergence of Power Series. Properties of
Power Series

» Abel theorem. Convergence radius of a power series. A power series is a function
series of the form

o
Zanx" =ag+ a1z +ar’ + a3z + - - - (M8.3.1.1)
n=0
(the constants ag, a, . .. are called the coefficients of the power series), and also a series of
a more general form
o0
Z an(x —20)" = ag + a1 (x — x0) + ax(@ — 20)” + az(x —z)> + - - ,
n=0

where xg is a fixed point. Below, we consider power series of the first form, since the
second series can be transformed into the first by the replacement * = x — .

o0
ABEL THEOREM. A power series . a,x" that is convergent for some x = x is absolutely
n=0
convergent for all x such that |x| < |x1|. A power series that is divergent for some x = x, is
divergent for all x such that |x| > |x;].

n

oo
Remark. There exist series convergent for all z, for instance, > —- There are series convergent only
n=1 T

for x = 0, for instance, io: nlz".
n=1

For a given power series (M8.3.1.1), let R be the least upper bound of all |z| such that
the series (M8.3.1.1) is convergent at point z. Thus, by the Abel theorem, the series is
(absolutely) convergent for all |x| < R, and the series is divergent for all |x| > R. The
constant R is called the radius of convergence of the power series, and the interval (-R, R)
is called its interval of convergence. The problem of convergence of a power series at the
endpoints of its convergence interval has to be studied separately in each specific case. If a
series is convergent only for x = 0, the convergence interval degenerates into a point (and
R =0); if a series is convergent for all x, then, obviously, R = co.

» Formulas for the radius of convergence of power series.

1°. The radius of convergence of a power series (M8.3.1.1) with finitely many zero terms
can be calculated by the formulas

R = lim (obtained from the d’ Alembert criterion for numerical series),
n—00| Ap4l
. 1 . . . .
R = lim (obtained from the Cauchy criterion for numerical series).

n=00 {/lan|

0o 2N
Example 1. For the power series Y, — ", using the first formula for the radius of convergence, we get
n

n=1

R= lim

n—0oo| An+1

= lim
n—oo n

n+1’_l
3

Therefore, the series is absolutely convergent on the interval —é <z < % and is divergent outside that interval.

(=1 n
we have the conditionally convergent series > )
n=1

At the left endpoint of the interval, for x = — , and at the

1
3
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x> 1
right endpoint, for x = %, we have the divergent numerical series Y . —. Thus, the series under consideration
n=1
is convergent on the semi-open interval [-3, 1).
If the number of zero coefficients in a power series is infinite, the above formulas for R
are inapplicable. In such cases, one can directly apply the d’ Alembert or Cauchy criteria to
the series.

o0
. 4 - .
Example 2. For the power series E ~ ™, the d’ Alembert criterion gives
n=1 n
. Y ) . Ang? )
lim 5 = lim =4x".
n—oo anx-" n—oo| N+ 1

Then the given series is absolutely convergent if 42> < 1, or on the interval —% <zr< %, and hence R = % It
is easily seen that the original series diverges at both endpoints of the interval of convergence.)

2°. Suppose that a power series (M8.3.1.1) is convergent at a boundary point of its conver-
gence interval, say, for = R. Then its sum is left-continuous at that point,

o o
lim apx” = anR"
im > ana” =) e
n=0 n=0
Example 3. Having the expansion
2 3 n
ml+m)=ac-—+Z 4™ i 4. (R=1)
2 3 n
in the domain -1 < = < 1 and knowing that the series
1 1 net 1
l——4+——-..4+(-1 — ..
2 3 D n

is convergent (by the Leibniz criterion for series with terms of alternating sign), we conclude that the sum of
the last series is equal to In 2.

» Properties of power series. On any closed segment belonging to the (open) convergence
interval of a power series, the series is uniformly convergent. Therefore, on any such
segment, the series has all the properties of uniformly convergent series described in
Subsection M8.2.2. Therefore, the following statements hold:

1. A power series (M8.3.1.1) admits term-by-term integration on any segment [0, x] for
lz| < R,

T s OO SN
Zanaz" dx=z n_ gl
0 n+1
n=0 n=0
aq an a
=gt + =2 + — 2 + -+ — "]
2 3 n+1

Remark 1. The value of x in this formula may coincide with an endpoint of the convergence interval
(z =—R and/or x = R), provided that series (M8.3.1.1) is convergent at that point.

Remark 2. The convergence radii of the original series and the series obtained by its term-by-term
integration on the segment [0, =] coincide.

2. Inside the convergence interval (for |z| < R), the series admits term-by-term differ-
entiation of any order, in particular,

d (o] o0
o < Z anx”> Z na,x™ !
x
n=0 n=1
1

ay +2a2x + 3432 + -+ nazt 4+

Remark 1. The sum of a power series is a function that has derivatives of any order inside the interval of
convergence.
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Remark 2. The convergence radii of the original series and the series obtained by its term-by-term
differentiation coincide.

M8.3.2. Taylor and Maclaurin Power Series

» Basic definitions. Let f(x) be an infinitely differentiable function at a point xg. The
Taylor series for this function is the power series

[e.e]

1 1
> PP o) —20)" = f(wo) + f(x0)w ~x0) + 5 f" (o) — o)’ 4+,

n=0

where 0! = 1 and fO(x0) = f(z0).
A special case of the Taylor series (for x¢ = 0) is the Maclaurin series:

Z %f(”)(o)g;” = f(0)+ f'(O)z + %f”(O);pz .

n=0

A formal Taylor series (Maclaurin series) for a function f(x) may be:

1) divergent for x # xg,
2) convergent in a neighborhood of xg to a function different from f(z),
3) convergent in a neighborhood of xg to the function f(x).

In the last case, one says that f(x) is expandable in a Taylor series in the said neighborhood,
and one writes

1
f@) = — " o)~ z0)".
n=0

» Conditions of expansion in Taylor series. A necessary and sufficient condition for a
function f(x) to be represented by its Taylor series in a neighborhood of a point xg is that the
remainder term in the Taylor formula* should tend to zero as n — oo in this neighborhood
of xQ.

In order that f(z) could be represented by its Taylor series in a neighborhood of z,
it suffices that all its derivatives in that neighborhood be bounded by the same constant,
|f™(2)| £ M for all n.

Uniqueness of the Taylor series expansion. If a function f(z) is representable by the sum
of a power series, the coefficients of this series are determined uniquely (since this series is

(n)
TG0 heren=0,1,2. ).

n!
Therefore, in problems of representing a function by a power series, the answer does not
depend on the method adopted for this purpose.

the Taylor series of f(x)and its coefficients have the form

» Representation of some functions by the Maclaurin series. The following represen-
tations of elementary functions by Maclaurin series are often used in applications:

N 2 1,3 "
ef=1l+z2+—+—+-+—+---;
2t 3l n!
3 5 2n-1
x x
. -1
sinz=r-——+—— -+ ()" ——+ -
315! @2n-1)!

* Different representations of the remainder in the Taylor formula are given in Subsection M6.2.4.
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2 4 L2n
cosx=1—5+ﬂ—--- D" ! oo
h 3 LL’S 3:.Zn—l ‘
sinhz = x+?+5'+-..+m+...’
2 33‘4 3:.Zn
coshw:1+E+H+--.+(2n)!+...;
-1 -D...(a— 1
Q+a) =1+ans 20D, o@D laznrl) .,
2! n!
2 3 n
In(l+2) =0 —+ 2 oy )™y
2 3 n
35 201
arctanx:x—?+?—---+(—1)"+1m+...'

The first five series are convergent for —oco < x < 0o (R = 00), and the other series have unit
radius of convergence, R = 1.

M8.3.3. Operations with Power Series. Summation Formulas for
Power Series

» Addition, subtraction, multiplication, and division of power series.

o0 [e.e]
1. Addition and subtraction of power series. Two series Y apz™ and Y b,z" with
n=0 n=0
convergence radii R, and Ry, respectively, admit term-by-term addition and subtraction on
the intersection of their convergence intervals:

[o¢] o o0
g apx™ * E bz = g cpx”,  cp=antby,.
n=0 n=0 n=0

The radius of convergence of the resulting series satisfies the inequality R. = min[R,, Rp].
[e.e] o0

2. Multiplication of power series. Two series » | apz™ and ) b,z™, with the respective
n=0 n=0
convergence radii R, and R}, can be multiplied on the intersection of their convergence
intervals, and their product has the form

o o o0 n
<Z x> <Z bnx"> =Y et en =Y arbus.
n=0 n=0 n=0 k=0

The convergence radius of the product satisfies the inequality R 2 min[ R, Rb]

3. Division of power series. The ratio of two power series Z anx™ and Z bpx™, bg#0,

n=0 n=0
with convergence radii R, and R} can be represented as a power series

o0

> apz™

B gtz = > e, (M8.3.3.1)
> bpan

n=0
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whose coefficients can be found, by the method of indefinite coefficients, from the relation
(ag + a1 + arz® + - - -) = (bg + by + bax® + - - Yco + 12 + 22> + - - ).

Thus, for the unknown c¢,,, we obtain a triangular system of linear algebraic equations
n
an:Zbkcn,k, n=0,1,...,

which is solved consecutively, starting from the first equation'
ag ai b() - a0b1
- ¢ = ;
by
The convergence radius of the series (M8.3.3.1) is determined by the formula

R; = min [Ra

, n_—O——Zbkan, n=2,3,...

et
TMA+1)
where p is any constant such that 0 < p < I%; p can be chosen arbitrarily close to Rp; and M
is the least upper bound of the quantities |b,, /bolp™ (m =1, 2, ...), so that |b,, /bo|p™ < M
for all m.

» Composition of functions representable by power series. Consider a power series

z=f)=ao+ay+ay’+-=> ay" (M8.3.3.2)
n=0
with convergence radius R. Let the variable y be a function of x that can be represented by
a power series

y=op(@)=by+biz+azt+---= Z bz (M8.3.3.3)

with convergence radius r. It is required to represent z as a power series of = and find the
convergence radius of this series.
Formal substitution of (M8 3.3.3) into (M8.3.3.2) yields

2= f(p@) Z tn ( Z by ) = Ag+ Ajr+ AgaP +---= > A", (M8.3.3.4)
n=0 n=0
where
A0=a0+a1b0+a2bé+--- ,
A1 = a161 + 2a2b0b1 + 3(13[)%[)1 +---,

A2 = a1b2 + az(b% + 2b0b2) + 3a3(b0b% + b%bz) +---

THEOREM ON CONVERGENCE OF SERIES (M8.3.3.4).

(i) If series (M8.3.3.2) is convergent for all y (i.e., R = 0o), then the convergence radius
of series (M8.3.3.4) coincides with the convergence radius r of series (M8.3.3.3).

(i) If 0 <)bg| < R, then series (M8.3.3.4) is convergent on the interval (—R;, R1), where

(R —1bolp
M + R~ |bo|’
and p is an arbitrary constant such that 0 < p < r; p can be chosen arbitrarily close to r; and
M is the least upper bound of the quantities |b,,|p" (m =1, 2, ...), so that |b,,|p™ < M for

allm.
(iii) If |bg| > R, then series (M8.3.3.4) is divergent.

Ry =
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Remark. Case (i) is realized if, for instance, (M8.3.3.2) has finitely many terms.

» Simplest summation formulas for power series. Suppose that the sum of a power
series is known,

Z apz® = S(x). (M8.3.3.6)

Then, using term-by-term integration (on the convergence interval), one can find the fol-
lowing sums:

E apk™ak = (azi> S(x);
dx
k=0

Z ap(nk + m)z™+m-1l = i [:EmS(:E")] ;

£ dx
N R W L. :
; = /0 2" 8@y de,  n>0, m>0; (M8.3.3.7)
Z o s nk+s n;ﬁszwi xsm/ 2 S (™) dz |, n>0, m>0;
nk+m dx 0

nk+m nk+s_ * sfmd m n
Z k’l’Lk’+8 —/0 T dm[x S(x )]dx, n>0, s>0.

o0
Example 2. Let us find the sum of the series 3 kz"!
k=0
We start with the well-known formula for the sum of an infinite geometrical progression:

Stz el<D.
-z

K=

8

o

This series is a special case of (M8.3.3.6) with ax, = 1, S(z) = 1/(1 — z). The series > k2" can be obtained
k=0

from the left-hand side of the second formula in (M8.3.3.7) for m = 0 and n = 1. Substituting S(z)=1/(1-z)

into the right-hand side of that formula, we get

o~ k1_ d 1 1

M8.4. Fourier Series

M8.4.1. Representation of 27r-Periodic Functions by Fourier Series.
Main Results

» Dirichlet theorem on representation of a function by Fourier series. A function
f(x) is said to satisfy the Dirichlet conditions on an interval (a, b) if:

1) this interval can be divided into finitely many intervals on which f(x) is monotone
and continuous;

2) at any discontinuity point xy of the function, there exist finite one-sided limits
f(l’o + 0) and f(l’o - 0)
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DIRICHLET THEOREM. Any 27-periodic function that satisfies the Dirichlet conditions
on the interval (—m, ) can be represented by its Fourier series

ag > .
f(x)= > + Z:l(an cos nx + b, sin n:n) (M8.4.1.1)

whose coefficients are defined by the Euler—Fourier formulas

1 s
an:—/ f(@)cosnx dzx, n=0,1,2,...,
71T i (M8.4.1.2)
bn:—/ f(@)sinnx dz, n=1,2,3,...
™ -

At the points of continuity of f(x), the Fourier series converges to f(x), and at any
discontinuity point g, the series converges to %[ f(xo+0)+ f(zo-0)].
The coefficients a,, and b,, of the series (M8.4.1.1) are called the Fourier coefficients.

Remark. Instead of the integration limits — and 7 in (M8.4.1.2), one can take ¢ and ¢ + 27, where c is
an arbitrary constant.

» Lipschitz and Dirichlet-Jordan convergence criteria for Fourier series. LIPSCHITZ
CRITERION. Suppose that f(x) is continuous at a point xo and for sufficiently small € > 0
satisfies the inequality |f(zo t¢e)— f(xo)| £ Le?, where L and o are constants, 0 < o < 1.
Then the representation (M8.4.1.1)-(M8.4.1.2) holds at x = x.

In particular, the conditions of the Lipschitz criterion hold for continuous piecewise
differentiable functions.

Remark. The Fourier series of a continuous periodic function with no additional conditions (for instance,
of its regularity) may happen to be divergent at infinitely many (even uncountably many) points.

DIRICHLET-JORDAN CRITERION. Suppose that f(x) is a function of bounded variation
on some interval (xg—h, xo+ h) € (-, ) (i.e., f(x) can be represented as a ditference of
two monotonically increasing functions). Then the Fourier series (M8.4.1.1)—(M8.4.1.2) of

the function f(x) at the point x( converges to the value %[ f(xo+0)+ f(zo-0)].
» Asymptotic properties of Fourier coefficients.

1°. Fourier coefficients of an absolutely integrable function tend to zero as n goes to infinity:
a, — 0and b,, — 0asn — oo.

2°. Fourier coefficients of a continuous 27-periodic function have the following limit
properties:

lim (na,) =0, lim (nb,) =0,

i.e., a, = o(1/n) and b, = o(1/n).

3°. If a continuous periodic function is continuously differentiable up to the order m — 1
inclusively, then its Fourier coefficients have the following limit properties:

lim (n™a,) =0, lim (n™b,,) =0,

ie., an =0(n"™) and b, = o(n™™).
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M8.4.2. Fourier Expansions of Periodic, Nonperiodic, Even, and Odd
Functions

» Expansion of 2/-periodic and nonperiodic functions in Fourier series.

1°. The case of 2[-periodic functions can be easily reduced to that of 27r-periodic functions
by changing the variable x to 2z = 7Tl—$ In this way, all the results described above for

2m-periodic functions can be easily extended to 2[-periodic functions.
The Fourier expansion of a 2[-periodic function f(x) has the form

_ > nmwx . nwx
fl@x)= > + Z_; (an cos 5 + b, sin 5 > M8.4.2.1)
where
1 /! nme 1 [ . nmx
an =7 f(x)cos I dr, by, = 7 f(x)sin - dz. (M8.4.2.2)
- -1

2°. A nonperiodic (aperiodic) function f(z) defined on the interval (—I,) can also be
represented by a Fourier series (M8.4.2.1)-(M8.4.2.2); however, outside that interval, the
sum of that series S(x) may differ from f(x)*.

» Fourier expansion of even and odd functions.

1°. Let f(x) be an even function, i.e., f(—x) = f(x). Then the Fourier expansion of f(x)
on the interval (-, () has the form of the cosine Fourier series:

o0
f(x)= % + Z;an cos _mlm’
n=

where the Fourier coefficients have the form

l
ap = % / f(x)cos @ dx (b, =0).
0

2°. Let f(z) be an odd function, i.e., f(—z) = —f(x). Then the Fourier expansion of f(x)
on the interval (-, () has the form of the sine Fourier series:

o0
F@) =" busin——,
n=1
where the Fourier coefficients have the form

l
b, = % / f(x)sin nlﬂ dx (a, =0).
0

* The sum S(x) is a 2l-periodic function defined for all =, but f(z) may happen to be nonperiodic or even
undefined outside the interval (-, [).
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Example. Let us find the Fourier expansion of the function f(x) = x on the interval (-, 7).
Taking | = 7 and f(z) = z in the formula for the Fourier coefficients and integrating by parts, we obtain

by = 2 / x sin(nx) dx = 2 (—l:c cos(mx)‘ﬂ+l / cos(nx) dm) -2 cos(nm) = (=)™ %
7 Jo T\ n 0o n Jo n n

Therefore, the Fourier expansion of f(x) = x has the form

Nyt SIN(T)
fx)y=2 Z(—l) m (m<x <)

n=1

3°. If f(x) is defined on the interval (0, [) and satisfies the Dirichlet conditions, it can be
represented by the cosine Fourier series, as well as the sine Fourier series (with the help of
the above formulas). The cosine Fourier expansion of f(z) on the interval (0, [) corresponds
to the extension of f(x) to the interval (-, 0) as an even function: f(—x) = f(x). The sine
Fourier expansion of f(x) on (0, [) corresponds to the extension of f(x) to the interval (-, 0)
as an odd function: f(-z) = —f(x). Both series on the interval (0, ) give the values of f(x)
at points of its continuity and the value %[ f(xo+0)+ f(x0—0)] at points of its discontinuity;
outside the interval (0, /), these two series represent different functions.

» Fourier series in complex form. The complex Fourier expansion of a function f(x)
on an interval (-/, ) has the form

f@)y= Y cpe™n?,

n=—~oo

where
nm

1 /! 4
Wp=——, Cp= —/ f@e™*dr; n=0, %1, £2, ...
l 2/,

The expressions ewn® are called complex harmonics, the coefficients c¢,, are complex am-
plitudes, w,, are wave numbers of the function f(x), and the set of all wave numbers {w,, }
is called the discrete spectrum of the function.

M8.4.3. Criteria of Uniform and Mean-Square Convergence of
Fourier Series

» Criteria of uniform convergence of Fourier series.

LIPSCHITZ CRITERION. The Fourier series of a function f(x) converges uniformly to that
function on an interval [-1,[] if on a wider interval [-L, L] (-L < -l <[ < L) the following
inequality holds:

If(x1)— f(x)l < Klxy —a3|” forall xy,z € [-L, L],

where K and o are constants, 0 < o < 1.

Corollary. The Fourier series of a continuous function f(x) converges uniformly to
that function on an interval [-[,[] if on a wider interval the function f(x) has a bounded
derivative f'(x).

For any continuously differentiable 2{-periodic function f(x), its Fourier series [defined
by formulas (M8.4.2.1)-(M8.4.2.2)] is uniformly convergent to f(x).
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» Fourier series of square-integrable functions. Parseval identity.

1°. For a continuous 2m-periodic function f(x), its Fourier series (M8.4.1.1)—(M8.4.1.2)
converges to f(z) in mean square, i.e.,

/ W[f(a:) — fa@)Pdz —0 as n— oo,

n
where f,(x) = %ao + > (ay cos kx + b, sin kx) is a partial sum of the Fourier series.
k=1

2°. If f(x) is integrable on the segment [-m, 7] and the integral / " f2(x)dx exists as

an improper integral with finitely many singularities, then the Fourier series (M8.4.1.1)—
(M8.4.1.2) is mean-square convergent to f(x).

3° Let f(x) e L*[-m, 7] be a square-integrable function on the segment [-7, 7r]. Then its
Fourier series (M8.4.1.1)-(M8.4.1.2) is mean-square convergent to f(z), and the Parseval
identity holds:

at =

_0

1 s
3 +n§=;(ai +b5) = — / ) (@) d,

where a,,, b, are defined by (M8.4.1.2). Note that the functions considered in Items 1°
and 2° belong to L*[-m, 7.
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Chapter M9
Functions of Complex Variable

M9.1. Complex Numbers

M9.1.1. Definition of a Complex Number. Arithmetic Operations with
Complex Numbers

» Definition of a complex number. Geometric interpretation. The set of complex
numbers is an extension of the set of real numbers. An expression of the form z = = + iy,
where x and y are real numbers, is called a complex number, and the symbol ¢ is called
the imaginary unit, which possesses the property i> = —1. The numbers z and y are called,
respectively, the real and imaginary parts of z and denoted by

r=Rez and y=Imz.

The complex number x + 70 is identified with real number =z, and the number O + iy is
denoted by ¢y and is said to be pure imaginary. Two complex numbers z; = x1 + iy; and
zy = xp + 1y, are equal if 1 = x and y; = ys.

The complex number Zz = x — iy is said to be conjugate to the number 2.

A complex number z = = + 7y can be conveniently represented as a point (z,y) in a
two-dimensional Cartesian coordinate system (see Fig. M9.1). The axes OX and OY are
called the real and imaginary axis, respectively, and the plane O XY is called the complex
plane. The notions of a complex number and a point on the complex plane are identical.

Figure M9.1. Geometric interpretation of a complex  Figure M9.2. The sum and difference of complex
number. numbers.

» Addition, subtraction, multiplication, and division of complex numbers. The sum
or difference of complex numbers z; = x1 + ty; and 2, = x; + 1y, is defined as the number

21tz =x1 22 +09(y1 T ap).

The geometric meaning of the operations of addition and subtraction of complex num-
bers is as follows: the sum and the difference of complex numbers z; and 2, are the vectors
equal to the directed diagonals of the parallelogram spanned by the vectors z; and z;
(Fig. M9.2). The following inequalities hold (Fig. M9.2):

|21 + 22| < z1] + 22|, |z1—22] 2 ||z1| - |z2|‘. (M9.1.2.1)

229
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Inequalities (M9.1.2.1) become equalities if and only if the arguments of the complex
numbers z; and 2 coincide (i.e., arg z; = arg z;; see Subsection M9.1.2) or one of the
numbers is zero.

The product z;2, of complex numbers z; = x; + ¢y; and 2z, = 3 + iy is defined to be
the number

2122 = (2122 = Y1y2) + Uz 1Y2 + T2Y1).-
The product of a complex number z = z + iy by its conjugate is always nonnegative:
2Z=12"+ yz.
If z; # 0, then the quotient of z; and z; is defined as
21 _mTatyiyy T2y~ T

M9.1.1.1
z2 w%+y§ x%+y§ ( )

Relation (M9.1.1.1) can be obtained by multiplying the numerator and the denominator of
the fraction z; /2, by z,.

M9.1.2. Trigonometric Form of Complex Numbers. Powers and
Radicals

» Modulus and argument of a complex number. There is a one-to-one correspondence

between complex numbers z = x + ¢y and points M with coordinates (x,y) on the plane

with a Cartesian rectangular coordinate system OXY or with vectors OM connecting the

origin O with M (Fig. M9.1). The length r of the vector OM is called the modulus (also
magnitude and absolute value) of the number z and is denoted by r = |z|, and the angle ¢
formed by the vector OM and the positive direction of the O X -axis is called the argument
(also phase) of the number 2 and is denoted by ¢ = Arg z.

The modulus of a complex number is determined by the formula

|zl = \/ 2% + 12,

The argument Arg z is determined up to a multiple of 27, Arg z = arg z + 2km, where k is
an arbitrary integer and arg z is the principal value of Arg z determined by the condition
—m < arg z < 7. The principal value arg z is given by the formula

arctan(y /x) for x > 0,

7 +arctan(y/x) forxz <0,y >0,
arg z = ¢ —m +arctan(y/x) forxz <0,y <0,

/2 forz =0,y >0,

-m/2 forz =0,y <0.

For z = 0, Arg z is undefined.

» Trigonometric form of complex numbers. Since x =7 cos ¢ and y =7 sin ¢, it follows
that the complex number can be written in the trigonometric (or polar) form

z=1x+1y =r(cosy +1sin ).

For two complex numbers written in trigonometric form, z; = rj(cos ¢ + #sin¢;) and
2y = 1(cos y + i sin y), the following arithmetic rules are valid:

.. 21 1 -
212 = 1112 [COS(p1 + p2) + i sin(p1 + 1)) iy [cos(p1 —2) +isin(pr — ¢2)].

In the latter formula, it is assumed that z, # 0.
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» Powers and radicals. For any positive integer n, the nth power of z is calculated by de
Moivre’s formula
2" = r™(cos ny + i sin ny),

For z # 0 and positive integer n, there are exactly n distinct values of the nth root of
z = 1(cos p + i sin ), which are determined by

2 2
Q/E:zl/": W(cos%m+isin%m) (k=0,1,2,...,n-1).

Example. Let us find all values of i
Let us represent the complex number 2 = i in trigonometric form. We have r = |z| = 1 and p = argz = 7.
The distinct values of the cube root are calculated by the formula

wr = V1 (cos 327k | in 7+27Tk) (k=0,1,2),
so that
wo=cos1+isinE =£+il
6 6 2 2’
w1 =<:os5—7T+isin5—7T =—£ +il
6 6 2 2’

37T+‘ . 37w .
Wy = COS — + % 8in — = —4.
2 2

The roots are shown in Fig. M9.3.

Figure M9.3. The roots of v/i.

M9.2. Functions of Complex Variables

M9.2.1. Basic Concepts. Differentiation of a Function of a Complex
Variable

» Some concepts and definitions. A subset D of the complex plane such that each point
of D has a neighborhood contained in D (i.e., D is open) and two arbitrary points of D
can be connected by a broken line lying in D (i.e., D is connected) is called a domain in
the complex plane. Each point of D is its interior point. A point that does not lie in D but
whose arbitrary neighborhood contains points of D is called a boundary point of D. The
set of all boundary points of D is called the boundary of D. The union of a domain D

with its boundary is called a closed domain and denoted by D. The boundary of a domain
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can consist of finitely many closed curves, segments, and points; the curves and cuts are
assumed to be piecewise smooth.

The simplest examples of domains are neighborhoods of points on the complex plane.
A neighborhood of a point a on the complex plane is understood as the set of points z such
that |z — a| < R, i.e., the interior of the disk of radius R > 0O centered at the point a. The
extended complex plane is obtained by augmenting the complex plane with the fictitious
point at infinity. A neighborhood of the point at infinity is understood as the set of points z
such that |z| > R (including the point at infinity itself).

If to each point z of a domain D there corresponds a single point w (resp., a number of
points w), then one says that there is a single-valued (resp., multi-valued) function w = f(z)
defined on the domain D. If we set z = x + ¢y and w = u + ¢v, then defining a function
w = f(z) of the complex variable z is equivalent to defining two functions Re f =u = u(z, y)
and Im f = v = v(x, y) of two real variables. If the function w = f(z) is single-valued on D
and the images of distinct points of D are distinct, then the mapping determined by this
function is said to be schlicht. The notions of boundedness, limit, and continuity for single-
valued functions of a complex variable do not differ from the corresponding notions for real
functions of two real variables.

» Differentiability. The Cauchy-Riemann conditions. Let a single-valued function
w = f(z) be defined in a neighborhood of a point z. If there exists a limit

I fz+h)-f(2)
m -—-—:-
h—0 h

= f1(2),

then the function w = f(2) is said to be differentiable at the point z and f(z) is called its
derivative at the point z.

Cauchy—Riemann conditions. If the functions u(z, y) = Re f(2) and v(x,y) = Im f(2)
are differentiable at a point (z, y), then the Cauchy—Riemann conditions

Ju Ov ou v
e Gt (M9.2.1.1)

are necessary and sufficient for the function w = f(z) to be differentiable at the point z = x+iy.

If the function w = f(2) is differentiable, then
w'z = Uy + Vg = Uy — WUy = Uy — Ty = Uy + 10,

where the subscripts x and y indicate the corresponding partial derivatives.
Remark. The Cauchy-Riemann conditions are sometimes also called the d’ Alembert—Euler conditions.

The rules for arithmetic operations on the derivatives and those for taking the derivative
of a composite function and the inverse function (if it exists) have exactly the same form as
in the case of functions of a real variable:

1. [afl(z) + ﬂfz(z)]; = a[f1(2)], £ Blf2(2)],, where o and (3 are arbitrary complex

constants. ,

2. [ ()], = L AHE) + RG]
3 {f1(2)}’ _ /1], f2(2) = f1r(2) f2(2)]] (Fr(2) £ 0).
RICIRE: f3(2)
4. If a function w = f(z) is differentiable at a point z and a function W = F(w) is
differentiable at the point w = f(z), then the composite function W = F(f(2)) is
differentiable at the point z and W, = [F(f(2))], = F}(f)f;(z).
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5. If a function w = f(z) is differentiable at a point z and the inverse z = g(w) = fl(w)
exists and is differentiable at the point w, then

1
[f (W), = m (fo(2) #0).

» Analyticity. The maximum modulus principle. The Liouville’s theorem. A single-
valued function differentiable in some neighborhood of a point zg is said to be analytic
(regular, holomorphic) at this point.

A function w = f(z) is analytic at a point 2y if and only if it can be represented by a
power series

f@=) a(z=-z0)"

k=0

converging in some neighborhood of 2.
A function analytic at each point of the domain D is said to be analytic in D.
A function w = f(z) is said to be analytic at the point at infinity if the function
F(z) = f(1/2) is analytic at the point z = 0.
A function w = f(z) is analytic at the point at infinity if and only if this function can be
represented by a power series
o
f)=) bz "
k=0

converging for sufficiently large |z|.

If a function w = f(2) is analytic at a point 2 and f.(29) # 0, then f(z) has an analytic
inverse function z(w) defined in a neighborhood of the point wg = f(zg). If a function
w = f(z) is analytic at a point zy and the function W = F'(w) is analytic at the point
wo = f(zp), then the composite function W = F[f(z)] is analytic at the point zy. If a
function is analytic in a domain D and continuous in D, then its value at any interior point
of the domain is uniquely determined by its values on the boundary of the domain. The
analyticity of a function at a point implies the existence and analyticity of its derivatives of
arbitrary order at this point.

Single-valued functions, as well as single-valued branches of multi-valued functions,
are analytic everywhere on the domains where they are defined. It follows from (M9.2.1.1)
that the real and imaginary parts u(z, y) and v(z, y) of a function analytic in a domain are
harmonic in this domain, i.e., satisfy the Laplace equation

Afzf:c:c"'fyy:o

in this domain.

Remark. If u(z,y) and v(x, y) are two arbitrary harmonic functions, then the function f(z) = u(z,y) +
iv(x, y) is not necessarily analytic, since for the analyticity of f(z) the functions u(x, y) and v(x, y) must satisfy
the Cauchy—Riemann conditions.

Example 1. The function w = z* is analytic.

Indeed, since z = x + 4y, we have w = (z + iy))> = % — 3% + 2zy, u(x, y) = 2> —y*, and v(z, y) = 2zy. The
Cauchy-Riemann conditions
Uz = Vy = 2T, Uy =—Vgp =-2Y

are satisfied at all points of the complex plane, so the function w = z? is analytic.
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Example 2. The function w = Z is not analytic.
Indeed, since z = = + iy, we have w = = — iy, u(x,y) = x, v(z, y) = —y. The Cauchy-Riemann conditions
are not satisfied,
Uz =1 # -1 =1y, Uy = Vg =0,

so the function w = Z is not analytic.

MAXIMUM MODULUS PRINCIPLE. If a function w = f(z) that is not identically constant

is analytic in a domain D and continuous in D, then its modulus cannot attain a maximum
at an interior point of D.

LIOUVILLE’S THEOREM. If a function w = f(z) is analytic and bounded in the entire
complex plane, then it is constant.

Remark. The Liouville theorem can be stated in the following form:
if a function w = f(z) is analytic in the extended complex plane, then it is constant.

» Geometric meaning of the derivative. Geometric meaning of the absolute value of the
derivative. Suppose that a function w = f(z) is analytic at a point zy and f.(zg) # 0. Then
the value |f.(z0)| determines the dilatation (similarity) coefficient at the point 2o under the
mapping w = f(z). The value |f.(z0)| is called the dilatation ratio if |f.(z9)| > 1 and the
contraction ratio if | fL(zo)| < 1.

Geometric meaning of the argument of the derivative. The argument of the derivative
fL(20) is equal to the angle by which the tangent at the point zy to any curve passing
through zp should be rotated to give the tangent to the image of the curve at the point
wo = f(20). For p =arg f.(z) >0, the rotation is counterclockwise, and for ¢ = arg f.(2) <0,
the rotation is clockwise.

» Elementary functions.

1°. Consider the functions w = 2™ and w = /= for positive integer n. The function
w=z

is single-valued. Itis schlicht in the sectors 27k /n < ¢ <2mw(k +1)/n,k=0,1,2,..., each
of which is transformed by the mapping w = 2™ onto the plane w with a cut on the positive
real semiaxis.
The function
w= 3z

is an n-valued function for z # 0, and its value is determined by the value of the argument
chosen for the point z. If a closed curve C' does not surround the point z = 0, then, as the
point 2 goes around the entire curve C, the point w = {/z for a chosen value of the root
also moves along a closed curve and returns to the initial value of the argument. But if the
curve C' surrounds the origin, then, as the point z goes around the entire curve C' in the
positive sense (in the counterclockwise direction), the argument of z increases by 27 and the
corresponding point w = {/z does not return to the initial position. It will return there only
after the point z goes n times around the entire curve C. If a domain D does not contain a
closed curve surrounding the point z =0, then one can single out 7 continuous single-valued
functions, each of which takes only one of the values w = {/z; these functions are called the
branches of the multi-valued function w = {/z. One cannot single out n separate branches
of the function w = {/Z in any neighborhood of the point z = 0; accordingly, the point z =0
is called a branch point of this function.

2°. The Zhukovskii function
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is defined and single-valued for all z # 0; it is schlicht in any domain that does not
simultaneously contain any points z; and 2z such that zy2p = 1.

3°. The exponential function w = €7 is defined by the formula
w=e” = W = e%(cos y + i siny).

The function w = e® is analytic everywhere. For the exponential function, the usual
differentiation rule is preserved:
(€*), = e”.
The basic property of the exponential function is also preserved:

ezl 622 — €ZI+Z2.

~ Forz=0and y = ¢, the definition of the exponential function implies the Euler formula
e"? = cos ¢ + 1 sin ¢, which permits one to write any complex number with modulus r and
argument ¢ in the exponential form

z = 71(cos @ + i sin @) = re'?.

The exponential function is periodic with imaginary period 27z, and the mapping w = €*
is schlicht in the strip 0 < y < 27.

4°. The logarithm is defined as the inverse of the exponential function: if e* = z, then
w=Lnz.

This function is defined for z # 0. The logarithm satisfies the following relations:

21
Lnz; +Lnz =Ln(2122), Lnz -Lnz;=Ln—,
)

Ln(z")=nLnz, Ln<{z=—Lnz.

1
n

The exponential form of complex numbers readily shows that the logarithm is infinite-
valued:

Lnz=1In|z|+iArgz=In|z| +iarg z + 2nwki, k=0, 1, £2, ... (M9.2.1.2)

The quantity In z = In|z| + ¢ arg z is taken to be the principal value of this function. Just as
with the function w = {/z, we see that if the point z = 0 is surrounded by a closed curve C,
then the point w = Ln z does not return to its initial position after z goes around C in the
positive sense, since the argument of w increases by 27ri. Thus if a domain D does not
contain a closed curve surrounding the point z = 0, then in D one can single out infinitely
many continuous and single-valued branches of the multi-valued function w = Ln z; the
differences between the values of these branches at each point of the domain are equal to
27ki, where k is an integer. This cannot be done in an arbitrary neighborhood of the point
z =0, and this point is called a branch point of the logarithm.

5°. Trigonometric functions are defined in terms of the exponential function as follows:

eZZ + e*ZZ . eZZ _ e*ZZ
coS 2z = ———— sin z = ———
2 ’ 2
sin 2 e —e cosz eF+e*?
tan z = =— cotz = —; =1

oS 2 ez 4 g%’ sin 2 elZ — ez’
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These are properties of the functions cos z and sin z:

They are analytic for any z.
. The usual differentiation rules are valid:

N =

(sin z)/z =cosz, (cos z)/z = —sin 2.

They are periodic with real period T = 27.

sin z is an odd function, and cos z is an even function.
In the complex plane, they are unbounded.

The usual trigonometric relations hold:

cos? z + sin?

ANk W

2 2

z=1, cos2z=cos”z-sin“z, etc.

The function tan z is analytic everywhere except for the points

= S wkm, k=0, 1, £2, ...,

2

and the function cot z is analytic everywhere except for the points
2z =k, k=0, £1, £2, ...
The functions tan z and cot z are periodic with real period T" = 7.

6°. Hyperbolic functions are defined by the formulas

z —Z

z —Z
e“+e . ef—e
coshz = ————, sinhz = ———,
2 2
tanh sinh z e’ —e* th coshz e*+e”*
anh z = = cothz = — = .
coshz e*+e*’ sinhz e?—¢e*

For real values of the argument, each of these functions coincides with the corresponding
real function. Hyperbolic and trigonometric functions are related by the formulas

coshz =cosiz, sinhz=-¢sin?z, tanhz =-itan?z, cothz =7cotiz.

7°. Inverse trigonometric and hyperbolic functions are expressed via the logarithm and
hence are infinite-valued:

Arccos z =—iLn(z + V22 -1),

7 1+1iz
Arct =—=L ,
rctan z > nl—z’z
arccosh z = Ln(z + V 22 - 1),
arctanh z = an 1+Z,
2 1-2

Arcsinz =—iLn(iz + V' 1 - 22),

Arccot z :—an Z+Z,,
z—1
arcsinh z =Ln(z + V 22 - 1),
1 z+1
arccothz = — Ln .
i 2 z—1

The principal value of each of these functions is obtained by choosing the principal
value of the corresponding logarithmic function.

8°. The power function w = 27 is defined by the relation

2 = e’yan’

(M9.2.1.3)

where v = o + i3 is an arbitrary complex number. Substituting z = 7e’# into (M9.2.1.3)

yields

2V =% Inr—B(p+2km) eza(<p+2k7r)+zﬁ Inr ,

k=0, +1, 42, ... (M9.2.1.4)

It follows from relation (M9.2.1.4) that the function w = 27 has infinitely many values

for g #0.
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9°. The general exponential function is defined by
w =77 =Y = gFInhlgziAey (M9.2.1.5)

where v = o + i is an arbitrary nonzero complex number. The function (M9.2.1.5) is a set
of separate mutually independent single-valued functions that differ from one another by
the factors e2F7% [ =0, +1, £2, ...

Example 3. Let us calculate the values of some elementary functions at specific points:
. cos2i=1(* +e?) = 1(e* +€?) = cosh2 = 3.7622.
. In(-2) =1In2 + ém, since | — 2| = 2 and the principal value of the argument is equal to 7.
. Ln(=2) is calculated by formula (M9.2.1.2):

Ln(=2) = In2 +im+27ki = In2 + (1 + 2k)ir  (k=0, +1, 2, .. ).

4.t =t = T RTRD 2 om TR (=0, 41, 42, L)

W N =

The main elementary functions w = f(z) = w(z, y) + iv(z, y) of the complex variable
z = x + 1y are given in Table M9.1.

TABLE M9.1
Main elementary functions w = f(z) = u(z, y) + iv(z,y) of the complex variable z = x + 7y.
Complex .
No.| function élgebralc fo.rm Zeros of nth order Singularities
w= f(z) f(z)—u(l’sy)"'lv(l’sy)
. . 0 ) Z =00
z T+ =0, n= .
Y z " is a first-order pole
z =00
2 2 4 =0,n=2
2 # vy iy 2=0n is a second-order pole
1 .
3 | 2= (xo+iyo) T—To i —(y—yo) oo me 1 z =0+ 1Yo
(zo, yo are | (x—x0)? + (y—yo)? (z—20)* + (y—10)? ’ is a first-order pole
real numbers)
1 2 —y” 2zy z2=0
4 — i =00, n=2 .
22 (22 + y2)? T (22 + y2)? FEeem is a second-order pole

z =0 is a first-order

3 vz _{( Ty 22 +y? )1/-21-1'( —z+/z2+1? )1/2} z =0 is a branch branch point

2 2 point z = oo is a first-order

branch point

z = oo is an essential

z e’ cosy +ie” sin no zeros
6 ¢ yre Y singular point
z=1,n=1 Logarithmic
In|z| + i(arg z + 2km), (for the branch .

7 Lnz k=0,£1,%2, ... corresponding branch points

to k = 0) forz=0,z=00
. . . . z=mk, n=1 z = 00 is an essential
8 sin z sin x cosh y + ¢ cos x sinh y ’

(k=0,£1,%2,...) singular point

5= %71'+7rk, n=1| #=o00isan essential

cos z cos x cosh y + i(— sin z sinh
0 v y+i * 2 (k=0,%1,%2,..)) singular point
- h z=31r+7k
sin 2x . sinh 2y z=7k,n=1
=0,+1,+
10 tan 2 cos 2z + cosh 2y Tl os 2x + cosh 2y (k=0,%1,%2,..)) (k=0,%1,%2,..)

are first-order poles
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» Analytic continuation. Let two domains D; and D, have a common part v of the
boundary, and let single-valued analytic functions f1(z) and f,(z), respectively, be given in
these domains. The function f>(2) is called a direct analytic continuation of f1(z) into the
domain D if there exists a function f(z) analytic in the domain D; U~y U D, and satisfying

the condition
fi(z) forze Dy,

f@)= {fz(z) for z € D».

If such a continuation is possible, then the function f(z) is uniquely determined. If the
domains are simply connected and the functions fi(z) and f,(z) are continuous in D; U~
and D, U ~, respectively, and coincide on -, then f>(2) is the direct analytic continuation
of f1(z) into the domain D;. In addition, suppose that the domains D; and D, are allowed
to have common interior points. A function f(2) is called a direct analytic continuation
of fi(z) through v if fi(2) and f,(z) are continuous in D; Uy and D, U ~, respectively,
and their values on ~y coincide. At the common interior points of D; and D,, the function
determined by relation (M9.2.1.6) can be double-valued.

(M9.2.1.6)

M9.2.2. Integration of Functions of Complex Variables

» Definition and properties of the integral of a function of a complex variable. Sup-
pose that an oriented curve C' connecting points z = a and z = b is given on the complex
plane and a function w = f(z) of the complex variable z is defined on the curve. We divide
the curve C into n parts, a = 29, 21, - - - , Z2n_1, 2n = b, arbitrarily choose &, € [z, 2k4+1], and
compose the integral sum

n—-1

> & Erat — 20)-

k=0

If there exists a limit of this sum as max |z, — zx| — 0, independent of the way it is
partitioned and the choice of the points &, then this limit is called the integral of the
function w = f(z) over the curve C' and is denoted by

/ f(2)dz. (M9.2.2.1)
C

Properties of the integral of a function of a complex variable:

If v, 3 are arbitrary constants, then [, [af(2)+89(2)ldz = [, f(z)dz+0 [, g(2) dz.
If C is the same curve as C' but with the opposite sense, then f5 f()dz=— o f(2)dz.
IfC=C U---UCy, then [, f(z)dz = fC1 f()dz+---+ an f(2)dz.

4. If | f(2)] £ M at all points of the curve C, then the following estimate of the absolute
value of the integral holds: ‘ J. o f(2) dz‘s M1, where [ is the length of the curve C.

W=

If C' is a piecewise smooth curve and f(z) is bounded and piecewise continuous, then
the integral (M9.2.2.1) exists. If z = z +4y and w = u(z, y) + iv(z, y), then the computation
of the integral (M9.2.2.1) is reduced to finding two ordinary curvilinear integrals:

/ f(2)dz = / w(x,y)dr —v(x,y)dy + 1 / v(zx,y) dx + u(z, y) dy. (M9.2.2.2)
C C C
Remark. Formula (M9.2.2.2) can also be written in a form convenient for memorizing:

/ f(z)dz=/ (u +v)(dx + i dy).
Jo c
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If the curve C'is given by the parametric equations = = x(t), y = y(t) (t; £t < ty), then

ty
/ f(z)dz = f®)z() dt,
C t1

where z = z2(t) = z(t) + iy(t) is the complex parametric equation of the curve C.
If f(z) is an analytic function in a simply connected domain D containing the points
z = a and z = b, then the Newton—Leibniz formula holds:

b
/‘ﬂ@dz=F®%JW®,

where F'(2) is a primitive of the function f(2), i.e., F.(z) = f(z) in the domain D.
If f(z) and g(z) are analytic functions in a simply connected domain D and z = a and
z = b are arbitrary points of the domain D, then the formula of integration by parts holds:

b b
/ f(Z)dg(Z)=f(b)g(b)—f(a)g(a)—/ 9(2) df ().

If an analytic function z = g(w) determines a single-valued mapping of a curve C onto
a curve C, then

/E@W=ﬁﬂmm%mwA
C C

» Cauchy’s theorems.
CAUCHY’S THEOREM FOR A SIMPLY CONNECTED DOMAIN. If a function f(z) is analytic

in a simply connected domain D bounded by a contour C' and is continuous in D, then

fc f(z)dz=0.

CAUCHY’S THEOREM FOR A MULTIPLY CONNECTED DOMAIN. Ifa function f(z) is analytic
in a multiply connected domain D bounded by a contour C' consisting of several closed
curves and is continuous in D, then fc f(z)dz = 0 provided that the sense of all curves
forming C' is chosen in such a way that the domain D lies to the same side of the contour.

» Cauchy’s integral and related integrals. Morera’s theorem. If a function f(z) is

analytic in an n-connected domain D and continuous in D, and C is the boundary of D,
then for any interior point z of this domain the Cauchy integral formula holds:

_ 1 J(©)
f(»)= m L E—2

(Here integration is carried out in the positive sense of C’; i.e., the contour C' is traced so
that the domain D lies to the left of the contour.) Under the same assumptions as above,
the derivatives of arbitrary order of the function f(z) at any interior point z of the domain
are expressed as

de. (M9.2.2.3)

my_ Nt f(© _
@)= 5 /C T dé  (n=12,..). (M9.2.2.4)

For an arbitrary smooth curve C, not necessarily closed, and for a function (&) every-
where continuous on C, possibly except for finitely many points at which this function has
an integrable discontinuity, the right-hand side of formula (M9.2.2.3) defines a Cauchy-type
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integral. The function F'(z) determined by a Cauchy-type integral is analytic at any point
that does not belong to C'. If C' divides the plane into several domains, then the Cauchy-type
integral generally determines different analytic functions in these domains.

Formulas (M9.2.2.3) and (M9.2.2.4) allow one to calculate the integrals

/ f© L = omif o, / J(©) g_ﬂfzn)(z)_ (M9.2.2.5)
C c (€

5 _ _ Z)n+1
Example 1. Let us calculate the integral

/ Imzdz,
c

where C' is the semicircle |z| = 1, 0 < arg z < 7 (Fig. M9.4).

YA

-1 1 X
Figure M9.4. The semicircle |z| = 1,0 <argz <.

Using formula (M9.2.2.2), we obtain

-1
/Imzdz=/y(d:c+idy)=/ ydm+i/ ydy=/ Vi-a2dz—-i-0=-".
c c c c 1 2

Example 2. Let us calculate the integral
dz
czZ—2

where C' is the circle of radius R centered at a point zp with counterclockwise sense.
Using the integral formula (M9.2.2.5), we obtain

/ 1 dz = 2mi.
Jo Z— 20

Example 3. Let us calculate the integral
/ dz
o 22+l

where C' is the circle of unit radius centered at the point 7 with counterclockwise sense.
To apply the Cauchy integral formula (M9.2.2.3), we transform the integrand as follows:

S SRS U SN (C R B
= - = . - = -, f(Z)—ZH..

1422 (z—-9)(z+1) z+iz2-1 2z2-1

The function f(z) = 1/(z + %) is analytic in the interior of the domain under study and on its boundary; hence
the Cauchy integral formula (M9.2.2.3) and the first of formulas (M9.2.2.5) hold. From the latter formula, we

obtain p
/ > Z f(z) dz =21 zf(z)—2m— =
c 2 +1 c Z- 2i

Formulas (M9.2.2.3) and (M9.2.2.4) 1mply the Cauchy inequalities

(n) nty [ fO d n!MI
1) < 5 \/ T 1S gp

)n+1 2 R+l >
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where M = mag! f (z)‘ is the maximum modulus of the function f(z) in the domain D, R
ze

is the distance from the point z to the boundary C, and [ is the length of the boundary C'.
If, in particular, f(z) is analytic in the disk D = |z — zg| < R, and bounded in D, then we
obtain the inequality

n n!M
|f; )(ZO)l < F (n=0,1,2,...).

MORERA’S THEOREM. If a function f(z) is continuous in a simply connected domain D
and |, ¢ J(2)dz =0 for any closed curve C' lying in D, then f(2) is analytic in the domain D.

M9.2.3. Taylor and Laurent Series

» Taylor series. If a series

> a2 (M9.2.3.1)

n=0
of analytic functions in a simply connected domain D converges uniformly in this domain,
then its sum is analytic in the domain D.
If a series (M9.2.3.1) of functions analytic in a domain D and continuous in D converges
uniformly in D, then it can be differentiated termwise any number of times and can be
integrated termwise over any piecewise smooth curve C' lying in D.

ABEL’S THEOREM. If the power series
[e.e]

> enz—a)" (M9.2.3.2)
n=0

converges at a point 2y, then it also converges at any point z satisfying the condition
|z —a| < |29 — al. Moreover, the series converges uniformly in any disk |z — a| < q|zo — al,
where 0 < ¢ < 1.

It follows from Abel’s theorem that the domain of convergence of a power series is an
open disk centered at the point a; moreover, this disk can fill the entire plane. The radius of
this disk is called the radius of convergence of a power series. The sum of the power series
inside the disk of convergence is an analytic function.

Remark. The radius of convergence R can be found by the Cauchy—Hadamard formula

LT e

R n— oo
where lim denotes the upper limit.

If a function f(2) is analytic in the open disk D of radius R centered at a point z = a,
then this function can be represented in this disk by its Taylor series

f(z)= Z cn(z —a)",
n=0

whose coefficients are determined by the formulas

(n)
Cn=2 @ /f(—@dg (n=0,1,2,...),
C

nl 2w Jo (€—a)ynt!
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where C is the circle |z —a| = ¢R, 0 < ¢ < 1. In any closed domain belonging to the disk D,
the Taylor series converges uniformly. Any power series expansion of an analytic function
is its Taylor expansion. The Taylor series expansions of some elementary functions in
powers of z are as follows:

2 23

ef=1+z+ o7 + e +... (2] < ), (M9.2.3.3)
22 2t . 2 2

cosz:1—§+m—..., smz:z—§+§—... (2] < o), (M9.2.3.4)
22 2t ) 2 2

COShz=1+E+H+..., Slnhz=Z+§+§+... (|Z|<OO), (M9235)

22 23
Inl1+2)=2z2- 5 + 5 (=l < 1), (M9.2.3.6)
-1 —1(a-2
(1+2)%=1+az+ “(“2, ) 2, e 3),(“ )34 (21<1).  (M9.2.3.7)

The last two expansions are valid for the single-valued branches for which the values of the
functions for z = 0 are equal to 0 and 1, respectively.

Remark. Series expansions (M9.2.3.3)-(M9.2.3.7) coincide with analogous expansions of the correspond-
ing elementary functions of the real variable (see Subsection M8.3.2).

To obtain the Taylor series for other branches of the multi-valued function Ln(1 + z),
one has to add the numbers 2k7i, k = 1,12, ... to the expression in the right-hand side:

2 Z3

Ln(l+z)=2/<:m’+z—%+——....

3
o
» Laurent series. The domain of convergence of the function series Y c¢,(z—a)"isa
n=—oo

circular annulus K : r < |z —a|] < R, where 0 £ r < R < co. The sum of the series is an
analytic function in the annulus of convergence. Conversely, in any annulus K where the
function f(z) is analytic, this function can be represented by the Laurent series expansion
oo
f(z)= Z ca(z—a)"
n=—oo

with coefficients determined by the formulas

1
Cn==— / _JO d¢ (n=0,x1,%£2,..)), (M9.2.3.8)
2mi ) (€ —a)™+!
where -y is the circle |z—a| = p, 7 < p < R. In any closed domain contained in the annulus &,
the Laurent series converges uniformly.
The part of the Laurent series with negative numbers,

-1 00
n:z;O cn(z—a)" = ; Goor Cj;)n ,

is called its principal part, and the part with nonnegative numbers,

o0
> en(z-a)",
n=0

is called the regular part. Any expansion of an analytic function in positive and negative
powers of z —a is its Laurent expansion.
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Example 1. Let us consider Laurent series expansions of the function

[

1
T 2(1-2)

in a Laurent series in the domain O < |z| < 1. This function is analytic in the annulus 0 < |z| < 1 and hence can
be expanded in the corresponding Laurent series. We write this function as the sum of elementary fractions:

—_
—_

f»)=

2(l-2) z 1-2z°

Since |z| < 1, we can use formula (M9.2.3.7) and obtain the expansion

1 1 2
=—4+1+z+2"+---
z1-2) =z

Example 2. Let us consider Laurent series expansions of the function

f(z)=¢€'/*

in a Laurent series in a neighborhood of the point a = 0. To this end, we use the expansion (M9.2.3.3), where
we should replace z by 1/z. Thus we obtain

1 1 1
e =1+ — + +oet

nz' 22 nian * (z#0).

M9.2.4. Zeros and Isolated Singularities of Analytic Functions

» Zeros of analytic functions. A point z = a is called a zero of a function f(z) if f(a)=0.
If f(z) is analytic at the point a and is not zero identically, then the least order of nonzero
coefficients in the Taylor expansion of f(z) centered at a, in other words, the number n
of the first nonzero derivative f"(a), is called the order of zero of this function. In a
neighborhood of a zero a of order n, the Taylor expansion of f(z) has the form

f(2)=cn(z—a)" + cpa1(z— )" + .. (ch 20, n2>1).

In this case, f(z) = c,(z — a)"g(z), where the function g(z) is analytic at the point ¢ and
g(a) # 0. A first-order zero is said to be simple. The point z = oo is a zero of order n for a
function f(z) if z = 0 is a zero of order n for F'(z) = f(1/2).

If a function f(z) is analytic in a neighborhood of its zero a and is not identically zero in
any neighborhood of a, then there exists a neighborhood of a in which f(z) does not have
any zeros other than a.

UNIQUENESS THEOREM. If functions f(z) and g(z) are analytic in a domain D and their
values coincide on some sequence ay, of points converging to an interior point a of the
domain D, then f(z) = g(z) everywhere in D.

ROUCHE’S THEOREM. If functions f(z) and g(z) are analytic in a simply connected

domain D bounded by a curve C, are continuous in D, and satisfy the inequality | f (2)|> |g(2)|
on C, then the functions f(z) and f(z) + g(z) have the same number of zeros in D.

» Isolated singularities of analytic functions. A point a is called an isolated singularity
of a single-valued analytic function f(z) if there exists a neighborhood of this point in which
f(z) is analytic everywhere except for the point a itself. The point a is called
1. A removable singularity if lim f(z) exists and is finite.
zZ—a
2. A pole if lim f(z) = cc.
zZ—a

3. An essential singularity if lim f(z) does not exist.
zZ—a
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A necessary and sufficient condition for a point @ to be a removable singularity of a
function f(z) is that the Laurent expansion of f(z) around a does not contain the principal
part.

If a function f(z) is bounded in a neighborhood of an isolated singularity a, then a is a
removable singularity of this function.

A necessary and sufficient condition for a point a to be a pole of a function f(z) is that
the principal part of the Laurent expansion of f(z) around a contains finitely many terms:

- _C&n 1 - Ak
I&= ot e +k§ck(z a)*. (M9.2.4.1)

The order of a pole a of a function f(z) is defined to be the order of the zero of the
function F'(z) = 1/ f(2). If c_,, # 0 in expansion (M9.2.4.1), then the order of the pole a of
the function f(2) is equal to n. For n = 1, we have a simple pole.

A necessary and sufficient condition for a point @ to be an essential singularity of a
function f(z) is that the principal part of the Laurent expansion of f(z) around a contains
infinitely many nonzero terms.

SOKHOTSKI’S THEOREM. If a is an essential singularity of a function f(z), then for each
complex number A there exists a sequence of points z — a such that f(z;) — A.

Example. Let us consider some functions with singular points of different kind.

1°. The function f(z) = (1 — cos z)/z* has a removable singularity at the origin, since its Laurent expansion

about the origin,

1-cosz 1 2 2t

2 T2 240
does not contain the principal part.

2°. The function f(z)=1/(1 +ezz) has infinitely many poles at the points z =+v/(2k + )i (k=0,£1,12,. . .).
All these poles are simple poles, since the function 1/f(2) = 1 + ¢* has simple zeros at these points. (Its
derivative is nonzero at these points.)

3°. The function f(z) = sin(1/z) has an essential singularity at the origin, since the principal part of its Laurent
expansion

contains infinitely many terms.

The following two simplest classes of single-valued analytic functions are distinguished
according to the character of singular points.

1. Entire functions. A function f(z) is said to be entire if it does not have singular
points in the finite part of the complex plane. An entire function can be represented by an
everywhere convergent power series

fx) = Z 2™
n=0

An entire function can have only one singular point at z = co. If this singularity is a pole of
order n, then f(2) is a polynomial of degree n. If z = co is an essential singularity, then f(2)
is called an entire transcendental function. If z = oo is a regular point (i.e., f(2) is analytic
for all z), then f(z) is constant (Liouville’s theorem). All polynomials, the exponential
function, sin z, cos z, etc. are examples of entire functions. Sums, differences, and products
of entire functions are themselves entire functions.
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2. Meromorphic functions. A function f(z) is said to be meromorphic if it does not
have any singularities except for poles. The number of these poles in each finite closed
domain D is always finite.

Suppose that a function f(z) is analytic in a neighborhood of the point at infinity. The
definition of singular points can be generalized to this function without any changes. But
the criteria for the type of a singular point at infinity related to the Laurent expansion are
different.

THEOREM. In the case of a removable singularity at the point at infinity, the Laurent
expansion of a function f(z) in a neighborhood of this point does not contain positive
powers of z. In the case of a pole, it contains finitely many positive powers of z. In the case
of an essential singularity, it contains infinitely many powers of z.

Let f(z) be a multi-valued function defined in a neighborhood D of a point z = a except
possibly for the point a itself, and let f1(z), f2(2), ... be its branches, which are single-
valued continuous functions in the domain where they are defined. The point a is called
a branch point (ramification point) of the function f(z) if f(z) passes from one branch to
another as the point z goes along a closed curve around the point 2 in a neighborhood of D.
If the original branch is reached again after going around this curve m times (in the same
sense), then the number m — 1 is called the order of the branch point, and the point a itself
is called a branch point of order m — 1.

If all branches f1(z) tend to the same finite or infinite limit as z — a, then the point a is
called an algebraic branch point. (For example, the point z = 0 is an algebraic branch point
of the function f(2) = %/2.) In this case, the single-valued function

F(z) = f" +a)

has a regular point or a pole for z = 0.

If the limit of fi(z) as z — a does not exist, then the point a is called a transcendental
branch point. For example, the point z = 0 is a transcendental branch point of the function
f(z) =exp(%/1/2).

In a neighborhood of a branch point a of finite order, the function f(z) can be expanded
in a fractional power series (Puiseux series)

o0
f@ = az-a)™ (M9.2.4.2)
k=—00

If a new branch is obtained each time after going around this curve (in the same sense),
then the point « is called a branch point of infinite order (a logarithmic branch point). For
example, the points z = 0 and z = oo are logarithmic branch points of the multi-valued
function w =Ln z. A logarithmic branch point is classified as a transcendental branch point.

For a # oo, the expansion (M9.2.4.2) contains finitely many terms with negative k
(infinitely many in the case of a transcendental point).

M9.2.5. Residues. Calculation of Definite Integrals

» Residue of an analytic function at an isolated singular point. The residue res f(a)
of a function f(z) at an isolated singularity a is defined as the number

res f(a) = ZLm }if(z) dz, (M9.2.5.1)

where the integral is taken in the positive sense over a contour C' surrounding the point a
and containing no other singularities of f(z) in the interior.
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Remark. Residues are sometimes denoted by res[ f(z); a] or res.=, f(2).

The residue res f(a) of a function f(z) at a singularity a is equal to the coefficient of
(z —a)7! in the Laurent expansion of f(z) in a neighborhood of the point a,

1
res f(a) = %jécf(z)dz =c.

Basic rules for finding the residues:

The residue of a function at a removable singularity is zero.
. If a is a pole of order n, then

[\

n—1

1. d
res fla) = oy Im o

[f()(z-a)"]. (M9.2.5.2)

3. For a simple pole (n = 1),
res f(a) = lim [f(z)(z - a)] .
zZ—a
4. If f(z) is the quotient of two analytic functions,

©(2)

f(z)= m,

in a neighborhood of a point a and p(a) # 0, 1(a) = 0, but ¥,(a) # 0 (i.e., a is a simple
pole of f(z)), then

p(a)
Yl(a)

5. If a is an essential singularity of f(z), then to obtain res f(a), one has to find the
coefficient c_; in the Laurent expansion of f(z) in a neighborhood of a.

res f(a) = (M9.2.5.3)

» Basic theorems on residues.
A function f(z) is said to be continuous on the boundary C' of the domain D if for each
boundary point zg there exists a limit lim f(z) = f(z9) as z — 29,2 € D.
zZ—20

CAUCHY’S RESIDUE THEOREM. Let f(z) be a function continuous on the boundary C
of a domain D and analytic in the interior of D everywhere except for finitely many points
ai,. . .,a,. Then

/ f(2)dz=2miy res f(ag), (M9.2.5.4)
% =1

where the integral is taken in the positive sense of C.
The logarithmic residue of a function f(z) at a point a is by definition the residue of its
logarithmic derivative
fi»)

f@)

THEOREM. The logarithmic derivative f.(z)/ f(z) has first-order poles at the zeros and
poles of f(z). Moreover, the logarithmic residue of f(z) at a zero or a pole of f(z) is equal
to the order of the zero or minus the order of the pole, respectively.

[In ()] =
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The residue of a function f(z) at infinity is defined as

1
res f(o0) = o ?g f(z)dz,

where I is a circle of sufficiently large radius |z| = p and the integral is taken in the clockwise
sense (so that the neighborhood of the point z = co remains to the left of the contour, just
as in the case of a finite point).

The residue of f(2) at infinity is equal to minus the coefficient of z~! in the Laurent
expansion of f(z) in a neighborhood of the point z = oo,

res f(oo) = —c_1.

THEOREM. If a function f(z) has finitely many singular points in the extended complex
plane, then the sum of all its residues, including the residue at infinity, is zero:

n
res f(oo0) + Z res f(ag) =0, (M9.2.5.5)
k=1
where aq, . .., a, are finite singular points.
Example 1. Let us calculate the integral

where C'is the circle |z| = %

In the disk |2] < %, there is only one singular point of the integrand, z = 0, which is a second-order pole.

The residue of f(z) at z = 0 is calculated by the formula (M9.2.5.2)

2] 1

res f(0) = lin}) = lin}) [In(z +2)]. = lim

022 2
Using formula (M9.2.5.1), we obtain
1 1 In(z +2) 7{ In(z +2)
dz,
c

= dz = mi.
2 2mi Jooo 2P 2%

» Jordan’s lemma. Calculation of definite integrals using residues. Suppose that
we need to calculate the integral of a real function f(x) over a (finite or infinite) interval
(a,b). Let us supplement the interval (a, b) with a curve I" that, together with (a, b), bounds
a domain D, and then analytically continue the function f(x) into D. Then the residue
theorem can be applied to this analytic continuation of f(z), and by this theorem

b
/ f(x) dx+/ f(2)dz = 2miA,
a I

where A is the sum of residues of f(z)in D. If fr f(2)dz can be calculated or expressed

in terms of the desired integral ff f(x) dx, then the problem will be solved.

When calculating integrals of the form ff; f(x)dx, one should apply (M9.2.5.4) to
the contour C' that consists of the interval (—R, R) of the real axis and the arc Cr of the
semicircle |z| = R in the upper half-plane. Sometimes, it is only possible to find the limit
as R — oo of the integral over the contour C'r rather than to calculate it, and often it turns
out that the limit of this integral is equal to zero.

LEMMA. If a function f(z) is analytic for |z| > Ry and z f(z) — 0 as |z| — oo fory >0,
then

lim f(z)dz =0,

R—o0 Cr

where C, is the arc of the semicircle |z| = R in the upper half-plane.
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THEOREM. Let a function f(x) be defined on the whole real axis —oo < x < oo and let it
can be analytically continued to the upper half-plane Im z > 0 so that the continuation f(z)
satisfies the conditions of the previous lemma. Then the improper integral f;’; f@)dx
exists and is equal to

/ " f@)da = 2mi > res flag). (M9.2.5.6)
- k=1

where the ay, are singular points of f(z) in the upper half-plane.

" dx
I= .
/_ 1+z*

(oo}

Example 2. Calculate the integral

The analytic continuation of the integrand into the upper half-plane is fx)=01 +z4)_’1; it satisfies the conditions
of the above lemma. The function f(z) has two singular points, a; =¢*"/* and a; =¢*™/*, in the upper half-plane
(both points are first-order poles). Using formulas (M9.2.5.3) and (M9.2.5.6), one finds
(1 1 ™2
[=2mi (F e T4 /) =2

2

JORDAN’S LEMMA. If a function g(z) tends to zero uniformly with respect to arg z along
a sequence of circular arcs CR,, : |z| = Ry, Im 2 > —a (where R,, — oo and a is fixed), then

lim g(z)e™M dz =0

n—oo CR
n

for any positive number \.

Example 3 (Laplace integral). To calculate the integral
oo
/ czos :cz dz.
o Tr+a

6iz . 1
—— =g(»)e"*, Z)= 5——
2t +a? 9() 9() 2r +a?

one uses the auxiliary function

f(2) =

and the contour shown in Fig. M9.5. Since g(z) satisfies the inequality |g(z)| < (R? - a»™! on CRg, it follows
that this function uniformly tends to zero as R — oo, and by Jordan’s lemma with A = 1 we obtain

f(2)dz = / g(z)e*dz — 0
Cr Cr

as R — oo.

YA

aie

Cr

-
P et

R R X

Figure M9.5. The contour for the calculation of the Laplace integral.
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By the residue theorem

T e [ feorde—amit
———dx z)dz =2mi—
Jop 22 +a? Cr 2ai
for any R > a. (The residue at the singular point z = ai of the function f(z), which is a first-order pole and the
only singular point of this function lying inside the contour, can be calculated by formula (M9.2.5.3).) In the

limit as R — oo, we obtain
(e} ir
e s
/ 212 dr = ea”
o T+ a ae

Separating the real part and using the fact that the function is even, we obtain
> coszx ™
ﬁ dIE - .
0 Tr+a 2ae®
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Chapter M10
Integral Transforms

M10.1. General Form of Integral Transforms. Inversion
Formulas

Normally an integral transform has the form
_ b
J) = / oz, ) f(z)dx.

The function f()\) is called the transform of the function f(x) and @(x, \) is calle(i the

kernel of the integral transform. The function f(x) is called the inverse transform of f()\).
The limits of integration a and b are real numbers (usually, a =0, b= 0o or a = —00, b = 00).

For brevity, we rewrite the integral transform as follows: f()\) = L{f(z)}.
General properties of integral transforms (linearity):

LAEf(x)} = EL{f (@)},
L{f(x) X g(@)} = L{f (@)} £ L{g(x)}.
Here, k is an arbitrary constant; it is assumed that integral transforms of the functions f(z)
and g(x) exist.
In Subsections M10.2-M10.4, the most popular (Laplace, Fourier, Mellin, etc.) integral
transforms are described. These subsections also describe the corresponding inversion
formulas, which normally have the form

f@) = /c P NFOY A

and make it possible to recover f(x) if f(X) is given. The integration path C can lie either
on the real axis or in the complex plane.

In many cases, to evaluate the integrals in the inversion formula—in particular, to find
the inverse Laplace, Mellin, and Fourier transforms—methods of the theory of functions
of a complex variable can be applied, including the theorems about residue and Jordan’s
lemma, which are outlined in Subsection M9.2.5.

M10.2. Laplace Transform
M10.2.1. Laplace Transform and the Inverse Laplace Transform

» Laplace transform. The Laplace transform of an arbitrary (complex-valued) func-
tion f(x) of a real variable x (x > 0) is defined by

~ o
fp) = / e f(x) d, (M10.2.1.1)
0
where p = s + 40 is a complex variable.

251
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The Laplace transform exists for any continuous or piecewise-continuous function
satisfying the condition |f(x)| < Me??* with some M > 0 and g9 = 0. In the following,
o9 often means the greatest lower bound of the possible values of oy in this estimate; this
value is called the growth exponent of the function f(z).

For any f(z), the transform f(p) is defined in the half-plane Rep > o and is analytic
there.
For brevity, we shall write formula (M10.2.1.1) as follows:

foy=2{f@} o  fp=L£{f@),p})

» Inverse Laplace transform. Given the transform f(p), the function f(z) can be found
by means of the inverse Laplace transform

1 c+ioo

f@)=-— / f(p)eP* dp, it =-1, (M10.2.1.2)
2mi c—100

where the integration path is parallel to the imaginary axis and lies to the right of all

singularities of f(p), which corresponds to ¢ > oy.
The integral in inversion formula (M10.2.1.2) is understood in the sense of the Cauchy
principal value:
c+100 ~ ctHiw e
/ f@eP¥ dp = lim F(P)eP* dp.
c—100 W00 J e—iw
In the domain = < 0, formula (M10.2.1.2) gives f(x) = 0.

Formula (M10.2.1.2) holds for continuous functions. If f(x) has a (finite) jump dis-
continuity at a point x = xg > 0, then the right-hand side of (M10.2.1.2) evaluates to
%[ f(xo—0)+ f(zo + 0)] at this point (for x¢ = 0, the first term in the square brackets must
be omitted).

For brevity, we write the Laplace inversion formula (M10.2.1.2) as follows:

f@=cHfm} o f@) = fp), z}.

There are tables of direct and inverse Laplace transforms (see Sections S2.1 and S2.2),
which are handy in solving linear differential and integral equations.

M10.2.2. Main Properties of the Laplace Transform. Inversion
Formulas for Some Functions

» Convolution theorem. Main properties of the Laplace transform.

1°. The comvolution of two functions f(x) and g(x) is defined as an integral of the form
T
/0 f@g(x —t)dt, and is usually denoted by f(x) * g(x), so that

f(x) * g(x) =/0 f@) g(x —t)dt.

By performing substitution z —¢ = u, we see that the convolution is symmetric with respect
to the convolved functions: f(z) * g(x) = g(x) * f(x).
The convolution theorem states that

L{f@) xg@)}=L{f@} {9}

and is frequently applied to solve Volterra equations with kernels depending on the difference
of the arguments.
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2°. The main properties of the correspondence between functions and their Laplace trans-
forms are gathered in Table M10.1.

3°. The Laplace transforms of some functions are listed in Table M 10.2; for more detailed
tables, see Section S2.1 and the list of references at the end of this chapter.

» Inverse transforms of rational functions. Consider the important case in which the
transform is a rational function of the form

fp) = B (M10.2.2.1)

QW)

where Q(p) and R(p) are polynomials in the variable p and the degree of Q(p) exceeds that
of R(p).
Assume that the zeros of the denominator are simple, i.e.,

Qp) =const(p— AP —A2)...(p— Ap).

Then the inverse transform can be determined by the formula

Z R(A’“) exp()\kx), (M10.2.2.2)

where the primes denote the derivatives.
If Q(p) has multiple zeros, i.e.,

Q(p) =const (p— A1) (p=X)*2...(p=A\p)°™,
then

m Sk—

1 d
f(x)z;(s D1, dpskl[(p ARt f(p)er]. (M10.2.2.3)

Example 1. The transform

fp) = - (a and b real numbers)

P’ —a
can be represented as the fraction (M10.2.2.1) with R(p) = b and Q(p) = (p—a)(p + a). The denominator Q(p)
has two simple roots, A\; = a and A, = —a. Using formula (M10.2.2.2) with n. = 2 and Q’(p) = 2p, we obtain
the inverse transform in the form

b b 4w b .
flx)= Ee ~ % —e = sinh(ax).

Example 2. The transform

fp) =

2 o (a and b real numbers)

can be written as the fraction (M10.2.2.1) with R(p) = b and Q(p) = (p—ia)(p + ia), i* = 1. The denominator
Q(p) has two simple pure imaginary roots, A\; = ta and \» = —ia. Using formula (M10.2.2.2) with n = 2, we
find the inverse transform:

f(x)= Leiaz - Lefmz _° sin(azx).
2ia a

Example 3. The transform
f) =ap™,
where n is a positive integer, can be written as the fraction (M10.2.2.1) with R(p) = a and Q(p) = p". The
denominator Q(p) has one root of multiplicity n, A; = 0. By formula (M10.2.2.3) with m = 1 and s; = n, we
find the inverse transform:
f(ZC) — Lmn—l
(n-1)! ’
Remark. Fairly detailed tables of inverse Laplace transforms can be found in Section S2.2.
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TABLE M10.1
Main properties of the Laplace transform.
No. Function Laplace transform Operation
1 afi(x) +bfr(x) afi(p) +bf(p) Linearity
2 fx/a), a>0 af(ap) Scaling
fx-a), ap T Shift of
3 f(x—a)=0 for z<a e f(p) the argument
n C = nF(n) Differentiation
4 v f@yn=12... D"y () of the transform
1 a7 Integration
2z d g
5 T fx) /p J@dq of the transform
ax ~ Shift in
6 e f(z) fp-a the complex plane
7 fa(@) pf(p)— f(+0) Differentiation
8 ™)) p" f(p) -3 p"F fED(40) Differentiation
k=1
m p(n) m am n g . n—k p(k-1) . ..
9 2" (@), m=1,2,... | D dp™ P -2 0" fa (+0) Differentiation
k=1
" m_n am . ..
10 y [mm f(m)], m>n “D"p v f Differentiation
In m
11 / fdt I Integration
0 p
12 /o [ fo(x-t)dt () Convolution
TABLE M10.2
The Laplace transforms of some functions.
No. Function, f(x) Laplace transform, f(p) Remarks
1 1 1/p
n!
2 z p7L+1 n= 1’ 2’
3 z° T'(a+ p ™! a>-1
4 e (p+ay’
5 z%e® Dla+ D(p+b)y ™" a>-1
] a
6 sinh(ax) m
p
7 cosh(ax) m
1 C=05772...
8 In p (Inp+0) is the Euler constant
. a
9 sin(ax) 2ra
p
10 cos(ax) P
a
fc| —— — - >
11 erC(2ﬁ> pexp( a\/ﬁ) a>0
1
12 Jo(ax) Jo(x) is the Bessel function
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M10.2.3. Limit Theorems. Representation of Inverse Transforms as
Convergent Series

» Limit theorems.

THEOREM 1. Let 0 <z < oo and f(p) =£ { f (ac)} be the Laplace transform of f(z). If
a limit of f(x) as x — 0 exists, then

lim f(z)= lim [pf(p)].
z—0 p—00
THEOREM 2. If a limit of f(x) as x — oo exists, then
lim f(z)=lim [pf(p)].
T—00 p—0
» Representation of inverse transforms as convergent series.

THEOREM 1. Suppose the transform f(p) can be expanded into series in negative powers
of p,

f(p>=00“—2,
2

convergent for |p| > R, where R is an arbitrary positive number; note that the transform
tends to zero as |p| — oo. Then the inverse transform can be obtained by the formula

o0

f@=3 (ncinl)! =

n=1
where the series on the right-hand side is convergent for all x.

THEOREM 2. Suppose the transform f(p), [p| > R, is represented by an absolutely
convergent series,

foy=>" =, (M10.2.3.1)

n=0

where {\,, } is any positive increasing sequence, 0 < A\g < A\; <--- — 00. Then it is possible
to proceed termwise from series (M10.2.3.1) to the following inverse transform series:

[e.e]

fa=Y" %w“*, (M10.2.3.2)

n=0

where I'(\) is the Gamma function. Series (M10.2.3.2) is convergent for all real and
complex values of x other than zero (if Ao = 1, the series is convergent for all x).

M10.3. Various Forms of the Fourier Transform
M10.3.1. Fourier Transform and the Inverse Fourier Transform

» Standard form of the Fourier transform. The Fourier transform is defined as follows:

few = % /_: f@)e ™ dr. (M10.3.1.1)
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For brevity, we rewrite formula (M10.3.1.1) as follows:
fay=§{f@}y or  fu)=F{f@),u

Given f(u), the function f(z) can be found by means of the inverse Fourier transform

f(z) = % /_ : fu) €™ du. (M10.3.1.2)

Formula (M10.3.1.2) holds for continuous functions. If f(x) has a (finite) jump
discontinuity at a point x = xg, then the right-hand side of (M10.3.1.2) evaluates to

% [f(wo -0+ f(xo+ 0)] at this point.
For brevity, we rewrite formula (M10.3.1.2) as follows:

f@=F"4fwr or  f@) =F{fw), 2}

» Convolution theorem. Main properties of the Fourier transform.

1°. The convolution of two functions f(x) and g(x) is defined as

J(@)*g(x) = % [: flx—t)g(t)dt.

By performing substitution x — ¢ = u, we see that the convolution is symmetric with respect
to the convolved functions: f(x) * g(x) = g(x) * f(x).
The convolution theorem states that

F{f@ xg@} =F{f@)} F{9@)}.

2°. The main properties of the correspondence between functions and their Fourier trans-
forms are gathered in Table M10.3.

TABLE M10.3
Main properties of the Fourier transform.

No. Function Fourier transform Operation
1 afi(@)+bfr(x) afi(u)+bfa(u) Linearity
2 f(z/a), a>0 af(au) Scaling
| e Fi Do
4 fow(@) 2 f(u) Differentiation
5 () (iw)™ f(u) Differentiation

6 / L@ fo(x -8 d§ Fr(w) fo(w) Convolution
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M10.3.2. Fourier Cosine and Sine Transforms
» Fourier cosine transform.

1°. Let a function f(x) be integrable on the semiaxis 0 < x < co. The Fourier cosine
transform is defined by

fe(u) = \/%/Oo f(z)cos(zu)dz,  0<u<oo. (M10.3.2.1)
0

Given fc(u), the function f(z) can be found by means of the Fourier cosine inversion
formula

f(z) = \/% / - fe)cos(zu)du,  0<z < oo. (M10.3.2.2)
0

The Fourier cosine transform (M10.3.2.1) is denoted for brevity by fc(u) = SC{ f (:n)}.

2°. Some other properties of the Fourier cosine transform:

d2n
F{of@)} = (D)"—=F A f@}, n=12...;

du2n

A @} =*F{ f(@)}.

The function f(x) here is assumed to vanish sufficiently rapidly (exponentially) as z — oo.
In the latter formula, the condition f’(0) = 0 is assumed to hold.
Parseval’s relation for the Fourier cosine transform:

/0 3 L f @3 o)) du = /0 F@)g(@) de.

There are tables of the Fourier cosine transform (see Section S2.3 and the references
listed at the end of the current chapter).

» Fourier sine transform.

1°. Leta function f(x)be integrable on the semiaxis 0 < x < co. The Fourier sine transform
is defined by

fo(u) = \/g / - f(z)sin(zu)dz, 0<u<oo. (M10.3.2.3)
0

For given fs(u), the function f(x) can be found by means of the inverse Fourier sine
transform

f(z) = \/% / h fosin(zu)du,  0<z < o0. (M10.3.2.4)
0

The Fourier sine transform (M10.3.2.3) is briefly denoted by fs(u) = SS{ f (3:)}.
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2°. Some other properties of the Fourier sine transform:

dZn
S f@)} = D)"—=3F{f@}, n=1,2...;

du2n

A @)} =<2 f@)}.

The function f(x) here is assumed to vanish sufficiently rapidly (exponentially) as x — oc.
In the latter formula, the condition f(0) = 0 is assumed to hold.
Parseval’s relation for the Fourier sine transform:

/0 3 L F @) Lo} du = /0 f@)g(@) de.

There are tables of the Fourier sine transform (see Section S2.4 and the references listed
at the end of the current chapter).

M10.4. Mellin Transform and Other Transforms
M10.4.1. Mellin Transform and the Inversion Formula

» Mellin transform. Suppose that a function f(x) is defined for positive x and satisfies
the conditions

1 00
/ |f ()] 27! da < oo, / |f (@) 277 da < 00
0 1

for some real numbers o and o3, o1 < 07.
The Mellin transform of f(x) is defined by

f(s) = / h f@)z* dx, (M10.4.1.1)
0

where s = 0 + ¢7 is a complex variable (o] < 0 < 07).
For brevity, we rewrite formula (M10.4.1.1) as follows:

f&)=M{f@x)}r or  f(s)=M{f(x),s}.

» Inverse Mellin transform. Given f (s), the function f(x) can be found by means of the
inverse Mellin transform

o+100

flx) = L / f(s)z™* ds (01 <0< 07), (M10.4.1.2)
2mi 0—1400

where the integration path is parallel to the imaginary axis of the complex plane s and the

integral is understood in the sense of the Cauchy principal value.

Formula (M10.4.1.2) holds for continuous functions. If f(x) has a (finite) jump dis-
continuity at a point x = xg > 0, then the right-hand side of (M10.4.1.2) evaluates to
% [ flxo—=0)+ fxo+ 0)] at this point (for xg = 0, the first term in the square brackets must
be omitted).

For brevity, we rewrite formula (M10.4.1.2) in the form

f@ = fs)}  or  fx) =M f(s), a}.



M10.4. MELLIN TRANSFORM AND OTHER TRANSFORMS

259

M10.4.2. Main Properties of the Mellin Transform. Relation Among
the Mellin, Laplace, and Fourier Transforms

» Main properties of the Mellin transform. The main properties of the correspondence
between the functions and their Mellin transforms are gathered in Table M10.4.

Main properties of the Mellin transform.

TABLE M10.4

No. Function Mellin transform Operation

1 afi(z)+bfa(x) afi(s)+bfa(s) Linearity
2 faz), a>0 a”® f(s) Scaling

a s Shift of the argument
3 v @) fls+a) of the transform
4 f@ 17 (%s) Squared argument

2 Inversion of the argument
5 fa/z) fE=s) of the transform
1 - StA by

6 mAf(amﬁ), a>0,6+0 Ea 8 f( s ; > Power law transform
7 fa(x) ~(s-Df(s=1) Differentiation
8 x fo(z) —-s f (s) Differentiation

? n F(S) 7 . . e
9 ™) () (-1) f(s=mn) Multiple differentiation

® I'(s—n)
10 (mdi> "t 1y"s™ f(s) Multiple differentiation

x
11 z¢ / 8 Sfi(xzt) f2(t) dt fis+a)frl-s—a+p) Complicated integration

0
12 | z° / 8 fi (%) @) dt fis+a)fals+a+8+1) Complicated integration
0

» Relation among the Mellin, Laplace, and Fourier transforms. There are tables of
direct and inverse Mellin transforms (see the references listed at the end of the current
chapter) that are useful in solving specific integral and differential equations. The Mellin

transform is related to the Laplace and Fourier transforms by

M f (@), s} = L{f(e"),—s} + L{f(e™"), s} = F{f(e¥), s},

which makes it possible to apply much more common tables of direct and inverse Laplace
and Fourier transforms.

M10.4.3. Summary Table of Integral Transforms

Table M10.5 summarizes the integral transforms considered above and also lists some other
integral transforms; for the constraints imposed on the functions and parameters occurring
in the integrand, see the references given at the end of this section.



260 INTEGRAL TRANSFORMS

TABLE M10.5
Summary table of integral transforms.

Integral transform Definition Inversion formula
Laplace v [ pe 1 crico
transform f(p)—/o e fz)dz f@)= i / € f(p) dp
Laplace-Carson | 7, . [ _s 1 peviee o f (p)
transform f(p)—p/o e flz)dz flx)= i / e’
Two-sided B o ctico

aplace «(p)= e f(x)dx (a:)_ e’ f.(p)
Lapl Fw= [ et f@=s [ e dp
transform B
Fourier Fu)= 1 /oo e f(x) da fx)= L /Oo " f(u) du
transform Vo Jso Vor Joso
Fourier sine ~ 2 [ 2 e =
transform fs(w)= p /0 sin(zu) f(x) dz f(x)= p /0 sin(zw) fs(u) du
Fourier cosine ~ 2 [oo 2 [oo ~
transform fe(u)= . /0 cos(zu) f(z) dz fl@)= P /0 cos(zu) fe(u) du
Hartley Fon_ 1 / < : 1 / = i £
transform fu(u)= er 7oo(cos zu+sinzu) f(x)dz | f(z)= er 7oo(cos zu + sin xu) fu(u) du
Mellin R s 1 peviee o
transform f(s)_/o a” f(z)dz flx)= i /C_Z_oo x f(s)ds
;I;l;li(feolrm fy(w)z/o zJ(zw)f(x)dz f(:r):/o wJ,,(zw)fl,(w) dw
Y -transform Fo(u) =/ Vuz Yo(uz)f(z)dx f(x) =/ vuxr Hy(ux)F,(u) du

0 0

Meijer > oo crioo
transform f(s)=1/ —/ Vst Ky (sx)f(x)dx f@)= \/— vz Iy (sm)f(s) ds
(K -transform) T™Jo e-ioo
Kontorovich— .00 2 o
Lebedev Fo)= [ K@@ da f@=— [ rsinhrr) Ko@) F () dr
transform 0 T Jo
NOTATION: i=+/—1; J w(x) and Y, (x) are the Bessel functions of the first and the second kind, respectively;

1.(z) and K, (x) are the modified Bessel functions of the first and the second kind, respectively; and

( 1)]($/2)V+2J+1 ) )
H.(x)= Z 5 1s the Struve function.
JT(v+35+3)

Bibliography for Chapter M10

Bateman, H. and Erdélyi, A., Tables of Integral Transforms. Vols. 1 and 2, McGraw-Hill, New York, 1954.

Beerends, R. J., ter Morschem, H. G., and van den Berg, J. C., Fourier and Laplace Transforms, Cambridge
University Press, Cambridge, England, 2003.

Bellman, R. and Roth, R., The Laplace Transform, World Scientific Publishing Co., Singapore, 1984.

Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon Press, New
York, 1965.

Oberhettinger, F., Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer-Verlag,
Berlin, 1980.

Oberhettinger, F. and Badii, L., Tables of Laplace Transforms, Springer-Verlag, New York, 1973.

Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. L., Integrals and Series, Vol. 4, Direct Laplace
Transform, Gordon & Breach, New York, 1992.

Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. L, Integrals and Series, Vol. 5, Inverse Laplace
Transform, Gordon & Breach, New York, 1992.

Sneddon, 1., Fourier Transforms, Dover Publications, New York, 1995.



Chapter M11
Ordinary Differential Equations

M11.1. First-Order Differential Equations

M11.1.1. General Concepts. The Cauchy Problem. Uniqueness and
Existence Theorems

» Equations solved for the derivative. General solution. A first-order ordinary differ-
ential equation*® solved for the derivative has the form

. = fz,y). (MI11.1.1.1)

Sometimes it is represented in terms of differentials as dy = f(x,y) dz.

A solution of a differential equation is a function y(x) that, when substituted into
the equation, turns it into an identity. The general solution of a differential equation is
the set of all its solutions. In some cases, the general solution can be represented as a
function y = ¢(x, C) that depends on one arbitrary constant C'; specific values of C define
specific solutions of the equation (particular solutions). In practice, the general solution
more frequently appears in implicit form, ®(z, y, C') = 0, or parametric form, x = z(t, C),
y =yt 0.

Geometrically, the general solution (also called the general integral) of an equation is
a family of curves in the zy-plane depending on a single parameter C'; these curves are
called integral curves of the equation. To each particular solution (particular integral) there
corresponds a single curve that passes through a given point (xo, o) in the plane.

For each point (z, y), the equation y/, = f(z, y) defines a value of ¢/, i.e., the slope of the
integral curve that passes through this point. In other words, the equation generates a field
of directions in the zy-plane. From the geometrical point of view, the problem of solving
a first-order differential equation involves finding the curves, the slopes of which at each
point coincide with the direction of the field at this point.

Figure M11.1 depicts the tangent to an integral curve at a point (g, yo); the slope of the
integral curve at this point is determined by the right-hand side of equation (M11.1.1.1):
tan o« = f(xo, yo). The little segments show the field of tangents to the integral curves of the
differential equation (M11.1.1.1) at other points.

» Equations integrable by quadrature. The process of finding a solution to a differen-
tial equation is called integration of this equation. The problem of integration of equation
(M11.1.1.1) can often be reduced to the problem of finding indefinite integrals, or quadra-
tures. A solution is expressed as a quadrature if it expressed in terms of elementary functions
and the functions appearing in the equation using a finite set of the arithmetic operations,
function compositions, and indefinite integrals. An equation is said to be integrable by
quadrature if its general solution can be expressed in terms of quadratures.

* In what follows, we often call an ordinary differential equation a “differential equation” or, even shorter,
an “equation.”
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Figure M11.1. The direction field of a differential equation and the integral curve passing through a point
(@0, yo).

» Cauchy problem. The uniqueness and existence theorems. The Cauchy problem:
find a solution of equation (M11.1.1.1) that satisfies the initial condition

y=yo at x =, (M11.1.1.2)

where yy and x are some numbers.

Geometrical meaning of the Cauchy problem: find an integral curve of equation
(M11.1.1.1) that passes through the point (z, yo); see Fig. M11.1.

Condition (M11.1.1.2) is alternatively written y(zo) = Yo OF Y|z=z, = Yo

THEOREM (EXISTENCE, PEANO). Let the function f(x,y) be continuous in an open
domain D of the xy-plane. Then there is at least one integral curve of equation (M11.1.1.1)
that passes through a point (xg, yo) € D; each of these curves can be extended at both ends
up to the boundary of any closed domain Dy C D such that (g, yo) belongs to the interior
of Do.

THEOREM (UNIQUENESS). Let the function f(x,y) be continuous in an open domain D
and have in D a bounded partial derivative with respect to y (or the Lipschitz condition
holds: |f(z,y) — f(x, 2)| £ M|y — z|, where M is some positive number and (x,z) € D).
Then there is a unique solution of equation (M11.1.1.1) satisfying condition (M11.1.1.2).

» Equations not solved for the derivative. The existence theorem. A first-order
differential equation not solved for the derivative can generally be written as

F(z,y,y,) = 0. (M11.1.1.3)

THEOREM (EXISTENCE AND UNIQUENESS). There exists a unique solution y = y(x) of
equation (M11.1.1.3) satisfying the conditions Y=z, = yo and Y|z, = to, where ty is
one of the real roots of the equation F'(x, yo, tg) = 0 if the following conditions hold in a
neighborhood of the point (xg, Yo, to):

1. The function F'(z,y,1) is continuous in each of the three arguments.
2. The partial derivative F; exists and is nonzero.
3. There is a bounded partial derivative with respect to y, |Fy| < M.

The solution surely exists if |x — xg| < a, where a is a (sufficiently small) positive number.

» Singular solutions. A point (x,y) at which the uniqueness of the solution to equa-
tion (M11.1.1.3) is violated is called a singular point. If conditions 1 and 3 of the existence
and uniqueness theorem hold, then

F(r,y,t)=0, Fy(r,y,t)=0 (M11.1.1.4)
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simultaneously at each singular point. Relations (M11.1.1.4) define a t-discriminant curve
in parametric form. In some cases, the parameter ¢ can be eliminated from (M11.1.1.4) to
give an equation of this curve in implicit form, W(x,y) = 0. If a branch y = 1(z) of the
curve ¥(x,y) = 0 consists of singular points and, at the same time, is an integral curve,
then this branch is called a singular integral curve and the function y = v (x) is a singular
solution of equation (M11.1.1.3).

The singular solutions can be obtained by finding the envelope of the family of integral
curves, (z,y, C) =0, of equation (M11.1.1.3). The envelope is part of the C-discriminant
curve, which is defined by the equations

O(x,y,C)=0, Pc(z,y,C)=0.

The branch of the C-discriminant curve at which

(a) there exist bounded partial derivatives, |®,| < M; and |®,| < M>, and
() [Pz|+ [Pyl #0

is the envelope.

M11.1.2. Equations Solved for the Derivative. Simplest Techniques
of Integration

» Equations with separated or separable variables.

1°. An equation with separated variables (a separated equation) has the form

fy, = g(@).

Equivalently, the equation can be rewritten as f(y) dy = g(z) dz (the right-hand side depends
on z alone and the left-hand side on y alone). The general solution can be obtained by
integration:

/f(y)dy=/g(x)dx+0,
where C is an arbitrary constant.

2°. An equation with separable variables (a separable equation) is generally represented
by
hing @y = L9 ().

Dividing the equation by f>(y)g1(x), one obtains a separated equation. Integrating yields

T
/ Jiy) dy = / 2@ o
2(y) g1(z)
Remark. Solutions corresponding to f>(y) = 0 may be lost when dividing the equation by f>(y)gi(x).
Therefore, the case of f>(y) = 0, should be treated separately.

Many ordinary differential equations are reduced to separable equations.

Example. The equation

yo = yfey")

can be reduced, with the substitution z = e’\”yk, to a separable equation: z, = Az + kzf(2).

Some other equations reducible to separable equations are considered below.
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» Equation of the form y/ = f(ax + by). For b = 0, it is an equation with separated
variables. For b # 0, the substitution z = ax + by brings the equation to a separable equation,
2l =bf(2) +a.

» Homogeneous equation. A homogeneous equation remains the same under simulta-
neous scaling (dilation) of the independent and dependent variables in accordance with the
rule x — az, y — ay, where « is an arbitrary constant (« # 0). Such equations can be
represented in the form
/ Y
we=1(3):

The substitution u = y/x brings a homogeneous equation to a separable one, zu), = f(u)-u.
Remark. The equations of the form
;o a1:c+b1y+c1>
Yo = f< ;mz+by+ac

can be reduced to a homogeneous equation. To this end, for a1z + b1y # k(a2 + byy), one should use the
change of variables £ = © — x0, 7 = y — Yo, Where the constants xo and yo are determined by solving the linear
algebraic system

a1zo +biyo +c1 =0,

axo + bzyo +Cc = 0.

As aresult, one arrives at the following equation for = n(§):

a1§ + bl’I]
()
azf + bz’r]
On dividing the numerator and denominator of the argument of f by £, one obtains a homogeneous equation
whose right-hand side is dependent on the ratio 1/£ only:

o ay + bl77/ 6
= f(az+bz77/§)'
» Generalized homogeneous equation.

1°. A generalized homogeneous equation remains the same under simultaneous scaling of
the independent and dependent variables in accordance with the rule z — ax, y — oy,
where av#0 is an arbitrary constant and k is some number. Such equations can be represented
in the form

Yy = 2" flya™).
The substitution w = ya " brings a generalized homogeneous equation to a separable
equation, zu), = f(u) - ku.

Example. Consider the equation
yh = az’y* + by’ (M11.1.2.1)

Let us perform the transformation = = aZ, y = o*§ and then multiply the resulting equation by o' to
obtain
7e = ac®* V5" + b (M11.1.2.2)

Itis apparent that if £ = —1, the transformed equation (M11.1.2.2) is the same as the original one, up to notation.
This means that equation (M11.1.2.1) is generalized homogeneous of degree k =—1. Therefore, the substitution
u = xy brings it to a separable equation: zu/, = au* + bu* + u.

2°. Alternatively, a generalized homogeneous equation can be represented as
Y
v = Lramym).

The substitution z = z™y™ leads to a separable equation: zz,, = nz +mzf(z).
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» Linear equation. A first-order linear equation is written as
Yy + [(@)y = g(@). (M11.1.2.3)

The solution is sought in the product form y = uv, where v = v(x) is any function that
satisfies the “truncated” equation v/, + f(z)v = 0 [as v(x) one takes the particular solution
v=et, where F = J f(x)dz]. As aresult, one obtains the following separable equation
for u = u(z): v(z)ul, = g(x). Integrating it yields the general solution:

y(x) = e_F(/ ng(w)dw+C), F:/f(w)dw,

where C is an arbitrary constant.

» Bernoulli equation. A Bernoulli equation has the form
Yo+ fo)y = g@)y®,  a=#0, L (M11.1.2.4)

(For a =0 and a = 1, it is a linear equation; see above.) The substitution z = 4!~ brings it
to a linear equation, 2/, + (1 —a)f(x)z = (1 — a)g(x). With this in view, one can obtain the
general integral:

yr=Cef +(1-a) / e"g(x)ydr, where F=(1-a) / f@)dz.

» Equation with exponential nonlinearity reducible to a linear equation. Consider
the equation

yh = f(@)e + g(o).

The substitution u = e leads to a linear equation: u!, = -Ag(x)u — Af(x).

M11.1.3. Exact Differential Equations. Integrating Factor

» Exact differential equations. An exact differential equation has the form

0 0
f(x,y)dz + g(x,y)dy =0, where of =99 (M11.1.3.1)
oy Oz
The left-hand side of the equation is the total differential of a function of two variables
U(x,y). In this case, the general integral is given by

Uz,y)=C,
where C is an arbitrary constant and the function U is determined from the system
ou ou
—=f, —=gq.
ox oy

Integrating the first equation yields U = [ f(z,y) dz+U(y) (while integrating, the variable y
is treated as a parameter). On substituting this expression into the second equation, one
identifies the function ¥ (and hence, U). As a result, the general integral of an exact
differential equation can be represented in the form

/;: f(é,y)d5+/yi’g(xo,n)dn=0, (M11.1.3.2)

where zg and yp are any numbers (from the domain of definition of the equation).
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TABLE MI11.1
An integrating factor p = p(z, y) for some types of ordinary differential equations f dx + g dy = 0, where
f = f(x,y)and g = g(x,y). The subscripts  and y indicate the corresponding partial derivatives.

No. Conditions for f and g Integrating factor Remarks
- - -1 rf-yg#0;
! F=yelay), g = xplzy) M= 2Fve ©(2z) and Y (z) are any functions
_ __ _ 1 f +ig is an analytic function
2 Jo=9u Ju == H= g of the complex variable z + iy
3 fy;gz = p(x) p=exp[[ o(z)dz] o(z) is any function
4 fy}gm =¢(y) = exp[— [ py) dy] ©(y) is any function
5 fg:?w =px+y) p=expl[px)dz], z=x+y ©(z) is any function
6 ﬁ;:i‘} = p(zy) p=exp|f p(z)dz], z=ay ©(z) is any function
7 zzégz;?ﬂ =p(2) p=exp[-[p(z)dz], z=*% ¢(z) is any function
8 iZ:Z’} = o(z® + %) p=exp[1 [ (z)dz], z = z*+y (2) is any function
9 fy =9z = o(@)g - f p=exp|[ @) dx+ [ V@) dy] | @) and(y) are any functions

Example. Consider the equation
(ay” +bx)yl +by+cx™ =0, or (by+cx™)dx+(ay" +bx)dy =0,
defined by the functions f(z,y) = by + cx™ and g(x,y) = ay™ + bx. Computing the derivatives, we have

of 99 of _ g

= =b =Z=b = ="

oy ox dy Oz

Hence the given equation is an exact differential equation. Its solution can be found using formula (M11.1.3.2)
with zo = yo = 0:

Ly”+1 + by + ™ =C.

c
n+1 m+1

» Integrating factor. An integrating factor for the equation

fx,yp)de+ g(z,y)dy =0

is a function p(x,y) # 0 such that the left-hand side of the equation, when multiplied by
w(zx,y), becomes a total differential, and the equation itself becomes an exact differential
equation.

An integrating factor satisfies the first-order partial differential equation,

on L on_ (0 o
o dy \oy 0x)"

which is not generally easier to solve than the original equation.
Table M11.1 lists some special cases where an integrating factor can be found in explicit
form.
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M11.1.4. Riccati Equation
» General Riccati equation. A Riccati equation has the general form

Yo = H@y* + fi@)y + fol@). (M11.1.4.1)

If f, =0, we have a linear equation, and if fy =0, we have a Bernoulli equation (see equation
(M11.1.2.4) for a = 2), whose solutions were given previously. For arbitrary f>, f1, and fo,
the Riccati equation is not integrable by quadrature.

» Use of particular solutions to construct the general solution.

1°. Given a particular solution yg = yo(x) of the Riccati equation (M11.1.4.1), the general
solution can be written as

-1
y = yo(x) + P(x) [C - / O(x) fr(x) daz} , (M11.1.4.2)
where C is an arbitrary constant and
B(x) = exp{ [ 2H@yo@) + fi(a) d:c}. (M11.1.4.3)

To the particular solution yy(z) there corresponds C' = co.

2°. Let y; = yi1(x) and y, = yu(x) be two different particular solutions of equation
(M11.1.4.1). Then the general solution can be expressed as

_Cy+ U@y
C+U(x)

To the particular solution y;(x), there corresponds C' = oo; and to y,(x), there corresponds
C=0.
3°. Let y; = y1(x), y2 = y2(x), and y3 = y3(x) be three distinct particular solutions of
equation (M11.1.4.1). Then the general solution can be found without quadrature:

Y= YsmYL o

Y=-9193-1

. where  U(x)=exp| [ falys ~ o) da].

» Some transformations.

1°. The transformation (i, 1, 1, ¥3, and 14 are arbitrary functions)

_ Ya4(§u +P3(E)
Y= 5 @u+ 1)

reduces the Riccati equation (M11.1.4.1) to a Riccati equation for v = u(§).

x = (),

2°. Let yo = yo(x) be a particular solution of equation (M11.1.4.1). Then the substitution
y =yo + 1/w leads to a first-order linear equation for w = w(z):

wy, + [2f2@)yo(@) + fi(@)]w + fo(x) = 0.
For solution of linear equations, see Subsection M11.1.2.

» Reduction of the Riccati equation to a second-order linear equation. The substitu-
tion

u(x) = exp (—/ fy dx)
reduces the general Riccati equation (M11.1.4.1) to a second-order linear equation:
foully = (£, + fifa]uly + fofsu =0,

which often may be easier to solve than the original Riccati equation.
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M11.1.5. Equations Not Solved for the Derivative

» Method of “integration by differentiation.” In the general case, a first-order equation
not solved for the derivative,
F(z,y,y,) =0, (M11.1.5.1)

can be rewritten in the equivalent form
F(z,y,t)=0, t=1. (M11.1.5.2)

We look for a solution in parametric form: x = x(t), y = y(t). In accordance with the first
relation in (M11.1.5.2), the differential of F' is given by

F,dx + F,dy+ Fydt =0. (M11.1.5.3)

Using the relation dy = t dx, we eliminate successively dy and dx from (M11.1.5.3). Asa
result, we obtain the system of two first-order ordinary differential equations:

d F, d tF,
e W W (M11.1.5.4)
dt F, +1tF, dt F, +1tF,

By finding a solution of this system, one thereby obtains a solution of the original equa-
tion (M11.1.5.1) in parametric form, x = x(t), y = y(t).

Remark 1. The application of the above method may lead to loss of individual solutions (satisfying the
condition F;, + tFy = 0); this issue requires further investigation.

Remark 2. One of the differential equations of system (M11.1.5.4) can be replaced by the algebraic
equation F'(x,y,t) = 0; see equation (M11.1.5.2). This technique is used further for solving some equations.

» Equations of the form y = f(y.). This equation is a special case of equation
(M11.1.5.1), with F(z,y,t) = y — f(t). The method of “integration by differentiation”

yields
dz _ f'®)
a — t
Note the original equation is used here instead of the second equation in system (M11.1.5.4);
this is convenient because the first equation in (M11.1.5.4) does not depend on y explicitly.

Integrating the first equation in (M11.1.5.5) yields the solution in parametric form,

y=f@. (M11.1.5.5)

m:/ ft(t) dt+C, y=fQ@).

» Equations of the form x = f(y.). This equation is a special case of equation
(M11.1.5.1), with F(x,y,t) = z — f(t). The method of “integration by differentiation”
yields
dy /

x = f), n =tf'(®). (M11.1.5.6)
Note the original equation is used here instead of the first equation in system (M11.1.5.4);
this is convenient because the second equation in (M11.1.5.4) does not depend on x explic-
itly.

Integrating the second equation in (M11.1.5.6) yields the solution in parametric form,

r=f1t), y= /tf’(t)dt+C‘.
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» Clairaut’s equation y = xy’, + f(y,). Clairaut’s equation is a special case of
equation (M11.1.5.1), with F'(z,y,t) = y — xt — f(t). It can be rewritten as

y=at+ ft), t=y,. (M11.1.5.7)

This equation corresponds to the degenerate case I, +t [, =0, where system (M11.1.5.4)
cannot be obtained. One should proceed in the following way: the first relation in
(M11.1.5.7) gives dy = x dt + t dx + f'(t) dt; performing the substitution dy = ¢ dx, which
follows from the second relation in (M11.1.5.7), one obtains

[z + f'(®)]dt =0.
This equation splits into dt = 0 and z + f'(t) = 0. The solution of the first equation is
obvious: t = C'; it gives the general solution of Clairaut’s equation,

y=Cz+ f(C), (M11.1.5.8)

which is a family of straight lines. The second equation generates a solution in parametric
form,

z==f't), y=-tf'®O+f@), (M11.1.5.9)
which is a singular solution and is the envelope of the family of lines (M11.1.5.8).

Remark. There are also “compound” solutions of Clairaut’s equation; they consist of part of the curve
(M11.1.5.9) joined with the tangents at finite points; these tangents are defined by formula (M11.1.5.8).

» Lagrange’s equation y = xf(y.) + g(y.,). Lagrange’s equation is a special case
of equation (M11.1.5.1), with F'(z,y,t) =y —zf(t) — g(t). In the special case f(t) =1, it
coincides with Clairaut’s equation.

The method of “integration by differentiation” yields

dx N f'@®) Q)
—_ xr = s
a  f®O-t t-f@)
Here, the original equation is used instead of the second equation in system (M11.1.5.4);
this is convenient because the first equation in (M11.1.5.4) does not depend on y explicitly.
The first equation of system (M11.1.5.10) is linear and can easily be integrated to obtain
a solution to Lagrange’s equation in parametric form.

y=axf(t)+gd). (M11.1.5.10)

Remark. With the above method, solutions of the form y = txx + g(tx), where the ¢y are roots of the
equation f(t)—t =0, may be lost. These solutions can be particular or singular solutions of Lagrange’s equation.

M11.1.6. Approximate Analytic Methods for Solution of Equations

» Method of successive approximations (Picard’s method). The method of successive
approximations consists of two stages. At the first stage, the Cauchy problem

yh = f(x,y) (equation), M11.1.6.1)
y(x0) = Yo (initial condition) (M11.1.6.2)
is reduced to the equivalent integral equation:
€T
y(z) = yo + /z fGy( . (M11.1.6.3)

Then a solution of equation (M11.1.6.3) is sought using the formula of successive approxi-
mations:

v @ =go+ [ fEya®) i n=0,12, .

The initial approximation yg(z) can be chosen arbitrarily; the simplest way is to take
yo(x) = yo. The iterative process converges as n — oo, provided the conditions of the
theorems in Subsection M11.1.1 are satisfied.
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» Method of Taylor series expansion in the independent variable. A solution of the
Cauchy problem (M11.1.6.1)-(M11.1.6.2) can be sought in the form of the Taylor series in
powers of (x — xg):

ym( o)(x o LI (M11.1.6.4)

y(x) = y(xo) + Y (x0)(x — x0) +
The first term y(xg) in solution (M11.1.6.4) is prescrlbed by the initial condition (M11.1.6.2).
The values of the derivatives of y(x) at x = xg are determined from equation (M11.1.6.1)
and its derivative equations (obtained by successive differentiation), taking into account the
initial condition (M11.1.6.2). In particular, setting x = xg in (M11.1.6.1) and substitut-
ing (M11.1.6.2), one obtains the value of the first derivative:

yo(x0) = f(@0, Yo)- (M11.1.6.5)
Further, differentiating equation (M11.1.6.1) yields
Ynw = fo(@,y) + [y, Y)Y, (M11.1.6.6)

On substituting = = xg, as well as the initial condition (M11.1.6.2) and the first deriva-
tive (M11.1.6.5), into the right-hand side of this equation, one calculates the value of the
second derivative:

Yo (20) = fa(0,y0) + f (0, Y0) fy(z0, Yo)-

Likewise, one can determine the subsequent derivatives of y at x = x.
Solution (M11.1.6.4) obtained by this method can normally be used in only some
sufficiently small neighborhood of the point x = x.

Example. Consider the Cauchy problem for the equation
y =e¥ +cosx

with the initial condition y(0) = 0.

Since o = 0, we will be constructing a series in powers of x. It follows from the equation that 1, (0) =
e® +cos0 = 2. Differentiating the original equation yields y., = €Yy’ — sinx. Using the initial condition
and the condition Yo (0) = 2 just obtained, we have yM(O) = ¢”x2—sin0 = 2. Similarly, we find that

Yy = evyl +e¥(yl)? — cos x, whence y/. . (0) = ® X2 + €® x 22 — cos 0 = 5.

Substituting the values of the derivatives at z = 0 into series (M11.1.6.4), we obtain the desired series
representation of the solution: y = 2z + z* + %mS +-

M11.1.7. Numerical Integration of Differential Equations

» Method of Euler polygonal lines. Consider the Cauchy problem for the first-order
differential equation

= f(z,y)

with the initial condition y(zg) = 3. Our aim is to construct an approximate solution
y = y(x) of this equation on an interval [xzq, ).
Ty — T0
. We
n
seek approximate values ¥1, 42, - .., Y, Of the solution y(x) at the partition points x1, x;,
s Ty = L.

For a given initial value yo =y(z¢) and a sufficiently small Az, the values of the unknown
function y, = y(z) at the other points xy = xg + kAx are calculated successively by the
formula

Let us split the interval [zg, x,] into n equal segments of length Ax =

Yrel =Yg + f(@r, y) Az (Euler polygonal line),

where £ =0, 1, ..., n—1. The Euler method is a single-step method of the first-order
approximation (with respect to the step Ax).
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» Single-step methods of the second-order approximation. Two single-step methods
for solving the Cauchy problem in the second-order approximation are specified by the
recurrence formulas

Ykl = Yp + f(a:k + %Am, Y + %ka{L')A{L' (first method),
Yk+l = Yk + % [fk + f(®pe1, Yk + kaa:)] Az (second method),
where fr = f(zp,yr); k=0,1, ..., n-1.

» Runge-Kutta method of the fourth-order approximation. This is one of the widely
used methods. The unknown values y;, are successively found by the formulas

Yral = Y+ (f1 +2f2 +2f3+ fa) Az,
where . .
fi=f@g yp),  fo= flag + 70z, yp + 5 f1A),
f3= flar+ 30z, y+ T HAz),  fa=f@g+ Az, y + f302).

Remark 1. All methods described in Subsection M11.1.7 are special cases of the Runge—Kutta method
(a detailed description of this method can be found in the monographs listed at the end of the current chapter).

Remark 2. In practice, calculations are performed on the basis of any of the above recurrence formulas
with two different steps Az, %Az and an arbitrarily chosen small Az. Then one compares the results obtained
at common points. If these results coincide within the given order of accuracy, one assumes that the chosen
step Az ensures the desired accuracy of calculations. Otherwise, the step is halved and the calculations are
performed with the steps %A:c and %Am, after which the results are compared again, etc. (Quite often, one
compares the results of calculations with steps varying by a factor of ten or more.)

M11.2. Second-Order Linear Differential Equations
M11.2.1. Formulas for the General Solution. Some Transformations
» Homogeneous linear equations. Formulas for the general solution.

1°. Consider a second-order homogeneous linear equation in the general form

f@)l, + fi@yl + fo(x)y = 0. (M11.2.1.1)

The trivial solution, y = 0, is a particular solution of the homogeneous linear equation.
Let y1(x), y2(x) be a fundamental system of solutions (nontrivial linearly independent
particular solutions) of equation (M11.2.1.1). Then the general solution is given by

y = Ciyi(@) + Crya (o), (M11.2.1.2)
where C') and (' are arbitrary constants.

2°. Let y; = y1(x) be any nontrivial particular solution of equation (M11.2.1.1). Then its
general solution can be represented as

-F

Y =1 (C’l + / 6—2 dx), where F = / ﬁ dx. M11.2.1.3)
yl f 2

» Wronskian determinant and Liouville’s formula. The Wronskian determinant (or

Wronskian) is defined by

W(I‘)= yl(fﬂ) yZ(x)

yi(@)  yy(r)
where y1(x), y(x) is a fundamental system of solutions of equation (M11.2.1.1).
Liouville’s formula:

= y1(12) — Y2 (Y1)l

W(z) = W(xo) exp [_ REAU) dt} .

) f2 ()
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» Simplest second-order linear equations and their solutions.

1°. The second-order linear equation with constant coefficients
Yo +ay, +by=0 (M11.2.1.4)
has the following fundamental system of solutions:
y1(x) = exp(—%a:z:) smh(% Va 4b), () = exp(—%ax) cosh(% Va ) if a* > 4b;
y1(z) = exp(—3az) sin(3aV4b—a?),  ya(z) = exp(-3ax) cos(3zV4b— ) if a® < 4b;
y1(x) = exp(—%ax), p(x)=x exp(—%ax) if a® = 4b.
Remark. In physics equation (M11.2.1.4) is often called an equation of damped oscillations.

2°. The Euler equation
22y +axy, +by=0 (M11.2.1.5)

is reduced by the change of variable = = ke! (k # 0) to the second-order linear equation
with constant coefficients y;; + (a — 1)y} + by = 0, which is treated in Item 1°.
Equation (M11.2.1.5) has the following fundamental system of solutions:

la la _ .
yi(x) =z 2 A, p() =212 ~H if (1-a)*>4b,

l-a 1-a
yi(x) =lal 2, ya(z) =z 2 In|z| if (1-a)* =4b,

l-a 1-a
yi(@) = 2] 2 sin(uinlal), ya(z) =2l 2 cos(ulnlal) if (1-a)’ <4b,

where = 2[(1-a)* - 4b|'/2.
» Bessel equation and related equations.

1°. The Bessel equation has the form

w i, + ayy + (@ =)y = 0.
It often arises in numerous applications.
Let v be an arbitrary noninteger. Then the general solution of the Bessel equation is
given by
y=C1Jy(z) + LY, (2),

where J,(z) and Y, () are the Bessel functions of the first and second kind:

(- 1)k(96/2)2k+” Y (@) = J(z)cos v — J_ ,,(3:)
E T) =
k"I‘(y+k‘+1) v sin v
Inthecase v =n+ %, where n =0, 1, 2, ..., the Bessel functions are expressed in terms

of elementary functions:

>

2 17 1 d\nsinz 2 1 d \ncoszx
J"*%(w)z ;wmz(xdx) x ‘"‘%(w): ;w ( >

Y@ =)™, (@),

T dx x

The Bessel functions are described in Section M13.6 in detail.
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TABLE M11.2
Some second-order linear equations whose solutions are expressed
in terms of Bessel functions and modified Bessel functions.

Equation General solution Remarks

Y= Cl\/_Jl <§ )+Cz\/_Y1 (@mﬁ if a<0
Yo —axFy =0 q=5k+2)

y=Clﬂ1i<\§ )+szK%<£ ) if a>0

Yio +ay, + bz +y=0 | y=e"2/E [Cljl/s(%\/gf3/2) +ChY5(3V0E7)] §=x+4c4—ba

y=a2 [Ci,(2Vbe) + Gy, (Ve )] if be>0

TYyy + ayy +by =0 - v=1|1-a|
y=z 2 [C1],(2y/bxl) + C2K, (24/Ibxl)] if bz <0
. ) y= 2 [C1J, (Vbz) + CoY, (Vi )] if b>0 o
TYpe + Ay, +bxy =0 e v=3ll-al

y=22 [, (VIblz) + 2K, (VIblz)] if b<0

1-a 2/b k+1 2W/b kil [1-ql
et ayy +b 0 =z 2 y g 2 =
oo+ ot + bay = y=a2 |G (k:+ s )+ Czy<k+1 )| v
The Bessel
Ty + wyy + (@ -1 )y =0 y=Cidu(@) + CrYo(2) e(;uagis‘:
The modified
eyl +xyl — P+ )y =0 y=C11(x)+ C, K, (x) Bessel
equation
Yy +ae y =0 y = C1Jo(2) + C2Yo(2) 2= 27\/\/56“/2
Yis +(ae” ~byy =0 y=Cihy5(2vae’?) + oY, 5 (2vae’?)

Yl +ayl + (ber + oy =0 |y=e 2/ [C1dy (2)\’1 bem/z) + (Y, (2)\’1 bem/z)] v= %\/a2 —4c

2°. The modified Bessel equation has the form

wzygx + xym (ac2 + Vz)y =0.

It can be reduced to the Bessel equation by means of the substitution z = iz (i = —1).
The general solution of the modified Bessel equation is given by

y= leu(w) + CZKV(x)’
where [,,(x) and K, (x) are modified Bessel functions of the first and second kind:

Z (z/2)** Ko@) = 7TI_,,(36) 1,(x)
k!

F'v+k+1)° sin T

The modified Bessel functions are described in Subsection M13.7 in detail.

3°. Table M11.2. lists some second-order linear equations whose solutions are expressed
in terms of Bessel functions and modified Bessel functions.
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» Nonhomogeneous linear equations. The existence theorem. A second-order nonho-
mogeneous linear equation has the form

H@yl, + fi@)y, + fox)y = g(@). (M11.2.1.6)

THEOREM (EXISTENCE AND UNIQUENESS). On an open interval a <x <b, let the functions
f2, f1, fo, and g be continuous and f, # 0. Also let

y(wo) = A, y,(z0)=B

be arbitrary initial conditions, where x is any point such that a < x¢ < b, and A and B are
arbitrary prescribed numbers. Then a solution of equation (M11.2.1.6) exists and is unique.
This solution is defined for all x € (a, b).

» Formulas for the general solution.

1°. The general solution of the nonhomogeneous linear equation (M11.2.1.6) is the sum
of the general solution of the corresponding homogeneous linear equation (M11.2.1.1) and
any particular solution of the nonhomogeneous equation (M11.2.1.6).

2°. Let y1 = y1(x), y2 = y2(x) be a fundamental system of solutions of the correspond-
ing homogeneous equation, with ¢ = 0. Then the general solution of nonhomogeneous
equation (M11.2.1.6) can be represented as

g dx g dx

- — -, M11.2.1.7
yleW Y1 yszW ( )

y=Ciy1 + Capp + 12
where W = y1(y2)., — y2(y1), is the Wronskian determinant.

Remark. Given a nontrivial particular solution y; = yi(z) of the homogeneous equation (with g = 0), a
second particular solution ¥ = y»(x) of the homogeneous equation can be calculated from formula (M11.2.1.3).
Then the general solution of equation (M11.2.1.6) can be constructed by (M11.2.1.3) and (M11.2.1.7).

3°. Let g1 and g, be respective solutions of the nonhomogeneous differential equations
L[y1] = g1(x) and L [y2] = g2(x), which have the same left-hand side but different right-
hand sides, where L [y] is the left-hand side of equation (M11.2.1.6). Then the function
Y = Y1 + ¥ is also a solution of the equation L [§] = g1(x) + g2(T).

M11.2.2. Representation of Solutions as a Series in the Independent
Variable

» Equation coefficients are representable in power series form. Let us consider a
homogeneous linear differential equation of the general form

Yo + f(@)Y, + g(x)y = 0. (M11.2.2.1)

Assume that the functions f(z) and g(x) are representable, in a neighborhood of a point
T = x, in power series form,

f@) =) An@-zo)",  g@) =) Bnlz—x0)", (M11.2.2.2)

n=0 n=0
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on the interval |z — z¢| < R, where R stands for the minimum radius of convergence of the
two series in (M11.2.2.2). In this case, the point x = x is referred to as an ordinary point,
and equation (M11.2.2.1) possesses two linearly independent solutions of the form

@)=Y an@—10)", @)=Y bu(z—x0)". (M11.2.2.3)

n=0 n=0

The coefficients a,, and b, are determined by substituting the series (M11.2.2.2) and
(M11.2.2.3) into equation (M11.2.2.1) followed by matching the coefficients of like powers
of (x —xp).*

» Equation coefficients have poles at some point. Assume that the functions f(z) and
g(x) are representable, in a neighborhood of a point x = xg, in the form

f@)=>" An@-z0)", g@)=»  Bplz—z0)" (M11.2.2.4)

n=—1 n=-2

on the interval |z —xo| < R. In this case, the point x = x is referred to as a regular singular
point. Let A1 and )\, be roots of the quadratic equation

N+ (A1-DA\+ B, =0.

Depending on the values of \; and )\, three cases are possible. These cases are considered
below.

1. If Ay # Xy and A\; — A\, is not an integer, equation (M11.2.2.1) has two linearly
independent solutions of the form

@ =le—aol [1+ Y an(@-20)"],

" (M11.2.2.5)
po@) =l =20 [1+ 3 ba(e —0)"].

n=1

2. If Ay = A = A, equation (M11.2.2.1) possesses two linearly independent solutions:

p@) =l 2o |1+ Y an(@—20)"],
n=1

ya(a) = yr(@) Infa — zol + | =z Y _ by — z0)"™.

n=0

3. If \; = XAy + N, where N is a positive integer, equation (M11.2.2.1) has two linearly
independent solutions of the form

@) =l a0l [1+ Y an(@-20)"],

n=1
(o]
ya(@) = kyy(@) In f — zol + | — 2o D bl — 20)",
n=0

where k is a constant to be determined (it may be equal to zero).

* Prior to that, the terms containing the same powers (x — :co)k, k=0,1,..., should be collected.
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To construct the solution in each of the three cases, the following procedure should
be performed: substitute the above expressions of y; (resp., ¥) into the original equa-
tion (M11.2.2.1), taking into account (M11.2.2.4), and equate the coefficients of (z — z¢)"
and (resp., (x — xg)" In|z — x¢|) for like values of n to obtain recurrence relations for the
unknown coefficients. The desired solution can be found from these recurrence relations.

M11.2.3. Boundary Value Problems
» First, second, third, and mixed boundary value problems (x{ <x < x3). We consider
the second-order nonhomogeneous linear differential equation

Yoo + [(@)Y, + g(x)y = W(x). (M11.2.3.1)

1°. The first boundary value problem: Find a solution of equation (M11.2.3.1) satisfying
the boundary conditions

y=a; at x=ux, y=ap, at x=ux;. (M11.2.3.2)
(The values of the unknown are prescribed at two distinct points z; and z;.)

2°. The second boundary value problem: Find a solution of equation (M11.2.3.1) satisfying
the boundary conditions

y; =qa; at x=ux, y; =a, at x=ux. (M11.2.3.3)
(The values of the derivative of the unknown are prescribed at two distinct points 1 and ;.)

3°. The third boundary value problem: Find a solution of equation (M11.2.3.1) satisfying
the boundary conditions
"+ky=a; at x =z,
Yo T Y = ! (M11.2.3.4)
Yy +thky=ay at x=x;.
4°. The mixed boundary value problem: Find a solution of equation (M11.2.3.1) satisfying
the boundary conditions

y=a; at x=ux1, y;, =ay at x=ux). M11.2.3.5)

(The unknown is prescribed at one point, and its derivative at another point.)
Conditions (M11.2.3.2), (M11.2.3.3), (M11.2.3.4), and (M11.2.3.5) are called homoge-
neous if a1 = ap = 0.

» Simplification of boundary conditions. The self-adjoint form of equations.

1°. Nonhomogeneous boundary conditions can be reduced to homogeneous ones by the
change of variable z = Ayx>+ Az + Ag+y (the constants A,, Ay, and Ay are selected using
the method of undetermined coefficients). In particular, the nonhomogeneous boundary
conditions of the first kind (M11.2.3.2) can be reduced to homogeneous boundary conditions
by the linear change of variable

aj) — aq

z=yY- (r—x1)—ay.

Ty — X
2°. On multiplying by p(x) = exp [ / f(x) dm], one reduces equation (M11.2.3.1) to the
self-adjoint form:
[p(@)y, 1, + a@)y = r(z). (M11.2.3.6)

Without loss of generality, we can further consider equation (M11.2.3.6) instead of
(M11.2.3.1). We assume that the functions p, p/,, ¢, and r are continuous on the interval
r1 £ x £ 7, and p is positive.
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» Green’s function. Linear problems for nonhomogeneous equations. The Green’s
function of the first boundary value problem for equation (M11.2.3.6) with homogeneous
boundary conditions (M11.2.3.2) is a function of two variables G(z, &) that satisfies the
following conditions:

1°. G(x, &) is continuous in z for fixed &, with 1 <z < xp and x1 < £ < x5.

2°. G(z,€) is a solution of the homogeneous equation (M11.2.3.6), with r = 0, for all
1 < x < 1 exclusive of the point x = £.

3°. G(x,§) satisfies the homogeneous boundary conditions G(x1, &) = G(x2, ) = 0.
4°. The derivative G,(z, €) has a jump of 1/p(€) at the point x = £, that is,

1

G (x, = —.
o(@.9) TG

- Gg(l’,f)‘

z—E, r>€

For the second, third, and mixed boundary value problems, the Green’s function is
defined likewise except that in 3° one adopts, respectively, the homogeneous boundary
conditions (M11.2.3.3), (M11.2.3.4), and (M11.2.3.5), with a; = ap = 0.

The solution of the nonhomogeneous equation (M11.2.3.6) subject to appropriate ho-
mogeneous boundary conditions is expressed in terms of the Green’s function as follows:*

y@) = [ G, Or©) de.

» Representation of the Green’s function in terms of particular solutions. We consider
the first boundary value problem. Let y;(x) and y,(x) be linearly independent particular
solutions of the homogeneous equation (M11.2.3.6), with r = 0, that satisfy the conditions

y1(x1) =0, ya(xp)=0.

(Each of the solutions satisfies one of the homogeneous boundary conditions.)
The Green’s function is expressed in terms of solutions of the homogeneous equation

as follows: @ E)
Y1(2)y2
G( B m for Il <zx< é.,
z,8) = (M11.2.3.7)
y1(§)y2(x) for €<z <z
PEOWE) e

where W (x) = y1(x)y; () -y, (2)y2(x) is the Wronskian determinant.

Remark. Formula (M11.2.3.7) can also be used to construct the Green’s functions for the second, third,
and mixed boundary value problems. To this end, one should find two linearly independent solutions, yi(x)
and y2(zx), of the homogeneous equation; the former satisfies the corresponding homogeneous boundary
condition at z = x1 and the latter satisfies the one at x = x>.

M11.2.4. Eigenvalue Problems

» Sturm-Liouville problem. Consider the second-order homogeneous linear differential
equation
[p(@)y, 1), + Ap(x) — g(x)]y = 0 (M11.2.4.1)

* The homogeneous boundary value problem, with r(x) = 0 and a1 = a2 = 0, is assumed to have only the
trivial solution.
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subject to linear boundary conditions of the general form

"+kiy=0 at x=ux,
e (M11.2.4.2)
$2Yyr +ky=0 at z=ux;.

It is assumed that the functions p, p,, p, and ¢ are continuous, and p and p are positive on
an interval x1 < x < x;. Itis also assumed that |s;| + |k1| > 0 and |sy| + k2| > O.

The Sturm—Liouville problem: Find the values \,, of the parameter A at which problem
(M11.2.4.1)-(M11.2.4.2) has a nontrivial solution. Such )\,, are called eigenvalues and
the corresponding solutions y,, = y,(x) are called eigenfunctions of the Sturm-Liouville
problem (M11.2.4.1)-(M11.2.4.2).

» General properties of the Sturm-Liouville problem (M11.2.4.1)-(M11.2.4.2).

1°. There are infinitely (countably) many eigenvalues. All eigenvalues can be ordered so
that A\; < Ay < A3 <---. Moreover, )\, — 0o as n — oo; hence, there can only be a finite
number of negative eigenvalues.

2°. The eigenfunctions are defined up to a constant factor. Each eigenfunction y,(x) has
precisely n — 1 zeros on the open interval (z1, z7).

3°. Any two eigenfunctions ¥, (x) and y.,,(x), n # m, are orthogonal with weight p(z) on
the interval 1 < x < x:

/.xz P@)Yn(@)ym(x)de =0 if n#m.

4°. An arbitrary function F'(x) that has a continuous derivative and satisfies the boundary
conditions of the Sturm-Liouville problem can be decomposed into an absolutely and
uniformly convergent series in the eigenfunctions

F(z) =) Fuya(),

n=1

where the Fourier coefficients F;, of F'(x) are calculated by

1 3 2

5°. If the conditions
q(x) > 0, Slkl < 0, Szkz >0 (M11.2.4.3)

hold true, there are no negative eigenvalues. If ¢ = 0 and k; = k = 0, the least eigenvalue
is A; =0, to which there corresponds an eigenfunction y; = const. In the other cases where
conditions (M11.2.4.3) are satisfied, all eigenvalues are positive.

6°. The following asymptotic formula is valid for eigenvalues as n — oc:

win? x| p(x)
Ap = A +0(1), A= . \/mdx. M11.2.4.4)

Remark 1. Equation (M11.2.4.1) can be reduced to the case where p(x) = 1 and p(z) = 1 by the change

of variables
c=/ ‘/Z% dz,  u(C) = [p@)p@)]*y@).

In this case, the boundary conditions are transformed to boundary conditions of a similar form.
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TABLE M11.3
Example estimates of the first eigenvalue A; in Sturm-Liouville problems with boundary conditions of the first
kind y(0) = y(1) = 0 obtained using the Rayleigh—Ritz principle [the right-hand side of relation (M11.2.4.6)].

Equation Test function A1, approximate A1, exact
Yo+ M1+ 22y =0 z =sinmx 15.337 15.0
Yie + A4 -2y =0 z=sinmx 135.317 134.837
" ~ _ z =sinTw 0.54105 72 0.54032 7*
Yzz + Al +sinma)y =0 z=a(l-2) 0.55204 7> 0.54032 72
V1+zyl) + y=0 z =sinmx 11.9956 11.8985

Remark 2. The second-order linear equation

022z + 1@y + A+ o()]y =0

can be represented in the form of equation (M11.2.4.1) where p(x), p(z), and g(z) are given by

" i) " i) d:c], q(x)=_<ﬂ0(£v) . [ @ }

sor=oo] [ £ ], pwre L oo ol [ £
wa(x) ’ pa(x) wa(x) wa(x) wa(x)

» Problems with boundary conditions of the first kind. Let us note some special
properties of the Sturm—Liouville problem that is the first boundary value problem for
equation (M11.2.4.1) with the boundary conditions

y=0 at =z =ux, y=0 at x=ux. (M11.2.4.5)

1°. For n — oo, the asymptotic relation (M11.2.4.4) can be used to estimate the eigen-
values A,,. In this case, the asymptotic formula

Yn() 4 4 [m v [ p(x) } 1 n [p@)
= - -7 _ A = 7
I [Azpm)p(xJ sin| 5/, \ @ +0(5)): A o ™

holds true for the eigenfunctions y,,(x).

2°. If ¢ = 0, the following upper estimate holds for the least eigenvalue (Rayleigh—Ritz
principle):

| @) + a@)2?] da

A < = , M11.2.4.6)
/ p(a:)z2 dr
)

where z = z(z) is any twice differentiable function that satisfies the conditions z(x; )= z(x2) =
0. The equality in (M11.2.4.6) is attained if z = y;(z), where y;(x) is the eigenfunction
m(x—1x1) ]

corresponding to the eigenvalue \;. One can take z = (z—x1)(xy—x) or z = sin [
T — I

in (M11.2.4.6) to obtain specific estimates.

Itis significant to note that the left-hand side of (M11.2.4.6) usually gives a fairly precise
estimate of the first eigenvalue (see Table M11.3).

3°. The extension of the interval [z, ;] results in decreasing the eigenvalues.
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4°. Let the inequalities

0 < Pmin € P(®) < Pmaxs 0 < pmin € P(T) < Pmaxs 0 < Gmin < ¢(T) < Gmax
be satisfied. Then the following bilateral estimates hold:

2,2 2,2
Pmin TN Gmin <\ < Pmax TN Gmax
<A\, <

Pmax (T2 —21)*  Pmax Pmin (£2—21)>  Pmin '

5°. In engineering calculations for eigenvalues, the approximate formula

2n? 1 z q(x) x| p(x)
Ay = de, A= 220 M11.2.4.7
AT T L. o) L. Vop@) “ ( )

may be quite useful. This formula provides an exact result if p(x)p(x) = const and
q(x)/p(x) = const (in particular, for constant equation coefficients, p = pg, ¢ = qo, and
p = po) and gives a correct asymptotic behavior of (M11.2.4.4) for any p(x), q(x), and p(x).
In addition, relation (M11.2.4.7) gives two correct leading asymptotic terms as n — oo if
p(x) = const and p(x) = const [and also if p(z)p(x) = const].

6°. Suppose that p(z) = p(x) = 1 and the function g(x) has a continuous derivative. The
following asymptotic relations hold for eigenvalues A,, and eigenfunctions ¥, (x) as n — oc:

™ 1 1
V= +EQ(UC1,$2)+O(¥),

Xy — 1
o) = sin T Q. 0) + (- 2)Qan, )] os T T 4 o),
€Ty — T ™ Ty — T n
where
Q(u,v) = % A " q(x) dz. (M11.2.4.8)

7°. Let us consider the eigenvalue problem for the equation with a small parameter
Yoo + A +eq@)]y=0 (¢ —0)
subject to the boundary conditions (M11.2.4.5) with 1 = 0 and x; = 1. We assume that

q(x) = q(=2).
This problem has the following eigenvalues and eigenfunctions:

2 A?
15
An = 7T2n2 —EAnn + - E nk
T
k#

1
e + 0%, Ay = 2/0 q(x) sin(wnz) sin(wkx) dx;

. \/E Ank . 2
Yn(x) = V2 sin(rnz) — E? ; o sin(mkx) + O(e?).

Here, the summation is carried out over k from 1 to co. The next term in the expansion
of y,, can be found in Nayfeh (1973).
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M11.3. Second-Order Nonlinear Differential Equations
M11.3.1. Form of the General Solution. Cauchy Problem

» Equations solved for the derivative. General solution. A second-order ordinary
differential equation solved for the highest derivative has the form

yr = f@,y,yh). (M11.3.1.1)

The general solution of this equation depends on two arbitrary constants, C; and C,. In
some cases, the general solution can be written in explicit form, y = (z, C1, C>), but more
often implicit or parametric forms of the general solution are encountered.

» Cauchy problem. The existence and uniqueness theorem. Cauchy problem: Find a
solution of equation (M11.3.1.1) satisfying the initial conditions

y(@o) = Yo, Yul@o) = y1. (M11.3.1.2)

(At a point z = xg, the value of the unknown function, 1y, and its derivative, ¥y, are
prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Let f(x,y, z) be a continuous function in all its
arguments in a neighborhood of a point (z, Yo, y1) and let f have bounded partial derivatives
fy and f in this neighborhood, or the Lipschitz condition is satisfied: | f(x,y, 2)-f(z, §, 2)|<
A (|y—g|+|z—2|) , where A is some positive number. Then a solution of equation (M11.3.1.1)
satisfying the initial conditions (M11.3.1.2) exists and is unique.

M11.3.2. Equations Admitting Reduction of Order

» Equations not containing y explicitly. In the general case, a second-order equation
that does not contain y explicitly has the form

F(z,y.,yr.)=0. (M11.3.2.1)

Such equations remain unchanged under an arbitrary translation of the dependent variable:
y — y + const. The substitution y/, = z(x), y., = 2.(z) brings (M11.3.2.1) to a first-order
equation: F(z, z,2,) = 0.

» Equations not containing x explicitly (autonomous equations). In the general case,
a second-order equation that does not contain x explicitly has the form

F(y, YY) = 0. (M11.3.2.2)

Such equations remain unchanged under an arbitrary translation of the independent vari-
able: x — x + const. Using the substitution y/, = w(y), where y plays the role of the
independent variable, and taking into account the relations y/. = w/, = w!y, = w!w, one

Yy Yy
can reduce (M11.3.2.2) to a first-order equation: F'(y, w, ww;) =0.

Example 1. Consider the autonomous equation

Yo = F(Y),
which often arises in the theory of heat and mass transfer and combustion. The change of variable y,, =w(y) leads
to a separable first-order equation: wwy, = f(y). Integrating yields w? = 2F(y) + C, where F(y) = J f@)dy.
Solving for w and returning to the original variable, we obtain the separable equation ¥, = £1/2F(y) + C;. Its
general solution is expressed as

. dy _ N *
/ W-im+6&, where F(y)—/f(y)dy.

Remark. The equation 32/, = f(y+ ax’ +bx +¢) is reduced by the change of variable u = y + ax® + bz +c
to an autonomous equation, ul, = f(u) + 2a.
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» Equations of the form F(ax + by, y’,,y" ) = 0. Such equations are invariant under
simultaneous translations of the independent and dependent variables in accordance with
the rule x — x + bc, y — y — ac, where c is an arbitrary constant.

For b = 0, see equation (M11.3.2.1). For b # 0, the substitution bw = ax + by leads to
the autonomous equation, F(bw, w), —a/b, w!,) = 0, that does not contain x explicitly.

» Homogeneous equations.

1°. The equations homogeneous in the independent variable remain unchanged under
scaling of the independent variable, x — «x, where « is an arbitrary nonzero number. In
the general case, such equations can be written in the form

F(y,xzyl, z*y" ) =0. (M11.3.2.3)

The substitution 2(y) = xy;, leads to a first-order equation, F'(y, 2, 2z, — z) = 0.

2°. The equations homogeneous in the dependent variable remain unchanged under scaling
of the variable sought, y — ay, where « is an arbitrary nonzero number. In the general
case, such equations can be written in the form

F(, Yy /Ys Yu/y) = 0. (M11.3.2.4)

The substitution z(x) = 3/, /y leads to a first-order equation, F'(z, 2, 2., + 2%) = 0.

3°. The equations homogeneous in both variables are invariant under simultaneous scaling
(dilatation) of the independent and dependent variables, + — ax and y — ay, where « is
an arbitrary nonzero number. In the general case, such equations can be written in the form

F(y/x,y,, vy, = 0. (M11.3.2.5)
The transformation ¢ = Inlz|, w = y/x leads to the autonomous equation,
F(w, w; + w, w}, + w}) = 0, that does not contain ¢ explicitly.
Example 2. The homogeneous equation
TYre = Yo = f(y/)

is reduced by the transformation ¢ = In|z|, w = y/z to the autonomous form: wi; = f(w) + w. For solution of
this equation, see Example 1 above (the notation of the right-hand side has to be changed there).

» Generalized homogeneous equations.

1°. The generalized homogeneous equations remain unchanged under simultaneous scaling
of the independent and dependent variables in accordance with the rule  — ax and y — o* vy,
where « is an arbitrary nonzero number and k is some number. Such equations can be
written in the form

F(a ™y, a1y > Fy )y =0, (M11.3.2.6)

The transformation ¢ = Inx, w = x*ky leads to the autonomous equation,
F(w, w; + kw, wj, + 2k — Dwj + k(k — Dw) =0,

that does not contain ¢ explicitly.
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2°. The most general form of representation of generalized homogeneous equations is as
follows:

F@™y™, xyl )y, e /y) = 0. (M11.3.2.7)

The transformation z = 2"y, u = xy/, /y reduces this equation to the first-order equation
]:(z, u, z(mu + n)u'z —u+ uz) =0.

Remark. For m # 0, equation (M11.3.2.7) is equivalent to equation (M11.3.2.6) in which k = —-n/m. To
the particular values n = 0 and m = 0 there correspond equations (M11.3.2.3) and (M11.3.2.4) homogeneous
in the independent and dependent variables, respectively. For n = —m # 0, we have an equation homogeneous
in both variables, which is equivalent to equation (M11.3.2.5).

» Equations invariant under scaling—translation transformations.

1°. The equations of the form
F(ey, My, e My) =0 (M11.3.2.8)

remain unchanged under simultaneous translation and scaling of variables, * — = + «
and y — By, where 8 = ¢ and « is an arbitrary number. The substitution w = e**y
brings (M11.3.2.8) to the autonomous equation, F(w, w’, — A\w, w’, — 2 w’, + X>w) = 0
that does not contain x explicitly.

2°. The equation

F(XY™ )y, Yot/ Y) = (M11.3.2.9)

is invariant under the simultaneous translation and scaling of variables, x — x + « and

y — By, where 3 = ¢ ™ and « is an arbitrary number. The transformation z = ey,

w =y, /y brings (M11.3.2.9) to a first-order equation: F(z, w, z(nw + Mw, + w ) 0.

3°. The equation
F"eM, ayl, 2y ) =0 (M11.3.2.10)

is invariant under the simultaneous scaling and translation of variables, x — az and

y — y + 3, where o = P and 3 is an arbitrary number. The transformation z = 2"™e*Y,
w = zy’, brings (M11.3.2.10) to a first-order equation: F(z w, z(Aw + n)w!, — w) =0.

» Equations of the form F(xz,zy -y, yww) = 0. The substitution w(z) = zy, -y
leads to a first-order equation: F(z,w,w.,/x) =

M11.3.3. Methods of Regular Series Expansions with Respect to the
Independent Variable

A solution of the Cauchy problem

yre = f@,y, 95, (M11.3.3.1)
y(zo) =y,  Yu(z0) =11 (M11.3.3.2)

can be sought in the form of a Taylor series in powers of the difference (x—xg), specifically:

yxx( ) (z— 960) 4 Jazz0) yxxx( )

X S @=ze) e (MI11.3.3.3)

y(x) = y(xo) + Yy (w0)(x — x0) + —5—

The first two coefficients y(zo) and ¥/, () in solution (M11.3.3.3) are defined by the initial
conditions (M11.3.3.2). The values of the subsequent derivatives of y at the point = = z are
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determined from equation (M11.3.3.1) and its derivative equations (obtained by successive
differentiation of the equation) taking into account the initial conditions (M11.3.3.2). In
particular, setting x = zo in (M11.3.3.1) and substituting (M11.3.3.2), we obtain the value
of the second derivative:

Yra(@0) = f (0, Y0, Y1)- (M11.3.3.4)
Further, differentiating (M11.3.3.1) yields

"

Yoww = Fo(@ U, Ys) + Ful @ ys YU + Fyr (200, Y ) (M11.3.3.5)

On substituting = = xo, the initial conditions (M11.3.3.2), and the expression of vy (o)
of (M11.3.3.4) into the right-hand side of equation (M11.3.3.5), we calculate the value of
the third derivative:

n

Yzza(20) = [2(20, Yo, Y1) + Y1.fy(0, o, y1) + f (@0, Yo, Y1) £y (o, Yo, Y1)-

The subsequent derivatives of the unknown are determined likewise.
The thus obtained solution (M11.3.3.3) can only be used in a small neighborhood of the
point x = xp.

Example. Consider the following Cauchy problem for a second-order nonlinear equation:
Yie = YYe +Y; (M11.3.3.6)
y(0)=y,(0) = L. (M11.3.3.7)

Substituting the initial values of the unknown and its derivative (M11.3.3.7) into equation (M11.3.3.6)
yields the initial value of the second derivative:

Yau(0) = 2. (M11.3.3.8)
Differentiating equation (M11.3.3.6) gives

" "

Yonw = Yla + (Ya) + 37 (M11.3.3.9)

Substituting here the initial values from (M11.3.3.7) and (M11.3.3.8), we obtain the initial condition for the
third derivative:

Yoza(0) = 6. (M11.3.3.10)
Differentiating (M11.3.3.9) followed by substituting (M11.3.3.7), (M11.3.3.8), and (M11.3.3.10), we find that
Yonzn(0) = 24. (M11.3.3.11)

On substituting the initial data (M11.3.3.7), (M11.3.3.8), (M11.3.3.10), and (M11.3.3.11) into (M11.3.3.3), we
arrive at the Taylor series expansion of the solution about z = 0:

y=l+z+at+zx+at+ .. (M11.3.3.12)
This geometric series is convergent only for |x| < 1. In this case, summing up the series (M11.3.3.12) gives the
exact solution of the Cauchy problem (M11.3.3.6)—(M11.3.3.7) of the form y(x) = ﬁ

M11.3.4. Perturbation Methods in Problems with a Small Parameter

» Preliminary remarks. Perturbation methods are widely used in nonlinear mechanics
and theoretical physics for solving problems that are described by differential equations with
a small parameter . The primary purpose of these methods is to obtain an approximate
solution that would be equally suitable at all (small, intermediate, and large) values of the
independent variable as ¢ — 0.

It is further assumed that the order of the equation remains unchanged at € = 0.

In many problems of nonlinear mechanics and theoretical physics, the independent
variable is dimensionless time ¢. Therefore, in this subsection we use the conventional ¢
(0 £t < ), instead of x.
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» Method of regular (direct) expansion in powers of the small parameter. We consider
an equation of general form with a parameter ¢:

yy + f(ty. yp.e) = 0. (M11.3.4.1)

We assume that the function f can be represented as a series in powers of :

Ftyyhe) = e fult.y.up). (M11.3.4.2)

n=0

Solutions of the Cauchy problem and various boundary value problems for equa-
tion (M11.3.4.1) with € — 0 are sought in the form of a power series expansion:

y=>Y_ "yald). (M11.3.4.3)

n=0

One should substitute expression (M11.3.4.3) into equation (M11.3.4.1) taking into account
(M11.3.4.2). Then the functions f;, are expanded into a power series in the small parameter
and the coefficients of like powers of ¢ are collected and equated to zero to obtain a system
of equations for y,,:

Yo + fo(t. yo. yp) =0, (M11.3.4.4)
0 0
yi + F(t,yo. yo)yy + Gt yo. yoyr + fit, yo, yp) =0,  F = O_J;(’) G= 8—‘};’ (M11.3.4.5)

Only the first two equations are written out here. The prime denotes differentiation with
respect to ¢. To obtain the initial (or boundary) conditions for y,,, the expansion (M11.3.4.3)
should be taken into account.

The success in the application of this method is primarily determined by the possibility
of constructing a solution of equation (M11.3.4.4) for the leading term . It is significant to
note that the other terms y,, with n > 1 are governed by linear equations with homogeneous
initial conditions.

Example 1. The Duffing equation
yh+y+ey’ =0 (M11.3.4.6)

with initial conditions
y0) =a, yi(0)=0

describes the motion of a cubic oscillator, i.e., oscillations of a point mass on a nonlinear spring. Here, y is the
deviation of the point mass from the equilibrium and ¢ is dimensionless time.

For ¢ — 0, an approximate solution of the problem is sought in the form of the asymptotic expan-
sion (M11.3.4.3). We substitute (M11.3.4.3) into equation (M11.3.4.6) and initial conditions and expand in
powers of €. On equating the coefficients of like powers of the small parameter to zero, we obtain the following
problems for yo and y:

Yo +90 =0, %0(0) = a, yo(0) = 0;

wyi=-w,  n0=0, yi(©0=0.
The solution of the problem for g is given by

Yo = a cOSt.

Substituting this expression into the equation for ; and taking into account the identity cos® t = % cos 3t+ % cost,
we obtain
yl +y = —%a3(cos 3t +3cost), y1(0)=0, ,(0)=0.
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Integrating yields
Y1 = —%ast sint + 3—12a3(cos 3t —3cost).
Thus the two-term solution of the original problem is given by
y=acost+ea’[-3tsint + -5 (cos 3t —3cos t)] + O(ED).

Remark 1. The term ¢sint causes yi/yo — oo as ¢ — oo. For this reason, the solution obtained is
unsuitable at large times. It can only be used for et < 1; this results from the condition of applicability of the
expansion, yo > €y1.

This circumstance is typical of the method of regular series expansions with respect to the small parameter;
in other words, the expansion becomes unsuitable at large values of the independent variable. Methods that
allow avoiding this difficulty are discussed below.

Remark 2. Growing terms as ¢ — oo, like ¢sint, that narrow down the domain of applicability of
asymptotic expansions are called secular.

» Method of scaled parameters (Lindstedt-Poincaré method). This method is usually
used for finding periodic solutions to equations of the form

Yy + woy = ef (Y, yy), (M11.3.4.7)

where € < 1.
A solutions is sought in the form

t= z(l + Zn: Ekwk>, y(t) = Zn: iy (2). (M11.3.4.8)
k=0 k=0

The constants wy, and functions y(z) are determined; it is assumed that yx.1/yx = O(1).
By choosing appropriate wy,, one removes the secular terms from the solution.
Example 2. Consider the Duffing equation (M11.3.4.6) once again. Following (M11.3.4.8), one performs

the change of variable
t=z(1+ecwi+--)

to obtain
Yl +(L+ew +-- ) (y+ey’) =0. (M11.3.4.9)

The solution is sought in the series form (M11.3.4.8), y = yo(2) + €y1(2) + - - -. Substituting it into equa-
tion (M11.3.4.9) and matching the coefficients of like powers of €, one arrives at the following system of
equations for two leading terms of the series:

Yo +40 =0, (M11.3.4.10)
Y1+ Y1 =~y — 2wy, (M11.3.4.11)

where the prime denotes differentiation with respect to z.
The general solution of equation (M11.3.4.10) is given by

Yo = acos(z + b), (M11.3.4.12)
where a and b are constants of integration. Taking into account (M11.3.4.12) and rearranging terms, we reduce
equation (M11.3.4.11) to

yl +y = —%a3 cos [3(2 + b)] - 2a(%a2 + wl) cos(z + b). (M11.3.4.13)

For w; # —%az, the particular solution of equation (M11.3.4.13) contains a secular term proportional to
zcos(z + b). In this case, the condition of applicability of the expansion, y1/yo = O(1), cannot be satisfied at
sufficiently large z. For this condition to be met, one should set

wi =-3a’. (M11.3.4.14)
In this case, the solution of equation (M11.3.4.13) is given by
y1 = Sa’ cos[3(z +b)]. (M11.3.4.15)

Subsequent terms of the expansion can be found likewise.
With (M11.3.4.12), (M11.3.4.14), and (M11.3.4.15), we obtain a solution of the Duffing equation in the
form
y = acos(wt + b) + 3—125113 cos[3(wt +b)] + oY),

w= [1 - %eaz + 0(52)]_1 =1+ geaz +0@ED).
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» Averaging method (Van der Pol-Krylov—Bogolyubov scheme). The averaging
method involves two stages. First, the second-order nonlinear equation (M11.3.4.7) is
reduced with the transformation

y=acosy, 1y, =-woasing, where a=a(t), ¢=e@),

to an equivalent system of two first-order differential equations:

’ 3 . .
a; = —— f(acos p,—wpa sin ) sin @,
o (M11.3.4.16)
@} = wy — —— f(acos p,—wpa sin ) cos .
woa

The right-hand sides of equations (M11.3.4.16) are periodic in ¢, with the amplitude a
being a slow-varying function of time ¢. The amplitude and the oscillation character are
changing little during the time the phase ¢ changes by 2.

At the second stage, the right-hand sides of equations (M11.3.4.16) are being averaged
with respect to ¢. This procedure results in an approximate system of equations:

g
aé = _w_fs(a)v
0. (M11.3.4.17)
¢ = wo — — fe(a),
woa

where

1 2
fs(a) = — / sin ¢ f(a cos ¢, —wpa sin @) dp,
27 JO

1 2w
fela)=— / cos ¢ f(acos ¢, —woa sin ) dep.
27 Jo

System (M11.3.4.17) is substantially simpler than the original system (M11.3.4.16)—the
first equation in (M11.3.4.17), for the oscillation amplitude a, is a separable equation and,
hence, can readily be integrated; then the second equation in (M11.3.4.17) can also be
integrated.

M11.3.5. Galerkin Method and Its Modifications (Projection Methods)

» General form of an approximate solution. Consider a boundary value problem for
the equation

Slyl - f(x)=0 (M11.3.5.1)

with linear homogeneous boundary conditions* at the points x =x; and x =z, (2] L x < 17).
Here, § is a linear or nonlinear differential operator of the second order (or a higher order
operator); y = y(x) is the unknown function and f = f(x) is a given function. It is assumed
that §[0] = 0.

Let us choose a sequence of linearly independent functions (called basis functions)

© = p(x) (n=1,2,...,N) (M11.3.5.2)

* Nonhomogeneous boundary conditions can be reduced to homogeneous ones by the change of variable
z = Asx® + Az + Ao + y (the constants Ay, A, and A are selected using the method of undetermined
coefficients).
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satisfying the same boundary conditions as y = y(x). According to all methods that will
be considered below, an approximate solution of equation (M11.3.5.1) is sought as a linear
combination

N
Un =D Ann(@), (M11.3.5.3)

n=1

with the unknown coefficients A,, to be found in the process of solving the problem.

The finite sum (M11.3.5.3) is called an approximation function. The remainder term
Ry obtained after the finite sum has been substituted into the left-hand side of equation
M11.3.5.1),

Ry =3Slyyl - f(2). (M11.3.5.4)

If the remainder Ry is identically equal to zero, then the function ¥, is the exact
solution of equation (M11.3.5.1). In general, Ry # 0.

» Galerkin method. In order to find the coefficients A,, in (M11.3.5.3), consider another
sequence of linearly independent functions

Y = Yp(x) (k=1,2,..., N). (M11.3.5.5)

Let us multiply both sides of (M11.3.5.4) by 1/}, and integrate the resulting relation over the
region V ={x1 <x < x,}, in which we seek the solution of equation (M11.3.5.1). Next, we
equate the corresponding integrals to zero (for the exact solutions, these integrals are equal
to zero). Thus, we obtain the following system of algebraic equations for the unknown
coefficients A,

/””2 VeRydz=0  (k=1,2,..., N). (M11.3.5.6)
T

Relations (M11.3.5.6) mean that the approximation function (M11.3.5.3) satisfies equa-
tion (M11.3.5.1) “on the average” (i.e., in the integral sense) with weights ;. Introducing

the scalar product (g, h) = / b gh dx of arbitrary functions g and h, we can consider equa-
T

tions (M11.3.5.6) as the condition of orthogonality of the remainder Ry to all weight
functions ..

The Galerkin method can be applied not only to boundary value problems, but also
to eigenvalue problems (in the latter case, one takes f = Ay and seeks eigenfunctions y,,
together with eigenvalues A;,).

Mathematical justification of the Galerkin method for specific boundary value problems
can be found in the literature listed at the end of Chapter M11. Below we describe some
other methods that are in fact special cases of the Galerkin method.

Remark. Most often, one takes suitable sequences of polynomials or trigonometric functions as ¢, (z) in
the approximation function (M11.3.5.3).

» Bubnov-Galerkin method, the moment method, the least squares method.

1°. The sequences of functions (M11.3.5.2) and (M11.3.5.5) in the Galerkin method can
be chosen arbitrarily. In the case of equal functions,

wr(x) = Yr(x) (k=1,2,...,N), (M11.3.5.7)

the method is often called the Bubnov—Galerkin method.
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2°. The moment method is the Galerkin method with the weight functions (M11.3.5.5)
being powers of x,

Uy = 2. (M11.3.5.8)

3°. Sometimes, the functions 1, are expressed in terms of ¢, by the relations

Y = Skl (k=1,2,...),

where § is the differential operator of equation (M11.3.5.1). This version of the Galerkin
method is called the least squares method.

» Collocation method. In the collocation method, one chooses a sequence of points xg,
k=1,...,N, and imposes the condition that the remainder (M11.3.5.4) be zero at these
points,

Ry=0 at z=x (k=1,...,N). (M11.3.5.9)

When solving a specific problem, the points z, at which the remainder Ry is set equal
to zero, are regarded as most significant. The number of collocation points [V is taken equal
to the number of the terms of the series (M11.3.5.3). This allows one to obtain a complete
system of algebraic equations for the unknown coefficients A,, (for linear boundary value
problems, this algebraic system is linear).

Note that the collocation method is a special case of the Galerkin method with the
sequence (M11.3.5.5) consisting of the Dirac delta functions:

Y = 0(x — ).

In the collocation method, there is no need to calculate integrals, and this essentially
simplifies the procedure of solving nonlinear problems (although usually this method yields
less accurate results than other modifications of the Galerkin method).

Example. Consider the boundary value problem for the linear second-order ordinary differential equation
with variable coefficients

Yao + 9@y~ f(2)=0 (M11.3.5.10)
subject to the boundary conditions of the first kind
y-D =y =0. M11.3.5.11)

Assume that the coefficients of equation (M11.3.5.10) are smooth even functions, so that f(x) = f(-x)
and g(x) = g(—x). We use the collocation method for the approximate solution of problem (M11.3.5.10)-
(M11.3.5.11).

1°. Take the polynomials
yn(@)=2""?(1-2%), n=12...N,

as the basis functions; they satisfy the boundary conditions (M11.3.5.11), y,(£1) = 0.
Let us consider three collocation points

ry=-0, x,=0, x3=0 O<o<l) (M11.3.5.12)
and confine ourselves to two basis functions (N = 2), so that the approximation function is taken in the form
y(@) = Ai(1 — %) + Az (1 — ). (M11.3.5.13)
Substituting (M11.3.5.13) into the left-hand side of equation (M11.3.5.10) yields the remainder
R(x) = Ai[-2+ (1 -2")g(@)] + A2 [2 - 1227 + 27 (1 - 2P)g(@)] - f(2).

It must vanish at the collocation points (M11.3.5.12). Taking into account the properties f(c) = f(—o) and
g(o) = g(—o), we obtain two linear algebraic equations for the coefficients A; and A;:

Ai[2+9(0)] +24, - f0)=0  (atz =0),

2 2 2 2 (M11.3.5.14)
A2+ (1 -0%)g(0)] + A2 [2-120" + 0°(1 - 0*)g(0)] - f(0) =0  (atw = *0).
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2°. To be specific, let us take the following functions appearing in equation (M11.3.5.10):
f@)y=-1, g@)=1+2". (M11.3.5.15)

On solving the corresponding system of algebraic equations (M11.3.5.14), we find the coefficients

ot +11 o’

ot +202+11° 2T 202+ 11

In Fig. M11.2, the solid line depicts the numerical solution to problem (M11.3.5.10)-(M11.3.5.11), with
the functions (M11.3.5.15), obtained by the shooting method (see Subsection M11.3.6). The dashed lines 1
and 2 show the approximate solutions obtained by the collocation method using the formulas (M11.3.5.13),
(M11.3.5.16) with o = % (equidistant points) and o = % (Chebyshev points*), respectively. It is evident that
both cases provide good agreement between the approximate and numerical solutions; the use of Chebyshev
points gives a more accurate result.

(M11.3.5.16)

1=

-1 2 -0.5 0

Figure M11.2. Comparison of the numerical solution of problem (M11.3.5.10), (M11.3.5.11), (M11.3.5.15)
with the approximate analytical solution (M11.3.5.13), (M11.3.5.16) obtained with the collocation method.

» Method of partitioning the domain. The domain V = {z; < z < x,} is split into N

subdomains: Vi = {zp; <z <z}, k=1,..., N. In this method, the weight functions are
chosen as follows: L f v
_ or x € Vi,
Vr(@) = {0 for z ¢ V.

The subdomains V}, are chosen according to the specific properties of the problem under
consideration and can generally be arbitrary (the union of all subdomains Vi may differ
from the domain V/, and some V}; and V;,, may overlap).

» Least squared error method. Sometimes, in order to find the coefficients A,, of the
approximation function (M11.3.5.3), one uses the least squared error method based on the
minimization of the functional:

d= : R2 dz — min. (M11.3.5.17)

For given functions ¢, in (M11.3.5.3), the integral ® is a function with respect to the
coefficients A,,. The corresponding necessary conditions of minimum in (M11.3.5.17)

have the form 9%
0An:0 (n=1,...,N).

This is a system of algebraic equations for the coefficients A,,.

2i—-1

2m

* Chebyshev nodes (points) are generally defined by x; = cos( 71') ,t=1,...,m. Inthis case, m = 2.
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M11.3.6. lteration and Numerical Methods

» Method of successive approximations (Cauchy problem). The method of successive
approximations is implemented in two steps. First, the Cauchy problem

Y= f(@,y,y)) (equation), (M11.3.6.1)
y(xo) = Yo, y;(wo) = y6 (initial conditions) (M11.3.6.2)

is reduced to an equivalent system of integral equations by the introduction of the new
variable u(x) = y.,. These integral equations have the form

u(@) =y} + /z 9: Fty®,ub) dt,  y(a) =yo+ /z 9: u(t) dt. (M11.3.6.3)

Then the solution of system (M11.3.6.3) is sought by means of successive approximations
defined by the following recurrence formulas:

@ = 9o+ [ FLyn®oun®) dt gan@=yo+ [ wn@®dts =012,

As the initial approximation, one can take yo(x) = yo and ug(x) = yé.

» Runge-Kutta method (Cauchy problem). For the numerical integration of the Cauchy
problem (M11.3.6.1)-(M11.3.6.2), one often uses the Runge—Kutta method.
Let Az be sufficiently small. We introduce the following notation:

zp=x0+kAz, yp=y@r), Y=y, fe=f@nyeyy);  k=0,1,2, ...

The desired values y;, and y; are successively found by the formulas

Yirl = Yk +YRAT + L(f1 + fo + ) (A,
Yests =Uh + e(fL+2f +2f3+ f)Ax,
where
f1=f(zks Yk, yp)s
fo= flzr+ 3 Az, yp + Sy, Az, y), + 3 f1Az),
f3=f(on+ 302, g+ 2y Ax + £ fi(A), o) + 3 HAT),
fa= f(a:k + Ax, yi + y;CA:U + %fz(A{L’)Z, y;f + f3Aaj).

In practice, the step Az is determined in the same way as for first-order equations (see
Remark 2 in Subsection M11.1.7).

» Shooting method (boundary value problems). In order to solve the boundary value
problem for equation (M11.3.6.1) with the boundary conditions

y(x1) = y1, y(x2) = 12, (M11.3.6.4)

one considers an auxiliary Cauchy problem for equation (M11.3.6.1) with the initial condi-
tions
ya) =y,  ylr)=a (M11.3.6.5)

(The solution of this Cauchy problem can be obtained by the Runge—Kutta method or some
other numerical method.) The parameter a is chosen so that the value of the solution
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y = y(x,a) at the point x = x, coincides with the value required by the second boundary
condition in (M11.3.6.4):

y(x2,a) = 1.
First, one finds an a; and an a» (a1 < ay) such that
[y(z2, a1) — p2]ly(x2, a2) — 2] < 0.

This implies that the desired a in (M11.3.6.5) belongs to the interval (a1, a2). Then a sequence of numbers a,
such that

[y(z2, an-1) —y21ly(z2, an) =321 <0

is determined numerically, for example, by using the bisection method. The desired a is obtained as: a =
lim an.

n— oo

In a similar way one constructs the solution of the boundary value problem with mixed
boundary conditions

y) =y, Yu(@) + ky(z) = v (M11.3.6.6)

In this case, one also considers the auxiliary Cauchy problem (M11.3.6.1), (M11.3.6.5).
The parameter a is chosen so that the solution y = y(z, a) satisfies the second boundary
condition in (M11.3.6.6) at the point x = x.

M11.4. Linear Equations of Arbitrary Order
and Linear Systems of Equations
M11.4.1. Linear Equations with Constant Coefficients

» Homogeneous linear equations. An nth-order homogeneous linear equation with
constant coefficients has the general form

(n) (n-1)

Yo + Qn_ 1Yz +---+a1y;+a0y=0. M11.4.1.1)

The general solution of this equation is determined by the roots of the characteristic
equation

PO =0, where P\ = A" + ap g A" L+ + ag )\ + ap. (M11.4.1.2)

The following cases are possible:

1°. Allroots A\q, Ay, . .., A, of the characteristic equation (M11.4.1.2) are real and distinct.
Then the general solution of the homogeneous linear differential equation (M11.4.1.1) has
the form

y = Crexp(A\iz) + Chexp(hz) + - - - + Cp exp(Ap ).

2°. There are m equal real roots A\; = A\, = --- = A\, (m < n), and the other roots are real
and distinct. In this case, the general solution is given by

y=exp(A\1z)(C1 +Crx+ -+ + Crpz™™h
+ Ot eXp(AmH )+ Crsn eXP(>\m+2$) +--+ 0y eXP(/\nﬂf)

3°. There are m equal complex conjugate roots A\;» = a+ i3 (2m < n), and the other roots
are real and distinct. In this case, the general solution is

y = exp(ax) cos(Bx)( Ay + Arz + - - - + Ayz™ )
+exp(ax) sin(Bx)(By + Byx + - - - + Bpz™ ™)
+ Com1 €Xp(A2im17) + Comaz €Xp(A2ma2 ) + - - - + O exp(Ay ),

where Ay, ..., A, B1, ..., Bm, Comat, - - -, Cy are arbitrary constants.
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4°. In the general case, where there are r different roots Aj, A, ..., A, of multiplicities
mi, ma, ..., m,, respectively, the left-hand side of the characteristic equation (M11.4.1.2)
can be represented as the product

PQ)=A=AD)™A =)™ (A=A,

where m; + my + - - - + m, = n. The general solution of the original equation is given by
the formula

T
Y= Z expO\2)(Cho + Cp 1 + -+ + Cpy 1 7™,
k=1

where C},; are arbitrary constants.

If the characteristic equation (M11.4.1.2) has complex conjugate roots As = as + i
and As41 = a5 —i0s, then in the above solution, the corresponding functions exp(Asx) and
exp(Ass1x) should be replaced with exp(asx) cos(Bsx) and exp(asx) sin(Gsx), respectively,
in a similar way to that in Item 3°.

Example 1. Find the general solution of the linear third-order equation
" 1 /
Yy +ay —y —ay=0.
Its characteristic equation is A\* + aA\> —= A —a = 0, or, in factorized form,
A+a)(A-1D(A+1)=0.

Depending on the value of the parameter a, three cases are possible.

1. Case a # £1. There are three different roots, A\; = —a, A\, =—1, and A3 = 1. The general solution of the
differential equation is expressed as y = Cie " + Che™® + Cze”.

2. Case a = 1. There is a double root, \; = A\, = -1, and a simple root, A3 = 1. The general solution of the
differential equation has the form y = (C} + Chx)e™ + Cze”.

3. Case a = —1. There is a double root, \; = Ay = 1, and a simple root, A3 = —1. The general solution of
the differential equation is expressed as y = (C + Chx)e” + Cze™.

Example 2. Consider the linear fourth-order equation

"

Yozzz —Y = 0.
Its characteristic equation, \* — 1 = 0, has four distinct roots, two real and two pure imaginary,
Ai=1, X=-1, X3=1i, M=-i
Therefore, the general solution of the equation in question has the form (see Item 3°)
y=Cie’ +Cre™ + Cssinz + Cy cos .
» Nonhomogeneous linear equations. Forms of particular solutions.

1°. An nth-order nonhomogeneous linear equation with constant coefficients has the gen-
eral form

y:(cn) + anfly:(cn_l) 4+ aly; +agy = f(gj) (M11.4.1.3)

The general solution of this equation is the sum of the general solution of the corre-
sponding homogeneous equation with f(z) =0 (see equation M11.4.1.1) and any particular
solution of the nonhomogeneous equation (M11.4.1.3).

If the roots A1, A2, ..., A, of the characteristic equation (M11.4.1.2) are all real and
distinct, equation (M11.4.1.3) has the general solution:

n n )\V:E
N, ST / 1)e M7 da. M11.4.1.4
y E; 2; mrow ] 1@ ( )

In the general case, if the characteristic equation (M11.4.1.2) has complex and/or multi-
pleroots, the solution to equation (M11.4.1.3) can be constructed using formula (M11.4.2.5).
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TABLE M11.4

Forms of particular solutions to the nonhomogeneous linear equation with constant coefficients

Y™ + anay™D + -+ a1yl + aoy = f(x), that correspond to some special forms of the function f(x).

Form of the Roots of the characteristic equation Form of
function f(x) A+ an A" @ A+ag=0 particular solution
Zero is not a root of the ~
characteristic equation (i.e., ap # 0) Prn(x)
Pr(x) -
Zero is a root of the e
characteristic equation (multiplicity ) " P (2)
o is not a root of the ~ .
ax characteristic equation Pm(@)e
P, (x)e
(c is a real constant) « is a root of the _
.. . T xTP (m)ea‘r
characteristic equation (multiplicity r) m
i3 is not a root of the P,(x)cos Bx
characteristic equation +Qu(z) sin Br
Pro(x) cos Bz + Qi (x) sin Sz —
i3 is a root of the 2" [P,(x)cos Bz
characteristic equation (multiplicity r) + @u(ax) sin Bz]
o + /3 is not a root of the [P.(x)cos Bz
characteristic equation + @y(:c) sin Br]e™®
[P (x) cos Bx + Qr(x) sin Bx]e™” —
a + i3 is a root of the 2" [P,(x) cos Bz
characteristic equation (multiplicity r) + @y(:c) sin Br]e™®
Notation: Pp, and Q) are polynomials of degrees m and k with given coefficients; Py, P,, and @U are
polynomials of degrees m and v whose coefficients are determined by substituting the particular solution
into the basic equation; v = max{m, k}; and « and (3 are real numbers, 2 =—1.

2°. Table M11.4 lists the forms of particular solutions corresponding to some special forms
of functions on the right-hand side of the linear nonhomogeneous equation.

3°. Consider the Cauchy problem for equation (M11.4.1.3) subject to the homogeneous
initial conditions
y(0) = ,(0) = --- = y"P(0) = 0. (M11.4.1.5)

Let y(z) be the solution of problem (M11.4.1.3), (M11.4.1.5) for arbitrary f(x)and let u(x)
be the solution of the auxiliary, simpler problem (M11.4.1.3), (M11.4.1.5) with f(x) =1,
so that u(x) = y(x)| f(z)=1. Then the formula

y(x)=/0 fyuy(x —t)dt

holds. It is called the Duhamel integral.

» Solution of the Cauchy problem using the Laplace transform. Consider the Cauchy
problem for equation (M11.4.1.3) with arbitrary initial conditions

YO =y, O =y, ..., D0 =y, (M11.4.1.6)

where o, Y1, - - - » Yn_1 are given constants.
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Problem (M11.4.1.3), (M11.4.1.6) can be solved using the Laplace transform based on
the formulas (for details, see Section M10.2)

0 ={y@) Fo)=e{f@). where £{f@)}= /0 P f (@) da.

To this end, let us multiply equation (M11.4.1.3) by eP* and then integrate with respect
to « from zero to infinity. Taking into account the formula

ey @)} =p" i) - p" N 0)

k=1

and the initial conditions (M11.4.1.6), we arrive at a linear algebraic equation for the
transform y(p):

P®T(p) - Q) = f(p), (M11.4.1.7)

where

P()=p" +an1p" +--+ap+ao, QM) =Dbyp™ 4+ +bip+ by,
bk = Yn-k-1 + Apn_1Yn-k—2 + - + Qp2y1 + ap1yo, k=0,1,...,n—-1

The polynomial P(p) coincides with the characteristic polynomial (M11.4.1.2) at A = p.
The solution of equation (M11.4.1.7) is given by the formula

fo) + Q)
P(p)

On applying the Laplace inversion formula (see in Section M10.2) to (M11.4.1.8), we obtain
a solution to problem (M11.4.1.3), (M11.4.1.6) in the form

y(x) = L / o Mem dp. (M11.4.1.9)
27” 100 P(p)

Since the transform 3(p) (M11.4.1.8) is a rational function, the inverse Laplace transform
(M11.4.1.9) can be obtained using the formulas from Subsection M10.2.2 or the tables of
Section S2.2.

Remark. In practice, the solution method for the Cauchy problem based on the Laplace transform leads to

the solution faster than the direct application of general formulas like (M11.4.1.4), where one has to determine
the coefficients C, ..., Ch.

y(p) = (M11.4.1.8)

Example 3. Consider the following Cauchy problem for a homogeneous fourth-order equation:

Yrnpw +aty=0;  y(0) = yo(0) = yrer(0) =0, yr,(0)=b

The Laplace transform reduces this problem to a linear algebraic equation for F(p): (p* + a*)y(p) —bp = 0.
It follows that by

p* prrat’

y(p) =
In order to invert this expression, let us use the table of inverse Laplace transforms S2.2.2 (see row 52) and take

into account that a constant multiplier can be taken outside the transform operator to obtain the solution to the
original Cauchy problem in the form
) sinh( ) .

y(x) = i sm(

&\a
SlE
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M11.4.2. Linear Equations with Variable Coefficients

» Homogeneous linear equations. Structure of the general solution. The general
solution of the nth-order homogeneous linear differential equation

Fa@y” + far @™ + -+ i@y, + fol@)y =0 (M11.4.2.1)

has the form
y=Ciy(@) + Coyp(@) + - - + Cryn(@), (M11.4.2.2)
where the functions y;(x), y2(x), ..., yn(x) are a fundamental system of solutions (the
yi are linearly independent particular solutions, y # 0); Cy, Cy, ..., C), are arbitrary

constants.
» Utilization of particular solutions for reducing the order of the equation.

1°. Let y; = y1(z) be a nontrivial particular solution of equation (M11.4.2.1). The substi-
tution

y=y(@) [ 2@)de
results in a linear equation of order n — 1 for the function z(x).

2°. Let y; = y1(x) and 4, = y»(x) be two nontrivial linearly independent solutions of
equation (M11.4.2.1). The substitution

y=u / yzwdx—yz/ylwdw

results in a linear equation of order n — 2 for w(x).

3°. Suppose that m linearly independent solutions y;(z), y2(x), ..., ym(x) of equation
(M11.4.2.1) are known. Then one can reduce the order of the equation to n —m by
successive application of the following procedure. The substitution y = y, () / . z(x) dx
leads to an equation of order n — 1 for the function z(x) with known linearly independent

solutions:

Yy Y2\’ Ym-1)’

—), a=(—), s Zmi1=(—) .

Ym/ x Ym / x Ym /=
The substitution z = z,,_1(x) / w(x) dx yields an equation of order n — 2. Repeating this
procedure m times, we arrive at a homogeneous linear equation of order n —m.

21

» Wronskian determinant and Liouville formula. The Wronskian determinant (or
simply, Wronskian) is the function defined as

y}(w) y7(w)
Way=| 4@ o w@ (M11.4.2.3)
v Py -y V@)
where y1(x), ..., yn(x) is a fundamental system of solutions of the homogeneous equa-

. oy _ A"k _ CL—
t10n(M11.4.2.1),yk (x) = —, m=1,....,n-1; k=1,...,n.

The following Liouville formula holds:

W (x) = W(xg)exp [— * fna® dt} ,

Zo fn(t)

where zg is an arbitrary number.
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» Nonhomogeneous linear equations. Construction of the general solution.

1°. The general nonhomogeneous nth-order linear differential equation has the form

Fa@y? + faa@yS™ + -+ fi@)yl + folx)y = g(2). (M11.4.2.4)

The general solution of the nonhomogeneous equation (M11.4.2.4) is obtained as the sum
of the general solution of the corresponding homogeneous equation (M11.4.2.1) and any
particular solution of equation (M11.4.2.4).

2°. Letyi(x), ..., y,(x) be a fundamental system of solutions of the homogeneous equa-
tion (M11.4.2.1), and let W (x) be the Wronskian determinant (M11.4.2.3). Then the general
solution of the nonhomogeneous linear equation (M11.4.2.4) can be represented as

a " " W, (x)dx
y = ; Cyo () + ; Yo (@) / RO (M11.4.2.5)

where W, (x) is the determinant obtained by replacing the vth column of the matrix
(M11.4.2.3) by the column vector with the elements 0,0, ..., 0, g.

3°. Superposition principle. A particular solution of a nonhomogeneous linear equation
m
Liyl =Y ge@),  Llyl= fa@y” + foa @™+ -+ i@y, + fo@)y
k=1

is determined by adding together particular solutions,

m
Y= Z Yk»
k=1

of m (simpler) equations,
L{yk] = gr(2), k=1,2,...,m,

corresponding to respective nonhomogeneous terms in the original equation.

» Euler equation. The nonhomogeneous Euler equation has the form

-1, (n-1
n, (n) nely (n-l)

T Yy +an1T Y ---+a1:13y;+aoy=f($)~

The substitution 2 = be! (b # 0) leads to a constant coefficient linear equation of the
form M11.4.1.3).

Particular solutions of the homogeneous Euler equation [with f(x) = 0] are sought in
the form y = x*. If all k are real and distinct, its general solution is expressed as

y(x) = Chlal™ + Colal™ + - - - + Cplf*r.

Remark. To a pair of complex conjugate values k = a£i/3 there corresponds a pair of particular solutions:
y = || sin(Blz]) and y = |z|* cos(SBlx]).
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M11.4.3. Systems of Linear Equations with Constant Coefficients
» Systems of first-order linear homogeneous equations. The general solution.

1°. In general, a homogeneous linear system of first-order ordinary differential equations
with constant coefficients has the form

/
Yy =anyr +anyzt+ -+ ainYn,

/
=q +a +---ta ’
Yp = axyr +anys 2nYn (M11.4.3.1)

where a prime stands for the derivative with respect to . In the sequel, all the coefficients a;;
of the system are assumed to be real numbers.

The homogeneous system (M11.4.3.1) has the trivial particular solution y; =y, =--- =
Yn = 0.

Superposition principle for a homogeneous system: any linear combination of particular
solutions of system (M11.4.3.1) is also a solution of this system.

The general solution of the system of differential equations (M11.4.3.1) is the sum of
its n linearly independent (nontrivial) particular solutions each multiplied by an arbitrary
constant.

Remark. System (M11.4.3.1) can be reduced to a single homogeneous linear constant-coefficient nth-
order equation.

2°. For brevity (and clarity), system (M11.4.3.1) is conventionally written in vector-matrix
form:

y = Ay, (M11.4.3.2)

where y = (y1, 42, . . ., yn)" is the column vector of the unknowns and A = (aj;) is the matrix
of the equation coefficients. The superscript T denotes the transpose of a matrix or a vector.
So, for example, a row vector is converted into a column vector:

(1, 9)" = <y1>
Y2

The right-hand side of equation (M11.4.3.2) is the product of the n X n square matrix a by
the n X 1 matrix (column vector) y.

Let i = (Yk1, Yi2, - - - » Yin)© be linearly independent particular solutions* of the homo-
geneous system (M11.4.3.1), where k = 1, 2, ..., n; the first subscript in Y., = Yim(x)
denotes the number of the solution and the second subscript (m = 1,...,n) indicates the
component of the vector solution. Then the general solution of the homogeneous system
(M11.4.3.2) is expressed as

y=Ciy1 +Ooy2 + - + Cpyy. (M11.4.3.3)

A method for the construction of particular solutions that can be used to obtain the general
solution by formula (M11.4.3.3) is presented below.

* This means that the condition det |yxm (x)| # 0 holds.
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» Systems of first-order linear homogeneous equations. Particular solutions. Par-
ticular solutions to system (M11.4.3.1) are determined by the roots of the characteristic
equation

a1l — A a1 . Q1n
AN =0, where A=| %1 27A o am | (M11.4.3.4)
an1 An2 et Qpp— A

The following cases are possible:

1°. Let A be asimple real root of the characteristic equation (M11.4.3.4). The corresponding
particular solution of the homogeneous linear system of equations (M11.4.3.1) has the
exponential form

yr= A1, = A Ly = A M11.4.3.5)

where the coefficients A, Ay, ..., A, are determined by solving the associated linear
homogeneous system of equations:

(a1 —NA1+anAr+---+aipA, =0,
A “NAy - +ay A, =0,
an A +(an =N+ +ay (M11.4.3.6)

The solution of this system is unique to within a constant factor.
If all roots of the characteristic equation Ay, A, ..., A, are real and distinct, then the
general solution of system (M11.4.3.1) has the form

y1 = C1 AN + CrApe™ + -+ Cp A, e,

Yy = C1Ag eMT + CrApe™™ + -+ -+ Cp Ay e,
=C A Az Az An

Yn = L1rAnpl€ + CZAn2€ +-0 CnAnne s

where Cy, C, ..., C, are arbitrary constants. The second subscript in A,,; indicates a
coefficient corresponding to the root A.

(M11.4.3.7)

2°. For each simple complex root, A = a+i0, of the characteristic equation (M11.4.3.4), the
corresponding particular solution is obtained in the same way as in the simple real root case;
the associated coefficients Aj, Ay, ..., A, in (M11.4.3.5) will be complex. Separating the
real and imaginary parts in (M11.4.3.5) results in two real particular solutions to system
(M11.4.3.1); the same two solutions are obtained if one takes the complex conjugate root,
A=a-if.

3°. Let A be a real root of the characteristic equation (M11.4.3.4) of multiplicity m. The
corresponding particular solution of system (M11.4.3.1) is sought in the form

y1 = PL(2)e,  ya= PE(@)e?, ..., yn =Pl (x)e, (M11.4.3.8)

m—1
where the P¥ ()= Y By, are polynomials of degree m—1. The coefficients of these poly-
i=0
nomials result from the substitution of expressions (M11.4.3.8) into equations (M11.4.3.1);
after dividing by e** and collecting like terms, one obtains 7 equations, each representing
a polynomial equated to zero. By equating the coefficients of all resulting polynomials
to zero, one arrives at a linear algebraic system of equations for the coefficients Bjy;; the
solution to this system will contain m free parameters.
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4°. For a multiple complex root, A = .+, of multiplicity m, the corresponding particular
solution is sought, just as in the case of a multiple real root, in the form (M11.4.3.8); here
the coefficients By; of the polynomials P () will be complex. Finally, in order to obtain
real solutions of the original system (M11.4.3.1), one separates the real and imaginary parts
in formulas (M11.4.3.8), thus obtaining two particular solutions with m free parameters
each. The two solutions correspond to the complex conjugate roots A = o £ i(3.

5°. In the general case, where the characteristic equation (M11.4.3.4) has simple and mul-
tiple, real and complex roots (see Items 1°—4°), the general solution to system (M11.4.3.1)
is obtained as the sum of all particular solutions multiplied by arbitrary constants.

Example 1. Consider the homogeneous system of two linear differential equations

Y1 =y + 4y,
Y = Y1+ .
The associated characteristic equation,
1-x 4 )
=A"-2A-3=0,
’ 1 1-X ’

has distinct real roots:
A=3 X=-L
The system of algebraic equations (M11.4.3.6) for the solution coefficients becomes
(1 — )\)A1 + 4A2 = 0,
M11.4.3.9
A+ (1= M)A =0, ( )

Substituting the first root, A = 3, into system (M11.4.3.9) yields A; =2A,. Wecanset A; =2and A, =1,
since the solution is determined to within a constant factor. Thus the first particular solution of the homogeneous
system of linear ordinary differential equations (M11.4.3.9) has the form

g =26, g =e. (M11.4.3.10)
The second particular solution, corresponding to A = —1, is found in the same way:
y==-2e", p=ec". M11.4.3.11)

The sum of the two particular solutions (M11.4.3.10) and (M11.4.3.11) multiplied by arbitrary constants,
C) and (), gives the general solution to the original homogeneous system of linear ordinary differential
equations:
Y1 = 2016396 —2026_96, Y = C1€3x + Cze_x.

Example 2. Consider the system of ordinary differential equations

- —
= (M11.4.3.12)
Yr = 2y1 + 21
The characteristic equation
-2 -1 )
=A" -2 +2=
‘ 2 22 ‘ +2=0

has complex conjugate roots:
A=1+17 Xh=1-i

The algebraic system (M11.4.3.6) for the complex coefficients A; and A, becomes

“AA1 - A, =0,
2A1 + (2 - )\)Az =0.

With A = 1 + 4, one nonzero solution is given by A; = 1 and A, = -1 — 4. The corresponding complex solution
to system (M11.4.3.12) has the form

Y = e(1+i):v, Y = (_1 —7:)6(1+i)z.
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Separating the real and imaginary parts, taking into account the formulas
1% = e¥(cosz +isinz) = e® cos T + ie” sinz,
(=1 =9)e™D = (1 +4)e®(cos z + i sinz) = e*(sinx — cos ) — ie(sin x + cos ),
and making linear combinations of them, one arrives at the general solution to the original system (M11.4.3.12):

y1 = Cre” cos z + Cre” sinz,

y2 = Cre“(sinx — cos ) — Chre” (sin x + cos ).
» Nonhomogeneous systems of linear first-order equations.

1°. In general, a nonhomogeneous linear system of first-order differential equations with
constant coefficients has the form

/
Y = a1y +anyy + -+ apyn + f1(0),

- + + .-+ + 5
Yy = azny1 + any 2nYn + f2(7) (M11.4.3.13)

y; = An1Y1 + an2ya + 0+ AppYn + fr(@).

For brevity, the conventional vector notation will also be used:
y = Ay +f(2),
where f(2) = (f1(x), fr(2), ..., fu(@)T.

The general solution of this system is the sum of the general solution to the corresponding
homogeneous system with fi(x) =0 [see system (M11.4.3.1)] and any particular solution
of the nonhomogeneous system (M11.4.3.13).

2°. Letyy =(Dg1(z), D1 (), . . ., Din(2))T be particular solutions to the homogeneous lin-
ear system of first-order constant-coefficient differential equations (M11.4.3.1) that satisfy
the special initial conditions

w0 =1, y,(0=0 for m=k, k m=1,...,n.

Then the general solution to the nonhomogeneous system (M11.4.3.13) is expressed as

Ym(@) =) /Ox fe®Dpm(@ =) dt +>  CkDpm(z), m=1,...,n. (M11.4.3.14)
k=1 k=1

The solution of the Cauchy problem for the nonhomogeneous system (M11.4.3.13) with
arbitrary initial conditions,

v =y7, O =y, ..., y0) =y, (M11.4.3.15)
is determined by formulas (M11.4.3.14) with Cy, =y, k=1,...,n.

M11.5. Nonlinear Equations of Arbitrary Order
M11.5.1. Structure of the General Solution. Cauchy Problem

» Equations solved for the highest derivative. General solution. An nth-order differ-
ential equation solved for the highest derivative has the form

y = f@ gyl yTY). (M11.5.1.1)
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The general solution of this equation depends on n arbitrary constants C1,...,C,. In
some cases, the general solution can be written in explicit form as
y=p,C,...,Ch). (M11.5.1.2)

» Cauchy problem. The existence and uniqueness theorem. The Cauchy problem:
find a solution of equation (M11.5.1.1) with the initial conditions

y@o)=yo. Yawo) =y, ..o Y Pwe) =y (M11.5.1.3)

(At a point xg, the values of the unknown function y(x) and all its derivatives of orders
< n -1 are prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Suppose the function f(x,y, 21,...,2n 1) IS
continuous in all its arguments in a neighborhood of the point (xg, Yo, y(()l), R y(()"fl)) and
has bounded derivatives with respect to y, 21, ..., 2,1 in this neighborhood. Then a

solution of equation (M11.5.1.1) satistying the initial conditions (M11.5.1.3) exists and is
unique.

» Reduction of an nth-order equation to a system of n first-order equations. The
differential equation (M11.5.1.1) is equivalent to the following system of n first-order
equations:

Yo=Yl Y1=U2  cees Ynoa=Unls Yng = F@Y0 YL Yno1),

where the notation yg = ¥ is adopted.

M11.5.2. Equations Admitting Reduction of Order

» Equations not containing y,y’,...,y% explicitly. An equation that does not
explicitly contain the unknown function and its derivatives up to order k inclusive can
generally be written as

Fz, g™, ") =0  (1<k+1<n). (M11.5.2.1)

Such equations are invariant under arbitrary translations of the unknown function, y —

y + const (the form of such equations is also preserved under the transformation u(zx) =

y+ak:pk +- - -+ajx+ag, where the a,, are arbitrary constants). The substitution z(x) = ygﬁl)

reduces (M11.5.2.1) to an equation whose order is by k + 1 smaller than that of the original

equation, F(m, 2y 2y ,Zg(ﬂnfkfl)) -0.

» Equations not containing x explicitly (autonomous equations). In general, an equa-
tion that does not explicitly contain x has form

F(y, 4. yd”) = 0. (M11.5.2.2)

Such equations are invariant under arbitrary translations of the independent variable, x —
x + const. The substitution y/, = w(y) (where y plays the role of the independent variable)
reduces by one the order of an autonomous equation. Higher derivatives can be expressed

in terms of w and its derivatives with respect to the new independent variable, v, = ww!,
Yy = wzw;’y + w(wz’/)z, e

» Some other equations admitting reduction of order. Table M11.5 lists the above
nonlinear equations as well as some other equations admitting order reduction. The second
column gives simple transformations that allow checking whether the equation is one of
this type.
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TABLE M11.5

Some ordinary differential equations that admit order reduction by one.

Transformation preserving form of

Transformation reducing

Equation equation (a is an arbitrary constant) | order of equation, u = u(z)
F (2, Yo Yiia - - y5”) =0 y=y+a z=x, u=yh
F(y,y;,y;’w,...,y;”)) 0 T=T+a Z2=y, U=y,
F(az+By+7, Yo Ynar - - y5") =0 r=T+aB, y=y-acx 2=z +Py+7y, u=1y,
F(2, 9o /Y Y/ ys - 9" /y) =0 y=ajy z=x, u=y,/y
F(y, zys, T L x"yM) =0 r=aT Z2=y, u=xY,
F(y/, Yo 2 - 2" 'y8Y) =0 r=al, y=ay z=y/z, u=y,
F(eMy e[y yiew/ys -y Jy) =0 z=i-%Ina, y=aj 2=y, u=y.,/y

2,11

>\,
F(ze, xyy, 2y . .

:L,ny(n))

0

r=az, y:g——lna

z=xe™, u=gzy

F(:Eky, l,k+1 / k+2 "

Ygas-- - T

k+n, (n)

Ya

)=0

r=ax, Y= a’kg

k+1, 7

Yz

z=zFy, u=zx
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Chapter M12
Partial Differential Equations

M12.1. First-Order Quasilinear Partial Differential
Equations
M12.1.1. Characteristic System. General Solution

» Equations with two independent variables. General solution. Examples. A first-
order quasilinear partial differential equation with two independent variables has the
general form

f(@,y, w)a—w +9(z,y, w)a—w = Wz, y, w). (M12.1.1.1)
Ox y

Such equations are encountered in various applications (continuum mechanics, gas dy-
namics, hydrodynamics, heat and mass transfer, wave theory, acoustics, multiphase flows,
chemical engineering, etc.).

If two independent integrals,

uy(z,y, w) = Cy, wy(x,y, w) = Ch, M12.1.1.2)
of the characteristic system
dx 3 dy 3 dw
f@yw) gy, w)  hz,y,w)
are known, then the general solution of equation (M12.1.1.1) is given by
P(ug,up) =0, M12.1.1.4)

where ®(u,v) is an arbitrary function of two variables. With equation (M12.1.1.4) solved
for u; or uy, we often specify the general solution in the form

(M12.1.1.3)

u = W(uzg),
where k£ = 1 or 2 and W(uw) is an arbitrary function of one variable.

Remark. In the special case h(x,y,w) = 0, one of the integrals of the characteristic system is w = C'.
Another integral may be determined from the first equation in (M12.1.1.3).

Example. Consider the linear constant coefficient equation

ow ow

B + aa—y =b.
The characteristic system for this equation is

dr dy dw

1 a b

It has two independent integrals:

y—ar=Cy, w-bx=Ch.
Hence, the general solution of the original equation is given by ®(y —ax, w—bx) = 0. On solving this equation
for w, one obtains the general solution in explicit form

w =bzr +¥Y(y - ax),

where W(u) is an arbitrary function.

305
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» Equations with n independent variables. General solution. A first-order quasilinear
partial differential equation with n independent variables has the general form

fi(zq, .. .,ajn,w)a—w + o+ oz, .. .,xn,w)a—w =g(x1,...,Tp,w). (MI12.1.1.5)
afL'l axn

Let n independent integrals,
up(xy, ..., xn,w)=C1, ..., up(xg,...,Tp,w)=0Ch,
of the characteristic system
dxy L dx,, _ dw
fi@y, ... xp,w) T @i, xpow) 9@y, ..., Tp,w)
be known. Then the general solution of equation (M12.1.1.5) is given by
D(ug,...,up) =0,

where @ is an arbitrary function of n variables.

M12.1.2. Cauchy Problem

» Two formulations of the Cauchy problem. Consider two formulations of the Cauchy
problem.

1°. Generalized Cauchy problem. Find a solution w = w(x,y) of equation (M12.1.1.1)
satisfying the initial conditions
z=hi(§), y=hA), w=nhsz), (M12.1.2.1)

where £ is a parameter (o < & < 3) and the hy () are given functions.
Geometric interpretation: find an integral surface of equation (M12.1.1.1) passing
through the line defined parametrically by equations (M12.1.2.1).

2°. Classical Cauchy problem. Find a solution w = w(x,y) of equation (M12.1.1.1)
satisfying the initial condition

w=py) at x=0, M12.1.2.2)
where ¢(y) is a given function.

It is convenient to represent the classical Cauchy problem as a generalized Cauchy
problem by rewriting condition (M12.1.2.2) in the parametric form

=0, y=¢§ w=e®). M12.1.2.3)

» Procedure of solving the Cauchy problem. The procedure of solving the Cauchy
problem (M12.1.1.1), (M12.1.2.1) involves several steps. First, two independent inte-
grals (M12.1.1.2) of the characteristic system (M12.1.1.3) are determined. Then, to find
the constants of integration C} and (5, the initial data (M12.1.2.1) must be substituted into
the integrals (M12.1.1.2) to obtain

uy (h1(€), ha(€), h3(§)) = Ci, uy (h1(€), ha(€), h3(§)) = Ca. (M12.1.2.4)
Eliminating C'y and C, from (M12.1.1.2) and (M12.1.2.4) yields
Ul(l‘, Y, ?,U) =Uu (hl(g)’ h2(£), h3(£)) s

ur (@, y, w) = uz (h1(8), ha(§), h3(§)).

Formulas (M12.1.2.5) are a parametric form of the solution of the Cauchy problem
M12.1.1.1), (M12.1.2.1). In some cases, one may succeed in eliminating the parame-
ter £ from relations (M12.1.2.5), thus obtaining the solution in an explicit form.

(M12.1.2.5)
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Example 1. Consider the Cauchy problem for linear equation

ow ow
—+a———=> M12.1.2.6
9z +a By w ( )
subjected to the initial condition (M12.1.2.2).
The corresponding characteristic system for equation (M12.1.2.6),

dr _dy dw
1 a  bw’
has two independent integrals
y—ax=Cy,  we’ =Ch. (M12.1.2.7)

Represent the initial condition (M12.1.2.2) in parametric form (M12.1.2.3) and then substitute the data
(M12.1.2.3) into the integrals (M12.1.2.7). As a result, for the constants of integration we obtain C'; = £ and
C> = (&). Substituting these expressions into (M12.1.2.7), we arrive at the solution of the Cauchy problem
(M12.1.2.6), (M12.1.2.2) in parametric form:

y—az=¢  we = @)
By eliminating the parameter £ from these relations, we obtain the solution of the Cauchy problem (M12.1.2.6),
(M12.1.2.2) in explicit form:
w = ebwcp(y —ax).

Example 2. Consider the Cauchy problem for Hopf’s equation

ow ow
-~ ~—~ =0 M12.1.2.8
ox T Jy ( )
subject to the initial condition (M12.1.2.2).
First, we rewrite the initial condition (M12.1.2.2) in the parametric form (M12.1.2.3). Solving the

characteristic system
dr _dy _ dw (M12.1.2.9)
1 w 0
we find two independent integrals,
w=C, y-wzx=Ch. (M12.1.2.10)

Using the initial conditions (M12.1.2.3), we find that C = ¢(§) and C, = £. Substituting these expressions
into (M12.1.2.10) yields the solution of the Cauchy problem (M12.1.2.8), (M12.1.2.2) in the parametric form

w = p(§), (M12.1.2.11)

y=E+p(E)z. (M12.1.2.12)
The straight lines defined by equation (M12.1.2.12) are called characteristics. They have the slope ¢(§) and
intersect the y-axis at the points £&. On each characteristic, the function w has the same value equal to ¢(§)
(generally, w takes different values on different characteristics).

For ¢’ (&) > 0, different characteristics do not intersect and, hence, formulas (M12.1.2.11) and (M12.1.2.12)
define a unique solution.

M12.2. Classification of Second-Order Linear Partial
Differential Equations
M12.2.1. Equations with Two Independent Variables

» Examples of equations encountere