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TO MARY 



PREFACE 

M Y MAIN concern in writing this book has been to communicate 
to students of engineering the important and useful ideas of the 
Theory of Plasticity. Certain features of the theory—which has 
by now reached its maturity—are particularly appropriate to the 
crucial activity of engineering design, and I have tried wherever 
possible to bring out the "lessons" afforded by the theory as well 
as to present the "facts". 

The book is aimed primarily at engineering students who are 
already familiar with elementary mechanics, "strength of mater
ials" and "theory of structures"—including perhaps a treatment 
of plastic collapse of beams—and who are mainly interested in 
becoming design engineers. An appreciation of stress as being 
rather more than "tension -f- area" is absolutely essential to any 
respectable treatment of the theory of plasticity, and I assume 
that the reader will be thoroughly familiar with the theory and 
application of the Mohr circle of stress. For the sake of ease of 
reference, and to explain an unusual sign convention, a brief 
description of the theory is given as Appendix I. The other Ap
pendices describe important ideas referred to in the text, with 
which the student may or may not be familiar, and also a note on 
units, etc. They are intended to be self-contained. 

Experience shows that the solving of numerous problems is an 
important aspect of success in the study of a technical subject. 
At many points in the text, therefore, I have left proof or verifica
tion of simple points to the reader, and I hope that students will 
work through the corresponding problems whenever they reach 
them in the text. 

The answers to some of the problems are best presented 
graphically, and I have occasionally suggested that the best place 
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to draw the curves is on existing figures in the text. This has the 
merit of making appropriate comparisons particularly easy. 

In some instances back-reference is made in the text to the solu
tion of problems in a previous chapter. The student may therefore 
find it helpful to keep his problem-work in some sort of order. 

In addition to the "text problems" I have provided others, some 
of which are "open-ended". They range widely in scope, length 
and difficulty, and the ones which are most demanding are marked 
with the symbol | . 

For the sake of completeness I have included material which I 
do not expect the average student to take too seriously, particu
larly at first reading. No great harm will be done, I think, by 
skipping lightly through the proofs of the theorems in Chapter IV, 
provided the statements and examples of their application are 
given due attention, or by ignoring altogether the rather specialist 
topic of slip-line fields in Chapter VIII, or by ignoring the parts 
of Chapter X concerning axisymmetric flow. 

Readers who are familiar with other textbooks on Plasticity 
will notice that I have avoided wherever possible the use of 
notation more general than necessary for the immediate purposes, 
and that I show a marked bias towards the Tresca yield condition, 
which is in fact not normally so realistic as the Mises condition. 
I have also attempted to keep the mathematical aspects of the 
treatment as simple as possible so as not to discourage, I hope, 
those students who are relatively unsophisticated mathematically 
but who have considerable intellectual and imaginative powers 
and later become excellent engineers. I have tried, nevertheless, to 
bring out at every stage the main general features of the theory 
and I hope that the method of presentation will not prove an em
barrassment to students who later graduate from this introductory 
volume to the more complete and rigorous textbooks. 

Readers of this sort may think my nomenclature a little curious 
also. For example, I do not use the terms "limit theorems" or 
"limit analysis" in reference to the important upper- and lower-
bound theorems and their manifold application. This is because I 
regard it as rather unimportant for the purposes of this book to 



PREFACE xiii 

discuss plastic collapse as the limiting state of elastic-plastic be
haviour. Instead I give some suggestive examples and point out— 
repeatedly—the necessity for scrutiny of the idealisations which 
must be made, whether consciously or unconsciously, in the de
velopment of any theory. I also use the terms "theory of plasticity" 
and "plastic theory" indifferently. 

I have not followed the conventional practice of citing detailed 
references to the literature. It is plain, I trust, that most of the 
facts and ideas I present are attributable to others, and I leave it 
to those who become sufficiently interested to consult any of the 
works cited in the Bibliography to trace the work back to its 
sources. The book possesses, nevertheless, some novel features, 
mainly as a consequence of the systematic application of the lower-
and upper-bound theorems. For these I accept full responsibility. 

There is little emphasis in the book on matters of compu
tation, and in particular there are no listings of computer 
programs. The reason is that the book is concerned primarily 
with the development and application of fundamental ideas in 
plasticity such as the upper- and lower-bound theorems. These 
ideas afford a freedom to the engineer in thinking about 
structural design which cannot be conveyed by a set of standard 
computer routines. 

The mechanical properties of specific materials are quoted in 
SI units (e.g. Fig. 2 . 2 3 ) . Conversion factors for stress, etc. to 
Imperial units are given in Appendix VI. 

The present edition has the same text as the earlier edition 
(Engineering Plasticity, Pergamon Press, Oxford) apart from 
corrections to the text, a few minor changes and an up-dated 
Bibliography. 

Jacques Heyman, Bernard Neal and Andrew Palmer made 
many valuable suggestions for improvement of the original 
manuscript. I am indebted to Jim Greenwood and David 
Durban for some improvements in this edition. 

Finally, I thank John Munro the Series Editor and Ellis 
Horwood the Publisher for their help with the present edition. 
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Palmer, Dr. J. Heyman and Professor B. G. Neal, who read the 
manuscript and made many valuable suggestions for its improve
ment ; and to Miss H. Gunns, who typed the manuscript, and Miss 
P. A. Charter, who traced the illustrations. 



CHAPTER I 

INTRODUCTION 

THIS chapter is intended to provide an engineering background for 
the theory of plasticity. It consists of a set of short essays which 
together define the scope of the subject and some of its aims. Part 
of the chapter is devoted to a brief discourse on the nature of 
theories in general, and the way in which engineers, by focusing 
attention on this area (which is, unfortunately, often regarded as a 
somewhat murky region) can clarify their thinking about the 
processes of design. 

1.1. Metals and Structural Engineering 

The widespread use of metals in structural engineering is largely 
due to their combination of properties of strength, weldability and 
ductility. 

Strength is obviously desirable in making structures which must 
withstand severe loading conditions. 

Weldability is an obvious attraction from the construction point 
of view, because it is a means to the effective joining together of 
components into "cont inuous" structures. 

The word ductility describes in general the ability of a bar to be 
"d rawn" into a longer, thinner bar, usually with the aid of a die. 
The word also has a special well-defined quantitative technical 
meaning, but throughout this book we shall use it in its original, 
general, sense, as a convenient abbreviation for "ability to undergo 
plastic deformation". The adjective "plast ic" simply describes the 
idea of moulding a shape, as a potter might mould a jug from a 
lump of clay. This analogy is not at all inappropriate, because 
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dimensional changes of tenfold can easily be obtained with a 
ductile metal, by compression or shearing, for example. 

Many metals also possess the very useful property of elasticity or 
resilience if they are only deformed a small amount , typically less 
than 1 per cent. In this book we shall primarily be concerned with 
deformation in the plastic range, although we shall devote some 
attention to situations where it is not clear whether elastic or 
plastic behaviour is more significant. 

An important element of the analogy between plastic deforma
tion of metals and the behaviour of potter 's clay is that the 
moulding takes place quickly and permanently. It is obviously 
desirable that a jug, once formed, should not " sag" before it is 
baked, and the potter therefore makes sure that the clay is mixed 
with the right amount of water so that it can be moulded by 
sufficient pressure and yet will not deform appreciably under its 
own weight in the time which elapses before it hardens. The 
plastic deformation of metals at room temperature has both of 
these characteristics; for example, a piece of mild-steel rod or strip 
at room temperature may be bent into an angle practically in
stantaneously, and it will retain the same shape indefinitely. In 
technical language we say that this sort of deformation is time-
independent. 

This use of the word "plastic" as an adjective should not be 
confused with its use as a noun to describe a large class of non-
metallic materials, "plastics"—so-called because they are mould-
able under certain chemical and environmental conditions. True, 
there are some obvious similarities of mechanical behaviour be
tween metals and plastics, but there is an important difference in 
that the deformation of "plastics" is generally time-dependent. 
Thus, a nylon thread will "creep" over a period of time if it 
sustains a constant pull, and then gradually "recover" over a 
period of time if it is later unloaded. This is a marked contrast 
with the plastic behaviour of metals at room temperature and, 
indeed, at higher temperature. This kind of time-dependent be
haviour, although increasingly important in the design of struc
tures made of plastics, is beyond the scope of this book. 
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Ductility is an important property of metals as far as structural 
engineering is concerned for two reasons. First, it makes it pos
sible to re-form the cast ingots of metal into a wide variety of 
shapes. Complex shapes such as crankshafts can be made by 
forging; prismatic members like I-beams and sheets can be made 
by successive continuous rolling operations; rods and wire can be 
reduced to smaller diameter by drawing through a die; sections of 
various shapes can be formed by extrusion through a die; and 
sheet can be pressed into complex shapes like car-body panels. 
The list could be extended considerably. The technology of these 
processes is outside the scope of this book: we shall, however, 
study briefly the mechanics of some simple metal-forming pro
cesses. 

Because metals are softer at elevated temperatures (but below 
the melting-point) many of the processes listed above are per
formed on hot billets. In fact at these temperatures metals creep 
under sustained load, i.e. exhibit some time-dependent behaviour, 
but they can nevertheless be regarded satisfactorily as plastic in 
these processes because the imposed deformations are quick in 
the time-scale of creep. 

Secondly, ductility is a useful property of metals in structural 
engineering from the point of view of structural failure. A struc
ture made of ductile material will deform considerably if over
loaded and will usually still sustain a considerable load in its 
"ben t " condition. Such a structure thus gives helpful warning of 
impending collapse. In contrast, a structure made of a brittle 
material would fail suddenly and catastrophically by "snapping" 
of an overloaded component. Another way of looking at this is to 
note that with ductility goes the capacity for absorbing con
siderable amounts of energy. Metals are thus suitable materials 
for the construction of vehicles, such as cars and ships, which may 
be involved in unexpected collisions. 

Moreover, it is not only at failure that ductility plays an im
portant part in structural integrity. In all structures there are 
geometrical features which produce local "concentration of 
stress". Such features include holes of all kinds, angular corners, 
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notches (whether present by design or accident) and abrupt 
changes in thickness of sections. Broadly the action of a ductile 
material at a stress concentration is to "yield" a little, and in so 
doing to make the stress concentration more diffuse and thus less 
intense. Multiple-riveted joints provide a good example of this 
sort of behaviour; the load transmitted through the joint is un
likely to be shared equally between the rivets, but the overloaded 
rivets will tend to yield a little and produce a more uniform load-
sharing. This sort of behaviour was well understood by those who 
pioneered riveting as a means of joining components: after all, 
the rivets underwent very considerable plastic deformation when 
they were being put in, so a little more in the course of their useful 
life would be unlikely to impair their integrity. 

Throughout the book we shall assume that we are dealing with 
materials which are ductile under all relevant circumstances. We 
should be aware, however, that some metals and alloys display 
very little plastic deformation before fracture, and also that some 
metals which are normally ductile may fracture in a brittle manner 
under adverse circumstances. Brittle fracture in steels—which are 
normally ductile—has been the subject of a very large research 
effort, and although many areas of imperfect knowledge remain, 
sufficient is now understood for the engineer normally to be able 
to deal confidently with the problems posed by the phenomenon. 
For an up-to-date account of the subject see the book by Hall, 
Kihara, Soete and Wells listed in the Bibliography. 

1.2. A Microscopic View 

An intelligent question at this stage would be : as the capacity of 
metals for plastic deformation appears to be such an important 
property from the point of view of the structural engineer, how 
does it come about ? The answer to this question lies outside the 
field of mechanics—which is what this book is about—and within 
the province of physics, chemistry and metallurgy; it is well 
covered in, for example, the book by Cottrell listed in the Biblio
graphy. As we shall make use of some of the relevant ideas in the 
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next chapter, it is worth while to state here, briefly—and at the 
risk of oversimplification—that the crux of the matter is the 
nature of the metallic bond between atoms. There are three main 
kinds of chemical bond : ionic, covalent and metallic. AH are a 
result of the interactions between electrons and atoms, but the 
metallic bond is peculiar in that there are far-ranging electrons 
which move freely through the entire set of positive ions as a kind 
of free electron "gas" . It is the flow of this electron gas through the 
metal under an applied electric field which is responsible for the 
high electrical and thermal conductivity of metals. The freedom of 
these bonding electrons also makes the cohesive bonds between 
adjacent atoms fully transferable in the sense that if atoms in a 
crystal shift positions, the cohesive bonds are just as strong in the 
new configuration as in the old. It is the consequent possibility of 
large-scale reorganisation of atoms with no loss of cohesion within 
the simple crystal structures which is responsible for the unique 
plastic properties of metals on the macroscopic scale. 

1.3. The Theory of Plasticity 

The task of plastic theory is twofold : first to set up relationships 
between stress and strain which describe adequately the ob
served plastic deformation of metals, and second to develop 
techniques for using these relationships in the study of the mech
anics of metal forming processes, and the analysis and design of 
structures. We shall see that in the accomplishment of both of 
these tasks there is plenty of scope for the exercise of individual 
judgement and taste. The theory is a more powerful tool for 
engineering analysis and design in the hands of a worker who is 
well aware of the scope, within the theory, for individual ini
tiative. 

1.4. The Nature of Physical Theories 

It seems worth while at this stage to digress a little and make 
some remarks about the problems which are encountered in the 
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construction of any theory. The general aim of these remarks is to 
elucidate the nature of the relationship between objects and ex
perimental observations on the one hand and ideas on the other. 
These remarks will in fact provide one of the major themes for 
the book as a whole. 

Our problem is, basically, how the human mind can come to 
grips with the physical world, and manipulate it. Now one of the 
most interesting achievements of the human mind has been the 
development of mathematics, which is fundamentally an abstract 
subject dealing in particular with relationships between symbols, 
including numbers. We might guess therefore that mathematics 
would be a useful tool in our task of obtaining an understanding 
of the physical world. But how can mathematics, which is so 
clear and precise, and in many ways simple, be applied to the 
physical world which, although apparently consistent, is many-
sided and extremely complex? The key to the solution of this 
problem lies in our making idealisations of the physical world. 
Now we are all familiar with the process of making idealisations, 
but we may indeed be so familiar with it that we almost lose sight 
of the fact that we are making idealisations at all. Therefore, even 
though we risk stating the obvious, it seems worth while to give a 
few simple illustrations. 

For example, in discussing the position of a ship at sea, we 
regard the ship as a point. The bows and the stern actually occupy 
different positions in space and so have different latitude and 
longitude coordinates. However, it would clearly be a waste of 
everyone's time to think of quoting two positions for two different 
parts of the ship at sea, simply because the ship is extremely small 
compared to the size of the ocean. The situation is reversed, how
ever, if we are thinking of bringing the ship into a dock: here the 
pilot will be very much concerned with the positions of both bow 
and stern with respect to the dock. 

We can extend these considerations about ships almost as far 
as we please. The hydrodynamics expert whose job it is to decide 
the shape of the hull of a ship will regard the ship as a rigid body 
which is moving through the water. On the other hand the 
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structural engineer will certainly regard the ship's plating as flex
ible, and indeed will probably be concerned with the distortion of 
the ship as a whole in heavy seas, if for no other reason than to 
make sure that the propeller shaft bearings remain in sufficiently 
good alignment. The mechanical engineer will be conscious of the 
vibrations of the ship's structure which may be caused by the 
engines, so he too will consider the ship as being made of flexible 
material. Yet, again, the interior designer of a large liner will 
picture the ship primarily as a floating hotel; and so on. 

The point of this rather obvious analysis is that any mental 
picture of the ship we may have depends on what questions we 
are asking about the ship. If we ask "where is the sh ip?" we think 
of it as a point if it is out at sea, and as an object of a particular 
shape and size if it is near a dock. To answer other obviously im
portant questions in the design of a ship we consider it successively 
as a rigid body, a flexible body, a hotel, etc., etc. There is no real 
contradiction between any of these different idealisations; not 
even between a point and a body of a particular shape and size 
or between a rigid and a flexible body—although at first sight 
these are absolutely contradictory. Quite simply, in each case 
the idealisation is the best one for the particular question in hand. 
The process of idealisation of the physical world is one in which 
we set up conceptual models in which only the main features from 
a particular standpoint are reproduced. 

Now we are all familiar with physical models. An architect's 
model of a proposed building, for example, gives an indication of 
the main features of the building without including a lot of detail. 
We are not misled by the fact that the model, perhaps, is made of 
balsa-wood and has unglazed windows into thinking that the 
finished building will also be made of wood and have simple holes 
for windows ; we understand easily that the sole object of a model 
of this sort is to give an indication of the layout and proportions 
of the building in a three-dimensional representation. Precisely 
the same sort of relationship between reality and model holds for 
conceptual models; the only difference is that conceptual models 
only exist in the human mind. 



8 PLASTICITY FOR ENGINEERS 

Science is rich with examples of conceptual models, and indeed 
the progress of science is largely a result of the invention of ap
propriate conceptual models to fit particular experimental ob
servations. A good example of a conceptual model is Maxwell's 
kinetic theory of gases. In this theory Maxwell uses as a model of 
gas an empty space containing a number of small, fast-moving, 
perfectly elastic, heavy balls which bounce indefinitely between 
the walls of the container, obeying Newton's laws of motion. This 
simple and imaginative model explains satisfactorily a number— 
but by no means all—of the phenomena of gases and mixtures of 
gases. In discussing this theory we are not committing ourselves 
to a belief that atoms or molecules are small spherical particles: 
we are simply saying that if we regard them as such, then in 
certain circumstances the predictions of the model agree well with 
experimental observations. In other circumstances—for example 
a t very high pressures—this model becomes inadequate, and we 
have to seek another. 

Nearer to our own field, the useful subject of rigid-body mech
anics provides many good examples of conceptual models; indeed, 
the subject owes its existence to the conceptual model of the rigid 
body. N o w no real object is actually rigid : sufficiently large forces 
will always produce deformation or fracture. However, in many 
situations the forces tending to distort the body are relatively un
important compared to those tending to accelerate it, and so it is 
reasonable to set up and use the concept of the perfectly rigid 
body. W e are all familiar with the language of this branch of 
mechanics at the schoolboy level: " A heavy particle rests on a 
smooth flat horizontal table. It is attached to a point on the table 
by a light inextensible string. . . . " A n idealised situation is 
described very clearly. The corresponding situation in the physical 
world might be described as follows: " A lump of metal lies on a 
table. It is attached by means of a piece of string to a nail which 
has been driven into the table. On investigation it turns out that 
the coefficient of friction between the lump and the table is 0 - 1 , 
that the mass of the string is only 1/20 of that of the lump of 
metal, and that when the mass is suspended by the string in the 
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gravitational field the string extends by about 1 per cent." By 
removing from our model the extensibility and mass of the string, 
and all friction, we arrive at a situation which is amenable to 
relatively simple analysis using Newton's laws, and we hope that 
the main features of the behaviour of the model will be broadly 
similar to those of the real system. We can test the predictions of 
our model by performing an experiment and comparing the pre
dicted and observed behaviour. If this comparison reveals large 
discrepancies, we must of course reconsider the features of the 
model. For example, in this particular situation the absence of 
friction from the model would lead to large differences in be
haviour between the model and the physical set-up in long-term 
motion, but probably not in short-term motion. If instead of 
discarding these "secondary" effects in setting up our model we 
had retained them, all the mathematics would have been very 
much more complex, and all clarity would have disappeared. 

Thus, in making idealisations and setting up conceptual models 
we run, in general, the risk of removing some feature which is in 
fact rather important. We cannot of course make any direct test 
of our models against the real physical world: the only test we 
can make of the validity of our models is to see whether or not 
predictions based on their use agree with experimental observa
tions made on real physical systems. 

As we must necessarily make idealisations in setting up our 
simple models we cannot of course ever expect complete agree
ment between " theory" and experiment, and we must be content 
with broad agreement on the main features of behaviour. The 
question of whether agreement is satisfactory or not is thus to 
some extent a question of taste. In engineering we often have to 
judge between an extremely crude model which leads to very 
simple calculations and answers which may agree with experiment 
to within, say, ± 20 per cent, and a much more sophisticated 
model which leads to complex and lengthy calculations and pro
duces answers which are to within, perhaps, ± 5 per cent of ex
perimental observations. 

It is a main thesis of this book, as indeed of plasticity theory in 
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general, that in the structural engineering design situation it is 
extremely valuable to have a simple theory which enables the 
designer to make rough but rapid assessments of the main structural 
characteristics of various possibilities which he is investigating. It 
is true that some refinement will probably be desirable in the later 
stages of design, but it is very important not to waste time and effort 
on elaborate calculations in the early stages of design if simpler 
and more radical calculations would provide just the relevant in
formation. 

1.5. The Conceptual Simplicity and Power of Plastic 
Theory 

It is implicit in the preceding discussion that one of the barriers 
to the general progress of science and engineering is the difficulty 
of choosing appropriate conceptual models. This is one of the 
points at which the intellect and the imagination are worked 
hardest; but once the key has been found, so to speak, new realms 
of understanding are opened up. 

The theory of plasticity is based, as we shall see, on an ex
ceptionally simple idealisation of material behaviour, and it has 
enabled engineers to make enormous advances in their under
standing of certain kinds of structural action, and in the setting up 
of rational design procedures. The development of the theory 
over the past 30 years has marked a pronounced maturing pro
cess in the field of structural engineering, which has led to in
creased confidence and a growing awareness of the value of 
imagination and intuition in the processes of structural design. 
One somewhat curious outcome of this maturing process is that 
we can now, with the aid of plastic theory, appreciate some of the 
achievements of the Gothic Cathedral builders who in the "dark 
ages" evidently had enormous reserves of imagination and in
tuition. These achievements are practically incomprehensible 
according to the theory of elasticity which, ever since the publica
tion of Castigliano's book in 1879, has provided a major con
ceptual basis for structural engineering. For a development of this 
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theme see the paper by Heyman listed under "Masonry construc
t ion" in the Bibliography. 

1.6. Uniqueness, Indeterminacy and Freedom 

This brings us to a fundamental and rather subtle point which 
is not at all well understood by some engineers. Because lack 
of appreciation of this point apparently acts as a barrier to the 
acceptance of plastic theory as relevant to structural design, it 
seems worth while to look into the question in some depth. 

In the theory of elasticity there is a unique relationship between 
stress and strain, which results in the behaviour of elastic structures 
being expressed in the form of equations. As we shall see later, 
plastic theory on the other hand has an essential discontinuity in 
the stress-strain relationship, and the theory involves, in con
sequence, discontinuities and inequalities. This might appear at 
first sight to make the theory difficult, but it turns out that the 
situation may be exploited to produce some extremely simple 
results. Part of the price to be paid for this simplicity is that there 
is often an apparent degree of indeterminacy about solutions to 
problems in plasticity. In fact the answers to the main questions 
which are asked are unambiguous, but there is often a degree of 
flexibility in solutions in the sense that the values of some variables 
may be chosen arbitrarily—within limits—without affecting the 
answers to the main questions. To those brought up on elasticity 
theory this minor indeterminacy may well be puzzling, because it is 
unfamiliar : nothing like it appears in elastic theory where, once a 
problem has been posed, the values of all the variables may be 
determined uniquely, in principle, at least.f 

Are we to conclude, then, that because some quantities are 
apparently undetermined the theory of plasticity is in some way 
sub-standard? Not at all! On the contrary, we conclude that 
those quantities which are not determined uniquely by plastic 
theory are in some way of secondary importance. 

Now the apparently complete determinacy of elasticity solutions 
f We exclude from consideration here questions of elastic stability. 
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is due in part to the fact that elastic structures are normally 
idealised as being stress-free initially. Actual structures are very 
rarely stress-free as built because, quite apart from having to 
carry their own weight, they sustain "locked-in" stresses due to 
slight misfit of the components with each other, due to thermal 
expansion on welding, and because as-rolled sections invariably 
have high residual stresses due to differential cooling in the manu
facturing process. Some specially critical structures may be put 
through a "stress-relieving" procedure which aims at removing 
initial stresses by a sort of annealing process, but in general it can 
be stated that structures as built contain random unknown 
residual stresses of significant magnitude. In general therefore the 
"initially stress-free" idealisation of structures in elastic theory 
cannot be justified, and the determinism of the stress quantities in 
the theory can properly be regarded only as a consequence of an 
unjustifiable idealisation. 

Plastic theory deals with the initial-stress problem in a quite 
different way. It concentrates on the state of the structure at 
collapse, and in fact concludes that initial stresses do not affect the 
collapse strength of the structure. In other words, plastic theory, 
instead of ignoring initial stresses, shows positively that in some 
important respects their magnitude is irrelevant. This conclusion 
is closely related to the ideas of "minor indeterminacy" men
tioned above. 

The emphasis in plastic theory on the importance of some 
quantities and the relative insignificance of others makes the 
theory particularly valuable for structural design. Anyone who 
has attempted any engineering design- or project-work will be 
well aware that in creative work of this sort there are so many 
variables that to consider them all would be quite impossible. It 
is necessary in practice to pick out what appear to be the im
portant variables, and assign reasonable values to the others by 
intuition if by no other means. In other words, there are usually 
so many facets to a design problem that there is no unique solu
tion. There is, so to speak, a lot of room for free-will in design, 
and experienced engineers will often express the profound idea 
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that engineering design is, to a large extent, an art. In an im
portant sense plasticity theory harmonises with this overall 
design situation, in that it places a premium on the use of imagina
tion and intuition. It is not surprising, therefore, that plastic 
theory lends itself easily to problems of structural design, as we 
shall see in the remainder of this book. 

1.7. Shortcomings 

One of the shortcomings of the present chapter is that it antici
pates some of the more important results of plastic theory which 
probably will not be fully appreciated by the student until he 
has studied subsequent chapters and worked at problems. The 
chapter may well make much more sense to the student if he 
reads it again after he has finished other parts of the book. 
Difficulties of this sort are encountered frequently in teaching a 
mature subject; the wholeness of the subject can rarely be com
municated quickly, even though the major ideas can be stated, if 
necessary, in a few words. Usually only a fraction of the ideas in 
a book "take roo t " at the first reading, and much more is under
stood on a second coverage of the same ground. 

To correct any possible misunderstandings the student may have 
at this stage, it seems good to state, explicitly, that the theory of 
plasticity is concerned exclusively with a definite area in the 
mechanics of deformable bodies, and that it cannot, by definition, 
answer questions on many important topics outside its scope. The 
theory provides no guidance on such important aspects of struc
tural design as vibrations, structural stability and the probability 
of the design loads being exceeded during the lifetime of the 
structure, to name a few. Plastic theory provides a tool for 
solving problems in a strictly limited, but nevertheless important, 
field of structural mechanics. 



CHAPTER Π 

SPECIFICATION OF AN 
IDEAL PLASTIC MATERIAL 

WE CONSIDER in this chapter the general problem of how to set up 
a model of the plastic behaviour of metal—for use in analysis and 
design of structures and forming processes—which is at the same 
time both simple and also in broad general agreement with ex
perimental observations. The development of our model will be 
done in several stages, the last of which involves making as many 
simplifications as possible without removing what we consider to 
be the main features. 

2.1. Observations on a Tension Test 

The simplest mechanical test we can perform on a material is 
the tension test. Figure 2.1(a) shows the result of a simple tension 
test performed on an annealed wire of commercially pure copper. 
The wire, originally about 2 mm diameter was held tightly in grips 
which were arranged so that there was a "test section" about 6 cm 
long. The grips were pulled in a testing machine which maintained 
accurate alignment of the specimen and grips, and provided a 
means for recording simultaneously the pull and the extension of 
the wire at any time. The specimen was extended steadily. Very 
similar curves were obtained by testing other specimens at 
different speeds of extension, over a wide range. We observe that 
the curve is steep in the region of the origin, and that although it 
continues to rise, the slope becomes progressively less. We can 
say that the material hardens on deformation, in the sense that it 
gets stronger the more it is extended. In fact, sooner or later a 
maximum load is reached, but we will return to this later. 

14 
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One possibility at this stage—which we shall in fact reject—is 
to fit an algebraic equation to the curve and to use this in sub
sequent calculations on the behaviour of structures, etc. We re
ject this (a) because in general we are interested in solid blocks of 

(a) 

I TENSION "NECKING" 

7-1 MAXIMUM FRACTURE 
LOAD 

EXTENSION 
ORIGINAL LENGTH 

0 2 0 4 

(b) 

I TENSION 

C" EXTENSION 

(c) 

TENSION 

Ç" EXTENSION 

FIG. 2.1. Simple tension tests of annealed copper. 

metal rather than wires and (b) because there is much more ex
perimental information available which we shall also want to 
consider and incorporate in our model. 

The result of a second kind of tension test performed in the 
same machine on a similar specimen is shown in Fig. 2.1(b). It is 
altogether much more interesting than that of the first test, 
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because it shows what happens when the specimen is loaded, un
loaded and reloaded in succession. While the loading parts of the 
path, i.e. those parts for which the load was rising higher than 
ever before, are very close to the curve in Fig. 2.1(a), we see that 
if ever the specimen is unloaded the (tension, extension) point in 
the graph immediately starts off on a different, steeper, almost 
straight path. Further, on subsequent reloading the load-point 
follows the unloading path until it almost reaches the initial 
loading path, when it begins to turn fairly sharply to rejoin 
the path. 

If we are prepared to idealise this kind of "knee" into a "kink", 
and also neglect a small hysteresis effect, we can schematically 
redraw Fig. 2.1(b) as shown in Fig. 2.1(c). In this diagram, in 
view of the directions of the arrows, we can label the steadily 
rising curve as irreversible and the unloading/reloading curves as 
reversible. Further tests show that in fact the loading path is 
reversible for all load changes within the ranges BC, and we can 
•thus describe all the ranges BC as elastic, using this term to mean 
reversible. Examination of the test records indicates that all of the 
elastic branches BC have practically the same slope, and indeed 
are parallel to the very first part of the curve of Fig. 2.1(a). 

Now suppose that a specimen has been loaded to a point B, and 
then unloaded, and is subsequently subject to a steadily increasing 
load. As we have already seen, the response of the specimen is at 
first elastic, but then there is a fairly abrupt (perfectly sharp in the 
idealised version, Fig. 2.1(c)) change into the irreversible range of 
behaviour. This irreversible range of behaviour we call the 
"plastic" range, because we observe on subsequent unloading that 
in this range some "permanent" deformation has occurred. 

As we shall see, it is the fact that there is a transition which is 
almost a sharp discontinuity between elastic and plastic behaviour 
which provides the key to the setting up of simple idealisations of 
the behaviour of the specimen. The name given to this point of 
transition is the yield point. 

We see from Fig. 2.1(b) and (c) that plastic deformation tends 
to raise the yield-point load; indeed, for this particular annealed 
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material the initial yield point is low and the rate of "hardening" 
high, and specially careful experimentation is needed to determine 
the initial yield point. 

Further observations that could be made are that the pattern 
of curves in Fig. 2.1(b) is virtually unchanged if the testing is done 
at different speeds (but lower than shock-wave speeds) and that 
the plastic deformation occurs at constant volume. 

2.2. Behaviour of Metals on the Atomic Scale 

It will be appreciated that so far our discussion has been in 
terms of tension and extension of a bar of material. Later we 
shall discuss mechanical behaviour in terms of stress and strain, 
and use these variables in the subsequent analysis. It is clearly 
convenient, when dealing with structures and forming processes, 
to use these macroscopic quantities which are obviously ap
propriate to mechanical testing when it is reasonable to assume 
that the material is homogeneous. This book is in fact based on the 
presupposition that discussion of materials in terms of stress and 
strain is valid. 

This is not to deny, however, the importance of metal physics to 
engineers. As we have already observed in Chapter I, physicists 
look at metals from the microscopic point of view and often 
think of metals as collections of atoms. The macroscopic and 
microscopic views of matter are of course wide apart , but recent 
advances in metallurgy (see, for example, Cottrell) do in fact 
enable us to understand in broad terms many of the features of 
the tension test we have just described in terms of the interaction 
between atoms. The main lines of the argument can be under
stood without going into much detail, as follows. 

By virtue of the nature of the metallic bond, metal atoms 
arrange themselves in simple regular arrays in the form of crystals. 
There are both attractive and repulsive interactions between ad
jacent a toms; both are highly nonlinear with distance, and the net 
effect is that for an unstressed metal the atoms have an "equili
br ium" spacing. When a metal is loaded in the elastic range the 
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" b o n d s " between the atoms are strained, and for sufficiently small 
relative movements there is practically complete reversibility and 
a linear relationship between attraction and change of separation 
from the "equilibrium" position. Thus in the elastic range a 
block of material will exhibit a linear relationship between changes 
of load and deformation. The crystals, however, are not ab
solutely perfect, and there are occasional gaps and misfits in the 
"lattice". Also in a specimen of metal which has not been specially 
prepared as a single crystal, there will be many crystals in random 
orientation, so there will also be mismatch at the crystal bound
aries. For sufficiently small applied loads, as we have seen, the 
material responds, reversibly, by small adjustments of the inter
atomic distances. For larger loads, however, it becomes "easier" 
for the material to sustain the load if the misfit atoms move 
position. In general the movement of one atom will make a neigh
bour become a misfit, and so it is possible for chains of movement 
to take place by sequences of "flips" of individual atoms. This 
process is known as the movement of dislocations, and the overall 
forces required to produce step-by-step movements of this kind 
are much smaller than those required for wholesale sliding of 
planes of atoms over each other. The net result of large numbers 
of dislocation movements is that observable permanent "plast ic" 
deformation of the specimen takes place. If the load causing 
plastic deformation is decreased slightly, however, the dislocation 
chain does not go into reverse, because the forces are relieved on 
the "next atom in line", and changes are again accommodated 
elastically. The plastic deformation is thus irreversible. Further, 
because the broken bonds re-form at practically "equilibrium" 
separation of atoms, the movement of dislocations, and hence 
plastic deformation, takes place with no overall change in volume 
of the specimen. Also, since the atomic bonds are transferred 
when atoms move around, the elastic properties of the body are 
unchanged by plastic deformation. On reloading after unloading, 
the movement of dislocations commences at practically the same 
load as the previous maximum; hysteresis effects and the rounding 
of the "knee" (Fig. 2.1(b)) are due to small-scale dislocation 
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movements at lower stress than the critical level required for 
large-scale movements. As plastic deformation proceeds the dis
location chains become "piled up" and the stress for plastic flow 
increases in consequence. However, these effects are removed by 
annealing: at higher temperatures the mobility of the atoms in
creases and the atoms can rearrange themselves in a more nearly 
perfect lattice, without any overall change in dimensions of the 
body. 

The above atomic-scale picture of the deformation of metals 
thus reveals qualitatively all of the main features of macroscopic 
behaviour we have described, and we shall return to it as occasion 
requires for illumination of other points later on. 

2.3. Tension and Compression Tests 

We have already observed that it would be premature to base 
a theory of plasticity on the results of tension tests alone, because 
of all possible ways of deforming a block of material the tension 
test is clearly only one. An obvious alternative way of deforming 
a block of metal is to compress it, and because compression is in a 
sense a simple reversal of tension, we consider it next. 

If we compress a straight wire lengthwise it will tend to buckle 
sideways, which is an undesirable complication. We must there
fore test stubby specimens, and the most convenient procedure is 
to squash them lengthwise between smooth, lubricated, parallel 
plates. Again plastic deformation takes place at constant volume, 
and axial shortening is accompanied by thickening. In fact even 
well-lubricated end plates tend to prevent to some extent the 
lateral "spreading" at the ends of the specimen, and "barrelling" is 
observed as the test proceeds, as indicated in Fig. 2.2. In our 
analysis we shall neglect this barrelling and assume that the 
specimen remains cylindrical at all times. 

Figure 2.3 shows the result of a compression test on an annealed 
copper specimen, with compressive load regarded as a negative 
quantity. In spite of the difference in shape between the curves 
in Figs. 2.1(b) and 2.3 we can detect encouraging similarities 
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α 
FIG. 2.2. Stages of deformation in a compression test, showing "barrelling". 

between the two graphs: there are both elastic and plastic paths, 
and relatively sharp transitions between them, in both cases. 

As both plastic tension and compression take place at constant 
volume we might suspect a common mechanism of deformation 
for the two processes, and hence possibly quantitative correlation 
between the two tests, in addition to the qualitative correlation 
we have already noted. 

Clearly to make a comparison between specimens of different 
diameter and length we must normalise our load and deformation 
quantities with respect to cross-section area and length, re
spectively: in other words we must work in terms of "stress" and 
"s t ra in" . Now stress and strain can only be described adequately 
as truly three-dimensional quantities, as we shall see later. How
ever, in the present tests the specimens remain cylindrical (until 
"necking" occurs in the tension test, as we shall see; and dis
regarding barrelling in the compression test), so it is reasonable to 

o, 

COMPRESSIVE 
FORCE 

FIG. 2.3. Simple compression test of annealed copper. 
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use axial load divided by cross-section area as a measure of 
stress and change in length per unit length as a measure of 
strain in these particular tests. Let the cylindrical specimen in
itially have length /„ and cross-section area A0i and be subject to a 
tensile pull Ρ along the geometrical axis of the specimen. At a 
subsequent time let the length and cross-section area be / and A 
respectively (see Fig. 2.4). 

FIG. 2.4. Definition of symbols used to describe tension and compression 
tests. 

The "nomina l" or "engineering" definitions of stress, s, and 
strain, e, a re : 

s = PI A. 
(2.1) 

e = ( / - / . ) / / . . J 

Note that both s and e are negative in a compression test. Now it 
is clear that the shape of the {s, e) curve will be the same as that of 
the (P, l—h) curve, and so these definitions do not achieve the 
desired quantitative correlation between Figs. 2.1 and 2.3. It is 
also clear that in both of these tests, and particularly in the com
pression test, there are very considerable changes of cross-section 
area as the deformation proceeds. 
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To take account of the geometry changes we therefore define 
a "na tura l " or " t rue" stress, σ, as follows : 

σ = PI A (2.2) 

where A is the current cross-section area. A "natura l" strain e is 
not quite so simple to define, because strain is accumulated as the 
length changes: we can however satisfactorily define an increment 
of strain, Se, which occurs as the length increases from / to / + S/: 

Se = S/// (2.3) 

Considering infinitesimal changes and integrating between the 
initial and final lengths /„ and lx (say), respectively, we have 

e = \n(ljl.) (2.4) 

Here In stands for "logarithm to the natural base e". Thus again 
in compression e is negative, because / x / / 0 < 1. 

As we have riot actually measured changes in cross-section 
throughout the test, we cannot directly compute the true stress 
from the observations recorded in Figs. 2.1 and 2.3. However, 
as we have mentioned already, careful measurements show that in 
plastic deformation there is practically no change in volume, and 
we may therefore use this fact to give a relationship between 
current length and cross-section area. For prismatic specimens of 
constant volume 

IA = LAo (2.5) 

so 

Ρ A0 P I I σ = — . — = — . — = s - (2.6) 
AQ A AQ la lo 

Figure 2.5 shows a re-plot, in terms of true stress and true strain, 
of the data of Figs. 2.1 and 2.3. Absolute values of a and e have 
been plotted so that the tension and compression curves are 
directly comparable. The two curves are close to each other, and 
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they indicate that plastic behaviour is remarkably similar in ten
sion and compression, provided due allowance is made for changes 
of geometry. 

The elastic unloading paths have not been shown in Fig. 2.5. It 
should be remembered, nevertheless, that the curves may be 
regarded either as a plot of true stress against true strain for 
monotonically increasing loading or as a plot of yield stress 
against strain. The second alternative is of more significance, con
ceptually, but we should remember—and this becomes of crucial 

0 01 0 2 0 3 0 4 0 5 0 6 0 7 0 8 

FIG. 2.5. True-stress-true-strain curves for annealed copper. 

importance for complex straining paths—that we are really deal
ing with accumulation of increments of strain, rather than with 
strain as such. 

2.4. Instability in the Tension Test 

Before going on to discuss truly three-dimensional states of 
stress, it is worth while to consider, as an introduction to the 
question of instability and the critical effects of changes in geo
metry, the phenomenon of necking in tension test specimens, and 
other related topics. 

When a bar of ductile material is loaded in a tensile testing 
machine, it remains prismatic (except possibly for small zones near 
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the grips or end attachments) well into the plastic range. As the 
load reaches a maximum, however, the deformation begins to be 
non-uniform and a neck forms (see Fig. 2.6). The neck is associated 
with decreasing load (see Fig. 2.1 (a)), and the falling part of the 
tension-extension curve can only be observed if the testing 
machine is "stiff", i.e. if the testing machine imposes primarily an 
elongation on the specimen rather than a load. Otherwise—if the 
testing machine applies a steady load—the specimen will not be 
in equilibrium after the neck has begun to form and the specimen 
will quickly break. 

Suppose that we know the true stress/true strain relationship of 
the material at strains beyond the inception of necking: Fig. 2.5 

suggests that we could obtain this information from a compression 
test. Further, let us re-plot this information as σ against ///„ 
(Fig. 2.7): the reason for this choice of elongation variable will be 
clear later. Let us try to work back from this information to 
predict the form of the load/extension curve (Fig. 2.1(a)). We 
need, clearly, to express the nominal stress s in terms of σ. From 
(2.6) 

s = — (2.7) 
/ / / ο 

Thus, the value of s corresponding to any point Β in Fig. 2.7 is 
given by the slope of the line OB or, equivalently, the intercept on 
the line ///„ = 1. Therefore as the load on the specimen increases 
the point Β travels along the curve, until it reaches the point, T, 
where OB touches the curve, when the load cannot be increased 
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any more. Any subsequent elongation of the bar must take place 
with falling load, and for a value of s below the maximum value 
there are now two possible paths (both lying on a line of slope s 
from the origin); one (TC) involving more plastic deformation 
and the other (77)) involving elastic unloading. In fact the material 
in the neck follows the path TC, while the remainder of the bar 
unloads elastically. The important point is that the inception of 
necking corresponds to a choice of loading paths. The neck pre
sumably forms in practice where the wire is locally slightly thin or 
where the material is slightly weak; once a neck has formed, 

however, there is no tendency for other necks to form because the 
remaining material reverts to elastic behaviour. 

Of course a full analysis of the growth of a neck would involve 
consideration of three-dimensional stress in the "hourglass-
shaped" region, which is beyond the scope of this book. In the 
coin-shaped region at the narrowest part of the neck (see Fig. 2.6) 
the above analysis should be fairly satisfactory, however; but up 
to and including the inception of necking (i.e. so long as the bar 
remains prismatic) the above analysis is perfectly satisfactory. 

The " tangent" construction for the maximum value of s 
(called technically "ultimate tensile stress" or U.T.S.) is known as 
Considered construction. 
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2.5. Materials with Upper and Lower Yield Points 

The preceding discussion has used as an example the plastic 
behaviour of annealed copper which, as we have seen, is a 
material with a low initial yield point and a steadily rising stress-
strain curve in simple tension or compression. T o have a usefully 
high yield-point for structural purposes, copper must have under
gone a process of deformation, such as rolling or drawing, to 
harden the material. In contrast, other metals in the annealed or 
heat-treated condition have usefully high initial yield points. 
Examples are aluminium alloys and steels (see below). Apart from 
this feature, however, all of the preceding description (elastic 
range, yield point, plastic range, etc.) applies equally well. 

Among materials with high initial yield stress are those which 
exhibit the somewhat curious phenomenon of upper and lower 
yield points. As the very useful material mild-steel is in this class 
it is appropriate to discuss the matter a little further. 

The true-stress-elongation curve for a typical annealed mild-
steel is as shown in Fig. 2.8. ///. is plotted because we shall use the 
generalised Considère construction, but the scale has been broken 
because the region of interest involves extensions of the order of 
1 per cent. Suppose we hang weights on a vertical wire of annealed 
mild-steel which is exactly straight, so that there is no variation 
of stress across a section. The material is elastic until point 
Β is reached. As the curve falls but subsequently rises there 
will be another point of stable equilibrium at C: BC pro
duced passes through the origin, but since the slope is so small 
BC is practically parallel to the ///„ axis. Dynamic effects, which 
might be expected in the jump B-C, will be absorbed in the 
slightly viscous (i.e. slightly time-dependent) nature of plastic 
flow. In this experiment we would therefore observe a j ump from 
the elastic range to a homogeneous plastic elongation of the 
order of 1 per cent. Now suppose that we perform a second ex
periment on the same sort of wire in which, by means of a screw, 
we apply a steadily increasing elongation to the wire, and have a 
device for measuring the load. In the elastic range up to point Β 
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the behaviour is the same as before, but thereafter it is different, 
as the load is observed to drop to a lower yield-point correspond
ing to line DF in Fig. 2.8. At this load the material can be in 
equilibrium either in the elastic range or in the plastic range with a 
definite plastic strain corresponding to point F. In an experiment 
on a polished specimen the sudden drop in load is accompanied 
by the appearance on the surface of narrow bands where the 
polish is disrupted, called Liiders' bands after their first observer. 
These bands lie on planes which cross the specimen at 45° to the 
axis, and in terms of Fig. 2.8 they correspond to material at point 

FIG. 2.8. Tension test on annealed mild-steel. 

F. As the elongation increases these bands multiply and spread 
until when the elongation of the specimen as a whole has reached 
point F, the polished surface has entirely disappeared. Sub
sequent elongation causes the load to rise, and the deformation is 
homogeneous as the load point travels up the curve FC. . . . Now 
as the Liiders' bands are at 45° to the axis it is clear that the 
deformation is truly three-dimensional and that consequently 
Fig. 2.8, which refers essentially to a one-dimensional situation, is 
inadequate for a deep analysis. In several respects, however, Fig. 
2.8 is useful: in particular it explains how an overall elongation of 
the specimen of (say) 0-8 per cent is made up of about half of 
the material at 1 · 6 per cent plastic strain, with the remainder 
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still elastic. For mild steel the deformation is thus highly non
uniform on a microscopic scale. This non-uniformity is easily ob
served when a mild-steel structure is tested if a brittle coating 
has been applied to the surface. Whitewash or plumber's resin are 
suitable for application as brittle coatings, but the mill-scale 
found on as-received hot-rolled sections gives a somewhat similar 
effect. 

2.6. The Bauschinger Effect 

We have already seen (Fig. 2.5) that for two specimens of the 
same material tested under steadily increasing tension and com
pression respectively the yield stress for continuing plastic defor
mation is the same function of the accumulated plastic strain, 
when due allowance is made for changes in geometry, and sign. 
We might imagine, therefore, that if a specimen were, say, loaded 
in tension into the plastic range and then unloaded, the yield 
stress on subsequent loading in tension or compression would be 
the same, as indicated in Fig. 2.9(a). Unfortunately, physical 
reality is not quite so simple, and experimental results in general 
are more as shown in Fig. 2.9(b). Perhaps the most straight
forward interpretation of the results is that the hysteresis loops in 
Fig. 2.1(b) which are "nar row" for unloading to zero and re
loading become "wide" when the unloading is continued to a 
negative load about equal to the previous positive load. After the 
hysteresis loop has been traversed, the original curve is regained, 
but as the lower end of the loop is much more rounded than the 
knees of Fig. 2.1(b) we cannot claim that the behaviour beyond 
point F (Fig. 2.9(b)) is similar in the tension and compression 
directions. This is known as the Bauschinger effect, and is often 
thought of as a reduction of the yield stress on loading in the 
direction opposite from the previous direction. 

In fact the Bauschinger effect is observed in polycrystalline 
specimens of metal but not in single crystals, and it may be ex
plained qualitatively in terms of an aggregate of randomly 
oriented "non-Bauschinger" crystals ; the interaction between the 
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crystals "b lu r s" the sharpness of the yield point on reversed 
loading (see Problem 2.1). 

In all future work we shall for the sake of simplicity ignore the 
Bauschinger effect: that is, we shall assume that if a specimen has 
a certain yield stress after a given history of loading, the magni
tude of the yield stress is the same if the sign of the stress is 
reversed. This is a reasonable assumption if reversals of stress do 
not take place in the history of loading of a particular structure 
or metal-working process—which is the case for the vast majority 
of situations considered in this book. If stress reversals do take 

place it will be necessary to re-examine this assumption; an ex
ample of this will be mentioned in the next chapter. So far we 
have been considering the Bauschinger effect in terms of simple 
uniaxial states of stress. Later on we shall interpret our statements 
about the Bauschinger effect in terms of more general three-
dimensional states of stress. 

2.7. The Yield Locus 

We have already seen that in pure tension and compression 
tests of ductile metals we find that at any stage in a history of 

FIG. 2.9. The Bauschinger effect. 
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loading the material has an elastic range of stress, and that if we 
are prepared to make the idealisations indicated in Figs. 2.1(b) 
and (c) the extent of the elastic range is defined precisely, in a 
way which is suitable for formulation in mathematical symbols as 
follows: 

For 0 < a < ay the material is elastic. 

In this statement σ, is the current yield stress, which may be 
either an initial yield stress for a previously unstressed specimen 
or a subsequent yield stress for a specimen which has already 
undergone some plastic deformation. 

By neglecting the Bauschinger effect we extend the elastic 
range thus: 

For — σ„ < σ < σ„ the material is elastic. (2.8) 

Note that we can define an elastic range in terms of limits on 
stress, and without any reference to the reversible relationship 
between changes of stress and strain which is valid within that 
elastic range. 

In general, to develop a satisfactory theory of plasticity we 
shall need to be able to deal with more complicated, three-
dimensional, states of stress. It will therefore be advantageous if 
we can generalise our ideas of "elastic range" and "yield point" 
to more complex stress systems. 

To proceed in relatively small steps, let us consider next a 
bi-axial, i.e. two-dimensional, state of stress. Suppose we devise a 
testing machine which is capable of applying tension and com
pression independently in two perpendicular directions parallel 
to the plane of a thin sheet of material, as indicated in Fig. 
2.10(a). Also suppose that by plastic straining in the 1-direction 
we have established an elastic range (no Bauschinger effect) in 
the 1-direction, bounded by two yield points, as shown on the 
σ χ axis of the stress-space of Fig. 2.10(b). Now let us hold Q\ 
constant in our testing machine at some value within the elastic 
range and steadily increase σζ until inelastic behaviour is observed. 
In general experiments of this kind (usually performed on thin-
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walled tubular specimens in combined tension and torsion) show 
that there is a fairly sharp transition from elastic to plastic 
action : consequently, as an idealisation, we may specify a further 
yield point in alt σ 2 space. Extending the argument, we develop 
the idea of a yield locus in stress space, dividing elastic behaviour 
from plastic for a material previously strained plastically. 

•(b) 
YIELD POINTS 

FIG. 2.10. Bi-axial test and corresponding stress-space. 

Since the yield locus is the boundary of the elastic domain it is 
path-independent in the sense that a point on it may be approached 
by many different loading paths within the elastic region, as 
illustrated schematically in Fig. 2 . 1 1 . 

Experimental work on many metals has amply justified the 
concept of the yield locus. In so far as it is necessary in an ex
periment to decide, somewhat arbitrarily, precisely what level of 
plastic straining marks the end of the elastic range, yield surfaces 
obtained for the same material by different experimenters may 
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differ by small amounts. However, such differences do not 
detract from the validity of the concept of the yield locus. 

The yield locus in stress-space may be an initial yield locus for a 
previously unloaded specimen or a subsequent yield locus for a 
specimen with a previous history of plastic straining. We have 
already seen that in simple tension or compression of a strain-
hardening material the yield stress is altered by any plastic 
deformation, and so in general we expect the yield locus to be 
altered if any plastic deformation takes place. In particular if the 

Fio. 2.11. Yield locus in two-dimensional stress-'space, schematic. 

stress-point goes outside a current yield locus it will lie on a new 
yield locus, so that locally at least the yield locus will be carried 
along with the stress point. In this book we shall be concerned not 
so much with the way the yield locus changes its shape or size as 
the load point "pierces" it, but with the general form of the locus 
for an elementary block of material at a given stage in its history 
of plastic deformation. 

2.8. Yield Surface for Three-dimensional Stress 

In general the state of stress at a point in a body is specified by 
the values of the six independent stress components σχ, σ„ σ», 
Tyty τ „ , T x y referred to an arbitrary set of orthogonal x, y, ζ axes 
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(see Fig. 2.12). It might appear therefore that we would need a 
six-dimensional stress space in which to represent a general yield 
locus. However, it is always possible to choose directions of 
orthogonal axes 1, 2, 3 for which the shear stresses τ 2 3 , τ 3 1 , T 1 2 all 
vanish, as indicated in Fig. 2.12. These are called principal axes and 
the corresponding stresses—a u σ 2, σ3—the principal stresses (see 
Appendix I). It is therefore convenient to choose the principal 
axes as the reference axes, and this incurs no loss of generality 

// the material is isotropic, i.e. has the same properties in all 
directions. 

As all of our visual experience is in three-dimensional space it 
will obviously be desirable in working out the geometry of yield 
surfaces to work in terms of a three-dimensional principal stress 
space. However, can we justify the necessary idealisation of our 
material as isotropic? At first sight this might appear unlikely, 
because the arrangement of atoms in a crystal lattice, being 
orderly and having well-defined directions is clearly geometrically 
anisotropic, and thus probably mechanically isotropic also. How
ever, metallographic examination indicates that unless special 
precautions are taken in preparation, a block of undeformed metal 
contains in general many grains or crystals with the respective 

V 

FIG. 2 .12 . Three-dimensional state of stress. 
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lattice directions higgledy-piggledy. We would thus expect that 
the anisotropy of individual grains would be lost and that 
the material in bulk would be isotropic. However, we might 
expect that even if a material is initially isotropic, subsequent 
plastic deformation may add a measure of order to the random 
orientation of grains and hence produce a geometrical anisotropy 
in the bulk material. Experiments show that the degree of mech
anical anisotropy developed during moderately large plastic de
formation is not great. It is, therefore, reasonable to build 
mechanical isotropy into our idealised simple plastic material. 

We should note, however, that the degree of mechanical 
isotropy found, for example, in metal plates which have been 
reduced substantially in thickness by cold rolling in one direction 
may in some circumstances demand the introduction of a degree 
of anisotropy in the theory. We shall not explore this aspect of 
the theory. 

Returning then to the three-dimensional principal stress space, 
we ask the question: what is the nature of the yield surface for 
our idealised material ? 

We use several different pieces of information in answering this 
question. 

First we introduce the experimental observation that the addi
tion of an equal-all-around (hydrostatic) pressure to a specimen 
of polycrystalline metal does not affect its yield behaviour, at 
least for pressures of the same order as the tensile yield stress; 
this has been demonstrated by many direct and indirect ex
periments. By this statement we mean that if the point (au σ 2, σ 3) 
= (α, b, c) lies on the yield surface, then so also does the point 
(α+Λ, b+h, c-f-A) for all h, at least within fairly wide limits. 

This observation is not surprising if we think about the atomic-
level picture. Response of a metal to hydrostatic pressure by itself 
is purely elastic, because there is no tendency for dislocations to 
move if there is no question of change of shape of the specimen. 
This insensitivity of the yield behaviour to hydrostatic pressure 
is thus broadly associated with the plastic incompressibility of the 
material. 
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We ought to note that metals may become brittle under 
hydrostatic tension, because under these conditions the mode of 
deformation might change from shear to cleavage; and that some 
normally brittle materials, like rocks, may flow plastically under 
shear stress in the presence of high hydrostatic compression. For 
the present purposes, as noted in section 1.1, we shall assume that 
the material is ductile under all relevant stress conditions. 

It is also worth noting, in passing, that a material like saturated 
clay, which is irreversibly compressible, exhibits plastic yield be
haviour under shear stresses which are a function of the hydro
static pressure. The explanation for this difference between the 
plastic behaviour of metals and clays undoubtedly lies in their 
different microstructure—clays are composed of flake-shaped 
particles of the order of 10 ~6 m long, and the cohesive action is 
electro-chemical in the presence of water. 

Returning to our idealised metal, it follows that any point 
(a, b, c) on the yield surface generates a line passing through the 
point and parallel to the line σχ = σ 2 = σ 3, which is in the first 
octant of principal stress space and equally inclined to all three 
principal stress axes. Hence the yield surface is a prism which may 
be thought of as being generated by sliding a curve along the 
"space diagonal" σ χ = σ 2 = σ3. 

This being so, all the additional information necessary for us to 
specify the yield surface completely is the shape and size of the 
cross-section of the prism. Now by elementary solid geometry, 
all planes perpendicular to the line σχ = σ 2 = σ3 have the equation 
°Ί + σ 2 + σ 3 = constant. As it is immaterial which cross-section 
of the prism we consider, we can set the constant to any arbitrary 
value. The most convenient value is zero, which corresponds to 
the plane perpendicular to the axis of the prism and passing 
through the origin of principal stress space. We call this special 
plane the ττ-plane, and the intersection of the yield prism with it 
the C-curve. 

It is a matter of elementary algebra to " reduce" any point on 
the yield surface to the corresponding point on the C-curve. Let 
(a, b, c) lie on the yield surface. The corresponding point on the C-
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curve has coordinates (a+h, b+h, c+h) and in addition, since it 
lies on the ττ-plane, the sum of the three principal stresses is 
zero; so 

h = W+b+c) 

We can thus write, for any point on the yield surface, the identity 

(σι, σ 2 , σ 3 ) = {σ[, σ 9 , σ'3) + (σ 0 , σ„, σ 0 ) (2.9) 
σ» = (?ι + σ 2 + σ 3)/3 
(τ j = ο ι — σ 0 

σ 2 = σ 2 — σ 0 

σ3 = σ 3 σ ο 

Note that σ[ + σ'2 + a't s 0 (2.10) 

The stress (σ^, σ 2 , σ'3) is known as the deviatoric stress or stress 
deviation, and (σ„, σ0, σ0) is known as the hydrostatic stress. In 
geometrical terms we have broken down the stress vector in three-
dimensional stress space into two components, one (the deviatoric 
stress) lying in the w-plane the other (hydrostatic stress) being 
perpendicular to the w-plane. 

EXAMPLE: If (σ„ σ 2 , σ 3 ) = (6, —2, 1), in arbitrary units, find 
(a[, a'it σ'3) and σ,. 

Answer: σ0 = ( 6 - 2 + l ) / 3 = 5/3 

so σί = 4 | \ 

a'3 — — 3f > check: sum = 0 

CTs = — 3 ; 

As we have now focused our interest in the nature of the three-
dimensional yield surface onto the C-curve in the π-plane, it is 
now advantageous to draw a proper plane diagram, shown in 
Fig. 2.13. The drawing shows a view (without perspective) along 
the space diagonal of the three axes σχ, σ 2 , σ 3 (positive and negative 
senses) together with what appears as a triangular mesh in
scribed on the 7r-plane but which may equally well be thought of 
as a view of a cubic lattice in the first octant of the stress space. 

where 
and 
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The reader should verify that the diagonal view of a unit cube 
(i.e. a cube whose side represents unit stress) is as shown inset. 

In Fig. 2.13 the stress-point (6, 0, 0) is represented by point Ax. 
The same point also represents the corresponding deviatoric stress 
(4, —2, —2)—which is as it should be by virtue of the properties 
of the 77-plane. The reader should make sure that he can plot 
points on a diagram of this sort: see the first par t of Problem 
2.12. 

σ 3 

FIG. 2.13. Plan view of the ττ-plane. 

2.9. Symmetry of the C-curve 

We are now in a position to investigate the nature of the C-
curve and particularly some aspects of its symmetry. First, suppose 
that point Ax (6 ,0 ,0 ) lies on the yield surface. Then, if the material 
is isotropic, there is no reason why we should not relabel the 
axes in all possible ways ; we thus conclude that points (0, 6, 0) 
and (0 ,0 , 6) also lie on the yield surface, as shown ;A2,A3. Further, 
if the material has no Bauschinger effect, the point (—6, 0, 0) lies 
on the surface, and so, similarly, do points (0, —6,0) and (0,0,—6); 
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At—Ae. Thus, by appealing to isotropy and no Bauschinger 
effect, one point on the surface has become six. Restrictions of 
this sort are clearly likely to lead to some sort of symmetry in 
general. In fact the point considered was special in the sense that 
σ 2 = σ 3 . If σγ Φ σ2 Φ σ3 a single point, by virtue of isotropy and 
no Bauschinger effect, is multiplied into twelve points. For ex
ample, if point .Bi (7, 2) is on the yield locus, so are Bt (7, 2, £), 
B3 (2, 7, i), Bi ( i 7, 2), B5 ( i 2, 7) and Bt (2, £, 7). The other six 
points are found by multiplying throughout by (—1). Now con
sidering Bx and B2f we see that these are mirror images of each 
other about the projection of the ax axis onto the π-plane. Also 
Bt and Bn are mirror images about a line bisecting the projections 
of the <j\ and — σ 3 axes on the 7r-plane. The problem of specifying 
the C-curve thus becomes (subject of course to the idealisations 
of isotropy and no Bauschinger effect) the problem of specifying 
the C-curve in one 30-degree sector of the π-plane. The curve 
within this sector can then be used as a " template" for all the 
other sectors, as indicated in Fig. 2.14. 

In the ττ-plane three of the six axes of symmetry for the C-curve 
consist of the projections of the uni-axial tension/compression 
axes. To what do the other three correspond? The answer is 
(see Problem 2.2) that they are states of pure shear (for which, 
in general, the principal stresses are of the form (b, —b, 0)) or, in 
general, projections of states of pure shear plus arbitrary hydro
static pressure. It may be shown (see Problem 2.3) that the angular 
range of one sector may be covered by combined tension/torsion 
tests on thin-walled tubes. This is the basis for the classical ex
periments of Taylor and Quinney (see later) on tubes of alu
minium, copper and mild-steel. 

2.10. The Tresca Yield Condition 

Historically the first yield condition for general states of stress 
was that of Tresca (1864), who suggested that yield would occur 
when the greatest shearing stress on any plane reached a limiting 
value k, say. Stating this in terms of principal stresses (using 
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"3 

FIG. 2.14. C-curve in the w-plane, and axes of symmetry. 

to the bisector of the boundaries of the region, as is easily demon
strated. Each of the five other possible orders of principal stress 
magnitude gives a similar line in the appropriate sector of the 
7r-plane, and the final result is thus as shown in Fig. 2.15. The 
yield surface is simply a regular hexagonal prism in principal 
stress space, and in particular it clearly satisfies all the conditions 
of symmetry previously derived. 

The size of the yield surface, i.e. of its cross-section, depends on 
the yield strength of the material. The surface may be either an 
initial yield surface or a subsequent yield surface ; in the latter case 

Mohr ' s circle of stress, Appendix I) the greatest absolute value 
of the differences between the principal stresses taken in pairs 
must equal 2k at yield. T o plot this yield condition on the 7r-plane, 
suppose for example that σχ > σ2 > σ 3 . Then (see Problem 2.4) 
the projection of the stress point on the π-plane lies between the 
projections of the positive σχ axis and the negative σ 3 axis. The 
relevant condition σχ — σ 3 = 2k is a straight line perpendicular 
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the value of A: is a function of the previous loading history. In 
either case the geometrical considerations are the same. 

2.11. Plastic Deformation 

Now the yield locus is the boundary of the elastic zone in stress 
space. What happens when a stress-point reaches this boundary 
and plastic deformation takes place? What is the nature of the 
plastic flow? 

"3 

FIG. 2.15. Tresca yield surface: plan view of the π-plane. 

It is immediately clear that there will be a change in the plastic 
strain, and that obviously we cannot say anything about the 
total plastic strain because this comprises all the plastic strain 
which has taken place in the previous loading-history of the 
specimen. We must always therefore think in terms of the strain 
increments which occur during plastic flow. For a strain-hardening 
material (Fig. 2.1(b)) the magnitude of the plastic strain increment 
at yield will depend on the magnitude of the stress increment and 
the slope of the strain-hardening curve. We will return to this 
topic later. 

However, it turns out that for a material which remains iso
tropic as it hardens (which is our implicit assumption) the 
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FIG. 2.16. Principal stress and strain-increment axes coincide. 

prising, for the loading shown in Fig. 2.16, for there to be any 
shear deformation like that shown if the material were isotropic. 

Next, suppose that during the plastic deformation according to 
Tresca's condition the principal stresses happen to be in the order 
σχ > σ3 > σ3. The planes on which the shear stress reaches the 
critical value k are at 45° to the faces of the block as shown in 
Fig. 2.17(a) and in particular the directions of the maximum 
shearing stresses are perpendicular to axis 2. It seems reasonable 
to assume therefore that the deformation increment consists of 
sliding on the inclined planes shown, and on parallel planes, 
thus involving in particular no change of dimension in the 2-
direction. F rom the plane diagram of Fig. 2.17(b) we can see 
that, for small plastic strain increments, the decrease in length of 
the block in the 3-direction equals the increase in length in the 

direction of the plastic strain increment vector in a three-dimen
sional strain increment space is independent of the degree of 
strain hardening, and depends only on the shape of the yield 
surface. 

In discussing strain increments we need to know the directions 
of the axes of principal strain increments. For isotropic material 
we expect these to coincide with the axes of principal stress. In 
other words, a rectangular parallelepiped of isotropic material, 
loaded on its faces by principal stresses, would be expected during 
any plastic deformation to deform in such a way that its faces 
remained mutually perpendicular. For example, it would be sur-
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1-direction. If 8eu 8e2, δ<τ3 are the three (principal) plastic strain 
increments, we have therefore 

Se s = 0 
8ex Z 0 
Sc 3 = — 

(b) 

σ 1 

FIG. 2 .17. Mode of deformation for shearing of "Tresca" material. 

The ambiguous sign indicates that at the yield-point stress there 
may or may not be any plastic strain increment. This deformation 
clearly satisfies the constant-volume requirement 

S € l + 8e 2 + δ€ 3 = 0 (2.11) 

Another way of writing the result is 

( fc j , 8e„ Se 3) = λ (1, 0, - 1 ) , λ £ 0 » (2.12) 
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Similar results apply at yield for the five other possible algebraic 
orders of principal stress. This sort of relation is known as a 
"flow rule" . 

In the special case where (say) 

Σ 1 > σ 2 = σ 3 

the situation is more involved, because the shearing stress is 
equal to the critical value k not only on the planes shown in 
Fig. 2.17(a) but also on 45° planes parallel to the 3-axis. We can 
only suppose that slip can occur in either of the two possible 
modes, and we have, a priori, no means of knowing what relative 
amounts of plastic strain take place on the two possible slip 
systems. AH we can say in these circumstances is 

(Se,, Se 2 , Se 3) = λ (1 , 0, - 1 ) + μ (1 , - 1 , 0), 
λ > 0, μ ^ 0. (2.13) 

It is instructive to plot plastic strain increments in a space whose 
axes are parallel to the principal stress axes. Figure 2.18 shows 
the combined principal stress/principal strain increment space, 
viewed along the leading diagonal, as before. In order to associate 
each strain increment vector with the corresponding stress vector, 
we plot it with the corresponding stress point as a "floating" 
origin. 

For example, anywhere in the region at > σ 2 > σ 3 the plastic 
strain increment directions are parallel (see (2.12)) and they are 
in fact perpendicular to the (Tresca) C-curve locally. Similar 
relationships apply to the other sides of the hexagon. At the 
apices of the hexagon we have the ambiguous case (2.13), but the 
strain increment vector lies between the normals to adjacent 
sides. 

This normality of the strain increment vector to the edge of the 
hexagon in the π-plane is indeed an aspect of the normality of 
the strain increment vector to the correspondingyàce of the three-
dimensional hexagonal yield prism; this is easily seen by ob
serving that the constant-volume condition (2.11) ensures that the 
strain increment vector is always parallel to the π-plane which in 
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turn is perpendicular to the faces of the yield surface. The am
biguous direction of the strain increment vector at the edges of 
the prism does not violate this "normali ty" rule: the " n o r m a l " to 
a sharp edge is indeterminate to precisely the degree indicated 
by (2.13). 

2.12. The "Normality" Rule 

The "normali ty" of the associated plastic strain increment 
vector to the yield surface for the Tresca plastic material is indeed 

FIG. 2 .18 . Normality of the strain-increment vector to the Tresca yield 
surface. 

not accidental. "Normal i ty" is a general rule which applies not 
only to plastic material but also, as we shall see, in the appro
priate load-space, to structures made of plastic material. 

Its generality may be appreciated to some extent by means of 
the idea of maximum plastic work. Suppose that we have a struc
ture made of elastic-plastic material (with a well-defined yield 
point) which is subject to two (for simplicity) independent loads 
X and Y acting in specific directions as shown in Fig. 2.19(a). In 
an X-Y load space there will be a "collapse" locus (which cor
responds, as we shall see later, to the yield locus for a material) 
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which in general will enclose a simply-connected region (Fig. 
2.19(b)). Suppose that an external agency now imposes an in
cremental deflection at the point of application of X and Y, with 
components 8x, 8y in the same two directions. We ask the 
question: what values of X and Y are induced by this agency? 
The work done in this process is X8x + Y8y, which is the scalar 
product of vectors (X, Y) and {8x, 8y) in parallel cartesian spaces, 

Y 

FIG. 2 .19 . Principle of maximum plastic work. 
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so we can conveniently use a geometrical interpretation if we 
superimpose on (X, Y) space a (8x, 8y) space with parallel axes. 
Given 8x, 8y, we see (Fig. 2.19(c)) that since the scalar product 
is found by multiplying the length of the (8x, 8y) vector by the 
projection of the (X, Y) vector onto it, the work done by the 
agency is maximum if the collapse load corresponds to the point 
at which the deflection increment vector (δχ, 8y) is normal to the 
collapse load locus. As shown in Fig. 2.19, the collapse locus is 
smooth; the same argument applies equally for collapse loci with 
corners and flat faces. In the latter case the load is not uniquely 
determined for an imposed deflection increment normal to a flat, 
but the work dissipated is determined uniquely: we shall find that 
this will have repercussions later on. 

Thus we conclude that the somewhat intuitive principle of 
"maximum plastic work" does indeed account for the normality 
rule. Admittedly the above discussion is sketchy (there has been 
no reference to elastic deformation, for example) but it does bring 
out the important point that the displacement increments asso
ciated with a collapse locus are related to the loads by means of 
a work relation; the incremental displacement variables are 
chosen simply so that the scalar product of the load and the dis
placement increment gives the incremental work done. This 
provides the link between the forces and incremental displace
ments in the present discussion and the stresses and incremental 
strains in the discussion of the Tresca yield condition and the 
corresponding flow rule; it also enables the same ideas to be 
generalised to other kinds of load which act on structures, such 
as couples and uniformly distributed loads or pressures (see 
Appendix III). 

Finally we point out again that the normality rule only tells us 
the direction of the incremental strain vector (i.e. the relative 
proportions of the various components) or incremental deflection 
vector in the general case; the magnitude of the incremental de
formation depends on the amount of strain hardening and other 
factors. 
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2.13. The Mises Yield Condition and Associated Flow 
Rule 

Although the Tresca yield condition and associated flow rule 
will be used almost exclusively in this book (because, as will be 
seen, they often greatly simplify analysis and design), brief men
tion must be made of the important yield condition and flow 
rule due to von Mises. 

The Tresca yield condition is open to the following criticism on 
the microscopic scale. The crystals in a polycrystalline specimen 
of metal are randomly orientated, and so also, in particular, are 
their "slip planes". Therefore it is a little naïve to suppose that the 
simple Tresca maximum shear condition and the associated slip 
mechanism (see Fig. 2.17) will describe adequately the actual 
deformation of polycrystalline materials, particularly in the 
regions of stress space where, according to Tresca, small changes 
in stress will result in large changes of slip direction. This amounts 
to saying that the angularity of the yield locus of Fig. 2.18 is 
somewhat unrealistic physically. R. von Mises in 1912 proposed an 
alternative to Tresca's yield condition which simply replaced the 
hexagonal C-curve of Tresca by a circle (Fig. 2.20). The equation 
of this circle in the w-plane is simple, and may be derived easily 
by noting that the circle, of radius R, say, is defined as the inter
section of a sphere of the same radius and the w-plane. The 
equation of the sphere is 

o\ + o\ + σ\ = R* (2.14) 

and of the ττ-plane 

"i + σ2 + σ3 = 0 (2.15) 

Equation (2.15) is identically satisfied by the deviatoric com
ponents of stress, σ[, σ'2, σ'3, so the required equation of the 
circle is 

' 2 ι ' 2 ι '2 r>2 
σ ΐ + σ 2 ~Γ σ 3 = -Κ 

(2.16) 
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As this equation is in terms of the deviatoric stress components it 
must also be the equation of the circular cylinder which represents 
the yield condition in three-dimensional principal stress space. 

To fix the size of the circle, let us (arbitrarily) decide to make it 
coincide with the Tresca hexagon in the π-plane at the apices— 
i.e. to make it coincide for states of pure tension and compression. 
Let the yield stress of the material in pure tension be Y. As each 
of the principal stress axes is inclined at c o s " 1 ^ 2/3 to the π-

Fio. 2.20. Mises yield surface (plan view of π-plane) and associated 
strain-increment vector. 

plane (Problem 2.5), R = Y *J 2/3 and the equation of the Mises 
yield condition is thus 

af + af + ai2 = 2Υ2β (2.17) 

Obviously this equation can be rearranged in several ways (see 
Problem 2.6), and perhaps the most convenient in practice is: 

( σ ι _ σ%γ + ( σ > _ σ 3 ) 2 + ( o P j σ ι ) 2 = 2 ρ (2.18) 

Comparison of this with the Tresca condition (written in terms of 
the tensile yield stress Y = 2k) 

max. of \σχ — σ 2 I , |σ 2 — σ 3 I , |σ 3 — σ χ | = Υ (2.19) 
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reveals that in effect the Mises condition is related to the R.M.S. 
value of the principal stress differences, while the Tresca condition 
concerns only the largest absolute value. 

The flow rule associated with the Mises yield condition is also 
easily derived. The normal to the yield surface, viewed along the 
space diagonal is radial (Fig. 2.20) and it is furthermore parallel 
to the ττ-plane. Its direction is thus parallel to the direction of the 
projection of the appropriate stress vector onto the ττ-plane, which 
is of course precisely the deviatoric stress vector. Thus 

(8eu Se 2, 8e3) = λ(σί, σ 2 , σ,), λ ^ 0 (2.20) 

We can readily check that the constant-volume condition is re
tained, as it should be. Thus in contrast to the Tresca associated 
flow rule (2.12), there is a one-one correspondence between the 
directions of the strain increment vector and the deviatoric stress 
vector; in particular there is no ambiguity of direction of the 
plastic strain increment vector. 

2.14. Tresca or Mises Yield Condition? 

In the following section we discuss some experiments performed 
by Taylor and Quinney which were specially designed to investi
gate what kind of yield surfaces were found in experiments on 
real materials, and to see, in particular, whether the results sup
ported either the Mises or the Tresca hypothesis, or neither. 
Before we do this, however, it is instructive to make a direct 
comparison between the two yield surfaces, shown in Figs. 2.18 
and 2.20 respectively. Suppose we specify that the yield stress in 
tension has a definite value, Y, say. This fixes the intersection of 
both yield surfaces with the principal stress axes and gives the geo
metrical result that the Tresca hexagon is inscribed in the Mises 
circle. In spite of the many obvious differences between the two 
curves we can see that in some ways they are not dissimilar. For 
example, the enclosed areas of the curves would be equal if the 
hexagon were enlarged by only 10 per cent in linear dimensions. 

If, as we suppose, the curves intersect at the principal stress 
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axes we can see that the greatest radial separation between the 
curves—which occurs in the π-plane directions corresponding to 
pure shear—is about 15 per cent of the radius of the circle. We 
can easily work out this separation by using pure geometry, or, 
equivalently, by comparing the ratio between the magnitudes of 
the yield stress in pure tension and pure shear indicated by the 
two hypotheses. In a state of pure shear k, the principal stresses 
have magnitude (k, —k, 0). Substituting these in the Mises 
equation (2.18) (noting that the principal stress system ( 7 , 0, 0) 
satisfies this equation) we find k — Y/ V 3 . According to Tresca, 
of course, k = Y/2, so the greatest numerical discrepancy between 
the two hypotheses is that between 2 and \/3, which is about 
15 per cent. 

If instead of having the surfaces coinciding at stress systems 
corresponding to pure tension we enlarged the dimensions of the 
hexagon by 7£ per cent, we could of course make the largest 
radial discrepancy no more than ± 1\ per cent. 

2.15. The Experiments of Taylor and Quinney 

Taylor and Quinney set out to answer the questions: Is the 
actual yield condition closer to Tresca's or to Mises's? What 
are the directions of plastic flow? They performed experiments on 
three ductile materials in the polycrystalline state: aluminium, 
copper and mild-steel. Tubes of the three materials, about 12 in. 
(30cm) long, J i n . ( 6 m m ) outside diameter and 0-035in . 
(0-89 mm) thickness were loaded in a machine which could apply, 
independently, tension and torsion. This enables (see Problem 2.3) 
a complete coverage to be made of one representative sector of 
stress space. Special checks were made to see that the material was 
isotropic. 

Schematically, the procedure was as follows. A specimen was 
loaded in tension by pull Ρ up to (say) P„, and then unloaded 
(see Fig. 2.21(a)). On reloading in tension a pull P 0 would be 
required to cause yield. In each case when yield occurred there 
was a knee rather than a kink in the curve, and the yield load was 
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IT or Ρ 
MISES 

r 
(b) (d) 

FIG. 2.21. Experiments of Taylor and Quinney on combined tension and 
torsion of a tube of ductile material. 

with different ratios Pt/Po, and in each case the results were 
plotted as points Pu Tlt normalised relative to P„. 

To correlate these results with the Tresca and Mises yield 
conditions it is not necessary to work in principal stress space: 
a simple transformation shows (see Problem 2.7) that in Ρ, Τ 
space the two yield conditions both produce ellipses, as shown in 
Fig. 2.21(d). In general, Taylor and Quinney found better agree
ment with the Mises than with the Tresca yield condition. 

estimated by back-projection as shown in Fig. 2.21(b). The com
bined tension-torsion tests were performed, after the application 
of tension P0, by unloading to a smaller tension Pt which was 
then held constant while a torque Τ was steadily increased. When 
plastic deformation was again observed, the yield value, Tlt was 
found by the back-projection technique. Tests were performed 
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Measurements of the incremental plastic extension and twist 
showed, in general, good agreement between the directions of the 
deviatoric stress vector and the incremental plastic strain vector, 
which again—via the normality condition—supports the Mises 
hypothesis. 

2.16. Correlation between Tension and Shear Tests 

So far in our discussion of plastic deformation we have con
sidered the nature of the yield surface in stress space, and the 
direction of the incremental plastic strain vector when the load 
point pierces the yield surface. We now turn briefly to the re
maining question of the magnitude of the strain increments which 
occur in the course of a loading programme. 

Now in relation to the simple tension test this question seems 
almost trivial: the magnitude of the plastic strain increment is 
determined by the magnitude of the stress increment at yield and 
the slope of the strain-hardening curve. Although this answer is 
satisfactory for the special case of simple tension, we must bear 
in mind that we are really seeking an idea which will enable us to 
predict the plastic strain history for any arbitrary loading path in 
stress space, which in particular may possibly move around in a 
three-dimensional zig-zag path, repeatedly crossing the elastic 
region. 

The key to the situation is the question of what factors control 
the size of the yield surface. Having incorporated isotropy and no 
Bauschinger effect into our model material we found that the 
yield surface was highly symmetrical, and that if we specified the 
shape (say Tresca or Mises) it was then completely defined by a 
single parameter. In general therefore we ask the question: what 
controls the size of the current yield surface ? 

In Fig. 2.1 it seems clear that the magnitude of the yield stress 
is controlled by the amount of plastic strain which has accumu
lated. For more general loading we could make the hypothesis 
that accumulated incremental plastic strain controlled the growth 
of the yield surface, but we would immediately have to face the 
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0-01 (10 + 15)/2 = yn (5 + 7 -5) /2 (2.21) 

problem of devising a scalar measure of incremental strain if we 
were to add in an appropriate way increments of plastic strain. A 
way out of this particular difficulty is to postulate instead that the 
material is wwfc-hardening; i.e. that the currentyield stress depends 
on the amount of plastic work which has been done (per unit 
volume of material) in the entire previous history of plastic loading. 

This idea does in fact enable us to predict on the basis of a 
single test (say a tensile test) the plastic strain changes in any 
arbitrary loading path. 

To illustrate this idea we consider the simple problem of pre
dicting the complete plastic shear stress-shear strain relation 
which we would expect to find in a pure torsion test on a thin-
walled circular tube on the basis of observations on a tension 
test. Here we define shear strain y at a point with respect to a set 
of axes as the change of inclination relative to each other of a 
pair of lines scribed at right-angles in the material. (Strictly, we 
should define an increment of shear strain.) 

For the sake of simplicity we take schematic tension test data 
as shown in Fig. 2.22(a). The units of stress are arbitrary, and the 
strain is sufficently small for us to be able to use nominal or true 
strain (and hence nominal or true stress) indiscriminately. Elastic 
strains, however, are much smaller, and are negligible. 

Suppose first that we adopt Tresca's yield condition. In pure 
shear of the same material we expect an initial yield stress of 
5 units. How can we compute the rest of the predicted τ-γ curve ? 
Let us suppose, tentatively, that the curve is straight. Now be
cause the yield surface expands uniformly, i.e. preserves its shape, 
we can say that points Β and B' (for which τ = 15/2) on the two 
curves correspond, because they both lie on the same yield surface. 
On our work-hardening hypothesis the plastic work per unit 
volume done in the tensile test up to Β must be the same as the 
plastic work done in the shear test up to B'. The integral in each 
case is simply the area beneath the curve, so if γΒ is the value of 
γ corresponding to B' we have 
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so y , = 2 x 0-01 = 0-02 (2.22) 

It is easy to see that a calculation like (2.21) for all conesponding 
points on the two curves gives the general relation 

γ = 2e 

for corresponding strains, and indeed that the argument holds 
not only for our straight line but also for any general curve. 
Perhaps the neatest way of expressing the correspondence be
tween the two curves is to say that a graph of 2τ against γ/2 for 

FIG. 2.22. Relationship between tension and torsion tests for a work-
hardening Tresca material. 

the shear test would—on this hypothesis—coincide with a graph 
of σ against e for the tension test. Repeating the calculation for 
a Mises material we find that in this case a curve of y/3 τ against 
y/V3 should coincide with a graph of σ against e. 

These particular correlations can easily be checked experi
mentally. In general the best fit between the two curves is obtained 
by plotting quantities intermediate between the two suggestions. 
Although the above example is extremely simple it does illustrate 
that it is possible to establish, via the yield condition and a work 
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equation, the idea of a scalar "effective strain increment". We 
would expect, in general, the form of this to depend on the form 
of the yield surface (see Problem 2.8). 

2.17. Perfectly Plastic Material 

For most of the remainder of this book we shall make use of 
the simplest possible idealisation of hardening, viz. zero strain 
hardening. A non-hardening ideal plastic material is usually 
described as perfectly plastic. 

Nominal stress-strain curves for a few typical structural 
materials are shown in Fig. 2.23, and at first glance it might seem 
quite preposterous to suggest that a non-hardening model might 
be an adequate representation of these materials in analysis or 
design. A first glance may be very misleading, however. 

An important point brought out by Fig. 2.23(a) and (b) is that 
the shape of the plastic stress-strain curve for a particular material 
may appear quite different over different ranges of strain. Perhaps 
the most striking instance of this is mild-steel: over a range of 
plastic strain of, say, 0-1 per cent it exhibits practically no harden
ing, but over a range of 0-20 per cent the hardening is appreciable. 
Similar remarks apply to the rolled aluminium-magnesium alloy, 
and—to a lesser extent—to other materials. 

It follows that in choosing a conceptual model for a real material 
we must be aware of the range of strain in which we are interested. 
In general, in the design of structures we shall be concerned with 
behaviour over a strain range of the order of 1 per cent in tension, 
while in the analysis of forming processes we shall obviously be 
concerned with much larger ranges of strain. It may seem sur
prising that conspicuous deformation of structures is possible at 
such small strains, but it is not difficult to see that if a structure 
consists of slender members like beams or plates appreciable 
transverse deflections may occur at the expense of relatively small 
strain (see Problem 2.9). 

There is a very large volume of experimental work on structures 
which supports the use of an ideal perfectly plastic material in the 
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development of the theory of plasticity: see the book by Baker, 
H o m e and Heyman listed in the Bibliography. In fact one of the 
important requirements for the applicability of the simple plastic 
theory we shall be developing in this book is that the elastic strain 
range of the material should be sufficiently small for deformation 
of the structure within the elastic range to be inconspicuous, and 
sufficiently small in comparison with the plastic range for such 
deformations to be eventually overshadowed by the deformations 
of the structure due to plastic straining. For some materials, 
therefore, we should require data over a larger range of strain 
than that given in Fig. 2.23(a). We shall return to these points in 
several subsequent chapters. 

Having established, then, a prima facie case for adoption of 
perfectly plastic material to represent at least several real metals 
and alloys in the analysis and design of structures, we turn to the 
question of suitable idealisations for materials undergoing large 
plastic strain in forming processes, for which a non-hardening 
model is not obvious, to say the least, from the curves of Fig. 
2.23(b). 

Here we must take account of the consequences, as far as cal
culations are concerned, of the adoption of various possible 
idealisations of material. It turns out, not altogether surprisingly, 
that a non-hardening material leads to simple analysis of structures 
and forming processes—at least, simple in comparison with the 
analysis which would be necessary to deal with more complicated 
and "realistic" idealisations of the material. One consequence of 
the choice of a non-hardening material is that powerful theorems 
are available, which in many cases—as we shall see—lead to 
particularly simple analyses. If, then, there are enormous special 
conceptual and computational advantages to be gained from the 
use of a perfectly plastic ideal material, it is worth while to in
vestigate whether even a fairly strongly hardening material may be 
represented sufficiently well for some purposes by a non-hardening 
ideal material with a yield stress chosen to be "representative" in 
some sense over the appropriate range of strain. In fact, practically 
all theoretical studies that have been made of forming processes 
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have embodied a perfectly plastic ideal material, and, in general, 
agreement with experiment has been remarkably good when the 
value of the "yield stress" has been assigned intelligently. We 
shall return to this topic in Chapter X. 

Finally, to supplement Fig. 2.23 we give some additional ap
proximate data on the strength of metals and alloys in Table 2.1. 

Table 2.1 

The following are typical, approximate values of ultimate ten
sile strength and specific gravity of a few metals and alloys. There 
are very many different iron-, aluminium- and nickel-based alloys, 
and detailed information on their composition and mechanical 
properties should be sought in manufacturers' handbooks, etc. 

Symbols and units are as listed in Appendix VI. 

Specific Ultimate tensile strength 
Material gravityf 

MN/m 4 psi 

Carbon steel, hot rolled : 7-8 
0·2%C (mild-steel) 420 60,000 
0-5%C 660 95,000 
0-8%C 830 120,000 

Alloy steel 7-9 1120 160,000 
Structural aluminium: 2-8 

Al-Mg alloy plate, as rolled 315 45,000 
Al-Mg-Si alloy, fully heat-

treated 315 45,000 
High-strength Al-Zn-Mg alloy 600 85,000 

Nickel-based alloy (Nimonic) 7-9 1260 180,000 
Commercially pure: 

Aluminium 2-7 112 16,000 
Copper 8-9 225 32,000 
Iron 7-9 295 42,000 
Nickel 8-9 485 69,000 

t Density of water = 1000 kg/m3 or 62-4 lb/ft3. 
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Problems 
2.1. A device consists of two grips, which are constrained to move without 

rotation, holding three parallel bars, as indicated in Fig. 2.24(a). The bars 
have equal cross-sectional area and are made of elastic, perfectly plastic, no-
Bauschinger-effect material: the elastic moduli are the same but the three 
yield stresses are different, as indicated in Fig. 2.24(b). 

Assuming that buckling is prevented, examine qualitatively the force-
displacement relationship for the device when it is subject to an arbitrary 
force-time programme. 

Is there a relationship between the behaviour of this device and the mech
anical behaviour of a real, polycrystalline, material? (cf. Fig. 2.9). If so, try 
and think of a physical explanation for the connection. 

(a) 

_ L * 1 

m?7 

(b) 

FIG. 2.24. Model of Bauschinger effect: the bars have different yield 
stresses. 

2.2. Verify that the lines in the «--plane which bisect the projections of the 
axes of principal stress correspond to states of pure shear. 

(Hint. Either work out the principal deviatoric stresses corresponding to a 
state of pure shear and plot them on the ττ-plane, or take any two vectors in 
the w-plane corresponding to known states of principal stress, add them in 
suitable proportions to give the required resultant direction, and examine the 
corresponding state of principal stress.) 
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2.3. Verify that points in the π-plane corresponding to states of stress 
which can be achieved in a thin tube subject to combined tension and (one
way) torsion lie in a 30° sector. 

(Hint. Examine the relationships between the three principal stresses in 
such a test, and plot typical points in the manner indicated in Fig. 2.25. It 
may help to do Problem 2.4 first.) 

2.4. Mark on the ττ-plane (Fig. 2.25) regions corresponding to σχ > σ2 > σ3, 
σ 2 > σ 3 > ΟΊ, etc.; lines corresponding to σι = σ 4, at = <r3, etc.; and the 
point corresponding to ax = <r2 = σ 3 . 

(Hint. Work directly with the diagonal view of a cubic lattice, Fig. 2.25, 
and start by considering simple numerical examples.) 

°,3 

FIG. 2.25. Plan view of the π-plane. 

2.5. Work out the cosine of the inclination of the σ, axis to the w-plane. 
(Hint. Either use vector algebra or consider the solid geometry of an ap

propriate tetrahedron.) 
2.6. Demonstrate by algebraic manipulation the equivalence of the follow

ing formulae for the Mises yield condition in terms of the principal stresses: 

— (σχ σ 2' + σ 2' σ 3' + σ 3' αχ') 
= Η"ι" + "ί* + σ 3 ' 2 } 
= i { ( a x - σ 2 ) 2 + (σ, - σ3)« + (α, - σ»)2} 

= k2 = r2/3 
(Hint. A useful identity is obtained by squaring identity (2.10).) 
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2.7. In a combined tension/torsion test on a thin-walled tube of circular 
cross-section (see Problem 2.3) let σ be the tensile stress and τ the shearing 
stress on planes perpendicular to the axis. Using a Mohr circle construction to 
find the magnitudes of the principal stresses in terms of ο and τ, find a relation
ship between σ, τ and Y (the yield stress in pure tension) for yielding of the 
tube according to (a) the Tresca criterion and (b) the Mises criterion. 

2.8. f The scalar "effective stress" 5 of a given state of stress is defined as 
being numerically equal to the pure tensile stress which is on the same in
stantaneous yield surface as the given state of stress. Show that for the Mises 
yield condition 

2 + σ 2 ' 2 + a 3 ' 2 V-

The scalar "effective incremental strain" Si of a given strain increment is 
defined in such a way that the product δ Si is exactly equal to the total work 
done by the components of stress on the components of the strain increment. 
Using the corresponding flow rule (2.20), verify that 

Si = + W + Sea2]"1 

satisfies the above definition. 
2.9. An initially straight slender beam of length / and depth d is bent, in the 

plane containing its length and depth, into a circular arc such that the deflection 
of the mid-point relative to the ends is equal to djA. 

Assuming that there is no longitudinal strain at the mid-depth of the beam, 
obtain an expression for the greatest direct strain in the beam in terms of 
/ and d. 

(Hint. Assume that a shallow circular arc approximates a segment of a 
parabola, or use the theorem on intersecting chords of a circle.) 

2.10. From Fig. 2.7 show that the relationship between true stress σ and 
nominal strain e at the inception of necking in a simple tension test is 

da de 
a 1 + e 

By making use of the relationship between nominal and true strain (t) find 
the corresponding relationship between σ and e, and make a geometrical in
terpretation of it. 

Under monotonically increasing tension the true stress/true strain relation
ship for a certain material is 

a = Bec 

where Β and c are constants. 

t See the Preface for an explanation of this notation. 
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Show that necking begins when « = c and that after a neck has formed the 
cross-section area A of the un-necked portion of the specimen is given by 

\n(AjA) = c 

where Aa was the original cross-section area. 
2.11. Consider a specimen of linear-elastic work-hardening plastic material 

which may be subject to a general tension/compression loading history. 
Show that by subjecting two specimens to different histories of loading it is 

possible to have two specimens under the same stress at a given time but at 
different strains, and also two specimens at the same strain but different 
stresses. 

Hence show that for a material of this kind (in contrast to an elastic 
(reversible) material) the mechanical state of the material in a tensile test 
cannot be specified by a single variable. 

2.12. Figure 2.2S shows a view of the π-plane along the space diagonal 
σ ι = σ ϊ = ( 7 ϊ · The mesh is the view of a cubic net in alt σ 2 , σ 3 space with mesh 
size of unit stress. 

Plot the projections of the following points onto the π-plane (as demon
strated for A) : 

σ 2 " 3 

A 1 4 2 
Β 4 6 2 
C 3 -1 3 
D 3 -3 0 
Ε 0 -2 -2 
F -3 1 3 

Assuming that the material is isotropic and has no Bauschinger effect, 
transfer all points by reflection about axes of symmetry to the sector of the 
π-plane indicated. Thus show that some of the load states have proportional 
deviatoric stresses. Verify this by working out the deviatoric stresses directly, 
and comparing their ratios. 

2.13. A thin-walled cylindrical shell (with closed ends) and a thin-walled 
spherical shell are subject to interior gauge pressure. Plot on the w-plane 
points corresponding to the states of stress in the two shell walls. 

2.14.1 In a certain experiment it is found that yielding of a material occurs 
under the following states of principal stress: 

0»ι, " 3) = (20, 0, 0) 
and (σ„ σ 2 , σ 3) = (21, 7, 0) 

Assuming that the material is isotropic, that hydrostatic stress does not affect 
yielding and that there is no Bauschinger effect, plot as many points as you 
can derive from these observations in ou at space for a3 = 0 (i.e. plane 
stress). 
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What is the relationship of the curve joining these points to the three-
dimensional yield surface and the C-curve in the ττ-plane ? 

2.15. A perfectly plastic material yields in three-dimensional states of 
stress according to the Tresca yield condition, and plastic deformation obeys 
the normality rule. 

Plot the yield condition for the material in au σ 2 space: 
(a) for a state of plane stress—i.e. σ 3 = 0, 
(b) for a state of plane plastic strain—i.e. Se3 = 0. 

Relate the two yield conditions to the three-dimensional yield surface. 
Repeat for a Mises material. 



CHAPTER ΠΙ 

FEATURES OF THE BEHAVIOUR OF 
STRUCTURES MADE OF IDEALISED 

ELASTIC-PLASTIC MATERIAL 

IN CHAPTER II we concentrated on the plastic deformation which 
occurs when a specimen of metal is stressed, and we set up the 
simple model of perfectly plastic material, which describes some 
of the main features of plastic deformation. 

In the present chapter we shall consciously endow the material 
with elastic behaviour when the stress-point is within the yield 
surface, and we shall investigate in some detail the behaviour of 
a simple structure made of this elastic-plastic material. The object 
of this exercise is to try to obtain a "feel" for elastic-plastic be
haviour in structures, and to seek concepts which will be useful in 
subsequent discussion of other structures of various kinds. 

The example selected for analysis in the present chapter is the 
thick-walled tube, with closed ends, under internal gauge 
pressure. The choice of this example is somewhat arbitrary: an 
obviously desirable ingredient is three-dimensional states of 
stress, while the evident geometrical symmetry ensures relatively 
simple equations. We shall analyse the response of the tube to 
internal pressure which varies arbitrarily with time. 

The tube has inner radius a and outer radius b. For part of the 
discussion we shall for definiteness study a tube with the specific 
proportions b = 2a, but we shall not introduce this restriction 
until after we have set up all the relevant equations. 

For this problem it is obviously best to work in cylindrical 
coordinates; r is radial distance measured perpendicularly from 
the axis of the tube, θ is an angular circumferential coordinate 

64 
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measured from an arbitrary datum and ζ is axial distance from an 
arbitrary da tum plane perpendicular to the axis. We shall assume 
that the tube is sufficiently long for "end effects" not to be felt in 
the zone which we study. End effects may of course be important 
practically, but the zone remote from the ends provides a suffi
ciently complex situation for our present purposes. 

3.1. Ideal Elastic-plastic Material 

The (ideal) material of the tube is elastic-perfectly plastic: in 
uniaxial tension it has stress-strain relations shown schematically 

in Fig. 3.1. The material is uniform and isotropic. The yield 
condition is that of Tresca, and the flow rule is associated with it 
by means of the normality condition. In the elastic range be
haviour is described in terms of two elastic constants, Young's 
modulus Ε and Poisson's ratio v. Because by symmetry r, θ and 
ζ are the principal stress directions we may write the elasticity 
relations : 

FIG. 3.1. Elastic-perfectly plastic material: a tension test. 

E,r = 

Eee = 

Eu = 

- f σ, — νσθ — νσζ 

— var - f σ β — νστ 

— νστ — ν σ θ + σ 2 

(a) \ 

(b) (3.1) 

(c) j 
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In these equations, which govern all elastic response of the 
material (see Fig. 3.1), e and a must be regarded as changes of 
strain and stress respectively within the elastic range. 

T o make the algebra less cumbersome we shall take ν = 0 - 5 , 
thereby making the material incompressible in the elastic as well 
as in the plastic range. Real metals have ν = 0 - 3 approximately; 
however, the effect on the stress and strain distributions of this 
change is small, and our conclusions will not be affected by this 
simplification. 

3.2. Equations of the Problem 

We begin by summarising those equations of the problem which 
do not depend on the material properties. 

The only non-trivial equilibrium equation is the radial one 
(Problem 3.1) 

0 \ = a e - a r ( 3 2 ) 

dr r 

The compatibility equations express the geometrical relation
ships between strain and displacement. If u is a (small) radial dis
placement of a point originally at radius r, 

e, = du/dr (3.3) 

and, assuming symmetrical deformation, 

U = Φ (3.4) 

In the axial direction we can at present only state the " long tube" 
condition for extension of the tube without bending: 

ez = constant = C (3.5) 

These relations are purely geometric, and thus hold irrespective of 
whether the strain is elastic or plastic. 

The boundary conditions are especially simple : 

σ Ρ = 0 at r = b (3.6) 

a, = —p at r = a (3.7) 
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where ρ is the interior gauge pressure ; tensile stress is regarded as 
positive. Lastly, in the axial direction overall equilibrium re
quires 

In writing the last three equations as though the dimensions of 
the structure, as deformed, were the same as for the original, 
undeformed structure, we are restricting ourselves to a study of 
small deformations of the structure. This is justified in the present 
case, because in fact all of the main features of behaviour in which 
we are interested appear before there is any gross deflection of the 
structure. This in turn is due to the fact that most metals have 
such high elastic stiffness that the plastic range is entered at 
strains usually rather less than 0-005: see Fig. 2.23(a) for some 
examples. If this were not so, and metals deformed to, say, 10 
per cent strain in the elastic range we would have to be very careful 
about the effects of geometry changes on our equations. We will 
make some remarks later on in this chapter about geometry-
change effects when the tube is in a position to undergo large 
plastic deflections, and we will return to a more general study of 
these effects in Chapter XI. 

To begin the analysis let us suppose that initially when ρ = 0 
the tube is stress-free; that is, it has been relieved of any stresses 
induced in manufacture by a suitable annealing process. This may 
or may not be a realistic assumption in any particular case. 

Because the elastic range is finite, the initial response to a 
change in pressure is elastic throughout the tube, so we must 
first make an elastic analysis, which will be valid for sufficiently 
small interior pressures. 

Elastic analysis of this problem is straightforward. One of the 
many possible procedures for solving equations (3.1) to (3.8) 
simultaneously is as follows. First use(3.5)to eliminatea* from(3.1). 
Then eliminate u from (3.3) (and 3.4), to give a compatibility relation 

(3.8) 

dr 
(3.9) 
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Into this substitute for cr and e9 in terms of σβ, σ, and C (3.5), 
using the relations just derived. This gives a first-order linear 

differential equation in σθ, ar — and but not in fact in-
dr dr 

volving C. Eliminate σθ and ^— using this equation and (3.2) to 
dr 

give a second-order differential equation in a,. Solve this subject 
to (3.6) and (3.7) to give: 

Substitution in (3.2) gives 

. . . , g + . ) / g - . ) 

T o find the constant C we use these results in (3.1(c)) and sub
stitute in (3.8): this shows that in particular C = 0 when ν = \ ; 
and that for all values of ν 

ο. = (σ, + σ,)/2 (3.12) 

Results (3.10), (3.11) and (3.12) are in fact independent of the 
value of ν in general. The result c, = C = 0 is, however, special 
for ν = 0-5. 

This elastic stress distribution only applies of course if ρ is 
sufficiently small for the stress point (σ„ σ β , σζ) at all radii within 
the wall of the tube to lie within the yield locus. 

Let us find the value of ρ for which the yield condition is just 
reached at some radius. To do this we plot stress points for 
different radii on the ττ-plane of (σ,, σβ, σζ) space (Fig. 3.2). In 
this case it turns out to be simplest to think of plotting (σ'Γ, σ'β, a't) 
directly, because by (3.12) 

σ, + σ β + σ, 
(3.13) 
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i.e. the hydrostatic stress at all radii is equal to σ*, which is in fact 
independent of r (see (3.10) to (3.12)). It follows that 

o't = 0 

and ^-.:_--_,(9/g-i) (3,4) 

FIG. 3.2. Stress trajectory for a thick tube in the elastic range. 

Consequently all stress points referred to the ττ-plane lie on OG, 
Fig. 3.2. In other words the state of stress at any point is one 
of pure shear superimposed on a hydrostatic tension. 

Let a typical point, R, on OG represent the state of stress at a 
general radius r. For a given pressure OR is inversely proportional 
to r 2 , by (3.14). So, if A and Β represent the state of stress at the 
inner and outer surfaces respectively, OA)OB — (b/a)2 irrespective 
of the pressure, within the elastic range. It is clear from this that if 
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the pressure is increased steadily the yield-point stress is first 
reached at the inner surface, r — a. 

To find the corresponding pressure we note that σβ > at > σ, 
so that in the relevant region of stress space the yield condition is 

where Y is the yield stress in pure tension. Thus, using (3.14) 
with r = a we find that the pressure at which the yield point is 
first reached is given by 

Notice that the pressure for first yield at r = a is a function of 
the ratio bja and not of the absolute size of the tube. 

If the pressure is increased above this value, it seems fairly 
clear that the stress trajectory Β A in (σ„ σβ, σζ) space (Fig. 3.2), 
which in the elastic range enlarges proportionally with p, can do 
so no longer, and therefore presumably distorts in some way to 
follow the yield surface. This suggests that for increasing pressure 
an enlarging plastic zone spreads outwards from the inner surface. 

To analyse this partly elastic, partly plastic state of affairs, 
suppose that at some stage in the expansion of the tube the 
elastic-plastic boundary is at radius c, where a ^ c < b, as shown 
in Fig. 3.3. At r = c let σ, = — q; i.e., call the radial pressure q 
at this radius. The outer elastic zone cannot differentiate, so to 
speak, between pressure q exerted by the plastic zone or q pro
vided by a fluid. It follows therefore that because the outer 
surface is not loaded the equations we have derived already apply 
in the elastic region, provided the symbol a is replaced throughout 
by c. In particular, because the stress must be at the yield point 
at r = c, (3.16) gives 

- a, = Y (3.15) 

(3.16) 

Turning now to the plastic zone, we find that the key to the 
situation is the yield condition. Figure 3.2 gives a strong hint that 
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The constant is determined by the boundary condition a — — a a f 

r = c; using this we find 

ar = - q + y In Γ (3.20) 
c 

We can now use the boundary condition σΓ — —ρ at r — a to give 

, = , + Π η ( ΐ ) 

- T ( , - p ) + r t a ; ( 3 2 1 ) 

Hence for any value of c between a and b the corresponding 
pressure may be calculated. Also for any value of c, σθ and a, are 

the relevant region of stress space for the whole plastic zone is 
σβ > σζ > σ„ in which the Tresca yield condition is 

<j9 - ar = γ (3.18) 

Substituting this into the equilibrium equation (3.2) we can in
tegrate directly to give 

ar = Y In r + constant (3.19) 
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determined throughout the tube. Figure 3.4 shows the results for a 
tube with bja = 2 for various values of c/a. 

It is interesting to note that whereas in the elastic analysis 
sketched above a second-order differential equation was ob
tained, and the two corresponding constants of integration were 

FIG. 3.4. Successive distributions of circumferential and radial stress in 
the elastic-plastic expansion of a tube: b/a — 2. 
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obtained by using both boundary conditions (3.6) and 3.7), in 
the plastic zone the stresses are statically determinate, and, given 
the pressure at one boundary, the pressure at the other boundary 
is determined. Thus the equations in the plastic zone, besides 
being simpler than those in the elastic zone, are of a different kind. 
The fact that the equilibrium equation and the yield condition can 
be solved directly without reference to deformation—i.e. that the 
situation is statically determinate—is a consequence of the un
coupling of stress and strain which follows from the special non-
hardening form of our idealised plastic material. We shall come 
across many examples of this situation throughout this book, and 
we shall exploit the "uncoupling" effect by using certain theorems 
which we shall prove in the next chapter. 

Returning to our solution, we find that this is not yet quite 
complete because we have yet not checked our assumption that 
σ, is the intermediate principal stress throughout the plastic 
zone. 

3.3. Ambiguity of az 

We have managed to obtain expressions for <rr and σβ without 
needing to investigate the other stress variable σζ. What do we 
know about σζ ? In terms of stress the only restrictions on σζ are 
that, in addition to being the intermediate principal stress in the 
plastic zone, the boundary condition on equilibrium in the axial 
direction (3.8)—where the integration is over both the elastic and 
plastic regions—must be satisfied. 

Now it is not difficult to show that the special relationship 

oz = (σθ -f σ Γ )/2 (3.12, bis) 

—which was found by elastic analysis—in fact always satisfies 
the equilibrium relation (3 .8): see Problem 3.2. This is therefore 
a formula for az within the plastic zone which satisfies the require
ments stated above. It is clear, however, that the requirement that 
σζ is merely the intermediate principal stress is not stringent, and 
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it is not surprising therefore that there are many alternatives to 
(3.12) which satisfy the above conditions equally well, as we may 
show easily (Problem 3.3). 

Although we have not yet examined the geometry of deforma
tion in partly plastic behaviour of the tube, it is not difficult to 
see that the non-uniqueness of the σ, component in the plastic 
zone is attributable to the fact that there is a "flat" on the Tresca 
yield surface. It is therefore appropriate to ask whether this in
dicates that there is something "wrong" with the Tresca yield 
surface. The answer to this must depend on whether the in
determinacy makes any significant difference to the answers we 
obtain to the major questions we are posing. 

From the analysis we have done so far we can see that the 
indeterminacy in no way affects the relationship between pressure 
and the radius c of the outer boundary of the plastic zone. Neither, 
as we shall see, does it affect the relationship between pressure and 
increase in diameter of the tube. This being so, it appears that the 
indeterminacy in σζ, although curious, is of minor practical im
portance. 

It is perhaps worth while to point out that a general aspect of 
the question of non-uniqueness of stress components arising from 
the form of the Tresca yield condition is that the indeterminate 
component of stress does no work on the corresponding com
ponent of plastic strain increment. 

3.4. Elastic-plastic Deformation 

We are now in a position to examine the strains and deforma
tions which occur in the elastic-plastic expansion of the tube. 
The key to the situation is that the radial expansion of the plastic 
zone is controlled by the elastic deformation of the elastic zone 
which entirely surrounds it. Our previous analysis indicates that 
the stress-points in the plastic zone lie on a face of the Tresca 
yield surface for which the corresponding axial plastic strain in
crement is zero; consequently it is clear that our idea of regarding 
the elastic zone as sustaining a pressure q—exactly as if the outer 
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portion of the tube were filled with fluid—produces no incom
patibility of strain and is therefore satisfactory. 

It follows that the pattern of strain within the tube in the 
elastic-plastic condition is a very simple one: there is no axial 
elongation and, since the material is incompressible in both the 
elastic and plastic ranges, the deformation may readily be ex
pressed in terms of a single parameter. 

A convenient index of the deformation is the circumferential 
strain, e e*, at the outer surface r = b; the radial enlargement of the 
tube is simply (see (3.4)) begb. 

At r = b, using (3.10) to (3.12) with c substituted for a and q 
for py and substituting for q from (3.17) we have 

σθ = Y c2/b* 

a, = 0 } (3.23) 

σ ζ = σθ/2 

Therefore, by the elastic relations (3.1), putting ν — 0-5, 

Using this in (3.21) and rearranging we find 

f = l - j | c w + l n ( H c « ) + 2 1 n ? (3.25) 

This relationship between pressure and circumferential strain at 
the outer surface applies provided a < c < b, from which, using 
(3.24) 

e ! ^ 4 _ ^ e 9 6 < l (3.26) 
è 4 3 7 

When the behaviour is entirely elastic the corresponding equa
tion is, from (3.1), (3.11) and (3.12), 
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When the elastic-plastic boundary reaches the outer surface, 
c = b and (3.25) becomes, simply, 

21 = 2 In b- (3.28) 
Y a 

All of these results can be plotted, universally for different 
values of bja, on a single diagram, Fig. 3.5. Equation (3.25) is 

represented by a single curve with, effectively, a different origin 
for different values of b/a. In fact the line (3.27) is tangential to 
curve (3.28) at the point corresponding to first yielding (Prob
lem 3.4). 

The "full plastic" pressure ρ = Y In (b/a) which is achieved 
when c = b is maintained if the tube expands further: in the 
absence of a surrounding elastic ring it is possible for indefin
itely large strains to take place, according to the theory so far 
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developed. In fact the theory is of limited value for predicting 
behaviour after the disappearance of the elastic zone : 

(a) Because if the radial movement of the outer surface is sub
stantial, the faster expansion of the inner surface results in a 
smaller "current" b/a ratio (Problem 3.5) and, consequently, a 
falling pressure-expansion curve. A small amount of strain-
hardening would, however, counteract this tendency to in
stability. 

(b) Because of the possibility of non-symmetrical deformation 
—corresponding broadly to necking in the tensile test—causing a 
non-symmetrical bulging and thinning of the tube on one side, 
especially if the bore of the tube were initially slightly non-central. 

However, in spite of these limitations, it is plain from Fig. 3.5 
that the full plastic pressure, ρ — Y In (b/a) is of great significance 
as it is the value at which the pressure "flattens" and deflections 
become (say) an order of magnitude larger than the greatest 
possible deflections in the elastic range. 

It is in a sense misleading to have derived the full plastic pres
sure as a special case of an elastic-plastic analysis. It can ob
viously be obtained by direct integration of the equilibrium 
equation (3.2) together with the yield condition (3.18), from 
a to b. 

We can summarise the analysis so far by saying that for an 
initially stress-free tube with closed ends, made of elastic-
perfectly plastic material and subject to a steadily increasing in
terior pressure, there are three phases of behaviour: 

(i) An elastic phase, in which all the material is in the elastic 
range. 

(ii) An elastic-plastic phase in which an inner plastic zone is 
contained within an elastic zone. The plastic zone spreads 
as the pressure increases, but the deflections—which are 
controlled by the elastic zone—are of the same order as 
those in the elastic phase. 

(iii) A full-plastic phase in which, the outer elastic zone 
having vanished, the tube is free to expand by plastic 
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deformation, and achieve much larger deflections than in 
the elastic range. Apart from second-order effects, plastic 
expansion takes place at constant pressure called the 
plastic collapse pressure. At this pressure, we predict, the 
tube will bulge considerably, and may burst. 

3.5. Behaviour under Rising and Falling Pressure 

Suppose now that the pressure, having been raised into the 
elastic-plastic range is steadily reduced until the gauge pressure 
is again zero. What happens to the stresses in the tube? 

For definiteness we consider a particular case, b = 2a, with 
the pressure (applied to the stress-free tube) having risen to the 
value corresponding to c = 1 ·5α: by (3.21), ρ = Y (7/32 + In 
(1-5)) = 0-6247. The distributions of the principal stress under 
these conditions are shown in Fig. 3.6 (full curves). When the 
pressure begins to fall, it seems likely that the material which 
was at the yield stress will have its stress "level" reduced, and 
will thus immediately re-enter the elastic range. Because we now 
have some permanent plastic deformation in the contained plastic 
zone (albeit small plastic strains), we must regard the elastic 
relations (3.1) as referring to changes of stress and strain. As all 
the material is now (we suppose, and can verify later) behaving 
elastically, we can use results (3.10) to (3.12) to work out the 
changes in ar, σθ and σζ for negative pressure increments. For a 
complete removal of pressure, for example, we must subtract 
from the elastic-plastic stress distribution in Fig. 3.6 a stress dis
tribution which would have occurred at the same pressure if the 
material had remained elastic. This is shown in Fig. 3.6 (broken 
curves). For clarity σ, is not plotted: in each state az may be 
taken as the mean of σθ and or, although it is, as we have seen, 
indeterminate to some extent. We must of course now check that 
the material is nowhere stressed to yield. This is easily done in the 
present case because—a z being the intermediate principal stress— 
we simply have to verify that | σβ — σ, \ < Y everywhere; in 
Fig. 3.6 this is clearly so. 
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FIG. 3.6. Distribution of circumferential, radial and axial stress at a 
particular stage in the elastic-plastic expansion of a tube, and after release 

of pressure. 

It is instructive to plot out the stress trajectories in the π-plane, 
shown in Fig. 3.7. Since σζ = (σ„ + σ,)/2 everywhere (in
cluding the assumption that this is the case in the plastic zone on 
first loading) all points lie on a line through the origin per
pendicular to the projection of the σζ axis. Points A, Β and C 



80 PLASTICITY FOR ENGINEERS 

correspond to the radii a, b and c respectively when ρ = 0-6241", 
and A't B' and C to the same radii when the pressure has been 
released. It is clear that the yield condition is not violated in the 
unloaded state. (This is also true if the above assumption about 
ot in the plastic zone is not made: see Problem 3.6.) Having loaded 
the tube into the partially plastic range and then unloaded, we 
are thus left with a residual stress distribution. 

FIG. 3.7. Stress trajectories for partly plastic tube at pressure, and after 
release of pressure (cf. Fig. 3.6.) 

If we now increase the pressure again, the stress points in 
Fig. 3.7 will retrace their paths between A', B', C and A, B, C; 
yielding will recommence at ρ = 0-624 Y and at higher pressures 
the behaviour will be exactly as if the pressure had been in
creased beyond this point in the first loading. The pressure-radial 
displacement behaviour under this programme of loading is 
shown in Fig. 3.8; it is closely analogous to the load-extension 
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behaviour in tensile test of a hardening material shown in Fig. 
2.1(c). Any hysteresis effects in a real material, removed by 
idealisation in Fig. 3.1, would produce broadly similar hysteresis 
effects in Fig. 3.8. 

3.6. The Effect of Residual Stresses 

If the tube has been loaded to ρ = 0 -6247, unloaded (path 
ORS in Fig. 3.8) and disconnected from the pressure supply, it 
will be practically impossible to distinguish it by simple inspection 

PRESSURE 

FIG. 3.8. Pressure-expansion curve showing unloading behaviour. 

from another similar tube in the annealed, stress-free condition. 
On pressurisation, however, the pressure-radial displacement 
curves for the two tubes will be different, as shown in Fig. 3.9. 
For the pre-pressurised tube the curve will be the same shape as 
curve SRT, Fig. 3.8; the residual stress distribution produced by 
pre-pressurising postpones the onset of first yielding. In spite of 
these differences in the elastic and partially-plastic ranges, how
ever, we see that the plastic collapse pressure is the same in both 
cases, i.e. it is independent of the residual stresses produced by 
pre-pressurisation. That this is true for any initial or residual 
stress distribution (in equilibrium for zero gauge pressure) can 
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be seen from a different point of view: the plastic collapse pres
sure is determined from the equilibrium equation and the yield 
condition only, therefore any residual stress pattern is "over
r idden" as plasticity sets in. 

Now in real engineering structures residual stresses are prac
tically always present in the zero-load condition, unless special 
annealing procedures have been carried out to remove them. 

Some causes of residual stresses are listed below. 

(i) Cold forming operations of components, involving plastic 
flow: somewhat analogous to the case analysed above. 

PRESSURE 

0 

FIG. 3 .9 . Pressure-expansion curves showing effect of initial stresses. 

(ii) Hot forming operations, e.g. forging and rolling. Here the 
plastic deformation takes place above the annealing tem
perature, but normally cooling is too rapid for much 
"stress relief" to take place. Furthermore on cooling the 
thicker parts cool more slowly, set up compressive stresses 
—by virtue of the phenomenon of thermal expansion— 
which tend to anneal out to some extent and result ulti
mately in tensile stresses in the thicker regions. 

(iii) Assembly operations, where components are slightly mis
aligned before bolting or welding. In the case of welding 
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there are also thermal effects analogous to those in (ii). 
Similar effects occur in steel-frame building structures and 
pressure-vessels if, as often happens, differential settlement 
of foundations occurs, 

(iv) Temperature differences in service. For example, a thick pipe 
may contain a fluid hotter or colder than the surroundings; 
this will produce thermal gradients which in turn produce 
"thermal stresses" necessary to counteract incompatibility 
of thermal expansion. 

It is not uncommon for residual stresses to be as high as half 
the yield stress of the material. Nevertheless, by virtue of the 
possibility of plastic action overriding residual stresses and the 
fact that at collapse the structure is statically determinate, residual 
stresses, while affecting the partially plastic behaviour of a struc
ture, cannot affect the plastic collapse load, i.e. the strength of the 
structure. 

Throughout our analysis we have assumed, of course, that the 
material is always capable of providing the necessary plastic 
strain without prior fracture. 

Returning to Fig. 3.9, which we may in fact regard as the load-
deflection graph for a general structure, we can see that while a 
"favourable" residual stress distribution (in this case caused by 
prior pressurisation of the thick tube) raises the load to cause first 
yield, an "unfavourable" residual stress distribution (in this case 
produced perhaps by prior external pressurisation, and in general 
by any of (i)-(iv) above) will lower the.load to cause first yield. 
Nevertheless, however unfavourable the residual stress distribu
tion may be in lowering the onset of yielding in a structure, the 
collapse load is quite unaffected. 

This remarkable feature of elastic-plastic behaviour of struc
tures makes calculation of plastic collapse loads an even more 
significant activity for designers than might have been suspected 
from our earlier discussion of collapse of initially stress-free 
structures. 

If we had known that the elastic analysis would turn out to be 
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largely irrelevant as far as the strength of the structure is con
cerned, we might well not have taken the trouble to do it. In the 
remainder of this book we shall, while bearing in mind the general 
nature of elastic-plastic behaviour, concentrate primarily on 
plastic collapse calculations. 

3.7. "Shakedown" 

Another important aspect of the phenomenon of re-adjustment 
of stress distributions in structures by limited plastic flow of the 
ductile material is seen in structures which carry repeatedly-
applied and alternating loads. A possible mode of failure under 
these circumstances is low-cycle fatigue of part of the structure 
through cyclic plastic deformation. What tends to happen in many 
structures is that in the course of the first few applications of 
loads the structure "does its best", by means of limited plastic 
flow, to set up residual stress distributions which will minimise 
the plastic fatigue strains in subsequent cycles. 
. To provide a simple illustration of this, consider a repeatedly 

applied pressure ρ = 0 · 624 7 to our tube (bja = 2). Supposing 
that the tube was initially stress free, first yield would be reached 
at ρ = 0-375 Y (see (3.16)): it might thus be thought—at least, 
by any one unfamiliar with plastic analysis—that this would be 
the limit of pressure for avoidance of repeated plasticity in re
peated pressure loading. However, the analysis we have already 
done shows that a single application of ρ — 0-624 Y induces a 
residual stress pattern which enables the structure to respond to re
peated pressure application up to this level by purely elastic action. 
We say that the structure will shake down to elastic behaviour 
for repeated pressurisation between ρ = 0 and ρ = 0 - 6 2 4 7 ; we 
draw the analogy with the behaviour of a feather-filled cushion 
which "shakes down" when repeatedly sat upon. 

Figure 3.7 suggests that our particular tube will shake down for 
even higher pressures: in fact it may easily be shown that shake
down will occur for all pressures up to the plastic collapse 
pressure. This result however is in a sense a special one for 
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sufficiently small values of bja. For values of this ratio greater 
than about 2-2 shakedown is possible only for pressures lower 
than the plastic collapse pressure (Problem 3.7). 

These conclusions about shakedown depend critically on the 
assumption that there is no hysteresis in Fig. 3.1 and that there is 
no Bauschinger effect. Neither of these is necessarily justifiable, 
especially if there are several reversals of stress into the plastic 
range, as there may well be in practical structures in the early 
stages of loading. (In contrast, simple plastic collapse is prac
tically insensitive to such hysteresis effects.) 

In general, accepting these limitations, we can show that the 
shakedown pressure would not have been different if the tube had 
contained residual stresses initially. Initial residual stresses might 
have altered the pressure at which yield was reached on the first 
application of pressure, but it would not, in fact, have affected 
subsequent cycles of loading. 

It must be admitted that the preceding example of shake
down has been extremely simple: a simple structure subject 
to only one kind of loading whose sign never changed. 
Clearly a full discussion of shakedown should involve multiple 
independent loading systems with the possibility of variation 
of sign. This is, however, beyond the scope of the present 
book. 

A practical application of shakedown in thick tubes is the 
"autofrettage" process which has been used for many years in the 
manufacture of gun barrels. It is clearly desirable that the inner 
bore of the barrel should retain its dimensional accuracy on re
peated pressurisation due to firing. By subjecting the barrel to an 
overpressure before the final surface machining is done, a residual 
stress system is set up in the barrel which ensures that the bore never 
goes into the plastic range subsequently, under normal conditions. 

3.8. A " W o r k " Calculation 

Before leaving our thick-tube example, we shall demonstrate 
how it is possible to evaluate the plastic collapse load quite simply 
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by means of a work calculation based on an assumed mechanism 
of collapse. 

In this calculation we shall not be concerned with partly-
elastic behaviour, but only with the "full-plastic" or "collapse" 
state. 

We shall perform the calculation intuitively in the following 
way: 

(i) Guess a mechanism of plastic collapse, i.e. investigate 
the geometry of a plausible mode of incremental deforma
tion. 

(ii) For an incremental deformation of this mechanism, in
tegrate the work "consumed" in plastic deformation over 
the whole body. 

(iii) Equate this to the work supplied by the pressure in en
larging the central cavity, and hence find the value of ρ at 
collapse. 

The first step is to investigate the geometry of incremental 
deformation of a segment of tube remote from the ends. For the 
sake of convenience we shall use the symbol c to represent an 
increment of plastic strain, in place of our previous notation Be. 
This notation suggests a strain-rate, which is indeed appropriate 
if the time scale is suitably chosen. It is important to think in 
terms of increments of strain rather than total strain, because the 
flow rule (Chapter II) is only meaningful in terms of increments. 

We shall suppose that the deformation is symmetrical about the 
axis. Let the incremental radial displacement at radius r be ii. 
Then by simple geometry (or by differentiating (3.3) and (3.4) 
with respect to "t ime") : 

In the length of tube we are considering, the behaviour of all cross-
sections is the same, so 

é, = du/dr 
(3.29) 

υ = constant (3.30) 
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As plastic deformation takes place at constant volume we can 
write 

C, + £„ + € 2 = 0 ( 3 . 3 1 ) 

Substituting for the incremental strains in this we have 

dù , ù , . ,„ „ . 
— + - = ( — ) constant ( 3 . 3 2 ) 
dr r 

For the present let us assume that the axial elongation is zero, and 
thus set the value of the constant at zero. Integration of the 
equation gives 

ù = C/r ( 3 . 3 3 ) 

where C is a constant. It is most convenient to express the constant 
in terms of the incremental radial deflection, ua, at the inner 
surface, since we shall need this quantity in part (iii) of the 
calculation. Thus 

ù = a ùa/r 

so «fr = — a ùa/r2 

é e = a ùajr2 

All of the material in the tube is thus undergoing deformation 
with one principal strain increment zero and the other two equal 
and opposite : i.e., a pure shear deformation with respect to planes 
parallel to the axis and inclined at 4 5 ° to a radius. If, as we 
suppose, ùa is positive, we may write, conveniently, 

e z , e,) = 0 , 0 , - 1 ) Λ ( Γ ) ( 3 . 3 6 ) 

where λ (r) is a positive function of r. To calculate the internal 
work dissipated, say D per unit volume, during an increment of 
deformation, we shall need to know the principal stresses, be
cause D is found by summing the increments of work dissipated by 
the principal stresses : 

( 3 . 3 4 ) 

( 3 . 3 5 ) 

D — σθ €θ - f ar ér + at iz ( 3 . 3 7 ) 
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We find the principal stresses by using the normality rule, as in 
Chapter II. For a Tresca material (3.36) implies that the principal 
stress magnitudes are in the order 

σθ > σζ > σ, (3.38) 

This defines a region of principal stress space in which the yield 
condition is 

σ0 - a, = Y (3.39) 

Putting <?, = — èg and èz = 0 in (3.37) we have 

D = (ag - OR,) έβ = Υέθ (3.40) 

using the yield condition (3.39). 
Note that the value of σζ was not determined by the yield con

dition, but that this did not affect the work calculation. 
We can now integrate the internal dissipation of work over, 

say, unit length of tube, using (3.35) and (3 .40): 

Γ 2-nrDdr = 2πΥ (" règdr = 2π Ya ύα \— = 2π Yaù„ 1η(ό/α) 

(3.41) 

We now equate this to the work supplied by the collapse pressure 
ρ sweeping through the volume by which unit length of the in
terior of the tube expands in the deformation, i.e. 2παυα. We have 

2παύαρ = 2-n- Yaua \n(b/a) (3.42) 

so, finally, 

ρ = Υ Ιηφ/α) (3.43) 

This is exactly the same result as before (3.28). We have thus 
obtained a value for the plastic collapse pressure for the tube by 
two quite different ways : 

(i) By using the equilibrium equation in conjunction with the 
yield condition. 
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(ii) By considering the geometry of deformation and doing a 
"work" calculation with the help of the normality rule and 
the yield condition. 

Note that in (i) no reference was made to the geometry of deforma
tion and in (ii) no reference was made to the equilibrium equation, 
or indeed to the distribution of stress in the tube. 

That two separate approaches are possible is due to the "un
coupling" of the equations which is a consequence of our use of 
the "perfectly plastic" (non-hardening) ideal material. 

Now we must confess that in doing the "work" calculation we 
"cheated" by making an assumption that the incremental strain in 
the axial direction was zero. In fact, if we make any other assump
tion about € z we obtain a higher value of ρ (see Problem 3.8). This 
is an illustration of a general result discussed in the next chapter, 
which states, in effect, that if we consider a variety of possible 
modes of deformation in doing our work calculation the resulting 
predicted "collapse load" will in general vary but will always be 
greater than or equal to the actual value. This result is a very 
useful one, and one which has wide practical implications, as we 
shall see. 

3.9. Summary 

The aim of this chapter has been to explore the salient features 
of elastic-plastic deformation of structures by means of a simple 
example. Some useful concepts we have encountered are : elastic; 
partly plastic; contained plastic zone; fully plastic; plastic col
lapse; collapse load (pressure); residual stress; shakedown; 
plastic work calculation. 

Problems 
3.1. By considering the equilibrium of forces on a suitable small element, 

obtain equation (3.2). 
(Hint. For an axisymmetric stress field a thin semicircular hoop is an ap

propriate element.) 
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3 . 2 . Consider a long, thin cylindrical shell with closed ends subject to 
slightly different internal and external pressures, and show that for equili
brium to be satisfied 

σχ = (σβ + σ')/2 

in the parts of the shell remote from the ends. Hence show, by imagining a 
closed thick-walled cylindrical tube to be "slit" into a number of closed thin-
walled shells, that the same relation satisfies the requirements of longitudinal 
equilibrium for a closed thick-walled tube. 

(Hint. Either take pressures ρ and ρ + bp or take an interior pressure Sp 
and superimpose a hydrostatic stress ρ onto the whole shell.) 

3 . 3 . Show that σζ — constant satisfies the equilibrium equation (3.8) 
without violating the yield condition (3.15) when σ, satisfies (3.19) and the 
ratio of outer and inner radii of the plastic zone is less than about 2*2. Use 
this solution and (3.12) to generate a family of admissible distributions of 
σζ at collapse of the tube. 

3 .4 . Verify that for any given value of b/a, curves (3.25) and (3.27) in a 
plot of 2pl Y against e e h intersect at a value of tgb corresponding to one of the 
equalities in (3.26); and that the curves intersect tangentially. See Fig. 3.5. 

3 . 5 . Show that if a thick tube deforms axisymmetrically, preserving both 
its length and constancy of volume of the material, the ratio of outer to inner 
radius decreases as the outer radius increases. 

3.6.f Suppose that in the partly-plastic distribution of stress indicated in 
Fig. 3.6. (full curves) az had not been set equal to the average of σθ and ar in 
the plastic zone—but had, of course, still been made to satisfy (3.8). In
vestigate the changes this would make to Fig. 3.7. 

3.7. Derive the geometrical condition (Tresca; no Bauschinger effect) for 
the shakedown pressure to be equal to the plastic collapse pressure for a thick 
cylindrical tube. Does this depend on the particular distribution of az chosen 
in the full-plastic condition ? 

(Hint. Sketch stress trajectories on the w-plane.) 
3 .8 . t Solve the compatibility equation (3.32) for a non-zero constant, 

say iz = g. Show that the resulting mode of deformation is equivalent to a 
superposition of the modes 

ig — aùjn 
ir = —aujr2 

n = o 
and eg = —g\2 

ir = -g/Z 
«« = g 

and that, in particular, the change of internal volume per unit length of tube 
is independent of g. Show that if g has a sufficiently small positive value the 
algebraic order of the increments 

eg > iz > ir 

is preserved at all radii. Observe that as none of the principal strain-incre
ments is zero, the stress-point to which the deformation corresponds by the 
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normality rule is at an edge of the Tresca yield surface (i.e. a corner of the 
hexagonal C-curve). By using the result of Problem 4.4, show that the work 
dissipated internally increases as g increases. Similarly, show that the work 
dissipated increases as g decreases when g is negative. 

Hence show that for a given radial expansion rate the pressure derived 
from the "work" equation is smallest when èz = 0, at least for small values 
of ez. 

3.9. A thick-walled tube of perfectly plastic material sustains the full-
plastic internal pressure given by (3.28). Examine the location on the Tresca 
yield surface of stress points for different radii, apply the normality rule to 
obtain information about possible plastic deformation, and verify that such 
deformation is compatible with a mode of collapse for the tube. 

3.10. Show that in a graph of o9 against cr the elastic analysis of a thick 
tube under internal pressure (equations (3.10), (3.11)) is represented by a 
straight line, while the yield condition (3.15) is represented by another 
straight line. 

For an initially stress-free tube of given b\a sketch a graph of σθ against ar 

(points corresponding to different radii) (a) at first yield, (b) when the elastic-
plastic boundary is midway between a and b, and (c) in the full-plastic con
dition. 

3.11. Assuming that the distributions of stress and strain-rate are axi
symmetric, find the full-plastic external gauge pressure for a thick-walled 
tube with internal and external radii a and b, respectively, by solving the 
equilibrium and yield equations together with the stress boundary conditions. 
Could the result be derived more expeditiously in a different way? 

3.12. Make a plastic analysis of a thin-walled cylindrical tube sustaining 
internal gauge pressure, and reconcile this with a limiting case of the thick-
walled tube analysed in the text. 

3.13.f Show that for steady radial heat flow in a thick pipe with internal 
and external radii a and b respectively, the temperature Tat any point may be 
expressed by 

Τ = A ln(6/r) + T„ 

where A = (Ta — Tb)j\n(bja) 
and Ta, Tb are the temperatures at the inner and outer surfaces, respectively. 
Assume that the thermal conductivity is independent of temperature. 

A thick pipe with closed ends is made of material which may be regarded 
as a rigid-perfectly plastic Tresca material with a temperature-dependent 
yield stress Y in pure tension : 

Y = Be~CT 

Β and C are properties of the material. 
Show that the full-plastic gauge pressure ρ is given by 

where Yb is the value of Y at temperature Tb. 
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Check that for zero heat-flow formula (3.28) is regained. 

(Hint. Note that "̂"Jj ~ ~ = In ο is useful in checking the special case.) 

3.14. Derive the following equilibrium equation for a small element of a 
thick spherical shell with spherically symmetrical distribution of stress (cf. 
Problem 3.1): 

da, _ 2(a9-ar) 

dr r 

Make a full-plastic stress analysis for a thick-walled spherical shell with 
internal and external radii a and b respectively, and show that the full-plastic 
pressure is given by 

ρ = 2Y\n(b\à). 

Plot stress points for different radii on the π-plane, and compare with the 
corresponding diagram relating to a cylindrical tube with closed ends under 
internal pressure. Also compare with your answer to Problem 2.13. 

3 . 1 5 . t A thick cylindrical tube, with internal and external radii a and b, 
respectively, is closed by matching hemispherical end caps which are fully 
continuous with the tube. It is decided to remove ambiguity from the de
termination of σ, in the full-plastic analysis of the tube by equating σ» in the 
tube to σθ in the end-caps at their common plane. The stresses in the end-caps 
are taken to be a scaled-down version of the full-plastic stresses (see Problem 
3.14). Verify that στ given by this method is everywhere intermediate between 
a, and σβ. 

3 . 1 6 . The Tresca yield condition has been used throughout Chapter III. 
Investigate the effects on the analysis of thick tubes of using the Mises yield 
condition instead. 

Show, in particular, that at = (ag + or)j2 is necessary in the plastic zone if 
the mode of plastic deformation is to involve zero elongation (see equation 
2.20). Also show that the full-plastic pressure is given by ρ = 2k \n(b/a)— 
where k is the yield stress in pure shear—according to both the Tresca and the 
Mises yield conditions, and explain this in physical terms. 



CHAPTER IV 

THEOREMS OF PLASTIC THEORY 

IN THE previous chapter we saw that it was a relatively simple 
matter to do a complete study of the elastic-plastic behaviour of 
a thick tube under varying internal pressure. In our study we 
made sure of the following four requirements : 

(i) That the equilibrium equations were satisfied in both the 
elastic and plastic zones ; 

(ii) That the strains and strain increments were geometrically 
compatible ; 

(iii) That in the elastic zone the stresses and strains were 
related by the appropriate form of Hooke's law; 

(iv) That in the plastic region the stress points lay on the yield 
surface while the corresponding plastic strain increment vectors 
were normal to it. 

It is not surprising that it was possible to achieve a complete 
analysis, since the structure was so simple and symmetrical— 
indeed it was chosen for this very purpose. 

It is plain that most practical engineering structures are a lot 
more complicated than the simple tube, and we should therefore 
expect that to do similar sorts of studies on them would be very 
time-consuming in general. How then can we deal with compli
cated practical structures, short of doing very elaborate cal
culations? 

One possibility, which results in a considerable saving of effort, 
is to concentrate on the collapse state of the structure and to 
ignore the elastic and partly-plastic preliminary stages. This is a 
sound and reasonable step when we realise that, just as in the 

93 
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previous example, the collapse load is independent of residual 
stresses and, indeed, of the path by which it was achieved. Of 
course this step is only justified if we are primarily interested in 
the strength of a structure or the force required to execute a 
forming process: it would be a quite irrational one if we were 
mainly concerned about elastic deformation or vibration, etc.— 
as we have already pointed out. 

However, even if we restricted attention only to the collapse 
state we would find that a complete investigation might be very 
lengthy for a complicated structure. For example, in the well-
developed field of steel-frame building structures, a complete 
analysis of a one-bay, one-storey frame under combined vertical 
and sideways load is quite simple, but the corresponding analysis 
for a two-bay, two-storey frame is much more complicated, even 
though the structure is still simple in terms of actual steel-frame 
buildings. 

Fortunately, plastic theory provides us with a way of avoiding 
many of the difficulties arising from the study of complex struc
tures and forming processes by furnishing us with the so-called 
"bound" theorems. These theorems are so powerful in the theory 
of plasticity that it is hardly possible to give, concisely, a reason
ably good impression of what they are all about. Indeed, their 
power will not be fully evident until we have given a wide range of 
examples of their use; and this, in fact, will occupy a large fraction 
of the remainder of this book. 

4.1. Lower and Upper Bounds on Collapse Loads 

Perhaps the best starting-point for a description and explana
tion of these theorems is the observation made in Chapter III 
that there are two approaches to the problem of calculation of 
collapse loads, which we can conveniently call the "equilibrium" 
and "geometry" approaches respectively. We saw in the example 
that in the "equilibrium" approach we satisfied the equilibrium 
equations and yield condition, and arrived at an answer for the 
collapse load without considering the mode of deformation at all. 
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Conversely, in the "geometry" approach we studied the mode of 
deformation and an "energy balance" and arrived at an answer 
without considering the equilibrium equations at all. As we ob
served then, this "uncoupling" of the equilibrium and geometry 
aspects of the problem is a direct consequence of the especially 
simple perfectly-plastic ideal material. 

In one important respect, however, this particular example is 
misleading as a guide to the general situation, for in general the 
answers given by the two methods are different from each other. 

As we shall see, this is not so serious a snag as it may appear 
to be at first sight, because, although different, the two answers 
are often close. Further, we shail find that a collapse load pre
dicted by the "equilibrium" method is always on the low side of 
the exact collapse load (if it is not equal to it), and, conversely, the 
collapse load predicted by the "geometry" approach is always on 
the high side, if not correct. It follows that the "equilibrium" 
method will always give a "safe" estimate of the strength of a 
structure—which is often precisely what is needed in structural 
design—while the "geometry" approach will always give an 
overestimate of the power needed to execute a forming operation 
—which again is often precisely what is needed. 

When we come to consider specific examples we shall find that 
in most cases when we are only considering the equilibrium 
equations and yield condition for a (redundant) structure we shall 
be free to specify arbitrarily the values of some of the variables. It 
is this freedom which makes the method so valuable as a tool for 
analysis and design because we can often exploit it to give ex
tremely simple calculations. In an important sense the solution of 
problems becomes partly an "ar t" , which is a great asset in simple 
design calculations. 

After this general and perhaps rather vague introduction we 
now give a statement of one of the theorems, followed by an 
example and then a proof. 
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4.2. The Lower-bound ("Safe") Theorem 

Statement: If any stress distribution throughout the structure 
can be found which is everywhere in equilibrium internally 
and balances certain external loads and at the same time does 
not violate the yield condition, those loads will be carried 
safely by the structure. 

T o illustrate this we consider again the thick-walled tube of the 
previous chapter, but this time we pretend that we do not know 
that it is possible very easily to satisfy the equilibrium and yield 
conditions simultaneously everywhere. 

We shall naturally seek a symmetrical stress distribution, so 
the relevant equilibrium equation, as before, is: 

do, _ OQ — Ο, ^ J 

dr r 

The stress boundary conditions are 

a, = — ρ at r = a 

σ, = 0 at r = b 

and, in the longitudinal direction, 

( 4 . 2 ) 

ρπα* = J * 2-nazrdr ( 4 . 3 ) 

We now seek any solution of these four equations, and then find 
the value of ρ by putting in the requirement that the yield condition 
is not violated. Our choice of solution is wide-open because any 
distribution of σ, which satisfies ( 4 . 2 ) may be substituted in ( 4 . 1 ) 
to give σθ. Perhaps the simplest choice is a linear variation of 
ar with r from — ρ at r = a to 0 at r = b. Putting, therefore, 

a, = A + Br 

and substituting the boundary conditions ( 4 . 2 ) we find 

ο, = = ρ (b r)l(b - a) ( 4 . 4 ) 
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Substituting in (4.1) we obtain 

a,= - p { b - 2r)/(b - a) (4.5) 

As before we note that σζ — ( σ β + σΓ)/2 always satisfies (4.3), 
and since σζ is intermediate in this solution of the equilibrium 
equations the relevant form of the Tresca yield condition is 

\σθ - ar I = Y (4.6) 

FIG. 4.1. A distribution of stress in a thick tube which satisfies the 
equilibrium equation and does not violate the yield condition. 

From (4.4) and (4.5) (or alternatively from (4.1) and (4.4)) we find 

σβ — ar = prlib — a) (4.7) 

Clearly \σθ — ar\ has its greatest value at r = b, so for the yield 
condition not to be violated anywhere, but just to be reached 
at r = b, 

p= Y (I - alb) (4.8) 

This value of ρ is easily shown to be always less than that given 
by the exact solution (equation 3.28) for b > a. If b = 2a, for 
example, the value of ρ is 28 per cent lower than the exact value, 
pc say. The stress distributions worked out above are shown in 
Fig. 4 .1 , again for b/a = 2. Compare with the curves c = 2a in 
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Fig. 3.4. Intuitively, the reason why the corresponding value of ρ 
is lower than pc is that the yield point is only reached at r = b, 
whereas in the exact solution the yield condition is satisfied 
throughout. 

There are obviously other possible procedures for satisfying 
the equilibrium equations; one such would be to specify ae(r) and 
then to solve (4.1) for ar (Problem 4.1). 

It is also worth pointing out that the elastic and elastic-plastic 
stress distributions found in the previous chapter, and viewed 
simply as stress distributions which in particular satisfy the 
equilibrium equation, would also obviously give ρ < pe. Of course 
there would in general be no point in going through an elastic or 
elastic-plastic analysis just to find a satisfactory stress distribu
tion, but it is often helpful to be aware that elastic solutions which 
possibly exist already may be used to give lower bounds on col
lapse loads. 

4.3. Proof of the Lower-bound Theorem 

It would be good to prove the theorem once and for all for a 
general body of unspecified shape supporting a number of arbi
trarily placed loads. Here we use the term body to include both 
structures and work-pieces in forming processes. This aim might 
appear to be rather difficult, particularly when we consider the 
following point about the yield condition. In general we shall not 
know the directions of the principal axes of stress at a general 
point in the structure. Use of the three-dimensional yield surface 
discussed in Chapter II is thus not possible, since this would 
imply that we already knew these directions. We must therefore, 
in general, think in terms of a six-dimensional yield surface in 
(σχ, σ„ σ„ τ*„ τχ„ τ „ ) space. 

The key to this apparently impossible situation is to use the 
theorem of virtual work in conjunction with some simple symbolic 
notation. 

As far as the six-dimensional yield surface is concerned, we find 
—from studies which are beyond the scope of this book—that its 
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crucial property for our present purposes is that it is convex, and 
that the associated plastic flow rule is determined by the normality 
relationship between the direction of the incremental plastic flow 
vector and the local yield surface. 

Now in Chapter II we demonstrated both of these ideas in
tuitively with respect to the yield surface in principal stress space, 
but in fact they may both be derived from a single reasonable 
quasi-thermodynamic postulate about the mechanics of elastic-
plastic material. It is beyond the scope of this book to describe 
and discuss this postulate in detail, but as a partial description it 

Fio. 4.2. Generalised stress-space, yield surface and strain-increment 
vector. 

may be said that the arguments are of the same kind as those 
used in the theory of elasticity to show, for example, that Poisson's 
ratio cannot exceed one half. The postulate applies equally for 
yield conditions in whatever stress space is appropriate: for ex
ample, a two-dimensional (σ, τ) space is appropriate for considera
tion of the results of the experiments of Taylor and Quinney (see 
Problem 2.7). 

In fact the definitions of convexity and normality in analytical 
geometry are essentially the same in a space with any number of 
dimensions, and so for present purposes a two-dimensional 
schematic representation, which is self-explanatory in Fig. 4.2, is 
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perfectly adequate. This schematic convex yield surface is drawn 
deliberately non-symmetrical, because neither symmetry nor pres
ence or absence of the Bauschinger effect has any direct relevance 
to the proof of the bound theorems : the only critical requirements 
are that the yield surface is convex and that it encloses a simply-
connected region which includes the origin. In our proofs the 
symbols σ and è will stand for a six-dimensional stress-component 
vector, and the "corresponding" plastic strain increment vector, 
respectively. As in Chapter III we use the symbol è to denote, 
conveniently, either a strain increment or a strain-rate. In either 

Fio. 4.3. Generalised body and applied loading. 

case there is a clear indication that we are dealing with changes in 
strain and not with absolute values. 

The yield surface shown schematically in Fig. 4.2 is " smooth" . 
The "extreme" possibilities, within the definition of convexity, 
of "flats" and "corners" will be discussed later. 

We denote by Wh i — 1 ... n, the η independent loads acting 
on the body. We shall also need to specify corresponding dis
placement increments, ùh as indicated in the schematic view of 
the body in Fig. 4.3 : Mj is the component of the deflection increment 
undergone by the point of action of Wt in the direction of the line 
of action of Wt in a typical "collapse" mechanism. The object of 
this definition is that the product JVtù, represents the work done 
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by Wi during the incremental deformation. Later on we shall 
widen the scope of the loading to include actions other than 
"po in t" forces, but this need not concern us at present. 

We are now in a position to prove the theorem. 
Let Wh a, c, ùi represent a complete plastic collapse solution for 

the given body, σ and è being functions of position over the entire 
body. By this we mean that 

(i) Wi, a form an equilibrium set of loads and stresses; 
(ii) ùi, c form a geometrically compatible set of displacement 

and strain increments; 
(iii) In parts of the body where σ is at yield, è is related to it by 

the normality rule; 
(iv) In the remaining parts of the body (where σ is not at yield) 

c is zero. 

This last aspect of the complete solution depends on a result 
(which we will not prove here or investigate further) in elastic-
plastic theory which states that at collapse the stresses, throughout 
the structure, do not change as the structure deforms. Thus there 
are no changes in strain in the elastic regions at collapse and these 
regions are thus, in an important sense, rigid. We reach the same 
conclusion intuitively if we regard the elastic strains as negligibly 
small compared to the plastic strains. We might add in parentheses 
that we are nevertheless regarding all the deformations as small in 
proving the theorems; see below. 

Further, let Wi* be a set of loads proportional to Wt, i.e. 
W* = βΨι for all components, where β is a number, and let σ* 
be any set of stresses (again over the entire structure) which is in 
equilibrium with W,* and also does not violate the yield condition. 
In other words, Wt*, σ* are a schematic representation of the kind 
of partial solution we are dealing with in an "equilibrium" cal
culation. 

As we now have two separate "equilibrium sets" and one 
"compatible set" we can write the following two virtual work 
equations (see Appendix II). (This carries the implication, which 
will hold throughout our work (except for Chapter XI) that all 
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deflections are sufficiently small for the original undeformed con
figuration of the structure to be used in setting up the equations 
of the system.) 

Σ lV,ù, = \ σ é dV (4.9) 

Σ W\ùt=j σ* èdV (4.10) 

Here, and throughout this chapter, summation is over all η loads 
and integration is over the whole volume, V, of the structure. At 

all points in the body where the material remains rigid at collapse, 
the integrand vanishes in both (4.9) and (4.10). At other points 
there is plastic deformation, and the relationship between i and σ 
is indicated, schematically, in Fig. 4.2. 

Now the product a è at a given point in the body is the scalar 
product of the σ and é vectors, which is represented graphically in 
two-dimensional space as the product of e and the projection of σ 
onto the direction of è, as shown in Fig. 4.4. At the same point in 
the body all that we know about σ* (in addition of course to its 
forming part of an equilibrium distribution of stress) is that it 
lies on or within the yield surface, since σ* does not violate the 
yield condition, by definition. Although this information seems 
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somewhat vague, it is in fact sufficient for us to be able to write 
the following inequality in all circumstances: 

at ^ σ* è (4.11) 

As is self-evident from Fig. 4.4, both convexity of the yield surface 
and normality of the strain increment vector to it are necessary for 
this inequality to hold for the entire available range of σ*. We 
shall consider the ramifications of the possible equality sign in 
(4.11) later. It is easy to demonstrate (Problem 4.2) that (4.11) 
still holds if the yield surface has "flats" or "corners" or both. 

Integrating (4.11) over the entire structure and using (4.9) and 
(4.10) we find 

Σ lV,ùt Ζ Σ Wt*ùt (4.12) 

or simply, since Σ W,ùt must be positive, 

β ^ 1 (4.13) 

This proves the theorem. 
Note that the equality sign applies in (4.13) only if the equality 

sign in (4.12) applies everywhere in the plastically deforming parts 
of the body. For a yield surface without flats this in turn means 
σ * = σ throughout these regions, i.e. the "guessed" σ* must be 
the same as the σ of the complete solution in these regions. This 
restriction does not apply to the non-deforming parts of the body, 
and the stresses in the rigid regions are therefore not uniquely 
determined at collapse of the body. 

Further, if the yield surface has flats it is possible for the equality 
sign in (4.11) to hold for σ* different from σ. In this case therefore 
some components of stress even in the deforming region may 
not be uniquely determined at collapse. We have already seen 
an illustration of this in the case of the thick tube made of Tresca 
material: σζ was only determined between limits at collapse. 
Now while the Tresca yield surface clearly has flats in three-
dimensional principal stress space, so also does the Mises con
dition in the sense (which is not clear in Fig. 4.2) that it is generated 
by straight lines. Thus, if σ and σ* in the above analysis differ 
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by a hydrostatic state of stress, the equality sign applies in 
(4.11). 

These possible indeterminacies in stress distribution at collapse 
are not to be worried about. They do not affect the collapse load 
of the body, which is the quantity of prime importance in plastic 
theory. They are the finer points which emerge from the analysis 
and in no way do they affect the practical application of the 
theorems. 

4.4. Loads other than Point Loads 

Although we have so far linked the symbol W, with a point 
load in the proof of this theorem, we could in fact have linked it 
with any other form of loading—for example a couple or a 
pressure—provided that the corresponding deformation increment 
ut was related to it by the "work" principle (Appendix III). In the 
present example the corresponding displacement increments are 
an increment of rotation or an increment of swept volume, re
spectively. 

4.5. The Upper-bound Theorem 

Statement: If an estimate of the plastic collapse load of a 
body is made by equating internal rate of dissipation of energy 
to the rate at which external forces do work in any postulated 
mechanism of deformation of the body, the estimate will be 
either high, or correct. 

This statement, which is oriented to application, amounts to the 
same thing as the more usual statements to be found in other 
books. 

The proof of the theorem runs along similar lines to that of the 
lower-bound theorem. There is, however, an important difference 
which is best introduced by means of an example. 

When, at the end of Chapter III, we were applying the theorem 
(although then we regarded the calculation as "intuitive") we 
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equated the internal dissipation of energy to the work done by 
the interior pressure ρ in a postulated mode of deformation. We 
could have used the same mechanism—and hence the same dis
sipation calculation—to study the collapse of the tube under 
external pressure q, say, and in this case the L.H.S. of (3.42) 
would have been —2nbù„q. We could, moreover, have used the 

P 

FIG. 4 .5 . Result of "work" calculation under application of independent 
internal and external pressures. 

same mechanism to study collapse under combinations of ρ and q, 
in which case the L.H.S. would have been 

lirait, ρ — 2-nbùt q 

Now in this particular mechanism the product rù is independent 
of r (equation 3.33) so in particular a ù„ = bù„. Consequently a 
more general upper-bound result than (3.43) is 

p - q = Y\n(b!a) (4.14) 

The important point here is that the same mechanism—and thus 
the same calculation with trivial extensions—gives a line in a 
p, q load-space, as indicated in Fig. 4.5. 
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In contrast, a typical lower-bound calculation, being made with 
a specific set of load boundary conditions, provides a point in 
such a load-space. 

Now in practice when doing an actual upper-bound calculation, 
we may be interested only in a proportional combination of loads 
acting on a body, i.e. one in which the component loads are all 
in fixed proport ions (see Appendix IV), in which case the pre
ceding remarks may appear irrelevant. It is, nevertheless, in
structive to keep the possibility of the wider interpretation in 
mind when we prove the theorem. 

As before we start our proof by postulating any complete 
plastic collapse solution for the given body; Wh σ, é, ùt. Also let 
«!*, e* represent any compatible set of displacement and strain 
increments within the body, i.e. a geometrically possible "mechan
ism" of deformation. The mechanism must be "cont inuous" in 
the sense that no gaps or overlaps develop within the body, but 
mechanisms which, for example, involve rigid-body sliding of one 
part of the body over another, with a narrow zone of intense 
shearing in between, are not excluded—and are, indeed, very 
useful, as we shall see. There is no connection between the asterisk 
notation here and in the proof of the lower-bound theorem except 
that in both cases it denotes an incomplete or partial solution. 

Lastly, let W\ be a set of loads calculated by equating external 
work to internal dissipation of energy in the postulated mech
anism. 

First we apply virtual work, once, to the equilibrium set W,, a 
and the compatible set ù*, i* : 

^W,ut=jai*dV (4.15) 

In doing the calculation of internal dissipation we have to find 
the dissipation which would occur in each element of the body if 
the assumed mechanism could be realised. To do this we need to 
associate a stress vector, a*, say, with ê* at each point, because 
the calculated increment of dissipation of energy per unit volume, 
D*t say, is the scalar product of vectors è* and a*. Now these 
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vectors are associated via the normality condition, as indicated 
schematically in Fig. 4.6. In fact (see Problem 4.3) if the yield 
surface has flats a* is not necessarily defined uniquely (as we have 
noted already) but the relevant scalar product is. Note that in 
general the stresses a* found in this way will not be in equili
brium. 

At each point in the structure the stress σ in the complete 

solution lies, in particular, on or within the yield surface. Con
sequently, by an argument similar to that used before, we may 
write, for all points in the body, 

D* > a è* (4.16) 

Integrating over the whole body and using (4.15) we have 

Σ Wt ù\ < f D* dV (4.17) 
" J y 

Equating the internal dissipation and the external work done by 
Wi in the postulated mechanism, i.e. representing schematically 
our "work" calculation, 

Σ W\ ut = (ù* dV (4.18) 
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so, combining this with (4.16) we have, finally, 

Σ ΐν,υΐ < Σ Wl ù,* (4.19) 

The meaning of this result is most readily understood with 
reference to a load space Wh shown schematically in two dimen
sions in Fig. 4.7. For a given postulated mode of deformation 
(4.18) gives a value to the scalar product of WΊ and ùï, thus 
defining a hyperplane (here a line) in W, space which is orthogonal 
to the vector ù* drawn in a parallel space (see Fig. 4.7). Result 

FIG. 4.7. Interpretation of upper-bound theorem in generalised load-
space. 

(4.19) indicates that the point Wt lies on the same side of the 
hyperplane as the origin. Now Wt represents any actual collapse 
load combination, so (4.19) holds equally for the whole locus of 
Wt; the hyperplane produced by the work calculation for any 
postulated mechanism therefore lies outside—or possibly touches 
—the collapse load surface for the body in Wt space. This is 
shown schematically in Fig. 4.8, where the work calculation 
("upper-bound" calculation) for a few different postulated mech
anisms enables us in principle to circumscribe the collapse load 
locus for an arbitrary body. Figure 4.8 also indicates what happens 
if we use the upper-bound calculation for a proportional set of 

"DISSIPATION" 
CALCULATION 

Ο 
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loads W'i = β\Υι. In this case (4.20) becomes simply β > I, and 
the calculation for each mechanism simply yields a value of β. 
The relationship between this and the more general interpretation 
of the theorem is indicated in the diagram. 

FIG. 4.8. Upper bounds on a collapse load locus, and an indication of 
the outcome of using the same mechanisms for proportional loads. 

4.6. Calculation of Dissipation of Energy 

It may appear that the calculation of Ù* as a function of c* is 
rather complicated, both from Fig. 4.2 and from the example at 
the end of Chapter III. In fact this is not so. For a Tresca per
fectly plastic material, for example, we have the simple rule 

D* = Y I € * | m „ (4.20) 

where Y is the yield stress in simple tension and | e* | m „ is the 
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greatest principal strain rate magnitude (see Problem 4.4). The 
analogous expression for a Mises material is also quite simple 
(Problem 4.5). A special form of equation (4.20) is useful in 
situations of plane stress, in which one of the principal stresses 
always has magnitude zero (see Problem 4.6). 

4.7. Simpler Form of the Proofs 

If the reader finds the above proofs difficult to grasp, he is 
recommended to work through them again for a general " t russ" 
structure, like that treated in Appendix II , in which yielding of 
any bar may occur either in tension or compression. All of the 
steps in the argument are the same, but all of the complications 
arising from three-dimensional states of stress are avoided. 

4.8. Corollaries of the Bound Theorems 

We discuss next some results which are of considerable practical 
importance and which follow almost directly from the theorems 
we have just proved. 

THEOREM. If in a body we are in a position to investigate all 
possible distributions of stress which are in equilibrium and do 
not violate the yield condition, the highest lower-bound load 
discovered must be equal to the collapse load. 

The proof of this is self-evident. We shall encounter several ex
amples of this situation in the remainder of this book, but in 
general we should remain aware that the lower-bound theorem is 
often most rewarding when applied not exhaustively, but in
telligently. There is obviously a corresponding theorem relating to 
exhaustive upper-bound calculations. 

THEOREM. Addition of (weightless) material to a structure without 
any change in the position of the applied loads cannot result in a 
lower collapse load. 

Proof. The actual collapse stress distribution for the original 
structure satisfies the lower-bound requirements for the modified 
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structure (putting σ* = σ throughout the original structure and 
σ* = 0 throughout the added material), so by the lower-bound 
theorem the modified structure is as strong as, or stronger than, 
the original structure. Q.E.D. 

Note that the "negative" form of the statement of the theorem 
covers situations where additional material, foolishly placed, does 
not strengthen the structure as well as situations where the rein
forcement is beneficial. 

This reference to the weight of the added material draws at
tention to an assumption which we have been making implicitly 
throughout, viz. that the weight of the body is negligible com
pared to the loads acting on it. The theorems are easily adapted to 
situations where self-weight is a significant fraction of the applied 
loads and (see Chapter V) where the primary loads are due to 
centrifugal effects in rotating bodies. 

THEOREM. The removal of material from a structure cannot 
strengthen it. 

This (abbreviated) converse of the previous theorem is proved 
by application of the upper-bound theorem. The actual collapse 
mechanism for the original structure is used as a postulated 
mechanism for the modified structure. The internal energy dis
sipation rate is less than in the original structure (or equal, if all 
the "cu tou ts" are made in parts of the structure which are rigid 
at collapse), so by application of the upper bound theorem the 
structure is either weakei than or as strong as it was before. 
Q.E.D. 

By similar arguments we may prove the following theorems: 

increasing (decreasing) the yield strength of the material in any 
region of a body cannot weaken (strengthen) it. 

The most useful forms of these theorems, which are of great 
practical use in calculations, are as follows: 

THEOREM. The (exact) collapse load computed for a (convex) 
yield locus circumscribing the actual yield locus is an upper 
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bound on the actual collapse load. The (exact) collapse load 
computed for a (convex) yield locus inscribed in the actual 
yield locus is a lower bound on the actual collapse load. 

For example, Fig. 4.9 shows two (similar) Tresca yield surfaces 
inscribed in and circumscribing, respectively, a Mises yield surface. 
Any complete solution of a problem for a Tresca material may 
thus be scaled simply to give close (15 per cent) upper and lower 
bounds on the actual collapse load for a structure made of a 

«33 

FIG. 4.9. Tresca hexagons inscribing and circumscribing a Mises circle: 
view of the w-plane. 

Mises material. As solutions are often easier to find when the 
yield surface for the material has flats and corners than when it is 
" smooth" , this result is useful when (as they usually do) experi
ments on materials show that the Mises yield surface fits the data 
better than the Tresca. 

These last four theorems may well seem to the reader to be 
intuitively obvious. If so, the reader is in sympathy with the con
ventional wisdom of structural engineers who in general "thicken 
u p " a structure of a given form, or make it of a stronger material, 
if they wish to strengthen it. 
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In view of this we might be tempted to ask if there is any point 
in going to the trouble of proving theorems which are obvious 
anyway. The answer to this is twofold. 

(i) We may well be able to prove theorems more powerful 
than those which are obvious; the upper and lower-bound 
theorems are "revealed" to relatively few engineers, even though 
some corollaries may be "obvious". 

(ii) It may help to know under what precise circumstances the 
theorems hold. In the present case perfect plasticity is a crucial 
concept, and a parallel possible idea in elasticity theory that 
"addit ion of material will always decrease stress concentration 
factors" is not true, as good designers of welded structures are 
keenly aware. 

Two other corollaries of the upper- and lower-bound theorems 
are useful when the collapse strength of a structure under several 
independent loads is being studied. They will be stated without 
proof; suggested outlines for proofs are given in Problems 4.7 
and 4.8 respectively. 

CONVEXITY THEOREM. The locus in Wt space of the collapse loads 
of a structure is convex. 

NORMALITY THEOREM. The associated collapse velocity vector, 
uh is normal to the collapse load locus in Wt space at the 
appropriate point if the axes of the two spaces are parallel 
(Fig. 4.10). 

These theorems indicate therefore that the convexity and 
normality properties of the material are "reflected" in the be
haviour of the structure subject to several independent loads. 
Examples of the use of these theorems are given in Chapter VI. 

4.9. Problems solved in Terms of Stress Resultants 

So far we have been assuming that in setting up any problem 
we establish equilibrium equations in terms of stress components, 
compatibility equations in terms of components of strain in
crements and yield conditions in terms of stress components. This 
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obviously may be done in general, but whereas it gives simple 
equations and inequalities in the problem of the thick tube, for 
example, it would give extremely complicated equations and in
equalities for, say, a simply-supported I-beam, since we would 
have to set up equations for little blocks of material throughout 
the web and the flanges. What we normally do, of course, when 
faced with a beam problem, is to use the "strength of materials" 
approach in which we analyse the behaviour in terms of "bending 
moment" and "shearing force", these being the relevant in
tegrated "stress resultants" on transverse planes of the beam. 

w i (û 

FIG. 4.10. Normality rule in load-space. 

In this approach we are, in effect, tackling the problem in two 
stages : 

(i) We study the behaviour of an arbitrary short length of 
beam, and in particular find its response to bending and shear 
actions in terms of the yield stress of the material and the dimen
sions of the cross-section. 

(ii) We study the behaviour of the beam regarded as a con
tinuous linear assembly of "sub-structures", whose interactions 
are bending moments and shearing forces. 

It is a simple matter to re-interpret all of our theorems in terms 
of this approach. Applying the theorems as they stand to the sub
structures loaded by the relevant stress-resultants, we find that the 
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behaviour of the sub-structures is expressible in terms of a convex 
"yield locus" in the appropriate stress-resultant space and a 
normality rule relating the corresponding incremental deforma
tions to this locus. These essential features of convexity and 
normality enable us to prove the bound theorems for the structure, 
now regarded as an assembly of sub-structures, simply by letting 
the symbols a and é stand for stress-resultants and corresponding 
incremental deformations of the sub-structures, respectively. 

The following six chapters are concerned largely with applica
tions of the lower- and upper-bound theorems, and their corol
laries, to a variety of problems. In each case the underlying 
assumption that the concept of an ideal perfectly plastic material 
is justified will be implicit, and in each case we must be prepared 
to submit this and all other assumptions embodied in our con
ceptual models to the test of experiment. 

Problems 
4.1. Make a lower-bound analysis of a thick tube under internal pressure 

by putting σβ = constant in the equilibrium equation (4.1) and solving the 
boundary equations without violating the yield condition. 

(Hint. Put σ, = (σβ + σ,)/2, thereby automatically satisfying the axial 
equilibrium equation. Note that (4.1) may be rearranged as 

d 
Jr (r °r) = 

4.2. Redraw Fig. 4.4 to cover the cases of a yield locus (a) with a corner (b) 
with a flat, and show that inequality (4.11) is satisfied in all circumstances. 

4.3. Redraw Fig. 4.6 to demonstrate that if the yield surface has a flat, a* 
is not necessarily uniquely determined by i*, but that this does not affect the 
uniqueness of the scalar product of σ* and è*. 

4.4. Establish D* = Y \ ë* | m „ (equation (4.20)) for a Tresca material, 
as follows. 

(i) Consider the case in which one of the principal strain increments is 
zero. The strain-increment vector is then normal to a flat of the Tresca 
yield surface, and the argument follows that given at the end of Chap
ter III. 

(ii) Now consider the other possibility, that none of the principal strain 
increments is zero. The strain-increment vector is then normal to an 
edge of the yield surface, or a corner of the C-curve in the w-plane. 

By trying several numerical examples show that of the six possibilities the 
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corner corresponds to the principal strain increment which is of opposite sign 
from the other two. 

Note that an edge of the yield surface corresponds to a state of uniaxial 
tension or compression superposed on a state of hydrostatic stress, and also 
that the sum of the principal strain increments is zero. 

4 . 5 . Show that for a Mises perfectly plastic material 

(Hint. Either use the result of Problem 2.8 or work out the form of the 
expression from the fact that the strain-increment vector is parallel to the 
deviatoric stress vector, determining the constant by considering the special 
case of uniaxial tension.) 

4.6. In problems of "plane stress" in which, say, a, = 0, it is convenient to 
eliminate "z" variables from all equations, etc. Show that for principal strain 
increments ilt it in the x, y plane, the appropriate form of equation (4.20) is: 

Here, asterisks have been omitted for convenience. 
(Hint. Remember that the material is incompressible.) 
4.7.Î Write out a proof of the Convexity Theorem along the following 

lines. 
Consider any two distinct loading systems, say (a) and (b), under which the 

body deforms plastically, and the corresponding "exact" stress points in a 
sufficiently general stress space, for a typical point in the structure. Apply the 
lower-bound theorem to load and stress combinations which may be described 
schematically as 

and find limits on χ if the yield condition is never to be violated at any point 
in the structure. 

4 . 8 . | Write out a proof of the Normality Theorem along the following 
lines. 

Apply the upper-bound theorem to an "exact" mode of plastic deforma
tion, and bear in mind the interpretation of the theorem indicated in Fig. 4.7. 

4.9.t Obtain a "safe" expression for the pressure which may be sustained 
by a thick tube of perfectly plastic material, of which the outer and inner 
surfaces are cylinders of radius b and a, respectively, with parallel, but not 
coincident, axes. The minimum wall thickness is h. 

(Hint. Think how this tube may be built up from a tube with a concentric 
bore.) 

χα + (I - x) b 



CHAPTER V 

ROTATING DISCS 

A N OBVIOUS design requirement for a rotating disc and its at
tached bladework in a steam- or gas-turbine is that in normal 
service conditions the blades shall not foul the casing of the tur
bine, or anything else. At normal running speeds there will in
evitably be small radial movements of the tips of the blades due 
to thermal expansion, elastic strain and, possibly, creep strain. 

Another aspect of the behaviour of a rotating turbine disc is 
that if it is spun at ever-increasing speed in a test rig in which 
there is no possibility of fouling it will "burs t" at a certain speed. 
Bursting is in fact sudden and catastrophic, and a disc typically 
breaks into three or four pieces. If the disc is made of a ductile 
material, bursting must correspond to unconstrained plastic de
formation: consequently we would expect that plastic collapse 
theory should be a useful tool for studying the bursting of discs. 
This view is supported by the facts that signs of "necking" are 
often observed at the edges of fragments of burst discs and that 
predictions of bursting speeds made by setting the yield stress of 
the idealised material equal to the U.T.S. of the real material 
usually agree with experiment to within a few per cent. 

The designer is interested both in the behaviour of the disc 
at normal running speeds and in the "overspeed" at which the 
disc bursts, and he may make an approach to design from either 
the "normal running" or the "burst ing" points of view provided 
he is prepared subsequently to consider the other aspects of 
behaviour. 

As we shall see, analysis of the bursting of discs by means of 
plastic theory is particularly simple, and as plastic design of discs 
at the point of bursting turns out to be equally simple, it seems 

1 1 7 
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clear that plastic theory constitutes a useful tool for the design of 
rotating discs. 

As in other design problems plastic theory is inadequate in 
itself to effect a design. In the present case the choice of an over-
speed factor is obviously of crucial importance and can only be 
made after consideration of many different aspects of the per
formance and operation of the turbine as a whole. 

As we have seen, the simple plastic theory is based on a non-
hardening idealisation of the material. If the material used is in 
fact strongly strain-hardening the choice of the "effective" yield 
stress of the idealised material must be made with care. How
ever, even if it proves necessary to perform more elaborate cal
culations subsequently to investigate the normal-running be
haviour of the disc, the simple plastic theory is still extremely 
useful in design because it indicates clearly the sorts of disc 
profile which make efficient use of the material. 

In this chapter we shall investigate some aspects of turbine-disc 
design and, without going into much detail, we shall establish 
some simple general rules which help to clarify thinking about 
the problem and which may be particularly useful when disc 
design is considered in the context not only of structures but also 
of thermodynamic performance. 

Most of the analysis will be based on the lower-bound theorem, 
but we will make some reference to modes of plastic deforma
tion. We shall assume that the theorem is valid when the loading 
is due to body forces, although we have not proved this explicitly 
in Chapter IV. 

5.1. The Rotating Hoop 

We consider first the behaviour of a thin uniform circular hoop 
spinning in its own plane about its centre, Fig. 5.1(a). Although 
this situation would be impossible to realise, and is patently 
much simpler than a disc, it does nevertheless serve to provide 
some important insights into the behaviour of the more compli
cated practical systems. 
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Let the hoop have radius c and cross-sectional area A ; let the 
material have density ρ and yield stress Y in simple tension, and 
let the hoop be spinning at the angular velocity, coe, at which it is 
just on the point of collapse. 

Figure 5.1(b) indicates the forces acting on a small element of 
the hoop at an arbitrary angular velocity: D'Alembert 's principle 
has been used and we write down the "equilibrium" equation at 
the point of collapse 

ά*ω*Αρθ = ΑΥΘ (5.1)t 

W (b) 

FIG. 5.1. Stresses in a rotating hoop. 

Therefore 
ω\ = Y/pc* (5.2) 

In the remainder of this chapter the term "equilibrium" will 
imply prior use of D'Alembert 's principle, as in the present 
example. 

Note that in (5.2) the cross-sectional area of the hoop does not 
appear: just as in the case of the catenary, each "filament" of the 
hoop carries its own associated loading. 

Equation (5.2) gives us the value of wc for a given ring, but it 

t As stress is defined in terms of force on the absolute scale (i.e. force 
denned in terms of mass and acceleration) the symbol for gravitational 
acceleration does not occur in this équation (see Appendix VI). 
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may also be regarded as determining, for a given material and 
speed the radius, c, of the hoop which is just at the bursting-point. 
This "self-supporting radius" as we shall call it, turns out to be a 
useful concept in the study of more complicated situations, be
cause it is both a sound physical idea and also a means to the 
refraining of the "disc" equations in a specially simple way. 

For the remainder of this chapter the symbol c will have this 
special meaning, and for ease of reference we rewrite (5.2): 

In subsequent analysis we shall find it convenient to work in 
terms of c rather than explicitly in terms of u>c; at any point in the 
analysis we can reinterpret equations in terms of aj e by means 

Another interpretation of (5.2) is that at collapse the peripheral 
speed cwe is uniquely determined for a given material. This will 
also prove to be a useful idea in subsequent discussion. 

It is also clear from (5.2) that in the selection of materials for 
use in turbine and compressor discs, and in the development of 
new materials, the ratio strength/density is an important para
meter (see Problem 5.1). 

To analyse the behaviour of discs we need a differential equili
brium equation in place of (5.1). By symmetry the radial, circum
ferential and axial stress components are the principal stresses, 
and for a small element dr, θ of a, disc of constant thickness (see 
Fig. 5.2) we have the following equilibrium equation in the 
radial direction: 

c 2 = Υ/ρω] (5.3) 

of (5.3). 

5.2. The Flat Disc with No Central Hole 

_ (ror) = σβ — ρω 2 Γ 2 

dr 
(5.4) 

This should be verified by the reader. In all but the "body-force" 
term this equation is essentially the same as equation (3.2). 
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For a disc which is thin (i.e. axial dimensions are small com
pared to the radius) it is reasonable to assume that ο-, is zero 
everywhere, as the surfaces are unloaded. We shall make this 
assumption plane stress throughout the present chapter, even 
when we consider, later, discs of variable thickness. 

Consider a flat (i.e. constant-thickness), solid (i.e. no central 
hole) disc of radius b which is stress-free when it is stationary. 
Elastic analysis, which is analogous to that sketched in Chapter 
III for thick tubes, gives stress components art σβ which form 

FIG. 5 .2 . Equilibrium of an element of a rotating disc of constant (unit) 

parabolas if plotted against r, as shown in Fig. 5.3. This analysis is 
easily checked (Problem 5.2) and it turns out, in contrast to the 
analysis of thick tubes, that the stresses are not independent of 
Poisson's ratio, v. 

As the speed increases all stresses within the elastic range in
crease in proport ion to ω 2 . To find the speed at which the yield-
point is first reached we note that the principal stresses are in the 
algebraic order σθ ^ a, ^ at — 0 (with the equality signs 
applying at r = 0 and r — b respectively); thus σ, is the inter
mediate principal stress everywhere and the appropriate version of 
Tresca's yield condition is therefore 

ro,0 i f (rojOdr 

thickness. 

o9 = Y (5.5) 
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The yield-point is clearly reached first at the centre of the disc at a 
speed ω„ say, which is given by (see Fig. 5.3) 

3 

ωχ = 
8 

Using (5.3) we find 

• - J 

(3 + v) pb* 

3 + ν 
= 1-5, typically 

(5.6) 

(5.7) 

\ 

O b 

FIG 5 .3 . Distribution of stress in a flat disc in the elastic range. 

In other words, when the yield-point is first reached the angular 
speed is such that b is about 1 · 5 times the "self-supporting 
radius" corresponding to that speed. Alternatively, the peripheral 
speed of the disc is 1-5 times the critical peripheral speed of a 
hoop of the same material. 

As ω increases further a yield zone, in which σβ = Y, spreads 
outwards from the centre. The mode of incremental plastic de
formation in this region is such (Problem 5.3) that collapse 
cannot occur until the surrounding elastic zone has vanished. 

T o analyse the full plastic condition, therefore, we solve the 
equilibrium equation (5.4) together with the yield condition (5.5). 
We can see at once that the integration is very simple—but this 
would not be so if we had used the Mises yield condition instead. 
The balance of yield stress across a diametral cut with the total 
centrifugal load of half of the disc at collapse is known as 
Robinson's equation (see Bibliography). 
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Before solving the equation we shall substitute for c from 
(5.3) to give: 

By making this substitution we are in effect "turning the problem 
upside-down", so that our aim is now to find the radius b of a 
solid disc for which the collapse speed is the same as for a hoop 
of radius c. 

Integrating (5.8) we have 

""=rc(H(;)°) + f (59) 

where F is a constant to be determined. The two boundary con
ditions may be put 

ra, = 0 at r = 0 (5.10) 

—because σ, is finite at r = 0—and 

ra, = 0 at r = Z> (5.11) 

because σ, = 0 at the outer edge. The first of these gives F = 0, 
and the second, 

b = <V3. (5.12) 

Before accepting this as the solution we must check that σ, is 
indeed the intermediate principal stress throughout, to justify 
use of (5.5). F rom (5.9) 

<,= y ( . - - j (3.13) 

and Fig. 5.4 shows the stress distribution at collapse. 
The solution (5.12) can be interpreted in several different ways. 

It indicates that a flat disc and a hoop of the same material will 
burst at the same angular speed if their radii are in the ratio 
\ / 3 : 1 . Alternatively, a flat disc will burst when its peripheral 
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0 b 

FIG. 5.4. Distribution of stress in a flat disc at the collapse speed. 

This is a smaller ratio than typical pressure ratios pc/px needed 
to extend the plastic zone in a thick-walled tube from the inner to 
the outer surface (see Fig. 3.5). The difference between the two 
cases from this point of view lies in the fact that the elastic and 
fully-plastic stress distributions are more "similar" for the rotating 
disc than for the thick-walled tube (compare Figs. 5.3 and 5.4 
with 3.4). This in turn arises from the difference between the 
"plane strain" and "plane stress" boundary conditions which 
apply, respectively, to the two problems, and the corresponding 
difference in the yield conditions in σ„ σ β space (see Problem 2.15). 

5.3. A Physical Interpretation 

The concept of a "self-supporting radius" c is useful in obtain
ing a "physical" interpretation of the behaviour of the disc at the 

speed is \/3 times the critical peripheral speed for a hoop. Or, by 
substitution in (5.3) 

ωΐ = 3ΥΙΡΡ (5.14) 

The speed ratio wc/u>i necessary to extend the plastic zone from 
the centre to the periphery is readily found from (5.14) and (5.6). 
For ν = 1/3, a typical value, 

- =71=1-12 (5.15) 
ωχ V 4 

(see Problem 5.4). 
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collapse speed. A typical " h o o p " of material, of which a segment 
is shown in Fig. 5.2, carries two kinds of loading: 

(i) The "centrifugal" load due to its own mass. 
(ii) The "appl ied" load transmitted from the adjacent material : 

this is proportional to the difference between the product 
r a, evaluated at the outer and inner edges of the hoop. 

A hoop at radius c has, by definition, no carrying capacity for 
load of type (ii), and so in a graph of (r ur) against r (Fig. 5.5) 

1 J 3 

FIG. 5 .5 . Construction for fiat annular discs of equal collapse speed. 

there is a horizontal tangent at this point. For r < c a hoop has a 
positive carrying capacity for this part of the load, which is 
reflected in the positive slope of the graph in this region. Con
versely, for r > α ring has "negative" carrying capacity; it must 
be "restrained" if it is to be in equilibrium and the slope of the 
curve is, correspondingly, negative. 
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5.4. Discs with Central Holes 

Figure 5.5 can also be used conveniently to discuss the family of 
discs with central holes which all collapse at the same angular 
speed, and of which the solid disc and the hoop are, as we shall 
see, extreme cases. Suppose that in (5.9) we assigned an arbitrary 
negative value to F. In terms of Fig. 5.5 the effect would be to 
lift the "base-line" of the graph, as indicated. At points A and B, 
both at finite radius, at = 0, which is the stress boundary condi
tion at a free edge—whether " inner" or "outer"—of a disc. Thus 

FIG. 5.6. Flat annular disc; definitions. 

a disc with inner and outer radii a and b (Fig. 5.6) corresponding 
to points A and Β will satisfy the equilibrium equation (5.8) and 
the stress boundary conditions. Also σθ > σ, everywhere, because 
the curve between A and Β lies wholly below the line correspond
ing to σβ — Y; therefore use of the yield condition (5.5) in (5.8) 
is justified, and we conclude that a disc of these dimensions will 
have the same bursting speed as the solid disc and the hoop. A 
family of such discs is thus readily generated by giving the "base 
l ine" AB a variety of positions. The whole range of possibilities is 
shown in Fig. 5.7. 
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5.5. Mechanisms of Collapse 

So far in this chapter we have analysed "collapse" in terms of 
equilibrium equations and yield conditions. We have thus been 
using, effectively, a lower-bound approach to the problem and we 
expect, consequently, that our estimates of collapse speed will be 
low if they are not correct. 

It seems obvious, intuitively, that the collapse speeds which we 
have worked out are in fact exact, because we have satisfied the 

0 0 2 0 4 0 6 0 8 V0 

FIG. 5.7. Annular discs having the same collapse speeds, with the solid 
disc and the thin hoop as special cases. 

yield condition everywhere and there is consequently no room for 
any "improvement". 

If our solutions are indeed correct then there will exist mechan
isms of plastic deformation which, while satisfying the geometrical 
compatibility conditions, will also be related to the yield condition 
via the normality rule. It is instructive to seek these mechanisms. 

Consider first the annular disc (Fig. 5.6). We have seen that 
throughout the material 

σθ > σ, ^ σ, = 0 (5.16) 

with the equality sign applying at r = a and r = b. Within the 
region (5.16) of principal stress space (not admitting the equality 
sign for the moment) the normality rule gives 

èr = 0, c e ^ 0, ez = (5.17) 
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Further, (5.17) does not violate the normality rule in the special 
case σ, = σ„ It is not difficult to visualise a mode of deformation 
incorporating (5.17). The key is that if c, = 0, equally spaced 
concentric circles scribed on the disc will remain equally spaced 
as deformation proceeds; i.e., the radius of each circle will be 
enlarged by the same amount, say ù. 

By regarding ù as positive, intuitively, we make (5.18) satisfy 
(5.17). Thus, as the material moves outwards, the disc becomes 
thinner, and this decrease in thickness is most pronounced at the 
inner radius. 

It is worth noting that this mechanism of collapse is very 
different from that of a thick tube (cf. equations (3.34) and (3.35)) 
in which, of course, plastic straining in the axial direction is 
suppressed, equation (3.30). 

For a solid disc the mechanism (5.18) gives singularities in the 
strain increments at the centre, which can be interpreted as a 
tendency for the disc to " th in" so much as to produce a small 
hole very quickly. These singularities are in fact a consequence of 
the precise angularity of the Tresca yield condition. If a small 
" rounding" of the edge could be allowed, the singularity would 
disappear, because in the immediate vicinity of the centre the 
stress components a, and σ β are very close. This somewhat 
curious state of affairs should not be regarded as reflecting dis
credit on the Tresca condition; it must always be remembered 
that our main aim here is to predict bursting speeds. 

It is interesting to note that we can obtain an extremely simple 
alternative mechanism of collapse if we allow ourselves to con
sider the possibility of a mode which is not axisymmetric. In its 
simplest form this mode consists of an incipient "neck" of 

Thus, from (3.3), (3.4) and (3.31) 

êe = ti/r 

(5.18) 
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deformation running diametrically across the disc. In this narrow 
zone the deformation corresponds to 

€ θ = constant \ 

i t = _ constant \ (5.19) 

ir = 0 J 
The remainder of the disc remains rigid, and the two halves move 
apart from each other as the neck develops. Another, related, 
possibility is that a "s ta r" of radial bands of necking develops; 
this mode is similar to the fracture mode of actual discs. 

5.6. Discs with Edge Loading 

So far we have considered rotating discs loaded only by body 
forces due to the mass of the structure itself, whereas the prime 
function of a turbine disc, of course, is to carry the blades and 
their means of attachment at the periphery. For a given disc it is 
clear, intuitively, that the attachment of peripheral mass must 
lower the bursting speed. 

To gain insight into the problem without going into details of 
attachment of blades, etc., which are beyond the scope of this 
book, we consider only the simplified situation of a disc carrying 
a total mass M uniformly distributed around the periphery, as 
shown in Fig. 5.8. In an actual disc the centre of mass of the 
attached blades, etc., is further from the axis than the "edge" of 
the disc, so the same total mass of blades, etc., would, at a given 
speed, exert more radial pull than mass M situated at the outer 
radius. However, for a given blade layout the "equivalent" mass 
M can be worked out without difficulty. 

First we consider the case of a flat disc of thickness A, with no 
central hole, supporting a total mass M. The only difference from 
the point of view of analysis between this situation and the one 
we have studied already is in the boundary condition at the 
periphery. The equilibrium of a small sector of the attached mass 



130 PLASTICITY FOR ENGINEERS 

is shown in Fig. 5.9. If σ, represents the radial stress at the edge of 
the disc, and the disc is rotating at the collapse speed, we have 

Μ = 2πΛσΓ/ωϊ = 2irphciarJY (5.20) 

using (5.2). 
The semi-graphical approach to the boundary conditions which 

we used earlier is easily adapted to solution of the present prob
lem. In general the boundary condition at the outer edge of the 

disc will correspond to a point such as D, Fig. 5.5. For a disc 
with no central hole we already know that F = 0 ; the ordinate of 
D is thus a measure of ar at the outer edge and it may be used in 
(5.20) to give the corresponding edge mass. We find 

M = 2-nphc* ^ 1 - 1 (5.21) 

where b is the radius of the disc. 

5.7. Analysis of Mass 

Now one obvious question in the design of discs is: what is the 
total mass of a disc which will carry a given peripheral mass ? 



ROTATING DISCS 131 

To answer this question in the present case (i.e. a flat disc with 
no central hole) we evaluate the ratio Mt/M, where Mt is the 
mass of the disc: 

Md = 7rb2hp (5.22) 

From (5.21) and (5.22) we find 

This simple result shows that the "mass ra t io" is a function 
only of the ratio (b/c); which is perhaps not surprising in view of 

2π 

FIG. 5.9. Equilibrium of edge mass. 

our previous results. We have already given a physical interpreta
tion of the ratio (b/c). Equation (5.23) is plotted in Fig. 5.10 
(full curve). The curve rises steeply above bjc = 1, and Mt/M 
becomes infinite at b/c = y/ 3, as it obviously should from our 
previous analysis of a flat disc with zero peripheral mass. 

In aero engines it is obviously desirable to reduce mass wherever 
possible, so from this simple point of view b/c should be kept as 
low as possible. As we have seen already, for a given material b/c 
is a measure of the peripheral burst speed of the wheel. But from 
the point of view of raising the power output of an engine the 
peripheral speed should be as high as possible. These conflicting 
requirements of weight and power suggest that there is an opti
mum peripheral speed from the point of view of obtaining the best 
"power/weight" ratio. 
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However complicated the actual process of producing a design 
of a gas turbine, one factor is clear; if it is possible to reduce 
ΜΛΙM for a given b/c by varying the thickness of the disc with 
the radius, this will almost certainly be advantageous. 

0 0 2 0 4 0 6 0 8 1 0 1 2 14 16 

FIG. 5 .10. "Mass ratios" for a solid flat disc and a profiled disc. 

5.8. Discs of Variable Thickness 

A clue to a possible line of attack on the problem of deter
mining an "op t imum" profile for a disc may be obtained from 
Fig. 5.4. Here we see that when a flat disc bursts the radial stress 
is lower than the circumferential stress except at the centre of the 
disc. According to the Tresca yield condition in plane stress—see 
Fig. 5.11—there is a "reserve" of strength in the radial component 
of stress. 

It thus seems likely that we shall be able to reduce the mass of 
the disc by making use of this reserve of strength. As the stress 



ROTATING DISCS 133 

distribution of Fig. 5.4 is statically determinate, the only way of 
making use of this reserve is to vary the thickness of the disc. 

It is not difficult to rewrite the equilibrium equation (5.4) in
cluding the thickness Λ as a variable: see Fig. 5.12 and Prob
lem 5.5. 

- (hra,) = hae - h Y- (5.24) 
dr c 2 

nh "STRESS PROFILE'' FOR 
/ FLAT DISC AT 

/ BURSTING SPEED 
/ (SEE FIG. 5 -4) 

FIG. 5 .11 . Tresca yield condition in principal stress space under condi
tions of plane stress (see Problem 2 .15) . 

We assume here that the change of h with r is sufficiently gradual 
for our "plane stress" assumption to be justified. We have also 
expressed the inertia loading in terms of radius c. 

For any specified h(r) we can, in principle, solve (5.24) subject 
to an appropriate yield condition. We can, inversely, specify the 
stresses and solve the resulting equation in h. This is a simple 
procedure if we put 

ο g = crr = Y (5.25) 

in an attempt to make full use of the "biaxial" strength of the 
material ; (5.24) then becomes, simply : 
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Solving this and putting h = ha (say) at r = 0, we have 

h = h0 e x p ( - r*/2c2) (5.27) 

This "profile" is plotted in Fig. 5.13. It is in fact the "normal dis
tribution curve" of statistical analysis. At the special point r = c 
there is a point of inflection in the profile, and in this region there
fore the form of the disc approximates a double cone. 

The disc given by (5.27) extends to infinity. We can make 
practical use of it very simply, however, by "cutting ou t " a disc 

FIG. 5.12. Element of a variable-thickness disc (see Problem 5.5). 

at any radius and providing the necessary radial stress by attach
ing appropriate peripheral mass. We have already studied the 
equilibrium of the peripheral mass: putting σ, = y in (5.20) we 
obtain 

M = 2πΡΜ„ (5.28) 

where hb is the thickness of the disc at the outer edge, r = b. Note 
that b does not appear explicitly in this formula. 

Thus for a disc of given radius, supporting given peripheral 
mass, made of given material and required to burst at a given 
angular speed, the design is fixed. To determine the disc, first we 
find c from (5.3), then hb from (5.28) and finally h(r), from (5.27). 
In particular Λ, = hb exp(b2/2c2), and the ratio h0jhb is thus a 
steeply-rising function of bjc. 
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The total mass of the disc is readily found by integration: 

Mi = ρ j'lnhr dr = 7ΓρΑ β |**βχρ(— r2/2c2)2r dr = 2npc2(h„ — h„) 

(5.29) 

For a disc of this particular profile there is thus a specially simple 
relationship between the mass of the disc and the difference in 
thickness between the centre and the outer edge. 

Using (5.28), (5.29) and (5.27) we have 

= exp (b2/2c2) - 1 (5.30) 

This curve is also plotted in Fig. 5.10 (broken curve), and we see 
clearly that although the profiled disc is not much more "effi
cient" for b/c < 1 there is a substantial saving in mass at higher 
values. Nevertheless, the mass ratio is a steeply-rising function of 
b/c. 

5.9. Reinforcement of Central Holes 

An obvious disadvantage of the variable-thickness ideal disc 
developed in the preceding section is that it lacks the central hole 
necessary if the disc is to be mounted on a shaft, or which may be 
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desirable for any other reason—such as to remove an "unreliable" 
central core from a forging. 

Fortunately it is not difficult to modify the design (5.27)—or 
indeed any other design—by "cutting ou t" a hole at radius a and 
arranging for the radial stress in the disc at r = a to be carried by 
a "compact" ring designed for the purpose. In an actual design 
the reinforcing ring may prove to be too diffuse for the compact-
ring idealisation to be justified (see Problem 5.6); an initial study 
of the compact ring is, nevertheless, illuminating. A reinforcing 

5 

3 

2 
0 0 2 04 0« 0« 10 

FIG. 5 .14 . Mass-ratios for a ring-reinforced central hole in 
an "ideal" disc. 

ring of this sort would, of course, be made integral with the disc 
in practice. 

It is a straightforward matter to design a ring of given radius a 
to carry its own centrifugal load in addition to a radial stress 
applied by the remainder of the disc (Problem 5.7). As might be 
expected, the necessary cross-sectional area is a function of ale. In 
terms of mass (or volume), we find that if Ma is the mass of 
material removed by the cut at r = a, and M, is the total mass of 
the "equivalent" reinforcing ring for a central hole in an " ideal" 
disc, 

Mr/Ma = l/(exp(a72c*) - l ) ( c V - 1) (5.31) 

This ratio is plotted as a function of ajc in Fig. 5.14. Although the 
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ratio becomes infinite as a approaches c (as it obviously should) 
it is practically constant for a/c < 0 · 5, tending to 2 as a/c tends 
to zero. This limiting value is readily checked from first prin
ciples (Problem 5.8). 

We are therefore justified in making the apparently para
doxical statement that an adequately reinforced hole in the centre 
of a turbine disc weighs at least twice as much as the material 
removed. 

Problems 
5.1. Equation (5.2) concerns a hoop of material, but the remark on p. 120 

about strength/density being an important material parameter was made 
with reference to discs. On what grounds may this generalisation be justified? 

Calculate the critical peripheral speeds for rotating hoops made of some or 
all of the materials listed in Table 2.1, p. 58. 

5.2. Verify the "elastic" distribution of stress in a flat disc indicated in 
Fig. 5.3. (Check that the stresses satisfy the equilibrium equation (5.4). 
Evaluate the corresponding strains from the elastic stress/strain relations 
(3.1) and check that these are geometrically compatible by substitution in 
(3.9)). 

5.3. Show that the increment of plastic strain in a region of a disc for which 
σ θ = Υ > σ, > στ = 0 involves, in particular—according to the Tresca flow 
rule—i, = 0, and that consequently, by geometry, a surrounding ring of 
elastic material prohibits unconstrained plastic flow in the region. 

5.4. Examine the overall "equilibrium" of half of a rotating flat disc with 
no central hole (i.e. the balance of the "centrifugal" forces for a semicircle 
and integrated hoop stress on the diametral "cut") and establish equation 
(5.15) by using data in Figs. 5.3 and 5.4. 

5.5. Figure 5.12 shows a small element of a variable-thickness disc. Com
plete the labelling of the arrows (cf. Fig. 5.2) and hence obtain equation (5.24) 
by consideration of equilibrium. 

(Note that it is simplest to regard (hrar) as a composite variable; cf. 
Fig. 5.2.) 

5.6.f Study, for example, collapse of a flat disc carrying no peripheral 
mass but having a central hole reinforced by a flat annulus ("hub") of thick
ness (say) three times that of the disc. Assume plane stress conditions through
out. 

(Hint. Observe (i) that (for the same material) c is the same for both annuli; 
(ii) that Fig. 5.5 applies to both regions (with different constants Fin the two 
regions); and (iii) there is a factor 3 between the radial stress (averaged 
through the thickness) at the interface between the two annuli. 

Evaluate a few possible designs by measurement from Fig. 5.5 and compare 
the excess mass (over that of a disc without a hole) to that for a "compact" 
reinforcement designed by the formula given in Problem 5.9. 
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5.7. Obtain a formula for the cross-section area, A, of a hoop of radius a 
which will just sustain at angular velocity o>e a radial pull har per unit cir
cumference in addition to the centrifugal effects of its own mass. Work from 
first principles and express the result in terms of the "self-supporting radius" 
c, of the material at <oe. 

5.8. From the result of Problem 5.7 show that for a <<c the centrifugal 
effect of the mass of the ring is negligible and that, consequently, the problem 
of design of the ring reduces in effect to one of static equilibrium. Consider a 
compact ring reinforcing a hole in a plate with, locally, a, = σβ = Y and 
show that the mass of the compact ring is twice that of the equivalent portion 
of the plate. 

5.9. A flat disc of thickness h and radius b, supporting no peripheral mass, 
is to be modified by the cutting of a central hole of radius a reinforced by a 
compact hoop of cross-section area A, so arranged that the bursting speed is 
unaltered. Show that 

ha(\ - aW) 
(1 - 3a*lb3) 

(Hint. Use the solution of Problem 5.7.) 



CHAPTER VI 

TORSION 

THE basic questions in the theory of torsion which can be an
swered by simple plastic theory are : what is the full plastic torque 
of a given prismatic member? and : how can we design a pris
matic member to withstand a given torque ? 

These questions are obviously important in the analysis and 
design of some simple structures and machines. However, in 
practice, except in some specially simple situations, torsion in a 
member is usually accompanied by tension or bending or both. 
It will be of much more practical use therefore to study torsion 
in combination with tension and bending rather than simply by 
itself. This we shall do later in the chapter, making free use of the 
lower-bound theorem in conjunction with the "pure to rque" 
analysis of the first part of the chapter, to provide "safe" estimates 
of the carrying-capacity of prismatic bars of arbitrary cross-
section. 

In fact we shall use the lower-bound theorem throughout the 
present chapter both because it is "safe" and also because it 
provides an extremely simple and direct approach to the problem. 

In this respect the present chapter differs substantially from 
chapters on plastic torsion in other textbooks. The more usual 
approach is via elastic analysis and Prandtl 's so-called "mem
brane" analogy. As we shall see, the approach of the present 
chapter is much more direct, and although it avoids elastic and 
elastic-plastic analysis entirely (and therefore, ipso facto, cannot 
deal with certain important practical questions) it has the ad
vantage of not demanding of the reader a prior knowledge of a 
particular region of elasticity theory. 

139 
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For those readers who are familiar with the membrane analogy 
and wish to establish a connection between it and the present 
approach, an extra Problem (6.4) is provided. 

6.1. Torsion of Thin-walled Tubes of Arbitrary Cross-section 

In Chapter V it turned out to be a useful first step to consider 
the simplest conceivable rotating "disc", viz. a rotating hoop. 
Likewise in the present chapter we shall find it advantageous to 
begin by considering the problem of torsion in the specially simple 

FIG. 6.1. Torsion of a thin-walled tube of irregular cross-section. 

thin-walled tube. Rather surprisingly we can analyse easily the 
torsion of a thin-walled tube of arbitrary cross-section, shown 
schematically in Fig. 6.1. The tube is loaded by a torque Γ, i.e. by 
equal and opposite couples applied at the ends about an axis 
parallel to the tube. The tube is uniform in the sense that it is 
generated by sliding a cross-section in a direction perpendicular to 
its plane. The cross-section is simply-connected, of any arbitrary 
shape, and the thickness t—which is small compared to the overall 
dimensions of the cross-section—is a variable function of the 
distance, s, measured around the periphery from an arbitrary 
datum (see Fig. 6.2). As the tube is thin there is no significant 
difference in s measured around the inside or the outside surface. 
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In specifying torque Τ we do not specify the details of the way 
in which it is supplied; instead we suppose that end-fittings are 
provided which "diffuse" the torque into the tube. We therefore 
appeal to the principle of St. Venant and consider a representative 
cross-section sufficiently remote from the ends for the stresses to 
be uniform along the tube. 

In order to describe adequately the state of stress in the thin 
wall of the tube we need to specify a coordinate system. The 

FIG. 6.2. Cross-section of an irregular thin-walled tube. 

obvious one to choose is (s, z) in the thin wall, ζ being measured 
axially from an arbitrary datum. We also use the symbol η to 
describe the direction of the local normal to the tube wall, and 
thus to complete the local set of three mutually perpendicular 
axes. 

The notation for stress referred to this set of axes is that given 
in Appendix V. 

The first steps in the analysis of stress are to observe that it is 
safe to assume that the stress system does not vary through the 
(thin) wall of the tube and that several components of the stress 
on a typical small element, shown in Fig. 6.3(a), vanish: 

(i) a, — 0 because there is no difference in pressure be
tween the inside and outside of the tube, 

(ii) σχ = 0 because there is no axial pull (also assuming the 
tube to be initially stress-free), 
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(iii) σ . 0 ' 
0 
0 

because the surfaces of the tube are un
loaded. 

This leaves τ „ and τ „ as the only non-zero stress components, and 
by "complementary shear" (see Appendices I and V) they are 
equal—and opposite in this notation. 

The stress system at any point in the thin wall is thus a very 
simple one, viz. a state of pure shear referred to the s, ζ directions. 

T o simplify the notation we shall henceforth use the symbol τ 
for this shear stress: see Fig. 6.3(b). 

T o analyse the stresses in the tube we first consider the equili
brium of a finite portion of the wall between two arbitrary 
generators at s = sx and s = j„ say, and two arbitrary cross-
sections distance / apart, as shown in Fig. 6.4. 

Let the thickness of the wall be tx and it respectively at sx and 
s 2 , and the corresponding shear stresses rx and τ , . 

In the r-direction, equilibrium requires 

FIG. 6.3. State of stress in an element of the tube wall. 

/ Txtx = / τ , 11 (6.1) 
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Therefore, since ^ and s2 were chosen arbitrarily, we may 
write 

around the circumference. The value of q obviously depends on 
the dimensions of the cross-section and the applied torque. The 
quantity q is sometimes known as the "shear flow" in the wall of 
the tube; it is the shear force per unit peripheral length. We 
can readily check that the other equilibrium conditions for the 
segment are satisfied. 

To find the relationship between Τ and q we work out the 

resultant of the shear stresses acting on any cross-section, and 
identify it with T. In general the resultant of a set of forces in a 
plane is a couple together with a force. In the present case we 
expect the resultant to be a pure couple, so we must show that we 
obtain the same quantity by taking moments about an arbitrary 
point in the cross-section. 

First we take moments about an arbitrary point within the 
tube, such as D in Fig. 6.5. A small element of wall, BC, of length 
8s has an associated force 

rt = constant = q, say (6.2) 

FIG. 6.4. Equilibrium of part of the tube wall. 

rtos — q8s 

and a moment about D of 

DFqhs 
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when DF is the perpendicular from D to BC (produced). But 
DF8s is twice the area of the narrow triangle BCD; therefore, as q 
is a constant, we have on integration around the circumference 

Τ = 2Aq (6.3) 

where A is the total area enclosed by the cross-section. (Note 
that A is not the cross-sectional area of the tube wall.) 

This result is indeed independent of the position of D within 
the tube, and also outside the tube if some areas are reck
oned, appropriately, as negative. 

From (6.2) and (6.3) we have, at any point in the cross-section 

τ = T/2At (6.4) 

As we have completed the analysis of stress by the use of 
equilibrium considerations alone, we note that the tube is static
ally determinate. 

From (6.4) we obtain directly a lower bound on the full plastic 
torque, Tp, for such a tube made of perfectly plastic material with 
yield stress k in pure shear. The shearing stress is largest where 
the thickness has its smallest value, say /mm, so, setting this stress 
equal to the yield stress we have 

T„ = 2Aktmla (6.5) 

When we consider plastic design of a thin-walled tube we can 
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see immediately that as far as economy of material is concerned 
it is always best to have a constant wall thickness, for then the 
shearing stress is constant also. However, even if we decide to 
have constant wall thickness we still have great freedom in design 
because only the enclosed area of the cross-section, and not its 
shape, is determined by (6.5). 

The shape which gives minimum volume of material for a given 
torque is that for which the circumference is least for a given area, 
i.e. the circle; but a square tube of the same enclosed cross-
section area has a perimeter only 13 per cent larger (see Prob
lem 6.1). 

Considerations of economy must not be pressed too far, how
ever. In general the above analysis shows that for a required full 
plastic torque the amount of material needed diminishes as the 
wall thickness decreases and the enclosed cross-sectional area in
creases. Quite apart from the fact that compactness is often de
sirable in structural components from the point of view of space, 
there is a tendency for thin-walled structures of all kinds to 
become unserviceable through buckling. The designer must be 
aware of this possibility when designing unstiffened thin-walled 
tubes. 

However, as our prime concern in the present chapter is the 
torsion of bars of compact cross-sections, we shall not need to 
investigate this aspect of the behaviour of tubes; as we have 
already pointed out, our analysis of thin-walled tubes serves 
primarily as a stepping-stone to the analysis and design of more 
useful cross-sectional shapes. 

6.2. Lower-bound Analysis of Thick-walled Tubes and Solid 
Cross-sections 

We first recall that a lower-bound analysis consists of finding 
any distribution of stress which is in equilibrium and does not 
violate the yield condition: then the corresponding external loads 
will be carried safely. 

As an example, let us try to obtain a lower-bound on the full 
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plastic torque of a hollow square tube with the cross-section 
shown in Fig. 6.6(a). 

Now in general the more "solid" a body is, the more freedom 
there is in satisfying the equilibrium equations alone. Our aim in 
applying the lower-bound theorem is to exploit this freedom and 
produce relatively simple solutions of the equilibrium equations. 
In the present case the key to the situation is the physical idea of 
"slitting" the tube, conceptually, into a set of nesting thin-walled 
tubes, as in Fig. 6.6(b), which we now know we can analyse. A 
"sli t" in a body has completely stress-free faces, so by thus 

- à x 

(a) (b) 

FIG. 6.6. Hollow square tube and its conceptual subdivision into nesting 
thin-walled tubes. 

cutting a body up we are in effect specifying that certain stress 
components on certain planes have certain values. If we make 
enough slits we can make the resulting structure or component 
statically determinate, and thus end up with a set of simple 
equilibrium problems to solve. On the other hand, if we make too 
many slits we may render the structure unserviceable. 

Figure 6.6(b) shows an "obvious" way of breaking down the 
thick tube into a nest of thin ones. It is worth while, however, 
to establish at this point a general procedure which will apply 
equally whatever the shape of the cross-section. Our object is 
simply to obtain the highest possible value of Τ for the given 
cross-section. We shall clearly aim to have τ = k everywhere, 
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and we must therefore make each thin tube have constant thick
ness. Moreover, if we intend to "cut u p " the whole cross-section 
into thin rings, it is clear that the torque will be largest if each 
ring encloses the largest possible area. 

Our strategy is therefore clear. Starting from the outer edge of 
the cross-section we cut off complete, simply-connected thin 
shells of constant thickness; and we repeat the process until the 
whole cross-section area is used up. We then sum up the torques 
provided by the nesting tubes to give our lower-bound on the full 
plastic torque TP, to which we shall give the symbol T\—the 
superscript reminding us that we have calculated a lower bound. 

We might call this the spring onion analogy of torsion. 
In the chosen example Fig. 6.6, the procedure results in a set 

of nesting square tubes, and we can easily sum up the torques by 
using calculus, for it is clear that the torque is largest when the 
tubes are vanishingly thin. Let a typical elementary tube have 
side 2x and thickness dx as shown in Fig. 6.6(b). Using (6.5) 

The direction of the arrows in Fig. 6.6(b) shows the direction of 
the shearing stress on a cross-section for a "r ight-hand" torque; 
we clearly want all the elementary tubes to provide components 
of torque of the same sign. 

For some further simple examples see Problem 6.2. 
A second example is shown in Fig. 6.7. In this case the inner 

and outer boundaries of the cross-section are concentric but dis
similar, so a purely repetitive procedure will not "cover" the 
whole cross-section. Starting from the outside by removing con
centric circular shells we are left with three zones of irregular 
shape, Fig. 6.7(b). Now our "stripping" process must always 
produce complete simply-connected tubes, so the only rational 
procedure open to us is to treat each of the three remaining areas 

dT = 2Ak dx = 8x2k dx (6.6) 

Therefore 

(6.7) 
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separately, as shown in Fig. 6.7(c), with the shear directions as 
shown. It is clear that the enclosed areas of these irregular tubes 
are considerably smaller than those of the circular tubes, so for a 
rough (but quite good) lower bound we might well ignore the 
contribution of the irregular areas and simply integrate over the 
circular tubes. This gives 

η = y k(b* - * 3 ) (6.8) 

Another interpretation of this calculation is that we are doing 
a lower-bound calculation by assigning zero stress to all material 

(a) (b) (c) 

FIG. 6.7. Irregular thick tube and its subdivision into nesting thin-
walled tubes. 

no t in a simple symmetrical area. The same sort of technique is 
useful in obtaining lower bounds on the bursting pressure of 
thick pipes of irregular cross-section (see Problem 4.9). 

The "stripping" procedure can be used to compute a lower 
bound on the full plastic torque for a prismatic bar of any 
arbitrary cross-section, however complicated. Rings of constant 
thickness are removed inexorably from the cross-section, working 
always from the outside of whatever remains of the cross-section, 
and treating separately any areas which may become detached in 
the process. Figure 6.8 shows an example. The evaluation of areas 
of irregular shape will not be simple, of course: ad hoc approxima
tions and planimeters may be useful in practice. 
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6.3. The Sand-hill Analogy 

It is sometimes helpful to attach a geometrical meaning to the 
integration of the torques corresponding to our nesting thin tubes 
of thickness dt, say: 

If we regard (kdt) as a thickness, the integrand is the volume of a 
"slice" of thickness kdt. These slices, piled on top of each other, 

FIG. 6.8. Subdivision of a double tube into nesting thin-walled tubes. 

form a solid with sides having a common slope k. On this in
terpretation the "sli ts" between successive tubes, as shown for 
example in Figs. 6.6 to 6.8, become contours of the solid figure. 
It is important to note that when the cross-section has a hole, 
there is no corresponding hole in the "slices", and the outline of 
the hole simply indicates a "pla teau" of the solid figure. 

We may summarise this interpretation by stating that the 
lower-bound torque is equal to twice the volume of the solid 
erected over the cross-section with slope k above the "mater ia l" 
parts of the cross-section and zero slope above any holes. 

(6.9) 
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This is in fact the celebrated "sand-hill" analogy for plastic 
torsion first put forward by Nadai. It is so called because dry 
sand has a definite "angle of repose" and the "volume" corre
sponding to any cross-section (without holes) may be generated 
automatically—to within a vertical scale factor—by pouring sand 
onto a flat horizontal board cut out to the shape of the cross-
section. 

For torsion of a tube (or in general any multiply-connected 
cross-section) the sand-hill analogy is not nearly so satisfactory as 
our "spring onion" analogy, because the special devices which 
are necessary to realise the sand-hill have no direct physical sig
nificance. With the nesting-tube method contours of the volume 
are built up one at a time until the whole area is covered : the 
only problem then remaining is the purely geometrical one of 
integration. See, for some examples, Problem 6.3. 

Another analog of the volume to be evaluated is a roof with 
sloping sides. This is a natural analogy to use when discussing the 
transition from elastic to plastic torsion (see Problem 6.4). Ob
viously the two analogies produce volumes which have identical 
contours. 

6.4. Re-entrant Corners 

The nesting thin-tube procedure for finding lower-bound full 
plastic torques for prismatic bars of any (simply or multiply-
connected) cross-section is bound to work in all cases. There is a 
pitfall for the unwary, however, when the cross-section has a 
sharp re-entrant corner. We illustrate this by considering plastic 
torsion of an L-shaped cross-section shown in Fig. 6.9. 

The roof of an L-shaped house would have contours as shown 
in Fig. 6.9(a), while our stripping process would provide contours 
as shown in Fig. 6.9(b). In particular, in the region of the re
entrant corner the second procedure generates a conical surface 
of slope k. Each thin tube in (b) has a greater enclosed area than 
the corresponding one in (a) and so the corresponding torque is 
higher. 
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However, there is no doubt that (a) represents a perfectly 
satisfactory way—from the present lower-bound point of view— 
of dividing up the bar into thin tubes, and it is clear that the 
volume calculation would be easier than for (b). The question of 
which approach to use—(a) or (b)—is thus very largely a question 
of taste. If, as is often the case in engineering, speed and ease of 
calculation are of more importance than extreme accuracy, (a) 
will be the better method. If a check on the difference between the 
two corresponding torques is required, this can be made, roughly, 

Ml 

(a ) 

FIG. 6.9. The problem of the re-entrant corner. 

by neglecting the small, awkwardly-shaped volume, but including 
the "conical" par t : see Problem 6.5. 

In an important practical problem like that of estimating the 
reduction in torque carrying-capacity of a shaft when a keyway 
is cut into it (Fig. 6.10) the calculation of volumes is obviously 
more complicated. For a simpler "keyway" situation see Prob
lem 6.6. 

6.5. Other Aspects of Plastic Torsion 

If a lower-bound on the full plastic torque T, is obtained by 
use of the "spring onion" method or, equivalently, the sandhill 
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analogy, with all details of the volume carefully accounted for, 
it is clear that no higher lower bound on T, can possibly be 
obtained. 

If we have thus arrived at the "exact" stress distribution, it 
follows that a mechanism of collapse must exist in which the 
incremental strains at each point are associated with the stresses 
by means of the normality rule. 

It is not difficult to determine the pattern of deformation in 
plastic torsion. We shall not go into details here (we refer the 
reader who is interested to the book by Hill listed in the Biblio

graphy) except to point out that in general the deformation in
volves warping of the cross-section, i.e. non-uniform displacements 
in the axial direction over the cross-section. 

Now we have assumed throughout our analysis that the bar 
being twisted is sufficiently long for end-effects to be negligible. 
The above remarks about warping serve to reinforce the necessity 
for an assumption of this sort, because warping according to the 
same pattern at all cross-sections of a bar would require, in par
ticular, warping at the ends of the bar, which might be incom
patible with, say, massive enlarged end-pieces. 

In general the effect of restraint of warping at the ends of a 
twisted bar is to increase the torsional strength of the bar. It is 
well known, for example, that in the twisting of relatively short 

FIG. 6.10. Shaft with a key way. 



TORSION 153 

relatively thin-walled "angles" with encastered ends the torque-
carrying capacity determined by experiment may be considerably 
larger than that according to our simple theory. 

While this has important implications for combined flexural-
torsional buckling in frameworks it is not so significant in the 
torsion of members of more "compact" cross-section, and in any 
case our lower-bound technique is intended to provide "safe" 
estimates of torque-carrying capacity. 

Useful estimates of the effect of "end-restraint" on the torque-
carrying capacity of very short members may be made by using 
an upper-bound approach; see Problem 6.7. 

6.6. Combined Torsion and Tension 

The lower-bound approach enables us to make safe estimates 
of the strength of prismatic members subject simultaneously to 
tension and torsion, at the expense of very little further effort. 

Let Τ and Ρ represent the applied torque and longitudinal 
tension carried by the member. We seek, then, information about 
the collapse load locus in Τ, Ρ space. A pure torsion analysis 
furnishes two points in this space, ( ± T„, 0), say, while a pure 
tension analysis furnishes the point (O, P0). P0 = AY, where A 
is (now) the total cross-section area of material and Y is the yield 
stress in pure tension. If we suppose that there is no buckling in 
compression, and no Bauschinger effect, as usual, we also have 
a fourth point, (O, — P0). These four points, Fig. 6.11(a), all lie on 
or within the collapse load locus. 

The convexity theorem, p . 113 indicates that the locus 
formed by joining the four points by straight lines is "safe", see 
Fig. 6.11(a); this is because the quadrilateral shown is the curve 
which comes as close to the origin as possible without being con
cave anywhere. The quadrilateral thus represents an " inner" 
bound on the true Τ, Ρ collapse load locus. Note that this applies 
whatever the cross-section shape of the bar. 

It is a simple matter to improve on this lower bound, and en
large the "safe" area of Ρ, Γ space, as follows. 
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We know from the "spring onion" analogy that shearing 
stresses of magnitude k over the cross-section are in equilibrium 
with torque T0; therefore proportional stresses of magnitude Xk 
are in equilibrium with torque XT„. Similarly, tensile stresses μ Y 
are in equilibrium with axial tension μΡ„. Thus, provided the 
combined stresses Xk, μ Y—properly added—do not exceed yield, 

Po 
Ρ 

νγ 0 τ 

~T°v\ / Ί T 0 

-Po 
(a) 

M 

\ j o Ρ 

(Ç) 

FIG. 6 .11 . Combinations of tension (P), torsion ( Γ ) and bending ( M ) . 

the loads (λΓ„ μΡα) will be "safe". Figure 6.12(a) shows the 
combined stresses acting on an elementary cube "cu t " with one 
face parallel to the tangent-plane to the local thin tube, and an
other perpendicular to the axis. We have already studied yielding 
under this particular combination of stresses in Chapter II with 
the result that for either the Tresca or the Mises yield condition 

1 (6.10) 
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FIG. 6.12. Yield locus for combined tension and shear. 

In this analysis we have been able to find safe combinations of 
Τ and Ρ without reference to the cross-sectionàl shape beyond the 
fact that values of T„ and P„ depend on it. Any further extension 
of the safe zone can only be done with reference to a particular 
cross-section geometry. In fact, for the simple cross-sectional 
shapes which are fully analysed in the literature under combined 
tension and torsion the elliptical locus is a very close lower 
bound. We conclude then that further detailed analysis of this 
problem would have little practical value. 

6.7. Combined Torsion, Bending and Tension 

It is easy to show, by a simple extension of the arguments of the 
previous section, that if M0 is the full-plastic (pure) bending 

as shown in Fig. 6.12(b); k = Y/2 (Tresca) or 7/V3 (Mises). 
Here τ = Xk and σ = μΥ so (6.10) gives 

λ» -fV = 1 

and it follows that 

IHf.)'=> 
represents safe combinations of load. 

The corresponding ellipse is shown in Fig. 6.11(a); it obviously 
encloses considerably more space than the quadrilateral. 
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moment of a prismatic member about a "na tura l " axis, the 
ellipse 

in (Γ, M) space, as shown in Fig. 6.11(b), represents safe com
binations of torque and bending moment. 

The same approach can obviously be applied to combined tor
sion, tension and bending. For combined bending and tension 
(with no torsion) we cannot, unfortunately, improve on the 
quadrilateral joining the points (± Pa, Ο), (Ο, ± M„) in Ρ , M 
space, Fig. 6.11(c), as a locus of safe loads without taking into 
account details of the cross-section geometry: consequently in 
Τ, Ρ, M space our best general safe load locus is made up of two 
intersecting surfaces : 

One octant of this surface is shown in Fig. 6.11(d). The surface 
may be derived from the three two-dimensional loci (Fig. 6.11(a), 
(b) and (c)) by application of the convexity theorem. It is not 
difficult to extend the "safe" region of Τ, Μ, Ρ space in specific 
simple cases; see Problem 6.8. 

It should be pointed out that considerable care is necessary in 
the discussion of plastic bending of members of arbitrary cross-
section, due to the presence of "preferred" or "na tura l" axes of 
bending within the section, somewhat analogous to principal axes 
in the theory of elastic bending. 

6.1. Compare the full plastic torques for several thin-walled tubes all 
having the same thickness and perimeter, but different shapes. (For example, 
circle, square, rectangle, triangle.) 

6.2. Sketch nesting thin-walled tubes which "fill" some simple solid cross-
sections. (For example, circle, square, rectangle, triangle.) 

6.3. Evaluate, by determining the appropriate volume, T, for the cross-
sections studied in Problem 6.2. 

(6.12) 

Problems 
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6.4.f Show that in the "membrane" analogy for elastic torsion (see a 
textbook on elasticity or one on plasticity which covers elastic-plastic torsion) 
the contours of the relevant stress function correspond to slits in a decom
position of the cross-section into a set of nesting tubes of variable thickness ; 
and hence that the torque is directly related to the volume enclosed by the 
"membrane". 

6.5. Find the volume indicated by the contours shown in Fig. 6.9(a), and 
make an estimate of the percentage increase in volume resulting from adoption 
of the alternative contours shown in Fig. 6.9(b). 

(Hint. Use an ad hoc approximation to the awkwardly-shaped volume.) 
6.6. A square shaft with a "keyway" has a cross-section consisting of a 

square of side 5a with a square of side a removed from the middle of one side. 
Make a safe estimate of the full plastic torque of the shaft, and an (over-)esti-

(a) (b) 

FIG. 6.13. Examples. 

mate of the reduction of full plastic torque of a square shaft due to the cutting 
of the keyway. 

6.7.t A short shaft with massive end fittings is subjected to a pure torque. 
An upper-bound on the full plastic torque may be obtained by considering 
the simple mechanism in which originally plane sections of the shaft remain 
plane, and simply rotate relative to each other with no change in axial separa
tion. Apply this calculation to (a) a solid circular shaft and (b) a solid square 
shaft, and compare the results with the corresponding lower-bound values. 

6.8. Consider combined tension (P) and bending (M) of a prismatic 
member of rectangular cross-section, with the axis of the bending moment 
parallel to one of the edges of the cross-section, and show that a more ex
tensive "safe" region of Ρ, M space than the simple quadrilateral may be 
obtained. Sketch the corresponding surface in Τ,Ρ,Μ space, as in Fig. 6.11(d). 

(Hint. In pure bending the border between areas of compressive and tensile 
yield bisects the rectangle. Examine the effect of moving this border parallel 
to itself.) 

6.9. Find a lower bound on Tp for the T-section shown in Fig. 6.13(a). 
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6.10. Find Tp for the doubly-connected cross-section shown in Fig. 6.13(b), 
and assess the contribution of the "bridge" to the total. 

6.11. Find "safe" combinations of Ρ, J in combined tension and torsion of 
a square shaft by dividing the shaft into a square inner region sustaining only 
tension, and an outer square tube sustaining only torsion. Show that this 
lower-bound approach produces points lying within the ellipse of Fig. 6.11(a). 



CHAPTER VII 

INDENTATION PROBLEMS 

IN ITS simplest form the problem studied in the present chapter is: 
what force applied to a hard die is necessary to form a per
manent indentation in the flat surface of a large block of per
fectly plastic material ? 

There are many practical applications of this problem, and we 
list four important ones below: 

(i) In a sense the operation of indenting a surface is a primitive 
forming process, and some practical—but obviously more 
complicated—forming processes are closely related, in 
terms of mechanics, to indentation. 

(ii) The problem is relevant in a broad sense to the design of 
foundations in civil engineering. 

(Hi) The problem forms the basis of the theory of the hardness 
test whereby the yield stress of a material may be deter
mined by making and measuring a microscopic indentation 
in its surface. 

(iv) The analysis is relevant to studies of friction and wear on a 
microscopic scale. 

Supposing we were free to choose a single form of indenter for 
our study, we would probably select one circular in plan, be
cause this would combine a broad similarity to most of the 
practical situations listed above with a high degree of symmetry. 

It turns out, however, somewhat surprisingly, that this sort of 
(axial) symmetry does not lead to a particularly simple mathe
matical treatment. On the other hand the mathematical aspects 
are specially simple when the conditions of deformation are those 

159 
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of plane strain; that is, when the flow of the plastic material is 
confined, so to speak, between smooth rigid parallel plates which 
prevent straining in a particular direction. In consequence of these 
mathematical aspects, most studies of indentation problems have 
been made in terms of plane strain, and we shall follow suit here. 
In physical terms the plane strain situation corresponds to in
dentation by an infinitely long strip punch, something like a long 
blunt knife. 

Although we are persuaded into a study of this somewhat 
untypical situation by mathematical considerations, it seems 
reasonable to suppose that the indentation pressures found for 
problems of plane flow will be broadly similar to those which 
would occur in the corresponding axisymmetric problems. 

Plane plastic flow is in fact one of the most highly developed 
branches of plasticity theory, largely as a result of the work of 
Hill in developing and applying the theory of the "slip-line field", 
a theory whose simplicity is derived largely from the restrictions 
imposed by plane strain conditions. We shall give a brief outline 
of this theory in the next chapter, but for the present we shall 
concentrate on application of the lower- and upper-bound 
theorems : for engineering purposes the former is appropriate for 
the safe design of foundations, etc., while the latter is relevant to 
forming processes. 

In fact, arguments which predispose to the study of problems in 
plane plastic strain on the grounds of mathematical convenience 
are not nearly so strong when we turn from the derivation of 
complete solutions to applications of the bound theorems. In the 
present chapter we consider only "plane strain" problems, but in 
Chapter X we shall extend application of the upper-bound 
theorem to axisymmetrical forming processes without much 
difficulty. 

7.1. Upper-bound Approach 

First let us attempt an upper-bound solution of our plane-
strain indentation problem, shown schematically in Fig. 7.1. The 



INDENTATION PROBLEMS 161 

diagram shows a cross-section of a long "rigid" indenter A being 
pressed by a force F per unit length into a large block of per
fectly plastic material. 

The first step in our analysis must be to postulate a geometrically 
satisfactory mode of deformation of the plastic material. Since 
movements out of the plane of the paper are ruled out by our 
assumption of plane strain, we must construct a pattern of 
deformation in the plane. Evidently if the indenter is to descend 
and the material is incompressible there must be a gross "sideways 
and upwards" movement of material. 

FIG. 7.1. Basic configuration of the indentation problem. 

Perhaps the most obvious simple mode is that shown in Fig. 7.2, 
which is geometrically permissible if there are no external con
straints to hold the indenter vertical. The block of material Β 
rotates with angular velocity θ as a rigid body, and there is a semi
circular zone of "intense shear" between it and the remainder of 
the body. The mode is certainly simple, but are we justified in 
postulating a mechanism with, effectively, a " j u m p " in tangential 
velocity across an interface ? 

To answer this question we consider the "un i t " mechanism 
shown in Fig. 7.3. The rigid top part of this block is moving to the 
right with velocity ν relative to the rigid bot tom part , and the 
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two parts are separated by a zone of plastic deformation of unit 
area and thickness h, in which the shearing strain rate is uniform. 
Here, and throughout this chapter, we shall consider unit thick
ness (perpendicular to the plane of the diagram) of material. 

Let us evaluate the rate of dissipation of energy, D, in this 
zone of plastic deformation. The mode of deformation is in
stantaneously one of pure shear; the shear strain rate y in the 
zone is equal to v/h, so the rate of dissipation of energy is equal to 

kv/h per unit volume, k being the yield stress in pure shear. The 
volume of the zone is numerically equal to A, so 

D = (kvjh)h = kv (7.1) 

This equation states that the rate of dissipation of energy per 
unit area of interface of the narrow zone is the product of the 
yield stress in pure shear and the relative velocity of the two 
rigid blocks. Note that, in particular, the expression is independ
ent of the thickness h, so h may be as small as we please, including 
zero. True, if h is zero γ will be infinite, but this is quite satis
factory for perfectly plastic (non-hardening) material, which is, of 
course, the idealised material we must use when we apply the 
bound theorems. The conceptual advantage of a zone of zero 
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thickness is that it enables us to consider simple mechanisms con
sisting of rigid blocks sliding over each other. 

The question of whether velocity discontinuities occur in com
plete solutions, or in reality, is irrelevant in the present context; 
we are at present simply using a postulated mechanism which is 
geometrically satisfactory (although it may be somewhat im
plausible as a real mode) to obtain an upper bound on an in
dentation load. 

Another possible objection to the mode of Fig. 7.2 is that it 
creates "s teps" in the surface of the plastic material. As we shall 
see, the upper-bound load is independent of the magnitude of the 

i • 

0 . 

, - · 1 i 

FIG. 7.3. Narrow band of intense shearing. 

angular velocity Ô, so we can regard θ as sufficiently small not to 
disturb the overall geometry. But by regarding the surface as 
flat we shall, of course, restrict the scope of our study to the 
initial indentation problem. If we wished to study the forces re
quired to advance the indentation after there had occurred a 
considerable "pi le-up" of material on either side of the indenter, 
we should have to take into account the shape of the surface. 

The upper-bound "work" calculation gives: 

F-bÔ/2 = kbônb (7.2) 

where b is the width of the indenter, Fig. 7.2. The superscript 
reminds us that we are finding an upper bound on F. From (7.2) 

F" = 2nkb = 6-29kb (7.3) 
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We have thus obtained, very simply, an upper bound on the 
indentation force per unit length of indenter. 

Now the mechanism of Fig. 7.2 may easily be generalised by 
regarding the radius and position of the centre of the circle as 
variables ; and we could try out several possibilities in the hope of 
finding a lower, and therefore better, upper bound; see Prob
lem 7.1. 

Before we move on to consider other modes which do not 
involve rotation of the indenter we note that "slip circle" failures 
of this sort—in which whole buildings, docks, embankments 
or hillsides tilt and descend—have occurred on soft clays in many 
parts of the world. In using upper-bound methods to study 
problems of this sort we must be aware that the self-weight of the 
soil may play an important part (see Problem 7.2). In the present 
book we ignore the self-weight of the material in comparison 
with the indentation forces, which is almost always justified in 
mechanical engineering situations. 

The next simple mode of deformation we use is shown in 
Fig. 7.4. As in the previous mode all the internal dissipation of 
energy takes place at interfaces between rigid blocks, but now 
there are several blocks, and all of the interfaces are plane. In 
Fig. 7.4(a) all of the blocks are shown equilateral, for conveni
ence of calculation, but they could obviously have been drawn in 
many different ways. 

To evaluate the dissipation of energy we need to know the 
relative (sliding) velocities between adjacent blocks. The most 
direct way of determining these is by means of a velocity diagram 
(or hodograph), as shown in Fig. 7.4(b). 

Each of the blocks in Fig. 7.4(a) is labelled with a capital 
letter, and the zone which remains stationary is labelled O. In 
the velocity diagram, Fig. 7.4(b), the velocity of each block is 
represented by a single point (as the blocks do not rotate) which 
is labelled with the corresponding lower-case letter. The velocity 
diagram has the general property that the vector joining two 
points represents the relative velocity of the corresponding blocks. 

We construct the diagram as follows. The velocity of the in-
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denter is first drawn as oa to a convenient arbitrary scale, and in 
the correct orientation with respect to the layout of Fig. 7.4(a). 
There is no need in the present example for the velocity of the 
punch to be vertical, but by making oa vertical we impart a 
simplifying symmetry to the velocity diagram. Relative to A, 
block Β may only move horizontally, because otherwise a gap 
would open between A and B. Again for simplicity we assume 

that Β descends vertically—in effect as an "extension" of the 
indenter. Thus in the velocity diagram points a and b coincide. 
We next fix point c. The directions of the velocity of C relative to 
Β and Ο are the same as the directions of the corresponding 
interfaces—since our mechanism involves only sliding, with no 
separation of the blocks—so the position of c is determined 
uniquely from b and o, as shown. Similarly d is located from c and 
o. The points c', d' are located either by symmetry or by direct 
construction. 

Using the notation he for the length of the interface between 
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blocks Β and C, etc., we write down the work equation for unit 
thickness of material, making use of symmetry: 

F" oa = 2k{bc.lBC + co.Uo + cd.lCD + do.lDO} (7.4) 

Each of the terms on the R.H.S. is positive, so there is no occasion 
for difficulty over signs when the expression comes to be evalu
ated. 

Clearly the absolute size of the velocity diagram, and indeed 
the magnitude of the indentation velocity, are immaterial. 

In the present case the trigonometry of the velocity diagram is 
especially simple, and we write down by inspection 

oc\oa = 1V3, etc. (7.5) 

Also L e = lco = . . . = b (7.6) 

so 

F" = 2A:è(2/V3 + 1/V3 + 1/V3 + 1/V3) 

= (10/V3)fc& = 5 -76*6 (7.7) 

This bound is about 8 per cent lower than the one corresponding 
to the simple "slip circle". 

A possible objection to the mechanism of Fig. 7.4(a) is that the 
block Β cannot descend, since its lower edge is already in contact 
with region O. The answer to this is that the contradiction dis
appears if the interfaces are given small but finite widths (Prob
lem 7.3). The magnitude of the incremental motion of the mech
anism is in any case irrelevant to the calculation. 

I t is clear that if these calculations were repeated (a drawing 
board would be useful) for mechanisms of the same family, but 
with the interfaces at various different inclinations, a minimum 
value of F" could, in principle, be found. A partial minimisation 
may easily be accomplished analytically (Problem 7.4) by keeping 
all the triangles congruent but varying their depth. The value of 
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F" may be decreased by only 2 per cent in this way, but the 
depth of the triangles in the corresponding mode is about 20 
per cent less than that of equilateral triangles. In other words the 
minimum is a "flat" one, and a wide variety of geometries within 
the same family would be expected to yield only slightly different 
upper bounds. 

Now the least value of F" for all possible mechanisms will be 
the exact value of F, and in particular the corresponding distribu
tion of stress will be in equilibrium. It is clear that equilibrium 
cannot possibly be satisfied in the neighbourhood of the inter
section of three slip planes in Fig. 7.4(a), because this would 
require maximum shearing stress to occur on planes not mutually 
perpendicular, which is impossible by the Mohr circle construc
tion (Appendix I). Thus, however hard we try to find the optimum 
layout in this family of modes, we know that we shall never 
achieve the exact value of F. This, of course, is not particularly 
disconcerting if, as engineers, we are not primarily interested in 
accuracy for its own sake. 

7.2. Lower-bound Approach 

Let us now attempt a lower-bound solution of the same in
dentation problem, by constructing simple equilibrium distribu
tions of stress which do not violate the yield condition. We shall 
use the idea of "blocks" over which the stress does not vary— 
which are therefore automatically in equilibrium internally (in the 
absence of self-weight of the material)—and exploit the possibility 
of discontinuity of stress between adjacent blocks. 

First we consider the possibility that the stress systems on two 
sides of a plane may be different, but yet in equilibrium. Fig. 7.5(a) 
represents such a boundary plane and the states of stress on either 
side, which are referred to /, η axes, tangential and normal to the 
boundary, respectively. In plane strain the direction normal to the 
paper is a principal direction of stress, so to study equilibrium 
across the boundary we only need to consider equilibrium in the 
plane of the paper. 
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FIG. 7.5. Discontinuity of stress across an interface. 

Resolving in the η and J directions for a small block as shown 
we have 

(7.8) 

and 

(7.9) 
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where the superscripts denote the zones. By taking moments 
about any point we simply obtain the "complementary shear" 
relationship (Appendix I). 

Note that the stress components a, cannot be brought—in a 
non-trivial way—into these equations. We must conclude there
fore that as far as equilibrium is concerned we may have a dis
continuity in the σ, component across the boundary, although the 
other components of stress, a„ and τ», must be continuous across 
the boundary, from (7.8) and (7.9). 

The situation is illustrated clearly by the Mohr circle diagram 
for stress, Fig. 7.5(b): the two stress components σ„, τ„ coincide at 
the interface, but the two states of stress, represented by circles I 
and II, may nevertheless be different. 

On the whole in applying the lower-bound theorem it will be 
advantageous if the material is at the yield point on both sides of 
a boundary of this sort, in which case the two Mohr circles will 
have the same radius, k, as shown in Fig. 7.5(c). In this case, by 
simple geometry applied to the circles, the axes of principal stress 
in the two regions form mirror images of each other in the 
boundary (see Problem 7.5). 

It is important to realise that this diagram applies only to the 
plane strain situation we are discussing. Because there is no possi
bility of straining in the ζ direction, perpendicular to the plane of 
the diagram, σχ is always the intermediate principal stress (on 
Tresca's criterion: see (2.12) on p . 42), so the Mohr circles shown 
are in fact always the largest of the three circles needed to describe 
the state of stress completely; see Appendix I. The dotted circles 
corresponding to region I are included in Fig. 7.5(c) as a re
minder. If we were dealing with a state of plane stress, in which 
σχ = 0, then it would not be true, necessarily, that σ, was the 
intermediate principal stress, and the lower-bound analysis in the 
present chapter would not be correct in general; see Problem 2.15. 

Diagram 7.5(c)—and consequently the whole of the remainder 
of the present analysis—is also valid (with a small modification; 
see Problem 7.6) for the Mises yield condition. 
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7.3. A Simpler Problem 

Consider for the moment the simpler problem of a fiat surface 
of infinite extent, loaded by pressure g exteftding indefinitely in one 
direction, as shown in Fig. 7.6(a). The simplest possible equili
brium distribution of stress is found by having a vertical plane of 
discontinuity between zones I and II , and postulating zone I to be 
stress-free. In this case the Mohr circles are as shown in Fig. 
7.6(b), circle II having been drawn as large as possible (radius k) 

Fio. 7.6. Lower-bound stress field for a partly-loaded surface. 
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and circle I vanishingly small. Note the correspondence between 
the points on the circles and the planes to which they refer (see 
Appendix I). The diagram is thus a special case of Fig. 7.5(b), 
and we find 

ql = 2k (7.10) 

by reading off from Fig. 7.6(b) the state of stress on plane e 
of Fig. 7.6(a). 

This result obviously corresponds to an effective " removal" 
of zone I, and pure uniaxial compression of zone I I . 

We can very easily obtain a better lower bound by setting the 
stress in zone I at yield, as shown in Fig. 7.6(c). Here the stress-
free surface c fixes the point C on circle I. For the lower bound of 
Fig. 7.6(b) to be improved, Ε must move to the left in diagram, 
so it is clear that circle I should extend to the left rather than the 
right. The reader should indicate the stress systems in the two 
regions by sketching a small principal stress element in each. 

The result 

q' = 4k (7.11) 

is an obvious improvement on the previous one, but it does of 
course assume that the body of plastic material is so large that 
the stress components in the horizontal direction can be sus
tained. This solution can clearly be adapted to the problem of a 
finite indenter by having a zone II "sandwiched" between two 
zones I. As the indenter is supposed to be rigid, or at least to 
have a yield stress much higher than that of the material beneath 
it, equilibrium of the punch gives 

Fl = 4kb (7.12) 

This load is only about 2/3 of the upper-bound loads already 
calculated, which is perhaps a little disappointing. 

Let us therefore explore the possibility of improving the lower 
bound q' by using more than one plane of discontinuity of tan
gential stress. Tentatively we replace plane d, Fig. 7.6(a), by two 
planes equally inclined to the vertical at a small angle <f>, and 



172 PLASTICITY FOR ENGINEERS 

thus enclosing a third zone, as shown in Fig. 7.7(a). By using the 
"double angle" rule (see Appendix I) on Fig. 7.7(a) we obtain the 
Mohr circles of Fig. 7.7(b). In fact we need not have drawn the 
diagram symmetrically, but by putting the centre of circle II in 
any other place we would have found that point F was off the a 
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Fio. 7.7. A stress field with two planes of discontinuity. 
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axis, which would have violated the stress boundary condition on 
plane / . Note that the angle subtended by DG at the centre of 
circle II (g being the vertical plane in Fig. 7.7(a), and not a plane 
of discontinuity) is 2φ, and so, by simple geometry, the angle 
subtended at D by the centres of circles I and II is a right-angle, 
as indicated : this gives a way of locating the centre of circle II 
for any value of φ. 

Clearly two planes of discontinuity are better than one from 
the present point of view because the two "original" circles are 
"pushed apar t " by the circle corresponding to the newly-formed 
zone. As φ increases the new circle becomes larger, and clearly 
when φ = 22 · 5° the new circle has grown to its largest allowable 
radius, k, as shown in Fig. 7.7(c). This gives 

which is a substantial (20 per cent) increase on the previous value. 
Holding in abeyance the question of whether this solution can 

be adapted to the problem of the finite indenter, let us see whether 
a further improvement may be made by having three planes of 
stress discontinuity, as shown in Fig. 7.8(a). The Mohr diagram 
will now have four circles, disposed as in Fig. 7.8(b), but not 
necessarily touching. The location of the circles and the corres
ponding planes is most easily done by making use of the two 
auxiliary planes χ and ζ inclined at 45° to the horizontal and the 
corresponding points on the circle diagram, as shown. The angle 
between planes χ and ζ is 90°, so the total angle subtended by the 
arcs XD, DE, EF and FZ at the centres of their respective circles 
must be 180°. With the circles equally spaced all six angles 
marked with a cross in Fig. 7.8(b) are equal, and therefore equal 
to 30° ; thus the angles between planes d, e and / must be 30°, by 
inspection. The circles therefore touch in pairs, as shown, and in 
particular 

which is a further improvement of about 3 per cent on the previous 
lower bound. 

q' = (2 + 2^/2)k = 4-83 k (7.13) 

ql = 5k (7.14) 
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We now investigate whether the two previous solutions are 
adaptable to the problem of the finite indenter. Figure 7.9(a) 
shows the obvious "overlapping" arrangement of planes cor
responding to Fig. 7.7, and the reader should check that it does 
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indeed satisfy all the inter-region boundary conditions. Note that 
the planes g and d, which are geometrically the same, have 
different stresses acting across them. 

The corresponding check for Fig. 7.8(a) is also satisfactory, 
but it is more complicated, Fig. 7.9(b). In this case we find that 
there is a zone of hydrostatic compression beneath the indenter, 
represented by a point in the Mohr circle diagram. 
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As both solutions are thus adaptable to the indenter we have 

F' = 4-%3kb 

Fl = 5kb 
(7.15) 

Taken together with the result (7.12) corresponding to a single 
plane of discontinuity we detect a strong law of "diminishing 
re turns" as the number of planes of discontinuity is increased : 
progressively smaller increases in the lower-bound load are made 
at the expense of progressively more labour. 

(a) / 
• f-

e g h 

d h / ' \ 

:t>) 

FIG. 7.9. Stress fields for the indentation problem. 
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At what stage an engineer would "st ick" in this succession of 
lower-bound calculations depends to some extent on how busy 
he is and how much he enjoys doing calculations. A good case 
may be made for stopping after the first attempt if a quick 
estimate only is required. 

7.4. Experimental Confirmation: the Hardness Test 

In hardness testing a strong indenter, usually in the form of a 
wide-angled pyramid or a sphere, is pressed into the surface of a 
specimen by a known force, and the force divided by the area of 
the resulting impression is taken to be a measure of the hardness 
of the material. The indenter is usually small, and the size of the 
impression is measured microscopically. 

Now in spite of obvious points of difference, there is a broad 
similarity between this sort of test and the problem we have been 
studying Fig. 7.1. The convexity of the indenter—which en
sures that the effective width automatically adjusts itself to the 
applied force—should not make too much difference to the be
haviour, provided the indenter may be classified as "blunt" . 

Experimental studies of the hardness test applied to a wide 
range of materials have shown that there is indeed a simple rela
tion between the average pressure on the indenter and the yield 
stress of the material as measured in the tensile or compression 
test: see the book by Bowden and Tabor listed in the Biblio
graphy. The ratio of indentation pressure to tensile yield stress is 
rather insensitive to the pyramid angle (in the "b lun t" region) 
and to the degree of lubrication (or friction), and is generally in 
the region 2-5 to 3, corresponding to a ratio of indentation 
pressure to yield stress in pure shear in the region 4-5 to 6 (de
pending on whether Y = 2k (Tresca), or Y = \/3k (Mises)). In 
the case of a rapidly strain-hardening material (like annealed 
copper at small strain) an "equivalent" yield stress must be es> 
timated with regard to the average amount of strain occurring 
under the indenter. When this has been done the ratio defined 
above is found to be insensitive to the degree of strain hardening. 
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This provides a major justification for the use of a perfectly 
plastic (i.e. non-hardening) idealisation of strongly strain-harden
ing material, provided the yield stress is chosen intelligently. 

In spite of the fact that our studies have been in terms of plane 
strain, we can regard them as agreeing broadly with a substantial 
amount of experimental evidence from hardness testing. 

7.5. Indentation of Finite Blocks of Plastic Material 

A feature of the plane-strain indentation problem we have been 
studying so far is that the dimensions of the block of plastic 
material, both in width and depth, are large compared to the 
width of the indenter. While this feature applies to micro-hardness 
testing, it is clear that in many other situations we are interested 
in the indentation of blocks whose dimensions are of the same 
order of magnitude as those of the indenter. 

It is clear from one of the corollaries of the lower-bound 
theorem (p. I l l ) that for a given size of indenter the indenta
tion load can only decrease as the size of the block decreases: 
but it also seems clear, intuitively, that the rate of decrease of 
load with dimensions is probably small when the block is large. 

When the block is the same width as the indenter, the indenta
tion pressure is clearly equal to the (plane-strain) yield stress of 
the material, so the total range of indentation pressure as the size 
of the block is reduced is about a factor of 3. 

For the sake of simplicity we shall study only two finite-block 
geometries: compression of a sheet between equal and opposite 
dies (Fig. 7.10(a)) and indentation of a narrow block (Fig. 7.10(b)). 
Both of these will again be treated as problems in plane strain. 

From the lower-bound point of view we solve both problems by 
using the "compact" discontinuous stress field shown in Fig. 7.11. 
In zones I, edge c is stress-free, so the Mohr circle at yield is 
fixed. Because c and e are planes of principal stress the discon
tinuity plane d must bisect the angle between them; s imi la r ly , / 
bisects the angle between c and g. But the enclosed angles between 
planes e, c a n d c, g add up to 180°, so θ + φ = 90° in Fig.7.11(a); 
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consequently planes d and / are mutually perpendicular. This 
property imparts some symmetry to the Mohr circle diagram, 
Fig. 7.11(b), and we readily find that 

ae = 4k sin2<£ 

σ„ = 4k cos 2 ^ 
(7.16) 

(a) (b) 

FIG. 7.10. Indentation of a sheet and of a narrow block of plastic 
material. 

It should be noted that 

45° ^ φ ^ 90° (7.17) 

so that sin φ ^ cos φ 

The trigonometry of Fig. 7.11(a) is simple, and the dimensions 
indicated are readily worked out in terms of b and φ. I t is instruc
tive to make several simple checks on this diagram: see Prob
lem 7.7. 

Two such stress fields back-to-back (i.e. mirror images in plane 
g) are suitable for a study of the sheet problem, Fig. 7.10(a), the 
remainder of the sheet being regarded as stress-free. If h is the 
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tan φ = h/2b (7.18) 

so, using Pythagoras ' theorem and substituting in (7.16) we have 

b tan2? 

FIG. 7.11. A simple "compact" stress field. 

Similarly, fitting the field 7.11(a) into the top of the narrow 
block, Fig. 7.10(b), and supporting it on a uniformly stressed 
rectangular section—which is "safe" because σ„ ^ 2k, from 
(7.16) and (7.17)—we find 

F' " *»/('+ (4)) (7M) 

When the block is large in either direction, both of these 
formulas indicate 

Fl -> 4kb (7.21) 

which is the same as the lowest of our earlier lower bounds. 

thickness of the sheet, comparison of Figs. 7.11(a) and 7.10(a) 
gives 
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We turn now to upper-bound calculations, and first consider 
compression of a sheet between dies, Fig. 7.10(a). In contrast to 
the situation of Fig. 7.1 there is now the possibility of the halves 
of the sheet moving apart, bodily, and the mechanism of Fig. 

FIG. 7.12. Upper-bound modes for indentation of a sheet. 
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7.12(a) almost suggests itself. The velocity diagram is as shown 
and we find, after a simple calculation, 

F" = kb (b/h + hjb) (7.22) 

This mode has no "degrees of freedom" and it becomes somewhat 
implausible for larger values of hjb. A simple alternative is shown 
in Fig. 7.12(b), and the corresponding calculation (Problem 7.8) 
gives 

F" — kb ^3 b\h + ? h/bj (7.23) 

which furnishes a lower upper-bound than (7.22) for hjb > 3. 

MODE 1 (FIG. 712 (a) ) 
b 

1 L I L 1 I I I 
0 1 2 3 4 5 6 7 8 

FIG. 7.13. Indentation of a sheet: results (see Fig. 7.10 (a)). 

These two results, together with the lower bound (7.19), are 
plotted in Fig. 7.13, together with the optimised result (Problem 
7.4) from the mode of Fig. 7.4(a). The upper and lower bounds 
are not particularly close in general, but the diagram gives, 
nevertheless, a fairly clear impression of the part played by the 
thickness of the sheet in the indentation behaviour. 

The method of the slip line field, described in the next chapter, 
gives the "exact" indentation force for the semi-infinite block: 

F= kb(2 + π) ^= 5-14 kb (7.24) 

The upper-bound calculation is fairly close to this, and we have 
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already observed that the lower bound (7.19) is not particularly 
good when hjb -> oo. It seems probable therefore that the exact 
result lies closer to the upper bound in Fig. 7.13 than to the lower 
bound, and indeed this is precisely what is found when the slip-
line method is applied to the general problem. 

Turning now to the problem of indentation of a narrow block, 
Fig. 7.10(b) we postulate the two simple mechanisms shown in 

k b -
MODE 2 

Τ 
χ 

1 

(a) (b) 

FIG. 7.14. Upper-bound modes for indentation of a narrow block. 

Fig. 7.14 (see also Problem 7.9), each having a single degree of 
freedom, as indicated. 

In calculations of this sort it is usually most convenient (as 
pointed out in Problem 7.4) to take a length (in these cases JC) as 
the variable parameter, rather than an angle, because the final 
expression turns out to be simple by virtue of Pythagoras ' 
theorem. The optimisation is then correspondingly easy. 

The following results are obtained : 

F" = kb (1 + w/b), mode 1 

F" = 2kb (1 + w/b)*, mode 2 
(7.25) 

These are plotted in Fig. 7.15, and the same general remarks apply 
as to Fig. 7.13. 
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7.6 The Effects of Friction 

So far in this chapter we have not mentioned, except in passing, 
the effect on indentation of friction between the die and the plastic 
material. 

We are in fact at a disadvantage in applying the bound theorems 
to situations where friction plays an important part, because 
these theorems cannot normally be applied in the presence of 
friction. We shall examine briefly the reason for this, and then go 

w 
b 

1 1_ 1 J I ! ι . 
Ο 1 2 3 4 5 6 7 

FIG. 7.15. Indentation of a narrow block: results (see Fig. 7.10 (b)). 

on to see how we can, nevertheless, obtain a limited amount of 
useful information about friction effects by use of the theorems. 

An essential point in the proofs of the bound theorems (Chap
ter IV) is the normality relationship between yield stress and 
plastic strain increment; without this condition the theorems 
cannot be proved in general. Now a block sliding on a rough 
plane, Fig. 7.16(a), bears a superficial resemblance to a block on a 
plastically deforming interface, as in Fig. 7.3. There is an im
portant difference, however, between the two situations in that 
the critical shearing stress for a plastic material is independent of 
the hydrostatic pressure, whereas in friction the shearing force, Q, 
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is a function of the normal force P. The functional relationship 
may usually be idealised as Q = μΡ, where μ is the coefficient of 
friction. This line in P, Q space, in so far as it is the boundary of 
a zone in which no motion takes place, and beyond which a load 
point (P, Q) cannot pass, is analogous to a yield surface for a 
perfectly plastic material. Any sliding of the block along the 
plane gives a corresponding increment of irreversible deformation, 
but as the block slides along the plane there is no component of 
deformation in the direction corresponding to P, as indicated in 
Fig. 7.16(b). The "displacement" vector is thus not normal to the 

(a) (b) 

FIG. 7.16. Friction between a block and a plane. 

"yield curve" for friction, except in the special case μ = 0, i.e. 
frictionless sliding. 

This lack of normality frustrates any attempt to extend the 
bound theorems to systems in which there are frictional elements, 
and so, consequently, such systems are not susceptible to analysis 
by the limit theorems. 

There is—fortunately—an easy and relatively satisfactory way 
out of this difficulty, because the special values zero and infinity 
of the coefficient of friction are in fact within the scope of the 
theorems: zero because—as we have seen—normality does apply as 
a special case, and infinity because it corresponds to a "bonding" 
or "welding" of the interface, and any "sliding" must therefore be 
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of the plastic kind. For simplicity we shall call these two condi
tions " smoo th" and " rough" , respectively. 

It seems clear that the actual behaviour in the presence of a 
finite coefficient of friction will lie between the behaviour cor
responding to these "extreme" conditions. If, then, we can show 
in any particular case that the range between upper and lower 
bounds is not affected much by the question of whether the die is 
rough or smooth, it is likely that friction is of only secondary 
importance in the determination of the behaviour of the system. 
On the other hand, if we find that there is a large difference 
between the bounds corresponding to rough and smooth dies, 
this will indicate that friction plays an important part , and it may 
then be necessary to use approximate intuitive methods for 
assessing the effect of any particular coefficient of friction. 

The corollaries of the bound theorems given on p . I l l may be 
applied to directly the present situation as follows : 

A lower bound for " s m o o t h " dies will also be a lower bound 
for " r o u g h " dies. 

An upper bound for " rough" dies will also be an upper bound 
for " s m o o t h " dies. 

Examination of the calculations done so far in this chapter 
reveals that in all lower-bound calculations we have taken the 
die face to be a plane of principal stress; consequently our cal
culations are "safe" for smooth dies and hence also for " rough" 
dies. Further in all our postulated mechanisms for upper-bound 
calculations we have not had any sliding of material over the die 
face. These calculations apply equally therefore to rough and 
smooth dies. (It is not difficult to devise simple mechanisms which 
do involve sliding on the die face, and some are suggested in 
Problem 7.10.) 

In all of the situations we have considered, therefore, it seems 
fairly clear that, since our upper- and lower-bound indentation 
loads have all been fairly "close", the effect of friction on the 
indentation force is of secondary importance. 
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7.7. Compression of a Thin Sheet between Broad Dies 

We now consider a problem in which, as we shall see, friction 
is of primary importance. A thin plate is compressed in plane 
strain between broad dies, as indicated in Fig. 7.17. As in Fig. 
7.10(a) h is the thickness of the plate and b the breadth of the 
dies, but now bjh > 1. 

F 

I 
^ b — 

h 

F 

FIG. 7.17. Compression of a sheet between smooth dies. 

First let us study the smooth-die case. The mode already 
studied in Fig. 7.12(a) applies, of course, to all values of b/h, and 
the corresponding upper-bound, given by (7.22), is plotted in 
Fig. 7.18. The same calculation also applies to a "doub le" mode, 

1 J 1 J i L _ j 
0 1 2 3 4 5 6 

FIG. 7.18. Compression of a sheet between smooth dies: envelope of 
upper-bound calculations. 
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as in Fig. 7.19(a), because the lateral displacements of zones Β— 
which are necessary for compatibility—do not involve any addi
tional dissipation of energy if the dies are smooth. Equation 
(7.22), with b/2 substituted for b is thus also an upper bound; 
and indeed the same argument applies for any integral number of 
elementary modes (see, for example, Fig. 7.19(b)) as indicated in 
Fig. 7.18. 

The most striking feature of this combined upper-bound—i.e. 

_t_J I\ 
I t 

( a ) (b) 
FIG. 7.19. Upper-bound modes for compression of a sheet between 

rough dies. 

the lowest of the three curves at any bjh—is that it differs by very 
little from a constant value for the whole range b > h. At in
tegral values of b/h, with the interfaces inclined at 45° to the die 
faces, we have, simply, 

F" = 2kb (7.26) 

A lower-bound solution is exceptionally simple: a constant 
stress in the part of the sheet between the dies gives, trivially, 

F' = 2kb (7.27a) 

Thus, for smooth dies there is very little difference between the 
upper- and lower-bound loads, and the "squeezing" load per unit 
area is practically independent of the ratio b/h. 
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For rough dies the situation is very different. For upper-
bound calculations the multiple modes of Fig. 7.19 may be used, 
but terms corresponding to sliding at the die surface must be 
included in the calculation of dissipation of energy. For simplicity 
we shall investigate only integral values of bjh, and modes in
volving slip planes inclined at 45° to the die faces; more general 
forms of the modes may readily be studied, and a family of over
lapping curves like that of Fig. 7.18 found. 

FIG. 7.20. Compression of a sheet between rough dies: an "even" mode 
and the corresponding velocity diagram. 

For example, Fig. 7.20 shows the mode for b = 4h and the 
associated velocity diagram. An upper-bound calculation gives 

F" = 4kb (7.27b) 

It is clearly not difficult to generalise this calculation to situations 
where b/h = 2n (n an integer): the dissipation at the face of the 
die involves summation of an arithmetic progression and the 
result is 

F» = 2kb (1 -f- bjAh), bjh = 2n (7.28a) 

When bjh is an odd integer, another calculation on similar lines 
gives 

F" = 2kb (1 -f- b/4h - h/4b) (7.28b) 
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These two results are plotted in Fig. 7.21, and in spite of the fact 
that our upper bound is not a continuous function of bfh a clear 
picture emerges. 

We now seek a lower-bound solution of the same problem, as 
shown in Fig. 7.22. Supposing the material beyond the edges of 
the die to be stress-free, we have plane c as a plane of principal 
stress in particular. On planes d and e we shall make full use of 
the " rough" boundary condition and have maximum shearing 

F 
2kb 

O U P P E R BOUNDS 

+ LOWER BOUNDS 

X S L I P LINE FIELD SOLUTIONS 

b 
h 

10 

FIG. 7.21. Compression of a sheet between rough dies: results (see 
Fig. 7.17). 

stress. The planes of stress discontinuity / and g must therefore 
intervene, and as the total angle subtended by arcs CG and GE 
at the centres of the respective Mohr circles must be 180°, we 
find that the planes / and g must be inclined at 221° to the die 
faces, as shown. The normal pressure on the die faces given by 
the analysis so far is thus k(l + by inspection. We hope to 
increase the die pressure towards the centre of the dies, so we try 
to terminate zones II in as small a distance as possible. This is 
done by having planes of stress discontinuity j and / orthogonal to 
planes / and g respectively. These in turn define region III, which 
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has axes of principal stress parallel and perpendicular to the die 
faces. The whole construction may now be begun afresh, in effect 
by translating the circles I and II until C coincides with M. 

The length of zone II along the die face is readily shown to be 
equal to A\ /2 , so in the special case when b is an even integral 
multiple of this distance the stress pattern of Fig. 7.22 just "fits" 
the available space. The total compression on the die is found by 
summing an arithmetic progression, and we find, simply, 

(a) (b) 

FIG. 7.22. Compression of a sheet between rough dies: lower-bound 
stress field. 

This is also shown in Fig. 7.21, and although the analysis is not 
complete (but see Problem 7.11) it is clear that as b/h becomes 
large the difference between lower and upper bounds becomes 
comparatively small. 

Comparing Figs. 7.18 and 7.21 we see that the larger b/h 
becomes the more is the divergence between the " smoo th" and 
the " rough" situations, and we would therefore in general expect 
the actual compressive forces on the dies to depend critically 
on the coefficient of friction between the dies and the sheet of 
plastic material. 

The above analysis for compression between rough dies may be 
applied, by reversing signs, to the tension of soldered and brazed 
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butt joints. In such joints the joining material is often intrinsically 
much weaker than that of the components being joined, but 
provided the layer of joining material is sufficiently thin its effective 
strength may be almost as great as of the other material. 

A more complicated version of the same phenomenon is found 
in the small-scale structure of composite materials such as those 
used in tungsten carbide cutting tools. Here the extremely hard 
particles of tungsten carbide are separated from each other by 
relatively thin layers of cobalt which is, by comparison, much 
softer, but ductile. The strength of the composite is much larger 
than that of the "bond ing" material, largely because the layers are 
thin compared to the dimensions of the hard particles. 

Problems 

7.1. Consider a family of mechanisms involving a circular band of intense 
shear—of which that shown in Fig. 7.2 is a member—and find the lowest 
corresponding upper-bound on the indentation force. (The problem of 
Fellenius.) 

(Hint. First show that if the centre of the circle is on the surface the lowest 
upper-bound is found when the centre is at one edge of the die and the circle 
passes through the other edge (as in Fig. 7.2). Extend this result to cases 
where the centre of the circle is not on the surface, and hence study a family of 
mechanisms with a single degree of freedom.) 

7.2. Show that if the (uniform) self-weight of the plastic material is taken 
into account in the upper-bound calculation corresponding to Fig. 7.2, it 
makes no difference to the result. Try and think of situations in which the 
self-weight would have an effect. 

(Hint. Investigate similar modes for non-horizontal surfaces.) 
7.3.f In order to resolve the paradox that in Fig. 7.4(a) zone Β cannot 

descend because it is already in contact with zone O, examine the pattern of 
deformation in finite-thickness bands of shearing between the rigid blocks. 

(Hint. First examine two bands of deformation which intersect at right-
angles.) 

7.4. Find the lowest upper-bound for a family of modes of deformation 
like that of Fig. 7.4 but with all vertical dimensions in Fig. 7.4(a) altered by a 
variable factor. 

(Hint. Take a length rather than an angle as the variable parameter and work 
algebraically, making use of Pythagoras' theorem.) 

7.5. Show on a diagram like Fig. 7.5(a) the principal axes in the two zones 
on either side of the discontinuity plane corresponding to the states of stress 
indicated in Fig. 7.5(c). Label the major and minor axes of principal stress. 
As an example consider the plane of discontinuity between the tensile and 
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compressive zones in pure plastic bending of a beam of rectangular cross-
section. 

7.6. Show from the flow conditions and the normality rule that for plane 
plastic strain according to the Mises yield condition, the "intermediate" 
principal stress is the mean of the other two (see section 2.13). 

7.7. In Fig. 7.11(a) check the trigonometry, and then check that the 
quadrilateral as a whole is in equilibrium in the vertical direction under the 
external stresses indicated by the Mohr circles. Also check the equilibrium of 
half of the quadrilateral formed by a central vertical cut. 

7.8. Perform the upper-bound calculation corresponding to the mechanism 
of deformation shown in Fig. 7.12(b). Work out lengths and velocities in 
terms of h and b, using Pythagoras' theorem. 

7.9. Make an upper-bound analysis of the problem shown in Fig. 7.14, 
using a symmetrical version of the mode of Fig. 7.14(a), (i.e. one with two 
equally-inclined bands of intense shear and the zone immediately under the 
indenter descending vertically. Compare your result with equation (7.25). 

7.10.t Use the mechanisms shown in Fig. 7.23 to obtain upper bounds on 
the force required for plane-strain indentation for "rough" and "smooth" 
dies. 

Note that in Fig. 7.23(b) zone Β is one of homogeneous deformation, while 
zones C slide as rigid blocks. Be careful when integrating the dissipation at the 
interfaces surrounding zone B. 

(a) (b) 

FIG. 7.23. Upper-bound modes involving sliding on the face of the in
denter. 

7.11.f Complete the lower-bound analysis indicated in Fig. 7.22 for general 
values of b/h between any two "special" values. 

(Hint. Observe that the principal axes of stress in zone III, etc., are parallel 
and perpendicular to the die faces, and hence that such zones may be extended 
to fill a central zone of any extent.) 

7.12.f Investigate a mode of deformation for compression of a sheet 
between rigid dies in which the criss-cross pattern of bands of intense shear 
in Fig. 7.12(b) is replaced by a rectangular zone of homogeneous deformation, 
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as in Fig. 7.23(b). Compute upper-bound loads in terms of h/b and plot the 
results on Fig. 7.13. 

7.13.f A well-lubricated knife consisting of a rigid long wedge of in
cluded angle 20° is pressed normally into the fiat surface of an infinite block 
of incompressible perfectly plastic material. By using an upper-bound method 
find an expression for the force needed per unit length of knife, F, in terms of 
the penetration of the edge beneath the original surface, y. 

(Hint. First treat the deformed surface as if it were flat, and then introduce 
the condition of constant volume together with that of similarity of deforma
tion at all stages of penetration.) 



CHAPTER VIII 

INTRODUCTION TO 
SLIP-LINE FIELDS 

WE HAVE already made, in passing, several references to the theory 
of the slip-line field in problems of plane plastic flow. The present 
chapter is not necessary to the main theme of this book; but 
because the literature on slip-line fields is so large, and in many 
ways important, it seems worth while to give a brief introduction 
to the theory here. 

We take as our starting point the sequence of lower-bound 
solutions to the problem of the loaded half-space represented in 
Figs. 7.6, 7.7 and 7.8, in which there are, as we know, successively 
more planes of discontinuity of stress. It is not difficult to see 
from Fig. 7.8 that if a large number of such planes is postulated, 
as indicated in Fig. 8.1, the separation of the centres of the "first" 
and " las t" circles approaches irk, because the sum of the angles 
subtended by all the little arcs DE...PQ must be equal to 180°. It 
follows that the highest possible lower bound on q according to 
this family is 

q' = k(2 + ττ) (8.1) 

We shall leave until later the question of whether or not this 
solution may be adapted to the problem of a finite indenter. The 
main point at this stage is that our initial idea of a small number 
of zones of constant stress has led naturally to the concept of a 
continuously variable distribution of stress which satisfies the yield 
condition throughout a region. 

Now the techniques we have developed for dealing with dis
continuities of stress will not necessarily be—and indeed probably 

194 
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will not be—the most suitable for dealing with continuously 
variable states of stress. The key to the analysis of varying states 
of stress lies in the choice of reference axes for stress. It turns out 
to be easily the best plan for equilibrium analysis of continuous 
states of stress which also satisfy the plane-strain yield condition 

k(2 y-κ) 

i l l 

(a) 

QP Ν F E D 

T 

Λτ .η C ι 

\ * 

\ / 
V / 
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- — k —i- π k — k—-

( b ) 
FIG. 8.1. A "fan" of planes of stress discontinuity. 

to take as coordinate system not a fixed cartesian one, but a 
curvilinear one in which the axes are always inclined, locally, in 
the directions of maximum shearing stress. 

A typical elementary block of material at the yield-point in 
plane strain is shown in Fig. 8.2(a), and the corresponding Mohr 
circle in 8.2(b). We adopt the sign convention set out in Appendix 
I and define points A and Β on the Mohr circle as the "lowest" 



1 9 6 PLASTICITY FOR ENGINEERS 

and "highest" points, respectively. As the material is at the yield-
point, by hypothesis, we have 

Τα = — k 
, · (8.2) 

τβ s + k 

where the α- and j8-axes correspond to points A and B. The state 
of stress on the block is thus as shown, in general, in Fig. 8.2(a). 
In particular, because points A and Β correspond to the same 
value of σ, say t, we see that the state of stress on the block with 

FIG. 8.2. The yield-point in plane strain: an element oriented in the 
directions of maximum shearing stress. 

reference to this set of axes is an equal biaxial tension t super
imposed on a pure shear. According to the Mises yield condition 
for plane strain (Problem 2.15) the stress on planes parallel to 
the paper—which are principal planes—is also equal to t; thus we 
may conveniently regard / as a hydrostatic (equal all-around) 
tension. For the Tresca yield condition this third principal stress 
need only be intermediate between the other two, but it may 
certainly be set equal to t if we so wish. 

The state of stress at yield in the block is thus completely 
defined by two parameters, viz. the hydrostatic tension, f, and 
the inclination, φ , of the α-axis to an arbitrary da tum axis. Let 
Φ be measured in the anticlockwise direction. 



INTRODUCTION TO SLIP-LINE FIELDS 197 

In principle therefore a variable state of plastic stress over a 
region constrained to deform in plane strain may be specified by 
a network of curved, orthogonal a , jS-lines, in which the inclina
tion of the lines at any point is known by inspection and the 
hydrostatic tension is specified. 

Now we have not yet introduced the condition that equilibrium 
is satisfied throughout our plastic region. When we do so we shall 
expect to find some sort of relationship between our two variables 
t and φ. 

^ ^ D I R E C T I O N 
'· OF R E S O L U T I O N 

OF F O R C E S 

FIG. 8 .3 . Stresses acting on a slightly curved element. 

8.1. Equilibrium Equations 

To find this relationship we must consider in general the 
equilibrium of a small block with curved faces cut out by adjacent 
a - and j8-lines. Figure 8.3 shows a slightly less general block 
defined by curved α-lines but straight /3-lines. By definition the 
shearing stress on all four faces of the block has magnitude k, 
but the normal stress will in general differ slightly from one side 
of the block to the other. If t is the normal stress on face FC we 
may write the normal stress on face ED as / -f- St, as shown. These 
two faces include the small angle 8φ, measured anticlockwise. 
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We now consider equilibrium of the block in the direction 
perpendicular to the internal bisector of CF and DE, as indicated. 
The block has unit thickness, and the distance between the a -
lines is h. In considering equilibrium in this direction we see 
that the normal stresses on faces CD and EF do not enter into 
the equation, which is why we have not given them symbols. 
The normal stresses on faces FC and DE almost cancel (taking 
cos (8φ) ~ 1) but there is a small imbalance, of magnitude h8t. 
Again, the shear forces on faces CD and EF almost cancel, but as 
CD is longer than EF by an amount h 8φ there is a small im
balance of magnitude &/ζδ<£. The shearing stress on faces DE and 
CF have resultants of the same sign, and the sum of their effects 
also has magnitude Μ8φ. Our equilibrium equation is thus 

h8t = 2Μ8φ (8.3) 

So, in the limit 8φ -> 0, 

άί\άφ = 2k in the a-direction (8.4) 

It is not difficult to check that this result is unchanged if the 
/Mines defining the element are curved. 

This result is remarkable because we have a complete derivative 
and not, as we might have expected—bearing in mind the form of 
the equilibrium equations referred to cartesian coordinates—a 
partial derivative. We can therefore integrate (8.4) along an a-line 
to give the result 

/ = constant + ^φ along an a-line (8.5) 

In this equation each α-line is associated with a constant of 
particular value. Thus if the value of / is known at any point on a 
given α line, values of / can be computed at all other points on the 
same α-line. The change in value of t from point to point depends 
only on the change of inclination of the α-line between points : it 
does not depend, for instance, on the distance measured along 
the a-line. 
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Similarly, by considering the equilibrium of a small block in the 
β direction we find 

t = constant — 2k^ along a /Mine (8.6) 

Note the difference in sign between (8.5) and (8.6). 
Developing the previous result we can now see that if we are 

given an arbitrary orthogonal network of a- and /Mines, and the 
value of t at one point in the network, we can immediately work 

FIG. 8.4. An inadmissible α, β net. 

out the value of t at all other points of the network by use of 
(8.5) and (8.6) along a- and /Mines. 

Suppose we try out this exercise on the arbitrary orthogonal 
grid of curved lines shown in Fig. 8.4, and calculate the value of 
t at G, given t = 0 (for convenience) at E. Without doing any 
numerical calculations we can see that the value of t depends on 
the path taken between the points in this case. For example, t 
increases steadily along EFG but decreases steadily along EHG. 
(The reader should check these statements carefully.) Now in 
general it is meaningless, see Fig. 8.2, for t to have more than one 
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value at any point, so we must conclude that although the net
work shown in Fig. 8.4 is orthogonal, yet it does not corre
spond to a state of equilibrium of material at the yield-point. 

8.2. Geometry of α, β nets 

Clearly, then, equations (8.5) and (8.6) must impose geometrical 
conditions on the α, β net. In fact these conditions are simple 
ones, and may readily be determined with the aid of Fig. 8.5. 
Let us write down the requirement, in terms of the angles φ at 

Ε 

FIG. 8.5. Interrelation of angles in an α, β net. 

the nodes, that the change in value of / around a closed circuit 
(say EFGHE) is zero—which must be so if t has a unique value 
at any point. Applying (8.5) and (8.6) we find 

0 = + Ikfa - φΕ) - 2kttc - φΛ + 2kty„ - φ0) - 2k(<f>E - φ„) 
(8.7) 

which simplifies to 

- φε + φτ - φα + ΦΗ = 0 (8.8) 

If we rewrite this as 

ΦΗ — φε — φα — ( 8 . 9 ) 

we obtain the geometrical result (Hencky's first theorem) that the 
angle subtended by two α-lines at points where they are cut by a 
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given /3-line is the same as the angle subtended by the two a -
lines where they are cut by any other /Mine (see Fig. 8.6). The 
net shown in Fig. 8.4 clearly does not satisfy this geometrical 
condition. The above theorem also holds, of course, if the symbols 
α and β are interchanged. 

Another geometrical interpretation is found by rearranging 
(8.8) as 

$r — φε — φο — φ» (8.10) 

FIG. 8.6. Hencky's first theorem. 

This states that the change of inclination of all α-lines between 
intersections with any two /Mines is the same. In particular, if an 
α-line is straight between two /Mines, all α-lines are straight be
tween the same two /Mines. 

Our study has thus shown that the problem of satisfying simul
taneously the equilibrium equations and the plane-strain yield 
condition may be transformed into a purely geometrical problem 
of establishing a net of a , /Mines subject to certain restrictions. 
The method thus constitutes a powerful tool for setting up lower-
bound distributions of stress within a body, and we shall in
vestigate later some of the trial-and-error procedures which are 
useful. 
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8.3. Hyperbolic Equations 

Without going into the theory of partial differential equations 
we can say that since there exist—as we have just demon
strated—trajectories along which complete derivatives of the 
relevant variables may be computed, then the governing partial 
differential equations are members of the general class of 
differential equations known as hyperbolic. The a - and 0-directions 
are known as the characteristic directions, the essence of a 
characteristic direction being that along it a complete derivative 
may be evaluated. (For a clear account of the theory of charac
teristics see the book by Abbott listed in the Bibliography.) This 
fortunate circumstance is by no means universal; for so-called 
elliptic partial differential equations the characteristic directions 
are not real, and cannot be used as a computational aid. The 
equations of the theory of elasticity are of this second sort, and, 
except where solutions may be obtained in terms of known func
tions, procedures of successive adjustment must be used over the 
whole area of interest until a satisfactory solution has been ob
tained. In contrast, the equations of the present solution can be 
handled by the much simpler procedure of "marching ou t " the 
solution from a known region. 

In our present treatment of the equations we have simply 
verified that the a , jS-directions are the characteristics of stress; 
by appropriate rigorous analysis we could have derived the result 
that the characteristic directions are real and are in fact the a -
and ^-directions. 

8.4. Extension of α, β nets 

In the construction of an α, β net as a step in the solution of a 
problem one of the important questions is how to extend the net 
from an existing region in which it has already been established. 
This basic problem is illustrated in Fig. 8.7. The points 1 and 2 
are close to each other on the edge of an α, β net which, we 
suppose, has already been established to the left of these points. 
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In particular the value of t and the inclination of the a- and 
j3-lines are known at the two points. We ask the question : what is 
involved in extending the α-line through 1 to meet the β-line 
through 2 ? In general the short extensions of the lines are curved, 
and they must intersect orthogonally. This, however does not 
define the extensions uniquely, and three possibilities are sketched 
in Fig. 8.7. There is, however, only one solution which gives a 
unique value of t at the new point, according to (8.5) and (8.6). 
Thus, provided all distances are sufficiently small for curvatures 
to be practically constant along the short arcs, the new point is 
located uniquely in space. 

β 

FIG. 8.7. Continuation of a- and jS-lines through two known points. 

A specially simple example is shown in Fig. 8.8, in which 
points 1 and 2 are on a plane free surface of the material. If both 
points are in a plastic zone, we know from the Mohr circle that 
the a- and β-lines are inclined at 45° to the edge at 1 and 2, and 
that tx — tt. Application of (8.5) and (8.6) indicates that the lines 
which meet at point 12 must be straight. This should be verified in 
detail by the reader. If, instead, the free boundary had been 
curved (so that φι Φ φ2) the intersecting lines would also have 
been curved (see Problem 8.1). 

Returning to Fig. 8.7 we can see that if we know the values of 
/ and φ at a finite sequence of points along the (current) boundary 
of a known α, β net, we can repeat the unit step procedure be
tween each adjacent pair of points, and then repeat the exercise 
with the newly-generated set of points. At each "pass" we would 
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generate one less point than the starting number, so the process 
would eventually have to stop for lack of information. We can 
thus see that the area which can be "covered" in this way is 
bounded by the a - and β-lines passing through the end-points of 
the sequence, as shown in Fig. 8.9(a). In principle the sequence of 
known points may lie on curves crossing the net diagonally, as 
shown, but a common special case is as shown in Fig. 8.9(b) 
where segments of two intersecting a - and jS-lines are known. The 
corresponding area which is uniquely determined from this in
formation is also shown. In fact the particular region shown is 

FIG. 8.8. o- and ]3-Iines extending from a plane, stress-free surface. 

generated from two equal circular arcs, which turns out to be a 
useful special case. 

Graphical methods are convenient for making constructions of 
this sort. Without going into details it is not difficult to see that 
practical procedures based on quadrilaterals consisting of chords 
between points on a- and β-curves may be devised. 

Returning to Fig. 8.9(b), it is clear that no extension is possible 
from a known portion of an a- or /3-line alone. 

T o illustrate these ideas and some of their consequences let us 
return to the plane-strain indentation problem, and try and con
struct the appropriate α, β net, shown in Fig. 8.10. The steps in the 
trial-and-error method are as follows. 

12 

P L A N E 
S T R E S S F R E E 
S U R F A C E 

8.5. The Indentation Problem 
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(a) 

(b) 

FIG. 8.9. a- and /J-lines extending (a) from a curved stress-free surface, 
(b) from two known a- and β-lines. 

First, the portions CD and EF of the flat surface are unloaded, 
so the a- and /Mines (within the plastic zones) intersect the 
surface at 45°. It is clear intuitively that material in these regions 
will be in compression laterally, so the Mohr circle at the surface 
will be as shown in Fig. 8.10(b). In particular, from this diagram 
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we are able to label the a - and /^-directions as shown. The reader 
should check this step carefully. 

Under DE we have a somewhat similar state of affairs (the 
indenter being assumed friction less), but here it is clear that the 
greatest compressive stress is in the vertical direction, so by the 
Mohr circle the a - and /^-directions are opposite from those in the 
outer regions. 

F rom edges CD, DE and DF the α, β nets may be extended 
(see Figs. 8.8 and 8.9(a)), but the separate regimes cannot be 

y axis 

— χ axis 

Z O N E DEH 

(C) — k t k - k H 

FIG. 8.10. α, β net for the indentation problem and the corresponding 
Mohr circles. 
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merged directly because this would involve an α-line turning into 
a /8-line which is not possible if discontinuities in stress are to be 
avoided. We must therefore join the separate zones with " fans" 
as shown, centred at D and Ε respectively. In this way the tri
angular zones are connected without discontinuity of stress, and 
the correct size of regions CD and EF is determined. 

We are now in a position to evaluate the indentation pressure 
along DE, by following a typical /3-line from the free surface 
CD to the loaded surface DE. First, from the Mohr circle for 
region CDG (Fig. 8.10(b)) we have t = — k throughout this 
region. As we cross GD and move towards DE a tangent to the 
/3-line turns anticlockwise, through -n\2 altogether. Therefore, by 
(8.6), t must decrease by kn altogether as we travel along any β-
line from CD to DE. This locates the centre of the Mohr circle 
for region DEH (see Fig. 8.10(c)); hence we readily find that the 
normal pressure, q, on face DE is given by 

q = k(2 + n) (8.11) 

The pressure under the indenter is uniform, because the above 
calculation applies equally for a /3-line starting at any point in 
DE. The reader should check that exactly the same result is ob
tained by following any α-line from EF to DE. 

Several points emerge from this example, as follows. 
(i) At points D and Ε in the circular fans the hydrostatic ten

sion t is multivalued. That there should be such singularities in 
stress is not surprising when we note that there are abrupt changes 
of surface loading at these points. 

(ii) Having established an α, β net over only part of the plane 
we cannot strictly claim that the above constitutes a lower-
bound analysis. We should really establish that a permissible 
distribution of stress exists in the remainder of the body also. 
This can be done by extending the net downwards from the β-
and α-lines CGH and HIF respectively, as far as it will go (cf. 
Fig. 8.9(b)), and then extending the net sideways from the boun
daries of this field, introducing curved "free" surfaces which start 
at C and F and extend sideways and downwards. In this way the 
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size of the smallest block for which the analysis is valid may be 
found, and the result holds also for larger blocks, by one of the 
theorems on p . 110. 

(iii) So far we have discussed α, β nets only in terms of stress, but 
in the complete "slip-line" theory we consider plastic deformation 
as well. The a - and /Mines are also in fact the characteristic direc
tions for velocities, and in consequence velocity calculations are 
best done with reference to these lines. Without going into any 
details here it is not difficult to see that, because the plastic 
deformation must be one of pure shear referred to the local 
a , jS-axes, the a - and /Mines do not change in length during 
deformation. The net may therefore be regarded for present 
purposes as a rather elaborate "lazy-tongs" of small bars hinged 
to each other at their ends. This analogy is not quite perfect, 
however, because there exists also the possibility of interfaces of 
intense slip. 

For an α, β net to represent a complete solution within the 
plastically deforming region three conditions must be satisfied 

(i) The geometrical conditions on the α, β net equivalent to 
the equilibrium equations must be met. 

(ii) There must exist a mode of deformation which satisfies 
the velocity requirements noted above. 

(iii) The shear strain increments in this mode of deformation 
must have the same "s ign" as the shear stresses within 
the net. 

The second and third conditions sometimes indicate clearly that 
a particular postulated α, β net does not correspond to a complete 
solution, although it may well represent in par t a satisfactory 
lower-bound stress field. We will not go into details of examples 
here: for further reading and a complete treatment of the subject 
see the book by Hill listed in the Bibliography. 

Nevertheless, to provide an illustration of mechanisms of defor
mation in a simple problem we indicate in Fig. 8.11 three possible 
modes corresponding to the α, β net of Fig. 8.10(a). The mode of 
Fig. 8.11(a) includes a rigid zone DEH which descends vertically, 
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£ ο } Κ 

Fi IG IU 

FIG. 8.11. Modes of deformation compatible with the α, β net 
of Fig. 8.10(a). 

in effect as an extension of the indenter. Surfaces of intense shear 
are indicated by bold lines, and the reader should verify by means 
of a velocity diagram that in the regions DGH and EIH each 
particle has the same peripheral velocity. Thus, in particular—in 
contrast with the mode postulated in Fig. 7.2—there is continuous 
shearing over these regions in addition to the intense shear on the 
surfaces CGHE and FIHD (see Problem 8.2). The reader should 
also check that the signs of shearing stress and shearing strain 
increment correspond. The other two mechanisms shown are 
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intended to be self-explanatory: they both involve sliding of 
material over the surface of the indenter and can thus be con
sidered only for well-lubricated indenters (see Problem 8.3). 
Mode (b) is in many respects similar to mode (a), but mode (c) 
is rather different in that all zones are undergoing continuous 
shearing and there are no interfaces of intense shear. All three 
modes in fact satisfy all the necessary conditions, and are hence 
equally satisfactory solutions. The theory cannot distinguish be
tween them (and in fact an indefinite number of others), so all are 
equally correct. Such non-uniqueness of modes of deformation 
is not uncommon in plasticity theory, and we have already seen 
several examples of this (see Problem 8.4). 

Ambiguity of this sort must not be regarded as a disadvantage ; 
it is often easy to decide which mode is most likely to occur when 
the real features of friction, strain-hardening, etc., are contem
plated. But in any case there is no ambiguity about the load at 
which deformation takes place, according to the theory. 

8.6. Choice of Approach: Slip Lines or Bound. Theorems? 

In analysing a problem in plane plastic strain, the engineer 
must decide either to seek a slip-line solution or to apply the 
bound theorems. Which method is most expeditious depends to a 
large extent on the worker's confidence in his ability to apply 
successfully the slip-line theory to a new situation, which in turn 
hinges largely on his previous experience. Both approaches are 
satisfactory from the point of view of answering significant en
gineering questions, and both are intellectually satisfying in their 
different ways. The choice thus depends ultimately on the tem
perament of the engineer, and little more can be said in general, 
except, obviously, that if the deformation is not one of plane 
strain the possibility of choice does not exist. 



INTRODUCTION TO SLIP-LINE FIELDS 211 

8.7. Notation 

The slip line field is often used in problems where there is pre
dominantly a state of hydrostatic compression. Most textbooks 
use the symbol ρ ( = — /) for hydrostatic compression, and the 
relations (8.5) and (8.6) are correspondingly different (Problem 
8.5). This is simply a matter of definition, and the answers to 
problems are of course identical whichever notation is used. 

Problems 

8.1. A thick-walled tube has inner and outer radii a and b respectively. It is 
subject to internal pressure and is constrained to deform without elongation. 
By considering an appropriate α, β net and drawing Mohr circles find the 
value of the gauge pressure at which unrestricted plastic deformation of the 
tube occurs. 

(Hint. Establish, from conditions of symmetry and orthogonality of the 
α, β net, an equation for a typical α-line, and apply (8.5).) 

ο 

R I G I D 

FIG. 8.12. Shearing deformation within a circular fan. 

8.2. Figure 8.12 shows part of a circular "fan" of material which is being 
constrained to deform in plane strain and is being pushed by a rigid plunger 
which is moving without rotation with velocity v. The edges of the deforming 
material remain in contact with the rigid boundaries and edge DC and all lines 
originally radial remain straight. 

Consider the deformation of the slice r, Sr in two parts: 
(i) a rigid-body motion about O, the centre of the fan; 

(ii) uniform shear with reference to radial and circumferential axes, with 
strain rate γ. 

Obtain an expression for γ and evaluate the rate of dissipation of energy 
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(for yield stress k in pure shear) per unit thickness perpendicular to the paper 
of sector ABCD, 

8.3.t Construct velocity diagrams for the modes of deformation shown in 
Fig. 8.11 (a) and (b) (devise a suitable notation for use within the "fans") and 
evaluate corresponding upper-bound indentation loads. 

(Hint. Make a careful tabulation of all energy dissipated.) 

FIG. 8.13. Variants of the indentation problem. 

8.4.f Draw up a list of all situations given so far in the book in which the 
mode of plastic deformation is non-unique. 

(Hint. Pay particular attention to yield loci with corners.) 
8.5. Redraw Fig. 8.3 and re-derive equations (8.5) and (8.6) when the 

symbol ρ is used (in place of 0 to denote a hydrostatic compression. 
8.6. Assuming conditions of plane plastic strain, construct α, β nets in the 

vicinity of the indenters shown in Fig. 8.13, and derive the corresponding 
indentation pressures q. 

8.7. A block of perfectly plastic material has two slots machined in it as 
shown in Fig. 8.14. Assuming conditions of plane plastic strain construct an 
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α, β net in the central region and thus obtain an expression for the full-plastic 
tension F per unit thickness perpendicular to the paper. 

(Hint. Compare Figs. 8.13 and 8.14.) 

8.8.t Investigate the mode of deformation indicated in Fig. 8.11(c) and 
obtain the corresponding upper-bound indentation load. Compare your 
answer with those to Problem 8.3. 

(Hint. Use an analysis along the lines of—but different from—Problem 8.2 
to find the dissipation of energy in the "fans".) 

F F 

FIG. 8.14. Tension in a slotted block. 



CHAPTER IX 

CIRCULAR PLATES 
UNDER TRANSVERSE LOADING 

FLAT plates form important structural elements in many branches 
of engineering. In some cases their prime function is to sustain 
loads acting in their own plane, for example the webs of I-beams. 
In the present chapter, however, we shall be concerned only with 
the other main class of plate problems in which loads are applied 
transversely, i.e. the forces (both " loads" and "support reac
tions") act in directions perpendicular to the plane of the plate. It 
is clear at the outset that we shall be interested in bending action, 
as we are of course in the simpler analogous situation of trans
versely loaded beams; and indeed we may think of plates as 
beams somehow "generalised" into two dimensions. 

Now for many flat structures under transverse loading a simple 
uniform plate of constant thickness is not the most economical 
design. For example, in lightly-loaded domestic flooring a com
mon scheme is to have wooden joists spanning the width of a 
room, with floorboards spanning the spaces between the joists. A 
"single-stage" floor made simply by placing joists in contact 
with each other would be an order of magnitude more expensive 
and heavy. Another example is found in bridge construction, in 
which the actual roadway is often supported on several "stages" 
of beams, each set of beams having a larger span than that of the 
set it supports. 

Plates of constant thickness are desirable, however, where con
tinuity is important. A good example is the plating on a ship's 
hull, which is the last "s tage" in a complex structure of bulk
heads, ribs, etc. The outer skin must support, across relatively 

214 
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short spans, forces arising from the buffeting of waves, water 
pressure below the water-line and a variety of loads which may be 
applied to the decks. Another example is the construction of 
large multi-storey buildings, where it is sometimes convenient 
from the construction and soundproofing points of view to make 
the floors by casting them as continuous slabs of concrete, 
reinforced by steel bars. For column spacing up to about 6 m this 
is a competitive procedure, but for larger spans it may be more 
economical to have a beam-slab composite structure or to use 
some sort of cellular slab. 

In the present chapter we shall consider only the simplest of all 
possible plate problems, viz., the uniform circular plate carrying 
uniformly distributed transverse load, i.e. pressure loading. We 
make this restriction both for the sake of brevity and also to avoid 
a discussion of the highly-developed subject of "yield-line theory" 
which is used widely for the design of concrete slabs in building 
construction. 

We shall, however, discuss some of the similarities and differ
ences between the analysis of metal plates (strictly, plates of 
Tresca perfectly plastic material) and concrete slabs; and to 
facilitate discussion we shall adopt this terminology throughout 
the present chapter. 

Some of the problems at the end of the chapter will indicate 
ways in which the theory may be extended to more complicated 
situations. 

9.1. Validity of the Simple Plastic Theory 

As the simple plastic theory is known to give a good account of 
the behaviour of beams and frameworks made of steel and 
reinforced concrete, it seems reasonable to suppose that it will be 
applicable equally to the behaviour of plates and slabs. 

However, a closer examination of the behaviour of plates and 
slabs indicates that in fact the situation is somewhat more com
plicated, because in plates and slabs there are geometrical con
straints of a kind not normally present in beams and frameworks. 
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Broadly, when a plate or slab deforms it turns into a shallow 
three-dimensional shell which is capable of acting to some extent 
as a membrane. The effect of this transformation is, usually, to 
increase the strength of the structure, so the simple plastic theory 
(which ignores such changes in geometry) is likely to be con
servative in the context of design. 

In the present chapter we shall assume that the simple theory is 
valid, and apply the bound theorems to obtain estimates of col
lapse loads. In Chapter XI we shall examine briefly some of the 
consequences of the changes in geometry which occur when 
structures deform, although we shall not study plates and slabs as 
such. 

h a H 

FIG. 9.1. A simply supported circular plate carrying a uniformly dis
tributed transverse load (p per unit area). 

9.2. Collapse of a Simply Supported Circular Plate under 
Uniform Transverse Pressure 

We consider first the behaviour of a circular plate, radius a 
and thickness A, resting on a continuous simple support around 
its edge and sustaining a uniformly distributed transverse load of 
intensity ρ per unit area, as shown in section in Fig. 9.1. 

The plate is a three-dimensional body, and it is fairly clear that 
the loading sets up a variety of stresses within the body which, by 
virtue of the manifest symmetry of the situation, may be classified 
broadly as follows : 

(i) Shearing stresses on concentric circular cylindrical "cuts" . 
(ii) Compressive stresses in the direction of the axis of rota

tional symmetry. 
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(iii) " In-p lane" stresses, compressive at the upper surface and 
tensile at the lower surface of the plate. 

Following traditional plate theory we immediately seek ways of 
avoiding analysis of a fully three-dimensional situation. The key 
to the desired simplifications is the observation that for suffi
ciently thin plates (i.e. thickness/diameter sufficiently small) 
stresses in classes (i) and (ii) are negligible compared to the in-
plane stresses (iii). This enables us to assume that the bending 
strength of elements of the plate is unaffected by the small shear 

FIG. 9.2. Equilibrium of a small element of plate. 

(i) and pressure (ii) effects, and hence to set up the problem as a 
two-dimensional one in terms of the variation of bending moments 
over a surface. 

When we have solved the problem in these terms we shall be 
able to check our initial assumptions a posteriori, and establish 
limits, if any, on the range of geometrical parameters of the plate 
for which our solution is valid. 

9.3. Yield Locus for an Element of Plate 

One of our preliminary tasks is to set up a "yield locus" in a 
suitable bending-moment space. 

Figure 9.2 shows a typical element of the plate (defined by 
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radial and circumferential cuts) and the stress resultants which 
act upon it: those which vanish by virtue of symmetry are not 
indicated. The bending moments Afr and Me per unit length 
(which have the dimensions of force) are, by symmetry, principal 
bending moments. The shearing stress reSultant Q, is necessary 

i 

FIG. 9.3. Biaxial plastic bending of an element of plate. 

for equilibrium but, as we have argued, it does not enter the 
yield condition. In Fig. 9.2 all the stress resultants are shown in 
their positive senses. 

To establish the required yield locus in Λ/„ Μθ space we in
vestigate by a lower-bound technique the strength of an element 
in pure biaxial bending, as shown in Fig. 9.3(a). It is convenient 
for this purpose to imagine the element slit into a number of 
parallel thin layers, symmetrically disposed about the central 
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surface. We can easily achieve a state of full-plastic pure biaxial 
bending in a pair of layers by setting the ar, σθ stress points for 
the two layers at diametrically opposite points on the relevant 
biaxial yield locus, for example C and C" in Fig. 9.3(b). f If the 
distance of the two layers from the central surface is ± ζ and the 
thickness of the layers is 8z, we have the following expressions for 
the corresponding contributions of bending moment: 

8M, — 2za,c8z 

8Me = 2zae

c8z 
(9.1) 

where ar

c, ae

c are the coordinates of point C. 
If we now assign the stress state C to all layers above the centre 

surface and state C to all layers below, we can integrate through 
the thickness to give the following "safe" pure bending moments: 

Mr = ar

ch2IA 

Μθ = σθ<Ιι*/4 
(9.2) 

This provides a lower-bound point in M„ Me space correspond
ing to any point C; thus the lower-bound locus in this space, 
shown in Fig. 9.3(c) is similar to the yield locus in σ,, σθ space. 
The leading dimension is MQ: 

M0 = YhPfA (9.3) 

where, as usual, Y represents the yield stress of the material in 
simple tension (see Fig. 9.3(b)). 

It is not possible to enlarge the locus of Fig. 9.3(c) by any 
other choice of distribution of stress through the thickness of the 
element, so the locus must in fact be exact. It follows therefore 
that the corresponding deformation of the element, consisting of 
incremental changes in curvature, kr, κ„, is related to the Mr, Me 

locus by the normality rule. (For an alternative approach, see 
Problem 9.1.) When we come to do upper-bound calculations we 
shall need to evaluate the dissipation of energy per unit area of 

t See Fig. 5.11, p. 133. 
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the plate: by analogy with the plane stress expression (Problem 
4.6) we find 

b = Mo (max of | Hr |, \ ke |, \ kr -f- kg |) (9.5) 

(see also Problem 9.2). 
For most of the remainder of the chapter we shall discuss the 

plate problem in terms of the distribution of bending moment 
with radius: the thickness of the plate will only enter the equations 
through the "composi te" parameter M0. 

9.4. Lower-bound Analysis 

We obtain the necessary equilibrium equations for the plate by 
considering the equilibrium of the small element shown in Fig. 9.2. 
Two non-trivial relations are found by taking moments about a 
local circumferential axis and resolving in the direction per
pendicular to the plate, respectively: 

i (rMr) = Me- rQr (9.6) 
dr 

t (rQr) = pr (9.7) 
dr 

In the present problem (9.7) may be integrated to give 

Qr = pr\2 (9.8) 

This equation may also be obtained by considering the equilibrium 
of a disc "cut ou t " at radius r. Substituting for Qr in (9.6) (to 
eliminate the stress resultant which does not appear in the yield 
condition) we obtain 

ί (rMr) = Μθ -Ρ-ζ (9.9) 
dr 2 

To find a lower bound on the collapse pressure ρ we must satisfy 
the equilibrium equation (9.9) without violating the yield con-
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FIG. 9.4. Radial distribution of bending moments at collapse of a 
simply supported plate under uniform pressure. 

yield condition. We therefore try the alternative, Me = MB in 
(9.9) and integrate to give: 

Mr = M0 - P— + - (9.11) 
6 r 

C is a constant of integration. According to this equation M, is 
infinite at the centre of the plate if C is finite; we conclude from 
this that C must be zero, so 

M, = Mo — — (9.12) 
6 

Finally, using the boundary condition (9.10) we obtain 

ρ ι = 6Ma/a2 (9.13) 

dition, Fig. 9.3(c), as well as the boundary condition corresponding 
to the simple support which is, evidently, 

Mr = 0atr = a (9.10) 

It seems clear—intuitively—in the present problem that both 
M0 and Mr will be positive throughout, and so we might guess 
that the Mr, Me "trajectory" will lie on either PQ or PU in 
Fig. 9.3(c). If we put Mr = M0 (corresponding to PU) in (9.9) 
we find MB > M0 for positive values of p , which violates the 
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after checking that the M„ Mg trajectory (see Fig. 9.4) does not 
indeed extend beyond the postulated segment PQ. 

It is interesting to note the direct analogy between (9.9) and the 
equilibrium equation on p . 120, for the rotating flat disc, and the 
analogy between the corresponding solutions (compare Figs. 9.4 
and 5.4). The analogy is not as helpful as it might appear, how
ever, because the practically important boundary condition for a 
clamped edge of the plate, which we shall study later, would 
correspond in the rotating disc to negative peripheral mass. 

It is also instructive to note that (9.13) may be obtained very 
simply by considering the equilibrium of half of the plate about a 

diameter, Fig. 9.5 (see Problem 9.3). Although this does not 
constitute a proper lower-bound analysis (as we have not in
vestigated the variation of Mt with r ) it is nevertheless an illuminat
ing exercise. 

Equation (9.13) implies that the total collapse load (i.e. pressure 
χ area) is equal to 6πΜ„ which is, in particular, independent of 
the radius of the plate. This last observation is readily obtained 
from dimensional analysis (see Problem 9.4). 

We are now in a position to check our starting assumptions 
that certain stress components are negligible compared to the 
in-plane stresses, which we now see have magnitude Y. T o justify 
the neglect of class (i) stresses (p. 216) we must work out the 
shearing stress on a typical cylindrical cut. Qr is greatest at 
r — a, by (9.8), and the average shearing stress, τ, on a cylindrical 

pa/2 per unit circumference 

FIG. 9.5. Equilibrium of half of a circular plate. 
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surface at this radius is equal to Qr/h. Using (9.13) and (9.3) 
we find 

(9.14) 

Allowing for the fact that the maximum shearing stress will be 
larger than this average value, we can see that if h/a is less than, 
say, 1/5 our initial assumption is justified. 

Similarly, from (9.13) and (9.3) we have 

HQ' 
so the same limit on h/a certainly justifies neglect of class (ii) 
stresses. 

It is in fact impossible to improve on (9.13) as a lower bound, 
and so our result must be exact, subject to the assumptions made. 
We shall find when we do an upper-bound analysis of the same 
problem later that upper and lower bounds do in fact coincide for 
this problem and they are therefore both correct. 

9.5. A Clamped Circular Pla te : Lower-bound Analysis 

It is a relatively simple exercise to extend the analysis above to 
deal with a circular plate which is supported by a fully-clamped 
edge. It is intuitively obvious that Mr will be negative at and near 
the clamped edge, so the Mr, Me trajectory PQ, Fig. 9.3(c), will be 
inadequate by itself. Now Mr must be a continuous function of r 
(Problem 9.5) and so there must exist a radius within the clamped 
plate at which Mr = 0. Within this radius conditions are exactly 
as for a simply supported plate of a smaller radius. Our best 
strategy therefore is to build on our previous work, using the 
value of ρ given by (9.13) and regarding a as the radius at which 
the Mr, Me trajectory changes from one edge to another of the 
yield locus: we shall seek a larger radius b for the clamped edge, 
and having found it we shall be able to express the safe pressure in 
terms of this radius. 
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Substituting for ρ from (9.13), equilibrium equation (9.9) 
becomes 

d 3Λ/ r a 

~ (r Mr) = Μβ — (9.16) 
dr a? 

It seems clear that for r > a we shall be in the second quadrant 
of Mr, Me space, for which the equation of the yield condition is 
(Fig. 9.3(c)) 

Μθ - Mr = Mo (9.17) 

To solve these two equations simultaneously we first differentiate 
the product in (9.16) (following our treatment of the thick tube in 
Chapter III) and obtain 

dMr = Me - Mr _ 3 M 0 r 
dr r a* 

Using (9.17) and integrating we have 

(9.18) 

Mr = Mo In r - - — + C (9.19) 
2 a3 

The constant of integration, C, is determined by the fact that 
Mr — 0 at r = a; this gives us 

Mr = Mo ln(r/a) - ? Λ/. - 1 j (9.20) 

This equation is valid only if the Mr, M9 trajectory is on QR, 
Fig. 9.3(c). It is not possible to extend the trajectory into RS—the 
reader should check this—and so point R must correspond (in 
this lower-bound analysis) to the clamped edge, r = b. 

Plotting out (9.20) as in Fig. 9.6 we find that the clamped 
edge is reached at bja ^= 1 · 37. As the pressure ρ = 6Μ β/α* is 
a safe pressure for a clamped plate of radius b, we obtain, finally, 

p'^= 11-3 Mo/6 2 (9.21) 

As with the previous solution there is no way of improving on this 
lower bound, and the result is therefore exact. 
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Comparing (9.13) and (9.21) we see that by clamping the edge 
of a uniform circular plate we almost double its load-carrying 
capacity (see Problem 9.6). 

9.6. Upper-bound Calculations 

As we have seen already, our lower-bound analyses of the 
simply supported and clamped circular plates under uniform 

FIG. 9.6. Radial distribution of bending moments at collapse in a plate 
with a built-in edge. 

transverse load left no room for improvement ; the corresponding 
collapse pressures are therefore exact, and consequently no 
further useful information about carrying capacity can be gained 
from any upper-bound calculations. 

Although the above argument is incontrovertible in the present 
context of circular plates we would be unwise to apply it in general. 
Indeed, it turns out on the whole that for plates of other shapes, 
both regular and irregular, it is much easier to obtain "good" 
upper bounds on collapse loads and pressures than it is to obtain 
" g o o d " lower bounds. 
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Thus, although upper-bound methods—which include the cele
brated "yield-line" theory due to Johansen—are always "unsafe" 
they are much more widely used in practice than simple lower-
bound methods which are generally not only safe but also over-
conservative. 

It should be remarked that many experiments have shown that 
yield-line theory is a satisfactory design procedure. This is prob
ably due, to some extent, to the strengthening effects of geometry 
changes already referred to. The upper-bound approach to 
design is not entirely satisfactory, however, because it is, of course, 
quite possible for an inexperienced or unimaginative designer 
when using an upper-bound method to "miss" the mechanism 
corresponding to the lowest load in his necessarily incomplete 
search. 

One promising feature of lower-bound methods which has not 
yet been fully exploited in the field of slab design is the possibility 
of designing variable reinforcement. In contrast, the upper-bound 
methods (yield-line theory) work most easily when the reinforce
ment is uniform. 

The aim of the present section is twofold: first to give an im
pression of the ease and brevity of upper-bound calculations, and 
second to demonstrate the close agreement between the upper 
bounds so obtained and the exact results for uniformly loaded 
circular slabs. 

9.7. Modes of Deformation 

Our first task is to envisage a likely mechanism of deformation. 
Two obvious ones are indicated in Fig. 9.7(a) and (b): the ini
tially flat surface deforms into shallow spherical and conical 
surfaces respectively. It turns out that the conical mode gives the 
lower upper bound, so, as the spherical mode is very simple to 
analyse (Problem 9.7) we shall not study it further. 

There are various ways of tackling the geometrical analysis of 
the shallow cone. Perhaps the simplest is as follows—but see 
Problem 9.8. 
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Radial lines on the surface remain straight, so (except in a 
vanishingly small region at the centre) we shall be interested only 
in changes in curvature, κ β , in the circumferential direction. Sup
pose we wish to find the change in curvature at radius r when the 
apex of the cone descends a small distance δ, as shown in Fig. 
9.7(c). Curvature κ 0 is defined as the relative inclination in the 
vertical plane of two tangents to the surface in the circumferential 
direction, at points unit distance apart around a circle of radius 

FIG. 9.7. (a) "Spherical" and (b) "conical" modes of deformation of a 
plate: (c) geometry of a shallow cone. 

r. This is equal to the relative inclination of two normals to the 
surface at the same two points. Suppose two normals were at
tached, physically, to the initially flat surface, unit distance apart 
around the circle of radius r. In the deformed position shown, 
Fig. 9.7(c), these two normals would intersect at the axis of the 
cone, so the required change of curvature is simply equal to the 
reciprocal of the distance p indicated, since the two points are 
unit distance apart . 

By similar, narrow, triangles, 

SI a = rip 

1 δ' 
so K g = - = — 

p ra 
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Therefore ke = hjra ( 9 . 2 2 ) 

As #cr = 0 over the whole surface, the total rate of dissipation of 
energy over the surface is given by 

j M0KgdA ( 9 . 2 3 ) 

where dA represents an elementary area : see ( 9 . 5 ) . Taking a ring 
element of area between radii r and r -f dr we obtain, using 
( 9 . 2 2 ) 

2ΤΓΛ/„ f" rkg dr = 2ΤΓΜ, f" - dr = 2ΤΓΜ 0 δ ( 9 . 2 4 ) 
J » J » a 

The rate at which pressure ρ does work in this postulated mech
anism is simply equal to ρ times the rate of increase of volume 
under the shallow cone, i.e. 

ρ π Û*S/3 ( 9 . 2 5 ) 

Equating the internal dissipation and external work we have, 
finally, 

p" = 6M0/a2 

which is identical with our previous lower bound. It may seem 
surprising that a conical mode should be "preferred" to a spherical 
one ; but if we examine it in relation to the bending-moment dis
tribution of Fig. 9 . 4 and the normality rule of Fig. 9.3(c) we can 
see the explanation. 

The analysis is readily extended to a plate with a clamped edge. 
In this case we have a term in addition to expression ( 9 . 2 4 ) cor
responding to the dissipation of energy around the edge. At the 
edge kr is infinite if there is no transition zone between the cone 
and the support ; this presents no difficulty in the evaluation of 
dissipation, however, because the dissipation of energy per unit 
length of such a plastic hinge is simply M» times the rate of 
change of hinge angle (see Problem 9 . 9 ) . In the present example 
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the rate of rotation of the hinge is δ/α, so the additional dissipa
tion term is, simply, 

2παΜ„ S/a = 2ηΜ0 S (9.26) 

It is useful to remember that this is exactly the same as the dissipa
tion term for the continuous deformation of the conical surface 
itself. 

Thus, for a clamped plate, 

p' = 12M„/a 2 (9.27) 

which is about 6 per cent higher than the corresponding lower 
bound. 

It is not difficult to see that the conical mode is not "com
patible"—via the normality rule—with the lower-bound bending-
moment trajectory: this accounts for the non-coincidence of the 
two bounds in this case. 

9.8. Reinforced Concrete Slabs 

A proper discussion of the subject of reinforced concrete and 
the relevance of plastic theory to it is beyond the scope of this 
book, since it would require consideration of a large amount of 
special technology. A reader who is interested in this branch of 
civil engineering should consult one of the books listed under 
"Reinforced concrete and yield-line theory" in the Bibliography. 

However, it does seem worth while to make a small connection 
with the yield-line theory of reinforced concrete slabs at this 
point by noting that the only essential way in which metal plates 
and reinforced concrete slabs differ, as far as plastic theory is 
concerned, is in their respective yield loci: compare Fig. 9.3(c) 
with Fig. 9.8, which corresponds to a uniformly reinforced con
crete slab with different amounts of " t o p " and " b o t t o m " steel. 
The theoretical and experimental justification of a yield locus of 
this sort would occupy a considerable space, but if we can accept 
Fig. 9.8 as valid we can see immediately that practically all of our 
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results so far may be adapted readily to concrete slab construc
t ion; see Problem 9.10. In fact the absence of "inclined cut-offs" 
in Fig. 9.8 makes lower-bound analysis somewhat easier in the 
case of a clamped circular slab, and in these circumstances the 
upper and lower bounds coincide. 

9.9. Point Loads 

In many situations plates and slabs are loaded by forces which 
may be described as "concentrated" in so far as their area of 

| M 2 

—m— - — M 

1 

0 t 
m 

M, 

F i e 9.8. Biaxial plastic bending of an element of a concrete slab with 
unequal "top" and "bottom" isotropic reinforcement. 

application is small compared to the area of the plate or slab as a 
whole. For example, a ship may accidentally run into an angular 
projection on a jetty ; or a compact, heavy piece of equipment may 
rest on a floor slab ; or a continuous floor slab may be supported 
on a set of columns. 

An obvious way of idealising such loads is as point forces. This 
idealisation, which is obviously a very useful one in some branches 
of mechanics, must nevertheless be regarded with particular 
caution in the context of the behaviour of plates and slabs. The 
difficulty is that our assumptions about the negligibility of certain 
components of stress (see pp. 216-217) may not be justified in the 
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vicinity of a concentrated load ; and if this is so, then the basis of 
our theory is undermined. 

To illustrate the dangers consider a simply supported circular 
plate, radius a and thickness A, loaded by a uniform pressure ρ 
applied over a small central circular area of radius c, as shown 
in Fig. 9.9. 

An upper-bound analysis (which we may assume will give a 
"close" bound) based on a mechanism which consists of a rigid 
central area surrounded by a "conical" zone indicates (see 
Problem 9.11) that the total load Ρ which can be sustained is: 

Ρ" = 2ττΛ/0/(1 - cja). (9.28) 

Ι Ρ = l t c 2 p 

Fig. 9.9. A simply supported plate with a central loaded area. 

An alternative mechanism, in which a central "p lug" slides 
downwards on a cylindrical interface of intense shear, and the 
outer zone remains rigid, gives 

P" = 2-nchk (9.29) 

Putting M0 = Yh2/4 and k = Y/2 we can see by comparing (9.28) 
and (9.29) that the " local" mode is "preferred" if c < A/2, 
φ <ζ 1. 

Although we do not know how "close" the bound (9.29) is, 
it seems clear that if the load is applied over an area whose dia
meter is not more than the thickness of the plate there may be a 
possibility of failure by "punching through". 

This suggests that continuous floor slabs may fail locally where 
they are supported on columns. Indeed, it is well known that 
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special precautions have to be taken to avoid this sort of failure 
in reinforced concrete structures. There are, fortunately, several 
possible remedies including the use of "mushroom-headed" 
columns and the incorporation of heavy steel reinforcement. 

Provided we are fully conscious of the possibility of local 
failure, it is instructive to study the effects of transverse point 
loads on plates and slabs. Several simple and interesting results 
are found in Problems 9.12 and 9.13. 

. (a) (b) (c) 

FIG. 9 .10 . Plates and slabs: experimental behaviour, (a) Mild-steel plate, 
simply supported, central "point" load applied through boss, (b) Mild-
steel [plate, built-in edge, pressure load, (c) Reinforced-concrete slab, 
simply supported, pressure load. Subscript 0 refers to collapse load/ 
pressure according to the simple plastic theory of the present chapter. 

9.10. Experimental Behaviour 

We pointed out at the beginning of this chapter that it was 
reasonable to suppose that when plates and slabs deflected under 
transverse loading they would tend to become stronger. Therefore 
the "pla teau" in the load-deflection curve predicted by simple 
plastic theory and observed in tests on beams and frames might, 
perhaps, not be so conspicuous in tests on plates and slabs. 

Figure 9.10 shows some typical results of laboratory tests of 
simple plate and slab structures. Although the "geometry change" 
effects are clearly discernable it is nevertheless plain that the 
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collapse loads predicted by the theory we have developed in this 
chapter are strongly relevant to engineering design studies. 

Problems 
9.1. Show that the "safe" distribution of stress in an element of plate 

indicated in Fig. 9.3 is in fact compatible (via the normality rule) with a mode 
of deformation in which the central surface does not extend and "plane 
sections remain plane"—and hence that the "safe" locus of Fig. 9.3(c) is in 
fact exact for a Tresca material. 

9.2. Assuming modes of deformation as in Problem 9.1, obtain an upper 
bound on the yield locus in M„ Mg space for an element of a symmetrically 
loaded circular plate. 

9.3. Obtain an estimate of the load-carrying capacity of a simply supported 
circular plate by considering the overall equilibrium of a semicircular sector 
(see Fig. 9.5). 

(Hint. First find the resultants (magnitude and position) of the "support" 
and "pressure" forces, respectively.) 

9.4. Assume that the total transverse load which can be supported by a 
plate is a simple function of the full plastic moment per unit length of plate 
and a typical linear dimension in the plan view, and study the relationship 
from the point of view of dimensional analysis. 

9.5. By studying the equilibrium equations for a circular plate symmetrically 
loaded, show that if the transverse loading consists only of pressure and 
forces there can be no "jumps" in the value of M,. Similarly, show that there 
may be jumps in the value of Mg. 

9.6. A uniform beam of full plastic moment MP is simply supported over a 
span /, and it carries a uniformly distributed load. Show that if the ends are 
subsequently "built in", the carrying capacity of the beam is thereby doubled. 
Make the usual assumptions of plastic theory about the bending of beams. 

9.7. Make an upper-bound analysis of the simply supported circular plate 
under pressure loading, based on the "spherical" mode of collapse shown in 
Fig. 9.7(a). 

(Hint. Consider the deflected profile to be a shallow parabola. Express 
curvature and "swept volume" in terms of the central deflection and radius.) 

9.8.t Consider a plate which is a regular polygon in plan and which is 
deforming into a shallow regular pyramid. By using elementary solid geometry 
find an expression for the (small) angle of inclination between adjacent faces 
in terms of the height of the apex, the length of the edges and the number of 
faces of the pyramid. Show that the sum of all the small angles occurring in an 
annular region surrounding the apex tends to a constant value as the number 
of faces increases, and that the dissipation of energy within such a many-
faced pyramid tends to expression (9.24) for a cone. 

9.9. Examine the statement in the text (p. 228) about work dissipated at a 
hinge in terms of curvature-rate and normality rule: see equation (9.5). 

9.10. Work through the chapter using the principal bending-moment yield 
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locus of Fig. 9.8 in place of that of Fig. 9.3(c), and make a table comparing 
your results with ones derived in the text. Use the symbols M, m to define the 
dimensions of the yield locus, as in Fig. 9.8. 

9 . 1 1 . Make an upper-bound analysis of the plate shown in Fig. 9.9. Try a 
mode consisting of an outer "conical" zone connected to an inner "flat" 
zone by a circumferential hinge, and express the dissipation quantities in 
terms of the velocity of the "virtual" apex of the cone and the ratio of the 
radius of the hinge circle to the radius of the plate. 

(Hint. Check that the optimum position for the circumferential hinge is at 
radius c.) 

9 . 1 2 . Make lower- and upper-bound analyses of a uniform simply suppo/ted 
circular plate carrying a central "point" load Ρ (say). Note that equilibrium 
equations (9.7) and (9.8) need modification. 

(Hint. Be especially careful in the lower-bound analysis, and make checks 
like re-plotting Fig. 9.4.) 

9.13.1" Show that the upper-bound analysis of a uniform clamped plate 
under a central point load gives the same collapse load irrespective of the 
radius of the circumferential hinge—i.e. irrespective of the "size" of the de
forming region. Show that, consequently, the same upper-bound load applies 
to a point load anywhere on the plate, and, indeed to a point load applied 
anywhere over a uniform plate of arbitrary plan, clamped around its edge. 

Further, see if you can establish a result applying to several point loads 
placed arbitrarily on such a plate. 

(Hint. Use the convexity theorem, as at the end of Chapter VI.) 
9 . 1 4 . In Fig. 9.8 the values of M and m may be identified with uniform 

isotropic "bottom" and "top" steel reinforcement, respectively. By making a 
lower-bound analysis of a uniformly loaded clamped circular slab (see 
Problem 9.10) and drawing the equivalent of Fig. 9.6, see if there is any 
region of the slab over which either "top" or "bottom" reinforcement may 
be omitted altogether without a corresponding reduction of carrying 
capacity. 

9 .15 . f A uniform circular concrete slab of radius b with equal uniform 
isotropic top and bottom steel reinforcement (i.e. m = M, Fig. 9.8) rests on a 
concentric simple circular support of radius a < b. Find the value of a\b for 
which the plate can support the most load, uniformly distributed. 

(Hint. Consider separately collapse of the outer and inner regions.) 



CHAPTER Χ 

METAL-FORMING PROCESSES: 
WIRE-DRAWING AND EXTRUSION 

As WE pointed out in Chapter I, a large number of metal-forming 
processes are possible by virtue of the capacity of metals to under
go large-scale plastic deformation. 

The most primitive of these processes is forging, in which the 
workpiece is deformed by successive hammer blows. The hammer 
may range in size from the kind wielded by a blacksmith to a 
large mechanical hammer capable of forging workpieces weighing 
tens of tons. Shafts, wheels, turbine discs and many other parts 
may be shaped in this way, and there are many variants of the 
process. 

A short list of industrially important continuous metal-forming 
processes would include rolling of steel sections and sheet—usually 
in a large number of related operations from billet to finished 
product, drawing of wire through a sequence of tapered dies to 
reduce its diameter, extrusion of billets through orifices to many 
and various cross-sections, and spinning of sheet into parts of 
vessels, etc. 

Non-continuous processes include, besides forging, pressing of 
sheet or plate into pressure-vessel ends or car-body panels, 
etc. 

There are of course many important technical aspects of all 
these processes which are beyond the scope of a book on plasticity; 
for example there are metallurgical problems, including the ques
tion of the temperature of the workpiece; questions of lubrica
tion, wear, surface finish, the maintenance of dimensional toler
ances, control and many others. 

235 
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Plasticity theory is relevant to questions of evaluation of power 
requirements, of loading on the dies, etc., and consequently of the 
design of details of forming processes. Not surprisingly most 
progress has been made in the application of plasticity theory to 
steady-state forming processes, although a large number of 
analyses have now been made on other processes. It might be 
added that plasticity theory has also been useful in analysing some 
machining processes. 

In the present chapter we shall consider, briefly, the steady-state 
processes of drawing and extrusion, which are very different from 
each other technologically but nevertheless somewhat similar 
from the point of view of mechanics. 

It may not be at all obvious why plasticity theory, which re
gards the mechanical deformation of materials as essentially time-
independent, should be relevant to , say, the extrusion of a billet 
of metal at a temperature at which the mechanical response 
of the material is a continuing deformation with time—i.e. so-
called "creep" deformation. Experiments indicate that the stress-
dependence of creep rate at these temperatures is strongly non
linear, so that above a relatively narrow range of stress creep is 
" rap id" , while below, creep is "s low". Under these circumstances 
the material may be idealised as rigid-perfectly plastic in situations 
where the load is applied to the workpiece at a prescribed speed ; 
for example by a hydraulically operated ram in an extrusion 
machine. On the other hand, in the case of creep in structures at 
elevated temperatures under constant load, where the engineer 
needs to know the rate of deformation of the structure, plasticity 
theory is clearly incapable of answering the relevant questions. 

Major advances in the application of plastic theory to the 
analysis of metal-working processes were made by Hill (see 
Bibliography) in the late 1940's and early 1950's; in particular 
Hill developed the use of slip-line fields for problems in plane 
strain. In the present chapter, however, we shall be concerned 
mainly with upper-bound calculations. As we have pointed out 
already, these are particularly appropriate in calculation of the 
power requirements of forming processes. Further, as we shall 
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see, they provide a ready access to the analysis of axisymmetric 
processes, to which nothing comparable is afforded by slip-line 
theory. 

It may seem paradoxical that, having proved the bound 
theorems by means of virtual work—which is only applicable 
when geometry changes are negligible—we should apply one of 
the theorems to a situation where there are gross deformations. 

The paradox is resolved by noting that when a steady state has 
been reached the geometry is self-reproducing; it is therefore 
legitimate to consider small deformations at any point in time. 

For the sake of simplicity we begin our study with an analysis 
of sheet drawing, in which a metal sheet is reduced in thickness by 
being drawn through a pair of long dies, as shown schematically 
in section in Fig. 10.1. The width of the sheet (i.e. the dimension 
perpendicular to the section shown) is taken to be large compared 

FIG. 10 .1 . Sheet drawing. 

10.1. Sheet Drawing 
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to the thickness, so that the process may justifiably be regarded as 
one of plane strain. 

The process may be regarded as a continuous version of a 
pressing operation in which the sheet is made thinner, step by 
step, by being compressed between dies as shown in Fig. 10.2(a). 
This comparison is instructive in several ways (see below) but 
here we are concerned with only one aspect of it, namely that if 
the tools are too narrow, as in Fig. 10.2(b), the plastic deforma
tion will be confined to shallow regions in the sheet (see Chapter 

HARD 
INDENTER 

SOFT SHEET 

(a) (b) 

FIG. 10.2. Pressing of a sheet between (a) wide and (b) narrow dies. 

VII). In this case the thickness of the sheet will be reduced locally, 
but a repetition of the process cannot produce a thinner sheet 
because the length of the central plane of the sheet remains un
changed. We see that a necessary condition for the effectiveness 
of the processes indicated in Figs. 10.1 and 10.2(a) is that the 
zone of plastic deformation should extend through the sheet. 

10.2. A Simple Mode of Deformation 

By analogy with Fig. 7.12(a), the upper-bound mode of deforma
tion shown in Fig. 10.3(a) almost suggests itself for sheet drawing. 
The blocks B, B' slide along the faces of the die—assumed per
fectly smooth at present—and they are separated from the 
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material approaching and leaving the dies (blocks A and C, re
spectively) by interfaces of intense shearing. These interfaces 
remain stationary with respect to the dies, and the only deforma
tion undergone by an element in the sheet as it passes through the 
constriction occurs when it traverses these planes of discontinuity. 
The interfaces of intense shear must intersect the surface of the 
material at the points where there is a discontinuity in slope of the 
surface. 

The position of point F is arbitrary, but if we assume that F is 
on the centre-line, for reasons of symmetry, we conveniently limit 
our family of modes to one with a single degree of freedom. 

In Fig. 10.3(a) we denote the half-angle of the die by a, and the 
average drawing stress acting on the emerging sheet by t. It is 
convenient to take the half-thickness of sheet entering the die as 
the unit of length, and to denote the half-thickness of the sheet 
emerging by s, as indicated. 

The corresponding velocity diagram is shown in Fig. 10.3(c): 
it is drawn and labelled as in Chapter VII. For reasons of con
tinuity we expect 

and we can check that this is so for all positions of F by analysing 
the trigonometry of the velocity diagram. 

Using the notation lABt vAB, etc., for lengths and relative 
velocities as in Chapter VII, and defining the approach velocity 
of A as unit velocity, for convenience, we write down the upper-
bound equation for unit width (perpendicular to the plane of the 
diagram) for half the sheet: 

Here, as usual, k is the yield stress of the material in pure shear. 
Note that , by (10.1), s cancels from the L.H.S., thus giving a 
direct expression for the drawing stress. Note also that precisely 
the same expression would be obtained if we used the same mode 
to study extrusion of the material through the same dies; the 
extrusion pressure and drawing stress would thus be identical— 

oc = oa/s (10.1) 

t"s (oc) = k(lAB vAB + lBC VBC) (10.2) 
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Fio. 10.3. A postulated "rigid-block" mode of deformation for sheet 
drawing. 
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in this upper-bound calculation—but the force required for ex
trusion would be greater, of course. 

For given values of α and s the calculation of (10.2) is readily 
accomplished, by means of measurement from scale drawings, 
for any postulated position of F. Some results are shown in 
Fig. 10.3(b); against the position of F (projected from Fig. 10.3(a)) 
is shown the value of tj2k, i.e. the ratio of / to the yield stress of 
the material in pure tension, according to Tresca. The curve has 
a "flat minimum", so a good estimate of the minimum value of 
tjlk could be found in this case with little labour. 

In fact it is not difficult, with a little ingenuity, to evaluate the 
R.H.S. of (10.2) algebraically. Following hints obtained from 
Chapter VII we seek a suitable length variable to define the mode. 
The most convenient variable turns out to be the length of the 
perpendicular FH from F to EG, Fig. 10.3(a), say m. As the rate 
of flow of volume past FH is the same as that across EI (or GJ), 
we see in Fig. 10.3(c) that ob = 1/m. Using the auxiliary point χ 
in the velocity diagram, applying Pythagoras ' theorem and tidying 
up we obtain general expressions (which the reader should check 
for himself) : 

The lengths lAB, he could be evaluated similarly from the geometry 
of Fig. 10.3(a), but it is quicker to observe that triangles £ZF and 
bxa are similar, and hence 

(10.3) 

(10.4) 

Iab = vAB/xb 

In terms of m and a, therefore 

vAB m/sin a (10.5) 

Similarly 

BC vBC ms/sin a (10.6) 
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Substituting in (10.2) and tidying up we have, finally, 

1 = L + J f! + ? \ _ 2 cot α (10.7) 
2k 2 sin α \ / « 5 / 

This has a minimum value with respect to our independent 
variable m when 

m = y/s (10.8) 

Our lowest upper-bound is thus 

- = ~ (s* + s'*) - 2 cot α (10.9) 
2k sin α 

It is interesting to note that the optimum value of m for a given 
reduction of thickness is thus independent of the die angle. There 
are several other interesting aspects of this solution, which are 
indicated in Problem 10.1. 

10.3. Ideal Drawing 

Before we explore in detail the implications of (10.9) it is useful 
to establish some general considerations relating to frictionless 
drawing of non-hardening plastic material. 

First we observe that the upper-bound analysis we perform 
involves the calculation of dissipation of energy by the material in 
the zone of deformation per unit time. The same calculation 
could equally be said to apply to unit volume of material passing 
through the die, and it is easy to verify that the average upper-
bound drawing stress is numerically equal to the work dissipated 
per unit volume "throughput" . This statement applies not only to 
the simple modes of deformation which we are considering but 
also to any geometrically compatible mode, including in particular 
the "correct" one. 

It is sometimes instructive to approach upper-bound calcula
tions from this point of view. However, our main purpose in 
making this observation is to lead to the question: what is the 
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least amount of energy necessary to change the thickness of unit 
volume of material by a factor s? The answer to this question 
will indicate the least possible drawing stress required to execute 
a drawing process for a given reduction. We may call this the 
" ideal" drawing stress, and use it as a basis of comparison, from 
the point of view of efficiency, for any given drawing process. 

It is easy to show (Problem 10.2) that in homogeneous plane 
strain deformation of a block of perfectly plastic material to a 
fraction s of the original thickness the work required is 2k ln(l / j) 
per unit volume; and in fact this is the required minimum. It 
follows that t\2k = In (\\s) is the minimum drawing stress for a 
plane-strain reduction in thickness from 1 to s in an " ideal" 
drawing process. 

In discussing the efficiency of a drawing process it is natural to 
refer to the work done per unit volume throughput in excess of 
this ideal work as the redundant work. 

It is also useful when presenting information about drawing 
stresses to use the parameter ln(l / j) = ξ, say, as a measure of the 
reduction of thickness. The more conventional measure, defined 
as the decrease in thickness per unit original thickness, is known as 
the "reduct ion", r. Here we shall use the symbol r, to denote 
reduction of thickness; it will be useful in later discussion to have a 
different subscript for reductions of area in axisymmetric pro
cesses. In the present notation, r, = 1 — s, so 

ξ = ln( l / j ) = ln(l / ( l - r,)) (10.10) 

For sufficiently small reductions, r, =^ ξ. 
Although we shall regard ξ as the "na tura l" measure of reduc

tion, we shall always indicate some values of r, on the £-axis of 
our graphs, for convenience of comparison with other work. 

The notion of an ideal process provides, then, a rational basis 
for assessment of actual processes. As we shall see, some drawing 
processes with dies of small inclination come close to the ideal as 
far as drawing stress is concerned, but extrusion through "square" 
(i.e. a = 90°) dies will turn out in general to be considerably less 
efficient. 
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If instead of analysing given die geometries we were to set out to 
design dies, it would obviously be a useful aim to try and realise an 
ideal process. Hill and others have recently studied this problem, 
and have produced relatively simple procedures for generating 
efficient die profiles with curved flanks. It remains to be seen 

0 1 2 3 

Fio. 10.4. Upper bounds on the sheet drawing stress for various die> 
angles: smooth dies. 

whether widespread use will be made of dies of this sort, and we 
shall not study the problem further in this book. 

10.4. Presentation of Results 

Returning to our general upper-bound result (10.9) and ob
serving that s* - f s -* = 2 cosh(£/2) we may write 

— = (cosh μ) - cos a) (10.11) 
2k s i n a \ \ 2 / / 
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This is plotted in Fig. 10.4 for several values of α ranging from 
30° to 90°. 

Now it is clearly not possible to sustain in the drawn sheet a 
tensile stress larger than the yield stress for the material, so in the 
graph configurations for which t"/2k > 1 are of no practical 
interest for drawing—assuming, of course, that our upper-bound 
results are not much too "high". In particular, we shall not be 

FIG. 10.5. An alternative "double" mode. 

able to use large die angles for drawing. Such die angles will, how
ever, be relevant to extrusion processes. 

Before we restrict attention to small values of α it is worth while 
making several points with reference to Fig. 10.4. 

(i) The curve for α = 30° is shown with a kink. This is because 
a lower upper-bound is found, for ξ > 1-5, by considering 
two modes like Fig. 10.3 "end-to-end", as shown in Fig. 
10.5. If the (proportional) reduction is the same for the 
two sub-modes, we can easily adapt equation (10.11) to 
the "doub le" mechanism. For larger overall reductions a 
larger number of sub-modes may give lower upper-bounds 
(see Problem 10.3). 
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10.5. Drawing with Small Die Angles 

For sufficiently small angles α we may use the approximations 

sin α = α and cos α = 1 — α72 
Using also the quadratic approximation for cosh (ξ/2) (10.12), 
equation (10.11) becomes 

- - « + ί (10.16) 

This approximate formula is represented, universally, in Fig. 10.6. 

(ii) All of the curves are nearly parabolic in the range plotted 
(up to r, = 95 per cent). The explanation of this is that the 
first two terms of the power series 

cosh (ξ/2) = 1 + ξ 78 + ξ 7384 + . . . (10.12) 

underestimate the value of cosh (ξ/2) by relatively small 
amounts in the relevant range of ξ. 

(iii) The curve for α = 30° approaches quite closely the " ideal" 
line p/2k = ξ, at about ξ = 1. From (10.11) we find that 
for a given ξ, t"/2k is minimum when 

sin α = tanh (ξ/2) = ( l - s ) / ( l - | - $ ) (10.13) 

(see Problem 10.4) and the minimum is given by 

(t"/2k)mla = 2 tan α = 2 sinh (ξ/2) (10.14) 

Thus the ratio of the minimum upper-bound value of t/2k for a 
given ξ (obtained by using the optimum value of α indicated by 
(10.13)) to the ideal value is: 

(t'/2k)mla = 2 sinh (ξ/2) = l + £ + ±_ , , | f t l « 
(i/2Jfc),d«, ξ 24 1920 + · · · ν"·1*) 

For small values of ξ, therefore, the optimum smooth wedge-
shaped die gives very nearly ideal drawing stresses. 
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The curve touches the " ideal" line tj2k = ξ at t/2k = 2a (Problem 
10.5), and the changeover from one to two effective reductions 
(see Fig. 10.5) takes place at ξ — 2 y/2a (see Problem 10.6). 

Now equation (10.11) and the approximation (10.16) give the 
physically unrealistic result that for zero reduction a finite drawing 
stress is required. These equations, of course, only represent 
upper bounds on drawing stress, so we suspect that the mode we 
have used, Fig. 10.3, is probably not really appropriate for small 

0 α 2α 3α 

FIG. 10.6. Upper bounds on drawing stress: smooth dies and small 
angles of inclination. 

reductions. Figure 10.7 shows an alternative mode suggested by 
the "pressing" analogy, Fig. 10.2(b), in which the sheet "bulges" 
instead of being reduced in thickness. Analysis shows (Problem 
10.7) that for this mode 

t\2k = (2-57 - α) 2-57 ξ (10.17) 

for sufficiently small values of ξ and a. This equation is also 
shown in Fig. 10.6, which suggests that the required drawing 
operation will not be accomplished unless 

ξ > 0-4 α 
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or, equivalently, unless the length of contact with the die is more 
than about 0 · 4 times the half-thickness of the entering sheet. (It is 
interesting to examine equation (10.13) from the point of view of 
length of contact with the die.) 

10.6. Sheet Drawing in the Presence of Friction 

As we observed in Chapter VII the bound theorems do not 
apply in the presence of friction, but we can nevertheless make a 
rough estimate of the effect of friction by considering the two 
extreme cases of perfectly smooth and perfectly rough dies, for 
which the theorems are valid. 

In good wire-drawing practice the coefficient of friction be
tween the wire and the dies is less than 0 · 1, so it seems clear that 
the actual situation is nearer the " smooth" than the " rough" 
extreme. It is not difficult to justify this by comparing the drawing 
stress in the smooth and rough conditions, respectively: see 
Problem 10.8, which makes use of results obtained in a later 
section. Even so, friction can have a pronounced effect on the 
drawing stress. Therefore, it seems appropriate to make a tem
porary departure from strict use of the bound theorems and seek 
an approximate way of investigating the effects of given coefficients 
of friction. The key is provided by slip-line theory, which is in 
fact immune from these difficulties over friction, since the in
clination of a- and jS-lines to a rough surface can be made to 

FIG. 10.7. A "bulging" mode. 
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correspond with a given coefficient of friction. Slip-line studies 
have shown that for practical purposes the normal pressure on 
dies is unaffected by friction provided the coefficient μ is small. 
If this is so, we find from simple statics 

\2k/u \2k/u=o 

We may now apply this correction to the results we have ob
tained so far. In particular, we may investigate the dependence of 
the optimum value of ο on ξ and μ. 

Combining (10.11) and (10.18) we have an expression which we 
can minimise with respect to a. No t surprisingly, small coefficients 
of friction do not change the optimum value of α much from the 
value (equation (10.13)) for zero friction, and an approximate 
analysis indicates that the optimum angle is increased by the 
addition of: 

1 + ^ < 1 0 - 1 9 ) 
sinh (ξ/2) 

in the presence of a small coefficient of friction. 
A rough empirical rule is that the optimum angle for zero 

friction is given by αΟ 0, = 2-8 ξ (for r, < 0-5) and that this is in
creased by a factor of approximately (1 -f- 2μ) for a small co
efficient of friction. This analysis agrees closely with the results of 
Hill's slip-line analysis. 

We shall see later that the relationship between optimum die 
angle and coefficient of friction is rather different in the case of 
axisymmetric drawing. 

10.7. Extrusion through Square Dies 

The methods of the previous section can be extended readily to 
a study of plane-strain extrusion through a smooth square (i.e. 
α = 90°) die from a smooth container. 
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As we have already observed, extrusion pressures are numeric
ally equal to drawing stresses and there is no reason why ex
trusion pressures should not exceed the yield stress of the material; 
thus we may simply interpret the curve for α = 90° in Fig. 10.4 
as a graph of pu/2k, where ρ is the extrusion pressure, against ξ. 
The corresponding mode is shown in Fig. 10.8(a), and the curve 
is replotted in Fig. 10.9. For small reductions we must also con
sider a "bulging mode" analogous to that of Fig. 10.7, but now a 
forward bulging as shown in Fig. 10.8(b) since the possibility of 

backwards flow is precluded by the presence of the container. 
This mode gives (cf. Problem 10.7) 

€ = 4 - 1 4 ( 1 -s) (10.20) 

which is indicated in Fig. 10.9. The upper-bound curves cor
responding to the modes of Fig. 10.8(a) and (b) intersect at a 
reduction of r, of about 0-5. On this basis a proper extrusion 
would not be expected for reductions of less than 0 -5 . 

However, experiments indicate that in some circumstances 
"dead zones" of metal are formed behind the die, somewhat as 
indicated in Fig. 10.8(c), which shows a general possible "rigid, 
block" mechanism. The upper-bound calculation for this mech
anism is of course very similar to that for the mechanism of 
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Fig. 10.3(a), the only difference being that EG is now an inter
face of intense shear instead of a smooth surface. To the R.H.S. 
of equation (10.2) must be added an extra term kl0Bv0B- Now 

ξ = In (1/s) = In (1/1-r,) 

Fig. 10.9. Plane-strain extrusion through square dies: upper bounds on 
extrusion stress and experimental points. 

IOB = (1—j)/sin a , by simple geometry, and v0a = \fm. Hence, 
instead of equation (10.7) we now have 

Pi - 1 

2k 2 sin α 

This expression is a minimum with respect to m when 

m = V2s/(l + s) (10.22) 

1 + 
Lm 

ml - 2 cot α (10.21) 
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and thus for a given value of α the minimum upper bound is 

The angle α defining the dead-metal zone is a variable, and so 
expression (10.23) may be minimised w.r.t. a. We find that for 
p"(2k to be a minimum, 

This corresponds to Θ = 90° in Fig. 10.8(c). Hence the best upper 
bound is 

This is also plotted in Fig. 10.9. It is lower than the two previous 
bounds over a range of thickness reductions from 0 - 1 5 to 0 - 8 
approximately. 

In drawing processes the question of efficiency is very im
portant because drawing is impossible if / > 2k. The same 
restriction does not apply to extrusion, because the container 
walls prevent thickening of the original sheet when ρ > 2k, and 
this of course makes possible larger reductions in extrusion than 
in drawing. The penalty paid for inefficiency in extrusion is that 
the internal pressure tending to burst the container, the frictional 
drag between the billet and the container, and the total load on the 
die all increase as extrusion pressure increases. This, in turn, makes 
for greater difficulty in designing the various components of the 
extrusion machine against fatigue damage due to repeated 
loading. 

From our analysis, roughness of the die face in extrusion of this 
sort does not seem to make much difference to the overall efficiency 
of the process : if a "dead metal" zone forms over the whole face 
the upper bound calculation just given applies whatever the 
coefficient of friction (see Fig. 10.9). 

In real extrusion the force/distance relationship for the ram is 
typically somewhat as indicated in Fig. 10.10. The initial portion 

(10.23) 

sin α 

= V(l - j)/(l + s) 

(10.24) 

(10.25) 
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of the curve may be irregular while the steady-state is being 
established. The steady drop of extrusion force is due to the pro
gressive shortening of the billet and consequent reduction of the 
surface available for frictional action. The final part of the curve 
relates to the so-called "post-steady" state when the billet be
comes so short that it is possible for plastic deformation to ex
tend to its back face. The steady-state conditions assumed in our 
analysis may be expected to approximate the actual conditions at 
about point B. 

Figure 10.9 also shows some experimental results, due to 
W. Johnson, for lubricated plane-strain extrusion of tellurium 

FORCE 

THEORY 

Ο DISPLACEMENT 

FIG. 10.10. Force-distance relationship in extrusion. 

lead through square dies (Journal of the Mechanics and Physics of 
Solids, vol. 4, 1954, p . 264). In each case the force corresponds to 
point B, Fig. 10.10. Tellurium lead has a low yield stress and 
exhibits practically no work hardening over a large range of 
strain, and is thus a suitable material for simple experiments. 
Agreement between theory and experiment is very good, and 
although the experimental points lie up to 10 per cent higher than 
what are supposed to be upper-bound curves, they were plotted 
on the (Tresca) assumption that k = Y/2, Y having been meas
ured experimentally. If the Mises hypothesis had been used in
stead, all of the points would have been lowered by about 15 per 
cent. We conclude therefore that the upper-bound calculation 
gives results which agree very well with experiments in this case. 
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10.8. Hydrostatic Extrusion 

There are economic and commercial advantages to be gained 
from the extrusion of stronger materials, and extrusion with 
larger reductions, both of which require higher extrusion pres
sures and forces. 

A stringent limit is usually set on the operating conditions of an 
extrusion press by the desirability of avoiding fatigue damage 
after repeated operation of the press, which in turn limits the 
extrusion pressures and forces which can be allowed in a given 
press. 

A relatively new variant of conventional extrusion procedures 
is hydrostatic extrusion in which the billet is surrounded by a 
lubricant at a pressure of the same order of magnitude as the 
extrusion pressure. Among the advantages claimed are sub
stantially less frictional drag between the billet and the container, 
and better lubrication of the die, resulting in a better finish on the 
extruded product. 

10.9. Allowance for Work-hardening 

So far in this chapter we have assumed that the material being 
drawn or extruded is perfectly plastic, i.e. non-hardening; and 
indeed this is a necessary assumption whenever we apply the 
upper- or lower-bound theorems. It is obviously desirable to be 
able to make a rough assessment of the effects of work-hardening 
on drawing and extrusion stresses, and it would be pleasant if we 
could somehow adapt the results of the preceding analysis for 
this purpose. 

Hill has given an elegant argument leading to a simple calcula
tion, which applies equally to drawing and extrusion. In the draw
ing of a perfectly plastic material through frictionless dies the 
drawing stress t is equal to the mean plastic work done per unit 
volume throughput, as we have seen. Since the yield stress is 
constant, the quantity t/2k represents (for a Tresca material) the 
equivalent (true) strain imparted on average to the material in the 
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process. Let us assume that, to a first approximation, the same 
mean equivalent strain is imparted by the die whatever the strain-
hardening characteristics of the material. The work done per 
unit volume of material taken to this strain level is simply equal 
to the area beneath the true stress-true strain curve in pure 
tension or compression up to strain tjlk, and this is therefore 
equal to the drawing stress in the presence of strain-hardening. 
Applying this idea to a linear strain-hardening material with 

'2k 

2 k 0 

Ο t/2k 
(from non -

hardemntj analysis) 

FIG. 10.11. Effect of linear strain-hardening. 

initial yield stress lk„ in tension and a strain-hardening coefficient 
H, see Fig. 10.11, we find 

'=(4)-̂  + (2T)*-? ( 1 0 · 2 6 ) 

Note that in this calculation we are regarding (tjlk), read from 
a graph such as Figs. 10.4, 10.6 or 10.9, as a. geometrical quantity. 

Formula (10.26) is tantamount, for linear strain-hardening, to 
using graphs such as Fig. 10.4, etc., in conjunction with the mean 
yield stress of the material before and after drawing. This pro
cedure for "al lowing" for strain-hardening was used by Wistreich 
in the interpretation of his wire-drawing experiments, which we 
shall consider later. 
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10.10. Axisymmetric Wire-drawing 

The deliberate redundancy in the above heading emphasises 
that so far, by considering plane-strain drawing and extrusion, 
we have avoided a proper consideration of the practically more 
important axisymmetric problems. 

One result in the theory of axisymmetric plastic flow is easily 
established. It is that in " ideal" processes the drawing or extrusion 
stress is given by 

where s is the radius emerging per unit radius entering, and r, 
is the reduction in cross-sectional area per unit cross-sectional 
area entering. This result is obtained by considering the work 
done in homogeneous axisymmetric deformation, and, in contrast 
to the equivalent plane-strain calculation, Y is the appropriate 
measure of the yield stress (see Problem 10.2). 

If we adopt the Tresca hypothesis Y = 2k we see that the 
ideal drawing stress is given by the same formula in both plane-
strain and axisymmetric flow, provided the reduction is expressed 
as a reduction in area, since in plane strain r„ = r,. This suggests 
that any comparison between the two kinds of process should be 
on a basis of reduction of cross-sectional area rather than, say, 
reduction of linear dimensions. 

It would be unwise, however, to take this idea further at this 
stage, and regard our plane strain results in Figs. 10.4, 10.6 and 
10.9 as applying directly to axisymmetric processes, because the 
manner of deformation of material is quite different in the two 
processes. In axisymmetric processes the circumference of a 
" h o o p " entering the die is reduced, so the circumferential stress, 
which is a principal stress by symmetry, is necessarily non-
intermediate. In contrast, in plane strain the principal stress 
perpendicular to the plane is intermediate. It is not clear a priori 
whether this difference will produce markedly different relation-

(10.27) 
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ships in general between extrusion pressure and reduction in area 
for the two kinds of process. 

To investigate this question let us begin by seeking an upper-
bound solution for drawing or extrusion through a smooth 
conical die. 

The most obvious postulated mode of deformation includes a 
zone of pure radial flow towards the virtual apex of the cone, as 
shown in Fig. 10.12. This radial flow is " ideal" , so the work 
dissipated at the spherical interfaces at entry to and exit from this 

FIG. 10.12. A simple mode involving a region of radial flow: plane-
strain or axisymmetric conditions. 

zone is all " redundan t" (see section 10.3). For small die angles α 
at least this redundant work is proportional to α (see Problem 
10.9), so this upper-bound analysis does not indicate, in particu
lar, a finite optimum value of α for any given reduction. Much the 
same conclusions are drawn from an upper-bound analysis in 
plane strain based on a cylindrical flow pattern, Fig. 10.12, and 
as these are at variance with those already made, it seems clear 
that the "radial flow" mode is too unrealistic to be useful. 

As Fig. 10.12 serves to define either a plane-strain flow or an 
axisymmetric one, it seems plausible that an axisymmetric analog 
of the plane-strain mode of Fig. 10.3 might furnish good upper 
bounds on drawing stress. Let us therefore investigate the geometry 
of axisymmetric flow corresponding to Fig. 10.13(a). 

Zones A and C are moving as rigid bodies along the centre 
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line. EF and FG represent conical interfaces of intense shear 
defining the zone B. If we postulate that the path of any particle 
in zone Β is parallel to EG in the section shown, the flow in 
zone Β is uniquely determined for an incompressible material. 
The flow in zone Β is thus as if between a set of nesting equi
angular conical surfaces, in contrast to the flow in zone Β of 
Fig. 10.12 which is effectively between a set of cones of different 
angle but common apex. As the perpendicular distance between 
two nearby "vir tual" cones is everywhere the same, it follows that 
the speed of any element is inversely proportional to its distance 
from the axis as it travels through the zone. 

In each of these elementary thin conical "flow tubes" the 
material undergoes a circumferential compression accompanied 
by an extension along the flow line, but no change of thickness 
perpendicular to the surface of the tube. The deformation is 
therefore tantamount to an " ideal" plane-strain flow, and as the 
flow tube emerges at radius s times its initial radius the work 
dissipated per unit volume of material in region Β is simply 
equal to 2k ln(l /s) (see Problem 10.2). 

We shall need to look more closely at the flow pattern in 
region Β later on, but let us next investigate the work dissipated 
at the conical interfaces of tangential velocity discontinuity EF 
and FG. Consider a small stream-tube of flow through the die, of 
cross-sectional area Δ at entry, Fig. 10.13(a). The velocity diagram 
for the interface EF, for unit entry velocity, is exactly the same as 
oab, Fig. 10.3(b). The area of intersection of the stream tube 
with interface EF depends only on Δ and the cosine of the angle 
between EFmd the axis, and is equal to/^e Δ, see Fig. 10.3. The 
rate of dissipation of energy at this interface is therefore equal to 
ΜΛΒυΛΒΔ. 

The cross-section of the same stream tube emerging from the 
die is equal to 5 2 Δ , since in this mode of deformation all stream 
tubes undergo geometrically similar flow. The area of intersection 
of the tube with interface FG is therefore s*(lBC/s)i\ = slBC&. 
The velocity diagram for this interface is similar to obc, Fig. 
10.3(b), but enlarged by a factor (1/s) on account of the accéléra-
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Ε 

F 

FIG. 10.13. Deformation within zone Β in the axisymmetric version of 
the mode shown in Fig. 10.3(a). 

tion of flow in zone Β as the radius decreases. The rate of dissipa
tion of energy at this interface is therefore equal to kslacVactys = 

klacVac^-
In other words the rate of dissipation of energy at the dis

continuity surfaces per unit volume entering the die is exactly the 
same as in plane strain flow, for the same angles of inclination of 
the discontinuity interfaces to the axis. We may reach the same 
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conclusion in another way by observing that the work dissipated 
in unit volume throughput across an interface of discontinuous 
tangential velocity is a function only of k and the angles between 
the flow directions and the interface. 

It thus seems that our calculation of energy dissipated in the 
axisymmetric mode of Fig. 10.13 is very simple: we add to the 
dissipation per unit volume throughput in the plane-strain flow 
having the same cross-section, a term corresponding to the ideal 
deformation in zone B. There is, unfortunately, a flaw in this 
argument, arising from the fact that we have not yet made a 
sufficiently thorough analysis of the flow in zone B. We now seek 
to rectify this omission. 

10.11. Diffuse Shear in Region Β 

The velocities of all points in zone Β which coincide with EF, 
Fig. 10.13(a), at a given instant are equal, by virtue of the velocity 
diagram at the interface. The velocity of a point on any stream
line is inversely proportional to the distance from the axis, and it 
follows, by simple geometry, that the velocities of all points in 
region Β lying on any straight line through F are equal. Thus 
the velocities of points such as Τ and U are equal along their 
respective streamlines. It follows in general that the velocities 
of points such as U and V, where UV is perpendicular to the flow 
direction, are not equal and that there is consequently a shearing 
action in the meridional plane in so far as the right-angle 
between UV and the streamlines is not preserved as flow 
proceeds. 

A typical small element in the conical stream tube is thus subject 
to two kinds of deformation, as shown diagrammatically in Fig. 
10.13(b). Note that the shearing strain rate (mode (ii)) is zero on 
FH, perpendicular to EG or EG produced, and that FH may be 
either inside or outside zone B, depending on the position of F. 

Calculation of the energy dissipation rate in a block such as 
that shown in Fig. 10.13(b) requires an investigation of the 
principal strain rate magnitudes in the combined mode of déforma-
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tion. The labour of this calculation can be avoided, however, at 
the cost of a probably small overestimation of the dissipation rate 
if it is noted that the dissipation rate for the combined deforma
tion is less than or equal to the sum of the dissipation rates for 
the two kinds of deformation considered separately. This result is 
readily established in the present case as follows, but it may also 

(') + (ii) = (ill) 
Fio. 10.14. Analysis of strain increments in the postulated 

axisymmetric mode. 

be shown to be generally true, as a simple consequence of con
vexity and normality (Problem 10.10). Figure 10.14 shows the 
Mohr circles of strain rate for the modes (i) and (ii) separately and 
together. Since the rate of dissipation of energy is equal to 2k 
times the largest principal strain rate modulus (see equation (4.21)) 
the result is obtained by inspection. In fact the estimate of 
dissipation rate made in this simple way cannot be more than 
25 per cent high in the present case. 

We can summarise our upper-bound analysis of axisymmetric 
flow so far by stating that an over-estimate of the dissipation of 
energy is composed of three par ts : 

(a) " Intense" shear at the interfaces EF and FG. 
(b) " Idea l" circumferential compression in zone B. 
(c) "Diffuse" shear in zone B. 

Of these, only component (c) requires further analysis. 
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10.12. Evaluation of "Diffuse Shear" Work 

To find the work dissipated in diffuse shear in zone Β we must 
first obtain an expression for the shear strain rate y at a typical 
point in B, i.e. the angular velocity of an infinitesimal line seg
ment such as UV'va Fig. 10.13(a). This is readily determined with 
the aid of Fig. 10.13(c), which shows a streamline originally dis
tance a from the axis. At any point on the streamline in region Β 
the distance from the axis is defined by the dimensionless para
meter ζ, as shown. The perpendicular distance from F to the 
streamline is ma, where m has the same meaning as before (Fig. 
10.3(a)). At the foot, K, of the perpendicular from F to the stream
line let 

ζ = ζ 0 = m cos α. (10.28) 

As we have shown already, the velocity of point V (and indeed of 
all points on F V ) is Ι/ηίζ for unit approach velocity. The velocity 
at point T, where Γ is defined by (ζ + άζ) differs from the velocity 
of F by 

ά ζ \ η ι ζ 1 m£» 

The point U, on the perpendicular to the streamline through V, 
has the same velocity, so the numerical value of the angular 
velocity of the short segment U V , which is by definition γ at U, is 

1 dX. 
dc being the small distance U V . 

ml2 dc 
Now triangles TU V and TFKSLTQ similar, so 

dt _ ζ -ζ, 
dc ma 

Hence 
I y I = ( ζ - ζ 0 ) Ι η * α ζ * (10.29) 

T o evaluate the corresponding rate of dissipation of energy we 
have to integrate k \ γ \ per unit volume over the whole volume B. 
This may be turned into an integration over the meridional 
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section area of Β by associating with each elementary area dB, 
say, of the meridional plane a volume 2παζ dB. The integration 
thus becomes 

ζ-ζο — f 
m* J β ζ 

dB (10.30) 

Now since the product of velocity and cross-sectional area of 
block C (or, indeed, block A) is π , the contribution of this part (c) 
of the energy dissipation to the value of t"/2k (or pu/2k) is found 
by dividing expression (10.30) by 2-nk. 

The integration is most conveniently done over elementary tri
angular areas of common height m ( = FH, Fig. 10.13(a)) and base 
ί/ζ/sin A . The contribution to tu\2k is thus, using (10.30), 

2 sin 
1 p i 1 
in A J » \ m 

C O S A 

ζ 
(10.31) 

In performing this integration we have to consider two cases, 
depending on whether or not H lies within EG. 

If Η is within EG, i.e. 

1 > m cos Α > s (10.32) 
we find 

1 
2 sin Α 

1 +s 

m 
— 2 C O S Α + cos Α l n (m 2 cos 2 A/J) (10.33) 

It is useful later to note that this integral is a minimum with 
respect to the position of F when H bisects EG, i.e. 

m cos α = (1+5 ·)/2 (10.34) 

We are now in a position to sum the contributions (a), (b) and 
(c) to the drawing stress. We find 

— = — • — j - + - — 2 cot Α - f l n ( l / J ) 
2k 2 sin Α \m s } 

1 fl + s . Λ , (m cos Α \ 1 < + 2 cos Α lnj } V — cot Α 

2 sin Α { m \ \/s J J 
(10.35) 
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For any given Α and s this expression can be evaluated for any 
assumed value of m, i.e. any assumed position of F, Fig. 10.13(a). 
In principle, we could find the optimum value of m, but without 
going into details we can see that the optimum lies between the 
values which minimise contributions (a) and (c) respectively, 
which are given by (10.8) and (10.34). For small reductions and 
small values of a these values are close to each other, so by 
putting m = \/s in (10.35) we should obtain a good estimate for 
the least upper bound—provided, of course, (10.32) is satisfied. 
We have, on substitution, 

— = —— (cosh I - I — COS Α I + COT Α ln (C0S Α) + ξ 
2k s i n a \ \2) J 

(10.36) 

This expression bears a striking resemblance to the corresponding 
expression for plane strain, equation (10.11), p . 244. 

Making the same approximations as before when ξ and Α are 
small we find 

t" 3 ί 2 

i _ = f L + a + £ (10.37) 
2k 8 a 

In these circumstances (10.32) is satisfied provided ξ > Α 2 : 
whether or not this is so may be checked in any particular case. 

To make a comparison of expressions (10.37) and (10.16) on a 
basis of reduction of area, let us define η = In (area entering/area 
leaving) = 2ξ, by (10.10). We obtain, finally, 

!1 = α + A 5* + 5 (axisymmetric) (10.38) 
2k 32 Α 2 

! 1 = α + 1 ^ (plane strain) (10.39) 
2k 4 a 

These formulas are compared, universally, in Fig. 10.15. 
Although we have not evaluated a "bulge limit" for axi

symmetric drawing, it will presumably not differ much from that 
in plane strain drawing. 
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Also plotted in Fig. 10.15 are some test results from wire
drawing experiments performed by Wistreich (see Bibliography). 
In these experiments light-drawn copper wire, well lubricated 
with sodium stéarate, was drawn through a set of dies with semi 
die-angle α ranging from 3° to 15°. The dies were made in two 
halves, and by measuring the force required to hold the halves 
together the coefficient of friction could be determined (see 
Problem 10.11). On average the coefficient of friction was about 

FIG. 10 .15 . Axisymmetric drawing through smooth conical dies: upper 
bounds on drawing stress, and experimental points. 
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0-03. In the graph from which the data were taken Wistreich 
plotted as ordinate t\ Y (1 -f- μ cot a) , where Y is the mean of the 
yield stress of the wire in tension before and after drawing, to 
"correct" for the effects of friction and strain-hardening. There 
was relatively little strain-hardening, so this probably provides a 
good estimate of the "effective" yield stress, as we have argued 
already. 

The experimental points all lie close to the curve (10.38) for 
the whole range of values of α tested, thus giving general con
firmation to the preceding analysis. Most of the experimental 
points in fact lie above the curve, whereas they should lie below 
a true upper-bound. As in the case of the plane-strain extrusion 
experiments, this discrepancy, 10 per cent at most, is removed if 
the Mises hypothesis Y = k\/3 is used instead of Y = 2k. 
However, it should be re-emphasised that in applying our calcula
tion to a strain-hardening material by means of an average yield 
stress we cannot strictly claim that our calculation is an upper-
bound one, because the relevant theorem is known to be valid 
only for non-hardening material. 

10.13. Optimum Die Angles 

The experiments of Wistreich show that for a given reduction 
there is, in the presence of friction, an optimum die semi-angle 
a o p t for which the drawing stress is minimum. In the neighbour
hood of aO Pt the drawing stress is insensitive to a: typically the 
drawing stress is not more than about 5 per cent above its mini
mum value over the range 0 • 5a o p , < a < 1 · 5a„p,. Consequently, 
as differentiation is involved, estimation of optimum die angles is 
essentially more difficult than prediction of drawing stress. From 
the preceding analysis (without friction) the optimum value of α is 
readily found by differentiation of (10.38) and (10.39): 

ctopt = 0 · 5η, plane strain 

aopt — 0 · 3η, axisymmetric 
(10.40) 
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The effect of friction can be taken into account, approximately, 
by multiplying the expression for drawing stress in the absence of 
friction by (1 + μ cot a ) 1 + μ / α · Again the minimum is 
readily found, but the relationship between α, η and μ is not 
explicit. In general the effect on a o p t of μ is much more pro
nounced for axisymmetric drawing than for plane strain drawing; 
typically μ — 0 05 raises a o p l by the order of 50 per cent, com
pared with the order of 10 per cent in plane strain drawing, as we 
have seen already. For this value of μ, therefore, the predictions 
of a o p t for the two situations are about the same. Numerical 
estimates of a o p , agree fairly well with experimental observations 
for reductions up to about r, = 0-25, but are found to be as 
much as 50 per cent high for reductions r. = 0 -5 . In terms of 
drawing stress, however, this difference is not too important. 

A simple, explicit formula for a o p t , which agrees well with 
experimental observations, may be made by fitting a straight line 

ί- = α + οη (10.41) 

to the points on the left in Fig. 10.15. Evidently the value of c 
lies between about 0-6 and 0-9, depending on the number of 
points taken. Putting in the factor accounting for friction we have 

1 = ( a + OJXL + μία) 
2k 

and we find, simply, 

α Ο Ρ Ι = Vc/iij (10.42) 

This formula is similar to one proposed by Wistreich, also based 
on data-fitting: 

a o p , = V0-%7 μτ./(1 - r.) (10.43) 

These formulas are not valid for μ — 0, or for very small values 
of μ, because (10.41) is then not appropriate; but they work well 
in the range of μ of practical interest, say 0-02 < μ < 0 07. 
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10.14. Axisymmetric Extrusion for α = 90° 

It is relatively simple to extend our analysis to cover axi
symmetric extrusion through square (i.e. α = 90°) dies both 
when there is sliding over the face of the die (cf. Fig. 10.8(a)) 
and when a dead-metal zone occurs (cf. Fig. 10.8(c)). 

The sliding mechanism is particularly straightforward to cal
culate, because the integration of the "shearing" work (c) in 
zone Β is specially simple when α = 90°. F rom (10.31) 

The effect of the "intense shear" deformation is given by (10.7), 
so adding together the three components we have—now re
garding m as a variable, because the expression is so simple— 

This is minimum w.r.t. m when m = V2s (1— s), so for this 
optimum value 

This is plotted in Fig. 10.16. It is interesting to note that if 
instead of a proper minimisation the value m = Λ/S (corresponding 
to the plane-strain minimum) had been used, the results would 
have differed by less than about 1 per cent for ra < 0-9, and 
about 4 per cent as r, -> 1. 

Next we investigate the mechanism involving a dead-metal 
zone, cf. Fig. 10.8(c). We already know that the dissipation of 
energy at the interfaces of intense shear which intersect at the 
axis is precisely the same, per unit volume throughput, as in the 
corresponding plane strain flow. The dissipation of energy at the 
interface between zone Β and the dead-metal zone is exactly twice 
as much, per unit volume throughput, as in plane strain (see 

2k 

(10.45) 
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Problem 10.12). Thus we can readily adapt our previous work 
(see (10.7) and (10.21)) to give the contribution of work dissipated 
in intense shear to the extrusion pressure: 

p' 1 13 - s 

2k 2 sin α V m ;(V+m(Lrf))-2cota (10 46) 

P/2k Ο EXPERIMENTS ON LUBRICATED 
EXTRUSION BY JOHNSON ET AL. 
(SEE JOHNSON AND KUDO) 

DEAD METAL 

ό λ 

SLIDING ON DIE FACE 

IDEAL EXTRUSION (TRESCA) 

η= In (ENTRY A R E A / EXIT AREA) 
- In ( l / s 2 ) = In { l / l - r a ) 

VALUES OF AREA REDUCTION r a 

/ 
0 2 0-3 0 4 0 5 0 6 0 7 0 8 

I I I ι I I I L _ 
0 9 

I I 
0 9 5 

I 

Fio. 10.16. Axisymmetric extrusion through square dies: upper bounds 
on extrusion stress and experimental points. 

For a given value of s this expression is minimum when 

/(3-s)s 2 V 7 
m = / and cos α = 

V 1 +s 

and the minimum value is 

V3-s Vl + 
(10.47) 

2k ~ V7 (10.48) 
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Integration of the "diffuse shear" work in region Β is precisely 
the same as for drawing. As in the previous calculations, we use 
values of m and α which minimise the "intense shear" component 
of work, to avoid a messy minimisation. For these values (10.47) 
we have 

Ζ0 = m cos α = 2s/(l+S) (10.49) 

which always lies between 1 and S. Hence we may use (10.33) 
directly to give 

( 1 - * Γ 2VS 1 2 V ' S \ 
2 V 3 + s V'S V3 + S V I S n \ l + S J 

(10.50) 

Our upper-bound on p/2k is found by adding together the R.H.S. 
of (10.48) and (10.50) and ln(l/ j) . The resulting calculation is 
shown graphically in Fig. 10.16, and we see that over almost all 
of the practical range of reductions of area this "dead metal" 
upper bound is lower than the "sliding" one. Therefore, over the 
relevant range of reductions, this upper bound is valid whatever 
the value of the coefficient of friction. 

Experimental observations made by Johnson and Kudo (see 
Bibliography) on axisymmetric extrusion of lead and tellurium 
lead are again in excellent agreement with our upper-bound 
calculations. 

Over practically its whole range the "dead metal" upper-bound 
curve is fitted well by the simple formula 

é - ° - s + lMïh) (1α51) 

and this agrees well with the formula quoted by Johnson and 
Mellor as the "best fit" of a wide range of experimental results. 

Problems 
1 0 . 1 . Show that in the mode of plane plastic flow of Fig. 10.3(a) the rates 

of dissipation of energy at interfaces EF and FG are equal when F is in its 
optimum position, given by (10.8). 
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Show also that in the optimum configuration for given ο and s the flow in 
half of the sheet may be considered as two identical "single bend" reductions 
(each to Ι/V·* of the original thickness) in series. In particular show that the 
quadrilaterals IEHF and HFJG are similar. 

10.2.(a) A unit cube of perfectly plastic (non-hardening) material under
goes a plane-strain deformation in which it remains a rectangular parallelo-
piped and finishes up with dimensions s, l/s, 1. Show that the total work 
necessary to accomplish this deformation is 2k In (l/s), where k is the (constant) 
true yield stress in pure shear. 

(Hint. Express the yield condition in terms of the greatest and least principal 
stresses, and integrate the work done by these stresses. Remember that the 
volume of the cube remains constant.) 

(b) A cylinder of unit length and unit cross-sectional area and made of 
perfectly plastic material undergoes an axisymmetric plastic deformation in 
which it remains cylindrical and finishes up with length s and cross-sectional 
area l/s. Show that the total work necessary to accomplish this deformation is 
7 In (1/i), where y is the (constant) true yield stress in pure tension or com
pression. 

(Hint. Recall that yielding is unaffected by the addition of a hydrostatic 
component of stress, and that the volume of the cylinder remains constant.) 

Compare results (a) and (b). 
10.3. A "combined" mode of deformation analogous to that shown in 

Fig. 10.5 consists of η similar sub-modes, all with the same fractional reduction 
of thickness, arranged end-to-end. Express the value of ξ for each sub-mode in 
terms of the overall value of ξ and «, and obtain a formula for drawing stress. 
Give a geometrical interpretation of your result on a graph of tu\2k against ξ. 

(Hint. First demonstrate that the dissipation of energy per unit volume 
throughput is independent of the size of the sub-mechanism.) 

10.4. Use small-angle approximations to trigonometrical and hyperbolic 
functions in equation (10.13) to obtain a simple approximate formula for the 
optimum value of α (degrees) for frictionless sheet-drawing in terms of the 
reduction parameter ξ. 

10.5. Verify that the approximate curve (10.16), plotted on a graph of 
t/2k against ξ, touches the "ideal" line. Compare Figs. 10.6 and 10.4 and 
explain the discrepancies in terms of the approximations on which equation 
(10.16) is based. 

10.6. Re-work Problem 10.3 in terms of the approximate relationship 
(10.16) and find the value of ξ beyond which a mode comprising η + 1 
sub-modes gives a lower upper-bound than one of « sub-modes. 

10.7.f From considerations of overall equilibrium obtain an expression for 
the mean normal pressure on the die faces in frictionless sheet-drawing in 
terms of the drawing stress and the reduction. Hence, by inserting the limiting 
die-pressure indicated by "indentation" analysis (see Problem 8.6) obtain the 
"bulge limit" formula (10.17) for small reductions and small die angles. 

(Hint. Remember r, — £ for small reductions.) 
10.8.1 Equation (10.23) (with ρ replaced by t) may be regarded as an 

upper-bound solution for plane-strain drawing through perfectly rough dies— 
cf. equation (10.9) for perfectly smooth dies. By substituting typical values, or 



272 PLASTICITY FOR ENGINEERS 

by making approximations for small values of α and ξ, show that the rough
ness of the die contributes markedly to the drawing stress. 

(Hint. For small ξ use the approximation s = 1 — ξ, and then apply the 
binomial theorem.) 

10.9.t (a) Consider a plane-strain mode for sheet drawing, Fig. 10.12, in 
which there is a region Β of radial flow (towards the intersection of the die 
faces, produced) separated by cylindrical interfaces from the material ap
proaching and leaving the die. Sketch velocity diagrams for several points on 
the interfaces and show that for small values of ο the sliding velocity at the 
interface is proportional to distance from the centre-line. Hence, by inte
gration, determine the upper-bound expression for drawing stress, for small 
die angles: 

Plot this relationship on Fig. 10.6, and show that this mode gives a better 
upper-bound than the two studied in the text over only a very small range of 
reductions. 

(b) Repeat the analysis for an axisymmetric mode of the same general 
character and obtain the upper-bound result (assuming Y = 2k): 

10.10-t A body of perfectly plastic material is constrained to undergo 
deformation in a mechanism (a). An identical block is then constrained to 
deform in a different mechanism (b), and a third block is constrained to 
deform in a combined mechanism (a) and (b) together. Here "mechanism" 
implies not only a mode but also a scalar magnitude of deformation rate. 
Show that the sum of the work dissipated separately in modes (a) and (b) is at 
least as large as the work dissipated in the combined mode. 

(Hint. Work graphically in a schematic two-dimensional load space in 
which the behaviour of the body is represented by a convex yield locus en
closing the origin, related to incremental deformation by the normality 
rule.) 

10.11.1 In an experiment a sheet is drawn between two flat dies, each in
clined at angle α to the central plane. The steady-state drawing force per unit 
width of sheet is Ρ and the "splitting" force, perpendicular to the mid-plane of 
the sheet, required to hold the dies in position is S. It is assumed that the 
normal pressure q on the dies is uniform, and that the coefficient of friction 
between the dies and the sheet is μ. The forces and pressures acting on a die 
are thus as shown in Fig. 10.17. 

By considering the equilibrium of the die show that the value of μ may be 
deduced from the measurements by use of the following formula: 

μ = tan (tan- 1 (P/2S) - a) 
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If Ρ and S are now the drawing and splitting forces respectively in an ex
periment on wire drawing through a conical die of semi-angle a, show that 
the corresponding relationship is 

μ = tan (tan- 1 (PfrS) - a) 

(Hint. Consider the inclination of the resultant pressure and shear stress on 
a narrow frustum of the cone; resolve the resultant along and perpendicular 
to the axis and integrate around a semicircle.) 

10.12.1 In Fig. 1 0 . 1 3 let EG be the interface between moving material in 
zone Β and a stationary dead-metal zone. Let A approach the die at unit 
velocity, and let v* be the velocity magnitude of the material immediately 
beyond interface EF. Derive the upper-bound equation for the dissipation at 

s 

Ψ 

FIG. 10 .17. Pressures and resultant forces on a die in sheet drawing. 

the interface EG alone (a) for plane strain and (b) for axisymmetric flow in 
terms of v* (which is the same, as defined, in both cases) and suitable dimen
sions. Hence show that the dissipation of energy per unit volume through
put is exactly twice as much in (b) as in (a). 

(Hint. Start by showing that the rate of dissipation per unit axial length of 
the conical surface is constant.) 

10.13. Compare Figs. 10.9 and 10 .16 , and the two curves of Fig. 10 .15 , 
and comment on the proposition that in practice there is little difference in 
average drawing or extrusion stress—expressed as a function of reduction of 
area—between plane-strain and axisymmetric flow conditions, respectively. 

10.14. f Make a lower-bound analysis of sheet drawing between smooth 
plane dies by using a sector of the stress field derived for thick cylinders in 
Chapter III in conjunction with an odd-shaped region of hydrostatic stress. 
Similarly, make a lower-bound analysis of axisymmetric drawing through a 
smooth conical die, using the stress field derived in Problem 3 .14 . 

Further, show that these lower bounds also hold for plane-strain drawing 
through dies with convex flanks and axisymmetric drawing through "trumpet-
shaped" dies. 
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10.15. f Investigate an upper-bound solution of the sheet-drawing problem 
using the special (no-degree-of-freedom) case of the mode of Fig. 10.3(a) in 
which GFE' is straight. (In a sense this is more directly related to the mode of 
Fig. 7.12(a) than the general mode of Fig. 10.3(a).) 

Derive a general formula and make spot comparisons with Fig. 10.4. 
10.16f. (a) In a proposed "single bend" thickness-reducing operation a 

sheet is drawn between two smooth fiat dies arranged as shown in Fig. 10.18(a). 
The corresponding velocity diagram for an upper-bound analysis is shown in 
Fig. 10.18(b), q being an auxiliary point. 

For a given reduction 1 : s find the optimum layout of the dies and the 
corresponding drawing stress. 

(Hint. Use χ as the independent variable (Fig. 10.18(a)) and solve a quadratic 
equation to obtain an expression for vAB.) 

(b) Examine the relationship between this "unit" of deformation and the 
more complex mode of Fig. 10.3(a). Check that the optimum drawing stress, 
equation (10.14), may be obtained by suitable adaptation of the result of (a). 

(Hint. Note that 2 sinh(£/2) = 1/Vs - Vs.) 
(c) Verify that in the optimum configuration of Fig. 10.18(a) the postulated 

mechanism is such that an orthogonal plane in the entering sheet (such as HI) 
emerges as an orthogonal plane (such as JK). Also show that this is not so if 
the configuration is not optimum. 

q 

(a) 
(b) 

FIG. 10.18. A "single bend" reduction process. 



CHAPTER XI 

EFFECTS OF CHANGES IN GEOMETRY 

IN CHAPTER III we analysed the behaviour, under steadily in
creasing pressure, of a thick-walled tube made of ideal elastic-
perfectly plastic material, and we came to the conclusion that the 
"collapse pressure" calculated on the assumption that the material 
was rigid-perfectly plastic was a good approximation to the 
maximum pressure which a real tube could sustain. In the sub
sequent chapters we assumed that the same was true for other 
kinds of structures also, and set out to calculate—or estimate, 
by means of the upper- and lower-bound theorems—the collapse 
loads of several kinds of structures, and the forces required to 
execute certain metal-forming processes. 

The idea of a "pla teau" in the generalised load-deflection be
haviour of a structure, Fig. 11.1(a), depends, in fact, not only on 
the non-hardening property of the ideal material, Fig. 11.1(b), 
but also on the assumption that during collapse it is still reasonable 
to write down the relevant equations as if the structure were 
actually undeformed. This assumption is a feature of the virtual 
work equations (Appendix II) ; consequently it is built into the 
lower- and upper-bound methods. 

Now in some situations the assumption is reasonable. For 
example, in steady-state wire drawing there are considerable 
changes in geometry in the wire as it passes through the die, but, 
as we observed in Chapter X, the geometry is "self-reproducing" 
in the sense that the disposition of the material in the immediate 
neighbourhood of the die is always the same in steady flow. 

It is not difficult, however, to think of simple situations in 
which changes in geometry during collapse have a significant 

275 
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effect on the subsequent behaviour of the structure. For example, 
consider two uniform non-horizontal cantilevers, Fig. 11.2(a), 
loaded vertically by forces W at their tips. The cantilevers are 
made of perfectly plastic material, and we shall discuss their 
behaviour, appropriately, in terms of bending moments. The 
bending-moment/curvature relation for an element of the beam 
is as shown in Fig. 11.2(b), and the shape of this curve indicates 
that plastic deformation will occur by formation of a plastic 
hinge when the bending moment reaches the "full-plastic" value 
Mo. The largest bending moments in the cantilevers occur at the 

DEFLECTION 

(a) (b) 

FIG. 11.1. Idealised plastic load-deflection and stress-strain relations. 

roots, and so the simple plastic theory indicates that collapse 
occurs in both cases when 

Wh = Mo (11.1) 

where /* is the horizontal projection of the length of the canti
lever. However, the value of /» changes when the inclination of 
the cantilever changes, as it must if a hinge forms at the root ; 
consequently the value of Wmust change as the cantilever deforms 
plastically if equilibrium is still to be preserved. The relationship 
between W and the vertical deflection, y, at the tips is easily 
derived (see Problem 11.1) and is indicated in Fig. 11.2(c). 

F rom this example we see that geometry changes may work 
either for or against the strength of the structure—or they may, 
presumably, be "neutra l" in effect in some circumstances. 
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If the load-deflection curve rises—as for cantilever 1—the 
deformation is stable under steadily increasing dead load. On the 
other hand a falling load-deflection curve—as for cantilever 
2—indicates an unstable situation under dead loading, because 
once the maximum load has been reached any further deformation 
renders the structure incapable of sustaining the applied load, and 
inequality of the forces accelerates the collapse of the structure. 
When we consider that there will in general be some elastic 

deformation of the structure before M0 is reached at the root 
(see Fig. 11.2(b) and (c)) we can appreciate that the collapse load 
indicated by simple plastic theory will not in fact be reached by 
cantilever 2 ; the actual maximum load will depend to some extent 
on the elastic properties of the structure. 

The fact that "adverse" geometry-change effects can reduce the 
carrying capacity of structures to below that indicated by simple 
plastic theory is obviously one which must be taken seriously in 
structural design. On the other hand, "beneficial" geometry-
change effects provide an additional margin of safety when simple 
plastic design methods are used. In the remainder of this chapter 
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we shall be concerned mainly with situations in which the geo
metry-change effects are "adverse". 

11.1. Three Broad Classes of Structural Behaviour 

If we now consider the whole field of engineering structures— 
in only par t of which plastic theory is an appropriate conceptual 
tool—we find that the engineer often encounters situations in 
which the load-deflection curve first rises and then falls, as shown 

|W 

ο 

FIG. 11.3. Schematic load-deflection curves for different kinds of struc
ture. 

schematically in Fig. 11.3. On the whole his approach to structural 
design is conditioned largely by how "peaky" the load-deflection 
curve is in any particular case; clearly a structure with load-
deflection characteristics like (a) would collapse, under dead 
loading, much more suddenly and catastrophically than one 
corresponding to (c), and it would therefore be wise to allow a 
wider margin between the "working" load of the structure and the 
maximum load the structure could support ; in other words, t o 
assign a higher " load factor". 

The question of how to choose a suitable load factor in any 
given situation is beyond the scope of this book; we refer the 
interested reader to the work of Pugsley (see Bibliography). It is 
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perfectly plain, however, that before any rational design method 
can be devised it is necessary to have information from loading 
tests on real structures and from carefully planned experiments 
performed in the laboratory, as well as information about the 
statistical nature of actual loading. 

Let us now consider in more detail the three broad classes of 
structural behaviour indicated in Fig. 11.3. 

When we point out that structures of type (a) tend to have 
maximum loads which are sensitive to initial imperfections of 
geometry in the structure, it is easy to see that the design of such 
structures is in general a difficult and worrying business. For 
example, curve (a) is broadly similar to the pressure-volume rela
tion for a closed thin-walled vessel under external pressure—such 
as the pressure hull of a submarine. Although pressures below 
the surface of the sea are a well known function of depth in still 
water, it is of course very difficult to estimate the additional im
pulsive pressures which may be set up by explosions nearby, and 
which may clearly initiate catastrophic failure. 

Curve (b) may be taken to represent, schematically, the be
haviour of axially compressed columns in the elastic-plastic 
range; here again special care is necessary in design to avoid 
catastrophic failures. The buckling load of columns in the 
elastic-plastic range in fact depends critically on the strain-
hardening characteristics of the material. This also is beyond the 
scope of the present book, and for a concise introduction to the 
subject we refer the reader to Chapter 16 of the book by Drucker 
listed in the Bibliography. 

Curve (c) represents, schematically, the behaviour of a steel 
arch under the action of a downward-directed point load. The 
carrying-capacity of the arch might fall to, say, 5 per cent below 
the maximum load when the distortion of the arch was con
spicuous. Under these circumstances the simple plastic theory— 
used perhaps with a slightly augmented load factor—would 
appear to constitute a rational basis of design. 

In contrast, the behaviour of a steel dome under the action of an 
inward-directed point load would correspond more closely to 
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curve (a); the carrying capacity might fall to about half of the 
maximum value for a deflection equal to the thickness of the shell. 
Clearly in this case the simple plastic theory would not constitute 
a rational basis of design. 

11.2. An Approach to Geometry-change Effects in Plastic 
Deformation 

The list of effects which would need to be taken into account 
in a detailed calculation of the load-deflection behaviour of a 
structure is a long one: it includes elastic deformation, elastic-
plastic deformation, residual stresses, geometry changes, strain-
hardening and many other effects. 

The approach of the simple plastic theory to this situation is, 
as we have seen, a simple and radical one: we consider the 
material to be rigid-perfectly plastic and calculate—or find bounds 
on—the "collapse" load of the structure on the assumption that 
geometry changes are unimportant. 

Suppose, however, that for a particular type of structure made 
of a ductile material the load-deflection curve is found by ex
periment to fall after a peak load has been reached. Clearly our 
simple plastic theory is not fully justified—although as we have 
pointed out above it may still be useful for design in some cir
cumstances. What approach should we take to obtain a more 
realistic plastic theory ? 

In some very simple cases—like pure tension of a bar—it is 
not particularly difficult, as we saw in Chapter I I , to devise an 
analysis which takes into account changes in geometry and 
arbitrary strain-hardening. Most practical structures are, how
ever, much more complicated than this and it is not clear that 
these two aspects of structural behaviour, which are deliberately 
excluded from the simple plastic theory, could be comprehended 
within a general theory which did not rely very heavily on the 
assistance of high-speed computers. 

In view of the widespread success of the simple plastic theory, 
let us enquire into the possibility of modifying the theory in some 
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relatively simple way to take account of the changes in geometry 
which occur when the structure deforms—for this appears to be, 
prima facie, the most obvious unaccounted feature of the be
haviour, since it is unlikely that strain hardening would ever 
weaken a structure. 

The obvious approach, suggested by the example of Fig. 11.2, 
is to compute, in effect, a sequence of collapse loads according to 
the simple plastic theory, but with each based on a geometrical 
configuration of the structure differing from the previous one by 
a small amount corresponding to the collapse mode of the 
previous structure. Apart from difficulties arising from alternative 
modes of deformation (where the collapse locus has a pointed 
vertex) this procedure is straightforward—in principle, at least. 

Now if we are doing a sequence of calculations of this sort, we 
will probably be most keenly interested in the difference between 
the first collapse load calculated for the deformed structure and 
the initial collapse load, since this will enable us to obtain the 
initial slope of the load-deflection curve, which in turn will give 
an impression of the probable subsequent course of the curve. If 
the slope is positive, it will be reasonable to suppose that the 
actual structure will undergo a stable deformation at about the 
collapse load according to the simple theory for the initial 
geometry. If, on the other hand, the slope is negative—indicating 
unstable behaviour—we shall be keenly interested in the magnitude 
of the slope. 

Let us, therefore, concentrate on the problem of determining 
the initial slope of the load-deflection curve. 

11.3. The Rate-problem 

The labour which must be invested in the calculation of the 
initial slope of the load-deflection curve when a structure of 
rigid-perfectly plastic material deforms, obviously depends largely 
on the simplicity, or otherwise, of the structure and its loading. 
F o r example, the inclined cantilever, Fig. 11.2, presents little 
difficulty to a complete analysis; and for other structures, as we 
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shall see, approximate intuitive methods are not difficult to 
devise. 

Although such methods may be useful in practice it is never
theless instructive to study, briefly, the nature of the general 
problem. In general we are concerned with small changes in the 
external and internal forces which are a consequence of small 
changes in geometry of the structure when plastic deformation 
takes place. Investigation of the relationship between these small 
quantities constitutes the so-called rate-problem. 

The best way of appreciating the important ingredients of the 
problem, without going into unnecessary detail, is to study a 
deliberately simple example such as that shown in Fig. 11.4. A 
pin-jointed structure ABC is constrained to lie in a plane. The 
equal members, AB and BC, of length L, have the rigid-perfectly 
plastic load-extension characteristics shown in Fig. 11.4(b). (The 
example is thus somewhat artificial as buckling of the members, 
which would normally be an important consideration, is ex
cluded.) A load Ρ hangs under gravity from joint B. 

Our first step is to find the "collapse" load P„, say, of the 
structure according to simple plastic theory. This is done most 
conveniently for this simple statically-determinate structure by 
drawing the triangle of forces for joint B, as shown in Fig. 11.4(c). 
As Ρ increases steadily, member A Β is the first to reach the yield 
tension 7Λ; the corresponding value of Ρ is P0. When member AB 
extends plastically the structure becomes a mechanism with one 
degree of freedom. A small displacement of the mechanism, in
volving in particular a vertical component δγ of the small dis
placement of joint B, gives the modified geometrical layout in
dicated by dotted lines. Consequently the triangle of forces is 
also modified, as indicated. In particular the force Ρ will change 
by a small amount BP. However, it is not clear from the sketch 
whether the increment is a positive or a negative one. As we are 
primarily interested in the slope δΡ/δγ it seems clear that we must 
study carefully the changes in the triangle of forces which occur 
when the mechanism undergoes a small displacement. 

The most convenient way of finding the small changes of in-
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clination of the members is by means of a displacement diagram, 
shown in Fig. 11.4(d). This is self-explanatory, the construction 
being similar to that of the velocity diagrams in Chapter VII. In 
particular, the incremental rotations of AB and BC, ΘΑΒ and 0BC, 
are given, to within an arbitrary multiplier, by ab'jL and bcjL 
respectively. 

FIG. 11.4. Graphical "rate-problem" analysis of a simple structure. 
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The "change of force" diagram, Fig. 11.4(e) is constructed as 
follows. The magnitude of the tension in AB remains constant 
as the mechanism deforms (see Fig. 11.4(b)), so the change of 
tension is represented, vectorially, by a vector Τ0ΘΛΒ, perpendicular 
to vector Γ, in Fig. 11.4(c). The change of force from CB consists 
of two parts, due to a change in direction of the bar (analogous to 
the change in AB) and a change in tension, 8R, respectively. These 
two force increments are shown in Fig. 11.4(e), and the magnitudes 
of 8R and 8P are determined by the fact that the diagram must 
close. It is clear from the sketch that 8P acts upwards, indicating 
that Ρ must decrease as deformation proceeds if the joint Β is to 
remain in equilibrium. 

With the geometry shown, 

This result is indicated in Fig. 11.4(f). 
It is interesting to note that a complete description of the 

"collapse" state of the initial structure—involving both forces 
and displacements—is both necessary and sufficient for the cal
culation of the initial slope (dPjdy)0', and indeed this is true in 
general. In particular, neither an upper-bound nor a lower-
bound calculation is sufficient in itself. In essence what we have 
done is to apply the simple plastic theory to a slightly different 
structure, and it is obviously important in doing this to know the 
exact configuration of the modified structure and the exact 
collapse loads, in order to be able to assess the slope (dPjdy)a 

accurately. 
In principle the process can be repeated again and again to 

follow the complete relationship between load and deflection: 
however, the contention of the present argument is that the initial 

8P = - - · 
R bc_ 
2 ' Τ 2~/3 L 

P0 mfy 

Therefore 

(11.2) 
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slope is the single most valuable piece of information, and this, as 
we have shown, may be derived by applying relatively straight
forward procedures to information available from a plastic 
analysis of the structure in its initial configuration. 

Returning to the present example we can readily see (Problem 
11.2) that by keeping the initial inclination of the members the 
same but varying the length of BC and the position of C we can 
alter the value of dP\dy\ and, indeed, change its sign. In this 
example it is, plainly, not simply a matter of inspection to decide 
whether the initial slope dP/dy)0 is positive or negative in any 
given case. 

11.4. Geometry-change Effects in Simple Structures 

For some other structures, however, it is fairly clear by in
spection whether the sign of dPjdy)a—or the appropriate cor
responding quantity—is positive or negative. Indeed, the struc
tures we have been considering in this book furnish several 
examples. 

Simple intuitive arguments (see Problems 3.5 and 11.3) lead us 
to expect negative slopes to the load-deflection curves for thick 
tubes under internal pressure and rotating discs, both being made 
of rigid-perfectly plastic material ; and this does indeed cor
respond to the catastrophic bursting of such structures under 
" d e a d " loading in practice. 

We also expect a negative slope in the simple tension test 
(Problem 11.4) and it is instructive to recall (Chapter I) that the 
onset of instability in a tension test of a real material is deter
mined largely by the strain-hardening characteristics of the 
material. We would expect a somewhat similar state of affairs in 
the behaviour of tubes and rotating discs made of real strain-
hardening materials: although failure will be catastrophic the 
maximum load may not be reached until relatively large deforma
tions have occurred (see Problem 11.5). 

We have already observed, in Chapter IX, that geometry 
changes tend to enhance the carrying-capacity of plates under 



286 PLASTICITY FOR ENGINEERS 

transverse loading, by virtue of the possibility of a kind of mem
brane action. In fact the large-deflection analysis of rigid-perfectly 
plastic plates typically gives a load-deflection curve like that of 
Fig. 11.5 (cf. the experimental curves of Fig. 9.10) which rises 
after an initial slope of zero. In this case the initial rate-problem 
would not, by itself, indicate the strengthening effect of sub-
seauent changes in geometry. Although the large-deflection ana
lysis of plates is beyond the scope of the book, it is instructive 

LOAD 

DEFLECTION 
THICKNESS 

I 
Ο 1 

FIG. 11.5. Typical theoretical pressure-deflection curve for a plate of 
rigid-perfectly plastic material for steadily increasing pressure. 

to study by approximate methods the large-deflection behaviour 
of beams with full end fixity : see Problem 11.6. 

11.5. Summary and Concluding Remarks 

The "pla teau" in the predicted load-deflection curve for a 
structure made of perfectly plastic material depends not only on 
the non-hardening nature of the material but also on the assump-
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Hon that the effect of geometry changes on the collapse load is 
negligible. In general the initial (post-yield) slope of the load-
deflection curve may be either positive or negative, according to 
circumstances. A negative slope suggests that the real structure 
may collapse catastrophically—under dead loading—at a load 
below that indicated by the simple plastic theory, provided the 
effect of strain-hardening is not strong. The seriousness of this 
state of affairs depends strongly on the magnitude of the initial 
negative slope of the load-deflection curve. This slope represents 
the change in the collapse load according to the simple theory as 
the geometry changes a small amount at collapse, and all the 
information necessary for its determination is contained in a 
"complete" plastic analysis of the original structure. In some 
important practical cases, however, an estimate of the slope— 
and particularly its sign—may be made on an ad hoc intuitive 
basis. 

There are several points arising from a full consideration of the 
"rate-problem" which we have not touched upon. A proper 
analysis enables us to shed light on the questions of uniqueness of 
deformation of a body at the yield-point state and its relation to 
the stability of ensuing deformation. 

Problems 
1 1 . 1 . Calculate the curves of Fig. 11.2(c) for, say, θ0 = sirr 1 0-6 =^ 37°. 
Also find the initial slope of the load-displacement curve for an arbitrary 

initial inclination of the cantilever by drawing a displacement diagram cor
responding to a small rotation and evaluating the corresponding small changes 
in W and y. 

1 1 . 2 . (a) Find the initial slope of the load-deflection curve for the structure 
of Fig. 11.4(a), but with the load at joint Β applied vertically upward. 

(b) Find the initial slope of the load-deflection curve for a structure like 
that of Fig. 11.4(a), carrying a downward load, but with abutment C moved 
horizontally so that the length of CB equals aL, the inclination of A Β re
maining unchanged. 

1 1 . 3 . A rotating disc is made of rigid-perfectly plastic material. Starting 
from the assumption that in any deformation of the disc no particle will 
move towards the centre, and regarding an "overall" analysis of the equili
brium of half of the disc as adequate (see Problem 5.4), argue that the deforma
tion of the disc will be unstable under steadily increasing speed. 



288 PLASTICITY FOR ENGINEERS 

(Hint. Examine qualitatively the effect of the first assumption on (a) the 
inertia loading on half of the disc (b) the diametral cross-sectional area of the 
deformed disc. Remember that the material is incompressible.) 

11.4. Assuming that the deformation is homogeneous, determine the initial 
slope of the nominal stress-strain curve for a tension test on a bar of rigid-
perfectly plastic material with (true) yield stress Y in uniaxial tension. 

Determine the initial slope(i.e. strain-hardening coefficient) of the true stress-
strain curve if the initial slope of the nominal stress-strain curve is to be zero. 
Verify that your answer agrees with the Considère construction (Fig. 2.7, 
p. 25). 

11 .5 . t A complete analysis of the stable part of a simple tension test on a 
material with arbitrary strain-hardening characteristics may be made by 
means of the generalised Considère construction, Fig. 2.7. Make a cor
responding analysis of a rotating hoop of the same material, which is con
strained to remain symmetrically disposed about the axis of rotation, and 
devise an appropriate construction for the "nominal" bursting stress, i.e. the 
bursting stress based on the bursting speed and the original dimensions of the 
hoop. 

FIG. 11.6. Large-deflection analysis of a beam with fully restrained ends. 

11.6 .1 Make an upper-bound analysis of the collapse load of the deflected 
beam shown in Fig. 11.6. The beam has a rectangular cross-section and the 
ends are built into supports which prevent not only rotation but also transla
tion of the ends of the beam. As a mode of deformation consider rigid-body 
rotations of the blocks ABED and CBFG about points Ρ and R, and evaluate 
the dissipation of energy at .the planes AD, BE and CF. Note that for geometric 
reasons point Q, which is on line PR, divides the plane BE into zones of 
compressive and tensile dissipation. For a given configuration optimise the 
"level" of PQR. 

Hence construct a curve showing, approximately, the relationship between 
W and y as deformation proceeds. 

w 



CHAPTER XII 

THE WIDER SCOPE OF 
PLASTIC THEORY AND DESIGN 

THE examples of application of plastic theory given in Chapters V 
to X were intended to serve two main purposes. First, in making 
predictions about the behaviour of actual structures and the 
operation of forming processes they make possible the experi
mental justification of the theory—and particularly the idealisa
tions which are involved in it—over a wide range of situations. 
Second, in demonstrating the power and flexibility of the theory 
in application to a wide spectrum of problems, they may give the 
reader some confidence in tackling other problems which he may 
encounter in the course of his engineering career. In a sense this 
book is like a manual on "how to play tennis", which aims to 
improve the reader's performance at the game, but which can 
only do so if the reader is prepared to read the book in conjunc
tion with practice sessions on the court. Similarly the present 
book can only succeed in its ultimate objectives if the student is 
prepared to practise the theory not only on the problems pro
vided in the book, but also on other engineering problems which 
he may encounter in the future. 

In order to correct any misleading impressions about the scope 
of application of plastic theory which may have been obtained 
from a study of the restricted and somewhat arbitrarily chosen 
list of examples in Chapters V to X, we give below a list of other 
fields in which plastic theory has made considerable contributions 
or in which it appears to be capable of making contributions in 
the future. 

Plastic theory is a well-developed tool in the design of beams 
289 
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and framed structures in steel and reinforced concrete and, more 
recently, in "composi te" construction using both of these mater
ials. The theory is a tool not only for design of the overall di
mensions of the members of these structures but also for design 
of the details of connections, etc. For an authoritative treatment 
of this subject see the book by Baker, H o m e and Heyman listed 
in the Bibliography. 

In the field of pressure vessel engineering, and particularly in 
the design of reinforcement of openings and junctions, plastic 
theory appears to form a sound basis for rational design. The 
widely-used "area replacement rule" is indeed a simple, in
tuitive application of a lower-bound idea, but it seems that careful 
and sophisticated application of the theorem to more complex 
junction geometries will be rewarding. Plastic theory should find 
increasing application also in the design of reinforcement around 
cut-outs in complex cellular structures such as the hulls of ships. 

Another large area in which plastic theory seems capable of 
making a significant contribution is the field of micro-mechanics 
of composite materials. An obvious example was mentioned in 
Chapter VII, but many other materials may usefully be idealised 
as simple composite materials on a microscopic scale. This field 
shows promise as a way of bridging the enormous gap between 
atomic-scale studies on the one hand and "cont inuum" studies 
on the other, and producing meaningful interpretations of phe
nomena which have so far eluded description in conventional 
terms. 

Plastic theory has proved to be a useful tool in several aspects 
of soil mechanics. Although saturated clays have strong time-
dependent components of behaviour it is nevertheless justifiable 
in some circumstances to regard the material as basically time-
independent. Here, a plastic theory generalised to account of 
plastic volume changes has played an important part in the con
ceptual development of the subject in recent times ; see the book 
by Schofield and Wroth listed in the Bibliography. It also seems 
likely that application of plastic theory to clay materials on the 
micro-scale will be rewarding. Also, in broad terms the "mature 
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view" of structural behaviour afforded by plastic theory has 
helped to put some simple conventional soil-mechanics calcula
tions into a proper perspective of mechanics. 

12.1. Interrelation with Other Aspects of Design 

At several points in the book we have made the observation 
that plastic theory is specially appropriate for design of structures 
of various kinds and for optimisation of various forming pro
cesses. Once we are satisfied that conditions are appropriate, we 
can apply the theory, and in many cases we obtain a clear view 
of the mechanics of the situation which points directly to a 
relatively simple design procedure. 

We must recognise, however, that structural design cannot be 
carried out in isolation from the many other aspects of engineer
ing design. For example, in the design of a complex piece of 
machinery such as a gas turbine there are obviously very many 
technical problems which must be solved in the fields of aero
dynamics, combustion, lubrication, heat transfer, vibration, etc., 
besides those concerning materials and structures ; and obviously 
all of these problems impinge on each other to a greater or 
lesser degree. Similarly, in the design of a large multi-storey 
building, many of the overall dimensions of the structure will be 
determined by such considerations as the use to which the 
building is to be put, local building regulations, aesthetic aspects, 
and so on. 

In situations of this sort the structural engineer must be in 
continuous communication with many other workers, and it is 
especially valuable for him to appreciate concepts which give him 
the ability to make clear statements about the effects on the 
structural aspects of the design of, say, changes in dimensions 
which may be desirable from other points of view. The ideas of 
plastic theory, and particularly those which derive from the 
lower-bound theorem, are very useful in this respect, because 
anyone who understands the main points of the theory can often 
make particularly valuable rapid and incisive structural analyses. 
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12.2. The Role of Computers in Structural Design 

All the examples we have considered so far have been suffi
ciently simple for the relevant plastic-theory calculations to be 
done "by hand" . In the age of the high-speed computer and of 
more and more complex machines it would be exceedingly naïve 
to suppose that all problems of structural analysis and design 
could be solved at the expense of small amounts of computa
tional labour. On the other hand it would be even more naïve to 
think that the mere power of the computer could in any way 
enable us to dispense with the conceptual framework within 
which all meaningful calculations are necessarily made. There 
can never be a substitute in structural design for clear thinking 
and the application of powerful proven concepts: and, indeed, the 
need for conscious thought about presuppositions and idealisa
tions becomes more acute if effective use is to be made of the ever-
increasing power of high-speed computers. 

Several computer packages for comprehensive structural 
analysis have recently become widely available. These can 
perform static and dynamic analyses of structures and continua 
in the course of geometrically non-linear deformation, and with 
a variety of optional non-linear formulations of irreversible 
material behaviour. Experience with these packages shows that 
simple hand-calculations done by thoughtful engineers on the 
basis of well-chosen idealisations are very helpful in making 
preliminary design decisions and in suggesting suitable para
meters for use in the main computations. Moreover, simple 
studies of this sort are also indispensable in finding the key 
dimensionless groups which characterise the behaviour of 
structures and which thus provide a rational scheme for thinking 
about structural problems and interpreting the computer output. 

The modern, comprehensive computer packages mentioned 
above are all descendants of schemes of linear-elastic analysis 
which were set up in the early days of high-speed computation. 
Successive features such as geometric and material non-linearity 
have all been provided by means of an accretion of schemes of 
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iteration and successive approximation. A radically different 
route of structural computation has been taken by a group of 
workers who have aimed at adapting the techniques of 
Operational Research to the direct design of engineering 
structures. The earliest example of this genre of structural 
computation was the application of the technique of linear 
programming to the plastic design of framed structures under 
conditions of minimum weight. Much progress has been made 
over recent years in the deployment of other methods of 
operational research in the field of structural optimisation. The 
volumes listed under that heading in the Bibliography are 
representative of work in this area. 

12.3. Application of Plastic Theory to Other Fields of 
Design 

Throughout the book we have been at pains to emphasise that 
plastic theory is only relevant to the analysis and design of 
structures and forming processes within a certain well-defined 
region of structural mechanics. Nevertheless, as we pointed out 
in Chapter I, plastic theory is a mature subject, and one of the 
by-products of this maturity is that some of the insights into 
structural action afforded by the theory are relevant to structures 
falling strictly outside the scope of the theory. An example which 
has already been cited is masonry construction: see pp. 10-11. 

Provided we are cautious, and fully conscious of what we are 
doing, it is reasonable to seek to apply some of the benefits of 
plastic theory in an intuitive way to other aspects of structural 
design which are beyond the scope of plastic theory as such. 

Two fields in which plastic theory has limited application of 
this sort are the design of structures to avoid failure by fatigue, 
and the design of structures which must operate in creep con
ditions. 

In spite of the fact that fatigue damage is likely to be initiated 
in local regions of high concentration of stress in the elastic range, 
it is nevertheless useful in the design of structures which must 
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sustain many repeated loadings to have a clear qualitative idea of 
the overall way in which the structure acts to carry the applied 
loads. A little thought along "lower-bound" lines often indicates 
clearly the parts of the structure which need reinforcement, and 
by putting reinforcing ribs, etc., in other places the designer may 
well exacerbate the fatigue problem. 

In the field of design against creep one of the important ob
servations on the creep of metals at elevated temperature is that 
the creep strain-rate in a specimen is highly sensitive to the stress 
level. Therefore a relatively low stress concentration factor in a 
creeping structure may be associated with a high strain concentra
tion factor, which should be avoided if at all possible since the 
occurrence of rupture in creep conditions appears to depend 
largely on the creep strain which has accumulated locally. The 
lower-bound approach of plastic theory envisages equilibrium 
distributions of uniform stress, and is likely therefore, in design, 
to indicate the regions in any given structure which need rein
forcement if the stress levels are to be kept satisfactorily low. 

The question of creep in structures is complicated by the fact 
that if parts of the structure are at elevated temperature there are 
likely to be other parts at lower temperature, and therefore 
thermal stresses due to self-restraint of differential expansion may 
be present. Whether or not such thermal stresses may be ignored 
for some purposes—as they are in plastic theory with reference to 
collapse—remains to be investigated. 
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A P P E N D I X 1 

THE MOHR CIRCLE OF STRESS 

IN ORDER to discuss in a meaningful way the idea of "state of stress" at a 
point within a body it is necessary to be able to describe a given state of stress 
with respect to an arbitrary set of local orthogonal axes. A fairly complete 
picture of what is involved in transformations of this sort may be obtained 
from a study of two-dimensional states of stress. 

Consider a sheet of material subject to loading in its own plane. At any 
point in the sheet we may define an axis u in the plane of the sheet, and we 
may examine the tractions transmitted over a "slit" perpendicular to the 
«-axis, which we call the «-plane. The tractions may conveniently be separated 
into two components, a normal stress au and a shearing stress ru, as indicated 
in Fig. A. 1(a), acting normal to and tangential to the slit plane, respectively, 
σ and τ are forces per unit area of slit, in the limit as the area tends to zero. 
We attach subscript « to the components of stress acting on the « plane. In 
Fig. A. 1(a) σ and τ are shown in their positive sense: a is positive when the 
arrow is directed out of the material, and τ is positive when the arrow is 
directed to the right with reference to a vantage point within the material. 

It is clear that with this convention of sign the stress components σ„ and τ„ 
have the same values with reference to the material on both sides of the slit. 

We now enquire how the values of ou and ru vary at a given point in the 
sheet when the inclination of the u-axis changes. 

To do this we consider the equilibrium of a little block of material detached 
from the body by a set of slits. The simplest small block is a triangle, and we 
choose to make two of the slits perpendicular to arbitrary orthogonal χ-, 
^-axes fixed in the sheet, as shown in Fig. A. 1(b). The geometry of the wedge 
thus formed is defined by the angle a, measured clockwise from the x-axis to 
the u-axis. 

Equilibrium of the block requires satisfaction of three equations. One is, 
simply, 

τ, = - τ, (A.l 

and the others give relationships between the variables o„, ru, the given values 
of σχ, oy, rx, Ty ( = — τ χ ) and the variable a. 

The result expressed by (A.l), viz. that shearing stresses on perpendicular 
planes have the same magnitude (and opposite sign with the present notation), 
is known as "complementary shear". It applies to all mutually perpendicular 
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planes in states of two-dimensional stress and it has its counterpart in three-
dimensional stress systems (see Appendix V). 

It is a matter of straightforward manipulation to show that for a given 
state of stress the stress-point (au, τ„) in a two-dimensional σ, τ space traces 
out, as α varies, a circle whose centre is on the σ-axis, as shown in Fig. A. 1(c). 

u-face 

τ 
Κ · τ χ ) 

/"xV Ν . (<ru,T„) 

2/ V/ 0 

(c) ( V T V ) 
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τ 
g 
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FIG. A . l . The Mohr circle of stress. 

This diagram is known as the "Mohr circle of stress" after its inventor. Many 
observations may be made on this figure, but we shall restrict ourselves to the 
essential ones. 

(i) The circle is denned by the points Χ (σχ, τχ) and Y (<ry, ry) which lie at 
opposite ends of a diameter. 

(ii) The circle represents the state of stress at a point in the body. 
(iii) The relationship between the U (<r„, T . ) and X points on the circle is 

that they subtend angle 2a at the centre of the circle, the radius-
vector to U rotating in the same sense as the axis «, but through twice 
the angle. 
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(iv) It is always possible to find two directions, perpendicular to each 
other, for which τ is zero on the corresponding planes. These axes and 
planes are called principal axes and planes, respectively, and the cor
responding magnitudes of σ the principal stresses. Numerical suffices, 
1 and 2, are used to denote the principal axes, as indicated in Fig. 
A.l(c). 

So far we have been discussing two-dimensional states of stress and our 
single-suffix notation has been adequate. When we consider general three-
dimensional states of stress we need a more comprehensive notation. However, 
we can make some powerful statements about three-dimensional states of 
stress without needing to discuss notation if we accept the result that it is 
always possible—for any state of three-dimensional stress—to choose three 
mutually perpendicular principal directions of stress. A small cube "cut out" 
with faces perpendicular to these directions sustains on its faces only the 
normal stresses, au at, o3, as indicated in Fig. A.1(d). 

The two-dimensional analysis may be applied in turn in each of the planes 
perpendicular to axes, 1, 2 and 3, and if the resulting three diagrams are 
superimposed we obtain the composite figure shown as Fig. A.l(e). Now a 
full analysis shows that if the direct stress and (resultant) shearing stress are 
worked out on any arbitrarily inclined plane the corresponding point in 
Fig. A.1(e) lies within the region shown hatched between the three circles. 
Rules may be worked out to locate the point in terms of angles denning the 
inclined plane, but we shall not discuss them here. What is important to us in 
our present study is that the magnitude of the largest shearing stress which 
can occur on any inclined plane for a given state of stress is readily determined 
in terms of principal stress and, moreover, the inclination of the relevant 
planes (corresponding to points A and Β in Fig. A. 1(e)) is readily determined. 
These planes are always inclined at 45° to two principal directions of stress, 
and are parallel to the third. 

The sign convention indicated in Fig. A. 1(a), which is used extensively in 
the book, is rather unusual. Clearly there are many possible notations and 
conventions, and this one has the sole merit of making the two-dimensional 
Mohr circle entirely unambiguous. This is clearly desirable in the present 
book which makes considerable detailed use of the Mohr circle in several 
chapters. The reader will find that a little time spent in mastering the Mohr 
circle construction is amply rewarded. See also Appendix V. 



APPENDIX II 

VIRTUAL WORK 

THE principle of virtual work is indispensable in the proof of structural 
theorems, and it is often useful in the discussion of particular structural 
problems. There are many possible statements of the principle, depending on 
what are regarded as the basic axioms of mechanics. Here we shall take the 
simple view that (a) we understand what we mean by "equilibrium" of 
"forces" acting on a macroscopic body and (b) that three-dimension Euclidian 
geometry is essentially a simple business of lines, lengths and angles. 

The condition of equilibrium for a set of forces acting at a point may be 
stated in several ways which are precisely equivalent, as follows. 

(i) Forces are vectors. For a set of forces to be in equilibrium the "space 
polygon" formed by the vectors must close. 

(ii) The algebraic sum of the components of the vectors in any arbitrary 
common direction must be zero. 

(iii) Because the net unbalanced force on the point is zero, the sum of the 
work done by each force separately when the point moves a small 
distance in any arbitrary direction is zero. 

This last statement, which we shall find particularly useful, involves the 
definition of the work done by a force (of constant magnitude and direction) 
when its point of application moves; work is the product of the force and the 
projection of the distance moved onto the line of action of the force—or, 
alternatively, the scalar product of the force and displacement vectors. 

We now set out to establish the principle of virtual work for an arbitrary 
structure. For definiteness consider a simple two-dimensional framework of 
weightless bars pin-jointed to each other, and in equilibrium under loads Ρ 
applied at the joints, as indicated in Fig. A.2(a). Each bar of the structure 
carries a tension Τ which is of such a magnitude that all of the joints of the 
structure are in equilibrium. Figure A.2(b) shows the joints of the structure 
and the forces acting on them, the bars having been "removed". Notice that 
each bar exerts equal and opposite forces at two joints. 

Now suppose that each of the joints in Fig. A.2(b) is given an arbitrary 
small displacement in the plane, that the virtual-work equation of equilibrium 
is written for each joint, and that all the resulting equations are added to
gether. In the total sum each force Ρ will occur once, multiplied by the com
ponent of the displacement of the joint in the direction of the line of action of 
the force. On the other hand, each force Τ will occur twice, multiplied by 
appropriate components of displacement at two joints. Inspection shows that 
when the work terms corresponding to a pair of Τ forces are added, each Τ is 
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multiplied, effectively, by the movement of the two corresponding joints 
towards each other—all displacements being assumed "small". 

Thus our overall equation may be written 

Σ PJUJ = Σ 7>, (A.2) 

where summation is over all joints and bars respectively, Uj are the com
ponents of the (small) joint displacements in the directions of the lines of 
action of Pj, and et are the changes in separation of pairs of joints. 

In this equation the «'s and e's correspond to any arbitrary set of small dis
placements of the joints. Thus, for example, if only one joint is displaced, 
equation (A.2) gives, precisely, the equilibrium equation in the corresponding 
direction for one joint. Alternatively, if the joint displacements are chosen to 

(a) (b) 

FIG. A.2. The principle of virtual work. 

be such that the relative positions of the joints do not change, we would obtain 
an equilibrium equation for the truss as a whole. In other words, by suitable 
choice of joint displacements equation (A.2) gives, in turn, all equilibrium 
equations which can be written for the structure or any part thereof. 

We obtained equation (A.2) by "dismantling" the structure and making 
arbitrary displacements of the detached joints. The equation is equally valid 
if we regard et as the extensions of the members in a general distortion of the 
structure without prior dismantling. The important point here is that the 
distortion of the structure is an arbitrary one which satisfies the geometrical 
requirements of continuity without any question of the extensions correspond
ing to the effects of tension in the members, rather as if we were distorting a 
drawing of the structure made on a rubber sheet. The "detached joint" 
picture is a useful one to recall if there is any difficulty in comprehending this 
rather subtle point. 

Now the simple two-dimensional pin-jointed structure was used primarily 
as an illustrative example. Clearly the same arguments may be applied to 
three-dimensional pin-jointed structures and, moreover, to any solid three-
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dimensional structure. In this case the appropriate form of the R.H.S. of 
equation (A.2) is 

where integration extends over the entire volume of the body and a, « are 
appropriate symbolic representations of stress and strain, respectively. In 
fact, the virtual work equation may take many forms, depending on the 
variables used to describe the loading and the internal structural action (see 
Appendix III). 

Finally we emphasize that in the virtual work equation (A.2) the forces Ρ 
and tensions Γ form an "equilibrium set" (for the undeformed structure), and 
the small displacements u and extensions e form a geometrically "compatible 
set". There is no necessary mechanical relationship between Τ and e or be
tween u and e as far as the virtual work equation is concerned. To emphasise 
the independence of the "equilibrium" and "compatible" variables it is 
helpful to introduce additional, obvious, symbolism into equation (A.2) as 
follows : 

(A.3) 

= Σ r,et 
(A.4) 

For further reading see the book by Neal listed under Structural Mechanics in 
the Bibliography. 



APPENDIX III 

"CORRESPONDING" 
LOADS AND DEFLECTIONS 

A C E N T R A L notion in the concept of virtual work (Appendix II) is that the 
force and displacement quantities are related to each other in the sense that 
the product of corresponding variables represents a quantity of work. If a 
single force Ρ acts at a joint, the "corresponding" measure of displacement of 
the joint is the component of the displacement in the (positive) direction of the 
line of action of the force. Similarly, if the components of a force are specified, 
say Χ, Υ, Ζ in mutually perpendicular directions, the "corresponding" dis
placements are the components of displacement x, y, ζ in the same directions, 
and the appropriate (scalar) product is simply Xx + Yy -f Zz. 

We are not, however, limited to discussion of loads on structures in terms 
of force as such. A structure may be loaded by a couple, for which the cor
responding displacement is an angle of rotation (measured in radians); or a 
pressure, for which the corresponding displacement is a "swept volume" ; or 
a uniform line load, for which the corresponding displacement is a "swept 
area". 

Similarly (as noted in Appendix II), we are not limited to discussion of 
internal structural action in terms of tension or, indeed, stress: we often use 
the "strength of materials" variables of bending moment, twisting moment, 
etc. For example, where the compatible deformation involves continuous 
changes of curvature κ along a beam, the corresponding form of the R.H.S. 
of equation (A.2) is 

where M represents bending moment, and the integration is along the length 
/ of the beam. If, however, the compatible deformation involves "kinks" in 
the beam (as it may, legitimately and usefully) the corresponding term is 

where θ is the angle of a kink and M is the bending moment at the cor
responding point in the beam. 

There is usually no difficulty in deciding, in any given situation, what are 
the corresponding displacement variables to any set of force variables. 

Σ ΜΘ 

305 



APPENDIX IV 

PROPORTIONAL LOADING 

M A N Y structures sustain several independent sets of loads. For example a 
building structure in general sustains (a) "dead" load (its own weight plus the 
weight of any fixed equipment) in addition to several forms of "live" load 
such as (b) floor loading due to the weight of people and movable objects, 
(c) wind loading and (d) snow loading. It is easy to think of many other 
examples. 

Sometimes it simplifies thinking to imagine that all loads are "geared" to 
each other so that when one class of loading is, say, doubled in magnitude, so 
also are all other classes of loading. In effect, therefore, the loading on the 
structure at any time is specified by a single (scalar) parameter under these 
circumstances. 

Some early forms of the upper- and lower-bound theorems were established 
for structures sustaining such "proportional loading", and bounds were thus 
established on the single "load factor" at collapse. In this book, however, we 
do not find it necessary to impose restrictions of this sort because in general 
we work in terms of a "collapse load surface" in a multi-dimensional load 
space. 

There are, of course, many important situations where analysis in terms of a 
single loading parameter is appropriate : forming operations, for example, fall 
into this category. 
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NOTATION FOR 
THREE-DIMENSIONAL STRESS 

FIGURE 2.12, p. 33, shows a possible notation for a general three-dimensional 
state of stress, referred to arbitrary mutually perpendicular x, y , ζ axes; see 
also Fig. 6.3(a), p. 142. It is necessarily different from the specially simple 
notation used for the Mohr circle of stress (Appendix I). The axes x, y , ζ 
now have positive and negative senses, and r z „ for example—which is a 
component of shearing stress on the χ faces of the cube—is directed in 
the positive y direction for the face of the cube on the "positive x" side. 

It follows that the "complementary shear" relations (see Appendix I) are, 
in the present notation, 

r„=TfX etc. 

without the minus sign which occurred in our main notation. 
There is, in fact, little occasion in general for confusion between the two 

sets of notation. 

307 



APPENDIX VI 

SYMBOLS, UNITS AND 
CONVERSION FACTORS 

THE following information, except for the abbreviations psi and tsi, is in 
accordance with British Standard 3763:1964 "The International System 
(SI) Units". 

SYMBOLS 

m metre 
kg kilogramme 
s second 
Ν newton (kg m/s") 
ft foot 
in. inch 
lb pound (mass) 
lbf pound force 
tonf ton force = 2240 lbf 
psi lbf/in" 
tsi tonf/in2 

PREFIXES 

m milli- = 
k kilo- = 
M mega- = 
G giga- = 

1/1000 
1000 
1,000,000 
1,000,000,000 

CONVERSION FACTORS 

The following factors should be adequate for rough calculations. For exact 
conversion factors see B.S.3763:1964. 

Length: 1 ft is equivalent to 0-305 m 
Mass: 1 lb „ „ 0-454 kg 
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Force: 1 Ibfisequi 
1 tonf , 

Stress: 1 psi , 
1 tsi 

Density: 1 lb/ft3 , 

valent to 4· 45 Ν 
„ 10 kN 
„ 6-89 kN/nV 
„ 15-4GN/m» 
„ 16-0 kg/m 1 



ANSWERS TO PROBLEMS 

CHAPTER II 

2.4. See the way point A (Problem 2.12) is plotted in Fig. 2.25. 
2.5. (2/3)*. 
2.7. (a) oi'+ 4r 2 = Y\ (b) σ2 + 3τ 2 = Y3. 
2.9. (djlf. 
2.13. The state of stress in the cylindrical shell wall is equivalent to a pure 

shear plus a hydrostatic tension. The state of stress in the spherical 
shell wall is equivalent to a uniaxial compression plus a hydrostatic 
tension. 

2.14. The eighteen points in au at space are: 
(20, 0), (20, 20), (0, 20), (-20, 0), (-20, -20) , (0, -20) , (21, 7), (21, 14), 
(14, 21), (7, 21), (-7, 14), (-14, 7), ( -21, - 7 ) , ( -21 , -14) , (-14, -21) , 
(-7, -21) , (7, -14) , (14, - 7 ) . 

2.15. Tresca: (a) see Fig. 5.11, (b) two lines | ax—at | = Y. In this case the 
flow rule requires a3 to be intermediate between at and <r2. 
Mises: (a) the ellipse + σ 2

2 — σ ^ , = y 2 , (b) two lines — σ»)2 

= 4 7 2 / 3 . 

CHAPTER III 

3.3. σ, = XpaVW - a 2) + (1 - λ) (ar+σβ)/2, 0 < λ < 1, where ρ = Y ln(6/a). 
σ, = y ln(r/è) and σβ — ar = Y. 
The first part of the question is solved by having, in effect, λ = 1 and 
expressing the condition that ot is intermediate between σθ and ar. 

3.6. The stress trajectory in the ττ-plane corresponding to a< r< c would be 
a segment of the edge σθ—a, = Y of the hexagon, instead of a single 
point, σ, would have to be intermediate between σ β and σ„ of course. 

3.7. b/a^2' 2, approximately. 
3.16. The state of stress at any radius in a thick tube at collapse is a pure 

shear superimposed on a hydrostatic tension. (It would really be more 
appropriate to deal in terms of k rather than y throughout the chapter.) 

CHAPTER IV 

4.1. ρ = Y(l-a/b). 
4.2. ρ = y in( l + Α/α). 
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CHAPTER V 

5.1. Dimensional analysis. 
5.6. For example, if a/b = 0 · 2 and hub thickness = 3 χ disc thickness, the 

hub extends to 0-32Ζ». 
Volume of disc with hub = 1- 09 (volume of plain disc). 
Volume of disc with compact ring = 1- 05 (volume of plain disc). 

5.7. A = Λα(σ,/Γ)/(1—a2/c2). 

CHAPTER VI 

6.3. For circle, square and triangle, Tp = 2/3 Akr, where A = area of 
cross-section and r = radius of inscribed circle. For rectangle a x b, 

6.5. i per cent. 
6.6. 125/3 ka3, reduced by < 25/3 ka3, i.e. < 20 per cent. 
6.7. (a) Τ" = (2π/3) ka3 ( = Γ'), (b) V = 1 · 147 (8/3) ka*. 
6.8. The Ρ, M locus consists of two parabolic segments. 
6.9. Γ' = 25/12 ka\ 
6.10. Γ ρ = fc((14/3)r>3 + fc(f>2c/2-r>3/6), c>b. About 2 per cent for the con

figuration shown. 

CHAPTER VII 

7.1. F" = 5 ·52 kb (i.e. 12 per cent lower than (7.3)). In the optimum 
configuration the band of intense shear subtends approximately 134° 
at the centre of the circle. 

7.4. F- =•• 4V2 kb = 5-66A6, when the "depth" of the mode is equal to 
blV2. 

7.8. Equation (7.23). 
7.10. Mechanism (a): For equilateral triangles, F"maolb = 10/V3 kb; F" r o u i i , 

= 4V3 kb. For optimum isosceles triangles (cf. Problem 7.4) F"roio<),h 
= 4 V 2 kb; F \ o u , h = 4V3 kb. Mechanism (b): F", m o o l h = 6kb when 
χ = 6/2; = 6-25 kb when χ = b. F" r 0 u,h = 6 · 5 kb when χ = b/2 or 
χ = b. (x/bet,nmum = i (smooth); = 1/V2 (rough)). 

7.11. Between successive lower-bound points in Fig. 7.21 the curve rises 
almost linearly, with a "jump" in ordinate of (1 + y/2)l2n at bjh = 
2nV2, where η is an integer. 

7.12. F72Jt6 = 1 + 0 · 25 hjb for smooth dies. Add 0 · 25 bfh for rough dies. 
7.13. Fuj2ky = 0-42. 

CHAPTER VIII 

8.1. ρ = 2k \n(b/a). 
8.2. γ = Vfr. Ù = kVa(b—a) 
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8.3. (a) and (b): F" = 2kb(l + π/2). 
8.6. (a)q = 2*(1 + π/2 - θ) 

(b) q - 2Ar(l + π/2 + θ) 
(c) q = 2*(1 + π/2 - 0). 

8.7. F = 2ka(l + π/2). 
8.8. F" = 2*6(1 + π/2). 

CHAPTER I X 

9.3. ρ = όΛ/ο/β'. (Resultant of support reactions acts 2/π times radius of 
plate from the centre; of pressure, 2/3 times this.) 

9.7. ρ = &MJa*. (Volume of "cap" = j volume of circumscribing cylinder.) 
9.12. Ρ = 2 π Μ 0 , both lower and upper bounds. 
9.13. Σ Ρ > 4 π Μ 0 , all loads acting in the same direction. 
9.14. Top steel reinforcement may be omitted over a central region whose 

area is fraction M/(M + m) of the total area. 
9.15. a/b = 0-62, approximately (a root of x* -x* -3x + 2 = 0). 

CHAPTER X 

10.3. Let t"/2k = / ( ξ ) for a single mode. Then for η equal sub-modes, 
rpk = η A m . 

10.4. ο = ξ/2. 
10.6. ξ = 2aV(«(n + 1)). 
10.7. qr, = t(l - r t). 
10.8. t"/2k = a + ξ/2α for ξ and ο small: cf. equation (10.16). 
10.14. Plane strain: / ' = 2k ln(l/j) = 2k In η. 

Axisymmetric: r' = y in( l / s 2 ) = y In η. 
Note that, written in this way, both results apply to either Tresca or 
Mises material. 

10.15. f/2k = i ( ( J - s~l) cosec 2a - 2 cot 2a). 
Observe the formal relationship between this and equation (10.9) and 
note that it may be rewritten t"/2k = H2(cosh ξ — cos 2a) cosec 2a}, 
which is formally similar to equation (10.11). Spot values may there
fore readily be determined by use of the data of Fig. 10.4. For small α 
and ξ equation (10.16) is obtained, but for larger angles the above 
formulas may give much higher upper bounds than (10.9) or (10.11): 
consider α = 90°, for example, and compare the mode with that of 
Fig. 10.8(a). 

CHAPTER X I 

11.1. W/W* - 0-8/(1 - (0 -6 ± ^//) 4 )*. 
11.2. dP/dy). ~ PJLy/3. 
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11.4. ds/de). = — Y; H — doy\di)a = Y. 
11.5. On the diagram of Fig. 2.7 construct a parabola σ — C(///0)* which 

just touches the σ, ///„ curve for the material. Then C (the intercept of 
the parabola with line ///„ = 1) is the required "nominal hoop bursting 
stress". 
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