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permission from the AIP Emilio Segrè Visual Archieves. Copyright, American Institute of
Physics, 2000.



FLUID
MECHANICS

FIFTH EDITION

PIJUSH K. KUNDU

IRA M. COHEN

DAVID R. DOWLING

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

� 2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by anymeans, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the Publisher. Details on how to seek permission, further information about the Publisher’s permissions policies
and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Kundu, Pijush K.
Fluid mechanics / Pijush K. Kundu, Ira M. Cohen, David R. Dowling. – 5th ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-12-382100-3 (alk. paper)
1. Fluid mechanics. I. Cohen, Ira M. II. Dowling, David R. III. Title.
QA901.K86 2012
620.1’06–dc22

2011014138

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our website at www.elsevierdirect.com

Printed in the United States of America

11 12 13 14 10 9 8 7 6 5 4 3 2 1



Dedication

This revision to this textbook is dedicated to my wife and family who have patiently
helped chip many sharp corners off my personality, and to the many fine instructors and
students with whom I have interacted who have all in some way highlighted the allure of
this subject for me.

D.R.D.



In Memory of Pijush Kundu

Pijush Kanti Kundu was born in Calcutta,
India, on October 31, 1941. He received
a BS degree in Mechanical Engineering in
1963 from Shibpur Engineering College of
Calcutta University, earned an MS degree
in Engineering from Roorkee University in
1965, and was a lecturer in Mechanical Engi-
neering at the Indian Institute of Technology
in Delhi from 1965 to 1968. Pijush came to the
United States in 1968, as a doctoral student at
Penn State University. With Dr. John L.
Lumley as his advisor, he studied instabil-
ities of viscoelastic fluids, receiving his
doctorate in 1972. He began his lifelong
interest in oceanography soon after his grad-
uation, working as Research Associate in
Oceanography at Oregon State University
from 1968 until 1972. After spending a year

at the University de Oriente in Venezuela,
he joined the faculty of the Oceanographic
Center of Nova Southeastern University,
where he remained until his death in 1994.

During his career, Pijush contributed to
a number of sub-disciplines in physical
oceanography, most notably in the fields of
coastal dynamics, mixed-layer physics,
internal waves, and Indian-Ocean dynamics.
He was a skilled data analyst, and, in this
regard, one of his accomplishments was to
introduce the “empirical orthogonal eigen-
function” statistical technique to the oceano-
graphic community.

I arrived at Nova Southeastern University
shortly after Pijush, and he and I worked
closely together thereafter. I was immedi-
ately impressed with the clarity of his scien-
tific thinking and his thoroughness. His most
impressive and obvious quality, though, was
his love of science, which pervaded all his
activities. Some time after we met, Pijush
opened a drawer in a desk in his home office,
showing me drafts of several chapters to
a book he had always wanted to write. A
decade later, this manuscript became the
first edition of Fluid Mechanics, the culmina-
tion of his lifelong dream, which he dedi-
cated to the memory of his mother, and to
his wife Shikha, daughter Tonushree, and
son Joydip.

Julian P. McCreary, Jr.,

University of Hawaii

vi



In Memory of Ira Cohen

Ira M. Cohen earned his BS from Poly-
technic University in 1958 and his PhD from
Princeton University in 1963, both in aero-
nautical engineering. He taught at Brown
University for three years prior to joining
the University of Pennsylvania faculty as an
assistant professor in 1966. He served as chair
of theDepartment ofMechanical Engineering
and Applied Mechanics from 1992 to 1997.

Professor Cohen was a world-renowned
scholar in the areas of continuum plasmas,
electrostatic probe theories and plasma
diagnostics, dynamics and heat transfer of
lightly ionized gases, low current arc
plasmas, laminar shear layer theory, and
matched asymptotics in fluid mechanics.
Most of his contributions appear in the
Physics of Fluids journal of the American

Institute of Physics. His seminal paper,
“Asymptotic theory of spherical electro-
static probes in a slightly ionized, collision
dominated gas” (1963; Physics of Fluids, 6,
1492e1499), is to date the most highly cited
paper in the theory of electrostatic probes
and plasma diagnostics.

During his doctoral work and for a few
years beyond that, Ira collaborated with a
world-renowned mathematician/physicist,
the late Dr. Martin Kruskal (recipient of
NationalMedal of Science, 1993) on thedevel-
opment of a monograph called “Asymptotol-
ogy.” Professor Kruskal also collaborated
with Professor Cohen on plasma physics.
This was the basis for Ira’s strong foundation
in fluid dynamics that has been transmitted
into the prior editions of this textbook.

In his forty-one years of service to the
University of Pennsylvania before his death
in December 2007, Professor Cohen distin-
guished himself with his integrity, his fierce
defense of high scholarly standards, and
his passionate commitment to teaching. He
will always be remembered for his candor
and his sense of humor.

Professor Cohen’s dedication to academ-
ics was unrivalled. In addition, his passion
for physical fitness was legendary. Neither
rain nor sleet nor snow would deter him
fromhis daily bicycle commute, which began
at 5:00 AM, from his home in Narberth to the
University of Pennsylvania. His colleagues
grew accustomed to seeing him drag his
forty-year-old bicycle, with its original

vii



three-speed gearshift, up to his office. His
other great passion was the game of squash,
which he played with extraordinary skill
five days a week at the Ringe Squash Courts
at Penn, where he was a fierce but fair
competitor. During the final year of his life,
Professor Cohen remained true to his bicy-
cling and squash-playing schedule, refusing
to allowhis illness get in theway of the things
he loved.

Professor Cohen was a member of Beth
Am Israel Synagogue, and would on occa-
sion lead Friday night services there. He

and his wife, Linda, were first married
near Princeton, New Jersey, on February 13,
1960, when they eloped. They were married
a second time four months later in a formal
ceremony. He is survived by his wife, his
two children, Susan Cohen Bolstad and
Nancy Cohen Cavanaugh, and three grand-
children, Melissa, Daniel, and Andrew.

Senior Faculty
Department of Mechanical Engineering

and Applied Mechanics
University of Pennsylvania

IN MEMORY OF IRA COHENviii



About the Third Author

David R. Dowling was born in Mesa,
Arizona, in 1960 but grew up in southern
California where early practical exposure to
fluidmechanicsdswimming, surfing, sailing,
flying model aircraft, and trying to throw
a curve ballddominated his free time. He
attended the California Institute of Tech-
nology continuously for a decade starting in
1978, earning a BS degree in Applied Physics
in 1982, andMS and PhDdegrees inAeronau-
tics in 1983 and 1988, respectively. After grad-
uate school, he worked at Boeing Aerospace
and Electronics and then took a post-doctoral
scientist position at the Applied Physics
Laboratory of the University of Washington.
In 1992, he started a faculty career in the
Department of Mechanical Engineering at

theUniversity ofMichiganwhere he has since
taught and conducted research in fluid
mechanics and acoustics. He has authored
and co-authored more than 60 archival jour-
nal articles and more than 100 conference
presentations. His published research in fluid
mechanics includes papers on turbulent mix-
ing, forced-convection heat transfer, cirrus
clouds, molten plastic flow, interactions of
surfactants with water waves, and hydrofoil
performance and turbulent boundary layer
characteristics at high Reynolds numbers.
From January 2007 through June 2009, he
served as an Associate Chair and as the
Undergraduate Program Director for the
Department of Mechanical Engineering at
the University of Michigan. He is a fellow
of the American Society of Mechanical
Engineers and of the Acoustical Society of
America. He received the Student Council
Mentoring Award of the Acoustical Soci-
ety of America in 2007, the University
of Michigan College of Engineering John
R. Ullrich Education Excellence Award in
2009, and the Outstanding Professor Award
from the University of Michigan Chapter of
the American Society for Engineering Educa-
tion in 2009. Prof. Dowling is an avid
swimmer, is married, and has seven children.

ix



This page intentionally left blank



Contents

About the DVD xvii
Preface xix
Companion Website xx

Acknowledgments xxi
Nomenclature xxii

1. Introduction 1

1.1. Fluid Mechanics 2

1.2. Units of Measurement 3

1.3. Solids, Liquids, and Gases 3

1.4. Continuum Hypothesis 5

1.5. Molecular Transport Phenomena 5

1.6. Surface Tension 8

1.7. Fluid Statics 9

1.8. Classical Thermodynamics 12

First Law of Thermodynamics 13

Equations of State 14

Specific Heats 14

Second Law of Thermodynamics 15

Property Relations 16

Speed of Sound 16

Thermal Expansion Coefficient 16

1.9. Perfect Gas 16

1.10. Stability of Stratified Fluid Media 18

Potential Temperature and Density 19

Scale Height of the Atmosphere 21

1.11. Dimensional Analysis 21

Step 1. Select Variables and Parameters 22

Step 2. Create the Dimensional Matrix 23

Step 3. Determine the Rank of the

Dimensional Matrix 23

Step 4. Determine the Number of

Dimensionless Groups 24

Step 5. Construct the Dimensionless

Groups 24

Step 6. State the Dimensionless

Relationship 26

Step 7. Use Physical Reasoning or Additional

Knowledge to Simplify the Dimensionless

Relationship 26

Exercises 30

Literature Cited 36

Supplemental Reading 37

2. Cartesian Tensors 39

2.1. Scalars, Vectors, Tensors, Notation 39

2.2. Rotation of Axes: Formal Definition

of a Vector 42

2.3. Multiplication of Matrices 44

2.4. Second-Order Tensors 45

2.5. Contraction and Multiplication 47

2.6. Force on a Surface 48

2.7. Kronecker Delta and Alternating Tensor 50

2.8. Vector, Dot, and Cross Products 51

2.9. Gradient, Divergence, and Curl 52

2.10. Symmetric and Antisymmetric Tensors 55

2.11. Eigenvalues and Eigenvectors of

a Symmetric Tensor 56

2.12. Gauss’ Theorem 58

2.13. Stokes’ Theorem 60

2.14. Comma Notation 62

Exercises 62

Literature Cited 64

Supplemental Reading 64

3. Kinematics 65

3.1. Introduction and Coordinate Systems 65

3.2. Particle and Field Descriptions

of Fluid Motion 67

3.3. Flow Lines, Fluid Acceleration,

and Galilean Transformation 71

3.4. Strain and Rotation Rates 76

Summary 81

xi



3.5. Kinematics of Simple Plane Flows 82

3.6. Reynolds Transport Theorem 85

Exercises 89

Literature Cited 93

Supplemental Reading 93

4. Conservation Laws 95

4.1. Introduction 96

4.2. Conservation of Mass 96

4.3. Stream Functions 99

4.4. Conservation of Momentum 101

4.5. Constitutive Equation for a Newtonian

Fluid 111

4.6. Navier-Stokes Momentum Equation 114

4.7. Noninertial Frame of Reference 116

4.8. Conservation of Energy 121

4.9. Special Forms of the Equations 125

Angular Momentum Principle for a

Stationary Control Volume 125

Bernoulli Equations 128

Neglect of Gravity in Constant Density

Flows 134

The Boussinesq Approximation 135

Summary 137

4.10. Boundary Conditions 137

Moving and Deforming Boundaries 139

Surface Tension Revisited 139

4.11. Dimensionless Forms of the Equations and

Dynamic Similarity 143

Exercises 151

Literature Cited 168

Supplemental Reading 168

5. Vorticity Dynamics 171

5.1. Introduction 171

5.2. Kelvin’s Circulation Theorem 176

5.3. Helmholtz’s Vortex Theorems 179

5.4. Vorticity Equation in a Nonrotating

Frame 180

5.5. Velocity Induced by a Vortex Filament: Law

of Biot and Savart 181

5.6. Vorticity Equation in a Rotating Frame 183

5.7. Interaction of Vortices 187

5.8. Vortex Sheet 191

Exercises 192

Literature Cited 195

Supplemental Reading 196

6. Ideal Flow 197

6.1. Relevance of Irrotational Constant-Density

Flow Theory 198

6.2. Two-Dimensional Stream Function and

Velocity Potential 200

6.3. Construction of Elementary Flows in Two

Dimensions 203

6.4. Complex Potential 216

6.5. Forces on a Two-Dimensional Body 219

Blasius Theorem 219

Kutta-Zhukhovsky Lift Theorem 221

6.6. Conformal Mapping 222

6.7. Numerical Solution Techniques in Two

Dimensions 225

6.8. Axisymmetric Ideal Flow 231

6.9. Three-Dimensional Potential Flow and

Apparent Mass 236

6.10. Concluding Remarks 240

Exercises 241

Literature Cited 251

Supplemental Reading 251

7. Gravity Waves 253

7.1. Introduction 254

7.2. Linear Liquid-Surface Gravity Waves 256

Approximations for Deep and Shallow

Water 265

7.3. Influence of Surface Tension 269

7.4. Standing Waves 271

7.5. Group Velocity, Energy Flux, and

Dispersion 273

7.6. Nonlinear Waves in Shallow and Deep

Water 279

7.7. Waves on a Density Interface 286

CONTENTSxii



7.8. Internal Waves in a Continuously Stratified

Fluid 293

Internal Waves in a Stratified Fluid 296

Dispersion of Internal Waves in a Stratified

Fluid 299

Energy Considerations for Internal Waves in

a Stratified Fluid 302

Exercises 304

Literature Cited 307

8. Laminar Flow 309

8.1. Introduction 309

8.2. Exact Solutions for Steady Incompressible

Viscous Flow 312

Steady Flow between Parallel Plates 312

Steady Flow in a Round Tube 315

Steady Flow between Concentric Rotating

Cylinders 316

8.3. Elementary Lubrication Theory 318

8.4. Similarity Solutions for Unsteady

Incompressible Viscous Flow 326

8.5. Flow Due to an Oscillating Plate 337

8.6. Low Reynolds Number Viscous Flow Past

a Sphere 338

8.7. Final Remarks 347

Exercises 347

Literature Cited 359

Supplemental Reading 359

9. Boundary Layers and Related
Topics 361

9.1. Introduction 362

9.2. Boundary-Layer Thickness Definitions 367

9.3. Boundary Layer on a Flat Plate:

Blasius Solution 369

9.4. Falkner-Skan Similarity Solutions of

the Laminar Boundary-Layer Equations 373

9.5. Von Karman Momentum Integral

Equation 375

9.6. Thwaites’ Method 377

9.7. Transition, Pressure Gradients,

and Boundary-Layer Separation 382

9.8. Flow Past a Circular Cylinder 388

Low Reynolds Numbers 389

Moderate Reynolds Numbers 389

High Reynolds Numbers 392

9.9. Flow Past a Sphere and the Dynamics

of Sports Balls 395

Cricket Ball Dynamics 396

Tennis Ball Dynamics 398

Baseball Dynamics 399

9.10. Two-Dimensional Jets 399

9.11. Secondary Flows 407

Exercises 408

Literature Cited 418

Supplemental Reading 419

10. Computational Fluid Dynamics 421
HOWARD H. HU

10.1. Introduction 421

10.2. Finite-Difference Method 423

Approximation to Derivatives 423

Discretization and Its Accuracy 425

Convergence, Consistency, and

Stability 426

10.3. Finite-Element Method 429

Weak or Variational Form of Partial

Differential Equations 429

Galerkin’s Approximation and Finite-

Element Interpolations 430

Matrix Equations, Comparison with

Finite-Difference Method 431

Element Point of View of the Finite-

Element Method 434

10.4. Incompressible Viscous Fluid Flow 436

Convection-Dominated Problems 437

Incompressibility Condition 439

Explicit MacCormack Scheme 440

MAC Scheme 442

Q-Scheme 446

Mixed Finite-Element Formulation 447

10.5. Three Examples 449

Explicit MacCormack Scheme for

Driven-Cavity Flow Problem 449

Explicit MacCormack Scheme for

Flow Over a Square Block 453

CONTENTS xiii



Finite-Element Formulation for

Flow Over a Cylinder Confined in

a Channel 459

10.6. Concluding Remarks 470

Exercises 470

Literature Cited 471

Supplemental Reading 472

11. Instability 473

11.1. Introduction 474

11.2. Method of Normal Modes 475

11.3. Kelvin-Helmholtz Instability 477

11.4. Thermal Instability: The Bénard

Problem 484

11.5. Double-Diffusive Instability 492

11.6. Centrifugal Instability: Taylor Problem 496

11.7. Instability of Continuously Stratified Parallel

Flows 502

11.8. Squire’s Theorem and the Orr-Sommerfeld

Equation 508

11.9. Inviscid Stability of Parallel Flows 511

11.10. Results for Parallel and Nearly Parallel

Viscous Flows 515

Two-Stream Shear Layer 515

Plane Poiseuille Flow 516

Plane Couette Flow 517

Pipe Flow 517

Boundary Layers with Pressure

Gradients 517

11.11. Experimental Verification of Boundary-Layer

Instability 520

11.12. Comments on Nonlinear Effects 522

11.13. Transition 523

11.14. Deterministic Chaos 524

Closure 531

Exercises 532

Literature Cited 539

12. Turbulence 541

12.1. Introduction 542

12.2. Historical Notes 544

12.3. Nomenclature and Statistics for Turbulent

Flow 545

12.4. Correlations and Spectra 549

12.5. Averaged Equations of Motion 554

12.6. Homogeneous Isotropic Turbulence 560

12.7. Turbulent Energy Cascade and

Spectrum 564

12.8. Free Turbulent Shear Flows 571

12.9. Wall-Bounded Turbulent Shear Flows 581

Inner Layer: Law of the Wall 584

Outer Layer: Velocity Defect Law 585

Overlap Layer: Logarithmic Law 585

Rough Surfaces 590

12.10. Turbulence Modeling 591

A Mixing Length Model 593

One-Equation Models 595

Two-Equation Models 595

12.11. Turbulence in a Stratified Medium 596

The Richardson Numbers 597

Monin-Obukhov Length 598

Spectrum of Temperature Fluctuations 600

12.12. Taylor’s Theory of Turbulent Dispersion 601

Rate of Dispersion of a Single Particle 602

Random Walk 605

Behavior of a Smoke Plume in theWind 606

Turbulent Diffusivity 607

12.13. Concluding Remarks 607

Exercises 608

Literature Cited 618

Supplemental Reading 620

13. Geophysical Fluid Dynamics 621

13.1. Introduction 622

13.2. Vertical Variation of Density in the

Atmosphere and Ocean 623

13.3. Equations of Motion 625

13.4. Approximate Equations for a Thin Layer on

a Rotating Sphere 628

f-Plane Model 630

b-Plane Model 630

13.5. Geostrophic Flow 630

Thermal Wind 632

Taylor-Proudman Theorem 632

CONTENTSxiv



13.6. Ekman Layer at a Free Surface 633

Explanation in Terms of Vortex Tilting 637

13.7. Ekman Layer on a Rigid Surface 639

13.8. Shallow-Water Equations 642

13.9. Normal Modes in a Continuously Stratified

Layer 644

Boundary Conditions on jn 646

Vertical Mode Solution for Uniform N 646

Summary 649

13.10. High- and Low-Frequency Regimes

in Shallow-Water Equations 649

13.11. Gravity Waves with Rotation 651

Particle Orbit 652

Inertial Motion 653

13.12. Kelvin Wave 654

13.13. Potential Vorticity Conservation in

Shallow-Water Theory 658

13.14. Internal Waves 662

WKB Solution 664

Particle Orbit 666

Discussion of the Dispersion Relation 668

Lee Wave 670

13.15. Rossby Wave 671

Quasi-Geostrophic Vorticity Equation 671

Dispersion Relation 673

13.16. Barotropic Instability 676

13.17. Baroclinic Instability 678

Perturbation Vorticity Equation 679

Wave Solution 681

Instability Criterion 682

Energetics 684

13.18. Geostrophic Turbulence 685

Exercises 688

Literature Cited 690

Supplemental Reading 690

14. Aerodynamics 691

14.1. Introduction 692

14.2. Aircraft Terminology 692

Control Surfaces 693

14.3. Characteristics of Airfoil Sections 696

Historical Notes 701

14.4. Conformal Transformation for

Generating Airfoil Shapes 702

14.5. Lift of a Zhukhovsky Airfoil 706

14.6. Elementary Lifting Line Theory for

Wings of Finite Span 708

Lanchester Versus Prandtl 716

14.7. Lift and Drag Characteristics of

Airfoils 717

14.8. Propulsive Mechanisms of Fish

and Birds 719

14.9. Sailing against the Wind 721

Exercises 722

Literature Cited 728

Supplemental Reading 728

15. Compressible Flow 729

15.1. Introduction 730

Perfect Gas Thermodynamic Relations 731

15.2. Acoustics 732

15.3. Basic Equations for One-Dimensional

Flow 736

15.4. Reference Properties in Compressible

Flow 738

15.5. Area-Velocity Relationship in

One-Dimensional Isentropic Flow 740

15.6. Normal Shock Waves 748

Stationary Normal Shock Wave in a

Moving Medium 748

Moving Normal Shock Wave in a

Stationary Medium 752

Normal Shock Structure 753

15.7. Operation of Nozzles at Different

Back Pressures 755

Convergent Nozzle 755

ConvergenteDivergent Nozzle 757

15.8. Effects of Friction and Heating in

Constant-Area Ducts 761

Effect of Friction 763

Effect of Heat Transfer 764

15.9. Pressure Waves in Planar Compressible

Flow 765

15.10. Thin Airfoil Theory in Supersonic Flow 773

Exercises 775

Literature Cited 778

Supplemental Reading 778

CONTENTS xv



16. Introduction to Biofluid
Mechanics 779

PORTONOVO S. AYYASWAMY

16.1. Introduction 779

16.2. The Circulatory System in the Human

Body 780

The Heart as a Pump 785

Nature of Blood 788

Nature of Blood Vessels 793

16.3. Modeling of Flow in Blood Vessels 796

Steady Blood Flow Theory 797

Pulsatile Blood Flow Theory 805

Blood Vessel Bifurcation: An Application of

Poiseuille’s Formula andMurray’s Law 820

Flow in a Rigid-Walled Curved Tube 825

Flow in Collapsible Tubes 831

Laminar Flow of a Casson Fluid in a Rigid-

Walled Tube 839

Pulmonary Circulation 841

The Pressure Pulse Curve in the Right

Ventricle 842

Effect of Pulmonary Arterial Pressure on

Pulmonary Resistance 843

16.4. Introduction to the Fluid Mechanics

of Plants 844

Exercises 849

Acknowledgment 850

Literature Cited 851

Supplemental Reading 852

Appendix A 853
Appendix B 857
Appendix C 869
Appendix D 873
Index 875

CONTENTSxvi



About the DVD

We are pleased to include a free copy of
the DVD Multimedia Fluid Mechanics, 2/e,
with this copy of Fluid Mechanics, Fifth
Edition. You will find it in a plastic sleeve
on the inside back cover of the book. If you
are purchasing a used copy, be aware that
the DVD might have been removed by
a previous owner.

Inspiredby the receptionof thefirst edition,
the objectives in Multimedia Fluid Mechanics,
2/e, remain to exploit the moving image and
interactivity of multimedia to improve the
teaching and learning of fluid mechanics in
all disciplines by illustrating fundamental
phenomena and conveying fascinating fluid
flows for generations to come.

The completely new edition on the DVD
includes the following:

• Twice the coverage with new modules on
turbulence, control volumes, interfacial
phenomena, and similarity and scaling

• Four times the number of fluid videos,
now more than 800

• Now more than 20 virtual labs and
simulations

• Dozens of new interactive demonstrations
and animations

Additional new features:

• Improved navigation via sidebars that
provide rapid overviews of modules and
guided browsing

• Media libraries for each chapter that
give a snapshot of videos, each with
descriptive labels

• Ability to create movie playlists, which
are invaluable in teaching

• Higher-resolution graphics, with full or
part screen viewing options

• Operates on either a PC or a Mac OSX
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Preface

In the fall of 2009, Elsevier approached
me about possibly taking over as the lead
author of this textbook. After some consider-
ation and receipt of encouragement from
faculty colleagues here at the University of
Michigan and beyond, I agreed. The ensuing
revision effort then tenaciously pulled all the
slack out of my life for the next 18 months.
Unfortunately, I did not have the honor or
pleasure of meeting or knowing either prior
author, and have therefore missed the
opportunity to receive their advice and guid-
ance. Thus, the revisions made for this 5th
Edition of Fluid Mechanics have been driven
primarily by my experience teaching and
interacting with undergraduate and grad-
uate students during the last two decades.

Overall, the structure, topics, and tech-
nical level of the 4th Edition have been
largely retained, so instructors who have
made prior use of this text should recognize
much in the 5th Edition. This textbook should
still be suitable for advanced-undergraduate
or beginning-graduate courses in fluid
mechanics. However, I have tried to make
the subject of fluid mechanics more acces-
sible to students who may have only studied
the subject during one prior semester, or
who may need fluid mechanics knowledge
to pursue research in a related field.

Given the long history of this important
subject, this textbook (at best) reflects one
evolving instructional approach. In my
experience as a student, teacher, and faculty
member, a textbook is most effective when
used as a supporting pedagogical tool for
an effective lecturer. Thus my primary

revision objective has been to improve the
text’s overall utility to students and instruc-
tors by adding introductory material and
references to the first few chapters, by
increasing the prominence of engineering
applications of fluid mechanics, and by
providing a variety of new exercises (more
than 200) and figures (more than 100). For
the chapters receiving the most attention
(1e9, 11e12, and 14) this has meant approx-
imately doubling, tripling, or quadrupling
the number of exercises. Some of the new
exercises have been built from derivations
that previously had appeared in the body
of the text, and some involve simple kitchen
or bathroom experiments. My hope for
a future edition is that there will be time to
further expand the exercise offerings, espe-
cially in Chapters 10, 13, 15, and 16.

In preparing this 5th Edition, some reor-
ganization, addition, and deletion of mate-
rial has also taken place. Dimensional
analysis has been moved to Chapter 1.
The stream function’s introduction and
the dynamic-similarity topic have been
moved to Chapter 4. Reynolds transport
theorem now occupies the final section of
Chapter 3. The discussion of the wave equa-
tion has been placed in the acoustics sec-
tion of Chapter 15. Major topical additions
are: apparent mass (Chapter 6), elemen-
tary lubrication theory (Chapter 8), and
Thwaites method (Chapter 9). The sections
covering the laminar shear layer, and
boundary-layer theory from a purely math-
ematical perspective, and coherent struc-
tures in wall-bounded turbulent flow have

xix



been removed. The specialty chapters (10, 13,
and 16) have been left largely untouched
except for a few language changes and
appropriate renumbering of equations. In
addition, some sections have been combined
to save space, but this has been offset by an
expansion of nearly every figure caption and
the introduction of a nomenclature section
with more than 200 entries.

Only a few notation changes have been
made. Index and vector notation predomi-
nate throughout the text. The comma nota-
tion for derivatives now only appears in
Section 5.6. The notation for unit vectors
has been changed from bold i to bold e to
conform to other texts in physics and engi-
neering. In addition, a serious effort was
made to denote two- and three-dimensional
coordinate systems in a consistent manner
from chapter to chapter. However, the
completion of this task, which involves
retyping literally hundreds of equations,
was not possible in the time available.
Thus, cylindrical coordinates (R, 4, z) pre-
dominate, but (r, q, x) still appear in Table
12.1, Chapter 16, and a few other places.

And, as a final note, the origins of many
of the new exercises are referenced to

individuals and other sources via footnotes.
However, I am sure that such referencing is
incomplete because of my imperfect mem-
ory and record keeping. Therefore, I stand
ready to correctly attribute the origins of
any problem contained herein. Furthermore,
I welcome the opportunity to correct any
errors you find, to hear your opinion of
how this book might be improved, and to
include exercises you might suggest; just
contact me at drd@umich.edu.

David R. Dowling

Ann Arbor, Michigan

April 2011
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the errata, visit www.elsevierdirect.com/
9780123821003 and click on the companion
site link. Instructors teaching with this book
may access the solutions manual and image
bank by visiting www.textbooks.elsevier
.com and following the online instructions
to log on and register.
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Nomenclature

NOTATION

f ¼ principle-axis version of f, background or
quiescent-fluid value of f, or average or
ensemble average of f

bf ¼ complex amplitude of f
~f ¼ full field value of f
f 0 ¼ derivative of f with respect to its argu-

ment, or perturbation of f from its
reference state

f� ¼ complex conjugate of f, dimensionless
version of f, or the value of f at the sonic
condition

f + ¼ the dimensionless, law-of-the-wall
value of f

fcr ¼ critical value of f
fCL ¼ centerline value of f
f0 ¼ reference, surface, or stagnation value

of f
fN ¼ reference value of f or value of f far

away from the point of interest
Df ¼ change in f

SYMBOLS)

a ¼ contact angle, thermal expansion coef-
ficient (1.20), angle of rotation, angle of
attack, Womersley number (16.12),
angle in a toroidal coordinate system,
area ratio

a ¼ triangular area, cylinder radius,
sphere radius, amplitude

a0 ¼ initial tube radius
a ¼ generic vector, Lagrangian acceleration

(3.1)
A ¼ generic second-order (or higher) tensor

A, A ¼ a constant, an amplitude, area,
surface, surface of a material
volume, planform area of a wing

A* ¼ control surface, sonic throat area

Ao ¼ Avogadro’s number
A0 ¼ reference area
Aij ¼ representative second-order tensor
b ¼ angle of rotation, coefficient of density

change due to salinity or other constit-
uent, variation of the Coriolis frequency
with latitude, camber parameter

b ¼ generic vector, control surface velocity
(3.35)

B, B ¼ a constant, Bernoulli function (4.70),
log-law intercept parameter (12.88)

B, Bij ¼ generic second-order (or higher)
tensor

Bo ¼ Bond number (4.118)
c ¼ speed of sound (1.19, 15.6), phase speed

(7.4), chord length (14.2), pressure pulse
wave speed, concentration of solutes

cj ¼ pressure pulse wave speed in tube j
c ¼ phase velocity vector (7.8)
cg, cg ¼ group velocity magnitude (7.68)

and vector (7.144)
c ¼ scalar stream function
�C ¼ degrees centigrade
C ¼ a generic constant, hypotenuse length,

closed contour
Ca ¼ Capillary number (4.119)
Cf ¼ skin friction coefficient (9.32)
Cp ¼ coefficient of pressure (4.106, 6.32)

)Relevant equation numbers appear in

parentheses
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Cp ¼ specific heat capacity at constant pres-
sure (1.14)

CD ¼ coefficient of drag (4.107, 9.33)
CL ¼ coefficient of lift (4.108)
Cv ¼ specific heat capacity at constant

volume (1.15)
Cij ¼ matrix of direction cosines between

original and rotated coordinate system
axes (2.5)

d ¼ diameter, distance, fluid layer
depth

d ¼ dipole strength vector (6.29), displace-
ment vector

d ¼ Dirac delta function (B.4.1), similarity-
variable length scale (8.32), boundary-
layer thickness, generic length scale,
small increment, flow deflection angle
(15.53), tube radius divided by tube
radius of curvature

d ¼ average boundary-layer thickness
d* ¼ boundary-layer displacement thickness

(9.16)
dij ¼ Kronecker delta function (2.16)
d99 ¼ 99% layer thickness
D ¼ distance, drag force, diffusion coeffi-

cient, Dean number (16.179)
Di ¼ lift-induced drag (14.15)
D/Dt ¼ material derivative (3.4) or (3.5)
DT ¼ turbulent diffusivity of particles

(12.127)
D ¼ generalized field derivative (2.31)
3 ¼ roughness height, kinetic energy dissi-

pation rate (4.58), a small distance, fine-
ness ratio h/L (8.14), downwash angle
(14.14)

3 ¼ average dissipation rate of the turbulent
kinetic energy (12.47)

3T ¼ average dissipation rate of the variance
of temperature fluctuations (12.112)

3ijk ¼ alternating tensor (2.18)
e ¼ internal energy per unit mass (1.10)
ei ¼ unit vector in the i-direction (2.1)
e ¼ average kinetic energy of turbulent

fluctuations (12.47, 12.49)
Ec ¼ Eckert number (4.115)

Ek ¼ kinetic energy per unit horizontal area
(7.39)

Ep ¼ potential energy per unit horizontal
area (7.41)

E ¼ average energy per unit horizontal area
(7.43), Ekman number (13.18), Young’s
modulus

E ¼ kinetic energy of the average flow
(12.46)

bE1 ¼ total energy dissipation in a blood
vessel

f ¼ generic function, Helmholtz free energy
per unit mass, longitudinal correlation
coefficient (12.38), Coriolis frequency
(13.8), dimensionless friction parameter
(15.45)

f ¼ velocity potential (6.10), an angle
f ¼ surface force vector per unit area

(2.15, 4.13)
F ¼ force magnitude, generic flow field

property, average energy flux per unit
length of wave crest (7.44), generic or
profile function

F ¼ force vector, average wave energy
flux vector

F ¼ body force potential (4.18), undeter-
mined spectrum function (12.53)

FD ¼ drag force
FL ¼ lift force
Fr ¼ Froude number (4.104)
g ¼ ratio of specific heats (1.24), velocity

gradient, vortex sheet strength, generic
dependent-field variable

_g ¼ shear rate
g ¼ body force per unit mass (4.13)
g ¼ acceleration of gravity, undetermined

function, transverse correlation coeffi-
cient (12.38)

g0 ¼ reduced gravity (7.188)
G ¼ vertical temperature gradient or lapse

rate, circulation (3.18)
Ga ¼ adiabatic vertical temperature gradient

(1.30)
Ga ¼ circulation due to the absolute vorticity

(5.33)

NOMENCLATURE xxiii



G ¼ gravitational constant, pressure-
gradient pulse amplitude, profile
function

Gn ¼ Fourier series coefficient
G ¼ center of mass, center of vorticity
h ¼ enthalpy per unit mass (1.13), height,

gap height, viscous layer thickness, grid
size, tube wall thickness

h ¼ free surface shape, waveform, similarity
variable (8.25, 8.32), Kolmogorov
microscale (12.50), radial tube-wall
displacement

hT ¼ Batchelor microscale (12.114)
H ¼ atmospheric scale height, water depth,

shape factor (9.46), profile function,
Hematocrit

i ¼ an index, imaginary root
I ¼ incident light intensity, bending moment

of inertia
j ¼ an index
J, Js ¼ jet momentum flux per unit span

(9.61)
Ji ¼ Bessel function of order i
Jm ¼ diffusive mass flux vector (1.1)
4 ¼ a function, azimuthal angle in cylin-

drical and spherical coordinates
k ¼ thermal conductivity (1.2), an index,

wave number (7.2), wave number
component

k ¼ thermal diffusivity, von Karman
constant (12.88), Dean number (16.171)

ks ¼ diffusivity of salt
kT ¼ turbulent thermal diffusivity (12.95)
km ¼ mass diffusivity of a passive scalar in

Fick’s law (1.1)
kmT ¼ turbulent mass diffusivity (12.96)
kB ¼ Boltzmann’s constant (1.21)
Kn ¼ Knudsen number
K ¼ a generic constant, magnitude of the

wave number vector (7.6), lift curve
slope, Dean Number (16.178)

Kp ¼ constant proportional to tube wall
bending stiffness

K ¼ compliance of a blood vessel, degrees
Kelvin (16.48)

K ¼ wave number vector, stiffness matrix
l ¼ molecular mean free path, spanwise

dimension, generic length scale, wave
number component (7.5, 7.6), shear
correlation in Thwaites method (9.45),
length scale in turbulent flow

lT ¼ mixing length (12.98)
L, L ¼ generic length dimension, generic

length scale, lift force
LM ¼ Monin-Obukhov length scale (12.110)
l ¼wavelength (7.1, 7.7), laminar boundary-

layer correlation parameter (9.44), flow
resistance ratio

lm ¼ wavelength of the minimum phase
speed

lt ¼ temporal Taylor microscale (12.19)
lf, lg ¼ longitudinal and lateral spatial

Taylor microscale (12.39)
L ¼ lubrication-flow bearing number (8.16),

Rossby radius of deformation, wing
aspect ratio

Lf, Lg ¼ longitudinal and lateral integral
spatial scales (12.39)

Lt ¼ integral time scale (12.18)
m ¼ dynamic or shear viscosity (1.3), Mach

angle (15.49)
my ¼ bulk viscosity (4.37)
m ¼ molecular mass (1.22), generic mass,

an index, two-dimensional source
strength, moment order (12.1), wave
number component (7.5, 7.6)

M, M ¼ generic mass dimension, mass,
Mach number (4.111), apparent or
added mass (6.108)

Mw ¼ molecular weight
n ¼ number of molecules (1.21), an index,

generic integer number
n ¼ normal unit vector
ns ¼ index of refraction
N ¼ Brunt-Väisälä or buoyancy frequency

(1.29, 7.128), number, number of pores
in a sieve plate

NA ¼ basis or interpolation functions
n ¼ kinematic viscosity (1.4), cyclic fre-

quency, Prandtl-Meyer function (15.56)
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nT ¼ turbulent kinematic viscosity (12.94)
bn ¼ Poisson’s ratio
O ¼ origin
p ¼ pressure
patm ¼ atmospheric pressure
pi ¼ inside pressure
po ¼ outside pressure
p0 ¼ reference pressure at z ¼ 0
pN ¼ reference pressure far upstream or far

away
p ¼ average or quiescent pressure in a strat-

ified fluid
P ¼ average pressure
P ¼ normalized pressure in a collapsible

tube
P ¼ wake strength parameter
Pr ¼ Prandtl number (4.116)
q, qi ¼ heat flux (1.2)
qn ¼ generic parameter in dimensional

analysis
q ¼ heat added to a system (1.10), volume

flux per unit span, dimensionless heat
addition parameter (15.45)

Q ¼ thermodynamic heat per unit mass,
volume flux in two or three dimensions

q ¼ potential temperature (1.31), unit of
temperature, angle in polar coordinates,
momentum thickness (9.17), local phase,
an angle, angle in a toroidal coordinate
system

r ¼ mass density (1.1)
rm ¼ mass density of a mixture
r ¼ average or quiescent density in a strati-

fied fluid
rq ¼ potential density (1.33)
r ¼ matrix rank, distance from the origin,

distance from the axis
r ¼ particle trajectory (3.1, 3.8)
R¼ distance from the cylindrical axis, radius

of curvature, gas constant (1.23), generic
nonlinearity parameter, total peripheral
resistance (16.9), tube radius of
curvature

R ¼ viscous resistance per unit length,
reflection coefficient (16.204), (16.153)

Ru ¼ universal gas constant (1.22)

Ri ¼ radius of curvature in direction i (1.5)
R, Rij ¼ rotation tensor (3.13), correlation

tensor (12.13, 12.23)

Ra ¼ Rayleigh number (11.21)
Re ¼ Reynolds number (4.103)

Ri ¼ Richardson number, gradient Richard-
son number (11.66, 12.108)

Rf ¼ flux Richardson number (12.107)

Ro ¼ Rossby number (13.13)
s ¼ surface tension (1.5), interfacial tension,

vortex core size (3.28, 3.29), temporal
growth rate (11.1), shock angle

s ¼ entropy (1.16), arc length, salinity,
wingspan (14.1), dimensionless arc
length

sij ¼ viscous stress tensor (4.27)
S ¼ salinity, scattered light intensity, an area,

dimensionless speed index, entropy

Se ¼ one-dimensional temporal longitudinal
energy spectrum (12.20)

S11 ¼ one-dimensional spatial longitudinal
energy spectrum (12.45)

ST ¼ one-dimensional temperature fluctua-
tion spectrum (12.113, 12.114)

S, Sij ¼ strain rate tensor (3.12), symmetric
tensor

St ¼ Strouhal number (4.102)
t ¼ time
t ¼ tangent vector
T, T ¼ temperature (1.2), generic time

dimension, period, transmission
coefficient (16.153)

Ta ¼ Taylor number (11.52)

To ¼ free stream temperature

Tw ¼ wall temperature

Ti ¼ tension in the i-direction
s ¼ shear stress (1.3), time lag
s, sij ¼ stress tensor (2.15)
s0 ¼ wall or surface shear stress
y ¼ specific volume ¼ 1/r
u ¼ horizontal component of fluid velocity

(1.3)
u ¼ generic vector, fluid velocity vector (3.1)

NOMENCLATURE xxv



ui ¼ fluid velocity components, fluctuating
velocity components

u) ¼ friction velocity (12.81)
U ¼ generic uniform velocity vector
Ui ¼ ensemble average velocity components
U ¼ generic velocity, average stream-wise

velocity
DU ¼ characteristic velocity difference
Ue ¼ local free-stream flow speed above

a boundary layer (9.11), flow speed at
the effective angle of attack

UCL ¼ centerline velocity (12.56)
UN ¼ flow speed far upstream or far away
v ¼ component of fluid velocity along the y

axis
v ¼ generic vector
V ¼ volume, material volume, average

stream-normal velocity, average
velocity, variational space, complex
velocity

V) ¼ control volume
w ¼ complex potential (6.42), vertical

component of fluid velocity, function in
the variational space, downwash
velocity (14.13)

W ¼ thermodynamic work per unit mass,
wake function
_W ¼ rate of energy input from the average

flow (12.49)

We ¼ Weber number (4.117)
u ¼ temporal frequency (7.2)
u, ui ¼ vorticity vector (3.16)
U ¼ oscillation frequency, computational

domain, rotation rate, rotation rate of
the earth

U ¼ angular velocity of a rotating frame of
reference

x ¼ first Cartesian coordinate
x ¼ position vector (2.1)
xi ¼ components of the position vector (2.1)
x ¼ generic spatial coordinate, integration

variable, similarity variable (12.84), axial
tube wall displacement

y ¼ second Cartesian coordinate
Y ¼ mass fraction (1.1)
YCL ¼ centerline mass fraction (12.69)
Yi ¼ Bessel function of order i, admittance
j ¼ stream function (6.3, 6.75), water

potential
J ¼ Reynolds stress scaling function (12.57),

generic functional solution
J ¼ vector potential, three-dimensional

stream function (4.12)
z ¼ third Cartesian coordinate, complex

variable (6.43)
z ¼ interface displacement, angular tube-

wall displacement, relative vorticity
Z ¼ impedance (16.151)
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1.1. FLUID MECHANICS

Fluid mechanics is the branch of science concerned with moving and stationary fluids.
Given that the vast majority of the observable mass in the universe exists in a fluid state,
that life as we know it is not possible without fluids, and that the atmosphere and oceans
covering this planet are fluids, fluid mechanics has unquestioned scientific and practical
importance. Its allure crosses disciplinary boundaries, in part because it is described by
a nonlinear field theory and also because it is readily observed. Mathematicians, physicists,
biologists, geologists, oceanographers, atmospheric scientists, engineers of many types,
and even artists have been drawn to study, harness, and exploit fluid mechanics to develop
and test formal and computational techniques, to better understand the natural world, and
to attempt to improve the human condition. The importance of fluid mechanics cannot be
overstated for applications involving transportation, power generation and conversion,mate-
rials processing andmanufacturing, food production, and civil infrastructure. For example, in
the twentieth century, life expectancy in the United States approximately doubled. About half
of this increase can be traced to advances inmedical practice, particularly antibiotic therapies.
The other half largely resulted from a steep decline in childhood mortality from water-borne
diseases, a decline that occurred because of widespread delivery of clean water to nearly the
entire populationda fluids-engineering and public-works achievement. Yet, the pursuits of
mathematicians, scientists, and engineers are interconnected: Engineers need to understand
natural phenomena to be successful, scientists strive to provide this understanding, andmath-
ematicians pursue the formal and computational tools that support these efforts.

Advances in fluid mechanics, like any other branch of physical science, may arise from
mathematical analyses, computer simulations, or experiments. Analytical approaches are
often successful for finding solutions to idealized and simplified problems and such solu-
tions can be of immense value for developing insight and understanding, and for compari-
sons with numerical and experimental results. Thus, some fluency inmathematics, especially
multivariable calculus, is helpful in the study of fluid mechanics. In practice, drastic simpli-
fications are frequently necessary to find analytical solutions because of the complexity of
real fluid flow phenomena. Furthermore, it is probably fair to say that some of the greatest
theoretical contributions have come from people who depended rather strongly on their
physical intuition. Ludwig Prandtl, one of the founders of modern fluid mechanics, first
conceived the idea of a boundary layer based solely on physical intuition. His knowledge
of mathematics was rather limited, as his famous student Theodore von Karman (1954,
page 50) testifies. Interestingly, the boundary layer concept has since been expanded into
a general method in applied mathematics.

As in other scientific fields, mankind’s mathematical abilities are often too limited to tackle
the full complexity of real fluid flows. Therefore, whether we are primarily interested in
understanding flow physics or in developing fluid-flow applications, we often must depend
on observations, computer simulations, or experimental measurements to test hypotheses
and analyses, and develop insights into the phenomena under study. This book is an intro-
duction to fluid mechanics that should appeal to anyone pursuing fluid mechanical inquiry.
Its emphasis is on fully presenting fundamental concepts and illustrating them with exam-
ples drawn from various scientific and engineering fields. Given its finite size, this book
providesdat bestdan incomplete description of the subject. However, the purpose of this
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book will be fulfilled if the reader becomes more curious and interested in fluid mechanics as
a result of its perusal.

1.2. UNITS OF MEASUREMENT

For mechanical systems, the units of all physical variables can be expressed in terms of the
units of four basic variables, namely, length, mass, time, and temperature. In this book, the inter-
national system of units (Système international d’unités) commonly referred to as SI (or MKS)
units, is preferred. The basic units of this system are meter for length, kilogram for mass, second
for time, and Kelvin for temperature. The units for other variables can be derived from these
basic units. Some of the common variables used in fluidmechanics, and their SI units, are listed
in Table 1.1. Some useful conversion factors between different systems of units are listed in
Appendix A. To avoid very large or very small numerical values, prefixes are used to indicate
multiples of the units given in Table 1.1. Some of the common prefixes are listed in Table 1.2.

Strict adherence to the SI system is sometimes cumbersome and will be abandoned occa-
sionally for simplicity. For example, temperatures will be frequently quoted in degrees
Celsius (�C), which is related to Kelvin (K) by the relation �C ¼ K � 273.15. However, the
English system of units (foot, pound, �F) will not be used, even though this unit system
remains in use in some places in the world.

1.3. SOLIDS, LIQUIDS, AND GASES

The various forms of matter may be broadly categorized as being fluid or solid. A fluid is
a substance that deforms continuously under an applied shear stress or, equivalently, one
that does not have a preferred shape. A solid is one that does not deform continuously under
an applied shear stress, and does have a preferred shape to which it relaxes when external
forces on it are withdrawn. Consider a rectangular element of a solid ABCD (Figure 1.1a).

TABLE 1.1 SI Units

Quantity Name of unit Symbol Equivalent

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Frequency Hertz Hz s�1

Force Newton N kg ms�2

Pressure Pascal Pa N m�2

Energy Joule J N m

Power Watt W J s�1
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Under the action of a shear force F the element assumes the shape ABC0D0. If the solid is
perfectly elastic, it returns to its preferred shape ABCD when F is withdrawn. In contrast,
a fluid deforms continuously under the action of a shear force, however small. Thus, the element
of the fluid ABCD confined between parallel plates (Figure 1.1b) successively deforms to
shapes such as ABC0D0 and ABC00D00, and keeps deforming, as long as the force F is main-
tained on the upper plate. When F is withdrawn, the fluid element’s final shape is retained;
it does not return to a prior shape. Therefore, we say that a fluid flows.

The qualification “however small” in the description of a fluid is significant. This is because
some solids also deform continuously if the shear stress exceeds a certain limiting value, cor-
responding to the yield point of the solid. A solid in such a state is known as plastic, and plastic
deformation changes the solid object’s unloaded shape. Interestingly, the distinction between
solids and fluids may not be well defined. Substances like paints, jelly, pitch, putty, polymer
solutions, and biological substances (for example, egg whites) may simultaneously display
both solid and fluid properties. If we say that an elastic solid has a perfect memory of its
preferred shape (because it always springs back to its preferred shape when unloaded) and
that an ordinary viscous fluid has zero memory (because it never springs back when
unloaded), then substances like egg whites can be called viscoelastic because they partially
rebound when unloaded.

FIGURE 1.1 Deformation of solid and fluid elements under a constant externally applied shear force. (a) Solid;
here the element deflects until its internal stress balances the externally applied force. (b) Fluid; here the element
deforms continuously as long as the shear force is applied.

TABLE 1.2 Common Prefixes

Prefix Symbol Multiple

Mega M 106

Kilo k 103

Deci d 10�1

Centi c 10�2

Milli m 10�3

Micro m 10�6
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Although solids and fluids behave very differently when subjected to shear stresses, they
behave similarly under the action of compressive normal stresses. However, tensile normal
stresses again lead to differences in fluid and solid behavior. Solids can support both tensile
and compressive normal stresses, while fluids typically expand or change phase (i.e., boil)
when subjected to tensile stresses. Some liquids can support a small amount of tensile stress,
the amount depending on the degree of molecular cohesion and the duration of the tensile
stress.

Fluids generally fall into two classes, liquids and gases. A gas always expands to fill the
entire volume of its container. In contrast, the volume of a liquid changes little, so that it
cannot completely fill a large container; in a gravitational field, a free surface forms that sepa-
rates a liquid from its vapor.

1.4. CONTINUUM HYPOTHESIS

A fluid is composed of a large number of molecules in constant motion undergoing colli-
sions with each other, and is therefore discontinuous or discrete at the most microscopic
scales. In principle, it is possible to study the mechanics of a fluid by studying the motion
of the molecules themselves, as is done in kinetic theory or statistical mechanics. However,
we are generally interested in the average manifestation of the molecular motion. For example,
forces are exerted on the boundaries of a fluid’s container due to the constant bombardment
of the fluid molecules; the statistical average of these collision forces per unit area is called
pressure, a macroscopic property. So long as we are not interested in the molecular mechanics
of the origin of pressure, we can ignore the molecular motion and think of pressure as simply
the average force per unit area exerted by the fluid.

When the molecular density of the fluid and the size of the region of interest are large
enough, such average properties are sufficient for the explanation of macroscopic
phenomena and the discrete molecular structure of matter may be ignored and replaced
with a continuous distribution, called a continuum. In a continuum, fluid properties like
temperature, density, or velocity are defined at every point in space, and these properties
are known to be appropriate averages of molecular characteristics in a small region
surrounding the point of interest. The continuum approximation is valid when the Knudsen
number, Kn ¼ l/L where l is the mean free path of the molecules and L is the length scale of
interest (a body length, a pore diameter, a turning radius, etc.), is much less than unity. For
most terrestrial situations, this is not a great restriction since lz 50 nm for air at room temper-
ature and pressure, and l is more than two orders of magnitude smaller for water under the
same conditions. However, a molecular-kinetic-theory approach may be necessary for
analyzing flows over very small objects or in very narrow flow paths, or in the tenuous gases
at the upper reaches of the atmosphere.

1.5. MOLECULAR TRANSPORT PHENOMENA

Although the details of molecular motions may be locally averaged to compute temper-
ature, density, or velocity, random molecular motions still lead to diffusive transport of
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molecular species, temperature, or momentum that impact fluid properties at macroscopic
scales.

Consider a surface area AB within a mixture of two gases, say, nitrogen and oxygen
(Figure 1.2), and assume that the nitrogen mass fraction Y varies across AB. Here the mass
of nitrogen per unit volume is rY (sometimes known as the nitrogen concentration or density),
where r is the overall density of the gas mixture. Random migration of molecules across AB
in both directions will result in a net flux of nitrogen across AB, from the region of higher Y
toward the region of lower Y. To a good approximation, the flux of one constituent in
a mixture is proportional to its gradient:

Jm ¼ �rkmVY: (1.1)

Here the vector Jm is the mass flux (kg m�2 s�1) of the constituent, VY is the mass-fraction
gradient of that constituent, and km is a (positive) constant of proportionality that depends
on the particular pair of constituents in the mixture and the local thermodynamic state.
For example, km for diffusion of nitrogen in a mixture with oxygen is different than km for
diffusion of nitrogen in amixture with carbon dioxide. The linear relation (1.1) for mass diffu-
sion is generally known as Fick’s law, and the minus sign reflects the fact that species diffuse
from higher to lower concentrations. Relations like this are based on empirical evidence, and

FIGURE 1.2 Mass flux Jm due to variation in the mass fraction Y(y). Here the mass fraction profile increases with
increasing Y, so Fick’s law of diffusion states that the diffusive mass flux that acts to smooth out mass-fraction
differences is downward across AB.
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are called phenomenological laws. Statistical mechanics can sometimes be used to derive such
laws, but only for simple situations.

The analogous relation for heat transport via a temperature gradient VT is Fourier’s law,

q ¼ �kVT, (1.2)

where q is the heat flux ( J m�2 s�1), and k is the material’s thermal conductivity.
The analogous relationship for momentum transport via a velocity gradient is qualita-

tively similar to (1.1) and (1.2) but is more complicated because momentum and velocity
are vectors. So as a first step, consider the effect of a vertical gradient, du/dy, in the horizontal
velocity u (Figure 1.3). Molecular motion and collisions cause the faster fluid above AB to pull
the fluid underneath AB forward, thereby speeding it up. Molecular motion and collisions
also cause the slower fluid belowAB to pull the upper faster fluid backward, thereby slowing
it down. Thus, without an external influence to maintain du/dy, the flow profile shown by the
solid curve will evolve toward a profile shown by the dashed curve. This is analogous to
saying that u, the horizontal momentum per unit mass (a momentum concentration), diffuses
downward. Here, the resulting momentum flux, from high to low u, is equivalent to a shear
stress, s, existing in the fluid. Experiments show that the magnitude of s along a surface such
as AB is, to a good approximation, proportional to the local velocity gradient,

s ¼ mðdu=dyÞ, (1.3)

FIGURE 1.3 Shear stress s on surface AB. The diffusive action of fluid viscosity tends to decrease velocity
gradients, so that the continuous line tends toward the dashed line.
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where the constant of proportionality m (with units of kg m�1 s�1) is known as the dynamic
viscosity. This is Newton’s law of friction. It is analogous to (1.1) and (1.2) for the simple unidi-
rectional shear flow depicted in Figure 1.3. However, it is an incomplete scalar statement of
molecular momentum transport when compared to the more complete vector relationships
(1.1) and (1.2) for species and thermal molecular transport. A more general tensor form of
(1.3) that accounts for three velocity components and three possible orientations of the surface
AB is presented in Chapter 4 after the mathematical and kinematical developments in Chap-
ters 2 and 3. For gases and liquids, m depends on the local temperature T. In ideal gases, the
random thermal speed is roughly proportional to T1/2, so molecular momentum transport,
and consequently m, also vary approximately as T1/2. For liquids, shear stress is caused
more by the intermolecular cohesive forces than by the thermal motion of the molecules.
These cohesive forces decrease with increasing T so m for a liquid decreases with increasing T.

Although the shear stress is proportional to m, we will see in Chapter 4 that the tendency of
a fluid to transport velocity gradients is determined by the quantity

nhm=r, (1.4)

where r is the density (kg m�3) of the fluid. The units of n (m2 s�1) do not involve the mass, so
n is frequently called the kinematic viscosity.

Two points should be noticed about the transport laws (1.1), (1.2), and (1.3). First, only first
derivatives appear on the right side in each case. This is because molecular transport is
carried out by a nearly uncountable number of molecular interactions at length scales that
are too small to be influenced by higher derivatives of the species mass fractions, tempera-
ture, or velocity profiles. Second, nonlinear terms involving higher powers of the first
derivatives, for example jVuj2, do not appear. Although this is only expected for small
first-derivative magnitudes, experiments show that the linear relations are accurate enough
for most practical situations involving mass fraction, temperature, or velocity gradients.

1.6. SURFACE TENSION

A density discontinuity may exist whenever two immiscible fluids are in contact, for
example at the interface between water and air. Here unbalanced attractive intermolecular
forces cause the interface to behave as if it were a stretched membrane under tension, like
the surface of a balloon or soap bubble. This is why small drops of liquid in air or small
gas bubbles in water tend to be spherical in shape. Imagine a liquid drop surrounded by
an insoluble gas. Near the interface, all the liquid molecules are trying to pull the molecules
on the interface inward toward the center of the drop. The net effect of these attractive forces
is for the interface area to contract until equilibrium is reached with other surface forces. The
magnitude of the tensile force that acts per unit length to open a line segment lying in
the surface like a seam is called surface tension s; its units are N m�1. Alternatively, s can
be thought of as the energy needed to create a unit of interfacial area. In general, s depends
on the pair of fluids in contact, the temperature, and the presence of surface-active chemicals
(surfactants) or impurities, even at very low concentrations.

An important consequence of surface tension is that it causes a pressure difference across
curved interfaces. Consider a spherical interface having a radius of curvature R (Figure 1.4a).
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If pi and po are the pressures on the inner and outer sides of the interface, respectively, then
a static force balance gives

sð2pRÞ ¼ ðpi � poÞpR2,

from which the pressure jump is found to be

pi � po ¼ 2s=R;

showing that the pressure on the concave side (the inside) is higher.
The curvature of a general surface can be specified by the radii of curvature along two

orthogonal directions, say, R1 and R2 (Figure 1.4b). A similar analysis shows that the pressure
difference across the interface is given by

pi � po ¼ s

�

1

R1
þ 1

R2

�

, (1.5)

which agrees with the spherical interface result when R1 ¼ R2. This pressure difference is
called the Laplace pressure.

It is well known that the free surface of a liquid in a narrow tube rises above the
surrounding level due to the influence of surface tension. This is demonstrated in Example
1.1. Narrow tubes are called capillary tubes (from Latin capillus, meaning hair). Because of
this, the range of phenomena that arise from surface tension effects is called capillarity. A
more complete discussion of surface tension is presented at the end of Chapter 4 as part of
the section on boundary conditions.

1.7. FLUID STATICS

The magnitude of the force per unit area in a static fluid is called the pressure; pressure in
amovingmediumwill be defined in Chapter 4. Sometimes the ordinary pressure is called the

FIGURE 1.4 (a) Section of a spherical droplet, showing surface tension forces. (b) An interface with radii of
curvatures R1 and R2 along two orthogonal directions.
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absolute pressure, in order to distinguish it from the gauge pressure, which is defined as the
absolute pressure minus the atmospheric pressure:

pgauge ¼ p� patm:

The standard value for atmospheric pressure patm is 101.3 kPa ¼ 1.013 bar where 1 bar ¼ 105

Pa. An absolute pressure of zero implies vacuum while a gauge pressure of zero implies
atmospheric pressure.

In a fluid at rest, tangential viscous stresses are absent and the only force between adjacent
surfaces is normal to the surface. We shall now demonstrate that in such a case the surface
force per unit area (or pressure) is equal in all directions. Consider a small volume of fluid
with a triangular cross section (Figure 1.5) of unit thickness normal to the paper, and let
p1, p2, and p3 be the pressures on the three faces. The z-axis is taken vertically upward. The
only forces acting on the element are the pressure forces normal to the faces and the weight
of the element. Because there is no acceleration of the element in the x direction, a balance of
forces in that direction gives

ðp1 dsÞsin q� p3 dz ¼ 0:

Because dz ¼ sinq ds, the foregoing gives p1 ¼ p3. A balance of forces in the vertical direction
gives

�ðp1 dsÞcos qþ p2 dx�
�

1=2 rg dx dz ¼ 0:Þ
As cosq ds ¼ dx, this gives

p2 � p1 �
�

1=2 rg dz ¼ 0:Þ

As the triangular element is shrunk to a point, that is, dz / 0 with q ¼ constant, the gravity
force term drops out, giving p1 ¼ p2. Thus, at a point in a static fluid, we have

FIGURE 1.5 Demonstration that p1 ¼ p2 ¼ p3 in a static fluid. Here the vector sum of the three arrows is zero
when the volume of the element shrinks to zero.
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p1 ¼ p2 ¼ p3, (1.6)

so that the force per unit area is independent of the angular orientation of the surface. The
pressure is therefore a scalar quantity.

We now proceed to determine the spatial distribution of pressure in a static fluid. Consider
an infinitesimal cube of sides dx, dy, and dz, with the z-axis vertically upward (Figure 1.6).
A balance of forces in the x direction shows that the pressures on the two sides perpendicular
to the x-axis are equal. A similar result holds in the y direction, so that

vp=vx ¼ vp=vy ¼ 0: (1.7)

This fact is expressed by Pascal’s law, which states that all points in a resting fluid medium
(and connected by the same fluid) are at the same pressure if they are at the same depth.
For example, the pressure at points F and G in Figure 1.7 are the same.

Vertical equilibrium of the element in Figure 1.6 requires that

p dx dy� ðpþ dpÞ dx dy� rg dx dy dz ¼ 0,

which simplifies to

dp=dz ¼ �rg: (1.8)

This shows that the pressure in a static fluid subject to a constant gravitational field decreases
with height. For a fluid of uniform density, (1.8) can be integrated to give

p ¼ p0 � rgz, (1.9)

where p0 is the pressure at z ¼ 0. Equation (1.9) is the well-known result of hydrostatics, and
shows that the pressure in a liquid decreases linearly with increasing height. It implies that

FIGURE 1.6 Fluid element at rest. Here the pressure difference between the top and bottom of the element
balances the element’s weight.
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the pressure rise at a depth h below the free surface of a liquid is equal to rgh, which is the
weight of a column of liquid of height h and unit cross section.

EXAMPLE 1.1

Using Figure 1.7, show that the rise of a liquid in a narrow tube of radius R is given by

h ¼ 2s sina

rgR
,

where s is the surface tension and a is the contact angle between the fluid and the tube’s inner

surface.

Solution

Since the free surface is concave upward and exposed to the atmosphere, the pressure just below

the interface at point E is below atmospheric. The pressure then increases linearly along EF. At F the

pressure again equals the atmospheric pressure, since F is at the same level as G where the pressure

is atmospheric. The pressure forces on faces AB and CD therefore balance each other. Vertical

equilibrium of the element ABCD then requires that the weight of the element balances the vertical

component of the surface tension force, so that

s
�

2pR
�

sina ¼ rgh
�

pR2
�

,

which gives the required result.

1.8. CLASSICAL THERMODYNAMICS

Classical thermodynamics is the study of equilibrium states of matter, in which the prop-
erties are assumed uniform in space and time. Here, the reader is assumed to be familiar with

FIGURE 1.7 Rise of a liquid in a narrow tube (Example 1.1) because of the action of surface tension. The
curvature of the surface and the surface tension cause a pressure difference to occur across the surface.
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the basic thermodynamic concepts, so this section merely reviews the main ideas and the
most commonly used relations in this book.

A thermodynamic system is a quantity of matter that exchanges heat and work, but no
mass, with its surroundings. A system in equilibrium is free of fluctuations, such as those
generated during heat or work input from, or output to, its surroundings. After any such
thermodynamic change, fluctuations die out or relax, a new equilibrium is reached, and
once again the system’s properties, such as pressure and temperature, are well defined.
Here, the system’s relaxation time is defined as the time taken by the system to adjust to
a new thermodynamic state.

This thermodynamic system concept is obviously not directly applicable to a macro-
scopic volume of a moving fluid in which pressure and temperature may vary consider-
ably. However, experiments show that classical thermodynamics does apply to small fluid
volumes commonly called fluid particles. A fluid particle is a small deforming volume
carried by the flow that: 1) always contains the same fluid molecules, 2) is large enough
so that its thermodynamic properties are well defined when it is at equilibrium, but 3) is
small enough so that its relaxation time is short compared to the time scales of fluid-
motion-induced thermodynamic changes. Under ordinary conditions (the emphasis in
this text), molecular densities, speeds, and collision rates are high enough so that the
conditions for the existence of fluid particles are met, and classical thermodynamics
can be directly applied to flowing fluids. However, there are circumstances involving rari-
fied gases, shock waves, and high-frequency acoustic waves where one or more of the
fluid particle requirements are not met and molecular-kinetic and quantum theories are
needed.

The basic laws of classical thermodynamics are empirical, and cannot be derived from
anything more fundamental. These laws essentially establish definitions, upon which the
subject is built. The first law of thermodynamics can be regarded as a principle that defines
the internal energy of a system, and the second law can be regarded as the principle that
defines the entropy of a system.

First Law of Thermodynamics

The first law of thermodynamics states that the energy of a system is conserved;

dqþ dw ¼ De, (1.10)

where dq is the heat added to the system, dw is the work done on the system, and De is the
increase of the system’s internal energy. All quantities in (1.10) are normalized by the mass
of the system and therefore have units of J kg�1 and appear as lowercase letters. When
(1.10) is written with capital letters, dQ þ dW ¼ DE, it portrays the same thermodynamic
law without normalization by the system mass. The internal energy (aka, thermal energy)
is a manifestation of the random molecular motion of the system’s constituents. In fluid
flows, the kinetic energy of the fluid particles’ macroscopic motion has to be included in
the e-term in (1.10) in order that the principle of conservation of energy is satisfied. For devel-
oping the relations of classical thermodynamics, however, we shall only include the thermal
energy in the term e.
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It is important to realize the difference between heat and internal energy. Heat and work
are forms of energy in transition, which appear at the boundary of the system and are not
contained within the matter. In contrast, the internal energy resides within the matter. If
two equilibrium states 1 and 2 of a system are known, then Q and W depend on the process
or path followed by the system in going from state 1 to state 2. The change De ¼ e2 � e1, in
contrast, does not depend on the path. In short, e is a thermodynamic property and is a func-
tion of the thermodynamic state of the system. Thermodynamic properties are called state
functions, in contrast to heat and work, which are path functions.

Frictionless quasi-static processes, carried out at an extremely slow rate so that the system
is at all times in equilibrium with the surroundings, are called reversible processes. For
a compressible fluid, the most common type of reversible work is by the expansion or
contraction of the boundaries of the fluid particle. Let y ¼ 1/r be the specific volume, that is,
the volume per unit mass. The work done per unit mass by a fluid particle in an infinitesimal
reversible process is �pdy, where dy is the increase of y. The first law (1.10) for a reversible
process then becomes

de ¼ dq� pdy, (1.11)

provided that q is also reversible. Note that irreversible forms of work, such as those done
against frictional stresses, are excluded from (1.11).

Equations of State

A relation defining one state function in terms of two or more others is called an equation of
state. For a simple compressible substance composed of a single component (the applicable
model for nearly all pure fluids), the specification of two independent thermodynamic prop-
erties completely determines the state of the system. We can write relations such as the
thermal and caloric equations of state:

p ¼ pðy, TÞ or e ¼ eðp, TÞ, (1.12)

respectively. For more complicated systems composed of more than one component, the
specification of additional properties is needed to completely determine the state. For
example, seawater contains dissolved salt so its density is a function of temperature, pres-
sure, and salinity.

Specific Heats

Before we define the specific heats of a substance, we define the thermodynamic property
enthalpy as

hh eþ py: (1.13)

It is the sum of the thermal energy and the pressure-volume potential energy, and arises natu-
rally in the study of compressible fluid flows.

For single-component systems, the specific heat capacities at constant pressure and
constant volume are defined as
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Cph ðvh=vTÞp and Cvh ðve=vTÞv, (1.14, 1.15)

respectively. Here, (1.14) means that we regard h as a function of p and T, and find the partial
derivative of h with respect to T, keeping p constant. Equation (1.15) has an analogous inter-
pretation. The specific heats as defined are thermodynamic properties because they are
defined in terms of other properties of the system. That is, Cp and Cv can be determined
when two other system properties (say, p and T) are known.

For certain processes common in fluid flows, the heat exchange can be related to the
specific heats. Consider a reversible process in which the work done is given by pdy, so
that the first law of thermodynamics has the form of (1.11). Dividing by the change of temper-
ature, it follows that the heat transferred per unit mass per unit temperature change in
a constant volume process is

ðvQ=vTÞv ¼ ðve=vTÞv ¼ Cv:

This shows that Cv dT represents the heat transfer per unit mass in a reversible constant-
volume process, in which the only type of work done is of the pdy type. It is misleading to
define Cv ¼ (dQ/dT)v without any restrictions imposed, as the temperature of a constant-
volume system can increase without heat transfer, such as by vigorous stirring.

Similarly, the heat transferred at constant pressure during a reversible process is
given by

ðvQ=vTÞp ¼ ðvh=vTÞp ¼ Cp:

Second Law of Thermodynamics

The second law of thermodynamics restricts the direction in which real processes can
proceed as time increases. Its implications are discussed in Chapter 4. Some consequences
of this law are the following:

(i) There must exist a thermodynamic property s, known as entropy, whose change
between states 1 and 2 is given by

s2 � s1 ¼
Z 2

1

dqrev
T

, (1.16)

where the integral is taken along any reversible process between the two states.
(ii) For an arbitrary process between states 1 and 2, the entropy change is

s2 � s1 �
Z 2

1

dqrev
T

ðClausius-DuhemÞ,

which states that the entropy of an isolated system (dQ ¼ 0) can only increase. Such
increases are caused by friction, mixing, and other irreversible phenomena.

(iii) Molecular transport coefficients such as viscosity m and thermal conductivity kmust be
positive. Otherwise, spontaneous unmixing or momentum separation would occur and
lead to a decrease of entropy of an isolated system.
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Property Relations

Two common relations are useful in calculating entropy changes during a process. For
a reversible process, the entropy change is given by

Tds ¼ dq: (1.17)

On substituting into (1.11) and using (1.13), we obtain

Tds ¼ deþ pdy, or Tds ¼ dh� ydp: ðGibbsÞ (1.18)

It is interesting that these relations (1.18) are also valid for irreversible (frictional) processes,
although the relations (1.11) and (1.17), from which equations (1.18) are derived, are true for
reversible processes only. This is because (1.18) are relations between thermodynamic state
functions alone and are therefore true for any process. The association of Tds with heat
and �pdy with work does not hold for irreversible processes. Consider stirring work done
at constant volume that raises a fluid element’s temperature; here de ¼ Tds is the increment
of stirring work done.

Speed of Sound

In a compressible fluid, infinitesimal isentropic changes in density and pressure propagate
through the medium at a finite speed, c. In Chapter 15, we shall prove that the square of this
speed is given by

c2 ¼ ðvp=vrÞs, (1.19)

where the subscript s signifies that the derivative is taken at constant entropy. This is the
speed of sound. For incompressible fluids, vr=vp/0 under all conditions so c/N.

Thermal Expansion Coefficient

When fluid density is a function of temperature, we define the thermal expansion
coefficient

ah� 1

r

�

vr

vT

�

p

, (1.20)

where the subscript p signifies that the partial derivative is taken at constant pressure. This
expansion coefficient appears frequently in the study of nonisothermal systems.

1.9. PERFECT GAS

Abasic result from kinetic theory and statistical mechanics for the thermal equation of state
for n identical noninteracting gas molecules confined within a container having volume V is

pV ¼ nkBT, (1.21)

where p is the average pressure on the inside surfaces of the container, kB ¼ 1:381�
10�23JK�1 is Boltzmann’s constant, and T is the absolute temperature. Equation (1.21) is

1. INTRODUCTION16



the molecule-based version of the perfect gas law. It is valid when attractive forces between
the molecules are negligible and when V/n is much larger than the (average) volume of an
individual molecule. When used with the continuum approximation, (1.21) is commonly
rearranged by noting that r ¼ mn/V, where m is the (average) mass of one gas molecule.
Here m is calculated (in SI units) as Mw/Ao where Mw is the (average) molecular weight in
kg (kg-mole)e1 of the gas molecules, and Ao is the kilogram-based version of Avogadro’s
number, 6:023� 1026(kg-mole)e1. With these replacements, (1.21) becomes

p ¼ n

V
kBT ¼ nm

V

�

kB
m

�

T ¼ r

�

kBAo

Mw

�

T ¼ r

�

Ru

Mw

�

T ¼ rRT, (1.22)

where the product kBAo ¼ Ru ¼ 8314 J kmol�1 K�1 is the universal gas constant, and
R ¼ Ru/Mw is the gas constant for the gas under consideration. A perfect gas is one that obeys
(1.22), even if it is a mixture of several different molecular species. For example, the average
molecular weight of dry air is 28.966 kg kmole1, for which (1.22) gives R ¼ 287 J kg�1 K�1. At
ordinary temperatures and pressures most gases can be treated as perfect gases.

The gas constant for a particular gas is related to the specific heats of the gas through the
relation

R ¼ Cp � Cv, (1.23)

where Cp and Cv are the specific heat capacities at constant pressure and volume, respec-
tively. In general, Cp and Cv increase with temperature. The ratio of specific heats

ghCp=Cv (1.24)

is important in compressible fluid dynamics. For air at ordinary temperatures, g ¼ 1.40
and Cp ¼ 1004 J kg�1 K�1. It can be shown that (1.21) or (1.22) is equivalent to e ¼ e(T) and
h ¼ h(T), and conversely, so that the internal energy and enthalpy of a perfect gas are only
functions of temperature (Exercise 1.10).

A process is called adiabatic if it takes place without the addition of heat. A process is called
isentropic if it is adiabatic and frictionless, for then the entropy of the fluid does not change.
From (1.18) it can be shown (Exercise 1.11) that isentropic flow of a perfect gas with constant
specific heats obeys

p=rg ¼ const: (1.25)

Using (1.22) and (1.25), the temperature and density changes during an isentropic process
from a reference state (subscript 0) to a current state (no subscript) are

T=T0 ¼
�

p=p0
�ðg�1Þ=g

and r=r0 ¼
�

p=p0
�1=g

(1.26)

(see Exercise 1.8). In addition, simple expressions can be found for the speed of sound c and
the thermal expansion coefficient a for a perfect gas:

c ¼
ffiffiffiffiffiffiffiffiffiffi

gRT
p

and a ¼ 1=T: (1.27, 1.28)
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1.10. STABILITY OF STRATIFIED FLUID MEDIA

In a static fluid environment subject to a gravitational field, p, r, and Tmay varywith height
z, but (1.8) and (1.12) provide two constraints so the p, r, and T variations cannot be arbitrary.
Furthermore, these constraints imply that the specification of the vertical profile of any one
thermodynamic variable allows the profiles of the others to be determined. In addition, our
experience suggests that the fluid medium will be stable if r(z) decreases with increasing z.
Interestingly, the rate atwhich the density decreases also plays a role in the stability of the fluid
medium when the fluid is compressible, as in a planetary atmosphere.

To assess the stability of a static fluid medium, consider a fluid particle with density r(zo)
in an atmosphere (or ocean) at equilibrium at height zo that is displaced upward a small
distance z via a frictionless adiabatic process and then released from rest. At its new height,
zo þ z, the fluid particle will have a different density, rðzoÞ þ ðdra=dzÞzþ., where dra/dz is
the isentropic density gradient for the displaced particle at height zo (see Figure 1.8). The
density of the fluid particles already at height zo þ z is rðzo þ zÞ ¼ rðzoÞ þ ðdr=dzÞzþ.,
where dr/dz is the equilibrium density gradient at height zo in the fluid medium. A
vertical-direction application of Newton’s second law including weight and buoyancy for
the displaced element leads to

d2z

dt2
� g

rðzoÞ
�

dr

dz
� dra

dz

�

z ¼ 0

when first-order terms in z are retained (see Exercise 1.13). The coefficient of z in the second
term is the square of the Brunt-Väisälä frequency, N,

N2 ¼ � g

rðzoÞ
�

dr

dz
� dra

dz

�

: (1.29)

When N2 is positive, the fluid medium is stable; the displaced fluid particle will accelerate
back toward zo after release and the action of viscous forces and thermal conduction will
arrest any oscillatory motion. Thus, a stable atmosphere (or ocean) is one in which the density
decreases with height faster than in an isentropic atmosphere (or ocean). WhenN2 is negative,
the fluid medium is unstable; the displaced fluid element will accelerate away from zo after

FIGURE 1.8 Adiabatic ex-
pansion of a fluid particle
displaced upward in a com-
pressible medium. In a static
pressure field, if the fluid
particle rises it encounters
a lower pressure and may
expand adiabatically.
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release and further increase its displacement z. WhenN2 is zero, the fluid medium is neutrally
stable and the element will not move if released from rest; it will have zero vertical accelera-
tion. There are two ways to achieve neutral stability: 1) the fluid density may be independent
of the vertical coordinate so that dr/dz ¼ dra/dz ¼ 0, or 2) the equilibrium density gradient in
the fluid mediummay equal the isentropic density gradient, dr/dz ¼ dra/dz. The former case
implies that constant-density fluid media are neutrally stable. The latter case requires
a neutrally stable atmosphere to be one where p, r, and T decrease with increasing height in
such a way that the entropy is constant.

In atmospheric science, G h dT/dz is the atmospheric temperature gradient or lapse rate.
The rate of temperature decrease in an isentropic atmosphere Ga is

dTa=dzhGa ¼ �gaT=Cp, (1.30)

(see Exercise 1.14) and is called the adiabatic temperature gradient or adiabatic lapse rate. It is the
steepest rate at which the temperature can decrease with increasing height without causing
instability. In the earth’s atmosphere, the adiabatic lapse rate is approximately e10�C kme1.

Figure 1.9a shows a typical distribution of temperature in the earth’s atmosphere. The lower
part has been drawn with a slope nearly equal to the adiabatic temperature gradient because
mixing processes near the ground tend to form a neutral (constant entropy) atmosphere.
Observations show that the neutral atmosphere ends at a layer where the temperature
increases with height, a very stable situation. Meteorologists call this an inversion, because
the temperature gradient changes signs here. Atmospheric turbulence and mixing processes
below such an inversion typically cannot penetrate above it. Above this inversion layer the
temperature decreases again, but less rapidly than near the ground, which again corresponds
to stability. An isothermal atmosphere (a vertical line in Figure 1.9a) is quite stable.

Potential Temperature and Density

The foregoing discussion of static stability of a compressible atmosphere can be expressed
in terms of the concept of potential temperature, which is generally denoted by q. Suppose the

FIGURE 1.9 Vertical vari-
ation of the (a) actual and (b)
potential temperature in the
atmosphere. Thin straight lines
represent temperatures for a
neutral atmosphere. Slopes less
than the neutral atmosphere
lines lead to atmospheric inst-
ability. Slopes greater than the
neutral atmosphere lines indi-
cate a stable atmosphere.
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pressure and temperature of a fluid particle at a height z are p(z) and T(z). Now if we take the
particle adiabatically to a standard pressure po ¼ p(0) (say, the sea level pressure, nearly equal
to 100 kPa), then the temperature q attained by the particle is called its potential temperature.
Using (1.26) for a perfect gas, it follows that the actual temperature T and the potential
temperature q are related by

TðzÞ ¼ qðzÞ�pðzÞ=po
�ðg�1Þ=g

: (1.31)

Taking the logarithm and differentiating, we obtain

1

T

dT

dz
¼ 1

q

dq

dz
þ ðg� 1Þ

gp

dp

dz
:

Substituting dp/dz ¼ �rg, p ¼ rRT, and a ¼ 1/T produces

T

q

dq

dz
¼ dT

dz
þ g

Cp
¼ d

dz
ðT � TaÞ ¼ G� Ga: (1.32)

If the temperature decreases at a rate G ¼ Ga, then the potential temperature q (and therefore
the entropy) is uniform with height. It follows that an atmosphere is stable, neutral, or
unstable depending upon whether dq/dz is positive, zero, or negative, respectively. This is
illustrated in Figure 1.9b. It is the gradient of potential temperature that determines the
stability of a column of gas, not the gradient of the actual temperature. However, this differ-
ence is negligible for laboratory-scale phenomena. For example, a 1.0 m vertical change may
result in an air temperature decrease of only 1.0 m � (10�C kme1) ¼ 10e2�C.

Similarly, potential density rq is the density attained by a fluid particle if taken via an isen-
tropic process to a standard pressure po. Using (1.26), the actual density r(z) and potential
density are related by

rðzÞ ¼ rqðzÞ
�

pðzÞ=po
�1=g

: (1.33)

Multiplying (1.31) and (1.33), and using p ¼ rRT, we obtain qrq ¼ po/R ¼ const. Taking the
logarithm and differentiating, we obtain

� 1

rq

drq
dz

¼ 1

q

dq

dz
: (1.34)

Thus, an atmosphere is stable, neutral, or unstable depending upon whether drq/dz is nega-
tive, zero, or positive, respectively.

Interestingly, compressibility effects are also important in the deep ocean where saltwater
density depends not only on the temperature and pressure, but also on the salinity (S)
defined as kilograms of salt per kilogram of water. The average salinity of seawater is
approximately 3.5%. Here, the potential density is defined as the density attained if a fluid
particle is taken to a reference pressure via an isentropic process and at constant salinity.
The potential density thus defined must decrease with height for stable water column condi-
tions. Oceanographers automatically account for the compressibility of seawater by convert-
ing their density measurements at any depth to the sea level pressure, which serves as the
reference pressure.
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Because depth changeeinduced density changes are relatively small in percentage
terms (~0.5% for a 1.0 km change in depth) for seawater, the static stability of the ocean
is readily determined from (1.29). In particular, the vertical isentropic density gradient
in (1.29) may be rewritten using dpa/dz ¼ erag and the definition of the sound speed c
(1.19) to find

dra
dz

¼
�

vra

vp

�

s,S

dpa
dz

¼ �
�

vra

vp

�

s,S
rag ¼ �rag

c2
y � rg

c2
,

where the approximation rayr produces the final result. Thus, (1.29) and its ensuing discus-
sion imply that the ocean is stable, neutral, or unstable depending upon whether

drq
dz

¼ dr

dz
� dra

dz
y

dr

dz
þ rg

c2
(1.35)

is negative, zero, or positive, respectively.

Scale Height of the Atmosphere

Approximate expressions for the pressure distribution and the thickness or scale height of
the atmosphere can be obtained by assuming isothermal conditions. This is a reasonable
assumption in the lower 70 km of the atmosphere, where the absolute temperature generally
remains within 15% of 250 K. The hydrostatic distribution (1.8) and perfect gas law (1.22)
require

dp=dz ¼ �rg ¼ �pg=RT:

When g, R, and T are constants, integration gives

pðzÞ ¼ p0 e
�gz=RT ,

where p0 is the pressure at z ¼ 0. The pressure therefore falls to e�1 of its surface value in
a height H ¼ RT/g. Thus, the quantity RT/g is called the scale height of the atmosphere,
and it provides a reasonable quantitative measure of the thickness of the atmosphere. For
an average atmospheric temperature of T ¼ 250 K, the scale height is RT/g ¼ 7.3 km.

1.11. DIMENSIONAL ANALYSIS

Interestingly, a physical quantity’s units may be exploited to learn about its relationship to
other physical quantities. This possibility exists because the natural realm does not need
mankind’s units ofmeasurement to function.Natural laws are independent of anyunit system
imposed on them by human beings. Consider Newton’s second law, generically stated as
force ¼ (mass) � (acceleration); it is true whether a scientist or engineer uses cgs (centimeter,
gram, second), MKS (meter, kilogram, second), or even English (inch or foot, pound, second)
units in its application. Because nature is independent of our systems of units, we can draw
two important conclusions: 1) all correct physical relationships can be stated in dimensionless
form, and 2) in any comparison, the units of the items being comparedmust be the same for the
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comparison to be valid. The first conclusion leads to the problem-simplification or scaling-
law-development technique known as dimensional analysis. The second conclusion is known
as the principle of dimensional homogeneity. It requires all terms in an equation to have the
same dimension(s) and thereby provides an effective means for error catching within deriva-
tions and in derived answers. If terms in an equation do not have the same dimension(s) then
the equation is not correct and a mistake has been made.

Dimensional analysis is a broadly applicable technique for developing scaling laws, inter-
preting experimental data, and simplifying problems. Occasionally it can even be used to
solve problems. Dimensional analysis has utility throughout the physical sciences and it is
routinely taught to students of fluid mechanics. Thus, it is presented here for subsequent
use in this chapter’s exercises and in the remaining chapters of this text.

Of the various formal methods of dimensional analysis, the description here is based on
Buckingham’s method from 1914. Let q1, q2, ., qn be n variables and parameters involved
in a particular problem or situation, so that there must exist a functional relationship of
the form

f
�

q1, q2,., qn
� ¼ 0: (1.36)

Buckingham’s theorem states that the n variables can always be combined to form exactly
(n � r) independent dimensionless parameter groups, where r is the number of independent
dimensions. Each dimensionless parameter group is commonly called a P-group or a dimen-
sionless group. Thus, (1.36) can be written as a functional relationship

fðP1,P2,.,Pn�rÞ ¼ 0 or P1 ¼ 4ðP2,P3,.,Pn�rÞ: (1.37)

The dimensionless groups are not unique, but (n � r) of them are independent and form
a complete set that spans the parametric solution space of (1.37). The power of dimensional
analysis is most apparent when n and r are single-digit numbers of comparable size so
(1.37), which involves n e r dimensionless groups, represents a significant simplification
of (1.36), which has n parameters. The process of dimensional analysis is presented here as
a series of six steps that should be followed by a seventh whenever possible. Each step is
described in the following paragraphs and illustrated via the example of determining the
functional dependence of the pressure difference Dp between two locations in a round
pipe carrying a flowing viscous fluid.

Step 1. Select Variables and Parameters

Creating the list of variables and parameters to include in a dimensional analysis effort is
the most important step. The parameter list should usually contain only one unknown vari-
able, the solution variable. The rest of the variables and parameters should come from the
problem’s geometry, boundary conditions, initial conditions, and material parameters. Phys-
ical constants and other fundamental limits may also be included. However, shorter param-
eter lists tend to produce the most powerful dimensional analysis results; expansive lists
commonly produce less useful results.

For the round-pipe pressure drop example, select Dp as the solution variable, and then
choose as additional parameters: the distance Dx between the pressure measurement
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locations, the inside diameter d of the pipe, the average height 3 of the pipe’s wall roughness,
the average flow velocity U, the fluid density r, and the fluid viscosity m. The resulting func-
tional dependence between these seven parameters can be stated as

fðDp, Dx, d, 3,U, r, mÞ ¼ 0: (1.38)

Note, (1.38) does not include the fluid’s thermal conductivity, heat capacities, thermal expan-
sion coefficient, or speed of sound, so this dimensional analysis example will not account for
the thermal or compressible flow effects embodied by these missing parameters.

Step 2. Create the Dimensional Matrix

Fluid flow problems without electromagnetic forces and chemical reactions involve only
mechanical variables (such as velocity and density) and thermal variables (such as temper-
ature and specific heat). The dimensions of all these variables can be expressed in terms of
four basic dimensionsdmass M, length L, time T, and temperature q. We shall denote the
dimension of a variable q by [q]. For example, the dimension of the velocity u is [u] ¼ L/T,
that of pressure is [p] ¼ [force]/[area] ¼ MLT�2/L2 ¼M/LT2, and that of specific heat is
[Cp] ¼ [energy]/[mass][temperature] ¼MLT�2L/Mq ¼ L2/qT2. When thermal effects are
not considered, all variables can be expressed in terms of three fundamental dimensions,
namely, M, L, and T. If temperature is considered only in combination with Boltzmann’s
constant (kBq), a gas constant (Rq), or a specific heat (Cpq), then the units of the combination
are simply L2/T2, and only the three dimensions M, L, and T are required.

The dimensional matrix is created by listing the powers of M, L, T, and q in a column for
each parameter selected. For the pipe-flow pressure difference example, the selected vari-
ables and their dimensions produce the following dimensional matrix:

where the seven variables have been written above the matrix entries and the three units
have been written in a column to the left of the matrix. The matrix in (1.39) portrays
[Dp] ¼ ML�1T�2 via the first column of numeric entries.

Step 3. Determine the Rank of the Dimensional Matrix

The rank r of any matrix is defined to be the size of the largest square submatrix that has
a nonzero determinant. Testing the determinant of the first three rows and columns of (1.39),
we obtain

�

�

�

�

�

1 0 0
�1 1 1
�2 0 0

�

�

�

�

�

¼ 0:
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However, (1.39) does include a nonzero third-order determinant, for example, the one
formed by the last three columns:

�

�

�

�

�

0 1 1
1 �3 �1
�1 0 �1

�

�

�

�

�

¼ �1:

Thus, the rank of the dimensional matrix (1.39) is r ¼ 3. If all possible third-order determi-
nants were zero, we would have concluded that r < 3 and proceeded to testing second-order
determinants.

For dimensional matrices, the rank is less than the number of rows only when one of the
rows can be obtained by a linear combination of the other rows. For example, the matrix (not
from 1.39)

�

�

�

�

�

0 1 0 1
�1 2 1 �2
�1 4 1 0

�

�

�

�

�

has r ¼ 2, as the last row can be obtained by adding the second row to twice the first row. A
rank of less than 3 commonly occurs in statics problems, in which mass or density is really
not relevant but the dimensions of the variables (such as force) involve M. In most fluid
mechanics problems without thermal effects, r ¼ 3.

Step 4. Determine the Number of Dimensionless Groups

The number of dimensionless groups is n e r where n is the number of variables and
parameters, and r is the rank of the dimensional matrix. In the pipe-flow pressure difference
example, the number of dimensionless groups is 4 ¼ 7 e 3.

Step 5. Construct the Dimensionless Groups

This can be done by exponent algebra or by inspection. The latter is preferred because it
commonly produces dimensionless groups that are easier to interpret, but the former is
sometimes required. Examples of both techniques follow here. Whatever the method, the
best approach is usually to create the first dimensionless group with the solution variable
appearing to the first power.

When using exponent algebra, select r parameters from the dimensional matrix as
repeating parameters that will be found in all the subsequently constructed dimensionless
groups. These repeating parameters must span the appropriate r-dimensional dimension
space of M, L, and/or T, that is, the determinant of the dimensional matrix formed from these
r parameters must be nonzero. For many fluid-flow problems, a characteristic velocity, a char-
acteristic length, and a fluid property involving mass are ideal repeating parameters.

To form dimensionless groups for the pipe-flow problem, choose U, d, and r as the
repeating parameters. The determinant of the dimensional matrix formed by these three
parameters is nonzero. Other repeating parameter choices will result in a different set of
dimensionless groups, but any such alternative set will still span the solution space of the
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problem. Thus, any satisfactory choice of the repeating parameters is equvialent to any
other, so choices that simplify the work are most appropriate. Each dimensionless group
is formed by combining the three repeating parameters, raised to unknown powers, with
one of the nonrepeating variables or parameters from the list constructed for the first
step. Here we ensure that the first dimensionless group involves the solution variable raised
to the first power:

P1 ¼ DpUadbrc:

The exponents a, b, and c are obtained from the requirement that P1 is dimensionless.
Replicating this equation in terms of dimensions produces

M0L0T0 ¼
h

P1

i

¼ ½DpUadbrc� ¼ ðML�1T�2Þ�LT�1
�aðLÞb�ML�3

�c¼ Mcþ1Laþb�3c�1T�a�2:

Equating exponents between the two extreme ends of this extended equality produces three
algebraic equations that are readily solved to find a ¼ �2, b ¼ 0, c ¼ �1, so

P1 ¼ Dp=rU2:

A similar procedure with Dp replaced by the other unused variables (Dx, 3, m) produces

P2 ¼ Dx=d, P3 ¼ 3=d, and P4 ¼ m=rUd:

The inspection method proceeds directly from the dimensional matrix, and may be less
tedious than exponent algebra. It involves selecting individual parameters from the dimen-
sional matrix and sequentially eliminating their M, L, T, and q units by forming ratios with
other parameters. For the pipe-flow pressure difference example we again start with the
solution variable [Dp] ¼MLe1Te2 and notice that the next entry in (1.32) that includes units
of mass is [r] ¼ MLe3. To eliminate M from a combination of Dp and r, we form the ratio
[Dp/r] ¼ L2Te2 ¼ [velocity2]. An examination of (1.39) shows that U has units of velocity,
LTe1. Thus, Dp/r can be made dimensionless if it is divided by U2 to find: [Dp/rU2] ¼
dimensionless. Here we have the good fortune to eliminate L and T in the same step. There-
fore, the first dimensionless group is P1 ¼ Dp/rU2. To find the second dimensionless group
P2, start with Dx, the left most unused parameter in (1.32), and note [Dx] ¼ L. The first
unused parameter to the right of Dx involving only length is d. Thus, [Dx/d] ¼ dimension-
less so P2 ¼ Dx/d. The third dimensionless group is obtained by starting with the next
unused parameter, 3, to find P3 ¼ 3/d. The final dimensionless group must include the
last unused parameter [m] ¼ MLe1Te1. Here it is better to eliminate the mass dimension
with the density since reusing Dp would place the solution variable in two places in the
final scaling law, an unnecessary complication. Therefore, form the ratio m/r which has
units [m/r] ¼ L2Te1. These can be eliminated with d and U, [m/rUd] ¼ dimensionless, so
P4 ¼ m/rUd.

Forming the dimensionless groups by inspection becomes easier with experience. For
example, since there are three length scales Dx, d, and 3 in (1.39), the dimensionless groups
Dx/d and 3/d can be formed immediately. Furthermore, Bernoulli equations (see Section
4.9, “Bernoulli Equations”) tell us that rU2 has the same units as p so Dp/rU2 is readily iden-
tified as a dimensionless group. Similarly, the dimensionless group that describes viscous
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effects in the fluid mechanical equations of motion is found to be m/rUd when these equa-
tions are cast in dimensionless form (see Section 4.11).

Other dimensionless groups can be obtained by combining esblished groups. For the
pipe-flow example, the group Dpd2r/m2 can be formed from P1=P

2
4, and the group 3/Dx

can be formed as P3/P2. However, only four dimensionless groups will be independent
in the pipe-flow example.

Step 6. State the Dimensionless Relationship

This step merely involves placing the (ne r)P-groups in one of the forms in (1.37). For the
pipe-flow example, this dimensionless relationship is

Dp

rU2
¼ 4

�

Dx

d
,
3

d
,

m

rUd

�

, (1.40)

where 4 is an undetermined function. This relationship involves only four dimensionless
groups, and is therefore a clear simplification of (1.36) which lists seven independent param-
eters. The four dimensionless groups in (1.40) have familiar physical interpretations and have
even been given special names. For example, Dx/d is the pipe’s aspect ratio, and 3/d is the
pipe’s roughness ratio. Common dimensionless groups in fluid mechanics are presented
and discussed in Section 4.11.

Step 7. Use Physical Reasoning or Additional Knowledge to Simplify the
Dimensionless Relationship

Sometimes there are only two extensive thermodynamic variables involved and these
must be proportional in the final scaling law. An overall conservation law can be applied
that restricts one or more parametric dependencies, or a phenomena may be known to be
linear, quadratic, etc., in one of the parameters and this dependence must be reflected in
the final scaling law. This seventh step may not always be possible, but when it is, significant
and powerful results may be achieved from dimensional analysis.

EXAMPLE 1.2

Use dimensional analysis to find the parametric dependence of the scale height H in a static

isothermal atmosphere at temperature To composed of a perfect gas with average molecular weight

Mw when the gravitational acceleration is g.

Solution

Follow the six steps just described.

1. The parameter list must include H, To,Mw, and g. Here there is no velocity parameter, and there

is no need for a second specification of a thermodynamic variable since a static pressure gradient

prevails. However, the universal gas constant Ru must be included to help relate the thermal

variable To to the mechanical ones.
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2. The dimensional matrix is:

Note that the kmolee1 specification ofMw and Ru is lost in the matrix above since a kmole is a pure

number.

3. The rank of this matrix is four, so r ¼ 4.

4. The number of dimensionless groups is: n e r ¼ 5 e 4 ¼ 1.

5. Use H as the solution parameter, and the others as the repeating parameters. Proceed with

exponent algebra to find the dimensionless group:

M0L0T0q0 ¼ ½P1� ¼
h

HTa
o M

b
w gc Rd

u

i

¼ ðLÞðqÞaðMÞb�LT�2Þc�ML2T�2q�1
�d

¼ MbþdL1þcþ2dT�2c�2dqa�d:

Equating exponents yields four linear algebraic equations:

bþ d ¼ 0, 1þ cþ 2d ¼ 0, � 2c� 2d ¼ 0, and a� d ¼ 0,

which are solved by: a ¼ �1, b ¼ 1, c ¼ 1, and d ¼ �1. Thus, the lone dimensionless group is:

P1 ¼ HgMw/RuTo.

6. Because there is only a single dimensionless group, its most general behavior is to equal a

constant, so HgMw=RuTo ¼ 4ð.Þ ¼ const:, or H ¼ const. (RuTo/gMw). Based on the finding at

the end of the previous section and R ¼ Ru/Mw from (1.22), this parametric dependence is

correct and the constant is unity in this case.

EXAMPLE 1.3

Use dimensional analysis and Figure 1.10 to prove the Pythagorean theorem based on a right

triangle’s area a, the radian measure b of its most acute angle, and the length C of its longest side

(Barenblatt, 1979).

C
AA

B

β

β

FIGURE 1.10 A right triangle with area a, smallest acute angle b, and hypotenuse C. The dashed line is
perpendicular to side C.
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Solution

Follow the six steps given earlier and then consider similarity between the main triangle and two

sub-triangles.

1. The parameter list (a, b, C) is given in the problem statement so n ¼ 3.

2. The dimensional matrix is:

3. With no M or T units, the rank of this matrix is one, so r ¼ 1.

4. The number of dimensionless groups is: n e r ¼ 3 e 1 ¼ 2.

5. Let the triangle’s area a be the solution parameter. By inspection, P1 ¼ a/C2, and P2 ¼ b.

6. Therefore, the dimensionless relationship is: a=C2 ¼ 4ðbÞ or a ¼ C24ðbÞ.
7. When the dashed line is perpendicular to side C, then the large triangle is divided into two

smaller ones that are similar to the larger one. These sub-triangles have A and B as their

longest sides and both have the same acute angle as the large triangle. Therefore, the

sub-triangle areas can be written as A24ðbÞ and B24ðbÞ. Summing the sub-triangle areas

produces: A24ðbÞ þ B24ðbÞ ¼ C24ðbÞ or A2 þ B2 ¼ C2 when 4ðbÞs0.

EXAMPLE 1.4

Use dimensional analysis to determine the energy E released in an intense point blast if the blast-

wave propagation distanceD into an undisturbed atmosphere of density r is known as a function of

time t following the energy release (Taylor, 1950; see Figure 1.11).

Solution

Again follow the six steps given earlier.

1. The parameter list (E, D, r, t) is given in the problem statement so n ¼ 4.

2. The dimensional matrix is:

D

E

FIGURE 1.11 In an atmosphere with undisturbed density r, a point release of energy E produces a hemi-
spherical blast wave that travels a distance D in time t.
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3. The rank of this matrix is three, so r ¼ 3.

4. The number of dimensionless groups is: n e r ¼ 4 e 3 ¼ 1.

5. Let the point-blast energy be the solution parameter and construct the lone dimensionless

group by inspection. First use E and r to eliminate M: [E/r] ¼ L5Te2. Next use D to

eliminate L: [E/rD5] ¼ Te2. Then use t to eliminate T: [Et2/rD5] ¼ dimensionless, so

P1 ¼ Et2/rD5.

6. Here there is only a single dimensionless group, so it must be a constant (K). This produces:

Et2=rD5 ¼ 4ð.Þ ¼ K which implies: E ¼ KrD5=t2, where K is not determined by dimensional

analysis.

7. The famous fluidmechanician G. I. Taylor was able to estimate the yield of the first atomic-bomb

test conducted on the White Sands Proving Grounds in New Mexico in July 1945 using: 1) the

dimensional analysis shown above, 2) a declassified movie made by J. E. Mack, and 3) timed

photographs supplied by the Los Alamos National Laboratory and the Ministry of Supply.

He determined the fireball radius as a function of time and then estimated E using a nominal

atmospheric value for r. His estimate of E ¼ 17 kilotons of TNTwas very close to the actual yield

(20 kilotons of TNT) in part because the undetermined constant K is close to unity in this case. At

the time, the movie and the photographs were not classified but the yield of the bomb was

entirely secret.

EXAMPLE 1.5

Use dimensional analysis to determine how the average light intensity S (Watts/m2) scattered

from an isolated particle depends on the incident light intensity I (Watts/m2), the wavelength of the

light l (m), the volume of the particle V (m3), the index of refraction of the particle ns (dimen-

sionless), and the distance d (m) from the particle to the observation point. Can the resulting

dimensionless relationship be simplified to better determine parametric effects when l[V1=3?

Solution

Again follow the six steps given earlier, knowing that the seventh step will likely be necessary to

produce a useful final relationship.

1. The parameter list (S, I, l, V, ns, d) is given in the problem statement so n ¼ 6.

2. The dimensional matrix is:

3. The rank of this matrix is 2 because all the dimensions are either intensity or length, so r ¼ 2.

4. The number of dimensionless groups is: n e r ¼ 6 � 2 ¼ 4.

5. Let scattered light intensity S be the solution parameter. By inspection the four dimensionless

groups are:
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P1 ¼ S=I, P2 ¼ d=l, P3 ¼ V=l3, and P4 ¼ ns:

6. Therefore, the dimensionless relationship is: S=I ¼ 41ðd=l, V=l3, nsÞ.
7. There are two physical features of this problem that allow refinement of this dimensional

analysis result. First, light scattering from the particle must conserve energy and this implies:

4pd2S ¼ const. so Sf1=d2. Therefore, the result in step 6 must simplify to: S=I ¼ ðl=dÞ242

ðV=l3, nsÞ. Second, when l is large compared to the size of the scatterer, the scattered field

amplitude will be produced from the dipole moment induced in the scatterer by the incident

field, and this scattered field amplitude will be proportional to V. Thus, S, which is proportional

to field amplitude squared, will be proportional to V2. These deductions allow a further

simplification of the dimensional analysis result to:

S

I
¼
�

l

d

�2�V

l3

�2

43ðnsÞ ¼
V2

d2l4
43ðnsÞ:

This is Lord Rayleigh’s celebrated small-particle scattering law. He derived it in the 1870s

while investigating light scattering from small scatterers to understand why the cloudless

daytime sky was blue while the sun appeared orange or red at dawn and sunset. At the

time, he imagined that the scatterers were smoke, dust, mist, aerosols, etc. However, the

atmospheric abundance of these are insufficient to entirely explain the color change

phenomena but the molecules that compose the atmosphere can accomplish enough scattering

to explain the observations.

EXERCISES

1.1. 1Many centuries ago, a mariner poured 100 cm3 of water into the ocean. As time
passed, the action of currents, tides, and weather mixed the liquid uniformly
throughout the earth’s oceans, lakes, and rivers. Ignoring salinity, estimate the
probability that the next cup of water you drink will contain at least one water
molecule that was dumped by the mariner. Assess your chances of ever drinking truly
pristine water. (Consider the following facts: Mw for water is 18.0 kg per kg-mole, the
radius of the earth is 6370 km, and the mean depth of the oceans is approximately
3.8 km, and they cover 71% of the surface of the earth. One cup is w240 ml.)

1.2. 1An adult human expels approximately 500mL of air with each breath during ordinary
breathing. Imagining that two people exchanged greetings (one breath each) many
centuries ago and that their breath subsequently has beenmixed uniformly throughout
the atmosphere, estimate the probability that the next breath you take will contain
at least one air molecule from that age-old verbal exchange. Assess your chances of
ever getting a truly fresh breath of air. For this problem, assume that air is composed
of identical molecules having Mw ¼ 29.0 kg per kg-mole and that the average
atmospheric pressure on the surface of the earth is 100 kPa. Use 6370 km for the radius
of the earth and 1.20 kg/m3 for the density of air at room temperature and pressure.

1Based on a homework problem posed by Professor P. E. Dimotakis
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1.3. In Cartesian coordinates, the Maxwell probability distribution, f(u) ¼ f(u1,u2,u3), of
molecular velocities in a gas flow with average velocity U ¼ (U1,U2,U3) is

fðuÞ ¼
�

m

2pkBT

�3=2

exp

�

� m

2kBT
ju�Uj2

	

,

where n is the number of gas molecules in volume V, m is the molecular mass, kB is
Boltzmann’s constant and T is the absolute temperature.
a) Verify that U is the average molecular velocity, and determine the standard

deviations (s1, s2, s3) of each component of U using si ¼ ½ RRR
allu

ðui �UiÞ2fðuÞd3u�1=2
for i ¼ 1, 2, and 3.

b) Using (1.21), the molecular version of the perfect gas law, determine n/V at room
temperature T ¼ 295 K and atmospheric pressure p ¼ 101.3 kPa.

c) Determine n for volumes V ¼ (10 mm)3, 1 mm3, and (0.1 mm)3.
d) For the ith velocity component, the standard deviation of the average, sa,i, over n

molecules is sa,i ¼ si=
ffiffiffi

n
p

when n [ 1. For an airflow at U ¼ (1.0 mse1, 0, 0),
compute the relative uncertainty, 2sa,1=U1, at the 95% confidence level for the
average velocity for the three volumes listed in part c).

e) For the conditions specified in parts b) and d), what is the smallest volume of gas
that ensures a relative uncertainty in U of one percent or less?

1.4. Using the Maxwell molecular velocity distribution given in Exercise 1.3 with U ¼ 0,
determine the average molecular speed ¼ v ¼ ½ RRR

allu

juj2fðuÞd3u�1=2 and compare it with

c ¼ speed of sound in a perfect gas under the same conditions.
1.5. By considering the volume swept out by a moving molecule, estimate how the

mean-free path, l, depends on the average molecular cross section dimension d and
the molecular number density ~n for nominally spherical molecules. Find a formula
for l~n1=3 (the ratio of the mean-free path to the mean intermolecular spacing) in
terms of the molecular volume (d

3
) and the available volume per molecule (1=~n). Is this

ratio typically bigger or smaller than one?
1.6. In a gas, the molecular momentum flux (MFij) in the j-coordinate direction that crosses

a flat surface of unit area with coordinate normal direction i is:

MFij ¼
n

V

ZZZ

allu

muiujfðuÞd3u where f(u) is the Maxwell distribution given in Exercise

1.3, and n is the number of molecules in volume V. For a perfect gas that is not moving
on average (i.e.,U ¼ 0), show thatMFij ¼ p (the pressure), when i ¼ j, and thatMFij ¼ 0,
when i s j.

1.7. Consider the viscous flow in a channel of width 2b. The channel is aligned in the
x-direction, and the velocity u in the x-direction at a distance y from the channel
centerline is given by the parabolic distribution uðyÞ ¼ U0½1� ðy=bÞ2�: Calculate the
shear stress s as a function y, m, b, and Uo. What is the shear stress at y ¼ 0?

1.8. Estimate the height to which water at 20�C will rise in a capillary glass tube 3 mm
indiameter that is exposed to the atmosphere. Forwater in contactwith glass thewetting
angle is nearly 90�. At 20�C, the surface tension of awater-air interface is s ¼ 0.073N/m.
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1.9. A manometer is a U-shaped tube containing mercury of density rm. Manometers are
used as pressure-measuring devices. If the fluid in tank A has a pressure p and density
r, then show that the gauge pressure in the tank is: p � patm ¼ rmgh � rga. Note that
the last term on the right side is negligible if r � rm. (Hint: Equate the pressures at
X and Y.)

1.10. Prove that if e(T, y) ¼ e(T) only and if h(T, p) ¼ h(T) only, then the (thermal) equation of
state is (1.22) or py ¼ kT, where k is a constant.

1.11. Starting from the property relationships (1.18) prove (1.25) and (1.26) for a reversible
adiabatic process when the specific heats Cp and Cv are constant.

1.12. A cylinder contains 2 kg of air at 50�C and a pressure of 3 bars. The air is compressed
until its pressure rises to 8 bars. What is the initial volume? Find the final volume for
both isothermal compression and isentropic compression.

1.13. Derive (1.29) starting from the arguments provided at the beginning of Section 1.10
and Figure 1.8.

1.14. Starting with the hydrostatic pressure law (1.8), prove (1.30) without using perfect gas
relationships.

1.15. Assume that the temperature of the atmosphere varies with height z as T ¼ T0 þ Kz
where K is a constant. Show that the pressure varies with height as

p ¼ p0
h T0

T0 þ Kz

ig=KR
, where g is the acceleration of gravity and R is the gas constant for

the atmospheric gas.
1.16. Suppose the atmospheric temperature varies according to: T ¼ 15 �0.001z, where T is

in degrees Celsius and height z is in meters. Is this atmosphere stable?
1.17. Consider the case of a pure gas planet where the hydrostatic law is: dp=dz ¼

�rðzÞGmðzÞ=z2. Here G is the gravitational constant, and mðzÞ ¼ 4p
R z
o rðzÞz2dz is

the planetary mass up to distance z from the center of the planet. If the planetary
gas is perfect with gas constant R, determine r(z) and p(z) if this atmosphere is
isothermal at temperature T. Are these vertical profiles of r and p valid as z increases
without bound?

1.18. Consider a heat-insulated enclosure that is separated into two compartments of
volumes V1 and V2, containing perfect gases with pressures of p1 and p2, and
temperatures of T1 and T2, respectively. The compartments are separated by an
impermeable membrane that conducts heat (but not mass). Calculate the final steady-
state temperature assuming each gas has constant specific heats.
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1.19. Consider the initial state of an enclosure with two compartments as described in
Exercise 1.18. At t ¼ 0, the membrane is broken and the gases are mixed. Calculate the
final temperature.

1.20. A heavy piston of weight W is dropped onto a thermally insulated cylinder of cross-
sectional area A containing a perfect gas of constant specific heats, and initially having
the external pressure p1, temperature T1, and volume V1. After some oscillations, the
piston reaches an equilibrium position L meters below the equilibrium position of
a weightless piston. Find L. Is there an entropy increase?

1.21. 2A gas of noninteracting particles of mass m at temperature T has density r, and
internal energy per unit volume 3.
a) Using dimensional analysis, determine how 3 must depend on r, T, and m. In your

formulation use kB ¼ Boltzmann’s constant, h ¼ Plank’s constant, and c ¼ speed of
light to include possible quantum and relativistic effects.

b) Consider the limit of slow-moving particles without quantum effects by requiring c
and h to drop out of your dimensionless formulation. How does 3 depend on r and
T? What type of gas follows this thermodynamic law?

c) Consider the limit of massless particles (i.e., photons) by requiring m and r to drop
out of your dimensionless formulation of part a). How does 3 depend on T in this
case? What is the name of this radiation law?

1.22. Many flying and swimming animalsdas well as human-engineered vehiclesdrely on
some type of repetitive motion for propulsion through air or water. For this problem,
assume the average travel speed U depends on the repetition frequency f, the
characteristic length scale of the animal or vehicle L, the acceleration of gravity g, the
density of the animal or vehicle ro, the density of the fluid r, and the viscosity of
the fluid m.
a) Formulate a dimensionless scaling law for U involving all the other parameters.
b) Simplify your answer for part a) for turbulent flow where m is no longer

a parameter.
c) Fish and animals that swim at or near a water surface generate waves that move

and propagate because of gravity, so g clearly plays a role in determining U.
However, if fluctuations in the propulsive thrust are small, then f may not be
important. Thus, eliminate f from your answer for part b) while retaining L, and
determine how U depends on L. Are successful competitive human swimmers
likely to be shorter or taller than the average person?

d) When the propulsive fluctuations of a surface swimmer are large, the characteristic
length scale may be U/f instead of L. Therefore, drop L from your answer for
part b). In this case, will higher speeds be achieved at lower or higher frequencies?

e) While traveling submerged, fish, marine mammals, and submarines are usually
neutrally buoyant (ro z r) or very nearly so. Thus, simplify your answer for
part b) so that g drops out. For this situation, how does the speed U depend on
the repetition frequency f ?

f) Although fully submerged, aircraft and birds are far from neutrally buoyant in air,
so their travel speed is predominately set by balancing lift and weight. Ignoring

2Drawn from thermodynamics lectures of Prof. H. W. Liepmann
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frequency and viscosity, use the remaining parameters to construct dimensionally
accurate surrogates for lift and weight to determine how U depends on ro/r, L,
and g.

1.23. The acoustic power W generated by a large industrial blower depends on its volume
flow rate Q, the pressure rise DP it works against, the air density r, and the speed
of sound c. If hired as an acoustic consultant to quiet this blower by changing its
operating conditions, what is your first suggestion?

1.24. A machine that fills peanut-butter jars must be reset to accommodate larger jars. The
new jars are twice as large as the old ones but they must be filled in the same
amount of time by the same machine. Fortunately, the viscosity of peanut butter
decreases with increasing temperature, and this property of peanut butter can be
exploited to achieve the desired results since the existing machine allows for
temperature control.
a) Write a dimensionless law for the jar-filling time tf based on: the density of peanut

butter r, the jar volume V, the viscosity of peanut butter m, the driving pressure that
forces peanut butter out of the machine P, and the diameter of the peanut buttere
delivery tube d.

b) Assuming that the peanut butter flow is dominated by viscous forces, modify the
relationship you have written for part a) to eliminate the effects of fluid inertia.

c) Make a reasonable assumption concerning the relationship between tf and V when
the other variables are fixed so that you can determine the viscosity ratio mnew/mold
necessary for proper operation of the old machine with the new jars.

1.25. As an idealization of fuel injection in a diesel engine, consider a stream of high-speed
fluid (called a jet) that emerges into a quiescent air reservoir at t ¼ 0 from a small hole
in an infinite plate to form a plume where the fuel and air mix.
a) Develop a scaling law via dimensional analysis for the penetration distanceD of the

plume as a function of: Dp the pressure difference across the orifice that drives
the jet, do the diameter of the jet orifice, ro the density of the fuel, mN and rN the
viscosity and density of the air, and t the time since the jet was turned on.

b) Simplify this scaling law for turbulent flow where air viscosity is no longer
a parameter.

c) For turbulent flow and D � do, do and rN are not parameters. Recreate the
dimensionless law for D.

d) For turbulent flow and D [ do, only the momentum flux of the jet matters, so Dp
and do are replaced by the single parameter Jo ¼ jet momentum flux (Jo has the units
of force and is approximately equal to Dpd2o). Recreate the dimensionless law for D
using the new parameter Jo.

1.26. 3One of the simplest types of gasoline carburetors is a tube with a small port for
transverse injection of fuel. It is desirable to have the fuel uniformlymixed in the passing
airstream as quickly as possible. A prediction of the mixing length L is sought. The
parameters of this problem are: r ¼ density of the flowing air, d ¼ diameter of the tube,
m ¼ viscosity of the flowing air, U ¼mean axial velocity of the flowing air, and
J ¼ momentum flux of the fuel stream.

3Developed from research discussions with Professor R. Breidenthal
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a) Write a dimensionless law for L.
b) Simplify your result from part a) for turbulent flow where mmust drop out of your

dimensional analysis.
c) When this flow is turbulent, it is observed that mixing is essentially complete after

one rotation of the counter-rotating vortices driven by the injected-fuel momentum
(see the downstream view of the drawing for this problem), and that the vortex
rotation rate is directly proportional to J. Based on this information, assume that
Lf (rotation time)(U) to eliminate the arbitrary function in the result of part b). The
final formula for L should contain an undetermined dimensionless constant.

1.27. Consider dune formation in a large horizontal desert of deep sand.
a) Develop a scaling relationship that describes how the height h of the dunes

depends on the average wind speed U, the length of time the wind has been
blowing Dt, the average weight and diameter of a sand grain w and d, and the air’s
density r and kinematic viscosity n.

b) Simplify the result of part a) when the sand-air interface is fully rough and n is no
longer a parameter.

c) If the sand dune height is determined to be proportional to the density of the air,
how do you expect it to depend on the weight of a sand grain?

1.28. An isolated nominally spherical bubble with radius R undergoes shape oscillations at
frequency f. It is filled with air having density ra and resides in water with density rw
and surface tension s. What frequency ratio should be expected between two isolated
bubbles with 2 cm and 4 cm diameters undergoing geometrically similar shape
oscillations? If a soluble surfactant is added to the water that lowers s by a factor of
two, by what factor should air bubble oscillation frequencies increase or decrease?

1.29. In general, boundary layer skin friction, sw, depends on the fluid velocity U above the
boundary layer, the fluid density r, the fluid viscosity m, the nominal boundary layer
thickness d, and the surface roughness length scale 3.
a) Generate a dimensionless scaling law for boundary layer skin friction.
b) For laminar boundary layers, the skin friction is proportional to m. When this is

true, how must sw depend on U and r?
c) For turbulent boundary layers, the dominant mechanisms for momentum

exchange within the flow do not directly involve the viscosity m. Reformulate your
dimensional analysis without it. How must sw depend on U and r when m is not
a parameter?
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d) For turbulent boundary layers on smooth surfaces, the skin friction on a solid wall
occurs in a viscous sublayer that is very thin compared to d. In fact, because the
boundary layer provides a buffer between the outer flow and this viscous sub-layer,
the viscous sublayer thickness lv does not depend directly on U or d. Determine
how lv depends on the remaining parameters.

e) Now consider nontrivial roughness. When 3 is larger than lv a surface can no longer
be considered fluid-dynamically smooth. Thus, based on the results from parts a)
through d) and anything you may know about the relative friction levels in laminar
and turbulent boundary layers, are high- or low-speed boundary layer flows more
likely to be influenced by surface roughness?

1.30. Turbulent boundary layer skin friction is one of the fluid phenomena that limit the
travel speed of aircraft and ships. One means for reducing the skin friction of liquid
boundary layers is to inject a gas (typically air) from the surface on which the
boundary layer forms. The shear stress, sw, that is felt a distance L downstream of such
an air injector depends on: the volumetric gas flux per unit span q (in m2/s), the free
stream flow speed U, the liquid density r, the liquid viscosity m, the surface tension s,
and the gravitational acceleration g.
a) Formulate a dimensionless law for sw in terms of the other parameters.
b) Experimental studies of air injection into liquid turbulent boundary layers on flat

plates has found that the bubbles may coalesce to form an air film that provides
near perfect lubrication, sw/0 for L > 0, when q is high enough and gravity tends
to push the injected gas toward the plate surface. Reformulate your answer to part
a) by dropping sw and L to determine a dimensionless law for the minimum air
injection rate, qc, necessary to form an air layer.

c) Simplify the result of part b) when surface tension can be neglected.
d) Experimental studies (Elbing et al., 2008) find that qc is proportional to U2. Using

this information, determine a scaling law for qc involving the other parameters.
Would an increase in g cause qc to increase or decrease?
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CHAPTER OBJECTIVES

• To define the notation used in this text for

scalars, vectors, and tensors

• To review the basic algebraic manipulations

of vectors and matrices

• To present how vector differentiation is

applied to scalars, vectors, and tensors

• To review the fundamental theorems of

vector field theory

2.1. SCALARS, VECTORS, TENSORS, NOTATION

The physical quantities in fluid mechanics vary in their complexity, and may involve
multiple spatial directions. Their proper specification in terms of scalars, vectors, and (second

39Fluid Mechanics, Fifth Edition DOI: 10.1016/B978-0-12-382100-3.10002-2 � 2012 Elsevier Inc. All rights reserved.



order) tensors is the subject of this chapter. Here, three independent spatial dimensions are
assumed to exist. The reader can readily simplify, or extend, the various results presented
here for fewer, or more, independent spatial dimensions.

Scalars or zero-order tensors may be defined with a single magnitude and appropriate
units, may vary with spatial location, but are independent of coordinate directions. Scalars
are typically denoted herein by italicized symbols. For example, common scalars in fluid
mechanics are pressure p, temperature T, and density r.

Vectors or first-order tensors have both a magnitude and a direction. A vector can be
completely described by its components along three orthogonal coordinate directions.
Thus, the components of a vector may change with a change in coordinate system. A vector
is usually denoted herein by a boldface symbol. For example, common vectors in fluid
mechanics are position x, fluid velocity u, and gravitational acceleration g. In a Cartesian
coordinate system with unit vectors e1, e2, and e3, in the three mutually perpendicular direc-
tions, the position vector x, OP in Figure 2.1, may be written

x ¼ e1x1 þ e2x2 þ e3x3, (2.1)

where x1, x2, and x3 are the components of x along each Cartesian axis. Here, the subscripts of
e do not denote vector components but rather reference the coordinate axes 1, 2, and 3; hence,
the es are vectors themselves. Sometimes, to save writing, the components of a vector are
denoted with an italic symbol having one indexdsuch as i, j, or kdthat implicitly is known
to take on three possible values: 1, 2, or 3. For example, the components of x can be denoted
by xi or xj (or xk, etc.). For algebraic manipulation, a vector is written as a columnmatrix; thus,
(2.1) is consistent with the following vector specifications:

x ¼
2

4

x1
x2
x3

3

5 where e1 ¼
2

4

1
0
0

3

5, e2 ¼
2

4

0
1
0

3

5, and e3 ¼
2

4

0
0
1

3

5:

The transpose of the matrix (denoted by a superscript T) is obtained by interchanging rows
and columns, so the transpose of the column matrix x is the row matrix:

xT ¼ ½ x1 x2 x3 �:

2

3

1

O

x1

x2

x3

e1

e2

e3

P

x

FIGURE 2.1 Position vector OP and its three Cartesian components (x1, x2, x3). The three unit vectors for the
coordinate directions are e1, e2, and e3. Once the coordinate system is chosen, the vector x is completely defined by
its components, xi where i¼ 1, 2, or 3.
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However, to save space in the text, the square-bracket notation for vectors shown here is typi-
cally replaced by triplets (or doublets) of values separated by commas and placed inside ordi-
nary parentheses, for example, x ¼ (x1, x2, x3).

Second-order tensors have a component for each pair of coordinate directions and there-
fore may have as many as 3 � 3 ¼ 9 separate components. A second-order tensor is some-
times denoted by a boldface symbol. For example, a common second-order tensor in fluid
mechanics is the stress s. Like vector components, second-order tensor components change
with a change in coordinate system. Once a coordinate system is chosen, the nine compo-
nents of a second-order tensor can be represented by a 3 � 3 matrix, or by an italic symbol
having two indices, such as sij for the stress tensor. Here again the indices i and j are known
implicitly to separately take on the values 1, 2, or 3. Second-order tensors are further dis-
cussed in Section 2.4.

A second implicit feature of index-based or indicial notation is the implied sum over
a repeated index in terms involving multiple indices. This notational convention can be
stated as follows: Whenever an index is repeated in a term, a summation over this index is implied,
even though no summation sign is explicitly written. This notational convention saves writing
and increases mathematical precision when dealing with products of first- and higher-order
tensors. It was introduced by Albert Einstein and is sometimes referred to as the Einstein
summation convention. It can be illustrated by a simple example involving the ordinary dot
product of two vectors a and b having components ai and bj, respectively. Their dot product
is the sum of component products,

a,b ¼ a1b1 þ a2b2 þ a3b3 ¼
X
3

i¼1

aibih aibi, (2.2)

where the final three-line definition equality (h) follows from the repeated-index implied-
sum convention. Since this notational convention is unlikely to be comfortable to the
reader after a single exposure, it is repeatedly illustrated via definition equalities in this
chapter before being adopted in the remainder of this text wherever indicial notation is
used.

Both boldface (aka, vector or dyadic) and indicial (aka, tensor) notations are used throughout
this text. With boldface notation the physical meaning of terms is generally clearer, and there
are no subscripts to consider. Unfortunately, algebraic manipulations may be difficult and not
distinct in boldface notation since the product ab may not be well defined nor equal to ba
when a and b are second-order tensors. Boldface notation has other problems too; for
example, the order or rank of a tensor is not clear if one simply calls it a.

Indicial notation avoids these problems because it deals only with tensor components,
which are scalars. Algebraic manipulations are simpler and better defined, and special atten-
tion to the ordering of terms is unnecessary (unless differentiation is involved). In addition,
the number of indices or subscripts clearly specifies the order of a tensor. However, the phys-
ical structure and meaning of terms written with index notation only become apparent after
an examination of the indices. Hence, indices must be clearly written to prevent mistakes and
to promote proper understanding of the terms they help define. In addition, the cross
product involves the possibly cumbersome alternating tensor 3ijk as described in Sections
2.7 and 2.9.
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2.2. ROTATION OF AXES: FORMAL DEFINITION OF A VECTOR

A vector can be formally defined as any quantity whose components change similarly to
the components of the position vector under rotation of the coordinate system. Let O123 be
the original coordinate system, and O102030 be the rotated system that shares the same origin
O (see Figure 2.2). The position vector x can be written in either coordinate system,

x ¼ x1e1 þ x2e2 þ x3e3 or x ¼ x01e
0
1 þ x02e

0
2 þ x03e

0
3, (2.1, 2.3)

where the components of x in O123 andO102030 are xi and x0j , respectively, and the e0j are the unit
vectors in O102030. Forming a dot product of xwith e01, and using both (2.1) and (2.3) produces

x,e01 ¼ x1e1,e
0
1 þ x2e2,e

0
1 þ x3e3,e

0
1 ¼ x01, (2.4)

where we recognize the dot products between unit vectors as direction cosines; e1,e01 is the
cosine of the angle between the 1 and 10 axes, e2,e01 is the cosine of the angle between the 2
and 10 axes, and e3,e01 is the cosine of the angle between the 3 and 10 axes. Forming the dot
products x,e02 ¼ x02 and x,e03 ¼ x03, and then combining these results with (2.3) produces

x0j ¼ x1C1j þ x2C2j þ x3C3j ¼
X
3

i¼1

xiCij h xiCij, (2.5)

where Cij ¼ ei,e0j is a 3 � 3 matrix of direction cosines and the definition equality follows
from the summation convention. In (2.5) the free or not-summed-over index is j, while the

FIGURE 2.2 A rotation of the original Cartesian coordinate system O123 to a new system O102030. Here the
x vector is unchanged, but its components in the original system xi and in the rotated system x0i will not be the
same.
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repeated or summed-over index can be any letter other than j. Thus, the rightmost term in (2.5)
could equally well have been written xkCkj or xmCmj. Similarly, any letter can also be used for
the free index, as long as the same free index is used on both sides of the equation. For
example, denoting the free index by i and the summed index by k allows (2.5) to be written
with indicial notation as

x0i ¼ xkCki: (2.6)

This index-choice flexibility exists because the three algebraic equations represented by (2.5),
corresponding to the three values of j, are the same as those represented by (2.6) for the three
values of i.

It can be shown (see Exercise 2.2) that the components of x in O123 are related to those in
O102030 by

xj ¼
X
3

i¼1

x0iCji h x0iCji: (2.7)

The indicial positions on the right side of this relation are different from those in (2.5),
because the first index of Cij is summed in (2.5), whereas the second index of Cij is summed
in (2.7).

We can now formally define a Cartesian vector as any quantity that transforms like the
position vector under rotation of the coordinate system. Therefore, by analogy with (2.5), u
is a vector if its components transform as

u0j ¼
X
3

i¼1

uiCijh uiCij: (2.8)

EXAMPLE 2.1

Convert the two-dimensional vector u ¼ (u1,u2) from Cartesian (x1,x2) to polar (r,q) coordinates

(see Figure 3.3a).

Solution

Clearly u can be represented in either coordinate system: u ¼ u1e1 þ u2e2 ¼ urer þ uqeq, where ur
and uq are the components in polar coordinates, and er and eq are the unit vectors in polar coor-

dinates. Here the polar coordinate system is rotated compared to the Cartesian system, as illus-

trated in Figure 2.3. Forming the dot product of the above equation with er and eq produces two

algebraic equations that are equivalent to (2.5)

ur ¼ u1e1,er þ u2e2,er

uq ¼ u1e1,eq þ u2e2,eq,

with subscripts r and q replacing j ¼ 1 and 2 in (2.5). Evaluation of the unit vector dot products

leads to

ur ¼ u1 cos qþ u2 cos
�p

2
� q
�

¼ u1 cos qþ u2 sin q, and

uq ¼ u1 cos
�

qþ p

2

�

þ u2 cos q ¼ �u1 sin qþ u2 cos q:
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Thus, in this case:

Cij ¼
�

e1,er e1,eq
e2,er e2,eq

�

¼
�

cos q �sin q

sin q cos q

�

:

2.3. MULTIPLICATION OF MATRICES

LetA and B be two 3� 3 matrices. The inner product ofA and B is defined as the matrix P
whose elements are related to those of A and B by

Pij ¼
X
3

k¼1

AikBkjhAikBkj, or P ¼ A,B, (2.9, 2.10)

where the definition equality in (2.9) follows from the summation convention, and the single
dot between A and B in (2.10) signifies that a single index is summed to find P. An important
feature of (2.9) is that the elements are summed over the inner or adjacent index k. It is some-
times useful to write (2.9) as

Pij ¼ AikBkj ¼ ðA,BÞij,

where the last term is to be read as, “the ij-element of the inner product of matricesA and B.”
In explicit form, (2.9) is written as

This equation signifies that the ij-element of P is determined by multiplying the elements in
the i-row of A and the j-column of B, and summing. For example,

x1

x2

e1

e2
er

eθ

θ
θ

θ u
u2

u1

ur

uθ

r

FIGURE 2.3 Resolution of a two-dimensional vector u in (x1,x2)-Cartesian and (r,q)-polar coordinates. The
angle between the e1 and er unit vectors, and the e2 and eq unit vectors, is q. The angle between the er and e2
unit vectors is p/2e q, and the angle between the e1 and eq unit vectors is p/2þ q. Here u does not emerge
from the origin of coordinates (as in Figure 2.2) but it may be well defined in either coordinate system even
though its components are not the same in the (x1,x2)- and (r,q)-coordinates.

P11 P12 P13

P21 P22 P23

P31 P32 P33

A11 A12 A13

A21 A22 A23

A31 A32 A33

B11 B12 B13

B21 B22 B23

B31 B32 B

(2.11)

33

.
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P12 ¼ A11B12 þ A12B22 þ A13B32,

as indicated by the dashed-line boxes in (2.11). Naturally, the inner product A,B is only
defined if the number of columns of A equals the number of rows of B.

Equation (2.9) also applies to the inner product of a 3 � 3 matrix and a column vector. For
example, (2.6) can be written as x0i ¼ CT

ikxk, which is now of the form of (2.9) because the
summed index k is adjacent. In matrix form, (2.6) can therefore be written as

2

4

x01
x02
x03

3

5 ¼
2

4

C11 C12 C13

C21 C22 C23

C31 C32 C33

3

5

T2

4

x1
x2
x3

3

5:

Symbolically, the preceding is x0 ¼ CT,x, whereas (2.7) is x ¼ C,x0:

2.4. SECOND-ORDER TENSORS

A simple-to-complicated hierarchical description of physically meaningful quantities
starts with scalars, proceeds to vectors, and then continues to second- and higher-order
tensors. A scalar can be represented by a single value. A vector can be represented by three
components, one for each of three orthogonal spatial directions denoted by a single free
index. A second-order tensor can be represented by nine components, one for each pair of
directions, and denoted by two free indices. Nearly all the tensors considered in Newtonian
fluid mechanics are zero-, first-, or second-order tensors.

To better understand the structure of second-order tensors, consider the stress tensor s or
sij. Its two free indices specify two directions; the first indicates the orientation of the surface
on which the stress is applied while the second indicates the component of the force per unit
area on that surface. In particular, the first (i) index of sij denotes the direction of the surface
normal, and the second ( j) index denotes the force component direction. This situation is
illustrated in Figure 2.4, which shows the normal and shear stresses on an infinitesimal
cube having surfaces parallel to the coordinate planes. The stresses are positive if they are
directed as shown in this figure. The sign convention is that, on a surface whose outward
normal points in the positive direction of a coordinate axis, the normal and shear stresses
are positive if they point in the positive directions of the other axes. For example, on the
surface ABCD, whose outward normal points in the positive x2 direction, the positive stresses
s21, s22, and s23 point in the x1, x2, and x3 directions, respectively. Normal stresses are positive
if they are tensile and negative if they are compressive. On the opposite face EFGH the stress
components have the same value as on ABCD, but their directions are reversed. This is
because Figure 2.4 represents stresses at a point. The cube shown is intended to be vanishingly
small, so that the faces ABCD and EFGH are just opposite sides of a plane perpendicular to
the x2-axis. Thus, stresses on the opposite faces are equal and opposite, and satisfy Newton’s
third law.

Avector u is completely specified by the three components ui (where i¼ 1, 2, 3) because the
components of u in any direction other than the original axes can be found from (2.8). Simi-
larly, the state of stress at a point can be completely specified by the nine components sij
(where i, j ¼ 1, 2, 3) that can be written as the matrix
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s ¼
2

4

s11 s12 s13
s21 s22 s23
s31 s32 s33

3

5:

The specification of these nine stress components on surfaces perpendicular to the coordinate
axes completely determines the state of stress at a point because the stresses on any arbitrary
plane can be determined from them. To find the stresses on any arbitrary surface, we can
consider a rotated coordinate system O102030 having one axis perpendicular to the given
surface. It can be shown by a force balance on a tetrahedron element (see, e.g., Sommerfeld,
1964, page 59) that the components of s in the rotated coordinate system are

s0mn ¼
X
3

i¼1

X
3

j¼1

CimCjnsij hCimCjnsij, (2.12)

where the definition equality follows from the summation convention. This equation may
also be written as: s0mn¼ CT

misijCjn or s0 ¼ CT,s,C. Note the similarity between the vector
transformation rule (2.8) and (2.12). In (2.8) the first index of C is summed, while its second
index is free. Equation (2.12) is identical, except that C is used twice. A quantity that obeys
(2.12) is called a second-order tensor.

Tensor and matrix concepts are not quite the same. A matrix is any arrangement of
elements, written as an array. The elements of a matrix represent the components of
a second-order tensor only if they obey (2.12). In general, tensors can be of any order and
the number of free indices corresponds to the order of the tensor. For example, A is
a fourth-order tensor if it has four free indices, and the associated 34¼ 81 components change
under a rotation of the coordinate system according to

FIGURE 2.4 Illustration of the
stress field at a point via stress
components on a cubic volume
element. Here each surface may
experience one normal and two
shear components of stress. The
directions of positive normal and
shear stresses are shown. For
clarity, the stresses on faces FBCG
and CDHG are not labeled.
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A0
mnpq ¼

X
3

i¼1

X
3

j¼1

X
3

k¼1

X
3

l¼1

CimCjnCkpClqAijkl hCimCjnCkpClqAijkl, (2.13)

where again the definition equality follows from the summation convention. Tensors of
various orders arise in fluid mechanics. Common second-order tensors are the stress tensor
sij and the velocity-gradient tensor vui/vxj. The nine products uivj formed from the compo-
nents of the two vectors u and v also transform according to (2.12), and therefore form
a second-order tensor. In addition, the Kronecker-delta and alternating tensors are also
frequently used; these are defined and discussed in Section 2.7.

2.5. CONTRACTION AND MULTIPLICATION

When the two indices of a tensor are equated, and a summation is performed over this
repeated index, the process is called contraction. An example is

X
3

j¼1

Ajj hAjj ¼ A11 þ A22 þ A33,

which is the sum of the diagonal terms ofAij. Clearly,Ajj is a scalar and therefore independent
of the coordinate system. In other words, Ajj is an invariant. (There are three independent
invariants of a second-order tensor, and Ajj is one of them; see Exercise 2.9.)

Higher-order tensors can be formed by multiplying lower-order tensors. If A and B are
two second-order tensors, then the 81 numbers defined by Pijkl h AijBkl transform according
to (2.13), and therefore form a fourth-order tensor.

Lower-order tensors can be obtained by performing a contraction within a multiplied
form. The four contractions of AijBkl are

X
3

i¼1

Aij BkihAij Bki ¼ BkiAij ¼ ðB,AÞkj,

X
3

i¼1

Aij Bik hAij Bik ¼ AT
jiBik ¼

�

AT,B
�

jk,

X
3

i¼1

AijBkjhAijBkj ¼ AijB
T
jk ¼

�

A,BT
�

ik,

X
3

i¼1

Aij Bjk hAijBjk ¼ ðA,BÞik,

(2.14)

where all the definition equalities follow from the summation convention. All four prod-
ucts in (2.14) are second-order tensors. Note also in (2.14) how the terms have been rear-
ranged until the summed index is adjacent; at this point they can be written as a product
of matrices.
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The contracted product of a second-order tensor A and a vector u is a vector. The two
possibilities are

X
3

i¼1

AijujhAijuj ¼ ðA,uÞi, and

X
3

i¼1

AijuihAijui ¼ AT
jiui ¼

�

AT,u
�

j,

where again the definition equalities follow from the summation convention. The doubly
contracted product of two second-order tensors A and B is a scalar. Using all three notations,
the two possibilities are

X
3

i¼1

X
3

j¼1

AijBjihAijBjið¼ A : BÞ and
X
3

i¼1

X
3

j¼1

AijBij hAijBijð¼ A : BTÞ,

where the bold colon (:) implies a double contraction or double dot product.

2.6. FORCE ON A SURFACE

A surface area element has a size (or magnitude) and an orientation, so it can be treated
as a vector dA. If dA is the surface element’s size, and n is its normal unit vector, then
dA [ ndA.

Suppose the nine components, sij, of the stress tensor with respect to a given set of Carte-
sian coordinates O123 are given, andwewant to find the force per unit area, f(n) with compo-
nents fi, on an arbitrarily oriented surface element with normal n (see Figure 2.5). One way of
completing this task is to switch to a rotated coordinate system, and use (2.12) to find the
normal and shear stresses on the surface element. An alternative method is described
here. Consider the tetrahedral element shown in Figure 2.5. The net force f1 on the element
in the first direction produced by the stresses sij is

f1dA ¼ s11dA1 þ s21dA2 þ s31dA3:

The geometry of the tetrahedron requires: dAi ¼ nidA, where ni are the components of the
surface normal vector n. Thus, the net force equation can be rewritten as

f1dA ¼ s11n1dAþ s21n2dAþ s31n3dA:

Dividing by dA then produces f1¼ sj1nj (with summation implied), or for any component of f,

fi ¼
X
3

j¼1

sjinjh sjinj or f ¼ n,s, (2.15)

where the boldface-only version of (2.15) follows when sij ¼ sji, a claim that is proved in
Chapter 4. Therefore, the contracted or inner product of the stress tensor s and the unit
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normal vector n gives the force per unit area on a surface perpendicular to n. This result is
analogous to un ¼ u,n, where un is the component of the vector u along n; however, whereas
un is a scalar, f in (2.15) is a vector.

EXAMPLE 2.2

In two spatial dimensions, x1 and x2, consider parallel flow through a channel (see Figure 2.6).

Choose x1 parallel to the flow direction. The viscous stress tensor at a point in the flow has the form

s ¼
�

0 a
a 0

�

,

FIGURE 2.6 Determination of the force per unit area on a small area element with a normal vector rotated
30� from the flow direction in a simple unidirectional shear flow parallel to the x1-axis.

x2

x1

x3

dA

dA1dA2

dA3

τ11

τ12

τ13
τ22

τ23

τ21

τ32 τ31

τ33

n f(n)

f1

f2
f3

O

FIGURE 2.5 Force f per unit area on a surface element whose outward normal is n. The areas of the tetrahe-
dron’s faces that are perpendicular to the ith coordinate axis are dAi. The area of the largest tetrahedron face is dA.
As in Figure 2.4, the directions of positive normal and shear stresses are shown.
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where a is positive in one half of the channel, and negative in the other half. Find the magnitude and

direction of the force per unit area f on an element whose outward normal points f ¼ 30� from the

flow direction.

Solution by Using (2.15)

Start with the definition of n in the given coordinates:

n ¼
�

cosf
sinf

�

¼
� ffiffiffi

3
p

=2
1=2

�

:

The force per unit area is therefore

f ¼ sjinj ¼ sijnj ¼
�

0 a
a 0

��

cosf
sinf

�

¼
�

a sinf
a cosf

�

¼
�

a=2
a
ffiffiffi

3
p

=2

�

¼
�

f1
f2

�

:

The magnitude of f is

f ¼ jfj ¼
�

f21 þ f22

�1=2¼ jaj:

If q is the angle of f with respect to the x1 axis, then

sin q ¼ f2=f ¼
�
ffiffiffi

3
p

=2
�

ða=jajÞ and cos q ¼ f1=f ¼ ð1=2Þða=jajÞ:

Thus q ¼ 60� if a is positive (in which case both sin q and cos q are positive), and q ¼ 240� if a is
negative (in which case both sin q and cos q are negative).

Solution by Using (2.12)
Consider a rotated coordinate system O1020 with the x01-axis coinciding with n as shown in

Figure 2.6. Using (2.12), the components of the stress tensor in the rotated frame are

s011 ¼ C11C21s12 þ C21C11s21 ¼ ðcos f sin fÞaþ ðsin f cos fÞa ¼
ffiffiffi

3
p

2

1

2
aþ 1

2

ffiffiffi

3
p

2
a ¼

ffiffiffi

3
p

2
a and ½?�,

s012 ¼ C11C22s12 þ C21C12s21 ¼ ðcos fÞ2a� ðsin fÞ2a ¼
ffiffiffi

3
p

2

ffiffiffi

3
p

2
a� 1

2

1

2
a ¼ 1

2
a,

where Cij ¼
h

cos f �sin f

sin f cos f

i

. The normal stress is therefore
ffiffiffi

3
p

a/2, and the shear stress is a/2.

These results again provide the magnitude of a and a direction of 60� or 240� depending on the

sign of a.

2.7. KRONECKER DELTA AND ALTERNATING TENSOR

The Kronecker delta is defined as

dij ¼
	

1 if i ¼ j
0 if isj




: (2.16)

2. CARTESIAN TENSORS50



In three spatial dimensions it is the 3 � 3 identity matrix:

d ¼
2

4

1 0 0
0 1 0
0 0 1

3

5:

In matrix multiplication operations involving the Kronecker delta, it simply replaces its
summed-over index by its other index. Consider

X
3

j¼1

dijujh dijuj ¼ di1u1 þ di2u2 þ di3u3;

the right-hand side is u1 when i ¼ 1, u2 when i ¼ 2, and u3 when i ¼ 3; thus

dijuj ¼ ui: (2.17)

From its definition it is clear that dij is an isotropic tensor in the sense that its components are
unchanged by a rotation of the frame of reference, that is, d0ij ¼ dij. Isotropic tensors can be of
various orders. There is no isotropic tensor of first order, and dij is the only isotropic tensor of
second order. There is also only one isotropic tensor of third order. It is called the alternating
tensor or permutation symbol, and is defined as

3ijk ¼
8

<

:

1 if ijk ¼ 123, 231, or 312 ðcyclic orderÞ;
0 if any two indices are equal;

�1 if ijk ¼ 321, 213, or 132 ðanti-cyclic orderÞ

9

=

;

: (2.18)

From this definition, it is clear that an index on 3ijk can be moved two places (either to the right or to
the left) without changing its value. For example, 3ijk ¼ 3jki where i has been moved two places to
the right, and 3ijk ¼ 3kij where k has been moved two places to the left. For a movement of one
place, however, the sign is reversed. For example, 3ijk ¼ �3ikj where j has been moved one
place to the right.

A very frequently used relation is the epsilon delta relation:

X
3

k¼1

3ijk3klm h 3ijk3klm ¼ dildjm � dimdjl: (2.19)

The reader can verify the validity of this relationship by choosing some values for the indices
ijlm. This relationship can be remembered by noting the following two points: 1) The adjacent
index k is summed; and 2) the first two indices on the right side, namely, i and l, are the first
index of 3ijk and the first free index of 3klm. The remaining indices on the right side then follow
immediately.

2.8. VECTOR, DOT, AND CROSS PRODUCTS

The dot product of two vectors u and v is defined as the scalar

u,v ¼ v,u ¼ u1y1 þ u2y2 þ u3y3 ¼
X
3

i¼1

uiyih uiyi:
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It is easy to show that u,v ¼ uy cos q, where u and y are the vectors’ magnitudes and q is the
angle between the vectors (see Exercises 2.12 and 2.13). The dot product is therefore
the magnitude of one vector times the component of the other in the direction of the first.
The dot product u,v is equal to the sum of the diagonal terms of the tensor uiyj.

The cross product between two vectors u and v is defined as the vector w whose magni-
tude is uy sin q where q is the angle between u and v, and whose direction is perpendicular
to the plane of u and v such that u, v, and w form a right-handed system. Clearly, u � v ¼
�v � u. Furthermore, unit vectors in right-handed coordinate systems obey the cyclic rule
e1 � e2 ¼ e3. From these requirements it can be shown that

u� v ¼ ðu2y3 � u3y2Þe1 þ ðu3y1 � u1y3Þe2 þ ðu1y2 � u2y1Þe3 (2.20)

(see Exercise 2.14). Equation (2.20) can be written as the determinant of a matrix

u� v ¼ det

2

4

e1 e2 e3
u1 u2 u3
y1 y2 y3

3

5:

In indicial notation, the k-component of u � v can be written as

ðu� vÞk¼
X
3

i¼1

X
3

j¼1

3ijkuiyjh 3ijkuiyj ¼ 3kijuiyj: (2.21)

As a check, for k¼ 1 the nonzero terms in the double sum in (2.21) result from i¼ 2, j¼ 3, and
from i ¼ 3, j¼ 2. This follows from the definition (2.18) that the permutation symbol is zero if
any two indices are equal. Thus, (2.21) gives

ðu� vÞ1¼ 3ij1uiyj ¼ 3231u2y3 þ 3321u3y2 ¼ u2y3 � u3y2,

which agrees with (2.20). Note that the third form of (2.21) is obtained from the second by
moving the index k two places to the left; see the remark following (2.18).

2.9. GRADIENT, DIVERGENCE, AND CURL

The vector-differentiation operator “del”i is defined symbolically by

V ¼ e1
v

vx1
þ e2

v

vx2
þ e3

v

vx3
¼
X
3

i¼1

ei
v

vxi
h ei

v

vxi
: (2.22)

When operating on a scalar function of position f, it generates the vector

Vf ¼
X
3

i¼1

ei
vf

vxi
h ei

vf

vxi
,

iThe inverted Greek delta is called a “nabla” (nabla). The word originates from the Hebrew word for lyre, an

ancient harp-like stringed instrument. It was on his instrument that the boy, David, entertained King Saul

(Samuel II) and it is mentioned repeatedly in Psalms as a musical instrument to use in the praise of God.
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whose i-component is ðVfÞi¼ vf=vxi. The vector Vf is called the gradient of f, and Vf is
perpendicular to surfaces defined by f ¼ constant. In addition, it specifies the magnitude
and direction of the maximum spatial rate of change of f (Figure 2.7). The spatial rate of
change of f in any other direction n is given by

vf=vn ¼ Vf,n:

In Cartesian coordinates, the divergence of a vector field u is defined as the scalar

V,u ¼ vu1
vx1

þ vu2
vx2

þ vu3
vx3

¼
X
3

i¼1

vui
vxi

h
vui
vxi

: (2.23)

So far, we have defined the operations of the gradient of a scalar and the divergence of
a vector. We can, however, generalize these operations. For example, the divergence of
a second-order tensor s can be defined as the vector whose i-component is

ðV,sÞi¼
X
3

j¼1

vsij
vxj

h
vsij
vxj

:

It is evident that the divergence operation decreases the order of the tensor by one. In contrast,
the gradient operation increases the order of a tensor by one, changing a zero-order tensor to
a first-order tensor, and a first-order tensor to a second-order tensor, i.e., vui/vxj.

FIGURE 2.7 An illustration of the gradient, Vf, of a scalar function f. The curves of constant f and Vf are
perpendicular, and the spatial derivative of f in the direction n is given by n,Vf. The most rapid change in f is
found when n and Vf are parallel.
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The curl of a vector field u is defined as the vector V � u, whose i-component can be
written as

ðV� uÞi¼
X
3

j¼1

X
3

k¼1

3ijk
vuk
vxj

h 3ijk
vuk
vxj

(2.24)

using (2.21) and (2.22). The three components of the vector V� u can easily be found from the
right-hand side of (2.24). For the i¼ 1 component, the nonzero terms in the double sum result
from j ¼ 2, k ¼ 3, and from j ¼ 3, k ¼ 2. The three components of V � u are finally found as

ðV� uÞ1¼
vu3
vx2

� vu2
vx3

, ðV� uÞ2¼
vu1
vx3

� vu3
vx1

, and ðV� uÞ3¼
vu2
vx1

� vu1
vx2

: (2.25)

Avector field u is called solenoidal or divergence free if V$u¼ 0, and irrotational or curl free if V�
u ¼ 0. The word solenoidal refers to the fact that the divergence of the magnetic induction is
always zero because of the absence of magnetic monopoles. The reason for the word irrota-
tional is made clear in Chapter 3.

EXAMPLE 2.3

If a is a positive constant and b is a constant vector, determine the divergence and the curl of

a vector field that diverges from the origin of coordinates, u ¼ ax, and a vector field indicative of

solid body rotation about a fixed axis, u ¼ b � x.

Solution

Using u ¼ ax ¼ ax1e1 þ ax2e2 þ ax2e2 in (2.23) and (2.25) produces:

V,u ¼ vax1
vx1

þ vax2
vx2

þ vax3
vx3

¼ aþ aþ a ¼ 3a,

ðV� uÞ1¼
vax3
vx2

� vax2
vx3

¼ 0, ðV� uÞ2 ¼
vax1
vx3

� vax3
vx1

¼ 0, and

ðV� uÞ3¼
vax2
vx1

� vax1
vx2

¼ 0:

Thus, u ¼ ax has a constant nonzero divergence and is irrotational. Using u ¼ (b2x3 e b3x2)e1 þ
(b3x1 e b1x3)e2 þ (b1x2 e b2x1)e3 in (2.23) and (2.25) produces:

V,u ¼ vðb2x3 � b3x2Þ
vx1

þ vðb3x1 � b1x3Þ
vx2

þ vðb1x2 � b2x1Þ
vx3

¼ 0,

ðV� uÞ1¼
vðb1x2 � b2x1Þ

vx2
� vðb3x1 � b1x3Þ

vx3
¼ 2b1,

ðV� uÞ2¼
vðb2x3 � b3x2Þ

vx3
� vðb1x2 � b2x1Þ

vx1
¼ 2b2, and

ðV� uÞ3¼
vðb3x1 � b1x3Þ

vx1
� vðb2x3 � b3x2Þ

vx2
¼ 2b3:

Thus, u ¼ b � x is divergence free and rotational.
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2.10. SYMMETRIC AND ANTISYMMETRIC TENSORS

A tensor B is called symmetric in the indices i and j if the components do not change when
i and j are interchanged, that is, if Bij ¼ Bji. Thus, the matrix of a symmetric second-order
tensor is made up of only six distinct components (the three on the diagonal where i ¼ j,
and the three above or below the diagonal where is j). On the other hand, a tensor is called
antisymmetric if Bij ¼ eBji. An antisymmetric tensor must have zero diagonal components,
and is made up of only three distinct components (the three above or below the diagonal).
Any tensor can be represented as the sum of a symmetric part and an antisymmetric part.
For if we write

Bij ¼
1

2

�

Bij þ Bji

�þ 1

2

�

Bij � Bji

�¼ Sij þ Aij,

then the operation of interchanging i and j does not change the first term, but changes the
sign of the second term. Therefore, (Bij þ Bji)/2 h Sij is called the symmetric part of
Bij, and (Bij � Bji)/2 h Aij is called the antisymmetric part of Bij.

Every vector can be associated with an antisymmetric tensor, and vice versa. For example,
we can associate the vector u having components ui, with an antisymmetric tensor:

R ¼
2

4

0 �u3 u2

u3 0 �u1

�u2 u1 0

3

5: (2.26)

The two are related via

Rij ¼
X
3

k¼1

�3ijkuk h� 3ijkuk, and uk ¼
X
3

i�1

X
3

j¼1

� 1

2
3ijkRij h� 1

2
3ijkRij: (2.27)

As a check, (2.27) gives R11 ¼ 0 and R12 ¼ �3123u3 ¼ �u3, in agreement with (2.26). (In
Chapter 3, R is recognized as the rotation tensor corresponding to the vorticity vector u.)

A commonly occurring operation is the doubly contracted product, P, of a symmetric tensor
s and another tensor B:

P ¼
X
3

k¼1

X
3

l¼1

sklBklh sklBkl ¼ skl
�

Skl þ Akl

� ¼ sklSkl þ sklAkl ¼ sijSij þ sijAij, (2.28)

where S andA are the symmetric and antisymmetric parts of B (see above). The final equality
follows from the index-summation convention; sums are completed over both k and l, so
these indices can be replaced by any two distinct indices. Exchanging the indices of A in
the final term of (2.28) produces P ¼ sijSij e sijAji, but this can also be written P ¼ sjiSji e sjiAji

because Sij and sij are symmetric. Now, replace the index j by k and the index i by l to find:

P ¼ sklSkl � sklAkl: (2.29)

This relationship and the fourth part of the extended equality in (2.28) require that sijAij ¼
sklAkl ¼ 0, and

sijBij ¼ sijSij ¼
1

2
sij
�

Bij þ Bji

�

:
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Thus, the doubly contracted product of a symmetric tensor s with any tensor B equals s
doubly contracted with the symmetric part of B, and the doubly contracted product of
a symmetric tensor and an antisymmetric tensor is zero. The latter result is analogous to
the fact that the definite integral over an even (symmetric) interval of the product of
a symmetric and an antisymmetric function is zero.

2.11. EIGENVALUES AND EIGENVECTORS
OF A SYMMETRIC TENSOR

The reader is assumed to be familiar with the concepts of eigenvalues and eigenvectors of
a matrix, so only a brief review of the main results is provided here. Suppose s is a symmetric
tensor with real elements, for example, the stress tensor. Then the following facts can be
proved:

(1) There are three real eigenvalues lk (k ¼ 1, 2, 3), which may or may not all be distinct.
(Here, the superscript k is not an exponent, and lk does not denote the k-component of
a vector.) These eigenvalues (l1, l2, and l3) are the roots or solutions of the third-degree
polynomial

det
�

�sij � ldij
�

� ¼ 0:

(2) The three eigenvectors bk corresponding to distinct eigenvalues lk are mutually
orthogonal. These eigenvectors define the directions of the principal axes of s. Each
b is found by solving three algebraic equations,

�

sij � ldij

�

bj ¼ 0

(i ¼ 1, 2, or 3), where the superscript k on l and b has been omitted for clarity because
there is no sum over k.

(3) If the coordinate system is rotated so that its unit vectors coincide with the eigenvectors,
then s is diagonal with elements lk in this rotated coordinate system,

s0 ¼
2

4

l1 0 0
0 l2 0
0 0 l3

3

5:

(4) Although the elements sij change as the coordinate system is rotated, they cannot be
larger than the largest l or smaller than the smallest l; the lk represent the extreme values
of sij.

EXAMPLE 2.4

The strain rate tensor S is related to the velocity vector u by

Sij ¼
1

2

 

vui
vxj

þ vuj
vxi

!

:
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For a two-dimensional flow parallel to the 1-direction,

u ¼
�

u1ðx2Þ
0

�

,

show how S is diagonalized in a frame of reference rotated to coincide with the principal axes.

Solution

For the given velocity profile u1(x2), it is evident that S11¼ S22¼ 0, and 2S12¼ 2S21¼ du1/dx2¼ G.

The strain rate tensor in the original coordinate system is therefore

S ¼
�

0 G
G 0

�

:

The eigenvalues are determined from

det
�

�Eij � ldij
�

�

�

�

�

�

�l G
G �l

�

�

�

�

¼ 0,

which has solutions l1 ¼ G and l2 ¼ �G. The first eigenvector b1 is given by

�

0 G
G 0

�

"

b11
b12

#

¼ l1

"

b11
b12

#

,

which has solution b11 ¼ b12 ¼ 1=
ffiffiffi

2
p

, when b1 is normalized to have magnitude unity. The second

eigenvector is similarly found so that

b1 ¼
�

1=
ffiffiffi

2
p

1=
ffiffiffi

2
p
�

, and b2 ¼
�

�1=
ffiffiffi

2
p

1=
ffiffiffi

2
p

�

:

These eigenvectors are shown in Figure 2.8. The direction cosine matrix of the original and the

rotated coordinate system is therefore

C [

2

6

6

6

6

4

1
ffiffiffi

2
p � 1

ffiffiffi

2
p

1
ffiffiffi

2
p 1

ffiffiffi

2
p

3

7

7

7

7

5

,

which represents rotation of the coordinate system by 45�. Using the transformation rule (2.12), the

components of S in the rotated system are found as follows:

S012 ¼ Ci1Cj2Sij ¼ C11C22S12 þ C21C12S21 ¼ 1
ffiffiffi

2
p 1

ffiffiffi

2
p G� 1

ffiffiffi

2
p 1

ffiffiffi

2
p G ¼ 0,

S011 ¼ Ci1Cj1Sij ¼ C11C21S12 þ C21C11S21 ¼ G, and

S022 ¼ Ci2Cj2Sij ¼ C12C22S12 þ C22C12S21 ¼ �G:

(Instead of using (2.12), all the components of S in the rotated system can be found by carrying out

the matrix product CT, S , C.) The matrix of S in the rotated frame is therefore:

S0 ¼
�

G 0
0 �G

�

:
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The foregoing matrix contains only diagonal terms. For positive G, it will be shown in the next

chapter that it represents a linear stretching at a rate G along one principal axis, and a linear

compression at a rate �G along the other; the shear strains are zero in the principal-axis coordinate

system of the strain rate tensor.

2.12. GAUSS’ THEOREM

This very useful theorem relates volume and surface integrals. LetV be a volume bounded
by a closed surface A. Consider an infinitesimal surface element dA having outward unit
normal n with components ni (Figure 2.9), and let Q(x) be a scalar, vector, or tensor field of
any order. Gauss’ theorem states that

ZZZ

V

vQ

vxi
dV ¼

ZZ

A

niQdA: (2.30)

The most common form of Gauss’ theorem is whenQ is a vector, in which case the theorem is

ZZZ

V

X
3

i¼1

vQi

vxi
dVh

ZZZ

V

vQi

vxi
dV ¼

ZZ

A

X
3

i¼1

niQi dAh

ZZ

A

niQi dA, or

ZZZ

V

V,QdV

¼
ZZ

A

n,QdA,

which is commonly called the divergence theorem. In words, the theorem states that the volume
integral of the divergence of Q is equal to the surface integral of the outflux of Q.

FIGURE 2.8 Original coor-
dinate system Ox1x2 and the
rotated coordinate system Ox01x

0
2

having unit vectors that coincide
with the eigenvectors of the strain-
rate tensor in Example 2.4. Here
the strain rate is determined
from a unidirectional flow having
only cross-stream variation, and
the angle of rotation is deter-
mined to be 45�.
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Alternatively, (2.30) defines a generalized field derivative, denoted by D, of Q when
considered in its limiting form for a vanishingly small volume,

DQ ¼ lim
V/0

1

V

ZZ

A

niQdA: (2.31)

Interestingly, this form is readily specialized to the gradient, divergence, and curl of any
scalar, vector, or tensor Q. Moreover, by regarding (2.31) as a definition, the recipes for the
computation of vector field derivatives may be obtained in any coordinate system. As stated,
(2.31) defines the gradient of a tensor Q of any order. For a tensor of order one or higher, the
divergence and curl are defined by including a dot (scalar) product or a cross (vector)
product, respectively, under the integral:

V,Q ¼ lim
V/0

1

V

ZZ

A

n,QdA, and V�Q ¼ lim
V/0

1

V

ZZ

A

n�QdA: (2.32, 2.33)

EXAMPLE 2.5
Obtain the recipe for the divergence of a vector Q(x) in Cartesian coordinates from the integral

definition (2.32).

Solution

Consider an elemental rectangular volume centered on x with faces perpendicular to the

coordinate axes (see Figure 2.4). Denote the lengths of the sides parallel to each coordinate axis

A

ndA

dA

V

dV

FIGURE 2.9 Illustration of Gauss’ theorem for a volume V enclosed by surface area A. A small volume element,
dV, and a small area element, dA, with outward normal n are shown.
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by Dx1, Dx2, and Dx3, respectively. There are six faces to this rectangular volume. First consider

the two that are perpendicular to the x1 axis, EADH with n ¼ e1 and FBCG with n ¼ ee1. A

Taylor expansion of Q(x) from the center of the volume to the center of each of these sides

produces

½Q�EADH¼ QðxÞ þ Dx1
2

vQðxÞ
vx1

þ. and ½Q�FBCG¼ QðxÞ � Dx1
2

vQðxÞ
vx1

þ.,

so that the x-direction contribution to the surface integral in (2.32) is

�½n ,Q�EADH þ½n ,Q�FBCG
�

dA ¼
��

e1,QðxÞ þ e1,
Dx1
2

vQðxÞ
vx1

þ.

�

þ
�

� e1,QðxÞ þ e1,
Dx1
2

vQðxÞ
vx1

þ.

�

Dx2Dx3

¼
�

e1,
vQðxÞ
vx1

þ.



Dx1Dx2Dx3:

Similarly for the other two directions:

�½n ,Q�ABCD þ ½n ,Q�EFGH
�

dA ¼
�

e2,
vQðxÞ
vx2

þ.



Dx1Dx2Dx3

�½n ,Q�ABFE þ ½n ,Q�DCGH

�

dA ¼
�

e3,
vQðxÞ
vx3

þ.



Dx1Dx2Dx3

Assembling the contributions from all six faces (or all three directions) to evaluate (2.32) produces

V ,Q ¼ lim
V/0

1

V

ZZ

A

n ,QdA

¼ lim
Dx1/0

Dx2/0

Dx3/0

1

Dx1Dx2Dx3

�

e1 ,
vQðxÞ
vx1

þ e2 ,
vQðxÞ
vx2

þ e3 ,
vQðxÞ
vx3

þ.



Dx1Dx2Dx3,

and when the limit is taken, the expected Cartesian-coordinate form of the divergence emerges:

V ,Q ¼ e1 ,
vQðxÞ
vx1

þ e2 ,
vQðxÞ
vx2

þ e3 ,
vQðxÞ
vx3

:

2.13. STOKES’ THEOREM

Stokes’ theorem relates the integral over an open surface A to the line integral around the
surface’s bounding curve C. Here, unlike Gauss’ theorem, the inside and outside of A are
not well defined so an arbitrary choice must be made for the direction of the outward
normal n. Once this choice is made, the unit tangent vector to C, t, points in the counter-
clockwise direction when looking at the outside of A; it is defined as t ¼ nc � n, where
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nc is the unit normal to C that is locally tangent to A (Figure 2.10). For this geometry, Stokes’
theorem states

ZZ

A

ðV� uÞ ,n dA ¼
Z

C

u , t ds, (2.34)

where s is the arc length of the closed curve C. This theorem signifies that the surface integral
of the curl of a vector field u is equal to the line integral of u along the bounding curve of the
surface. In fluid mechanics, the right side of (2.34) is called the circulation of u about C. In
addition, (2.34) can be used to define the curl of a vector through the limit of the circulation
about an infinitesimal surface as

n , ðV� uÞ ¼ lim
A/0

1

A

Z

C

u , t ds: (2.35)

The advantage of integral definitions of field derivatives is that such definitions do not
depend on the coordinate system.

EXAMPLE 2.6

Obtain the recipe for the curl of a vector u(x) in Cartesian coordinates from the integral definition

given by (2.35).

Solution

This is obtained by considering rectangular contours in three perpendicular planes intersecting

at the point (x,y,z). First, consider the elemental rectangle in the x¼ const. plane. The central point in

this plane is (x,y,z) and the element’s area is DyDz. It may be shown by careful integration of a Taylor

expansion of the integrand that the integral along each line segment may be represented by the

product of the integrand at the center of the segment and the length of the segment with attention

paid to the direction of integration ds. Thus we obtain

ndA

n

nc

t
C

Outside

Inside

A

dA

FIGURE 2.10 Illustration of Stokes’ theorem for surface A bounded by the closed curve C. For the purposes of
defining unit vectors, the inside and outside of A must be chosen, and one such choice is illustrated here. The unit
vector nc is perpendicular to C but is locally tangent to the surface A. The unit vector n is perpendicular to A and
originates from the outside of A. The unit vector t is locally tangent to the curve C. The unit vectors nc, n, and t

define a right-handed triad of directions, nc� n¼ t.
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ðV� uÞx¼ lim
Dy/0

lim
Dz/0

8

>

>

<

>

>

:

1

DyDz

�

uz

�

x, yþ Dy

2
, z



� uz

�

x, y� Dy

2
, z

�

Dz

þ 1

DyDz

�

uz

�

x, y, z� Dz

2



� uz

�

x, y, zþ Dz

2

�

Dy

9

>

>

>

=

>

>

>

;

:

Taking the limits produces

ðV� uÞx¼
vuz
vy

� vuy
vz

:

Similarly, integrating around the elemental rectangles in the other two planes leads to

ðV� uÞy¼
vux
vz

� vuz
vx

, and ðV� uÞz¼
vuy
vx

� vux
vy

:

2.14. COMMA NOTATION

Sometimes it is convenient to use an even more compact notation for partial derivatives

A, ih vA=vxi, (2.36)

where A is a tensor of any order. Here, the comma after the A indicates a spatial derivative in
the direction of the following index or indices. Thus, as last illustrations of the implied-
sum-over-repeated-index notation and additional examples of the comma notation, consider
the divergence and curl of a vector u written in vector, ordinary, indicial, and comma
notations:

V ,u ¼
X
3

i¼1

vui
vxi

h
vui
vxi

h ui,i and ðV� uÞi ¼
X
3

j¼1

X
3

k¼1

3ijk
vuk
vxj

h 3ijk
vuk
vxj

h 3ijk uk,j:

The comma notation has two advantages compared to the others. It is compact and allows all
subscripts to be written on one line so that both indices of second-order tensors like ui,j are
easily identified. Its disadvantages arise from its compactness. An imperfectly attentive
reader may overlook a comma in a subscript listing. Plus, the comma must be written clearly
in order to avoid confusion with other indices. The comma notation is adopted in Section 5.6
where the extent of the expressions is otherwise too cumbersome.

EXERCISES

2.1. For three spatial dimensions, rewrite the following expressions in index notation and
evaluate or simplify them using the values or parameters given, and the definitions
of dij and 3ijk wherever possible. In parts b) through e), x is the position vector, with
components xi.
a) b , c, where b ¼ (1, 4, 17) and c ¼ (e4, e3, 1).
b) ðu ,VÞx, where u ¼ a vector with components ui.
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c) Vf, where f ¼ h , x and h is a constant vector with components hi.

d) V� u, where u ¼ U � x and U is a constant vector with components Ui.
e) C , x, where

C ¼
8

<

:

1 2 3
0 1 2
0 0 1

9

=

;

:

2.2. Starting from (2.1) and (2.3), prove (2.7).
2.3. Using Cartesian coordinates where the position vector is x ¼ (x1, x2, x3) and the fluid

velocity is u ¼ (u1, u2, u3), write out the three components of the vector:
ðu ,VÞu ¼ uiðvuj=vxiÞ.

2.4. ConvertV� Vr to indicial notation and show that it is zero in Cartesian coordinates for
any twice-differentiable scalar function r.

2.5. Using indicial notation, show that a� (b� c)¼ (a , c)b� (a , b)c. [Hint: Call dh b� c.
Then (a � d)m ¼ 3pqmapdq ¼ 3pqmap3ijqbicj. Using (2.19), show that (a � d)m ¼ (a , c)bm L
(a , b)cm.]

2.6. Show that the condition for the vectors a, b, and c to be coplanar is 3ijkaibjck ¼ 0.
2.7. Prove the following relationships: dijdij ¼ 3, 3pqr3pqr ¼ 6, and 3pqi3pqj ¼ 2dij.
2.8. Show that C,CT ¼ CT,C [ d, where C is the direction cosine matrix and d is the

matrix of the Kronecker delta. Any matrix obeying such a relationship is called an
orthogonal matrix because it represents transformation of one set of orthogonal axes
into another.

2.9. Show that for a second-order tensorA, the following quantities are invariant under the
rotation of axes:

I1 ¼ Aii

I2 ¼
�

�

�

�

A11 A12

A21 A22

�

�

�

�

þ
�

�

�

�

A22 A23

A32 A33

�

�

�

�

þ
�

�

�

�

A11 A13

A31 A33

�

�

�

�

I3 ¼ detðAijÞ:

[Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that
I01 ¼ A0

ii ¼ Aii ¼ I1. Then show that AijAji and AijAjkAki are also invariants. In fact, all
contracted scalars of the form AijAjk $$$ Ami are invariants. Finally, verify that

I2 ¼ 1

2

�

I21 � AijAji

�

I3 ¼ 1

3

�

AijAjkAki � I1AijAji þ I2Aii

�

:

Because the right-hand sides are invariant, so are I2 and I3.]
2.10. If u and v are vectors, show that the products uiyj obey the transformation rule (2.12),

and therefore represent a second-order tensor.
2.11. Show that dij is an isotropic tensor. That is, show that d0ij ¼ dij under rotation of the

coordinate system. [Hint: Use the transformation rule (2.12) and the results of
Exercise 2.8.]
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2.12. If u and v are arbitrary vectors resolved in three-dimensional Cartesian coordinates,
show that u , v ¼ 0 when u and v are perpendicular.

2.13. If u and v are vectors with magnitudes u and y, use the finding of Exercise 2.12 to show
that u , v ¼ uycosq where q is the angle between u and v.

2.14. Determine the components of the vector w in three-dimensional Cartesian
coordinates whenw is defined by: u ,w ¼ 0, v ,w ¼ 0, andw ,w ¼ u2y2sin2q, where
u and v are known vectors with components ui and yi and magnitudes u and y,
respectively, and q is the angle between u and v. Choose the sign(s) of the components
of w so that w ¼ e3 when u ¼ e1 and v ¼ e2.

2.15. If a is a positive constant and b is a constant vector, determine the divergence and

the curl of u¼ ax/x3 and u¼ b� (x/x2) where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22 þ x23

q

h
ffiffiffiffiffiffiffiffi

xixi
p

is the length

of x.
2.16. Obtain the recipe for the gradient of a scalar function in cylindrical polar coordinates

from the integral definition (2.32).
2.17. Obtain the recipe for the divergence of a vector function in cylindrical polar

coordinates from the integral definition (2.32).
2.18. Obtain the recipe for the divergence of a vector function in spherical polar coordinates

from the integral definition (2.32).
2.19. Use the vector integral theorems to prove that V , ðV� uÞ ¼ 0 for any twice-

differentiable vector function u regardless of the coordinate system.
2.20. Use Stokes’ theorem to prove that V� ðVfÞ ¼ 0 for any single-valued twice-

differentiable scalar f regardless of the coordinate system.
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CHAPTER OBJECTIVES

• To review the basic Cartesian and curvilinear

coordinates systems

• To link fluid flow kinematics with the particle

kinematics

• To define the various flow lines in unsteady

fluid velocity fields

• To present fluid acceleration in the Eulerian

flow-field formulation

• To establish the fundamental meaning of the

strain rate and rotation tensors

• To present the means for time differentiating

general three-dimensional volume

integrations

3.1. INTRODUCTION AND COORDINATE SYSTEMS

Kinematics is the study of motion without reference to the forces or stresses that produce
the motion. In this chapter, fluid kinematics is presented in two and three dimensions starting
with simple fluid-particle-path concepts and then proceeding to topics of greater complexity.

65Fluid Mechanics, Fifth Edition DOI: 10.1016/B978-0-12-382100-3.10003-4 � 2012 Elsevier Inc. All rights reserved.



These include: particle- and field-based descriptions for the time-dependent position,
velocity, and acceleration of fluid particles; the relationship between the fluid velocity
gradient tensor and the deformation and rotation of fluid elements; and the general mathe-
matical relationships that govern arbitrary volumes that move and deformwithin flow fields.
The forces and stresses that cause fluid motion are considered in subsequent chapters
covering the dynamics or kinetics of the fluid motion.

In general, three independent spatial dimensions and time are needed to fully describe
fluid motion. When a flow does not depend on time, it is called steady; when it does depend
on time it is called unsteady. In addition, fluid motion is studied in fewer than three dimen-
sions whenever possible because the necessary analysis is usually simpler and relevant
phenomena are more easily understood and visualized.

A truly one-dimensional flow is one in which the flow’s characteristics can be entirely
described with one independent spatial variable. Few real flows are strictly one dimensional,
although flows in long, straight constant-cross-section conduits come close. Here, the inde-
pendent coordinate may be aligned with the flow direction, as in the case of low-frequency
pulsations in a pipe as shown in Figure 3.1a, where z is the independent coordinate and
darker gray indicates higher gas density. Alternatively, the independent coordinate may be
aligned in the cross-stream direction, as in the case of viscous flow in a round tube where
the radial distance, R, from the tube’s centerline is the independent coordinate
(Figure 3.1b). In addition, higher dimensional flows are sometimes analyzed in one dimen-
sion by averaging the properties of the higher dimensional flow over an appropriate distance
or area (Figure 3.1c and d).

A two-dimensional, or plane, flow is one in which the variation of flow characteristics can be
described by two spatial coordinates. The flow of an ideal fluid past a circular cylinder of
infinite length having its axis perpendicular to the primary flow direction is an example of
a plane flow (see Figure 3.2a). (Here we should note that the word cylinder may also be
used in this context for any body having a cross-sectional shape that is invariant along its
length even if this shape is not circular.) This definition of two-dimensional flow officially
includes the flow around bodies of revolution where flow characteristics are identical in
any plane that contains the body’s axis (see Figure 6.27). However, such flows are custom-
arily called three-dimensional axisymmetric flows.

A three-dimensional flow is one that can only be properly described with three inde-
pendent spatial coordinates and is the most general case considered in this text. Some-
times curvilinear coordinates that match flow-field boundaries or symmetries simplify
the analysis and description of flow fields. Thus, several different coordinate systems
are used in this text (see Figure 3.3). Two-dimensional (plane) Cartesian and polar coor-
dinates for an arbitrary point P (Figure 3.3a) may be denoted by the coordinate pairs
(x, y), (x1, x2), or (r, q) with the corresponding velocity components (u, v), (u1, u2),
or (ur, uq). In three dimensions, Cartesian coordinates (Figures 2.1 and 3.3b) may be
used to locate a point P via the coordinate triplets (x, y, z) or (x1, x2, x3) with corre-
sponding velocity components (u, v, w) or (u1, u2, u3). Cylindrical polar coordinates
for P (Figure 3.3c) are denoted by (R, 4, z) with corresponding velocity components
(uR, u4, uz). In addition, they will occasionally be denoted (r, q, z) or (r, q, x). Spherical polar
coordinates for P (Figure 3.3d) are denoted by (r, q, 4) with the corresponding velocity
components (ur, uq, u4). In all cases, unit vectors are denoted by e with an appropriate
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subscript as in (2.1) and Figure 2.1. More information about these coordinate systems is
provided in Appendix B.

3.2. PARTICLE AND FIELD DESCRIPTIONS OF FLUID MOTION

There are two ways to describe fluid motion. In the Lagrangian description, fluid particles
are followed as theymove through a flow field. In the Eulerian description, a flow field’s char-
acteristics are monitored at fixed locations or in stationary regions of space. In fluid

z

R

z

z

(a)

(b)

(c)

(d)

FIGURE 3.1 (a) Example of a one-dimensional fluid flow in which the gas density, shown by the grayscale,
varies in the stream-wise z direction but not in the cross-stream direction. (b) Example of a one-dimensional fluid
flow in which the fluid velocity varies in the cross-stream R direction but not in the stream-wise direction.
(c) Example of a two-dimensional fluid flow where the fluid velocity varies in the cross-stream and stream-wise
directions. (d) The one-dimensional approximation to the flow show in part (c). Here the approximate flow field
varies only in the stream-wise z direction.
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mechanics, an understanding of both descriptions is necessary because the acceleration
following a fluid particle is needed for the application of Newton’s second law to fluid
motion while observations, measurements, and simulations of fluid flows are commonly
made at fixed locations or in stationary spatial regions with the fluid moving past the loca-
tions or through the regions of interest.

P

u'

U

u

(a)

U

u'

P

(b)

FIGURE 3.2 Sample flow fields where two spatial coordinates are needed. (a) Steady flow of an ideal incom-
pressible fluid past a long stationary circular cylinder with its axis perpendicular to the flow. Here the total fluid
velocity u at point P can be considered a sum of the flow velocity far from the cylinder U, and a velocity component
u0 caused by the presence of the cylinder. (b) Unsteady flow of a nominally quiescent ideal incompressible fluid
around a moving long circular cylinder with its axis perpendicular to the page. Here the cylinder velocity U is
shown inside the cylinder, and the fluid velocity u0 at point P is caused by the presence of the moving cylinder
alone. Although the two fields look very different, they only differ by a Galilean transformation. The streamlines in
(a) can be changed to those in (b) by switching to a frame of reference where the fluid far from the cylinder is
motionless.
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The Lagrangian description is based on the motion of fluid particles. It is the direct exten-
sion of single particle kinematics (e.g., see Meriam & Kraige, 2007) to a whole field of fluid
particles that are labeled by their location, ro, at a reference time, t¼ to. The subsequent posi-
tion r of each fluid particle as a function of time, r(t;ro,to), specifies the flow field. Here, ro and
to are boundary or initial condition parameters that label fluid particles, and are not indepen-
dent variables. Thus, the current velocity u and acceleration a of the fluid particle that was
located at ro at time to are obtained from the first and second temporal derivatives of particle
position r(t;ro,to):

u ¼ drðt;ro, toÞ=dt and a ¼ d2rðt;ro, toÞ=dt2: (3.1)

These values for u and a are valid for the fluid particle as it moves along its trajectory through
the flow field (Figure 3.4). In this particle-based Lagrangian description of fluid motion, fluid
particle kinematics are identical to that in ordinary particle mechanics, and any scalar, vector,

(a)

x, x1

y, x2

z, x3

P

(b)

(c) (d)

x

y

z R
P

y

x

z

r

P

x, x1

y, x2

r
P

FIGURE 3.3 Coordinate systems commonly used in this text. In each case P is an arbitrary point away from the
origin. (a) Plane Cartesian or polar coordinates where P is located by the coordinate pairs (x, y), (x1, x2), or (r, q).
(b) Three-dimensional Cartesian coordinates where P is located by the coordinate triplets (x, y, z) or (x1, x2, x3).
(c) Cylindrical polar coordinates where P is located by the coordinate triplet (R, 4, z). (d) Spherical polar coordinates
where P is located by the coordinate triplet (r, q, 4).

particle
path

x

y

z

r(t;ro,to)
ro(to)

u

FIGURE 3.4 Lagrangian description of the motion of a fluid particle that started at location ro at time to. The
particle path or particle trajectory r(t;ro,to) specifies the location of the fluid particle at later times.
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or tensor flow-field property Fmay depend on the path(s) followed of the relevant fluid parti-
cle(s) and time: F¼ F[r(t;ro,to), t].

The Eulerian description focuses on flow field properties at locations or in regions of
interest, and involves four independent variables: the three spatial coordinates represented
by the position vector x, and time t. Thus, in this field-based Eulerian description of fluid
motion, a flow-field property F depends directly on x and t: F¼ F(x, t). Even though this
description complicates the calculation of a, because individual fluid particles are not
followed, it is the favored description of fluid motion.

Kinematic relationships between the two descriptions can be determined by requiring
equality of flow-field properties when r and x define the same point in space, both are
resolved in the same coordinate system, and a common clock is used to determine the
time t:

F½rðt;ro, toÞ, t� ¼ Fðx, tÞ when x ¼ rðt;ro, to :Þ (3.2)

Here the second equation specifies the trajectory followed by a fluid particle. This compati-
bility requirement forms the basis for determining and interpreting time derivatives in the
Eulerian description of fluid motion. Applying a total time derivative to the first equation
in (3.2) produces

d

dt
F½rðt;ro, toÞ, t� ¼ vF

vr1

dr1
dt

þ vF

vr2

dr2
dt

þ vF

vr3

dr3
dt

þ vF

vt
¼ d

dt
Fðx, tÞ when x ¼ rðt;ro, toÞ, (3.3)

where the components of r are ri. In (3.3), the time derivatives of ri are the components ui of the
fluid particle’s velocity u from (3.1). In addition, vF/vri¼ vF/vxi when x¼ r, so (3.3) becomes

d

dt
F½rðt;ro, toÞ, t� ¼ vF

vx1
u1 þ vF

vx2
u2 þ vF

vx3
u3 þ vF

vt
¼ ðVFÞ ,uþ vF

vt
h

D

Dt
Fðx, tÞ, (3.4)

where the final equality defines D/Dt as the total time derivative in the Eulerian description
of fluid motion. It is the equivalent of the total time derivative d/dt in the Lagrangian descrip-
tion and is known as the material derivative, substantial derivative, or particle derivative, where
the final attribution emphasizes the fact that it provides time derivative information
following a fluid particle.

The material derivative D/Dt defined in (3.4) is composed of unsteady and advective
acceleration terms. (1) The unsteady part of DF/Dt, vF/vt, is the local temporal rate of change
of F at the location x. It is zero when F is independent of time. (2) The advective (or convective)
part of DF/Dt, u ,VF, is the rate of change of F that occurs as fluid particles move from one
location to another. It is zero where F is spatially uniform, the fluid is not moving, or u and VF
are perpendicular. For clarity and consistency in this book, the movement of fluid particles
from place to place is referred to as advection with the term convection being reserved for
the special circumstance of heat transport by fluid movement. In vector and index notations,
(3.4) is commonly rearranged slightly and written as

DF

Dt
h

vF

vt
þ u ,VF, or

DF

Dt
h

vF

vt
þ ui

vF

vxi
: (3.5)

3. KINEMATICS70



The scalar product u ,VF is the magnitude of u times the component of VF in the direction of
u so (3.5) can then be written in scalar notation as

DF

Dt
h

vF

vt
þ juj v

vs
, (3.6)

where s is a path-length coordinate on the fluid particle trajectory x¼ r(t;ro,to), that is,
dr ¼ euds with eu ¼ u=juj.

3.3. FLOW LINES, FLUID ACCELERATION, AND GALILEAN
TRANSFORMATION

In the Eulerian description, three types of curves are commonly used to describe fluid
motiondstreamlines, path lines, and streak lines. These are defined and described here
assuming that the fluid velocity vector, u, is known at every point of space and instant of
time throughout the region of interest. Streamlines, path lines, and streak lines all coincide
when the flow is steady. These curves are often valuable for understanding fluid motion
and form the basis for experimental techniques that track seed particles or dye filaments.
Pictorial and photographic examples of flow lines can be found in specialty volumes devoted
to flow visualization (Van Dyke, 1982; Samimy et al., 2003).

A streamline is a curve that is instantaneously tangent to the fluid velocity throughout
the flow field. In unsteady flows the streamline pattern changes with time. In Cartesian
coordinates, if ds¼ (dx, dy, dz) is an element of arc length along a streamline (Figure 3.5)
and u¼ (u, v, w) is the local fluid velocity vector, then the tangency requirement on ds and
u leads to

dx=u ¼ dy=v ¼ dz=w (3.7)

(see Exercise 3.3), and u� ds¼ 0 because ds and u are locally parallel. Integrating (3.7)
in both the upstream and downstream directions from a variety of reference locations
allows streamlines to be determined throughout the flow field. If these reference

x

y

z

u

u
v

w

dx

dz

dy

ds

streamline

FIGURE 3.5 Streamline geometry. The arc-length element of a streamline, ds, is locally tangent to the fluid
velocity u so its components and the components of the velocity must follow (3.7).
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locations lie on a closed curve C, the resulting stream surface is called a stream tube
(Figure 3.6). No fluid crosses a stream tube’s surface because the fluid velocity vector
is everywhere tangent to it. Streamlines are useful in the depiction of flow fields
and important for calculations involving simplifications (Bernoulli equations) of the
full equations of fluid motion. In experiments, streamlines may be visualized by
particle streak photography or by integrating (3.7) using measured velocity fields.

A path line is the trajectory of a fluid particle of fixed identity. It is defined in (3.2) and (3.3)
as x¼ r(t;ro,to). The equation of the path line for the fluid particle launched from ro at to is
obtained from the fluid velocity u by integrating

dr=dt ¼ ½uðx, tÞ�x¼r ¼ u
�

r, t
�

(3.8)

subject to the requirement r(to)¼ ro. Other path lines are obtained by integrating (3.8)
from different values of ro or to. A discretized version of (3.8) is the basis for particle image
velocimetry (PIV), a popular and powerful flow field measurement technique (Raffel et al.,
1998).

A streak line is the curve obtained by connecting all the fluid particles that will pass or
have passed through a fixed point in space. The streak line through the point xo at time t is
found by integrating (3.8) for all relevant reference times, to, subject to the requirement
r(to)¼ xo. When completed, this integration provides a path line, x¼ r(t;xo,to), for each value
of to. At a fixed time t, the components of these path-line equations, xi¼ ri(t;xo,to), provide
a parametric specification of the streak line with to as the parameter. Alternatively, these
path-line component equations can sometimes be combined to eliminate to and thereby
produce an equation that directly specifies the streak line through the point xo at
time t. Streak lines may be visualized in experiments by injecting a passive marker, like
dye or smoke, from a small port and observing were it goes as it is carried through the
flow field by the moving fluid.

FIGURE 3.6 Stream tube geometry for the closed curve C.
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EXAMPLE 3.1

In two-dimensional Cartesian coordinates, determine the streamline, path line, and streak line

that pass through the origin of coordinates at t¼ t0 in the unsteady near-surface flow field typical of

long-wavelength water waves with amplitude xo: u¼uxocos(ut) and v¼uxosin(ut).

Streamline Solution

Utilize the first equality in (3.7) to find:

dy

dx
¼ v

u
¼ uxo sinðut0Þ

uxo cosðut0Þ
¼ tan

�

ut0
�

:

Integrating once produces: y¼ xtan(ut0)þ const. For the streamline to pass through the origin

(x¼ y¼ 0), the constant must equal zero, so the streamline equation is: y¼ xtan(ut0).

Path-line Solution

Set r¼ [(x(t), y(t)], and use both components of (3.8) to find:

dx=dt ¼ u ¼ uxo cosðut ; and dy=dt ¼ v ¼ uxo sinðutÞ:Þ

Integrate each of these equations once to find: x¼ xo sin(ut)þ xo, and y¼exo cos(ut)þ yo, where xo
and yo are integration constants. The path-line requirement at x¼ y¼ 0 and t¼ t0 implies

xo¼exo sin(ut
0), and yo¼ xo cos(ut

0), so the path-line component equations are:

x ¼ xo½sinðutÞ � sinðut0Þ� and y ¼ xo½ � cosðutÞ þ cosðut0Þ�:

Here, the time variable t can be eliminated via a little algebra to find
�

xþ xo sinðut0Þ
�2þ

�

y� xo cosðut0Þ
�2¼ x2o ,

which is the equation of a circle of radius xo centered on the location [exo sin(ut
0), xo cos(ut0)].

Streak-line Solution

To determine the streak line that passes through the origin of coordinates at t¼ t0, the location of

the fluid particle that passed through x¼ y¼ 0 at t¼ to must be found. Use the path-line results

above but evaluate at to instead of t0 to find different constants. Thus the parametric streak-line

component equations are:

x ¼ xo½sinðutÞ � sinðutoÞ� and y ¼ xo½ � cosðutÞ þ cosðutoÞ�:

Combine these equations to eliminate to and evaluate the result at t¼ t0 to find the required streak

line:
�

x� xo sinðut0Þ
�2þ

�

yþ xo cosðut0Þ
�2¼ x2o :

This is the equation of a circle of radius xo centered on the location [xo sin(ut
0), exo cos(ut

0)]. The
three flow lines in this example are shown in Figure 3.7. In this case, the streamline, path line, and

streak line are all tangent to each other at the origin of coordinates.
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From this example it should be clear that streamlines, path lines, and streak lines differ in
an unsteady flow field. This situation is also illustrated in Figure 3.2, which shows stream-
lines when there is relative motion of a circular cylinder and an ideal fluid. Figure 3.2a shows
streamlines for a stationary cylinder with the fluid moving past it, a steady flow. Here, fluid
particles that approach the cylinder are forced to move up or down to go around it.
Figure 3.2b shows streamlines for a moving cylinder in a nominally quiescent fluid, an
unsteady flow. Here, streamlines originate on the left side of the advancing cylinder where
fluid particles are pushed to the left to make room for the cylinder. These streamlines curve
backward and fluid particles move rightward at the cylinder’s widest point. These stream-
lines terminate on the right side of the cylinder where fluid particles again move to the left
to fill in the region behind the moving cylinder. Although their streamline patterns appear
dissimilar, these flow fields only differ by a Galilean transformation. Consider the fluid
velocity at a point P that lies at the same location relative to the cylinder in both fields. If
u0 is the fluid velocity at P in Figure 3.2b where the cylinder is moving at speed U, then
the fluid velocity u at P in Figure 3.2a is u¼Uþu0. If U is constant, the fluid acceleration
in both fields must be the same at the same location relative to the cylinder.

This expectation can be verified in general using (3.5) with F replaced by the fluid velocity
observed in different coordinate frames. Consider a Cartesian coordinate system O0x0y0z0 that
moves at a constant velocity U with respect to a stationary system Oxyz having parallel axes
(Figure 3.8). The fluid velocity u0ðx0, t0Þ observed in O0x0y0z0 will be related to the fluid velocity
u(x,t) observed in Oxyz by u(x,t)¼Uþ u0ðx0, t0Þ when t¼ t0 and x ¼ x0 þUtþ x0o, where x0o is
the vector distance from O to O0 at t¼ 0. Under these conditions it can be shown that

vu

vt
þ ðu ,VÞu ¼

�

Du

Dt

�

in Oxyz

¼
�

Du0

Dt0

�

in O0x0y0z0
¼ vu0

vt0
þ ðu0 ,V0Þu0 (3.9)

(Exercise 3.12) whereV0 operates on the primed coordinates. The first and second terms of the
leftmost part of (3.9) are the unsteady and advective acceleration terms in Oxyz. The unsteady
acceleration term, vu/vt, is nonzero at x when u varies with time at x. It is zero everywhere
when the flow is steady. The advective acceleration term, (u ,V)u, is nonzero when fluid
particles move between locations where the fluid velocity is different. It is zerowhen the fluid

ωt´

ξo

ξo

Streamline

Path Line

Streak Line

x

y

FIGURE 3.7 Streamline, path line, and streak line for Example 3.1. All three are distinct because the flow field is
unsteady.
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velocity is zero, the fluid velocity is uniform in space, or when the fluid velocity only varies in
the cross-stream direction. In addition, the unsteady term is linear in u while the advective
term is nonlinear (quadratic) in u. This nonlinearity is a primary feature of fluid mechanics.
When u is small enough for this nonlinearity to be ignored, fluid mechanics reduces to acous-
tics or, when u¼ 0, to fluid statics.

When examined together, the sample flow fields in Figure 3.2 and the Galilean invariance
of the Eulerian fluid acceleration, (3.9), show that the relative importance of the steady and
advective fluid-acceleration terms depends on the frame of reference of the observer.
Figure 3.2a depicts a steady flow where the streamlines do not depend on time. Thus,
the unsteady acceleration term, vu/vt, is zero. However, the streamlines do bend in the
vicinity of the cylinder so fluid particles must feel some acceleration because the absence
of fluid-particle acceleration in a flow field corresponds to constant fluid-particle velocity
and straight streamlines. Therefore, the advective acceleration term, (u ,V)u, is nonzero
for the flow in Figure 3.2a. In Figure 3.2b, the flow is unsteady and the streamlines are
curved, so both acceleration terms in the rightmost part of (3.9) are nonzero. These obser-
vations imply that a Galilean transformation can alter the relative importance of the
unsteady and advective fluid acceleration terms without changing the overall fluid-particle
acceleration. Thus, an astutely chosen, steadily moving coordinate system can be used
to enhance (or reduce) the relative importance of either the unsteady or advective fluid-
acceleration term.

Additional insights into the character of the unsteady and advective acceleration terms
might also be obtained from the reader’s observations and experiences. For example, a nonzero
unsteady acceleration is readily observed at any street intersection regulated by a traffic light
with the moving or stationary vehicles taking the place of fluid particles. Here, a change in the
traffic light may halt east-west vehicle flow and allow north-south vehicle flow to begin,
thereby producing a time-dependent 90� rotation of the traffic-flow streamlines at the intersec-
tion location. Similarly, a nonzero advective acceleration is readily observed or experienced by
roller-coaster riderswhen an analogy ismade between the roller-coaster track and a streamline.
While stationary andwaiting in line, soon-to-be roller-coaster riders can observe that the track’s
shape involves hills, curves, and bends, and that this shape does not depend on time. This situ-
ation is analogous to the stationary observer of a nontrivial steady fluid flowdlike that
depicted in Figure 3.2adwho readily notes that streamlines curve and bend but do not depend

x

y

z

O
x´

y´

z´

O´

x

x´

Ut + x ó

u = U + ´u

FIGURE 3.8 Geometry for showing that the fluid particle acceleration as determined by (3.9) is independent of the
frame of reference when the frames differ by a Galilean transformation. Here Oxyz is stationary and O0x0y0z0 moves
with respect to it at a constant speedU, the axes of the two frames are parallel, and x and x0 represent the same location.
The fluid velocity observed at x in frame Oxyz is u. The fluid velocity observed at x0 in frame O0x0y0z0 is u0.
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on time. Thus, the unsteady acceleration term is zero for both the roller coaster and a steady
flow because both the roller-coaster cars and fluid particles travel through space on fixed-shape
trajectories and achieve consistent (time-independent) velocities at any point along the track or
streamline. However, anyone who has ever ridden a roller coaster will know that significant
acceleration is possible while following a roller-coaster’s fixed-shape track because a roller-
coaster car’s velocity varies as it traverses the track. These velocity variations result from the
advective acceleration, and fluid particles that follow curved fixed-shape streamlines experi-
ence it as well. Within this roller coaster-streamline analogy a nonzero unsteady acceleration
would correspond to roller-coaster cars and fluid particles following time-dependent paths.
Such a possibility is certainly unusual for roller-coaster riders; roller-coaster tracks are nearly
rigid, seldom fall down (thankfully), and are typically designed to produce consistent car
velocities at each point along the track.

3.4. STRAIN AND ROTATION RATES

Given the definition of a fluid as a material that deforms continuously under the action of
a shear stress, the basic constitutive law for fluids relates fluid element deformation rates to the
stresses (surface forces per unit area) applied to a fluid element. This section describes fluid-
element deformation and rotation rates in terms of the fluid velocity gradient tensor, vui/vxj.
The constitutive law for Newtonian fluids is covered in the next chapter. The various illus-
trations and interpretations provided here are analogous to their counterparts in solid
mechanics when the fluid-appropriate strain rate (based on velocity u) is replaced by the
solid-appropriate strain (based on displacement u).

The relative motion between two neighboring points can be written as the sum of the
motion due to local rotation and deformation. Consider the situation depicted in Figure 3.9,
and let u(x,t) be the velocity at point O (position vector x), and let uþ du be the velocity at
the same time at a nearby neighboring point P (position vector xþ dx). A three-dimensional
first-order Taylor expansion of u about x leads to the following relationship between the
components of du and dx:

dui ¼ ðvui=vxjÞdxj: (3.10)

The term in parentheses in (3.10), vui/vxj, is the velocity gradient tensor, and it can be decom-
posed into symmetric, Sij, and antisymmetric, Rij, tensors:

vui
vxj

¼ Sij þ
1

2
Rij, where Sij ¼

1

2

 

vui
vxj

þ vuj
vxi

!

, and Rij ¼
vui
vxj

� vuj
vxi

: (3.11, 3.12, 3.13)

Here, Sij is the strain rate tensor, and Rij is the rotation tensor. The decomposition of vui/vxj
provided by (3.11) is important when formulating the conservation equations for fluid
motion because Sij, which embodies fluid element deformation, is related to the stress field
in a moving fluid while Rij, which embodies fluid element rotation, is not.

The strain rate tensor has on- and off-diagonal terms. The diagonal terms of Sij represent
elongation and contraction per unit length in the various coordinate directions, and are some-
times called linear strain rates. A geometrical interpretation of Sij’s first component, S11, is
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provided in Figure 3.10. The rate of change of fluid element length in the x1-direction per unit
length in this direction is

1

dx1

D

Dt
ðdx1Þ ¼ lim

dt/0

1

dt

�

A0B0 � AB

AB

�

¼ lim
dt/0

1

dx1dt

�

dx1 þ vu1
vx1

dx1dt� dx1

�

¼ vu1
vx1

,

whereD/Dt indicates that the fluid element is followed as extension takes place. This simple
construction is readily extended to the other two Cartesian directions, and in general the
linear strain rate in the h direction is vuh=vxh where no summation over the repeated h-index
is implied. (Greek subscripts are commonly used when the summation convention is not
followed.)

FIGURE 3.10 Illustration of
positive linear strain rate in the
first coordinate direction. Here
A0B0 ¼ABþ BB0 �AA0, and aposi-
tive S11¼ vu1/vx1 corresponds to a
lengthening of the fluid element.

FIGURE 3.9 Velocity vectors u and uþ du at two neighboring points O and P, respectively, that are separated by
the short distance dx.
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The off-diagonal terms of Sij represent shear deformations that change the relative orien-
tations of line segments initially parallel to the i- and j-directions in the flow. A geometrical
interpretation of Sij’s first off-diagonal component, S12¼ S21, is provided in Figure 3.11. The
average rate at which the initially perpendicular segments dx1 and dx2 rotate toward each
other is

1

2

Dðaþ bÞ
Dt

¼ lim
dt/0

1

2dt

�

1

dx2

�

vu1
vx2

dx2dt

�

þ 1

dx1

�

vu2
vx1

dx1dt

��

¼ 1

2

�

vu1
vx2

þ vu2
vx1

�

¼ S12 ¼ S21,

where again D/Dt indicates that the fluid element is followed as shear deformation takes
place, and again this simple construction is readily extended to the other two Cartesian direc-
tion pairs. Thus, the off-diagonal terms of Sij represent the average rate at which line
segments initially parallel to the i- and j-directions rotate toward each other.

Here we also note that Sij is zero for any rigid body motion composed of translation at
a spatially uniform velocity U and rotation at a constant rate U (see Exercise 3.17). Thus,
Sij is independent of the frame of reference in which it is observed, even if U depends on
time and the frame of reference is rotating.

The first invariant of Sij (the sum of its diagonal terms) is the volumetric strain rate or bulk
strain rate. For a small volume dV¼ dx1dx2dx3, it can be shown (Exercise 3.18) that

1

dV

D

Dt
ðdVÞ ¼ vu1

vx1
þ vu2

vx2
þ vu3

vx3
¼ vui

vxi
¼ Sii: (3.14)

Thus, Sii specifies the rate of volume change per unit volume and it does not depend on the
orientation of the coordinate system.

The second member of the strain-rate decomposition (3.11) is the rotation tensor, Rij. It is
antisymmetric so its diagonal elements are zero and its off-diagonal elements are equal and
opposite. Furthermore, its three independent elements can be put in correspondence with
a vector. From (2.26), (2.27), or (3.13), this vector is the vorticity,u¼ V� u, and the correspon-
dence is

FIGURE 3.11 Illustration of posi-
tive deformation of a fluid element in
the plane defined by the first and
second coordinate directions. Here,
both vu1/vx2 and vu2/vx1 are shown
as positive, so S12¼ S21 from (3.12)
is also positive. The deformation
angle da ¼ :CBA is proportional to
vu1/vx2 while db is proportional to
vu2/vx1.

3. KINEMATICS78



Rij ¼ �3ijkðV� uÞk¼ �3ijkuk ¼
2

4

0 �u3 u2

u3 0 �u1

�u2 u1 0

3

5, (2.26, 2.27, 3.15)

where

u1 ¼ vu3
vx2

� vu2
vx3

, u2 ¼ vu1
vx3

� vu3
vx1

, and u3 ¼ vu2
vx1

� vu1
vx2

: (2.25, 3.16)

Figure 3.11 illustrates the motion of an initially square fluid element in the (x1,x2)-plane when
vu1/vx2 and vu2/vx1 are nonzero and unequal so that eu3¼R12¼eR21s 0. In this situation,
the fluid element translates and deforms in the (x1,x2)-plane, and rotates about the third coor-
dinate axis. The average rotation rate is

1

2

Dð�aþ bÞ
Dt

¼ lim
dt/0

1

2dt

�

� 1

dx2

�

vu1
vx2

dx2dt

�

þ 1

dx1

�

vu2
vx1

dx1dt

��

¼ 1

2

�

� vu1
vx2

þ vu2
vx1

�

¼ �R12

2
¼ R21

2
,

where again D/Dt indicates that the fluid element is followed as rotation takes place, and
again this simple construction is readily extended to the other two Cartesian direction pairs.
Thus, u and Rij represent twice the fluid element rotation rate (see also Exercise 2.1). This
means that u and Rij depend on the frame of reference in which they are determined since
it is possible to choose a frame of reference that rotates with the fluid particle of interest at
the time of interest. In such a co-rotating frame,u and Rijwill be zero but they will be nonzero
if they are determined in a frame of reference that rotates at a different rate (see Exercise 3.19).

Interestingly, the presence or absence of fluid rotation often determines the character of
a flow, and this dependence leads to two additional kinematic concepts related to fluid rota-
tion. First, fluid motion is called irrotational if

u ¼ 0, or equivalently Rij ¼ vui=vxj � vuj=vxi ¼ 0: (3.17)

When (3.17) is true, the fluid velocity u can be written as the gradient of a scalar function
f(x,t) because ui ¼ vf=vxi satisfies the condition of irrotationality (see Exercises 2.4 and
2.20). Although this may seem to be an unnecessary mathematical complication, finding
a scalar function f(x,t) such that Vf solves the irrotational equations of fluid motion is some-
times easier than solving these equations directly for the vector velocity u(x,t) in the same
circumstance.

The second concept related to fluid rotation is the extension of the vorticity, twice the fluid
rotation rate at a point, to the circulation G, the amount of fluid rotation within a closed
contour (or circuit) C. Here the circulation G is defined by

Gh

I

C
u , ds ¼

Z

A
u ,ndA, (3.18)

where ds is an element of C, and the geometry is shown in Figure 3.12. The loop through the
first integral sign signifies that C is a closed circuit and is often omitted. The second equality
in (3.18) follows from Stokes’ theorem (Section 2.13) and the definition of the vorticity
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u¼V�u. The second equality requires the line integral of u around a closed curve C to be
equal to the flux of vorticity through the arbitrary surfaceA bounded byC. Here, and elsewhere
in this text, the term flux is used for the integral of a vector field normal to a surface. Equation
(3.18) allows u to be identified as the circulation per unit area. This identification also follows
directly from the definition of the curl as the limit of the circulation integral (see (2.35)).

Returning to the situation in Figure 3.9, equations (3.11) through (3.14) allow (3.10) to be
rewritten as

dui ¼
�

Sij �
1

2
3ijkuk

�

dxj ¼ Sijdxj þ
1

2
ðu� dxÞi, (3.19)

where 3ijkukdxj is the i-component of the cross product �u� dx (see (2.21)). Thus, the
meaning of the second term in (3.19) can be deduced as follows. The velocity at a distance
x from the axis of rotation of a rigid body rotating at angular velocity U is U�x. The second
term in (3.19) therefore represents the velocity of point P relative to point O because of an
angular velocity of u/2.

The first term in (3.19) is the relative velocity between point P and point O caused by defor-
mation of the fluid element defined by dx. This deformation becomes particularly simple in
a coordinate system coinciding with the principal axes of the strain-rate tensor. The compo-
nents Sij change as the coordinate system is rotated, and for one particular orientation of the
coordinate system, a symmetric tensor has only diagonal components; these are called the
principal axes of the tensor (see Section 2.12 and Example 2.4). Denoting the variables in
this principal coordinate system by an over bar (Figure 3.13), the first part of (3.19) can be
written as:

du ¼ S , dx ¼
2

4

S11 0 0
0 S22 0
0 0 S33

3

5

2

4

dx1
dx2
dx3

3

5: (3.20)

FIGURE 3.12 The circulation around the closed contour C is the line integral of the dot product of the velocity u

and the contour element ds.
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Here, S11, S22, and S33 are the diagonal components of S in the principal-axis coordinate
system and are called the eigenvalues of S. The three components of (3.20) can be written as

du1 ¼ S11dx1, du2 ¼ S22dx2, and du3 ¼ S33dx3: (3.21)

Consider the significance of du1 ¼ S11dx1 when S11 is positive. This equation implies that
point P in Figure 3.9 is moving away from point O in the x1-direction at a rate proportional
to the distance dx1. Considering all points on the surface of a sphere centered on O and
having radius jdxj (see Figure 3.13), the movement of P in the x1 direction is maximum
when P coincides with point M (where dx1¼ jdxj) and is zero when P coincides with point
N (where dx1¼ 0). Figure 3.13 illustrates the intersection of this sphere with the ðx1, x2Þ-plane
for the case where S11 > 0 and S22 < 0; the deformation in the x3 direction is not shown in this
figure. In a small interval of time, a spherical fluid element around O therefore becomes an ellipsoid
whose axes are the principal axes of the strain-rate tensor S.

Summary

The relative velocity in the neighborhood of a point can be divided into two parts. One
part comes from rotation of the element, and the other part comes from deformation of the

x2

x1

N

principal axis

P

M

O

du 1
 = S 11

dx 1

x2

x1

dx1

FIGURE 3.13 Deformation of a spherical fluid element into an ellipsoid. Here only the intersection of the
element with the plane defined by the first and second coordinate directions is shown.
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element. A spherical element deforms to an ellipsoid whose axes coincide with the principal
axes of the local strain-rate tensor.

3.5. KINEMATICS OF SIMPLE PLANE FLOWS

In this section, the rotation and deformation of fluid elements in two simple steady
flows with straight and circular streamlines are considered in two-dimensional (x1,x2)-
Cartesian and (r,q)-polar coordinates, respectively. In both cases, the flows can be
described with a single independent spatial coordinate that increases perpendicular to
the flow direction.

First consider parallel shear flow where u¼ (u1(x2), 0) as shown in Figure 3.14. The lone
nonzero velocity gradient is g(x2) h du1/dx2, and, from (3.16), the only nonzero component
of vorticity is u3¼�g. In Figure 3.14, the angular velocity of line element AB is �g, and that
of BC is zero, giving �g/2 as the overall angular velocity (half the vorticity). The average
value does not depend on which two mutually perpendicular elements in the (x1,x2)-plane
are chosen to compute it.

In contrast, the components of the strain rate do depend on the orientation of the
element. From (3.11), Sij for a fluid element such as ABCD, with sides parallel to the
x1, x2-axes, is

Sij ¼
�

0 g=2
g=2 0

	

,

which shows that there are only off-diagonal elements of S. Therefore, the element ABCD
undergoes shear, but no normal strain. As discussed in Section 2.11 and Example 2.4,
a symmetric tensor with zero diagonal elements can be diagonalized by rotating the coordi-
nate system through 45�. It is shown there that, along these principal axes (denoted by an over-
bar in Figure 3.14), the strain rate tensor is

Sij ¼
�

g=2 0
0 �g=2

	

,

FIGURE 3.14 Deformation of elements in a parallel shear flow. The element is stretched along the principal axis
x1 and compressed along the principal axis x2. The lengths of the sides of ADCB remain unchanged while the corner
angles of SRQP remain unchanged.
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so that along the first principle axis there is a linear extension rate of g/2, along the second
principle axis there is a linear compression rate of eg/2, and there is no shear. This can be
seen geometrically in Figure 3.14 by examining the deformation of an element PQRS oriented
at 45�, which deforms to P0Q0R0S0. It is clear that the side PS elongates and the side PQ
contracts, but the angles between the sides of the element remain at 90�. In a small time
interval, a small spherical element in this flow would become an ellipsoid oriented at 45�
to the x1, x2-coordinate system.

In summary, the element ABCD in a parallel shear flow deforms via shear without normal
strain, whereas the element PQRS deforms via normal strain without shear strain. However,
both elements rotate at the same angular velocity.

Now consider two steady vortex flows having circular streamlines. In (r,q)-polar coordi-
nates, both flows are defined by ur¼ 0 and uq¼ uq(r), with the first one being solid-body
rotation,

ur ¼ 0 and uq ¼ u0r, (3.22)

where u0 is a constant equal to the angular velocity of each particle about the origin
(Figure 3.15). Such a flow can be generated by steadily rotating a cylindrical tank containing
a viscous fluid about its axis and waiting until the transients die out. From Appendix B, the
vorticity component in the z-direction perpendicular to the (r,q)-plane is

uz ¼ 1

r

v

vr
ðruqÞ � 1

r

vur
vq

¼ 2u0, (3.23)

which is independent of location. Thus, each fluid element is rotating about its own center at
the same rate that it rotates about the origin of coordinates. This is evident in Figure 3.15,
which shows the location of element ABCD at two successive times. The two mutually
perpendicular fluid lines AD and AB both rotate counterclockwise (about the center of the

FIGURE3.15 Solid-body
rotation. The streamlines are
circular and fluid elements
spin about their own centers
at the same rate that they
revolve around the origin.
There is no deformation of
the elements, only rotation.
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element) with speed u0. The time period for one rotation of the particle about its own center
equals the time period for one revolution around the origin of coordinates. In addition, S¼ 0
for this flow so fluid elements do not deform and each retains its location relative to other
elements, as is expected for solid-body rotation.

The circulation around a circuit of radius r in this flow is

G ¼
I

C
u , ds ¼

Z 2p

0
uqrdq ¼ 2pruq ¼ 2pr 2u0, (3.24)

which shows that circulation equals the vorticity, 2u0, times the area contained by C. This
result is true for any circuit C, regardless of whether or not it contains the origin (see
Exercise 3.23).

Another flow with circular streamlines is that from an ideal vortex line oriented perpen-
dicular to the (r,q)-plane. Here, the q-component of fluid velocity is inversely proportional to
the radius of the streamline and the radial velocity is again zero:

ur ¼ 0 and uq ¼ B=r, (3.25)

where B is constant. From (3.23), the vorticity in this flow at any point away from the origin is
uz¼ 0, but the circulation around a circuit of radius r centered on the origin is a nonzero
constant,

G ¼
Z 2p

0
uqrdq ¼ 2pruq ¼ 2pB, (3.26)

independent of r. Thus, considering vorticity to be the circulation per unit area, as in (3.18)
when n¼ ez, then (3.26) implies that the flow specified by (3.25) is irrotational everywhere except
at r¼ 0 where the vorticity is infinite with a finite area integral:

½uz�r/0¼ lim
r/0

1

A

Z

A
uzdA ¼ lim

r/0

1

pr2

I

C
u , ds ¼ lim

r/0

2B

r2
: (3.27)

Although the circulation around a circuit containing the origin in an irrotational vortex
flow is nonzero, that around a circuit not containing the origin is zero. The circulation around
the contour ABCD (Figure 3.16) is

GABCD ¼

Z

AB
þ
Z

BC
þ
Z

CD
þ
Z

DA

�

u , ds:

The line integrals of u , ds on BC and DA are zero because u and ds are perpendicular, and the
remaining parts of the circuit ABCD produce

GABCD ¼ �½uqr�rDqþ ½uqr�rþDrDq ¼ 0,

where the line integral along AB is negative because u and ds are oppositely directed, and the
final equality is obtained by noting that the product uqr¼B is a constant. In addition, zero
circulation around ABCD is expected because of Stokes’ theorem and the fact that the
vorticity vanishes everywhere within ABCD.

Real vortices, such as a bathtub vortex, a wing-tip vortex, or a tornado, do not mimic
solid-body rotation over large regions of space, nor do they produce unbounded fluid
velocity magnitudes near their axes of rotation. Instead, real vortices combine elements
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of the ideal vortex flows described by (3.22) and (3.25). Near the center of rotation, a real
vortex’s core flow is nearly solid-body rotation, but far from this core, real-vortex-induced
flow is nearly irrotational. Two common idealizations of this behavior are the Rankine
vortex defined by

uzðrÞ ¼



G=ps2¼ const: for r � s

0 for r > s

�

and uqðrÞ ¼



ðG=2ps2Þr for r � s

G=2pr for r > s

�

, (3.28)

and the Gaussian vortex defined by

uzðrÞ ¼ G

ps2
exp

�� r2=s2
�

and uqðrÞ ¼ G

2pr

�

1� exp
�� r2=s2

�

�

: (3.29)

In both cases, s is a core-size parameter that determines the radial distance where real vortex
behavior transitions from solid-body rotation to irrotational vortex flow. For the Rankine
vortex, this transition is abrupt and occurs at r¼ s where uq reaches its maximum. For
the Gaussian vortex, this transition is gradual and the maximum value of uq is reached at
r z 1.12091s (see Exercise 3.26).

3.6. REYNOLDS TRANSPORT THEOREM

The final kinematic result needed for developing the differential and the control-volume
versions of the conservation equations for fluid motion is the Reynolds transport theorem
for time differentiation of integrals over arbitrarily moving and deforming volumes.
Reynolds transport theorem is the three-dimensional extension of Leibniz’s theorem for differ-
entiating a single-variable integral having a time-dependent integrand and time-dependent
limits (see Riley et al., 1998).

FIGURE 3.16 Irrotational vortex. The streamlines are circular, as for solid-body rotation, but the fluid velocity
varies with distance from the origin so that fluid elements only deform; they do not spin. The vorticity of fluid
elements is zero everywhere, except at the origin where it is infinite.
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Consider a function F that depends on one independent spatial variable, x, and time t. In
addition assume that the time derivative of its integral is of interest when the limits of
integration, a and b, are themselves functions of time. Leibniz’s theorem states the time
derivative of the integral of F(x,t) between x¼ a(t) and x¼ b(t) is

d

dt

Z x¼bðtÞ

x¼aðtÞ
Fðx, tÞ dx ¼

Z
b

a

vF

vt
dx þ db

dt
Fðb, tÞ � da

dt
Fða, tÞ, (3.30)

where a, b, F, and their derivatives appearing on the right side of (3.30) are all evaluated at
time t. This situation is depicted in Figure 3.17, where the three contributions are shown
by dots and cross-hatches. The continuous line shows the integral !Fdx at time t, and the
dashed line shows the integral at time t þ dt. The first term on the right side of (3.30) is
the integral of vF/vt between x¼ a and b, the second term is the gain of F at the upper limit
which is moving at rate db/dt, and the third term is the loss of F at the lower limit which is
moving at rate da/dt. The essential features of (3.30) are the total time derivative on the left,
an integral over the partial time derivative of the integrand on the right, and terms that
account for the time-dependence of the limits of integration on the right. These features
persist when (3.30) is generalized to three dimensions.

A largely geometrical development of this generalization is presented here using notation
drawn from Thompson (1972). Consider a moving volume V*(t) having a (closed) surface
A*(t) with outward normal n and let b denote the local velocity of A* (Figure 3.18). The
volume V* and its surface A* are commonly called a control volume and its control surface,
respectively. The situation is quite general. The volume and its surface need not coincide
with any particular boundary, interface, or surface. The velocity b need not be steady or
uniform over A*(t). No specific coordinate system or origin of coordinates is needed. The
goal of this effort is to determine the time derivative of the integral of a single-valued

FIGURE 3.17 Graphical illustration of the Liebniz theorem. The three marked areas correspond to the three
contributions shown on the right in (3.30). Here da, db, and vF/vt are all shown as positive.
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continuous function F(x, t) in the volume V*(t). The starting point for this effort is the defini-
tion of a time derivative:

d

dt

Z

V�ðtÞ
Fðx, tÞdV ¼ lim

Dt/0

1

Dt

(

Z

V�ðtþDtÞ
Fðx, tþ DtÞdV �

Z

V�ðtÞ
Fðx, tÞdV

)

: (3.31)

The geometry for the two integrals inside the {,}-braces is shown in Figure 3.18 where solid
lines are for time t while the dashed lines are for time tþDt. The time derivative of the inte-
gral on the left is properly written as a total time derivative since the volume integration
subsumes the possible spatial dependence of F. The first term inside the {,}-braces can be
expanded to four terms by defining the volume increment DVhV�ðtþ DtÞ � V�ðtÞ and
Taylor expanding the integrand function Fðx, tþ DtÞyFðx, tÞ þ DtðvF=vtÞ for Dt/0:

Z

V�ðtþDtÞ
Fðx, tþ DtÞdVy

Z

V�ðtÞ
Fðx, tÞdV þ

Z

V�ðtÞ
Dt

vFðx, tÞ
vt

dV þ
Z

DV

Fðx, tÞdV

þ
Z

DV

Dt
vFðx, tÞ

vt
dV:

(3.32)

The first term on the right in (3.32) will cancel with the final term in (3.31), and, when the limit
in (3.31) is taken, both Dt and DV go to zero so the final term in (3.32) will not contribute
because it is second order. Thus, when (3.32) is substituted into (3.31), the result is

d

dt

Z

V�ðtÞ
Fðx, tÞdV ¼ lim

Dt/0

1

Dt

(

Z

V�ðtÞ
Dt

vFðx, tÞ
vt

dV þ
Z

DV
Fðx, tÞdV

)

, (3.33)

and this limit may be taken once the relationship between DV and Dt is known.

V*(t+Δt)

ndA

dA

V*(t)

A*(t) b

A*(t+Δt)

FIGURE 3.18 Geometrical depiction of a control volume V*(t) having a surface A*(t) that moves at a nonuniform
velocity b during a small time increment Dt. When Dt is small enough, the volume increment DV¼V*(tþDt) e V*(t)
will lie very near A*(t), so the volume-increment element adjacent to dAwill be (bDt) ,ndAwhere n is the outward
normal on A*(t).
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To find this relationship consider the motion of the small area element dA shown in
Figure 3.18. In time Dt, dA sweeps out an elemental volume (bDt) ,ndA of the volume incre-
ment DV. Furthermore, this small element of DV is located adjacent to the surface A*(t). All
these elemental contributions to DV may be summed together via a surface integral, and,
as Dt goes to zero, the integrand value of F(x,t) within these elemental volumes may be taken
as that of F on the surface A*(t), thus

Z

DV
Fðx, tÞdVy

Z

A�ðtÞ
Fðx, tÞðbDt ,nÞdA as Dt/0: (3.34)

Substituting (3.34) into (3.33), and taking the limit, produces the following statement of Rey-
nolds transport theorem:

d

dt

Z

V�ðtÞ
Fðx, tÞdV ¼

Z

V�ðtÞ
vFðx, tÞ

vt
dV þ

Z

A�ðtÞ
Fðx, tÞb ,ndA: (3.35)

This final result follows the pattern set by Liebniz’s theorem that the total time derivative
of an integral with time-dependent limits equals the integral of the partial time derivative
of the integrand plus a term that accounts for the motion of the integration boundary. In
(3.35), both inflows and outflows of F are accounted for through the dot product in the
surface-integral term that monitors whether A*(t) is locally advancing (b ,n> 0) or retreat-
ing (b ,n< 0) along n, so separate terms as in (3.30) are unnecessary. In addition, the (x,t)-
space-time dependence of the control volume’s surface velocity b and unit normal n are
not explicitly shown in (3.35) because b and n are only defined on A*(t); neither is a field
quantity like F(x,t). Equation (3.35) is an entirely kinematic result, and it shows that d/dt
may be moved inside a volume integral and replaced by v/vt only when the integration
volume, V*(t), is fixed in space so that b¼ 0.

There are two physical interpretations of (3.35). The first, obtained when F¼ 1, is that
volume is conserved as V*(t) moves through three-dimensional space, and under these
conditions (3.35) is equivalent to (3.14) for small volumes (see Exercise 3.28). The second is
that (3.35) is the extension of (3.5) to finite-size volumes (see Exercise 3.30). Nevertheless,
(3.35) and judicious choices of F and b are the starting points in the next chapter for deriving
the field equations of fluid motion from the principles of mass, momentum, and energy
conservation.

EXAMPLE 3.2

The base radius r of a fixed-height right circular cone is increasing at the rate _r. Use Reynolds

transport theorem to determine the rate at which the cone’s volume is increasing when the cone’s

base radius is ro if its height is h.

Solution

At any time, the volume Vof the right circular cone is: V ¼ 1=3 phr2, which can be differentiated

directly and evaluated at r¼ ro to find dV=dt ¼ 2=3 phro _r. However, the task is to obtain this answer

using (3.35). Choose V* to perfectly enclose the cone so that V*¼V, and set F¼ 1 in (3.35) so that the

time derivative of the cone’s volume appears on the left:
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dV=dt ¼
Z

A�ðtÞ
b ,ndA:

Use the cylindrical coordinate system shown in Figure 3.19 with the cone’s apex at the origin. Here,

b¼ 0 on the cone’s base while b ¼ ðz=hÞ_reR on its conical sides. The normal vector on the cone’s

sides is n ¼ eRcos q� ezsin q where ro/h¼ tan q. Here, at the height z, the cone’s surface area

element is dA¼ ztan qd4(dz/cos q), where 4 is the azimuthal angle, and the extra cosine factor enters

because the conical surface is sloped. Thus, the volumetric rate of change becomes

dV

dt
¼
Z h

z¼0

Z 2p

4¼0

z

h
_reR , ðeR cos q� ez sin qÞ z�? tan qd4

�

dz

cos q

�

¼ 2p
_rtan q

h

Z h

z¼0
z2dz ¼ 2

3
ph2 _rtan q ¼ 2

3
phro _r,

which recovers the answer obtained by direct differentiation.

EXERCISES

3.1. The gradient operator in Cartesian coordinates (x, y, z) is:
V ¼ exðv=vxÞ þ eyðv=vyÞ þ ezðv=vzÞ where ex, ey, and ez are the unit vectors. In
cylindrical polar coordinates (R, 4, z) having the same origin (see Figure 3.3b),
coordinates and unit vectors are related by: R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, 4 ¼ tan�1ðy=xÞ, and z¼ z;
and eR ¼ ex cos4þ ey sin4, e4 ¼ �ex sin4þ ey cos4, and ez ¼ ez. Determine the
following in the cylindrical polar coordinate system.
a) veR=v4 and ve4=v4
b) the gradient operator V
c) the Laplacian operator V ,VhV2

h
n

b

ro

θ

z

R = ztanθ

r•

FIGURE 3.19 Conical geometry for Example 3.2. The cone’s height is fixed but the radius of its circular
surface (base) is increasing.
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d) the divergence of the velocity field V ,u
e) the advective acceleration term (u ,V)u
[See Appendix B for answers.]

3.2. Consider Cartesian coordinates (as given in Exercise 3.1) and spherical polar
coordinates (r, q, 4) having the same origin (see Figure 3.3c). Here coordinates and unit
vectors are related by: r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

, q ¼ tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

=zÞ, and 4 ¼ tan�1ðy=xÞ;
and er ¼ ex cos4sinqþ ey sin4sinqþ ez cosq, eq ¼ ex cos4cosqþ ey sin4cosq� ez sinq,
and e4 ¼ �ex sin4þ ey cos4. In the spherical polar coordinate system, determine the
following items.
a) ver=vq, ver=v4, veq=vq, veq=v4, and ve4=v4
b) the gradient operator V
c) the Laplacian V ,VhV2

d) the divergence of the velocity field V ,u
e) the advective acceleration term (u ,V)u
[See Appendix B for answers.]

3.3. If ds¼ (dx, dy, dz) is an element of arc length along a streamline (Figure 3.5) and
u¼ (u, v, w) is the local fluid velocity vector, show that if ds is everywhere tangent to u
then dx=u ¼ dy=v ¼ dz=w.

3.4. For the two-dimensional steady flow having velocity components u¼ Sy and v¼ Sx,
determine the following when S is a positive real constant having units of inverse time.
a) equations for the streamlines with a sketch of the flow pattern
b) the components of the strain-rate tensor
c) the components of the rotation tensor
d) the coordinate rotation that diagonalizes the strain-rate tensor, and the principal

strain rates
3.5. Repeat Exercise 3.4 when u¼eSx and v¼þSy. How are the two flows related?
3.6. At the instant shown in Figure 3.2b, the (u,v)-velocity field in Cartesian coordinates is

u ¼ Aðy2 � x2Þ=ðx2 þ y2Þ2, and v ¼ �2Axy=ðx2 þ y2Þ2 where A is a positive constant.
Determine the equations for the streamlines by rearranging the first equality in (3.7) to
read udy� vdx ¼ 0 ¼ ðvj=vyÞdyþ ðvj=vxÞdx and then looking for a solution in the
form j(x, y)¼ const.

3.7. Determine the equivalent of the first equality in (3.7) for two-dimensional (r,q)-polar
coordinates, and then find the equation for the streamline that passes through (ro, qo)
when u¼ (ur, uq)¼ (A/r, B/r) where A and B are constants.

3.8. Determine the streamline, path line, and streak line that pass through the origin of
coordinates at t¼ t0 when u¼Uoþuxocos(ut) and v¼uxosin(ut) in two-dimensional
Cartesian coordinates whereUo is a constant horizontal velocity. Compare your results
to those in Example 3.1 for Uo/0.

3.9. Compute and compare the streamline, path line, and streak line that pass through
(1,1,0) at t¼ 0 for the following Cartesian velocity field u¼ (x, eyt, 0).

3.10. Consider a time-dependent flow field in two-dimensional Cartesian coordinates where
u ¼ [s=t2, v ¼ xy=[s, and [ and s are constant length and time scales, respectively.
a) Use dimensional analysis to determine the functional form of the streamline

through x0 at time t0.
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b) Find the equation for the streamline through x0 at time t0 and put your answer in
dimensionless form.

c) Repeat part b) for the path line through x0 at time t0.
d) Repeat part b) for the streak line through x0 at time t0.

3.11. The velocity components in an unsteady plane flow are given by u ¼ x=ð1þ tÞ and
v ¼ 2y=ð2þ tÞ. Determine equations for the streamlines and path lines subject to x¼ x0
at t¼ 0.

3.12. Using the geometry and notation of Figure 3.8, prove (3.9).
3.13. Determine the unsteady, vu/vt, and advective, (u ,V)u, fluid acceleration terms for the

following flow fields specified in Cartesian coordinates.
a) u ¼ ðuðy, z, tÞ, 0, 0Þ
b) u ¼ U� x where U ¼ ð0, 0,UzðtÞÞ
c) u ¼ AðtÞðx, � y, 0Þ
d) u¼ (Uoþ uosin(kx e Ut), 0, 0) where Uo, uo, k, and U are positive constants

3.14. Consider the following Cartesian velocity field u ¼ AðtÞðfðxÞ,gðyÞ, hðzÞÞ where A, f, g,
and h are nonconstant functions of only one independent variable.
a) Determine vu/vt and (u ,V)u in terms of A, f, g, and h, and their derivatives.
b) Determine A, f, g, and h when Du/Dt¼ 0, u¼ 0 at x¼ 0, and u is finite for t> 0.
c) For the conditions in part b), determine the equation for the path line that passes

through xo at time to, and showdirectly that the acceleration a of the fluid particle that
follows this path is zero.

3.15. If a velocity field is given by u¼ ay and v¼ 0, compute the circulation around
a circle of radius ro that is centered on the origin. Check the result by using Stokes’
theorem.

3.16. Consider a plane Couette flow of a viscous fluid confined between two flat plates
a distance b apart. At steady state the velocity distribution is u¼Uy/b and v¼w¼ 0,
where the upper plate at y¼ b is moving parallel to itself at speed U, and the lower
plate is held stationary. Find the rates of linear strain, the rate of shear strain, and
vorticity in this flow.

3.17. For the flow field u ¼ UþU� x, where U and U are constant linear- and angular-
velocity vectors, use Cartesian coordinates to a) show that Sij is zero, and b)
determine Rij.

3.18. Starting with a small rectangular volume element dV¼ dx1dx2dx3, prove (3.14).
3.19. Let Oxyz be a stationary frame of reference, and let the z-axis be parallel with

fluid vorticity vector in the vicinity of O so that u ¼ V� u ¼ uzez in this frame of
reference. Now consider a second rotating frame of reference Ox0y0z0 having the
same origin that rotates about the z-axis at angular rate Uez. Starting from the
kinematic relationship, u ¼ ðUezÞ � xþ u0, show that in the vicinity of O the
vorticity u0 ¼ V0 � u0 in the rotating frame of reference can only be zero when
2U¼uz, where V0 is the gradient operator in the primed coordinates. The
following unit vector transformation rules may be of use: e0x ¼ ex cosðUtÞþ
ey sinðUtÞ, e0y ¼ �ex sinðUtÞ þ ey cosðUtÞ, and e0z ¼ ez.

3.20. Consider a plane-polar area element having dimensions dr and rdq. For two-
dimensional flow in this plane, evaluate the right-hand side of Stokes’ theorem
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R

u ,ndA ¼ R u , ds and thereby show that the expression for vorticity in plane-polar
coordinates is: uz ¼ 1

r
v
vrðruqÞ � 1

r
vur

vq
.

3.21. The velocity field of a certain flow is given by u ¼ 2xy2 þ 2xz2, v ¼ x2y, and w ¼ x2z.
Consider the fluid region inside a spherical volume x2þ y2þ z2¼ a2. Verify the validity
of Gauss’ theorem

RRR

V

V ,udV ¼ RR
A

u ,ndA by integrating over the sphere.

3.22. A flow field on the xy-plane has the velocity components u ¼ 3xþ y and v ¼ 2x� 3y.
Show that the circulation around the circle (x� 1)2þ (y� 6)2 ¼ 4 is 4p.

3.23. Consider solid-body rotation about the origin in two dimensions: ur¼ 0 and uq¼u0r.
Use a polar-coordinate element of dimension rdq and dr, and verify that the circulation
is vorticity times area. (In Section 3.5 this was verified for a circular element
surrounding the origin.)

3.24. Consider the following steady Cartesian velocity field u ¼
� �Ay

ðx2þy2Þb,
þAx

ðx2þy2Þb, 0
�

.

a) Determine the streamline that passes through x ¼ ðxo,yo, 0Þ.
b) Compute Rij for this velocity field.
c) For A> 0, explain the sense of rotation (i.e., clockwise or counterclockwise) for fluid

elements for b< 1, b¼ 1, and b> 1.
3.25. Using indicial notation (and no vector identities), show that the acceleration a of a fluid

particle is given by a ¼ vu=vtþ V
�1

2
juj2

�

þu� u, where u is the vorticity.

3.26. Starting from (3.29), show that the maximum uq in a Gaussian vortex occurs when
1þ 2ðr2=s2Þ ¼ expðr2=s2Þ. Verify that this implies r z 1.12091s.

3.27. 1For the following time-dependent volumes V*(t) and smooth single-valued integrand
functions F, choose an appropriate coordinate system and show that ðd=dtÞ RV�ðtÞ FdV
obtained from (3.30) is equal to that obtained from (3.35).
a) V*(t)¼ L1(t)L2L3 is a rectangular solid defined by 0� xi� Li, where L1 depends on

time while L2 and L3 are constants, and the integrand function F(x1,t) depends only
on the first coordinate and time.

b) V*(t)¼ (p/4)d2(t)L is a cylinder defined by 0�R� d(t)/2 and 0� z� L, where the
cylinder’s diameter d depends on time while its length L is constant, and the
integrand function F(R,t) depends only on the distance from the cylinder’s axis and
time.

c) V*(t)¼ (p/6)D3(t) is a sphere defined by 0� r�D(t)/2 where the sphere’s diameter
D depends on time, and the integrand function F(r,t) depends only on the radial
distance from the center of the sphere and time.

3.28. Starting from (3.35), set F¼ 1 and derive (3.14) when b¼u and V*(t)¼ dV / 0.
3.29. For a smooth, single-valued function F(x) that only depends on space and an

arbitrarily shaped control volume that moves with velocity b(t) that only depends on
time, show that ðd=dtÞ RV�ðtÞ FðxÞdV ¼ b , ð RV�ðtÞ VFðxÞdVÞ.

3.30. Show that (3.35) reduces to (3.5) when V*(t)¼ dV / 0 and the control surface velocity
b is equal to the fluid velocity u(x,t).

1Developed from Problem 1.9 on page 48 in Thompson (1972)
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CHAPTER OBJECTIVES

• To present a derivation of the governing

equations for moving fluids starting from the

principles of mass, momentum, and energy

conservation for a material volume.

• To illustrate the application of the integral

forms of the mass and momentum

conservation equations to stationary,

steadily moving, and accelerating control

volumes.

• To develop the constitutive equation for

a Newtonian fluid and provide the Navier-

Stokes differential momentum equation.

• To show how the differential momentum

equation is modified in noninertial frames of

reference.

• To develop the differential energy equation

and highlight its internal coupling between

mechanical and thermal energies.
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• To present several common extensions and

simplified forms of the equations of

motion.

• To derive and describe the dimensionless

numbers that appear naturally when the

equations of motion are put in dimensionless

form.

4.1. INTRODUCTION

The governing principles in fluid mechanics are the conservation laws for mass,
momentum, and energy. These laws are presented in this order in this chapter and can be
stated in integral form, applicable to an extended region, or in differential form, applicable
at a point or to a fluid particle. Both forms are equally valid and may be derived from
each other. The integral forms of the equations of motion are stated in terms of the evolution
of a control volume and the fluxes of mass, momentum, and energy that cross its control
surface. The integral forms are typically useful when the spatial extent of potentially compli-
cated flow details are small enough for them to be neglected and an average or integral flow
property, such as a mass flux, a surface pressure force, or an overall velocity or acceleration, is
sought. The integral forms are commonly taught in first courses on fluid mechanics where
they are specialized to a variety of different control volume conditions (stationary, steadily
moving, accelerating, deforming, etc.). Nevertheless, the integral forms of the equations
are developed here for completeness and to unify the various control volume concepts.

The differential forms of the equations of motion are coupled nonlinear partial differential
equations for the dependent flow-field variables of density, velocity, pressure, temperature,
etc. Thus, the differential forms are often more appropriate for detailed analysis when field
information is needed instead of average or integrated quantities. However, both approaches
can be used for either scenario when appropriately refined for the task at hand. In the devel-
opment of the differential equations of fluid motion, attention is given to determining when
a solvable system of equations has been found by comparing the number of equations with
the number of unknown dependent field variables. At the outset of this monitoring effort, the
fluid’s thermodynamic characteristics are assumed to provide as many as two equations, the
thermal and caloric equations of state (1.12).

The development of the integral and differential equations of fluid motion presented in
this chapter is not unique, and alternatives are readily found in other references. The version
presented here is primarily based on that in Thompson (1972).

4.2. CONSERVATION OF MASS

Setting aside nuclear reactions and relativistic effects, mass is neither created nor
destroyed. Thus, individual mass elementsdmolecules, grains, fluid particles, etc.dmay
be tracked within a flow field because they will not disappear and new elements will not
spontaneously appear. The equations representing conservation of mass in a flowing fluid
are based on the principle that the mass of a specific collection of neighboring fluid particles
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is constant. The volume occupied by a specific collection of fluid particles is called a material
volume V(t). Such a volume moves and deforms within a fluid flow so that it always contains
the samemass elements; none enter the volume and none leave it. This implies that a material
volume’s surface A(t), a material surface, must move at the local fluid velocity u so that fluid
particles inside V(t) remain inside and fluid particles outside V(t) remain outside. Thus,
a statement of conservation of mass for a material volume in a flowing fluid is:

d

dt

Z

VðtÞ
rðx, tÞdV ¼ 0: (4.1)

where r is the fluid density. Figure 3.18 depicts a material volume when the control surface
velocity b is equal to u. The primary concept here is equivalent to an infinitely flexible,
perfectly sealed thin-walled balloon containing fluid. The balloon’s contents play the role
of the material volume V(t) with the balloon itself defining the material surface A(t). And,
because the balloon is sealed, the total mass of fluid inside the balloon remains constant as
the balloon moves, expands, contracts, or deforms.

Based on (4.1), the principle of mass conservation clearly constrains the fluid density. The
implications of (4.1) for the fluid velocity field may be better displayed by using Reynolds
transport theorem (3.35) with F ¼ r and b ¼ u to expand the time derivative in (4.1):

Z

VðtÞ

vrðx, tÞ
vt

dV þ
Z

AðtÞ
rðx, tÞuðx, tÞ,ndA ¼ 0: (4.2)

This is a mass-balance statement between integrated density changes within V(t) and inte-
grated motion of its surface A(t). Although general and correct, (4.2) may be hard to utilize
in practice because the motion and evolution of V(t) and A(t) are determined by the flow,
which may be unknown.

To develop the integral equation that represents mass conservation for an arbitrarily
moving control volume V*(t) with surface A*(t), (4.2) must be modified to involve integrations
over V*(t) and A*(t). This modification is motivated by the frequent need to conserve mass
within a volume that is not a material volume, for example a stationary control volume.
The first step in this modification is to set F ¼ r in (3.35) to obtain

d

dt

Z

V�ðtÞ
rðx, tÞdV �

Z

V�ðtÞ

vrðx, tÞ
vt

dV �
Z

A�ðtÞ
rðx, tÞb,ndA ¼ 0: (4.3)

The second step is to choose the arbitrary control volume V*(t) to be instantaneously coinci-
dent with material volumeV(t) so that at the moment of interest V(t)¼V*(t) andA(t)¼A*(t). At
this coincidence moment, the (d/dt)!rdV-terms in (4.1) and (4.3) are not equal; however, the
volume integration of vr/vt in (4.2) is equal to that in (4.3) and the surface integral of ru,n
over A(t) is equal to that over A*(t):
Z

V�ðtÞ

vrðx, tÞ
vt

dV ¼
Z

VðtÞ

vrðx, tÞ
vt

dV ¼ �
Z

AðtÞ
rðx, tÞuðx, tÞ,ndA ¼ �

Z

A�ðtÞ
rðx, tÞuðx, tÞ,ndA

(4.4)
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where the middle equality follows from (4.2). The two ends of (4.4) allow the central volume-
integral term in (4.3) to be replaced by a surface integral to find:

d

dt

Z

V�ðtÞ
rðx, tÞdV þ

Z

A�ðtÞ
rðx, tÞðuðx, tÞ � bÞ,ndA ¼ 0, (4.5)

where u and b must both be observed in the same frame of reference; they are not other-
wise restricted. This is the general integral statement of conservation of mass for an arbi-
trarily moving control volume. It can be specialized to stationary, steadily moving,
accelerating, or deforming control volumes by appropriate choice of b. In particular,
when b ¼ u, the arbitrary control volume becomes a material volume and (4.5) reduces
to (4.1).

The differential equation that represents mass conservation is obtained by applying
Gauss’ divergence theorem (2.30) to the surface integration in (4.2):

Z

VðtÞ

vrðx, tÞ
vt

dV þ
Z

AðtÞ
rðx, tÞuðx, tÞ,ndA ¼

Z

VðtÞ

�

vrðx, tÞ
vt

þ V,
�

rðx, tÞuðx, tÞ
�

�

dV ¼ 0: (4.6)

The final equality can only be possible if the integrand vanishes at every point in space. If the
integrand did not vanish at every point in space, then integrating (4.6) in a small volume
around a point where the integrand is nonzero would produce a nonzero integral. Thus,
(4.6) requires:

vrðx, tÞ
vt

þ V,ðrðx, tÞuðx, tÞÞ ¼ 0, or; in index notation
vr

vt
þ v

vxi
ðruiÞ ¼ 0: (4.7)

This relationship is called the continuity equation. It expresses the principle of conservation of
mass in differential form, but is insufficient for fully determining flow fields because it is
a single equation that involves two field quantities, r and u, and u is a vector with three
components.

The second term in (4.7) is the divergence of the mass-density flux ru. Such flux divergence
terms frequently arise in conservation statements and can be interpreted as the net loss at
a point due to divergence of a flux. For example, the local r will increase with time if
V,(ru) is negative. Flux divergence terms are also called transport terms because they transfer
quantities from one region to another without making a net contribution over the entire field.
When integrated over the entire domain of interest, their contribution vanishes if there are no
sources at the boundaries.

The continuity equation may alternatively be written using (3.5) the definition of D/Dt
and vðruiÞ=vxi ¼ uivr=vxi þ rvui=vxi [see (B3.6)]:

1

rðx, tÞ
D

Dt
rðx, tÞ þ V,uðx, tÞ ¼ 0: (4.8)

The derivative Dr/Dt is the time rate of change of fluid density following a fluid particle. It
will be zero for constant density flow where r ¼ constant throughout the flow field, and for
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incompressible flow where the density of fluid particles does not change but different fluid
particles may have different density:

Dr

Dt
h

vr

vt
þ u,Vr ¼ 0: (4.9)

Taken together, (4.8) and (4.9) imply:

V,u ¼ 0 (4.10)

for incompressible flows. Constant density flows are a subset of incompressible flows;
r ¼ constant is a solution of (4.9) but it is not a general solution. A fluid is usually called
incompressible if its density does not change with pressure. Liquids are almost incompress-
ible. Gases are compressible, but for flow speeds less than ~100 m/s (that is, for Mach
numbers < 0.3) the fractional change of absolute pressure in an air flow is small. In this
and several other situations, density changes in the flow are also small and (4.9) and
(4.10) are valid.

The general form of the continuity equation (4.7) is typically required when the derivative
Dr/Dt is nonzero because of changes in the pressure, temperature, or molecular composition
of fluid particles.

4.3. STREAM FUNCTIONS

Consider the steady form of the continuity equation (4.7),

V,ðruÞ ¼ 0: (4.11)

The divergence of the curl of any vector field is identically zero (see Exercise 2.19), so ruwill
satisfy (4.11) when written as the curl of a vector potential J,

ru ¼ V�J, (4.12)

which can be specified in terms of two scalar functions: J ¼ cVj. Putting this
specification for J into (4.12) produces ru ¼ Vc � Vj, because the curl of any gradient
is identically zero (see Exercise 2.20). Furthermore, Vc is perpendicular to surfaces of
constant c, and Vj is perpendicular to surfaces of constant j, so the mass flux
ru ¼ Vc � Vj will be parallel to surfaces of constant c and constant j. Therefore,
three-dimensional streamlines are the intersections of the two stream surfaces, or
stream functions in a three-dimensional flow.

The situation is illustrated in Figure 4.1. Consider two members of each of the families of
the two stream functions c¼ a, c¼ b, j¼ c, j¼ d. The intersections shown as darkened lines
in Figure 4.1 are the streamlines. The mass flux _m through the surface A bounded by the four
stream functions (shown in gray in Figure 4.1) is calculated with area element dA having n as
shown and Stokes’ theorem.

Defining the mass flux _m through A, and using Stokes’ theorem produces
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_m ¼
Z

A
ru,ndA ¼

Z

A
ðV�JÞ,ndA ¼

Z

C
J,ds ¼

Z

C
cVj,ds ¼

Z

C
cdj

¼ bðd� cÞ þ aðc� dÞ ¼ ðb� aÞðd� cÞ:
Here we have used the vector identity Vj,ds ¼ dj. The mass flow rate of the stream tube
defined by adjacent members of the two families of stream functions is just the product of
the differences of the numerical values of the respective stream functions.

As a special case, consider two-dimensional flow in (x, y)-Cartesian coordinates where all
the streamlines lie in z ¼ constant planes. In this situation, z is one of the three-dimensional
stream functions, so we can set c¼�z, where the sign is chosen to obey the usual convention.
This produces Vc ¼ eez, so ru ¼ eez � Vj, or

ru ¼ vj=vy, and rv ¼ �vj=vx

in conformity with Exercise 4.7.
Similarly, for axisymmetric three-dimensional flow in cylindrical polar coordinates

(Figure 3.3c), all the streamlines lie in 4 ¼ constant planes that contain the z-axis so c ¼ �4 is
one of the stream functions. This produces Vc¼eRe1e4 and ru¼ r(uR, uz)¼eRe1 e4� Vj, or

ruR ¼ �R�1
�

vj=vz
�

, and ruz ¼ R�1
�

vj=vR
�

:

We note here that if the density is constant, mass conservation reduces to V,u ¼ 0 (steady or
not) and the entire preceding discussion follows for u rather than ru with the interpretation
of stream function values in terms of volumetric flux rather than mass flux.

ndA

c =
 bc =

 a y = d

y = c

FIGURE 4.1 Isometric view of two members from each family of stream surfaces. The solid curves are
streamlines and these lie at the intersections of the surfaces. The unit vector n points in the stream direction and is
perpendicular to the gray surface that is bordered by the nearly rectangular curve C made up of segments defined
by c¼ a, c¼ b, j¼ c, and j¼ d. The arrows on this border indicate the integration direction for Stokes’ theorem.
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4.4. CONSERVATION OF MOMENTUM

In this section, the momentum-conservation equivalent of (4.5) is developed from
Newton’s second law, the fundamental principle governing fluid momentum. When
applied to a material volume V(t) with surface area A(t), Newton’s second law can be stated
directly as:

d

dt

Z

VðtÞ
rðx, tÞuðx, tÞdV ¼

Z

VðtÞ
rðx, tÞgdV þ

Z

AðtÞ
fðn,x, tÞdA, (4.13)

where ru is the momentum per unit volume of the flowing fluid, g is the body force per unit
mass acting on the fluid within V(t), f is the surface force per unit area acting on A(t), and n is
the outward normal on A(t). The implications of (4.13) are better displayed when the time
derivative is expanded using Reynolds transport theorem (3.35) with F ¼ ru and b ¼ u:

Z

VðtÞ

v

vt
ðrðx, tÞuðx, tÞÞdV þ

Z

AðtÞ
rðx, tÞuðx, tÞðuðx, tÞ,nÞdA

¼
Z

VðtÞ
rðx, tÞgdV þ

Z

AðtÞ
fðn,x, tÞdA:

(4.14)

This is a momentum-balance statement between integrated momentum changes within V(t),
integrated momentum contributions from the motion of A(t), and integrated volume and
surface forces. It is the momentum conservation equivalent of (4.2).

To develop an integral equation that represents momentum conservation for an arbitrarily
moving control volume V*(t) with surface A*(t), (4.14) must be modified to involve integra-
tions over V*(t) and A*(t). The steps in this process are entirely analogous to those taken
between (4.2) and (4.5) for conservation of mass. First set F ¼ ru in (3.35) and rearrange it
to obtain:

Z

V�ðtÞ

v

vt
ðrðx, tÞuðx, tÞÞdV ¼ d

dt

Z

V�ðtÞ
rðx, tÞuðx, tÞdV �

Z

A�ðtÞ
rðx, tÞuðx, tÞb,ndA ¼ 0: (4.15)

Then chooseV*(t) to be instantaneously coincident withV(t) so that at the moment of interest:
Z

VðtÞ

v

vt
ðrðx, tÞuðx, tÞÞdV ¼

Z

V�ðtÞ

v

vt
ðrðx, tÞuðx, tÞÞdV,

Z

AðtÞ
rðx, tÞuðx, tÞðuðx, tÞ,nÞdA ¼

Z

A�ðtÞ
rðx, tÞuðx, tÞðuðx, tÞ,nÞdA,

Z

VðtÞ
rðx, tÞgdV ¼

Z

V�ðtÞ
rðx, tÞgdV, and

Z

AðtÞ
fðn, x, tÞdA ¼

Z

A�ðtÞ
fðn,x, tÞdA:

(4.16a, 4.16b, 4.16c, 4.16d)
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Now substitute (4.16a) into (4.15) and use this result plus (4.16b, 4.16c, 4.16d) to convert
(4.14) to:

d

dt

Z

V�ðtÞ
rðx, tÞuðx, tÞdV þ

Z

A�ðtÞ
rðx, tÞuðx, tÞðuðx, tÞ � bÞ,ndA

¼
Z

V�ðtÞ
rðx, tÞgdV þ

Z

A�ðtÞ
fðn, x, tÞdA: (4.17)

This is the general integral statement of momentum conservation for an arbitrarily moving
control volume. Just like (4.5), it can be specialized to stationary, steadily moving, acceler-
ating, or deforming control volumes by appropriate choice of b. For example, when b ¼ u,
the arbitrary control volume becomes a material volume and (4.17) reduces to (4.13).

At this point, the forces in (4.13), (4.14), and (4.17) merit some additional description that
facilitates the derivation of the differential equation representing momentum conservation
and allows its simplification under certain circumstances.

The body force, rgdV, acting on the fluid element dV does so without physical contact.
Body forces commonly arise from gravitational, magnetic, electrostatic, or electromagnetic
force fields. In addition, in accelerating or rotating frames of reference, fictitious body forces
arise from the frame’s noninertial motion (see Section 4.7). By definition body forces are
distributed through the fluid and are proportional to mass (or electric charge, electric
current, etc.). In this book, body forces are specified per unit mass and carry the units of
acceleration.

Body forces may be conservative or nonconservative. Conservative body forces are those that
can be expressed as the gradient of a potential function:

g ¼ �VF or gj ¼ �vF=vxj, (4.18)

where F is called the force potential; it has units of energy per unit mass. When the z-axis
points vertically upward, the force potential for gravity is F ¼ gz, where g is the acceleration
of gravity, and (4.18) produces g ¼ egez. Forces satisfying (4.18) are called conservative
because the work done by conservative forces is independent of the path, and the sum of
fluid-particle kinetic and potential energies is conserved when friction is absent.

Surface forces, f, act on fluid elements through direct contact with the surface of the
element. They are proportional to the contact area and carry units of stress (force per unit
area). Surface forces are commonly resolved into components normal and tangential to
the contact area. Consider an arbitrarily oriented element of area dA in a fluid (Figure 2.5).
If n is the surface normal with components ni, then from (2.15) the components fj of the
surface force per unit area f(n, x, t) on this element are fj ¼ nisij, where sij is the stress tensor.
Thus, the normal component of f is n,f ¼ nifi, while the tangential component is the vector
f e (n,f)n which has components fk e (nifi)nk.

Other forces that influence fluid motion are surface- and interfacial-tension forces that act
on lines or curves embedded within interfaces between liquids and gases or between immis-
cible liquids (see Figure 1.4). Although these forces are commonly important in flows with
such interfaces, they do not appear directly in the equations of motion, entering instead
through the boundary conditions.
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Before proceeding to the differential equation representing momentum conservation, the
use of (4.5) and (4.17) for stationary, moving, and accelerating control volumes having
a variety of sizes and shapes is illustrated through a few examples. In all four examples,
equations representing mass and momentum conservation must be solved simultaneously.

EXAMPLE 4.1

A long bar with constant cross section is held perpendicular to a uniform horizontal flow of

speed UN, as shown in Figure 4.2. The flowing fluid has density r and viscosity m (both constant).

The bar’s cross section has characteristic transverse dimension d, and the span of the bar is l with

l[ d. The average horizontal velocity profilemeasured downstream of the bar isU(y), which is less

than UN due to the presence of the bar. Determine the required force per unit span, eFD/l, applied

to the ends of the bar to hold it in place. Assume the flow is steady and two dimensional in the plane

shown. Ignore body forces.

Solution

Before beginning, it is important to explain the sign convention for fluid dynamic drag forces.

The drag force on an inanimate object is the force applied to the object by the fluid. Thus, for stationary

objects, drag forces are positive in the downstream direction, the direction the object would

accelerate if released. However, the control volume laws are written for forces applied to the contents of

the volume. Thus, fromNewton’s third law, a positive drag force on an object implies a negative force

on the fluid. Therefore, the FD appearing in Figure 4.2 is a positive number and this will be borne out

by the final results. Here we also note that since the horizontal velocity downstream of the bar, the

wake velocity U(y), is less than UN, the fluid has been decelerated inside the control volume and

this is consistent with a force from the body opposing the motion of the fluid as shown.

The basic strategy is to select a stationary control volume, and then use (4.5) and (4.17) to

determine the force FD that the body exerts on the fluid per unit span. The first quantitative step in

the solution is to select a rectangular control volume with flat control surfaces aligned with the

coordinate directions. The inlet, outlet, and top and bottom sides of such a control volume are

shown in Figure 4.2. The vertical sides parallel to the x-y plane are not shown. However, the flow

does not vary in the third direction and is everywhere parallel to these surfaces so these merely

need be selected a comfortable distance l apart. The inlet control surface should be far enough

upstream of the bar so that the inlet fluid velocity isUNex, the pressure is pN, and both are uniform.

H

d x

yU

U(y)

U

–FDinlet ou
tle

t

top

bottom

FIGURE 4.2 Momentum and mass balance for flow past long bar of constant cross section placed
perpendicular to the flow. The intersection of the recommended stationary control volume with the x-y plane is
shown with dashed lines. The force eFD holds the bar in place and slows the fluid that enters the control
volume.
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The top and bottom control surfaces should be separated by a distanceH that is large enough so that

these boundaries are free from shear stresses, and the horizontal velocity and pressure are so close

to UN and pN that any difference can be ignored. And finally, the outlet surface should be far

enough downstream so that streamlines are nearly horizontal there and the pressure can again be

treated as equal to pN.

For steady flow and the chosen stationary volume, the control surface velocity is b ¼ 0 and the

time derivative terms in (4.5) and (4.17) are both zero. In addition, the surface force integral

contributes eFDex where the beam crosses the control volume’s vertical sides parallel to the x-y

plane. The remainder of the surface force integral contains only pressure terms since the shear stress

is zero on the control surface boundaries. After setting the pressure to pN on all control surfaces,

(4.5) and (4.17) simplify to:
Z

A�ðtÞ
ruðxÞ,ndA ¼ 0, and

Z

A�

ruðxÞuðxÞ,ndA ¼ �
Z

A�

pNndA� FDex:

In this case the pressure integral may be evaluated immediately by using Gauss’ divergence

theorem:
Z

A�

pNndA ¼
Z

V�

VpNdV ¼ 0,

with the final value (zero) occurring because pN is a constant. After this simplification, denote the

fluid velocity components by (u,v) ¼ u, and evaluate the mass and x-momentum conservation

equations:

�
Z

inlet

rUNldyþ
Z

top

rvldx�
Z

bottom

rvldxþ
Z

outlet

rUðyÞldy ¼ 0, and

�
Z

inlet

rU2
Nldyþ

Z

top

rUNvldx�
Z

bottom

rUNvldxþ
Z

outlet

rU2ðyÞldy ¼ �FD

where u,ndA is:eUNldy on the inlet surface,þvldx on the top surface, evldx on the bottom surface,

and þU(y)ldy on the outlet surface where l is the span of the flow into the page. Dividing both

equations by rl, and combining like integrals produces:

Z

top

vdx�
Z

bottom

vdx ¼
Z

þH=2

�H=2

ðUN �UðyÞÞdy, and

UN

0

B

@

Z

top

vdx�
Z

bottom

vdx

1

C

Aþ
Z

þH=2

�H=2

�

U2
�

y
��U2

N

�

dy ¼ �FD=rl:

Eliminating the top and bottom control surface integrals between these two equations leads to:

FD=l ¼ r

Z

þH=2

�H=2

UðyÞðUN �UðyÞÞdy,

4. CONSERVATION LAWS104



which produces a positive value of FD when U(y) is less than UN. An essential feature of this anal-

ysis is that there are nonzero mass fluxes through the top and bottom control surfaces. The final

formula here is genuinely useful in experimental fluid mechanics since it allows FD/l to be deter-

mined from single-component velocity measurements made in the wake of an object.

EXAMPLE 4.2

Using a stream-tube control volume of differential length ds, derive the Bernoulli equation,

(½)rU2 þ gz þ p/r ¼ constant along a streamline, for steady, inviscid, constant density flow where

U is the local flow speed.

Solution

The basic strategy is to use a stationary stream-tube-element control volume, (4.5), and (4.17) to

determine a simple differential relationship that can be integrated along a streamline. The geometry

is shown in Figure 4.3. For steady inviscid flow and a stationary control volume, the control surface

velocity b ¼ 0, the surface friction forces are zero, and the time derivative terms in (4.5) and (4.17)

are both zero. Thus, these two equations simplify to:
Z

A�ðtÞ
ruðxÞ,ndA ¼ 0 and

Z

A�ðtÞ
ruðxÞuðxÞ,ndA ¼

Z

V�ðtÞ
rgdV �

Z

A�ðtÞ
pndA:

The geometry of the volume plays an important role here. The nearly conical curved surface is

tangent to the velocity while the inlet and outlet areas are perpendicular to it. Thus, u,ndA is:eUdA

on the inlet surface, zero on the nearly conical curved surface, and þ[U þ (vU/vs)ds]dA on the

outlet surface. Therefore, conservation of mass with constant density leads to

ds

ρ

p
A

U
ρ

θ

x

y

z

stream tube

g

p + ∂ ∂s( )ds

A + ∂ ∂s( )ds

U + ∂ ∂s( )dsextra
pressure

force

p

A

U

FIGURE 4.3 Momentum and mass balance for a short segment of a stream tube in steady inviscid constant
density flow. Here, the inlet and outlet areas are perpendicular to the flow direction, and they are small enough
so that only first-order corrections in the stream direction need to be considered. The alignment of gravity and
stream tube leads to a vertical change of sin q ds¼ dz between its two ends. The area difference between the two
ends of the stream tube leads to an extra pressure force.
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erUAþ r

�

U þ vU

vs
ds

	�

Aþ vA

vs
ds

	

¼ 0,

where first-order variations in U and A in the stream-wise direction are accounted for. Now

consider the stream-wise component of themomentum equation recalling that u ¼ Ueu and setting

g ¼ egez. For inviscid flow, the only surface force is pressure, so the simplified version of (4.17)

becomes

�rU2Aþ r

�

U þ vU

vs
ds

	2�

Aþ vA

vs
ds

	

¼ �rg sin q

�

Aþ vA

vs

ds

2

	

dsþ pAþ
�

pþ vp

vs

ds

2

	

vA

vs
ds�

�

pþ vp

vs
ds

	�

Aþ vA

vs
ds

	

:

Here, the middle pressure term comes from the extra pressure force on the nearly conical surface of

the stream tube.

To reach the final equation, use the conservation of mass result to simplify the flux terms on the

left side of the stream-wise momentum equation. Then, simplify the pressure contributions by

canceling common terms, and note that sin q ds ¼ dz to find

�rU2Aþ rU

�

U þ vU

vs
ds

	

A ¼ rUA
vU

vs
ds

¼ �rg

�

Aþ vA

vs

ds

2

	

dzþ vp

vs

vA

vs

ðdsÞ2
2

� A
vp

vs
ds� vp

vs

vA

vs
ðdsÞ2:

Continue by dropping the second-order terms that contain ðdsÞ2 or dsdz, and divide by rA to reach:

U
vU

vs
ds ¼ �gdz� 1

r

vp

vs
ds, or




dðU2=2Þ þ gdzþ ð1=rÞdp ¼ 0
�

along a streamline
:

Integrate the final differential expression along the streamline to find:

1

2
U2 þ gzþ p=r ¼ a constant along a streamline: (4.19)

EXAMPLE 4.3

Consider a small solitary wave that moves from right to left on the surface of a water channel of

undisturbed depth h (Figure 4.4). Denote the acceleration of gravity by g. Assuming a small change

in the surface elevation across the wave, derive an expression for its propagation speed, U, when

the channel bed is flat and frictionless.

Solution

Before starting the control volume part of this problem, a little dimensional analysis goes a long

way toward determining the final solution. The statement of the problem has only three parameters,
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U, g, and h, and there are two independent units (length and time). Thus, there is only one

dimensionless group, U2=gh, so it must be a constant. Therefore, the final answer must be in the

form: U ¼ const,
ffiffiffiffiffi

gh
p

, so the value of the following control volume analysis lies merely in deter-

mining the constant.

Choose the control volume shown and assume it is moving at speed b ¼ �Uex. Here we assume

that the upper and lower control surfaces coincide with the water surface and the channel’s fric-

tionless bed. They are shown close to these boundaries in Figure 4.4 for clarity. Apply the integral

conservation laws for mass and momentum.

d

dt

Z

V�ðtÞ
rdV þ

Z

A�ðtÞ
rðu� bÞ,n dA ¼ 0,

d

dt

Z

V�ðtÞ
rudV þ

Z

A�ðtÞ
ruðu� bÞ,ndA

¼
Z

V�ðtÞ
rgdV þ

Z

A�ðtÞ
fdA:

With this choice of a moving control volume, its contents are constant so both the d/dt terms are

zero; thus,
Z

A�

rðuþUexÞ,ndA ¼ 0, and

Z

A�ðtÞ
ruðuþUexÞ,ndA ¼

Z

V�ðtÞ
rgdV þ

Z

A�ðtÞ
fdA:

Here, all velocities are referred to a stationary coordinate frame, so that u ¼ 0 on the inlet side of

the control volume in the undisturbed fluid layer. In addition, label the inlet (left) and outlet

(right) water depths as hin and hout, respectively, and save consideration of the simplifications

that occur when ðhout � hinÞ � ðhout þ hinÞ=2 for the end of the analysis. Let Uout be the horizontal

flow speed on the outlet side of the control volume and assume its profile is uniform. Therefore

ðuþUexÞ,ndA is eUldy on the inlet surface, and þ(Uout þ U)ldy on the outlet surface, where l is

(again) the width of the flow into the page. With these replacements, the conservation of mass

equation becomes:

�rUhinlþ rðUout þUÞhoutl ¼ 0, or Uhin ¼ ðUout þUÞhout,

U

g

h

x

y

FIGURE 4.4 Momentum and mass balance for a small amplitude water wave moving into quiescent water
of depth h. The recommended moving control volume is shown with dashed lines. The wave is driven by the
imbalance of static pressure forces on the vertical inlet (left) and outlet (right) control surfaces.
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and the horizontal momentum equation becomes:

�rð0Þð0þUÞhinlþ rUoutðUout þUÞhoutl ¼ �
Z

inlet

pn,exdA�
Z

outlet

pn,exdA�
Z

top

pn,exdA:

Here, no friction terms are included, and the body force term does not appear because it has no hori-

zontal component. First consider the pressure integral on the top of the control volume, and let

y ¼ h(x) define the shape of the water surface:

�po

Z

n,exdA ¼ �po

Z ð� dh=dx, 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdh=dxÞ2
q ,ð1, 0Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdh=dxÞ2
q

dx

¼ �po

Z �

�dh

dx

	

dx ¼ po

Z
hout

hin

dh ¼ poðhout � hinÞ

where the various square-root factors arise from the surface geometry; po is the (constant) atmo-

spheric pressure on the water surface. The pressure on the inlet and outlet sides of the control

volume is hydrostatic. Using the coordinate system shown, integrating (1.8), and evaluating the

constant on the water surface produces p ¼ po þ rg(h e y). Thus, the integrated inlet and outlet

pressure forces are:

Z

inlet

pdA�
Z

outlet

pdA�
Z

top

pon,exdA

¼
Z
hin

0

�

po þ rg
�

hin � y
��

ldy�
Z
hout

0

�

po þ rg
�

hout � y
��

ldyþ poðhout � hinÞl

¼
Z
hin

0

rgðhin � yÞldy�
Z
hout

0

rgðhout � yÞldy ¼ rg

 

h2in
2

� h2out
2

!

l

where the signs of the inlet and outlet integrals have been determined by evaluating the dot prod-

ucts and we again note that the constant reference pressure po does not contribute to the net pres-

sure force. Substituting this pressure force result into the horizontal momentum equation produces:

�r
�

0
��

0þU
�

hinlþ rUout

�

Uout þU
�

houtl ¼ rg

2

�

h2in � h2out

�

l:

Dividing by the common factors of r and l,

Uout

�

Uout þU
�

hout ¼ g

2

�

h2in � h2out

�

,

and eliminating Uout via the conservation of mass relationship, Uout ¼ ðhin � houtÞU=hout, leads to:

U
ðhin � houtÞ

hout

�

U
ðhin � houtÞ

hout
þU

	

hout ¼ g

2

�

h2in � h2out

�

:

Dividing by the common factor of (hin e hout) and simplifying the left side of the equation

produces:
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U2 hin
hout

¼ g

2
ðhin þ houtÞ, or U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ghout
2hin

ðhin þ houtÞ
s

z
ffiffiffiffiffi

gh
p

,

where the final approximate equality holds when the inlet and outlet heights differ by only a small

amount with both nearly equal to h.

EXAMPLE 4.4

Derive the differential equation for the vertical motion for a simple rocket having nozzle area Ae

that points downward, exhaust discharge speed Ve, and exhaust density re,without considering the

internal flow within the rocket (Figure 4.5). Denote the mass of the rocket by M(t) and assume the

discharge flow is uniform.

Solution

Select a control volume (not shown) that contains the rocket and travels with it. This will be an

accelerating control volume and its velocity b ¼ b(t)ez will be the rocket’s vertical velocity. In

addition, the discharge velocity is specified with respect to the rocket, so in a stationary frame of

reference, the absolute velocity of the rocket’s exhaust is u ¼ uzez ¼ (eVe þ b)ez.

The conservation of mass and vertical-momentum equations are:

d

dt

Z

V�ðtÞ
rdV þ

Z

A�ðtÞ
rðu� bÞ,n dA ¼ 0,

d

dt

Z

V�ðtÞ
ruzdV þ

Z

A�ðtÞ
ruzðu� bÞ,n dA

¼ �g

Z

V�ðtÞ
rdV þ

Z

A�ðtÞ
fzdA:

Herewe recognize the first term in each equation as the time derivative of the rocket’smassM, and

the rocket’s vertical momentumMb, respectively. (The second of these identifications is altered when

the rocket’s internal flows are considered; see Thompson, 1972, pp. 43e47.) For ordinary rocketry, the

Ae

ρe, Ve

b(t)

g

z

Ve

M(t)

FIGURE 4.5 Geometry and parameters for a simple rocket having mass M(t) that is moving vertically at
speed b(t). The rocket’s exhaust area, density, and velocity (or specific impulse) are Ae, re, and Ve, respectively.
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rocket exhaust exit will be the only place that mass and momentum cross the control volume

boundary and here n¼ eez; thus ðu� bÞ,n dA ¼ ð�VeezÞ,ð�ezÞdA ¼ VedA over the nozzle exit. In

addition, we will denote the integral of vertical surface stresses by FS, a force that includes the

aerodynamic drag on the rocket and the pressure thrust produced when the rocket nozzle’s outlet

pressure exceeds the local ambient pressure. With these replacements, the above equations become:

dM

dt
þ reVeAe ¼ 0,

d

dt
ðMbÞ þ reð�Ve þ bÞVeAe ¼ �Mgþ FS:

Eliminating reVeAe between the two equations produces:

d

dt
ðMbÞ þ ð�Ve þ bÞ

�

�dM

dt

	

¼ �Mgþ FS,

which reduces to:

M
d2zR
dt2

¼ �Ve
dM

dt
�Mgþ FS,

where zR is the rocket’s vertical location and dzR/dt ¼ b. From this equation it is clear that negative

dM/dt (mass loss) may produce upward acceleration of the rocket when its exhaust discharge

velocity Ve is high enough. In fact, Ve is the crucial figure of merit in rocket propulsion and is

commonly referred to as the specific impulse, the thrust produced per unit rate of mass discharged.

Returning now to the development of the equations of motion, the differential equation
that represents momentum conservation is obtained from (4.14) after collecting all four terms
into the same volume integration. The first step is to convert the two surface integrals in (4.14)
to volume integrals using Gauss’ theorem (2.30):

Z

AðtÞ
rðx, tÞuðx, tÞðuðx, tÞ,nÞdA ¼

Z

VðtÞ
V,ðrðx, tÞuðx, tÞuðx, tÞÞdV ¼

Z

VðtÞ

v

vxi

�

ruiuj

�

dV, and

Z

AðtÞ
fðn, x, tÞdA ¼

Z

AðtÞ
nisijdA ¼

Z

VðtÞ

v

vxi

�

sij

	

dV,

(4.20a, 4.20b)

where the explicit listing of the independent variables has been dropped upon moving to
index notation. Substituting (4.20a, 4.20b) into (4.14) and collecting all the terms on one
side of the equation into the same volume integration produces:

Z

VðtÞ

�

v

vt

�

ruj

�

þ v

vxi

�

ruiuj

�

� rgj �
v

vxi

�

sij
�

�

dV ¼ 0: (4.21)

Similarly to (4.6), the integral in (4.21) can only be zero for any material volume if the inte-
grand vanishes at every point in space; thus (4.21) requires:

v

vt

�

ruj

�

þ v

vxi

�

ruiuj

�

¼ rgj þ
v

vxi

�

sij
�

: (4.22)
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This equation can be put into a more standard form by expanding the leading two terms,

v

vt

�

ruj

�

þ v

vxi

�

ruiuj

�

¼ r
vuj
vt

þ uj



vr

vt
þ v

vxi
ðruiÞ

�

þ rui
vuj
vxi

¼ r
Duj
Dt

, (4.23)

recognizing that the contents of the [,]-brackets are zero because of (4.7), and using the defi-
nition of D/Dt from (3.5). The final result is:

r
Duj
Dt

¼ rgj þ
v

vxi

�

sij
�

, (4.24)

which is sometimes called Cauchy’s equation of motion. It relates fluid-particle acceleration to
the net body (rgi) and surface force (vsij/vxj) on the particle. It is true in any continuum, solid
or fluid, nomatter how the stress tensor sij is related to the velocity field. However, (4.24) does
not provide a complete description of fluid dynamics, even when combined with (4.7)
because the number of dependent field variables is greater than the number of equations.
Taken together, (4.7), (4.24), and two thermodynamic equations provide at most 1 þ 3 þ
2 ¼ 6 scalar equations but (4.7) and (4.24) contain r, uj, and sij for a total of 1 þ 3 þ 9 ¼ 13
unknowns. Thus, the number of unknowns must be decreased to produce a solvable system.
The fluid’s stress-strain rate relationship(s) or constitutive equation provides much of the
requisite reduction.

4.5. CONSTITUTIVE EQUATION FOR A NEWTONIAN FLUID

As previously described in Section 2.4, the stress at a point can be completely specified by
the nine components of the stress tensor s; these components are illustrated in Figures 2.4 and
2.5, which show the directions of positive stresses on the various faces of small cubical and
tetrahedral fluid elements. The first index of sij indicates the direction of the normal to the
surface on which the stress is considered, and the second index indicates the direction in
which the stress acts. The diagonal elements s11, s22, and s33 of the stress matrix are the
normal stresses, and the off-diagonal elements are the tangential or shear stresses. Although
finite size elements are shown in these figures, the stresses apply on the various planes when
the elements shrink to a point and the elements have vanishingly small mass. Denoting the
cubical volume in Figure 2.4 by dV ¼ dx1dx2dx3 and considering the torque produced on it by
the various stresses’ components, it can be shown that the stress tensor is symmetric,

sij ¼ sji, (4.25)

by considering the element’s rotational dynamics in the limit dV/0 (see Exercise 4.30).
Therefore, the stress tensor has only six independent components. However, this symmetry
is violated if there are body-force couples proportional to the mass of the fluid element, such
as those exerted by an electric field on polarized fluid molecules. Antisymmetric stresses
must be included in such circumstances.

The relationship between the stress and deformation in a continuum is called a constitutive
equation, and a linear constitutive equation between stress sij and vui/vxj is examined here. A
fluid that follows thesimplestpossible linearconstitutiveequation isknownasaNewtonianfluid.

In a fluid at rest, there are only normal components of stress on a surface, and the stress
does not depend on the orientation of the surface; the stress is isotropic. The only second-order
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isotropic tensor is the Kronecker delta, dij, from (2.16). Therefore, the stress in a static fluid
must be of the form

sij ¼ �pdij; (4.26)

where p is the thermodynamic pressure related to r and T by an equation of state such as that for
a perfect gas p ¼ rRT (1.22). The negative sign in (4.26) occurs because the normal compo-
nents of s are regarded as positive if they indicate tension rather than compression (see
Figure 2.4).

A moving fluid develops additional stress components, sij, because of viscosity, and these
stress components appear as both diagonal and off-diagonal components within s. A simple
extension of (4.26) that captures this phenomenon and reduces to (4.26) when fluid motion
ceases is:

sij ¼ �pdij þ sij: (4.27)

This decomposition of the stress into fluid-static (p) and fluid-dynamic (sij) contributions is
approximate, because p is only well defined for equilibrium conditions. However, molecular
densities, speeds, and collision rates are typically high enough, so that fluid particles (as
defined in Section 1.8) reach local thermodynamic equilibrium conditions in nearly all fluid
flows so that p in (4.27) is still the thermodynamic pressure.

The fluid-dynamic contribution, sij, to the stress tensor is called the deviatoric stress tensor. For
it to be invariant under Galilean transformations, it cannot depend on the absolute fluid
velocity so it must depend on the velocity gradient tensor vui/vxj. However, by definition,
stresses only develop in fluid elements that change shape. Therefore, only the symmetric
part of vui/vxj, Sij from (3.12), should be considered in the fluid constitutive equation because
the antisymmetric part of vui/vxj,Rij from (3.13), corresponds to pure rotation of fluid elements.
The most general linear relationship between sij and Sij that produces sij ¼ 0 when Sij ¼ 0 is

sij ¼ KijmnSmn; (4.28)

where Kijmn is a fourth-order tensor having 81 components that may depend on the local ther-
modynamic state of the fluid. Equation (4.28) allows each of the nine components of sij to be
linearly related to all nine components of Sij. However, this level of generality is unnecessary
when the stress tensor is symmetric, and the fluid is isotropic.

In an isotropic fluid medium, the stressestrain rate relationship is independent of the
orientation of the coordinate system. This is only possible if Kijmn is an isotropic tensor. All
fourth-order isotropic tensors must be of the form:

Kijmn ¼ ldijdmn þ mdimdjn þ gdindjm (4.29)

(see Aris, 1962, pp. 30e33), where l, m, and g are scalars that depend on the local thermody-
namic state. In addition, sij is symmetric in i and j, so (4.28) requires that Kijmn also be
symmetric in i and j, too. This requirement is consistent with (4.29) only if

g ¼ m: (4.30)

Therefore, only two constants, m and l, of the original 81, remain after the imposition of mate-
rial-isotropy and stress-symmetry restrictions. Substitution of (4.29) into the constitutive
equation (4.28) yields
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sij ¼ 2mSij þ lSmm dij;

where Smm ¼ V,u is the volumetric strain rate (see Section 3.6). The complete stress tensor
(4.27) then becomes

sij ¼ �pdij þ 2mSij þ lSmm dij, (4.31)

and this is the appropriate multi-dimensional extension of (1.3).
The two scalar constants m and l can be further related as follows. Setting i ¼ j, summing

over the repeated index, and noting that dii ¼ 3, we obtain

sii ¼ �3pþ ð2mþ 3lÞSmm,

from which the pressure is found to be

p ¼ �1

3
sii þ

�

2

3
mþ l

	

V,u: (4.32)

The diagonal terms of Sij in a flowmay be unequal. In such a case the stress tensor sij can have
unequal diagonal terms because of the presence of the term proportional to m in (4.31). We can
therefore take the average of the diagonal terms of s and define amean pressure (as opposed to
thermodynamic pressure p) as

ph� 1

3
sii: (4.33)

Substitution into (4.32) gives

p� p ¼
�

2

3
mþ l

	

V,u: (4.34)

For a completely incompressible fluid we can only define a mechanical or mean pressure,
because there is no equation of state to determine a thermodynamic pressure. (In fact, the
absolute pressure in an incompressible fluid is indeterminate, and only its gradients can be deter-
mined from the equations of motion.) The l-term in the constitutive equation (4.31) drops
out when Smm ¼ V,u ¼ 0, and no consideration of (4.34) is necessary. So, for incompressible
fluids, the constitutive equation (4.31) takes the simple form:

sij ¼ �pdij þ 2mSij ðincompressibleÞ, (4.35)

where p can only be interpreted as the mean pressure experienced by a fluid particle. For
a compressible fluid, on the other hand, a thermodynamic pressure can be defined, and it
seems that p and p can be different. In fact, equation (4.34) relates this difference to the
rate of expansion through the proportionality constant my¼ lþ 2m/3, which is called the coef-
ficient of bulk viscosity. It has an appreciable effect on sound absorption and shock-wave struc-
ture. It is generally found to be nonzero in polyatomic gases because of relaxation effects
associated with molecular rotation. However, the Stokes assumption,

lþ 2

3
m ¼ 0; (4.36)
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is found to be accurate in many situations because either the fluid’s my or the flow’s dilata-
tion rate is small. Interesting historical aspects of the Stokes assumption can be found in
Truesdell (1952).

Without using (4.36), the stress tensor (4.31) is:

sij ¼ �pdij þ 2m

�

Sij �
1

3
Smmdij

	

þ mySmm dij: (4.37)

This linear relation between s and S is consistent with Newton’s definition of the viscosity
coefficient m in a simple parallel flow u(y), for which (4.37) gives a shear stress of
s ¼ m(du/dy). Consequently, a fluid obeying equation (4.37) is called a Newtonian fluid where
m and my may only depend on the local thermodynamic state. The off-diagonal terms of (4.37)
are of the type

s12 ¼ m

�

vu1
vx2

þ vu2
vx1

	

,

and directly relate the shear stress to shear strain rate via the viscosity m. The diagonal terms
of (4.37) combine pressure and viscous effects. For example, the first diagonal component of
(4.37) is

s11 ¼ �pþ 2m

�

vu1
vx1

	

þ
�

my �
2

3
m

	

vum
vxm

,

which means that the normal viscous stress on a plane normal to the x1-axis is proportional to
the extension rate in the x1 direction and the average expansion rate at the point.

The linear Newtonian friction law (4.37) might only be expected to hold for small strain
rates since it is essentially a first-order expansion of the stress in terms of Sij around
sij ¼ 0. However, the linear relationship is surprisingly accurate for many common fluids
such as air, water, gasoline, and oils. Yet, other liquids display non-Newtonian behavior at
moderate rates of strain. These include solutions containing long-chain polymer molecules,
concentrated soaps, melted plastics, emulsions and slurries containing suspended particles,
and many liquids of biological origin. These liquids may violate Newtonian behavior in
several ways. For example, shear stress may be a nonlinear function of the local strain rate,
which is the case for many liquid plastics that are shear thinning; their viscosity drops with
increasing strain rate. Alternatively, the stress on a non-Newtonian fluid particle may depend
on the local strain rate and on its history. Suchmemory effects give the fluid some elastic prop-
erties that may allow it to mimic solid behavior over short periods of time. In fact
there is a whole class of viscoelastic substances that are neither fully fluid nor fully solid.
Non-Newtonian fluid mechanics is beyond the scope of this text but its fundamentals are
well covered elsewhere (see Bird et al., 1987).

4.6. NAVIER-STOKES MOMENTUM EQUATION

The momentum conservation equation for a Newtonian fluid is obtained by substituting
(4.37) into Cauchy’s equation (4.24) to obtain:
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r

�

vuj
vt

þ ui
vuj
vxi

	

¼ �vp

vxj
þ rgj þ

v

vxi

"

m

 

vuj
vxi

þ vui
vxj

!

þ
�

my �
2

3
m

	

vum
vxm

dij

#

, (4.38)

where we have used (vp/vxi)dij ¼ vp/vxj, (3.5) with F¼ uj, and (3.12). This is theNavier-Stokes
momentum equation. The viscosities, m and my, in this equation can depend on the thermody-
namic state and indeed m, for most fluids, displays a rather strong dependence on tempera-
ture, decreasing with T for liquids and increasing with T for gases. Together, (4.7) and (4.38)
provide 1 þ 3 ¼ 4 scalar equations, and they contain r, p, and uj for 1 þ 1 þ 3 ¼ 5 dependent
variables. Therefore, when combined with suitable boundary conditions, (4.7) and (4.38)
provide a complete description of fluid dynamics when r is constant or when a single
(known) relationship exists between p and r. In the later case, the fluid or the flow is said
to be barotropic. When the relationship between p and r also includes the temperature T,
the internal (or thermal) energy e of the fluid must also be considered. These additions allow
a caloric equation of state to be added to the equation listing, but introduces twomore depen-
dent variables, T and e. Thus, in general, a third field equation representing conservation of
energy is needed to fully describe fluid dynamics.

When temperature differences are small within the flow, m and my can be taken outside the
spatial derivative operating on the contents of the [,]-brackets in (4.38), which then reduces to

r
Duj
Dt

¼ �vp

vxj
þ rgj þ m

v2uj

vx2i
þ
�

my þ
1

3
m

	

v

vxj

vum
vxm

ðcompressibleÞ: (4.39a)

For incompressible fluids V$u ¼ vum/vxm ¼ 0, so (4.39a) in vector notation reduces to:

r
Du

Dt
¼ �Vpþ rgþ mV2u ðincompressibleÞ: (4.39b)

Interestingly, the net viscous force per unit volume in incompressible flow, the last term on
the right in this equation, can be obtained from the divergence of the strain rate tensor or
from the curl of the vorticity (see Exercise 4.38):

�

mV2u
�

j¼ m
v2uj

vx2i
¼ 2m

vSij
vxi

¼ m
v

vxi

 

vuj
vxi

þ vui
vxj

!

¼ �m3jik
vuk

vxi
¼ �mðV�uÞj: (4.40)

This result would seem to pose a paradox since it shows that the net viscous force depends on
the vorticity even though rotation of fluid elements was explicitly excluded from entering
(4.37), the precursor of (4.40). This paradox is resolved by realizing that the net viscous force
is given by either a spatial derivative of the vorticity or a spatial derivative of the deformation
rate. The net viscous force vanishes when u is uniform in space (as in solid-body rotation), in
which case the incompressibility condition requires that the deformation rate is zero every-
where as well.

If viscous effects are negligible, which is commonly true away from the boundaries of the
flow field, (4.39) further simplifies to the Euler equation

r
Du

Dt
¼ �Vpþ rg: (4.41)
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4.7. NONINERTIAL FRAME OF REFERENCE

The equations of fluid motion in a noninertial frame of reference are developed in this
section. The equations of motion given in Sections 4.4 through 4.6 are valid in an inertial
frame of reference, one that is stationary or that is moving at a constant speed with respect
to a stationary frame of reference. Although a stationary frame of reference cannot be defined
precisely, a frame of reference that is stationary with respect to distant stars is adequate for
our purposes. Thus, noninertial-frame effects may be found in other frames of reference
known to undergo nonuniform translation and rotation. For example, the fluid mechanics
of rotating machinery is often best analyzed in a rotating frame of reference, and modern
life commonly places us in the noninertial frame of reference of a moving and maneuvering
vehicle. Fortunately, in many laboratory situations, the relevant distances and time scales are
short enough so that a frame of reference attached to the earth (sometimes referred to as the
laboratory frame of reference) is a suitable inertial frame of reference. However, in atmo-
spheric, oceanic, or geophysical studies where time and length scales are much larger, the
earth’s rotation may play an important role, so an earth-fixed frame of reference must often
be treated as a noninertial frame of reference.

In a noninertial frame of reference, the continuity equation (4.7) is unchanged but the
momentum equation (4.38) must be modified. Consider a frame of reference O0102030 that
translates at velocity dX(t)/dt ¼ U(t) and rotates at angular velocity U(t) with respect to
a stationary frame of reference O123 (see Figure 4.6). The vectors U and U may be resolved
in either frame. The same clock is used in both frames so t ¼ t0. A fluid particle P can be
located in the rotating frame x0 ¼ ðx01,x02,x03Þ or in the stationary frame x ¼ ðx1, x2, x3Þ, and
these distances are simply related via vector addition: x ¼ X þ x0. The velocity u of the fluid
particle is obtained by time differentiation:

u ¼ dx

dt
¼ dX

dt
þ dx0

dt
¼ Uþ d

dt
ðx01e01 þ x02e

0
2 þ x03e

0
3Þ

¼ Uþ dx01
dt

e01 þ
dx02
dt

e02 þ
dx03
dt

e03 þ x01
de01
dt

þ x02
de02
dt

þ x03
de03
dt

¼ Uþ u0 þU� x0, (4.42)

1

2

3

O

1′

2′

3′
O′

x x′

u u= U + ′ + × ′ x

X(t)

(t)

P

FIGURE 4.6 Geometry showing the relationship between a stationary coordinate system O123 and a noninertial
coordinate system O0102030 that is moving, accelerating, and rotating with respect to O123. In particular, the vector
connecting O and O0 is X(t) and the rotational velocity of O0102030 is U(t). The vector velocity u at point P in O123 is
shown. The vector velocity u0 at point P in O0102030 differs from u because of the motion of O0102030.
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where the final equality is based on the geometric construction of the cross product shown in
Figure 4.7 for e01, one of the unit vectors in the rotating frame. In a small time dt, the rotation of
O0102030 causes e01 to trace a small portion of a cone with radius sina as shown. The magnitude
of the change in e01 is je01j ¼ ðsinaÞjUjdt, so dje01j=dt ¼ ðsinaÞjUj, which is equal to the magni-
tude ofU� e01. The direction of the rate of change of e01 is perpendicular toU and e01, which is
the direction of U� e01. Thus, by geometric construction, de01=dt ¼ U� e01, and by direct
extension to the other unit vectors, de0i=dt ¼ U� e0i (in mixed notation).

To find the acceleration a of a fluid particle at P, take the time derivative of the final version
of (4.42) to find:

a ¼ du

dt
¼ d

dt
ðUþ u0 þU� x0Þ ¼ dU

dt
þ a0 þ 2U� u0 þ dU

dt
� x0 þU� ðU� x0Þ: (4.43)

(see Exercise 4.42) where dU/dt is the acceleration of O0 with respect to O, a0 is the fluid
particle acceleration viewed in the noninertial frame, 2U�u0 is the Coriolis acceleration,
(dU/dt)�x0 is the acceleration caused by angular acceleration of the noninertial frame, and
the final term is the centripetal acceleration.

In fluid mechanics, the acceleration a of fluid particles is denoted Du/Dt, so (4.43) is
rewritten:

�

Du

Dt

	

O123

¼
�

D0u0

Dt

	

O0102030
þ dU

dt
þ 2U� u0 þ dU

dt
� x0 þU� ðU� x0Þ: (4.44)

This equation states that fluid particle acceleration in an inertial frame is equal to the sum of:
the particle’s acceleration in the noninertial frame, the acceleration of the noninertial frame,
the Coriolis acceleration, the particle’s apparent acceleration from the noninertial frame’s
angular acceleration, and the particle’s centripetal acceleration. Substituting (4.44) into
(4.39), produces:

r

�

D0u0

Dt

	

O0102030
¼ �V0pþ r



g� dU

dt
� 2U� u0 � dU

dt
� x0 �U� ðU� x0Þ

�

þ mV02u0 (4.45)

| |dt

′ e 1 (t)

′ e 1 (t + dt)

d ′ e 1

α

FIGURE 4.7 Geometry showing the relationship between U, the rotational velocity vector of O0102030 , and the
first coordinate unit vector e01 in O0102030. Here, the increment de01 is perpendicular to U and e01.
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as the incompressible-flowmomentum conservation equation in a noninertial frame of refer-
ence where the primes denote differentiation, velocity, and position in the noninertial frame.
Thermodynamic variables and the net viscous stress are independent of the frame of refer-
ence. Equation (4.45) makes it clear that the primary effect of a noninertial frame is the addi-
tion of extra body force terms that arise from the motion of the noninertial frame. The terms
in [,]-brackets reduce to g alone when O0102030 is an inertial frame (U ¼ constant and U ¼ 0).

The four new terms in (4.45) may each be significant. The first new term dU/dt accounts
for the acceleration of O0 relative to O. It provides the apparent force that pushes occupants
back into their seats or makes them tighten their grip on a handrail when a vehicle acceler-
ates. An aircraft that is flown on a parabolic trajectory produces weightlessness in its interior
when its acceleration dU/dt equals g.

The second new term, the Coriolis term, depends on the fluid particle’s velocity, not on its
position. Thus, even at the earth’s rotation rate of one cycle per day, it has important conse-
quences for the accuracy of artillery and for navigation during air and sea travel. The earth’s
angular velocity vector U points out of the ground in the northern hemisphere. The Coriolis
acceleration �2U � u therefore tends to deflect a particle to the right of its direction of travel
in the northern hemisphere and to the left in the southern hemisphere. Imagine a low-drag
projectile shot horizontally from the north pole with speed u (Figure 4.8). The Coriolis acceler-
ation 2Uu constantly acts perpendicular to its path and therefore does not change the speed u of
the projectile. The forward distance traveled in time t is ut, and the deflection is Uut2. The
angular deflection is Uut2/ut ¼ Ut, which is the earth’s rotation in time t. This demonstrates
that theprojectile in fact travels in a straight line if observed fromouter space (an inertial frame);
its apparent deflection is merely due to the rotation of the earth underneath it. Observers on
earth need an imaginary force to account for this deflection. A clear physical explanation of
the Coriolis force, with applications to mechanics, is given by Stommel and Moore (1989).

FIGURE 4.8 Particle trajectory deflection caused by the Coriolis acceleration when observed in a rotating frame
of reference. If observed from a stationary frame of reference, the particle trajectory would be straight.
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In the atmosphere, the Coriolis acceleration is responsible for wind circulation patterns
around centers of high and low pressure in the earth’s atmosphere. In an inertial frame,
a nonzero pressure gradient accelerates fluid from regions of higher pressure to regions of
lower pressure, as the first term on the right of (4.38) and (4.45) indicates. Imagine a cylin-
drical polar coordinate system (Figure 3.3c), with the z-axis normal to the earth’s surface
and the origin at the center of a high- or low-pressure region in the atmosphere. If it is
a high pressure zone, uR would be outward (positive) away from the z-axis in the absence
of rotation since fluid will leave a center of high pressure. In this situation when there is rota-
tion, the Coriolis acceleration �2U � u ¼ �2UzuRe4 is in the �4 direction (in the Northern
hemisphere), or clockwise as viewed from above. On the other hand, if the flow is inward
toward the center of a low-pressure zone, which reverses the direction of uR, the Coriolis
acceleration is counterclockwise. In the southern hemisphere, the direction of Uz is reversed
so that the circulation patterns described above are reversed. Although the effects of
a rotating frame will be commented on occasionally in this and subsequent chapters, most
of the discussions involving Coriolis forces are given in Chapter 13, which covers geophys-
ical fluid dynamics.

The third new acceleration term in [,]-brackets in (4.45) is caused by changes in the rotation
rate of the frame of reference so it is of little importance for geophysical flows or for flows in
machinery that rotate at a constant rate about a fixed axis. However, it does play a role when
rotation speed or the direction of rotation vary with time.

The final new acceleration term in (4.45), the centrifugal acceleration, depends strongly
on the rotation rate and the distance of the fluid particle from the axis of rotation. If the
rotation rate is steady and the axis of rotation coincides with the z-axis of a cylindrical polar

FIGURE 4.9 The earth’s rotation causes it to budge near the equator and this leads to a mild distortion of
equipotential surfaces from perfect spherical symmetry. The total gravitational acceleration is a sum of a centrally
directed acceleration gn (the Newtonian gravitation) and a rotational correction U2R that points away from the axis
of rotation.
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coordinate system so that U ¼ (0, 0, U) and x0 ¼ (R, 4, z), then eU�(U � x0) ¼ þU2ReR. This
additional apparent acceleration can be added to the gravitational acceleration g to define
an effective gravity ge ¼ g þ U2ReR (Figure 4.9). Interestingly, a body-force potential for the
new term can be found, but its impact might only be felt for relatively large atmospheric- or
oceanic-scale flows (Exercise 4.43). The effective gravity is not precisely directed at the
center of the earth and its acceleration value varies slightly over the surface of the earth.
The equipotential surfaces (shown by the dashed lines in Figure 4.9) are perpendicular to
the effective gravity, and the average sea level is one of these equipotential surfaces.
Thus, at least locally on the earth’s surface, we can write Fe ¼ gz, where z is measured
perpendicular to an equipotential surface, and g is the local acceleration caused by the effec-
tive gravity. Use of the locally correct acceleration and direction for the earth’s gravitational
body force in the equations of fluid motion accounts for the centrifugal acceleration and the
fact that the earth is really an ellipsoid with equatorial diameter 42 km larger than the polar
diameter.

EXAMPLE 4.5

Find the radial, angular, and axial fluid momentum equations for viscous flow in the gaps

between plates of a von Karman viscous impeller pump (see Figure 4.10) that rotates at a constant

angular speed Uz. Assume steady constant-density constant-viscosity flow, neglect the body force

for simplicity, and use cylindrical coordinates (Figure 3.3c).

Solution

First a little background: A von Karman viscous impeller pump uses rotating plates to pump

viscous fluids via a combination of viscous and centrifugal forces. Although such pumps may be

inefficient, they are wear-tolerant and may be used to pump abrasive fluids that would damage the

Ωz

z

R

axial
inflow

radial
outflow

FIGURE 4.10 Schematic drawing of the impeller of a von Karman pump (Example 4.5).
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vanes or blades of other pumps. Plus, their pumping action is entirely steady so they are excep-

tionally quiet, a feature occasionally exploited for air-moving applications in interior spaces

occupied by human beings.

For steady, constant-density, constant-viscosity flow without a body force in a steadily rotating

frame of reference, the momentum equation is a simplified version of (4.45):

rðu0,V0Þu0 ¼ �V0pþ r½ � 2U� u0 �U� ðU� x0Þ� þ mV02u0:

Here we are not concerned with the axial inflow or the flow beyond the outer edges of the disks.

Now choose the z-axis of the coordinate system to be coincident with the axis of rotation. For this

choice, the flow between the disks should be axisymmetric, so we can presume that u0R, u
0
4, u

0
z,

and p only depend on R and z. To further simplify the momentum equation, drop the primes,

evaluate the cross products,

U� u ¼ Uzez �
�

uReR þ u4e4
� ¼ þUzuRe4 � Uzu4eR, and U� ðU� x0Þ ¼ �U2

zReR,

and separate the radial, angular, and axial components to find:

r

 

uR
vuR
vR

þ uz
vuR
vz

� u24
R

!

¼ �vp

vR
þ r



2Uzu4 þ U2
zR
�þ m

 

1

R

v

vR

�

R
vuR
vR

	

þ v2uR
vz2

� uR
R2

!

r

�

uR
vu4
vR

þ uz
vu4
vz

þ uRu4
R

	

¼ r½�2UzuR� þ m

 

1

R

v

vR

�

R
vu4
vR

	

þ v2u4
vz2

� u4
R2

!

r

�

uR
vuz
vR

þ uz
vuz
vz

	

¼ �vp

vz
þ m

 

1

R

v

vR

�

R
vuz
vR

	

þ v2uz
vz2

!

:

Here we have used the results found in the Appendix B for cylindrical coordinates. In the first

two momentum equations, the terms in [,]-brackets result from rotation of the coordinate

system.

4.8. CONSERVATION OF ENERGY

In this section, the integral energy-conservation equivalent of (4.5) and (4.17) is developed
from a mathematical statement of conservation of energy for a fluid particle in an inertial
frame of reference. The subsequent steps that lead to a differential energy-conservation
equivalent of (4.7) and (4.24) follow the pattern set in Sections 4.2 and 4.5. For clarity and
conciseness, the explicit listing of independent variables is dropped from the equations in
this section.

When applied to a material volume V(t) with surface area A(t), conservation of internal
energy per unit mass e and the kinetic energy per unit mass (½)juj2 can be stated:

d

dt

Z

VðtÞ
r

�

eþ 1

2
juj2

	

dV ¼
Z

VðtÞ
rg,udV þ

Z

AðtÞ
f,udA�

Z

AðtÞ
q,ndA, (4.46)

4.8. CONSERVATION OF ENERGY 121



where the terms on the right are: work done on the fluid in V(t) by body forces, work
done on the fluid in V(t) by surface forces, and heat transferred out of V(t). Here, q is
the heat flux vector and in general includes thermal conduction and radiation. The final
term in (4.46) has a negative sign because the energy in V(t) decreases when heat leaves
V(t) and this occurs when q,n is positive. Again, the implications of (4.46) are better
displayed when the time derivative is expanded using Reynolds transport theorem
(3.35),

Z

VðtÞ

v

vt

�

reþ r

2
juj2

�

dV þ
Z

AðtÞ

�

reþ r

2
juj2

�

ðu,nÞdA

¼
Z

VðtÞ
rg,udV þ

Z

AðtÞ
f,udA�

Z

AðtÞ
q,ndA:

(4.47)

Similar to the prior developments for mass and momentum conservation, this result can be
generalized to an arbitrarily moving control volume V*(t) with surface A*(t):

d

dt

Z

V�ðtÞ
r

�

eþ 1

2
juj2

	

dV þ
Z

A�ðtÞ

�

reþ r

2
juj2

�

ðu� bÞ,ndA

¼
Z

V�ðtÞ
rg,udV þ

Z

A�ðtÞ
f ,udA�

Z

A�ðtÞ
q ,ndA, (4.48)

whenV*(t) is instantaneously coincident with V(t). And, just like (4.5) and (4.17), (4.48) can be
specialized to stationary, steadily moving, accelerating, or deforming control volumes by
appropriate choice of the control surface velocity b.

The differential equation that represents energy conservation is obtained from (4.47)
after collecting all four terms under the same volume integration. The first step is to
convert the three surface integrals in (4.47) to volume integrals using Gauss’ theorem
(2.30):

Z

AðtÞ

�

reþ r

2
juj2

�

ðu,nÞdA¼
Z

VðtÞ
V,
�

reuþ r

2
juj2u

�

dV

¼
Z

VðtÞ

v

vxi

�

r

�

eþ 1

2
u2j

	

ui

	

dV,

(4.49)

Z

AðtÞ
f,udA ¼

Z

AðtÞ
nisijujdA ¼

Z

VðtÞ

v

vxi
ðsijujÞdV, (4.50)

and
Z

AðtÞ
q,ndA ¼

Z

AðtÞ
qinidA ¼

Z

VðtÞ
V,qdA ¼

Z

VðtÞ

v

vxi
qidA, (4.51)
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where in (4.49) u2j ¼ u21 þ u22 þ u23 because the summation index j is implicitly repeated.

Substituting (4.49) through (4.51) into (4.47) and putting all the terms together into the
same volume integration produces:

Z

VðtÞ

�

v

vt

�

r



eþ 1

2
u2j

�	

þ v

vxi

�

r



eþ 1

2
u2j

�

ui

	

� rgiui �
v

vxi

�

sijuj
�

þ vqi
vxi

�

dV ¼ 0: (4.52)

Similar to (4.6) and (4.21), the integral in (4.52) can only be zero for any material volume if its
integrand vanishes at every point in space; thus (4.52) requires:

v

vt

�

r



eþ 1

2
u2j

�	

þ v

vxi

�

r



eþ 1

2
u2j

�

ui

	

¼ rgiui þ
v

vxi

�

sijuj
�

� vqi
vxi

: (4.53)

This differential equation is a statement of conservation of energy containing terms for
fluid particle internal energy, fluid particle kinetic energy, work, energy exchange, and
heat transfer. It is commonly revised and simplified so that its terms are more readily
interpreted. The second term on the right side of (4.53) represents the total rate of work
done on a fluid particle by surface stresses. By performing the differentiation, and then
using (4.27) to separate out pressure and viscous surface-stress terms, it can be decom-
posed as follows:

v

vxi

�

sijuj
�

¼ sij
vuj
vxi

þ uj
vsij
vxi

¼
 

� p
vuj
vxj

þ sij
vuj
vxi

!

þ
 

� uj
vp

vxj
þ uj

vsij

vxi

!

: (4.54)

In the final equality, the terms in the first set of (,)-parentheses are the pressure and viscous-
stress work terms that lead to the deformation of fluid particles while the terms in the second
set of (,)-parentheses are the product of the local fluid velocity with the net pressure force and
the net viscous force that lead to either an increase or decrease in the fluid particle’s kinetic
energy. (Recall from (4.24) that vsij/vxj represents the net surface force.) Substituting (4.54)
into (4.53), expanding the differentiations on the left in (4.53), and using the continuity equa-
tion (4.7) to drop terms produces:

r
D

Dt

�

eþ 1

2
u2j

	

¼ rgiui þ
 

� p
vuj
vxj

þ sij
vuj
vxi

!

þ
 

� uj
vp

vxj
þ uj

vsij

vxi

!

� vqi
vxi

(4.55)

(see Exercise 4.45). This equation contains both mechanical and thermal energy terms.
A separate equation for the mechanical energy can be constructed by multiplying (4.22) by
uj and summing over j. After some manipulation, the result is:

r
D

Dt

�

1

2
u2j

	

¼ rgjuj � uj
vp

vxj
þ uj

v

vxi

�

sij

�

(4.56)

(see Exercise 4.46), where (4.27) has been used for sij. Subtracting (4.56) from (4.55), dividing
by r ¼ 1/y, and using (4.8) produces:

De

Dt
¼ �p

Dy

Dt
þ 1

r
sijSij �

1

r

vqi
vxi

, (4.57)
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where the fact that sij is symmetric has been exploited so sij(vuj/vxi) ¼ sij(Sji þ Rji) ¼ sijSij
with Sij given by (3.12). Equation (4.57) is entirely equivalent to the first law of thermody-
namics (1.10)dthe change in energy of a system equals the work put into the system minus
the heat lost by the system. The difference is that in (4.57), all the terms have units of power
per unit mass instead of energy. The first two terms on the right in (4.57) are the pressure and
viscous work done on a fluid particle while the final term represents heat transfer from the
fluid particle. The pressure work and heat transfer terms may have either sign.

The viscous work term in (4.57) is the kinetic energy dissipation rate per unit mass, and it
is commonly denoted by 3 ¼ ð1=rÞsijSij . It is the product of the viscous stress acting on a fluid
element and the deformation rate of a fluid element, and represents the viscous work put into
fluid element deformation. This work is irreversible because deformed fluid elements do not
return to their prior shape when a viscous stress is relieved. Thus, 3 represents the irreversible
conversion of mechanical energy to thermal energy through the action of viscosity. It is
always positive and can be written in terms of the viscosities and squares of velocity field
derivatives (see Exercise 4.47):

3h
1

r
sijSij ¼

1

r

�

2mSij þ
�

my �
2

3
m

	

vum
vxm

dij

	

Sij ¼ 2n

�

Sij �
1

3

vum
vxm

dij

	2

þ my

r

�

vum
vxm

	2

, (4.58)

where n h m=r is the kinematic viscosity, (1.4), and

sij ¼ þ m

 

vui
vxj

þ vuj
vxi

!

þ
�

my �
2

3
m

	

vum
vxm

dij (4.59)

for a Newtonian fluid. Here we note that only shear deformations contribute to 3when my¼ 0
or when the flow is in incompressible. As described in Chapter 12, 3 plays an important role
in the physics and description of turbulent flow. It is proportional to m (and my) and the square
of velocity gradients, so it is more important in regions of high shear. The internal energy
increase resulting from high 3 could appear as a hot lubricant in a bearing, or as burning
of the surface of a spacecraft on reentry into the atmosphere.

The final energy-equation manipulation is to express qi in terms of the other dependent
field variables. For nearly all the circumstances considered in this text, heat transfer is caused
by thermal conduction alone, so using (4.58) and Fourier’s law of heat conduction (1.2), (4.57)
can be rewritten:

r
De

Dt
¼ �p

vum
vxm

þ 2m

�

Sij �
1

3

vum
vxm

dij

	2

þ my

�

vum
vxm

	2

þ v

vxi

�

k
vT

vxi

	

, (4.60)

where k is the fluid’s thermal conductivity. It is presumed to only depend on thermodynamic
conditions, as is the case for m and my.

At this point the development of the differential equations of fluidmotion is complete. The
field equations (4.7), (4.38), and (4.60) are general for a Newtonian fluid that follows Fourier’s
law of heat conduction. These field equations and two thermodynamic equations provide:
1 þ 3 þ 1 þ 2 ¼ 7 scalar equations. The dependent variables in these equations are r, e, p,
T, and uj, a total of 1 þ 1 þ 1 þ 1 þ 3 ¼ 7 unknowns. The number of equations is equal to
the number of unknown field variables; therefore, solutions are in principle possible for suit-
able boundary conditions.
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Interestingly, the evolution of the entropy s in fluid flows can be deduced from (4.57) by
using Gibb’s property relation (1.18) for the internal energy de ¼ Tds e pd(1/r). When
made specific to time variations following a fluid particle, it becomes:

De

Dt
¼ T

Ds

Dt
� p

Dð1=rÞ
Dt

: (4.61)

Combining (4.57), (4.58), and (4.61) produces:

Ds

Dt
¼ � 1

rT

vqi
vxi

þ 3

T
¼ �1

r

v

vxi

�qi
T

�

� qi
rT2

�

vT

vxi

	

þ 3

T
, (4.62)

and using Fourier’s law of heat conduction, this becomes:

Ds

Dt
¼ þ 1

r

v

vxi

�
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T

vT

vxi

	

þ k

rT2

�

vT

vxi

	2

þ 3

T
: (4.63)

The first term on the right side is the entropy gain or loss from heat conduction. The last two
terms, which are proportional to the square of temperature and velocity gradients (see (4.58)),
represent the entropy production caused by heat conduction and viscous generation of heat.
The second law of thermodynamics requires that the entropy production due to irreversible
phenomena should be positive, so that m, k, k > 0: Thus, explicit appeal to the second law of
thermodynamics is not required in most analyses of fluid flows because it has already been
satisfied by taking positive values for the viscosities and the thermal conductivity. In addition
(4.63) requires that fluid particle entropy be preserved along particle trajectories when the
flow is inviscid and non-heat-conducting, i.e., when Ds/Dt ¼ 0.

4.9. SPECIAL FORMS OF THE EQUATIONS

The general equations of motion for a fluidmay be put into a variety of special formswhen
certain symmetries or approximations are valid. Several special forms are presented in this
section. The first applies to the integral form of the momentum equation and corresponds
to the classical mechanics principle of conservation of angular momentum. The second
through fifth special forms arise from manipulations of the differential equations to generate
Bernoulli equations. The sixth special form applies when the flow has constant density and
the gravitational body force and hydrostatic pressure cancel. The final special form for the
equations of motion presented here, known as the Boussinesq approximation, is for low-
speed incompressible flows with constant transport coefficients and small changes in density.

Angular Momentum Principle for a Stationary Control Volume

In the mechanics of solids bodies it is shown that

dH=dt ¼ M, (4.64)

where M is the torque of all external forces on the body about any chosen axis, and dH/dt is
the rate of change of angular momentum of the body about the same axis. For the fluid in
a material control volume, the angular momentum is
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H ¼
Z

VðtÞ
ðr� ruÞdV,

where r is the position vector from the chosen axis (Figure 4.11). Inserting this in (4.64)
produces:

d

dt

Z

VðtÞ
ðr� ruÞdV ¼

Z

VðtÞ
ðr� rgÞdV þ

Z

AðtÞ
ðr� fÞdA,

where the two terms on the right are the torque produced by body forces and surface stresses,
respectively. As before, the left-hand term can be expanded via Reynolds transport theorem
to find:

d

dt

Z

VðtÞ
ðr� ruÞdV ¼

Z

VðtÞ

v

vt
ðr� ruÞdV þ

Z

AðtÞ
ðr� ruÞðu,nÞdA

¼
Z

Vo

v

vt
ðr� ruÞdV þ

Z

Ao

ðr� ruÞðu,nÞdA

¼ d

dt

Z

Vo

ðr� ruÞdV þ
Z

Ao

ðr� ruÞðu,nÞdA;

where Vo and Ao are the volume and surface of a stationary control volume that is instanta-
neously coincident with thematerial volume, and the final equality holds becauseVo does not
vary with time. Thus, the stationary volume angular momentum principle is:

d

dt

Z

Vo

ðr� ruÞdV þ
Z

Ao

ðr� ruÞðu,nÞdA ¼
Z

Vo

ðr� rgÞdV þ
Z

Ao

ðr� fÞdA: (4.65)

FIGURE 4.11 Definition
sketch for the angular momen-
tum theorem where dm¼ rdV.
Here the chosen axis points out
of the page, and elemental
contributions to the angular
momentum about this axis are
r� rudV:
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The angular momentum principle (4.65) is analogous to the linear momentum principle
(4.17) when b ¼ 0, and is very useful in investigating rotating fluid systems such as turboma-
chines, fluid couplings, dishwashing-machine spray rotors, and even lawn sprinklers.

EXAMPLE 4.6

Consider a lawn sprinkler as shown in Figure 4.12. The area of each nozzle exit is A, and the jet

velocity is U. Find the torque required to hold the rotor stationary.

Solution

Select a stationary volumeVowith areaAo as shown by the dashed lines. Pressure everywhere on

the control surface is atmospheric, and there is no net moment due to the pressure forces. The

control surface cuts through the vertical support and the torque M exerted by the support on the

sprinkler arm is the only torque acting on Vo. Apply the angular momentum balance
Z

Ao

ðr� ruÞðu,nÞdA ¼
Z

Ao

ðr� fÞdA ¼ M,

where the time derivative termmust be zero for a stationary rotor. Evaluating the surface flux terms

produces:
Z

Ao

ðr� ruÞðu,nÞdA ¼ ðarU cos aÞUAþ ðarU cos aÞUA ¼ 2arAU2 cos a:

Therefore, the torque required to hold the rotor stationary is M ¼ 2arAU2 cos a. When the

sprinkler is rotating at a steady state, this torque is balanced by both air resistance and mechanical

friction.

FIGURE 4.12 Lawn sprinkler.
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Bernoulli Equations

Various conservation laws for mass, momentum, energy, and entropy were presented in
the preceding sections. Bernoulli equations are not separate laws, but are instead derived
from the Navier-Stokes momentum equation (4.38) and the energy equation (4.60) under
various sets of conditions.

First consider inviscid flow (m ¼ my ¼ 0) where gravity is the only body force so that (4.38)
reduces to the Euler equation (4.41):

vuj
vt

þ ui
vuj
vxi

¼ �1

r

vp

vxj
� v

vxj
F, (4.66)

where F ¼ gz is the body force potential, g is the acceleration of gravity, and the z-axis is
vertical. If the flow is also barotropic, then r ¼ r(p), and

1

r

vp

vxj
¼ v

vxj

Z

p

po

dp0

rðp0Þ, (4.67)

where dp/r is a perfect differential, po is a reference pressure, and p0 is the integration vari-
able. In this case the integral depends only on its endpoints, and not on the path of integra-
tion. Constant density, isothermal, and isentropic flows are barotropic. In addition, the
advective acceleration in (4.66) may be rewritten in terms of the velocity-vorticity cross
product, and the gradient of the kinetic energy per unit mass:

ui
vuj
vxi

¼ �ðu�uÞj þ
v

vxj

�

1

2
u2i

	

(4.68)

(see Exercise 4.50). Substituting (4.67) and (4.68) into (4.66) produces:

vuj
vt

þ v

vxj

2

6

4

1

2
u2i þ

Z

p

po

dp0

rðp0Þ þ gz

3

7

5 ¼ ðu�uÞj, (4.69)

where all the gradient terms have been collected together to form the Bernoulli function
B ¼ the contents of the [,]-brackets.

Equation (4.69) can be used to deduce the evolution of the Bernoulli function in inviscid
barotropic flow. First consider steady flow (vuj/vt ¼ 0) so that (4.69) reduces to

VB ¼ u�u: (4.70)

The left-hand side is a vector normal to the surface B¼ constant whereas the right-hand side is
a vector perpendicular to both u andu (Figure 4.13). It follows that surfaces of constant Bmust
contain the streamlines and vortex lines. Thus, an inviscid, steady, barotropic flow satisfies

1

2
u2i þ

Z

p

po

dp0

rðp0Þ þ gz ¼ constant along streamlines and vortex lines: (4.71)

This is the first of several possible Bernoulli equations. If, in addition, the flow is irrotational
(u ¼ 0), then (4.70) implies that
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1

2
u2i þ

Z

p

po

dp0

rðp0Þ þ gz ¼ constant everywhere: (4.72)

It may be shown that a sufficient condition for the existence of the surfaces containing
streamlines and vortex lines is that the flow be barotropic. Incidentally, these are called
Lamb surfaces in honor of the distinguished English applied mathematician and hydrodynam-
icist, Horace Lamb. In a general nonbarotropic flow, a path composed of streamline and vortex
line segments can be drawn between any two points in a flowfield. Then (4.71) is validwith the
proviso that the integral be evaluated on the specific path chosen. As written, (4.71) requires
that the flow be steady, inviscid, and have only gravity (or other conservative) body forces
acting upon it. Irrotational flow is presented in Chapter 6. We shall note only the important
point here that, in a nonrotating frame of reference, barotropic irrotational flows remain irro-
tational if viscous effects are negligible. Consider the flow around a solid object, say an airfoil
(Figure 4.14). The flow is irrotational at all points outside the thin viscous layer close to the
surface of the body. This is because a particle P on a streamline outside the viscous layer started
from some point S, where the flow is uniform and consequently irrotational. The Bernoulli
equation (4.72) is therefore satisfied everywhere outside the viscous layer in this example.

FIGURE 4.13 A surface defined by streamlines and vortex lines. Within this surface the Bernoulli function
defined as the contents of the [,]-brackets in (4.69) is constant in steady flow. Note that the streamlines and vortex
lines can be at an arbitrary angle.

FIGURE 4.14 Flow over a
solid object. Viscous shear
stresses are usually confined to
a thin layer near the body called
a boundary layer. Flow outside
the boundary layer is irrota-
tional, so if a fluid particle at S
is initially irrotational it will
remain irrotational at P because
the streamline it travels on does
not enter the boundary layer.
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An unsteady form of Bernoulli’s equation can be derived only if the flow is irrotational. In
this case, the velocity vector can be written as the gradient of a scalar potential f (called the
velocity potential):

uhVf: (4.73)

Putting (4.73) into (4.69) with u ¼ 0 produces:
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4
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2
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p
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rðp0Þ þ gz ¼ BðtÞ, (4.74)

where the integration function B(t) is independent of location. Here f can be redefined to
include B,

f/fþ
Z
t

to

Bðt0Þdt0,

without changing its use in (4.73); then the second part of (4.74) provides a second Bernoulli
equation for unsteady, inviscid, irrotational, barotropic flow:

vf

vt
þ 1

2
jVfj2 þ

Z

p

po

dp0

rðp0Þ þ gz ¼ constant: (4.75)

This form of the Bernoulli equation will be used in studying irrotational wave motions in
Chapter 7.

A third Bernoulli equation can be obtained for steady flow (v/vt ¼ 0) from the energy
equation (4.55) in the absence of viscous stresses and heat transfer (sij ¼ qi ¼ 0):
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�
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v

vxj

�

rujp=r
�

: (4.76)

When the body force is conservative with potential gz, and the steady continuity equation,
v(rui)/vxi ¼ 0, is used to simplify (4.76), it becomes:

rui
v

vxi

�

eþ p

r
þ 1

2
u2j þ gz

	

¼ 0: (4.77)

From (1.13) h ¼ e þ p/r, so (4.77) states that gradients of the sum h þ juj2/2 þ gz must be
normal to the local streamline direction ui. Therefore, a third Bernoulli equation is:

hþ 1

2
juj2 þ gz ¼ constant on streamlines: (4.78)

Equation (4.63) requires that inviscid, non-heat-conducting flows are isentropic (s does not
change along particle paths), and (1.18) implies dp/r ¼ dh when s ¼ constant. Thus the
path integral !dp/r becomes a function h of the endpoints only if both heat conduction
and viscous stresses may be neglected in the momentum Bernoulli equations (4.71), (4.72),
and (4.75). Equation (4.78) is very useful for high-speed gas flows where there is significant
interplay between kinetic and thermal energies along a streamline. It is nearly the same as
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(4.71), but does not include the other barotropic and vortex-line-evaluation possibilities
allowed by (4.71).

Interestingly, there is also a Bernoulli equation for constant-viscosity constant-density irro-
tational flow. It can be obtained by starting from (4.39), using (4.68) for the advective accel-
eration, and noting from (4.40) that V2u ¼ �V�u in incompressible flow:

r
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þ rV

�

1

2
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� ru�u ¼ �Vpþ rgþ mV2u ¼ �Vpþ rg� mV�u: (4.79)

When r ¼ constant, g ¼ �VðgzÞ, and u ¼ 0, the second and final parts of this extended
equality require:

r
vu

vt
þ V

�

1

2
rjuj2 þ rgzþ p

	

¼ 0: (4.80)

Now, form the dot product of this equation with the arc-length element euds ¼ ds directed
along a chosen streamline, integrate from location 1 to location 2 along this streamline,
and recognize that eu,V ¼ v=vs to find:
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(4.81)

The integration in the second term is elementary, so a fourth Bernoulli equation for constant-
viscosity constant-density irrotational flow is:
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1

, (4.82)

where 1 and 2 denote upstream and downstream locations on the same streamline at a single
instant in time. Alternatively, (4.80) can be written using (4.73) as

vf

vt
þ 1

2
jVfj2 þ gzþ p

r
¼ constant: (4.83)

To summarize, there are (at least) four Bernoulli equations: (4.71) is for inviscid,
steady, barotropic flow; (4.75) is for inviscid, irrotational, unsteady, barotropic flow;
(4.78) is for inviscid, isentropic, steady flow; and (4.82) or (4.83) is for constant-
viscosity, irrotational, unsteady, constant density flow. Perhaps the simplest form of
these is (4.19).

There are many useful and important applications of Bernoulli equations. A few of these
are described in the following paragraphs.

Consider first a simple device to measure the local velocity in a fluid stream by inserting
a narrow bent tube (Figure 4.15), called a pitot tube after the Frenchmathematician Henri Pitot
(1695e1771), who used a bent glass tube to measure the velocity of the river Seine. Consider
two points (1 and 2) at the same level, point 1 being away from the tube and point 2 being
immediately in front of the open end where the fluid velocity u2 is zero. If the flow is steady
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and irrotational with constant density along the streamline that connects 1 and 2, then (4.19)
gives

p1
r
þ 1

2
juj21 ¼ p2

r
þ 1

2
juj22 ¼ p2

r
;

from which the magnitude of u1 is found to be

juj1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

p2 � p1
��

r

q

:

Pressures at the two points are found from the hydrostatic balance

p1 ¼ rgh1 and p2 ¼ rgh2,

so that the magnitude of u1 can be found from

juj1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðh2 � h1Þ
q

:

Because it is assumed that the fluid density is very much greater than that of the atmo-
sphere to which the tubes are exposed, the pressures at the tops of the two fluid columns
are assumed to be the same. They will actually differ by ratmg(h2 � h1). Use of the hydrostatic

FIGURE 4.15 Pitot tube for measuring velocity in a duct. The first port measures the static pressure while the
second port measures the static and dynamic pressure. Using the steady Bernoulli equation for incompressible flow,
the height difference h2 e h1 can be related to the flow speed.
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approximation above station 1 is valid when the streamlines are straight and parallel
between station 1 and the upper wall.

The pressure p2 measured by a pitot tube is called stagnation pressure or total pressure,
which is larger than the local static pressure. Even when there is no pitot tube to measure
the stagnation pressure, it is customary to refer to the local value of the quantity (p þ rjuj2/
2) as the local stagnation pressure, defined as the pressure that would be reached if the local
flow is imagined to slow down to zero velocity frictionlessly. The quantity ru2/2 is some-
times called the dynamic pressure; stagnation pressure is the sum of static and dynamic
pressures.

As another application of Bernoulli’s equation, consider the flow through an orifice or
opening in a tank (Figure 4.16). The flow is slightly unsteady due to lowering of the water
level in the tank, but this effect is small if the tank area is large compared to the orifice
area. Viscous effects are negligible everywhere away from the walls of the tank. All stream-
lines can be traced back to the free surface in the tank, where they have the same value of the
Bernoulli constant B ¼ juj2/2 þ p/r þ gz. It follows that the flow is irrotational, and B is
constant throughout the flow.

We want to apply a Bernoulli equation between a point at the free surface in the tank
and a point in the jet. However, the conditions right at the opening (section A in
Figure 4.16) are not simple because the pressure is not uniform across the jet. Although
pressure has the atmospheric value everywhere on the free surface of the jet (neglecting
small surface tension effects), it is not equal to the atmospheric pressure inside the jet at
this section. The streamlines at the orifice are curved, which requires that pressure
must vary across the width of the jet in order to balance the centrifugal force. The pressure
distribution across the orifice (section A) is shown in Figure 4.16. However, the stream-
lines in the jet become parallel a short distance away from the orifice (section C in
Figure 4.16), where the jet area is smaller than the orifice area. The pressure across section
C is uniform and equal to the atmospheric value (patm) because it has that value at the
surface of the jet.

FIGURE 4.16 Flow through a
sharp-edged orifice. Pressure has the
atmospheric value everywhere across
section CC; its distribution across
orifice AA is indicated. The basic
finding here is that the width of the
fluid jet that emerges from the tank at
AA is larger than the width of the jet
that crosses CC.
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Application of the Bernoulli equation (4.19) for steady constant-density flow between
a point on the free surface in the tank and a point at C gives

patm
r

þ gh ¼ patm
r

þ u2

2
,

from which the average jet velocity magnitude u is found as

u ¼
ffiffiffiffiffiffiffiffi

2gh
p

;

which simply states that the loss of potential energy equals the gain of kinetic energy. The
mass flow rate is approximately

_m ¼ rAcu ¼ rAc

ffiffiffiffiffiffiffiffi

2gh
p

;

where Ac is the area of the jet at C. For orifices having a sharp edge, Ac has been found
to be z 62% of the orifice area because the jet contracts downstream of the orifice
opening.

If the orifice has a well-rounded opening (Figure 4.17), then the jet does not contract, the
streamlines right at the exit are then parallel, and the pressure at the exit is uniform and equal
to the atmospheric pressure. Consequently the mass flow rate is simply rA

ffiffiffiffiffiffiffiffi

2gh
p

, where A
equals the orifice area.

Neglect of Gravity in Constant Density Flows

When the flow velocity is zero, the Navier-Stokes momentum equation for incompressible
flow (4.39b) reduces to a balance between the hydrostatic pressure ps, and the steady body
force acting on the hydrostatic density rs,

FIGURE 4.17 Flow through a rounded orifice. Here the pressure and velocity can achieve parallel outflow
inside the tank, so the width of the jet does not change outside the tank.
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0 ¼ �Vps þ rsg,

which is equivalent to (1.8). When this hydrostatic balance is subtracted from (4.39b),
the pressure difference from hydrostatic, p0 ¼ p e ps, and the density difference from hydro-
static, r0 ¼ r e rs, appear:

r
Du

Dt
¼ �Vp0 þ r0gþ mV2u: (4.84)

When the fluid density is constant, r0 ¼ 0 and the gravitational-body-force term disappears
leaving:

r
Du

Dt
¼ �Vp0 þ mV2u: (4.85)

Because of this, steady body forces (like gravity) in constant density flow are commonly
omitted from the momentum equation, and pressure is measured relative to its local hydro-
static value. Furthermore, the prime on p in (4.85) is typically dropped in this situation.
However, when the flow includes a free surface, a fluid-fluid interface across which the
density changes, or other variations in density, the gravitational-body-force term should
reappear.

The Boussinesq Approximation

For flows satisfying certain conditions, Boussinesq in 1903 suggested that density
changes in the fluid can be neglected except where r is multiplied by g. This approximation
also treats the other properties of the fluid (such as m, k, Cp) as constants. It is commonly
useful for analyzing oceanic and atmospheric flows. Here we shall discuss the basis of
the approximation in a somewhat intuitive manner and examine the resulting simplifica-
tions of the equations of motion. A formal justification, and the conditions under which
the Boussinesq approximation holds, is given in Spiegel and Veronis (1960).

The Boussinesq approximation replaces the full continuity equation (4.7) by its incom-
pressible form (4.10), V,u ¼ 0, to indicate that the relative density changes following a fluid
particle, r�1(Dr/Dt), are small compared to the velocity gradients that compose V,u. Thus,
the Boussinesq approximation cannot be applied to high-speed gas flows where density vari-
ations induced by velocity divergence cannot be neglected (see Section 4.11). Similarly, it
cannot be applied when the vertical scale of the flow is so large that hydrostatic pressure vari-
ations cause significant changes in density. In a hydrostatic field, the vertical distance over
which the density changes become important is of order c2/g ~ 10 km for air where c is
the speed of sound. (This vertical distance estimate is consistent with the scale height of
the atmosphere; see Section 1.10.) The Boussinesq approximation therefore requires that
the vertical scale of the flow be L � c2/g.

In both cases just mentioned, density variations are caused by pressure variations. Now
suppose that such pressure-compressibility effects are small and that density changes are
caused by temperature variations alone, as in a thermal convection problem. In this case,
the Boussinesq approximation applies when the temperature variations in the flow are small.
Assume that r changes with T according to dr=r ¼ �adT, where a ¼ �r�1(vr/vT)p is the
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thermal expansion coefficient (1.20). For a perfect gas at room temperature a ¼ 1/T w
3 � 10�3 K�1 but for typical liquids a w 5 � 10�4 K�1. Thus, for a temperature difference
in the fluid of 10�C, density variations can be at most a few percent and it turns out that
r�1(Dr/Dt) can also be no larger than a few percent of the velocity gradients in V,u. To
see this, assume that the flow field is characterized by a length scale L, a velocity scale U,
and a temperature scale dT. By this wemean that the velocity varies byU and the temperature
varies by dT between locations separated by a distance of order L. The ratio of themagnitudes
of the two terms in the continuity equation is

ð1=rÞðDr=DtÞ
V,u

w
ð1=rÞuðvr=vxÞ

vu=vx
w
ðU=rÞðdr=LÞ

U=L
¼ dr

r
¼ adT � 1;

which allows (4.7) to be replaced by its incompressible form (4.10).
The Boussinesq approximation for themomentum equation is based on its form for incom-

pressible flow, and proceeds from (4.84) divided by rs:

r

rs

Du

Dt
¼ � 1

rs
Vp0 þ r0

rs
gþ m

rs
V2u:

When the density fluctuations are small r=rs y 1 and m=rs y n (¼ the kinematic viscosity), so
this equation implies:

Du

Dt
¼ � 1

r0
Vp0 þ r0

r0
gþ nV2u, (4.86)

where r0 is a constant reference value of rs. This equation states that density changes are
negligible when conservingmomentum, except when r0 is multiplied by g. In flows involving
buoyant convection, the magnitude of r0g/rs is of the same order as the vertical acceleration
vw/vt or the viscous term nV2w.

The Boussinesq approximation to the energy equation starts from (4.60), written in vector
notation,

r
De

Dt
¼ �pV,uþ r3� V,q, (4.87)

where (4.58) has been used to insert 3, the kinetic energy dissipation rate per unit mass.
Although the continuity equation is approximately V,u ¼ 0, an important point is that the
volume expansion term p(V,u) is not negligible compared to other dominant terms of equa-
tion (4.87); only for incompressible liquids is p(V,u) negligible in (4.87). We have

�pV,u ¼ p

r

Dr

Dt
;
p

r

�

vr

vT

	

p

DT

Dt
¼ �pa

DT

Dt
:

Assuming a perfect gas, for which p ¼ rRT, Cp � Cv ¼ R, and a ¼ 1/T, the foregoing estimate
becomes

�pV,u ¼ �rRTa
DT

Dt
¼ �rðCp � CvÞDT

Dt
:

Equation (4.87) then becomes
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rCp
DT

Dt
¼ r3� V,q, (4.88)

where e ¼ CvT for a perfect gas. Note that Cv (instead of Cp) would have appeared on the left
side of (4.88) if V,u had been dropped from (4.87).

The heating due to viscous dissipation of energy is negligible under the restrictions under-
lying the Boussinesq approximation. Comparing the magnitude of r3with the left-hand side
of (4.88), we obtain

r3

rCp

�

DT=Dt
�w

2mSijSij

rCpui
�

vT=vxi
�w

mU2=L2

rCpU
�

dT=L
� ¼ nU

�

CpdT
�

L
:

In typical situations this is extremely small (w10�7). Neglecting r3, and assuming Fourier’s
law of heat conduction (1.2) with constant k, (4.88) finally reduces to

DT

Dt
¼ kV2T, (4.89)

where kh k/rCp is the thermal diffusivity.

Summary

The Boussinesq approximation applies if the Mach number of the flow is small, propaga-
tion of sound or shock waves is not considered, the vertical scale of the flow is not too large,
and the temperature differences in the fluid are small. Then the density can be treated as
a constant in both the continuity and the momentum equations, except in the gravity term.
Properties of the fluid such as m, k, and Cp are also assumed constant. Omitting Coriolis accel-
erations, the set of equations corresponding to the Boussinesq approximation is: (4.9) and/or
(4.10), (4.86) with g ¼ egez, (4.89), and r¼ r0[1 e a(T e T0)], where the z-axis points upward.
The constant r0 is a reference density corresponding to a reference temperature T0, which can
be taken to be the mean temperature in the flow or the temperature at an appropriate
boundary. Applications of the Boussinesq set can be found in several places in this book,
for example, in the analysis of wave propagation in a density-stratified medium, thermal
instability, turbulence in a stratified medium, and geophysical fluid dynamics.

4.10. BOUNDARY CONDITIONS

The differential equations for the conservation laws require boundary conditions for
proper solution. Specifically, the Navier-Stokes momentum equation (4.38) requires the spec-
ification of the velocity vector on all surfaces bounding the flow domain. For an external flow,
one that is not contained by walls or surfaces at specified locations, the fluid’s velocity vector
and the thermodynamic state must be specified on a closed distant surface.

On a solid boundary or at the interface between two immiscible fluids, conditions may be
derived from the three basic conservation laws as follows. In Figure 4.18, a small cylindrical
control volume is drawn through the interface separating medium 1 (fluid) from medium 2
(solid or liquid immiscible with fluid 1). HereþndA andendA are the end faceedirected area
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elements in medium 1 andmedium 2, respectively. The circular surfaces are locally tangent to
the interface, and separated from each other by a distance l. Now apply the conservation laws
to the volume defined by the cylindrical volume. Next, let l/ 0, keeping the two round area
elements in the two different media. As l/ 0, all volume integrals/ 0 and the integral over
the side area, which is proportional to l, tends to zero as well. The unit vector n is normal to
the interface and points into medium 1. Mass conservation gives r1u1,n ¼ r2u2,n at each
point on the interface as the end face area becomes small. (Here we assume that the coordi-
nates are fixed to the interface, that is, the interface is at rest. Later in this section we show the
modifications necessary when the interface is moving.)

If medium 2 is a solid, then u2 ¼ 0 there. If medium 1 and medium 2 are immiscible
liquids, no mass flows across the boundary surface. In either case, u1,n ¼ 0 on the
boundary. The same procedure applied to the integral form of the momentum equation
(4.17) gives the result that the force/area on the surface, nisij, is continuous across the inter-
face if surface tension is neglected. If surface tension is included, a jump in pressure in the
direction normal to the interface must be added; see Section 1.6 and the discussion later in
this section.

Applying the integral form of energy conservation (4.48) to a small cylindrical control
volume of infinitesimal height l that straddles the interface gives the result that niqi is contin-
uous across the interface, or explicity, k1(vT1/vn) ¼ k2(vT2/vn) at the interface surface. The
heat flux must be continuous at the interface; it cannot store heat.

Twomore boundary conditions are required to completely specify a problem and these are
not consequences of any conservation law. These boundary conditions are: no slip of a viscous
fluid is permitted at a solid boundary u1,t ¼ 0; and no temperature jump is permitted at the
boundary T1 ¼ T2. Here t is a unit vector tangent to the boundary.

Known violations of the no-slip boundary condition occur for superfluid helium at or
below 2.17 K, which has an immeasurably small (essentially zero) viscosity. On the other
hand, the appearance of slip is created when water or water-based fluids flow over finely
textured super-hydrophobic (strongly water repellent) coated surfaces. This is described by
Gogte et al. (2005). Surface textures must be much smaller than the capillary length for water
and were typically about 10mm in this case. The fluid did not slip on the protrusions but did
not penetrate the valleys because of the surface tension, giving the appearance of slip. Both
slip and temperature jump are known to occur in highly rarefied gases, where the mean
distances between intermolecular collisions become of the order of the length scales of

1.

2.

l

+ndA

–ndA

t

FIGURE 4.18 Interface between two media for evaluation of boundary conditions. Here medium 1 is a fluid,
and medium 2 is a solid or a second fluid that is immiscible with the first fluid. Boundary conditions can be
determined by evaluating the equations of motion in the small cylindrical control volume shown and then letting l

go to zero with the volume straddling the interface.
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interest in the problem. The details are closely related to themanner of gas-surface interaction
of momentum and energy. A review of these topics is provided by McCormick (2005).

Moving and Deforming Boundaries

Consider a surface in space that may be moving or deforming in some arbitrary way.
Examples may be flexible solid boundaries, the interface between two immiscible liquids,
or a moving shock wave, which is described in Chapter 15. The first two examples do not
permit mass flow across the interface, whereas the third does. Such a surface can be defined
and its motion described in inertial coordinates by h(x, y, z, t) ¼ 0. We often must treat prob-
lems in which boundary conditions must be satisfied on such a moving, deforming interface.
Let the velocity of a point that remains on the interface, where h¼ 0, be us. An observer riding
on that point sees:

dh=dt ¼ vh=vtþ ðus,VÞh ¼ 0 on h ¼ 0: (4.90)

A fluid particle has velocity u. If no fluid flows across h¼ 0, then u , V h¼ us , V h¼�vh/vt.
Thus the condition that there be no mass flow across the surface becomes

vh=vtþ ðu,VÞhhDh=Dt ¼ 0 on h ¼ 0: (4.91)

If there is mass flow across the surface, it is proportional to the relative velocity between the
fluid and the surface, (urel)n ¼ u,n � us,n, where n ¼ Vh/jVhj.

ðurelÞn¼ ðu,Vhþ vh=vtÞ=jVhj ¼ ð1=jVhjÞDh=Dt: (4.92)

Thus the mass flow rate across the surface (per unit surface area) is represented by

ðr=jVhjÞDh=Dt on h ¼ 0: (4.93)

Again, if no mass flows across the surface, the requirement is Dh/Dt ¼ 0 on h ¼ 0.

Surface Tension Revisited

As discussed in Section 1.6, attractive intermolecular forces dominate in a liquid, whereas
in a gas repulsive forces are larger. However, as a liquid-gas phase boundary is approached
from the liquid side, these attractive forces are not felt equally because there are many fewer
liquid-phase molecules near the phase boundary. Thus there tends to be an unbalanced
attraction to the interior of the liquid of the molecules on the phase boundary. This unbal-
anced attraction is called surface tension and its manifestation is a pressure increment across
a curved interface. A somewhat more detailed description is provided in texts on physico-
chemical hydrodynamics. Two excellent sources are Probstein (1994, Chapter 10) and Levich
(1962, Chapter VII).

Lamb, in Hydrodynamics (1945, 6th Edition, p. 456), writes, “Since the condition of stable
equilibrium is that the free energy be a minimum, the surface tends to contract as much as
is consistent with the other conditions of the problem.” Thus we are led to introduce the
Helmholtz free energy (per unit mass) f via

f ¼ e� Ts; (4.94)
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where the notation is consistent with that used in Section 1.8. If the free energy is a minimum,
then the system is in a state of stable equilibrium, and F is called the thermodynamic potential
at constant volume (Fermi, 1956, Thermodynamics, p. 80). For a reversible, isothermal
change, the work done on the system is the gain in total free energy F,

df ¼ de� Tds� sdT; (4.95)

where the last term is zero for an isothermal change. Then, from (1.18), dF ¼ �pdy ¼ work
done on the system. (These relations suggest that surface tension decreases with increasing
temperature.)

For an interface of area ¼ A, separating two fluids of densities r1 and r2, with
volumes V1 and V2, respectively, and with a surface tension coefficient s (corresponding
to free energy per unit area), the total (Helmholtz) free energy F of the system can be
written as

F ¼ r1V1f1 þ r2V2f2 þ As: (4.96)

If s> 0, then the twomedia (fluids) are immiscible and Awill reach a local minimum value at
equilibrium. On the other hand, if s < 0, corresponding to surface compression, then the two
fluids mix freely since the minimum free energy will occur whenA has expanded to the point
that the spacing between its folds reaches molecular dimensions and the two-fluid system
has uniform composition.

When s > 0, it and the curvature of the fluid interface determine the pressure difference
across the interface. Here, we shall assume that s ¼ const. Flows driven by surface tension
gradients are called Marangoni flows and are not discussed here. Consider the situation
depicted in Figure 4.19 where the pressure above a curved interface is higher than that below
it by an increment Dp, and the shape of the fluid interface is given by h(x, y, z)¼ z� h(x,y)¼ 0.
The origin of coordinates and the direction of the z-axis are chosen so that h, vh/vx, and vh/vy
are all zero at x ¼ (0, 0, 0). Plus, the directions of the x- and y-axes are chosen so that the
surface’s principal radii of curvature, R1 and R2, are found in the x-z and y-z planes, respec-
tively. Thus, the surface’s shape is given by

h
�

x, y, z
� ¼ z� �x2=2R1

�� �y2=2R2

� ¼ 0

x

y

z

ds

C

ζ

p

p+Δp
t n

t × n

FIGURE 4.19 The curved surface shown is tangent to the x-y plane at the origin of coordinates. The pressure
above the surface is Dp higher than the pressure below the surface, creating a downward force. Surface tension
forces pull in the local direction of t � n, which is slightly upward, all around the curve C and thereby balances the
downward pressure force.
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in the vicinity of the origin. A closed curve C is defined by the intersection of the curved
surface and the plane z ¼ z. The goal here is to determine how the pressure increment Dp
depends on R1 and R2 when pressure and surface tension forces are balanced as the area
enclosed by C approaches zero.

First determine the net pressure force Fp on the surface A bounded by C. The unit normal n
to the surface h is

n ¼ Vh

jVhj ¼
ð� x=R1,�y=R2, 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx=R1Þ2 þ ðy=R2Þ2þ1
q ,

and the area element is

dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðvh=vxÞ2þðvh=vyÞ2
q

dxdy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðx=R1Þ2þðy=R2Þ2
q

dxdy,

so

Fp ¼ �
ZZ

A

DpndA ¼ �Dp

Z

þ ffiffiffiffiffiffiffiffi

2R1z
p

� ffiffiffiffiffiffiffiffi

2R1z
p

2

6

6

4

Z

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R2z�x2R2=R1

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R2z�x2R2=R1

p
ð�x=R1,�y=R2, 1Þdy

3

7

7

5

dx: (4.97)

The minus sign appears here because greater pressure above the surface (positive Dp)
must lead to a downward force and the vertical component of n is positive. The x-
and y-components of Fp are zero because of the symmetry of the situation (odd inte-
grand with even limits). The remaining double integration for the z-component of Fp
produces:

ðFp
�

z
¼ ez,Fp ¼ �pDp

ffiffiffiffiffiffiffiffiffiffi

2R1z
p ffiffiffiffiffiffiffiffiffiffi

2R2z
p

:

The net surface tension force Fst on C can be determined from the integral,

Fst ¼ s

I

C

t� n ds, (4.98)

where ds ¼ dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdy=dxÞ2
q

is an arc length element of curve C, and t is the unit
tangent to C so

t ¼ � ð1,dy=dx, 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdy=dxÞ2
q ¼ ð� y=R2, x=R1, 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy=R2Þ2þðx=R1Þ2
q ,

and dy/dx is found by differentiating the equation for C, z ¼ ðx2=2R1Þ � ðy2=2R2Þ, with z

regarded as constant. On each element of C, the surface tension force acts perpendicular to
t and tangent to A. This direction is given by t� n so the integrand in (4.98) is

t� nds ¼ ðR2=yÞdx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðx=R1Þ2þðy=R2Þ2
q
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where the approximate equality holds when x/R1 and y/R2 � 1 and the area enclosed by C
approaches zero. The symmetry of the integration path will cause the x- and y-components of
Fst to be zero, leaving

ðFstÞz¼ ez,Fst ¼ 4s

Z

ffiffiffiffiffiffiffiffi

2R1z
p

0

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R2z� ðR2=R1Þx2
p



2z

R2
þ x2

R1

�

1

R1
� 1

R2

	�

dx,

where y has been eliminated from the integrand using the equation for C, and the factor of four
appears because the integral shown only covers one-quarter of the path defined by C. An inte-
gration variable substitution in the form sin x ¼ x=

ffiffiffiffiffiffiffiffiffiffi

2R1z
p

allows the integral to be evaluated:

ðFstÞz¼ ez,Fst ¼ ps
ffiffiffiffiffiffiffiffiffiffi

2R1z
p ffiffiffiffiffiffiffiffiffiffi

2R2z
p

�

1

R1
þ 1

R2

	

:

For static equilibrium, Fp þ Fst ¼ 0, so the evaluated results of (4.97) and (4.98) require:

Dp ¼ sð1=R1 þ 1=R2Þ, (1.5)

where the pressure is greater on the side of the surface with the centers of curvature of the
interface. Batchelor (1967, p. 64) writes,

An unbounded surface with a constant sum of the principal curvatures is spherical, and this must be the equilibrium

shape of the surface. This result also follows from the fact that in a state of (stable) equilibrium the energy of the surface
must be a minimum consistent with a given value of the volume of the drop or bubble, and the sphere is the shape which

has the least surface area for a given volume.

The original source of this analysis is Lord Rayleigh’s (1890) “On the Theory of Surface
Forces.”

For an air bubble in water, gravity is an important factor for bubbles of millimeter size, as
we shall see here. The hydrostatic pressure in a liquid is obtained from pL þ rgz ¼ const.,
where z is measured positively upwards from the free surface and gravity acts downwards.
Thus for a gas bubble beneath the free surface,

pG ¼ pL þ s
�

1=R1 þ 1=R2

� ¼ const:� rgzþ s
�

1=R1 þ 1=R2

�

:

Gravity and surface tension forces are of the same order over a length scale (s/rg)1/2. For an air
bubble in water at 288 K, this scale ¼ [7.35� 10�2 N/m/(9.81 m/s2� 103 kg/m3)]1/2 ¼
2.74 � 10�3 m.

EXAMPLE 4.7

Calculation of the shape of the free surface of a liquid adjoining an infinite vertical plane wall.

Here let z ¼ z(x) define the free surface shape. With reference to Figure 4.20 where the y-axis points

into the page, 1/R1¼ [v2z/vx2][1þ (vz/vx)2]�3/2, and 1/R2¼ [v2z/vy2][1þ (vz/vy)2]�3/2¼ 0. At the

free surface, rgz � s/R1 ¼ const. As x / N, z / 0, and R2 / N, so const. ¼ 0. Then rgz/s � z00/
(1 þ z02)3/2 ¼ 0.
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Multiply by the integrating factor z0 and integrate. We obtain (rg/2s)z2 þ (1 þ z02)�1/2 ¼ C.

Evaluate C as x / N, z / 0, z0 / 0. Then C ¼ 1. We look at x ¼ 0, z ¼ z(0) ¼ h to find h. The

slope at the wall, z0 ¼ tan(q þ p/2) ¼ �cotq. Then 1 þ z02 ¼ 1 þ cot2q ¼ csc2q. Thus we now have

(rg/2s)h2 ¼ 1 � 1/cscq ¼ 1 � sinq, so that h2 ¼ (2s/rg)(1 � sinq). Finally we seek to integrate to

obtain the shape of the interface. Squaring and rearranging the result above, the differential

equation we must solve may be written as 1 þ (dz/dx)2 ¼ [1 � (rg/2s)z2]�2. Solving for the slope

and taking the negative square root (since the slope is negative for positive x),

dz=dx ¼ �
n

1� 
1� �rg=2s�z2�2
o1=2


1� �rg=2s�z2��1
:

Define s/rg ¼ d2, z/d ¼ g. Rewriting the equation in terms of x/d and g, and separating

variables:

2ð1� g2=2Þg�1
�

4� g2
��1=2

dg ¼ d
�

x=d
�

:

The integrand on the left is simplified by partial fractions and the constant of integration is eval-

uated at x ¼ 0 when h ¼ h/d. Finally,

cosh�1ð2d=zÞ � �4� z2=d2
�1=2�cosh�1ð2d=hÞ þ ð4� h2=d2Þ1=2 ¼ x=d

gives the shape of the interface in terms of x(z).

Analysis of surface tension effects results in the appearance of additional dimensionless

parameters in which surface tension is compared with other effects such as viscous stresses, body

forces such as gravity, and inertia. These are defined in the next section.

4.11. DIMENSIONLESS FORMS OF THE EQUATIONS AND
DYNAMIC SIMILARITY

For a properly specified fluid flow problem or situation, the differential equations of fluid
motion, the fluid’s constitutive and thermodynamic properties, and the boundary conditions
may be used to determine the dimensionless parameters that govern the situation of interest
even before a solution of the equations is attempted. The dimensionless parameters so

Solid

h
liquid surface 

x

z

Liquid

Gas

FIGURE 4.20 Free surface of a liquid adjoining a vertical plane wall. Here the contact angle is q and the
liquid rises to z¼ h at the solid wall.
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determined set the importance of the various terms in the governing differential equations,
and thereby indicate which phenomena will be important in the resulting flow. This section
describes and presents the primary dimensionless parameters or numbers required in the
remainder of the text. Many others not mentioned here are defined and used in the broad
realm of fluid mechanics.

The dimensionless parameters for any particular problem can be determined in two ways.
They can be deduced directly from the governing differential equations if these equations are
known; this method is illustrated here. However, if the governing differential equations are
unknown or the parameter of interest does not appear in the known equations, dimension-
less parameters can be determined from dimensional analysis (see Section 1.11). The advan-
tage of adopting the former strategy is that dimensionless parameters determined from the
equations of motion are more readily interpreted and linked to the physical phenomena
occurring in the flow. Thus, knowledge of the relevant dimensionless parameters frequently
aids the solution process, especially when assumptions and approximations are necessary to
reach a solution.

In addition, the dimensionless parameters obtained from the equations of fluid motion set
the conditions under which scale model testing with small models will prove useful for pre-
dicting the performance of larger devices. In particular, two flow fields are considered to be
dynamically similar when their dimensionless parameters match, and their geometries are
scale similar; that is, any length scale in the first flow field may be mapped to its counterpart
in the second flow field by multiplication with a single scale ratio. When two flows are
dynamically similar, analysis, simulations, or measurements from one flow field are directly
applicable to the other when the scale ratio is accounted for. Moreover, use of standard
dimensionless parameters typically reduces the parameters that must be varied in an exper-
iment or calculation, and greatly facilitates the comparison of measured or computed results
with prior work conducted under potentially different conditions.

To illustrate these advantages, consider the drag force FD on a sphere, of diameter
d moving at a speed U through a fluid of density r and viscosity m. Dimensional analysis
(Section 1.11) using these five parameters produces the following possible dimensionless
scaling laws:

FD
rU2d2

¼ J

�

rUd

m

	

, or
FDr

m2
¼ F

�

m

rUd

	

: (4.99)

Both are valid, but the first is preferred because it contains dimensionless groups that either
come from the equations of motion or are traditionally defined in the study of fluid dynamic
drag. If dimensionless groups were not used, experiments would have to be conducted to
determine FD as a function of d, keeping U, r, and m fixed. Then, experiments would have
to be conducted to determine FD as a function of U, keeping d, r, and m fixed, and so on.
However, such a duplication of effort is unnecessary when dimensionless groups are used.
In fact, use of the first dimensionless law above allows experimental results from a wide
range of conditions to be simply plotted with two axes (see Figure 4.21) even though the
full complement of experiments may have involved variations in all five dimensional
parameters.

The idea behind dimensional analysis is intimately associated with the concept of simi-
larity. In fact, a collapse of all the data on a single graph such as the one in Figure 4.21 is
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possible only because in this problem all flows having the same value of the dimensionless
group known as the Reynolds number Re ¼ rUd/m are dynamically similar. This dynamic
similarity is assured because the Reynolds number appears when the equations of motion
are cast in dimensionless form.

The use of dimensionless parameters pervades fluid mechanics to such a degree that this
chapter and this text would be considered incomplete without this section, even though this
topic is typically covered in first-course fluid mechanics texts. For clarity, the discussion
begins with the momentum equation, and then proceeds to the continuity and energy
equations.

Consider the flow of a fluid having nominal density r and viscosity m through a flow field
characterized by a length scale l, a velocity scale U, and a rotation or oscillation frequency U.
The situation here is intended to be general so that the dimensional parameters obtained
from this effort will be broadly applicable. Particular situations that would involve all five
parameters include pulsating flow through a tube, flow past an undulating self-propelled
body, or flow through a turbomachine.

The starting point is the Navier-Stokes momentum equation (4.39) simplified for incom-
pressible flow. (The effect of compressibility is deduced from the continuity equation in
the next subsection.)

r

�

vu

vt
þ ðu,VÞu

	

¼ �Vpþ rgþ mV2u (4.39b)

FIGURE 4.21 Coefficient of drag CD for a sphere vs. the Reynolds number Re based on sphere diame-
ter. At low Reynolds number CD ~ 1/Re, and above Re ~ 103, CD ~ constant (except for the dip between
Re¼ 105 and 106). These behaviors (except for the dip) can be explained by simple dimensional reasoning.
The reason for the dip is the transition of the laminar boundary layer to a turbulent one, as explained in
Chapter 9.
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This equation can be rendered dimensionless by defining dimensionless variables:

x�i ¼ xi=l, t� ¼ Ut, u�j ¼ uj=U, p� ¼ �

p� pN
��

rU2, and g�j ¼ gj=g, (4.100)

where g is the acceleration of gravity. It is clear that the boundary conditions in terms of the
dimensionless variables (4.100) are independent of l, U, and U. For example, consider the
viscous flow over a circular cylinder of radius R. When the velocity scale U is the free-stream
velocity and the length scale is the radius R, then, in terms of the dimensionless velocity
u* ¼ u/U and the dimensionless coordinate r* ¼ r/R, the boundary condition at infinity is
u*/ 1 as r*/N, and the condition at the surface of the cylinder is u* ¼ 0 at r* ¼ 1. In addi-
tion, because pressure enters (4.39b) only as a gradient, the pressure itself is not of conse-
quence; only pressure differences are important. The conventional practice is to render
p � pN dimensionless, where pN is a suitably chosen reference pressure. Depending on the
nature of the flow, p � pN could be made dimensionless in terms of a generic viscous stress
mU/l, a hydrostatic pressure rgl, or, as in (4.100), a dynamic pressure rU2. Substitution of
(4.100) into (4.39) produces:



Ul

U

�

vu�

vt�
þ ðu�,V�Þu� ¼ �V�p� þ



gl

U2

�

g� þ


m

rUl

�

V�2u�, (4.101)

where V� ¼ lV. It is apparent that two flows (having different values of U, U, l, g, or m) will
obey the same dimensionless differential equation if the values of the dimensionless groups
Ul/U, gl/U2, and m/rUl are identical. Because the dimensionless boundary conditions are
also identical in the two flows, it follows that they will have the same dimensionless solutions.
Products of these dimensionless groups appear as coefficients in front of different terms
when the pressure is presumed to have alternative scalings (see Exercise 4.59).

The parameter groupings shown in [,]-brackets in (4.100) have the following names and
interpretations:

St ¼ Strouhal numberh
unsteady acceleration

advective acceleration
f

vu=vt

uðvu=vxÞf
UU

U2=l
¼ Ul

U
, (4.102)

Re ¼ Reynolds numberh
inertia force

viscous force
f

ruðvu=vxÞ
m
�

v2u=vx2
�f

rU2=l

mU=l2
¼ rUl

m
, and (4.103)

Fr ¼ Froude numberh



inertia force

gravity force

�1=2

f



ruðvu=vxÞ
rg

�1=2

f



rU2=l

rg

�1=2

¼ U
ffiffiffiffi

gl
p : (4.104)

The Strouhal number sets the importance of unsteady fluid acceleration in flows with oscil-
lations. It is relevant when flow unsteadiness arises naturally or because of an imposed
frequency. The Reynolds number is the most common dimensionless number in fluid
mechanics. Low Re flows involve small sizes, low speeds, and high kinematic viscosity
such as bacteria swimming through mucous. High Re flows involve large sizes, high speeds,
and low kinematic viscosity such as an ocean liner steaming at full speed.

St, Re, and Fr have to be equal for dynamic similarity of two flows in which unsteadiness
and viscous and gravitational effects are important. Note that the mere presence of gravity
does not make the gravitational effects dynamically important. For flow around an object
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in a homogeneous fluid, gravity is important only if surface waves are generated. Otherwise,
the effect of gravity is simply to add a hydrostatic pressure to the entire system that can be
combined with the pressure gradient (see “Neglect of Gravity in Constant Density Flows”
earlier in this chapter).

Interestingly, in a density-stratified fluid, gravity can play a significant role without the
presence of a free surface. The effective gravity force in a two-layer situation is the buoyancy
force per unit volume (r2 � r1)g, where r1 and r2 are fluid densities in the two layers. In such
a case, an internal Froude number is defined as:

Fr0h


inertia force

buoyancy force

�1=2

f



r1U
2=l

ðr2 � r1Þg
�1=2

¼ U
ffiffiffiffiffi

g0l
p , (4.105)

where g0 h g (r2 � r1)/r1 is the reduced gravity. For a continuously stratified fluid having
a maximum buoyancy frequency N (see 1.29), the equivalent of (4.104) is Fr0 hU=Nl. Alter-
natively, the internal Froude number may be replaced by the Richardson Number ¼ Ri h
1=Fr02 ¼ g0l=U2, which can also be refined to a gradient Richardson number hN2ðzÞ=
ðdU=dzÞ2 that is important in studies of instability and turbulence in stratified fluids.

Under dynamic similarity, all the dimensionless numbers match and there is one dimen-
sionless solution. The dimensional consistency of the equations of motion ensures that all
flow quantities may be set in dimensionless form. For example, the local pressure at point
x ¼ (x, y, z) can be made dimensionless in the form

p
�

x; t
�� pN

�

1=2
�

rU2
hCp ¼ J

�

St,Fr, Re;
x

l
,Ut
�

, (4.106)

where Cp ¼ (p � pN)/(1/2)rU2 is called the pressure coefficient (or the Euler number), and J
represents the dimensionless solution for the pressure coefficient in terms of dimensionless
parameters and variables. The factor of ½ in (4.106) is conventional but not necessary. Similar
relations also hold for any other dimensionless flow variables such as velocity u/U. It follows
that in dynamically similar flows, dimensionless flow variables are identical at corresponding
points and times (that is, for identical values of x/l, andUt). Of course there are many instances
where the flow geometry may require two or more length scales: l, l1, l2,. ln. When this is the
case, the aspect ratios l1/l, l2/l, . ln/l provide a dimensionless description of the geometry,
and would also appear as arguments of the function J in a relationship like (4.106). Here
a difference between relations (4.99) and (4.106) should be noted. Equation (4.99) is a relation
between overall flow parameters, whereas (4.106) holds locally at a point.

In the foregoing analysis we have assumed that the imposed unsteadiness in boundary
conditions is important. However, time may also be made dimensionless via t* ¼ Ut/l, as
would be appropriate for a flow with steady boundary conditions. In this case, the time
derivative in (4.39) should still be retained because the resulting flow may still be naturally
unsteady since flow oscillations can arise spontaneously even if the boundary conditions are
steady. But, we know from dimensional considerations, such unsteadiness must have a time
scale proportional to l/U.

In the foregoing analysis we have also assumed that an imposed velocity U is relevant.
Consider now a situation in which the imposed boundary conditions are purely unsteady.
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To be specific, consider an object having a characteristic length scale l oscillating with
a frequency U in a fluid at rest at infinity. This is a problem having an imposed length scale
and an imposed time scale 1/U. In such a case a velocity scale U ¼ lU can be constructed. The
preceding analysis then goes through, leading to the conclusion that St¼ 1, Re¼Ul/n¼Ul2/n,
and Fr ¼ U/(gl)1/2 ¼ U(l/g)1/2 have to be duplicated for dynamic similarity.

All dimensionless quantities are identical in dynamically similar flows. For flow around
an immersed body, like a sphere, we can define the (dimensionless) drag and lift coefficients,

CD h
FD

�

1=2
�

rU2A
and CLh

FL
�

1=2
�

rU2A
, (4.107, 4.108)

where A is a reference area, and FD and FL are the drag and lift forces, respectively, expe-
rienced by the body; as in (4.106) the factor of 1/2 in (4.107) and (4.108) is conventional but
not necessary. For blunt bodies such as spheres and cylinders, A is taken to be the
maximum cross section perpendicular to the flow. Therefore, A ¼ pd2/4 for a sphere of
diameter d, and A ¼ bd for a cylinder of diameter d and length b, with its axis perpendic-
ular to the flow. For flows over flat plates, and airfoils, on the other hand, A is taken to be
the planform area, that is, A ¼ sl; here, l is the average length of the plate or chord of the
airfoil in the direction of flow and s is the width perpendicular to the flow, sometimes
called the span.

The values of the drag and lift coefficients are identical for dynamically similar flows. For
flow about a steadily moving ship, the drag is caused both by gravitational and viscous
effects so we must have a functional relation of the form CD ¼ CD(Fr, Re). However, in
many flows gravitational effects are unimportant. An example is flow around a body that
is far from a free surface and does not generate gravity waves. In this case, Fr is irrelevant,
so CD ¼ CD(Re) is all that is needed when the effects of compressibility are unimportant.
This is the situation portrayed by the first member of (4.99) and illustrated in Figure 4.21.

A dimensionless form of the continuity equation should indicate when flow-induced pres-
sure differences induce significant departures from incompressible flow. However, the
simplest possible scaling fails to provide any insights because the continuity equation itself
does not contain the pressure. Thus, a more fruitful starting point for determining the relative
size of V,u is (4.9),

V,u ¼ �1

r

Dr

Dt
¼ � 1

rc2
Dp

Dt
, (4.9)

along with the assumption that pressure-induced density changes will be isentropic,
dp ¼ c2dr where c is the sound speed (1.19). Using the following dimensionless variables,

x�i ¼ xi=l, t� ¼ Ut=l, u�j ¼ uj=U, p� ¼ �

p� pN
��

roU
2, and r� ¼ r=ro, (4.109)

where ro is a reference density, the outside members of (4.9) can be rewritten:

V�,u� ¼ �


U2

c2

�

1

r�
Dp�

Dt�
, (4.110)

which specifically shows that the square of
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M ¼ Mach numberh



inertia force

compressibility force

�1=2

f



rU2=l

rc2=l

�1=2

¼ U

c
(4.111)

sets the size of isentropic departures from incompressible flow. In engineering practice, gas
flows are considered incompressible when M < 0.3, and from (4.110) this corresponds to
~10% departure from ideal incompressible behavior when (1/r*)(Dp*/Dt*) is unity. Of
course, there may be nonisentropic changes in density too and these are considered in
Thompson (1972, pp. 137e146). Flows in which M < 1 are called subsonic, whereas flows
in which M > 1 are called supersonic. At high subsonic and supersonic speeds, matching
Mach number between flows is required for dynamic similarity.

There are many possible thermal boundary conditions for the energy equation, so a fully
general scaling of (4.60) is not possible. Instead, a simple scaling is provided here based on
constant specific heats, neglect of my, and constant free-stream and wall temperatures, To
and Tw, respectively. In addition, for simplicity, an imposed flow oscillation frequency is
not considered. The starting point of the scaling provided here is a mild revision of (4.60)
that involves the enthalpy h per unit mass,

r
Dh

Dt
¼ Dp

Dt
þ r3þ v

vxi

�

k
vT

vxi

	

, (4.112)

where 3 is given by (4.58). Using dh y CpdT, the following dimensionless variables:

3� ¼ rol
23=moU

2, m� ¼ m=mo, k� ¼ k=ko, T� ¼ ðT � ToÞ=ðTw � ToÞ, (4.113)

and those defined in (4.106), (4.107) becomes:

r�
DT�

Dt�
¼


U2

Cp

�

Tw � To
�

�

Dp�

Dt�
þ


U2

Cp

�

Tw � To
�

mo

roUl

�

r�3� þ


ko
Cpmo

mo

roUl

�

V�ðk�V�T�Þ: (4.114)

Here the relevant dimensionless parameters are:

Ec ¼ Eckert numberh
kinetic energy

thermal energy
¼ U2

Cp

�

Tw � To

�, (4.115)

Pr ¼ Prandtl numberh
momentum diffusivity

thermal diffusivity
¼ n

k
¼ mo=ro

ko=roCp
¼ moCp

ko
, (4.116)

and we recognize roUl/mo as the Reynolds number in (4.114) as well. In low-speed flows,
where the Eckert number is small the middle terms drop out of (4.114), and the full
energy equation (4.112) reduces to (4.89). Thus, low Ec is needed for the Boussinesq
approximation.

The Prandtl number is a ratio of two molecular transport properties. It is therefore
a fluid property and independent of flow geometry. For air at ordinary temperatures
and pressures, Pr ¼ 0.72, which is close to the value of 0.67 predicted from a simplified
kinetic theory model assuming hard spheres and monatomic molecules (Hirschfelder,
Curtiss, & Bird, 1954, pp. 9e16). For water at 20 �C, Pr ¼ 7.1. Dynamic similarity between
flows involving thermal effects requires equality of the Eckert, Prandtl, and Reynolds
numbers.
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And finally, for flows involving surface tension s, there are several relevant dimensionless
numbers:

We ¼ Weber numberh
inertia force

surface tension force
f

rU2l2

sl
¼ rU2l

s
, (4.117)

Bo ¼ Bond numberh
gravity force

surface tension force
f

rl3g

sl
¼ rl2g

s
, (4.118)

Ca ¼ Capillary numberh
viscous stress

surface tension stress
f

mU=l

s=l
¼ mU

s
: (4.119)

Here, for theWeber and Bond numbers, the ratio is constructed based on a ratio of forces as in
(4.107) and (4.108), and not forces per unit volume as in (4.103), (4.104), and (4.111). At high
Weber number, droplets and bubbles are easily deformed by fluid acceleration or decelera-
tion, for example during impact with a solid surface. At high Bond numbers surface tension
effects are relatively unimportant compared to gravity, as is the case for long-wavelength,
ocean surface waves. At high capillary numbers viscous forces dominate those from surface
tension; this is commonly the case in machinery lubrication flows. However, for slow bubbly
flow through porous media or narrow tubes (low Ca) the opposite is true.

EXAMPLE 4.8

A ship 100 m long is expected to cruise at 10 m/s. It has a submerged surface of 300 m2. Find

the model speed for a 1/25 scale model, neglecting frictional effects. The drag is measured to be

60 N when the model is tested in a towing tank at the model speed. Estimate the full scale drag

when the skin-friction drag coefficient for the model is 0.003 and that for the full-scale prototype is

half of that.

Solution

Estimate the model speed neglecting frictional effects. Then the nondimensional drag force

depends only on the Froude number:

D=rU2l2 ¼ f
�

U=
ffiffiffiffi

gl
p

�

:

Equating Froude numbers for the model (denoted by subscript “m”) and full-size prototype

(denoted by subscript “p”), we get

Um ¼ Up

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gmlm=gplp

q

¼ 10
ffiffiffiffiffiffiffiffiffiffi

1=25
p

¼ 2 m=s:

The total drag on the model was measured to be 60 N at this model speed. Of the total measured

drag, a part was due to frictional effects. The frictional drag can be estimated by treating the surface

of the hull as a flat plate, for which the drag coefficient CD is a function of the Reynolds number.

Using a value of v ¼ 10�6 m2/s for water, we get
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Ul=n
�

model
� ¼ 


2
�

100=25
���

10�6 ¼ 8� 106,

Ul=n
�

prototype
� ¼ 10

�

100
��

10�6 ¼ 109:

The problem statement sets the frictional drag coefficients as

CDðmodelÞ ¼ 0:003;
CDðprototypeÞ ¼ 0:0015:

and these are consistent with Figure 9.11. Using a value of r ¼ 1000 kg/m3 for water, we

estimate:

Frictional drag on model ¼ 1

2
CDrU

2A ¼ ð0:5Þ ð0:003Þ ð1000Þ ð2Þ2 ð300=252Þ ¼ 2:88N:

Out of the total model drag of 60 N, the wave drag is therefore 60� 2:88 ¼ 57:12 N:

Now the wave drag still obeys the scaling law above, which means thatD/rU2l2 for the two flows

are identical, where D represents wave drag alone. Therefore,

Wave drag on prototype ¼ ðWave drag on modelÞ ðrp=rmÞ
�

lp=lm
�2 �

Up=Um

�2

¼ 57:12 ð1Þ ð25Þ2 ð10=2Þ2 ¼ 8:92� 105 N:

Having estimated the wave drag on the prototype, we proceed to determine its frictional drag.

Frictional drag on prototype ¼ 1

2
CDrU

2A ¼ ð0:5Þ ð0:0015Þ ð1000Þ ð10Þ2 ð300Þ ¼ 0:225� 105 N:

Therefore, total drag on prototype ¼ (8.92 þ 0.225) � 105 ¼ 9.14 � 105 N.

If we did not correct for the frictional effects, and assumed that the measuredmodel drag was all

due to wave effects, then we would have found a prototype drag of

Dp ¼ Dmðrp=rmÞ �lp=lm
�2 �

Up=Um

�2 ¼ 60 ð1Þ ð25Þ2 ð10=2Þ2 ¼ 9:37� 105 N:

EXERCISES

4.1. Let a one-dimensional velocity field be u ¼ u(x, t), with v ¼ 0 and w ¼ 0. The density
varies as r ¼ r0(2 � cos ut). Find an expression for u(x, t) if u(0, t) ¼ U.

4.2. Consider the one-dimensional Cartesian velocity field: u ¼ ðax=t, 0, 0Þ where a is
a constant. Find a spatially uniform, time-dependent density field, r ¼ r(t), that
renders this flow field mass conserving when r ¼ ro at t ¼ to.

4.3. Find a nonzero density field r(x,y,z,t) that renders the following Cartesian velocity
fields mass conserving. Comment on the physical significance and uniqueness of
your solutions.
a) u ¼ ðU sinðUt� kxÞ, 0, 0Þ where U, u, k are positive constants

[Hint: exchange the independent variables x,t for a single independent variable
x ¼ utekx]
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b) u ¼ ð� Uy, þ Ux, 0Þ with U ¼ constant [Hint: switch to cylindrical coordinates]
c) u ¼ ðA=x,B=y,C=zÞ where A, B, C are constants

4.4. A proposed conservation law for x, a new fluid property, takes the following form:
d

dt

Z

VðtÞ
rxdV þ

Z

AðtÞ
Q,ndS ¼ 0, where V(t) is a material volume that moves with the

fluid velocity u, A(t) is the surface of V(t), r is the fluid density, and Q ¼ �rgVx.
a) What partial differential equation is implied by the above conservation

statement?

b) Use the part a) result and the continuity equation to show:
vx

vt
þ u,Vx ¼ 1

r
V,ðrgVxÞ.

4.5. The components of a mass flow vector ru are ru ¼ 4x2y, rv ¼ xyz, rw ¼ yz2.
a) Compute the net mass outflow through the closed surface formed by the planes

x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0, z ¼ 1.
b) Compute V,ðruÞ and integrate over the volume bounded by the surface defined in

part a).
c) Explain why the results for parts a) and b) should be equal or unequal.

4.6. Consider a simple fluid mechanical model for the atmosphere of an ideal spherical
star that has a surface gas density of ro and a radius ro. The escape velocity from
the surface of the star is ve. Assume that a tenuous gas leaves the star’s surface
radially at speed vo uniformly over the star’s surface. Use the steady continuity
equation for the gas density r and fluid velocity u ¼ ður,uq,u4Þ in spherical
coordinates

1

r2
v

vr

�

r2rur
�þ 1

r sin q

v

vq
ðruq sin qÞ þ 1

r sin q

v

v4

�

ru4
� ¼ 0

to determine the following.
a) Determinerwhenvo�ve so thatu ¼ ður,uq,u4Þ ¼ ðvo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðv2e=v2oÞð1� ðro=rÞÞ
p

, 0, 0Þ.
b) Simplify the result from part a) when vo[ve so that: u ¼ ður,uq,u4Þ ¼ ðvo, 0, 0Þ.
c) Simplify the result from part a) when vo ¼ ve.
d) Use words, sketches, or equations to describe what happens when vo < ve. State

any assumptions that you make.
4.7. The definition of the stream function for two-dimensional, constant-density flow in the

x-y plane is: u ¼ �ez � Vj, where ez is the unit vector perpendicular to the x-y plane
that determines a right-handed coordinate system.
a) Verify that this vector definition is equivalent to u ¼ vj=vy and v ¼ �vj=vx in

Cartesian coordinates.
b) Determine the velocity components in r-q polar coordinates in terms of r-q

derivatives of j.
c) Determine an equation for the z-component of the vorticity in terms of j.

4.8. A curve of jðx,yÞ ¼ C1 ( ¼ a constant) specifies a streamline in steady two-
dimensional, constant-density flow. If a neighboring streamline is specified by
jðx,yÞ ¼ C2, show that the volume flux per unit depth into the page between the
streamlines equals C2 e C1 when C2 > C1.
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4.9. The well-known undergraduate fluid mechanics textbook by Fox et al. (2009)
provides the following statement of conservation of momentum for a constant-
shape (nonrotating) control volume moving at a non-constant velocity U ¼ U(t):

d

dt

Z

V�ðtÞ
rureldV þ

Z

A�ðtÞ
rurelðurel$nÞdA ¼

Z

V�ðtÞ
rgdV þ

Z

A�ðtÞ
fdA�

Z

V�ðtÞ
r
dU

dt
dV:

Here urel ¼ u�UðtÞ is the fluid velocity observed in a frame of reference moving with
the control volume while u and U are observed in a nonmoving frame. Meanwhile,
equation (4.17) states this law as

d

dt

Z

V�ðtÞ
rudV þ

Z

A�ðtÞ
ruðu�UÞ,ndA ¼

Z

V�ðtÞ
rgdV þ

Z

A�ðtÞ
fdA

where the replacement b ¼ U has been made for the velocity of the accelerating
control surface A*(t). Given that the two equations above are not identical, deter-
mine if these two statements of conservation of fluid momentum are contradictory
or consistent.

4.10. A jet of water with a diameter of 8 cm and a speed of 25 m/s impinges normally on
a large stationary flat plate. Find the force required to hold the plate stationary.
Compare the average pressure on the plate with the stagnation pressure if the plate is
20 times the area of the jet.

4.11. Show that the thrust developed by a stationary rocket motor is F¼ rAU2þA(p� patm),
where patm is the atmospheric pressure, and p, r, A, and U are, respectively, the
pressure, density, area, and velocity of the fluid at the nozzle exit.

4.12. Consider the propeller of an airplane moving with a velocity U1. Take a reference
frame in which the air is moving and the propeller [disk] is stationary. Then the
effect of the propeller is to accelerate the fluid from the upstream value U1 to the
downstream value U2 > U1. Assuming incompressibility, show that the thrust
developed by the propeller is given by F ¼ rAðU2

2 �U2
1Þ=2; where A is the

projected area of the propeller and r is the density (assumed constant). Show also
that the velocity of the fluid at the plane of the propeller is the average value
U ¼ (U1 þ U2)/2. [Hint: The flow can be idealized by a pressure jump of
magnitude Dp ¼ F/A right at the location of the propeller. Also apply Bernoulli’s
equation between a section far upstream and a section immediately upstream of
the propeller. Also apply the Bernoulli equation between a section immediately
downstream of the propeller and a section far downstream. This will show that
Dp ¼ rðU2

2 �U2
1Þ=2.]

4.13. Generalize the control volume analysis of Example 4.1 by considering the control
volume geometry shown for steady two-dimensional flow past an arbitrary body in
the absence of body forces. Show that the force the fluid exerts on the body is given by
the Euler momentum integral: Fj ¼ � R

A1

ðruiuj � sijÞnidA, and 0 ¼ R

A1

ruinidA.
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4.14. The pressure rise Dp ¼ p2 � p1 that occurs for flow through a sudden pipe-cross-
sectional-area expansion can depend on the average upstream flow speed Uave, the
upstream pipe diameter d1, the downstream pipe diameter d2, and the fluid density r

and viscosity m. Here p2 is the pressure downstream of the expansion where the flow is
first fully adjusted to the larger pipe diameter.
a) Find a dimensionless scaling law for Dp in terms of Uave, d1, d2, r, and m.
b) Simplify the result of part a) for high-Reynolds-number turbulent flow where m

does not matter.
c) Use a control volume analysis to determine Dp in terms of Uave, d1, d2, and r for the

high Reynolds number limit. [Hints: 1) a streamline drawing might help in
determining or estimating the pressure on the vertical surfaces of the area
transition, and 2) assume uniform flow profiles wherever possible.]

d) Compute the ideal flow value forDp using the Bernoulli equation (4.19) and compare
this to the result from part c) for a diameter ratio of d1/d2 ¼ ½. What fraction of the
maximum possible pressure rise does the sudden expansion achieve?

4.15. Consider how pressure gradients and skin friction develop in an empty wind
tunnel or water tunnel test section when the flow is incompressible. Here the fluid
has viscosity m and density r, and flows into a horizontal cylindrical pipe of length
L with radius R at a uniform horizontal velocity Uo. The inlet of the pipe lies at
x ¼ 0. Boundary layer growth on the pipe’s walls induces the horizontal velocity
on the pipe’s centerline to be UL at x ¼ L; however, the pipe-wall boundary layer
thickness remains much smaller than R. Here, L/R is of order 10, and rUoR/m [ 1.
The radial coordinate from the pipe centerline is r.
a) Determine thedisplacement thickness, d�L, of theboundary layer atx¼L in termsofUo,

UL, and R. Assume that the boundary layer displacement thickness is zero at x ¼ 0.
[The boundary layer displacement thickness, d*, is the thickness of the zero-flow-

Uave

d
d

1

2

p2p1
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speed layer that displaces the outer flow by the same amount as the actual boundary
layer. For a boundary layer velocity profile u(y) with y¼wall-normal coordinate and
U ¼ outer flow velocity, d* is defined by: d� ¼ RN

0 ð1� ðu=UÞÞdy.]
b) Determine the pressure difference, DP ¼ PL e Po, between the ends of the pipe in

terms of r, Uo, and UL.
c) Assume the horizontal velocity profile at the outlet of the pipe can be

approximated by: uðr,x ¼ LÞ ¼ ULð1� ðr=RÞnÞ and estimate average skin
friction, sw, on the inside of the pipe between x ¼ 0 and x ¼ L in terms of r,
Uo, UL, R, L, and n.

d) Calculate the skin friction coefficient, cf ¼ sw=ð1=2ÞrU2
o , when Uo ¼ 20.0 m/s, UL ¼

20.5 m/s, R ¼ 1.5 m, L ¼ 12 m, n ¼ 80, and the fluid is water, i.e., r ¼ 103 kg/m3.

4.16. Consider the situation depicted below. Wind strikes the side of a simple residential
structure and is deflected up over the top of the structure. Assume the following: two-
dimensional steady inviscid constant-density flow, uniform upstream velocity profile,
linear gradient in the downstream velocity profile (velocity U at the upper boundary
and zero velocity at the lower boundary as shown), no flow through the upper
boundary of the control volume, and constant pressure on the upper boundary of the
control volume. Using the control volume shown:
a) Determine h2 in terms of U and h1.
b) Determine the direction and magnitude of the horizontal force on the house per unit

depth into the page in terms of the fluid density r, the upstream velocity U, and the
height of the house h1.

c) Evaluate the magnitude of the force for a house that is 10 m tall and 20 m long in
wind of 22 m/sec (approximately 50 miles per hour).

y
U

U

x

h1

h2

P∞

x = 0 x = L 
2R

Uo UL

r

4.17. A large wind turbine with diameter D extracts a fraction h of the kinetic energy from
the airstream (density ¼ r ¼ constant) that impinges on it with velocity U.
a) What is the diameter of the wake zone, E, downstream of the windmill?
b) Determine the magnitude and direction of the force on the windmill in terms of r,

U, D, and h.
c) Does your answer approach reasonable limits as h / 0 and h / 1?

EXERCISES 155



ρ,U
D

E=?

V

4.18. An incompressible fluid of density r flows through a horizontal rectangular duct of
height h and width b. A uniform flat plate of length L and width b attached to the top of
the duct at point A is deflected to an angle q as shown.
a) Estimate the pressure difference between the upper and lower sides of the plate in

terms of x, r,Uo, h, L, and qwhen the flow separates cleanly from the tip of the plate.
b) If the plate has mass M and can rotate freely about the hinge at A, determine

a formula for the angle q in terms of the other parameters. You may leave your
answer in terms of an integral.

4.19. A pipe of length L and cross sectional area A is to be used as a fluid-distribution
manifold that expels a steady uniform volume flux per unit length of an
incompressible liquid from x ¼ 0 to x ¼ L. The liquid has density r, and is to be
expelled from the pipe through a slot of varying width, w(x). The goal of this
problem is to determine w(x) in terms of the other parameters of the problem. The
pipe-inlet pressure and liquid velocity at x ¼ 0 are Po and Uo, respectively, and the
pressure outside the pipe is Pe. If P(x) denotes the pressure on the inside of the pipe,

then the liquid velocity through the slot Ue is determined from: PðxÞ � Pe ¼ ð1=2ÞrU2
e .

For this problem assume that the expelled liquid exits the pipe perpendicular to the
pipe’s axis, and note that wUe ¼ const. ¼ UoA/L, even though w and Ue both depend
on x.
a) Formulate a dimensionless scaling law for w in terms of x, L, A, r, Uo, Po, and Pe.
b) Ignore the effects of viscosity, assume all profiles through the cross section of the

pipe are uniform, and use a suitable differential-control-volume analysis to show
that:

A
dU

dx
þ wUe ¼ 0, and r

d

dx
U2 ¼ �dP

dx
:

y=h

Uo, L

A

x

y

g
θ

ρ
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c) Use these equations and the relationships stated above to determine w(x) in terms
of x, L, A, r, Uo, Po, and Pe. Is the slot wider at x ¼ 0 or at x ¼ L?

4.20. The take-off mass of a Boeing 747-400 may be as high as 400,000 kg. An Airbus A380
may be even heavier. Using a control volume (CV) that comfortably encloses the
aircraft, explain why such large aircraft do not crush houses or people when they fly
low overhead. Of course, the aircraft’s wings generate lift but they are entirely
contained within the CV and do not coincide with any of the CV’s surfaces; thus
merely stating the lift balances weight is not a satisfactory explanation. Given that the
CV’s vertical body-force term, �g

R

CV

rdV, will exceed 4 � 106 N when the airplane

and air in the CV’s interior are included, your answer should instead specify which
of the CV’s surface forces or surface fluxes carries the signature of a large aircraft’s
impressive weight.

4.21. 1An inviscid incompressible liquid with density r flows in a wide conduit of height H
and width B into the page. The inlet stream travels at a uniform speed U and fills the
conduit. The depth of the outlet stream is less than H. Air with negligible density fills
the gap above the outlet stream. Gravity acts downward with acceleration g. Assume
the flow is steady for the following items.
a) Find a dimensionless scaling law for U in terms of r, H, and g.
b) Denote the outlet stream depth and speed by h and u, respectively, and write

down a set of equations that will allow U, u, and h to be determined in terms of r,
H, and g.

c) Solve for U, u, and h in terms of r, H, and g. [Hint: solve for h first.]

U H air
ρ

Ue(x)

(x

x

)w
A

x = 0 = L

Po, Uo , P(x), U(x)

dx

Pe

ρ

1Based on a lecture example of Professor P. E. Dimotakis
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4.22. A hydraulic jump is the shallow-water-wave equivalent of a gas-dynamic shock wave.
A steady radial hydraulic jump can be observed safely in one’s kitchen, bathroom, or
backyard where a falling stream of water impacts a shallow pool of water on a flat
surface. The radial location R of the jump will depend on gravity g, the depth of the
water behind the jump H, the volume flow rate of the falling stream Q, and the
stream’s speed,U, where it impacts the plate. In your work, assume

ffiffiffiffiffiffiffiffi

2gh
p � U where

r is the radial coordinate from the point where the falling stream impacts the surface.
a) Formulate a dimensionless law for R in terms of the other parameters.
b) Use the Bernoulli equation and a control volume with narrow angular and

negligible radial extents that contains the hydraulic jump to show that:

Ry
Q

2pUH2

�

2U2

g
�H

	

:

c) Rewrite the result of part b) in terms of the dimensionless parameters found for
part a).

4.23. A fine uniform mist of an inviscid incompressible fluid with density r settles steadily
at a total volume flow rate (per unit depth into the page) of 2q onto a flat horizontal
surface of width 2s to form a liquid layer of thickness h(x) as shown. The geometry is
two dimensional.
a) Formulate a dimensionless scaling law for h in terms of x, s, q, r, and g.
b) Use a suitable control volume analysis, assuming u(x) does not depend on y, to find

a single cubic equation for h(x) in terms of h(0), s, q, x, and g.
c) Determine h(0).

U

2R

H

Q

g hydraulic
jump

h

h(x)

(x)
dx

q

q

q
x = –s x  = +sx = 0

2

g

u

y

ρ
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4.24. A thin-walled pipe of mass mo, length L, and cross-sectional area A is free to
swing in the x-y plane from a frictionless pivot at point O. Water with density
r fills the pipe, flows into it at O perpendicular to the x-y plane, and is
expelled at a right angle from the pipe’s end as shown. The pipe’s opening
also has area A and gravity g acts downward. For a steady mass flow rate of _m,
the pipe hangs at angle q with respect to the vertical as shown. Ignore fluid
viscosity.
a) Develop a dimensionless scaling law for q in terms of mo, L, A, r, _m, and g.
b) Use a control volume analysis to determine the force components, Fx and Fy,

applied to the pipe at the pivot point in terms of q, mo, L, A, r, _m, and g.
c) Determine q in terms of mo, L, A, r, _m, and g.
d) Above what value of _m will the pipe rotate without stopping?

L
A

g

O Fx

Fy

θ

4.25. Construct a house of cards, or light a candle. Get the cardboard tube from the
center of a roll of paper towels and back away from the cards or candle a meter or
two so that by blowing you cannot knock down the cards or blow out the candle
unaided. Now use the tube in two slightly different configurations. First, place the
tube snugly against your face encircling your mouth, and try to blow down the
house of cards or blow out the candle. Repeat the experiment while moving closer
until the cards are knocked down or the candle is blown out (you may need to get
closer to your target than might be expected; do not hyperventilate; do not start
the cardboard tube on fire). Note the distance between the end of the tube and the
card house or candle at this point. Rebuild the card house or relight the candle
and repeat the experiment, except this time hold the tube a few centimeters away
from your face and mouth, and blow through it. Again, determine the greatest
distance from which you can knock down the cards or blow out the candle.
a) Which configuration is more effective at knocking the cards down or blowing the

candle out?
b) Explain your findings with a suitable control-volume analysis.
c) List some practical applications where this effect might be useful.

4.26. 2Attach a drinking straw to a 15-cm-diameter cardboard disk with a hole at the center
using tape or glue. Loosely fold the corners of a standard piece of paper upward so that

2Based on a demonstration done for the 3rd author by Professor G. Tryggvason
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the paper mildly cups the cardboard disk (see drawing). Place the cardboard disk in
the central section of the folded paper. Attempt to lift the loosely folded paper off a flat
surface by blowing or sucking air through the straw.
a) Experimentally determine if blowing or suction is more effective in lifting the folded

paper.
b) Explain your findings with a control volume analysis.

4.27. A rectangular tank is placed on wheels and is given a constant horizontal acceleration a.
Show that, at steady state, the angle made by the free surface with the horizontal is given
by tan q ¼ a/g.

4.28. Starting from rest at t ¼ 0, an airliner of mass M accelerates at a constant rate a ¼ aex
into a headwind, u ¼ �uiex. For the following items, assume that: 1) the x-component
of the fluid velocity is eui on the front, sides, and back upper half of the control
volume (CV), 2) the x-component of the fluid velocity is euo on the back lower half of
the CV, 3) changes in M can be neglected, 4) changes of air momentum inside the CV
can be neglected, and 5) the airliner has frictionless wheels. In addition, assume
constant air density r and uniform flow conditions exist on the various control
surfaces. In your work, denote the CV’s front and back area by A. (This approximate
model is appropriate for real commercial airliners that have the engines hung under
the wings.)
a) Find a dimensionless scaling law for uo at t ¼ 0 in terms of ui, r, a, M, and A.
b) Using a CV that encloses the airliner (as shown) determine a formula for uo(t), the

time-dependent air velocity on the lower half of the CV’s back surface.
c) Evaluate uo at t ¼ 0, whenM ¼ 4 � 105 kg, a ¼ 2.0 m/s2, ui ¼ 5 m/s, r ¼ 1.2 kg/m3,

and A ¼ 1200 m2. Would you be able to walk comfortably behind the airliner?

Perspective
view (before
paper folding;
arrows indicate
folding directions)

Side view 
(after paper folding)

x

uiui

uo

4. CONSERVATION LAWS160



4.29. 3A cart that can roll freely in the x direction deflects a horizontal water jet into its tank
with a vane inclined to the vertical at an angle q. The jet issues steadily at velocity U
with density r, and has cross-sectional area A. The cart is initially at rest with a mass of
mo. Ignore the effects of surface tension, the cart’s rolling friction, and wind resistance
in your answers.
a) Formulate dimensionless law for the mass, m(t), in the cart at time t in terms of t, q,

U, r, A, and mo.
b) Formulate a differential equation for m(t).
c) Find a solution for m(t) and put it in dimensionless form.

4.30. Prove that the stress tensor is symmetric by considering first-order changes in surface
forces on a vanishingly small cube in rotational equilibrium. Work with rotation about
the number 3 coordinate axis to show s12 ¼ s21. Cyclic permutation of the indices will
suffice for showing the symmetry of the other two shear stresses.

4.31. Obtain an empty plastic milk jug with a cap that seals tightly, and a frying pan. Fill both
the pan and jug with water to a depth of approximately 1 cm. Place the jug in the pan
with the cap off. Place the pan on a stove and turn up the heat until the water in the

U, ρ, A

m(t)

θ

x

3Similar to problem 4.170 on page 157 in Fox et al. (2009)
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frying pan boils vigorously for a few minutes. Turn the stove off, and quickly put the
cap tightly on the jug. Avoid spilling or splashing hot water on yourself. Remove the
capped jug from the frying pan and let it cool to room temperature. Does anything
interesting happen? If something does happen, explain your observations in terms of
surface forces. What is the origin of these surface forces? Can you make any
quantitative predictions about what happens?

4.32. In cylindrical coordinates (R,4,z), two components of a steady incompressible viscous
flow field are known: u4 ¼ 0, and uz ¼ �Az where A is a constant, and body force is
zero.
a) Determine uR so that the flow field is smooth and conserves mass.
b) If the pressure, p, at the origin of coordinates is Po, determine p(R,4,z) when the

density is constant.
4.33. Solid body rotation with a constant angular velocity, U, is described by the following

Cartesian velocity field: u ¼ U� x. For this velocity field:
a) Compute the components of:

sij ¼ �pdij þ m

" 

vui
vxj

þ vuj
vxi

!

� 2

3
dij
vuk
vxk

#

þ mydij
vuk
vxk

:

b) Consider the case of U1 ¼ U2 ¼ 0, U3 s 0, with p ¼ po at x1 ¼ x2 ¼ 0. Use the
differential momentum equation in Cartesian coordinates to determine p(r), where
r2 ¼ x21 þ x22, when there is no body force and r ¼ constant. Does your answer
make sense? Can you check it with a simple experiment?

4.34. Using only (4.7), (4.22), (4.37), and (3.12) show that r
Du

Dt
þ Vp ¼ rgþ mV2uþ

�

my þ
1

3
m

	

VðV,uÞ when the dynamic (m) and bulk (my) viscosities are constants.

4.35. 4Air, water, and petroleum products are important engineering fluids and can usually
be treated as Newtonian fluids. Consider the following materials and try to classify
them as: Newtonian fluid, non-Newtonian fluid, or solid. State the reasons for your
choices and note the temperature range where you believe your answers are correct.
Simple impact, tensile, and shear experiments in your kitchen or bathroom are
recommended. Test and discuss at least five items.
a) toothpaste
b) peanut butter
c) shampoo
d) glass
e) honey
f) mozzarella cheese
g) hot oatmeal
h) creamy salad dressing
i) ice cream
j) silly putty

4Based on a suggestion from Professor W. W. Schultz

4. CONSERVATION LAWS162



4.36. The equations for conservation of mass and momentum for a viscous Newtonian fluid
are (4.7) and (4.39a) when the viscosities are constant.
a) Simplify these equations and write them out in primitive form for steady constant-

density flow in two dimensions where ui ¼ ðu1ðx1,x2Þ,u2ðx1,x2Þ, 0Þ, p ¼ pðx1,x2Þ,
and gj ¼ 0.

b) Determine p ¼ pðx1,x2Þ when u1 ¼ Cx1 and u2 ¼ �Cx2, where C is a positive
constant.

4.37. Starting from (4.7) and (4.39b), derive a Poisson equation for the pressure, p, by taking
the divergence of the constant-density momentum equation. [In other words, find an
equation where v2p=vx2j appears by itself on the left side and other terms not involving
p appear on the right side.] What role does the viscosity m play in determining the
pressure in constant density flow?

4.38. Prove the equality of the two ends of (4.40) without leaving index notation or using
vector identities.

4.39. The viscous compressible fluid conservation equations for mass and momentum are
(4.7) and (4.38). Simplify these equations for constant-density, constant-viscosity
flow and where the body force has a potential, gj ¼ �vF=vxj. Assume the velocity
field can be found from uj ¼ vf=vxj, where the scalar function f depends on space
and time. What are the simplified conservation of mass and momentum equations
for f?

4.40. The viscous compressible fluid conservation equations for mass and momentum are
(4.7) and (4.38).
a) In Cartesian coordinates (x,y,z) with g ¼ ðgx, 0, 0Þ, simplify these equations for un-

steady one-dimensional unidirectional flowwhere: r ¼ rðx, tÞ and u ¼ ðuðx, tÞ, 0, 0Þ.
b) If the flow is also incompressible, show that the fluid velocity depends only

on time, i.e., uðx, tÞ ¼ UðtÞ, and show that the equations found for part a) reduce to

vr

vt
þ u

vr

vx
¼ 0, and r

vu

vt
¼ �vp

vx
þ rgx:

c) If r ¼ roðxÞ at t ¼ 0, and u ¼ Uð0Þ ¼ Uo at t ¼ 0, determine implicit or explicit
solutions for r ¼ rðx, tÞ and UðtÞ in terms of x, t, roðxÞ, Uo, vp=vx, and gx.

4.41. 5a) Derive the following equation for the velocity potential for irrotational inviscid
compressible flow in the absence of a body force:

v2f

vt2
þ v

vt

�

jVfj2
�

þ 1

2
Vf,V

�

jVfj2
�

� c2V2f ¼ 0

where Vf ¼ u. Start from the Euler equation (4.41), use the continuity equation,
assume that the flow is isentropic so that p depends only on r, and denote
ðvp=vrÞs¼ c2:
b) What limit does c / N imply?
c) What limit does jVfj / 0 imply?

5Obtained from Professor Paul Dimotakis
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4.42. Derive (4.43) from (4.42).
4.43. For steady constant-density inviscid flowwith body force per unit mass g ¼ �VF, it is

possible to derive the following Bernoulli equation: pþ 1

2
rjuj2 þ rF ¼ constant along

a streamline.
a) What is the equivalent form of the Bernoulli equation for constant-density inviscid

flow that appears steady when viewed in a frame of reference that rotates at
a constant rate about the z-axis, i.e., when U ¼ ð0, 0,UzÞ with Uz constant?

b) If the extra term found in the Bernoulli equation is considered a pressure correction:
Where on the surface of the earth (i.e., at what latitude) will this pressure correction
be the largest? What is the absolute size of the maximum pressure correction when
changes in R on a streamline are 1 m, 1 km, and 103 km?

4.44. For many atmospheric flows, rotation of the earth is important. The momentum
equation for inviscid flow in a frame of reference rotating at a constant rate U is:

vu=vtþ ðu,VÞu ¼ �VF� ð1=rÞVp� 2U� u�U� ðU� xÞ
For steady two-dimensional horizontal flow,u ¼ ðu,v, 0Þ, withF¼ gz and r¼ r(z), show
that the streamlines are parallel to constant pressure lines when the fluid particle accel-
eration is dominated by the Coriolis acceleration jðu,VÞuj � j2U� uj, and when the
local pressure gradient dominates the centripetal acceleration jU� ðU� xÞj � jVpj=r.
[This seemingly strange result governs just about all large-scale weather phenomena
like hurricanes and other storms, and it allows weather forecasts to be made based on
surface pressure measurements alone.]
Hints:
1. If Y(x) defines a streamline contour, then dY=dx ¼ v=u is the streamline slope.
2. Write out all three components of the momentum equation and build the ratio v/u.
3. Using hint 1, the pressure increment along a streamline is: dp ¼ ðvp=vxÞdxþ

ðvp=vyÞdY.
4.45. Show that (4.55) can be derived from (4.7), (4.53), and (4.54).
4.46. Multiply (4.22) by uj and sum over j to derive (4.56).
4.47. Starting from 3 ¼ ð1=rÞsijSij, derive the rightmost expression in (4.58).
4.48. For many gases and liquids (and solids too!), the following equations are valid:

q ¼ �kVT (Fourier’s law of heat conduction, k ¼ thermal conductivity,
T ¼ temperature),
e ¼ eo þ CvT (e ¼ internal energy per unit mass, Cv ¼ specific heat at constant
volume), and
h ¼ ho þ CpT (h ¼ enthalpy per unit mass, Cp ¼ specific heat at constant pressure),
where eo and ho are constants, and Cv and Cp are also constants. Start with the
energy equation

r
ve

vt
þ rui

ve

vxi
¼ �p

vui
vxi

þ sijSij �
vqi
vxi

for each of the following items.
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a) Derive an equation for T involving uj, k, r, and Cv for incompressible flow
when sij ¼ 0.

b) Derive an equation for T involving uj, k, r, and Cp for flow with p ¼ const. and
sij ¼ 0.

c) Provide a physical explanation as to why the answers to parts a) and b) are
different.

4.49. Derive the following alternative form of (4.60): rCp
DT

Dt
¼ aT

Dp

Dt
þ r3þ v

vxi

�

k
vT

vxi

�

,

where 3 is given by (4.58) and a is the thermal expansion coefficient defined in (1.20).
[Hint: dh ¼ ðvh=vTÞpdT þ ðvh=vpÞTdp]

4.50. Show that (4.68) is true without abandoning index notation or using vector
identities.

4.51. Consider an incompressible planar Couette flow, which is the flow between two
parallel plates separated by a distance b. The upper plate is moving parallel to itself at
speed U, and the lower plate is stationary. Let the x-axis lie on the lower plate. The
pressure and velocity fields are independent of x, and the fluid is uniform with
constant viscosity.
a) Show that the pressure distribution is hydrostatic and that the solution of the

Navier-Stokes equation is uðyÞ ¼ Uy=b:
b) Write the expressions for the stress and strain rate tensors, and show that the

viscous kinetic-energy dissipation per unit volume is mU2/b2.
c) Using a rectangular control volume for which the two horizontal surfaces

coincide with the walls and the two vertical surfaces are perpendicular to the
flow: evaluate the kinetic energy equation (4.56) within this control volume,
and show that the balance is between the viscous dissipation and the work
done in moving the upper surface.

4.52. Determine the outlet speed, U2, of a chimney in terms of ro, r2, g, H, A1, and A2.
For simplicity, assume the fire merely decreases the density of the air from ro to r2
(ro > r2) and does not add any mass to the airflow. (This mass flow assumption
isn’t true, but it serves to keep the algebra under control in this problem.) The
relevant parameters are shown in the figure. Use the steady Bernoulli equation into
the inlet and from the outlet of the fire, but perform a control volume analysis
across the fire. Ignore the vertical extent of A1 compared to H and the effects of
viscosity.

Po o, z

z

= 0

= H
g

A

A

1

2

U2

P P1, 1a, 2
ρ ρ

oρ
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4.53. A hemispherical vessel of radius R containing an inviscid constant-density liquid has
a small rounded orifice of area A at the bottom. Show that the time required to lower
the level from h1 to h2 is given by

t ¼ 2p

A
ffiffiffiffiffi

2g
p



2

3
R
�

h
3=2
1 � h

3=2
2

�

� 1

5

�

h
5=2
1 � h

5=2
2

�

�

:

4.54. Water flows through a pipe in a gravitational field as shown in the accompanying
figure. Neglect the effects of viscosity and surface tension. Solve the appropriate
conservation equations for the variation of the cross-sectional area of the fluid column
A(z) after the water has left the pipe at z¼ 0. The velocity of the fluid at z¼ 0 is uniform
at V0 and the cross-sectional area is A0.

4.55. Redo the solution for the orifice-in-a-tank problem allowing for the fact that in
Figure 4.16, h ¼ h(t), but ignoring fluid acceleration. Estimate how long it takes for the
tank to empty.

4.56. A circular plate is forced down at a steady velocityUo against a flat surface. Frictionless
incompressible fluid of density r fills the gap h(t). Assume that h� ro, the plate radius,
and that the radial velocity ur(r,t) is constant across the gap.
a) Obtain a formula for ur(r,t) in terms of r, Uo, and h.
b) Determine vur(r,t)/vt.
c) Calculate the pressure distribution under the plate assuming that p(r ¼ ro) ¼ 0.

4.57. A frictionless, incompressible fluid with density r resides in a horizontal nozzle of
length L having a cross-sectional area that varies smoothly between Ai and Ao via:
AðxÞ ¼ Ai þ ðAo � AiÞfðx=LÞ, where f is a function that goes from 0 to 1 as x/L goes
from 0 to 1. Here the x-axis lies on the nozzle’s centerline, and x ¼ 0 and x ¼ L are the
horizontal locations of the nozzle’s inlet and outlet, respectively. At t ¼ 0, the pressure

ro

U o

r

ur h(t)
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at the inlet of the nozzle is raised to pi > po, where po is the (atmospheric) outlet
pressure of the nozzle, and the fluid begins to flow horizontally through the nozzle.
a) Derive the following equation for the time-dependent volume flow rate Q(t)

through the nozzle from the unsteady Bernoulli equation and an appropriate
conservation-of-mass relationship.

_Q
�

t
�

Ai

Z
x¼L

x¼ 0

Ai

AðxÞ dxþ
Q2
�

t
�

2

 

1

A2
o

� 1

A2
i

!

¼
�

pi � po
r

	

b) Solve the equation of part a) when fðx=LÞ ¼ x=L.
c) If r ¼ 103 kg/m3, L ¼ 25 cm, Ai ¼ 100 cm2, Ao ¼ 30 cm2, and pi e po ¼ 100 kPa for

t � 0, how long does it take for the flow rate to reach 99% of its steady-state
value?

4.58. Using the small slope version of the surface curvature 1=R1zd2z=dx2, redo Example
4.7 to find h and z(x) in terms of x, s, r, g, and q. Show that the two answers are
consistent when q approaches p/2.

4.59. Redo the dimensionless scaling leading to (4.101) by choosing a generic viscous stress,
mU/l, and then a generic hydrostatic pressure, rgl, to make p � pN dimensionless.
Interpret the revised dimensionless coefficients that appear in the scaled momentum
equation, and relate them to St, Re, and Fr.

4.60. From Figure 4.21, it can be seen that CDf 1/Re at small Reynolds numbers and that CD

is approximately constant at large Reynolds numbers. Redo the dimensional analysis
leading to (4.99) to verify these observations when:
a) Re is low and fluid inertia is unimportant so r is no longer a parameter.
b) Re is high and the drag force is dominated by fore-aft pressure differences on the

sphere and m is no longer a parameter.
4.61. Suppose that the power to drive a propeller of an airplane depends on d (diameter of

the propeller),U (free-stream velocity), u (angular velocity of the propeller), c (velocity
of sound), r (density of fluid), and m (viscosity). Find the dimensionless groups. In
your opinion, which of these are the most important and should be duplicated in
model testing?

4.62. A 1/25 scale model of a submarine is being tested in a wind tunnel in which p ¼ 200
kPa and T ¼ 300 K. If the prototype speed is 30 km/hr, what should be the free-stream
velocity in the wind tunnel? What is the drag ratio? Assume that the submarine would
not operate near the free surface of the ocean.

4.63. A set of small-scale tank-draining experiments are performed to predict the liquid
depth, h, as a function of time t for the draining process of a large cylindrical tank that
is geometrically similar to the small-experiment tanks. The relevant parameters are
gravity g, initial tank depthH, tank diameterD, orifice diameter d, and the density and
viscosity of the liquid, r and m, respectively.
a) Determine a general relationship between h and the other parameters.
b) Using the following small-scale experiment results, determine whether or not the

liquid’s viscosity is an important parameter.
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H ¼ 8 cm, D ¼ 24 cm, d ¼ 8 mm H ¼ 16 cm, D ¼ 48 cm, d ¼ 1.6 cm

h (cm) t (s) h (cm) t (s)

8.0 0.00 16.0 0.00

6.8 1.00 13.3 1.50

5.0 2.00 9.5 3.00

3.0 3.00 5.3 4.50

1.2 4.00 1.8 6.00

0.0 5.30 0.0 7.50

c) Using the small-scale-experiment results above, predict how long it takes to
completely drain the liquid from a large tank having H ¼ 10 m, D ¼ 30 m, and
d ¼ 1.0 m.
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CHAPTER OBJECTIVES

• To introduce the basic concepts and

phenomena associated with vortex lines,

tubes, and sheets in viscous and inviscid

flows.

• To derive and state classical theorems and

equations for vorticity production and

transport in inertial and rotating frames of

reference.

• To develop the relationship that describes

how vorticity at one location induces fluid

velocity at another.

• To present some of the intriguing phenomena

of vortex dynamics.

5.1. INTRODUCTION

Vorticity is a vector field that is twice the angular velocity of a fluid particle. A concentration
of codirectional or nearly codirectional vorticity is called a vortex. Fluid motion leading to

171Fluid Mechanics, Fifth Edition DOI: 10.1016/B978-0-12-382100-3.10005-8 � 2012 Elsevier Inc. All rights reserved.



circular or nearly circular streamlines is called vortex motion. In two dimensions (r,q), a uniform
distribution of plane-normal vorticity with magnitude u produces solid body rotation,

uq ¼ ur=2, (5.1)

while a perfect concentration of plane-normal vorticity located at r ¼ 0 with circulation G
produces irrotational flow for r > 0,

uq ¼ G=2pr: (5.2)

Both of these flow fields are steady and both produce closed (circular) streamlines.
However, in the first, fluid particles rotate, but in the second, for r s 0, they do not. In
the second flow field, the vorticity is infinite on a line perpendicular to the r-q plane that
intersects it at r ¼ 0, but is zero elsewhere. Thus, such an ideal line vortex is also known
as an irrotational vortex. It is a useful idealization that will be exploited in this chapter, in
Chapter 6, and in Chapter 14.

In general, vorticity in a flowing fluid is neither unidirectional nor steady. In fact, we can
commonly think of vorticity as being embedded in fluid elements so that an element’s
vorticity may be reoriented or concentrated or diffused depending on the motion and defor-
mation of that fluid element and on the torques applied to it by surrounding fluid elements.
This conjecture is based on the fact that the dynamics of three-dimensional time-dependent
vorticity fields can often be interpreted in terms of a few fundamental principles. This
chapter presents these principles and some aspects of flows with vorticity, starting with
fundamental vortex concepts.

A vortex line is a curve in the fluid that is everywhere tangent to the local vorticity vector.
Here, of course, we recognize that a vortex line is not strictly linear; it may be curved just as
a streamline may be curved. A vortex line is related to the vorticity vector the same way
a streamline is related to the velocity vector. Thus, if ux, uy, and uz are the Cartesian compo-
nents of the vorticity vector u, then the components of an element ds ¼ (dx, dy, dz) of a vortex
line satisfy

dx=ux ¼ dy=uy ¼ dz=uz, (5.3)

which is analogous to (3.7) for a streamline. As a further similarity, vortex lines do not exist in
irrotational flow just as streamlines do not exist in stationary fluid. Elementary examples of
vortex lines are supplied by the flow fields (5.1) and (5.2). For solid-body rotation (5.1), all
lines perpendicular to the r-q plane are vortex lines, while in the flow field of an irrotational
vortex (5.2) the lone vortex line is perpendicular to the r-q plane and passes through it at
r ¼ 0.

In a region of flow with nontrivial vorticity, the vortex lines passing through any closed
curve form a tubular surface called a vortex tube (Figure 5.1), which is akin to a stream
tube (Figure 3.6). The circulation around a narrow vortex tube is dG ¼ u,ndA just as the
volume flow rate in a narrow stream tube is dQ ¼ u,ndA. The strength of a vortex tube is
defined as the circulation computed on a closed circuit lying on the surface of the tube
that encircles it just once. From Stokes’ theorem it follows that the strength of a vortex
tube, G, is equal to the vorticity in the tube integrated over its cross-sectional area. Thus,
when Gauss’ theorem is applied to the volume V defined by a section of a vortex tube,
such as that shown in Figure 5.1, we find that
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V,udV ¼
Z

A

u,ndA ¼
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>

<

>

:

Z

lower end

þ
Z

curved side

þ
Z

upper end

9

>

=

>

;

u,ndA

¼ �Glower end þ Gupper end ¼ 0, (5.4)

where u,n is zero on the curved sides of the tube, and the final equality follows from
V,u ¼ V,ðV� uÞ ¼ 0. Equation (5.4) states that a vortex tube’s strength is independent
of where it is measured, Glower end ¼ Gupper end, and this implies that vortex tubes cannot end
within the fluid, a concept that can be extended to vortex lines in the limit as a vortex tube’s
cross-sectional area goes to zero. However, vortex lines and tubes can terminate on solid
surfaces or free surfaces, or they can form loops. This kinematic constraint is often useful
for determining the topology of vortical flows.

As we will see in this and other chapters, fluid viscosity plays an essential role in the diffu-
sion of vorticity, and in the reconnection of vortex lines. However, before considering these
effects, the role of viscosity in the two basic vortex flows (5.1) and (5.2) is examined.
Assuming incompressible flow, we shall see that in one of these flows the viscous terms in
the momentum equation drop out, although the viscous stress and dissipation of energy
are nonzero.

As discussed in Chapter 3, fluid elements undergoing solid-body rotation (5.1) do not
deform (Sij ¼ 0), so the Newtonian viscous stress tensor (4.37) reduces to sij ¼ epdij, and
Cauchy’s equation (4.24) reduces to Euler’s equation (4.41). When the solid-body rotation
field, ur ¼ 0 and uq ¼ ur/2, is substituted into (4.41), it simplifies to:

�ru2q=r ¼ �vp=vr, and 0 ¼ �vp=vz� rg: (5.5a, 5.5b)

FIGURE 5.1 Analogy between stream tubes and vortex tubes. The lateral sides of stream and vortex tubes are
locally tangent to the flow’s velocity and vorticity fields, respectively. Stream and vortex tubes with cross-sectional
area dA carry constant volume flux u,dA and constant circulation u,dA, respectively.
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Integrating (5.5a) produces pðr, zÞ ¼ ru2r2=8þ fðzÞ, where f is an undetermined function.
Integrating (5.5b) produces pðr, zÞ ¼ �rgzþ gðrÞ, where g is an undetermined function.
These two equations are consistent when:

pðr, zÞ � po ¼ 1

8
ru2r2 � rgz (5.6)

where po is the pressure at r ¼ 0 and z ¼ 0. To determine the shape of constant pressure
surfaces, solve (5.6) for z to find:

z ¼ u2r2

8g
� p
�

r, z
�� po
rg

:

Hence, surfaces of constant pressure are paraboloids of revolution (Figure 5.2).
The important point to note is that viscous stresses are absent in steady solid-body rota-

tion. (The viscous stresses, however, are important during the transient period of initiating
solid body rotation, say by steadily rotating a tank containing a viscous fluid initially at
rest.) In terms of velocity, (5.6) can be written as

�1

2
u2q þ gzþ pðr, zÞ

r
¼ const:,

and, when compared to (4.19), this shows that the Bernoulli function B ¼ u2q=2þ gzþ p=r is
not constant for points on different streamlines. This outcome is expected because the flow is
rotational.

For the flow induced by an irrotational vortex (5.2), the viscous stress is

srq ¼ m

�

1

r

vur
vq

þ r
v

vr

�uq
r

�

�

¼ �mG

pr2
;

FIGURE 5.2 The steady flow field of a viscous liquid in a steadily rotating tank is solid body rotation. When the
axis of rotation is parallel to the (downward) gravitational acceleration, surfaces of constant pressure in the liquid
are paraboloids of revolution.
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which is nonzero everywhere because fluid elements deform (see Figure 3.16). However, the
interesting point is that the net viscous force on an element is zero for r > 0 (see Exercise 5.4)
because the viscous forces on the surfaces of an element cancel out, leaving a zero resultant.
Thus, momentum conservation is again represented by the Euler equation. Substitution of
(5.2) into (5.5), followed by integration, yields

pðr, zÞ � pN ¼ � rG2

8p2r2
� rgz, (5.7)

where pN is the pressure far from the line vortex at z ¼ 0. This can be rewritten:

z ¼ � G2

8p2r2g
� pðr, zÞ � pN

rg
,

which shows that surfaces of constant pressure are hyperboloids of revolution of the second
degree (Figure 5.3). Equation (5.7) can also be rewritten:

1

2
u2q þ gzþ pðr, zÞ

r
¼ const:,

which shows that Bernoulli’s equation is applicable between any two points in the flow field,
as is expected for irrotational flow.

One way of generating the flow field from an irrotational vortex is by rotating a solid
circular cylinder with radius a in an infinite viscous fluid (see Figure 8.7). It is shown in
Section 8.2 that the steady solution of the Navier-Stokes equations satisfying the no-slip
boundary condition (uq ¼ ua/2 at r ¼ a) is

uq ¼ ua2=2r for r � a,

FIGURE 5.3 Surfaces of
constant pressure in the flow
induced by an ideal linear
vortex that coincides with
the z-axis and is parallel to
the (downward) gravitational
acceleration.
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where u/2 is the cylinder’s constant rotation rate; see (8.11). When the motions inside and
outside the cylinder are considered, this flow field precisely matches that of a Rankine vortex
with core size a; see (3.28) with G ¼ pa2u. The presence of the nonzero-radius cylinder leads
to a flow field without a singularity that is irrotational for r > a. Viscous stresses are present,
and the resulting viscous dissipation of kinetic energy is exactly compensated by the work
done at the surface of the cylinder. However, there is no net viscous force at any point in
the steady state. Interestingly, the application of the moment of momentum principle (see
Section 4.9) to a large-radius cylindrical control volume centered on the rotating solid
cylinder shows that the torque that rotates the solid cylinder is transmitted to an arbitrarily
large distance from the axis of rotation. Thus, any attempt to produce this flow in a stationary
container would require the application of counteracting torque on the container.

These examples suggest that irrotationality does not imply the absence of viscous stresses.
Instead, it implies the absence of net viscous forces. Viscous stresses will be present whenever
fluid elements deform. Yet, when u is uniform and nonzero (solid body rotation), there is
no viscous stress at all. However, solid-body rotation is unique in this regard, and this
uniqueness is built into the Newtonian-fluid viscous stress tensor (4.59). In general, fluid
element rotation is accomplished and accompanied by viscous effects. Indeed, viscosity is
a primary agent for vorticity generation and diffusion.

5.2. KELVIN’S CIRCULATION THEOREM

By considering the analogy with electrodynamics, Helmholtz published several theorems
for vortex motion in an inviscid fluid in 1858. Ten years later, Kelvin introduced the idea of
circulation and proved the following theorem: In an inviscid, barotropic flow with conservative
body forces, the circulation around a closed curve moving with the fluid remains constant with
time, if the motion is observed from a nonrotating frame. This theorem can be stated mathe-
matically as

DG=Dt ¼ 0 (5.8)

whereD/Dt is defined by (3.5) and represents the total time rate of change following the fluid
elements that define the closed curve, C (a material contour), used to compute the circulation
G. Such a material contour is shown in Figure 5.4.

Kelvin’s theorem can be proved by time differentiating the definition of the circulation
(3.18):

DG

Dt
¼ D

Dt

Z

C

uidxi ¼
Z

C

Dui
Dt

dxi þ
Z

C

ui
D

Dt
ðdxiÞ, (5.9)

where dxi are the components of the arc length element dx of C. Using (4.39) and (4.59), the
first term on the right side of (5.9) may be rewritten:

Z

C

Dui
Dt

dxi ¼
Z

C

 

� 1

r

vp

vxi
þ gi þ

1

r

vsij

vxj

!

dxi ¼ �
Z

C

1

r
dp�

Z

C

dFþ
Z

C

 

1

r

vsij

vxj

!

dxi, (5.10)
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where the replacements (vp/vxi)dxi ¼ dp and (vF/vxi)dxi ¼ dF have been made, and F is the
body force potential (4.18). For a barotropic fluid, the first term on the right side of (5.10) is
zero because C is a closed contour, and r and p are single valued at each point in space. Simi-
larly, the second integral on the right side of (5.10) is zero since F is also single valued at each
point in space.

Now consider the second term on the right side of (5.9). The velocity at point x þ dx on C is:

uþ du ¼ D

Dt
ðxþ dxÞ ¼ Dx

Dt
þ D

Dt
ðdxÞ, so dui ¼

D

Dt
ðdxiÞ:

Thus, the last term in (5.9) then becomes
Z

C

ui
D

Dt
ðdxiÞ ¼

Z

C

uidui ¼
Z

C

d

�

1

2
u2i

	

¼ 0,

where the final equality again follows because C is a closed contour and u is a single-valued
vector function. Hence, (5.9) simplifies to:

DG

Dt
¼
Z

C

 

1

r

vsij

vxj

!

dxi, (5.11)

and Kelvin’s theorem (5.8) is proved when the fluid is inviscid (m ¼ my ¼ 0) or when the net
viscous force (vsij/vxj) is zero along C. This latter condition occurs when C lies entirely in irro-
tational fluid.

From this short proof we see that the three ways to create or destroy vorticity in a flow are:
nonconservative body forces, a nonbarotropic pressure-density relationship, and nonzero
net viscous forces. Examples of each follow. The Coriolis acceleration is a nonconservative
body force that occurs in rotating frames of reference, and it generates a drain or bathtub

FIGURE 5.4 Contour geometry for the Proof of Kelvin’s circulation theorem. Here the short segment dx of the
contour C moves with the fluid so that D(dx)/Dt ¼ du.
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vortex when a filled tank, initially at rest on the earth’s surface, is drained. Nonbarotropic
effects can lead to vorticity generation when a vertical barrier is removed between two
side-by-side initially motionless fluids having different densities in the same container and
subject to a gravitational field. The two fluids will tumble as the heavier one slumps to the
container’s bottom and the lighter one surges to the container’s top (see Figure 5.5 and
Exercise 5.5). Nonzero net viscous forces create vorticity at solid boundaries where the
no-slip condition is maintained. A short distance away from a solid boundary, the velocity
parallel to the boundary may be large. Vorticity is created when such near-wall velocity
gradients arise.

Kelvin’s theorem implies that irrotational flow will remain irrotational if the following
four restrictions are satisfied.

(1) There are no net viscous forces along C. If C moves into regions where there are net
viscous forces such as within a boundary layer that forms on a solid surface, then the
circulation changes. The presence of viscous effects causes diffusion of vorticity into or
out of a fluid circuit and consequently changes the circulation.

(2) The body forces are conservative. Conservative body forces such as gravity act through
the center of mass of a fluid particle and therefore do not generate torques that cause fluid
particle rotation.

(3) The fluid density must depend on pressure only (barotropic flow). A flow will be
barotropic if the fluid is homogeneous and one of the two independent thermodynamic
variables is constant. Isentropic, isothermal, and constant density conditions lead to
barotropic flow. Flows that are not barotropic are called baroclinic. Here fluid density
depends on the pressure and the temperature, composition, salinity, and/or
concentration of dissolved constituents. Consider fluid elements in barotropic and
baroclinic flows (Figure 5.6). For the barotropic element, lines of constant p are parallel
to lines of constant r, which implies that the resultant pressure forces pass through the
center of mass of the element. For the baroclinic element, the lines of constant p and r

are not parallel. The net pressure force does not pass through the center of mass, and the
resulting torque changes the vorticity and circulation. As described above, Figure 5.6
depicts a situation where vorticity is generated in a baroclinic flow.

g g

u = 0 u ≠ 0

1r

2r

1r2r

(a) (b)

FIGURE 5.5 Schematic drawings of two fluids with differing density that are initially stationary and separated
within a rectangular container. Gravity acts downward as shown. Here the density difference is baroclinic because it
depends on fluid composition and pressure, not on pressure alone. (a) This drawing shows the initial condition
immediately before the barrier between the two fluids is removed. (b) This drawing shows the resulting fluid
motion a short time after barrier removal. The deflection of the fluid interface clearly indicates that vorticity has
been created.
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(4) The frame of reference must be an inertial frame. As described in Section 4.7, the
conservation of momentum equation includes extra terms when the frame of reference
rotates and accelerates, and these extra terms were not considered in the short proof
given above.

5.3. HELMHOLTZ’S VORTEX THEOREMS

Under the same four restrictions, Helmholtz proved the following theorems for vortex
motion:

(1) Vortex lines move with the fluid.
(2) The strength of a vortex tube (its circulation) is constant along its length.
(3) Avortex tube cannot end within the fluid. It must either end at a solid boundary or form

a closed loopda vortex ring or loop.
(4) The strength of a vortex tube remains constant in time.

Here, we only highlight the proof of the first theorem, which essentially says that fluid
particles that at any time are part of a vortex line always belong to the same vortex line.
To prove this result, consider an area S, bounded by a curve, lying on the surface of a vortex

FIGURE 5.6 Mechanism of vorticity generation in baroclinic flow, showing that the net pressure force does not
pass through the center of mass G of the fluid element. The radially inward arrows indicate pressure forces on an
element.
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tube without embracing it (Figure 5.7). Since the vorticity vectors are everywhere lying
parallel to S (none are normal to S), it follows that the circulation around the edge of S is
zero. After an interval of time, the same fluid particles form a new surface, S0. According
to Kelvin’s theorem, the circulation around S0 must also be zero. As this is true for any S,
the component of vorticity normal to every element of S0 must vanish, demonstrating that
S0 must lie on the surface of the vortex tube. Thus, vortex tubes move with the fluid, a result
we will also be able to attain from the field equation for vorticity. Applying this result to an
infinitesimally thin vortex tube, we get the Helmholtz vortex theorem that vortex lines move
with the fluid. A different proof may be found in Sommerfeld (1964, pp. 130e132).

5.4. VORTICITY EQUATION IN A NONROTATING FRAME

An equation governing the vorticity in an inertial frame of reference is derived in this
section. The fluid density is assumed to be constant, so that the flow is barotropic. Viscous effects
are retained but the viscosity is assumed to be constant. Baroclinic effects and a rotating frame
of reference are considered in Section 5.6. The derivation given here uses vector notation and
several vector identities. In Section 5.6, the derivation is completed in tensor notation.

Vorticity u is the curl of the velocity, so, as previously noted, V,u ¼ V,ðV� uÞ ¼ 0. An
equation for the vorticity can be obtained from the curl of the momentum conservation equa-
tion (4.39b)

V�



Du

Dt
¼ �1

r
Vpþ gþ nV2u

�

: (5.12)

When g is conservative and (4.18) applies, the curl of the first two terms on the right side of
(5.12) will be zero because they are gradients of scalar functions. The acceleration term on the
left side of (5.12) becomes:

FIGURE 5.7 Vortex tube and surface geometry for Helmholtz’s first vortex theorem. The surface S lies within
a closed contour on the surface of a vortex tube.

5. VORTICITY DYNAMICS180



V�



vu

vt
þ ðu,VÞu

�

¼ vu

vt
þ V� fðu,VÞug ¼ vu

vt
þ V� fVðu,uÞ þu� ug

¼ vu

vt
þ V� ðu� uÞ,

so (5.12) reduces to

vu

vt
þ V� ðu� uÞ ¼ nV2u,

where we have also used the identity V � V2u ¼ V2(V � u) in rewriting the viscous term. The
second term in the above equation can be written as

V� ðu� uÞ ¼ ðu,VÞu� ðu,VÞu;
based on the vector identity (B.3.10), and the fact that V , u ¼ 0 and V , u ¼ 0. Thus, (5.12)
becomes

Du

Dt
¼ ðu,VÞuþ nV2u: (5.13)

This is the field equation governing vorticity in a fluid with constant r and conservative body
forces. The term nV2u represents the rate of change ofu caused by diffusion of vorticity in the
same way that nV2u represents acceleration caused by diffusion of momentum. The term
(u,V)u represents the rate of change of vorticity caused by the stretching and tilting of vortex
lines. This important mechanism of vorticity alteration is discussed further in Section 5.6.
Note that pressure and gravity terms do not appear in (5.13) since these forces act through
the center of mass of an element and therefore generate no torque. In addition, note that
(5.13) might appear upon first glance to be a linear equation for u. However, the vorticity
is the curl of the velocity so both the advective part of the Du/Dt term and the (u,V)u
term represent nonlinearities.

5.5. VELOCITY INDUCED BY A VORTEX FILAMENT:
LAW OF BIOT AND SAVART

For a variety of applications in aero- and hydrodynamics, the flow induced by a concen-
trated distribution of vorticity (a vortex) with arbitrary orientation must be calculated. Here
we consider the simple case of incompressible flow where V,u ¼ 0. Taking the curl of the
vorticity produces:

V� u ¼ V� ðV� uÞ ¼ VðV,uÞ � V2u ¼ �V2u,

where the second equality follows from an identity of vector calculus (B.3.13). The two ends
of this extended equality form a Poisson equation, and its solution is the vorticity-induced
portion of the fluid velocity:

uðx, tÞ ¼ � 1

4p

Z

V0

1

jx� x0jðV
0 � uðx0, tÞÞd3x0, (5.14)
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where V0 encloses the vorticity of interest and V0 operates on the x0 coordinates (see Exercise
5.8). This result can be further simplified by rewriting the integrand in (5.14):

1

jx� x0jðV
0 � uðx0, tÞÞ ¼ V0 �

�

uðx0, tÞ
jx� x0j

	

� V0
�

1

jx� x0j
	

� uðx0, tÞ

¼ V0 �
�

uðx0, tÞ
jx� x0j

	

þ
 

x� x0

jx� x0j3
!

� uðx0, tÞ,

to obtain:

uðx, tÞ ¼ � 1

4p

Z

V0

V0 �
�

uðx0, tÞ
jx� x0j

	

d3x0 þ 1

4p

Z

V0

uðx0, tÞ � ðx� x0Þ
jx� x0j3

d3x0:

Here the first integral is zero when V0 is chosen to capture a segment of the vortex, but it takes
several steps to deduce this. First, rewrite the curl operation in index notation and apply
Gauss’ divergence theorem:

Z

V0

V0 �
�

uðx0, tÞ
jx� x0j

	

d3x0 ¼
Z

V0

3kij
v

vx0i

�

ujðx0, tÞ
jx� x0j

	

d3x0 ¼
Z

A0

3kij

�

ujðx0, tÞ
jx� x0j

	

nid
2x0

¼
Z

A0

n� uðx0, tÞ
jx� x0j d2x0, (5.15)

whereA0 is the surface ofV0 and n is the outward normal onA0. Now chooseV0 to be a volume
aligned so that its end surfaces are locally normal to u(x0,t) while its curved lateral surface
lies outside the concentration of vorticity as shown in Figure 5.8. For this volume, the final
integral in (5.15) is zero because n � u ¼ 0 on its end surfaces since u(x0,t) and n are parallel
there, and because u(x0,t) ¼ 0 on its lateral surface. Thus, (5.14) reduces to:

uðx, tÞ ¼ 1

4p

Z

V0

uðx0, tÞ � ðx� x0Þ
jx� x0j3

d3x0: (5.16)

If an elemental vortex segment of length dl is considered so that V0 ¼ DA0dl, and the obser-
vation location, x, is sufficiently distant from the vorticity concentration location x0 so that
(x e x0)/jx e x0j3 is effectively constant over the vorticity concentration, then (5.16) may be
simplified to:

duðx, tÞy 1

4p

Z

DA0

juðx0, tÞj eud2x0 � ðx� x0Þ
jx� x0j3

dl ¼ Gdl

4p
eu � ðx� x0Þ

jx� x0j3
, (5.17)

where du is the velocity induced by the vortex segment, and G and eu are the strength and
direction of the vortex segment at x0, respectively. This is an expression of the Biot-Savart
vortex induction law.
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5.6. VORTICITY EQUATION IN A ROTATING FRAME

A vorticity equation was derived in Section 5.4 for a fluid of uniform density observed
from an inertial frame of reference. Here, this equation is generalized to a rotating frame
of reference and a nonbarotropic fluid. The flow, however, will be assumed nearly incom-
pressible in the Boussinesq sense, so that the continuity equation is approximately
V , u ¼ 0. And, for conciseness, the comma notation for spatial derivatives (Section 2.14)
is adopted.

The first step is to show that V , u ¼ ui,i is zero. From the definition u ¼ V � u, we obtain

ui, i ¼ ð3inquq, nÞ, i ¼ 3inquq, ni:

In the last term, 3inq is antisymmetric in i and n, whereas the derivative uq,ni is symmetric in i
and n. As the contracted product of a symmetric and an antisymmetric tensor is zero, it
follows that

ui;i ¼ 0 or V,u[ 0 : (5.18)

Hence, the vorticity field is divergence free (solenoidal), even for compressible and unsteady
flows.

The continuity and momentum equations for a nearly incompressible flow in a steadily
rotating coordinate system are

ui, i ¼ 0, and
vui
vt

þ ujui;j þ 23ijkUjuk ¼ �1

r
p;i þ gi þ nui;jj; (5.19, 5.20)

where U is the angular velocity of the coordinate system and gi is the effective gravity
(including centrifugal acceleration); see Section 4.7. The advective acceleration can be
written as

ωω

x – x´ u(x,t)

V´

x´

x

FIGURE 5.8 Geometry for derivation of Law of Biot and Savart. The location of the vorticity concentration or
vortex is x0. The location of the vortex-induced velocity u is x. The volume V0 contains a segment of the vortex. Its
flat ends are perpendicular to the vorticity in the vortex, while its curved lateral sides lie outside the vortex.
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ujui, j ¼ ujðui, j � uj, iÞ þ ujuj, i ¼ �uj3ijkuk þ
1

2
ðujujÞ, i ¼ �ðu�uÞiþ

1

2
ðu2j Þ, i, (5.21)

where we have used the relation

3ijkuk ¼ 3ijk3kmnun,m ¼ ðdimdjnedindjmÞun,m ¼ uj, i � ui, j: (5.22)

The viscous diffusion term can be written as

nui;jj ¼ nðui;j � uj;iÞ;j þ nuj;ij ¼ �n3ijkuk;j; (5.23)

where we have used (5.22) and the fact that uj,ij ¼ 0 because of (5.19). Equation (5.23) says that
nV2u ¼ �nV � u, which we have used several times before (e.g., see (4.40)). Because
U � u ¼ �u �U, the Coriolis acceleration term in (5.20) can be rewritten

23ijkUjuk ¼ �23ijkUkuj: (5.24)

Substituting (5.21), (5.23), and (5.24) into (5.20), we obtain

vui=vtþ
�

1

2
u2j þF

	

, i
�3ijkujðuk þ 2UkÞ ¼ �ð1=rÞp, i � n3ijkuk, j, (5.25)

where we have also set g ¼ �VF; see (4.18).
Equation (5.25) is another form of the Navier-Stokes momentum equation, so the

rotating-frame-of-reference vorticity equation is obtained by taking its curl. Sinceun ¼ 3nqiui,q,
we need to operate on (5.25) by 3nqi( ),q which produces:

v

vt

�

3nqiui, q

�

þ 3nqi

�

1

2
u2j þ F

	

, iq
�3nqi3ijk

h

ujðuk þ 2UkÞ
i

, q
¼ �3nqi

�

1

r
p, i

	

, q
�n3nqi3ijkuk, jq:

(5.26)

The second term on the left side vanishes on noticing that 3nqi is antisymmetric in q and i,
whereas the derivative ðu2j =2þPÞ;iq is symmetric in q and i. The third term on the left side
of (5.26) can be written as

�3nqi3ijk

h

uj

�

uk þ 2Uk

�i

;q
¼ �ðdnjdqk � dnkdqjÞ

h

ujðuk þ 2UkÞ
i

;q

¼ �
h

unðuk þ 2UkÞ
i

;k
þ
h

ujðun þ 2UnÞ
i

;j

¼ �unðuk;k þ 2Uk, kÞ � un;kðuk þ 2UkÞ þ ujðun þ 2UnÞ;j
¼ �unð0þ 0Þ � un;kðuk þ 2UkÞ þ ujðun þ 2UnÞ;j
¼ �un;jðuj þ 2UjÞ þ uj un;j; (5.27)
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where we have used ui,i ¼ 0, ui,i ¼ 0 and the fact that the derivatives of U are zero.
The first term on the right-hand side of (5.26) can be written as

�3nqi

�

1

r
p;i

	

;q

¼ �1

r
3nqi p;iq þ

1

r2
3nqir;qp;i

¼ 0þ 1

r2
½Vr� Vp�n; (5.28)

which involves the n-component of the vector Vr � Vp. The viscous term in (5.26) can be
written as

�n3nqi3ijkuk;jq ¼ �nðdnjdqk � dnkdqjÞuk;jq

¼ �nuk;nk þ nun;jj ¼ nun;jj: (5.29)

If we use (5.27) through (5.29), then (5.26) becomes

vun

vt
¼ un;jðuj þ 2UjÞ � ujun;j þ

1

r2
½Vr� Vp�nþnun;jj:

Changing the free index from n to i produces

Dui

Dt
¼ ðuj þ 2UjÞui;j þ

1

r2
½Vr� Vp�iþnui;jj:

In vector notation this can be written:

Du

Dt
¼ ðuD2UÞ,VuD 1

r2
Vr� Vpþ nV2u: (5.30)

This is the vorticity equation for a nearly incompressible (i.e., Boussinesq) fluid observed from
a frame of reference rotating at a constant rate U. Here u and u are, respectively, the velocity
and vorticity observed in this rotating frame of reference. As vorticity is defined as twice the
angular velocity, 2U is the planetary vorticity and (u þ 2U) is the absolute vorticity of the fluid,
measured in an inertial frame. In a nonrotating frame, the vorticity equation is obtained from
(5.30) by setting U to zero and interpreting u and u as the absolute velocity and vorticity,
respectively.

The left side of (5.30) represents the rate of change of vorticity following a fluid particle.
The last term nV2u represents the rate of change of u due to molecular diffusion of vorticity,
in the same way that nV2u represents acceleration due to diffusion of velocity. The second
term on the right-hand side is the rate of generation of vorticity due to baroclinicity of the
flow, as discussed in Section 5.2. In a barotropic flow, density is a function of pressure alone,
so Vr and Vp are parallel vectors. The first term on the right side of (5.30) represents vortex
stretching and plays a crucial role in the dynamics of vorticity even when U ¼ 0.

To better understand the vortex-stretching term, consider the natural coordinate system
where s is the arc length along a vortex line, n points away from the center of vortex-line
curvature, and m lies along the second normal to s (Figure 5.9). Then,
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ðu,VÞu ¼
�

u,

�

es
v

vs
þ en

v

vn
þ em

v

vm

	�

u ¼ u
v

vs
, (5.31)

where we have used u , en ¼ u , em ¼ 0, and u , es ¼ u ¼ juj. Equation (5.31) shows that
(u , V)u equals the magnitude of u times the derivative of u in the direction of u. The quan-
tity u(vu/vs) is a vector and has the components u(vus/vs), u(vun/vs), and u(vum/vs).
Among these, vus/vs represents the increase of us along the vortex line s, that is, the stretching
of vortex lines. On the other hand, vun/vs and vum/vs represent the change of the normal
velocity components along s and, therefore, the rate of turning or tilting of vortex lines about
the m and n axes, respectively.

To see the effect of these terms more clearly, write out the components of (5.30) for baro-
tropic inviscid flow observed in an inertial frame of reference:

Dus

Dt
¼ u

vus
vs

;
Dun

Dt
¼ u

vun
vs

; and
Dum

Dt
¼ u

vum
vs

: (5.32)

The first equation of (5.32) shows that the vorticity along s changes due to stretching of vortex
lines, reflecting the principle of conservation of angular momentum. Stretching decreases the
moment of inertia of fluid elements that constitute a vortex line, resulting in an increase of
their angular rotation speed. Vortex stretching plays an especially crucial role in the
dynamics of turbulent and geophysical flows. The second and third equations of (5.32)
show how vorticity along n and m is created by the tilting of vortex lines. For example, in
Figure 5.9, the turning of the vorticity vector u toward the n-axis will generate a vorticity
component along n. The vortex stretching and tilting term (u , V) u is absent in two-dimensional
flows, in which u is perpendicular to the plane of flow.

To better understand how frame rotation influences vorticity, consider U ¼ Uez so that
2(U , V)u ¼ 2U(vu/vz) and suppress all other terms on the right side of (5.30) to obtain
the component equations:

Duz

Dt
¼ 2U

vw

vz
,

Dux

Dt
¼ 2U

vu

vz
, and

Duy

Dt
¼ 2U

vv

vz
:

FIGURE 5.9 Coordinate system aligned with the vorticity vector.
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This shows that stretching of fluid lines in the z direction increases uz, whereas a tilting of
vertical lines changes the relative vorticity along the x and y directions. Note that merely
stretching or turning of vertical fluid lines is required for this mechanism to operate, in
contrast to (u , V) u where a stretching or turning of vortex lines is needed. This is because
vertical fluid lines contain the planetary vorticity 2U. A vertically stretching fluid column
tends to acquire positive uz, and a vertically shrinking fluid column tends to acquire negative
uz (Figure 5.10). For this reason large-scale geophysical flows are almost always full of
vorticity, and the change ofu due to the presence of planetary vorticity 2U is a central feature
of geophysical fluid dynamics.

Kelvin’s circulation theorem for inviscid flow in a rotating frame of reference is
modified to

DGa

Dt
¼ 0 where Gah

Z

A

ðuþ 2UÞ,ndA ¼ Gþ 2

Z

A

U,ndA (5.33)

(see Exercise 5.11). Here, Ga is circulation due to the absolute vorticity (u þ 2U) and differs
from G by the amount of planetary vorticity intersected by the area A.

5.7. INTERACTION OF VORTICES

Vortices placed close to one another can mutually interact through their induced veloc-
ities and generate interesting motions. To examine such interactions, consider ideal concen-
trated-line vortices. A real vortex, with a core within which vorticity is distributed, can be
idealized by a concentrated vortex line with circulation equal to the average vorticity in the
core times the core area. Motion outside the vortex core is assumed irrotational, and there-
fore inviscid. It will be shown in the next chapter that irrotational motion of a constant
density fluid is governed by the linear Laplace equation so the principle of superposition
applies, and the velocity at a point can be obtained by adding the contribution of all
vortices in the field. To determine the mutual interaction of line vortices, the important
principle to keep in mind is the first Helmholtz vortex theoremdvortex lines move with
the flow.

FIGURE 5.10 Generation of rela-
tive vorticity due to stretching of fluid
columns parallel to the planetary
vorticity 2U. A fluid column acquires
uz (in the same sense as U) by moving
from location A to location B.
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Consider the interaction of two ideal line vortices of strengths G1 and G2, where both G1

and G2 are positive (i.e., counterclockwise vorticity). Let h ¼ h1 þ h2 be the distance between
the vortices (Figure 5.11). Then the velocity at point 2 due to vortex G1 is directed upward and
equals

V1 ¼ G1=2ph:

Similarly, the velocity at point 1 due to vortex G2 is downward and equals

V2 ¼ G2=2ph:

The vortex pair therefore rotates counterclockwise around this center of vorticity G, which
remains stationary.

Now suppose that the two vortices have the same circulation of magnitude G, but an oppo-
site sense of rotation (Figure 5.12). Then the velocity of each vortex at the location of the other
is G/(2ph) so the dual-vortex system translates at a speed G/(2ph) relative to the fluid. A pair
of counter-rotating vortices can be set up by stroking the paddle of a boat, or by briefly
moving the blade of a knife in a bucket of water (Figure 5.13). After the paddle or knife is
withdrawn, the vortices do not remain stationary but continue to move.

The behavior of a single vortex near a wall can be found by superposing two vortices of
equal and opposite strength. The technique involved is called the method of images and has
wide application in irrotational flow, heat conduction, acoustics, and electromagnetism. It
is clear that the inviscid flow pattern due to vortex A at distance h from awall can be obtained
by eliminating the wall and introducing instead a vortex of equal and opposite strength at the
image point B (Figure 5.14). The velocity at any point P on the wall, made up of VA due to the
real vortex and VB due to the image vortex, is parallel to the wall. The wall is therefore
a streamline, and the inviscid boundary condition of zero normal velocity across a solid
wall is satisfied. Because of the flow induced by the image vortex, vortex Amoves with speed

FIGURE 5.11 Interaction of two line vortices of the same sign. Here the induced velocities are in opposite
directions and perpendicular to the line connecting the vortices. Thus, if free to move, the two vortices will travel on
circular paths centered on the point G where the combined velocity induced by the two vortices is zero.
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G/(4ph) parallel to the wall. For this reason, vortices in the example of Figure 5.13 move apart
along the boundary on reaching the side of the vessel.

Now consider the interaction of two doughnut-shaped vortex rings (such as smoke rings)
of equal and opposite circulation (Figure 5.15a). According to the method of images, the flow
field for a single ring near a wall is identical to the flow of two rings of opposite circulations.
The translational motion of each element of the ring is caused by the induced velocity from
each element of the same ring, plus the induced velocity from each element of the other
vortex ring. In the figure, the motion at A is the resultant of VB, VC, and VD, and this resultant
has components parallel to and toward the wall. Consequently, the vortex ring increases in
diameter and moves toward the wall with a speed that decreases monotonically
(Figure 5.15b).

FIGURE 5.13 Top view of a vortex pair generated by moving the blade of a knife in a bucket of water. Positions
at three instances of time 1, 2, and 3 are shown. (After Lighthill, 1986.)

FIGURE 5.12 Interaction of line vortices of opposite spin, but of the same magnitude. Here G refers to the
magnitude of circulation, and the induced velocities are in same direction and perpendicular to the line connecting
the vortices. Thus, if free to move, the two vortices will travel along straight lines in the direction shown at speed
G/2ph.
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FIGURE 5.14 Line vortex A near a wall and its image B. The sum of the induced velocities is parallel to the wall
at all points P on the wall when the two vortices have equal and opposite strengths and they are equidistant from
the wall.

FIGURE5.15 (a) Torus or doughnut-shaped vortex ring near awall and its image.A section through themiddle of the
ring is shown alongwith primary induced velocities at A from the vortex segments located at B, C, andD. (b) Trajectory of
a vortex ring, showing that it widens while its translational velocity toward the wall decreases.
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Finally, consider the interaction of two vortex rings of equal magnitude and similar
sense of rotation. It is left to the reader (Exercise 5.15) to show that they should both trans-
late in the same direction, but the one in front increases in radius and therefore slows
down in its translational speed, while the rear vortex contracts and translates faster.
This continues until the smaller ring passes through the larger one, at which point the
roles of the two vortices are reversed. The two vortices can pass through each other
forever in an ideal fluid. Further discussion of this intriguing problem can be found in
Sommerfeld (1964, p. 161).

5.8. VORTEX SHEET

Consider an infinite number of ideal line vortices, placed side by side on a surface AB
(Figure 5.16). Such a surface is called a vortex sheet. If the vortex filaments all rotate clockwise,
then the tangential velocity immediately above AB is to the right, while that immediately
belowAB is to the left. Thus, a discontinuity of tangential velocity exists across a vortex sheet.
If the vortex filaments are not infinitesimally thin, then the vortex sheet has a finite thickness,
and the velocity change is spread out.

In Figure 5.16, consider the circulation around a circuit of dimensions dn and ds. The
normal velocity component v is continuous across the sheet (v ¼ 0 if the sheet does not
move normal to itself), while the tangential component u experiences a sudden jump. If u1
and u2 are the tangential velocities on the two sides, then

dG¼ u2 dsþv dneu1 dsev dn¼ ðu2eu1Þ ds:

Therefore the circulation per unit length, called the strength of a vortex sheet, equals the jump in
tangential velocity:

Gh
dG

ds
¼ u2 � u1:

The concept of a vortex sheet is especially useful in discussing the flow over aircraft wings
(Chapter 14).

FIGURE 5.16 A vortex sheet
produces a change in the veloc-
ity that is tangent to it. Vortex
sheets may be formed by placing
many parallel ideal line vortices
next to each other. The strength of
a vortex sheet, dG/ds ¼ u1 e u2,
can be determined by computing
the circulation on the rectangular
contour shown and this strength
may depend on the sheet-tangent
coordinate.

5.8. VORTEX SHEET 191



EXERCISES

5.1. A closed cylindrical tank 4 m high and 2 m in diameter contains water to a depth of
3 m. When the cylinder is rotated at a constant angular velocity of 40 rad/s, show that
nearly 0.71m2 of the bottom surface of the tank is uncovered. [Hint: The free surface is in
the form of a paraboloid. For a point on the free surface p¼ po, let h be the height above the
(imaginary)vertexof theparaboloidand rbe the local radiusof theparaboloid.FromSection

5.1we have h ¼ u2
0r

2=2g, whereu0 is the angular velocity of the tank. Apply this equation

to the two points where the paraboloid cuts the top and bottom surfaces of the tank.]
5.2. A tornado can be idealized as a Rankine vortex with a core of diameter 30 m. The gauge

pressure at a radius of 15 m is �2000 N/m2 (i.e., the absolute pressure is 2000 N/m2

below atmospheric).
(a) Show that the circulation around any circuit surrounding the core is 5485 m2/s.

[Hint: Apply the Bernoulli equation between infinity and the edge of the core.]
(b) Such a tornado is moving at a linear speed of 25 m/s relative to the ground. Find

the time required for the gauge pressure to drop from �500 to �2000 N/m2.
Neglect compressibility effects and assume an air temperature of 25�C. (Note that
the tornado causes a sudden decrease of the local atmospheric pressure. The
damage to structures is often caused by the resulting excess pressure on the inside
of the walls, which can cause a house to explode.)

5.3. Thevelocityfieldof aflow incylindrical coordinates (R,4, z) isu ¼ (uR,u4,uz) ¼ (0, aRz, 0)
where a is a constant.

(a) Show that the vorticity components are u ¼ (uR, u4, uz) ¼ (eaR, 0, 2az).
(b) Verify that V , u ¼ 0.
(c) Sketch the streamlines and vortex lines in an Rz plane. Show that the vortex lines

are given by zR2 ¼ constant.
5.4. Starting from the flow field of an ideal vortex (5.2), compute the viscous stresses srr,

srq, and sqq, and show that the net viscous force on a fluid element, (vsij/vxi), is zero.
5.5. Consider the situation depicted in Figure 5.5. Use a Cartesian coordinate system with

a horizontal x-axis that puts the barrier at x ¼ 0, a vertical y-axis that puts the bottom
of the container at y ¼ 0 and the top of the container at y ¼ H, and a z-axis that points
out of the page. Show that, at the instant the barrier is removed, the rate of baroclinic
vorticity production at the interface between the two fluids is:

Duz

Dt
¼ 2ðr2 � r1Þg

ðr2 þ r1Þd
,

where the thickness of the density transition layer just after barrier removal is d<<H, and
the density in this thin interface layer is assumed to be (r1 þ r2)/2. If necessary, also
assume that fluid pressures match at y ¼ H/2 just after barrier removal, and that the
width of the container into the page is b. State any additional assumptions that youmake.

5.6. At t ¼ 0 a constant-strength z-directed vortex sheet is created in an x-z plane (y ¼ 0) in
an infinite pool of a fluid with kinematic viscosity n, that is, u(y,0) ¼ ezgd(y). The
symmetry of the initial condition suggests that u ¼ uzez and that uz will only depend
on y and t. Determine u(y,t) for t > 0 via the following steps.
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a) Determine a dimensionless scaling law for uz in terms of g, n, y, and t.
b) Simplify the general vorticity equation (5.13) to a linear field equation for uz for this

situation.
c) Based on the fact that the field equation is linear, simplify the result of part a) by

requiring uz to be proportional to g, plug the simplified dimensionless scaling
law into the equation determined for part b), and solve this equation to find the
undetermined function to reach:

uzðy, tÞ ¼ g

2
ffiffiffiffiffiffiffi

pnt
p exp




� y2

4nt

�

5.7. 1a) Starting from the continuity and Euler equations for an inviscid compressible fluid,
vr=vtþ V,ðruÞ ¼ 0 and rðDu=DtÞ ¼ �Vpþ rg, derive the Vazsonyi equation:

D

Dt

�

u

r

	

¼
�

u

r

	

,Vuþ 1

r3
Vr� Vp,

when the body force is conservative: g ¼ �VF. This equation shows that u/r in
a compressible flow plays nearly the same dynamic role as u in an incompressible
flow [see (5.30) with U ¼ 0 and n ¼ 0].
b) Show that the final term in the Vazsonyi equation may also be written:

ð1=rÞVT � Vs.
c) Simplify the Vazsonyi equation for barotropic flow.

5.8. Starting from the unsteadymomentum equation for a compressible fluid with constant
viscosities:

r
Du

Dt
þ Vp ¼ rgþ mV2uþ

�

my þ
1

3
m

	

VðV,uÞ,

show that

vu

vt
þ u� u ¼ TVs� V

�

hþ 1

2
juj2 þ F

	

� m

r
V� uþ 1

r

�

my þ
4

3
m

	

VðV,uÞ

where T ¼ temperature, h ¼ enthalpy per unit mass, s ¼ entropy per unit mass, and
the body force is conservative: g ¼ �VF. This is the viscous Crocco-Vazsonyi equa-
tion. Simplify this equation for steady inviscid non-heat-conducting flow to find the

Bernoulli equation (4.78), hþ 1

2
juj2 þ F ¼ constant along a streamline, which is valid

when the flow is rotational and nonisothermal.
5.9. a) Solve V2Gðx,x0Þ ¼ dðx� x0Þ forG(x,x0) in a uniform, unbounded three-dimensional

domain, where d(x e x0) ¼ d(x e x0)d(y e y0)d(z e z0) is the three-dimensional Dirac
delta function.

b) Use the result of part a) to show that: fðxÞ ¼ � 1

4p

Z

all x0

qðx0Þ
jx� x0jd

3x0 is the solution of

the Poisson equation V2fðxÞ ¼ qðxÞ in a uniform, unbounded three-dimensional
domain.

1Obtained from Professor Paul Dimotakis
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5.10. Start with the equations of motion in the rotating steadily coordinates, and prove

Kelvin’s circulation theorem
D

Dt
ðGaÞ ¼ 0 where Ga ¼ R ðuþ 2UÞ,dA. Assume that U

is constant, the flow is inviscid and barotropic and that the body forces are
conservative. Explain the result physically.

5.11. In (R,4,z) cylindrical coordinates, consider the radial velocity uR ¼ �Re1(vj/vz), and
the axial velocity uz ¼ Re1(vj/vR) determined from the axisymmetric stream function

jðR, zÞ ¼ Aa4

10

 

R2

a2

! 

1� R2

a2
� z2

a2

!

where A is a constant. This flow is known as Hill’s

spherical vortex.

a) For R2 þ z2 � a2, sketch the streamlines of this flow in a plane that contains the z-
axis. What does a represent?

b) Determine u ¼ uR(R, z)eR þ uz(R, z)ez.

c) Given u4 ¼ ðvuR=vzÞ � ðvuz=vRÞ, show that u ¼ ARe4 in this flow and that this
vorticity field is a solution of the vorticity equation (5.13).

d) Does this flow include stretching of vortex lines?

5.12. In (R,4,z) cylindrical coordinates, consider the flow field uR ¼ eaR/2, uf ¼ 0, and
uz ¼ az.

a) Compute the strain rate components SRR, Szz, and SRz. What sign of a causes fluid
elements to elongate in the z direction? Is this flow incompressible?

b) Show that it is possible for a steady vortex (a Burgers’ vortex) to exist in this flow
field by adding u4 ¼ (G/2pR)[1 e exp(eaR2/4n)] to uR and uz from part a) and then
determining a pressure field p(R,z) that together with u ¼ (uR, u4, uz) solves the
Navier-Stokes momentum equation for a fluid with constant density r and
kinematic viscosity n.

c) Determine the vorticity in the Burgers’ vortex flow of part b).

d) Explain how the vorticity distribution can be steady when a s 0 and fluid elements
are stretched or compressed.

e) Interpret what is happening in this flow when a > 0 and when a < 0.
5.13. An ideal line vortex parallel to the z-axis of strength G intersects the x-y plane at x ¼ 0

and y ¼ h. Two solid walls are located at y¼ 0 and y¼H> 0. Use the method of images
for the following.

a) Based on symmetry arguments, determine the horizontal velocity u of the vortex
when h ¼ H/2.

b) Show that for 0 < h < H the horizontal velocity of the vortex is:

uð0,hÞ ¼ G

4ph

 

1� 2
X
N

n¼ 1

1

ðnH=hÞ2�1

!

,

and evaluate the sum when h ¼ H/2 to verify your answer to part a).
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5.14. The axis of an infinite solid circular cylinder with radius a coincides with the z-axis.
The cylinder is stationary and immersed in an incompressible inviscid fluid, and the
net circulation around it is zero. An ideal line vortex parallel to the cylinder with
circulation G passes through the x-y plane at x ¼ L > a and y ¼ 0. Here two image
vortices are needed to satisfy the boundary condition on the cylinder’s surface. If one
of these is located at x ¼ y ¼ 0 and has strength G, determine the strength and location
of the second image vortex.

5.15. Consider the interaction of two vortex rings of equal strength and similar sense of
rotation. Argue that they go through each other, as described near the end of
Section 5.7.

5.16. A constant-density irrotational flow in a rectangular torus has a circulation G and
volumetric flow rate Q. The inner radius is r1, the outer radius is r2, and the
height is h. Compute the total kinetic energy of this flow in terms of only r, G,
and Q.

5.17. Consider a cylindrical tank of radius R filled with a viscous fluid spinning steadily
about its axis with constant angular velocity U. Assume that the flow is in a steady
state.

(a) Find
R

Au,dAwhere A is a horizontal plane surface through the fluid normal to the
axis of rotation and bounded by the wall of the tank.

(b) The tank then stops spinning. Find again the value of
R

A u,dA.
5.18. In Figure 5.11, locate point G.
5.19. Consider two-dimensional steady flow in the x-y plane outside of a long circular

cylinder of radius a that is centered on and rotating about the z-axis at a constant
angular rate of Uz. Show that the fluid velocity on the x-axis is u(x,0) ¼ (Uza

2/x)ey for
x > a when the cylinder is replaced by:

a) A circular vortex sheet of radius a with strength g ¼ Uza

b) A circular region of uniform vorticity u ¼ 2Uzez with radius a.

c) Describe the flow for x2 þ y2 < a2 for parts a) and b).
5.20. An ideal line vortex in a half space filled with an inviscid constant-density fluid has

circulation G, lies parallel to the z-axis, and passes through the x-y plane at x ¼ 0 and
y ¼ h. The plane defined by y ¼ 0 is a solid surface.

a) Use the method of images to find u(x,y) for y> 0 and show that the fluid velocity on
y ¼ 0 is u(x,0) ¼ Ghex=½pðx2 þ h2Þ�.

b) Show that u(0,y) is unchanged for y > 0 if the image vortex is replaced by a vortex
sheet of strength gðxÞ ¼ �uðx, 0Þez on y ¼ 0.

c) (If you have the patience) Repeat part b) for u(x,y) when y > 0.
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CHAPTER OBJECTIVES

• To describe the formulation and limitations

of ideal flow theory.

• To illustrate the use of the stream function and

the velocity potential in two-dimensional,

axisymmetric, and three-dimensional flows.

• To derive and present classical ideal flow

results for flows past simple objects.
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6.1. RELEVANCE OF IRROTATIONAL CONSTANT-DENSITY
FLOW THEORY

When a constant-density fluid flows without rotation, and pressure is measured relative to
its local hydrostatic value (see Section 4.9), the equations of fluid motion in an inertial frame
of reference, (4.7) and (4.38), simplify to:

V,u ¼ 0 and rðDu=DtÞ ¼ �Vp, (4.10, 6.1)

even though the fluid’s viscosity m may be nonzero. These are the equations of ideal flow.
They are useful for developing a first-cut understanding of nearly any macroscopic fluid
flow, and are directly applicable to low-Mach-number irrotational flows of homogeneous
fluids away from solid boundaries. Ideal flow theory has abundant applications in the exte-
rior aero- and hydrodynamics of moderate- to large-scale objects at nontrivial subsonic
speeds. Here, moderate size (L) and nontrivial speed (U) are determined jointly by the
requirement that the Reynolds number, Re¼ rUL/m (4.103), be large enough (typically
Re ~ 103 or greater) so that the combined influence of fluid viscosity and fluid element rota-
tion is confined to thin layers on solid surfaces, commonly known as boundary layers.

The conditions necessary for the application of ideal flow theory are commonly present
on the upstream side of many ordinary objects, and may even persist to the downstream
side of some. Ideal flow analysis can predict fluid velocity away from solid surfaces,
surface-normal pressure forces (when the boundary layer is thin and attached), acoustic
streamlines, flow patterns that minimize form drag, and unsteady-flow, fluid-inertia effects.
Ideal flow theory does not predict viscous effects like skin friction or energy dissipation, so
it is not directly applicable to interior flows in pipes and ducts, to boundary layer flows, or
to any rotational flow region. This final specification excludes low-Re flows and regions of
turbulence.

Because (6.1) involves only first-order spatial derivatives, ideal flows only satisfy the
no-through-flow boundary condition on solid surfaces. The no-slip boundary condition is
not applied in ideal flows, so nonzero tangential velocity at a solid surface may exist

FIGURE 6.1 Comparison of a completely irrotational constant-density (ideal) flow (a) and a high Reynolds
number flow (b). In both cases the no-through-flow boundary condition is applied. However, the ideal flow is
effectively inviscid and the fluid velocity is tangent to and nonzero on the body surface. The high-Re flow includes
thin boundary layers where fluid rotation and viscous effects are prevalent, and the non-slip boundary condition is
enforced, but the velocity above the thin boundary layer is similar to that in the ideal flow.
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(Figure 6.1a). In contrast, a real fluid with a nonzero shear viscosity must satisfy a no-slip
boundary condition because (4.38) contains second-order spatial derivatives. At sufficiently
high Re, there are two primary differences between ideal and real flows over the same object.
First, viscous boundary layers containing rotational fluid form on solid surfaces in the real
flow, and the thickness of such boundary layers, within which viscous diffusion of vorticity
is important, approaches zero as Re/N (Figure 6.1b). The second difference is the possible
formation in the real flow of separated flow or wake regions that occur when boundary layers
leave the surface on which they have developed to create a wider zone of rotational flow
(Figure 6.2). Ideal flow theory is not directly applicable to such layers or regions of rotational
flow. However, rotational flow regions may be easy to anticipate or identify, and may repre-
sent a small fraction of a total flow field so that predictions from ideal flow theory may
remain worthwhile even when viscous flow phenomena are present. Further discussion of
viscous-flow phenomena is provided in Chapters 8 and 9.

For (4.10) and (6.1) to apply, fluid density r must be constant and the flow must be irro-
tational. If the flow is merely incompressible and contains baroclinic density variations, (4.10)
will still be satisfied but (6.1) will not; it will need a body-force term like that in (4.84) and the
reference pressure would have to be redefined. If the fluid is a homogeneous compressible
gas with sound speed c, the constant density requirement will be satisfied when the Mach
number, M¼U/c (4.111), of the flow is much less than unity. The irrotationality condition
is satisfied when fluid elements enter the flow field of interest without rotation and do not
acquire any while they reside in it. Based on Kelvin’s circulation theorem (5.11) for constant
density flow, this is possible when the body force is conservative and the net viscous force on
a fluid element is zero. Thus, a fluid element that is initially irrotational is likely to stay that
way unless it enters a boundary layer, wake, or separated flow region where it acquires rota-
tion via viscous diffusion. So, when initially irrotational fluid flows over a solid object, ideal
flow theory most readily applies to the outer region of the flow away from the object’s
surface(s) where the flow is irrotational. Viscous flow theory is needed in the inner region
where viscous diffusion of vorticity is important. Often, at high Re, the outer flow can be
approximately predicted by ignoring the existence of viscous boundary layers. With this
outer flow prediction, viscous flow equations can be solved for the boundary-layer flow
and, under the right conditions, the two solutions can be adjusted until they match in a suit-
able region of overlap. This approach works well for objects like thin airfoils at low angles of

FIGURE 6.2 Schematic drawings of flows with boundary layer separation. (a) Real flow past a cylinder where
the boundary layers on the top and bottom of the cylinder leave the surface near its widest point. (b) Real flow past
a sharp-cornered obstacle where the boundary layer leaves the surface at the corner. Upstream of the point of
separation, ideal flow theory is usually a good approximation of the real flow.
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attack when boundary layers remain thin and stay attached all the way to the foil’s trailing
edge (Figure 6.1b). However, it is not satisfactory when the solid object has such a shape that
one or more boundary layers separate from its surface before reaching its downstream edge
(Figure 6.2), giving rise to a rotational wake flow or region of separated flow (sometimes
called a bubble) that is not necessarily thin, no matter how high the Reynolds number. In
this case, the limit of a real flow as m / 0 does not approach that of an ideal flow (m¼ 0).
Yet, upstream of boundary layer separation, ideal flow theory may still provide a good
approximation of the real flow.

In summary, the theory presented here does not apply to inhomogeneous fluids, high
subsonic or supersonic flow speeds, boundary layer flows, wake flows, interior flows, or
any flow region where fluid elements rotate. However, the remaining flow possibilities are
abundant, and include those that are commercially valuable (flight), naturally important
(water waves), or readily encountered in our everyday lives (flow around vehicles; also
see Chapters 7 and 14 for further examples).

Steady and unsteady irrotational constant-density flow fields around simple objects and
through simple geometries in two and three dimensions are the subjects of this chapter.
All the coordinate systems presented in Figure 3.3 are utilized herein.

6.2. TWO-DIMENSIONAL STREAM FUNCTION
AND VELOCITY POTENTIAL

The two-dimensional incompressible continuity equation,

vu=vxþ vv=vy ¼ 0, (6.2)

is identically satisfied when u,v-velocity components are determined from a single scalar
function j:

uh vj=vy, and vh �vj=vx: (6.3)

The function j(x,y) is the stream function in two dimensions. Along a curve of j¼ constant,
dj¼ 0, and this implies

0 ¼ dj ¼ vj

vx
dxþ vj

vy
dy ¼ �vdxþ udy, or

�

dy

dx

�

j¼const

¼ v

u
,

which is the definition of a streamline in two dimensions. The vorticity uz in a flow described
by j is:

vv

vx
� vu

vy
¼ uz ¼ v

vx

�

�vj

vx

�

� v

vy

�

vj

vy

�

¼ �V2j: (6.4)

In constant-density irrotational flow, uz will be zero everywhere except at the locations of
irrotational vortices. Thus, we are interested in solutions of

V2j ¼ 0, and V2j ¼ �Gd
�

x� x0
�

d
�

y� y0
�

, (6.5, 6.6)

where d is the Dirac delta-function (see Appendix B.4), and x0 ¼ (x0, y0) is the location of an
ideal irrotational vortex of strength G.
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In an unbounded domain, the most elementary nontrivial solutions of (6.5) and (6.6) are

j ¼ �VxþUy, and j ¼ � G

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2þðy� y0Þ2
q

, (6.7, 6.8)

respectively. These correspond to uniform fluid velocity with horizontal component U and
vertical componentV, and to the flow induced by an irrotational vortex located at x0 (see Exer-
cise 6.1).

These two-dimensional stream function results have been obtained by considering incom-
pressibility first, and irrotationality second. An equivalent formulation of two-dimensional
ideal flow that leads to a different scalar function is possiblewhen incompressibility and irrota-
tionality are considered in the other order. The condition of irrotationality in two dimensions is

vv=vx� vu=vy ¼ 0, (6.9)

and it is identically satisfied when u,v-velocity components are determined from a single
scalar function f:

uh vf=vx, and vh vf=vy: (6.10)

The function f(x,y) is known as the velocity potential in two dimensions because (6.10) implies
Vf ¼ u. In fact, a velocity potential must exist in all irrotational flows, so such flows are
frequently called potential flows. Curves of f¼ constant are defined by

0 ¼ df ¼ vf

vx
dxþ vf

vy
dy ¼ udxþ vdy or

�

dy

dx

�

f¼const

¼ �u

v
,

and are perpendicular to streamlines. When using f(x,y), the condition for incompressibility
becomes:

vu

vx
þ vv

vy
¼ v

vx

�

vf

vx

�

þ v

vy

�

v

vy

�

f ¼ V2f ¼ qðx, yÞ, (6.11)

where q(x,y) is the spatial distribution of the source strength in the flow field. Of course, in
real incompressible flows, q(x,y)¼ 0; however, ideal point sources and sinks of fluid are
useful idealizations that allow the flow around objects of various shapes to be determined.
These point sources and sinks are the f-field equivalents of positive- and negative-circulation
ideal vortices in flow fields described by j. Thus, we are interested in solutions of

V2f ¼ 0, and V2f ¼ md
�

x� x0
�

d
�

y� y0
�

, (6.12, 6.13)

where m is a constant that sets the strength of the singularity at x0.
In an unbounded domain, the most elementary solutions of (6.12) and (6.13) are

f ¼ Uxþ Vy, and f ¼ m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2þðy� y0Þ2
q

, (6.14, 6.15)

respectively. These correspond to uniform fluid velocity with horizontal component U and
vertical component V, and to the flow induced by an ideal point source of strength m located
at x0 (see Exercise 6.3). Here,m is the source’s volume flow rate per unit depth perpendicular
to the plane of the flow.
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Either j or f can provide a complete description of a two-dimensional ideal flow, and they
can be combined to form a complex potential that follows the theory of harmonic functions
(see Section 6.4). In addition, j is readily extended to rotational flows while f is readily
extended to unsteady and three-dimensional flows.

Boundary conditions must be considered to extend the elementary ideal flow solutions
(6.7), (6.8), (6.14), and (6.15) to more interesting geometries. The boundary conditions nor-
mally encountered in irrotational flows are as follows.

(1) No flow through a solid surface. The component of fluid velocity normal to a solid
surface must equal the velocity of the boundary normal to itself. This can be stated
as n,Us ¼ ðn,uÞon the surface, where n is the surface’s normal and Us is the velocity of
the surface at the point of interest. For a stationary body, this condition reduces to
ðn,uÞon the surface¼ 0, which implies:

vf=vn ¼ 0 or vj=vs ¼ 0 on the surface, (6.16)

where s is the arc-length along the surface, and n is the surface-normal coordinate.
However, vj/vs is also zero along a streamline. Thus, a stationary solid boundary in
an ideal flow must also be a streamline. Therefore, if any ideal-flow streamline is
replaced by a stationary solid boundary having the same shape, then the remainder
of the flow is not changed.

(2) Recovery of conditions at infinity. For the typical case of a body immersed in a uniform fluid
flowing in the x direction with speed U, the condition far from the body is

vf=vx ¼ U, or vj=vy ¼ U: (6.17)

When U¼ 0, the fluid far from the body is said to be quiescent.
Solving the Laplace equation, (6.5) or (6.12), with complicated-geometry boundary condi-

tions like (6.16) and (6.17) requires numerical techniques. Historically, irrotational flow
theory was developed by finding functions that satisfy the Laplace equation and then deter-
mining the boundary conditions met by those functions. Since the Laplace equation is linear,
any superposition of known solutions provides another solution, but the superposition of
two or more solutions may satisfy different boundary conditions than any of the constituents
of the superposition. Thus, through collection and combination, a rich variety of interesting
ideal-flow solutions has emerged. This solution-construction approach to ideal flow theory is
adopted in this chapter, except in Sections 6.7 and 6.8 where numerical methods for solving
(6.5) or (6.12) subject to (6.16) or (6.17) are presented.

After a solution of the Laplace equation has been obtained, the velocity components
are determined by taking derivatives of f or j. Then, the conservation of momentum
equation (6.1) is satisfied for steady flow by determining pressure from the Bernoulli
equation:

pþ 1

2
rjuj2 ¼ pþ 1

2
r
�

u2 þ v2
�¼ pþ 1

2
rjVfj2 ¼ pþ 1

2
rjVjj2 ¼ const: (6.18)

For unsteady flow, the term r(vf/vt) must be added (see Exercise 6.4). With this procedure,
solutions of (4.10) and (6.1) for u and p are obtained for ideal flows in a simple manner even
though (6.1) is nonlinear.
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For quick reference, the important equations in planar polar coordinates are:

1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

¼ 0 ðcontinuityÞ, (6.19)

1

r

v

vr
ðruqÞ � 1

r

vur
vq

¼ 0 ðirrotationalityÞ, (6.20)

ur ¼ vf

vr
¼ 1

r

vj

vq
; (6.21)

uq ¼ 1

r

vf

vq
¼ �vj

vr
; (6.22)

V2j ¼ 1

r

v

vr

�

r
vj

vr

�

þ 1

r2
v2j

vq2
¼ 0, and V2f ¼ 1

r

v

vr

�

r
vf

vr

�

þ 1

r2
v2f

vq2
¼ 0: (6.23a, 6.23b)

6.3. CONSTRUCTION OF ELEMENTARY FLOWS
IN TWO DIMENSIONS

In this section, elementary solutions of the Laplace equation are developed and
then superimposed to produce a variety of geometrically simple ideal flows in two
dimensions.

First consider polynomial solutions of the Laplace equation in Cartesian coordinates. A
zero-order polynomial, j or f¼ constant, is not interesting since with either field function
the result is u¼ 0. First-order polynomial solutions are given by (6.7) and (6.14), and these
solutions represent spatially uniform velocity fields, u¼ (U,V). Quadratic functions in x
and y are the next possibilities, and there are two of these:

j ¼ 2Axy or f ¼ 2Axy, and j ¼ A
�

x2 � y2
�

or f ¼ A
�

x2 � y2
�

, (6.24e6.27)

where A is a constant. (The reason for the two in (6.24) and (6.25) will be clear in the next
section.) Here we will only construct the flow fields for 2Axy. Production of flow-field results
for j and f¼A(x2 e y2) is left as an exercise.

Examine j¼ 2Axy first, and by direct differentiation find u¼ 2Ax, and v¼e2Ay. Thus,
for A> 0, the flow is toward the origin along the y-axis, away from it along the x-axis,
and the streamlines are hyperbolae given by xy¼ j/2A (Figure 6.3). Considering the first
quadrant only, this is flow in a 90� corner. Now consider f¼ 2Axy, and by direct differen-
tiation find u¼ 2Ay, and v¼ 2Ax. The equipotential lines are hyperbolae given by xy¼ f/
2A. The flow is away from the origin along the line y¼ x and toward it along the line
y¼ex. Thus, f¼ 2Axy produces a flow that is equivalent to that of j¼ 2Axy after a 45� rota-
tion. Interestingly, higher-order polynomial solutions lead to flows in smaller-angle
corners, while fractional powers lead to flows in larger-angle corners (see Section 6.4 and
Exercises 6.6 and 6.7).
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The next set of solutions to consider are (6.8) and (6.15) with x0 ¼ y0 ¼ 0. In this case, curves
of j ¼ �ðG=2pÞln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ const: are circles centered on the origin of coordinates
(Figure 6.4), and direct differentiation of (6.8) produces:

u ¼ v

vy

�

� G

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

�

¼ � G

2p

y

x2 þ y2
¼ � G

2pr
sin q , and

v ¼ � v

vx

�

� G

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

�

¼ þ G

2p

x

x2 þ y2
¼ G

2pr
cos q,

FIGURE 6.4 The flow field of an ideal vortex located at the origin of coordinates. The streamlines are circles and
the potential lines are radials. Here, the vortex line is perpendicular to the x-y plane.

FIGURE 6.3 Stagnation point flow represented by j¼ 2Axy. Here the flow impinges on the flat surface from
above. The stagnation point is located where the single vertical streamline touches the horizontal surface.
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where r and q are defined in Figure 3.3a. These results may be rewritten using the outcome
of Example 2.1 as ur¼ 0 and uq¼G/2pr, which is the flow field of the ideal irrotational
vortex (5.2). Similarly, curves of f ¼ ðm=2pÞln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ const: are circles centered on
the origin of coordinates (Figure 6.5), and direct differentiation of (6.8) produces:

u ¼ v

vx

�

m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

�

¼ m

2p

x

x2 þ y2
¼ m

2pr
cos q, and

v ¼ v

vy

�

m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

�

¼ m

2p

y

x2 þ y2
¼ m

2pr
sin q:

These results may be rewritten as ur¼m/2pr and uq¼ 0, which is purely radial flow away
from the origin (Figure 6.5). Here, V,u is zero everywhere except at the origin. Thus, this
potential represents flow from an ideal incompressible point source for m> 0, or sink for
m< 0, that is located at r¼ 0 in two dimensions.

A source of strength þm at (e3, 0) and sink of strength em at (þ3, 0), can be considered
together

f ¼ m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 3Þ2þ y2
q

� m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 3Þ2þ y2
q

to obtain the potential for a doublet in the limit that 3/0 and m/N, so that the dipole
strength vector

d ¼
X

sources

ximi ¼ �3exmþ 3exð�mÞ ¼ �2m3ex (6.28)

FIGURE 6.5 The flow field of an ideal source located at the origin of coordinates in two dimensions. The
streamlines are radials and the potential lines are circles.
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remains constant. Here, the dipole strength points from the sink toward the source. As 3/0,
the logarithm of the square roots can be simplified:

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 3Þ2þ y2
q

¼ ln rþ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 23x=r2 þ 32=r2
q

¼ ln rþ ln
�

1� 3x=r2 þ.
�

y lnðrÞ � 3x=r2,

where r2¼ x2þ y2, so

lim
3/0

lim
m/N

fy
m

2p

�

ln rþ 3x

r2
þ.� ln rþ 3x

r2
þ.

�

¼ m3

p

x

r2
¼ �d,x

2pr2
¼ jdj

2p

cos q

r
: (6.29)

The doublet flow field is illustrated in Figure 6.6. The stream function for the doublet can be
derived from (6.29) (Exercise 6.9).

The flows described by (6.7), (6.14), and (6.24) through (6.27) are solutions of the Laplace
equation. The flows described by (6.8), (6.15), and (6.29) are singular at the origin and satisfy
the Laplace equation for r> 0. Perhaps the most common and useful superposition of these
solutions involves the combining of a uniform stream parallel to the x-axis, j¼Uy or f¼Ux,

FIGURE 6.6 The flow field of an
ideal doublet that points along the
negative x-axis. The net source strength
is zero so all streamlines begin and end
at the origin. In this flow, the streamlines
are circles tangent to the x-axis at the
origin.
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and one or more of the singular solutions. The simplest example is the combination of
a source and a uniform stream, which can be written in Cartesian and polar coordinates as:

f ¼ Uxþ m

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

¼ Ur cos qþ m

2p
ln r, or (6.30)

j ¼ Uyþ m

2p
tan�1

�y

x

�

¼ Ur sin qþ m

2p
q: (6.31)

Here the velocity field is:

u ¼ U þ m

2p

x

x2 þ y2
and v ¼ m

2p

y

x2 þ y2
,

and streamlines are shown in Figure 6.7. The stagnation point is located at x¼ea¼
em/2pU, and y¼ 0, and the value of the stream function on the stagnation streamline is
j¼m/2.

The streamlines that emerge vertically from the stagnation point (the darker curves in
Figure 6.7) form a semi-infinite body with a smooth nose, generally called a half-body.
These stagnation streamlines divide the field into regions external and internal to the
half-body. The internal flow consists entirely of fluid emanating from the source, and
the external region contains fluid from upstream of the source. The half-body resembles
several practical shapes, such as the leading edge of an airfoil or the front part of a bridge
pier; the upper half of the flow resembles the flow over a cliff or a side contraction in
a wide channel. The half-width of the body, h, can be found from (6.31) with j¼m/2:

h ¼ mðp� qÞ=2pU:

Far downstream (q/ 0), the half-width tends to hmax¼m/2U (Figure 6.7).
The pressure distribution on the half-body can be found from Bernoulli’s equation, (6.18)

with const.¼ pNþ rU2/2, and is commonly reported as a dimensionless excess pressure via
the pressure coefficient Cp or Euler number (4.106):

Cp ¼ p� pN
1
2rU

2
¼ 1� juj2

U2
: (6.32)

FIGURE 6.7 Ideal flow past
a two-dimensional half-body
formed from a horizontal free
stream and a point source at
the origin. The boundary
streamline, shown as a darker
curve, is given by j¼m/2.
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A plot of Cp on the surface of the half-body is given in Figure 6.8, which shows that there is
pressure excess near the nose of the body and a pressure deficit beyond it. It is easy to show
by integrating p over the surface that the net pressure force is zero (Exercise 6.13).

As a second example of flow construction via superposition, consider a horizontal free
stream U and a doublet with strength d¼e2pUa2ex:

f ¼ Uxþ Ua2x

x2 þ y2
¼ U

�

rþ a2

r

�

cos q, or j ¼ Uy� Ua2y

x2 þ y2
¼ U

�

r� a2

r

�

sin q: (6.33)

Here, j¼ 0 at r¼ a for all values of q, showing that the streamline j¼ 0 represents a circular
cylinder of radius a. The streamline pattern is shown in Figure 6.9 (and Figure 3.2a). In this
flow, the net source strength is zero, so the cylindrical body is closed and does not extend
downstream. The velocity field is:

ur ¼ U

�

1� a2

r2

�

cos q, and uq ¼ �U

�

1þ a2

r2

�

sin q: (6.34)

The velocity components on the surface of the cylinder are ur¼ 0 and uq¼e2Usinq, so the
cylinder-surface pressure coefficient is:

Cpðr ¼ a, qÞ ¼ 1� 4sin2 q, (6.35)

and this is shown by the continuous line in Figure 6.10. There are stagnation points on the
cylinder’s surface at r-q coordinates, (a, 0) and (a, p). The cylinder-surface pressure minima
occur at r-q coordinates (a, �p/2) where the surface flow speed is maximum. The symmetry
of the pressure distribution implies that there is no net pressure force on the cylinder. In fact,
a general result of two-dimensional ideal flow theory is that a steadily moving body experi-
ences no drag. This result is at variance with observations and is sometimes known as
d’Alembert’s paradox. The existence of real-flow tangential stress on a solid surface, commonly
known as skin friction, is not the only reason for the discrepancy. For blunt bodies such as
a cylinder, most of the drag comes from flow separation and the formation of a wake, which
is likely to be unsteady or even turbulent. When a wake is present, the flow loses fore-aft

FIGURE 6.8 Pressure distribution in ideal flow over the half-body shown in Figure 6.7. Pressure excess near the
nose is indicated by the circled “þ” and pressure deficit elsewhere is indicated by the circled “e”.
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symmetry, and the surface pressure on the downstream side of the object is smaller than that
predicted by ideal flow theory (Figure 6.10), resulting in pressure drag. These facts will be
discussed further in Chapter 9.

As discussed in Section 3.3, the flow due to a cylinder moving steadily through a fluid
appears unsteady to an observer at rest with respect to the fluid at infinity. This flow is
shown in Figure 3.3b and can be obtained by superposing a uniform stream in the negative
x direction with the flow shown in Figure 6.9. The resulting instantaneous streamline pattern
is simply that of a doublet, as is clear from the decomposition shown in Figure 6.11.

FIGURE 6.9 Idea flow past a circular cylinder without circulation. This flow field is formed by combining
a horizontal uniform stream flowing in the þx direction with a doublet pointing in the ex direction. The streamline
that passes through the two stagnation points and forms the body surface is given by j¼ 0.

FIGURE 6.10 Comparison of
irrotational and observed pres-
sure distributions over a circular
cylinder. Here 0� is the most
upstream point of the cylinder
and 180� is themost downstream
point. The observed distribution
changes with the Reynolds
number; a typical behavior at
high Re is indicated by the
dashed line.
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Although there is no net drag force on a circular cylinder in steady irrotational flow, there
may be a lateral or lift force perpendicular to the free stream when circulation is added.
Consider the flow field (6.33) with the addition of a point vortex of circulation �G1 at the
origin that induces a clockwise velocity:

j ¼ U

�

r� a2

r

�

sin qþ G

2p
ln
�r

a

�

: (6.36)

Here, a has been added to the logarithm’s argument to make it dimensionless.
Figure 6.12 shows the resulting streamline pattern for various values of G. The close

streamline spacing and higher velocity on top of the cylinder is due to the addition of veloc-
ities from the clockwise vortex and the uniform stream. In contrast, the smaller velocities at
the bottom of the cylinder are a result of the vortex field counteracting the uniform stream.
Bernoulli’s equation consequently implies a higher pressure below the cylinder than above it,
and this pressure difference leads to an upward lift force on the cylinder.

The tangential velocity component at any point in the flow is

uq ¼ �vj

vr
¼ �U

�

1þ a2

r2

�

sin q� G

2pr
:

At the surface of the cylinder, the fluid velocity is entirely tangential and is given by

uqðr ¼ a, qÞ ¼ �2Usinq� G=2pa, (6.37)

which vanishes if

sin q ¼ �G=4paU: (6.38)

For G< 4paU, two values of q satisfy (6.38), implying that there are two stagnation points on
the cylinder’s surface. The stagnation points progressively move down as G increases
(Figure 6.12) and coalesce when G¼ 4paU. For G> 4paU, the stagnation point moves out

FIGURE 6.11 Decomposition of the irrotational flow pattern due to a moving cylinder. Here a horizontal free
stream of þU and doublet form a cylinder. When a uniform stream of eU is added, the flow field of a moving
cylinder is obtained.

1This minus sign is necessary to achieve the usual fluid dynamic result given by (6.40).
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into the flow along the negative y-axis. The radial distance of the stagnation point in this case
is found from

uqðr, q ¼ �p=2Þ ¼ U

�

1þ a2

r2

�

� G

2pr
¼ 0, or r ¼ 1

4pU

	

G�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 � ð4paUÞ2
q




,

one root of which has r> a; the other root corresponds to a stagnation point inside the
cylinder.

The cylinder surface pressure is found from (6.18) with const.¼ pNþ rU2/2, and (6.37)
to be

pðr ¼ a, qÞ ¼ pN þ 1

2
r

	

U2 �
�

� 2Usinq� G

2pa

�2


: (6.39)

The upstream-downstream symmetry of the flow implies that the pressure force on the
cylinder has no stream-wise component. The lateral pressure force (per unit length perpen-
dicular to the flow plane) is

FIGURE 6.12 Irrotational flow past a circular cylinder for different circulation values. Here S represents the
stagnation point(s) in the flow. (a) At low values of the circulation, there are two stagnation points on the surface of
the cylinder. (b) When the circulation is equal to 4paU, there is one stagnation point on the surface of the cylinder.
(c) When the circulation is even greater, there is one stagnation point below the cylinder.
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L ¼ �
Z 2p

0
pðr ¼ a, qÞndl,ey ¼ �

Z 2p

0
pðr ¼ a, qÞsin qadq,

where n¼ er is the outward normal from the cylinder, and dl¼ adq is a surface element of the
cylinder’s cross section; L is known as the lift force in aerodynamics (Figure 6.13). Evaluating
the integral using (6.39) produces:

L ¼ rUG: (6.40)

It is shown in Section 6.5 that (6.40) holds for irrotational flow around any two-dimensional
object; it is not just for circular cylinders. The result that L is proportional to G is of funda-
mental importance in aerodynamics. Equation (6.40) was proved independently by the
German mathematician Wilhelm Kutta and the Russian aerodynamist Nikolai Zhukhovsky
just after 1900; it is called the Kutta-Zhukhovsky lift theorem. (Older Western texts transliterated
Zhukhovsky’s name as Joukowsky.) The interesting question of how certain two-dimensional
shapes, such as an airfoil, develop circulation when placed in a moving fluid is discussed in
Chapter 14. It is shown there that fluid viscosity is responsible for the development of circu-
lation. The magnitude of circulation, however, is independent of viscosity but does depend
on the flow speed U, and the shape and orientation of the object.

For a circular cylinder, the only way to develop circulation is by rotating it. Although
viscous effects are important in this case, the observed flow pattern for large values of
cylinder rotation displays a striking similarity to the ideal flow pattern for G> 4paU; see
Figure 3.25 in the book by Prandtl (1952). For lower rates of cylinder rotation, the retarded
flow in the boundary layer is not able to overcome the adverse pressure gradient behind
the cylinder, leading to separation; the real flow is therefore rather unlike the irrotational
pattern. However, even in the presence of separation, observed flow speeds are higher on
the upper surface of the cylinder, implying a lift force.

A second reason for the presence of lift on a rotating cylinder is the flow asymmetry gener-
ated by a delay of boundary layer separation on the upper surface of the cylinder. The contri-
bution of this mechanism is small for two-dimensional objects such as the circular cylinder,

FIGURE 6.13 Calculation of pressure force on a circular cylinder. Surface pressure forces on top of the cylinder,
where n has a positive vertical component, push the cylinder down. Thus the surface integral for the lift force
applied by the fluid to the cylinder contains a minus sign.
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but it is the only mechanism for side forces experienced by spinning three-dimensional
objects like sports balls. The interesting question of why spinning balls follow curved paths
is discussed in Section 9.9. The lateral force experienced by rotating bodies is called the
Magnus effect.

Two-dimensional ideal flow solutions are commonly not unique and the topology of the
flow domain determines uniqueness. Simply stated, a two-dimensional ideal flow solution
is unique when any closed contour lying entirely within the fluid can be reduced to a point
by continuous deformation without ever cutting through a flow-field boundary. Such fluid
domains are singly connected. Thus, fluid domains, like those shown in Figures 6.9 and
6.12, that entirely encircle an object may not provide unique ideal flow solutions based on
boundary conditions alone. In particular, consider the ideal flow (6.36) depicted in Figure 6.12
for various values of G. All satisfy the same boundary condition on the solid surface (ur¼ 0)
and at infinity (u¼Uex). The ambiguity occurs in these domains because there exist closed
contours lying entirely within the fluid that cannot be reduced to a point, and on these
contours a nonzero circulation can be computed. Fortunately, this ambiguity may often be
resolved by considering real-flow effects. For example, the circulation strength that should
be assigned to a streamlined object in two-dimensional ideal flow can be determined by
applying the viscous flowebased Kutta condition at the object’s trailing edge. This point is
further explained in Chapter 14.

Another important consequence of the superposition principle for ideal flow is that it
allows boundaries to be built into ideal flows through the method of images. For example,
if the flow of interest in an unbounded domain is the solution of V2j1 ¼ �u1ðx, yÞ, then
V2j2 ¼ �u1ðx, yÞ þ u1ðx, � yÞwill determine the solution for the same vorticity distribution
with a solid wall along the x-axis. Here, j2 ¼ j1ðx, yÞ � j1ðx, � yÞ, so that the zero stream-
line, j2 ¼ 0, occurs on y¼ 0 (Figure 6.14). Similarly, if the flow of interest in an unbounded
domain is the solution of V2f1 ¼ q1ðx,yÞ, then V2f2 ¼ q1ðx, yÞ þ q1ðx, � yÞ will determine
the solution for the same source distribution with a solid wall along the x-axis. Here,
f2 ¼ f1ðx,yÞ þ f1ðx, � yÞ so that v ¼ vf2=vy ¼ 0 on y¼ 0 (Figure 6.15).

As an example of the method of images, consider the flow induced by an ideal source of
strengthm a distance a from a straight vertical wall (Figure 6.16). Here an image source of the
same strength and sign is needed a distance a on the other side of the wall. The stream func-
tion and potential for this flow are:

j ¼ m

2p

h

tan�1
� y

xþ a

�

þ tan�1
� y

x� a

�i

and f ¼ m

2p

	

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ aÞ2þy2
q

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2þy2
q




,

(6.41)

=

+ 1

–

+ 1

1

FIGURE 6.14 Illustration of the method of images for the flow near a horizontal wall generated by a vorticity
distribution. An image distribution of equal strength and opposite sign mimics the effect of the solid wall.
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respectfully. After some rearranging and use of the two-angle formula for the tangent func-
tion, the equation for the streamlines may be found:

x2 � y2 � 2xy cotð2pj=mÞ ¼ a2:

The x and y axes form part of the streamline pattern, with the origin as a stagnation
point. This flow represents three interesting situations: flow from two equal sources
(all of Figure 6.16), flow from a source near a flat vertical wall (right half of Figure 6.16),
and flow through a narrow slit at x¼ a into a right-angled corner (first quadrant of
Figure 6.16).

The method of images can commonly be extended to circular boundaries by allowing
more than one image vortex or source (Exercises 5.14, 6.26), and to unsteady flows as long
as the image distributions of vorticity or source strength move appropriately. Unsteady
two-dimensional ideal flowmerely involves the inclusion of time as an independent variable
in j or f, and the addition of r(vf/vt) in the Bernoulli equation (see Exercise 6.4). The
following example, which validates the free-vortex results stated in Chapter 5.7, illustrates
these changes.

+q1

=

+q1

+q1

FIGURE 6.15 Illustration of the method of images for the flow near a horizontal wall generated by a source
distribution. An image distribution of equal strength mimics the effect of the solid wall.

FIGURE 6.16 Ideal flow
from two equal sources placed
at x¼� a. The origin is a stag-
nation point. The vertical axis
is a streamline and may be
replaced by a solid surface.
This flow field further illus-
trates the method of images.
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EXAMPLE 6.1

At t¼ 0, an ideal free vortex with strengtheG is located at pointA near a flat solid vertical wall as

shown in Figure 5.14. If the x,y-coordinates of A are (h,0) and the fluid far from the vortex is

quiescent at pressure pN, determine the trajectory x(t)¼ (xx, xy) of the vortex, and the pressure at the

origin of coordinates as a function of time.

Solution

From the method of images, the stream function for this flow field will be:

jðx,y, tÞ ¼ G

2p

	

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

xþ xxðtÞ
�2þ

�

y� xyðtÞ
�2

r

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

x� xxðtÞ
�2þ

�

y� xyðtÞ
�2

r



:

The first term is for the image vortex and the second term is for the original vortex. The horizontal

and vertical components of the induced velocity for both vortices are:

uðx,y, tÞ ¼ vj

vy
¼ G

2p

"

� y� xyðtÞ
�

xþ xxðtÞ
�2

þ
�

y� xyðtÞ
�2

þ y� xyðtÞ
�

x� xxðtÞ
�2

þ
�

y� xyðtÞ
�2

#

¼ vf

vx
,

vðx,y, tÞ ¼ �vj

vx
¼ � G

2p

"

� xþ xxðtÞ
�

xþ xxðtÞ
�2þ

�

y� xyðtÞ
�2

þ x� xxðtÞ
�

x� xxðtÞ
�2þ

�

y� xyðtÞ
�2

#

¼ vf

vy
:

As expected, the use of an opposite sign image vortex produces u(0,y)¼ 0. Free vortices move with

fluid elements and follow path lines, thus:

dxxðtÞ
dt

¼ lim
x/x

ðuðx,y, tÞÞ, and dxyðtÞ
dt

¼ lim
x/x

ðvðx,y, tÞÞ:

The equations for the velocity components given above include contributions from the image and

original vortices. The limit of the image vortex’s induced velocity at the location of the original vortex

is well defined. The velocity induced on the original vortex by itself is not well defined, but this is

a mathematical artifact of ideal vortices. Any real vortex has a finite core size, and the self-induced

velocity is well defined and equal to zero on the vortex axis when the core is axisymmetric. Thus, the

self-induced velocity of an ideal vortex is taken to be zero, and the path-line equations above become:

dxx
dt

¼ 0, and
dxy
dt

¼ G

2p

1

2xx
:

The solution of the first path-line equation is xx¼ const.¼ hwhere the second equality follows from

the initial condition. The solution of the second equation is: xy¼Gt/4ph, where the initial condition

requires the constant of integration to be zero. Therefore, the vortex trajectory is: x(t)¼ (h, Gt/4ph).

To determine the pressure, integrate the velocity components to determine the potential:

fðx,y, tÞ ¼ þ G

2p
tan�1

�

y� Gt=4ph

xþ h

�

� G

2p
tan�1

�

y� Gt=4ph

x� h

�

:
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The fluid far from the vortex is quiescent so the appropriate Bernoulli equation is:

vf

vt
þ 1

2
jVfj2 þ p

r
¼ const: ¼ pN

r

[(4.83) with g¼ 0], where the second equality follows from evaluating the constant far from the

vortex. Thus, at x¼ y¼ 0:

p
�

0, 0, t
�� pN
r

¼ �
�

vf

vt
þ 1

2
ðu2 þ v2Þ

�

x¼y¼0

Here,

�

vf

vt

�

x¼y¼0

¼ �G2

4p2

 

1

h2 þ ðGt=4phÞ2
!

, uð0:0, tÞ ¼ 0, and vð0, 0, tÞ ¼ Gh

p

 

1

h2 þ ðGt=4phÞ2
!

,

so

p
�

0, 0, t
�� pN
r

¼ G2

4p2

 

1

h2 þ ðGt=4phÞ2
!

� G2h2

2p2

 

1

h2 þ ðGt=4phÞ2
!2

¼ G2

4p2

ðGt=4phÞ2�h2
�

ðGt=4phÞ2þh2
�2

:

6.4. COMPLEX POTENTIAL

Using complex variables and complex functions, the developments for j and f provided
in the prior two sections can be recast in terms of a single complex potential w(z),

whfþ ij, (6.42)

where z is a complex variable:

zh xþ iy ¼ reiq, (6.43)

i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary root, (x,y) are plane Cartesian coordinates, and (r,q) are plane polar
coordinates. There are many fine texts, such as Churchill et al. (1974) or Carrier et al. (1966),
that cover the relevant mathematics of complex analysis, so it is merely alluded to here. In its
Cartesian form, the complex number z represents a point in the x,y-plane with x increasing on
the real axis and y increasing on the imaginary axis (Figure 6.17). In its polar form, z repre-
sents the position vector Oz, with magnitude r¼ (x2þ y2)1/2 and angle with respect to the
x-axis of q¼ tan�1(y/x).

The complex function w(z) is analytic and has a unique derivative dw/dz independent of
the direction of differentiation within the complex z-plane. This condition leads to the
Cauchy-Riemann conditions:

vf

vx
¼ vj

vy
, and

vf

vy
¼ �vj

vx
(6.44)
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where derivatives of w(z) in the x- and iy-directions are computed separately and then
equated. These equations imply that lines of constant f and j are orthogonal. Points in the
z-plane where w or dw/dz is zero or infinite are called singularities and at these points this
orthogonality is lost.

If f is interpreted as the velocity potential and j as the stream function, then w is the
complex potential for the flow and (6.43) ensures the equality of the u,v-velocity components.
Here, the complex velocity can be determined from

dw=dz ¼ u� iv: (6.45)

Applying the Cauchy-Riemann conditions to the complex velocity in (6.45) leads to the condi-
tions for incompressible (6.2) and irrotational (6.9) flow, and Laplace equations for f and j,
(6.5) and (6.12), respectively. Thus, any twice-differentiable complex function of z¼ xþ iy
produces solutions to Laplace’s equation in the (x,y)-plane, a genuinely remarkable result!
In general, a function of the two variables (x,y) may be written as f(z, z*) where z*¼ x� iy
is the complex conjugate of z. Thus, it is the special case when f(z, z*)¼w(z) alone that is
considered here.

With these formal mathematical results, the correspondence between w(z) and the prior
results for j and f are summarized in this and the following short paragraphs. The complex
potential for flow in a corner of angle a¼ p/n is obtained from a power law in z,

wðzÞ ¼ Azn ¼ AðreiqÞn ¼ Arnðcos nqþ i sin nqÞ for n � 1=2, (6.46)

where A is a real constant. When n¼ 2, the streamline pattern, j¼ Im{w}¼Ar2sin2q, repre-
sents flow in a region bounded by perpendicular walls, and (6.24) and (6.27) are readily
recovered from (6.46). By including the field within the second quadrant of the z-plane, it
is clear that n¼ 2 also represents the flow impinging against a flat wall (Figure 6.3). The
streamlines and equipotential lines are all rectangular hyperbolas. This is called a stagnation
flow because it includes a stagnation point. For comparison, the streamline pattern for n¼ 1/2

FIGURE 6.17 The complex plane where z¼ xþ iy¼ reiq is the independent complex variable, i¼ ffiffiffiffiffiffiffi�1
p

,
r¼ (x2þ y2)1/2, and tan q¼ y/x.
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corresponds to flow around a semi-infinite plate. In general, the complex velocity computed
from (6.46) is:

dw=dz ¼ nAzn�1 ¼ ðAp=aÞzðp�aÞ=a,

which shows that dw/dz¼ 0 at the origin for a<p while dw/dz /N at the origin for a>p.
Thus, in this flow the origin is a stagnation point for flow in a wall angle smaller than 180�; in
contrast, it is a point of infinite velocity for wall angles larger than 180�. In both cases it is
a singular point.

The complex potential for an irrotational vortex of strength G at (x0, y0), the equivalent of
(6.8), is:

wðzÞ ¼ � iG

2p
lnðz� z0Þ ¼ G

2p
q0 � i

G

2p
ln r0, (6.47)

where z0 ¼ x0 þ iy0, r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2þðy� y0Þ2
q

, and q0 ¼ tan�1ððy� y0Þ=ðx� x0ÞÞ.
The complex potential for a source or sink of volume flow rate m per unit depth located at

(x0, y0), the equivalent of (6.15), is:

wðzÞ ¼ m

2p
lnðz� z0Þ ¼ m

2p
lnðr0eiq0 Þ ¼ m

2p
ln r0 þ i

mq0

2p
: (6.48)

The complex potential for a doublet with dipole strength edex located at (x0, y0), the equiv-
alent of (6.29), is:

w ¼ d

2pðz� z0Þ: (6.49)

The complex potential for uniform flow at speedU past a half bodydsee (6.29), (6.30), and
Figure 6.7dis the combination of a source of strength m at the origin and a uniform hori-
zontal stream,

wðzÞ ¼ Uzþ m

2p
ln z: (6.50)

The complex potential for uniform flow at speed U past a circular cylinder, see (6.33) and
Figure 6.9, is the combination of a doublet with dipole strength d¼e2pUa2ex and a uniform
stream:

w ¼ U

�

zþ a2

z

�

: (6.51)

When clockwise circulation G is added to the cylinder, the complex potential becomes

w ¼ U

�

zþ a2

z

�

þ iG

2p
lnðz=aÞ, (6.52)

the flow field is altered (see Figure 6.12), and the cylinder experiences a lift force. Here, the
imaginary part of (6.52) reproduces (6.36).
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The method of images also applies to the complex potential. For example, the complex
potential for the flow described by (6.41) is:

w ¼ m

2p
ln

�

z� a

a

�

þ m

2p
ln

�

zþ a

a

�

¼ m

2p
ln

�

z2 � a2

a2

�

¼ m

2p
ln

�

x2 � y2 � a2 þ 2ixy

a2

�

: (6.53)

The complex variable description of ideal flow also allows some very general results to be
obtained for pressure forces (per unit depth perpendicular to the plane of the flow) that act
on two-dimensional bodies.

6.5. FORCES ON A TWO-DIMENSIONAL BODY

In Section 3 we demonstrated that the drag on a circular cylinder in steady flow is zero
while the lift equals L¼ rUG when the circulation is clockwise. These results are also valid
for any object with an arbitrary noncircular cross section that does not vary in the z-direction.

Blasius Theorem

Consider a stationary object of this type with extent B perpendicular to the plane of the
flow, and let D (drag) be the stream-wise (x) force component and L (lift) be cross-stream
or lateral (y) force (per unit depth) exerted on the object by the surrounding fluid. Thus,
from Newton’s third law, the total force applied to the fluid by the object is
F¼eB(Dexþ Ley). For steady irrotational constant-density flow, conservation of momentum
(4.17) within a stationary control volume implies:

Z

A�

ruðu,nÞdA ¼ �
Z

A�

pndAþ F: (6.54)

If the control surface A* is chosen to coincide with the body surface and the body is not
moving, then u,n ¼ 0 and the flux integral on the left in (6.54) is zero, so

Dex þ Ley ¼ �1

B

Z

A�
pndA: (6.55)

If C is the contour of the body’s cross section, then dA¼ Bds where ds¼ exdxþ eydy is an
element of C and ds¼ [(dx)2þ (dy)2]1/2. By definition, n must have unit magnitude, must be
perpendicular to ds, and must point outward from the control volume, so n¼ (exdy e
eydx)/ds. Using these relationships for n and dA, (6.55) can be separated into force components,

Dex þ Ley ¼ �1

B

I

C

p

�

exdy� eydx
�

ds
Bds ¼

0

@�
I

C

pdy

1

Aex þ
0

@

I

C

pdx

1

Aey, (6.56)

to identify the contour integrals leading to D and L. Here, C must be traversed in the coun-
terclockwise direction.

Now switch from the physical domain to the complex z-plane to make use of the complex
potential. This switch is accomplished here by replacing dswith dz¼ dxþ idy and exploiting
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the dichotomy between real and imaginary parts to keep track of horizontal and vertical
components (see Figure 6.18). To achieve the desired final result, construct the complex force,

D� iL ¼
0

@�
I

C

pdy

1

A� i

0

@

I

C

pdx

1

A¼ �i

I

C

pðdx� idyÞ ¼ �i

I

C

p dz�, (6.57)

where * denotes a complex conjugate. The pressure p is found from the Bernoulli equation
(6.18),

pN þ 1
2rU

2 ¼ pþ 1
2r
�

u2 þ v2
�¼ pþ 1

2rðu� ivÞðuþ ivÞ,
where pN and U are the pressure and horizontal flow speed far from the body. Inserting this
into (6.57) produces:

D� iL ¼ �i

I

C

	

pN þ 1
2rU

2 � 1
2rðu� ivÞðuþ ivÞ




dz�: (6.58)

The integral of the constant terms, pNþ rU2/2, around a closed contour is zero. The body-
surface velocity vector and the surface element dz¼ jdzjeiq are parallel, so (uþ iv)dz* can be
rewritten

ðuþ ivÞdz� ¼ �

u2 þ v2
�1=2

eiqjdzje�iq ¼ �

u2 þ v2
�1=2

e�iqjdzjeiq ¼ ðu� ivÞdz ¼ ðdw=dzÞdz,
(6.59)

where (6.45) has been used for the final equality. Thus, (6.58) reduces to

D� iL ¼ ir

2

I

C

�

dw

dz

�2

dz, (6.60)

FIGURE 6.18 Elemental forces in a plane on two-dimensional object. Here the elemental horizontal and vertical
force components (per unit depth) are epdy and þpdx, respectively.
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a result known as the Blasius theorem. It applies to any plane steady ideal flow. Interestingly,
the integral need not be carried out along the contour of the body because the theory of
complex variables allows any contour surrounding the body to be chosen provided there are
no singularities in (dw/dz)2 between the body and the contour chosen.

KuttaeZhukhovsky Lift Theorem

The Blasius theorem can be readily applied to an arbitrary cross-section object around
which there is circulation eG. The flow can be considered a superposition of a uniform
stream and a set of singularities such as vortex, doublet, source, and sink.

As there are no singularities outside the body, we shall take the contour C in the Blasius
theorem at a very large distance from the body. From large distances, all singularities appear
to be located near the origin z¼ 0, so the complex potential on the contourCwill be of the form:

w ¼ Uzþ m

2p
ln zþ iG

2p
ln zþ d

2pz
þ.

When U, m, G, and d are positive and real, the first term represents a uniform flow in the
x-direction, the second term represents a net source of fluid, the third term represents
a clockwise vortex, and the fourth term represents a doublet. Because the body contour is
closed, there can be no net flux of fluid into the domain. The sinks must scavenge all the
flow introduced by the sources, so m¼ 0. The Blasius theorem, (6.60), then becomes

D� iL ¼ ir

2

I

C

 

U þ iG

2pz
� d

2pz2
þ.

!2

dz ¼ ir

2

I

C

 

U2 þ iUG

p

1

z
þ
 

Ud

p
� G2

4p2

!

1

z2
þ.

!2

dz:

(6.61)

To evaluate the contour integral in (6.61), we simply have to find the coefficient of the term
proportional to 1/z in the integrand. This coefficient is known as the residue at z¼ 0 and the
residue theorem of complex variable theory states that the value of a contour integral like
(6.61) is 2pi times the sum of the residues at all singularities inside C. Here, the only singu-
larity is at z¼ 0, and its residue is iUG/p, so

D� iL ¼ ir

2
2pi

�

iUG

p

�

¼ �irUG or D ¼ 0 and L ¼ rUG: (6.62)

Thus, there is no drag on an arbitrary-cross-section object in steady two-dimensional, irrota-
tional constant-density flow, a more general statement of d’Alembert’s paradox. Given that
nonzero drag forces are an omnipresent fact of everyday life, this might seem to eliminate
any practical utility for ideal flow. However, there are at least three reasons to avoid this
presumption. First of all, ideal flow streamlines indicate what a real flow should look like
to achieve minimum pressure drag. Lower drag on real objects is often realized when
object-geometry changes are made or boundary-layer, separation-control strategies are
implemented that allow real-flow streamlines to better match their ideal-flow counterparts.
Second, the predicted circulation-dependent force on the object perpendicular to the
oncoming streamdthe lift force, L¼ rUGdis basically correct. The result (6.62) is called

6.5. FORCES ON A TWO-DIMENSIONAL BODY 221



the Kutta-Zhukhovsky lift theorem, and it plays a fundamental role in aero- and hydrody-
namics. As described in Chapter 14, the circulation developed by an air- or hydrofoil is nearly
proportional to U, so L is nearly proportional to U2. And third, the influence of viscosity in
real fluid flows takes some time to develop, so impulsively started flows and rapidly oscil-
lating flows (i.e., acoustic fluctuations) often follow ideal flow streamlines.

6.6. CONFORMAL MAPPING

We shall now introduce a method by which complex flow patterns can be transformed into
simple ones using a technique known as conformal mapping in complex variable theory.
Consider the functional relationship w¼ f(z), which maps a point in the w-plane to a point in
the z-plane, and vice versa.We shall prove that infinitesimal figures in the two planes preserve
their geometric similarity ifw¼ f(z) is analytic. Let linesCz andCz

0 in the z-plane be transforma-
tionsof the curvesCw andCw

0 in thew-plane, respectively (Figure 6.19). Let dz, d0z, dw, and d0wbe
infinitesimal elements along the curves as shown. The four elements are related by

dw ¼ dw

dz
dz; (6.63)

d0w ¼ dw

dz
d0z: (6.64)

If w¼ f(z) is analytic, then dw/dz is independent of orientation of the elements, and therefore
has the same value in (6.63) and (6.64). These two equations then imply that the elements dz
and d0z are rotated by the same amount (equal to the argument of dw/dz) to obtain the elements
dw and d0w. It follows that

a ¼ b;

which demonstrates that infinitesimal figures in the two planes are geometrically similar. The
demonstration fails at singular points at which dw/dz is either zero or infinite. Because dw/dz
is a function of z, the amount of magnification and rotation that an element dz undergoes
during transformation from the z-plane to the w-plane varies. Consequently, large figures
become distorted during the transformation.

FIGURE 6.19 Preservation of geometric similarity of small elements in conformal mapping between the
complex z- and w-planes.
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In application of conformal mapping, we always choose a rectangular grid in the w-plane
consisting of constant f and j lines (Figure 6.20). In other words, we define f and j to be the
real and imaginary parts of w:

w ¼ fþ ij:

The rectangular net in thew-plane represents a uniform flow in this plane. The constant f and
j lines are transformed into certain curves in the z-plane through the transformation w¼ f(z)
or its inverse f �1(w)¼ z. The pattern in the z-plane is the physical pattern under investigation, and
the images of constant f and j lines in the z-plane form the equipotential lines and stream-
lines, respectively, of the desired flow. We say that w¼ f(z) transforms a uniform flow in the
w-plane into the desired flow in the z-plane. In fact, all the preceding flow patterns studied
through the transformation w¼ f(z) can be interpreted this way.

If the physical pattern under investigation is too complicated, we may introduce interme-
diate transformations in going from the w-plane to the z-plane. For example, the transforma-
tion w¼ ln(sin z) can be broken into

w ¼ ln z z ¼ sin z:

Velocity components in the z-plane are given by

u� iv ¼ dw

dz
¼ dw

dz

dz

dz
¼ 1

z
cos z ¼ cot z:

As a simple example of conformal mapping, consider the transformation, w¼ fþ ij¼
z2¼ x2þ y2þ 2ixy. Streamlines are given by j¼ const ¼ 2xy, rectangular hyperbolae (see
Figure 6.5). Here uniform flow in the w-plane has been mapped onto flow in a 90� corner
in the z-plane by this transformation. A more involved example follows. Additional applica-
tions are discussed in Chapter 14.

The Zhukhovsky transformation relates two complex variables z and z, and has important
applications in airfoil theory,

FIGURE 6.20 Flow patterns in the complex w-plane and the z-plane. The w-plane represents uniform flow with
straight potential lines and streamlines. In the z-plane these lines curve to represent the flow of interest.
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z ¼ zþ b2

z
: (6.65)

When jzj or jzj is very large compared to b, this transformation becomes an identity, so it does
not change the flow condition far from the origin when moving between the z and z planes.
However, close to the origin, (6.65) transforms a circle of radius b centered at the origin of the
z-plane into a line segment on the real axis of the z-plane. To establish this, let z¼ bexp(iq) on
the circle (Figure 6.21) so that (6.65) provides the corresponding point in the z-plane as:

z ¼ beiq þ be�iq ¼ 2b cos q:

As q varies from 0 to p, z goes along the x-axis from 2b to�2b. As q varies from p to 2p, z goes
from �2b to 2b. The circle of radius b in the z-plane is thus transformed into a line segment of
length 4b in the z-plane. The region outside the circle in the z-plane is mapped into the entire z-
plane. It can be shown that the region inside the circle is also transformed into the entire z-
plane. This, however, is of no concern to us because we shall not consider the interior of the
circle in the z-plane.

Now consider a circle of radius a> b in the z-plane (Figure 6.21). A point z¼ a exp (iq) on
this circle is transformed to

z ¼ a eiq þ b2

a
e�iq; (6.66)

which traces out an ellipse for various values of q; the geometry becomes clear by separating
real and imaginary parts of (6.66) and eliminating q:

x2

ðaþ b2=aÞ2
þ y2

ða� b2=aÞ2
¼ 1: (6.67)

For various values of a> b, (6.67) represents a family of ellipses in the z-plane, with foci at
x¼�2b.

The flow around one of these ellipses (in the z-plane) can be determined by first finding
the flow around a circle of radius a in the z-plane, and then using (6.65) to go to the z-plane.

FIGURE 6.21 Transformation of a circle of radius a in the z-plane into an ellipse in the z-plane by means of the
Zhukhovsky transformation z¼ zþ b2/z. A circle of radius b in the z-plane transforms into a line segment between
z¼�2b in the z-plane.
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To be specific, suppose the desired flow in the z-plane is that of flow around an elliptic
cylinder with clockwise circulation G placed in a stream moving at U. The corresponding
flow in the z-plane is that of flow with the same circulation around a circular cylinder of
radius a placed in a horizontal stream of speed U. The complex potential for this flow is
(6.52) with z replaced by z:

w ¼ U

�

zþ a2

z

�

þ iG

2p
lnðz=aÞ: (6.68)

The complex potential w(z) in the z-plane can be found by substituting the inverse of (6.65),

z ¼ 1

2
zþ 1

2

�

z2 � 4b2
�1=2

; (6.69)

into (6.68). Here, the negative root, which falls inside the cylinder, has been excluded from
(6.69). Instead of finding the complex velocity in the z-plane by directly differentiating
w(z), it is easier to find it as

u� iv ¼ dw

dz
¼ dw

dz

dz

dz
:

The resulting flow around an elliptic cylinder with circulation is qualitatively quite similar to
that around a circular cylinder as shown in Figure 6.12.

6.7. NUMERICAL SOLUTION TECHNIQUES IN TWO DIMENSIONS

Exact solutions can be obtained only for flows with relatively simple geometries, so
approximate methods of solution become necessary for complicated geometries. One of
these approximate methods is that of building up a flow by superposing a distribution of
sources and sinks; this method is illustrated in Section 6.8 for axisymmetric flows. Another
method is to apply perturbation techniques by assuming that the body is thin. A third
method is to solve the Laplace equation numerically. In this section we shall illustrate
the numerical method in its simplest form without worrying about computational effi-
ciency. It is hoped that the reader will have an opportunity to learn numerical methods
that are becoming increasingly important in the applied sciences in a separate study. Intro-
ductory material on several important techniques of computational fluid dynamics is
provided in Chapter 10.

Numerical techniques for solving the Laplace equation typically rely on discretizing the
spatial domain. When using finite difference techniques, the flow field is discretized into
a system of grid points, and field derivatives are computed by taking differences between field
values at adjacent grid points. Let the coordinates of a point be represented by

x ¼ iDxði ¼ 0, 1, 2,.Þ, and y ¼ jDyð j ¼ 0, 1, 2,.Þ:
Here, Dx and Dy are the dimensions of a grid cell, and the integers i and j are the indices asso-
ciated with a grid point (Figure 6.22). The stream function j(x,y) can be represented at these
discrete locations by

jðx; yÞ ¼ j
�

iDx; jDy
�

hji;j;
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where ji,j is the value of j at the grid point (i, j) (the comma notation for derivatives is not
applied here). In finite difference form, the first derivatives of ji are approximated as first-
order central differences:

�

vj

vx

�

i;j

x
1

Dx

�

j
iþ 1

2; j
� j

i� 1
2; j

�

; and

�

vj

vy

�

i;j

x
1

Dy

�

j
i;jþ 1

2
� j

i;j� 1
2

�

:

The quantities on the right side of each equation (such as jiþ1/2,j) are halfway between the
grid points and therefore undefined. However, this potential difficulty is avoided here
because the Laplace equation does not involve first derivatives. Applying the same approach
to the second-order x-derivative produces:

 

v2j

vx2

!

i;j

x
1

Dx

2

6

4

�

vj

vx

�

iþ 1
2; j

�
�

vj

vx

�

i� 1
2; j

3

7

5;

x
1

Dx

	

1

Dx

�

jiþ1;j � ji;j

�

� 1

Dx

�

ji;j � ji�1;j

�


;

¼ 1

Dx2
�

jiþ1;j � 2ji;j þ ji�1;j

�

:

(6.70)

Similarly,
 

v2j

vy2

!

i;j

x
1

Dy2

h

ji;jþ1 � 2ji;j þ ji;j�1

i

: (6.71)

FIGURE 6.22 Adjacent grid boxes in a numerical calculation showing how the indices i and j change.
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Using (6.70) and (6.71), the Laplace equation (6.5) for the stream function in a plane two-
dimensional flow has a finite difference representation:

1

Dx2

h

jiþ1;j � 2ji;j þ ji�1;j

i

þ 1

Dy2

h

ji;jþ1 � 2ji;j þ ji;j�1

i

¼ 0:

Taking Dx¼Dy, for simplicity, this reduces to

ji;j ¼
1

4

h

ji�1;j þ jiþ1;j þ ji;j�1 þ ji;jþ1

i

, (6.72)

which shows that j satisfies the Laplace equation if its value at a grid point equals the
average of the values at the four surrounding points.

Equation (6.72) can be solved by a simple iteration technique when the values of j are
given on the boundary. First consider a readily countable number of grid points covering
the rectangular region of Figure 6.23 where the flow field is discretized with 16 grid points
with 1� i, j� 4. Of these, the values of j are presumed known at the 12 boundary points indi-
cated by open circles. The values of j at the four interior points indicated by solid circles are
unknown. For these interior points, (6.72) gives

FIGURE 6.23 Network of sixteen grid points arrayed in a rectangular grid. The i,j-values at each point are
listed. Boundary points with known values are indicated by open circles. The four interior points with unknown
values are indicated by solid circles.
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j2;2 ¼ 1

4

h

jB
1;2 þ j3;2 þ jB

2;1 þ j2;3

i

;

j3;2 ¼ 1

4

h

j2;2 þ jB
4;2 þ jB

3;1 þ j3;3

i

;

j2;3 ¼ 1

4

h

jB
1;3 þ j3;3 þ j2;2 þ jB

2;4

i

;

j3;3 ¼ 1

4

h

j2;3 þ jB
4;3 þ j3;2 þ jB

3;4

i

:

(6.73)

Here, the known boundary values have been indicated by a superscript “B.” The equation
set (6.73) represents four linear algebraic equations in four unknowns and is therefore
solvable.

In practice, however, a much larger number of grid points will likely be used to represent
the flow field, and a computer will determine a numerical solution of the resulting large
number of simultaneous algebraic equations. One of the simplest techniques of solving
such a large equation set is the iteration method where an initial solution guess is gradually
improved and updated until (6.73) is satisfied at every point. For example, suppose the initial
guesses for j at the four unknown points of Figure 6.23 are all zero. From (6.73), the first esti-
mate of j2,2 can be computed as

j2;2 ¼ 1

4

h

jB
1;2 þ 0þ jB

2;1 þ 0
i

:

The initial zero value for j2,2 is now replaced by this updated value. The first estimate for the
next grid point is then obtained as

j3;2 ¼ 1

4

h

j2;2 þ jB
4;2 þ jB

3;1 þ 0
i

;

where the updated value of j2,2 has been used on the right-hand side. In this manner, we can
sweep over the entire flow domain in a systematic manner, always using the latest available
value at each point. Once the first estimate at every point has been obtained, the domain sweep
can be repeated to obtain second estimates and this process can be repeated again and again
until the values of ji,j do not change appreciably between two successive sweeps. At this
point, the iteration process has converged.

The foregoing scheme is particularly suitable for implementation using a computer, where
it is easy to replace old values at a point as soon as a new value is available. In practice, more
sophisticated and efficient numerical techniques are used in large calculations. However, the
purpose here is to present the simplest numerical solution technique, which is illustrated in
the following example.

EXAMPLE 6.2

Figure 6.24 shows a contraction in a channel throughwhich the flow rate per unit depth is 5 m2/s.

The velocity is uniform and parallel across the inlet and outlet sections. Find the stream function

values within this flow field.

6. IDEAL FLOW228



Solution

The region of flow is two-dimensional but is singly connected because the flow field is interior to

the boundaries and every fluid-only circuit can be reduced to a point. Therefore, the problem has

a unique solution that can be found numerically.

The difference in j values is equal to the flow rate between two streamlines. Thus, setting j¼ 0

at the bottom wall requires j¼ 5 m2/s at the top wall. We divide the field into the system of grid

points shown, with Dx¼Dy¼ 1 m. Because Dj/Dy (¼ u) is given to be uniform across the inlet and

the outlet, we must have Dj¼ 1 m2 at the inlet and Dj¼ 5/3¼ 1.67 m2/s at the outlet. The resulting

values of j at the boundary points are indicated in Figure 6.25. A FORTRAN code for solving the

problem is as follows:

FIGURE 6.24 Grid pattern for irrotational flow through an abrupt, sharp-cornered contraction (Example
6.2). The flow enters on the left and exits on the right. The boundary values of j are indicated on the outside.
The values of i, j for some grid points are indicated on the inside.
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Here, S denotes the stream function j. The code first sets the boundary values. The iteration is

performed in the N loop. In practice, iterations will not be performed arbitrarily 20 times. Instead

the convergence of the iteration process will be checked, and the process is continued until some

reasonable criterion (such as less than 1% change at every point) is met. However, some caution is

appropriate. To be sure a numerical solution has been obtained, all the terms in the field equation

must be calculated and the satisfaction of the field equation by the numerical solution must be

verified. Such improvements are easy to implement, so the code above is left in its simplest form.

The values of j at the grid points after 50 iterations, and the corresponding streamlines, are shown

in Figure 6.25.

FIGURE 6.25 Numerical solution of Example 6.2 for the boundary conditions shown in Figure 6.24. The
numerical values listed are for the corresponding grid points shown as black dots. Note that there is some
streamline curvature after the abrupt contraction.
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6.8. AXISYMMETRIC IDEAL FLOW

Two stream functions are required to describe a fully three-dimensional flow (Section 4.3).
However, when the flow is axisymmetric, a single stream function can again be used. Thus,
the development presented here parallels that in Section 6.2 for plane ideal flow.

In (R, 4, z) cylindrical coordinates, the axisymmetric incompressible continuity equa-
tion is:

1

R

v

vR
ðRuRÞ þ vuz

vz
¼ 0: (6.74)

As discussed near the end of Section 4.3, this equation may be solved by choosing the first
three-dimensional stream function c¼e4, so that u¼ (uR, 0, uz)¼Vc�Vj¼e(1/R)
e4�Vj, which implies

uR ¼ �1

R

vj

vz
, and uz ¼ 1

R

vj

vR
: (6.75)

Substituting these into the equation for the 4-component of vorticity,

u4 ¼ vuR
vz

� vuz
vR

, (6.76)

produces the field equation for the axisymmetric stream function in irrotational flow:

v

vR

�

1

R

vj

vR

�

þ 1

R

v2j

vz2
¼ �u4 ¼ 0: (6.77)

This is not the two-dimensional Laplace equation. Therefore, the complex variable formula-
tion for plane ideal flows does not apply to axisymmetric ideal flow.

The axisymmetric stream function is sometimes called the Stokes stream function. It has
units of m3/s, in contrast to the plane-flow stream function, which has units of m2/s. Surfaces
of j¼ constant in axisymmetric flow are surfaces of revolution. The volume flow rate dQ
between two axisymmetric stream surfaces described by constant values j and jþ dj
(Figure 6.26) is

dQ ¼ 2pRðu,nÞds ¼ 2pRð� uRdzþ uzdRÞ ¼ 2p

�

vj

vz
dzþ vj

vR
dR

�

¼ 2pdj, (6.78)

where u¼ uReRþ uzez, n¼ (eeRdzþ ezdR)/ds, and (6.75) has been used. Note that as drawn
in Figure 6.26 dz is negative. The form dj¼ dQ/2p shows that the difference in j values is the
flow rate between two concentric stream surfaces per unit radian angle around the axis. This
is consistent with the discussion of stream functions in Section 4.3. The factor of 2p is absent
in plane flows, where dj¼ dQ is the flow rate per unit depth perpendicular to the plane of the
flow.

Here also an axisymmetric potential function f can be defined via u ¼ Vf or

uR ¼ vf=vR and uz ¼ vf=vz, (6.79)
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so that the flow identically satisfies u4¼ 0. Substituting (6.79) into the incompressible conti-
nuity equation produces the field equation for axisymmetric potential function:

1

R

v

vR

�

R
vf

vR

�

þ v2f

vz2
¼ 0: (6.80)

While this is the axisymmetric Laplace equation, it is not the same as the two-dimensional
Cartesian version.

In axisymmetric flow problems, both (R, 4, z)-cylindrical and (r, q, 4)-spherical polar coor-
dinates are commonly used. These are illustrated in Figure 3.3 with the z-axis and polar-axis
vertical. The angle 4 is the same in both systems. Axisymmetric flows are independent 4, and
their velocity component, u4, in the 4 direction is zero. In this section, we will commonly
point the z-axis horizontal. Note that R is the radial distance from the axis of symmetry
(the z-axis or polar axis) in cylindrical coordinates, whereas r is the distance from the origin
in spherical coordinates. Important expressions for these curvilinear coordinates are listed in
Appendix B. Several relevant expressions are provided here for easy reference.

z

R

n

dz

dR

ds

R
+ d

+ d

FIGURE 6.26 Geometry for calculating the volume flow rate between axisymmetric-flow stream surfaces with
values of j and jþ dj. The z-axis is the axis of symmetry, R is the radial distance from the z-axis, ds ¼ eRdRþ ezdz is
the distance between the two surfaces, and n is a unit vector perpendicular to ds. The volume flow rate between the
two surfaces is 2pdj.

Cylindrical Spherical

x ¼ R cos4 x ¼ r sinq cos4

y ¼ R sin4 y ¼ r sinq sin4 (6.81)

z ¼ z z ¼ r cosq
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Some simple examples of axisymmetric irrotational flows around bodies of revolution, such
as spheres and airships, are provided in the rest of this section.

Axisymmetric ideal flows can be constructed from elementary solutions in the same
manner as plane flows, except that complex variables cannot be used. Several elementary
flows are tabulated here

For these three flows, streamlines in any plane containing the axis of symmetry will be
qualitatively similar to those of their two-dimensional counterparts.

Potential flow around a sphere can be generated by the superposition of a uniform stream
Uez and an axisymmetric doublet opposing the stream of strength d¼ 2pa3U. In spherical
coordinates, the stream and potential functions are:

j ¼ 1

2
Ur2 sin2 q� d

4pr
sin2 q ¼ 1

2
Ur2

�

1� a3

r3

�

sin2 q;

f ¼ Ur cos qþ d

4pr2
cos q ¼ Ur

�

1þ a3

2r3

�

cos q:

(6.89)

Cylindrical Spherical

Continuity equations

(6.74)
1

r

v

vr
ðr2urÞ þ 1

sinq

v

vq
ðuq sin qÞ ¼ 0 (6.82)

Velocity components

(6.75), (6.79) ur ¼ 1

r2 sin q

vj

vq
¼ vf

vr
, uq ¼ � 1

r sin q

vj

vr
¼ 1

r

vf

vq
(6.83)

Vorticity

(6.76) u4 ¼ 1

r

"

v

vr
ðruqÞ � vur

vq

#

(6.84)

Laplace equation

(6.80)
1

r2
v

vr

 

r2
vf

vr

!

þ 1

r2 sin q

v

vq

 

sin q
vf

vq

!

¼ 0 (6.85)

Cylindrical Spherical

Uniform flow in the z direction

f ¼ Uz, j ¼ 1

2
UR2 f ¼ Ur cos q, j ¼ 1

2
Ur2 sin2q (6.86)

Point source of strength Q(m3/s) at the origin of coordinates

f ¼ �Q

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p , j ¼ �Qz

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p f ¼ � Q

4pr
, j ¼ �Q

4p
cos q (6.87)

Doublet with dipole strength �dez at the origin of coordinates

f ¼ d

4p

z

ðR2 þ z2Þ3=2
, j ¼ � d

4p

R2

ðR2 þ z2Þ3=2
f ¼ d

4pr2
cos q, j ¼ � d

4pr
sin2 q (6.88)
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This shows that j¼ 0 for q¼ 0 or p (for any rs 0), or for r¼ a (for any q). Thus the entire
z-axis and the spherical surface of radius a form the stream surface j¼ 0. Streamlines for
this flow are shown in Figure 6.27. The velocity components are:

ur ¼ 1

r2 sin q

vj

vq
¼ U

	

1�
�a

r

�3



cosq;

uq ¼ � 1

r sin q

vj

vr
¼ �U

	

1þ 1

2

�a

r

�3



sin q:

(6.90)

The pressure coefficient on the sphere’s surface is

Cp ¼ p� pN
1
2rU

2
¼ 1�

�uq
U

�2
¼ 1� 9

4
sin2q; (6.91)

which is fore-aft symmetrical, again demonstrating zero drag in steady ideal flow.
Interestingly, the potential for this flow can be rewritten to eliminate the dependence on

the coordinate system. Start from the first equality for the potential in (6.89) and use x¼ rer,
jxj ¼ r, cosq¼ ez,er, U¼Uez, and d¼edez, to find:

f ¼ Ur cos qþ d

4pr2
cos q ¼ Uez,rer � d

4pr3
,rer

¼ U,x� d

4pjxj3
,x ¼

 

U� d

4pjxj3
!

,x,
(6.92)

a result that will be useful in the next section.
As in plane flows, the motion around a closed body of revolution can be generated by

superposition of a uniform stream and a collection of sources and sinks whose net strength
is zero. The closed surface becomes streamlined (that is, has a gradually tapering tail) if, for
example, the sinks are distributed over a finite length. Consider Figure 6.28, where there is
a point source Q (m3/s) at the origin O, and a continuously distributed line sink on the
z-axis from O to A (distance¼ a). Let the volume absorbed per unit length of the line sink

FIGURE 6.27 Axisymmetric streamlines for ideal flow past a sphere in a plane containing the axis of symmetry.
The flow is fastest and the streamlines are closest together at q ¼ 90�. The streamlines upstream and downstream of
the sphere are the same, so there is no drag on the sphere.
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be k (m3/s per m). An elemental length dx of the sink can be regarded as a point sink of
strength kdx, for which the stream function at any point P is

djsink ¼ k dx

4p
cos a

[see (6.87)]. The total stream function at P due to the entire line sink from O to A is

jsink ¼ k

4p

Z a

0
cos a dx: (6.93)

The integral can be evaluated by noting that z� x¼ Rcota. This gives dx¼ Rda/sin2a because
z and R remain constant as we go along the sink. The stream function of the line sink is
therefore

jsink ¼ k

4p

Z a1

q

cos a
R

sin2 a
da ¼ kR

4p

Z a1

q

dðsin aÞ
sin2a

; ¼ kR

4p

	

1

sin q
� 1

sin a1




¼ k

4p
ðr� r1Þ: (6.94)

To obtain a closed body, wemust adjust the strengths so that the volume flow from the source
(Q) is absorbed by the sink, that is,Q¼ ak. Then the stream function at any point P due to the
superposition of a point source of strength Q, a distributed line sink of strength k¼Q/a, and
a uniform stream of velocity U along the z-axis, is

j ¼ �Q

4p
cos qþ Q

4pa
ðr� r1Þ þ 1

2
Ur2 sin2 q: (6.95)

Aplot of the steady streamlinepattern is shown in the bottomhalf of Figure 6.28, inwhich the
top half shows instantaneous streamlines in a frame of reference at rest with respect to the fluid
at infinity.

Here we have assumed that the strength of the line sink is uniform along its length. Other
interesting streamline patterns can be generated by assuming that the strength k(x) is
nonuniform.

FIGURE 6.28 Ideal flow past an
axisymmetric streamlined body gener-
ated by a point source at O and
a distributed line sink fromO toA. The
upper half of the figure shows the
streamlines induced by the source and
the line-segment sink alone. The lower
half of the figure shows streamlines
when a uniform stream along the axis
of symmetry is added to the flow in the
upper half of the figure.
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So far, we have assumed certain distributions of singularities, and then determined the
resulting body shape when the distribution is superposed on a uniform stream. The flow
around a body with a given shape can be simulated by superposing a uniform stream on
a series of sources and sinks of unknown strength distributed on a line coinciding with the
axis of the body. The strengths of the sources and sinks are then adjusted so that, when
combined with a given uniform flow, a closed stream surface coincides with the given
body. Such a calculation is typically done numerically using a computer.

Let the body lengthLbedivided intoN equal segments of lengthDx, and let kn be the strength
(m2/s) ofoneof these line segments,whichmaybepositiveornegative (Figure 6.29). The stream
function at any body surface pointm due to the line-segment source n is, using (6.94),

jmn ¼ �kn
4p

�

rmn�1 � rmn
�

;

where the negative sign is introduced because (6.94) is for a sink. When combined with
a uniform stream, the stream function at point m in Figure 6.29 due to all N line sources is

jm ¼ � P
N

n¼ 1

kn
4p

�

rmn�1 � rmn
�þ 1

2U R2
m:

Setting jm¼ 0 for all N values of m, we obtain a set of N linear algebraic equations in N
unknowns kn(n¼ 1, 2, ., N), which can be solved by the iteration technique described in
Section 6.7 or a matrix inversion routine.

6.9. THREE-DIMENSIONAL POTENTIAL
FLOW AND APPARENT MASS

In three dimensions, ideal flow concepts can be used effectively for a variety of problems in
aerodynamics and hydrodynamics. However, d’Alembert’s paradox persists and it can be
shown that steady ideal flow in three dimensions cannot predict fluid mechanical drag on

FIGURE 6.29 Flow around an arbitrary axisymmetric shape generated by superposition of a series of line-
segment sources distributed along the axis of symmetry.
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closed bodies (Exercise 6.39). However, nonzero drag forces can be predicted on submerged
three-dimensional objects when the flow is unsteady or some vorticity is present. This section
concentrates on the former while leaving the latter to Chapter 14. The objective here is to estab-
lish the origin of the apparent mass or addedmass of an accelerating object immersed in a fluid. In
general terms, apparent mass is the enhanced and/or altered inertia of an object that is caused
by motion of the fluid around the object. Knowledge of apparent mass is essential for predict-
ing the performance of underwater vehicles, lighter-than-air airships, and ultra-light aircraft.
It is important for describing and understanding the maneuverability of fish, the dynamics of
kites and bubbles, and the differences between sailboat and motorboat motions on the surface
of a wavy sea. However, tominimize complexity and to emphasize the core concepts, the focus
here is on the simplest possible three-dimensional object, a sphere.

In general, the velocity potential f is extended to the three dimensions merely by consid-
ering all three components of its definition u hVf to be nonzero. In Cartesian coordinates,
this means augmenting (6.10) to include whvf=vz, where (in this section) w is the z-compo-
nent of the fluid velocity and z is the third spatial coordinate.

The situation of interest is depicted in Figure 6.30, where a sphere with radius a moves in
a quiescent fluid with undisturbed pressure pN via an external force, FE, that acts only on the
sphere.2 The location xs(t), velocity us(t)¼ dxs/dt, and acceleration dus/dt of the sphere are
presumed known, and the fluid dynamic force Fs on the sphere is to be determined. This
is an idealization of the situation for a maneuvering fish, submarine, or airship.

The potential for an arbitrarily moving sphere is a modified version of (6.92) with the
sphere centered at xs(t) and the fluid far from the sphere at rest. These changes are imple-
mented by replacing x in (6.92) with x e xs(t), and by setting U¼ 0, which leaves:

f ¼ � 1

4pjx� xsðtÞj3
d,ðx� xsðtÞÞ: (6.96)

x3, z

x

xs

s

x2,y 

x

2a

us

x1, x

FIGURE 6.30 Three-dimensional geometry for calculating the fluid dynamic force on an arbitrarily moving
submerged sphere of radius a centered at xs. The angle between the sphere’s velocity, us, and the observation point x
is qs. The distance from the center of the sphere to the observation point is x.

2The development provided here is based on a lecture given by Professor P. Dimotakis in 1984.
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For this potential to represent a constant-size moving sphere at each instant in time, the
dipole strength must continuously change direction and strength to point into the flow
impinging on the sphere. If the sphere’s velocity is us(t), then, to an observer on the sphere,
the oncoming flow velocity is eus(t). Thus, at any instant in time the dipole strength must be
d(t)¼e2pa3[eus(t)], a direct extension of the steady flow result. Substitution of this d(t) into
(6.96) produces:

fðx,xs,usÞ ¼ � a3

2jx� xsj3
us,ðx� xsÞ ¼ � a3

2jxj3
us,x: (6.97)

Here, explicit listing of the time argument of xs and us has been dropped for clarity, and
x¼ x e xs is the vector distance from the center of the sphere to the location x.

For ideal flow, an integral of the pressure forces over the surface of the sphere determines
Fs:

Fs ¼ �
Z

sphere0s surface

�

p� pN
�

ndA: (6.98)

This is the three-dimensional equivalent of (6.55) since ! pNndA¼ 0 for a closed surface and
constant pN. The pressure difference in (6.98) can be obtained from the unsteady Bernoulli
equation evaluated on the sphere’s surface and far from the sphere where the pressure is
pN, u¼ 0, and vf/vt¼ 0:

	

vf

vt
þ 1

2
jVfj2 þ p

r




sphere0s surface
¼ pN

r
: (6.99)

For the geometry shown in Figure 6.30 the sphere’s surface is defined by jx� xsj ¼ jxj ¼ a,
so for notational convenience the subscript “a” will denote quantities evaluated on the
sphere’s surface. Thus, (6.99) can be rewritten:

pa � pN
r

¼ �
�

vf

vt

�

a

�1

2
jVfj2a : (6.100)

The time derivative of f can be evaluated as follows:

v

vt
fðx, xs,usÞ ¼ vf

vðxsÞi
dðxsÞi
dt

þ vf

vðusÞi
dðusÞi
dt

¼ �u,us � a3

2jxj3
x,
dus

dt
, (6.101)

where the middle of this extended equality presents a temporary switch to index notation.
The final form in (6.101) is obtained from the definition d(xs)i/dt¼ us, and the fact that vf/
v(xs)i¼evf/vxi¼eu for the potential (6.97) since it only depends on x e xs. When evaluated
on the sphere’s surface, this becomes:

�

vf

vt

�

a

¼ �ua,us � a

2
ex,

dus

dt
, (6.102)

where ex¼ x/jxj. The independent spatial variable x appears twice in (6.97) so the gradient of
f involves two terms,
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Vf ¼ �a3

2

"

� 3ðx� xsÞ
jx� xsj5

us,ðx� xsÞ þ 1

jx� xsj3
us

#

, (6.103)

which are readily evaluated on the surface of the sphere where (x e xs)a¼ aex:

ua ¼ ðVfÞa¼ �a3

2

	

� 3aex
a5

us,aex � 1

a3
us




¼ 3

2

�

us,ex
�

ex � 1

2
us: (6.104)

Combining (6.100), (6.102), and (6.104) produces a final relationship for the surface pressure
pa on the sphere in terms of the orientation ex, and the sphere’s velocity us and acceleration
dus/dt:

pa � pN
r

¼
�

3

2

�

us,ex
�

ex � 1

2
us

�

,us þ a

2
ex,

dus

dt
� 1

2









3

2
ðus,exÞ ex � 1

2
us









2

¼
�

3

2

�

us,ex
�2�1

2
jusj2

�

þ a

2
ex,

dus

dt
� 1

8

�

9
�

us,ex
�2�6

�

us,ex
�2þjusj2

�

¼ 1

2
jusj2

 

9

4

�

us,ex
�2

jusj2
� 5

4

!

þ a

2
ex,

dus

dt
(6.105)

When the sphere is not accelerating and qs is the angle between ex and us, then
0

B

@

pa � pN
1
2rjusj2

1

C

A

steady

¼ 9

4
cos2qs � 5

4
¼ 1� 9

4
sin2qs, (6.106)

which is identical to (6.91). Thus, as expected from the Galilean invariance of Newtonian
mechanics, steady flow past a stationary sphere and steady motion of a sphere through an
otherwise quiescent fluid lead to the same pressure distribution on the sphere. And, once
again, no drag on the sphere is predicted.

However, (6.105) includes a second term that depends on the direction and magnitude of
the sphere’s acceleration. To understand the effects of this term, reorient the coordinate
system in Figure 6.30 so that at the time of interest the sphere is at the origin of coordinates
and its acceleration is parallel to the polar z- or x3-axis: dus/dt¼ jdus/dtjez. With this revised
geometry, ex,dus/dt¼ jdus/dtj cosq, and the fluid dynamic force on the sphere can be
obtained from (6.98) in spherical polar coordinates:

Fs ¼ �r
a

2









dus

dt









Z
p

q¼ 0

Z
2p

4¼ 0

cos q
�

ex sin q cos 4þ ey sin q sin 4þ ez cos q
�

a2 sin qd4d q: (6.107)

The 4-integration causes the x- and y-force components to be zero, leaving:

Fs ¼ �pra3








dus

dt









ez

Z
p

q¼ 0

cos2 q sin qd4dq ¼ �2

3
pra3

dus

dt
¼ �M

dus

dt
, (6.108)
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where M¼ 2pa3r/3 is the apparent or added mass of the sphere. Thus, the ideal-flow fluid-
dynamic force on an accelerating sphere opposes the acceleration, and its magnitude is
proportional to the sphere’s acceleration and one-half of the mass of the fluid displaced by
the sphere.

This fluid-inertia-based loading is the apparent mass or added mass of the sphere. It
occurs because fluid must move more rapidly out of the way, in front of, and more rapidly
fill in behind, an accelerating sphere. To illustrate its influence, consider an elementary
dynamics problem involving a rigid sphere of mass m and radius a that is subject to an
external force FE while submerged in a large bath of nominally quiescent inviscid fluid
with density r. In this case, Newton’s second law (sum of forces¼mass � acceleration)
implies:

FE þ Fs ¼ FE �M
dus

dt
¼ m

dus

dt
, or FE ¼

�

mþ 2p

3
ra3
�

dus

dt
: (6.109)

Thus, a submerged sphere will behave as if its inertia is larger by one-half of the mass of the
fluid it displaces compared to its behavior in vacuum. For a sphere, the apparent mass is
a scalar because of its rotational symmetry. In general, apparent mass is a tensor and the final
equality in (6.108) is properly stated (Fs)i¼Mij d(us)j/dt.

6.10. CONCLUDING REMARKS

The theory of irrotational constant-density (ideal) flow has reached a highly developed
stage during the last 250 years because of the efforts of theoretical physicists such as Euler,
Bernoulli, d’Alembert, Lagrange, Stokes, Helmholtz, Kirchhoff, and Kelvin. The special
interest in the subject has resulted from the applicability of potential theory to other fields
such as heat conduction, elasticity, and electromagnetism. When applied to fluid flows,
however, the theory predicts zero fluid dynamic drag on a moving body, a result that is
at variance with observations. Meanwhile, the theory of viscous flow was developed
during the middle of the nineteenth century, after the Navier-Stokes equations were
formulated. The viscous solutions generally applied either to very slow flows where the
nonlinear advection terms in the equations of motion were negligible, or to flows in which
the advective terms were identically zero (such as the viscous flow through a straight
pipe). The viscous solutions were highly rotational, and it was not clear where the irrota-
tional flow theory was applicable and why. This was left for Prandtl to explain (see
Chapter 9).

It is probably fair to say that ideal flow theory does not occupy center stage in fluid
mechanics any longer, although it did so in the past. However, the subject is still quite useful
in several fields, especially in aerodynamics and hydrodynamics. We shall see in Chapter 9
that the pressure distribution around streamlined bodies can still be predicted with a fair
degree of accuracy from the ideal flow theory. In Chapter 14 we shall see that the lift of an
airfoil is due to the development of circulation around it, and the magnitude of the lift agrees
with the Kutta-Zhukhovsky lift theorem. The technique of conformal mapping will also be
useful in our study of flow around airfoil shapes.
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EXERCISES

6.1. a) Show that (6.7) solves (6.5) and leads to u¼ (U,V).
b) Integrate (6.6) within a circular area centered on (x0, y0) of radius

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2þðy� y0Þ2
q

to show that (6.8) is a solution of (6.6).

6.2. For two-dimensional ideal flow, show separately that:
a) Vj,Vf ¼ 0
b) �Vj� Vf ¼ juj2ez
c) jVjj2 ¼ jVfj2
d) Vf ¼ �ez � Vj

6.3. a) Show that (6.14) solves (6.12) and leads to u¼ (U,V).
b) Integrate (6.13) within circular area centered on (x0, y0) of radius

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2þðy� y0Þ2
q

to show that (6.15) is a solution of (6.13).

c) For the flow described by (6.15), show that the volume flux (per unit depth into
the page) ¼ H

C

u,nds computed from a closed contour C that encircles the point

(x0, y0) is m. Here n is the outward normal on C and ds is a differential element of C.
6.4. Show that (6.1) reduces to vf

vt þ 1
2jVfj2 þ p

r
¼ const: when the flow is described by the

velocity potential f.
6.5. Determine u and v, and sketch streamlines for:

a) j¼A(x2 e y2)
b) f¼A(x2 e y2)

6.6. Assume j¼ ax3þ bx2yþ cxy2þ dy3 where a, b, c, and d are constants; and determine
two independent solutions to the Laplace equation. Sketch the streamlines for both
flow fields.

6.7. Repeat Exercise 6.6 for j¼ ax4þ bx3yþ cx2y2þ dxy3þ ey4 where a, b, c, d, and e are
constants.

6.8. Without using complex variables, determine:
a) The potential f for an ideal vortex of strength G starting from (6.8).
b) The stream function for an ideal point source of strength Q starting from (6.15).
c) Is there any ambiguity in your answers to parts a) and b)? If so, does this ambiguity

influence the fluid velocity?
6.9. Determine the stream function of a doublet starting from (6.29) and show that the

streamlinesarecircleshavingcenterson they-axis that are tangent to thex-axis at theorigin.
6.10. Consider steady horizontal flow at speed U past a stationary source of strength

m located at the origin of coordinates in two dimensions, (6.30) or (6.31). To hold it in
place, an external force per unit depth into the page, F, is applied to the source.
a) Develop a dimensionless scaling law for F¼ jFj.
b) Use a cylindrical control volume centered on the source with radius R and having

depth B into the page, the steady ideal-flow momentum conservation equation for
a control volume,

Z

A�

ruðu,nÞdA ¼ �
Z

A�

pndAþ F,

and an appropriate Bernoulli equation todetermine themagnitude anddirectionofF.

EXERCISES 241



c) Is the direction of F unusual in any way? Explain it physically.

6.11. Repeat all three parts of Exercise 6.10 for steady ideal flow past a stationary irrotational
vortex located at the origin when the control volume is centered on the vortex. The
stream function for this flow is: j ¼ Ur sin q� ðG=2pÞlnðrÞ.

6.12. Use the principle of conservation of mass (4.5) and an appropriate control volume to
show that maximum half thickness of the half-body described by (6.30) or (6.31) is
hmax¼m/2U.

6.13. By integrating the surface pressure, show that the drag on a plane half-body
(Figure 6.7) is zero.

6.14. Ideal flow past a cylinder (6.33) is perturbed by adding a small vertical velocity
without changing the orientation of the doublet:

j ¼ �UgxþUy� Ua2y

x2 þ y2
¼ �Ugr cos qþU

�

r� a2

r

�

sin q:

a) Show that the stagnation point locations are rs¼ a and qs¼ g/2, pþ g/2when g	 1.
b) Does this flow include a closed body?

6.15. For the following flow fields (b, U, Q, and G are positive real constants), sketch
streamlines.
a) j ¼ b

ffiffi

r
p

cosðq=2Þ for jqj < 180�

b) j ¼ Uyþ ðG=2pÞ
"

lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy� bÞ2
q

Þ � lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðyþ bÞ2
q

Þ
#

c) f ¼ Pn¼þN
n¼�NðQ=2pÞln

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy� 2naÞ2
q

�

for jyj < a

6.16. 1Take a standard sheet of paper and cut it in half. Make a simple airfoil with one half
and a cylinder with the other half that are approximately the same size as shown.

a) If the cylinder and the airfoil are dropped from the same height at the same time
with the airfoil pointed toward the ground in its most streamlined configuration,
predict which one reaches the ground first.

b) Stand on a chair and perform this experiment. What happens? Are your results
repeatable?

c) Can you explain what you observe?

Tape

1Based on a suggestion from Professor William Schultz
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6.17. Consider the following two-dimensional stream function composed of a uniform
horizontal stream of speed U and two vortices of equal and opposite strength in (x,y)-
Cartesian coordinates.

jðx,yÞ ¼ Uyþ ðG=2pÞln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy� bÞ2
q

� ðG=2pÞln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðyþ bÞ2
q

a) Simplify this stream function for the combined limit of b/0 and G/N when
2bG¼ C¼ constant to find: jðx,yÞ ¼ Uyð1� ðC=2pUÞðx2 þ y2Þ�1 :Þ

b) Switch to (r,q)-polar coordinates and find both components of the velocity using the
simplified stream function.

c) For the simplified stream function, determine where ur¼ 0.
d) Sketch the streamlines for the simplified stream function, and describe this flow.

6.18. Graphically generate the streamline pattern for a plane half-body in the following
manner. Take a source of strength m¼ 200 m2/s and a uniform stream U¼ 10 m/s.
Draw radial streamlines from the source at equal intervals of Dq¼ p/10, with the
corresponding stream function interval

Djsource ¼ m

2p
Dq ¼ 10 m2=s:

Now draw streamlines of the uniform flow with the same interval, that is,

Djstream ¼ U Dy ¼ 10 m2=s:

This requires Dy¼ 1 m, which you can plot assuming a linear scale of 1 cm¼ 1 m. Now
connect points of equal j¼ jsourceþ jstream.

6.19. Consider the two-dimensional steady flow formed by combining a uniform stream of
speedU in the positive xdirection, a source of strengthm> 0 at (x, y)¼ (ea, 0), and a sink
of strengthm at (x, y)¼ (þa, 0) where a> 0. The pressure far upstream of the origin is pN.
a) Write down the velocity potential and the stream function for this flow field.
b) What are the coordinates of the stagnation points?
c) Determine the pressure in this flow field along the y-axis.

y

x

h

–mm

aa

xs xs

U
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d) There is a closed streamline in this flow that defines a Rankine body. Obtain
a transcendental algebraic equation for this streamline, and show that the

half-width, h, of the body in the y direction is given by:
h

a
¼ cot

�pUh

m

�

.

(The introduction of angles may be useful here.)
6.20. A stationary ideal two-dimensional vortex with clockwise circulation G is located at

point (0, a), above a flat plate. The plate coincides with the x-axis. A uniform stream U
directed along the x-axis flows over the vortex. Sketch the flow pattern and show that it
represents the flow over an oval-shaped body when G/pa>U. [Hint: Introduce the
image vortex and locate the two stagnation points on the x-axis.]

If the pressure at x¼�N is PN, and that below the plate is also PN, then show that the

pressure at any point on the plate is given by: pN � p ¼ rG2a2

2p2ðx2 þ a2Þ2
� rUGa

pðx2 þ a2Þ:

Show that the total upward force per unit depth on the plate is: F ¼ rG2

4pa
� rUG:

6.21. Consider plane flow around a circular cylinder. Use the complex potential and Blasius
theorem (6.60) to show that the drag is zero and the lift is L¼ rUG. (In Section 6.3, these
results were obtained by integrating the surface pressure distribution.)

6.22. For the doublet flow described by (6.29) and sketched in Figure 6.6, show u< 0 for
y< x and u> 0 for y> x . Also, show that v< 0 in the first quadrant and v> 0 in the
second quadrant.

6.23. Hurricane winds blow over a Quonset hut, that is, a long half-circular cylindrical cross-
section building, 6 m in diameter. If the velocity far upstream is UN¼ 40 m/s and
pN¼ 1.003� 105 N/m, rN¼ 1.23 kg/m3, find the force per unit depth on the building,

assuming the pressure inside the hut is a) pN, and b) stagnation pressure, pN þ 1

2
rNU2

N.

6.24. In a two-dimensional ideal flow, a source of strength m is located a meters above
an infinite plane. Find the velocity on the plane, the pressure on the plane,
and the reaction force on the plane assuming constant pressure pN below the plane.

6.25. Consider a two-dimensional ideal flow over a circular cylinder of radius r¼ a
with axis coincident with a right-angle corner, as shown in the figure below.
Assuming that j ¼ Axy (with A ¼ constant) when the cylinder is absent, solve
for the stream function and velocity components.

x

y

a

co
ns

t
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6.26. Consider the following two-dimensional velocity potential consisting of two sources
and one sink, all of strength m:

fðx,yÞ ¼ ðm=2pÞ
�

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� bÞ2þy2
q

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� a2=bÞ2þy2
q

� ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

�

:

Here a and b are positive constants and b> a.
a) Determine the locations of the two stagnation points in this flow field.
b) Sketch the streamlines in this flow field.
c) Show that the closed streamline in this flow is given by x2þ y2¼ a2 by finding the

radial location where ur ¼ 0.
6.27. Without using complex variables, derive the results of the Kutta-Zhukhovsky lift

theorem (6.62) for steady two-dimensional irrotational constant-density flow past an
arbitrary-cross-section object by considering the clam-shell control volume (shown as
a dashed line) in the limit as r/N. Here A1 is a large circular contour, A2 follows the
object’s cross-section contour, andA3 connectsA1 andA2. Let pN andUex be the pressure
and flow velocity far from the origin of coordinates, and denote the flow extent
perpendicular to the x-y plane by B.

6.28. Pressure fluctuations in wall-bounded turbulent flows are a common source of flow
noise. Such fluctuations are caused by turbulent eddies as they move over the
bounding surface. A simple ideal-flow model that captures some of the important
phenomena involves a two-dimensional vortex that moves above a flat surface in
a fluid of density r. Thus, for the following items, use the potential:

fðx, y, tÞ ¼ � G

2p
tan�1

�

y� h

x�Ut

�

þ G

2p
tan�1

�

yþ h

x�Ut

�

,

where h is the distance of the vortex above the flat surface, G is the vortex strength, and
U is the convection speed of the vortex.

a) Compute the horizontal u and vertical v velocity components and verify that v¼ 0
on y¼ 0.

b) Determine the pressure at x¼ y¼ 0 in terms of r, t, G, h, and U.
c) Based on your results from part b), is it possible for a fast-moving, high-strength

vortex far from the surface to have the same pressure signature as a slow-moving,
low-strength vortex closer to the surface?

A1

r

y

x

U

A2

A3
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6.29. A pair of equal strength ideal line vortices having axes perpendicular to the x-y
plane are located at xaðtÞ ¼ ðxaðtÞ, yaðtÞÞ, and xbðtÞ ¼ ðxbðtÞ,ybðtÞÞ, and move in their
mutually induced velocity fields. The stream function for this flow is given by:

jðx,y, tÞ ¼ � G

2p
ðlnjx� xaðtÞj þ lnjx� xbðtÞjÞ. Explicitly determine xaðtÞ and xbðtÞ,

given xað0Þ ¼ ð � ro, 0Þ and xbð0Þ ¼ ðro, 0Þ. Switching to polar coordinates at some
point in your solution may be useful.

6.30. Consider the unsteady potential flow of two ideal sinks located at xaðtÞ ¼ ðxaðtÞ, 0Þ and
xbðtÞ ¼ ðxbðtÞ, 0Þ that are free to move along the x-axis in an ideal fluid that is
stationary far from the origin. Assume that each sink will move in the velocity field
induced by the other.

fðx, y, tÞ ¼ �Q

2p

	

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xaðtÞÞ2þy2
q

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xbðtÞÞ2þy2
q




, with Q > 0:

a) Determine xaðtÞ and xbðtÞ when xað0Þ ¼ ð�L, 0Þ and xbð0Þ ¼ ðþL, 0 :Þ
b) If the pressure far from the origin is pN and the fluid density is r, determine the

pressure p at x¼ y¼ 0 as a function of pN, r, Q, and xa(t).
6.31. Consider the unsteady potential flow of an ideal source and sink located at

x1ðtÞ ¼ ðx1ðtÞ, 0Þ and x2ðtÞ ¼ ðx2ðtÞ, 0Þ that are free to move along the x-axis in an ideal
fluid that is stationary far from the origin. Assume that the source and sink will move
in the velocity field induced by the other.

fðx, y, tÞ ¼ m

2p

	

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x1ðtÞÞ2þy2
q

� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x2ðtÞÞ2þy2
q




, with m > 0:

a) Determine x1ðtÞ and x2ðtÞ when x1ð0Þ ¼ ð�l, 0Þ and x2ð0Þ ¼ ðþl, 0Þ.
b) If the pressure far from the origin is pN and the fluid density is r, determine the

pressure p at x¼ y¼ 0 as a function of pN, r, m, l, and t.
6.32. Consider a free ideal line vortex oriented parallel to the z-axis in a 90� corner

defined by the solid walls q¼ 0 and q¼ 90�. If the vortex passes through the
plane of the flow at (x, y), show that the vortex path is given by: 1

x2 þ 1
y2 ¼

constant: [Hint: Three image vortices are needed at points (�x, �y), (�x, y), and
(x, �y). Carefully choose the directions of rotation of these image vortices, show
that dy/dx¼ v/u¼�y3/x3, and integrate to produce the desired result.]

6.33. In ideal flow, streamlines are defined by dj¼ 0, and potential lines are defined by
df¼ 0. Starting from these relationships, show that streamlines and potential lines are
perpendicular:
a) in plane flow where x and y are the independent spatial coordinates, and
b) in axisymmetric flow where R and z are the independent spatial coordinates.

[Hint: For any two independent coordinates x1 and x2, the unit tangent to the curve

x2¼ f(x1) is t ¼ ðe1 þ ðdf=dx1Þe2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdf=dx1Þ2
q

; thus, for parts a) and b) it is

sufficient to show ðtÞj¼const,ðtÞf¼const ¼ 0.]
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6.34. Consider a three-dimensional point source of strength Q (m3/s). Use a spherical
control volume and the principle of conservation of mass to argue that the
velocity components in spherical coordinates are uq¼ 0 and ur¼Q/4pr2 and
that the velocity potential and stream function must be of the form f¼ f(r)
and j¼ j(q). Integrate the velocity, to show that f¼�Q/4pr and j¼�Qcosq/4p.

6.35. Solve the Poisson equation V2f ¼ Qdðx� x0Þ in a uniform, unbounded three-
dimensional domain to obtain the velocity potential f¼eQ/4pjx e x0j for an ideal
point source located at x0.

6.36. Using ðR,4, zÞ-cylindrical coordinates, consider steady three-dimensional potential
flow for a point source of strength Q at the origin in a free stream flowing along the
z-axis at speed U:

fðR,4, zÞ ¼ Uz� Q

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
p :

a) Sketch the streamlines for this flow in any R-z half-plane.
b) Find the coordinates of the stagnation point that occurs in this flow.
c) Determine the pressure gradient, Vp, at the stagnation point found in part b).
d) If R¼ a(z) defines the stream surface that encloses the fluid that emerges from the

source, determine a(z) for z/þN.
e) Use Stokes’ stream function to determine an equation for a(z) that is valid for any

value of z.
f) Use the control-volume momentum equation,

R

S

ruðu,nÞdS ¼ � R
S

pndSþ F where

n is the outward normal from the control volume, to determine the force F applied
to the point source to hold it stationary.

g) If the fluid expelled from the source is replaced by a solid body having the same
shape, what is the drag on the front of this body?

6.37. In (R, 4, z) cylindrical coordinates, the three-dimensional potential for a point source at

(0,0,s) is given by: f ¼ �ðQ=4pÞ½R2 þ ðz� sÞ2
�1=2.
a) By combining a source of strength þQ at (0,0,eb), a sink of strength eQ at

(0, 0, þb), and a uniform stream with velocity Uez, derive the potential (6.89) for
flow around a sphere of radius a by taking the limit as Q/N and b/ 0, such
that d ¼ �2bQez ¼e2pa3Uez¼ constant. Put your final answer in spherical
coordinates in terms of U, r, q, and a.

b) Repeat part a) for the Stokes stream function starting fromj ¼ �ðQ=4pÞðz� sÞ½R2þ
ðz� sÞ2
�1=2.

6.38. a) Determine the locus of points in uniform ideal flow past a circular cylinder of
radius a without circulation where the velocity perturbation produced by the
presence of the cylinder is 1% of the free-stream value.

b) Repeat for uniform ideal flow past a sphere.
c) Explain the physical reason(s) for the differences between the answers for parts a)

and b).
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6.39. Using the figure for Exercise 6.27 withA3/0 and r/N, expand the three-dimensional
potential for a stationary arbitrary-shape closed body in inverse powers of the distance
r and prove that ideal flow theory predicts zero drag on the body.

6.40. Consider steady ideal flow over a hemisphere of constant radius a lying on the y-z
plane. For the spherical coordinate system shown, the potential for this flow is:

f
�

r, q,4
� ¼ Ur

�

1þ a3=2r3
�

cos q,

where U is the flow velocity far from the hemisphere. Assume gravity acts downward
along the x-axis. Ignore fluid viscosity in this problem.

r

x

z

y

θ

ϕ

a) Determine all three components of the fluid velocity on the surface of the
hemisphere, r¼ a, in spherical polar coordinates: ður,uq,u4Þ ¼ Vf ¼
�

vf
vr ,

1
r
vf
vq
, 1
rsin q

vf
v4

�

.

b) Determine the pressure, p, on r¼ a.
c) Determine the hydrodynamic force, Rx, on the hemisphere assuming stagnation

pressure is felt everywhere underneath the hemisphere. [Hints: er,ex ¼ sin q cos 4,
R p
0 sin2 qdq ¼ p=2, and

R p
0 sin4 qdq ¼ 3p=8:


d) For the conditions of part c) what density rh must the hemisphere have to remain
on the surface.

6.41. The flow-field produced by suction flow into a round vacuum cleaner nozzle held above
a large flat surface can be easily investigatedwith a simple experiment, and analyzed via
potential flow in (R, 4, z)-cylindrical coordinates with the method of images.

z

h

y

x

R
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a) Do the experiment first. Obtain a vacuum cleaner that has a hose for attachments.
Remove any cleaning attachments (brush, wand, etc.) or unplug the hose from the
cleaning head, and attach an extension hose or something with a round opening
(~4 cm diameter is recommended). Find a smooth, dry, flat horizontal surface that is
a ~0.5 meter or more in diameter. Sprinkle the central third of the surface with
a light granular material that is easy to see (granulated sugar, dry coffee grounds,
salt, flour, talcum powder, etc., should work well). The grains should be 0.5 to 1 mm
apart on average. Turn on the vacuum cleaner and lower the vacuum hose opening
from ~0.25 meter above the surface toward the surface with the vacuum opening
facing toward the surface. When the hose gets to within about one opening
diameter of the surface or so, the granular material should start to move. Once the
granular material starts moving, hold the hose opening at the same height or lift the
hose slightly so that grains are not sucked into it. If many grains are vacuumed up,
distribute new ones in the bare spot(s) and start over. Once the correct hose-
opening-to-surface distance is achieved, hold the hose steady and let the suction
airflow of the vacuum cleaner scour a pattern into the distributed granular material.
Describe the shape of the final pattern, and measure any relevant dimensions.

Now see if ideal flow theory can explain the pattern observed in part a). As a first
approximation, the flow field near the hose inlet can be modeled as a sink (a source
with strength eQ) above an infinite flat boundary since the vacuum cleaner outlet
(a source with strength þQ) is likely to be far enough away to be ignored. Denote
the fluid density by r, the pressure far away by pN, and the pressure on the flat
surface by p(R). The potential for this flow field will be the sum of two terms:

fðR, zÞ ¼ þQ

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðz� hÞ2
q þ KðR, zÞ:

b) Sketch the streamlines in the y-z plane for z> 0.
c) Determine K(R,z).
d) Usedimensional analysis to determinehow p(R)e pNmust depend on r,Q,R, and h.
e) Compute p(R) e pN from the steady Bernoulli equation. Is this pressure

distribution consistent with the results of part a)? Where is the lowest pressure?
(This is also the location of the highest speed surface flow.) Is a grain at the origin of
coordinates the one most likely to be picked up by the vacuum cleaner?

6.42. There is a point source of strength Q (m3/s) at the origin, and a uniform line sink of
strength k¼Q/a extending from z¼ 0 to z¼ a. The two are combined with a uniform
stream U parallel to the z-axis. Show that the combination represents the flow past
a closed surface of revolution of airship shape, whose total length is the difference of
the roots of:

z2

a2

�z

a
� 1
�

¼ Q

4pUa2
:

6.43. Using a computer, determine the surface contour of an axisymmetric half-body formed
by a line source of strength k (m2/s) distributed uniformly along the z-axis from z¼ 0
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to z¼ a and a uniform stream. The nose of this body is more pointed than that formed
by the combination of a point source and a uniform stream. From amass balance, show
that far downstream the radius of the half-body is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ak=pU
p

.
6.44. 2Consider the radial flow induced by the collapse of a spherical cavitation bubble of

radius R(t) in a large quiescent bath of incompressible inviscid fluid of density r. The
pressure far from the bubble is pN. Ignore gravity.
a) Determine the velocity potential f(r,t) for the radial flow outside the bubble.
b) Determine the pressure p(R(t), t) on the surface of the bubble.
c) Suppose that at t¼ 0 the pressure on the surface of the bubble is pN, the bubble

radius is Ro, and its initial velocity is � _Ro (i.e., the bubble is shrinking); how long
will it take for the bubble to completely collapse if its surface pressure remains
constant?

6.45. Derive the apparent mass per unit depth into the page of a cylinder of radius a that
travels at speed UcðtÞ ¼ dxc=dt along the x-axis in a large reservoir of an ideal
quiescent fluid with density r. Use an appropriate Bernoulli equation and the

following time-dependent two-dimensional potential: fðx,y, tÞ ¼ �a2Ucðx� xcÞ
ðx� xcÞ2þy2

,

where xc(t) is location of the center of the cylinder, and the Cartesian coordinates are x
and y. [Hint: Steady cylinder motion does not contribute to the cylinder’s apparent
mass; keep only the term (or terms) from the Bernoulli equation necessary to
determine apparent mass.]

y

x

x = xc(t)

6.46. A stationary sphere of radius a and mass m resides in inviscid fluid with constant
density r.

a) Determine the buoyancy force on the sphere when gravity g acts downward.
b) At t¼ 0, the sphere is released from rest. What is its initial acceleration?
c) What is the sphere’s initial acceleration if it is a bubble in a heavy fluid (i.e., when

m/ 0)?
6.47. A sphere of massm and volume V is attached to the end of a light, thin, flexible cable of

length L. In a vacuum, with gravity g acting, the natural frequencies for small
longitudinal (bouncing) and transverse (pendulum) oscillations of the sphere are ub

and up. Ignore the effects of viscosity and estimate these natural frequencies when the
same sphere and cable are submerged in water with density rw. What is up when
m 	 rwV?

6.48. Determine the ideal-flow force on a stationary sphere for the following unsteady flow
conditions.

2Based on problem 5.7 in Currie (1993)
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a) The free stream of velocity Uez is constant but the sphere’s radius a(t) varies.
b) The free stream velocity magnitude changes, U(t)ez, but the sphere’s radius a is

constant.
c) The free stream velocity changes direction U(excosUtþ eysinUt), but its magnitude

U and the sphere’s radius a are constant.
6.49. In three dimensions, consider a solid object moving with velocity U near the origin of

coordinates in an unbounded quiescent bath of inviscid incompressible fluid with
density r. The kinetic energy of the moving fluid in this situation is:

KE ¼ 1

2
r

Z

V

jVfj2dV,

where f is the velocity potential and V is a control volume that contains all of the
moving fluid but excludes the object. (Such a control volume is shown in the figure
for Exercise 6.27 when A3/0 and U¼ 0.)

a) Show that KE ¼ �1

2
r

Z

A

fðVf,nÞdA where A encloses the body and is coincident

with its surface, and n is the outward normal on A.
b) The apparent mass,M, of the moving body may be defined by KE ¼ 1

2
MjUj2. Using

this definition, the result of part a), and (6.97) with xs¼ 0, show that M¼ 2pa3r/3
for a sphere.
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CHAPTER OBJECTIVES

• To develop the equations and boundary

conditions for surface, interface, and internal

waves.

• To derive linear gravity-capillary wave

propagation speed(s), pressure fluctuations,

dispersion, particle motion, and energy

flux for surface waves on a liquid layer of

arbitrary but constant depth.

• To describe and highlight wave refraction

and nonlinear gravity wave results in

shallow and deep water.

• To determine linear density-interface

wave characteristics with and without an

additional free surface.

• To present the characteristics of gravity

waves on a density gradient with constant

buoyancy frequency.
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7.1. INTRODUCTION

There are three types of waves commonly considered in the study of fluid mechanics:
interface waves, internal waves, and compression and expansion waves. In all cases, the
waves are traveling fluid oscillations, impulses, or pressure changes sustained by the inter-
play of fluid inertia and a restoring force or a pressure imbalance. For interface waves the
restoring forces are gravity and surface tension. For internal waves, the restoring force is
gravity. For expansion and compression waves, the restoring force comes directly from
the compressibility of the fluid. The basic elements of linear and nonlinear compression
and expansion waves are presented in Chapter 15, which covers compressible fluid
dynamics. This chapter covers interface and internal waves with an emphasis on gravity
as the restoring force. The approach and results from the prior chapter will be exploited
here since the wave physics and wave phenomena presented in this chapter primarily
involve irrotational flow.

Perhaps the simplest and most readily observed fluid waves are those that form and travel
on the density discontinuity provided by an air-water interface. Such surface gravity-capillary
waves, sometimes simply called water waves, involve fluid particle motions parallel and
perpendicular to the direction of wave propagation. Thus, the waves are neither longitudinal
nor transverse. When generalized to internal waves that propagate in a fluid medium having
a continuous density gradient, the situation may be even more complicated. This chapter
presents some basic features of wave motion and illustrates them with water waves because
water wave phenomena are readily observed and this aids comprehension. Throughout this
chapter, the wave frequency will be assumed much higher than the Coriolis frequency so the
wave motion is unaffected by the earth’s rotation. Waves affected by planetary rotation are
considered in Chapter 13. And, unless specified otherwise, wave amplitudes are assumed
small enough so that the governing equations and boundary conditions are linear.

For such linear waves, Fourier superposition of sinusoidal waves allows arbitrary wave-
forms to be constructed and sinusoidal waveforms arise naturally from the linearized equa-
tions for water waves (see Exercise 7.3). Consequently, a simple sinusoidal traveling wave of
the form

hðx, tÞ ¼ a cos

�

2p

l
ðx� ctÞ

�

(7.1)

is a foundational element for what follows. In Cartesian coordinates with x horizontal and z
vertical, z ¼ h(x,t) specifies the waveform or surface shape where a is the wave amplitude, l is
the wavelength, c is the phase speed, and 2p(x � ct)/l is the phase. In addition, the spatial
frequency k h 2p/l, with units of rad./m, is known as the wave number. If (7.1) describes
the vertical deflection of an air-water interface, then the height of wave crests is þa and
the depth of the wave troughs is ea compared to the undisturbed water-surface location
y ¼ 0. At any instant in time, the distance between successive wave crests is l. At any fixed
x-location, the time between passage of successive wave crests is the period, T ¼ 2p/kc ¼ l/c.
Thus, the wave’s cyclic frequency is n ¼ 1/Twith units of Hz, and its radian frequency is u ¼ 2pn
with units of rad./s. In terms of k and u, (7.1) can be written:

hðx, tÞ ¼ a cos½kx� ut�: (7.2)
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The wave propagation speed is readily deduced from (7.1) or (7.2) by determining
the travel speed of wave crests. This means setting the phase in (7.1) or (7.2) so that the
cosine function is unity and h ¼ þa. This occurs when the phase is 2np where n is an
integer,

2p

l
ðxcrest � ctÞ ¼ 2np ¼ kxcrest � ut, (7.3)

and xcrest is the time-dependent location where h ¼ þa. Solving for the crest location
produces:

xcrest ¼ ðu=kÞtþ 2np=k:

Therefore, in a time increment Dt, a wave crest moves a distance Dxcrest ¼ (u/k)Dt. Thus,

c ¼ u=k ¼ ln (7.4)

is known as the phase speed because it specifies the travel speed of constant-phase wave
features, like wave crests or troughs.

Although instructive, (7.1) and (7.2) are limited to propagation in the positive x direction
only. In general, waves may propagate in any direction. A useful three-dimensional general-
ization of (7.2) is:

h ¼ a cosðkxþ lyþmz� utÞ ¼ a cosðK,x� utÞ, (7.5)

where K ¼ (k, l, m) is a vector, called the wave number vector, whose magnitude is given by

K2 ¼ k2 þ l2 þm2: (7.6)

The wavelength derived from (7.5) is

l ¼ 2p=K, (7.7)

which is illustrated in Figure 7.1 in two dimensions. The magnitude of the phase velocity is
c ¼ u/K, and the direction of propagation is parallel to K, so the phase velocity vector is:

c ¼ ðu=KÞeK, (7.8)

where eK ¼ K/K.
From Figure 7.1, it is also clear that cx ¼ u/k, cy ¼ u/l, and cz ¼ u/m are each larger than

the resultant c ¼ u/K, because k, l, and m are individually smaller than K when all three are
nonzero, as required by (7.6). Thus, cx, cy, and cz are not vector components of the phase
velocity in the usual sense, but they do reflect the fact that constant-phase surfaces appear
to travel faster along directions not coinciding with the direction of propagation, the x and
y directions in Figure 7.1 for example. Any of the three axis-specific phase speeds is some-
times called the trace velocity along its associated axis.

If sinusoidal fluid waves exist in a fluid moving with uniform speed U, then the observed
phase speed is c0 ¼ cDU: Forming a dot product of c0 with K, and using (7.8), produces

u0 ¼ uþU,K, (7.9)

where u0 is the observed frequency at a fixed point, and u is the intrinsic frequency
measured by an observer moving with the flow. It is apparent that the frequency of
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a wave is Doppler shifted by an amount U,K in nonzero flow. Equation (7.9) may be
understood by considering a situation in which the intrinsic frequency u is zero, but
the flow pattern has a periodicity in the x direction of wavelength 2p/k. If this sinusoidal
pattern is translated in the x direction at speed U, then the observed frequency at a fixed
point is u0 ¼ Uk. The effects of uniform flow on frequency will not be considered further,
and all frequencies in the remainder of this chapter should be interpreted as intrinsic
frequencies.

7.2. LINEAR LIQUID-SURFACE GRAVITY WAVES

Starting from the equations for ideal flow, this section develops the properties of small-
slope, small-amplitude gravity waves on the free surface of a constant-density liquid layer
of uniform depth H, which may be large or small compared to the wavelength l. The limita-
tion to waves with small slopes and amplitudes implies a=l � 1 and a=H � 1, respectively.
These two conditions allow the problem to be linearized. In this first assessment of wave
motion, surface tension is neglected for simplicity; in water its effect is limited to wave-
lengths less than 5 to 10 centimeters, as discussed in Section 7.3. In addition, the air above
the liquid is ignored, and the liquid’s motion is presumed to be irrotational and entirely
caused by the surface waves.

FIGURE 7.1 Wave crests propagating in the x-y plane. The crest spacing along the coordinate axes is larger than
the wavelength l ¼ 2p/K. The inset shows how the trace velocities cx and cy are combined to give the phase velocity
vector c.
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To get started, choose the x-axis in the direction of wave propagation with the z-axis
vertical so that the motion is two dimensional in the x-z plane (Figure 7.2). Let h(x,t) denote
the vertical liquid-surface displacement from its undisturbed location z ¼ 0. Because the
liquid’s motion is irrotational, a velocity potential f(x, z, t) can be defined such that

u ¼ vf=vx, and w ¼ vf=vz, (7.10)

so the incompressible continuity equation vu/vx þ vw/vz ¼ 0 implies

v2f=vx2 þ v2f=vz2 ¼ 0: (7.11)

There are three boundary conditions. The condition at the bottom of the liquid layer is zero
normal velocity, that is,

w ¼ vf=vz ¼ 0 on z ¼ �H: (7.12)

At the free surface, a kinematic boundary condition is applied that requires the fluid-particle
velocity normal to the surface, u,n, and on the surface be the same as the velocity of the
surface Us normal to itself:

ðn,uÞz¼h¼ n,Us, (7.13)

where n is the surface normal. This ensures that the liquid elements that define the interface
do not become separated from the interface while still allowing these interface elements to
move along the interface.

For the current situation, the equation for the surfacemaybewritten f(x, z, t) ¼ z e h(x, t) ¼ 0,
so the surface normal n, which points upward out of the liquid will be:

n ¼ Vf=jVf j ¼ ð� ðvh=vxÞex þ ezÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvh=vxÞ2þ 1

q

: (7.14)

The velocity of the surface Us at any location x can be considered purely vertical:

Us ¼ ðvh=vtÞez: (7.15)

FIGURE 7.2 Geometry for deter-
mining the properties of linear
gravity waves on the surface of
a liquid layer of depth H. Gravity
points downward along the z-axis.
The undisturbed liquid surface loca-
tion is z ¼ 0 so the bottom is located
at z ¼ eH. The surface’s vertical
deflection or waveform is h(x,t).
When h is sinusoidal, its peak
deflection from z ¼ 0 is the sinu-
soid’s amplitude a.
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Thus, (7.13) multiplied by jVf j implies ðVf,uÞz¼h¼ Vf,Us, which can be evaluated using (7.14)
and u ¼ uex þ wez to find:

�

� u
vh

vx
þ w

�

z¼h

¼ vh

vt
, or

�

vf

vz

�

z¼h

¼ vh

vt
þ vh

vx

�

vf

vx

�

z¼h

, (7.16)

where (7.10) has been used for the fluid velocity components to achieve the second form of
(7.16). For small-slope waves, the final term in (7.16) is small compared to the other two, so
the kinematic boundary condition can be approximated:

�

vf

vz

�

z¼h

y
vh

vt
: (7.17)

For consistency, the left side of (7.17) must also be approximated for small wave slopes, and
this is readily accomplished via a Taylor series expansion around z ¼ 0:

�

vf

vz

�

z¼h

¼
�

vf

vz

�

z¼0

þ h

 

v2f

vz2

!

z¼0

þ.y
vh

vt
:

Thus, when a/l is small enough, the simplest version of (7.13) is
�

vf

vz

�

z¼0

y
vh

vt
: (7.18)

These simplifications of the kinematic boundary are justified when ka ¼ 2pa/l � 1 (see
Exercise 7.2).

In addition to the kinematic condition at the surface, there is a dynamic condition that the
pressure just below the liquid surface be equal to the ambient pressure, with surface tension
neglected. Taking the ambient air pressure above the liquid to be a constant atmospheric
pressure, the dynamic surface condition can be stated,

ðpÞz¼h¼ 0, (7.19)

where p in (7.19) is the gauge pressure. Equation (7.19) follows from the boundary condition
on s , n, which is continuous across an interface as established in Section 4.10. Equation (7.19)
and the neglect of any shear stresses on z ¼ h define a stress-free boundary. Thus, the water
surface in this ideal case is commonly called a free surface. For consistency, this condition
should also be simplified for small-slope waves by dropping the nonlinear term jVfj2 in
the relevant Bernoulli equation (4.83):

vf

vt
þ p

r
þ gzy 0, (7.20)

where the Bernoulli constant has been evaluated on the undisturbed liquid surface far from
the surface wave. Evaluating (7.20) on z ¼ h and applying (7.19) produces:

�

vf

vt

�

z¼h

y

�

vf

vt

�

z¼0

y�gh: (7.21)

The first approximate equality follows because (vf/vt)z ¼ 0 is the first term in a Taylor series
expansionof (vf/vt)z¼ h inpowersofhabouth ¼ 0.Thisapproximation is consistentwith (7.18).
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Interestingly, even with the specification of the field equation (7.11) and the three
boundary conditions, (7.12), (7.18), and (7.21), the overall linear surface-wave problem is
not fully defined without initial condition for the surface shape (Exercise 7.3). For
simplicity, we chose h(x, t ¼ 0) ¼ acos(kx), since it is satisfied by the simple sinusoidal
wave (7.2), which now becomes a foundational part of the solution. To produce a cosine
dependence for h on the phase (kx � ut) in (7.2), conditions (7.18) and (7.21) require f to
be a sine function of (kx � ut). Consequently, a solution is sought for f in the form

fðx, z, tÞ ¼ fðzÞ sinðkx� uðkÞtÞ, (7.22)

where f(z) and u ¼ u(k) are to be determined. Substitution of (7.22) into the Laplace equation
(7.11) gives

d2f=dz2 � k2f ¼ 0,

which has the general solution f(z) ¼ Aekz þ Beekz, where A and B are constants. Thus, (7.22)
implies

f ¼ ðAekz þ Be�kzÞ sinðkx� utÞ: (7.23)

The constants A and B can be determined by substituting (7.23) into (7.12):

kðAe�kH � BeþkHÞ sinðkx� utÞ ¼ 0 or B ¼ Ae�2kH , (7.24)

and by substituting (7.2) and (7.23) into (7.18),

kðA� BÞ sinðkx� utÞ ¼ uasinðkx� utÞ or kðA� BÞ ¼ ua: (7.25)

Solving (7.24) and (7.25) for A and B produces:

A ¼ au

k
�

1� e�2kH
� B ¼ au e�2kH

k
�

1� e�2kH
�:

The velocity potential (7.23) then becomes:

f ¼ au

k

coshðkðzþHÞÞ
sinhðkHÞ sinðkx� utÞ, (7.26)

from which the fluid velocity components are found as:

u ¼ au
coshðkðzþHÞÞ

sinhðkHÞ cosðkx� utÞ, and w ¼ au
sinhðkðzþHÞÞ

sinhðkHÞ sinðkx� utÞ: (7.27)

This solution of the Laplace equation has been found using kinematic boundary condi-
tions alone, and this is typical of irrotational constant-density flows where fluid pressure
is determined through a Bernoulli equation after the velocity field has been found. Here
the dynamic surface boundary condition (7.21) enforces p ¼ 0 on the liquid surface, and
substitution of (7.2) and (7.26) into (7.21) produces:

�

vf

vt

�

z¼0

¼ �au2

k

coshðkHÞ
sinhðkHÞcosðkx� utÞy� gh ¼�ag cosðkx� utÞ,
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which simplifies to a relation between u and k (or equivalently, between the wave period T
and the wave length l):

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk tanhðkHÞ
q

or T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl

g
coth

�

2pH

l

�

s

: (7.28)

The first part of (7.28) specifies how temporal and spatial frequencies of the surface waves are
related, and it is known as a dispersion relation. The phase speed c of these surface waves is
given by:

c ¼ u

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

k
tanhðkHÞ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gl

2p
tanh

�

2pH

l

�

s

: (7.29)

This result is of fundamental importance for water waves. It shows that surface waves are
dispersive because their propagation speed depends on wave number, with lower k (longer
wavelength) waves traveling faster. (Dispersion is a term borrowed from optics, where it
signifies separation of different colors due to the speed of light in a medium depending on
the wavelength.) Thus, a concentrated wave packet made up of many different wavelengths
(or frequencies) will not maintain a constant waveform or shape. Instead, it will disperse or
spread out as it travels. The longer wavelength components will travel faster than the shorter
wavelength ones so that an initial impulse evolves into a wide wave train. This is precisely
what happens when an object is dropped onto the surface of a quiescent pool, pond, or lake.
The radial extent of the circular waves increases with time, and the longest wavelengths
appear farthest from the point of impact while the shortest wavelengths are seen closest to
the point of impact.

The rest of this section covers some implications of the linear surface-wave solution (7.26)
and the dispersion relation (7.28). Given the ease with which it can be measured, the pressure
below the liquid surface is considered first. In particular, the time-dependent perturbation
pressure,

p0h pþ rgz, (7.30)

produced by surface waves is of interest. Using this and (7.26) in the linearized Bernoulli
equation (7.20) leads to

p0 ¼ �r
vf

vt
¼ r

au2

k

coshðkðzþHÞÞ
sinhðkHÞ cosðkx� utÞ ¼ rga

coshðkðzþHÞÞ
coshðkHÞ cosðkx� utÞ, (7.31)

where the second equality follows when (7.28) is used to eliminate u2. The perturbation pres-
sure therefore decreases with increasing depth, and the extent of this decrease depends on
the wavelength through k.

Another interesting feature of linear surface waves is the fact that they travel and cause
fluid elements to move, but they do not cause fluid elements to travel. To ascertain what
happens when a linear surface wave passes, consider the fluid element that follows a path
xp(t) ¼ xp(t)ex þ zp(t)ez. The path-line equations (3.8) for this fluid element are

dxpðtÞ
dt

¼ uðxp, zp, tÞ, and
dzpðtÞ
dt

¼ wðxp, zp, tÞ, (7.32)
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which imply:

dxp
dt

¼ au
cosh

�

k
�

zp þH
��

sinhðkHÞ cosðkxp � utÞ, and dzp
dt

¼ au
sinh

�

k
�

zp þH
��

sinhðkHÞ sinðkxp � utÞ, (7.33)

when combined with (7.27). To be consistent with the small amplitude approximation, these
equations can be linearized by setting xp(t) ¼ x0 þ x(t) and zp(t) ¼ z0 þ z(t), where (x0, z0) is
the average fluid element location and the element excursion vector (x, z) (see Figure 7.3)
is assumed to be small compared to the wavelength. Thus, the linearized versions of (7.33)
are obtained by evaluating the right side of each equation at (x0, z0):

dx

dt
y au

coshðkðz0 þHÞÞ
sinhðkHÞ cosðkx0 � utÞ, and dz

dt
y au

sinhðkðz0 þHÞÞ
sinhðkHÞ sinðkx0 � utÞ,

(7.34a, 7.34b)

where x0 and z0 have been assumed independent of time. This linearization is valid when the
velocity of the fluid element along its path is nearly equal to the fluid velocity at (x0, z0) at that
instant. It is accurate when a � l. The equations (7.34a, 7.34b) are reminiscent of those in
Example 3.1, and are readily time-integrated:

xy� a
coshðkðz0 þHÞÞ

sinhðkHÞ sinðkx0 �utÞ, and zy a
sinhðkðz0 þHÞÞ

sinhðkHÞ cosðkx0 �utÞ: (7.35a, 7.35b)

Here we note that x(t) and z(t) are entirely oscillatory. Neither contains a term that increases
with time so the assumption that x0 and z0 are time independent is self consistent when a� l.
Elimination of the phase (kx0 � ut) from (7.35a, 7.35b) gives:

x2
�

a
coshðkðz0 þHÞÞ

sinhðkHÞ
�2

þ z2
�

a
sinhðkðz0 þHÞÞ

sinhðkHÞ
�2

¼ 1,

,,

(7.36)

FIGURE 7.3 Orbit of a fluid particle below a linear surface wave. The average position of the particle is (x0, z0),
and x(t) and z(t) are small time-dependent displacements in the horizontal and vertical directions, respectively.
When the surface wave is sinusoidal, travels to the right, and has small amplitude, the fluid particles below the
surface traverse closed elliptical orbits in the clockwise direction.
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which represents an ellipse. Both the semi-major axis, acosh[k(z0 þ H)]/sinh(kH), and the
semi-minor axis, asinh[k(z0 þH)]/sinh(kH), decrease with depth, with the minor axis vanish-
ing at z0 ¼ �H (Figure 7.4b). The distance between foci remains constant with depth. Equa-
tions (7.35a, 7.35b) show that the phase of the motion is independent of z0, so fluid elements
in any vertical column move in phase. That is, if one of them is at the top of its orbit, then all
elements at the same x0 are at the top of their orbits.

Streamlines may be found from the stream function j, which can be determined by inte-
grating the velocity component equations vj/vz ¼ u and evj/vx ¼ w when u and w are
given by (7.27):

j ¼ au

k

sinhðkðzþHÞÞ
sinhðkHÞ cosðkx� utÞ (7.37)

(Exercise 7.4). To understand the streamline structure, consider a particular time, t ¼ 0, when

jfsin kðzþHÞcos kx:
It is clear that j ¼ 0 at z ¼ �H, so that the bottom wall is a part of the j ¼ 0 streamline.
However, j is also zero at kx ¼ �p/2, �3p/2, . for any z. At t ¼ 0 and at these values of
kx, h from (7.2) vanishes. The resulting streamline pattern is shown in Figure 7.5. It is seen
that the velocity is in the direction of propagation (and horizontal) at all depths below the crests,
and opposite to the direction of propagation at all depths below troughs.

FIGURE 7.4 Fluid
particle orbits caused by
a linear sinusoidal surface
wave traveling to the right
for three liquid depths. (a)
When the liquid is deep
and tanh(kH) z 1, then
particle orbits are circular
and decrease in size with
increasing depth. (b) At
intermediate depths, the
particle orbits are broad
ellipses that narrow and
contract with increasing
depth. (c)When thewater
is shallow and tanh(kH)
z sinh(kH) z kH, the
orbits are thin ellipses
that become thinner with
increasing depth.
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Surface gravity waves possess kinetic energy in the motion of the fluid and potential
energy in the vertical deformation of the free surface. The kinetic energy per unit horizontal
area, Ek, is found by integrating over the depth and averaging over a wavelength:

Ek ¼
r

2l

Z l

0

Z 0

�H
ðu2 þ w2Þ dz dx:

Here the z-integral is taken from z ¼ eH to z ¼ 0, consistent with the linearization performed
to reach (7.26); integrating from z ¼ eH to z ¼ h merely introduces a higher-order term.
Substitution of the velocity components from (7.27) gives:

Ek ¼
ru2

2 sinh2 kH

�

1

l

Z l

0
a2cos2 ðkx� utÞ dx

Z 0

�H
cosh2 kðzþHÞ dz

þ 1

l

Z l

0
a2sin2ðkx� utÞ dx

Z 0

�H
sinh2 kðzþHÞ dz

�

:

(7.38)

In terms of free-surface displacement h, the x-integrals in (7.38) can be written as

1

l

Z l

0
a2 cos2 ðkx� utÞ dx ¼ 1

l

Z l

0
a2 sin2 ðkx� utÞ dx ¼ 1

l

Z l

0
h2dx ¼ h2,

where h2 is the mean-square vertical surface displacement. The z-integrals in (7.38) are easy
to evaluate by expressing the hyperbolic functions in terms of exponentials. Using the disper-
sion relation (7.28), (7.38) finally becomes

Ek ¼
1

2
rgh2, (7.39)

which is the kinetic energy of the wave motion per unit horizontal area.

FIGURE 7.5 Instantaneous
streamline pattern for a sinu-
soidal surface wave propa-
gating to the right. Here the
j ¼ 0 streamline follows the
bottom and jumps up to contact
the surface where h ¼ 0. The
remaining streamlines start and
end on the liquid surface with
purely horizontal motion found
in the þx direction below
a wave crest and in ex direction
below a wave trough.
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The potential energy Ep of the wave system is defined as the work done per unit area to
deform a horizontal free surface into the disturbed state. It is therefore equal to the difference
of potential energies of the system in the disturbed and undisturbed states. As the potential
energy of an element in the fluid (per unit length in y) is rgz dx dz (Figure 7.6), Ep can be calcu-
lated as

Ep ¼ rg

l

Z l

0

Z h

�H
z dz dx� rg

l

Z l

0

Z 0

�H
z dz dx, ¼ rg

l

Z l

0

Z h

0
z dz dx ¼ rg

2l

Z l

0
h2dx: (7.40)

(An easier way to arrive at the expression for Ep is to note that the potential energy increase
due to wave motion equals the work done in raising column A in Figure 7.6 to the location of
column B, and integrating over half the wavelength. This is because an interchange of A and B
over half a wavelength automatically forms a complete wavelength of the deformed surface.
The mass (per unit length in y) of column A is rhdx, and the center of gravity is raised by h

when A is taken to B. This agrees with the last form in (7.40).) Equation (7.40) can also be
written in terms of the mean square displacement as

Ep ¼ 1

2
rgh2: (7.41)

Thus, the average kinetic and potential energies are equal. This is called the principle of equi-
partition of energy and is valid in conservative dynamical systems undergoing small oscilla-
tions that are unaffected by planetary rotation. However, it is not valid when Coriolis
forces are included, as described in Chapter 13. The total wave energy in the water column
per unit horizontal area is

E ¼ Ep þ Ek ¼ rgh2 ¼ 1

2
rga2, (7.42)

where the last form in terms of the amplitude a is valid if h is assumed sinusoidal, since the
average over a wavelength of the square of a sinusoid is ½.

Next, consider the rate of transmission of energy due to a single sinusoidal component of
wave number k. The energy flux across the vertical plane x ¼ 0 is the pressure work done by

FIGURE 7.6 Calculation
of potential energy of a fluid
column. Here work must be
done to push the liquid sur-
face down below z ¼ 0 (A),
and lift the liquid surface up
above z ¼ 0 (B).
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the fluid in the region x< 0 on the fluid in the region x> 0. The time average energy flux F per
unit length of crest is (writing p as the sum of a perturbation p0 and a background pressure
�rgz):

F ¼
	Z 0

�H
pu dz




¼
	Z 0

�H
p0u dz




� rghui
Z 0

�H
z dz ¼

	Z 0

�H
p0u dz




, (7.43)

where h i denotes an average over a wave period, and we have used the fact that hui ¼ 0.
Substituting for p0 from (7.31) and u from (7.28), (7.43) becomes

F ¼ hcos2 ðkx� utÞi ra2u3

ksinh2kH

Z 0

�H
cosh2 kðzþHÞ dz:

The time average of cos2(kx � ut) is ½, and the z-integral can be carried out by writing it in
terms of exponentials, thus

F ¼
�

1

2
rga2

��

c

2

�

1þ 2kH

sinh2kH

��

: (7.44)

The first factor is the wave energy per unit area given in (7.42). Therefore, the second factor
must be the speed of propagation of the wave energy of component k. This energy propaga-
tion speed is called the group speed, and is further discussed in Section 7.5.

Approximations for Deep and Shallow Water

The preceding analysis is applicable for any value of H/l. However, interesting simplifi-
cations are provided in the next few paragraphs for deep water, H=l[1, and shallow water,
H=l � 1.

Consider deep water first. The general expression for phase speed is (7.29), but we know
that tanh(x) / 1 for x / N (Figure 7.7). However, x need not be very large for this approx-
imation to be valid, because tanh(x) ¼ 0.96403 for x ¼ 2.0. It follows that, with 2% accuracy,
(7.29) can be approximated by

c ¼
ffiffiffiffiffiffiffi

g=k
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

gl=2p
q

(7.45)

forH> 0.32l (corresponding to kH> 2.0). Surface waves are therefore classified as deep-water
waves if the depth is more than one-third of the wavelength. Here, it is clear that deep-water
waves are dispersive since their phase speed depends on wavelength.

A dominant period of wind-generated surface gravity waves in the ocean is ~10 s, which,
via the dispersion relation (7.28), corresponds to a wavelength of 150 m. The water depth on
a typical continental shelf is ~100 m, and in the open ocean it is ~4 km. Thus, the dominant
wind waves in the ocean, even over the continental shelf, act as deep-water waves and do not
feel the effects of the ocean bottom until they arrive near a coastline. This is not true of the
very long wavelength gravity waves or tsunamis generated by tidal forces or earthquakes.
Such waves may have wavelengths of hundreds of kilometers.

In deep water, the semi-major and semi-minor axes of particle orbits produced by small-
amplitude gravity waves are nearly equal to aekz since
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coshðkðzþHÞÞ
sinhðkHÞ z

sinhðkðzþHÞÞ
sinhðkHÞ z ekz

for kH > 2.0, so the deep-water wave-induced fluid particle motions are:

xy � aekz0 sinðkx0 � utÞ, and zy aekz0 cosðkx0 � utÞ: (7.46)

The orbits are circles (Figure 7.4a). At the surface, their radius is a, the amplitude of the wave.
The fluid velocity components for deep-water waves are

u ¼ auekzcosðkx� utÞ, and w ¼ auekzsinðkx� utÞ: (7.47)

At a fixed spatial location, the velocity vector rotates clockwise (for a wave traveling in the
positive x direction) at frequency u, while its magnitude remains constant at auekz.

For deep-water waves, the perturbation pressure from (7.31) simplifies to

p0 ¼ rgaekzcosðkx� utÞ, (7.48)

which shows the wave-induced pressure change decays exponentially with depth, reaching
4% of its surface magnitude at a depth of l/2. Thus, a bottom-mounted sensor used to record

FIGURE 7.7 Behavior of hyperbolic functions cosh(x), sinh(x), and tanh(x) vs. x. For small x, cosh(x)z 1 and
sinh(x)z tanh(x)z x. For large x, cosh(x)z sinh(x) and tanh(x)z 1.
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wave-induced pressure fluctuations will respond as a low-pass filter. Its signal will favor long
waves while rejecting short ones.

The shallow water limit is also important and interesting. We know that tanh(x) z x as
x / 0 (Figure 7.7), so for H=l � 1:

tanhð2pH=lÞ z 2pH=l,

in which case the phase speed from (7.29) simplifies to

c ¼ ffiffiffiffiffiffiffi

gH
p

, (7.49)

and this matches the control volume result from Example 4.3. The approximation gives better
than 3% accuracy if H < 0.07l. Therefore, surface waves are regarded as shallow-water waves
only if they are 14 times longer than the water depth. For these waves, (7.49) shows that the
wave speed increases with water depth, and that it is independent of wavelength, so shallow-
water waves are nondispersive.

To determine the approximate form of particle orbits for shallow-water waves, substitute
the following approximations into (7.35):

coshðkðzþHÞÞy 1, sinhðkðzþHÞÞy kðzþHÞ, and sinhðkHÞy kH:

The particle excursions then become

xy � a

kH
sinðkx0 � utÞ, and zy a

�

1þ z

H

�

cosðkx0 � utÞ: (7.50)

These represent thin ellipses (Figure 7.4c), with a depth-independent semi-major axis a/kH
and a semi-minor axis a(1 þ z/H) that linearly decreases to zero at the bottom wall.

From (7.27), the velocity field is

u ¼ au

kH
cosðkx� utÞ, and w ¼ au

�

1þ z

H

�

sinðkx� utÞ, (7.51)

which shows that the vertical component is much smaller than the horizontal component.
The pressure change from the undisturbed state is found from (7.31) to be

p0 ¼ rga cosðkx� utÞ ¼ rgh, (7.52)

where (7.2) has been used to express the pressure change in terms of h. This shows that the
pressure change at any point is independent of depth, and equals the hydrostatic increase of
pressure due to the surface elevation change h. The pressure field is therefore completely hydro-
static in shallow-water waves. Vertical accelerations are negligible because of the small w-field.
For this reason, shallow water waves are also called hydrostatic waves. Any worthwhile pres-
sure sensor mounted on the bottom will sense these waves.

The depth-dependent wave speed (7.49) in shallow water leads to the phenomenon of
shallow-water wave refraction observed at coastlines around the world. Consider a sloping
beach, with depth contours parallel to the coastline (Figure 7.8). Assume that waves are prop-
agating toward the coast from the deep ocean, with their crests at an angle to the coastline.
Sufficiently near the coastline they begin to feel the effect of the bottom and finally become
shallow-water waves. Their frequency does not change along the path, but their speed of
propagation c ¼ (gH)1/2 and their wavelength l become smaller. Consequently, the crest
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lines, which are perpendicular to the local direction of c, tend to become parallel to the coast.
This is why the waves coming toward a gradually sloping beach always seem to have their
crests parallel to the coastline.

An interesting example of wave refraction occurs when a deep-water wave train with
straight crests approaches an island (Figure 7.9). Assume that the water gradually becomes
shallower as the island is approached, and that the constant depth contours are circles

FIGURE 7.9 Refraction of surface gravity waves approaching a circular island with a gradually sloping beach.
Crest lines are shown and are observed to travel toward the island, even on its shadow side A. Reprinted with the
permission of Mrs. Dorothy Kinsman Brown: B. Kinsman, Wind Waves, Prentice-Hall, Englewood Cliffs, NJ, 1965.

FIGURE 7.8 Refraction of a surface gravity wave approaching a sloping beach caused by changes in depth. In
deep water, wave crests are commonly misaligned with isobaths. However, as a wave approaches the shore from any
angle, the portion of the wave in shallower water will be slowed compared to that in deeper water. Thus, the wave
crests will rotate and tend to become parallel to the shore as they approach it.
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concentric with the island. Figure 7.9 shows that the waves always come in toward the island,
even on the shadowed-side marked A.

The bending of wave paths in an inhomogeneous medium is called wave refraction. In this
case the source of inhomogeneity is the spatial dependence ofH. The analogous phenomenon
in optics is the bending of light due to density changes in its path.

7.3. INFLUENCE OF SURFACE TENSION

As described in Section 1.6, the interface between two immiscible fluids is in a state of
tension. The tension acts as another restoring force on surface deformation, enabling the
interface to support waves in a manner analogous to waves on a stretched membrane or
string. Waves due to the presence of surface tension are called capillary waves. Although
gravity is not needed to support these waves, the existence of surface tension alone without
gravity is uncommon in terrestrial environments. Thus, the preceding results for pure gravity
waves are modified to include surface tension in this section.

As shown in Section 4.10, there is a pressure difference Dp across a curved interface with
nonzero surface tension s. When the surface’s principal radii of curvature are R1 and R2, this
pressure difference is

Dp ¼ sð1=R1 þ 1=R2Þ, (1.5)

where the pressure is greater on the side of the surface with the centers of curvature of the
interface. This pressure difference modifies the free-surface boundary condition (7.19).

For straight-crested surface waves that produce fluid motion in the x-z plane, there is no
variation in the y direction, so one of the radii of curvature is infinite, and the other, denoted
R, lies in the x-z plane. Thus, if the pressure above the liquid is atmospheric, pa, then pressure
p in the liquid at the surface z ¼ h can be found from (1.5):

pa � ðpÞz¼h¼ s
1

R
¼ s

v2h=vx2
h

1þ ðvh=vxÞ2
i3=2

y s
v2h

vx2
, (7.53)

where the second equality follows from the definition of the curvature 1/R and the
final approximate equality holds when the liquid surface slope vh/vx is small. As before
we can choose p to be a gauge pressure and this means setting pa ¼ 0 in (7.53), which leaves

ðpÞz¼h¼ �s
v2h

vx2
, (7.54)

as the pressure-matching boundary condition at the liquid surface for small-slope surface
waves. As before, this can be combined with the linearized unsteady Bernoulli equation
(7.20) and evaluated on z ¼ 0 for small-slope surface waves:

�

vf

vt

�

z¼0

¼ s

r

v2h

vx2
� gh: (7.55)

The linear capillary-gravity, surface-wave solution now proceeds in an identical manner to
that for pure gravity waves, except that the pressure boundary condition (7.21) is replaced by
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(7.55). This modification only influences the dispersion relation u(k), which is found by
substitution of (7.2) and (7.26) into (7.55), to give

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

�

gþ sk2

r

�

tanhðkHÞ
s

, (7.56)

so the phase velocity is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

g

k
þ sk

r

�

tanh kH

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

gl

2p
þ 2ps

rl

�

tanh
2pH

l

s

: (7.57)

Aplot of (7.57) is shown in Figure 7.10. The primary effect of surface tension is to increase c
above its value for pure gravity waves at all wavelengths. This increase occurs because there
are two restoring forces that act together on the surface, instead of just one. However, the
effect of surface tension is only appreciable for small wavelengths. The nominal size of these
wavelengths is obtained by noting that there is a minimum phase speed at l ¼ lm, and
surface tension dominates for l < lm (Figure 7.10). Setting dc/dl ¼ 0 in (7.57), and assuming
deep water, H > 0.32l so tanh(2p H/l) z 1, produces:

cmin ¼
�

4gs

r

�1=4

at lm ¼ 2p

ffiffiffiffiffi

s

rg

r

: (7.58)

For an air-water interface at 20�C, the surface tension is s ¼ 0.073 N/m, giving

cmin ¼ 23:1 cm=s at lm ¼ 1:71 cm: (7.59)

FIGURE 7.10 Generic
sketch of the phase velocity
c vs. wavelength l for
waves on the surface of
liquid layer of depth H.
The phase speed of the
shortest waves is set by the
liquid’s surface tension s

and density r. The phase
speed of the longest waves
is set by gravity g and
depth H. In between these
limits, the phase speed has
a minimum that typically
occurs when the effects of
surface tension and gravity
are both important.
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Therefore, only short-wavelength waves (l < ~7 cm for an air-water interface), called ripples,
are affected by surface tension. The waves specified by (7.59) are readily observed as the
wave rings closest to the point of impact after an object is dropped onto the surface of a quies-
cent pool, pond, or lake of clean water. Surfactants and surface contaminants may lower s or
even introduce additional surface properties like surface viscosity or elasticity. Water surface
wavelengths below 4 mm are dominated by surface tension and are essentially unaffected by
gravity. From (7.57), the phase speed of pure capillary waves is

c ¼
ffiffiffiffiffiffiffiffiffi

2ps

rl

s

, (7.60)

where again tanh(2pH/l) z 1 has been assumed.

7.4. STANDING WAVES

The wave motion results presented so far are for one propagation direction (þx) as spec-
ified by (7.2). However, a small-amplitude sinusoidal wave with phase (kx þ ut) is an equally
valid solution of (7.11). Such a waveform,

hðx, tÞ ¼ a cos½kxþ ut�, (7.61)

only differs from (7.2) in its direction of propagation. Its wave crests move in the ex direction
with increasing time. Interestingly, nonpropagating waves can be generated by superposing
two waves with the same amplitude and wavelength that move in opposite directions. The
resulting surface displacement is

h ¼ acosðkx� utÞ þ a cosðkxþ utÞ ¼ 2a cos kx cos ut:

Here it follows that h ¼ 0 at kx ¼ �p/2, �3p/2, etc., for all time. Such locations of zero
surface displacement are called nodes. In this case, deflections of the liquid surface do not
travel. The surface simply oscillates up and down at frequency u with a spatially varying
amplitude, keeping the nodal points fixed. Such waves are called standing waves. The corre-
sponding stream function, a direct extension of (7.37), includes both the cos(kx � ut) and
cos(kx þ ut) components:

j ¼ au

k

sinh kðzþHÞ
sinh kH

½cosðkx� utÞ � cosðkxþ utÞ� ¼ 2au

k

sinh kðzþHÞ
sinh kH

sin kx sin ut: (7.62)

The instantaneous streamline pattern shown in Figure 7.11 should be compared with the
streamline pattern for a propagating wave (Figure 7.5).

Standing waves may form in a limited body of water such as a tank, pool, or lake when
traveling waves reflect from its walls, sides, or shores. A standing-wave oscillation in
a lake is called a seiche (pronounced “saysh”), in which only certain wavelengths and
frequencies u (eigenvalues) are allowed by the system. Consider a lake of length L with
uniform depth H and vertical shores (walls), and assume that the waves are invariant along
y. The possible wavelengths are found by setting u ¼ 0 at the two walls. Here, u ¼ vj/vz, so
(7.62) gives
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u ¼ 2au
cosh kðzþHÞ

sinh kH
sin kx sin ut: (7.63)

Taking the walls at x ¼ 0 and L, the condition of no flow through the walls requires sin(kL) ¼ 0,
that is,

kL ¼ ðnþ 1Þp n ¼ 0; 1; 2;.,

which gives the allowable wavelengths as

l ¼ 2L

nþ 1
: (7.64)

FIGURE 7.12 Distributions of horizontal velocity u for the first two normal modes in a lake or reservoir with
vertical sides. Here the boundary conditions require u ¼ 0 on the vertical sides. These distributions are consistent
with the streamline pattern of Figure 7.11.

FIGURE 7.11 Instantaneous streamline pattern in a standing surface gravity wave. Here the j ¼ 0 streamline
follows the bottom and jumps up to contact the surface at wave crests and troughs where the horizontal velocity is
zero. If this standing wave represents the n ¼ 0 mode of a reservoir of length L with vertical walls, then L ¼ l/2 is
the distance between a crest and a trough. If it represents the n ¼ 1 mode, then L ¼ l is the distance between
successive crests or successive troughs.
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The largest possible wavelength is 2L and the next smaller is L (Figure 7.12). The allowed
frequencies can be found from the dispersion relation (7.28), giving

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pgðnþ 1Þ
L

tanh

�ðnþ 1ÞpH
L

�

s

, (7.65)

which are the natural frequencies of the lake.

7.5. GROUP VELOCITY, ENERGY FLUX, AND DISPERSION

Avariety of interesting phenomena take place when waves are dispersive and their phase
speed depends on wavelength. Such wavelength-dependent propagation is common for
waves that travel on interfaces between different materials (Graff, 1975). Examples are Ray-
leigh waves (vacuum and a solid), Stonely waves (a solid and another material), or interface
waves (two different immiscible liquids). Here we consider only air-water interface waves
and emphasize deep-water gravity waves for which c is proportional to

ffiffiffi

l
p

:
In a dispersive system, the energy of a wave component does not propagate at the phase

velocity c ¼ u/k, but at the group velocity defined as cg ¼ du/dk. To understand this, consider
the superposition of two sinusoidal wave components of equal amplitude but slightly
different wave number (and consequently slightly different frequency because u ¼ u(k)).
The waveform of the combination is

h ¼ a cosðk1x� u1tÞ þ a cosðk2x� u2tÞ:
Applying the trigonometric identity for the sum of cosines of different arguments, we obtain

h ¼ 2a cos

�

1

2
Dkx� 1

2
Dux

�

cosðkx� utÞ, (7.66)

where Dk ¼ k2 � k1 and Du ¼ u2 � u1, k ¼ (k1 þ k2)/2, and u ¼ (u1 þ u2)/2. Here,
cos(kx � ut) is a progressive wave with a phase speed of c ¼ u/k. However, its amplitude
2a is modulated by a slowly varying function cos[Dkx/2 � Dut/2], which has a large wave-
length 4p/Dk, a long period 4p/Du, and propagates at a speed (wavelength/period) of

cg ¼ Du=Dk ¼ du=dk, (7.67)

where the second equality holds in the limit as Dk and Du / 0. Multiplication of a rapidly
varying sinusoid and a slowly varying sinusoid, as in (7.66), generates repeating wave
groups (Figure 7.13). The individual wave crests (and troughs) propagate with the speed
c ¼ u/k, but the envelope of the wave groups travels with the speed cg, which is therefore
called the group velocity. If cg< c, then individual wave crests appear spontaneously at a nodal
point, proceed forward through the wave group, and disappear at the next nodal point. If, on
the other hand, cg > c, then individual wave crests emerge from a forward nodal point and
vanish at a backward nodal point.

Equation (7.67) shows that the group speed of waves of a certain wave number k is given
by the slope of the tangent to the dispersion curve u(k). In contrast, the phase velocity is given
by the slope of the radius or distance vector on the same plot (Figure 7.14).
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A particularly illuminating example of the idea of group velocity is provided by the
concept of a wave packet, formed by combining all wave numbers in a certain narrow band
dk around a central value k. In physical space, the wave appears nearly sinusoidal with wave-
length 2p/k, but the amplitude dies away over a distance proportional to 1/dk (Figure 7.15). If
the spectral width dk is narrow, then decay of the wave amplitude in physical space is slow.
The concept of such a wave packet is more realistic than the one in Figure 7.13, which is rather
unphysical because the wave groups repeat themselves. Suppose that, at some initial time,
the wave group is represented by

h ¼ aðxÞcos kx:
It can be shown (see, for example, Phillips, 1977, p. 25) that for small times, the subsequent
evolution of the wave profile is approximately described by

h ¼ aðx� cgtÞcosðkx� utÞ, (7.68)

where cg ¼ du/dk. This shows that the amplitude of a wave packet travels with the group speed. It
follows that cg must equal the speed of propagation of energy of a certain wavelength. The fact

FIGURE 7.14 Graphical depiction of the phase speed, c, and group speed, cg, on a generic plot of a gravity wave
dispersion relation, u(k) vs. k. If a sinusoidal wave has frequency u and wave number k, then the phase speed c is
the slope of the straight line through the points (0, 0) and (k, u), while the group speed cg is the tangent to the
dispersion relation at the point (k, u). For the dispersion relation depicted here, cg is less than c.

node

c
cg

2
12 a cos     (dk x td )

FIGURE 7.13 Linear com-
bination of two equal ampli-
tude sinusoids of nearly the
same frequency that form
a modulated wave train. Indi-
vidual wave crests or troughs
travel at the phase speed.
However, the nodal locations
which partition the wave train
into groups, travel at the
group speed.
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that cg is the speed of energy propagation is also evident in Figure 7.13 because the nodal
points travel at cg and no energy crosses nodal points.

For surface gravity waves having the dispersion relation (7.29), the group velocity is found
to be

cg ¼ c

2

�

1þ 2kH

sinhð2kHÞ
�

, (7.69)

which has two limiting cases:

cg ¼ c=2
�

deep water
�

, and cg ¼ c
�

shallow water
�

: (7.70)

The group velocity of deep-water gravity waves is half the deep-water phase speed while
shallow-water waves are nondispersive with c ¼ cg. For a linear nondispersive system, any
waveform preserves its shape as it travels because all the wavelengths that make up the
waveform travel at the same speed. For a pure capillary wave, the group velocity is
cg ¼ 3c/2 (Exercise 7.9).

The rate of energy transmission for gravity waves is given by (7.44), namely

F ¼ E
c

2

�

1þ 2kH

sinhð2kHÞ
�

¼ Ecg, (7.71)

where E ¼ rga2/2 is the average energy in the water column per unit horizontal area. This
signifies that the rate of transmission of energy of a sinusoidal wave component is wave energy times
the group velocity, and reinforces the interpretation of the group velocity as the speed of prop-
agation of wave energy.

In three dimensions, the dispersion relation u ¼ u(k, l,m) may depend on all three compo-
nents of the wave number vector K ¼ (k, l, m). Here, using index notation, the group velocity
vector is given by

cgi ¼
vu

vKi
,

so the group velocity vector is the gradient of u in the wave number space.
As mentioned in connection with (7.29) and (7.59), deep-water wave dispersion readily

explains the evolution of the surface disturbance generated by dropping a stone into a quies-
cent pool, pond, or lake. Here, the initial disturbance can be thought of as being composed of
a great many wavelengths, but the longer ones will travel faster. A short time after impact, at

FIGURE 7.15 A wave
packet composed of a
wave number lying in
a confined bandwidth dk.
The length of the wave
packet in physical space is
proportional to 1/dk. Thus,
narrowband packets are
longer than broadband
packets.
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t ¼ t1, the water surface may have the rather irregular profile shown in Figure 7.16. The
appearance of the surface at a later time t2, however, is more regular, with the longer compo-
nents (which travel faster) out in front. The waves in front are the longest waves produced by
the initial disturbance. Their length, lmax, is typically a few times larger than the dropped
object. The leading edge of the wave system therefore propagates at the group speed of these
wavelengths:

cg max ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

gl max

2p

r

:

Of course, pure capillary waves can propagate faster than this speed, but they may have
small amplitudes and are dissipated quickly. Interestingly, the region of the impact becomes
calm because there is a minimum group velocity of water waves due to the influence of
surface tension, namely 17.8 cm/s (Exercise 7.10). The trailing edge of the wave system there-
fore travels at speed

cg min ¼ 17:8 cm=s:

With cgmax > 17.8 cm/s for ordinary hand-size stones, the length of the disturbed region gets
larger, as shown in Figure 7.16. The wave heights become correspondingly smaller because
there is a fixed amount of energy in the wave system. (Wave dispersion, therefore, makes the
linearity assumptions more accurate.) The smoothing of the waveform and the spreading of
the region of disturbance continue until the amplitudes become imperceptible or the waves
are damped by viscous dissipation (Exercise 7.11). It is clear that the initial superposition of
various wavelengths, running for some time, will sort themselves from slowest to fastest traveling
components since the different sinusoidal components, differing widely in their wave
numbers, become spatially separated, with the slow ones close to the point of impact and

x

t3

t2

t1

cg xam, t3

cg nim, t3

FIGURE 7.16 Generic surface profiles at three successive times of the wave train produced by dropping a stone
into a deep quiescent pool. As time increases, the initial disturbance’s long-wave (low-frequency) components
travel faster than its short-wave (high-frequency) components. Thus, the wave train lengthens, the number of crests
and troughs increases, and amplitudes fall (to conserve energy).
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the fast ones further away. This is a basic feature of the behavior of dispersive wave
propagation.

In the case of deep-water surface waves described here, the wave group as a whole travels
slower than individual crests. Therefore, if we try to follow the last crest at the rear of the
train, quite soon it is the second one from the rear; a new crest has appeared behind it. In
fact, new crests are constantly appearing at the rear of the train, propagating through the
train, and finally disappearing at the front of the train. This is because, by following a partic-
ular crest, we are traveling at roughly twice the speed at which the wave energy is traveling.
Consequently, we do not see a wave of fixed wavelength if we follow a particular crest. In fact, an
individual wave constantly becomes longer as it propagates through the train. When its
length becomes equal to the longest wave generated initially, it cannot evolve anymore
and dies out. Clearly, the waves at the front of the train are the longest Fourier components
present in the initial disturbance. In addition, the temporal frequencies of the highest and
lowest speed wave components of the wave group are typically different enough so that
the number of wave crests in the train increases with time.

Another way to understand the group velocity is to consider the k or l determined by an
observer traveling at speed cg with a slowly varying wave train described by

h ¼ aðx, tÞ cos½qðx, tÞ�, (7.72)

in an otherwise quiescent pool of water with constant depthH. Here a(x, t) is a slowly varying
amplitude and q(x, t) is the local phase. For a specific wave number k and frequency u, the
phase is q ¼ kx � ut. For a slowly varying wave train, define the local wave number k(x, t)
and the local frequency u(x, t) as the rate of change of phase in space and time, respectively,

kðx, tÞh ðv=vxÞqðx, tÞ and uðx, tÞh � ðv=vtÞqðx, tÞ: (7.73)

Cross differentiation leads to

vk=vtþ vu=vx ¼ 0, (7.74)

but when there is a dispersion relationship u ¼ u(k), the spatial derivative of u can be
rewritten using the chain rule, vu/vx ¼ (du/dk)vk/vx, so that (7.74) becomes

vk

vt
þ cg

vk

vx
¼ 0; (7.75)

where cg ¼ du/dk. The left-hand side of (7.75) is similar to the material derivative and gives
the rate of change of k as seen by an observer traveling at speed cg, which in this case is zero.
Therefore, such an observer will always see the same wavelength. The group velocity is there-
fore the speed at which wave numbers are advected. This is shown in the xt-diagram of Figure 7.17,
where wave crests follow lines with dx/dt ¼ c and wavelengths are preserved along the lines
dx/dt ¼ cg. Note that the width of the disturbed region, bounded by the first and last thick
lines in Figure 7.17, increases with time, and that the crests constantly appear at the back
of the group and vanish at the front.

Now consider the same traveling observer, but allow there to be smooth variations in
the water depth H(x). Such depth variation creates an inhomogeneous medium when
the waves are long enough to feel the presence of the bottom. Here, the dispersion rela-
tionship will be
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u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk tanh ½kHðxÞ�
q

,

which is of the form

u ¼ uðk,xÞ: (7.76)

Thus, a local value of the group velocity can be defined:

vu
�

k,x
�

vk ¼ cg, (7.77)

which on multiplication by vk/vt gives

cg
vk

vt
¼ vu

vk

vk

vt
¼ vu

vt
: (7.78)

Multiplying (7.74) by cg and using (7.78) we obtain

vu

vt
þ cg

vu

vx
¼ 0: (7.79)

In three dimensions, this implies

vu=vtþ cg,Vu ¼ 0,

which shows that u, the frequency of the wave, remains constant to an observer traveling
with the group velocity in an inhomogeneous medium.

Summarizing, an observer traveling at cg in a homogeneous medium sees constant values
of k, u(k), c, and cg(k). Consequently, ray paths describing group velocity in the x-t plane are
straight lines (Figure 7.17). In an inhomogeneous medium u remains constant along the lines
dx/dt ¼ cg, but k, c, and cg can change. Consequently, ray paths are not straight in this case
(Figure 7.18).

FIGURE 7.17 Propagation of
a wave group in a homogeneous
medium, represented on an x-t plot.
Thin lines indicate paths taken by
wave crests, and thick lines repre-
sent paths along which k and u are
constant. M. J. Lighthill, Waves in
Fluids, 1978, reprinted with the

permission of Cambridge University
Press, London.
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7.6. NONLINEAR WAVES IN SHALLOW AND DEEP WATER

In the first five sections of this chapter, the wave slope has been assumed to be small
enough so that neglect of higher-order terms in the Bernoulli equation and application of
the boundary conditions at z ¼ 0 instead of at the free surface z ¼ h are acceptable approxi-
mations. One consequence of such linear analysis has been that shallow-water waves of arbi-
trary shape propagate unchanged in form. The unchanging form results from the fact that all
wavelengths composing the initial waveform propagate at the same speed, c ¼ (gH)1/2,
provided all the sinusoidal components satisfy the shallow-water approximation kH � 1.
Such waveform invariance no longer occurs if finite amplitude effects are considered. This
and several other nonlinear effects will also be discussed in this section.

Finite amplitude effects can be formally treated by the method of characteristics; this is dis-
cussed, for example, in Liepmann and Roshko (1957) and Lighthill (1978). Instead, a qualita-
tive approach is adopted here. Consider a finite amplitude surface displacement consisting of
a wave crest and trough, propagating in shallow-water of undisturbed depthH (Figure 7.19).
Let a little wavelet be superposed on the crest at point x0, at which the water depth is H0 and
the fluid velocity due to the wave motion is u(x0). Relative to an observer moving with the
fluid velocity u, the wavelet propagates at the local shallow-water speed c0 ¼ ffiffiffiffiffiffiffiffi

gH0p

: The
speed of the wavelet relative to a frame of reference fixed in the undisturbed fluid is therefore
c ¼ c0 þ u. It is apparent that the local wave speed c is no longer constant because c0(x) and
u(x) are variables. This is in contrast to the linearized theory in which u is negligible and c0
is constant because H0 z H.

Let us now examine the effect of variable phase speed on the wave profile. The value of c0
is larger for points near the wave crest than for points in the wave trough. From Figure 7.5 we

FIGURE 7.18 Propagation of a wave group in an inhomogeneous medium represented on an x-t plot. Only ray
paths along which u is constant are shown. M. J. Lighthill, Waves in Fluids, 1978, reprinted with the permission of

Cambridge University Press, London.
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also know that the fluid velocity u is positive (i.e., in the direction of wave propagation)
under a wave crest and negative under a trough. It follows that wave speed c is larger for
points on the crest than for points on the trough, so that the waveform deforms as it propa-
gates, the crest region tending to overtake the trough region (Figure 7.19).

We shall call the front face AB a compression region because the surface here is rising with
time and this implies an increase in pressure at any depth within the liquid. Figure 7.19
shows that the net effect of nonlinearity is a steepening of the compression region. For finite
amplitude waves in a nondispersive medium like shallowwater, therefore, there is an impor-
tant distinction between compression and expansion regions. A compression region tends to
steepen with time, while an expansion region tends to flatten out. This eventually would lead
to the wave shape shown at the top of Figure 7.19, where there are three values of surface
elevation at a point. While this situation is certainly possible and is readily observed as
plunging breakers develop in the surf zone along ocean coastlines, the actual wave dynamics
of such a situation lie beyond the scope of this discussion. However, even before the forma-
tion of a plunging breaker, the wave slope becomes infinite (profile at t2 in Figure 7.19), so that
additional physical processes including wave breaking, air entrainment, and foaming
become important, and the current ideal flow analysis becomes inapplicable. Once the
wave has broken, it takes the form of a front that propagates into still fluid at a constant speed
that lies between

ffiffiffiffiffiffiffiffiffi

gH1

p

and
ffiffiffiffiffiffiffiffiffi

gH2

p

, whereH1 andH2 are the water depths on the two sides of
the front (Figure 7.20). Such a wave is called a hydraulic jump, and it is similar to a shockwave in
a compressible flow. Here it should be noted that the t3 wave profile shown in Figure 7.19 is

t

x

t3

t2

t1

t0

( t,x 0)

´c

u

u

B

A

´x
η

FIGURE 7.19 Finite-amplitude surface wave profiles at four successive times. When the wave amplitude is
large enough, the fluid velocity below a crest or trough may be an appreciable fraction of the phase speed. This will
cause wave crests to overtake wave troughs and will steepen the compressive portion of the wave (section A-B at
time t1). As this steepening continues, the wave-compression surface slope may become very large (t2), or the wave
may overturn and become a plunging breaker (t3). Depending on the dynamics of the actual wave, the conditions
shown at t2 and t3 may or may not occur since additional nonlinear processes (not described here) may contribute to
the wave’s evolution after t1. If the waves were longitudinal (as in one-dimensional gas dynamics), the waveform at
t2 would represent a nascent shockwave, while the waveform at t3 would represent a fully formed shockwave and
would follow the dashed line to produce a single-valued profile.
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FIGURE 7.20 Schematic cross-section drawings of hydraulic jumps. (a) A stationary hydraulic jump formed at
the bottom of a damn’s spillway. (b) A stationary hydraulic jump and a stationary rectangular control volume with
vertical inlet surface (1) and vertical outlet surface (2). (c) A hydraulic jump moving into a quiescent fluid layer of
depth H1. The flow speed behind the jump is nonzero.
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not possible for longitudinal gas-dynamic compression waves. Such a profile instead leads to
a shockwave with a front shown by the dashed line.

To analyze a hydraulic jump, consider the flow in a shallow canal of depth H. If the flow
speed is u, we may define a dimensionless speed via the Froude number, Fr:

Frh u=
ffiffiffiffiffiffiffi

gH
p ¼ u=c: (4.104)

The Froude number is analogous to theMach number in compressible flow. The flow is called
supercritical if Fr > 1, and subcritical if Fr < 1. For the situation shown in Figure 7.20b, where
the jump is stationary, the upstream flow is supercritical while the downstream flow is
subcritical, just as a compressible flow changes from supersonic to subsonic by going through
a shockwave (see Chapter 15). The depth of flow is greater downstream of a hydraulic jump,
just as the gas pressure is greater downstream of a shockwave. However, dissipative
processes act within shockwaves and hydraulic jumps so that mechanical energy is lost in
both cases. An example of a stationary hydraulic jump is found at the foot of a dam, where
the flow almost always reaches a supercritical state because of the freefall (Figure 7.20a).
A tidal bore propagating into a river mouth is an example of a propagating hydraulic
jump. A circular hydraulic jump can be made by directing a vertically falling water stream
onto a flat horizontal surface (Exercise 4.22).

The planar hydraulic jump shown in cross section in Figure 7.20b can be analyzed by using
the dashed control volume shown, the goal being to determine how the depth ratio depends
on the upstream Froude number. As shown, the depth rises from H1 to H2 and the velocity
falls from u1 to u2. If the velocities are uniform through the depth and Q is the volume
flow rate per unit width normal to the plane of the paper, then mass conservation requires

Q ¼ u1H1 ¼ u2H2:

Conserving momentum with the same control volume via (4.17) with d/dt ¼ 0 and b ¼ 0
produces

rQðu2 � u1Þ ¼ 1

2
rg
�

H2
1 �H2

2

�

,

where the left-hand terms come from the outlet and inlet momentum fluxes, and the right-
hand terms are the hydrostatic pressure forces. Substituting u1 ¼ Q/H1 and u2 ¼ Q/H2 on
the right side yields:

Q2

�

1

H2
� 1

H1

�

¼ 1

2
g
�

H2
1 �H2

2

�

: (7.80)

After canceling out a common factor of H1 e H2, this can be rearranged to find:

�

H2

H1

�2

þH2

H1
� 2Fr21 ¼ 0,

where Fr21 ¼ Q2=gH3
1 ¼ u21=gH1: The physically meaningful solution is

H2

H1
¼ 1

2

�

� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8Fr21

q
�

: (7.81)
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For supercritical flows Fr1 > 1, for which (7.81) shows that H2 > H1, and this verifies that
water depth increases through a hydraulic jump.

Although a solution with H2 < H1 for Fr1 < 1 is mathematically allowed, such a solution
violates the second law of thermodynamics, because it implies an increase of mechanical
energy through the jump. To see this, consider the mechanical energy of a fluid particle at
the surface, E ¼ u2/2 þ gH ¼ Q2/2H2 þ gH. Eliminating Q by using (7.80) we obtain, after
some algebra,

E2 � E1 ¼ �ðH2 � H1ÞgðH2 � H1Þ2
4H1H2

:

This shows that H2 < H1 implies E2 > E1, which violates the second law of thermodynamics.
The mechanical energy, in fact, decreases in a hydraulic jump because of the action of viscosity.

Hydraulic jumps are not limited to air-water interfaces and may also appear at density
interfaces in a stratified fluid, in the laboratory as well as in the atmosphere and the ocean.
(For example, see Turner, 1973, Figure 3.11, for a photograph of an internal hydraulic jump
on the lee side of a mountain.)

In a nondispersive medium, nonlinear effects may continually accumulate until they
become large changes. Such an accumulation is prevented in a dispersive medium because
the different Fourier components propagate at different speeds and tend to separate from
each other. In a dispersive system, then, nonlinear steepening could cancel out the dispersive
spreading, resulting in finite amplitude waves of constant form. This is indeed the case. A
brief description of the phenomenon is given here; further discussion can be found in
Whitham (1974), Lighthill (1978), and LeBlond and Mysak (1978).

In 1847 Stokes showed that periodic waves of finite amplitude are possible in deep water.
In terms of a power series in the amplitude a, he showed that the surface deflection of irro-
tational waves in deep water is given by

h ¼ a cos kðx� ctÞ þ 1

2
ka2 cos 2kðx� ctÞ þ 3

8
k2a3 cos 3kðx� ctÞ þ., (7.82)

where the speed of propagation is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

k

�

1þ k2a2 þ.
�

r

: (7.83)

Equation (7.82) shows the first three terms in a Fourier series for the waveform h. The addi-
tion of Fourier components of different wavelengths in (7.82) shows that the wave profile h is
no longer exactly sinusoidal. The arguments in the cosine terms show that all the Fourier
components propagate at the same speed c, so that the wave profile propagates unchanged
in time. It has now been established that the existence of periodic wave trains of unchanging
form is a typical feature of nonlinear dispersive systems. Another important result, generally
valid for nonlinear systems, is that the wave speed depends on the amplitude, as in (7.83).

Periodic finite-amplitude irrotational waves in deep water are frequently called Stokes
waves. They have a flattened trough and a peaked crest (Figure 7.21). The maximum possible
amplitude is amax ¼ 0.07l, at which point the crest becomes a sharp 120� angle. Attempts at
generating waves of larger amplitude result in the appearance of foam (white caps) at these
sharp crests.
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When finite amplitude waves are present, fluid particles no longer trace closed orbits, but
undergo a slow drift in the direction of wave propagation. This is called Stokes drift. It is
a second-order or finite-amplitude effect that causes fluid particle orbits to no longer close
and instead take a shape like that shown in Figure 7.22. The mean velocity of a fluid particle
is therefore not zero, although the mean velocity at a fixed point in space must be zero if the
wave motion is periodic. The drift occurs because the particle moves forward faster when at
the top of its trajectory than it does backward when at the bottom of its trajectory.

To find an expression for the Stokes drift, start from the path-line equations (7.32) for the
fluid particle trajectory xp(t) ¼ xp(t)ex þ zp(t)ez, but this time include first-order variations in
the u and w fluid velocities via a first-order Taylor series in x ¼ xp e x0, and z ¼ zp e z0:

dxp
�

t
�

dt
¼ uðxp, zp, tÞ ¼ uðx0, z0, tÞ þ x

�

vu

vx

�

x0, z0
þ z

�

vu

vz

�

x0, z0
þ., (7.84a)

and

dzp
�

t
�

dt
¼ wðxp, zp, tÞ ¼ wðx0, z0, tÞ þ x

�

vw

vx

�

x0, z0
þ z

�

vw

vz

�

x0, z0
þ., (7.84b)

where (x0, z0) is the fluid element location in the absence of wave motion. The Stokes drift is
the time average of (7.84a). However, the time average of u(x0, z0, t) is zero; thus, the Stokes
drift is given by the time average of the next two terms of (7.84a). These terms were neglected
in the fluid particle trajectory analysis in Section 7.2, and the result was closed orbits.

FIGURE 7.21 The waveform of a Stokes wave. Stokes waves are finite-amplitude, periodic irrotational waves in
deep water with crests that are more pointed and troughs that are broader than sinusoidal waves.

FIGURE 7.22 The Stokes
drift. The drift velocity uL is
a finite-amplitude effect and
occurs because near-surface fluid
particlepathsareno longerclosed
orbits. The mean position of an
initially vertical line of fluid
particles extending downward
from the liquid surface will
increasingly bend in the direction
of wave propagation with in-
creasing time.
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For deep-water gravity waves, the Stokes drift speed uL can be estimated by evaluating the
time average of (7.84a) using (7.46) and (7.47) to produce:

uL ¼ a2uke2kz0 , (7.85)

which is the Stokes drift speed in deep water. Its surface value is a2uk, and the vertical decay
rate is twice that for the fluid velocity components. It is therefore confined very close to the
sea surface. For arbitrary water depth, (7.85) may be generalized to

uL ¼ a2uk
coshð2kðz0 þHÞÞ

2 sinh2ðkHÞ (7.86)

(Exercise 7.14). As might be expected, the vertical component of the Stokes drift is zero.
The Stokes drift causes mass transport in the fluid so it is also called the mass transport

velocity. A vertical column of fluid elements marked by some dye gradually bends near the
surface (Figure 7.22). In spite of this mass transport, the mean fluid velocity at any point
that resides within the liquid for the entire wave period is exactly zero (to any order of accu-
racy), if the flow is irrotational. This follows from the condition of irrotationality vu/vz ¼ vw/
vx, a vertical integral which gives

u ¼ ujz¼�H þ
Z z

�H

vw

vx
dz,

showing that the mean of u is proportional to the mean of vw/vx over a wavelength, which is
zero for periodic flows.

There are also a variety of wave analyses for specialized circumstances that involve disper-
sion, nonlinearity, and viscosity to varying degrees. So, before moving on to internal waves,
one of the classical examples of this type of specialization is presented here for nonlinear
waves that are slightly dispersive. In 1895 Korteweg and de Vries showed that waves with
l/H in the range between 10 and 20 satisfy:

vh

vt
þ c0

vh

vx
þ 3

2
c0
h

H

vh

vx
þ 1

6
c0H

2v
3h

vx3
¼ 0; (7.87)

where c0 ¼
ffiffiffiffiffiffiffi

gH
p

: This is the Kortewegede Vries equation. The first two terms are linear
and nondispersive. The third term is nonlinear and represents finite amplitude effects. The
fourth term is linear and results from weak dispersion due to the water depth not being
shallow enough. If the nonlinear term in (7.87) is neglected, then setting h ¼ a cos(kx � ut)
leads to the dispersion relation c ¼ c0 (1 � (1/6)k2H2). This agrees with the first two terms
in the Taylor series expansion of the dispersion relation c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg=kÞtanh kH

p

for small kH,
verifying that weak dispersive effects are indeed properly accounted for by the last term
in (7.87).

The ratio of nonlinear and dispersion terms in (7.88) is

h

H

vh

vx
H2v

3h

vx3
w

al2

H3
:

,

When al2/H3 is larger than ~16, nonlinear effects sharpen the forward face of the wave,
leading to a hydraulic jump, as discussed earlier in this section. For lower values of
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al2/H3, a balance can be achieved between nonlinear steepening and dispersive spreading,
and waves of unchanging form become possible.

Analysis of the Kortewegede Vries equation shows that two types of solutions are then
possibleda periodic solution and a solitary wave solution. The periodic solution is called
a cnoidal wave, because it is expressed in terms of elliptic functions denoted by cn(x). Its wave-
form is shown in Figure 7.23. The other possible solution of the Kortewegede Vries equation
involves only a single wave crest and is called a solitary wave or soliton. Its profile is given by

h ¼ a sech2
"

�

3a

4H3

�1=2

ðx� ctÞ
#

, (7.88)

where the speed of propagation is

c ¼ c0
�

1þ a

2H

�

,

showing that the propagation velocity increases with amplitude. The validity of (7.88) can be
checked by substitution into (7.87) (Exercise 7.15). The waveform of the solitary wave is
shown in Figure 7.23.

An isolated hump propagating at constant speed with unchanging form and in fairly
shallow water was first observed experimentally by S. Russell in 1844. Solitons have been
observed to exist not only as surface waves, but also as internal waves in stratified fluids,
in the laboratory as well as in the ocean (see Turner, 1973, Figure 3.3).

7.7. WAVES ON A DENSITY INTERFACE

To this point, waves at the surface of a liquid have been considered without regard to the
gas (or liquid) above the surface. Yet, gravity and capillary waves can also exist at the

FIGURE 7.23 Finite-amplitude waves of unchanging form: (a) cnoidal waves and (b) a solitarywave. In both cases,
the processes of nonlinear steepening and dispersive spreading balance so that the waveform is unchanged.
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interface between two immiscible liquids of different densities. A sharp-density gradient can
be readily generated in the laboratory (at least temporarily) between gases with different
densities, and between oil and water. In the ocean sharp-density gradients may be generated
by solar heating of the upper layer, or in an estuary (that is, a river mouth) or a fjord into
which fresh (less saline) river water flows over oceanic water, which is more saline and conse-
quently heavier. The basic situation can be idealized by considering a lighter fluid of density
r1 lying over a heavier fluid of density r2 (Figure 7.24).

For simplicity ignore interfacial (surface) tension, and assume that only small-slope linear
waves exist on the interface and that both fluids are infinitely deep, so that only those solu-
tions that decay exponentially from the interface are allowed. In this section and in the rest of
this chapter, complex notation will be used to ease the algebraic and trigonometric effort. This
means that (7.2) will be replaced by

zðx, tÞ ¼ Refa exp½iðkx� utÞ�g,
where Re{} is the operator that extracts the real part of the complex function in {}-braces, and
i ¼ ffiffiffiffiffiffiffi�1

p
as usual. When using complex numbers and variables in linear mathematical anal-

yses it is customary to drop Re{} and simply write

zðx, tÞ ¼ a exp½iðkx� utÞ� (7.89)

until reporting the final results when Re{} commonly reappears. Any analysis done with
(7.89) includes an imaginary part, sometimes denoted Im{}, that winds up being of no conse-
quence in the final results.

To determine wave properties in this situation, the Laplace equation for the velocity poten-
tial must be solved in both fluids subject to the continuity of p and w at the interface. The
equations are

v2f1

vx2
þ v2f1

vz2
¼ 0 and

v2f2

vx2
þ v2f2

vz2
¼ 0, (7.90)

subject to

f1/0 as z/N, (7.91)

f2/0 as z/�N, (7.92)

FIGURE 7.24 Internal wave at
a density interface between two
infinitely deep fluids. Here the hori-
zontal velocity is equal and opposite
above and below the interface, so
there is a time-dependent vortex
sheet at the interface.
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vf1

vz
¼ vf2

vz
¼ vz

vt
at z ¼ 0, and (7.93)

r1
vf1

vt
þ r1gz ¼ r2

vf2

vt
þ r2gz at z ¼ 0: (7.94)

Equation (7.93) follows from equating the vertical velocity of the fluid on both sides of the
interface to the rate of rise of the interface. Equation (7.94) follows from the continuity of pres-
sure across the interface in the absence of interfacial (surface) tension, s ¼ 0. As in the case of
surface waves, the boundary conditions are linearized and applied at z ¼ 0 instead of at z ¼ z.
Conditions (7.91) and (7.92) require that the solutions of (7.90) must be of the form

f1 ¼ A e�kzeiðkx�utÞ and
f2 ¼ B ekzeiðkx�utÞ,

because a solution proportional to ekz is not allowed in the upper fluid, and a solution propor-
tional to e�kz is not allowed in the lower fluid. Here the amplitudes A and B can be complex.
As in Section 7.2, the constants are determined from the kinematic boundary conditions
(7.93), giving

A ¼ �B ¼ iua=k:

The dynamic boundary condition (7.94) then leads to the dispersion relation

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gk

�

r2 � r1

r2 þ r1

�

s

¼ 3
ffiffiffiffiffi

gk
p

, (7.95)

where 32 h (r2 � r1)/(r2 þ r1) is a small number if the density difference between the two
liquids is small. The case of small density difference is relevant in geophysical situations;
for example, a 10�C temperature change causes the density of an upper layer of the ocean
to decrease by 0.3%. Equation (7.95) shows that waves at the interface between two liquids
of infinite thickness travel like deep-water surface waves, with u proportional to

ffiffiffiffiffi

gk
p

, but at
a frequency that is lower by the factor 3. In general, internal waves have a lower frequency and
slower phase speed than surface waves with the same wave number. As expected, (7.95) recovers
(7.45) as 3 / 1 when r1/r2 / 0.

The kinetic energy Ek per unit area of interface of the field can be found by integrating
r(u2 þ w2)/2 over the range z ¼ �N (Exercise 7.16):

Ek ¼
1

4
ðr2 � r1Þga2:

The potential energy can be calculated by finding the rate of work done in deforming a flat
interface to the wave shape. In Figure 7.25, this involves a transfer of column A of density r2
to location B, a simultaneous transfer of column B of density r1 to location A, and integrating
the work over half the wavelength, since the resulting exchange forms a complete wavelength;
see the previous discussion of Figure 7.6. The potential energy per unit horizontal area is
therefore

Ep ¼ 1

l

Z l=2

0
r2gz

2 dx� 1

l

Z l=2

0
r1gz

2 dx ¼ gðr2 � r1Þ
2l

Z l=2

0
z2 dx ¼ 1

4
ðr2 � r1Þga2:
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The total wave energy per unit horizontal area is

E ¼ Ek þ Ep ¼ 1

2
ðr2 � r1Þga2: (7.96)

In a comparison with (7.42), it follows that the amplitude of ocean internal waves is usually
much larger than those of surface waves for the same amount of energy per unit interface
area when (r2 � r1) � r2.

The horizontal velocity components in the two layers are

u1 ¼ vf1

vx
¼ �uae�kzeiðkx�utÞ and

u2 ¼ vf2

vx
¼ uaekzeiðkx�utÞ,

and are oppositely directed (Figure 7.24). The interface is therefore a time-dependent vortex
sheet and the tangential velocity is discontinuous across it. It can be expected that a continu-
ously stratified medium, in which the density varies continuously as a function of z, will
support internal waves whose vorticity is distributed throughout the flow. Consequently,
internal waves in a continuously stratified fluid are not irrotational and do not satisfy the Laplace
equation.

The existence of internal waves at a density discontinuity has explained an interesting
phenomenon observed in Norwegian fjords (Gill, 1982). It was known for a long time that
ships experienced unusually high drags on entering these fjords. The phenomenon was
a mystery (and was attributed to “dead water”) until Bjerknes, a Norwegian oceanographer,
explained it as due to the internal waves at the interface generated by the motion of the ship
(Figure 7.26). (Note that the product of the drag times the speed of the ship gives the rate of
generation of wave energy, with other sources of resistance neglected.)

As a second example of an internal wave at a density discontinuity, consider the case in
which the upper layer is not infinitely thick but has a finite thickness; the lower layer is
initially assumed to be infinitely thick. The case of two infinitely deep liquids, treated in
the preceding section, is then a special case of the present situation. Whereas only waves
at the interface were allowed in the preceding section, the presence of a free surface now
allows surface waves to enter the problem. It is clear that the present configuration will
allow two modes of oscillation where the free-surface and interface waves are in or out
of phase.

FIGURE 7.25 Geometry for calculating the potential energy of a sinusoidal displacement of the interface
between two incompressible fluids with different densities. The work done in transferring element A to the vertical
location of element B equals the weight of A times the vertical displacement of its center of gravity.
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To analyze this situation, let H be the thickness of the upper layer, and let the origin be
placed at the mean position of the free surface (Figure 7.27). The field equations are (7.90)
and the boundary conditions are:

f2/0 at z/�N, (7.97)

vf1

dz
¼ vh

vt
at z ¼ 0, (7.98)

vf1

vt
þ gh ¼ 0 at z ¼ 0, (7.99)

vf1

vz
¼ vf2

vz
¼ vz

vt
at z ¼ �H, and (7.100)

r1
vf1

vt
þ r1gz ¼ r2

vf2

vt
þ r2gz at z ¼ �H: (7.101)

In addition, assume a free-surface displacement of the form

h ¼ aeiðkx�utÞ, (7.102)

FIGURE 7.26 Schematic explanation for the phenomenon of dead water in Norwegian fjords. The ship on the
ocean surface may produce waves on the ocean surface and on an interface between lighter, fresher water and
cooler, saltier water. Wave production leads to drag on the ship and both types of waves are generated under certain
conditions.

FIGURE 7.27 The two modes
of motion of a layer of fluid over-
lying an infinitely deep fluid. The
barotropic mode is an extension of
the surface wave motion discussed
in the first six sections of this
chapter. The baroclinc mode is the
extension of the interface wave
motion described earlier in this
section and shown in Figure 7.24.
The baroclinic mode includes
vorticity at the density interface;
the barotropic mode does not.
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and an interface displacement of the form

z ¼ beiðkx�utÞ: (7.103)

Without losing generality, we can regard a as real, which means that we are considering
a surface wave of the form h ¼ a cos(kx �ut). The constant b should be left complex since z

and h may not be in phase, and the solution of the problem should determine such phase
differences.

The velocity potentials in the layers must be of the form

f1 ¼ ðA ekz þ B e�kzÞ eiðkx�utÞ, (7.104)

f2 ¼ C ekz eiðkz�utÞ: (7.105)

The form (7.105) satisfies (7.97). Conditions (7.98) through (7.100) allow a solution for the
constants in terms of a, u, k, g, and H:

A ¼ �ia

2

�u

k
þ g

u

�

, (7.106)

B ¼ ia

2

�u

k
� g

u

�

, (7.107)

C ¼ �ia

2

�u

k
þ g

u

�

� ia

2

�u

k
� g

u

�

e2kH , and (7.108)

b ¼ a

2

�

1þ gk

u2

�

e�kH þ a

2

�

1� gk

u2

�

ekH: (7.109)

Substitution into (7.101) leads to the dispersion relation u(k). After some algebraic manipu-
lations, the result can be written as (see Exercise 7.19):

�

u2

gk
� 1

��

u2

gk
½r1 sinh kH þ r2 cosh kH� � ðr2 � r1Þ sinh kH

�

¼ 0: (7.110)

One possible root of (7.110) is

u2 ¼ gk, (7.111)

which is the same as that for a deep-water gravity wave. Substituting (7.111) into (7.109)
leads to

b ¼ ae�kH , (7.112)

which implies that the interface waves are in phase with the surface waves but are reduced in
amplitude by the factor e�kH. This mode is similar to a gravity wave propagating on the free
surface of the upper liquid, in which the motion decays as e�kz from the free surface. It is
called the barotropic mode, because the surfaces of constant pressure and density coincide.

The other root of (7.110) is

u2 ¼ gkðr2 � r1Þsinh kH

r2 cosh kH þ r1 sinh kH
, (7.113)
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which reduces to (7.95) when kH / N. Substituting (7.113) into (7.109) leads to

h ¼ �z

�

r2 � r1

r1

�

e�kH , (7.114)

which demonstrates that h and z have opposite signs and that the interface displacement (z)
is much larger than the surface displacement (h) if the density difference is small. This is the
baroclinic or internal mode because the surfaces of constant pressure and density do not coin-
cide. Here the horizontal velocity u changes sign across the interface. The existence of
a density difference has therefore generated a motion that is quite different from the baro-
tropic mode, (7.111) and (7.112). The case described at the beginning of this section, where
the fluids have infinite depth and no free surface, has only a baroclinic mode and no baro-
tropic mode.

A very common simplification, frequently made in geophysical situations, involves
assuming that the wavelengths are large compared to the upper layer depth. For example,
the depth of the oceanic upper layer, below which there is a sharp-density gradient, could
bez 50 m thick, but interfacial waves much longer than this may be of interest. The relevant
approximation in this case, kH � 1, is called the shallow-water or long-wave approximation and
is implemented via:

sinhðkHÞy kH and coshðkHÞy 1,

so the dispersion relation (7.113) corresponding to the baroclinic mode reduces to

u2 ¼ kg

�

r2 � r1

r2

�

kH (7.115)

to lowest order in the small parameter kH. The phase velocity of waves at the interface is

c ¼ ½g0H�1=2, where g0 ¼ g

�

r2 � r1

r2

�

(7.116, 7.117)

is the reduced gravity. Equation (7.116) is similar to the corresponding expression for
surface waves in a shallow homogeneous layer of thickness H, namely, c ¼ ffiffiffiffiffiffiffi

gH
p

, except
that the speed is reduced by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 � r1Þ=r2
p

: This agrees with the previous
conclusion that internal waves propagate slower than surface waves. Under the
shallow-water approximation, (7.114) reduces to

h ¼ �z

�

r2 � r1

r1

�

: (7.118)

In Section 7.2, the shallow-water approximation for surface waves is found equivalent to
a hydrostatic approximation and results in a depth-independent horizontal velocity. This
conclusion also holds for interfacial waves. The fact that u1 is independent of z follows
from (7.104) on noting that ekzz e�kzz 1. To see that pressure is hydrostatic, the perturbation
pressure p0 in the upper layer determined from (7.104) is

p0 ¼ �r1
vf1

vt
¼ ir1u ðAþ BÞ eiðkx�utÞ ¼ r1gh, (7.119)
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where the constants given in (7.106) and (7.107) have been used. This shows that p0 is inde-
pendent of z and equals the hydrostatic pressure change due to the free-surface
displacement.

So far, the lower fluid has been assumed to be infinitely deep, resulting in an exponential
decay of the flow field from the interface into the lower layer, with a decay scale of the order
of the wavelength. If the lower layer is now considered thin compared to the wavelength,
then the horizontal velocity will be depth independent, and the flow hydrostatic, in the lower
layer. If both layers are considered thin compared to the wavelength, then the flow is hydro-
static (and the horizontal velocity field is depth independent) in both layers. This is the
shallow-water or long-wave approximation for a two-layer fluid. In such a case the horizontal
velocity field in the barotropic mode has a discontinuity at the interface, which vanishes in
the Boussinesq limit ðr2 � r1Þ=r1 � 1: Under these conditions the two modes of a two-layer
system have a simple structure (Figure 7.28): a barotropic mode in which the horizontal
velocity is depth independent across the entire water column; and a baroclinic mode in which
the horizontal velocity is directed in opposite directions in the two layers (but is depth inde-
pendent in each layer).

7.8. INTERNAL WAVES IN A CONTINUOUSLY STRATIFIED FLUID

Waves may also exist in the interior of a pool, reservoir, lake, or ocean when the fluid’s
density in a quiescent state is a continuous function of the vertical coordinate z. The equations
of motion for internal waves in such a stratifiedmedium presented here are simplifications of
the Boussinesq set specified at the end of Section 4.9. The Boussinesq approximation treats
the density as constant, except in the vertical momentum equation. For simplicity, we shall
also assume that: 1) the wave motion is effectively inviscid because the velocity gradients
are small and the Reynolds number is large, 2) the wave amplitudes are small enough so
that the nonlinear advection terms can be neglected, and 3) the frequency of wave motion
is much larger than the Coriolis frequency so it does not affect the wave motion. Effects of
the earth’s rotation are considered in Chapter 13. The Boussinesq set then simplifies to:

Dr

Dt
¼ 0,

vu

vx
þ vv

vy
þ vw

vz
¼ 0, (4.9, 4.10)

FIGURE 7.28 The two
modes of motion in a shallow-
water, two-layer system in the
Boussinesq limit. These profiles
are the limiting case of those in
Figure 7.27 when the lower
fluid layer depth is shallow. As
before, the baroclinic mode
includes vorticity at the density
interface; the barotropic mode
does not.
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vu

vt
¼ � 1

r0

vp

vx
,

vv

vt
¼ � 1

r0

vp

vy
, and

vw

vt
¼ � 1

r0

vp

vz
� rg

r0
, (7.120, 7.121, 7.122)

where r0 is a constant reference density. Here, (4.9) expresses constancy of fluid-particle
density while (4.10) is the condition for incompressible flow. If temperature is the only agency
that changes the density, then Dr/Dt ¼ 0 follows from the heat equation in the nondiffusive
form DT/Dt ¼ 0 and a temperature-only equation of state, in the form dr/r ¼ �adT, where
a is the coefficient of thermal expansion. If the density changes are due to changes in the
concentration S of a constituent (e.g., salinity in the ocean or water vapor in the atmosphere),
then Dr/Dt ¼ 0 follows from DS/Dt ¼ 0 (the nondiffusive form of the constituent conserva-
tion equation) and a concentration-only equation of state, r ¼ r(S), in the form of dr/r ¼ bdS,
where b is the coefficient describing how the density changes due to concentration of the
constituent. In both cases, the principle underlying Dr/Dt ¼ 0 is an equation of state that
does not include pressure. In terms of common usage, this equation is frequently called
the density equation, as opposed to the continuity equation (4.10).

The five equations (4.9), (4.10), and (7.120) through (7.122) contain five unknowns (u, v, w,
p, r). Before considering wave motions, first define the quiescent density r ðzÞ and pressure
p ðzÞ profiles in the medium as those that satisfy a hydrostatic balance:

0 ¼ � 1

r0

dp

dz
� rg

r0
: (7.123)

When the motion develops, the pressure and density will change relative to their quiescent
values:

p ¼ p ðzÞ þ p0, r ¼ rðzÞ þ r0: (7.124)

The density equation (4.9) then becomes

v

vt
ðrþ r0Þ þ u

v

vx
ðrþ r0Þ þ v

v

vy
ðrþ r0Þ þ w

v

vz
ðrþ r0Þ ¼ 0: (7.125)

Here, vr=vt ¼ vr=vx ¼ vr=vy ¼ 0: The nonlinear terms (namely, uvr0/vx, vvr0/vy, and
wvr0/vz) are also negligible for small-amplitude motions. The linear part of the fourth
term, w dr=dz, must be retained, so the linearized version of (4.9) is

vr0

vt
þ w

dr

dz
¼ 0; (7.126)

which states that the density perturbation at a point is generated only by the vertical advec-
tion of the background density distribution. We now introduce the BrunteVäisälä frequency, or
buoyancy frequency:

N2h � g

r0

dr

dz
: (7.127)

This is (1.29) when the adiabatic density gradient is zero. As described in Section 1.10, N(z)
has units of rad./s and is the oscillation frequency of a vertically displaced fluid particle
released from rest in the absence of fluid friction. Using (7.123) and (7.127) in (7.120) through
(7.122) and (7.126) produces

7. GRAVITY WAVES294



vu

vt
¼ � 1

r0

vp0

vx
,

vv

vt
¼ � 1

r0

vp0

vy
,

vw

vt
¼ � 1

r0

vp0

vz
� r0g

r0
, (7.128, 7.129, 7.130)

and

vr0

vt
�N2r0

g
w ¼ 0: (7.131)

Comparing (7.120) through (7.122) and (7.128) through (7.130), we see that the only difference
is the replacement of the total density r and pressure p with the perturbation density r0 and
pressure p0.

The full set of equations for linear wave motion in a stratified fluid are (4.10) and (7.128)
through (7.131), where rmay be a function of temperature T and concentration S of a constit-
uent, but not of pressure. At first this does not seem to be a good assumption. The compress-
ibility effects in the atmosphere are certainly not negligible; even in the ocean the density
changes due to the huge changes in the background pressure are as much as 4%, which is
z10 times the density changes due to the variations of the salinity and temperature. The
effects of compressibility, however, can be handled within the Boussinesq approximation if
we regard r in the definition ofN as the background potential density, that is, the density distri-
bution fromwhich the adiabatic changes of density, due to the changes of pressure, have been
subtracted out. The concept of potential density is explained in Chapter 1. Oceanographers
account for compressibility effects by converting all their density measurements to the stan-
dard atmospheric pressure; thus, when they report variations in density (what they call
“sigma tee”) they are generally reporting variations due only to changes in temperature
and salinity.

A useful condensation of the above equations involving only w can be obtained by taking
the time derivative of (4.10) and using the horizontal momentum equations (7.128) and
(7.129) to eliminate u and v. The result is

1

r0
V2
Hp

0 ¼ v2w

vz vt
, (7.132)

where V2
H h v2=vx2 þ v2=vy2 is the horizontal Laplacian operator. Elimination of r0 from

(7.130) and (7.131) gives

1

r0

v2p0

vt vz
¼ �v2w

vt2
�N2w: (7.133)

Finally, p0 can be eliminated by taking V2
H (7.133), and inserting the result in (7.132) to find:

v2

vt vz

 

v2w

vt vz

!

¼ �V2
H

 

v2w

vt2
þN2w

!

,

which can be written as

v2

vt2
V2wþN2V2

Hw ¼ 0; (7.134)
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where V2 h v2=vx2 þ v2=vy2 þ v2=vz2 ¼ V2
H þ v2=vz2 is the three-dimensional Laplacian

operator. This equation for the vertical velocity w can be used to derive the dispersion rela-
tion for internal gravity waves.

Internal Waves in a Stratified Fluid

The situation embodied in (7.134) is fundamentally different from that of interface waves
because there is no obvious direction of propagation. For interface waves constrained to
follow a horizontal surface with the x-axis chosen along the direction of wave propagation,
a dispersion relation u(k) was obtained that is independent of the wave direction. Further-
more, wave crests and wave groups propagate in the same direction, although at different
speeds. However, in the current situation, the fluid is continuously stratified and internal
waves might propagate in any direction and at any angle to the vertical. In such a case the
direction of the wave number vector K ¼ (k, l, m) becomes important and the dispersion rela-
tionship is anisotropic and depends on the wave number components:

u ¼ uðk, l,mÞ ¼ uðKÞ: (7.135)

Consequently, the wave number, phase velocity, and group velocity are no longer scalars and
the prototype sinusoidal wave (7.2) must be replaced with its three-dimensional extension
(7.5). However, (7.135) must still be isotropic in k and l, the wave number components in
the two horizontal directions.

The propagation of internal waves is a baroclinic process, in which the surfaces of constant
pressure do not coincide with the surfaces of constant density. It was shown in Section 5.4, in
connection with Kelvin’s circulation theorem, that baroclinic processes generate vorticity.
Internal waves in a continuously stratified fluid are therefore rotational. Waves at a density
interface constitute a limiting case in which all the vorticity is concentrated in the form of
a velocity discontinuity at the interface. The Laplace equation can therefore be used to
describe the flow field within each layer. However, internal waves in a continuously stratified
fluid cannot be described by the Laplace equation.

To reveal the structure of the situation described by (7.134) and (7.135), consider the
complex version of (7.5) for the vertical velocity

w ¼ w0e
iðkxþlyþmz�utÞ ¼ w0e

iðK,x�utÞ (7.136)

in a fluid medium having a constant buoyancy frequency. Substituting (7.136) into (7.134)
with constant N leads to the dispersion relation:

u2 ¼ k2 þ l2

k2 þ l2 þm2
N2: (7.137)

For simplicity choose the x-z plane so it contains K and l ¼ 0. No generality is lost through
this choice because the medium is horizontally isotropic, but k now represents the entire hori-
zontal wave number and (7.137) can be written:

u ¼ kN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ¼ kN

K
: (7.138)
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This is the dispersion relation for internal gravity waves and can also be written as

u ¼ N cos q, (7.139)

where q ¼ tane1(m/k) is the angle between the phase velocity vector c (and therefore K) and
the horizontal direction (Figure 7.29). Interestingly, (7.139) states that the frequency of an
internal wave in a stratified fluid depends only on the direction of the wave number vector
and not on its magnitude. This is in sharp contrast with surface and interfacial gravity waves,
for which frequency depends only on the magnitude. In addition, the wave frequency lies in
the range 0< u<N, and this indicates thatN is the maximum possible frequency of internal waves
in a stratified fluid.

Before further investigation of the dispersion relation, consider particle motion in an
incompressible internal wave. For consistency with (7.136), the horizontal fluid velocity is
written as

u ¼ u0 e
iðkxþlyþmz�utÞ, (7.140)

plus two similar expressions for v and w. Differentiating produces:

vu

vx
¼ iku0 e

iðkxþlyþmz�utÞ ¼ iku:

Thus, (4.10) then requires that ku þ lv þ mw ¼ 0, that is,

K,u ¼ 0, (7.141)

FIGURE 7.29 Geometric parameters for internal waves. Here z is vertical and x is horizontal. Note that c and cg
are at right angles and have opposite vertical components while u is parallel to the group velocity. Thus, internal
wave packets slide along their crests.
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showing that particle motion is perpendicular to the wave number vector (Figure 7.29). Note that
only two conditions have been used to derive this result, namely the incompressible conti-
nuity equation and trigonometric behavior in all spatial directions. As such, the result is valid
for many other wave systems that meet these two conditions. These waves are called shear
waves (or transverse waves) because the fluid moves parallel to the constant phase lines.
Surface or interfacial gravity waves do not have this property because the field varies expo-
nentially in the vertical.

We can now interpret q in the dispersion relation (7.139) as the angle between the particle
motion and the vertical direction (Figure 7.29). The maximum frequency u ¼ N occurs when
q ¼ 0, that is, when the particles move up and down vertically. This case corresponds tom ¼ 0
(see (7.138)), showing that the motion is independent of the z-coordinate. The resulting
motion consists of a series of vertical columns, all oscillating at the buoyancy frequency N,
with the flow field varying in the horizontal direction only.

At the opposite extreme we have u ¼ 0 when q ¼ p/2, that is, when the particle motion is
completely horizontal. In this limit our internal wave solution (7.138) would seem to require
k ¼ 0, that is, horizontal independence of the motion. However, such a conclusion is not
valid; pure horizontal motion is not a limiting case of internal waves, and it is necessary to
examine the basic equations to draw any conclusion for this case. An examination of the gov-
erning set, (4.10) and (7.128) through (7.131), shows that a possible steady solution is
w ¼ p0 ¼ r0 ¼ 0, with u and v and any functions of x and y satisfying

vu

vx
þ vv

vy
¼ 0: (7.142)

The z-dependence of u and v is arbitrary. The motion is therefore two dimensional in the hori-
zontal plane, with the motion in the various horizontal planes decoupled from each other.
This is why clouds in the upper atmosphere seem to move in flat horizontal sheets, as often
observed in airplane flights (Gill, 1982). For a similar reason a cloud pattern pierced by
a mountain peak sometimes shows Karman vortex streets, a two-dimensional feature; see
the striking photograph in Figure 9.19. A restriction of strong stratification is necessary for
such almost horizontal flows, because (7.131) suggests that the vertical motion is small if
N is large.

The foregoing discussion leads to the interesting phenomenon of blocking in a strongly
stratified fluid. Consider a two-dimensional body placed in such a fluid, with its axis

FIGURE 7.30 Blocking in strongly stratified flow. The circular region represents a two-dimensional body
with its axis along the y direction (perpendicular to the page). Horizontal flow in the shaded region is blocked
by the body when the stratification is strong enough to prevent fluid in the blocked layer from going over or under
the body.
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horizontal (Figure 7.30). The two dimensionality of the body requires vv/vy ¼ 0, so that the
continuity equation (7.142) reduces to vu/vx ¼ 0. A horizontal layer of fluid ahead of the
body, bounded by tangents above and below it, is therefore blocked and held motionless.
(For photographic evidence see Figure 3.18 in the book by Turner (1973).) This happens
because the strong stratification suppresses the w field and prevents the fluid from going
below or over the body.

Dispersion of Internal Waves in a Stratified Fluid

The dispersion relationship (7.138) for linear internal waves with constant buoyancy
frequency contains a few genuine surprises that challenge our imaginations and violate
the intuition acquired by observing surface or interface waves. One of these surprises
involves the phase, c, and group, cg, velocity vectors. In multiple dimensions, these are
defined by

c ¼ ðu=KÞeK and cg ¼ ex
vu

vk
þ ey

vu

vl
þ ez

vu

vm
, (7.8, 7.143)

where eK ¼ K/K. Interface waves c and cg are in the same direction, although their magni-
tudes can be different. For internal waves, (7.138), (7.8), and (7.143) can be used to
determine:

c ¼ u

K2
ðkex þmezÞ, and cg ¼ Nm

K3
ðmex � kezÞ: (7.144, 7.145)

Forming the dot product of these two equations produces:

cg,c ¼ 0! (7.146)

Thus, the phase and group velocity vectors are perpendicular as shown on Figure 7.29. Equations
(7.144) and (7.145) do place the horizontal components of c and cg in the same direction, but
their vertical components are equal and opposite. In fact, c and cg form two sides of a right
triangle whose hypotenuse is horizontal (Figure 7.31). Consequently, the phase velocity has
an upward component when the group velocity has a downward component, and vice versa.
Equations (7.141) and (7.146) are consistent because c and K are parallel and cg and u are

FIGURE 7.31 Orientation of phase and group velocity for internal waves. The vertical components of the phase
and group velocities are equal and opposite.

7.8. INTERNAL WAVES IN A CONTINUOUSLY STRATIFIED FLUID 299



parallel. The fact that c and cg are perpendicular, and have opposite vertical components, is
illustrated in Figure 7.32. It shows that the phase lines are propagating toward the left and
upward, whereas the wave group is propagating to the left and downward. Wave crests
are constantly appearing at one edge of the group, propagating through the group, and van-
ishing at the other edge.

The group velocity here has the usual significance of being the velocity of propagation of
energy of a certain sinusoidal component. Suppose a source is oscillating at frequency u.
Then its energy will only be transmitted outward along four beams oriented at an angle q

with the vertical, where cos q ¼ u/N. This has been verified in a laboratory experiment
(Figure 7.33). The source in this case was a vertically oscillating cylinder with its axis perpen-
dicular to the plane of paper. The frequency was u<N. The light and dark lines in the photo-
graph are lines of constant density, made visible by an optical technique. The experiment
showed that the energy radiated along four beams that became more vertical as the
frequency was increased, which agrees with cos q ¼ u/N.

These results were obtained by assuming thatN is depth independent, an assumption that
may seem unrealistic at first. Figure 13.2 shows N vs. depth for the deep ocean, and N < 0.01
rad./s everywhere, but N is largest between ~200 m and ~2 km. These results can be consid-
ered locally valid if N varies slowly over the vertical wavelength 2p/m of the motion. The so-
called WKB approximation for internal waves, in which such a slow variation of N(z) is not
neglected, is discussed in Chapter 13.

FIGURE 7.32 Illustration of phase and group propagation in a circular internal-wave packet. Positions of
the wave packet at two times are shown. The constant-phase line PP (a crest perhaps) at time t1 propagates to
P0P0 at t2.
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FIGURE 7.33 Waves generated in a stratified fluid of uniform buoyancy frequency N ¼ 1 rad./s. The forcing
agency is a horizontal cylinder, with its axis perpendicular to the plane of the paper, oscillating vertically at
frequency u ¼ 0.71 rad./s. With u/N ¼ 0.71 ¼ cos q, this agrees with the observed angle of q ¼ 45� made by the
beams with the horizontal direction. The vertical dark line in the upper half of the photograph is the cylinder
support and should be ignored. The light and dark radial lines represent contours of constant r0 and are therefore
constant phase lines. The schematic diagram below the photograph shows the directions of c and cg for the four
beams. Reprinted with the permission of Dr. T. Neil Stevenson, University of Manchester.
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Energy Considerations for Internal Waves in a Stratified Fluid

The energy carried by an internal wave travels in the direction and at the speed of the
group velocity. To show this is the case, construct a mechanical energy equation from
(7.128) through (7.130) by multiplying the first equation by r0u, the second by r0v, the third
by r0w, and summing the results to find:

v

vt

�

1

2
r0ðu2 þ v2 þ w2Þ

�

þ gr0wþ V,ðp0uÞ ¼ 0: (7.147)

Here the continuity equation has been used to write u(vp0/vx) þ v(vp0/vy) þ w(vp0/vz) ¼
V , (p0u), which represents the net work done by pressure forces. Another interpretation
is that V,(p0u) is the divergence of the energy flux p0u, which must change the wave energy
at a point. As the first term in (7.147) is the rate of change of kinetic energy, we can anticipate
that the second term gr0w must be the rate of change of potential energy. This is consistent
with the energy principle derived in Chapter 4 (see (4.56)), except that r0 and p0 replace r

and p because we have subtracted the mean state of rest here. Using the density equation
(7.131), the rate of change of potential energy can be written as

vEp

vt
¼ gr0w ¼ v

vt

�

g2r02

2r0N
2

�

, (7.148)

which shows that the potential energy per unit volume must be the positive quantity
Ep ¼ g2r02/2r0N2. The potential energy can also be expressed in terms of the displacement
z of a fluid particle, given by w ¼ vz/vt. Using the density equation (7.131), we can write

vr0
vt

¼ N2r0

g

vz

vt
, which requires that r0 ¼ N2r0z

g
: (7.149)

The potential energy per unit volume is therefore

Ep ¼ g2r02

2r0N2
¼ 1

2
N2r0z

2: (7.150)

This expression is consistent with our previous result from (7.96) for two infinitely deep
fluids, for which the average potential energy of the entire water column per unit horizontal
area was shown to be

1

4
ðr2 � r1Þga2, (7.151)

where the interface displacement is of the form z ¼ a cos(kx � ut) and (r2 � r1) is the density
discontinuity. To see the consistency, we shall symbolically represent the buoyancy frequency
of a density discontinuity at z ¼ 0 as

N2 ¼ � g

r0

dr

dz
¼ g

r0
ðr2 � r1ÞdðzÞ, (7.152)

where d(z) is the Dirac delta function (see Appendix B.4). (As with other relations involving
the delta function, equation (7.152) is valid in the integral sense, that is, the integral (across the
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origin) of the last two terms is equal because
R

dðzÞ dz ¼ 1.) Using (7.152), a vertical integral of
(7.150), coupled with horizontal averaging over a wavelength, gives the expression (7.151).
Note that for surface or interfacial waves, Ek and Ep represent kinetic and potential energies
of the entire water column, per unit horizontal area. In a continuously stratified fluid, they
represent energies per unit volume.

We shall now demonstrate that the average kinetic and potential energies are equal for
internal wave motion. Assume periodic solutions

h

u,w,p0,r0
i

¼
h

bu, bw, bp, br
i

eiðkxþmz�utÞ:

Then all variables can be expressed in terms of w:

p0 ¼ �umr0

k2
bw eiðkxþmz�utÞ,r0 ¼ iN2r0

ug
bw eiðkxþmz�utÞ,u ¼ �m

k
bw eiðkxþmz�utÞ, (7.153)

where p0 is derived from (7.132), r0 from (7.131), and u from (7.128). The average kinetic
energy per unit volume is therefore

Ek ¼ 1

2
r0ðu2 þ w2Þ ¼ 1

4
r0

�

m2

k2
þ 1

�

bw
2
, (7.154)

where we have taken real parts of the various expressions in (7.153) before computing
quadratic quantities and used the fact that the average of cos2() over a wavelength is ½.
The average potential energy per unit volume is

Ep ¼ g2r02

2r0N2
¼ N2r0

4u2
bw
2
, (7.155)

where we have used r02 ¼ bw
2
N4r20=2u

2g2, found from (7.153) after taking its real part. Use of
the dispersion relation u2 ¼ k2N2/(k2 þ m2) shows that

Ek ¼ Ep, (7.156)

which is a general result for small oscillations of a conservative system without Coriolis
forces. The total wave energy is

E ¼ Ek þ Ep ¼ 1

2
r0

�

m2

k2
þ 1

�

bw
2
: (7.157)

Last, we shall show that cg times the wave energy equals the energy flux. The average
energy flux F across a unit area can be found from (7.153):

F ¼ p0u ¼ exp0uþ ezp0w ¼ r0umbw
2

2k2

�

ex
m

k
� ez

�

: (7.158)

Using (7.145) and (7.157), group velocity times wave energy is

cgE ¼ Nm

K3
ðmex � kezÞ

�

r0

2

�

m2

k2
þ 1

�

bw
2
�

,
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which reduces to (7.158) on using the dispersion relation (7.138), so it follows that

F ¼ cgE: (7.159)

This result also holds for surface or interfacial gravity waves. However, in that case F repre-
sents the flux per unit width perpendicular to the propagation direction (integrated over the
entire depth), and E represents the energy per unit horizontal area. In (7.159), on the other
hand, F is the flux per unit area, and E is the energy per unit volume.

EXERCISES

7.1. Starting from (7.5) and working in (x, y, z) Cartesian coordinates, determine an
equation that specifies the locus of points that defines a wave crest. Verify that the
travel speed of the crests in the direction of K ¼ (k, l, m) is c ¼ u/jKj. Can anything be
determined about the wave crest travel speed in other directions?

7.2. For ka � 1, use the potential for linear deep-water waves fðz,x, tÞ ¼ aðu=kÞekzsinðkx�
utÞ and the waveform hðx, tÞ ¼ a cosðkx� utÞ þ aka2 cos½2ðkx� utÞ� to show that:
a) With an appropriate choice of the constant a, the kinematic boundary condition

(7.16) can be satisfied for terms proportional to (ka)0 and (ka)1 once the common
factor of au has been divided out.

b) With an appropriate choice of the constant g, the dynamic boundary condition
(7.19) can be satisfied for terms proportional to (ka)0, (ka)1, and (ka)2 when
u2 ¼ gk(1 þ gk2a2) once the common factor of ag has been divided out.

7.3. The field equation for surface waves on a deep fluid layer in two dimensions (x,z) is:

v2f

vx2
þ v2f

vz2
¼ 0, where f is the velocity potential, Vf ¼ ðu,wÞ. The linearized free-

surface boundary conditions and the bottom boundary condition are:

ðvf=vzÞz¼0y vh=vt, ðvf=vtÞz¼0 þ ghy 0, and ðvf=vzÞz/�N¼ 0,

where z ¼ h(x,t) defines the free surface, gravity g points downward along the z-axis,
and the undisturbed free surface lies at z ¼ 0. The goal of this problem is to develop the
general solution for these equations without assuming a sinusoidal form for the free
surface as was done in Sections 7.1 and 7.2.

x 

z
( t , x )

a) Assume fðx, z, tÞ ¼ Lðx, tÞZðzÞ, and use the field equation and bottom boundary
condition to show that fðx, z, tÞ ¼ Lðx, tÞexpðþkzÞ, where k is a positive real
constant.

b) Use the results of part a) and the remaining boundary conditions to show:

v2L

vt2
þ gkL ¼ 0 and

v2L

vx2
þ k2L ¼ 0:
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c) For a fixed value of k, findL(x, t) in terms of four unknown amplitudesA,B,C, andD.
d) For the initial conditions: h ¼ h(x) and vh/vt ¼ _hðxÞ at t ¼ 0, determine the general

form of f(x, z, t).
7.4. Derive (7.37) from (7.27).
7.5. Consider stationary surface gravity waves in a rectangular container of length L and

breadth b, containing water of undisturbed depth H. Show that the velocity potential
f ¼ A cosðmpx=LÞcosðnpy=bÞcosh kðzþHÞ e�iut satisfies the Laplace equation and the
wall boundary conditions, if ðmp=LÞ2þðnp=bÞ2¼ k2: Here m and n are integers. To
satisfy the linearized free-surface boundary condition, show that the allowable
frequencies must be u2 ¼ gk tanh kH: [Hint: combine the two boundary conditions
(7.18) and (7.21) into a single equation v2f/vt2 ¼ �g vf/vz at z ¼ 0.]

7.6. A lake has the following dimensions: L ¼ 30 km, b ¼ 2 km, and H ¼ 100 m. If the wind
sets up the mode m ¼ 1 and n ¼ 0, show that the period of the oscillation is 31.7 min.

7.7. Fill a square or rectangular cake pan half way with water. Do the same for a round
frying pan of about the same size. Agitate the water by carrying the two pans while
walking briskly (outside) at a consistent pace on a horizontal surface.
a) Which shape lends itself better to spilling?
b) At what portion of the perimeter of the rectangular pan does spilling occur most

readily?
c) Explain your observations in terms of standing wave modes.

7.8. Using the approach of (7.43), show that the time-average energy flux F per unit length
of crest is zero for the standing wave described by (7.62).

7.9. Show that the group velocity of pure capillary waves in deep water, for which the

gravitational effects are negligible, is cg ¼ 3

2
c:

7.10. Plot the group velocity of surface gravity waves, including surface tension s, as
a function of l.
a) Assuming deep water, show that the group velocity is

cg ¼ 1

2

ffiffiffi

g

k

r

1þ 3sk2=rg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sk2=rg
p :

b) Show that this becomes minimum at a wave number given by

sk2

rg
¼ 2

ffiffiffi

3
p � 1:

c) For cool water (r ¼ 1000 kg/m3 and s ¼ 0.074 N/m), verify that cg min ¼ 17.8 cm/s.
7.11. Theeffectofviscosityon theenergyof lineardeep-water surfacewaves canbedetermined

from the wave motion’s velocity components and the viscous dissipation (4.58).
a) For incompressible flow, the viscous dissipation of energy per unit mass of fluid is

3 ¼ 2ðm=rÞS2ij, where Sij is the strain-rate tensor and m is the fluid’s viscosity.
Determine 3 using (7.47).

b) The totalwave energy per unit surface area,E, for a linear sinusoidalwaterwavewith
amplitude a is given by (7.42). Assume that a is a function of time, set dE/dt ¼ e3, and
show that a(t) ¼ a0exp[e2(m/r)k2t], where a0 is the wave amplitude at t ¼ 0.
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c) Using a nominal value of m/r ¼ 10e6 m2/s for water, determine the time necessary
for an amplitude reduction of 50% for water-surface waves having l ¼ 1 mm, 1 cm,
10 cm, 1 m, 10 m, and 100 m.

d) Convert the times calculated in part c) to travel distances by multiplication with an
appropriate group speed. Remember to include surface tension. Can a typhoon
located near New Zealand produce increased surf on the west coast of North
America? [The circumference of the earth is approximately 40,000 km.]

7.12. Consider a deep-water wave train with a Gaussian envelope that resides near x ¼ 0 at
t ¼ 0 and travels in the positive x direction. The surface shape at any time is a Fourier
superposition of waves with all possible wave numbers:

hðx, tÞ ¼
Z
þN

�N

~hðkÞexp
h

i
�

kx� ðgjkjÞ1=2t
�i

dk, (y)

where ~hðkÞ is the amplitude of the wave component with wave number k, and the
dispersion relation is u ¼ (gk)1/2. For the following items assume the surface shape
at t ¼ 0 is:

hðx, 0Þ ¼ 1
ffiffiffiffiffiffi

2p
p

a
exp

�

� x2

2a2
þ ikdx

�

:

Here, kd> 0 is the dominant wave number, and a sets the initial horizontal extent of the
wave train, with larger a producing a longer wave train.
a) Plot Re{h(x, 0)} for jxj � 40 m when a ¼ 10 m and kd ¼ 2p/ld ¼ 2p/10 me1.
b) Use the inverse Fourier transform at t ¼ 0, ~hðkÞ ¼ ð1=2pÞ RþN

�N hðx, 0Þexp½�ikx�dx to

find the wave amplitude distribution: ~hðkÞ ¼ ð1=2pÞexp
n

� 1

2
ðk � kdÞ2a2

o

, and plot

this function for 0 < k < 2kd using the numerical values from part a). Does the
dominant contribution to the wave activity come from wave numbers near kd for
the part a) values?

c) For large x and t, the integrand of (y) will be highly oscillatory unless the phase
Fhkx� ðgjkjÞ1=2t happens to be constant. Thus, for any x and t, the primary
contribution to hwill come from the region where the phase in (y) does not depend
on k. Thus, set dF/dk ¼ 0, and solve for ks (¼ the wave number where the phase is
independent of k) in terms of x, t, and g.

d) Based on the result of part b), set ks ¼ kd to find the x-location where the dominant
portion of the wave activity occurs at time t. At this location, the ratio x/t is the
propagation speed of the dominant portion of the wave activity. Is this propagation
speed the phase speed, the group speed, or another speed altogether?

7.13. Show that the vertical component of the Stokes drift is zero starting from (7.85) and
using (7.47) and (7.48).

7.14. Extend the deep water Stokes drift result (7.85) to arbitrary depth to derive (7.86).
7.15. Explicitly show through substitution and differentiation that (7.88) is a solution of (7.87).
7.16. A thermocline is a thin layer in the upper ocean across which water temperature and,

consequently, water density change rapidly. Suppose the thermocline in a very deep
ocean is at a depth of 100 m from the ocean surface, and that the temperature drops
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across it from 30�C to 20�C. Show that the reduced gravity is g0 ¼ 0.025 m/s2.
Neglecting Coriolis effects, show that the speed of propagation of long gravity waves
on such a thermocline is 1.58 m/s.

7.17. Consider internal waves in a continuously stratified fluid of buoyancy frequency
N ¼ 0.02 s�1 and average density 800 kg/m3. What is the direction of ray paths if the
frequency of oscillation is u ¼ 0.01 s�1? Find the energy flux per unit area if the
amplitude of the vertical velocity is bw ¼ 1 cm=s and the horizontal wavelength is p
meters.

7.18. Consider internal waves at a density interface between two infinitely deep fluids, and
show that the average kinetic energy per unit horizontal area is Ek ¼ (r2 � r1)ga

2/4.
7.19. Consider waves in a finite layer overlying an infinitely deep fluid. Using the constants

given in equations (7.106) through (7.109), prove the dispersion relation (7.110).
7.20. A simple model of oceanic internal waves involves two ideal incompressible fluids

(r2> r1) trapped between two horizontal surfaces at z ¼ h1 and z ¼ eh2, and having an
average interface location of z ¼ 0. For traveling waves on the interface, assume that
the interface deflection from z ¼ 0 is x ¼ xo Refexpðiðut� kxÞÞg. The phase speed of the
waves is c ¼ u/k.

z = h1

z –= h2

x

z

ρ2

ρ1

g

a) Show that the dispersion relationship is u2 ¼ gkðr2 � r1Þ
r2 cothðkh2Þ þ r1 cothðkh1Þ

, where g
is the acceleration of gravity.

b) Determine the limiting form of c for short (i.e., unconfined) waves, kh1 and kh2/N.
c) Determine the limiting form of c for long (i.e., confined) waves, kh1 and kh2 / 0.
d) At fixed wavelength l (or fixed k ¼ 2p/l), do confined waves go faster or slower

than unconfined waves?
e) At a fixed frequency, what happens to the wavelength and phase speed as

r2 e r1 / 0?
f) What happens if r2 < r1?
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CHAPTER OBJECTIVES

• To present a variety of exact and approximate

solutions to the viscous equations of fluid

motion in confined and unconfined

geometries.

• To introduce lubrication theory and indicate

its utility.

• To define and present similarity solutions to

exact and approximate viscous flow field

equations.

• To develop the equations for creeping flow

and illustrate their use.

8.1. INTRODUCTION

Chapters 6 and 7 covered flows in which the viscous terms in the Navier-Stokes equations
were dropped because the flow was ideal (irrotational and constant density) or the effects of

309Fluid Mechanics, Fifth Edition DOI: 10.1016/B978-0-12-382100-3.10008-3 � 2012 Elsevier Inc. All rights reserved.



viscosity were small. For these situations, the underlying assumptions were either that 1)
viscous forces and rotational flow were spatially confined to a small portion of the flow
domain (thin boundary layers near solid surfaces), or that 2) fluid particle accelerations
caused by fluid inertia ~U2/L were much larger than those caused by viscosity ~mU/rL2,
where U is a characteristic velocity, L is a characteristic length, r is the fluid’s density, and
m is the fluid’s kinematic viscosity. Both of these assumptions are valid if the Reynolds
number is large and boundary layers stay attached to the surface on which they have
formed.

However, for low values of the Reynolds number, the entire flow may be influenced by
viscosity, and inviscid flow theory is no longer even approximately correct. The purpose
of this chapter is to present some exact and approximate solutions of the Navier-Stokes
equations for simple geometries and situations, retaining the viscous terms in (4.38) every-
where in the flow and applying the no-slip boundary condition at solid surfaces (see
Section 4.10).

Viscous flows generically fall into two categories, laminar and turbulent, but the boundary
between them is imperfectly defined. The basic difference between the two categories is
phenomenological and was dramatically demonstrated in 1883 by Reynolds, who injected
a thin stream of dye into the flow of water through a tube (Figure 8.1). At low flow rates,
the dye stream was observed to follow a well-defined straight path, indicating that the fluid
moved in parallel layers (laminae) with no unsteady macroscopic mixing or overturning
motion of the layers. Such smooth orderly flow is called laminar. However, if the flow rate

FIGURE 8.1 Reynolds’s experiment to distinguish between laminar and turbulent flows. At low flow rates (the
upper drawing), the pipe flow was laminar and the dye filament moved smoothly through the pipe. At high flow
rates (the lower drawing), the flow became turbulent and the dye filament was mixed throughout the cross section
of the pipe.
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was increased beyond a certain critical value, the dye streak broke up into irregular filaments
and spread throughout the cross section of the tube, indicating the presence of unsteady,
apparently chaotic three-dimensional macroscopic mixing motions. Such irregular disor-
derly flow is called a turbulent. Reynolds demonstrated that the transition from laminar to
turbulent flow always occurred at a fixed value of the ratio that bears his name, the
Reynolds number, Re ¼ Ud/n ~ 2000 to 3000 whereU is the velocity averaged over the tube’s
cross section, d is the tube diameter, and n ¼ m/r is the kinematic viscosity.

As will be further verified in Section 8.4, the fluid’s kinematic viscosity specifies the
propensity for vorticity to diffuse through a fluid. Consider (5.13) for the z-component of
vorticity in a two-dimensional flow confined to the x-y plane so that u , Vu ¼ 0:

Duz=Dt ¼ nV2uz:

This equation states that the rate of change of uz following a fluid particle is caused by diffu-
sion of vorticity. Clearly, for the same initial vorticity distribution, a fluid with larger n will
produce a larger diffusion term, nV2u, and more rapid changes in the vorticity. This equation
is similar to the Boussinesq heat equation,

DT=Dt ¼ kV2T, (4.89)

where kh k/rCp is the thermal diffusivity, and this similarity suggests that vorticity diffuses in
a manner analogous to heat. At a coarse level, this suggestion is correct since both n and k

arise from molecular processes in real fluids and both have the same units (length2/time).
The similarity emphasizes that the diffusive effects are controlled by n and k, and not by m

(viscosity) and k (thermal conductivity). In fact, the constant-density, constant-viscosity
momentum equation,

Du=Dt ¼ �ð1=rÞVpþ nV2u, (4.85, 8.1)

also shows that the acceleration due to viscous diffusion is proportional to n. Thus, at room
temperature and pressure, air (n ¼ 15 � 10�6 m2/s) is 15 times more diffusive than water
(n ¼ 1 � 10�6 m2/s), although m for water is larger. Both n and k have the units of m2/s;
thus, the kinematic viscosity n is sometimes called the momentum diffusivity, in analogy
with k, the thermal diffusivity. However, velocity cannot be simply regarded as being diffused
and advected in a flow because of the presence of the pressure gradient in (8.1).

Laminar flows in which viscous effects are important throughout the flow are the subject
of the present chapter. The primary field equations will be V,u ¼ 0 (4.10) and (8.1) or the
version that includes a body force (4.39b). The velocity boundary conditions on a solid
surface are:

n,Us ¼ ðn,uÞon the surface and t,Us ¼ ðt,uÞon the surface, (8.2, 8.3)

whereUs is the velocity of the surface, n is the normal to the surface, and t is the tangent to the
surface. Here fluid density will be assumed constant, and the frame of reference will be iner-
tial. Thus, gravity can be dropped from the momentum equation as long as no free surface is
present (see Section 4.9 “Neglect of Gravity in Constant Density Flows”). Laminar flows in
which frictional effects are confined to boundary layers near solid surfaces are discussed
in the next chapter. Chapter 11 considers the stability of laminar flows and their transition
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to turbulence; fully turbulent flows are discussed in Chapter 12. Some viscous flow solutions
in rotating coordinates, such as the Ekman layers, are presented in Chapter 13.

8.2. EXACT SOLUTIONS FOR STEADY INCOMPRESSIBLE
VISCOUS FLOW

Because of the presence of the nonlinear acceleration term u,Vu in (8.1), very few exact
solutions of the Navier-Stokes equations are known in closed form. An example of an exact
solution is that for steady laminar flow between infinite parallel plates (Figure 8.2). Such
a flow is said to be fully developed when its velocity profile u(x,y) becomes independent of
the downstream coordinate x so that u ¼ u(y) alone. The entrance length of the flow, where
the velocity profile depends on the downstream distance, may be several or even many
times longer than the spacing between the plates. Within the entrance length, the derivative
vu/vx is not zero so the continuity equation vu/vx þ vv/vy ¼ 0 requires that v s 0, so that
the flow is not parallel to the walls within the entrance length. Laminar flow development is
the subject of Section 8.4, and the next chapter. Here we are interested in steady, fully devel-
oped flows.

Steady Flow between Parallel Plates

Consider the situation depicted in Figure 8.3 where a viscous fluid flows between plates
parallel to the x-axis with lower and upper plates at y ¼ 0 and y ¼ h, respectively. The flow

FIGURE 8.2 Developing and fully developed flows in a channel. Within the entrance length, the viscous
boundary layers on the upper and lower walls are separate and the flow profile u(x,y) depends on both spatial
coordinates. Downstream of the point where the boundary layers merge, the flow is fully developed and its profile
u(y) is independent of the stream-wise coordinate x.
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is sustained by an externally applied pressure gradient (vp/vx s 0) in the x-direction, and
horizontal motion of the upper plate at speed U in the x-direction. For this situation, the
flow should be independent of the z-direction so w ¼ 0 and v/vz ¼ 0 can be used in the equa-
tions of motion. A steady, fully developed flow will have a horizontal velocity u(y) that does
not depend on x so vu/vx ¼ 0. Thus, the continuity equation, vu/vx þ vv/vy ¼ 0, requires
vv/vy ¼ 0, and since v ¼ 0 at y ¼ 0 and h, it follows that v ¼ 0 everywhere, which reflects
the fact that the flow is parallel to the walls. Under these circumstances, u ¼ (u(y), 0, 0),
and the x- and y-momentum equations reduce to:

0 ¼ �1

r

vp

vx
þ n

d2u

dy2
, and 0 ¼ �1

r

vp

vy
: (8.4a,b)

The y-momentum equation shows that p is not a function of y, so p ¼ p(x). Thus, the first term
in the x-momentum equation must be a function of x alone, while the second term must be
a function of y alone. The only way the equation can be satisfied throughout x-y space is if
both terms are constant. The pressure gradient is therefore a constant, which implies that the
pressure varies linearly along the channel. Integrating the x-momentum equation twice,
we obtain

0 ¼ �y2

2

dp

dx
þ muþ Ayþ B,

whereA and B are constants and dp/dx has replaced vp/vx because p is a function of x alone.
The constants are determined from the boundary conditions: u ¼ 0 at y ¼ 0, and u ¼ U at
y ¼ h. The results are B ¼ 0 and A ¼ (h/2)(dp/dx) � mU/h, so the velocity profile becomes

uðyÞ ¼ U

h
y� 1

2m

dp

dx
yðh� yÞ, (8.5)

which is illustrated in Figure 8.4 for various cases. The volume flow rate Q per unit width of
the channel is

Q ¼
Z h

0
u dy ¼ U

h

2

"

1� h2

6mU

dp

dx

#

,

U
U

(y)
h y

x

u

FIGURE 8.3 Flow between parallel plates when the lower plate at y ¼ 0 is stationary, the upper plate at y ¼ h is
moving in the positive-x direction at speed U, and a nonzero dp/dx < 0 leads to velocity profile curvature.
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so that the average velocity is

Vh
Q

h
¼
Z
h

0

u dy ¼ U

2

"

1� h2

6mU

dp

dx

#

:

Here, negative and positive pressure gradients increase and decrease the flow rate, res-
pectively.

When the flow is driven by motion of the upper plate alone, without any externally
imposed pressure gradient, it is called a plane Couette flow. In this case (8.5) reduces to
uðyÞ ¼ Uy=h, and the magnitude of the shear stress is s ¼ mðdu=dyÞ ¼ mU=h, which is
uniform across the channel.

When the flow is driven by an externally imposed pressure gradient without motion of
either plate, it is called a plane Poiseuille flow. In this case (8.5) reduces to the parabolic profile
(Figure 8.4d):

uðyÞ ¼ � 1

2m

dp

dx
yðh� yÞ:

The shear stress is

s ¼ m
du

dy
¼ �

�

h

2
� y

�

dp

dx
,

which is linear with a magnitude of (h/2)(dp/dx) at the walls (Figure 8.4d).
Interestingly, the constancy of the pressure gradient and the linearity of the shear stress

distribution are general results for a fully developed channel flow and persist for appropriate
averages of these quantities when the flow is turbulent.

FIGURE 8.4 Various cases of parallel flow in a channel: (a) positive U and favorable dp/dx < 0, (b) positive U

and adverse dp/dx > 0, (c) positive U and dp/dx ¼ 0, and (d) U ¼ 0 and favorable dp/dx < 0.
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Steady Flow in a Round Tube

A second geometry for which there is an exact solution of (4.10) and (8.1) is steady, fully
developed laminar flow through a round tube of constant radius a, frequently called circular
Poiseuille flow. We employ cylindrical coordinates (R, 4, z), with the z-axis coinciding with the
axis of the tube (Figure 8.5). The equations of motion in cylindrical coordinates are given in
Appendix B. The only nonzero component of velocity is the axial velocity uz(R), and u ¼ (0, 0,
uz(R)) automatically satisfies the continuity equation. The radial and angular equations of
motion reduce to

0 ¼ vp=v4 and 0 ¼ vp=vR,

so p is a function of z alone. The z-momentum equation gives

0 ¼ �dp

dz
þ m

R

d

dR

�

R
duz
dR

�

:

As for flow between parallel plates, the first term must be a function of the stream-wise coor-
dinate, z, alone and the second term must be a function of the cross-stream coordinate, R,
alone, so both terms must be constant. The pressure therefore falls linearly along the length
of the tube. Integrating the stream-wise momentum equation twice produces

uzðRÞ ¼ R2

4m

dp

dz
þ A ln Rþ B:

To keep uz bounded atR ¼ 0, the constantAmust be zero. The no-slip condition uz ¼ 0 atR ¼ a
gives B ¼ �(a2/4m)(dp/dz). The velocity distribution therefore takes the parabolic shape:

uzðRÞ ¼ R2 � a2

4m

dp

dz
: (8.6)

From Appendix B, the shear stress at any point is

szR ¼ m

�

vuR
vz

þ vuz
vR

�

:

In this case the radial velocity uR is zero. Dropping the subscripts on s and differentiating
(8.6) yields

FIGURE 8.5 Laminar flow through a round tube. The flow profile is parabolic, similar to pressure-driven flow
between stationary parallel plates (Figure 8.4d).
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s ¼ m
vuz
vR

¼ R

2

dp

dz
, (8.7)

which shows that the stress distribution is linear, having a maximum value at the wall of

s0 ¼ a

2

dp

dz
: (8.8)

Here again, (8.8) is also valid for appropriate averages of s0 and p for turbulent flow in a round
pipe.

The volume flow rate in the tube is:

Q ¼
Z a

0
uðRÞ2pRdR ¼ �pa4

8m

dp

dz
,

where the negative sign offsets the negative value of dp/dz. The average velocity over the
cross section is

V ¼ Q

pa2
¼ �a2

8m

dp

dz
:

Steady Flow between Concentric Rotating Cylinders

A third example in which the nonlinear advection terms drop out of the equations of
motion is steady flow between two concentric, rotating cylinders, also know as circular
Couette flow. Let the radius and angular velocity of the inner cylinder be R1 and U1 and those
for the outer cylinder be R2 and U2 (Figure 8.6). Using cylindrical coordinates and assuming
that u ¼ (0, u4(R), 0), the continuity equation is automatically satisfied, and the momentum
equations for the radial and tangential directions are

FIGURE 8.6 Circular Couette flow. The viscous fluid flows in the gap between an inner cylinder with radius R1

that rotates at angular speed U1 and an outer cylinder with radius R2 that rotates at angular speed U2.
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�u24
R

¼ �1

r

dp

dR
, and 0 ¼ m

d

dR

�

1

R

d

dR

�

Ru4
�

�

:

The R-momentum equation shows that the pressure increases radially outward due to the
centrifugal acceleration. The pressure distribution can therefore be determined once u4(R)
has been found. Integrating the 4-momentum equation twice produces

u4
�

R
� ¼ ARþ B=R: (8.9)

Using the boundary conditions u4 ¼ U1R1 at R ¼ R1, and u4 ¼ U2R2 at R ¼ R2, A and B are
found to be

A ¼ U2R
2
2 � U1R

2
1

R2
2 � R2

1

, and B ¼ �
�

U2 � U1

�

R2
1R

2
2

R2
2 � R2

1

:

Substitution of these into (8.9) produces the velocity distribution,

u4ðRÞ ¼ 1

R2
2 � R2

1

�

	

U2R
2
2 � U1R

2
1




R� ½U2 � U1�
R2
1R

2
2

R

�

, (8.10)

which has interesting limiting cases when R2 / N with U2 ¼ 0, and when R1 / 0 with
U1 ¼ 0.

The first limiting case produces the flow outside a long circular cylinder with radius R1

rotating with angular velocity U1 in an infinite bath of viscous fluid (Figure 8.7). By direct
simplification of (8.10), the velocity distribution is

u4ðRÞ ¼ U1R
2
1

R
, (8.11)

FIGURE 8.7 Rotation of a solid
cylinder of radius R1 in an infinite
body of viscous fluid. If gravity
points downward along the cylin-
der’s axis, the shape of a free
surface pierced by the cylinder is
also indicated. The flow field is
viscous but irrotational.
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which is identical to that of an ideal vortex, see (5.2), for R > R1 when G ¼ 2pU1R
2
1. This is the

only example of a viscous solution that is completely irrotational. As described in Section 5.1,
shear stresses do exist in this flow, but there is no net viscous force on a fluid element. The
viscous shear stress at any point is given by

sR4 ¼ m

�

1

R

vuR
v4

þ R
v

vR

�u4
R



�

¼ �2mU1R
2
1

R2
:

The mechanical power supplied to the fluid (per unit length of cylinder) is (2pR1)sR4u4,
and it can be shown that this power equals the integrated viscous dissipation of the flow field
(Exercise 8.12).

The second limiting case of (8.10) produces steady viscous flowwithin a cylindrical tank of
radius R2 rotating at rate U2. Setting R1 and U1 equal to zero in (8.10) leads to

ufðRÞ ¼ U2R, (8.12)

which is the velocity field of solid body rotation, see (5.1) and Section 5.1.
The three exact solutions of the incompressible viscous flow equations (4.10) and (8.1)

described in this section are all known as internal or confined flows. In each case, the velocity
field was confined between solid walls and the symmetry of each situation eliminated the
nonlinear advective acceleration term from the equations. Other exact solutions of the incom-
pressible viscous flow equations for confined and unconfined flows are described in other
fine texts (Sherman, 1990; White, 2006), in Section 8.4, and in the Exercises of this chapter.
However, before proceeding to these, a short diversion into elementary lubrication theory
is provided in the next section.

8.3. ELEMENTARY LUBRICATION THEORY

The exact viscous flow solutions for ideal geometries presented in the prior section indi-
cate that a linear or simply varying velocity profile is a robust solution for flow within
a confined space. This observation has been developed into the theory of lubrication, which
provides approximate solutions to the viscous flow equations when the geometry is not ideal
but at least one transverse flow dimension is small. The elementary features of lubrication
theory are presented here because of its connection to the exact solutions described in Section
8.2, especially the Couette and Poiseuille flow solutions. Plus, the development of approxi-
mate equations in this section parallels that necessary for the boundary layer approximation
(see Section 9.1).

The economic importance of lubrication with viscous fluids is hard to overestimate, and
lubrication theory covers the mathematical formulation and analysis of such flows. The
purpose of this section is to develop the most elementary equations of lubrication theory
and illustrate some interesting phenomena that occur in viscous constant-density flows
where the flow’s boundaries or confining walls are close together, but not precisely
parallel, and their motion is mildly unsteady. For simplicity consider two spatial dimen-
sions, x and y, where the primary flow direction, x, lies along the narrow flow passage
with gap height h(x,t) (see Figure 8.8). The length L of this passage is presumed to be large
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compared to h so that viscous and pressure forces are the primary terms in any fluid-
momentum balance. If the passage is curved, this will not influence the analysis as long
as the radius of curvature is much larger than the gap height h. The field equations are
(4.10) and (8.1) for the horizontal u, and vertical v velocity components, and the pressure
p in the fluid:

vu

vx
þ vv

vy
¼ 0, (6.2)

vu

vt
þ u

vu

vx
þ v

vu

vy
¼ �1

r

vp

vx
þ m

r

 

v2u

vx2
þ v2u

vy2

!

, and
vv

vt
þ u

vv

vx
þ v

vv

vy
¼�1

r

vp

vx
þ m

r

 

v2v

vx2
þ v2v

vy2

!

:

(8.13a, 8.13b)

Here, the boundary conditions are u ¼ U0(t) on y ¼ 0 and u ¼ Uh(t) on y ¼ h(x, t), and the
pressure is presumed to be time dependent as well.

To determine which terms are important and which may be neglected when the passage is
narrow, recast these equations in terms of dimensionless variables:

x�¼ x=L, y�¼ y=h ¼ y=3L, t�¼ Ut=L, u�¼ u=U, v�¼ v=3U, and p�¼ p=Pa, (8.14)

where U is a characteristic velocity of the flow, Pa is atmospheric pressure, and 3 ¼ h/L is the
passage’s fineness ratio (the inverse of its aspect ratio). The goal of this effort is to find a set of
approximate equations that are valid for common lubrication geometries where 3� 1 and the
flow is unsteady. Because of the passage geometry, the magnitude of v is expected to be much
less than the magnitude of u and gradients along the passage, v/vx ~ 1/L, are expected to be
much smaller than gradients across it, v/vy ~ 1/h. These expectations have been incorpo-
rated into the dimensionless scaling (8.14). Combining (6.2), (8.13), and (8.14) leads to the
following dimensionless equations:

vu�

vx�
þ vv�

vy�
¼ 0, (8.15)

32 ReL

�

vu�

vt�
þ u�

vu�

vx�
þ v�

vu�

vy�

�

¼ �1

L

vp�

vx�
þ 32

v2u�

vx�2
þ v2u�

vy�2
, and

34 ReL

�

vv�

vt�
þ u�

vv�

vx�
þ v�

vv�

vy�

�

¼ �1

L

vp�

vy�
þ 34

v2v�

vx�2
þ 32

v2v�

vy�2
,

(8.16a, 8.16b)

where ReL ¼ rUL/m, and L ¼ mUL/Pah
2 is the ratio of the viscous and pressure forces on

a fluid element; it is sometimes called the bearing number. All the dimensionless derivative

y
h x

x

,t))

u(x,y,t)

FIGURE 8.8 Nearly parallel flow of a viscous fluid having a film thickness of h(x,t) above a flat stationary
surface.
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terms should be of order unity when the scaling (8.14) is correct. Thus, possible simplifying
approximations are based on the size of the dimensionless coefficients of the various terms.
The scaled two-dimensional continuity equation (8.15) does not contain any dimensionless
coefficients so mass must be conserved without approximation. The two-scaled momentum
equations (8.16) contain 3, ReL, and L. For the present purposes, L must be considered to be
near unity, ReL must be finite, and 3 � 1. When 32ReL � 1, the left side and the middle term
on the right side of (8.16a) may be ignored. In (8.16b) the pressure derivative is the only
term not multiplied by 3. Therefore, the momentum equations can be approximately simpli-
fied to:

0y � 1

r

vp

vx
þ v2u

vy2
and 0y � 1

r

vp

vy
, (8.17a, 8.17b)

when 32ReL / 0. As a numerical example of this approximation, 32ReL ¼ 0.001 for room
temperature flow of common 30-weight oil with n z 4 �10e4 m2/s within a 0.1 mm gap
between two 25-cm-long surfaces moving with a differential speed of 10 m/s. When
combined with a statement of conservation of mass, the equations (8.17) are the simplest
form of the lubrication approximation (the zeroth-order approximation), and these equa-
tions are readily extended to two-dimensional gap-thickness variations (see Exercise
8.19). Interestingly, the approximations leading to (8.17) eliminated both the unsteady
and the advective fluid acceleration terms from (8.16); a steady-flow approximation was
not made. Therefore, time is still an independent variable in (8.17) even though it does
not explicitly appear.

A generic solution to (8.17) is readily produced by following the steps used to solve (8.4a,
8.4b). Equation (8.17b) implies that p is not a function of y, so (8.16a) can be integrated twice to
produce:

uðx,y, tÞy 1

m

vpðx, tÞ
vx

y2

2
þ Ayþ B, (8.18)

where A and B might be functions of x and t but not y. Applying the boundary conditions
mentioned earlier allows A and B to be evaluated, and the fluid velocity within the gap is
found to be:

uðx, y, tÞy � h2ðx, tÞ
2m

vpðx, tÞ
vx

y

hðx, tÞ
�

1� y

hðx, tÞ
�

þUhðtÞ
y

hðx, tÞ þU0ðtÞ: (8.19)

The basic result here is that balancing viscous and pressure forces leads to a velocity
profile that is parabolic in the cross-stream direction. While (8.19) represents a significant
simplification of the two momentum equations (8.13), it is not a complete solution
because the pressure p(x, t) within the gap has not yet been determined. The complete
solution to an elementary lubrication flow problem is typically obtained by combining
(8.19), or an appropriate equivalent, with a differential or integral form of (4.10) or
(6.2), and pressure boundary conditions. Such solutions are illustrated in the following
examples.
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EXAMPLE 8.1

A sloped bearing pad of width B into the page moves horizontally at a steady speed U on a thin

layer of oil with density r and viscosity m. The gap between the bearing pad and a stationary hard,

flat surface located at y ¼ 0 is h(x) ¼ ho(1 þ ax/L) where a� 1. If pe is the exterior pressure and p(x)

is the pressure in the oil under the bearing pad, determine the loadW (per unit width into the page)

that the bearing can support.

Solution

The solution plan is to conserve mass exactly using (4.5), a control volume (CV) that is attached

to the bearing pad, and the generic velocity profile (8.19). Then, pressure boundary conditions at the

ends of the bearing pad should allow the pressure distribution under the pad to be found. Finally,W

can be determined by integrating this pressure distribution.

Use the fixed-shape, but moving CV shown in Figure 8.9 that lies between x1 and x2 at the

moment of interest. The mass of fluid in the CV is constant so the unsteady term in (4.5) is zero, and

the control surface velocity is b ¼ Uex. Denote the fluid velocity as u ¼ u(x, y)ex, and recognize

ndA ¼ eexBdy on the vertical CV surface at x1 and ndA ¼ þexBdy on the vertical CV surface at x2.

Thus, (4.5) simplifies to:

rB

"

�
Z hðx1Þ

0
ðuðx1,yÞ �UÞdyþ

Z hðx2Þ

0
ðuðx2,yÞ �UÞdy

#

¼ 0:

Dividing this equation by rB(x2 e x1) and taking the limit as (x2 e x1) / 0 produces:

d

dx

"

Z hðxÞ

0
ðuðx,yÞ �UÞdy

#

¼ 0, or

Z hðxÞ

0
ðuðx,yÞ �UÞdy ¼ C1,

where C1 is a constant. For the flow geometry and situation in Figure 8.9, (8.19) simplifies to:

uðx,y, tÞy � h2ðxÞ
2m

dpðxÞ
dx

y

hðxÞ
�

1� y

hðxÞ
�

þU
y

hðxÞ,

which can substituted into with the conservation of mass result and integrated to determine C1 in

terms of dp/dx and h(x):

C1 ¼ �h3ðxÞ
12m

dpðxÞ
dx

�UhðxÞ
2

, or
dpðxÞ
dx

¼ � 12m

h3ðxÞ C1 � 6mU

h2ðxÞ:

U h(x)
pe pe

W

x

x = Lx = 0 xx x2x1

p(x) = ?

FIGURE 8.9 Schematic drawing of a bearing pad with load W moving above a stationary flat surface
coated with viscous oil. The gap below the pad has a mild slope and the pressure ahead, behind, and on top of
the bearing pad is pe.
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The second equation is just an algebraic rearrangement of the first, and is a simple first-order

differential equation for the pressure that can be integrated using the known h(x) from the problem

statement:

pðxÞ ¼ �12mC1

h3o

Z

dx

ð1� ax=LÞ3
� 6mU

h2o

Z

dx

ð1� ax=LÞ2
þ C2 ¼ 6mL

h2oa

"

C1=ho

ð1� ax=LÞ2
þ U

1� ax=L

#

þ C2:

Using the two ends of this extended equality and the pressure conditions p(x ¼ 0) ¼ p(x ¼ L) ¼ pe
produces two algebraic equations that can be solved simultaneously for the constants C1 and C2:

C1 ¼ e

�

1þ a

2þ a

�

Uho, and C2 ¼ pe e
6mLU

h2oa

�

1

2þ a

�

:

Thus, after some algebra the following pressure distribution is found:

pðxÞ � pe ¼ 6mLU

h2o

�

aðx=LÞð1� x=LÞ
ð2þ aÞð1þ ax=LÞ

�

:

However, this distribution may contain some superfluous dependence on a and x, because no

approximations have been made regarding the size of awhile (8.19) is only valid when a� 1. Thus,

keeping only the linear term in a produces:

pðxÞ � pey
3amLU

h2o

�x

L

�

1� x

L



for a � 1:

The bearing load per unit depth into the page is

W ¼
Z
L

0

�

p
�

x
�� pe

�

dx ¼ 3amLU

h2o

Z
L

0

�x

L

�

1� x

L



dx ¼ amL2U

2h2o
:

This result shows that larger loads may be carried when the bearing slope, the fluid viscosity, the

bearing size, and/or the bearing speed are larger, or the oil passage is smaller. Thus, the lubrication

action of this bearing pad as described in this example is stable to load perturbations when the other

parameters are held constant; an increase in load will lead to a smaller ho where the bearing’s load-

carrying capacity is higher. However, the load-carrying capacity of this bearing goes to zero when a,

m, L, orU go to zero, and this bearing design fails (i.e.,W becomes negative so the pad and surface are

drawn into contact) when either a or U are negative. Thus, the bearing only works when it moves in

the correct direction. A more detailed analysis of this bearing flow is provided in Sherman (1990).

EXAMPLE 8.2: VISCOUS FLOW BETWEEN PARALLEL PLATES
(HELE-SHAW 1898)

A viscous fluid flows with velocity u ¼ (u, v, w) in a narrow gap between stationary parallel

plates lying at z ¼ 0 and z ¼ h as shown in Figure 8.10. Nonzero x- and y-directed pressure gradients

are maintained at the plates’ edges, and obstacles or objects of various sizes may be placed between

the plates. Using the continuity equation (4.10) and the two horizontal (x, y) and one vertical (z)

momentum equations (deduced in Exercise 8.19),
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0y� 1

r

vp

vx
þ v2u

vz2
, 0y � 1

r

vp

vy
þ v2v

vz2
, and 0y � 1

r

vp

vz
,

show that the two in-plane velocity components parallel to the plates, u and v, can be determined

from the equations for two-dimensional potential flow:

u ¼ vf

vx
and v ¼ vf

vy
with

v2f

vx2
þ v2f

vy2
¼ 0, (6.10, 6.12)

for an appropriate choice of f.

Solution

The solution plan is to use the two horizontal momemtum equations given above to

determine the functional forms of u and v. Then f can be determined via integration of (6.10).

Combining these results into (4.10) should produce (6.12), the two-dimensional Laplace

equation for f. Integrating the two horizontal momemtum equations twice in the z-direction

produces:

uy
1

m

vp

vx

z2

2
þ Azþ B, and vy

1

m

vp

vy

z2

2
þ CzþD,

where A, B, C, and D are constants that can be determined from the boundary conditions on y ¼ 0,

u ¼ v ¼ 0 which produces B ¼ D ¼ 0, and on y ¼ h, u ¼ v ¼ 0, which produces A ¼ e(h/2m)(vp/vx)

and C ¼ e(h/2m)(vp/vy). Thus, the two in-plane velocity components are:

uy � 1

2m

vp

vx
zðh� zÞ ¼ vf

vx
and vy � 1

2m

vp

vy
zðh� zÞ ¼ vf

vy
:

Integrating the second equality in each case produces:

f ¼ �zðh� zÞ
2m

pþ EðyÞ and f ¼ �zðh� zÞ
2m

pþ FðxÞ:

These equations are consistent when E ¼ F ¼ const., and this constant can be set to zero without loss

of generality because it does not influence u and v, which are determined from derivatives of f.

Therefore, the velocity field requires a potential f of the form:

f ¼ �zðh� zÞ
2m

p:

x

z

yy
h

FIGURE 8.10 Pressure-driven viscous flow between parallel plates that trap an obstacle. The gap height h
is small compared to the extent of the plates and the extent of the obstacle, shown here as a round disk.
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To determine the equation satisfied by p or f, place the results for u and v into the continuity

equation (4.10) and integrate in the z-direction from z ¼ 0 to h to find:

Z
h

0

�

vu

vx
þ vv

vy

�

dz ¼ �
Z
h

0

vw

vz
dz ¼ �ðwÞz¼h

z¼0 ¼ 0/� 1

2m

 

v2p

vx2
þ v2p

vy2

!

Z
h

0

zðh� zÞdz ¼ 0,

where the no-through-flow boundary condition ensuresw ¼ 0 on y ¼ 0 and h. The vertical momem-

tum equation given above requires p to be independent of z, that is, p ¼ p(x, y, t), so p may be taken

outside the z integration. The integral of z(h e z) from z ¼ 0 to h is not zero, so it and e1/2m can be

divided out of the last equation to achieve:

v2p

vx2
þ v2p

vy2
¼ 0, or

v2f

vx2
þ v2f

vy2
¼ 0,

where the final equation follows from the form of f determined from the velocity field.

This is a rather unusual and unexpected result because it requires viscous flow between closely

spacedparallel plates to produce the samepotential-line and streamline patterns as two-dimensional

ideal flow. Interestingly, this suggestion is correct, except in thin layers having a thickness of order

h near the surface of obstacles where the no-slip boundary condition on the obstacle prevents

the tangential-flow slip that occurs in ideal flow. (Hele-Shaw flow near the surface of an obstacle is

considered in Exercise 8.34). Thus, two-dimensional, ideal-flow streamlines past an object or

obstacle may be visualized by injecting dye into pressure-driven viscous flow between closely

spaced glass plates that trap a cross-sectional slice of the object or obstacle. Hele-Shaw flow has

practical applications, too. Much, if not all, of the manufacturing design analysis done to create

molds and tooling for plastic-forming operations is based on Hele-Shaw flow.

The basic balance of pressure and viscous stresses underlying lubrication theory can be
extended to gravity-driven viscous flows by appropriately revising the meaning of the pres-
sure gradient and evaluating the constants A and B in (8.18) for different boundary condi-
tions. Such an extension is illustrated in the next example in two dimensions for gravity-
driven flow of magma, paint, or viscous oil over a horizontal surface. Gravity re-enters the
formulation here because there is a large density change across the free surface of the viscous
fluid (see Section 4.9 “Neglect of Gravity in Constant Density Flows”).

EXAMPLE 8.3
A two-dimensional bead of a viscous fluid with density r and viscosity m spreads slowly on

a smoothhorizontal surfaceunder the actionof gravity. Ignoring surface tensionandfluidacceleration,

determine a differential equation for the thickness h(x, t) of the spreading bead as a function of time.

Solution

The solution plan is to conserve mass exactly using (4.5), a stationary control volume (CV) of

thickness dx, height h, and unit depth into the page (see Figure 8.11), and the generic velocity profile

(8.18) when the pressure gradient is recast in terms of the thickness gradient vh/vx. The constants A

and B in (8.18) can be determined from the no-slip condition at y ¼ 0, and a stress-free condition on
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y ¼ h. When this refined version of (8.18) is put into the conservation of mass statement, the result is

the differential equation that is sought.

By conserving mass between the two vertical lines in Figure 8.11, (4.5) becomes:

r
vh

vt
dx�

Z hðx, tÞ

0
ruðx,y, tÞ dyþ

Z hðxþdx, tÞ

0
ruðxþ dx, y, tÞ dy ¼ 0:

When rearranged and the limit dx / 0 is taken, this becomes:

vh

vt
þ v

vx

 

Z hðx, tÞ

0
uðx,y, tÞ dy

!

¼ 0:

At any location within the spreading bead, the pressure p is hydrostatic: p(x, y, t) ¼ rg(h(x, t) e y)

when fluid acceleration is ignored. Thus, the horizontal pressure gradient in the viscous fluid is

vp

vx
¼ v

vx
½rgðhðx, tÞ � yÞ� ¼ rg

vh

vx
,

which is independent of y, so (8.18) becomes:

uðx, y, tÞy rg

2m

vhðx, tÞ
vx

y2 þ Ayþ B:

The no-slip condition at y ¼ 0 implies that B ¼ 0, and the no-stress condition at y ¼ h implies:

0 ¼ m

�

vu

vy

�

y¼hðx, tÞ
¼ rg

vhðx, tÞ
vx

hðx, tÞ þ mA, so A ¼ �rg

m
h
vh

vx
:

So, the velocity profile within the bead is:

uy � rg

2m

vh

vx
yð2h� yÞ,

and its integral is:

Z
h

0

uðx,y, tÞ dyy � rg

2m

vh

vx

Z
h

0

yð2h� yÞ dy ¼ � rg

3m
h3
vh

vx
:

y
g

x

h(x,t)

u(x,y,t)

dx

FIGURE 8.11 Gravity-driven spreading of a two-dimensional drop or bead on a flat, stationary surface.
The fluid is not confined from above. Hydrostatic pressure forces cause the fluid to move but it is impeded by
the viscous shear stress at y ¼ 0. The flow is assumed to be symmetric about x ¼ 0 so only half of it is shown.
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When this result is combined with the integrated conservation of mass statement, the final

equation is:

vh

vt
¼ rg

3m

v

vx

�

h3
vh

vx

�

:

This is a single nonlinear partial differential equation for h(x,t) that in principle can be solved if

a bead’s initial thickness, h(x,0), is known. Although this completes the effort for this example,

a similarity solution to this equation does exist.

Similarity solutions to partial differential equations are possible when a variable transfor-
mation exists that allows the partial differential equation to be rewritten as an ordinary differ-
ential equation, and several such solutions for the Navier-Stokes equations are presented in
the next section.

8.4. SIMILARITY SOLUTIONS FOR UNSTEADY INCOMPRESSIBLE
VISCOUS FLOW

So far, we have considered steady flows with parallel, or nearly parallel, streamlines. In
this situation, the nonlinear advective acceleration is zero, or small, and the stream-wise
velocity reduces to a function of one spatial coordinate, and time. When a viscous flow
with parallel or nearly parallel streamlines is impulsively started from rest, the flow depends
on the spatial coordinate and time. For such unsteady flows, exact solutions still exist because
the nonlinear advective acceleration drops out again (see Exercise 8.31). In this section,
several simple and physically revealing unsteady flow problems are presented and solved.
The first is the flow due to impulsive motion of a flat plate parallel to itself, commonly known
as Stokes’ first problem. (The flow is sometimes unfairly associated with the name of Rayleigh,
who used Stokes’ solution to predict the thickness of a developing boundary layer on a semi-
infinite plate.)

A similarity solution is one of several ways to solve Stokes’ first problem. The geometry of
this problem is shown in Figure 8.12. An infinite flat plate lies along y ¼ 0, surrounded by an
initially quiescent fluid (with constant r and m) for y > 0. The plate is impulsively given
a velocity U at t ¼ 0 and constant pressure is maintained at x ¼ �N. At first, only the fluid
near the plate will be drawn into motion, but as time progresses the thickness of this moving
region will increase. Since the resulting flow at any time is invariant in the x direction
(v/vx ¼ 0), the continuity equation vu/vx þ vv/vy ¼ 0 requires vv/vy ¼ 0. Thus, it follows
that v ¼ 0 everywhere since it is zero at y ¼ 0. Therefore, the simplified horizontal and
vertical momentum equations are:

r
vu

vt
¼ �vp

vx
þ m

v2u

vy2
, and 0 ¼ �vp

vy
:

Just before t ¼ 0, all the fluid is at rest so p ¼ constant. For t> 0, the vertical momentum equa-
tion only allows the fluid pressure to depend on x and t. However, at any finite time, there
will be a vertical distance from the plate where the fluid velocity is still zero, and, at this
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vertical distance from the plate, vp/vx is zero. However, if vp/vx ¼ 0 far from the plate, then
vp/vx ¼ 0 on the plate because vp/vy ¼ 0. Thus, the horizontal momentum equation reduces
to

vu

vt
¼ n

v2u

vy2
, (8.20)

subject to the boundary and initial conditions:

uðy, t ¼ 0Þ ¼ 0,uðy ¼ 0, tÞ ¼
�

0 for t < 0
U for t � 0

�

, and uðy/N, tÞ ¼ 0: (8.21, 8.22, 8.23)

The problem is well posed because (8.22) and (8.23) are conditions at two values of y, and
(8.21) is a condition at one value of t; this is consistent with (8.20), which involves a first deriv-
ative in t and a second derivative in y.

The partial differential equation (8.20) can be transformed into an ordinary differential
equation by switching to a similarity variable. The reason for this is the absence of enough
other parameters in this problem to render y and t dimensionless without combining
them. Based on dimensional analysis (see Section 1.11), the functional form of the solution
to (8.20) can be written:

u=U ¼ fðy=
ffiffiffiffi

nt
p

, y=UtÞ: (8.24)

where f is an undetermined function. However, (8.20) is a linear equation, so u must be
proportional to U. This means that the final dimensionless group in (8.24) must be dropped,
leaving:

u=U ¼ Fðy=
ffiffiffiffi

nt
p

Þh FðhÞ, (8.25)

FIGURE 8.12 Laminar flow due
to a flat plate that starts moving
parallel to itself at speed U at t ¼ 0.
Before t ¼ 0, the entire fluid half-
space (y > 0) was quiescent. As time
progresses, more and more of the
viscous fluid above the plate is
drawn into motion. Thus, the flow
profile with greater vertical extent
corresponds to the later time.
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where F is an undetermined function, but this time it is a function of only one dimensionless
group and this dimensionless group h ¼ y/(nt)1/2 combines both independent variables.
This reduces the dimensionality of the solution space from two to one, an enormous
simplification.

Equation (8.25) is the similarity form for the fluid velocity in Stokes’s first problem. The
similarity variable h could have been defined differently, such as nt/y2, but different choices
for h merely change F, not the final answer. The chosen h allows F to be interpreted as
a velocity profile function with y appearing to the first power in the numerator of h. At
any fixed t > 0, y and h are proportional.

Using (8.25) to form the derivatives in (8.20) leads to

vu

vt
¼ U

dF

dh

vh

vt
¼ � Uy

2
ffiffiffiffiffiffi

nt3
p dF

dh
¼ �Uh

2t

dF

dh
and

U
v2F

vy2
¼ U

v

vy

�

dF

dh

vh

vy

�

¼ U
v

vy

�

1
ffiffiffiffi

nt
p dF

dh

�

¼ U
ffiffiffiffi

nt
p d

dh

�

dF

dh

�

vh

vy
¼ U

nt

d

dh

�

dF

dh

�

,

and these can be combined to provide the equivalent of (8.20) in similarity form:

�h

2

dF

dh
¼ d

dh

�

dF

dh

�

: (8.26)

The initial and boundary conditions (8.21) through (8.23) for F reduce to

Fðh ¼ 0Þ ¼ 1, and Fðh/N ¼ 0Þ, (8.27, 8.28)

because (8.21) and (8.23) reduce to the same condition in terms of h. This reduction is
expected because (8.20) was a partial differential equation and needed two conditions in y
and one condition in t. In contrast, (8.26) is a second-order ordinary differential equation
and needs only two boundary conditions.

Equation (8.26) is readily separated:

�h

2
dh ¼ dðdF=dhÞ

dF=dh
,

and integrated:

�h2

4
¼ lnðdF=dhÞ þ const:

Exponentiating produces:

dF=dh ¼ A exp
��h2=4

�

,

where A is a constant. Integrating again leads to:

FðhÞ ¼ A

Z h

0
exp

��x2=4
�

dxþ B, (8.29)

where x is just an integration variable and B is another constant. The condition (8.27) sets
B ¼ 1, while condition (8.28) gives
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0 ¼ A

Z N

0
exp

��x2=4
�

dxþ 1, or 0 ¼ 2A

Z N

0
exp

��z2
�

dzþ 1, so

0 ¼ 2A
� ffiffiffi

p
p

=2
�þ 1, thus A ¼ �1=

ffiffiffi

p
p

,

where the tabulated integral
RþN
�N expð�z2Þdz ¼ ffiffiffi

p
p

has been used. The final solution for u
then becomes:

uðy, tÞ
U

¼ 1� erf

�

y

2
ffiffiffiffi

nt
p

�

, where erfðzÞ ¼ 2
ffiffiffi

p
p

Z
z

0

exp
��x2

�

dx (8.30)

is the error function and again x is just an integration variable. The error function is a standard
tabulated function (see Abramowitz & Stegun, 1972). It is apparent that the solutions at
different times all collapse into a single curve of u/U vs h, as shown in Figure 8.13.

The nature of the variation of u/U with y for various values of t is sketched in
Figure 8.12. The solution clearly has a diffusive nature. At t ¼ 0, a vortex sheet (that is,
a velocity discontinuity) is created at the plate surface. The initial vorticity is in the
form of a delta function, which is infinite at the plate surface and zero elsewhere. The inte-
gral

RN
0 udy ¼ RN

0 ð�vu=vyÞdy ¼ eU is independent of time, so no new vorticity is generated
after the initial time. The flow given by (8.30) occurs as the initial vorticity diffuses away
from the wall. The situation is analogous to a heat conduction problem in a semi-infinite
solid extending from y ¼ 0 to y ¼N. Initially, the solid has a uniform temperature, and at
t ¼ 0 the face at y ¼ 0 is suddenly brought to a different temperature. The temperature
distribution for this heat conduction problem is given by an equation similar to (8.30).

FIGURE 8.13 Similarity solution of laminar flow due to an impulsively started flat plate. Using these scaled
coordinates, all flow profiles like those shown on Figure 8.12 will collapse to the same curve. The factor of two in the
scaling of the vertical axis follows from (8.30).
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We may arbitrarily define the thickness of the diffusive layer as the distance at which u
falls to 1% of U. From Figure 8.13, u/U ¼ 0.01 corresponds to y/(nt)1/2 ¼ 3.64. Therefore,
in time t the diffusive effects propagate to a distance of

d99w3:64
ffiffiffiffi

nt
p

, (8.31)

which defines the 99% thickness of the layer of moving fluid and this layer’s thickness
increases as t1/2. Obviously, the factor of 3.64 is somewhat arbitrary and can be changed by
choosing a different ratio of u/U as the definition for the edge of the diffusive layer. However,
99% thicknesses are commonly considered in boundary layer theory (see Chapter 9).

Stokes’ first problem illustrates an important class of fluid mechanical problems that have
similarity solutions. Because of the absence of suitable scales to render the independent vari-
ables dimensionless, the only possibility was a combination of variables that resulted in
a reduction in the number of independent variables required to describe the problem. In
this case the reduction was from two (y, t) to one (h) so that the formulation reduced a partial
differential equation in y and t to an ordinary differential equation in h.

The solution (8.30) for u(y, t) is self-similar in the sense that at different times t1, t2, t3,. the
various velocity profiles u(y, t1), u(y, t2), u(y, t3), . all collapse into a single curve if the
velocity is scaled by U and y is scaled by the thickness (nt)1/2. Moreover, such a collapse
will occur for different values of U and for fluids having different n.

Similarity solutions arise in situations in which there are no imposed length or time scales
provided by the initial or boundary conditions (or the field equation). A similarity solution
would not be possible if, for example, the boundary conditions were changed after a certain
time t1 since this introduces a time scale into the problem (see Exercise 8.30). Likewise, if the
flow in Stokes’ first problemwas bounded above by a second parallel plate, there could be no
similarity solution because the distance to the second plate introduces a length scale into the
problem.

Similarity solutions are often ideal for developing an understanding of flow phenomena,
so they are sought wherever possible. A method for finding similarity solutions starts from
a presumed form for the solution:

g ¼ At�nFðx=dðtÞÞhAt�nFðhÞ or g ¼ Ax�nFðx=dðtÞÞhAx�nFðhÞ, (8.32a,b)

where g is the dependent field variable of interest, A is a constant (units ¼ [g]� [time]n or [g]
� [length]n), x is the independent spatial coordinate, t is time, and h ¼ x/d is the similarity
variable, and d(t) is a time-dependent length scale. The factor of Aten or Axen that multiplies
F in (8.32) is sometimes needed for similarity solutions that are infinite (or zero) at t ¼ 0 or
x ¼ 0. Use of (8.32) is illustrated in the following examples.

EXAMPLE 8.4

Use (8.32a) to find the similarity solution to Stokes’ first problem.

Solution

The solution plan is to populate (8.32a) with the appropriate variables, substitute it into the field

equation (8.20), and then require that the coefficients all have the same time dependence. For Stokes’

8. LAMINAR FLOW330



first problem g ¼ u/U, and the independent spatial variable is y. For this flow, the coefficient Aten is

not needed since u/U ¼ 1 at h ¼ 0 for all t> 0 and this can only happenwhenA ¼ 1 and n ¼ 0. Thus,

the dimensional analysis result (8.25) may be replaced by (8.32a) with A ¼ 1, n ¼ 0, and x ¼ y:

u=U ¼ Fðy=dðtÞÞh FðhÞ:
A time derivative produces:

vu

vt
¼ U

dF

dh

�

� y

d2

�

dd

dt
,

while two y-derivatives produce:

v2u

vy2
¼ U

d2F

dh2
1

d2
:

Reconstructing (8.20) with these replacements yields:

vu

vt
¼ n

v2u

vy2
/U

dF

dh

�

� y

d2

�

dd

dt
¼ nU

d2F

dh2
1

d2
,

which can be rearranged to find:

�
�

1

d

dd

dt

�

h
dF

dh
¼
�

n

d2

�

d2F

dh2
:

For this equation to be in similarity form, the coefficients in [,]-brackets must both have the same

time dependence so that division by this common time dependence will leave an ordinary differ-

ential equation for F(h) and t will no longer appear. Thus, we require the two coefficients to be

proportional:

1

d

dd

dt
¼ C1

n

d2
,

where C1 is the constant of proportionality. This is a simple differential equation for d(t) that is

readily rearranged and solved:

d
dd

dt
¼ C1n/

d2

2
¼ C1ntþ C2/d ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2C1nt
p

,

where the condition d(0) ¼ 0 has been used to determine that the constant of integration C2 ¼ 0.

When C1 ¼ ½, the prior definition of h in (8.25) is recovered, and the solution for u proceeds as

before (see (8.26) through (8.30)).

EXAMPLE 8.5

At t ¼ 0 an infinitely thin vortex sheet in a fluid with density r and viscosity m coincides with the

plane defined by y ¼ 0, so that the fluid velocity isU for y> 0 and�U for y< 0. The coordinate axes

are aligned so that only the z-component of vorticity is nonzero. Determine the similarity solution

for uz(y, t) for t > 0.
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Solution

The solution plan is the same as for Example 8.4, except here the coefficient Aten must be

included. In this circumstance, there will be only one component of the fluid velocity, u ¼ u(y, t)ex,

so uz(y, t) ¼ evu/vy. The independent coordinate y does not appear in the initial condition, so

(8.32a) is the preferred choice. Its appropriate form is:

uz
�

y, t
� ¼ At�nFðy=dðtÞÞhAt�nF

�

h
�

,

and the field equation,

vuz

vt
¼ n

v2uz

vy2
,

is obtained by applying v/vy to (8.20). Here, the derivatives of the similarity solution are:

vuz

vt
¼ �nAt�n�1FðhÞ þ At�ndF

dh

�

� y

d2

�

dd

dt
, and

v2uz

vy2
¼ At�nd

2F

dh2
1

d2
:

Reassembling the field equation and canceling common factors produces:

�
hn

t

i

FðhÞ �
�

1

d

dd

dt

�

h
dF

dh
¼
�

n

d2

�

d2F

dh2
:

From Example 8.4, we know that requiring the second and third coefficients in [,]-brackets to be

proportional with a proportionality constant of ½ produces d ¼ (nt)1/2. With this choice for d, each of

the coefficients in [,]-brackets is proportional to 1/t so, the similarity equation becomes:

�nFðhÞ � 1

2
h
dF

dh
¼ d2F

dh2
:

The boundary conditions are: 1) at any finite time the vorticity must go to zero infinitely far from

the initial location of the vortex sheet, F(h)/ 0 for h/N, and 2) the velocity difference across the

diffusing vortex sheet is constant and equal to 2U:

�
Z
þN

�N

uz dy ¼
Z
þN

�N

vu

vy
dy ¼ ½uðy, tÞ�þN

�N ¼ U � ð�UÞ ¼ 2U:

Substituting the similarity solution into this second requirement leads to:

�
Z
þN

�N

uz dy ¼ �
Z
þN

�N

At�nF
�

h
�

dy ¼ �At�nd

Z
þN

�N

FðhÞdðy=dÞ ¼ �At�nd

Z
þN

�N

FðhÞdh ¼ 2U:

The final integral is just a number so tend(t) must be constant, and this implies n ¼ ½ so the simi-

larity equation may be rewritten, and integrated:

�1

2

�

FðhÞ þ h
dF

dh

�

¼ �1

2

d

dh
ðhFÞ ¼ d

dh

�

dF

dh

�

/
dF

dh
þ 1

2
hF ¼ C:
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The first boundary condition implies that both F and dF/dh / 0 when h is large enough.

Therefore, assume that hF/ 0 when h /N so that the constant of integration C can be set to zero

(this assumption can be checked once F is found). When C ¼ 0, the last equation can be separated

and integrated to find:

F
�

h
� ¼ D exp

��h2=4
�

,

where D is a constant, and the assumed limit, hF / 0 when h / N, is verified so C is indeed zero.

The velocity-difference constraint and the tabulated integral used to reach (8.30) allow the product

AD to be evaluated. Thus, the similarity solutions for the vorticity uz ¼ evu/vy and velocity u are:

uzðy, tÞ ¼ � U
ffiffiffiffiffiffiffi

pnt
p exp

�

� y2

4nt

�

, and uðy, tÞ ¼ Uerf

�

y

2
ffiffiffiffi

nt
p

�

:

Schematic plots of the vorticity and velocity distributions are shown in Figure 8.14. If we define

the width of the velocity transition layer as the distance between the points where u ¼ �0.95U,

then the corresponding values of h are �2.76 and consequently the width of the transition layer is

5.54(nt)1/2.

The results of this example are closely related to Stokes’ first problem, and to the laminar

boundary layer flows discussed in the next chapter, for several reasons. First of all, this flow is

essentially the same as that in Stokes’ first problem. The velocity field in the upper half of

Figure 8.14 is identical to that in Figure 8.13 after a Galilean transformation to a coordinate system

FIGURE 8.14 Viscous thickening of a vortex sheet. The left panel indicates the vorticity distribution at two
times, while the right panel shows the velocity field solution in similarity coordinates. The upper half of this
flow is equivalent to a temporally developing boundary layer.
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moving at speed þU followed by a sign change. In addition, the flow for y > 0 represents

a temporally developing boundary layer that begins at t ¼ 0. The velocity far from the surface is

irrotational and uniform at speedUwhile the no-slip condition (u ¼ 0) is satisfied at y ¼ 0. Here, the

wall shear stress and skin friction coefficient Cf are time dependent:

sw ¼ m

�

vu

vy

�

y¼0

¼ mU
ffiffiffiffiffiffiffi

pnt
p , or Cf ¼

sw
1

2
rU2

¼ 2
ffiffiffi

p
p

ffiffiffiffiffiffiffiffi

n

U2t

r

:

When Ut is interpreted as a surrogate for the downstream distance, x, in a spatially developing

boundary layer, the last square-root factor above becomes (n/Ux)1/2 ¼ Re
�1=2
x , and this is the correct

parametric dependence for Cf in a laminar boundary layer that develops on a smooth, flat surface

below a steady uniform flow.

EXAMPLE 8.6

A thin, rapidly spinning cylinder produces the two-dimensional flow field, uq ¼ G/2pr, of an

ideal vortex of strength G located at r ¼ 0. At t ¼ 0, the cylinder stops spinning. Use (8.32) to

determine uq(r, t) for t > 0.

Solution

Follow the approach specified for the Example 8.4 but this time use (8.32b) because r appears in

the initial condition. Here uq is the dependent field variable and r is the independent spatial

variable, so the appropriate form of (8.32b) is:

uq
�

r, t
� ¼ Ar�nFðr=dðtÞÞhAr�nF

�

h
�

:

The initial and boundary conditions are: uq(r, 0) ¼ G/2pr ¼ uq(r/N, t), and uq(0, t) ¼ 0 for t> 0,

which are simplified to F(h/N) ¼ 1 and F(0) ¼ 0 when Aren is set equal to G/2pr. In this case, the

field equation for uq (see Appendix B) is

vuq
vt

¼ n
v

vr

�

1

r

v

vr
ðruqÞ

�

:

Inserting uq ¼ (G/2pr)F(h) produces:

� G

2pr

�

1

d

dd

dt

�

h
dF

dh
¼ n

G

2p

 

� 1

dr2
dF

dh
þ 1

d2r

d2F

dh2

!

/�
�

r2

nd

dd

dt

�

h
dF

dh
¼ �h

dF

dh
þ h2

d2F

dh2
:

For a similarity solution, the coefficient in [,]-brackets must depend on h alone, not on r or t. Here,

this coefficient reduces to h2/2 when d ¼ (nt)1/2 (as in the prior examples). With this replacement,

the similarity equation can be integrated twice:

�

1

h
� h

2

�

dF

dh
¼ d

dh

�

dF

dh

�

/ ln h� h2

4
þ const: ¼ ln

�

dF

dh

�

/C

Z

h exp
��h2=4

�

dhþD ¼ FðhÞ:
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The remaining integral is elementary, and the boundary conditions given above for F allow the

constants C and D to be evaluated. The final result is F(h) ¼ 1 e exp{�h2/4}, so the velocity

distribution is:

uqðr, tÞ ¼ G

2pr

�

1� exp

�

� r2

4nt

��

,

which is identical to the Gaussian vortex of (3.29) when s2 ¼ 4nt. A sketch of the velocity distri-

bution for various values of t is given in Figure 8.15. Near the center, r � (nt)1/2, the flow has the

form of rigid-body rotation, while in the outer region, r [ (nt)1/2, the motion has the form of an

ideal vortex.

The foregoing presentation applies to the decay of a line vortex. The case where a line vortex is

suddenly introduced into a fluid at rest leads to the velocity distribution,

uqðr, tÞ ¼ G

2pr
exp

�

� r2

4nt

�

(see Exercise 8.26). This situation is equivalent to the impulsive rotational start of an infinitely thin

and quickly rotating cylinder.

FIGURE 8.15 Viscous decay of a line vortex showing the tangential velocity uq at different times. The
velocity field nearest to the axis of rotation changes the most quickly. At large radii, flow alterations occur
more slowly.
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EXAMPLE 8.7

Use (8.32a) and an appropriate constraint on the total volume of fluid to determine the

form of the similarity solution to the two-dimensional, viscous, drop-spreading equation of

Example 8.3.

Solution

The solution plan is to populate (8.32a) with the appropriate variables,

h ¼ At�nFðx=dðtÞÞhAt�nFðhÞ,

substitute it into the equation from Example 8.3, and require that: 1) the coefficients all have the

same time dependence, and 2) the total fluid volume per unit depth into the page,
RþN
�N hðx, tÞdx, is

independent of time. The starting point is the evaluation of derivatives:

vh

vt
¼ �nAt�n�1FðhÞ þ At�ndF

dh

�

� x

d2

�

dd

dt
, and

vh

vx
¼ At�ndF

dh

�

1

d

�

,

which, when inserted in the final equation of Example 8.3, produces:

vh

vt
¼ �	nAt�n�1




FðhÞ �
�

At�n1

d

dd

dt

�

h
dF

dh
¼
�

rg

3m
A4t�4n 1

d2

�

 

3F2
�

dF

dh

�2

þF3
d2F

dh2

!

¼ rg

3m

v

vx

�

h3
vh

vx

�

:

Requiring proportionality between the first two coefficients in [,]-brackets with C as the

constant of proportionality yields:

CnAt�n�1 ¼ At�n1

d

dd

dt
/C

n

t
¼ 1

d

dd

dt
:

The second equation is satisfied when d ¼ Dtm where D is another constant and m ¼ Cn. Requiring

proportionality between the second and third coefficients and using d ¼ Dtm produces:

EAt�n1

d

dd

dt
¼ rg

3m
A4t�4n 1

d2
/� E

m

t
¼ rg

3m
A3t�3nD2t�2m/� 1 ¼ �3n� 2m,

where E is another constant of proportionality; the final equation for the exponents follows from

equating powers of t in the second equation. These results set the form of d(t) and specify one

relationship between n and m. A second relationship between m and n comes from conserving the

volume per unit depth into the page:

Z
þN

�N

hðx, tÞdx ¼
Z
þN

�N

At�nF
�

h
�

dx ¼ At�nDtm
Z
þN

�N

FðhÞdh ¼ const:

The final integral is just a number so the exponents of t outside this integral must sum to zero for the

volume to be constant. This implies: en þ m ¼ 0. Taken together, the two equations for m and n

imply: n ¼ m ¼1/5 . Thus, the form of the similarity solution of the final equation of Example 8.2 is:

hðx, tÞ ¼ At�1=5Fðx=Dt1=5Þ:
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Determining the constants A and D requires solution of the equation for F and knowledge of the

bead’s volume per unit depth, and is beyond the scope of this example.

After reviewing these examples, it should be clear that diffusive length scales in unsteady
viscous flow are proportional to (nt)1/2. The viscous bead-spreading example produces
a length scale with a different power, but this is not a diffusion time scale. Instead it is an
advection time scale that specifies how far fluid elements travel in the direction of the flow.

8.5. FLOW DUE TO AN OSCILLATING PLATE

The unsteady flows discussed in the preceding sections have similarity solutions, because
there were no imposed or specified length or time scales. The flow discussed here is an
unsteady viscous flow that includes an imposed time scale.

Consider an infinite flat plate lying at y ¼ 0 that executes sinusoidal oscillations parallel to
itself. (This is sometimes called Stokes’ second problem.) Here, only the steady periodic solution
after the starting transients have died out is considered, thus there are no initial conditions to
satisfy. The governing equation (8.20) is the same as that for Stokes’ first problem. The
boundary conditions are:

uðy ¼ 0, tÞ ¼ UcosðutÞ, and uðy/N, tÞ ¼ bounded, (8.33, 8.34)

where u is the oscillation frequency (rad./s). In the steady state, the flow variables must have
a periodicity equal to the periodicity of the boundary motion. Consequently, a complex sepa-
rable solution of the form,

uðy, tÞ ¼ Re
n

eiutfðyÞ
o

, (8.35)

is used here, and the specification of the real part is dropped until the final equation for u is
reached. Substitution of (8.33) into (8.20) produces:

iuf ¼ nðd2f=dy2Þ, (8.36)

which is an ordinary differential equation with constant coefficients. It has exponential solu-
tions of the form: f ¼ exp(ky) where k ¼ (iu/n)1/2 ¼ �(i þ 1)(u/2n)1/2. Thus, the solution of
(8.36) is

fðyÞ ¼ A exp
n

� ðiþ 1Þy
ffiffiffiffiffiffiffiffiffiffiffi

u=2n
p

o

þ B exp
n

þ ðiþ 1Þy
ffiffiffiffiffiffiffiffiffiffiffi

u=2n
p

o

: (8.37)

The condition (8.34) requires that the solution must remain bounded as y/N, so B ¼ 0, and
the complex solution only involves the first term in (8.37). The surface boundary condition
(8.33) requires A ¼ U. Thus, after taking the real part of (8.37), the final velocity distribution
for Stokes’ second problem is

uðy, tÞ ¼ U exp

�

�y

ffiffiffiffiffi

u

2n

r �

cos

�

ut� y

ffiffiffiffiffi

u

2n

r �

: (8.38)

The cosine factor in (8.38) represents a dispersive wave traveling in the positive-y direction,
while the exponential term represents amplitude decay with increasing y. The flow therefore
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resembles a highly damped transversewave (Figure 8.16).However, this is a diffusionproblem
and not a wave-propagation problem because there are no restoring forces involved here. The
apparent propagation ismerely a result of the oscillatingboundary condition. For y ¼ 4(n/u)1/2,
the amplitude of u is Uexpf�4=

ffiffiffi

2
p g ¼ 0.06U, which means that the influence of the wall is

confined within a distance of order d ~ 4(n/u)1/2, which decreases with increasing frequency.
The solution (8.38) has several interesting features. First of all, it cannot be represented by

a single curve in terms of dimensionless variables. A dimensional analysis of Stokes’ second
problem produces three dimensionless groups: u/U, ut, and y(u/n)1/2. Here the independent
spatial variable y can be fully separated from the independent time variable t. Self-similar
solutions exist only when the independent spatial and temporal variables must be combined
in the absence of imposed time or length scales. However, the fundamental concept associ-
ated with viscous diffusion holds true, the spatial extent of the solution is parameterized
by (n/u)1/2, the square root of the product of the kinematic viscosity, and the imposed
time scale 1/u. In addition, (8.38) can be used to predict the weak absorption of sound at
solid flat surfaces.

8.6. LOW REYNOLDS NUMBER VISCOUS FLOW PAST A SPHERE

Many physical problems can be described by the behavior of a system when a certain
parameter is either very small or very large. Consider the problem of steady constant-density

FIGURE 8.16 Velocity distribution in laminar flow near an oscillating plate. The distributions at ut ¼ 0, p/2, p,
and 3p/2 are shown. The diffusive distance is of order d ~ 4(n/u)1/2.
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flow of a viscous fluid at speedU around an object of size L. The governing equations will be
(4.10) and the steady flow version of (8.1):

ru,Vuþ Vp ¼ mV2u: (8.39)

As described in Chapter 4.11, this equation can be scaled to determine which terms are most
important. The purpose of such a scaling is to generate dimensionless terms that are of order
unity in the flow field. For example, when the flow speeds are high and the viscosity is small,
the pressure and inertia forces dominate the momentum balance, showing that pressure
changes are of order rU2. Consequently, for high Reynolds number, the scaling (4.100) is
appropriate for nondimensionalizing (8.39) to obtain

u�,V�u� þ V�p� ¼ 1

Re
V�2u�, (8.40)

where Re ¼ rUL/m is the Reynolds number. For Re [ 1, (8.40) may be solved by treating
1/Re as a small parameter, and as a first approximation, 1/Re may be set to zero everywhere
in the flow, which reduces (8.40) to the inviscid Euler equation without a body force.

However, viscous effects may still be felt at high Re because a single length scale is typi-
cally inadequate to describe all regions of high-Re flows. For example, complete omission of
the viscous term cannot be valid near a solid surface because the inviscid flow cannot satisfy
the no-slip condition at the body surface. Viscous forces are important near solid surfaces
because of the high shear in the boundary layer near the body surface. The scaling (4.100),
which assumes that velocity gradients are proportional to U/L, is invalid in such boundary
layers. Thus, there is a region of nonuniformity near the body where a perturbation expansion
in terms of the small parameter 1/Re becomes singular. The proper scaling in the boundary
layer and a procedure for analyzing wall-bounded high Reynolds number flows will be dis-
cussed in Chapter 9. A hint of what is to come is provided by the scaling (8.14), which leads to
the lubrication approximation and involves different-length scales for the stream-wise and
cross-stream flow directions.

Now consider flows in the opposite limit of very low Reynolds numbers, Re / 0. Clearly
such flows should have negligible inertia forces, with pressure and viscous forces providing
the dominant balance. Therefore, multiply (8.40) by Re to obtain

Reðu�,V�u� þ V�p�Þ ¼ V�2u�: (8.41)

Although this equation does have negligible inertia terms as Re / 0, it does not lead to
a balance of pressure and viscous forces as Re / 0 since it reduces to 0 ¼ mV2u, which is
not the proper governing equation for low Reynolds number flows. The source of the
inadequacy is the scaling of the pressure term specified by (4.100). For low Reynolds
number flows, pressure is not of order rU2. Instead, at low Re, pressure differences should
be scaled with a generic viscous stress such as mvu/vy ~ mU/L. Thus, the pressure scaling
p* ¼ (p e pN)/rU2 in (4.100) should be replaced by p* ¼ (p e pN)L/mU, and this leads to a
correctly revised version of (8.41)

Reðu�,V�u�Þ ¼ �V�p� þ V�2u�, (8.42)

which does exhibit the proper balance of terms as Re / 0 and becomes the linear (dimen-
sional) equation
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Vp ¼ mV2u, (8.43)

when this limit is taken.
Flows with Re/ 0 are called creeping flows, and they occur at low flow speeds of viscous

fluids past small objects or through narrow passages. Examples of such flows are the motion
of a thin film of oil in the bearing of a shaft, settling of sediment particles in nominally quies-
cent water, the fall of mist droplets in the atmosphere, or the flow of molten plastic during
a molding process. A variety of other creeping flow examples are presented in Sherman
(1990).

From this discussion of scaling, we conclude that the proper length and time scales depend on
the nature and the region of the flow, and are obtained by balancing the terms that are most important
in the region of the flow field under consideration. Identifying the proper length and time scales is
commonly the goal of experimental and numerical investigations of viscous flows, so that the
most appropriate simplified versions of the full equations for fluid motion may be analyzed.
The remainder of this section presents a solution for the creeping flow past a sphere, first
given by Stokes in 1851. This is a flow where different field equations should be used in
regions close to and far from the sphere.

We begin by considering the near-field flow around a stationary sphere of radius a placed
in a uniform stream of speed U (Figure 8.17) with Re/ 0. The problem is axisymmetric, that
is, the flow patterns are identical in all planes parallel to U and passing through the center of

FIGURE 8.17 Creeping flow over a sphere. The upper panel shows the viscous stress components at the surface.
The lower panel shows the pressure distribution in an axial (4 ¼ const.) plane.
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the sphere. Since Re / 0, as a first approximation, neglect the inertia forces altogether and
seek a solution to (8.43). Taking the curl of (8.43) produces an equation for the vorticity alone

V2u ¼ 0, 1

because V� Vp ¼ 0 and the order of the operators curl and V2 can be interchanged. (The
reader may verify this using indicial notation.) The only component of vorticity in this
axisymmetric problem is u4, the component perpendicular to 4 ¼ constant planes in
Figure 8.17, and it is given by

u4 ¼ 1

r

�

vðruqÞ
vr

� vur
vq

�

:

This is an axisymmetric flow, so the r and q velocity components can be found from an
axisymmetric stream function j:

ur ¼ 1

r2 sin q

vj

vq
, and uq ¼ � 1

r sin q

vj

vr
: (6.83)

In terms of this stream function, the vorticity becomes

u4 ¼ �1

r

"

1

sin q

v2j

vr2
þ 1

r2
v

vq

�

1

sinq

vj

vq

�

#

,

which is governed by:

V2u4 ¼ 0:1

Combining the last two equations, we obtain

"

v2

vr2
þ sin q

r2
v

vq

�

1

sin q

v

vq

�

#2

j ¼ 0:2 (8.44)

The boundary conditions on the preceding equation are

jðr ¼ a, qÞ ¼ 0 ½ur ¼ 0 at surface�, (8.45)

vjðr ¼ a, qÞ=vr ¼ 0 ½uq ¼ 0 at surface�, and (8.46)

jðr/N, qÞ ¼ 1

2
Ur2 sin2 q ½uniform flow far from the sphere�: (8.47)

The last condition follows from the fact that the stream function for a uniform flow is
½Ur2sin2q in spherical coordinates (see (6.86)).

The far-field condition (8.47) suggests a separable solution of the form

jðr, qÞ ¼ fðrÞ sin2 q:
1In spherical polar coordinates, the operator in the footnoted equations is actually �V � V � (�curl curl_),

which is different from the Laplace operator defined in Appendix B.
2Equation (8.44) is the square of the operator, and not the biharmonic.
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Substitution of this into the governing equation (8.44) gives

f iv � 4f 00

r2
þ 8f 0

r3
� 8f

r4
¼ 0,

whose solution is

f ¼ Ar4 þ Br2 þ CrþD=r:

The far-field boundary condition (8.47) requires that A ¼ 0 and B ¼ U/2. The surface
boundary conditions then give C ¼ �3Ua/4 and D ¼ Ua3/4. The solution then reduces to

j ¼ Ur2 sin2 q

�

1

2
� 3a

4r
þ a3

4r3

�

: (8.48)

The velocity components are found from (8.48) using (6.83):

ur ¼ U cos q

�

1� 3a

2r
þ a3

2r3

�

, and uq ¼ � U sin q

�

1� 3a

4r
� a3

4r3

�

: (8.49)

The pressure is found by integrating the momentum equation Vp ¼ mV2u. The result is

p� pN ¼ �3maU cos q

2r2
, (8.50)

which is sketched in Figure 8.17. The maximum p e pN ¼ 3mU/2a occurs at the forward
stagnation point (q ¼ p), while the minimum p e pN ¼ 3mU/2a occurs at the rear stagnation
point (q ¼ 0).

The drag force D on the sphere can be determined by integrating its surface pressure and
shear stress distributions (see Exercise 8.35) to find:

D ¼ 6pmaU, (8.51)

of which one-third is pressure drag and two-thirds is skin friction drag. It follows that drag in
a creeping flow is proportional to the velocity; this is known as Stokes’ law of resistance.

In a well-known experiment to measure the charge of an electron, Millikan (1911) used
(8.51) to estimate the radius of an oil droplet falling through air. Suppose r0 is the density
of a spherical falling particle and r is the density of the surrounding fluid. Then the effective
weight of the sphere is 4pa3g(r0 � r)/3, which is the weight of the sphere minus the weight of
the displaced fluid. The falling body reaches its terminal velocity when it no longer acceler-
ates, at which point the viscous drag equals the effective weight. Then,

�

4=3
�

pa3g
�

r0 � r
� ¼ 6pmaU,

from which the radius a can be estimated.
Millikan (1911) was able to deduce the charge on an electron (and win a Nobel prize)

making use of Stokes’ drag formula by the following experiment. Two horizontal parallel
plates can be charged by a battery (see Figure 8.18). Oil is sprayed through a very fine
hole in the upper plate and develops static charge (þ) by losing a few (n) electrons in passing
through the small hole. If the plates are charged, then an electric force neE will act on each of
the drops. Now n is not known but E ¼ �Vb/L, where Vb is the battery voltage and L is the
gap between the plates, provided that the charge density in the gap is very low. With the
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plates uncharged, measurement of the downward terminal velocity allowed the radius of
a drop to be calculated assuming that the viscosity of the drop is much larger than the
viscosity of the air. The switch is thrown to charge the upper plate negatively. The same
droplet then reverses direction and is forced upward. It quickly achieves its terminal velocity
Uu by virtue of the balance of upward forces (electric þ buoyancy) and downward forces
(weight þ drag). This gives

6pmUuaþ ð4=3Þpa3gðr0 � rÞ ¼ neE,

where Uu is measured by the observation telescope and the radius of the particle is now
known. The data then allow for the calculation of ne. As n must be an integer, data from
many droplets may be differenced to identify the minimum difference that must be e, the
charge of a single electron.

The drag coefficient, CD, defined by (4.107) with A ¼ pa2, for Stokes’ sphere is

CD ¼ D
1

2
rU2pa2

¼ 24

Re
, (8.52)

where Re ¼ 2aU/n is the Reynolds number based on the diameter of the sphere. This depen-
dence on the Reynolds number can be predicted fromdimensional analysiswhen fluid inertia,
represented by r, is not a parameter (see Exercise 4.60).Without fluid density, the drag force on
a slowly moving sphere may only depend on the other parameters of the problem:

D ¼ fðm,U, aÞ:
Here there are four variables and the three basic dimensions of mass, length, and time. There-
fore, only one dimensionless parameter,D/mUa, can be formed. Hence, it must be a constant,
and this leads to CD f 1/Re.

The flow pattern in a reference frame fixed to the fluid at infinity can be found by super-
posing a uniform velocity U to the left. This cancels out the first term in (8.48), giving

j ¼ Ur2 sin2 q

�

� 3a

4r
þ a3

4r3

�

,

which gives the streamline pattern for a sphere moving from right to left in front of an
observer (Figure 8.19). The pattern is symmetric between the upstream and the downstream
directions, which is a result of the linearity of the governing equation (9.63); reversing the

FIGURE 8.18 Simplified schematic of the Millikan oil drop experiment where observations of charged droplet
motion and Stokes’ drag law were used to determine the charge on an electron.
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direction of the free-stream velocity merely changes u to�u and p e pN to�pþ pN. The flow
therefore does not leave a velocity-field wake behind the sphere.

In spite of its fame and success, the Stokes solution is not valid at large distances from the
sphere because the advective terms are not negligible compared to the viscous terms at these
distances. At large distances, the viscous terms are of the order

viscous force=volume ¼ stress gradient w
mUa

r3
as r/N,

while from (8.49), the largest inertia term is:

inertia force=volume w rur
vuq
vr

w
rU2a

r2
as r/N;

therefore,

inertia force=viscous force w
rUa

m

r

a
w Re

r

a
as r/N,

which shows that the inertia forces are not negligible for distances larger than r/a ~ 1/Re.
Solutions of problems involving a small parameter can be developed in terms of a pertur-

bation series in which the higher-order terms act as corrections on the lower-order terms. If

FIGURE 8.19 Streamlines and
velocity distributions in Stokes’
solution of creeping flow due to
a moving sphere. Note the up-
stream and downstream symme-
try, which is a result of complete
neglect of nonlinearity.
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we regard the Stokes solution as the first term of a series expansion in the small parameter Re,
then the expansion is not uniformly valid because it breaks down as r / N. If we tried to
calculate the next term (to order Re) of the perturbation series, we would find that the
velocity corresponding to the higher-order term becomes unbounded compared to that of
the first term as r / N.

The situation becomes worse for two-dimensional objects such as the circular cylinder. In
this case, the Stokes balance, Vp ¼ mV2u, has no solution at all that can satisfy the uniform-
flow boundary condition at infinity. From this, Stokes concluded that steady, slow flows
around cylinders cannot exist in nature. It has now been realized that the nonexistence of
a first approximation of the Stokes flow around a cylinder is due to the singular nature of
low Reynolds number flows in which there is a region of nonuniformity for r / N. The
nonexistence of the second approximation for flow around a sphere is due to the same
reason. In a different (and more familiar) class of singular perturbation problems, the region
of nonuniformity is a thin layer (the boundary layer) near the surface of an object. This is
the class of flows with Re / N, that are discussed in the next chapter. For these high
Reynolds number flows the small parameter 1/Re multiplies the highest-order derivative
in the governing equations, so that the solution with 1/Re identically set to zero cannot
satisfy all the boundary conditions. In low Reynolds number flows this classic symptom
of the loss of the highest derivative is absent, but it is a singular perturbation problem
nevertheless.

Oseen (1910) provided an improvement to Stokes’ solution by partly accounting for the
inertia terms at large distances. He made the substitutions,

u ¼ U þ u0,v ¼ v0, and w ¼ w0,

where u0, v0, and w0 are the Cartesian components of the perturbation velocity, and are small
at large distances. Substituting these, the advection term of the x-momentum equation
becomes

u
vu

vx
þ v

vu

vy
þ w

vu

vz
¼ U

vu0

vx
þ
�

u0
vu0

vx
þ v0

vu0

vy
þ w0vu0

vz

�

:

Neglecting the quadratic terms, a revised version of the equation of motion (8.43) becomes

rU
vu0i
vx

¼ vp

vxi
þ mV2u0i,

where u0i represents u0, v0, or w0. This is called Oseen’s equation, and the approximation
involved is called Oseen’s approximation. In essence, the Oseen approximation linearizes the
advective acceleration term u,Vu to U(vu/vx), whereas the Stokes approximation drops
advection altogether. Near the body both approximations have the same order of accuracy.
However, the Oseen approximation is better in the far field where the velocity is only slightly
different from U. The Oseen equations provide a lowest-order solution that is uniformly
valid everywhere in the flow field.

The boundary conditions for a stationary sphere with the fluid moving past it at velocity
Uex are:

u0,v0,w0/0 as r/N, and u0 ¼ �U and v0,w0 ¼ 0
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on the sphere’s surface. The solution found by Oseen is:

j

Ua2
¼
�

r2

2a2
þ a

4r

�

sin2 q� 3

Re
ð1þ cos qÞ

�

1� exp

�

� Re

4

r

a
ð1� cos qÞ

��

, (8.53)

where Re ¼ 2aU/n. Near the surface r/a z 1, a series expansion of the exponential term
shows that Oseen’s solution is identical to the Stokes solution (9.68) to the lowest order.
The Oseen approximation predicts that the drag coefficient is

CD ¼ 24

Re

�

1þ 3

16
Re

�

,

which should be compared with the Stokes formula (8.52). Experimental results show that
the Oseen and the Stokes formulas for CD are both fairly accurate for Re < 5 (experimental
results fall between them), an impressive range of validity for a theory developed for
Re / 0.

The streamlines corresponding to the Oseen solution (8.53) are shown in Figure 8.20,
where a uniform flow of U is added to the left to generate the pattern of flow due to a sphere
moving in front of a stationary observer. It is seen that the flow is no longer symmetric, but
has a wake where the streamlines are closer together than in the Stokes flow. The velocities in

FIGURE 8.20 Streamlines and velocity distribution in Oseen’s solution of creeping flow due to a moving sphere.
Note the upstream and downstream asymmetry, which is a result of partial accounting for advection in the far field.
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the wake are larger than in front of the sphere. Relative to the sphere, the flow is slower in the
wake than in front of the sphere.

In 1957, Oseen’s correction to Stokes’ solution was rationalized independently by Kaplun
(1957), and Proudman and Pearson (1957) in terms of matched asymptotic expansions.
Higher-order corrections were obtained by Chester and Breach (1969).

8.7. FINAL REMARKS

As in other fields, analytical methods in fluid flow problems are useful in understanding
the physics of fluid flows and in making generalizations. However, it is probably fair to say
that most of the analytically tractable problems in ordinary laminar flow have already been
solved, and approximate methods are now necessary for further advancing our knowledge.
One of these approximate techniques is the perturbation method, where the flow is assumed
to deviate slightly from a basic linear state. Another method that is playing an increasingly
important role is that of solving the Navier-Stokes equations numerically using a computer.
A proper application of such techniques requires considerable care and familiarity with
various iterative techniques and their limitations. It is hoped that the reader will have the
opportunity to learn numerical methods in a separate study. However, for completeness,
Chapter 10 introduces several basic methods for computational fluid dynamics.

EXERCISES

8.1. a) Write out the three components of (8.1) in x-y-z Cartesian coordinates.
b) Set u ¼ (u(y), 0, 0), and show that the x- and y-momentum equations reduce to:

0 ¼ �1

r

vp

vx
þ n

d2u

dy2
, and 0 ¼ �1

r

vp

vy
:

8.2. For steady pressure-driven flow between parallel plates (see Figure 8.3), there are 7
parameters: u(y), U, y, h, r, m, and dp/dx. Determine a dimensionless scaling law for
u(y), and rewrite the flow-field solution (8.5) in dimensionless form.

8.3. An incompressible viscous liquid with density r fills the gap between two large,
smooth parallel walls that are both stationary. The upper and lower walls are located at
x2 ¼ �h, respectively. An additive in the liquid causes its viscosity to vary in the x2
direction. Here the flow is driven by a constant nonzero pressure gradient:
vp=vx1 ¼ const:

x2

x1

µ(x2)

x2 = +h

x2 = –h

stationary wall

stationary wall
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a) Assume steady flow, ignore the body force, set u ¼ ðu1ðx2Þ, 0, 0Þ and use

vr

vt
þ v

vxi
ðruiÞ ¼ 0, r

vuj
vt

þ rui
vuj
vxi

¼ �vp

vxj
þ rgj þ

v

vxi

"

m

 

vui
vxj

þ vuj
vxi

!#

þ v

vxj

��

mv �
2

3
m

�

vui
vxi

�

to determine u1(x2) when m ¼ moð1þ gðx2=hÞ2Þ
b) What shear stress is felt on the lower wall?
c) What is the volume flow rate (per unit depth into the page) in the gap when g ¼ 0?
d) If e1 < g < 0, will the volume flux be higher or lower than the case when g ¼ 0?

8.4. An incompressible viscous liquid with density r fills the gap between two large,
smooth parallel plates. The upper plate at x2 ¼ h moves in the positive x1-direction at
speed U. The lower plate at x2 ¼ 0 is stationary. An additive in the liquid causes its
viscosity to vary in the x2 direction.

x2

U

x1

µ(x2)

x2 = h

x2 = 0
stationary wall

a) Assume steady flow, ignore the body force, set u ¼ ðu1ðx2Þ, 0, 0Þ and vp=vx1 ¼ 0,
and use the equations specified in Exercise 8.3 to determine u1(x2) when
m ¼ moð1þ gx2=hÞ.

b) What shear stress is felt on the lower plate?
c) Are there any physical limits on g? If, so specify them.

8.5. Planar Couette flow is generated by placing a viscous fluid between two infinite
parallel plates and moving one plate (say, the upper one) at a velocityUwith respect to
the other one. The plates are a distance h apart. Two immiscible viscous liquids are
placed between the plates as shown in the diagram. The lower fluid layer has thickness
d. Solve for the velocity distributions in the two fluids.

8.6. Consider the laminar flow of a fluid layer falling down a plane inclined at an angle q

with respect to the horizontal. If h is the thickness of the layer in the fully developed
stage, show that the velocity distribution is uðyÞ ¼ ðg=2nÞðh2 � y2Þsin q, where the x-
axis points in the direction of flow along the free surface, and the y-axis points toward
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the plane. Show that the volume flow rate per unit width is Q ¼ ðgh3=3nÞsin q, and
that the frictional stress on the wall is s0 ¼ rghsin q.

8.7. Room temperature water drains through a round vertical tube with diameter d. The
length of the tube is L. The pressure at the tube’s inlet and outlet is atmospheric, the flow
is steady, and L [ d.
a) Using dimensional analysis, write a physical law for the mass flow rate _m through

the tube.
b) Assume that the velocity profile in the tube is independent of the vertical

coordinate, determine a formula for _m, and put it in dimensionless form.
c) What is the change in _m if the temperature is raised and the water’s viscosity drops

by a factor of two?
8.8. Consider steady laminar flow through the annular space formed by two coaxial tubes

aligned with the z-axis. The flow is along the axis of the tubes and is maintained by
a pressure gradient dp/dz. Show that the axial velocity at any radius R is

uzðRÞ ¼ 1

4m

dp

dz

"

R2 � a2 � b2 � a2

lnðb=aÞ ln
R

a

#

,

where a is the radius of the inner tube and b is the radius of the outer tube. Find
the radius at which the maximum velocity is reached, the volume flow rate, and
the stress distribution.

8.9. A long, round wire with radius a is pulled at a steady speed U, along the axis of
a long round tube of radius b that is filled with a viscous fluid. Assuming laminar,
fully developed axial flow with vp=vz ¼ 0 in cylindrical coordinates ðR,4, zÞ with
u ¼ (0, 0, w(R)), determine w(R) assuming constant fluid density r and viscosity m

with no body force.

2b

2a

U

ρ, μ

a) What force per unit length of the wire is needed to maintain the motion of the wire?
b) Explain what happens to w(R) when b/N. Is this situation physically meaningful?

What additional term(s) from the equations of motion need to be retained to correct
this situation?

8.10. 1Consider steady unidirectional incompressible viscous flow in Cartesian
coordinates, u ¼ v ¼ 0 with w ¼ w(x,y) without body forces.
a) Starting from the steady version of (8.1), derive a single equation for w assuming

that vp=vz is nonzero and constant.
b) Guess w(x,y) for a tube with elliptical cross section ðx=aÞ2þðy=bÞ2¼ 1.

1Inspired by problem 2 on page 383 in Yih (1979).
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c) Determinew(x,y) for a tube of rectangular cross section:ea/2	 x	þa/2,eb/2	 y	
þb/2. [Hint: find particular (a polynomial) and homogeneous (a Fourier series)
solutions for w.]

8.11. A long vertical cylinder of radius b rotates with angular velocity U concentrically
outside a smaller stationary cylinder of radius a. The annular space is filled with fluid

of viscosity m. Show that the steady velocity distribution is: uq ¼ r2 � a2

b2 � a2
b2U

r
, and that

the torque exerted on either cylinder, per unit length, equals 4pmUa2b2/(b2 � a2).

8.12. Consider a solid cylinder of radius a, steadily rotating at angular speed U in an infinite
viscous fluid. The steady solution is irrotational: uq ¼ Ua2/R. Show that the work done
by the external agent in maintaining the flow (namely, the value of 2p Ruqsrq at R ¼ a)
equals the viscous dissipation rate of fluid kinetic energy in the flow field.

8.13. For lubrication flow under the sloped bearing of Example 8.1, the assumed velocity
profile was uðx,yÞ ¼ �ð1=2mÞðdP=dxÞyðhðxÞ � yÞÞ þUy=hðxÞ, the derived pressure was

PðxÞ ¼ Pe þ ð3mUa=h2oLÞxðL� xÞ, and the load (per unit depth) carried by the bearing

was W ¼ mUaL2=2h2o . Use these equations to determine the frictional force (per unit
depth), Ff, applied to the lower (flat) stationary surface in terms ofW, ho/L, and a. What
is the spatially averaged coefficient of friction under the bearing?

8.14. A bearing pad of total length 2L moves to the right at constant speed U above a thin
film of incompressible oil with viscosity m and density r. There is a step change in the
gap thickness (from h1 to h2) below the bearing as shown. Assume that the oil flow

under the bearing pad follows: uðyÞ ¼ �yðhj � yÞ
2m

dPðxÞ
dx

þUy

hj
, where j ¼ 1 or 2. The

pad is instantaneously aligned above the coordinate system shown. The pressure in
the oil ahead and behind the bearing is Pe.

Pe Pe

x = −L x = 0 x = +L

h2

h1 Oil

U

y

a) By conserving mass for the oil flow, find a relationship between m, U, hj, dP/dx, and
an unknown constant C.

b) Use the result of part a) and continuity of the pressure at x ¼ 0, to determine

Pð0Þ � Pe ¼ 6mULðh1 � h2Þ
h32 þ h31

:

c) Can this bearing support an externally applied downward load when h1 < h2?
8.15. A flat disk of radius a rotates above a solid boundary at a steady rotational speed of U.

The gap, h (� a), between the disk and the boundary is filled with an incompressible
Newtonianfluidwithviscositymanddensityr. Thepressure at the edgeof thedisk isp(a).
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a) Using cylindrical coordinates and assuming that the only nonzero velocity
component is u4(R,z), determine the torque necessary to keep the disk turning.

b) If p(a) acts on the exposed (upper) surface of the disk, will the pressure distribution
on the disk’s wetted surface tend to pull the disk toward or away from the solid
boundary?

c) If the gap is increased, eventually the assumption of part a) breaks down. What
happens? Explain why and where uR and uz might be nonzero when the gap is no
longer narrow.

8.16. A circular block with radius a and weight W is released at t ¼ 0 on a thin layer of an
incompressible fluid with viscosity m that is supported by a smooth horizontal
motionless surface. The fluid layer’s initial thickness is ho. Assume that flow in the
gap between the block and the surface is quasi-steady with a parabolic velocity profile:

uRðR, z, tÞ ¼ �ðdPðRÞ=dRÞzðhðtÞ � zÞÞ=2m,
where R is the distance from the center of the block, P(R) is the pressure at R, z is the
vertical coordinate from the smooth surface, h(t) is the gap thickness, and t is time.
a) By considering conservation of mass, show that: dh=dt ¼ ðh3=6mRÞðdP=dRÞ.
b) If W is known, determine h(t) and note how long it takes for h(t) to reach zero.

8.17. Consider the inverse of the previous exercise. A block and a smooth surface are
separated by a thin layer of a viscous fluid with thickness ho. At t ¼ 0, a force, F, is
applied to separate them. If ho is arbitrarily small, can the block and plate be
separated easily? Perform some tests in your kitchen. Use maple syrup, creamy
peanut butter, liquid soap, pudding, etc. for the viscous liquid. The flat top side of
a metal jar lid or the flat bottom of a drinking glass makes a good circular block.
(Lids with raised edges and cups and glasses with ridges or sloped bottoms do not
work well). A flat countertop or the flat portion of a dinner plate can be the
motionless smooth surface. Can the item used for the block be more easily separated
from the surface when tilted relative to the surface? Describe your experiments and
try to explain your results.

8.18. A rectangular slab of width 2L (and depth B into the page) moves vertically on a thin
layer of oil that flows horizontally as shown. Assume uðy, tÞ ¼ �ðh2=2mÞðdP=dxÞðy=hÞ
ð1� y=hÞ, where h(x,t) is the instantaneous gap between the slab and the surface, m is
the oil’s viscosity, and P(x,t) is the pressure in the oil below the slab. The slab is slightly
misaligned with the surface so that hðx, tÞ ¼ hoð1þ ax=LÞ þ _hot where a � 1 and _ho is
the vertical velocity of the slab. The pressure in the oil outside the slab is Po. Consider
the instant t ¼ 0 in your work below.

–L +L

x

y

h(x,t)

a) Conserve mass in an appropriate CV to show that:
vh

vt
þ v

vx

� Z

hðx, tÞ

0

uðy, tÞdy
�

¼ 0.
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b) Keeping only linear terms in a, and noting that C and D are constants, show that:

Pðx, t ¼ 0Þ ¼ 12m

h3o

� _hox2

2

�

1� 2ax

L

�

þ Cx

�

1� 3ax

2L

��

þD:

c) State the boundary conditions necessary to evaluate the constants C and D.
d) Evaluate the constants to show that the pressure distribution below the slab is:

Pðx, tÞ � Po ¼ � 6m _hoL
2

h3oðtÞ
ð1� ðx=LÞ2Þ

�

1� 2a
x

L



:

e) Does this pressure distribution act to increase or decrease alignment between the
slab and surface when the slab is moving downward? Answer the same question
for upward slab motion.

8.19. Show that the lubrication approximation can be extended to viscous flow within
narrow gaps h(x,y,t) that depend on two spatial coordinates. Start from (4.10) and (8.1),
and use Cartesian coordinates oriented so that x-y plane is locally tangent to the center-
plane of the gap. Scale the equations using a direct extension of (8.14):

x�¼ x

L
, y�¼ y

L
, z�¼ z

h
¼ y

3L
, t�¼ Ut

L
, u�¼ u

U
, v�¼ v

U
, w�¼ w

3U
, and p�¼ p

Pa
,

where L is the characteristic distance for the gap thickness to change in either the x or y
direction, and 3 ¼ h/L. Simplify these equation when 32ReL / 0, but mUL/Pah

2

remains of order unity to find:

0y� 1

r

vp

vx
þ v2u

vz2
, 0y� 1

r

vp

vy
þ v2v

vz2
, and 0y� 1

r

vp

vz
:

8.20. A thin film of viscous fluid is bounded below by a flat stationary plate at z ¼ 0. If the in-
plane velocity at the upper film surface, z ¼ h(x, y, t), isU ¼ U(x, y, t)exþV(x, y, t)ey, use
the equations derived in Exercise 8.19 to produce the Reynolds equation for constant-
density, thin-film lubrication:

V,

" 

h3

m

!

Vp

#

¼ 12
vh

vt
þ 6V,ðhUÞ:

where V ¼ exðv=vxÞ þ eyðv=vyÞ merely involves the two in-plane dimensions.
8.21. Fluid of density r and viscosity m flows inside a long tapered tube of length L and

radius R(x) ¼ (1 e ax/L)Ro, where a < 1 and Ro � L.

L

Qv

Ro
x
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a) Estimate the volume discharge rate Qn through the tube, for a given pressure
difference Dp sustained between the inlet and the outlet.

b) Discuss the range of validity of your solution in terms of the parameters of the
problem.

8.22. A circular lubricated bearing of radius a holds a stationary round shaft. The bearing
hub rotates at angular rate U as shown. A load per unit depth on the shaft, W, causes
the center of the shaft to be displaced from the center of the rotating hub by a distance
3ho, where ho is the average gap thickness and ho � a. The gap is filled with an
incompressible oil of viscosity m.

2a x

Ω

θ

h

a) Determine a dimensionless scaling law for jWj.
b) Determine W by assuming a lubrication flow profile in the gap and h(q) ¼ ho(1 þ

3cos q) with 3 � 1.
c) If W is increased a little bit, is the lubrication action stabilizing?

8.23. As a simple model of small-artery blood flow, consider slowly varying viscous flow
through a round flexible tube with inlet at z ¼ 0 and outlet at z ¼ L. At z ¼ 0, the
volume flux entering the tube is QoðtÞ. At z ¼ L, the pressure equals the exterior
pressure pe. The radius of the tube, a(z,t), expands and contracts in proportion to
pressure variations within the tube so that: 1) a� ae ¼ gðp� peÞ, where ae is the tube
radius when the pressure, p(z,t), in the tube is equal to pe, and g is a positive constant.
Assume the local volume flux, Q(z,t), is related to vp=vz by 2) Q ¼ �ðpa4=8mÞðvp=vzÞ.

Qo(t)

   = 0
z

z
 = L

2a(z,t)

z

a) By conserving mass, find a partial differential equation that relates Q and a.
b) Combine 1), 2), and the result of part a) into one partial differential equation for

a(z,t).
c) Determine a(z) when Qo is a constant and the flow is perfectly steady.

8.24. Consider a simple model of flow from a tube of toothpaste. A liquid with viscosity m

and density r is squeezed out of a round horizontal tube having radius a(t). In your
work, assume that a is decreasing and use cylindrical coordinates with the z-axis
coincident with the centerline of the tube. The tube is closed at z ¼ 0, but is open to the
atmosphere at z ¼ L. Ignore gravity.

a) If w is the fluid velocity along the z-axis, show that: za
da

dt
þ
Z a

0
wðz,R, tÞRdR ¼ 0.
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b) Determine the pressure distribution, p(z) e p(L), by assuming the flow in the
tube can be treated within the lubrication approximation by setting wðz,R, tÞ ¼
� 1

4m

dp

dz
ða2ðtÞ � R2Þ.

c) Find the cross-section-average flow velocity waveðz, tÞ in terms of z, a, and da=dt.
d) If the pressure difference between z ¼ 0 and z ¼ L is DP, what is the volume flux

exiting the tube as a function of time. Does this answer partially explain why fully
emptying a toothpaste tube by squeezing it is essentially impossible?

8.25. A large flat plate below an infinite stationary incompressible viscous fluid is set in
motion with a constant acceleration, _u, at t ¼ 0. A prediction for the subsequent fluid
motion, u(y,t), is sought.

y

u

Uplate

slope = u

tx

a) Use dimensional analysis to write a physical law for u(y,t) in this flow.
b) Starting from the x-component of (8.1) determine a linear partial differential

equation for u(y,t).
c) The linearity of the equation obtained for part c) suggests that u(y,t) must be

directly proportional to _u. Simplify your dimensional analysis to incorporate this
requirement.

d) Let h ¼ y/(nt)1/2 be the independent variable, and derive a second-order ordinary
linear differential equation for the unknown function f(h) left from the dimensional
analysis.

e) From an analogy between fluid acceleration in this problem and fluid velocity in
Stokes’ first problem, deduce the solution uðy, tÞ ¼ _u

R t
0½1� erfðy=2 ffiffiffiffiffi

nt0
p Þ�dt0and

show that it solves the equation of part b).
f) Determine f(h) anddif your patience holds outdshow that it solves the equation

found in part d).
g) Sketch the expected velocity profile shapes for several different times. Note the

direction of increasing time on your sketch.
8.26. Suppose a line vortex of circulation G is suddenly introduced into a fluid at rest at

t ¼ 0. Show that the solution is uqðr, tÞ ¼ ðG=2prÞexpf� r2=4ntg. Sketch the velocity
distribution at different times. Calculate and plot the vorticity, and observe how it
diffuses outward.

8.27. Obtain several liquids of differing viscosity (water, cooking oil, pancake syrup,
shampoo, etc.). Using an eyedropper, a small spoon, or your finger, place a drop of
each on a smooth vertical surface (a bathroom mirror perhaps) and measure how far
the drops have moved or extended in a known period of time (perhaps a minute or
two). Try to make the mass of all the drops equal. Using dimensional analysis,
determine how the drop-sliding distance depends on the other parameters. Does this
match your experimental results?
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8.28. A drop of an incompressible viscous liquid is allowed to spread on a flat horizontal
surface under the action of gravity. Assume the drop spreads in an axisymmetric
fashion and use cylindrical coordinates (R, 4, z). Ignore the effects of surface tension.

a) Show that conservation of mass implies:
vh

vt
þ 1

R

v

vR
ðR
Z h

o
udzÞ ¼ 0, where

u ¼ u(R, z, t) is the horizontal velocity within the drop, and h ¼ h(R, t) is the
thickness of the spreading drop.

b) Assume that the lubrication approximation applies to the horizontal velocity
profile, that is, uðR, z, tÞ ¼ aðR, tÞ þ bðR, tÞzþ cðR, tÞz2, apply the appropriate
boundary conditions on the upper and lower drop surfaces, and require
a pressure and shear-stress force balance within a differential control volume

h(R,t)RdRdq to show that: uðR, z, tÞ ¼ � g

2n

vh

vR
zð2h� zÞ.

c) Combine the results of a) and b) to find
vh

vt
¼ g

3nR

v

vR

�

Rh3
vh

vR



.

d) Assume a similarity solution: hðR, tÞ ¼ A

tn
fðhÞwith h ¼ BR

tm
, use the result of part c)

and 2p
RRmaxðtÞ
o hðR, tÞRdR ¼ V, where Rmax(t) is the radius of the spreading drop

and V is the initial volume of the drop to determine m ¼ 1/8, n ¼ 1/4, and a single
nonlinear ordinary differential equation for f(h) involving onlyA, B, g/n, and h. You
need not solve this equation for f. [Given that f/0 as h/N, there will be a finite
value of h for which f is effectively zero. If this value of h is hmax then the radius of
the spreading drop, R(t), will be: RmaxðtÞ ¼ hmaxt

m=B.]
8.29. Obtain a clean, flat glass plate, a watch, a ruler, and some nonvolatile oil that is more

viscous than water. The plate and oil should be at room temperature. Dip the tip of one
of your fingers in the oil and smear it over the center of the plate so that a thin bubble-
free oil film covers a circular area ~10 to 15 cm in diameter. Set the plate on a horizontal
surface and place a single drop of oil at the center of the oil-film area and observe how
the drop spreads. Measure the spreading drop’s diameter 1, 10, 102, 103, and 104

seconds after the drop is placed on the plate. Plot your results and determine if the
spreading drop diameter grows as t1/8 (the predicted drop-diameter time dependence
from the prior problem) to within experimental error.

8.30. An infinite flat plate located at y ¼ 0 is stationary until t ¼ 0 when it begins moving
horizontally in the positive x-direction at a constant speed U. This motion continues
until t ¼ Twhen the plate suddenly stops moving.
a) Determine the fluid velocity field, u(y, t) for t > T. At what height above the plate

does the peak velocity occur for t > T? [Hint: the governing equation is linear so
superposition of solutions is possible.]

b) Determine the mechanical impulse I (per unit depth and length) imparted to the

fluid while the plate is moving: I ¼ R T
0 swdt.

c) As t/N, the fluid slows down and eventually stops moving. How and where was
the mechanical impulse dissipated? What is t/Twhen 99% of the initial impulse
has been lost?

8.31. Consider the development from rest of plane Couette flow. The flow is bounded by
two rigid boundaries at y ¼ 0 and y ¼ h, and the motion is started from rest by
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suddenly accelerating the lower plate to a steady velocity U. The upper plate is held
stationary. Here a similarity solution cannot exist because of the appearance of the
parameter h. Show that the velocity distribution is given by

uðy, tÞ ¼ U
�

1� y

h



� 2U

p

X
N

n¼1

1

n
exp

�

� n2p2 nt

h2

�

sin
�npy

h



:

Sketch the flow pattern at various times, and observe how the velocity reaches the linear
distribution for large times.

8.32. 2Two-dimensional flow between flat nonparallel plates can be formulated in terms of a
normalized angular coordinate, h ¼ q=a, where a is the half angle between the plates,
and a normalized radial velocity, urðr, qÞ ¼ umaxðrÞfðhÞ, where h ¼ q=a for jqj 	 a.
Here, uq ¼ 0, the Reynolds number is Re ¼ umaxra=n, and Q is the volume flux (per
unit width perpendicular to the page).

2

θ

α

r

Q

a) Using the appropriate versions of (4.10) and (8.1), show that f 00 þ Re af2 þ 4a2f ¼
const:

b) Find f(h) for symmetric creeping flow, that is, Re ¼ 0 ¼ fð þ 1Þ ¼ fð � 1Þ, and
f(0) ¼ 1.

c) Above what value of the channel half-angle will backflow always occur?
8.33. Consider steady viscous flow inside a cone of constant angle qo. The flow has constant

volume flux ¼ Q, and the fluid has constant density ¼ r and constant kinematic
viscosity ¼ n. Use spherical coordinates, and assume that the flow only has a radial
component,u ¼ ðurðr, qÞ, 0, 0Þ,which is independent of the azimuthal angle4, so that the
equations of motion are:

Conservation of mass,

1

r2
v

vr

�

r2ur
� ¼ 0,

Conservation of radial momentum,

ur
vur
vr

¼ �1

r

vp

vr
þ n

�

1

r2
v

vr

�

r2
vur
vr

�

þ 1

r2 sin q

v

vq

�

sin q
vur
vq

�

� 2

r2
ur

�

, and

Conservation of q-momerntum,

0 ¼ � 1

rr

vp

vq
þ n

�

2

r2
vur
vq

�

:

2Rephrased from White (2006) p. 211, problem 3.32.
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For the following items, assume the radial velocity can be determined using: urðr, qÞ ¼
QRðrÞQðqÞ. Define the Reynolds number of this flow as: Re ¼ Q=ðpnrÞ.

r

z

qo
q

y
Q

x

a) Use the continuity equation to determine R(r).
b) Integrate the q-momentum equation, assume the constant of integration is zero,

and combine the result with the radial momentum equation to determine a single
differential equation for Q(q) in terms of q and Re.

c) State the matching and/or boundary conditions that Q(q) must satisfy.
8.34. The boundary conditions on obstacles in Hele-Shaw flow were not considered in

Example 8.2. Therefore, consider them here by examining Hele-Shaw flow parallel to
a flat obstacle surface at y ¼ 0. The Hele-Shaw potential in this case is:

f ¼ Ux
z

h

�

1� z

h



,

where (x, y, z) are Cartesian coordinates and the flow is confined to 0< z< h and y> 0.
a) Show that this potential leads to a slip velocity of uðx,y/0Þ ¼ Uðz=hÞð1� z=hÞ,

and determine the pressure distribution implied by this potential.
b) Since this is a viscous flow, the slip velocity must be corrected to match the genuine

no-slip condition on the obstacle’s surface at y ¼ 0. The analysis of Example (8.2)
did not contain the correct scaling for this situation near y ¼ 0. Therefore, rescale
the x-component of (8.1) using:

x�¼ x=L, y�¼ y=h ¼ y=3L, z�¼ z=h ¼ z=3L, t�¼ Ut=L, u�¼ u=U, v�¼ v=3U,

w�¼ w=3U, and p�¼ p=Pa,

and then take the limit as 32ReL / 0, with mUL/Pah
2 remaining of order unity, to

simplify the resulting dimensionless equation that has

0y
dp

dx
þ m

 

v2u

vy2
þ v2u

vz2

!

as its dimensional counterpart.
c) Using boundary conditions of u ¼ 0 on y ¼ 0, and u ¼ Uðz=hÞð1� z=hÞ for y [ h.

Show that
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uðx, y, zÞ ¼ U
z

h

�

1� z

h



þ
X
N

n¼1

An sin
�np

h
z


exp
�

�np

h
y


, where

An ¼ �2U

h

Z
h

0

z

h

�

1� z

h



sin
�np

h
z


dz:

[The results here are directly applicable to the surfaces of curved obstacles in Hele-
Shaw flow when the obstacle’s radius of curvature is much greater than h.]

8.35. Using the velocity field (8.49), determine the drag on Stokes’ sphere from the surface
pressure and the viscous surface stresses srr and srq.

8.36. Calculate the drag on a spherical droplet of radius r ¼ a, density r0 and viscosity m0

moving with velocity U in an infinite fluid of density r and viscosity m. Assume
Re ¼ rUa/m � 1. Neglect surface tension.

8.37. Consider a very low Reynolds number flow over a circular cylinder of radius r ¼ a. For
r/a ¼ O(1) in the Re ¼ Ua/n / 0 limit, find the equation governing the stream
function j(r, q) and solve for jwith the least singular behavior for large r. There will be
one remaining constant of integration to be determined by asymptotic matching with
the large r solution (which is not part of this problem). Find the domain of validity of
your solution.

8.38. A small, neutrally buoyant sphere is centered at the origin of coordinates in a deep
bath of a quiescent viscous fluid with density r and viscosity m. The sphere has radius
a and is initially at rest. It begins rotating about the z-axis with a constant angular
velocity U at t ¼ 0. The relevant equations for the fluid velocity, u ¼ ður,uq,u4Þ, in
spherical coordinates ðr, q,4Þ are:

1

r2
v

vr

�

r2ur
�þ 1

r sin q

v

vq
ðuq sin qÞ þ 1

r sin q

v

v4

�

u4
� ¼ 0, and

vu4
vt

þ ur
vu4
vr

þ uq
r

vu4
vq

þ u4
r sin q

vu4
v4

þ 1

r

�

uru4 þ uqu4cot q
�

¼ � 1

rr sin q

vp

v4
þ n

 

1

r2
v

vr

�

r2
vu4
vr

�

þ 1

r2 sin q

v

vq

�

sin q
vu4
vq

�

þ 1

r2sin2q

v2u4
v42

� u4

r2sin2 q
þ 2

r2sin2q

vur
v4

þ 2 cos q

r2 sin2q

vuq
v4

!

:

a) Assume u ¼ ð0, 0,u4Þ and reduce these equations to:

vu4
vt

¼ � 1

rr sin q

vp

v4
þ n

�

1

r2
v

vr

�

r2
vu4
vr

�

þ 1

r2sin q

v

vq

�

sin q
vu4
vq

�

� u4

r2sin2 q

�
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b) Set u4ðr, q, tÞ ¼ UaFðr, tÞsin q, make an appropriate assumption about the pressure

field, and derive the following equation for F:
vF

vt
¼ n

�

1

r2
v

vr

�

r2
vF

vr

�

� 2
F

r2

�

.

c) Determine F for t/N for boundary conditions F ¼ 1 at r ¼ a, and F/0 as r/N.
d) Find the surface shear stress and torque on the sphere.
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9.1. INTRODUCTION

Until the beginning of the twentieth century, analytical solutions of steady fluid flowswere
generally known for two typical situations. One of these was that of parallel viscous flows
and low Reynolds number flows, in which the nonlinear advective terms were zero and
the balance of forces was that between pressure and viscous forces. The second type of solu-
tion was that of inviscid flows around bodies of various shapes, in which the balance of forces
was that between inertia and pressure forces. Although the equations of motion are nonlinear
in this second situation, the velocity field can be determined by solving the linear Laplace
equation. These irrotational solutions predicted pressure forces on a streamlined body that
agreed surprisingly well with experimental data for flow of fluids of small viscosity.
However, these solutions also predicted zero drag force and a nonzero tangential velocity
at the body surface, features that did not agree with the experiments.

In 1905 Ludwig Prandtl, an engineer by profession and therefore motivated to find real-
istic fields near bodies of various shapes, first hypothesized that, for small viscosity, the
viscous forces are negligible everywhere except close to solid boundaries where the no-
slip condition has to be satisfied. The thickness of these boundary layers approaches zero
as the viscosity goes to zero. Prandtl’s hypothesis reconciled two rather contradictory facts.
It supported the intuitive idea that the effects of viscosity are indeed negligible in most of the
flow field if n is small, but it also accounted for drag by insisting that the no-slip condition
must be satisfied at a solid surface, no matter how small the viscosity. This reconciliation
was Prandtl’s aim, which he achieved brilliantly, and in such a simple way that it now seems
strange that nobody before him thought of it. Prandtl also showed how the equations of
motion within the boundary layer can be simplified. Since the time of Prandtl, the concept
of the boundary layer has been generalized, and the mathematical techniques involved
have been formalized, extended, and applied in other branches of physical science (see
van Dyke, 1975; Bender & Orszag, 1978; Kevorkian & Cole 1981; Nayfeh, 1981). The concept
of the boundary layer is considered a cornerstone in the intellectual foundation of fluid
mechanics.

This chapter presents the boundary-layer hypothesis and examines its consequences. The
equations of fluid motion within the boundary layer can be simplified because of the layer’s
thinness, and exact or approximate solutions can be obtained in many cases. In addition,
boundary-layer phenomena provide explanations for the lift and drag characteristics of
bodies of various shapes in high Reynolds number flows, including turbulent flows. In
particular, the fluid mechanics of curved sports-ball trajectories is described here.

The fundamental assumption of boundary-layer theory is that the layer is thin compared
to other length scales such as the length of the surface or its local radius of curvature. Across
this thin layer, which can exist only in high Reynolds number flows, the velocity varies
rapidly enough for viscous effects to be important. This is shown in Figure 9.1, where the
boundary-layer thickness is greatly exaggerated. (On a typical airplane wing, which may
have a chord of several meters, the boundary-layer thickness is of order one centimeter.)
However, thin viscous layers exist not only next to solid walls but also in the form of jets,
wakes, and shear layers if the Reynolds number is sufficiently high. So, to be specific, we shall
first consider the boundary layer contiguous to a solid surface, adopting a curvilinear

9. BOUNDARY LAYERS AND RELATED TOPICS362



coordinate system that conforms to the surface where x increases along the surface and
y increases normal to it. Here the surface may be curved but the radius of curvature of the
surface must be much larger than the boundary-layer thickness. We shall refer to the solution
of the irrotational flow outside the boundary layer as the outer problem and that of the
boundary-layer flow as the inner problem.

For a thin boundary layer that is contiguous to the solid surface on which it has formed,
the full equations of motion for a constant-density constant-viscosity fluid, (4.10) and (8.1),
may be simplified. Let dðxÞ be the average thickness of the boundary layer at downstream
location x on the surface of a body having a local radius of curvature R. The steady-flow
momentum equation for the surface-parallel velocity component, u, is

u
vu

vx
þ v

vu

vy
¼ �1

r

vp

vx
þ n

 

v2u

vx2
þ v2u

vy2

!

, (9.1)

which is valid when d=R � 1. The more general curvilinear form for arbitrary R(x) is given in
Goldstein (1938) and Schlichting (1979), but the essential features of viscous boundary layers
can be illustrated via (9.1) without additional complications.

Let a characteristic magnitude of u in be UN, the velocity at a large distance upstream of
the body, and let L be the stream-wise distance over which u changes appreciably. The
longitudinal length of the body can serve as L, because u within the boundary layer does
change in the stream-wise direction by a large fraction of UN over a distance L (Figure 9.2).
A measure of vu/vx is therefore UN/L, so that the approximate size of the first advective
term in (9.1) is

uðvu=vxÞwU2
N=L, (9.2)

wherew is to be interpreted as “of order.” We shall see shortly that the other advective term
in (9.1) is of the same order. The approximate size of the viscous term in (9.1) is

n
�

v2u=vy2
�

wnUN=d
2
: (9.3)

e

FIGURE 9.1 A boundary layer
forms when a viscous fluid moves
over a solid surface. Only the
boundary layer on the top surface
of the foil is depicted in the figure
and its thickness, d, is greatly
exaggerated. Here, UN is the
oncoming free-stream velocity and
Ue is the velocity at the edge of
the boundary layer. The usual
boundary-layer coordinate system
allows the x-axis to coincide with
a mildly curved surface so that the
y-axis always lies in the surface-
normal direction.
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The magnitude of d can now be estimated by noting that the advective and viscous terms
should be of the same order within the boundary layer. Equating advective and viscous terms
in (9.2) and (9.3) leads to:

dw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nL=UN

p

or d=Lw1=
ffiffiffiffiffiffi

Re
p

: (9.4)

This estimate of d can also be obtained by noting that viscous effects diffuse to a distance of
order [nt]1/2 in time t and that the time-of-flight for a fluid element along a body of length L is
of order L/UN. Substituting L/UN for t in [nt]1/2 suggests the viscous layer’s diffusive thick-
ness at x ¼ L is of order [nL/UN]1/2.

A formal simplification of the equations of motion within the boundary layer can now be
performed. The basic idea is that variations across the boundary layer occur over a much
shorter length scale than variations along the layer, that is:

v=vxw1=L and v=vyw1=d, (9.5)

where d� Lwhen Re [ 1 from (9.4). When applied to the continuity equation, vu/vx þ vv/
vy ¼ 0, this derivative scaling requiresUN/L ~ v/d, so the proper velocity scale for v is dUN/
L ¼ UNRee1/2. At high Re, experimental data show that the pressure distribution on the body
is nearly that in an irrotational flow around the body, implying that the pressure variations
scale with the fluid inertia: p� pNwrU2

N. Thus, the proper dimensionless variables for
boundary-layer flow are:

x� ¼ x=L, y� ¼ y=d ¼ ðy=LÞRe1=2, u� ¼ u=UN, v� ¼ ðv=UNÞRe1=2, and p� ¼ ðp� pNÞ=rU2
N:

(9.6)

For the coordinates and the velocities, this scaling is similar to that of (8.14) with 3 ¼ Ree1/2.
The primary effect of (9.6) is a magnification of the surface-normal coordinate y and velocity v
by a factor of Re1/2 compared to the stream-wise coordinate x and velocity u. In terms of these
dimensionless variables, the steady two-dimensional equations of motion are:

vu�

vx�
þ vv�

vy�
¼ 0, (8.15)

FIGURE 9.2 Velocity pro-
files at two positions within
the boundary layer. Here
again, the boundary-layer
thickness is greatly exagger-
ated. The two velocity vectors
are drawn at the same
distance y from the surface,
showing that the variation of
u over a distance x ~ L is of
the order of the free-stream
velocityUN.
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u�
vu�

vx�
þ v�

vu�

vy�
¼ �vp�

vx�
þ 1

Re

v2u�

vx�
þ v2u�

vy�
, and (9.7)

1

Re

�

u�
vv�

vx�
þ v�

vv�

vy�

�

¼ �vp�

vy�
þ 1

Re2
v2v�

vx�2
þ 1

Re

v2v�

vy�2
, (9.8)

where Re h UNL/n is an overall Reynolds number. In these equations, each of the
dimensionless variables and their derivatives should be of order unity when the scaling
assumptions embodied in (9.6) are valid. Thus, it follows that the importance of each term
in (8.15), (9.7), and (9.8) is determined by its coefficient. So, as Re /N, the terms with
coefficients of 1/Re or 1/Re2 drop out asymptotically. Thus, the relevant equations for
laminar boundary-layer flow, in dimensional form, are:

vu

vx
þ vv

vy
¼ 0, (6.2)

u
vu

vx
þ v

vu

vy
¼ �1

r

vp

vx
þ n

v2u

vy2
, and 0 ¼ �vp

vy
: (9.9, 9.10)

This scaling exercise has shown which terms must be kept and which terms may be dropped
under the boundary-layer assumption. It differs from the scalings that produced (4.101) and
(8.42) because the x and y directions are scaled differently in (9.6) which causes a second
derivative term to be retained in (9.9).

Equation (9.10) implies that the pressure is approximately uniform across the boundary
layer, an important result. The pressure at the surface is therefore equal to that at the edge
of the boundary layer, so it can be found from an ideal outer-flow solution for flow above
the surface. Thus, the outer flow imposes the pressure on the boundary layer. This justifies
the experimental fact that the observed surface pressures underneath attached boundary
layers are approximately equal to that calculated from ideal flow theory. A vanishing
vp/vy, however, is not valid if the boundary layer separates from the surface or if the radius
of curvature of the surface is not large compared with the boundary-layer thickness.

Although the steady boundary-layer equations (6.2), (9.9), and (9.10) do represent a signif-
icant simplification of the full equations, they are still nonlinear second-order partial differ-
ential equations that can only be solved when appropriate boundary and matching
conditions are specified. If the exterior flow is presumed to be known and irrotational
(and the fluid density is constant), the pressure gradient at the edge of the boundary layer
can be found by differentiating the steady constant-density Bernoulli equation (without

the body force term), pþ 1

2
rU2

e ¼ const:, to find:

�1

r

dp

dx
¼ Ue

dUe

dx
, (9.11)

where Ue(x) is the velocity at the edge of the boundary layer. Equation (9.11) represents
a matching condition between the outer solution and the inner boundary-layer solution in
the region where both solutions must be valid. The (usual) remaining boundary conditions
on the fluid velocities of the inner solution are:

uðx, 0Þ ¼ 0 ðno slip at the wallÞ, (9.12)
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vðx, 0Þ ¼ 0 ðno flow through the wallÞ, (9.13)

uðx, y/NÞ ¼ UeðxÞ ðmatching of inner and outer solutionsÞ, and (9.14)

uðx0, yÞ ¼ uinðyÞ ðinlet boundary condition at x0Þ: (9.15)

For two-dimensional flow, (6.2), (9.9), and the conditions (9.11) through (9.15), completely
specify the inner solution as long as the boundary layer remains thin and contiguous to
the surface on which it develops. Condition (9.14) merely means that the boundary layer
must join smoothly with the outer flow; for the inner solution, points outside the boundary
layer are represented by y /N, although we mean this strictly in terms of the dimensionless

distance y/d¼ (y/L)Re1/2 / N. Condition (9.15) implies that an initial velocity profile uin(y)
at some location x0 is required for solving the problem. Such a condition is needed because
the terms uvu/vx and nv2u/vy2 give the boundary-layer equations a parabolic character, with
x playing the role of a time-like variable. Recall the Stokes problem of a suddenly accelerated
plate, discussed in the preceding chapter, where the simplified field equation is
vu/vt ¼ nv2u/vy2. In such problems governed by parabolic equations, the field at a certain
time or place depends only on its past or upstream history. Boundary layers therefore transfer
viscous effects only in the downstream direction. In contrast, the complete Navier-Stokes
equations are elliptic and thus require boundary conditions on the velocity (or its derivative
normal to the boundary) upstream, downstream, and on the top and bottom boundaries, that
is, all around. (The upstream influence of the downstream boundary condition is a common
concern in fluid dynamic computations.)

Considering two dimensions, an ideal outer flow solution from (6.5) or (6.12) and (6.18),
and a viscous inner flow solution as described here would seem to fully solve the problem
of uniform flow of a viscous fluid past a solid object. The solution procedure could be
a two-step process. First, the outer flow is determined from (6.5) or (6.12) and (6.18), neglecting
the existence of the boundary layer, an error that gets smaller when the boundary layer
becomes thinner. Then, (9.11) could be used to determine the surface pressure, and (6.2)
and (9.9) could be solved for the boundary-layer flow using the surface-pressure gradient
determined from the outer flow solution. If necessary this process might even be iterated to
achieve higher accuracy by re-solving for the outer flow with the first-pass-solution
boundary-layer characteristics included, and then proceeding to a second solution of the
boundary-layer equations using the corrected outer-flow solution. In practice, such an
approach can be successful and it converges when the boundary layer stays thin and attached.
However, it does not converge when the boundary layer thickens or departs (separates) from
the surface on which it has developed. Boundary-layer separation occurs when the surface
shear stress, s0, produced by the boundary layer vanishes and reverse (or upstream-directed)
flow occurs near the surface. Boundary-layer separation is discussed further in Sections 9.6
and 9.7. Here it is sufficient to point out that ideal flow around nonslender or bluff bodies typi-
cally produces surface pressure gradients that lead to boundary-layer separation.

In summary, the simplifications of the boundary-layer assumption are as follows. First,
diffusion in the stream-wise direction is negligible compared to that in the wall normal direc-
tion. Second, the pressure field can be found from the outer flow, so that it is regarded as
a known quantity within the boundary layer. Here, the boundary layer is so thin that the
pressure does not change across it. Furthermore, a crude estimate of s0, the wall shear stress,
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can be made from the various scalings employed earlier: s0 ~ mU/d ~ (mU/L)Re1/2. This
implies a skin friction coefficient of

s0
1

2
rU2

w
ðmU=LÞ ffiffiffiffiffiffi

Re
p

1

2
rU2

¼ 2
ffiffiffiffiffiffi

Re
p :

This expression provides the correct order of magnitude and parametric dependence on
Reynolds number. Only the numerical factor differs between different laminar boundary-layer
flows.

9.2. BOUNDARY-LAYER THICKNESS DEFINITIONS

Since the fluid velocity in the boundary layer smoothly joins that of the outer flow, there is
no obvious demarcation of the boundary layer’s edge. Thus, a variety of thickness definitions
are used to define a boundary layer’s character. The three most common thickness definitions
are described here.

The first, d99, is an overall boundary-layer thickness that specifies the distance from the
wall where the stream-wise velocity in the boundary layer is 0.99Ue, where Ue is the local
free-stream speed. For a known boundary-layer stream-wise velocity profile, u(x, y), at down-
stream distance x, this thickness is defined by: u(x, d99) ¼ 0.99Ue(x). This thickness primarily
plays a conceptual role in boundary-layer research. In practice it is difficult to measure accu-
rately, and its physical importance is subjective since the choice of 99% instead of 95%, 98%,
99.5%, or another percentage is arbitrary.

A second measure of the boundary-layer thickness, and one in which there is no arbitrar-
iness, is the displacement thickness, which is commonly denoted d* or d1. It is defined as the
thickness of a layer of zero-velocity fluid that has the same velocity deficit as the actual
boundary layer. The velocity deficit in a boundary layer is Ue e u, so this definition implies

Z
h

y¼0

ðUe � uÞdy ¼
Z
d�

y¼0

ðUe � 0Þdy ¼ Ued
�, or d� ¼

Z
N

y¼0

�

1� u

Ue

�

dy, (9.16)

where h is a surface-normal distance that lies far outside the boundary layer (Figure 9.3). Here
the extension h /N in the upper limit in the last integration is not problematic because
Ue e u / 0 exponentially fast as y /N. Alternatively, the displacement thickness is the
distance by which the wall would have to be displaced outward in a hypothetical frictionless
flow tomaintain the samemassflux as that in the actual flow.Thismeans that the displacement
thickness can be interpreted as the distance by which streamlines outside the boundary layer
are displaced due to the presence of the boundary layer. Figure 9.4 shows the displacement of
streamlines over a flat plate. Equating mass flux across two sections A and B, we obtain

Ueh ¼
Z
hþd�

y¼0

udy ¼
Z
h

y¼0

udyþUed
�, or Ued

� ¼
Z
h

y¼0

ðUe � uÞdy,
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where h is the wall-normal distance defined above. Here again, it can be replaced by N
without changing the integral in the final equation, which then reduces to (9.16).

The displacement thickness is used in the design of airfoils, ducts, nozzles, intakes of air-
breathing engines, wind tunnels, etc. by first assuming a frictionless flow and then revising
the device’s geometry to produce the desired flow condition with the boundary layer present.
Here, the method for the geometric revisions involves using d* to correct the outer flow
solution for the presence of the boundary layer. As mentioned in Section 9.1, the first approx-
imation is to neglect the existence of the boundary layer, and calculate the ideal-flow dp/dx
over the surface of interest. A solution of the boundary-layer equations gives u(x,y), which
can be integrated using (9.16) to find d*(x), the displacement thickness. The flow device’s
surface is then displaced outward by this amount and a next approximation of dp/dx is found
from a solution for flow over the mildly revised geometry (see Exercise 9.22). Thus, d*(x) is

FIGURE 9.4 Displacement thickness and streamline displacement. Within the boundary layer, fluid motion in
the downstream direction is retarded, that is, vu/vx is negative. Thus, the continuity equation (6.2) requires vv/vy to
be positive, so the boundary layer produces a surface-normal velocity that deflects streamlines away from the
surface. Above the boundary layer, the extent of this deflection is the displacement thickness d*.

e e

FIGURE 9.3 Schematic depiction of the displacement thickness. The panel on the left shows a typical laminar
boundary-layer profile. The panel on the right shows an equivalent ideal-flow velocity profile with a zero-velocity
layer having the same volume-flux deficit as the actual boundary layer. The thickness of this zero-velocity layer is
the displacement thickness d*.
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a critical ingredient in such an iterative solution procedure that alternates between the outer-
and inner-flow solutions.

A third measure of the boundary-layer thickness is the momentum thickness q or d2. It is
defined such that rU2q is the momentum loss in the actual flow because of the presence of the
boundary layer. A control volume calculation (see Exercise 9.6) leads to the following
definition:

q ¼
Z
N

y¼0

u

Ue

�

1� u

Ue

�

dy: (9.17)

The momentum thickness embodies the integrated signature of the wall shear stress from the
beginning of the boundary layer to the stream-wise location of interest.

9.3. BOUNDARY LAYER ON A FLAT PLATE: BLASIUS SOLUTION

The simplest possible boundary layer forms on a semi-infinite flat plate with a constant
free-stream flow speed, Ue ¼ U ¼ constant. In this case, the boundary-layer equations
simplify to:

vu

vx
þ vv

vy
¼ 0 and u

vu

vx
þ v

vu

vy
¼ n

v2u

vy2
, (6.2, 9.18)

where (9.11) requires dp/dx ¼ 0 because dUe/dx ¼ 0. Here, the independent variables are
x and y, and the dependent field quantities are u and v. The flow is incompressible but
rotational, so a guaranteed solution of (6.2) may be sought in terms of a stream function,
j, with the two velocity components determined via derivatives of j (see (6.3)). Here, the
flow is steady and there is no imposed length scale, so a similarity solution for j can be
proposed based on (8.32) and (9.6):

j ¼ UdðxÞfðhÞ where h ¼ y=dðxÞ, (9.19)

where x is the time-like independent variable, f is an unknown dimensionless function, and
d(x) is a boundary-layer thickness that is to be determined as part of the solution (it is not
a Dirac delta-function). Here the coefficient Ud in (9.19) has replaced UAxen in (8.32) based
on dimensional considerations; the stream function must have dimensions of length2/
time. A more general form of (9.19) that uses UAxen as the coefficient of f(h) produces the
same results when combined with (9.18).

The solution to (6.2) and (9.18) should be valid for x > 0, so the boundary conditions are:

u ¼ v ¼ 0 on y ¼ 0, (9.20)

uðx, yÞ/U as y=d/N, and (9.21)

d/0 as x/0: (9.22)

Here we note that the boundary-layer approximation will not be valid near x ¼ 0 (the leading
edge of the plate) where the high Reynolds number approximation, Rex ¼ Ux/n[ 1, used to
reach (9.18) is not valid. Ideally, the exact equations of motion would be solved from x ¼ 0 up
some location, x0, where Ux0/n [ 1. Then, the stream-wise velocity profile at this location
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would be used in the inlet boundary condition (9.15), and (9.18) could be solved for x > x0 to
determine the boundary-layer flow. However, for this similarity solution, we are effectively
assuming that the distance x0 is small compared to x and can be ignored. Thus, the boundary
condition (9.22), which replaces (9.15), is really an assumption that must be shown to produce
self-consistent results when Rex [ 1.

The prior discussion touches on the question of a boundary layer’s downstream
dependence on, or memory of, its initial state. If the external stream Ue(x) admits a similarity
solution, is the initial condition forgotten? And, if so, how soon? Serrin (1967) and Peletier
(1972) showed that for UedUe/dx > 0 ( favorable pressure gradients) and allowing similarity
solutions, the initial condition is forgotten and the larger the free-stream acceleration the
sooner similarity is achieved. However, a decelerating flow will accentuate details of the
boundary layer’s initial state and similarity will never be found even if it is mathematically
possible. This is consistent with the experimental findings of Gallo et al. (1970). Interestingly,
a flat plate for which Ue(x) ¼ U ¼ const. is the borderline case; similarity is eventually
achieved. Thus, a solution in the form (9.19) is pursued here.

The first solution’s steps involve performing derivatives of j to find u and v:

u ¼ vj

vy
¼ Ud

df

dh

1

d
¼ Uf 0,

v ¼ �vj

vx
¼ �U

�

dd

dx
f þ d

df

dh

�

� y

d2

�

dd

dx

�

¼ Ud0
��f þ hf 0

�

,

(9.23, 9.24)

where a prime denotes differentiation of a function with respect to its argument. When
substituted into (9.18), these produce:

Uf 0Uf 00
�

� y

d2

�

d0 þUd0
��f þ hf 0

� U

d
f 00 ¼ n

U

d2
f 000, or

�

�U2

d
d0
�

hf 0f 00 �
�

U2

d
d0
�

ff 00 þ
�

U2

d
d0
�

hf 0f 00 ¼
�

n
U

d2

�

f 000:

The first and third terms on the left are equal and opposite, so (9.18) finally reduces to:

�
�

U2

d
d0
�

ff 00 ¼
�

n
U

d2

�

f 000: (9.25)

For a similarity solution, the coefficients in [,]-braces must be proportional:

C
U2

d
d0 ¼ n

U

d2
/Cd

dd

dx
¼ n

U
/C

d2

2
¼ nx

U
þD,

where C and D are constants. Here (9.22) requires D ¼ 0, and C can be chosen equal to 2 to
simplify the resulting expression for d:

dðxÞ ¼ ½vx=U�1=2: (9.26)

As described above, this result will be imperfect as x / 0 since it is based on equations that
are only valid when Rex [ 1. However, it is self-consistent since it produces a boundary
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layer that thins with decreasing distance so that u/ U as x / 0. When (9.26) is substituted
into (9.25), the final equation for f is found:

d3f

dh3
þ 1

2
f
d2f

dh2
¼ 0, or f 000 þ 1

2
ff 00 ¼ 0: (9.27)

The boundary conditions for (9.27) are:

df=dh ¼ 0 and f ¼ 0 at h ¼ 0, and (9.28)

df=dh/1 as h/N, (9.29)

which replace (9.20) and (9.21), respectively.
A series solution of (9.27), subject to (9.28) and (9.29), was given by Blasius; today it is

much easier to numerically determine f(h). The resulting profile of u/U ¼ f 0(h) is shown in
Figure 9.5. The solution makes the profiles at various downstream distances collapse into
a single curve of u/U vs. y[U/nx]1/2, and is in excellent agreement with experimental data
for laminar flow at high Reynolds numbers. The profile has a point of inflection (i.e., zero
curvature) at the wall, where v2u/vy2 ¼ 0. This is a result of the absence of a pressure gradient
in the flow (see Section 9.7).

The Blasius boundary-layer profile has a variety of noteworthy properties. First of all, an
asymptotic analysis of the solution to (9.27) shows that (df/dh e 1) ~ (1/h)exp(eh2/4) as
h/N so u approaches U very smoothly with increasing wall-normal distance. Second,
the wall-normal velocity is:

v ¼ �vj

vx
¼ 1

2

ffiffiffiffiffiffiffi

nU

x

r
�

� f þ h
df

dh

�

, or
v

U
¼ 1

2Re
1=2
x

�

� f þ h
df

dh

�

w
0:86

Re
1=2
x

as h/N,

FIGURE 9.5 TheBlasius
similarity solutionof velocity
distribution in a laminar
boundary layeron aflat plate
with zero-pressure gradient,
Ue ¼ U ¼ constant. The
finite slope at h¼ 0 implies
a nonzero wall shear stress
s0. The boundary layer’s
velocity profile smoothly
asymptotes to U as h/N.
The momentum q and
displacement d* thicknesses
are indicated by arrows on
the horizontal axis.
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a plot of which is shown in Figure 9.6. The wall-normal velocity increases from zero at the
wall to a maximum value at the edge of the boundary layer, a pattern that is in agreement
with the streamline shapes sketched in Figure 9.4.

The various thicknesses for the Blasius boundary layer are as follows. From Figure 9.5, the
distance where u ¼ 0.99U is h ¼ 4.93, so

d99 ¼ 4:93
ffiffiffiffiffiffiffiffiffiffiffi

nx=U
p

or d99=x ¼ 4:93=Re
1=2
x : (9.30)

The half-power boundary-layer thickness dependence, d ~ x1/2, is in good agreement with
experiments. For air at ordinary temperatures flowing at U ¼ 1 m/s, the Reynolds number
at a distance of 1 m from leading edge of a flat plate is Rex ¼ 6 � 104, and (9.30) gives
d99 ¼ 2 cm, showing that the boundary layer is indeed thin. The displacement and
momentum thicknesses, (9.16) and (9.17), of the Blasius boundary layer are

d� ¼ 1:72
ffiffiffiffiffiffiffiffiffiffiffi

nx=U
p

, and q ¼ 0:664
ffiffiffiffiffiffiffiffiffiffiffi

nx=U
p

:

These thicknesses are indicated along the abscissa of Figure 9.5.
The local wall shear stress is s0 ¼ mðdu=dyÞy¼0¼ ðmU=dÞðd2f=dh2Þh¼0, or

s0 ¼ 0:332rU2=
ffiffiffiffiffiffiffiffi

Rex
p

: (9.31)

The wall shear stress therefore decreases as x�1/2, a result of the thickening of the boundary
layer and the associated decrease of the velocity gradient at the surface. Note that the wall
shear stress at the plate’s leading edge has an integrable singularity. This is a manifestation
of the fact that boundary-layer theory breaks down near the leading edge where the assump-
tions Rex [ 1 and v/vx � v/vy are invalid. The wall shear stress is commonly expressed in
terms of the dimensionless skin friction coefficient:

FIGURE 9.6 Surface-normal
velocity component,v, in a laminar
boundary layer on a flat platewith
constant free-stream speed U.
Here the scaling on the vertical
axis, ðv=UÞ ffiffiffiffiffiffiffiffi

Rex
p

, causes it to be
expanded compared to that in
Figure 9.5.
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Cf h
s0

1

2
rU2

¼ 0:664
ffiffiffiffiffiffiffiffi

Rex
p : (9.32)

The drag force per unit width on one side of a plate of length L is

FD ¼
Z
L

0

s0dx ¼ 0:664rU2L
ffiffiffiffiffiffiffiffi

ReL
p ,

where ReL h UL/v is the Reynolds number based on the plate length. This equation shows
that the drag force is proportional to the 3/2 power of velocity. This should be compared
with small Reynolds number flows, where the drag is proportional to the first power of
velocity. We shall see later in this chapter that the drag on a blunt body in a high Reynolds
number flow is proportional to the square of velocity.

The overall drag coefficient for one side of the plate, defined in the usual manner, is

CD ¼ FD
1

2
rU2L

¼ 1:33
ffiffiffiffiffiffiffiffi

ReL
p : (9.33)

It is clear from (9.32) and (9.33) that

CD ¼ 1

L

Z L

0
Cfdx,

which says that the overall drag coefficient is the spatial average of the local skin friction
coefficient. However, carrying out an integration from x ¼ 0 may be of questionable
validity because the equations and solutions are valid only for Rex [ 1. Nevertheless,
(9.33) is found to be in good agreement with laminar flow experiments for ReL > 103.

9.4. FALKNER-SKAN SIMILARITY SOLUTIONS OF THE LAMINAR
BOUNDARY-LAYER EQUATIONS

The Blasius boundary-layer solution is one of a whole class of similarity solutions to the
boundary-layer equations that were investigated by Falkner and Skan (1931). In particular,
similarity solutions of (6.2), (9.9), and (9.10) are possible when Ue(x) ¼ axn, and

Rex ¼ ax(nþ1)/v is sufficiently large so that the boundary-layer approximation is valid and
any dependence on an initial velocity profile has been forgotten. In this case, the initial location
x0 again disappears from the problem and a similarity solution may be sought in the form:

jðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nxUeðxÞ
p

fðhÞ, where h ¼ y

dðxÞ ¼
y

x

ffiffiffiffiffiffiffiffi

Rex
p

¼ y

ffiffiffi

a

n

r

xðn�1Þ=2: (9.34)

This is a direct extension of (9.19) to boundary-layer flowwith a spatially varying free-stream
speed Ue(x). Here, u/Ue ¼ f 0(h) as in the Blasius solution, but now the pressure gradient is
nontrivial:

�dp=dx ¼ Ue

�

dUe=dx
� ¼ na2x2n�1, (9.35)
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and the generic boundary-layer thickness is

dðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx=UeðxÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx1�n=a
q

,

which increases in size when n < 1 and decreases in size when n > 1 as x increases. When
n ¼ 1, then d(x) is constant. Substituting (9.34) and (9.35) into (9.9) allows it to be reduced
to the similarity form:

d3f

dh3
þ nþ 1

2
f
d2f

dh2
� n

�

df

dh

�2

þ n ¼ 0, or f 000 þ nþ 1

2
ff 00 � nf 02 þ n ¼ 0, (9.36)

where f is subject to the boundary conditions (9.28) and (9.29). The Blasius equation (9.27) is
a special case of (9.36) for n ¼ 0, that is, Ue(x) ¼ U ¼ constant.

Solutions to (9.36) are displayed in Figure 5.9.1 of Batchelor (1967) and are reproduced
here in Figure 9.7. They are parameterized by the power law exponent, n, which also
sets the pressure gradient. The shapes of the various profiles can be understood by
comparing them to the stream-wise velocity profiles obtained for flow between parallel
plates when the upper plate moves with a positive horizontal velocity. They show amonoton-
ically increasing shear stress [f 00(0)] as n increases. When n is positive, the flow accelerates as
it moves to higher x, the pressure gradient is favorable (dp/dx < 0), the wall shear stress is

nonzero and positive, and (v2u/vy2)y ¼ 0 < 0. Thus, the profiles for n > 0 in Figure 9.7 are
similar to the lower half of the profiles shown in Figures 8.4a and 8.4d. When n ¼ 0, there

is no flow acceleration or pressure gradient and (v2u/vy2)y ¼ 0 ¼ 0. This case corresponds

1.0

0.8

0.6

0.4

0.2

0 1

1
2 3 4

– 0.0904

– 0.0654

0

1

n = 4

FIGURE 9.7 Falkner-Skan profiles of stream-wise velocity in a laminar boundary layer when the external stream
is Ue ¼ axn. The horizontal axis is the scaled surface-normal coordinate. The various curves are labeled by their
associated value of n. When n > 0, the free-stream speed increases with increasing x, and v2u/vy2 is negative
throughout the boundary layer. When n ¼ 0 (the Blasius boundary layer), the free-stream speed is constant, and
v2u/vy2 ¼ 0 at the wall and is negative throughout the boundary layer. When n < 0, the free-stream speed decreases
with increasing x, and v2u/vy2 is positive near the wall but negative higher up in the boundary layer so there is an
inflection point in the stream-wise velocity profile at a finite distance from the surface. Reprinted with the permission of

Cambridge University Press, from: G. K. Batchelor, An Introduction to Fluid Dynamics, 1st ed. (1967).
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to Figure 8.4c. When n is negative, the flow decelerates as it moves downstream, the pressure
gradient is adverse (dp/dx> 0), the wall shear stress may approach zero, and (v2u/vy2)y ¼ 0< 0.
Thus, the profiles for n < 0 in Figure 9.7 approach that shown in Figure 8.4b. For
n ¼ �0.0904, f 00 (0) ¼ 0, so s0 ¼ 0, and boundary-layer separation is imminent all along the
surface. Solutions of (9.36) exist for n < �0.0904 but these solutions involve reverse flow,
like that shown in Figure 8.4b, and do not necessarily represent boundary layers because
the stream-wise velocity scaling in (9.6) used to reach (9.9), u ~ U, is invalid when u ¼ 0
away from the wall.

In many real flows, boundary or initial conditions prevent similarity solutions from
being directly applicable. However, after a variety of empirical and analytical advances
made in the middle of the twentieth century, useful approximate methods were found
to predict the properties of laminar boundary layers. These approximate techniques are
based on the von Karman boundary-layer integral equation, which is derived in the
next section. Then, in Section 9.6, the Thwaites method for estimating the surface shear
stress, the displacement thickness, and the momentum thickness for attached laminar
boundary layers is presented. In the most general cases or when greater accuracy is
required, the boundary-layer equations with boundary and initial conditions as written
in (6.2) and (9.9) through (9.15) must be solved by procedures that are discussed in
more detail in the next chapter.

9.5. VON KARMAN MOMENTUM INTEGRAL EQUATION

Exact solutions of the boundary-layer equations are possible only in simple cases. In
more complicated problems, approximate methods satisfy only an integral of the
boundary-layer equations across the layer thickness. When this integration is performed,
the resulting ordinary differential equation involves the boundary layer’s displacement
and momentum thicknesses, and its wall shear stress. This simple differential
equation was derived by von Karman in 1921 and applied to several situations by
Pohlhausen (1921).

The common emphasis of an integral formulation is to obtain critical information with
minimum effort. The important results of boundary-layer calculations are the wall shear
stress, displacement thickness, momentum thickness, and separation point (when one exists).
The von Karman boundary-layer momentum integral equation explicitly links the first three
of these, and can be used to estimate, or at least determine the existence of, the fourth. The
starting points are (6.2) and (9.9), with the pressure gradient specified in terms of Ue(x)
from (9.11) and the shear stress s ¼ m(vu/vy):

u
vu

vx
þ v

vu

vy
¼ Ue

dUe

dx
þ 1

r

vs
vy

: (9.37)

Multiply (6.2) by u and add it to the left side of this equation:

u

�

vu

vx
þ vv

vy

�

þ u
vu

vx
þ v

vu

vy
¼ v
�

u2
�

vx
þ vðvuÞ

vy
¼ Ue

dUe

dx
þ 1

r

vs
vy

: (9.38)
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Move the term involvingUe to the other side of the last equality, and integrate (6.2) and (9.38)
from y ¼ 0 where u ¼ v ¼ 0 to y ¼N where u ¼ Ue and v ¼ vN:

Z
N

0

�

vu

vx
þ vv

vy

�

dy ¼ 0/

Z
N

0

vu

vx
dy ¼ �

Z
N

0

vv

vy
dy ¼ �½v�N0 ¼ �vN, (9.39)

Z
N

0

�

v
�

u2
�

vx
þ vðvuÞ

vy
�Ue

dUe

dx

�

dy

¼ þ1

r

Z
N

0

vs
vy

dy/

Z
N

0

�

v
�

u2
�

vx
�Ue

dUe

dx

�

dyþUevN ¼ �1

r
s0,

(9.40)

where s0 is the shear stress at y ¼ 0 and s ¼ 0 at y ¼ N. Use the final form of (9.39) to eliminate
vN from (9.40), and exchange the order of integration and differentiation in the first term of
(9.40):

d

dx

Z
N

0

u2dy�
Z
N

0

Ue
dUe

dx
dy�Ue

Z
N

0

vu

vx
dy ¼ �1

r
s0: (9.41)

Now, note that

Ue

Z
N

0

vu

vx
dy ¼ Ue

d

dx

Z
N

0

udy ¼ d

dx

0

@Ue

Z
N

0

udy

1

A� dUe

dx

Z
N

0

udy,

and use this to rewrite the third term on the left side of (9.41) to find:

d

dx

Z
N

0

�

u2 �Ueu
�

dyþ dUe

dx

Z
N

0

ðu�UeÞ dy ¼ �1

r
s0: (9.42)

A few final algebraic rearrangements produce:

1

r
s0 ¼ d

dx

2

4U2
e

Z
N

0

u

Ue

�

1� u

Ue

�

dy

3

5þ dUe

dx
Ue

Z
N

0

�

1� u

Ue

�

dy, or

1

r
s0 ¼ d

dx

	

U2
e q

þUed

�dUe

dx
:

(9.43)

Throughout these manipulations, Ue and dUe/dx may be moved inside or taken outside the
vertical-direction integrations because they only depend on x.

Equation (9.43) is known as the von Karman boundary-layer momentum integral equation, and
it is valid for steady laminar boundary layers and for time-averaged flow in turbulent
boundary layers. It is a single ordinary differential equation that relates three unknowns q, d*,
and s0, so additional assumptions must be made or correlations provided to obtain solutions
for these parameters. The search for appropriate assumptions and empirical correlations was
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actively pursued by many researchers in the middle of the twentieth century starting with
Pohlhausen (1921) and ending with Thwaites (1949) who combined analysis and inspired
guesswork with the laminar boundary-layer measurements and equation solutions known
at that time to develop the approximate empirical laminar-boundary-layer solution proce-
dure for (9.43) described in the next section.

9.6. THWAITES’ METHOD

To solve (9.43) at least two additional equations are needed. Using the correlation
parameter,

lh
q2

n

dUe

dx
, (9.44)

introduced by Holstein and Bohlen (1940), Thwaites (1949) developed an approximate solu-
tion to (9.43) that involves two empirical dimensionless functions l(l) and H(l),

s0hm
Ue

q
lðlÞ and

d�

q
hHðlÞ, (9.45, 9.46)

that are listed in Table 9.1. This tabulation is identical to Thwaites’ original for l � e0.060 but
includes the improvements recommended by Curle and Skan a few years later (see Curle,
1962) for l < e0.060. The function l(l) is sometimes known as the shear correlation while
H(l) is commonly called the shape factor.

Thwaites’ method is developed from (9.43) by multiplying it with rq/mUe:

qs0
mUe

¼ rq

mUe

d

dx

�

U2
e q
�þ rq

mUe
Ued

�dUe

dx
, or

qs0
mUe

¼ 2
q2

n

dUe

dx
þUeq

n

dq

dx
þ q2

n

d�

q

dUe

dx
: (9.47)

The definitions of l and H allow the second equation of (9.47) to be simplified:

lðlÞ ¼ ð2þHðlÞÞq
2

n

dUe

dx
þUe

2

d

dx

�

q2

n

�

:

The momentum thickness q can be eliminated from this equation using (9.44), to find:

Ue
d

dx

�

l

dUe=dx

�

¼ 2lðlÞ � 2ð2þHðlÞÞlh LðlÞ: (9.48)

Fortunately, L(l) z 0.45 e 6.0l ¼ 0.45 þ 6.0m is approximately linear as shown in Figure 9.8
which is taken from Thwaites’ (1949) original paper where m ¼ el. With this linear fit, (9.48)
can be integrated:

Ue
d

dx

�

l

dUe=dx

�

¼ 0:45� 6:0l/
d

dx

�

q2

n

�

þ 6:0

Ue

dUe

dx

q2

n
¼ 0:45

Ue
: (9.49)

The second version of (9.49) is a first-order linear inhomogeneous differential equation
for q2/n; its integrating factor is U6

e . The resulting solution for q2 involves a simple
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TABLE 9.1 Universal Functions for Thwaites’ Method

l l(l) H(l)

0.25 0.500 2.00

0.20 0.463 2.07

0.14 0.404 2.18

0.12 0.382 2.23

0.10 0.359 2.28

0.08 0.333 2.34

0.064 0.313 2.39

0.048 0.291 2.44

0.032 0.268 2.49

0.016 0.244 2.55

0 0.220 2.61

e0.008 0.208 2.64

e0.016 0.195 2.67

e0.024 0.182 2.71

e0.032 0.168 2.75

e0.040 0.153 2.81

e0.048 0.138 2.87

e0.052 0.130 2.90

e0.056 0.122 2.94

e0.060 0.113 2.99

e0.064 0.104 3.04

e0.068 0.095 3.09

e0.072 0.085 3.15

e0.076 0.072 3.22

e0.080 0.056 3.30

e0.084 0.038 3.39

e0.086 0.027 3.44

e0.088 0.015 3.49

e0.090 0 3.55

(Separation)
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integral of the fifth power of the free-stream velocity at the edge of the boundary
layer:

q2U6
e

�

x
�

n
¼ 0:45

Z
x

0

U5
e

�

x0
�

dx0 þ q20U
6
0

n
or q2 ¼ 0:45n

U6
e

�

x
�

Z
x

0

U5
e

�

x0
�

dx0 þ q20U
6
0

U6
e

�

x
�, (9.50)

where x0 is an integration variable, q ¼ q0, and Ue ¼ U0 at x ¼ 0. If x ¼ 0 is a stagnation point
(Ue ¼ 0), then q0 ¼ 0. Once the integration specified by (9.50) is complete, the surface shear
stress and displacement thickness can be recovered by computing l and then using (9.45),
(9.46), and Table 9.1. Overall, the accuracy of Thwaites’ method is �3% or so for favorable
pressure gradients, and �10% for adverse pressure gradients but perhaps slightly worse
near boundary-layer separation. The great strength of Thwaites’ method is that it involves
only one parameter (l) and requires only a single integration. This simplicity makes it ideal
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1 x  (HOWARTH).U= 0 –β β

FIGURE 9.8 Plot of L(m) from (9.48) vs. m ¼ el from Thwaites’ 1949 paper. Here a suitable empirical fit to the
four sources of laminar boundary-layer data is provided by L(m) ¼ 0.45 þ 6.0m ¼ 0.45 e 6.0l. Reprinted with the
permission of The Royal Aeronautical Society.
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for preliminary engineering calculations that are likely to be followed by more formal
computations or experiments.

Before proceeding to example calculations, an important limitation of boundary-layer
calculations that start from a steady presumed surface pressure distribution (such as
Thwaites’ method) must be stated. Such techniques can only predict the existence of
boundary-layer separation; they do not reliably predict the location of boundary-layer sepa-
ration. As will be further discussed in the next section, once a boundary layer separates from
the surface on which it has formed, the fluid mechanics of the situation are entirely changed.
First of all, the boundary-layer approximation is invalid downstream of the separation point
because the layer is no longer thin and contiguous to the surface; thus, the scaling (9.6) is no
longer valid. Second, separation commonly leads to unsteadiness because separated
boundary layers are unstable and may produce fluctuations even if all boundary conditions
are steady. And third, a separated boundary layer commonly has an enormous flow-
displacement effect that drastically changes the outer flow so that it no longer imposes the
presumed attached boundary-layer surface pressure distribution. Thus, any boundary-layer
calculation that starts from a presumed surface pressure distribution should be abandoned
once that calculation predicts the occurrence of boundary-layer separation.

The following two examples illustrate the use of Thwaites’ method with and without
a prediction of boundary-layer separation.

EXAMPLE 9.1

Use Thwaites’ method to estimate the momentum thickness, displacement thickness, and wall

shear stress of the Blasius boundary layer with q0 ¼ 0 at x ¼ 0.

Solution

The solution plan is to use (9.50) to obtain q. Then, because dUe/dx ¼ 0 for the Blasius boundary

layer, l ¼ 0 at all downstream locations and the remaining boundary-layer parameters can be

determined from the q results, (9.45), (9.46), and Table 9.1. The first step is settingUe ¼ U ¼ constant

in (9.50) with q0 ¼ 0:

q2 ¼ 0:45n

U6

Z
x

0

U5dx ¼ 0:45n

U
x, or q ¼ 0:671

ffiffiffiffiffi

nx

U

r

:

This approximate answer is only 1% higher than the Blasius-solution value. For l ¼ 0, the tabu-

lated shape factor is H(0) ¼ 2.61, so

d� ¼ q

�

d�

q

�

¼ qHð0Þ ¼ 0:671

ffiffiffiffiffi

nx

U

r

ð2:61Þ ¼ 1:75

ffiffiffiffiffi

nx

U

r

:

This approximate answer is less than 2% higher than the Blasius-solution value. For l¼ 0, the shear

correlation value is l(0) ¼ 0.220, so

s0 ¼ m
U

q
lð0Þ ¼ mU

0:671
ffiffiffiffiffiffiffiffiffiffiffi

nx=U
p ð0:220Þ ¼ 1

2
rU2ð0:656Þ

ffiffiffiffiffiffiffi

n

Ux

r

,
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which implies a skin friction coefficient of

Cf ¼
s0

1

2
rU2

¼ 0:656
ffiffiffiffiffiffiffiffi

Rex
p ,

which is only 1.2% below the Blasius-solution value.

EXAMPLE 9.2

A shallow-angle, two-dimensional diffuser of length L is designed for installation downstream of

a blower in a ventilation system to slow theblower-outlet airflowvia an increase induct cross-sectional

area (see Figure 9.9). If the diffuser should reduce the flow speed by half by doubling the flow area and

the boundary layer is laminar, is boundary-layer separation likely to occur in this diffuser?

Solution

The first step is to determine the outer flow Ue(x) by assuming uniform (ideal) flow within the

diffuser. Then, (9.49) can be used to estimate q2(x) and l(x). Boundary-layer separation will occur if l

falls below e0.090.

For uniform incompressible flow within the diffuser: U1A1 ¼ Ue(x)A(x), where (1) denotes the

diffuser inlet, Ue(x) is the flow speed, and A(x) is the cross-sectional area. For flat diffuser sides,

a doubling of the flow area in a distance L requires A(x) ¼ A1(1 þ x/L), so the ideal outer flow

velocity is Ue(x) ¼ U1(1 þ x/L)e1. With this exterior velocity the Thwaites’ integral becomes:

q2 ¼ 0:45n

U6
e

�

x
�

Z
x

0

U5
e

�

x0
�

dx0 þ q20U
6
0

U6
e

�

x
� ¼ 0:45n

U1

�

1þ x

L

�6
Z
x

0

�

1þ x

L

��5
dxþ q20

�

1þ x

L

�6
,

where U0 ¼ U1 in this case. The 0-to-x integration is readily completed and this produces:

q2 ¼ 0:45n

U1

�

1þ x

L

�6 L

4

�

1�
�

1þ x

L

��4
�

þ q20

�

1þ x

L

�6
:

From this equation it is clear that q grows with increasing x. This relationship can be converted to

l by multiplying it with (1/n)dUe/dx ¼ e (U1/nL)(1 þ x/L)e2:

Uo

Uo/2

A(x)

x = 0 x = L

FIGURE 9.9 A simple two-dimensional diffuser of length L intended to slow the incoming flow to half its speed
by doubling the flow area. The resulting adverse pressure gradient in the diffuser influences the character of the
boundary layers that develop on the diffuser’s inner surfaces, especially when these boundary layers are laminar.
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l ¼ q2

n

dUe

dx
¼ �0:45

4

�

�

1þ x

L

�4
�1

�

� q20U1

nL

�

1þ x

L

�4
:

Here, we can see that even when q0 ¼ 0, l will (at best) start at zero and become increasingly

negative with increasing x. At this point, a determination of whether or not boundary-layer

separation will occur involves calculating l as a function of x/L. The following table comes from

evaluating the last equation with q0 ¼ 0.

x/L l

0 0

0.05 e0.02424

0.1 e0.05221

0.15 e0.08426

0.2 e0.12078

Here, Thwaites’ method predicts that boundary-layer separation will occur, since l will fall

below e0.090 at x/L z 0.16, a location that is far short of the end of the diffuser at x ¼ L. While it is

tempting to consider this a prediction of the location of boundary-layer separation, such a temp-

tation should be avoided. In addition, if q0 was nonzero, then l would decrease even more quickly

than shown in the table, making the positive prediction of boundary-layer separation even more

firm. (In reality, diffusers in duct work and flow systems are common but they typically operate

with turbulent boundary layers that more effectively resist separation.)

9.7. TRANSITION, PRESSURE GRADIENTS,
AND BOUNDARY-LAYER SEPARATION

The analytical and empirical results provided in the prior sections are altered when
a boundary layer transitions from laminar to turbulent flow, and when a boundary layer
separates from the surface on which it has developed. Both of these phenomena, especially
the second, are influenced by the pressure gradient felt by the boundary layer.

The process of changing from laminar to turbulent flow is called transition, and it occurs in
a wide variety of flows as the Reynolds number increases. For the present purposes, the
complicated phenomenon known as boundary-layer transition is described in general terms.
Interestingly for a high Reynolds number theory, the agreement of solutions to the laminar
boundary equations with experimental data breaks down when the downstream-distance-
based Reynolds number Rex is larger than some critical value, say Recr, that depends on fluc-
tuations in the free stream above the boundary layer and on the surface shape, curvature,
roughness, vibrations, and pressure gradient. Above Recr, a laminar boundary-layer flow
becomes unstable and transitions to turbulence. Typically, the critical Reynolds number
decreases when the surface roughness or free-stream fluctuation levels increase. In general,
Recr varies greatly and detailed predictions of transition are often a difficult task or research
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endeavor. Within a factor of five or so, the transition Reynolds number for a smooth, flat-plate
boundary layer is found to be

Recrw106
�

flat plate
�

:

Figure 9.10 schematically depicts the flow regimes on a semi-infinite flat plate (with the
vertical direction greatly exaggerated). In the leading-edge region, Rex ¼ Ux/n w 1, the full
Navier-Stokes equations are required to properly describe the flow. As Rex increases toward
the downstream limit of the leading-edge region, we can locate x0 as the maximal upstream
location where the laminar boundary-layer equations are valid. For some distance x > x0, the
boundary layer’s condition at x ¼ x0 is remembered. Eventually, the influence of the initial
condition may be neglected and the solution becomes of similarity form. For somewhat
larger Rex, a bit farther downstream, an initial instability appears and fluctuations of a specific
wavelength or frequency may be amplified. With increasing downstream distance, a wider
spatial or temporal frequency range of fluctuations may be amplified and these fluctuations
interact with each other nonlinearly through the advective acceleration terms in the
momentum equation. As Rex increases further, the fluctuations may increase in strength
and the flow becomes increasingly chaotic and irregular with increasing downstream
distance. When the fluctuations cease their rapid growth, the flow is said to be fully turbulent
and transition is complete.

Laminar and turbulent boundary layers differ in many important ways. A fully turbulent
boundary layer produces significantly more average surface shear stress s0 than an

FIGURE 9.10 Schematic depiction of flow over a semi-infinite flat plate. Here, increasing x is synonymous with
increasing Reynolds number.
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equivalent laminar boundary layer, and a fully turbulent boundary-layer velocity profile has
a different shape and different parametric dependencies than an equivalent laminar one. For
example, the thickness of a zero-pressure-gradient turbulent boundary layer grows faster
than x1/2 (Figure 9.10), and the wall shear stress increases faster with U than in a laminar
boundary layer where s0 f U3/2. This increase in friction occurs because turbulent fluctua-
tions produce more wall-normal transport of momentum than that possible from steady
viscous diffusion alone. However, both types of boundary layers respond similarly to pres-
sure gradients but with different sensitivities.

Figure 9.11 sketches the nature of the observed variation of the drag coefficient in a flow
over a flat plate, as a function of the Reynolds number. The lower curve applies if the
boundary layer is laminar over the entire length of the plate, and the upper curve applies
if the boundary layer is turbulent over the entire length. The curve joining the two applies
to a boundary layer that is laminar over the initial part of the plate, begins transition at
ReL ~ 5 � 105, and is fully turbulent for ReL > 107. The exact point at which the observed
drag deviates from the wholly laminar behavior depends on flow conditions, flow geometry,
and surface conditions.

Although surface pressure gradients do affect transition, it may be argued that their most
important influence is on boundary-layer separation. A fundamental discussion of
boundary-layer separation begins with the steady stream-wise, boundary-layer flow
momentum equation, (9.9), where the pressure gradient is found from the external velocity
field via (9.11) and with x taken in the stream-wise direction along the surface of interest. At
the surface, both velocity components are zero so (9.9) reduces to

m

 

v2u

vy2

!

wall

¼ dp

dx
:

FIGURE 9.11 Measured drag coefficient for a boundary layer over a flat plate. The continuous line shows the
drag coefficient for a plate on which the flow is partly laminar and partly turbulent, with the transition taking place
at a position where the local Reynolds number is 5 � 105. The dashed lines show the behavior if the boundary layer
was either completely laminar or completely turbulent over the entire length of the plate.
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In an accelerating stream dp/dx < 0, so
 

v2u

vy2

!

wall

< 0 ðacceleratingÞ: (9.51)

Given that the velocity profile has to blend smoothly with the external profile, the gradient
vu/vy slightly below the edge of the boundary layer decreases with increasing y from a posi-
tive value to zero; therefore, v2u/vy2 slightly below the boundary-layer edge is negative.
Equation (9.51) then shows that v2u/vy2 has the same sign at the wall and at the
boundary-layer edge, and presumably throughout the boundary layer. In contrast, for
a decelerating external stream, dp/dx > 0, the curvature of the velocity profile at the wall is

 

v2u

vy2

!

wall

> 0 ðdeceleratingÞ, (9.52)

so that the profile curvature changes sign somewhere within the boundary layer. In other
words, the boundary-layer profile in a decelerating flow has a point of inflection where
v2u/vy2 ¼ 0, an important fact for boundary-layer stability and transition (see Chapter 11).
In the special case of the Blasius boundary layer, the profile’s inflection point is at the wall.

The shape of the velocity profiles in Figure 9.12 suggests that a decelerating exterior flow
tends to increase the thickness of the boundary layer. This can also be seen from the conti-
nuity equation:

vðyÞ ¼ �
Z y

0
ðvu=vxÞdy:

Compared to flow over a flat plate, a decelerating external stream causes a larger e(vu/vx)
within the boundary layer because the deceleration of the outer flow adds to the viscous

FIGURE 9.12 Velocity profiles across boundary layers with favorable (dp/dx < 0) and adverse (dp/dx > 0)
pressure gradients, as indicated above the flow. The surface shear stress and stream-wise fluid velocity near the
surface are highest and lowest in the favorable and adverse pressure gradients, respectively, with the dp/dx ¼ 0 case
falling between these limits.
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deceleration within the boundary layer. It follows from the foregoing equation that the
v-field, directed away from the surface, is larger for a decelerating flow. The boundary layer
therefore thickens not only by viscous diffusion but also by advection away from the surface,
resulting in a more rapid increase in the boundary-layer thickness with x than when the
exterior flow is constant or accelerating.

If p falls with increasing x, dp/dx < 0, the pressure gradient is said to be favorable. If the p
rises with increasing x, dp/dx > 0, the pressure gradient is said to be adverse. In an adverse
pressure gradient, the boundary-layer flow decelerates, thickens, and develops a point of
inflection. When the adverse pressure gradient is strong enough or acts over a long enough
distance, the flow next to the wall reverses direction (Figure 9.13). The point S at which the
reverse flow meets the forward flow is a local stagnation point and is known as the separation
point. Fluid elements approach S (from either side) and are then transported away from the
wall. Thus, a separation streamline emerges from the surface at S. Furthermore, the surface
shear stress changes sign across S because the surface flow changes direction. Thus, the
surface shear stress at S is zero, which implies

�

vu

vy

�

wall

¼ 0 ðseparationÞ:

Once a boundary layer separates from the surface on which it has formed, the surface
displacement effect produced by divergence of the body contour and the separation stream-
line may be enormous. Additionally, at high Reynolds numbers, a separated boundary layer
commonly acquires the properties of a vortex sheet and may rapidly become unstable and
transition to a thick zone of turbulence. Thus, boundary-layer separation typically requires
the presumed geometry-based, inner-outer and rotational-irrotational flow dichotomies to
be reconsidered or even abandoned. In such cases, recourse to experiments or multidimen-
sional numerical solutions may be the only choices for flow investigation.

At Reynolds numbers that are not too large, flow separation may not lead to unsteadiness.
For flow past a circular cylinder for 4 < Re < 40 the reversed flowdownstreamof a separation
point may form part of a steady vortex behind the cylinder (see Figure 9.16 in Section 9.8). At

FIGURE 9.13 Streamlines
and velocity profiles near a
separation point S where a
streamline emerges from the
surface. The usual boundary-
layer equations are not valid
downstream of S. The inflec-
tion point in the stream-wise
velocity profile is indicated by I.
The dashed line is the locus of
u ¼ 0.
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higher Reynolds numbers, when the flow on the upstream side of the cylinder develops
genuine boundary-layer characteristics, the flow downstream of separation is unsteady
and frequently turbulent.

The adverse-pressure gradient strength that a boundary layer can withstand without
separating depends on the geometry of the flow and whether the boundary layer is
laminar or turbulent. However, a severe adverse-pressure gradient, such as that behind
a blunt body, invariably leads to a separation. In contrast, the boundary layer on the trail-
ing surface of a slender body may overcome the weak pressure gradients involved. There-
fore, to avoid separation and the resulting form drag penalty, the trailing section of
a submerged body should be gradually reduced in size, giving it a streamlined (or teardrop)
shape.

Experimental evidence indicates that the point of separation is relatively insensitive to the
Reynolds number as long as the boundary layer is laminar. However, a transition to turbulence
delays boundary-layer separation; that is, a turbulent boundary layer is more capable of with-
standing an adverse pressure gradient. This is because the velocity profile in a turbulent
boundary layer places more high-speed fluid near the surface (Figure 9.14). For example,
the laminar boundary layer over a circular cylinder separates at ~82	 from the forward stag-
nation point, whereas a turbulent layer over the same body separates at 125	 (shown later in
Figure 9.16). Experiments show that the surface pressure remains fairly uniform downstream
of separation and has a lower value than the pressures on the forward face of the body. The
resulting drag due to such fore-aft pressure differences is called form drag, as it depends
crucially on the shape of the body (and the location of boundary-layer separation). For a blunt
body like a sphere, the form drag is larger than the skin friction drag because of the occur-
rence of separation. For a streamlined body like a rowing shell for crew races, skin friction
is generally larger than the form drag. As long as the separation point is located at the
same place on the body, the drag coefficient of a blunt body is nearly constant at high
Reynolds numbers. However, the drag coefficient drops suddenly when the boundary layer

FIGURE 9.14 Nominal comparison of laminar and mean-turbulent, stream-wise velocity profiles in a boundary
layer. Here the primary differences are the presence of higher speed fluid closer to the surface and greater surface
shear stress in the turbulent layer.
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undergoes transition to turbulence, the separation point moves aft, and the body’s wake
becomes narrower (see Figure 9.21 in Section 9.8).

Boundary-layer separation may take place in internal as well as external flows. An
example is a divergent channel or diffuser (Example 9.2, Figure 9.15). Downstream of
a narrow point in a ducted flow, an adverse-pressure gradient can cause separation. Elbows,
tees, and valves in pipes and tubes commonly lead to regions of internal flow separation, too.

Again it must be emphasized that the boundary-layer equations are valid only as far
downstream as the point of separation, if it is known. Beyond separation, the basic under-
lying assumptions of boundary-layer theory become invalid. Moreover, the parabolic char-
acter of the boundary-layer equations requires that a numerical integration is possible only
in the direction of advection (along which information is propagated). In a region of reversed
flow, this integration direction is upstream. Thus, a forward (downstream) integration of the
boundary-layer equations breaks down after separation. Furthermore, potential theory may
not be used to determine the pressure in a separated flow region, since the flow there is rota-
tional and the effective boundary between irrotational and rotational flow regions is no
longer the solid surface but some unknown shape encompassing part of the body’s contour,
the separation streamline, and, possibly, a wake-zone contour.

9.8. FLOW PAST A CIRCULAR CYLINDER

In general, analytical solutions of viscous flows can be found (possibly in terms of pertur-
bation series) only in two limiting cases, namely Re� 1 and Re[ 1. In the Re� 1 limit
the inertia forces are negligible over most of the flow field; the Stokes-Oseen solutions dis-
cussed in the preceding chapter are of this type. In the opposite limit of Re[ 1, the viscous
forces are negligible everywhere except close to the surface, and a solution may be attempted
by matching an irrotational outer flow with a boundary layer near the surface. In the interme-
diate range of Reynolds numbers, finding analytical solutions becomes almost an impossible
task, and one has to depend on experimentation and numerical solutions. Some of these

FIGURE 9.15 Separation of flow in a divergent channel. Here, an adverse pressure gradient has led to
boundary-layer separation just downstream of the narrowest part of the channel. Such separated flows are instable
and are exceedingly likely to be unsteady, even if all the boundary conditions are time independent.
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experimental flow patterns are described in this section, taking the flow over a circular
cylinder as an example. Instead of discussing only the intermediate Reynolds number range,
we shall describe the experimental data for the entire range from small to very high Reynolds
numbers.

Low Reynolds Numbers

Consider creeping flow around a circular cylinder, characterized by Re ¼ UNd/n < 1,
where UN is the upstream flow speed and d is the cylinder’s diameter. Vorticity is generated
close to the surface because of the no-slip boundary condition. In the Stokes approximation
this vorticity is simply diffused, not advected, which results in a fore and aft symmetry. The
Oseen approximation partially takes into account the advection of vorticity, and results in an
asymmetric velocity distribution far from the body (which was shown in Figure 8.20). The
vorticity distribution is qualitatively analogous to the dye distribution caused by a source
of colored fluid at the position of the body. The color diffuses symmetrically in very slow
flows, but at higher flow speeds the dye source is confined behind a parabolic boundary
with the dye source at the parabola’s focus.

For increasing Re above unity, the Oseen approximation breaks down, and the vorticity is
increasingly confined behind the cylinder because of advection. For Re > 4, two small steady
eddies appear behind the cylinder and form a closed separation zone contained with a sepa-
ration streamline. This zone is sometimes called a separation bubble. The cylinder’s wake is
completely laminar and the vortices rotate in a manner that is consistent with the exterior
flow (Figure 9.16). These eddies grow in length and width as Re increases.

Moderate Reynolds Numbers

A very interesting sequence of events begins to develop when Re reaches 40, the point at
which the wake behind the cylinder becomes unstable. Experiments show that for Re ~ 102

the wake develops a slow oscillation in which the velocity is periodic in time and down-
stream distance, with the amplitude of the oscillation increasing downstream. The oscillating
wake rolls up into two staggered rows of vortices with opposite sense of rotation
(Figure 9.17). Von Karman investigated the phenomenon as a problem of superposition of
irrotational vortices; he concluded that a nonstaggered row of vortices is unstable, and a stag-
gered row is stable only if the ratio of lateral distance between the vortices to their longitu-
dinal distance is 0.28. Because of the similarity of the wake with footprints in a street, the
staggered row of vortices behind a blunt body is called a von Karman vortex street. The vortices
move downstream at a speed smaller than UN. This means that the vortex pattern slowly
follows the cylinder if it is pulled through a stationary fluid.

In the range 40 < Re < 80, the vortex street does not interact with the pair of attached
vortices. As Re increases above 80, the vortex street forms closer to the cylinder, and the
attached eddies (whose downstream length has now grown to be about twice the diameter
of the cylinder) themselves begin to oscillate. Finally the attached eddies periodically break
off alternately from the two sides of the cylinder. While an eddy on one side is shed, that on
the other side forms, resulting in an unsteady flow near the cylinder. As vortices of opposite
circulations are shed off alternately from the two sides, the circulation around the cylinder
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FIGURE 9.17 Von Karman vortex street downstream of a circular cylinder at Re ¼ 55. Flow visualized by

condensed milk. S. Taneda, Jour. Phys. Soc., Japan 20: 1714e1721, 1965, and reprinted with the permission of The Physical

Society of Japan and Dr. Sadatoshi Taneda.

FIGURE 9.16 Depiction of some of the flow regimes for a circular cylinder in a steady uniform cross flow. Here
Re ¼ UNd/n is the Reynolds number based on free-stream speed UN and cylinder diameter d. At the lowest Re, the
streamlines approach perfect fore-aft symmetry. As Re increases, asymmetry increases and steady wake vortices
form. With further increase in Re, the wake becomes unsteady and forms the alternating-vortex von Karman vortex
street. For Re up to Recr ~ 3 � 105, the laminar boundary layer separates approximately 82	 from the forward
separation point. Above this Re value, the boundary-layer transitions to turbulence, and separation is delayed to
125	 from the forward separation point.
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changes sign, resulting in an oscillating lift or lateral force perpendicular to the upstream
flow direction. If the frequency of vortex shedding is close to the natural frequency of
some structural mode of vibration of the cylinder and its supports, then an appreciable lateral
vibration may be observed. Engineered structures such as suspension bridges, oil drilling
platforms, and even automobile components are designed to prevent coherent shedding of
vortices from cylindrical structures. This is done by including spiral blades protruding out
of the cylinder’s surface, which break up the span-wise coherence of vortex shedding, forcing
the vortices to detach at different times along the length of these structures (Figure 9.18).

The passage of regular vortices causes velocity measurements in the cylinder’s wake to
have a dominant periodicity, and this frequency U is commonly expressed as a Strouhal
number (4.102), St ¼ Ud/UN. Experiments show that for a circular cylinder the value of S
remains close to 0.2 for a large range of Reynolds numbers. For small values of cylinder diam-
eter and moderate values of UN, the resulting frequencies of the vortex shedding and oscil-
lating lift lie in the acoustic range. For example, atUN ¼ 10 m/s and awire diameter of 2 mm,
the frequency corresponding to a Strouhal number of 0.2 is n ¼ 1000 cycles per second. The
singing of telephone and electrical transmission lines and automobile radio antennae have
been attributed to this phenomenon. The value of the St given here is that observed in
three-dimensional flows with nominally two-dimensional boundary conditions. Moving
soap-film experiments and calculations suggest a somewhat higher value of St ¼ 0.24 in
perfectly two-dimensional flow (see Wen & Lin, 2001).

Below Re ¼ 200, the vortices in the wake are laminar and continue to be so for very large
distances downstream. Above 200, the vortex street becomes unstable and irregular, and the
flow within the vortices themselves becomes chaotic. However, the flow in the wake
continues to have a strong frequency component corresponding to a Strouhal number of
S ¼ 0.2. However, above a Reynolds number of several thousand, periodicity in the wake
is only perceptible near the cylinder, and the wake may be described as fully turbulent
beyond several cylinder diameters downstream.

Striking examples of vortex streets have also been observed in stratified atmospheric
flows. Figure 9.19 shows a satellite photograph of the wake behind several isolated mountain

FIGURE 9.18 Spiral blades used for breaking up the span-wise coherence of vortex shedding from a cylindrical
rod. Coherent vortex shedding can produce tonal noise and potentially large (and undesired) structural loads on
engineered devices that encounter wind or water currents.
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peaks through which the wind is blowing toward the southeast. The mountains pierce
through the cloud level, and the flow pattern becomes visible by the cloud pattern. The wakes
behind at least two mountain peaks display the characteristics of a von Karman vortex street.
The strong density stratification in this flow has prevented vertical motions, giving the flow
the two-dimensional character necessary for the formation of vortex streets.

High Reynolds Numbers

At high Reynolds numbers the frictional effects upstream of separation are confined near
the surface of the cylinder, and the boundary-layer approximation is valid as far downstream

FIGURE 9.19 A von Karman vortex street downstream of mountain peaks in a strongly stratified atmosphere.
There are several mountain peaks along the linear, light-colored feature running diagonally in the upper left-hand
corner of the photograph. North is upward, and the wind is blowing toward the southeast. R. E. Thomson and J. F. R.

Gower, Monthly Weather Review 105: 873e884, 1977; reprinted with the permission of the American Meteorological Society.
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as the point of separation. For a smooth cylinder up to Re < 3 � 105, the boundary layer
remains laminar, although the wake formed behind the cylinder may be completely turbu-
lent. The laminar boundary layer separates at z 82	 from the forward stagnation point
(Figure 9.16). The pressure in the wake downstream of the point of separation is nearly
constant and lower than the upstream pressure (Figure 9.20). The drag on the cylinder in
this Re range is primarily due to the asymmetry in the pressure distribution caused by
boundary-layer separation, and, since the point of separation remains fairly stationary in
this Re range, the cylinder’s drag coefficient CD also stays constant at a value near unity
(see Figure 9.21).

Important changes take place beyond the critical Reynolds number of Recr ~ 3 � 105.
When 3 � 105 < Re < 3 � 106, the laminar boundary layer becomes unstable and transitions
to turbulence. Because of its greater average near-surface flow speed, a turbulent boundary
layer is able to overcome a larger adverse-pressure gradient. In the case of a circular cylinder
the turbulent boundary layer separates at 125	 from the forward stagnation point, resulting
in a thinner wake and a pressure distribution more similar to that of potential flow.
Figure 9.20 compares the pressure distributions around the cylinder for two values of Re,
one with a laminar and the other with a turbulent boundary layer. It is apparent that the pres-
sures within the wake are higher when the boundary layer is turbulent, resulting in a drop in
the drag coefficient from 1.2 to 0.33 at the point of transition. For values of Re > 3 � 106, the
separation point slowly moves upstream as the Reynolds number increases, resulting in
a mild increase of the drag coefficient (Figure 9.21).

It should be noted that the critical Reynolds number at which the boundary layer
undergoes transition is strongly affected by two factors, namely the intensity of fluctuations

FIGURE 9.20 Surface
pressure distribution
around a circular cylinder
at subcritical and super-
critical Reynolds numbers.
Note that the pressure is
nearly constant within the
wake and that the wake
is narrower for flow at
supercritical Re. The
change in the top- and
bottom-side, boundary-
layer separation points
near Recr is responsible for
the change in Cp shown.
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existing in the approaching stream and the roughness of the surface, an increase in either of
which decreases Recr. The value of 3 � 105 is found to be valid for a smooth circular cylinder
at low levels of fluctuation of the oncoming stream.

We close this section by noting that this flow illustrates three instances where the solution
is counterintuitive. First, small causes can have large effects. If we solve for the flow of a fluid
with zero viscosity around a circular cylinder, we obtain the results of Section 6.3. The
inviscid flow has fore-aft symmetry and the cylinder experiences zero drag. The bottom
two panels of Figure 9.16 illustrate the flow for small viscosity. In the limit as viscosity tends
to zero, the flowmust look like the last panel in which there is substantial fore-aft asymmetry,
a significant wake, and significant drag. This is because of the necessity of a boundary layer
and the satisfaction of the no-slip boundary condition on the surface so long as viscosity is
not exactly zero. When viscosity is exactly zero, there is no boundary layer and there is
slip at the surface. Thus, the resolution of d’Alembert’s paradox lies in the existence of,
and an understanding of, the boundary layer.

The second instance of counterintuitivity is that symmetric problems can have nonsym-
metric solutions. This is evident in the intermediate Reynolds number middle panel of
Figure 9.16. Beyond a Reynolds number of z 40, the symmetric wake becomes unstable
and a pattern of alternating vortices called a von Karman vortex street is established. Yet the
equations and boundary conditions are symmetric about a central plane in the flow. If one
were to solve only a half problem, assuming symmetry, a solution would be obtained, but
it would be unstable to infinitesimal disturbances and unlikely to be observed in a laboratory.

The third instance of counterintuitivity is that there is a range of Reynolds numbers where
roughening the surface of the body can reduce its drag. This is true for all blunt bodies. In this
range of Reynolds numbers, the boundary layer on the surface of a blunt body is laminar, but
sensitive to disturbances such as surface roughness, which would cause earlier transition of
the boundary layer to turbulence than would occur on a smooth body. Although the skin

FIGURE 9.21 Measured drag coefficient, CD, of a smooth circular cylinder vs. Re ¼ UNd/n. The sharp dip in CD

near Recr is due to the transition of the boundary layer to turbulence, and the consequent downstream movement of
the point of separation and change in the cylinder’s surface pressure distribution.
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friction of a turbulent boundary layer is much larger than that of a laminar boundary layer,
most of the drag on a bluff body is caused by incomplete pressure recovery on its down-
stream side as shown in Figure 9.20, rather than by skin friction. In fact, it is because the
skin friction of a turbulent boundary layer is much largerdas a result of a larger velocity
gradient at the surfacedthat a turbulent boundary layer can remain attached farther on
the downstream side of a blunt body, leading to a narrower wake, more complete pressure
recovery, and reduced drag. The drag reduction attributed to the turbulent boundary layer
is shown in Figure 9.21 for a circular cylinder and Figure 9.22 for a sphere.

9.9. FLOW PAST A SPHERE AND THE DYNAMICS
OF SPORTS BALLS

Several features of the description of flow over a circular cylinder qualitatively apply to
flows over other two-dimensional blunt bodies. For example, a vortex street is observed in
a flow perpendicular to a finite flat plate. The flow over a three-dimensional body, however,
has one fundamental difference in that a regular vortex street is absent. For flow around
a sphere at low Reynolds numbers, there is an attached eddy in the form of a doughnut-
shaped ring; in fact, an axial section of the flow looks similar to that shown in Figure 9.16
for the range 4 < Re < 40. For Re > 130 the ring-eddy oscillates, and some of it breaks off
periodically in the form of distorted vortex loops.

The behavior of the boundary layer around a sphere is similar to that around a circular
cylinder. In particular it undergoes transition to turbulence at a critical Reynolds number
of Recr ~ 5 � 105, which corresponds to a sudden dip of the drag coefficient (Figure 9.22).
As in the case of a circular cylinder, the separation point slowly moves upstream for postcritical
Reynolds numbers, accompanied by a rise in the drag coefficient. The behavior of the

FIGURE 9.22 Measured
dragcoefficient,CD, ofasmooth
sphere vs. Re ¼ UNd/n. The
Stokes solution is CD ¼ 24/Re,
and the Oseen solution is
CD ¼ (24/Re) (1þ 3Re/16);
these two solutions are dis-
cussed at the end of Chapter 8.
The increase of drag coefficient
in the range AeB has relevance
in explaining why the flight
paths of sports balls bend in
the air.
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separation point for flow around a sphere at subcritical and supercritical Reynolds numbers
is responsible for the bending in the flight paths of sports balls.

In many sports (tennis, cricket, soccer, ping-pong, baseball, golf, etc.), the trajectory of
a moving ball may bend in potentially unexpected ways. Such bending may be known as
curve, swing, hook, swerve, slice, etc. The problem has been investigated by wind-tunnel tests
and by stroboscopic photographs of flight paths in field tests, a summary of which was given
by Mehta (1985). Evidence indicates that the mechanics of trajectory bending is different for
spinning and nonspinning balls. The following discussion gives a qualitative explanation of
the mechanics of sports-ball trajectory bending. (Readers not interested in sports may omit
the rest of this section!)

Cricket Ball Dynamics

A cricket ball has a prominent (1-mm high) seam, and tests show that the orientation of the
seam is responsible for the bending of the ball’s flight path. It is known to bend when thrown
at speeds of around 30 m/s, which is equivalent to a Reynolds number of Re ¼ UN d/n ~ 105,
UN is the speed of the ball, and d is its diameter. This Re is somewhat less than the critical
value of Recr ¼ 5 � 105 necessary for transition of the boundary layer on a smooth sphere
into turbulence. However, the presence of the seam is able to trip the laminar boundary layer
into turbulence on one side of the ball (the lower side in Figure 9.23), while the boundary
layer on the other side remains laminar. This transition asymmetry leads to boundary-layer
separation asymmetry. Typically, the boundary layer on the laminar side separates at z 85	,
whereas that on the turbulent side separates at 120	. Compared to region B, the surface pres-
sure near region A is therefore closer to that given by the potential flow theory (which

predicts a suction pressure of ðpmin � pNÞ=ð1=2ÞrU2
N ¼ �5=4; see (6.91)). In other words,

the pressures are lower on side A, resulting in a downward force on the ball. (Note that
Figure 9.23 is a view of the flow pattern looking downward on the ball, so that it corresponds
to a ball that bends to the left in its flight. The flight of a cricket ball oriented as in Figure 9.23
is called an outswinger in cricket literature, in contrast to an inswinger for which the seam is
oriented in the opposite direction so as to generate an upward force in Figure 9.23.)

FIGURE 9.23 The swing (or curve)
of a cricket ball. The seam is oriented in
such a way that a difference in
boundary-layer separation points on
the topandbottomsidesof theball lead
to a downward lateral force in the
figure; the surface pressure at A is less
than the surface pressure at B.
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Figure 9.24, a photograph of a cricket ball in a wind-tunnel experiment, clearly shows the
delayed separation on the seam side. Note that the wake has been deflected upward by the
presence of the ball, implying that an upward force has been exerted by the ball on the fluid.
It follows that a downward force has been exerted by the fluid on the ball.

In practice some spin is invariably imparted to the ball. The ball is held along the seam
and, because of the round arm action of the bowler, some backspin is always imparted along
the seam. This has the important effect of stabilizing the orientation of the ball and prevent-
ing it from wobbling. A typical cricket ball can generate side forces amounting to almost 40%
of its weight. A constant lateral force oriented in the same direction causes a deflection
proportional to the square of time. The ball therefore travels in a parabolic path that can
bend as much as 0.8 m by the time it reaches the batsman.

It is known that the trajectory of the cricket ball does not bend if the ball is thrown too
slow or too fast. In the former case even the presence of the seam is not enough to trip
the boundary layer into turbulence, and in the latter case the boundary layer on both sides
could be turbulent; in both cases an asymmetric flow is prevented. It is also clear why only
a new, shiny ball is able to swing, because the rough surface of an old ball causes the
boundary layer to become turbulent on both sides. Fast bowlers in cricket maintain one

FIGURE 9.24 Smoke photograph of flow over a cricket ball in the same orientation and flow condition as
that depicted in Figure 9.23. The flow is from left to right, the seam angle is 40	, the flow speed is 17 m/s, and
Re ¼ 0.85 � 105. R. Mehta, Ann. Rev Fluid Mech. 17: 151e189, 1985. Photograph reproduced with permission from the

Annual Review of Fluid Mechanics, Vol. 17 � 1985 by Annual Reviews, www.AnnualReviews.org.
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hemisphere of the ball in a smooth state by constant polishing. It therefore seems that most of
the known facts about the swing of a cricket ball have been adequately explained by scien-
tific research. The feature that has not been explained is the universally observed fact that
a cricket ball swings more in humid conditions. The changes in density and viscosity due
to changes in humidity can change the Reynolds number by only 2%, which cannot explain
this phenomenon.

Tennis Ball Dynamics

Unlike the cricket ball, the path of the tennis ball bends because of spin. A ball hit with
topspin curves downward, whereas a ball hit with underspin (backspin) travels in a much
flatter trajectory. The direction of the lateral force is therefore in the same sense as that of
the Magnus effect experienced by a circular cylinder in potential flow with circulation (see
Section 6.3). The mechanics, however, are different. The potential flow argument (involving
the Bernoulli equation) offered to account for the lateral force around a circular cylinder
cannot explain why a negative Magnus effect is universally observed at lower Reynolds
numbers. (By a negative Magnus effect we mean a lateral force opposite to that experienced
by a cylinder with a circulation of the same sense as the rotation of the sphere.) The correct
argument seems to be the asymmetric boundary-layer separation caused by the spin. In fact,
the phenomenon was not properly explained until the boundary-layer concepts were under-
stood in the twentieth century. Some pioneering experimental work on the bending paths of
spinning spheres was conducted by Robins (1742) over two hundred years ago; the deflection
of rotating spheres is sometimes called the Robins effect.

Experimental data on nonrotating spheres (Figure 9.22) shows that the boundary layer on
a sphere undergoes transition at Recr ¼ 5 � 105, as indicated by a sudden drop in the drag
coefficient. This drop is due to the transition of the laminar boundary layer to turbulence.
An important point for the present discussion is that for supercritical Reynolds numbers
the separation point slowly moves upstream, as evidenced by the increase of the drag coef-
ficient after the sudden drop shown in Figure 9.22.

With this background, we are now in a position to understand how a spinning ball gener-
ates a negative Magnus effect at Re < Recr and a positive Magnus effect at Re < Recr. For
a clockwise rotation of the ball, the fluid velocity relative to the surface is larger on the lower
side (Figure 9.25). For the lower Reynolds number case (Figure 9.25a), this causes a transition
of the boundary layer on the lower side, while the boundary layer on the upper side remains
laminar. The result is a delayed separation and lower pressure on the bottom surface, and
a consequent downward force on the ball. The force here is in a sense opposite to that of
the Magnus effect.

The rough surface of a tennis ball lowers the critical Reynolds number, so that for a well-
hit tennis ball the boundary layers on both sides of the ball have already undergone transi-
tion. Due to the higher relative velocity, the flow near the bottom has a higher Reynolds
number, and is therefore farther along the Re-axis of Figure 9.22, in the range AB in which
the separation point moves upstream with an increase of the Reynolds number. The separa-
tion therefore occurs earlier on the bottom side, resulting in a higher pressure there than on
the top. This causes an upward lift force and a positive Magnus effect. Figure 9.25b shows
that a tennis ball hit with underspin (backspin) generates an upward force; this overcomes
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a large fraction of the weight of the ball, resulting in a much flatter trajectory than that of
a tennis ball hit with topspin. A slice serve, in which the ball is hit tangentially on the
right-hand side, curves to the left due to the same effect. Presumably soccer balls curve in
the air due to similar dynamics.

Baseball Dynamics

A baseball pitcher uses different kinds of deliveries, a typical Reynolds number being
1.5 � 105. One type of delivery is called a curveball, caused by sidespin imparted by the
pitcher to bend away from the side of the throwing arm. A screwball has the opposite spin
and oppositely curved trajectory, when thrown correctly. The dynamics are similar to that
of a spinning tennis ball (Figure 9.25b). Figure 9.26 is a photograph of the flow over a spin-
ning baseball, showing an asymmetric separation, a crowding together of streamlines at the
bottom, and an upward deflection of the wake that corresponds to a downward force on the
ball.

The knuckleball, on the other hand, is released without any spin. In this case the path of the
ball bends due to an asymmetric separation caused by the orientation of the seam, much like
the cricket ball. However, the cricket ball is released with spin along the seam, which stabi-
lizes the orientation and results in a predictable bending. The knuckleball, on the other hand,
tumbles in its flight because of a lack of stabilizing spin, resulting in an irregular orientation
of the seam and a consequent irregular trajectory.

9.10. TWO-DIMENSIONAL JETS

The previous nine sections have considered boundary layers over solid surfaces. The
concept of a boundary layer, however, is more general, and the approximations involved
are applicable whenever the vorticity in the flow is confined in thin layers, even in the
absence of a solid surface. Such a layer can be in the form of a jet of fluid ejected from an
orifice, a wake (where the velocity is lower than the upstream velocity) behind a solid object,
or a thin shear layer (vortex sheet) between two uniform streams of different speeds. As an
illustration of the method of analysis of these free shear flows, we shall consider the case of
a laminar two-dimensional jet, which is an efflux of fluid from a long and narrow orifice
that issues into a large quiescent reservoir of the same fluid. Downstream from the orifice,

FIGURE 9.25 Curving
flight of rotating spheres,
in which F indicates the
force exerted by the fluid:
(a) negative Magnus effect;
and (b) positive Magnus
effect. Awell-hit tennis ball
with spin is likely to
display the positive Mag-
nus effect.
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some of the ambient fluid is carried along with the moving jet fluid through viscous vorticity
diffusion at the outer edge of the jet (Figure 9.27). The process of drawing reservoir fluid into
the jet by is called entrainment.

The velocity distribution near the opening of the jet depends on the details of conditions
upstream of the orifice exit. However, because of the absence of an externally imposed length

FIGURE 9.26 Smoke photograph of flow around a spinning baseball. Flow is from left to right, flow speed is 21
m/s, and the ball is spinning counterclockwise at 15 rev/s. [Photograph by F. N. M. Brown, University of Notre Dame.]

Photograph reproduced with permission from the Annual Review of Fluid Mechanics, Vol. 17 � 1985 by Annual Reviews,
www.AnnualReviews.org.

FIGURE 9.27 Simple laminar
two-dimensional free jet. A narrow
slot injects fluid horizontally with
an initial momentum flux J into
a nominally quiescent reservoir of
the same fluid. The region of hori-
zontally moving fluid slows and
expands as x increases. A typical
streamline showing entrainment of
surrounding fluid is indicated.
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scale in the downstream direction, the velocity profile in the jet approaches a self-similar
shape not far from where it emerges into the reservoir, regardless of the velocity distribution
at the orifice.

For large Reynolds numbers, the jet is narrow and the boundary-layer approximation can
be applied. Consider a control volume with sides cutting across the jet axis at two sections
(Figure 9.27); the other two sides of the control volume are taken at large distances from
the jet axis. No external pressure gradient is maintained in the surrounding fluid so dp/dx
is zero. According to the boundary-layer approximation, the same zero pressure gradient
is also impressed upon the jet. There is, therefore, no net force acting on the surfaces of the
control volume, and this requires the x-momentum flux at the two sections across the jet
to be the same.

Let u0(x) be the stream-wise velocity on the x-axis and assume Re ¼ u0x/n is suffi-
ciently large for the boundary-layer equations to be valid. The flow is steady, two-
dimensional (x, y), without body forces, and with constant properties (r, m). Then
v/vy [ v/vx, v � u, vp/vy ¼ 0, so the fluid equations of motion are the same as for
the Blasius boundary layer: (6.2) and (9.18). However, the boundary conditions are
different here:

u ¼ 0 for y/�N and x > 0, (9.53)

v ¼ 0 on y ¼ 0 for x > 0, and (9.54)

u ¼ ~uðyÞ on x ¼ x0, (9.55)

where ~u is a (known) flow profile. Now partially follow the derivation of the von Karman
boundary-layer integral equation. Multiply (6.2) by u and add it to the left side of (9.18)
but this time integrate over all y to find:

Z
þN

�N

2u
vu

vx
dyþ

Z
þN

�N

�

u
vv

vy
þ v

vu

vy

�

dy ¼
Z
þN

�N

vs
vy

dy, or
d

dx

Z
þN

�N

u2dyþ ½uv�þN
�N ¼ ½s�þN

�N: (9.56)

Since u(y ¼ �N) ¼ 0, all derivatives of uwith respect to ymust also be zero at y ¼ �N. Thus,
since s ¼ m(vu/vy), the second and third terms in the second equation of (9.56) are both zero.
Hence, (9.56) reduces to

d

dx

Z
þN

�N

u2dy ¼ 0, (9.57)

a statement that the stream-wise momentum flux is conserved. Thus, when integrated, (9.57)
becomes:

Z
þN

�N

u2dy ¼ const: ¼
Z
þN

�N

~u2ðyÞdy ¼ J=r, (9.58)

where the second equality follows from (9.55). Here, the constant is the momentum flux in
the jet per unit span, J, divided by the fluid density, r.
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A similarity solution is obtained far enough downstream so that the boundary-layer equa-
tions are valid and ~uðyÞ has been forgotten. Thus, we can seek a solution in the form of (8.32)
or (9.19):

j ¼ u0ðxÞdðxÞfðhÞ, where h ¼ y=dðxÞ, dðxÞ ¼ ½vx=u0ðxÞ�1=2, (9.59)

and u0(x) is the stream-wise velocity on y ¼ 0. The stream-wise velocity throughout the field
is obtained from differentiation:

u ¼ vj=vy ¼ ½nxu0ðxÞ�1=2ðdf=dhÞ½nx=u0ðxÞ��1=2¼ u0ðxÞðdf=dhÞ: (9.60)

The final equality here implies that f 0 ¼ 1 on h ¼ 0. When (9.60) is substituted into (9.58), the
dependence of u0(x) on x is determined:

J

r
¼
Z
þN

�N

u2dy ¼ u20ðxÞ
Z
þN

�N

f 02ðhÞdy ¼ u20ðxÞdðxÞ
Z
þN

�N

f 02ðhÞdh: (9.61)

Since the integral is a dimensionless constant (¼ C), we must have

Cu2oðxÞdðxÞ ¼ Cu
3=2
o ðxÞ,ðnxÞ1=2¼ J=r,

so

u0ðxÞ ¼
	

J2=C2r2vx

1=3

, and dðxÞ ¼ 	Crv2x2=J
1=3: (9.62, 9.63)

Thus, (9.59) becomes

j ¼ ½Jvx=Cr�1=3fðhÞ where h ¼ y=
	

Crv2x2=J

1=3

: (9.64)

In terms of the stream function, (9.18) becomes:

vj

vy

v

vx

�

vj

vy

�

� vj

vx

v

vy

�

vj

vy

�

¼ n
v2

vy2

�

vj

vy

�

: (9.65)

Evaluating the derivatives using (9.64) and simplifying produces a differential equation for f:

3f 000 þ f 00f þ f 02 ¼ 0:

The boundary conditions for x > 0 are:

f 0 ¼ 0 for h/�N, (9.66)

f 0 ¼ 1 on h ¼ 0, and (9.67)

f ¼ 0 on h ¼ 0: (9.68)

Integrating the differential equation for f once produces:

3f 00 þ f 0f ¼ C1:

Evaluating at h ¼ �N implies C1 ¼ 0 from (9.66) since f 0 ¼ 0 implies f 00 ¼ 0 too. Integrating
again yields:

3f 0 þ f2=2 ¼ C2: (9.69)
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Evaluating on h ¼ 0 implies C2 ¼ 3 from (9.67) and (9.68). The independent and dependent
variables in (9.69) can be separated and integrated:

3
df

dh
¼ 3� f2

2
or

Z

df

1� f2=6
¼
Z

dh:

The integral on the left in the second equality can be evaluated via the variable substitution
f ¼ ffiffiffi

6
p

tanh b, and leads to:

tanh�1

�

f
ffiffiffi

6
p
�

¼ h
ffiffiffi

6
p þ C3, or f ¼

ffiffiffi

6
p

tanh

�

h
ffiffiffi

6
p þ C3

�

: (9.70)

Evaluating the final expression on h ¼ 0 implies C3 ¼ 0 from (9.68). Thus, using (9.60),
(9.62), and (9.70), the stream-wise velocity field is

uðx, yÞ ¼ u0ðxÞf 0ðhÞ ¼
�

J2

C2r2nx

�1=3

sech2

 

y
ffiffiffi

6
p
�
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Crn2x2

�1=3
!

, (9.71)

and the dimensionless constant, C, is determined from

C ¼
Z
þN

�N

f 02ðhÞ dh ¼
Z
þN

�N

sech4
�

h
ffiffiffi

6
p
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dh ¼ 4
ffiffiffi

6
p

3
: (9.72)

The mass flux of the jet per unit span is:

_m ¼
Z
þN

�N

ru0ðxÞf 0ðhÞdy ¼ ru0ðxÞdðxÞ
Z
þN

�N

f 0ðhÞdh ¼ ru0ðxÞdðxÞ½f �þN
�N ¼ ru0ðxÞdðxÞ , 2

ffiffiffi

6
p

:

Using (9.62), (9.63), and (9.72), this simplifies to:

_m ¼ �36Jr2nx�1=3, (9.73)

which shows that the jet’s mass flux increases with increasing downstream distance as the jet
entrains ambient reservoir fluid via the action of viscosity. The jet’s entrainment induces flow
toward the jet within the reservoir. The vertical velocity is:

v ¼ �vj

vx
¼ �1

3

�

Jn

Crx2

�1=3
	

f � 2hf 0



, or
v

u0ðxÞ ¼ �
	

f � 2hf 0



3
ffiffiffiffiffiffiffiffi

Rex
p where Rex ¼ xu0ðxÞ

n
: (9.74)

Here, f(h) / � ffiffiffi

6
p

and 2hf 0ðhÞ ¼ 2hsech2ðh= ffiffiffi

6
p Þ / 0 as h/ �N, so

v

u0ðxÞ/H

ffiffiffi

6
p

3
ffiffiffiffiffiffiffiffi

Rex
p as h/�N: (9.75)

Thus, the jet’s entrainment field is a flow of reservoir fluid toward the jet from above and
below.
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The jet spreads as it travels downstream, and this can be deduced from (9.71). Following
the definition of d99 in Section 9.2, the 99% half width of the jet, h99, may be defined as the y-
location where the horizontal velocity falls to 1% of its value at y¼ 0. Thus, from (9.71) we can
determine:

sech2

 

h99
ffiffiffi

6
p
�

J

Crn2x2

�1=3
!

¼ 0:01/
h99
ffiffiffi

6
p
�

J

Crn2x2

�1=3

y 2:2924/h99y 5:6152

�

Crn2x2

J

�1=3

,

(9.76)

which shows the jet width grows with increasing downstream distance like x2/3. Viscosity
increases the jet’s thickness but higher momentum jets are thinner. The Reynolds numbers
based on the stream-wise (x) and cross-stream (h99) dimensions of the jet are:

Rex ¼ xu0ðxÞ
n

¼
�

3Jx

4
ffiffiffi

6
p

rn2

�2=3

and Reh99 ¼
h99u0ðxÞ

n
¼ 5:6152

�

3Jx

4
ffiffiffi

6
p

rn2

�1=3

:

Unfortunately, this steady-flow, two-dimensional laminar jet solution is not readily
observable because the flow is unstable when Re [ 1. The low critical Reynolds number
for instability of a jet or wake is associated with the existence of one or more inflection points
in the stream-wise velocity profile, as discussed in Chapter 11. Nevertheless, the laminar
solution has revealed at least two significant phenomenadconstancy of jet momentum
flux and increase of jet mass flux through entrainmentdthat also apply to round jets and
turbulent jets. However, the cross-stream spreading rate of a turbulent jet is found to be inde-
pendent of Reynolds number and is faster than the laminar jet, being more like h99 f x rather

than h99 f x2/3 (see Chapter 13).
A second example of a two-dimensional jet that also shares some boundary-layer charac-

teristics is the wall jet. The solution here is due to Glauert (1956). We consider fluid exiting
a narrow slot with its lower boundary being a planar wall taken along the x-axis (see
Figure 9.28). Near the wall (y ¼ 0) the flow behaves like a boundary layer, but far from the
wall it behaves like a free jet. For large Rex the jet is thin (d/x � 1) so vp/vy z 0 across it.
The pressure is constant in the nearly stagnant outer fluid so p z const. throughout the
flow. Here again the fluid mechanical equations of motion are (6.2) and (9.18). This time
the boundary conditions are:

u ¼ v ¼ 0 on y ¼ 0 for x > 0, and (9.77)

FIGURE 9.28 The laminar two-dimensional wall jet. A narrow slot injects fluid horizontally along a smooth flat
wall. As for the free jet, the thickness of the region of horizontally moving fluid slows and expands as x increases
but with different dependencies.
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uðx, yÞ/0 as y/N: (9.78)

Here again, a similarity solution valid for Rex / N can be found under the assumption that
the initial velocity distribution is forgotten by the flow. However, unlike the free jet, the
momentum flux of the wall jet is not constant; it diminishes with increasing downstream
distance because of the wall shear stress. To obtain the conserved property in the wall jet,
integrate (9.18) from y to N:
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multiply this by u, and integrate from 0 to N:
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The final equality follows from the boundary conditions (9.77) and (9.78). Integrating the
interior integral of the second term on the left by parts and using (6.2) yields a term equal
to the first term and one that lacks any differentiation:
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Now consider
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use (6.2) in the first term on the right side, integrate by parts, and combine this with (9.79) to
obtain
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C

Ady ¼ 0: (9.80)

This says that the flux of exterior momentum flux remains constant with increasing down-
stream distance and is the necessary condition for obtaining similarity exponents.

As for the steady free laminar jet, the field equation is (9.65) and the solution is presumed
to be in the similarity form specified by (9.59). Here u0(x) is to be determined and this
similarity solution should be valid when x [ xo, where xo is the location where the initial
condition is specified, which we take to be the upstream extent of the validity of the
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boundary-layer momentum equation (9.18) or (9.65). Substituting u ¼ vj/vy ¼ u0(x)f
0(h)

from (9.59) into (9.80) produces:
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7

5 ¼ 0: (9.81)

If the double integration is independent of x, then the factor outside the integral must
be constant. Therefore, set xu20ðxÞ ¼ C2, which implies u0ðxÞ ¼ Cx�1=2 so (9.59)
becomes:

jðx, yÞ ¼
h

nCx1=2
i1=2

fðhÞ where h ¼ y=dðxÞ, dðxÞ ¼
h

nx3=2=C
i1=2

: (9.82)

After appropriately differentiating (9.82), substituting into (9.65), and canceling common
factors, (9.65) reduces to

f 000 þ ff 00 þ 2f 02 ¼ 0,

subject to the boundary conditions (9.77) and (9.78): f(0) ¼ 0; f 0(0) ¼ 0; f 0(N) ¼ 0. This third-
order equation can be integrated once after multiplying by the integrating factor f, to yield
4ff 00 � 2f 02 þ f2f 0 ¼ 0, where the constant of integration has been evaluated at h ¼ 0. Dividing
by the integrating factor 4f3=2 allows another integration. The result is

f�1=2f 0 þ f3=2=6 ¼ C1h f
3=2
N =6, where fN ¼ fðNÞ:

The final integration can be performed by separating variables and defining g2ðhÞ ¼ f=fN:
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The integration on the left may be performed via a partial fraction expansion using 1� g3 ¼
ð1� gÞ , ð1þ gþ g2Þ with the final result in left-implicit form:
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; (9.83)

where the boundary condition g(0) ¼ 0 was used to evaluate the constant of integration. The
profiles of f and f 0 are plotted vs. h in Figure 9.29.We can verify easily that f/ 0 exponentially
fast in h from this solution for g(h). As h/N, g / 1, so for large h the solution for g reduces

to �lnð1� gÞ þ ffiffiffi
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side of this equation dominates, leaving 1� gze�ðfN=4Þh. Thus, for h/N, we must have:

f 0 ¼ 2fNgg0z
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2
f2N exp½�fNh=4�. The mass flow rate per unit span in the steady laminar

wall jet is
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indicating that entrainment increases the mass flow rate in the jet with x1/4. The two
constants, C and fN, can be determined from the integrated form of (9.81) in terms of J,
the flux of the exterior momentum flux (a constant):
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Adh ¼ J, (9.85)

and knowledge of _m at one downstream location.
The entrainment into the steady laminar wall jet is evident from the form of

v ¼ �vj=vx ¼ � ffiffiffiffiffiffi

nC
p ðf � 3hf 0Þ=4x3=4, which simplifies to v z � ffiffiffiffiffiffi

nC
p

fN=4x3=4 as h / N,
so, far above the jet, the flow is downward toward the jet.

9.11. SECONDARY FLOWS

Large Reynolds number flows with curved streamlines tend to generate additional
velocity components because of the properties of boundary layers. These additional compo-
nents are commonly called secondary flows. An example of such a flow is made dramatically
visible by randomly dispersing finely crushed tea leaves into a cup of water, and then stirring
vigorously in a circular motion. When the motion has ceased, all of the particles have
collected in a mound at the center of the bottom of the cup (see Figure 9.30). An explanation
of this phenomenon is given in terms of thin boundary layers. The stirring motion imparts
a primary velocity, u4(R) (see Appendix B.6 for coordinates), large enough for the Reynolds
number to be large enough for the boundary layers on the cup’s sidewalls and bottom to be
thin. The two largest terms in the R-momentum equation are

vp

vR
¼ ru24

R
:

Away from the walls, the flow is inviscid. As the boundary layer on the bottom is thin,
boundary-layer theory yields vp/vz ¼ 0 from the axial momentum equation. Thus, the pres-
sure in the bottom boundary layer is the same as for the inviscid flow just outside the
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FIGURE 9.29 Variation of
normalized mass flux ( f ) and
normalized stream-wise velocity
profile ( f 0) with similarly variable
h for the laminar two-dimensional
wall jet. Reprinted with the permis-

sion of Cambridge University Press.
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boundary layer. However, within the boundary layer, uf is less than the inviscid value at the
edge. Thus p(R) is everywhere larger in the boundary layer than that required for circular
streamlines inside the boundary layer, and this pressure difference pushes the streamlines
inward toward the center of the cup. That is, the pressure gradient within the boundary layer
generates an inwardly directed uR. This motion induces a downwardly directed flow in the
sidewall boundary layer and an outwardly directed flow on the top surface. This secondary
flow is closed by an upward flow along the cup’s centerline. The visualization is accom-
plished by crushed tea leaves which are slightly denser than water. They descend by gravity
or are driven outward by centrifugal acceleration. If they enter the sidewall boundary layer,
they are transported downward and thence to the center by the secondary flow. If the tea
particles enter the bottom boundary layer from above, they are quickly swept to the center
and dropped as the flow turns upward. All the particles collect at the center of the bottom
of the teacup. A practical application of this effect, illustrated in Exercise 9.28, relates to
sand and silt transport by the Mississippi River.

EXERCISES

9.1. A thin flat plate 2 m long and 1 m wide is placed at zero angle of attack in a low-speed
wind tunnel in the two positions sketched below.

Airflow Airflow
#1 #2

FIGURE 9.30 Secondary
flow in a teacup. Tea leaf frag-
ments are slightly denser than
water. (a) Tea leaf fragments
randomly disperseddinitial
state; (b) stirred vigorouslyd
transient motion; and (c) final
state where all the tea leaf
fragments are piled near the
axis of rotation on the bottom
of the cup.
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a) For steady airflow, what is the ratio:
drag on the plate in position #1

drag on the plate in position #2
?

b) For steady airflow at 10 m/sec, what is the total drag on the plate in position #1?
c) If the airflow is impulsively raised from zero to 10 m/sec at t ¼ 0, will the initial

drag on the plate in position #1 be greater or less than the steady-state drag value
calculated for part b)?

d) Estimate how long it will take for drag on the plate in position #1 in the impulsively
started flow to reach the steady-state drag value calculated for part b)?

9.2. Solve the Blasius equations (9.27) through (9.29) with a computer, using the Runge-
Kutta scheme of numerical integration.

9.3. A flat plate 4 m wide and 1 m long (in the direction of flow) is immersed in kerosene
at 20	C (v ¼ 2.29 � 10�6 m2/s, r ¼ 800 kg/m3), flowing with an undisturbed velocity
of 0.5 m/s. Verify that the Reynolds number is less than critical everywhere, so that
the flow is laminar. Show that the thickness of the boundary layer and the shear
stress at the center of the plate are d ¼ 0.74 cm and s0 ¼ 0.2 N/m2, and those at the
trailing edge are d ¼ 1.05 cm and s0 ¼ 0.14 N/m2. Show also that the total frictional
drag on one side of the plate is 1.14 N. Assume that the similarity solution holds for
the entire plate.

9.4. A simple realization of a temporal boundary layer involves the spinning fluid in
a cylindrical container. Consider a viscous incompressible fluid (density¼ r, viscosity¼ m)
in solid body rotation (rotational speed ¼ U) in a cylindrical container of diameter d. The
mean depth of the fluid is h. An external stirring mechanism forces the fluid to maintain
solid body rotation. At t¼ 0, the external stirring ceases. Denote the time for the fluid to
spin-down (i.e., to stop rotating) by s.

h
d

Ω

a) For h [ d, write a simple laminar-flow scaling law for s assuming that the velocity
perturbation produced by the no-slip condition on the container’s sidewall must
travel inward a distance d/2 via diffusion.

b) For h � d, write a simple laminar-flow scaling law for s assuming that the velocity
perturbation produced by the no-slip condition on the container’s bottom must
travel upward a distance h via diffusion.

c) Using partially filled cylindrical containers of several different sizes (drinking
glasses and pots and pans are suggested) with different amounts of water, test the
validity of the above diffusion estimates. Use a spoon or a whirling motion of the
container to bring the water into something approaching solid body rotation. You’ll
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knowwhen the fluid motion is close to solid body rotation because the fluid surface
will be a paraboloid of revolution. Once you have this initial flow condition set up,
cease the stirring or whirling and note how long it takes for the fluid to stop
moving. Perform at least one test when d and h are several inches or more. Cookie
or bread crumbs sprinkled on the water surface will help visualize surface motion.
The judicious addition of a few drops of milk after the fluid starts slowing down
may prove interesting.

d) Compute numbers from your scaling laws for parts a) and b) using the viscosity of
water, the dimensions of the containers, and the experimental water depths. Are the
scaling laws from parts a) and b) useful for predicting the experimental results? If
not, explain why.

(The phenomena investigated here have some important practical consequences
in atmospheric and oceanic flows and in IC engines where swirl and tumble are
exploited to mix the fuel charge and increase combustion speeds.)

9.5. A square-duct wind tunnel of length L ¼ 1 m is being designed to operate at room
temperature and atmospheric conditions. A uniform airflow at U ¼ 1 m/s enters
through an opening of D ¼ 20 cm. Due to the viscosity of air, it is necessary to design
a variable cross-sectional area if a constant velocity is to be maintained in the middle
part of the cross-section throughout the wind tunnel.

U = 1 m/s

D(x)

L = 1 m

20 cm

a) Determine the duct size, D(x), as a function of x.
b) How will the result be affected if U ¼ 20 m/s? At a given value of x, will D(x) be

larger or smaller (or the same) than the value obtained in part a)? Explain.
c) How will the result be affected if the wind tunnel is to be operated at 10 atm (and

U ¼ 1 m/s)? At a given value of x, will D(x) be larger or smaller (or the same) than
the value obtained in part a)? Explain. [Hint: the dynamic viscosity of air (m) is
largely unaffected by pressure.]

d) Does the airflow apply a net force to the wind tunnel? If so, indicate the direction of
the force.

9.6. Use the control volume shown to derive the definition of the momentum thickness, q,
for flow over a flat plate:

rU2q ¼ rU2
Z
h

0

u

U

�

1� u

U

�

dy ¼ drag force on the plate from zero to x

unit depth into the page
¼
Z
x

0

s0dx

The words in the figure describe the upper and lower control volume boundaries.
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9.7. Estimate the 99% boundary-layer thickness on:
a) A paper airplane wing (length ¼ 0.25 m, U ¼ 1 m/sec)
b) The underside of a super tanker (length ¼ 300 m, U ¼ 5 m/sec)
c) An airport runway on a blustery day (length ¼ 5 km, U ¼ 10 m/sec)
d) Will these estimates be accurate in each case? Explain.

9.8. Air at 20	C and 100 kPa (r ¼ 1.167 kg/m3, n ¼ 1.5 � 10�5 m2/s) flows over a thin plate
with a free-stream velocity of 6 m/s. At a point 15 cm from the leading edge, determine
the value of y at which u/U ¼ 0.456. Also calculate v and vu/vy at this point. [Answer:
y ¼ 0.857 mm, v ¼ 0.39 cm/s, vu/vy ¼ 3020 s�1. You may not be able to achieve this
level of accuracy from Figure 9.5 alone.]

9.9. An incompressible fluid (density r, viscosity m) flows steadily from a large reservoir
into a long pipe with diameter D. Assume the pipe wall boundary-layer thickness is
zero at x ¼ 0. The Reynolds number based on D, ReD, is greater than 104.

x D

a) Estimate the necessary pipe length for establishing a parabolic velocity profile in
the pipe.

b) Will the pressure drop in this entry length be larger or smaller than an equivalent
pipe length in which the flow has a parabolic profile? Why?

9.10. 1A variety of different dimensionless groups have been used to characterize the
importance of a pressure gradient in boundary layer flows. Develop an expression for
each of the following parameters for the Falkner-Skan boundary layer solutions in
terms of the exponent n in Ue(x) ¼ axn, Rex ¼ Uex/n, integrals involving the profile
function f 0, and f 00ð0Þ, the profile slope at y ¼ 0. Here uðx, yÞ ¼ UeðxÞf 0ðy=dðxÞÞ ¼
Uef 0ðhÞ and the wall shear stress s0 ¼ mðvu=vyÞy¼0 ¼ ðmUe=dðxÞÞf 00ð0Þ. What value does
each parameter take in a Blasius boundary layer? What value does each parameter
achieve at the separation condition?
a) ðn=U2

e ÞðdUe=dxÞ, an inverse Reynolds number

b) (q2/n)(dUe/dx), the Holstein and Bohlen correlation parameter

U

h >   99

U
zero shear stress, 

no slip,

constant pressure, no through flow

y

ho

x

0 ≠ 0

δ

τ

1Inspired by problem 4.10 on page 330 of White (2006)
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c) ðm=
ffiffiffiffiffiffiffi

rs30

q

Þðdp=dxÞ, Patel’s parameter

d) ðd�=s0Þðdp=dxÞ, Clauser’s parameter

9.11. Consider the boundary layer that develops as a constant density viscous fluid
is drawn to a point sink at x ¼ 0 on an infinite flat plate in two dimensions

(x, y). Here Ue(x) ¼ eUoLo/x, so set h ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nx=jUej
p

and j ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

nxjUej
p

fðhÞ and

redo the steps leading to (9.36) to find f 000 � f 02 þ 1 ¼ 0. Solve this equation and

utilize appropriate boundary conditions to find f 0 ¼ 3

"

1� ae�
ffiffi

2
p

h

1þ ae�
ffiffi

2
p

h

#2

�2

where a ¼
ffiffiffi

3
p � ffiffiffi

2
p

ffiffiffi

3
p þ ffiffiffi

2
p .

9.12. By completing the steps below, show that it is possible to derive von Karman’s
boundary-layer integral equation without integrating to infinity in the surface-normal
direction using the three boundary-layer thicknesses commonly defined for laminar
and turbulent boundary layers: 1) d (or d99) ¼ the full boundary-layer thickness that
encompasses all (or 99%) of the region of viscous influence, 2) d* ¼ the displacement
thickness of the boundary layer, and 3) q ¼ momentum thickness of the boundary
layer. Here, the definitions of the latter two involve the first:

d�ðxÞ ¼ R

y¼d

y¼0

 

1� uðx, yÞ
UeðxÞ

!

dy and qðxÞ ¼ R

y¼d

y¼0

uðx, yÞ
UeðxÞ

 

1� uðx, yÞ
UeðxÞ

!

dy, where Ue(x) is the

flow speed parallel to the wall outside the boundary layer, and d is presumed to
depend on x too.
a) Integrate the two-dimensional continuity equation from y ¼ 0 to d to show that the

vertical velocity at the edge of the boundary layer is: vðx, y ¼ dÞ ¼ d

dx
ðUeðxÞd�ðxÞÞ

�d
dUe

dx
.

b) Integrate the steady two-dimensional x-direction boundary-layer momentum

equation from y ¼ 0 to d to show that:
s0
r

¼ d

dx
ðU2

e ðxÞqðxÞÞ þ d�ðxÞ
2

dU2
e ðxÞ
dx

.

[Hint: Use Leibniz’s rule
d

dx

Z

bðxÞ

aðxÞ
fðx, yÞdy ¼

h

fðx, bÞdb
dx

i

�
h

fðx, aÞda
dx

i

þ

Z

bðxÞ

aðxÞ

vfðx, yÞ
vx

dy to handle the fact that d ¼ d(x).]

9.13. Derive the von Karman boundary layer integral equation by conserving mass
and momentum in a control volume (C.V.) of width dx and height h that moves at
the exterior flow speed Ue(x) as shown. Here h is a constant distance that is
comfortably greater than the overall boundary layer thickness d.
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u(x, y)

p(x)

x

Ue

C.V.

Ue
y = h

u(x+dx,y)

x+dx

p(x+dx)

9.14. For the following approximate flat-plate boundary-layer profile:

u

U
¼


sinðpy=2dÞ for 0 
 y 
 d

1 for y > d

�

,

where d is the generic boundary-layer thickness, determine:
a) The displacement thickness d), the momentum thicknesses q, and the shape factor

H ¼ d�=q.
b) Use the zero-pressure gradient boundary-layer integral equation to find:

ðd=xÞRe1=2x , ðd�=xÞRe1=2x , ðq=xÞRe1=2x , cfRe
1=2
x , and CDRe

1=2
L for the approximate

profile.
c) Compare these results to their equivalent Blasius boundary-layer values.

9.15. An incompressible viscous fluid with kinematic viscosity n flows steadily in a long
two-dimensional horn with cross-sectional area A(x) ¼ Aoexp{bx}. At x ¼ 0, the fluid
velocity in the horn is uniform and equal to Uo. The boundary-layer momentum
thickness is zero at x ¼ 0.

U(x) A(x)

x = 0 x = L

a) Assuming no separation, determine the boundary-layer momentum thickness, q(x),
on the lower horn boundary using Thwaites’ method.

b) Determine the condition on b that makes the no-separation assumption valid for
0 < x < L.

c) If q(x ¼ 0) was nonzero and positive, would the flow in the horn be more
or less likely to separate than the q(x ¼ 0) ¼ 0 case with the same horn
geometry?

9.16. The steady two-dimensional velocity potential for a source of strength m located
a distance b above a large flat surface located at y ¼ 0 is:

fðx, yÞ ¼ m

2p

�

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðy� bÞ2
q

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðyþ bÞ2
q

�
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a) Determine U(x), the horizontal fluid velocity on y ¼ 0.
b) Use this U(x) and Thwaites’ method to estimate the momentum thickness, q(x), of

the laminar boundary layer that develops on the flat surface when the initial
momentum thickness qo is zero. [Potentially useful information:

Z x

0

x5dx

ðx2 þ b2Þ5
¼ x6ðx2 þ 4b2Þ

24b4ðx2 þ b2Þ4
#

c) Will boundary-layer separation occur in this flow? If so, at what value of x/b does
Thwaites’ method predict zero wall shear stress?

d) Using solid lines, sketch the streamlines for the ideal flow specified by the velocity
potential given above. For comparison, on the same sketch, indicate with dashed
lines the streamlines you expect for the flow of a real fluid in the same geometry at
the same flow rate.

9.17. A fluid-mediated particle-deposition process requires a laminar boundary-layer flow
with a constant shear stress, sw, on a smooth flat surface. The fluid has viscosity m and
density r (both constant). The flow is steady, incompressible, and two dimensional,
and the flat surface extends from 0< x< L. The flow speed above the boundary layer is
U(x). Ignore body forces.

U(x)

x = 0 x = L

a) Assume the boundary-layer thickness is zero at x ¼ 0, and use Thwaites’
formulation for the shear stress, sw ¼ ðmU=qÞlðlÞ with l ¼ ðq2=nÞðdU=dxÞ, to
determine q(x) and U(x) in terms of l, n ¼ m=r, x, and sw=m ¼ constant. [Hint:
assume that U=q ¼ A and lðlÞ are both constants so that sw=m ¼ AlðlÞ.]

b) Using the Thwaites integral (9.50) and the results of part a), determine l.
c) Is boundary-layer separation a concern in this flow? Explain with words or

equations.
9.18. The steady two-dimensional potential for incompressible flow at nominal horizontal

speed U over a stationary but mildly wavy wall is: fðx, yÞ ¼ Ux�U3 expð�kyÞ
cosðkxÞ, where k3� 1. Here, 3 is the amplitude of the waviness and k¼ 2p/l, where l is
the wavelength of the waviness.
a) Use the potential to determine the horizontal velocity uðx, yÞ on y ¼ 0.
b) Assume that uðx, 0Þ from part a) is the exterior velocity on the wavy wall and use

Thwaites’ method to approximately determine the momentum thickness, q, of the
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laminar boundary layer that develops on the wavy wall when the fluid viscosity is
m, and q¼ 0 at x¼ 0. Keep only the linear terms in k3 and 3/x to simplify your work.

c) Is the average wall shear stress higher for l/2 
 x 
 3l/4 or for 3l/4 
 x 
 l?
d) Does the boundary layer ever separate when k3 ¼ 0.01?
e) In 0 
 x 
 l, determine where the wall pressure is the highest and the lowest.
f) If the wavy surface were actually an air-water interface, would a steady wind tend

to increase or decrease water wave amplitudes? Explain.

yU

ε

λ λ/2
x

9.19. Consider the boundary layer that develops in stagnation point flow: UeðxÞ ¼ Uox=L.
a) With q ¼ 0 at x ¼ 0, use Thwaites’ method to determine d)(x), q(x), and cf (x).
b) This flow also has an exact similarity solution of the full Navier-Stokes

equations. Numerical evaluation of the final nonlinear ordinary differential
equation produces: cf

ffiffiffiffiffiffiffiffi

Rex
p ¼ 2:4652, where Rex ¼ Uex=n ¼ Uox2=Ln. Assess

the accuracy of the predictions for cf (x) from the Thwaites’ method for
this flow.

9.20. A laminar boundary layer develops on a large smooth flat surface under the influence
of an exterior flow velocity U(x) that varies with downstream distance, x.

x

U(x)

a) Using Thwaites’ method, find a single integral-differential equation for U(x) if the
boundary layer is to remain perpetually right on the verge of separation so that the
wall shear stress, s0, is zero. Assume that the boundary layer has zero thickness at
x ¼ 0.

b) Assume UðxÞ ¼ Uoðx=LÞg and use the result of part a) to find g.
c) Compute the boundary-layer momentum thickness q(x) for this situation.
d) Determine the extent to which the results of parts b) and c) satisfy the von Karman

boundary-layer integral equation, (9.43), when s0 ¼ 0 by computing the residual of
this equation. Interpret the meaning of your answer; is von Karman’s equation well
satisfied, or is the residual of sufficient size to be problematic?

e) Can theU(x) determined for part b) be produced in a duct with cross-sectional area
AðxÞ ¼ Aoðx=LÞ�g? Explain your reasoning.

EXERCISES 415



9.21. Consider the boundary layer that develops on a cylinder of radius a in a cross flow.

U x = aϕ

x2

x1

ϕ

a) Using Thwaites’ method, determine the momentum thickness as a function of 4,
the angle from the upstream stagnation point (see drawing).

b) Make a sketch of cf versus 4.
c) At what angle does Thwaites method predict vanishing wall shear stress?

9.22. An incompressible viscous fluid flows steadily in a large duct with constant cross-
sectional area Ao and interior perimeter b. A laminar boundary layer develops on the
duct’s sidewalls. At x ¼ 0, the fluid velocity in the duct is uniform and equal toUo, and
the boundary-layer thickness is zero. Assume the thickness of the duct-wall boundary
layer is small compared to Ao/b.
a) Calculate the duct-wall boundary-layer momentum and displacement thicknesses,

q(x) and d�(x), respectively, using Thwaites’ method when U(x) ¼ Uo.
b) Using the d�(x) found for part a), compute a more accurate version of U(x) that

includes boundary-layer displacement effects.
c) Using the U(x) found for part b), recompute q(x) and compare to the results of

part a). To simplify your work, linearize all the power-law expressions, i.e.,
ð1� bd�=AoÞny1� nbd�=Ao.

d) If the duct area expanded as the flow moved downstream, would the correction for
the presence of the sidewall boundary layers be more likely to move boundary-
layer separation upstream or downstream? Explain.

9.23. Water flows over a flat plate 30 m long and 17 m wide with a free-stream velocity of 1
m/s. Verify that the Reynolds number at the end of the plate is larger than the critical
value for transition to turbulence. Using the drag coefficient in Figure 9.11, estimate the
drag on the plate.

9.24. A common means of assessing boundary-layer separation is to observe the surface
streaks left by oil or paint drops that were smeared across a surface by the flow. Such
investigations can be carried out in an elementarymanner for cross-flow past a cylinder
using a blow dryer, a cylinder 0.5 to 1 cm in diameter that is ~10 cm long (a common
ball-point pen), and a suitable viscous liquid. Here, creamy salad dressing, shampoo,
dishwashing liquid, ormolasses shouldwork. And, for the best observations, the liquid
should not be clear and the cylinder and liquid should be different colors. Dip your
finger into the viscous liquid and wipe it over two thirds of the surface of the cylinder.
The liquid layer should be thick enough so that you can easily tell where it is thick or
thin. Use the remaining dry third of the cylinder to hold the cylinder horizontal. Now,
turn on the blow dryer, leaving the heat off, and direct its outflow across the wetted
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portion of the horizontal cylinder to mimic the flow situation in the drawing for
Exercise 9.21.
a) Hold the cylinder stationary, and observe how the viscous fluid moves on the

surface of the cylinder and try to determine the angle 4s at which boundary-layer
separation occurs. To get consistent results you may have to experiment with
different liquids, different initial liquid thicknesses, different blow-dryer fan
settings, and different distances between cylinder and blow dryer. Estimate the
cylinder-diameter-based Reynolds number of the flow you’ve studied.

b) If you have completed Exercise 9.21, do your boundary-layer separation
observations match the calculations? Explain any discrepancies between your
experiments and the calculations.

9.25. Find the diameter of a parachute required to provide a fall velocity no larger than
that caused by jumping from a 2.5 m height, if the total load is 80 kg. Assume that the
properties of air are r ¼ 1.167 kg/m3, n ¼ 1.5 � 10�5 m2/s, and treat the parachute as
a hemispherical shell with CD ¼ 2.3. [Answer: 3.9 m]

9.26. Consider incompressible, slightly viscous flow over a semi-infinite flat plate with
constant suction. The suction velocity v(x, y ¼ 0) ¼ v0 < 0 is ordered by O(Re�1/2) <
v0/U < O(1) where Re ¼ Ux/n / N. The flow upstream is parallel to the plate with
speed U. Solve for u, v in the boundary layer.

9.27. The boundary-layer approximation is sometimes applied to flows that do not have
a bounding surface. Here the approximation is based on two conditions: downstream
fluid motion dominates over the cross-stream flow, and any moving layer thickness
defined in the transverse direction evolves slowly in the downstream direction.
Consider a laminar jet of momentum flux J that emerges from a small orifice into
a large pool of stationary viscous fluid at z ¼ 0. Assume the jet is directed along
the positive z-axis in a cylindrical coordinate system. In this case, the steady,
incompressible, axisymmetric boundary-layer equations are:

1

R

vðRuRÞ
vR

þ vw

vz
¼ 0, and w

vw

vz
þ uR

vw

vR
¼ �1

r

vp

vz
þ n

R

v

vR

�

R
vw

vR

�

,

where w is the (axial) z-direction velocity component, and R is the radial coordinate.
Let r(z) denote the generic radius of the cone of jet flow.
a) Let wðR, zÞ ¼ ðn=zÞfðhÞ where h ¼ R=z, and derive the following equation for f:

hf 0 þ f
R h

hfdh ¼ 0.
b) Solve this equation by defining a new function F ¼ R h

hfdh. Determine constants
from the boundary condition: w / 0 as h/N, and the requirement:

J ¼ 2pr
R

R¼ rðzÞ

R¼ 0

w2ðR, zÞRdR ¼ const.

c) At fixed z, does r(z) increase or decrease with increasing J?
[Hints: 1) The fact that the jet emerges into a pool of quiescent fluid should provide
information about vp/vz, and 2) fðhÞfð1þ const , h2Þ�2, but try to obtain this result
without using it.]
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9.28. Mississippi River boatmen know that when rounding a bend in the river, they must
stay close to the outer bank or else they will run aground. Explain in fluid mechanical
terms the reason for the cross-sectional shape of the river at the bend.
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Pohlhausen, K. (1921). Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht.

Z. Angew. Math. Mech, 1, 252e268.
Robbins, B. (1742). New Principles of Gunnery: Containing the Determinations of the Force of Gun-powder and Investi-

gations of the Difference in the Resisting Power of the Air to Swift and Slow Motions. London: J. Nourse.
Schlichting, H. (1979). Boundary Layer Theory (7th ed.). New York: McGraw-Hill.
Serrin, J. (1967). Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory. Proc. Roy. Soc. A,

299, 491e507.
Taneda, S. (1965). Experimental investigation of vortex streets. J. Phys. Soc. Japan, 20, 1714e1721.
Thomson, R. E., & Gower, J. F. R. (1977). Vortex streets in the wake of the Aleutian Islands. Monthly Weather Review,

105, 873e884.
Thwaites, B. (1949). Approximate calculation of the laminar boundary layer. Aero. Quart, 1, 245e280.
van Dyke, M. (1975). Perturbation Methods in Fluid Mechanics. Stanford, CA: The Parabolic Press.
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CHAPTER OBJECTIVES

• To introduce the techniques for computational

solutions of the fluid dynamic equations of

motion

• To describe the finite-difference and

finite-element formulations

• To specify finite-difference and finite-element

equations for incompressible viscous flow

• To illustrate use of these equations via

example calculations

10.1. INTRODUCTION

Computational fluid dynamics (CFD) is a science that, with the help of digital computers,
produces quantitative predictions of fluid-flow phenomena based on the conservation laws
(conservation of mass, momentum, and energy) governing fluid motion. These predictions

421Fluid Mechanics, Fifth Edition DOI: 10.1016/B978-0-12-382100-3.10010-1 � 2012 Elsevier Inc. All rights reserved.



normally occur under those conditions defined in terms of flow geometry, the physical prop-
erties of a fluid, and the boundary and initial conditions of a flow field. Such predictions
generally concern sets of values of the flow variables, for example, velocity, pressure, or
temperature at selected locations in the domain and for selected times. The predictions
may also involve evaluations of overall flow behavior, such as the flow rate or the hydrody-
namic force acting on an object in the flow.

During the past several decades different types of numerical methods have been devel-
oped to simulate fluid flows involving a wide range of applications. These methods include
finite-difference, finite-element, finite-volume, and spectral methods. Some of them are dis-
cussed in this chapter.

As time has passed, CFD has increased in importance and in accuracy; however, its predic-
tions are never completely exact. Because many potential sources of error may be involved,
one has to be very careful when interpreting the results produced by CFD techniques. The
most common sources of error are:

• Discretization error. This error is intrinsic to all numerical methods, and is incurred
whenever a continuous system is approximated by a discrete one. For example, a finite
number of locations in space (grid points) or instants of time may be used to resolve
the flow field. Different numerical schemes may have different orders of magnitude of
the discretization error. Even with the same method, the discretization error will be
different depending upon the distribution of grid points used in a simulation. In most
applications, one needs to properly select a numerical method and choose a grid to control
discretization error.

• Input data error. This error arises from the fact that both the flow geometry and fluid
properties may be known to only a certain level of precision, or possibly in only an
approximate way.

• Initial and boundary condition error. It is common that the initial and boundary conditions of
a flow field may represent the real situation with imperfect precision. For example, flow
information is needed at locations where fluid enters and leaves the computational
domain. Here, flow properties may not be known exactly and are thus approximated to
complete a numerical calculation.

• Modeling error. More complicated flows may involve physical phenomena that are
not perfectly described by current scientific theories. Models used to solve these
problems certainly contain errors, for example, turbulence modeling, atmospheric
modeling, polymeric-fluid constitutive modeling, multiphase flow modeling, and
so on.

As a research and design tool, CFD normally complements experimental and theoretical
fluid dynamics. However, CFD has a number of distinct advantages:

• It can be produced inexpensively and quickly, without an extraordinary amount of
training, although interpreting results often requires experience. Yet, while the price of
many commodities increases, computing costs are falling. According to Moore’s law (Intel
Corporation, 2003) based on the observation of the data for the last 40 years, computational
power will double every two years into the foreseeable future.
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• It generates complete information. Full-field CFD produces detailed and comprehensive
information of all relevant variables throughout the domain of interest. This information
can also be easily accessed.

• It allows easy parameter changes. CFD permits input parameters to be varied easily over
wide ranges, thereby facilitating design optimization. Such variations are often either
impossible or prohibitively expensive in experimental studies.

• It has the ability to simulate realistic conditions. CFD can simulate flows directly under
practical conditions, unlike experiments, where a small- or a large-scale model may be
needed, or analytical theories that may only be valid for limiting cases where one
parameter or another is very large or small.

• It has the ability to simulate ideal conditions. CFD provides the convenience of switching
off certain terms in the governing equations, which allows one to focus attention on a few
essential parameters and eliminate all irrelevant features. Such parametric control is
typically impossible in experiments.

• It permits investigation of unnatural or unwanted situations. CFD allows events to be
studied so that every attempt is made to prevent, for example, conflagrations, explosions,
or nuclear power plant failures.

The remainder of the chapter provides a self-contained survey of CFD techniques, so that
the interested reader, whomight further investigate CFD, will be aware of language and tech-
niques when pursuing more detailed sources and current literature.

10.2. FINITE-DIFFERENCE METHOD

The key to various numerical methods is to convert the partial different equations that
govern a physical phenomenon into a system of algebraic equations. Different techniques
are available for this conversion. The finite-difference method is one of the most commonly
used.

Approximation to Derivatives

Consider the one-dimensional transport equation,

vT

vt
þ u

vT

vx
¼ D

v2T

vx2
for 0 � x � L: (10.1)

This is the classic convection-diffusion problem for the scalar T(x, t), where u is a convective
velocity and D is a diffusion coefficient. For simplicity, assume that u and D are constants.
This equation is written in dimensional form. The boundary conditions for this problem are

T ð0, tÞ ¼ g and
vT

vx
ðL, tÞ ¼ q, (10.2)

where g and q are two constants. The initial condition is

T ðx, 0Þ ¼ T0 ðxÞ for 0 � x � L, (10.3)
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where T0 (x) is a given function that satisfies the boundary conditions (10.2).
Let us first discretize the transport equation (10.1) on a uniform grid with grid

spacing Dx, as shown in Figure 10.1. Equation (10.1) is evaluated at spatial location
x ¼ xi and time t ¼ tn. Define T(xi, tn) as the exact value of T at the location x ¼ xi
and time t ¼ tn, and let Tn

i be its approximation. Using the Taylor series expansion,
we have:

Tn
iþ1 ¼ Tn

i þ Dx

�

vT

vx

�n

i

þ Dx2

2

"

v2T

vx2

#n

i

þ Dx3

6

"

v3T

vx3

#n

i

þ Dx4

24

"

v4T

vx4

#n

i

þO ðDx5Þ, (10.4)

Tn
i�1 ¼ Tn

i � Dx

�

vT

vx

�n

i

þ Dx2

2

"

v2T

vx2

#n

i

� Dx3

6

"

v3T

vx3

#n

i

þ Dx4

24

"

v4T

vx4

#n

i

þO ðDx5Þ, (10.5)

where O(Dx5) means terms of the order of Dx5. Therefore, the first spatial derivative may be
approximated as

�

vT

vx

�n

i

¼ Tn
iþ1 � Tn

i

Dx
þO ðDxÞ ðforward differenceÞ

¼ Tn
i � Tn

i�1

Dx
þO ðDxÞ ðbackward differenceÞ

¼ Tn
iþ1 � Tn

i�1

2Dx
þO ðDx2Þ ðcentered differenceÞ (10.6)

and the second-order derivative may be approximated as

"

v2T

vx2

#n

i

¼ Tn
iþ1 � 2Tn

i þ Tn
i�1

Dx2
þO ðDx2Þ: (10.7)

The orders of accuracy of the approximations (truncation errors) are also indicated
in the expressions of (10.6) and (10.7). Higher order accuracy is generally desirable since
the number of grid points is often a limitation for the size of a CFD computation. More
accurate approximations generally require more values of the variable on the neigh-
boring grid points. Similar expressions to (10.6) and (10.7) can be derived for nonuni-
form grids.

tn+1

tn

tn�1

Δx Δx

xi�1 xi+1xix0�0 xn�L

FIGURE 10.1 Uniform grid in space and time. The time epoch is listed at the left. The horizontal lines
indicate the spatial domain. The small black dots indicate the spatial grid points where field quantities are
determined.
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In the same fashion, the time derivative can be discretized as

�

vT

vt

�n

i

¼ Tnþ1
i � Tn

i

Dt
þO ðDtÞ

¼ Tn
i � Tn�1

i

Dt
þO ðDtÞ

¼ Tnþ1
i � Tn�1

i

2Dt
þO ðDt2Þ, (10.8)

where Dt ¼ tnþ1 � tn ¼ tn � tn�1 is the constant time step.

Discretization and Its Accuracy

A discretization of the transport equation (10.1) is obtained by evaluating the equation
at fixed spatial and temporal grid points and using the approximations for the individual
derivative terms listed in the preceding section. When the first expression in (10.8)
is used, together with (10.7) and the centered difference in (10.6), (10.1) may be discre-
tized by:

Tnþ1
i � Tn

i

Dt
þ u

Tn
iþ1 � Tn

i�1

2Dx
¼ D

Tn
iþ1 � 2Tn

i þ Tn
i�1

Dx2
þO ðDt, Dx2Þ, (10.9)

or

Tnþ1
i zTn

i � uDt
Tn
iþ1 � Tn

i�1

2Dx
þDDt

Tn
iþ1 � 2Tn

i þ Tn
i�1

Dx2

¼ Tn
i � a

�

Tn
iþ1 � Tn

i�1

�þ b
�

Tn
iþ1 � 2Tn

i þ Tn
i�1

�

,
(10.10)

where

a ¼ u
Dt

2Dx
, b ¼ D

Dt

Dx2
: (10.11)

Once the values of Tn
i are known, starting with the initial condition (10.3), the expression

(10.10) simply updates the variable for the next time step t ¼ tnþ1. This scheme is known
as an explicit algorithm. The discretization (10.10) is first-order accurate in time and
second-order accurate in space.

As another example, when the backward difference expression in (10.8) is used, we will
have

Tn
i � Tn�1

i

Dt
þ u

Tn
iþ1 � Tn

i�1

2Dx
¼ D

Tn
iþ1 � 2Tn

i þ Tn
i�1

Dx2
þO ðDt, Dx2Þ, (10.12)

or
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Tn
i þ a

�

Tn
iþ1 � Tn

i�1

�� b
�

Tn
iþ1 � 2Tn

i þ Tn
i�1

�

zTn�1
i : (10.13)

At each time step t ¼ tn, a system of algebraic equations needs to be solved to advance the
solution. This scheme is known as an implicit algorithm. Obviously, for the same accuracy,
the explicit scheme (10.10) is much simpler than the implicit one (10.13). However, the
explicit scheme has limitations.

Convergence, Consistency, and Stability

The result from the solution of the explicit scheme (10.10) or the implicit scheme (10.13)
represents an approximate numerical solution to the original partial differential equation
(10.1). One certainly hopes that the approximate solution will be close to the exact one.
Thus we introduce the concepts of convergence, consistency, and stability of the numerical
solution.

The approximate solution is said to be convergent if it approaches the exact solution as the
grid spacings Dx and Dt tend to zero. We may define the solution error as the difference
between the approximate solution and the exact solution,

eni ¼ Tn
i � T

�

xi, tn
�

: (10.14)

Thus, the approximate solution converges when eni /0 as Dx, Dt/ 0. For a convergent solu-
tion, some measure of the solution error can be estimated as

keni k � K Dxa Dtb, (10.15)

where the measure may be the root mean square (rms) of the solution error on all the grid
points; K is a constant independent of the grid spacing Dx and the time step Dt; and the
indices a and b represent the convergence rates at which the solution error approaches zero.

One may reverse the discretization process and examine the limit of the discretized equa-
tions (10.10) and (10.13), as the grid spacing tends to zero. The discretized equation is said to
be consistent if it recovers the original partial differential equation (10.1) in the limit of zero
grid spacing.

Let us consider the explicit scheme (10.10). Substitution of the Taylor series expansions
(10.4) and (10.5) into this scheme (10.10) produces

�

vT

vt

�n

i

þ u

�

vT

vx

�n

i

�D

"

v2T

vx2

#n

i

þ En
i ¼ 0, (10.16)

where

En
i ¼ Dt

2

"

v2T

vt2

#n

i

þ u
Dx2

6

"

v3T

vx3

#n

i

�D
Dx2

12

"

v4T

vx4

#n

i

þO ðDt2, Dx4Þ (10.17)

is the truncation error. Obviously, as the grid spacing Dx, Dt / 0, this truncation error is of
the order of O(Dt, Dx2) and tends to zero. Therefore, the explicit scheme (10.10) or expression
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(10.16) recovers the original partial differential equation (10.1), so it is consistent. It is said to
be first-order accurate in time and second-order accurate in space, according to the order of
magnitude of the truncation error.

In addition to the truncation error introduced in the discretization process, other sources
of error may be present in the approximate solution. Spontaneous disturbances (such as the
round-off error produced from the finite precision arithmetic used by computers) may be
introduced during either the evaluation or the numerical solution process. A numerical
approximation is said to be stable if these disturbances decay and do not affect the solution.

The stability of the explicit scheme (10.10) may be examined using the von Neumann
method in which numerical errors are represented via a Fourier decomposition. Let us
consider the error at a grid point,

xni ¼ Tn
i � T

n
i , (10.18)

where Tn
i is the exact solution of the discretized system (10.10) and T

n
i is the approximate

numerical solution of the same system. This error could be introduced due to the round-
off error at each step of the computation. We need to monitor its decay/growth with time.
It can be shown that the evolution of this error satisfies the same homogeneous algebraic
system (10.10) or

xnþ1
i ¼ �

aþ b
�

xni�1 þ
�

1� 2b
�

xni þ
�

b� a
�

xniþ1: (10.19)

The error distributed along the grid line can always be decomposed in Fourier space as

xni ¼
X
N

k¼�N
gn ðkÞeipkxi , (10.20)

where i ¼ ffiffiffiffiffiffiffi�1
p

, k is the wave number in Fourier space, and gn represents the function g at
time t ¼ tn. As the system is linear, we can examine one component of (10.20) at a time,

xni ¼ gnðkÞeipkxi : (10.21)

The component at the next time increment has a similar form:

xnþ1
i ¼ gnþ1ðkÞeipkxi : (10.22)

Substituting the preceding two equations (10.21) and (10.22) into error equation (10.19), we
obtain

gnþ1eipkxi ¼ gn½ðaþ bÞeipkxi�1 þ ð1� 2bÞeipkxi þ ðb� aÞeipkxiþ1 � (10.23)

or

gnþ1

gn
¼ ½ðaþ bÞe�ipkDx þ ð1� 2bÞ þ ðb� aÞeipkDx�: (10.24)

This ratio gnþ1/gn is called the amplification factor. The condition for stability is that the
magnitude of the error should decay with time, or

�

�

�

�

gnþ1

gn

�

�

�

�

� 1, (10.25)
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for any value of the wave number k. For this explicit scheme, the condition for stability (10.25)
can be expressed as

�

1� 4b sin2
�

q

2

		2

þð2a sin qÞ2� 1, (10.26)

where q ¼ kp Dx. The stability condition (10.26) also can be expressed as (Noye, 1983),

0 � 4a2 � 2b � 1: (10.27)

For the pure diffusion problem (u ¼ 0), the stability condition (10.27) for this explicit
scheme requires that

0 � b � 1

2
or Dt � 1

2

Dx2

D
, (10.28)

which limits the size of the time step. For the pure convection problem (D ¼ 0), condition
(10.27) will never be satisfied, which indicates that the scheme is always unstable and it
means that any error introduced during the computation will explode with time. Thus,
this explicit scheme is useless for pure convection problems. To improve the stability of
the explicit scheme for the convection problem, one may use an upwind scheme to approx-
imate the convective term,

Tnþ1
i ¼ Tn

i � 2a
�

Tn
i � Tn

i�1

�

, (10.29)

where the stability condition requires that

u
Dt

Dx
� 1: (10.30)

The condition (10.30) is known as the Courant-Friedrichs-Lewy (CFL) condition. This condi-
tion indicates that a fluid particle should not travel more than one spatial grid in one
time step.

It can easily be shown that the implicit scheme (10.13) is also consistent and uncondition-
ally stable.

It is normally difficult to show the convergence of an approximate solution theoretically.
However, the Lax Equivalence Theorem (Richtmyer & Morton, 1967) states that: for an approx-
imation to a well-posed linear initial value problem, which satisfies the consistency condition, stability
is a necessary and sufficient condition for the convergence of the solution.

For convection-diffusion problems, the exact solution may change significantly in
a narrow boundary layer. If the computational grid is not sufficiently fine to resolve the
rapid variation of the solution in the boundary layer, the numerical solution may present
unphysical oscillations adjacent to or in the boundary layer. To prevent the oscillatory solu-
tion, a condition on the cell Péclet number (or Reynolds number) is normally required (see
Section 10.4),

Rcell ¼ u
Dx

D
� 2: (10.31)
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10.3. FINITE-ELEMENT METHOD

The finite-element method was developed initially as an engineering procedure for stress
and displacement calculations in structural analysis, where its success is impressive. The
method was subsequently placed on a sound mathematical foundation with a variational
interpretation of the potential energy of the system. For most fluid dynamics problems,
finite-element applications have used the Galerkin finite-element formulation on which we
will focus in this section.

Weak or Variational Form of Partial Differential Equations

Let us consider again the one-dimensional transport problem (10.1). The form of (10.1)
with the boundary condition (10.2) and the initial conditions (10.3) is called the strong
(or classical) form of the problem.

We first define a collection of trial solutions, which consists of all functions that have
square-integrable first derivatives (H1 functions, i.e.,

R L
0 ðvT=vxÞ2dx < N if T˛H1) and satisfy

the Dirichlet type of boundary condition (where the value of the variable is specified) at x¼ 0.
This is expressed as the trial functional space,

S ¼ 


T
�

�T˛H1, T ð0Þ ¼ g
�

: (10.32)

The variational space of the trial solution is defined as

V ¼ 


w
�

�w ˛ H1, w
�

0
� ¼ 0

�

, (10.33)

which requires a corresponding homogeneous boundary condition.
We next multiply the transport equation (10.1) by a function in the variational space

(w ˛ V), and integrate the product over the domain where the problem is defined,

Z L

0

�

vT

vt
w

	

dxþ u

Z L

0

�

vT

vx
w

	

dx ¼ D

Z L

0

 

v2T

vx2
w

!

dx: (10.34)

Integrating the right-hand side of (10.34) by parts, we have:

Z L

0

�

vT

vt
w

	

dxþ u

Z L

0

�

vT

vx
w

	

dxþD

Z L

0

�

vT

vx

vw

vx

	

dx ¼ D

�

vT

vx
w

�L

0

¼ DqwðLÞ, (10.35)

where the boundary conditions vT/vx ¼ q and w (0) ¼ 0 are applied. The integral equation
(10.35) is called the weak form of this problem. Therefore, the weak form can be stated as:
Find T ˛ S such that for all w ˛ V,

Z L

0

�

vT

vt
w

	

dxþ u

Z L

0

�

vT

vx
w

	

dxþD

Z L

0

�

vT

vx

vw

vx

	

dx ¼ Dqw ðLÞ: (10.36)

It can be formally shown that the solution of the weak problem is identical to that of the
strong problem, or that the strong and weak forms of the problem are equivalent. Obviously, if
T is a solution of the strong problems (10.1) and (10.2), it must also be a solution of the weak
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problem (10.36) using the procedure for derivation of the weak formulation. However, let us
assume that T is a solution of the weak problem (10.36). By reversing the order in deriving the
weak formulation, we have:

Z L

0

 

vT

vt
þ u

vT

vx
�D

v2T

vx2

!

wdxþD

�

vT

vx
ðLÞ � q

�

w ðLÞ ¼ 0: (10.37)

Satisfying (10.37) for all possible functions of w ˛ V requires that

vT

vt
þ u

vT

vx
�D

v2T

vx2
¼ 0 for x ˛ð0, LÞ, and

vT

vx
ðLÞ � q ¼ 0, (10.38)

which means that the solution Twill be also a solution of the strong problem. It should be
noted that the Dirichlet type of boundary condition (where the value of the variable is spec-
ified) is built into the trial functional space S, and is thus called an essential boundary condi-
tion. However, the Neumann type of boundary condition (where the derivative of the
variable is imposed) is implied by the weak formulation as indicated in (10.38) and is referred
to as a natural boundary condition.

Galerkin’s Approximation and Finite-Element Interpolations

As shown earlier, the strong and weak forms of the problem are equivalent, and there is no
approximation involved between these two formulations. Finite-element methods start with
the weak formulation of the problem. Let us construct finite-dimensional approximations of
S and V, which are denoted by Sh and Vh, respectively. The superscript refers to a discretiza-
tion with a characteristic grid size h. The weak formulation (10.36) can be rewritten using
these new spaces, as: Find Th ˛ Sh such that for all wh ˛ Vh,

Z L

0

 

vTh

vt
wh

!

dxþ u

Z L

0

 

vTh

vx
wh

!

dxþD

Z L

0

 

vTh

vx

vwh

vx

!

dx ¼ Dqwh ðLÞ: (10.39)

Normally, Sh and Vh will be subsets of S and V, respectively. This means that if a function
f ˛ Sh then f ˛ S, and if another function j ˛ Vh then j ˛ V. Therefore, (10.39) defines an
approximate solution Th to the exact weak form of the problem (10.36).

It should be noted that, up to the boundary condition T(0) ¼ g, the function spaces Sh and
Vh are composed of identical collections of functions. We may take out this boundary condi-
tion by defining a new function:

vh ðx, tÞ ¼ Th ðx, tÞ � gh ðxÞ, (10.40)

where gh is a specific function that satisfies the boundary condition gh (0) ¼ g. Thus, the
functions vh and wh belong to the same space Vh. Equation (10.39) can be rewritten in terms
of the new function vh: Find Th ¼ vh þ gh, where vh ˛ Vh, such that for all wh ˛ Vh,

Z L

0

�

vvh

vt
wh

	

dxþ a ðwh, vhÞ ¼ Dqwh ðLÞ � a ðwh, ghÞ: (10.41)
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The operator a (,,,) is defined as

a ðw, vÞ ¼ u

Z L

0

�

vv

vx
w

	

dxþD

Z L

0

�

vv

vx

vw

vx

	

dx: (10.42)

The formulation (10.41) is called a Galerkin formulation, because the solution and the vari-
ational functions are in the same space. Again, the Galerkin formulation of the problem is an
approximation to the weak formulation (10.36). Other classes of approximation methods,
called Petrov-Galerkin methods, are those in which the solution function may be contained
in a collection of functions other than Vh.

Next we need to explicitly construct the finite-dimensional variational space Vh. Let us
assume that the dimension of the space is n and that the basis (shape or interpolation) func-
tions for the space are

NA ðxÞ, A ¼ 1, 2,., n: (10.43)

Each shape function has to satisfy the boundary condition at x ¼ 0,

NA ð0Þ ¼ 0, A ¼ 1, 2,., n, (10.44)

which is required by the spaceVh. The form of the shape functionswill be discussed later. Any

function wh ˛ Vh can be expressed as a linear combination of these shape functions:

wh ¼
X
n

A¼ 1

cANA ðxÞ, (10.45)

where the coefficients cA are independent of x and uniquely define this function. We may
introduce one additional function N0 to specify the function gh in (10.40) related to the essen-
tial boundary condition. This shape function has the property

N0ð0Þ ¼ 1: (10.46)

Therefore, the function gh can be expressed as

ghðxÞ ¼ gN0 ðxÞ, and ghð0Þ ¼ g: (10.47)

With these definitions, the approximate solution can be written as

vhðx, tÞ ¼
X
n

A¼ 1

dA ðtÞ NA ðxÞ, (10.48)

and

Thðx, tÞ ¼
X
n

A¼ 1

dA ðtÞ NA ðxÞ þ gN0ðxÞ, (10.49)

where dA is a function of time only for time-dependent problems.

Matrix Equations, Comparison with Finite-Difference Method

With the construction of the finite-dimensional space Vh, the Galerkin formulation of the
problem (10.41) leads to a coupled system of ordinary differential equations. Substitution of
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the expressions for the variational function (10.45) and for the approximate solution (10.48)
into the Galerkin formulation (10.41) yields

Z L

0

 

X
n

B¼ 1

_dBNB

X
n

A¼ 1

cANA

!

dxþ a

 

X
n

A¼ 1

cANA,
X
n

B¼ 1

dBNB

!

¼ Dq
X
n

A¼ 1

cANAðLÞ � a

 

X
n

A¼ 1

cANA, gN0

!

(10.50)

where _dB ¼ d ðdBÞ=dt: Rearranging the terms, (10.50) reduces to

X
n

A¼ 1

cAGA ¼ 0, (10.51)

where

GA ¼
X
n

B¼ 1

_dB

Z L

0
ðNANBÞ dxþ

X
n

B¼ 1

dBa ðNA,NBÞ �DqNA ðLÞ þ ga ðNA,N0Þ: (10.52)

As the Galerkin formulation (10.41) should hold for all possible functions ofwh ˛ Vh, the coef-
ficients, cA, should be arbitrary. The necessary requirement for (10.51) to hold is that each GA

must be zero, that is,

X
n

B¼ 1

_dB

Z L

0
ðNBNAÞ dxþ

X
n

B¼ 1

dBa ðNA, NBÞ ¼ DqNA ðLÞ � ga ðNA, N0Þ, (10.53)

for A ¼ 1, 2, ., n. The system of equations (10.53) constitutes a system of n first-order ordi-
nary differential equations (ODEs) for dB. It can be put into a more concise matrix form. Let us
define:

M ¼ ½MAB�, K ¼ ½KAB�, F ¼ fFAg, d ¼ fdBg, (10.54)

where

MAB ¼
Z L

0
ðNANBÞ dx, (10.55)

KAB ¼ u

Z L

0
ðNB, xNAÞ dxþD

Z L

0
ðNB, xNA, xÞ dx, (10.56)

FA ¼ DqNA ðLÞ � gu

Z L

0
ðN0, xNAÞ dx� gD

Z L

0
ðN0, xNA, xÞ dx: (10.57)

Equation (10.53) can then be written as

M _dþKd ¼ F: (10.58)

The system of equations (10.58) is also termed the matrix form of the problem. Usually, M
is called the mass matrix, K is the stiffness matrix, F is the force vector, and d is the displace-
ment vector. This system of ODEs can be integrated by numerical methods, for example
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Runge-Kutta methods, or discretized (in time) by finite-difference schemes as described in
the previous section. The initial condition (10.3) will be used for integration. An alternative
approach is to use a finite-difference approximation to the time-derivative term in the trans-
port equation (10.1) at the beginning of the process, for example, by replacing vT/vt with
(Tnþ1� Tn)/Dt, and then using the finite-element method to discretize the resulting equation.

Now let us consider the actual construction of the shape functions for the finite-
dimensional variational space. The simplest example is to use piecewise-linear, finite-
element space. We first partition the domain [0, L] into n nonoverlapping subintervals
(elements). A typical one is denoted as [xA, xAþ1]. The shape functions associated with
the interior nodes, A ¼ 1, 2, ., n � 1, are defined as

NA ðxÞ ¼

8

>

>

>

>

>

<

>

>

>

>

>

:

x� xA�1

xA � xA�1
, xA�1 � x < xA,

xAþ1 � x

xAþ1 � xA
, xA � x � xAþ1,

0, elsewhere:

(10.59)

Further, for the boundary nodes, the shape functions are defined as

NnðxÞ ¼ x� xn�1

xn � xn�1
, xn�1 � x � xn, (10.60)

and

N0ðxÞ ¼ x1 � x

x1 � x0
, x0 � x � x1: (10.61)

These shape functions are graphically plotted in Figure 10.2. It should be noted that these
shape functions have very compact (local) support and satisfy NA (xB) ¼ dAB, where dAB is
the Kronecker delta (i.e., dAB ¼ 1 if A ¼ B, whereas dAB ¼ 0 if A s B).

With the construction of the shape functions, the coefficient, dA, in the expression for the
approximate solution (10.49) represents the values of Th at the nodes x ¼ xA (A¼ 1, 2,., n), or

dA ¼ ThðxAÞ ¼ TA: (10.62)

To compare the discretized equations generated from the finite-element method with those
from finite-difference methods, we substitute (10.59) into (10.53) and evaluate the integrals.
For an interior node xA (A ¼ 1, 2, ., n � 1), we have:

d

dt

�

TA�1

6
þ 2TA

3
þ TAþ1

6

	

þ u

2h
ðTAþ1 � TA�1Þ � D

h2
ðTA�1 � 2TA þ TAþ1Þ ¼ 0, (10.63)

1

x1 xA−1 xA+1xA

NA NA+1NA−1 NnN0

xn −1 xn=Lx0 =0

FIGURE 10.2 Piecewise-linear, finite-element space. These shape functions are compact.
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where h is the uniform mesh size. The convective and diffusive terms in expression (10.63)
have the same forms as those discretized using the standard second-order finite-difference
method (centered difference) in (10.12). However, in the finite-element scheme, the time
derivative term is presented with a three-point spatial average of the variable T, which differs
from the finite-difference method. In general, the Galerkin finite-element formulation is
equivalent to a finite-difference method. The advantage of the finite-element method lies
in its flexibility to handle complex geometries.

Element Point of View of the Finite-Element Method

So far we have been using a global view of the finite-element method. The shape functions
are defined on the global domain, as shown in Figure 10.2. However, it is also convenient to
present the finite-element method using a local (or element) point of view. This viewpoint is
useful for the evaluation of the integrals in (10.55) through (10.57) and the actual computer
implementation of the finite-element method.

Figure 10.3 depicts the global and local descriptions of the eth element. The global descrip-
tion of the element e is just the “local’’ view of the full domain shown in Figure 10.2. Only two
shape functions are nonzero within this element, NA�1 and NA. Using the local coordinate in
the standard element (parent domain) as shown on the right in Figure 10.3, we can write the
standard shape functions as

N1ðxÞ ¼ 1

2
ð1� xÞ and N2ðxÞ ¼ 1

2
ð1þ xÞ: (10.64)

Clearly, the standard shape functionN1 (orN2) corresponds to the global shape functionNA�1

(or NA). The mapping between the domains of the global and local descriptions can easily be
generated with the help of these shape functions,

xðxÞ ¼ N1ðxÞ xe1 þN2ðxÞ xe2 ¼ 1

2

�

ðxA � xA�1Þ xþ xA þ xA�1Þ
�

, (10.65)

with the notation that xe1 ¼ xA�1 and xe2 ¼ xA. One can also solve (10.65) for the inverse map:

x ðxÞ ¼ 2x� xA � xA�1

xA � xA�1
: (10.66)

Within the element e, the derivative of the shape functions can be evaluated using the
mapping equation (10.66):

x 

element e 

1 1

standard element in parent domain
h e x A−1 x A 

N A N A − 1 N 1 N 2

1 = − 1 2 = 1

FIGURE 10.3 Global and local descriptions of an element.
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dNA

dx
¼ dNA

dx

dx

dx
¼ 2

xA � xA�1

dN1

dx
¼ �1

xA � xA�1
(10.67)

and

dNAþ1

dx
¼ dNAþ1

dx

dx

dx
¼ 2

xA � xA�1

dN2

dx
¼ 1

xA � xA�1
: (10.68)

The global mass matrix (10.55), the global stiffness matrix (10.56), and the global force vector
(10.57) have been defined as the integrals over the global domain [0, L]. These integrals may
be written as the summation of integrals over each element’s domain. Thus

M ¼
X
nel

e¼ 1

Me, K ¼
X
nel

e¼ 1

Ke, F ¼
X
nel

e¼ 1

Fe, (10.69)

Me ¼ �

Me
AB



, Ke ¼ �

Ke
AB



, Fe ¼ 


FeA
�

(10.70)

where nel is the total number of finite elements (in this case nel ¼ n), and

Me
AB ¼

Z

Ue

ðNANBÞ dx, (10.71)

Ke
AB ¼ u

Z

Ue

ðNB, xNAÞ dxþD

Z

Ue

ðNB, xNA, xÞ dx, (10.72)

FeA ¼ Dqdenel
dAn � gu

Z

Ue

ðN0, xNAÞ dx� gD

Z

Ue

ðN0, xNA, xÞ dx, (10.73)

andUe ¼ ½xe1, xe2� ¼ ½xA�1, xA� is the domain of the eth element; and the first term on the right-
hand side of (10.73) is nonzero only for e ¼ nel and A ¼ n.

Given the construction of the shape functions, most of the element matrices and force
vectors in (10.71) through (10.73) will be zero. The nonzero ones require that A ¼ e or e þ 1
and B ¼ e or e þ 1. We may collect these nonzero terms and arrange them into the element
mass matrix, stiffness matrix, and force vector as follows:

me ¼ �

me
ab



, ke ¼ �

keab


, fe ¼ 


f ea
�

, a, b ¼ 1, 2, (10.74)

where

me
ab ¼

Z

Ue

ðNaNbÞ dx, (10.75)

keab ¼ u

Z

Ue

ðNb, xNaÞ dxþD

Z

Ue

ðNb, xNa, xÞ dx, (10.76)

f ea ¼
8

<

:

�gkea1 e ¼ 1,

0 e ¼ 2, 3,., nel � 1,

Dqda2 e ¼ nel,

(10.77)
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Here, me, ke, and fe are defined with the local (element) ordering, and represent the nonzero
terms in the corresponding Me, Ke, and Fe with the global ordering. The terms in the local
ordering need to be mapped back into the global ordering. For this example, the mapping
is defined as

A ¼
�

e� 1 if a ¼ 1
e if a ¼ 2

(10.78)

for element e.
Therefore, in the element viewpoint, the global matrices and the global vector can be con-

structed by summing the contributions of the element matrices and the element vector,
respectively. The evaluation of the element matrices and the element vector can be per-
formed on a standard element using the mapping between the global and local
descriptions.

The finite-element methods for two- or three-dimensional problems will follow the same
basic steps introduced in this section. However, the data structure and the forms of the
elements or the shape functions will be more complicated. Refer to Hughes (1987) for
a detailed discussion. Section 10.5 presents an example of a two-dimensional flow over
a circular cylinder.

10.4. INCOMPRESSIBLE VISCOUS FLUID FLOW

This section discusses numerical schemes for solving incompressible viscous fluid flows. It
focuses on techniques using the primitive variables (velocity and pressure). Other formula-
tions using the stream function and vorticity are available in the literature (see Fletcher, 1988,
Vol. II) and will not be discussed here since their extensions to three-dimensional flows are
not straightforward. The schemes to be discussed normally apply to laminar flows. However,
by incorporating additional appropriate turbulence models, these schemes will also be effec-
tive for turbulent flows.

For an incompressible Newtonian fluid, the fluid motion satisfies the constant-viscosity
Navier-Stokes equation,

r

�

vu

vt
þ ðu,VÞ u

	

¼ rg� Vpþ mV2u, (10.79)

and the continuity equation,

V,u ¼ 0, (10.80)

where (as in Chapter 4) u is the velocity vector, g is the body force per unit mass, which
could be the gravitational acceleration, p is the pressure, and r and m are the density and
viscosity of the fluid, respectively. With the proper scaling, (10.79) can be written in the
dimensionless form,

vu

vt
þ ðu,VÞ u ¼ g� Vpþ 1

Re
V2u, (10.81)
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where Re is the Reynolds number of the flow. In some approaches, the convective term is
rewritten in conservative form,

ðu,VÞ u ¼ V,ðuuÞ, (10.82)

because u is solenoidal.
In order to guarantee that a flow problem is well posed, appropriate initial and boundary

conditions for the problem must be specified. For time-dependent flow problems, the initial
condition for the velocity,

u ðx, t ¼ 0Þ ¼ u0 ðxÞ, (10.83)

is required. The initial velocity field has to satisfy the continuity equation V , u0 ¼ 0. At
a solid surface, the fluid velocity should equal the surface velocity (no-slip condition). No
boundary condition for the pressure is required at a solid surface. If the computational
domain contains a section where the fluid enters the domain, the fluid velocity (and the pres-
sure) at this inflow boundary should be specified. If the computational domain contains
a section where the fluid leaves the domain (outflow section), appropriate outflow boundary
conditions include zero tangential velocity and zero normal stress, or zero velocity deriva-
tives, as further discussed in Gresho (1991). Because the conditions at the outflow boundary
are artificial, it should be checked that the numerical results are not sensitive to the location of
this boundary. In order to solve the Navier-Stokes equations, it is also appropriate to specify
the value of the pressure at one reference point in the domain, because the pressure appears
only as a gradient and can be determined up to a constant.

There are two major difficulties in solving the Navier-Stokes equations numerically. One is
related to the unphysical oscillatory solution often found in a convection-dominated
problem. The other is the treatment of the continuity equation that is a constraint on the
flow to determine the pressure.

Convection-Dominated Problems

As mentioned in Section 10.2, the exact solution may change significantly in a thin
boundary layer for convection-dominated transport problems. If the computational grid is
not sufficiently fine to resolve the rapid variation of the solution in the boundary layer, the
numerical solution may present unphysical oscillations adjacent the boundary. Let us
examine the steady transport problem in one dimension,

u
vT

vx
¼ D

v2T

vx2
for 0 � x � L, (10.84)

with two boundary conditions:

T ð0Þ ¼ 0 and T ðLÞ ¼ 1: (10.85)

The exact solution for this problem is

T ¼ eRx=L � 1

eR � 1
, (10.86)
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where

R ¼ uL=D (10.87)

is the global Péclet number. For large values of R, the solution (10.86) behaves as

T ¼ e�Rð1�x=LÞ: (10.88)

The essential feature of this solution is the existence of a boundary layer at x ¼ L, and its
thickness d is of the order of

d

L
¼ O

�

1

jRj
	

: (10.89)

At 1 � x/L ¼ 1/R, T is about 37% of the boundary value; while at 1 � x/L ¼ 2/R, T is
about 13.5% of the boundary value.

If centered differences are used to discretize the steady transport equation (10.84) using the
grid shown in Figure 10.1, the resulting finite-difference scheme is

uDx

2D
ðTjþ1 � Tj�1Þ ¼ ðTjþ1 � 2Tj þ Tj�1Þ, (10.90)

or

0:5RcellðTjþ1 � Tj�1Þ ¼ ðTjþ1 � 2Tj þ Tj�1Þ, (10.91)

where the grid spacing Dx ¼ L/n and the cell Péclet number Rcell ¼ uDx/D ¼ R/n. From the
scaling of the boundary thickness (10.89) we know that it is of the order

d ¼ O

�

L

nRcell

	

¼ O

�

Dx

Rcell

	

: (10.92)

Physically, if T represents the temperature in the transport problem (10.84), the convective
term brings the heat toward the boundary x ¼ L, whereas the diffusive term conducts the
heat away through the boundary. These two terms have to be balanced. The discretized equa-
tion (10.91) has the same physical meaning. Let us examine this balance for a node next to the
boundary, j ¼ n � 1. When the cell Péclet number Rcell > 2, according to (10.92) the thickness
of the boundary layer is less than half the grid spacing, and the exact solution (10.86) indi-
cates that the temperatures Tj and Tj�1 are already outside the boundary layer and are essen-
tially zero. Thus, the two sides of the discretized equation (10.91) cannot balance, or the
conduction term is not strong enough to remove the heat convected to the boundary,
assuming the solution is smooth. In order to force the heat balance, an unphysical oscillatory
solution with Tj < 0 is generated to enhance the conduction term in the discretized problem
(10.91). To prevent the oscillatory solution, the cell Péclet number is normally required to be
less than two, which can be achieved by refining the grid to resolve the flow inside the
boundary layer. In some respect, an oscillatory solution may be a virtue since it provides
a warning that a physically important feature is not being properly resolved. To reduce
the overall computational cost, nonuniform grids with local fine grid spacing inside the
boundary layer will frequently be used to resolve the variables there.
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Another common method to avoid the oscillatory solution is to use a first-order upwind
scheme,

Rcell ðTj � Tj�1Þ ¼ ðTjþ1 � 2Tj þ Tj�1Þ, (10.93)

where a forward-difference scheme is used to discretize the convective term. It is easy to see
that this scheme reduces the heat convected to the boundary and thus prevents the oscillatory
solution. However, the upwind scheme is not very accurate (only first-order accurate). It can
be easily shown that the upwind scheme (10.93) does not recover the original transport equa-
tion (10.84). Instead it is consistent with a slightly different transport equation (when the cell
Péclet number is kept finite during the process),

u
vT

vx
¼ D ð1þ 0:5RcellÞ

v2T

vx2
: (10.94)

Thus, another way to view the effect of the first-order upwind scheme (10.93) is that it
introduces a numerical diffusivity of the value of 0.5 RcellD, which enhances the conduction
of heat through the boundary. For an accurate solution, one normally requires that 0.5
Rcell � 1, which is very restrictive and does not offer any advantage over the centered differ-
ence scheme (10.91).

Higher order upwind schemes may be introduced to obtain more accurate nonoscillatory
solutions without excessive grid refinement. However, those schemes may be less robust.
Refer to Fletcher (1988; see Vol. I, Chapter 9) for discussions.

Similarly, there are upwind schemes for finite-element methods to solve convection-domi-
nated problems. Most of those are based on the Petrov-Galerkin approach that permits an
effective upwind treatment of the convective term along local streamlines (Brooks & Hughes,
1982). Since then, stabilized finite-element methods have been developed where a least-
squares term is added to the momentum balance equation to provide the necessary stability
for convection-dominated flows (see Franca et al., 1992).

Incompressibility Condition

In solving the Navier-Stokes equations using the primitive variables (velocity and pres-
sure), another numerical difficulty lies in the continuity equation: The continuity equation
can be regarded either as a constraint on the flow field to determine the pressure, or the pres-
sure plays the role of the Lagrange multiplier to satisfy the continuity equation.

In a flow field, the information (or disturbance) travels with both the flow and the speed of
sound in the fluid. Since the speed of sound is infinite in an incompressible fluid, part of the
information (pressure disturbance) is propagated instantaneously throughout the domain. In
many numerical schemes the pressure is often obtained by solving a Poisson equation. The
Poisson equation may occur in either continuous form or discrete form. Some of these
schemes will be described here. In some of them, solving the pressure Poisson equation is
the most costly step.

Another common technique to surmount the difficulty of the incompressible limit is to
introduce an artificial compressibility (Chorin, 1967). This formulation is normally used for
steady problems with a pseudotransient formulation. In the formulation, the continuity
equation is replaced by
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vp

vt
þ c2V,u ¼ 0, (10.95)

where c is an arbitrary constant and could be the artificial speed of sound in a corresponding
compressible fluid with the equation of state p ¼ c2r. The formulation is called pseudotransient
because (10.95) does not have any physical meaning before the steady state is reached.
However, when c is large, (10.95) can be considered as an approximation to the unsteady
solution of (10.80) in the incompressible Navier-Stokes problem.

Explicit MacCormack Scheme

Instead of using the artificial compressibility in (10.95), one may start with the exact
compressible Navier-Stokes equations. In Cartesian coordinates, the component form of
the continuity equation and compressible Navier-Stokes equation (with mv ¼ 0) in two
dimensions can be explicitly written as:

vr

vt
þ v ðruÞ

vx
þ v ðrvÞ

vy
¼ 0, (10.96)

v

vt
ðruÞ þ v

vx
ðru2Þ þ v

vy
ðrvuÞ ¼ rgx � vp

vx
þ mV2uþ m

3

v

vx

�

vu

vx
þ vv

vy

	

, (10.97)

v

vt
ðrvÞ þ v

vx
ðruvÞ þ v

vy
ðrv2Þ ¼ rgy � vp

vy
þ mV2vþ m

3

v

vy

�

vu

vx
þ vv

vy

	

, (10.98)

with the equation of state,

p ¼ c2r, (10.99)

where c is the speed of sound in the medium. As long as the flows are limited to low Mach
numbers and the conditions are almost isothermal, the solution to this set of equations should
approximate the incompressible limit.

The explicit MacCormack scheme, after R. W. MacCormack (1969), is essentially a
predictor-corrector scheme, similar to a second-order Runge-Kutta method commonly
used to solve ordinary differential equations. For a system of equations of the form

vU

vt
þ vE ðUÞ

vx
þ vF ðUÞ

vy
¼ 0, (10.100)

the explicit MacCormack scheme consists of two steps:

predictor U�
i, j ¼ Un

i, j �
Dt

Dx
ðEn

iþ1, j � En
i, jÞ � Dt

Dy
ðFni, jþ1 � Fni, jÞ, (10.101)

corrector Unþ1
i, j ¼ 1

2

�

Un
i, j þU�

i, j �
Dt

Dx
ðE�

i, j � E�
i�1, jÞ � Dt

Dy
ðF�i, j � F�i, j�1Þ

�

(10.102)

Notice that the spatial derivatives in (10.100) are discretized with opposite one-sided finite
differences in the predictor and corrector stages. The star variables are all evaluated at
time level tnþ1. This scheme is second-order accurate in both time and space.
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Applying the MacCormack scheme to the compressible Navier-Stokes equations (10.96)
through (10.98) and replacing the pressure with (10.99), we have the predictor step:

r�i, j ¼ rni, j � c1
h

ðruÞniþ1, j � ðruÞni, j
i

� c2
h

ðrvÞni, jþ1 � ðrvÞni, j
i

(10.103)

ðruÞ�i, j ¼ ðruÞni, j � c1
h

�

ru2 þ c2r
�n

iþ1, j �
�

ru2 þ c2r
�n

i, j

i

� c2
h

ðruvÞni, jþ1 � ðruvÞni, j
i

þ 4

3
c3
�

uniþ1, j � 2uni, j þ uni�1, j

�

þ c4
�

uni, jþ1 � 2uni, j þ uni, j�1

�

þ c5
�

vniþ1, jþ1 þ vni�1, j�1 � vniþ1, j�1 � vni�1, jþ1

�

(10.104)

ðrvÞ�i, j ¼ ðrvÞni, j � c1
h

ðruvÞniþ1, j � ðruvÞni, j
i

� c2
h

�

rv2 þ c2r
�n

i, jþ1
� �rv2 þ c2r

�n

i, j

i

þ c3
�

vniþ1, j � 2vni, j þ vni�1, j

�

þ 4

3
c4
�

vni, jþ1 � 2vni, j þ vni, j�1

�

þ c5
�

uniþ1, jþ1 þ uni�1, j�1 � uniþ1, j�1 � uni�1, jþ1

�

: (10.105)

Similarly, the corrector step is given by:

2rnþ1
i, j ¼ rni, j þ r�i, j � c1

h

ðruÞ�i, j � ðruÞ�i�1, j

i

� c2
h

ðrvÞ�i, j � ðrvÞ�i, j�1

i

(10.106)

2ðruÞnþ1
i, j ¼ ðruÞni, j þ ðruÞ�i, j � c1

h

�

ru2 þ c2r
��
i, j �

�

ru2 þ c2r
��
i�1, j

i

� c2
h

ðruvÞ�i, j � ðruvÞ�i, j�1

i

þ 4

3
c3
�

u�iþ1, j � 2u�i, j þ u�i�1, j

�

þ c4
�

u�i, jþ1 � 2u�i, j þ u�i, j�1

�

þ c5
�

v�iþ1, jþ1 þ v�i�1, j�1 � v�iþ1, j�1 � v�i�1, jþ1

�

(10.107)

2 ðrvÞnþ1
i, j ¼ ðrvÞni, j þ ðrvÞ�i, j � c1

h

ðruvÞ�i, j � ðruvÞ�i�1, j

i

� c2
h

�

rv2 þ c2r
��
i, j �

�

rv2 þ c2r
��
i, j�1

i

þ c3
�

v�iþ1, j � 2v�i, j þ v�i�1, j

�

þ 4

3
c4
�

v�i, jþ1 � 2v�i, j þ v�i, j�1

�

þ c5
�

u�iþ1, jþ1 þ u�i�1, j�1 � u�iþ1, j�1 � u�i�1, jþ1

�

(10.108)

The coefficients are defined as

c1 ¼ Dt

Dx
, c2 ¼ Dt

Dy
, c3 ¼ mDt

ðDxÞ2
, c4 ¼ mDt

ðDyÞ2
, c5 ¼ mDt

12DxDy
: (10.109)
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In both the predictor and corrector steps, the viscous terms (the second-order derivative
terms) are all discretized with centered differences to maintain second-order accuracy. For
brevity, body force terms in the momentum equations are neglected here.

During the predictor and corrector stages of the explicit MacCormack scheme (10.103)
through (10.108), one-sided differences are arranged in the FF and BB fashion, respectively.
Here, in the notation FF, the first F denotes the forward difference in the x-direction and
the second F denotes the forward difference in the y-direction. Similarly, BB stands for back-
ward differences in both x and y directions. We denote this arrangement as FF/BB. Similarly,
one may get BB/FF, FB/BF, BF/FB arrangements. It is noted that some balanced cyclings of
these arrangements generate better results than others.

Tannehill, Anderson, and Pletcher (1997) give the following semi-empirical stability crite-
rion for the explicit MacCormack scheme:

Dt � s

ð1þ 2=ReDÞ

"

juj
Dx

þ jvj
Dy

þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Dx2
þ 1

Dy2

s #�1

, (10.110)

where s is a safety factor (z 0.9), and ReD ¼ min (rjujDx/m, rjvjDy/m) is the minimum mesh
Reynolds number. This condition is quite conservative for flows with small-mesh Reynolds
numbers.

One key issue for the explicit MacCormack scheme to work properly is the boundary
conditions for density (thus pressure). We leave this issue to the next section where its imple-
mentation in two sample problems will be demonstrated.

MAC Scheme

Most numerical schemes developed for computational fluid dynamics problems can be
characterized as operator-splitting algorithms. The operator-splitting algorithms divide
each time step into several substeps. Each substep solves one part of the operator and thus
decouples the numerical difficulties associated with each part of the operator. For example,
consider a system,

df

dt
þ A ðfÞ ¼ f , (10.111)

with initial condition f (0) ¼ f0, where the operator A may be split into two operators

A ðfÞ ¼ A1ðfÞ þ A2ðfÞ: (10.112)

Using a simple first-order accurate Marchuk-Yanenko fractional step scheme (Marchuk,
1975; Yanenko, 1971), the solution of the system at each time step fnþ1 ¼ f ((n þ 1) Dt)
(n ¼ 0, 1, .) is approximated by solving the following two successive problems:

fnþ1=2 � fn

Dt
þ A1ðfnþ1=2Þ ¼ fnþ1

1 , (10.113)

fnþ1 � fnþ1=2

Dt
þ A2ðfnþ1Þ ¼ fnþ1

2 , (10.114)
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where f0 ¼ f0, Dt ¼ tnþ1 � tn, and fnþ1
1 þ fnþ1

2 ¼ fnþ1 ¼ f ððnþ 1Þ DtÞ. The time discretiza-

tions in (10.113) and (10.114) are implicit. Some schemes to be discussed in what follows
actually use explicit discretizations. However, the stability conditions for those explicit
schemes must be satisfied.

The MAC (marker-and-cell) method was first proposed by Harlow and Welch (1965) to
solve flow problems with free surfaces. There are many variations of this method. It basically
uses a finite-difference discretization for the Navier-Stokes equations and splits the equations
into two operators:

A1ðu, pÞ ¼
 

ðu,VÞ u� 1

Re
V2u

0

1

A, and A2ðu, pÞ ¼
 

Vp

V,u

!

: (10.115)

Each time step is divided into two substeps as discussed in the Marchuk-Yanenko fractional-
step scheme (10.113) and (10.114). The first step solves a convection and diffusion problem,
which is discretized explicitly:

unþ1=2 � un

Dt
þ ðun,VÞun � 1

Re
V2un ¼ gnþ1: (10.116)

In the second step, the pressure gradient operator is added (implicitly) and, at the same time,
the incompressible condition is enforced:

unþ1 � unþ1=2

Dt
þ Vpnþ1 ¼ 0, (10.117)

and

V,unþ1 ¼ 0: (10.118)

This step is also called a projection step to satisfy the incompressibility condition.
Normally, the MAC scheme is presented in a discretized form. A preferred feature of the

MAC method is the use of the staggered grid. An example of a staggered grid in two dimen-
sions is shown in Figure 10.4. On this staggered grid, pressure variables are defined at the
centers of the cells and velocity components are defined at the cell faces.

Using the staggered grid, two components of the transport equation (10.116) can be
written as

u
nþ1=2
iþ1=2, j ¼ uniþ1=2, j � Dt

�

u
vu

vx
þ v

vu

vy
� 1

Re
V2u

	n

iþ1=2, j
þ Dt fnþ1

iþ1=2, j, (10.119)

v
nþ1=2
i, jþ1=2 ¼ vni, jþ1=2 � Dt

�

u
vv

vx
þ v

vv

vy
� 1

Re
V2v

	n

i, jþ1=2

þ Dt gnþ1
i, jþ1=2, (10.120)

where u ¼ (u, v), g ¼ ( f, g),
�

u
vu

vx
þ v

vu

vy
� 1

Re
V2u

�n

iþ1=2, j
, and

�

u
vv

vx
þ v

vv

vy
� 1

Re
V2v

�n

i, jþ1=2
are

the functions interpolated at the grid locations for the x-component of the velocity at (i þ 1/
2, j) and for the y-component of the velocity at (i, j þ 1/2), respectively, and at the previous
time t ¼ tn. The discretized form of (10.117) is
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unþ1
iþ1=2, j ¼ u

nþ1=2
iþ1=2, j �

Dt

Dx

�

pnþ1
iþ1, j � pnþ1

i, j

�

, (10.121)

vnþ1
i, jþ1=2 ¼ v

nþ1=2
i, jþ1=2 �

Dt

Dy

�

pnþ1
i, jþ1 � pnþ1

i, j

�

, (10.122)

whereDx ¼ xiþ1 � xi andDy ¼ yjþ1 � yj are the uniform grid spacing in the x and y directions,
respectively. The discretized continuity equation (10.118) can be written as:

unþ1
iþ1=2, j � unþ1

i�1=2, j

Dx
þ
vnþ1
i, jþ1=2 � vnþ1

i, j�1=2

Dy
¼ 0: (10.123)

Substitution of the two velocity components from (10.121) and (10.122) into the discretized
continuity equation (10.123) generates a discrete Poisson equation for the pressure:

V2
dp

nþ1
i, j h

1

Dx2

�

pnþ1
iþ1, j � 2pnþ1

i, j þ pnþ1
i�1, j

�

þ 1

Dy2

�

pnþ1
i, jþ1 � 2pnþ1

i, j þ pnþ1
i, j�1

�

¼ 1

Dt

0

@

u
nþ1=2
iþ1=2, j � u

nþ1=2
i�1=2, j

Dx
þ
v
nþ1=2
i, jþ1=2 � v

nþ1=2
i, j�1=2

Dy

1

A: (10.124)

The major advantage of the staggered grid is that it prevents the appearance of oscil-
latory solutions. On a normal grid, the pressure gradient would have to be approximated
using two alternate grid points (not the adjacent ones) when a central difference scheme
is used, that is,

�

vp

vx

	

i, j
¼ piþ1, j � pi�1, j

2Dx
and

�

vp

vy

	

i, j
¼ pi, jþ1 � pi, j�1

2Dy
: (10.125)

Γ

Γ

p1,1 p2,1 p3,1

p1,2 p2,2 p3,2

u1/2,1 u3/2,1 u5/2,1

u1/2,2
u3/2,2 u5/2,2

υ1,1/2 υ2,1/2 υ3,1/2

υ3,3/2υ1,3/2

υ2,5/2
υ1,5/2 υ3,5/2

υ2,3/2

FIGURE 10.4 Staggered grid and a typical cell around p2,2. Here velocity component values are computed
halfway between the grid points for the pressure field.
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Thus, a wavy pressure field (in a zigzag pattern) would be felt like a uniform one by the
momentum equation. However, on a staggered grid, the pressure gradient is approximated
by the difference of the pressures between two adjacent grid points. Consequently, a pressure
field with a zigzag pattern would no longer be felt as a uniform pressure field and could not
arise as a possible solution. It is also seen that the discretized continuity equation (10.123)
contains the differences of the adjacent velocity components, which would prevent a wavy
velocity field from satisfying the continuity equation.

Another advantage of the staggered grid is its accuracy. For example, the truncation error
for (10.123) is O (Dx2, Dy2) even though only four grid points are involved. The pressure
gradient evaluated at the cell faces,

�

vp

vx

	

iþ1=2, j
¼ piþ1, j � pi, j

Dx
, and

�

vp

vy

	

i, jþ1=2

¼ pi, jþ1 � pi, j
Dy

, (10.126)

are all second-order accurate.
On the staggered grid, the MAC method does not require boundary conditions for the

pressure equation (10.124). Let us examine a pressure node next to the boundary, for
example, p1,2 as shown in Figure 10.4. When the normal velocity is specified at the boundary,

unþ1
1=2, 2 is known. In evaluating the discrete continuity equation (10.123) at the pressure node

(1, 2), the velocity unþ1
1=2, 2 should not be expressed in terms of u

nþ1=2
1=2, 2 using (10.121). Therefore

p0,2 will not appear in equation (10.120), and no boundary condition for the pressure is
needed. It should also be noted that (10.119) and (10.120) only update the velocity compo-
nents for the interior grid points, and their values at the boundary grid points are not needed
in the MAC scheme. Peyret and Taylor (1983) also noticed that the numerical solution in the
MACmethod is independent of the boundary values of unþ1/2 and vnþ1/2, and a zero normal
pressure gradient on the boundary would give satisfactory results. However, their explana-
tion was more cumbersome.

In summary, for each time step in theMAC scheme, the intermediate velocity components,

u
nþ1=2
iþ1=2, j and v

nþ1=2
i, jþ1=2, in the interior of the domain are first evaluated using (10.119) and

(10.120), respectively. Next, the discrete pressure Poisson equation (10.124) is solved. Finally,
the velocity components at the new time step are obtained from (10.121) and (10.122). In the
MAC scheme, the most costly step is the solution of the Poisson equation for the pressure
(10.124).

Chorin (1968) and Temam (1969) independently presented a numerical scheme for the
incompressible Navier-Stokes equations, termed the projection method. The projection method
was initially proposed using the standard grid. However, when it is applied in an explicit
fashion on the MAC staggered grid, it is identical to the MAC method as long as the
boundary conditions are not considered, as shown in Peyret and Taylor (1983).

A physical interpretation of the MAC scheme or the projection method is that the explicit
update of the velocity field does not generate a divergence-free velocity field in the first step.
Thus an irrotational correction field, in the form of a velocity potential which is proportional
to the pressure, is added to the nondivergence-free velocity field in the second step in order to
enforce the incompressibility condition.
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As the MACmethod uses an explicit scheme in the convection-diffusion step, the stability
conditions for this method are (Peyret & Taylor, 1983),

1

2
ðu2 þ v2Þ Dt Re � 1, (10.127)

and

4Dt

ReDx2
� 1, (10.128)

when Dx ¼ Dy. The stability conditions (10.127) and (10.128) are quite restrictive on the size of
the time step. These restrictions can be removed by using implicit schemes for the convec-
tion-diffusion step.

Q-Scheme

The MAC algorithm described in the preceding section is only first-order accurate in time.
In order to have a second-order accurate scheme for the Navier-Stokes equations, the Q-
scheme of Glowinski (1991) may be used. The Q-scheme splits each time step symmetrically
into three substeps, which are described here.

• Step 1:

unþq � un

q Dt
� a

Re
V2unþq þ Vpnþq ¼ gnþq þ b

Re
V2un � ðun,VÞun, (10.129)

V,unþq ¼ 0: (10.130)

• Step 2:

unþ1�q � unþq

ð1� 2qÞ Dt � b

Re
V2unþ1�q þ ðu�,VÞunþ1�q ¼ gnþ1�q þ a

Re
V2unþq � Vpnþq: (10.131)

• Step 3:

unþ1 � unþ1�q

q Dt
� a

Re
V2unþ1 þ Vpnþ1 ¼ gnþ1 þ b

Re
V2unþ1�q � ðunþ1�q,VÞunþ1�q, (10.132)

V,unþ1 ¼ 0: (10.133)

It was shown that when q ¼ 1� 1=
ffiffiffi

2
p ¼ 0:29289., aþ b ¼ 1, and b ¼ q/(1 � q), the

scheme is second-order accurate. The first and third steps of the Q-scheme are identical
and are the Stokes flow problems. The second step, (10.131), represents a nonlinear convec-
tion-diffusion problem if u* ¼ unþ1�q. However, it was concluded that there is practically no
loss in accuracy and stability if u* ¼ unþq is used. Numerical techniques for solving these sub-
steps are discussed in Glowinski (1991).
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Mixed Finite-Element Formulation

The weak formulation described in Section 10.3 can be directly applied to the Navier-
Stokes equations (10.80) and (10.81), and it gives

Z

U

�

vu

vt
þ u,Vu� g

	

,~udUþ 2

Re

Z

U
D ½u�:D ½~u� dU�

Z

U
p ðV,~uÞ dU ¼ 0, (10.134)

Z

U

~pV,udU ¼ 0, (10.135)

where ~u and ~p are the variations of the velocity and pressure, respectively. The rate of strain
tensor is given by

D ½u� ¼ 1

2
½Vuþ ðVuÞT �: (10.136)

The Galerkin finite-element formulation for the problem is identical to (10.134) and
(10.135), except that all the functions are chosen from finite-dimensional subspaces and rep-
resented in the form of basis or interpolation functions.

The main difficulty with this finite-element formulation is the choice of the interpolation
functions (or the types of the elements) for velocity and pressure. The finite-element approx-
imations that use the same interpolation functions for velocity and pressure suffer from
a highly oscillatory pressure field. As described in the previous section, a similar behavior
in the finite-difference scheme is prevented by introducing the staggered grid. There are
a number of options to overcome this problem with spurious pressure. One of them is the
mixed finite-element formulation that uses different interpolation functions (or finite
elements) for velocity and pressure. The requirement for the mixed finite-element approach
is related to the so-called Babuska-Brezzi (or LBB) stability condition, or inf-sup condition.
The detailed discussions for this condition can be found in Oden and Carey (1984).
A common practice in the mixed finite-element formulation is to use a pressure interpolation
function that is one order lower than a velocity interpolation function. As an example in two
dimensions, a triangular element is shown in Figure 10.5a. On this mixed element, quadratic
interpolation functions are used for the velocity components and are defined on all six nodes,

(a) (b)

FIGURE 10.5 Mixed finite elements. (a) Velocities are determined at all six points while pressure is only
determined at the triangle’s vertices (filled circles). (b) The velocity grid involves all four triangles while the
pressure only involves the one larger composite triangle.
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while linear interpolation functions are used for the pressure and are defined on three
vertices only. A slightly different approach is to use a pressure grid that is twice coarser
than the velocity one, and then use the same interpolation functions on both grids
(Glowinski, 1991). For example, a piecewise-linear pressure is defined on the outside
(coarser) triangle, while a piecewise-linear velocity is defined on all four subtriangles, as
shown in Figure 10.5b.

Another option to prevent a spurious pressure field is to use the stabilized finite-element
formulation while keeping the equal order interpolations for velocity and pressure.
A general formulation in this approach is the Galerkin/least-squares (GLS) stabilization
(Tezduyar, 1992). In the GLS stabilization, the stabilizing terms are obtained by minimizing
the squared residual of the momentum equation integrated over each element domain. The
choice of the stabilization parameter is discussed in Franca et al. (1992) and Franca and Frey
(1992).

Comparing the mixed and the stabilized finite-element formulations, the mixed finite-
element method is parameter free, as pointed out in Glowinski (1991). There is no need
to adjust the stabilization parameters, which could be a delicate problem. More impor-
tantly, for a given flow problem the desired finite-element mesh size is generally deter-
mined based on the velocity behavior (e.g., it is defined by the boundary or shear layer
thickness). Therefore, equal order interpolation will be more costly from the pressure point
of view but without further gains in accuracy. However, the GLS-stabilized finite-element
formulation has the additional benefit of preventing oscillatory solutions produced in the
Galerkin finite-element method due to the large convective term in high Reynolds number
flows.

Once the interpolation functions for the velocity and pressure in the mixed finite-element
approximations are determined, the matrix form of equations (10.134) and (10.135) can be
written as

�

M _u
0

	

þ
�

A B
BT 0

	�

u
p

	

¼
�

fu
fp

	

, (10.137)

where u and p are the vectors containing all unknown values of the velocity components and
pressure defined on the finite-element mesh, respectively; _u is the first-time derivative of u;
and M is the mass matrix corresponding to the time derivative term in equation (10.134).
Matrix A depends on the value of u due to the nonlinear convective term in the momentum
equation. The symmetry in the pressure terms in (10.134) and (10.135) results in the
symmetric arrangement of B and BT in the algebraic system (10.137). Vectors fu and fp
come from the body-force term in the momentum equation and from the application of
the boundary conditions.

The ordinary differential equation (10.137) can be further discretized in time with finite-
difference methods. The resulting nonlinear system of equations is typically solved itera-
tively using Newton’s method. At each stage of the nonlinear iteration, the sparse linear
algebraic equations are normally solved either by using a direct solver such as the Gauss
elimination procedure for small system sizes or by using an iterative solver such as the gener-
alized minimum residual method (GMRES) for large systems. Other iterative solution
methods for sparse nonsymmetric systems can be found in Saad (1996). An application of
the mixed finite-element method is discussed as one of the examples in the next section.
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10.5. THREE EXAMPLES

In this section,wewill solve three sample problems. The first one is the classic driven-cavity
flow problem. The second is flow around a square block confined between two parallel plates.
These two problems will be solved by using the explicit MacCormack scheme, with details in
Perrin and Hu (2006). The contribution by Andrew Perrin in preparing results for these two
problems is greatly appreciated. The last problem is flow around a circular cylinder confined
between two parallel plates. It will be solved by using a mixed finite-element formulation.

Explicit MacCormack Scheme for Driven-Cavity Flow Problem

The driven-cavity flow problem, in which a fluid-filled square box (or cavity) is swirled
by a uniformly translating lid, as shown in Figure 10.6, is a classic problem in CFD. This
problem is unambiguous with easily applied boundary conditions and has a wealth of
documented analytical and computational results, for example Ghia et al. (1982). We will
solve this flow using the explicit MacCormack scheme discussed in the previous section.

We may nondimensionalize the problem with the following scaling: length with D,
velocity with U, time with D/U, density with a reference density r0, and pressure with
r0U

2. Using this scaling, the equation of state (10.99) becomes p ¼ r/M2, where M ¼ U/c is
the Mach number. The Reynolds number is defined as Re ¼ r0UD/m.

The boundary conditions for this problem are relatively simple. The velocity components
on all four sides of the cavity are well defined. There are two singularities of velocity gradient
at the two top corners where velocity u changes from 0 to U and from U to 0 directly under-
neath the sliding lid. However, these singularities will be smoothed out on a given grid, since
the change of the velocity occurs linearly between two grid points. The boundary conditions
for the density (hence the pressure) are more involved. Since the density is not specified on
a solid surface, we need to generate an update scheme for values of density on all boundary
points. A natural option is to derive it using the continuity equation.

U

D D

x

y

FIGURE 10.6 Driven-cavity flow problem. The cavity is filled with a fluid with the top lid sliding at a constant
velocity U. The resulting flow field involves a large main vortex that is not symmetrical or centered in the box.
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Consider the boundary on the left (at x ¼ 0). Since v ¼ 0 along the surface, the continuity
equation (10.96) reduces to

vr

vt
þ vru

vx
¼ 0: (10.138)

We may use a predictor-corrector scheme to update density on this surface with a one-
sided, second-order accurate discretization for the spatial derivative:

�

vf

vx

	

i

¼ 1

2Dx
ð�fiþ2 þ 4fiþ1 � 3fiÞ þO ðDx2Þ

or

�

vf

vx

	

i

¼ �1

2Dx
ð�fi�2 þ 4fi�1 � 3fiÞ þO ðDx2Þ:

Therefore, on the surface of x ¼ 0 (for i ¼ 0, including two corner points on the left), we have
the following update scheme for density:

predictor r�i, j ¼ rni, j �
Dt

2Dx

h

�ðruÞniþ2;j þ 4ðruÞniþ1, j � 3ðruÞni, j
i

, (10.139)

corrector 2rnþ1
i, j ¼ rni, j þ r�i, j �

Dt

2Dx

h

�ðruÞ�iþ2;j þ 4 ðruÞ�iþ1, j � 3 ðruÞ�i, j
i

: (10.140)

Similarly, on the right side of the cavity x ¼ D (for i ¼ nx � 1, where nx is the number of grid
points in the x-direction, including two corner points on the right), we have:

predictor r�i, j ¼ rni, j þ
Dt

2Dx

h

�ðruÞni�2;j þ 4 ðruÞni�1, j � 3 ðruÞni, j
i

, (10.141)

corrector 2rnþ1
i, j ¼ rni, j þ r�i, j þ

Dt

2Dx

h

�ðruÞ�i�2;j þ 4 ðruÞ�i�1, j � 3 ðruÞ�i, j
i

: (10.142)

On the bottom of the cavity y ¼ 0 ( j ¼ 0),

predictor r�i, j ¼ rni, j �
Dt

2Dy

h

�ðrvÞni, jþ2 þ 4 ðrvÞni, jþ1 � 3 ðrvÞni, j
i

, (10.143)

corrector 2rnþ1
i, j ¼ rni, j þ r�i, j �

Dt

2Dy

h

�ðrvÞ�i, jþ2 þ 4 ðrvÞ�i, jþ1 � 3 ðrvÞ�i, j
i

: (10.144)

Finally, on the top of the cavity y ¼ D ( j ¼ ny � 1) where ny is the number of grid points in
the y-direction), the density needs to be updated from slightly different expressions since
vru/vx ¼ Uvr/vx is not zero there:

predictor r�i, j ¼ rni, j �
DtU

2Dx

h

rniþ1, j � rni�1, j

i

þ Dt

2Dy

h

�ðrvÞni, j�2 þ 4 ðrvÞni, j�1 � 3 ðrvÞni, j
i

,

(10.145)

corrector 2rnþ1
i, j ¼ rni, j þ r�i, j �

DtU

2Dx

h

r�iþ1, j � r�i�1, j

i

þ Dt

2Dy

h

� ðrvÞ�i, j�2 þ 4 ðrvÞ�i, j�1 � 3 ðrvÞ�i, j
i

: (10.146)
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In summary, we may organize the explicit MacCormack scheme at each time step (10.103)
to (10.108) into the following six substeps.

Step 1: For 0 � i < nx and 0 � j < ny (all nodes):

ui, j ¼ ðruÞni, j=rni, j, vi, j ¼ ðrvÞni, j=rni, j:

Step 2: For 1 � i < nx � 1 and 1 � j < ny � 1 (all interior nodes):

r�i, j ¼ rni, j � a1
h

ðruÞniþ1, j � ðruÞni, j
i

� a2
h

ðrvÞni, jþ1 � ðrvÞni, j
i

,

ðruÞ�i, j ¼ ðruÞni, j � a3
�

rniþ1, j � rni, j

�

� a1
h

�

ru2
�n

iþ1, j �
�

ru2
�n

i, j

i

� a2
h

ðruvÞni, jþ1 � ðruvÞni, j
i

� a10ui, j þ a5ðuiþ1, j þ ui�1, jÞ
þ a6ðui, jþ1 þ ui, j�1Þ þ a9ðviþ1, jþ1 þ vi�1, j�1 � viþ1, j�1 � vi�1, jþ1Þ,

ðrvÞ�i, j ¼ ðrvÞni, j � a4
�

rni, jþ1 � rni, j

�

� a1
h

ðruvÞniþ1, j � ðruvÞni, j
i

�a2
h

�

rv2
�n

i, jþ1
� �rv2�ni, j

i

� a11vi, j þ a7ðviþ1, j þ vi�1, jÞ
þa8ðvi, jþ1 þ vi, j�1Þ þ a9ðuiþ1, jþ1 þ ui�1, j�1 � uiþ1, j�1 � ui�1, jþ1Þ:

Step 3: Impose boundary conditions (at time tnþ1) for r
�
i, j, ðruÞ�i, j, and ðrvÞ�i, j.

Step 4: For 0 � i < nx and 0 � j < ny (all nodes):

u�i, j ¼ ðruÞ�i, j=r�i, j, v�i, j ¼ ðrvÞ�i, j=r�i, j:

Step 5: For 1 � i < nx � 1 and 1 � j < ny �1 (all interior nodes):

2rnþ1
i, j ¼

�

rni, j þ r�i, j
�

� a1 þ
h

ðruÞ�i, j � ðruÞ�i�1, j

i

� a2
h

ðrvÞ�i, j � ðrvÞ�i, j�1

i

,

2ðruÞnþ1
i, j ¼ ðruÞni, j þ ðruÞ�i, j � a3

�

r�i, j � r�i�1, j

�

� a1
h

�

ru2
��
i, j �

�

ru2
��
i�1, j

i

� a2
h

ðruvÞ�i, j � ðruvÞ�i, j�1

i

� a10u
�
i, j þ a5

�

u�iþ1;j þ u�i�1, j

�

þ a6
�

u�i, jþ1 þ u�i, j�1

�

þ a9
�

v�iþ1, jþ1 þ v�i�1, j�1 � v�iþ1, j�1 � v�i�1, jþ1

�

,

2ðrvÞnþ1
i, j ¼ ðrvÞni, j þ ðrvÞ�i, j � a4

�

r�i, j � r�i, j�1

�

� a1
h

ðruvÞ�i, j � ðruvÞ�i�1, j

i

�a2
h

�

rv2
��
i, j �

�

rv2
��
i, j�1

i

� a11v
�
i, j þ a7

�

v�iþ1, j þ v�i�1, j

�

þa8
�

v�i, jþ1 þ v�i, j�1

�

þ a9
�

u�iþ1, jþ1 þ u�i�1, j�1 � u�iþ1, j�1 � u�i�1, jþ1

�

:
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Step 6: Impose boundary conditions for rnþ1
i, j , ðruÞnþ1

i, j , and ðrvÞnþ1
i, j . The coefficients are

defined as:

a1 ¼ Dt

Dx
, a2 ¼ Dt

Dy
, a3 ¼ Dt

DxM2
, a4 ¼ Dt

DyM2
, a5 ¼ 4Dt

3ReðDxÞ2
,

a6 ¼ Dt

Re ðDyÞ2
, a7 ¼ Dt

Re ðDxÞ2
, a8 ¼ 4Dt

3Re ðDyÞ2
, a9 ¼ Dt

12ReDxDy
,

a10 ¼ 2 ða5 þ a6Þ, a11 ¼ 2 ða7 þ a8Þ:
For coding purposes, the variables ui, j (vi, j) and u�i, j (v

�
i, j) can take the same storage space.

At the end of each time step, the starting values of rni, j, ðruÞni, j, and ðrvÞni, j will be replaced

with the corresponding new values of rnþ1
i, j , ðruÞnþ1

i, j , and ðrvÞnþ1
i, j .

Next we present some of the results and compare them with those in the paper by
Hou et al. (1995) obtained by a lattice Boltzmann method. To keep the flow almost incom-
pressible, the Mach number is chosen as M ¼ 0.1. Flows with two Reynolds numbers,
Re ¼ r0UD/m ¼ 100 and 400 are simulated. At these Reynolds numbers, the flow will even-
tually be steady. Thus calculations need to be run long enough to get to the steady state. A
uniform grid of 256 by 256 was used for this example.

Figure 10.7 shows comparisons of the velocity field calculated by the explicit MacCormack
schemewith the streamlines fromHou et al. (1995) at Re ¼ 100 and 400. The agreement seems
reasonable. It was also observed that the location of the center of the primary eddy agrees
even better. When Re ¼ 100, the center of the primary eddy is found at (0.62 � 0.02,
0.74 � 0.02) from the MacCormack scheme in comparison with (0.6196, 0.7373) from Hou.
When Re ¼ 400, the center of the primary eddy is found at (0.57 � 0.02, 0.61 � 0.02) from
the MacCormack scheme in comparison with (0.5608, 0.6078) from Hou.

For a more quantitative comparison, Figure 10.8 plots the velocity profile along a vertical
line cut through the center of the cavity (x ¼ 0.5D). The velocity profiles for two Reynolds
numbers, Re¼ 100 and 400, are compared. The results from the explicit MacCormack scheme

(a) (b)

FIGURE 10.7 Comparisons of lid-driven square cavity results from the explicit MacCormack scheme (light gray,
velocity vector field) and those from Hou et al. (1995) (dark solid streamlines) calculated using a lattice Boltzmann
method. (a) Re ¼ 100, (b) Re ¼ 400.
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are shown in solid and dashed lines. The data points in symbols were directly converted from
Hou’s paper. The agreement is excellent.

Explicit MacCormack Scheme for Flow Over a Square Block

For the second example, we consider flow around a square block confined between two
parallel plates. Fluid comes in from the left with a uniform velocity profile U, and the plates
are sliding with the same velocity, as indicated in Figure 10.9. This flow corresponds to the
block moving left with velocity U along the channel’s centerline. In the calculation we set
the channel width H ¼ 3D and the channel length L ¼ 35D with 15D ahead of the block
and 19D behind. TheMach number is set atM ¼ 0.05 to approximate the incompressible limit.

The velocity boundary conditions in this problem are specified as shown in Figure 10.9,
except that at the outflow section, conditions vru/vx ¼ 0 and vrv/vx ¼ 0 are used. The
density (or pressure) boundary conditions are much more complicated, especially on the
block surface. On all four sides of the outer boundary (top and bottom plates, inflow and

0 

0.2 

0.4 

0.6 

0.8 

1 

�0.4 �0.2 0 0.2 0.4 0.6 0.8 1
u

y/D

Explicit MacCormack (Re�100) 
Explicit MacCormack (Re�400) 
Hou et al. (Re�100)
Hou et al. (Re�400)

FIGURE 10.8 Comparison of velocity profiles along a line cut through the center of the cavity (x ¼ 0.5D) at
Re ¼ 100 and 400. There is agreement between the results at the same Reynolds number from different computa-
tional schemes.

U

x
y

D H

D

U

U

FIGURE 10.9 Computational domain for two-dimensional flow past a square obstruction (block) between two
parallel plates.
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outflow), the continuity equation is used to update density as in the previous example.
However, on the block surface, it was found that the conditions derived from the momentum
equations give better results. Let us consider the front section of the block, and evaluate the x-
component of the momentum equation (10.97) with u ¼ v ¼ 0:

vr

vx
¼ M2

"

1

Re

 

4

3

v2u

vx2
þ 1

3

v2v

vxvy
þ v2u

vy2

!

� v

vx
ðru2Þ � v

vy
ðrvuÞ � v

vt
ðruÞ

�

front suface

¼ M2

Re

 

4

3

v2u

vx2
þ 1

3

v2v

vxvy

!

: (10.147)

In (10.147), the variables are nondimensionalized with the same scaling as the driven-
cavity flow problem except that the block size D is used for length. Furthermore, the density
gradient may be approximated with a second-order backward finite-difference scheme:

�

vr

vx

	

i, j
¼ �1

2Dx
ð�ri�2;j þ 4ri�1, j � 3ri, jÞ þO ðDx2Þ: (10.148)

The second-order derivatives for the velocities are expressed as
 

v2u

vx2

!

i, j

¼ 1

Dx2
ð2ui, j � 5ui�1, j þ 4ui�2;j � ui�3;jÞ þOðDx2Þ, (10.149)

and
 

v2v

vxvy

!

i, j

¼ �1

4DxDy

h

� ðvi�2;jþ1 � vi�2;j�1Þ þ 4 ðvi�1, jþ1 � vi�1, j�1Þ � 3 ðvi, jþ1 � vi, j�1Þ
i

þO
�

Dx2, DxDy, Dy2
�

:

(10.150)

Substituting (10.148) through (10.150) into (10.147), we have an expression for density at
the front of the block:

ri, jjfront ¼ 1

3
ð4ri�1, j � ri�2;jÞ þ

8

9Dx

M2

Re
ð�5ui�1, j þ 4ui�2;j � ui�3;jÞ

� 1

18Dy

M2

Re

�

� ðvi�2;jþ1 � vi�2;j�1Þ þ 4 ðvi�1, jþ1 � vi�1, j�1Þ � 3 ðvi, jþ1 � vi, j�1Þ
�

:

(10.151)

Similarly, at the back of the block:

ri, jjback ¼ 1

3
ð4riþ1, j � riþ2;jÞ �

8

9Dx

M2

Re
ð�5uiþ1, j þ 4uiþ2;j � uiþ3;jÞ

� 1

18Dy

M2

Re

�

� ðviþ2;jþ1 � viþ2;j�1Þ þ 4 ðviþ1, jþ1 � viþ1, j�1Þ� 3 ðvi, jþ1 � vi, j�1Þ
�

:

(10.152)

10. COMPUTATIONAL FLUID DYNAMICS454



At the top of the block, the y-component of the momentum equation should be used, and it is
easy to find:

ri, jjtop ¼ 1

3
ð4ri, jþ1 � ri, jþ2Þ�

8

9Dy

M2

Re
ð�5vi, jþ1 þ 4vi, jþ2 � vi, jþ3Þ

� 1

18Dx

M2

Re

h

� ðuiþ1, jþ2 � ui�1, jþ2Þ þ 4ðuiþ1, jþ1 � ui�1, jþ1Þ � 3ðuiþ1, j � ui�1, jÞ
i

,

(10.153)

and, finally, at the bottom of the block:

ri, jjbottom ¼ 1

3
ð4ri, j�1 � ri, j�2Þ þ

8

9Dy

M2

Re
ð�5vi, j�1 þ 4vi, j�2 � vi, j�3Þ

� 1

18Dx

M2

Re

�

� ðuiþ1, j�2 � ui�1, j�2Þ þ 4 ðuiþ1, j�1 � ui�1, j�1Þ � 3 ðuiþ1, j � ui�1, jÞ
�

:

(10.154)

At the four corners of the block, the average values from the two corresponding sides may
be used.

In computation, double precision numbers should be used: Otherwise cumulative round-
off error may corrupt the simulation, especially for long runs. It is also helpful to introduce
a new variable for density, r0 ¼ r � 1, such that only the density variation is computed. For
this example, we may extend the FF/BB form of the explicit MacCormack scheme to have an
FB/BF arrangement for one time step and a BF/FB arrangement for the subsequent time step.
This cycling seems to generate better results.

We first plot the drag coefficient, CD ð4:107Þ and the lift coefficient, CL ð4:108Þ as func-
tions of time for flows at two Reynolds numbers, Re ¼ 20 and 100, in Figure 10.10. For
Re ¼ 20, after the initial messy transient (corresponding to sound waves bouncing around
the block and reflecting at the outflow) the flow eventually settles into a steady state. The
drag coefficient stabilizes at a constant value around CD ¼ 6.94 (obtained on a grid of
701�61). Calculation on a finer grid (1401�121) yields CD ¼ 7.003. This is in excellent
agreement with the value of CD ¼ 7.005 obtained from an implicit finite-element calcula-
tion for incompressible flows (similar to the one used in the next example in this section)
on a similar mesh to 1401�121. There is a small lift (CL ¼ 0.014) due to asymmetries in the
numerical scheme. The lift reduces to CL ¼ 0.003 on the finer grid of 1401�121. For
Re ¼ 100, periodic vortex shedding occurs. Drag and lift coefficients are shown in
Figure 10.10b. The mean value of the drag coefficient and the amplitude of the lift coeffi-
cient are CD ¼ 3.35 and CL ¼ 0.77, respectively. The finite-element results are CD ¼ 3.32 and
CL ¼ 0.72 under similar conditions.

Theflowfield around the block atRe ¼ 20 is shown in Figure 10.11.A steadywake is attached
behind the block, and the circulation within the wake is clearly visible. Figure 10.12 displays
a sequence of the flow field around the block during one cycle of vortex shedding at Re ¼ 100.

Figure 10.13 shows the convergence of the drag coefficient as the grid spacing is reduced.
Tests for two Reynolds numbers, Re ¼ 20 and 100, are plotted. It seems that the solution with
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20 grid points across the block (Dx ¼ Dy ¼ 0.05) reasonably resolves the drag coefficient and
the singularity at the block corners does not affect this convergence very much.

The explicit MacCormack scheme can be quite efficient to compute flows at high Reynolds
numbers where small time steps are naturally needed to resolve high frequencies in the flow,
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FIGURE 10.10 Drag and lift coefficients as functions of time for flow over a block. (a) Re ¼ 20 on a grid of 701 �
61, (b) Re ¼ 100 on a grid of 1401 � 121. Clearly, this flow is oscillatory at the higher Reynolds number.
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FIGURE 10.11 Streamlines for flow around a block at Re ¼ 20. Although there is flow separation, the flow is
steady.

FIGURE 10.12 A sequence of flow fields around a block at Re ¼ 100 during one period of vortex shedding. (a)
t ¼ 40.53, (b) t ¼ 41.50, (c) t ¼ 42.48, (d) t ¼ 43.45, (e) t ¼ 44.17. Here the unsteadiness fully washes away the
attached near-wake vortices.
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and the stability condition for the time step is no longer too restrictive. With Dx ¼ Dy and
large (grid) Reynolds numbers, the stability condition (10.110) becomes approximately:

Dt � s
ffiffiffi

2
p MDx: (10.155)

As a more complicated example, the flow around a circular cylinder confined between two
parallel plates (the same geometry as the fourth example later in this section) is calculated
at Re ¼ 1000 using the explicit MacCormack scheme. For flow visualization, a smoke line
is introduced at the inlet. Numerically, an additional convection-diffusion equation for
smoke concentration is solved similarly, with an explicit scheme at each time step coupled
with the computed flow field. Two snapshots of the flow field are displayed in Figure 10.14.
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FIGURE 10.13 Convergence
tests for the drag coefficient as the
grid spacing decreases. The grid
spacing is equal in both directions
Dx ¼ Dy, and time step Dt is
determined by the stability condi-
tion. Confidence in computed
results increases when such results
are shown to be independent of
the resolution of the computa-
tional grid for decreasing grid-
point spacing.

(a)

(b)

FIGURE 10.14 Smoke lines in flow around a circular cylinder between two parallel plates at Re ¼ 1000. The
flow geometry is the same as in the fourth example presented later in this section.

10. COMPUTATIONAL FLUID DYNAMICS458



In this calculation, the flow Mach number is set at M ¼ 0.3, and a uniform fine grid with 100
grid points across the cylinder diameter is used.

Finite-Element Formulation for Flow Over a Cylinder Confined in a Channel

We next consider the flow over a circular cylinder moving along the center of a channel. In
the computation, we fix the cylinder and use the flow geometry as shown in Figure 10.15. The
flow comes from the left with a uniform velocity U. Both plates of the channel are sliding to
the right with the same velocity U. The diameter of the cylinder is d and the width of the
channel is W ¼ 4d. The boundary sections for the computational domain are indicated in
the figure. The location of the inflow boundary G1 is selected to be at xmin ¼ �7.5d, and the
location of the outflow boundary section G2 is at xmax ¼ 15d. They are both far away from
the cylinder so as to minimize their influence on the flow field near the cylinder. In order
to compute the flow at higher Reynolds numbers, we relax the assumptions that the flow
is symmetric and steady. We will compute unsteady flow (with vortex shedding) in the
full geometry and using the Cartesian coordinates shown in Figure 10.15.

The first step in the finite-element method is to discretize (mesh) the computational
domain described in Figure 10.15. We cover the domain with triangular elements. A typical
mesh is presented in Figure 10.16. The mesh size is distributed in a way that finer elements
are used next to the cylinder surface to better resolve the local flow field. For this example, the
mixed finite-element method will be used, such that each triangular element will have six
nodes as shown Figure 10.5a. This element allows for curved sides that better capture the
surface of the circular cylinder. The mesh in Figure 10.16 has 3320 elements, 6868 velocity
nodes, and 1774 pressure nodes.

The weak formulation of the Navier-Stokes equations is given in (10.134) and (10.135). For
this example the body-force term is zero, g ¼ 0. In Cartesian coordinates, the weak form of
the momentum equation (10.134) can be written explicitly as

FIGURE 10.16 A finite-element mesh around a cylinder. Note that mesh spacing is finer near the cylinder to
properly resolve the boundary layers that form on the cylinder.
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FIGURE 10.15 Computational domain for two-dimensional flow past a circular cylinder in a channel formed by
parallel plates.
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(10.156)

where U is the computational domain and ~u ¼ ð~u, ~vÞ. Since the variational functions ~u and ~v
are independent, the weak formulation (10.156) can be separated into two equations:
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(10.157)
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The weak form of the continuity equation (10.135) is expressed as
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~p dU ¼ 0: (10.159)

Given a triangulation of the computational domain, for example, the mesh shown in
Figure 10.16, the weak formulation of (10.157) through (10.159) can be approximated by
the Galerkin finite-element formulation based on the finite-dimensional discretization of
the flow variables. The Galerkin formulation can be written as:
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(10.160)
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(10.161)

and

�
Z

Uh

�

vuh

vx
þ vvh

vy

	

~phdU ¼ 0, (10.162)

where h indicates a given triangulation of the computational domain.
The time derivatives in (10.160) and (10.161) can be discretized by finite-difference

methods. We first evaluate all the terms in (10.160) to (10.162) at a given time instant
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t¼ tnþ1 (fully implicit discretization). Then the time derivative in (10.160) and (10.161) can be
approximated as

vu

vt
ðx, tnþ1Þza

u ðx, tnþ1Þ � u ðx, tnÞ
Dt

� b
vu

vt
ðx, tnÞ, (10.163)

where Dt ¼ tnþ1 � tn is the time step. The approximation in (10.163) is first-order accurate in
time when a ¼ 1 and b ¼ 0. It can be improved to second-order accurate by selecting a ¼ 2
and b ¼ 1 which is a variation of the well-known Crank-Nicolson scheme.

As (10.160) and (10.161) are nonlinear, iterative methods are often used for the solu-
tion. In Newton’s method, the flow variables at the current time t ¼ tnþ1 are often
expressed as:

uhðx, tnþ1Þ ¼ u�ðx, tnþ1Þ þ u0ðx, tnþ1Þ,
phðx, tnþ1Þ ¼ p�ðx, tnþ1Þ þ p0ðx, tnþ1Þ, (10.164)

where u) and p) are the guesstimated values of velocity and pressure during the iteration;
u0and p0 are the corrections sought at each iteration.

Substituting (10.163) and (10.164) into Galerkin formulation, (10.160) through (10.162), and
linearizing the equations with respect to the correction variables, we have:
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þ
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5 dU, (10.165)
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and

�
Z

Uh

�

vu0

vx
þ vv0

vy

	

~ph dU ¼
Z

Uh

�

vu�

vx
þ vv�

vy

	

~ph dU: (10.167)

As the functions in the integrals, unless specified otherwise, are all evaluated at the current
time instant tnþ1, the temporal discretization in (10.165) and (10.166) is fully implicit and
unconditionally stable. The terms on the right-hand side of (10.165) through (10.167) repre-
sent the residuals of the corresponding equations and can be used to monitor the conver-
gence of the nonlinear iteration.

Similar to the one-dimensional case in Section 10.3, the finite-dimensional discretization of
the low variables can be constructed using shape (or interpolation) functions:

u0 ¼
X

A

uAN
u
Aðx, yÞ, v0 ¼

X

A

vAN
u
Aðx, yÞ, p0 ¼

X

B

pBN
p
Bðx, yÞ, (10.168)

where Nu
A ðx, yÞ and N

p
B ðx, yÞ are the shape functions for the velocity and the pressure,

respectively. They are not necessarily the same. In order to satisfy the LBB stability
condition, the shape function Nu

A ðx, yÞ in the mixed finite-element formulation should
be one order higher than N

p
B ðx, yÞ, as discussed in Section 10.4. The summation over

A is through all the velocity nodes, while the summation over B runs through all the
pressure nodes. The variational functions may be expressed in terms of the same shape
functions:

~uh ¼
X

A

~uAN
u
Aðx, yÞ, ~vh ¼

X

A

~vAN
u
Aðx, yÞ, ~ph ¼

X

B

~pBN
p
Bðx, yÞ: (10.169)

Since the Galerkin formulation (10.165) through (10.167) is valid for all possible
choices of the variational functions, the coefficients in (10.169) should be arbitrary. In this
way, the Galerkin formulation (10.165) through (10.167) reduces to a system of algebraic
equations:
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(10.170)
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(10.171)

and
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N
p
B dU, (10.172)

for all the velocity nodes A and pressure nodes B. Equations (10.170) through (10.172) can be
organized into matrix form:

0

@

Auu Auv Bup

Avu Avv Bvp

BT
up BT

vp 0

1

A

0

@

u
v
p

1

A ¼
0

@

fu
fv
fp

1

A, (10.173)

where:

Auu ¼
h

Auu
AA0

i

, Auv ¼
h

Auv
AA0

i

, Bup ¼
h

B
up
AB0

i

,

Avu ¼
h

Avu
AA0

i

, Avv ¼
h
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B
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�
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�
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(10.174)

and:
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dU, (10.180)
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f
p
B ¼

Z

Uh

�

vu�

vx
þ vv�

vy

	

N
p
B dU: (10.183)

The practical evaluation of the integrals in (10.175) through (10.183) is done element-wise.
We need to construct the shape functions locally and transform these global integrals into
local integrals over each element.

In the finite-element method, the global shape functions have very compact support. They
are zero everywhere except in the neighborhood of the corresponding grid point in the mesh.
It is convenient to cast the global formulation using the element point of view (Section 10.3).
In this element view, the local shape functions are defined inside each element. The global
shape functions are the assembly of the relevant local ones. For example, the global shape
function corresponding to the grid point A in the finite-element mesh consists of the local
shape functions of all the elements that share this grid point. An element in the physical space
can be mapped into a standard element, as shown in Figure 10.17, and the local shape func-
tions can be defined on this standard element. The mapping is given by

x ðx, hÞ ¼
X
6

a¼ 1

xeafaðx, hÞ and y ðx, hÞ ¼
X
6

a¼ 1

yeafaðx, hÞ, (10.184)
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FIGURE 10.17 A quadratic tri-
angular finite-element mapping
into the standard element. The
single-digit numbers indicate
equivalent points on the left- and
right-side elements.
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where ðxea, yeaÞ are the coordinates of the nodes in the element e. The local shape functions are
fa. For a quadratic triangular element they are defined as

f1 ¼ z ð2z� 1Þ, f2 ¼ x ð2x� 1Þ, f3 ¼ h ð2h� 1Þ, f4 ¼ 4xz, f5 ¼ 4xh, f6 ¼ 4hz,

(10.185)

where z ¼ 1 � x � h. As shown in Figure 10.17, the mapping (10.184) is able to handle curved
triangles. The variation of the flow variables within this element can also be expressed in
terms of their values at the nodes of the element and the local shape functions,

u0 ¼
X
6

a¼ 1

ueafaðx, hÞ, v0 ¼
X
6

a¼ 1

veafaðx, hÞ, v0 ¼
X
3

b¼ 1

pebjbðx, hÞ: (10.186)

Here the shape functions for velocities are quadratic and the same as the coordinates. The
shape functions for the pressure are chosen to be linear, thus one order less than those for the
velocities. They are given by

j1 ¼ z, j2 ¼ x, j3 ¼ h: (10.187)

Furthermore, the integration over the global computational domain can be written as
the summation of the integrations over all the elements in the domain. As most of these
integrations will be zero, the nonzero ones are grouped as element matrices and
vectors:
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(10.188)

where:

Aeuu
aa0 ¼

Z

Ue

��

a

Dt
fa0 þ u�

vfa0

vx
þ v�

vfa0

vy
þ vu�

vx
fa0

	

fa þ
1

Re

�

2
vfa0

vx

vfa

vx
þ vfa0

vy

vfa

vy

	�

dU, (10.189)
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dU, (10.193)
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dU, (10.194)
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f
ep
b ¼

Z

Ue

�

vu�

vx
þ vv�

vy

	

jbdU: (10.197)

The indices a and a0 run from 1 to 6, and b and b0 run from 1 to 3.
The integrals in the above expressions can be evaluated by numerical integration rules,

Z

Ue
fðx, yÞ dU ¼

Z 1

0

Z 1�h

0
f ðx, hÞ J ðx, hÞ dx dh ¼ 1

2

X
Nint

l¼ 1

fðxl, hlÞ J ðxl, hlÞ Wl, (10.198)

where the Jacobian of the mapping (10.184) is given by J ¼ xx yh � xh yx. Here Nint is the
number of numerical integration points and Wl is the weight of the lth integration point.
For this example, a seven-point integration formula with degree of precision of five (see
Hughes, 1987) was used.

The global matrices and vectors in (10.173) are the summations of the element matrices
and vectors in (10.188) over all the elements. In the process of summation (assembly),
a mapping of the local nodes in each element to the global node numbers is needed. This
information is commonly available for any finite-element mesh.

Once the matrix equation (10.173) is generated, we may impose the essential boundary
conditions for the velocities. One simple method is to use the equation of the boundary condi-
tion to replace the corresponding equation in the original matrix or one can multiply a large
constant by the equation of the boundary condition and add this equation to the original
system of equations in order to preserve the structure of the matrix. The resulting matrix
equation may be solved using common direct or iterative solvers for a linear algebraic system
of equations.

Figures 10.18 and 10.19 display the streamlines and vorticity lines around the cylinder at
three Reynolds numbers: Re ¼ 1, 10, and 40. For these Reynolds numbers, the flow is steady
and should be symmetric above and below the cylinder. However, due to the imperfection in
the mesh used for the calculation and as shown in Figure 10.16, the calculated flow field is not
perfectly symmetric. From Figure 10.18 we observe the increase in the size of the wake
behind the cylinder as the Reynolds number increases. In Figure 10.19, we see the effects
of the Reynolds number in the vorticity build up in front of the cylinder, and in the convec-
tion of the vorticity by the flow.

We next compute the case with Reynolds number Re ¼ 100. In this case, the flow is
expected to be unsteady. Periodic vortex shedding occurs. In order to capture the details
of the flow, we used a finer mesh than the one shown in Figure 10.16. The finer mesh has
9222 elements, 18,816 velocity nodes, and 4797 pressure nodes. In this calculation, the flow
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FIGURE 10.19 Vorticity contours for flow around a cylinder at the three different Reynolds numbers shown in
Figure 10.18. Top-to-bottom asymmetry in the flow field arises because the mesh above and below the cylinder are
not mirror images.

FIGURE 10.18 Streamlines for flow around a cylinder at three different Reynolds numbers: 1, 10, and 40. Here
the streamlines are nearly fore-aft symmetric at the lowest Re, but the cylinder’s wake grows with increasing
Reynolds number.
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starts from rest. Initially, the flow is symmetric, and the wake behind the cylinder grows
bigger and stronger. Then, the wake becomes unstable, undergoes a supercritical Hopf bifur-
cation, and sheds periodically away from the cylinder. The periodic vortex shedding forms
the well-known von Karman vortex street. The vorticity lines are presented in Figure 10.20
for a complete cycle of vortex shedding.

For this case with Re ¼ 100, we plot in Figure 10.21 the history of the forces and torque
acting on the cylinder. The oscillations shown in the lift and torque plots are typical for
the supercritical Hopf bifurcation. The nonzero mean value of the torque shown in
Figure 10.21c is due to the asymmetry in the finite-element mesh. It is clear that the flow
becomes fully periodic at the times shown in Figure 10.20. The period of the oscillation is
measured as s ¼ 0.0475s or s ¼ 4:75 in the nondimensional units. This period corresponds
to a nondimensional Strouhal number S ¼ nd/U ¼ 0.21, where n is the frequency of the

FIGURE 10.20 Vorticity lines for flow around a cylinder at Reynolds number Re ¼ 100. t ¼ tU=d is the
dimensionless time. Here the formation of a von Karman vortex street is evident.
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FIGURE 10.21 History of forces and torque acting on the cylinder at Re ¼ 100: (a) drag coefficient; (b) lift
coefficient; and (c) coefficient for the torque. Clearly the alternate shedding of vortices leads to oscillations in the
fluid-dynamic loads on the cylinder.
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shedding. In the literature, the value of the Strouhal number for an unbounded uniform flow
around a cylinder is found to be around 0.167 at Re ¼ 100 (e.g., Wen & Lin, 2001). The differ-
ence could be caused by the geometry in which the cylinder is confined in a channel.

10.6. CONCLUDING REMARKS

It should be strongly emphasized that CFD is merely a tool for analyzing fluid-flow prob-
lems. If it is used correctly, it can provide useful information cheaply and quickly. However, it
can easily be misused or even abused. In today’s computer age, there is a tendency for people
to trust the output from a computer, especially when they do not know the equations that
were solved or how the computations were performed. One certainly should be aware of
the assumptions used in producing the results from a CFD model.

As we have previously discussed, CFD is never exact. There are uncertainties involved in
CFD predictions. However, one is able to gain more confidence in CFD predictions by
following a few steps. Tests on some benchmark problems with known solutions are often
encouraged. Amesh-refinement test is normally a must in order to be sure that the numerical
solution converges to something meaningful. A similar test with the time step for unsteady
flow problems is often desired. If the boundary locations and conditions are in doubt, their
effects on the CFD predictions should be minimized. Furthermore, the sensitivity of the CFD
predictions to some key parameters in the problem should be investigated for practical
design problems.

In this chapter, we have presented the basics of the finite-difference and finite-element
methods and their applications in CFD. There are other kinds of numerical methods, for
example, the spectral method and the spectral element method, which are often used in
CFD. They share the common approach that discretizes the Navier-Stokes equations into
a system of algebraic equations. However, a class of new numerical techniques including
the lattice gas cellular automata, the lattice Boltzmann method, and dissipative particle
dynamics does not start from the continuum Navier-Stokes equations. Unlike the conven-
tional methods discussed in this chapter, they are based on simplified kinetic models that
incorporate the essential physics of the microscopic or mesoscopic processes so that the
macroscopic-averaged properties obey the desired macroscopic Navier-Stokes equations.

EXERCISES

10.1. Show that the stability condition for the explicit scheme (10.10) is the condition (10.26).
10.2. For the heat conduction equation vT/vt � D(v2T/vx2) ¼ 0, one of the discretized

forms is

�sTnþ1
jþ1 þ ð1þ 2sÞ Tnþ1

j � sTnþ1
j�1 ¼ Tn

j

where s ¼ D Dt/Dx2. Show that this implicit algorithm is always stable.
10.3. An insulated rod initially has a temperature of T (x, 0) ¼ 0	C (0 � x � 1). At t ¼ 0 hot

reservoirs (T ¼ 100	C) are brought into contact with the two ends, A (x ¼ 0) and B
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(x ¼ 1): T (0, t) ¼ T (1, t) ¼ 100	C. Numerically find the temperature T (x, t) of any point

in the rod. The governing equation of the problem is the heat conduction equation vT/

vt � D (v2T/vx2) ¼ 0. The exact solution to this problem is

T�ðxj, tnÞ ¼ 100�
X
M

m¼ 1

400

ð2m� 1Þ psin
h�

2m� 1Þ pxj
i

exp
h

�D ð2m� 1Þ2p2tn
i

,

(10.199)

where M is the number of terms used in the approximation.
a) Try to solve the problem with the explicit forward time, centered space (FTCS)

scheme. Use the parameter s ¼ D Dt/Dx2 ¼ 0.5 and 0.6 to test the stability of the
scheme.

b) Solve the problem with a stable explicit or implicit scheme. Test the rate of
convergence numerically using the error at x ¼ 0.5.

10.4. Derive the weak form, Galerkin form, and the matrix form of the following strong
problem:

Given functions DðxÞ, fðxÞ; and constants g, h, find u ðxÞ such that
�

D
�

x
�

u, x


, xþfðxÞ ¼ 0 on U ¼ ð0; 1Þ,
with u

�

0
� ¼ g and� u, x

�

1
� ¼ h:

Write a computer program solving this problem using piecewise-linear shape func-
tions. You may set D ¼ 1, g ¼ 1, and h ¼ 1. Check your numerical result with the exact
solution.

10.5. Solve numerically the steady convective transport equation,

u
vT

vx
¼ D

v2T

vx2
, for 0 � x � 1,

with two boundary conditions T(0) ¼ 0 and T(1) ¼ 1, where u and D are two constants:
a) using the centered finite-difference scheme in equation (10.91), and compare with

the exact solution; and
b) using the upwind scheme (10.93), and compare with the exact solution.

10.6. Code the explicit MacCormack scheme with the FF/BB arrangement for the driven-
cavity flow problem as described in Section 10.5. Compute the flow field at Re ¼ 100
and 400, and explore effects of Mach number and the stability condition (10.110).
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11.1. INTRODUCTION

Many phenomena that satisfy the conservation laws exactly are unobservable because
they are unstable when subjected to the small disturbances that are invariably present in
any real system. Consider the stability of two simple mechanical systems in a vertical grav-
itation field. A sharpened pencil may, in theory, be balanced on its point on a horizontal
surface, but any small surface vibration or air pressure disturbance will knock it over.
Thus, sharpened pencils on horizontal surfaces are commonly observed lying horizontally.
Similarly, the position of a smooth ball resting on the inside surface of a hemispherical
bowl is stable provided the bowl is concave upwards. However, the ball’s position is unstable
to small displacements if placed on the outer side of a hemispherical bowl when the bowl is
concave downwards (Figure 11.1). In fluid flows, smooth laminar flows are stable to small
disturbances only when certain conditions are satisfied. For example, in the flow of a homo-
geneous viscous fluid in a channel, the Reynolds number must be less than some critical
value for the flow to be stable, and in a stratified shear flow, the Richardson number must
be larger than a critical value for stability. When these conditions are not satisfied, infinites-
imal disturbances may grow spontaneously and completely change the character of the
original flow. Sometimes the disturbances can grow to finite amplitude and reach a new
steady-state equilibrium. The new state may then become unstable to other types of distur-
bances, and may evolve to yet another steady state, and so on. As a limit of this situation, the

FIGURE 11.1 Stable and unstable mechanical systems. Here, gravity is presumed to act downward. In the
upper left and lower right panels, a small displacement of the round object away from equilibrium will be opposed
by the action of gravity and the object will move back toward its equilibrium location. These are linearly stable
situations. In the upper right panel, a small displacement of the object will be enhanced by the action of gravity and
the object will move away from its equilibrium location, an unstable situation. In the lower left, a small displace-
ment of the object does not produce a new force, thus the situation is neutrally stable. In the lower right panel,
a sufficiently large displacement of the object may place it beyond its region of stability; thus this situation is
nonlinearly unstable.
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flow becomes a superposition of a variety of interacting disturbances with nearly random
phases, a state of chaotic or nearly chaotic fluctuations that is commonly described as turbu-
lence. In fact, two primary motivations for studying fluid-flow stability are: 1) to understand
the process of laminar to turbulent transition, and 2) to predict the onset of this transition.
Finite-amplitude effects, including the development of chaotic solutions, are examined
briefly later in this chapter.

The primary objective of this chapter, however, is the examination of stability of certain
fluid flows with respect to infinitesimal disturbances. We shall introduce perturbations on
a particular flow, and determine whether the equations of motion predict that the perturba-
tions grow or decay. In this analysis, the perturbations are commonly assumed to be small
enough so that linearization is possible through neglect of quadratic and higher order terms
in the perturbation variables and their derivatives. While such linearization fruitfully allows
the production of analytical results, it inherently limits the applicability of such results to the
initial behavior of infinitesimal disturbances. The loss of stability does not in itself constitute
a transition to turbulence since the linear theory can, at best, describe only the very beginning
of the transition process. In addition, a real flow may be stable to infinitesimal disturbances
(linearly stable), but may be unstable to sufficiently large disturbances (nonlinearly unstable);
this is schematically represented in Figure 11.1.

In spite of these limitations, linear stability theory enjoys considerable success. There is
excellent agreement between experimental results and the theoretical prediction of the onset
of thermal convection in a layer of fluid, and of the onset of Tollmien-Schlichting waves in
a viscous boundary layer. Taylor’s experimental verification of his own theoretical prediction
of the onset of secondary flow in a rotating Couette flow is so striking that it has led people to
suggest that Taylor’s work is the first rigorous confirmation of the Navier-Stokes equations
on which the calculations are based.

This chapter describes the temporal instability of confined and unconfined flows where
spatially extended perturbations decay, persist, or grow in time. The complimentary situation
where spatially confined disturbances decay, persist, or growwhile traveling in space is more
complicated and is described elsewhere (see Huerre & Monkewitz, 1990). The primary
analysis technique used here, the method of normal modes, is described in the next section.
The third through eleventh sections of this chapter utilize this technique to illustrate basic
flow physics and to present results for a variety of flows important in engineering applica-
tions and geophysical situations. The final few sections describe transition and the onset of
turbulence. None of the flow situations discussed in this chapter contains Coriolis forces.
Baroclinic instability, which does contain the Coriolis frequency, is discussed in Chapter 13.
The books by Chandrasekhar (1961, 1981) and Drazin and Reid (1981) provide further infor-
mation on flow instability. The review article by Bayly, Orszag, and Herbert (1988) is recom-
mended as well.

11.2. METHOD OF NORMAL MODES

Basic linear stability analysis consists of presuming the existence of sinusoidal distur-
bances to a basic state (also called a background, initial, or equilibrium state), which is the
flow whose stability is being investigated. For example, the velocity field of a basic state
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involving a flow parallel to the x-axis and varying along the z-axis is U ¼ U(z)ex. On this
background flow we superpose a spatially extended disturbance of the form:

uðx, y, z, tÞ ¼ buðzÞ expfikxþ imyþ stg ¼ buðzÞ expfijKjðeK,x� ctÞg (11.1)

where û(z) is a complex amplitude, i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary root,K ¼ (k,m, 0) is the distur-
bance wave number, eK ¼ K/jKj, x ¼ (x, y, z), s is the temporal growth rate, c is the complex
phase speed of the disturbance, and the real part of (11.1) is taken to obtain physical quanti-
ties. The complex notation used here is explained in Section 7.7. The two forms of (11.1) are
useful when the disturbance is stationary, and when it takes the form of a traveling wave,
respectively. The reason solutions exponential in (x, y, t) are allowed in (11.1) is that, as we
shall see, the coefficients of the differential equation governing the perturbation in this
flow are independent of (x, y, t). The flow field is assumed to be unbounded in the x and y
directions, hence the wave number components k and m can only be real (and jKj positive
real) in order that the dependent variables remain bounded as x, y / �N; however,
s ¼ sr þ isi and c ¼ cr þ ici are regarded as complex.

The behavior of the system for all possible wave numbers, K, is examined in the analysis.
If sr or ci are positive for any value of the wave number, the system is unstable to disturbances
of this wave number. If no such unstable state can be found, the system is stable. We say that

sr < 0 or ci < 0 implies a stable flow,

sr ¼ 0 or ci ¼ 0 implies a neutrally stable flow, and

sr > 0 or ci > 0 implies an unstable flow:

The method of analysis involving the examination of Fourier components such as (11.1) is
called the normal mode method. An arbitrary disturbance can be decomposed into a complete
set of normal modes. In this method the stability of each of the modes is examined separately,
as the linearity of the problem implies that the various modes do not interact. The method
leads to an eigenvalue problem.

The boundary between stability and instability is called the marginal state, for which
sr ¼ ci ¼ 0. There can be two types of marginal states, depending on whether si or cr is
also zero or nonzero in this state. If si ¼ cr ¼ 0 in the marginal state, then (11.1) shows that
the marginal state is characterized by a stationary pattern of motion; we shall see later that
the instability here appears in the form of cellular convection or secondary flow (see Figure 11.18
later). If, on the other hand, si s 0 or cr s 0 in the marginal state, then the instability sets in as
traveling oscillations of growing amplitude. Following Eddington, such a mode of instability
is frequently called overstability because the restoring forces are so strong that the system
overshoots its corresponding position on the other side of equilibrium. We prefer to avoid
this term and instead call it the oscillatory mode of instability.

The difference between the neutrally stable state and the marginal state should be noted as
both have sr ¼ ci ¼ 0. However, the marginal state has the additional constraint that it lies
at the borderline between stable and unstable solutions. That is, a slight change of parameters
(such as the Reynolds number) from the marginal state can take the system into an unstable
regime where sr > 0. In many cases we shall find the stability criterion by simply setting
sr ¼ 0 or ci ¼ 0, without formally demonstrating that these conditions define the borderline
between unstable and stable states.
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11.3. KELVIN-HELMHOLTZ INSTABILITY

Instability at the interface between two horizontal parallel fluid streams with different
velocities and densities is called the Kelvin-Helmholtz instability. This is an inertial instability
and it can be readily analyzed assuming ideal flow in each stream. The name is also
commonly used to describe the instability of the more general case where the variations of
velocity and density are continuous and occur over a finite thickness (see Section 11.7).

The Kelvin-Helmholtz instability leads to enhanced momentum, heat, and moisture trans-
port in the atmosphere, plus it is routinely exploited in a variety of geometries for mixing two
or more fluid streams in engineering applications. The simplest version is analyzed here in
two dimensions (x, z), where x is the stream-wise coordinate and z is the vertical coordinate.
Consider two fluid layers of infinite depth that meet at a zero-thickness interface located at
z ¼ z(x, t). Let U1 and r1 be the horizontal velocity and density of the basic state in the upper
half-space, andU2 and r2 be those of the basic state in the lower half-space (Figure 11.2). From
Kelvin’s circulation theorem, the perturbed flow must be irrotational in each half-space
because the motion develops from an irrotational basic state, uniform velocity in each half-
space. Thus, the infinitesimally perturbed flow above (subscript 1) and below (subscript 2)
the interface can be described by the velocity potentials:

~f1 ¼ U1xþ f1, and ~f2 ¼ U2xþ f2, (11.2)

where the U1 and U2 terms represent the basic state, and tildes (w) denote the total flow
potentials (background plus perturbations), a notation used throughout this chapter. Here
~f1 and ~f2 must satisfy the Laplace equation, so the perturbation potentials, f1 and f2,
must also satisfy Laplace equations:

V2f1 ¼ 0 and V2f2 ¼ 0: (11.3)

There are a total of four boundary conditions:

f1/0 as z/þN, f2/0 as z/�N, (11.4, 11.5)

FIGURE 11.2 Basic flow configuration leading to the Kelvin-Helmholtz instability. Here the velocity and
density profiles are discontinuous across an interface nominally located at z ¼ 0. If the small vertical perturbation
z(x,t) to this interface grows, then the flow is unstable.
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n,V~f1 ¼ n,Us ¼ n,V~f2 on z ¼ z, and (11.6)

p1 ¼ p2 on z ¼ z, (11.7)

where n is the local normal to the interface,Us is the velocity of the interface, and p1 and p2 are
the pressures above and below the interface. Here, the kinematic and dynamic boundary
conditions, (11.6) and (11.7), respectively, are conceptually similar to (7.14) and (7.20). The
kinematic condition, (11.6), can be rewritten:

n,

(

v~f1

vx
ex þ v~f1

vz
ez

)

¼ n,

�

vz

vt
ez

�

¼ n,

(

v~f2

vx
ex þ v~f2

vz
ez

)

on z ¼ z, (11.8)

where n ¼ Vf=jVf j ¼ ½ � ðvz=vxÞex þ ez�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðvz=vxÞ2
q

when f(x, z, t) ¼ z e z(x, t) ¼ 0
defines the interface, and Us ¼ (vz/vt)ez can be considered purely vertical. When the dot
products are performed, the common square-root factor removed, and the derivatives of
the potentials evaluated using (11.2), (11.8) reduces to:

�
�

U1 þ vf1

vx

�

vz

vx
þ vf1

vz
¼ vz

vt
¼ �

�

U2 þ vf2

vx

�

vz

vx
þ vf2

vz
on z ¼ z:

This condition can be linearized by applying it at z ¼ 0 instead of at z ¼ z and by neglecting
quadratic terms. Thus, the simplified version of (11.6) is:

�U1
vz

vx
þ vf1

vz
¼ vz

vt
¼ �U2

vz

vx
þ vf2

vz
on z ¼ 0: (11.9)

The dynamic boundary condition at the interface requires the pressure to be continuous
across the interface (when surface tension is neglected). The unsteady Bernoulli equations
above and below the layer are:

v~f1

vt
þ 1

2
jV~f1j

2 þ p1
r1

þ gz ¼ C1, and
v~f2

vt
þ 1

2
jV~f2j

2 þ p2
r2

þ gz ¼ C2: (11.10)

So pressure matching requires:

p1 ¼ r1

 

C1 � v~f1

vt
� 1

2
jV~f1j

2 � gz

!

¼ r2

 

C2 � v~f2

vt
� 1

2
jV~f2j

2 � gz

!

¼ p2 on z ¼ z:

(11.11)

In the undisturbed state (f1 ¼ f2 ¼ 0, and z ¼ 0), (11.11) implies:

�

p1
�

undisturbed ¼ r1

�

C1 � 1

2
U2

1

�

¼ r2

�

C2 � 1

2
U2

2

�

¼ ðp2Þundisturbed: (11.12)

Subtracting (11.11) from (11.12) and inserting (11.2) leads to:

r1

�

vf1

vt
þU1

vf1

vx
þ 1

2
jVf1j2 þ gz

�

¼ r2

�

vf2

vt
þU2

vf2

vx
þ 1

2
jVf2j2 þ gz

�

on z ¼ z,
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and this condition can be linearized by dropping quadratic terms and evaluating derivatives
on z ¼ 0 to find:

r1

�

vf1

vt
þU1

vf1

vx
þ gz

�

¼ r2

�

vf2

vt
þU2

vf2

vx
þ gz

�

on z ¼ 0: (11.13)

Thus, field equations (11.3) and the conditions (11.4), (11.5), (11.9), and (11.13) specify the
linear stability of a velocity discontinuity between uniform flows of different speeds and
densities.

We now apply themethod of normalmodes and look for oscillatory solutions for f0
1 and f0

2
in the second exponential form of (11.1) with K ¼ (k, 0, 0):

f1ðx, z, tÞ ¼ A1ðzÞ expfikðx� ctÞg, and f2ðx, z, tÞ ¼ A2ðzÞ expfikðx� ctÞg: (11.14)

Insertion of (11.14) into (11.3) produces:

�k2A1 þ d2A1

dz2
¼ 0, and � k2A2 þ d2A2

dz2
¼ 0,

after common factors are divided out. These equations have exponential solutions:
A�exp(�kz). The boundary conditions (11.4) and (11.5) require the minus sign for z > 0,
and the positive sign for z < 0, so (11.14) reduces to:

f1 ¼ A� expfikðx� ctÞ � kzg, and f2 ¼ Aþ expfikðx� ctÞ þ kzg: (11.15)

Inserting these two equations and a matching form for the interface shape, z ¼
zo expfikðx� ctÞg, into (11.9) and (11.13) leads to:

�iU1kzo � kA� ¼ �ikczo ¼ �iU2kzo þ kAþ, and (11.16)

r1ð�ikcA� þ ikU1A� þ gzoÞ ¼ r2ð�ikcAþ þ ikU2Aþ þ gzoÞ: (11.17)

The remnant of the kinematic boundary condition (11.16) is sufficient to find A� in terms
of zo:

kA� ¼ �ðikU1 � ikcÞzo, and kAþ ¼ ðikU2 � ikcÞzo:
Substituting these into the remnant of the dynamic boundary condition (11.17) leads to
a quadratic equation for c:

r1

	

�ð�ikcþ ikU1Þ2þ gk



¼ r2

	

ð� ikcþ ikU2Þ2þ gk



,

after the common factor of zo has been divided out. The two solutions for c are:

c ¼ r2U2 þ r1U1

r2 þ r1
�
"

�

r2 � r1

r2 þ r1

�

g

k
� r2r1

ðr2 þ r1Þ2
ðU2 �U1Þ2

#1=2

: (11.18)

Clearly, both possible values for c imply neutral stability (ci ¼ 0) as long as the second term
within the square root is smaller than the first. However, one of these solutions will lead to
exponential growth (ci > 0) when
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�

r2 � r1

r2 þ r1

�

g

k
<

r2r1

ðr2 þ r1Þ2
ðU2 �U1Þ2 or gðr22 � r21Þ < kr1r2ðU2 �U1Þ2,

which occurs when the free-stream velocity difference is high enough, the density difference
is small enough, or the wave number k (presumed positive real) is large enough. In addition,
for each growing solution there is a corresponding decaying solution. This happens because
the coefficients of the differential equation and the boundary conditions are all real (see
Section 11.7).

Although it is somewhat complicated, (11.18) includes several limiting cases with simple
interpretations. First of all, setting U1 ¼ U2 ¼ 0 simplifies (11.18) to

c ¼ �
��

r2 � r1

r2 þ r1

�

g

k

�1=2

, (11.19)

which indicates a neutrally stable situation as long as r2 > r1. In this case, (11.19) is the disper-
sion relation for interface waves in an initially static medium; see (7.96). When U1 s U2, one
can always find a value of k large enough to satisfy the requirement for instability. Because all
wavelengths must be allowed in an instability analysis, we can say that the flow is always
unstable to short waves when U1 s U2. When r1 ¼ r2, the interface becomes a vortex sheet
(see Section 5.8) with strength g ¼ U2 e U1, and (11.18) reduces to

c ¼
�

U2 þU1

2

�

� i

�

U2 �U1

2

�

: (11.20)

Here there is always a positive imaginary value of c for every k, so a vortex sheet is unstable to
disturbances of any wavelength. It is also seen that the unstable wave moves with a phase
velocity, cr, equal to the average velocity of the basic flow. This must be true from symmetry
considerations. In a frame of reference moving with the average velocity, the basic flow is
symmetric and the wave therefore should have no preference between the positive and nega-
tive x directions (Figure 11.3).

The Kelvin-Helmholtz instability is caused by the destabilizing effect of shear, which over-
comes the stabilizing effect of stratification. This kind of instability is easy to generate in the
laboratory by filling a horizontal glass tube (of rectangular cross-section) containing two
liquids of slightly different densities (one colored) and gently tilting it. This starts a current
in the lower layer down the plane and a current in the upper layer up the plane. An example
of instability generated in this manner is shown in Figure 11.4.

Shear instability of stratified fluids is ubiquitous in the atmosphere and the ocean and
believed to be a major source of internal waves. Figure 11.5 is a striking photograph of a cloud
pattern, which is clearly due to the existence of high shear across a sharp density gradient.
Similar photographs of injected dye have been recorded in oceanic thermoclines (Woods, 1969).

Figures 11.4 and 11.5 show the advanced nonlinear stage of the instability in which the
interface is a rolled-up layer of vorticity. Such an observed evolution of the interface is in
agreement with results of numerical calculations in which the nonlinear terms are retained
(Figure 11.6).

The source of energy for generating the Kelvin-Helmholtz instability is derived from
the kinetic energy of the two streams. The disturbances evolve to smear out the gradients
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until they cannot grow any longer. Figure 11.7 shows a typical behavior, in which the
unstable waves at the interface have transformed the sharp density profile ACDF to
ABEF and the sharp velocity profile MOPR to MNQR. The high-density fluid in the depth
range DE has been raised upward (and mixed with the lower density fluid in the depth
range BC), which means that the potential energy of the system has increased after the
action of the instability. The required energy has been drawn from the kinetic energy of
the basic field. It is easy to show that the kinetic energy of the initial profile MOPR is
larger than that of the final profile MNQR. To see this, assume that the initial velocity
of the lower layer is zero and that of the upper layer is U1. Then the linear velocity profile
after mixing is given by

FIGURE 11.3 Background velocity field for the Kelvin-Helmholtz instability as seen by an observer traveling at
the average velocity (U1 þ U2)/2 of the two layers. When the densities of the two layers are equal, a disturbance to
the interface will be stationary in this frame of reference.

FIGURE 11.4 Kelvin-Helmholtz instability generated by tilting a horizontal channel containing two liquids of
different densities. The lower layer is dyed and 18 wavelengths of the developing interfacial disturbance are shown.
The mean flow in the lower layer is down the plane (to the left) and that in the upper layer is up the plane (to the
right). S. A. Thorpe, Journal of Fluid Mechanics, 46, 299e319, 1971; reprinted with the permission of Cambridge

University Press.
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UðzÞ ¼ U1

�

1

2
þ z

2h

�

for� h � z � h:

Consider the change in kinetic energy only in the depth range �h < z < h, as the energy
outside this range does not change. Then the initial and final kinetic energies per unit
width are:

Einitial ¼ r

2
U2

1h,

Efinal ¼ r

2

Z h

�h
U2ðzÞ dz ¼ r

3
U2

1h:

The kinetic energy of the flow has therefore decreased, although the total momentum
(¼ !Udz) is unchanged. This is a general result: If the integral of U(z) does not change,
then the integral of U2(z) decreases if the gradients decrease.

In this section the case of a discontinuous variation across an infinitely thin interface is
considered and the flow is always unstable. The case of continuous variation is considered
in Section 11.7, and we shall see that one or more additional conditions must be satisfied
in order for the flow to be unstable.

FIGURE 11.5 Overturning billow cloud near Denver, Colorado. The similarity in shape of the developing
instability with that shown in Figure 11.4 is striking. P. G. Drazin and W. H. Reid, Hydrodynamic Stability, 1981;
reprinted with the permission of Cambridge University Press.
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FIGURE 11.6 Nonlinear numerical calculation of the evolution of a vortex sheet that has been given a small
transverse sinusoidal displacement with wavelength l. The density difference across the interface is zero, and U0 is
the velocity difference across the vortex sheet. Here again, the similarity of the interface shape at the last time with the
results shown in Figures 11.4 and 11.5 is striking. The smaller vertical displacements shown in Figures 11.4 and 11.5
are consistent with the effects of stratification that are absent from the calculations shown in this figure. J. S. Turner,
Buoyancy Effects in Fluids, 1973; reprinted with the permission of Cambridge University Press.

FIGURE 11.7 Smearing out of sharp density and velocity profiles, resulting in an increase of potential energy
and a decrease of kinetic energy. When turbulent, the overturning eddies or billows shown in Figures 11.4 and 11.5
lead to cross-stream momentum transport and fluid mixing. The discontinuous profiles ACDF and MOPR evolve
toward ABEF and MNQR as the instability develops.
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11.4. THERMAL INSTABILITY: THE BÉNARD PROBLEM

In natural flows and engineering flows, heat addition to a nominally quiescent fluid from
below can lead to a situation where cool, dense fluid overlies warmer, less dense fluid. Equa-
tion (11.19) indicates that such stratification will be unstable and lead to instability-driven
motion when the fluid is ideal. However, when viscosity and thermal conduction are active,
they may delay the onset of unstable convective motion, and only for large enough temper-
ature gradients is the situation unstable. In this section, the conditions necessary for the onset
of thermal instability in a layer of fluid are presented.

The first intensive experiments on instability caused by heating a layer of fluid from below
were conducted by Bénard in 1900. Bénard experimented on only very thin layers (a milli-
meter or less) that had a free surface, and observed beautiful hexagonal cells when the
convection developed. Stimulated by these experiments, Rayleigh in 1916 derived the theo-
retical requirement for the development of convective motion in a layer of fluid with two free
surfaces. He showed that the instability would occur when the adverse temperature gradient
was large enough to make the ratio,

Ra ¼ gaGd4=kn, (11.21)

exceed a certain critical value. Here, g is the acceleration due to gravity, a is the fluid’s coef-
ficient of thermal expansion, G ¼ �dT=dz is the vertical temperature gradient of the back-
ground state, d is the depth of the layer, k is the fluid’s thermal diffusivity, and n is the
fluid’s kinematic viscosity. The parameter Ra is called the Rayleigh number, and it represents
a ratio of the destabilizing effect of buoyancy to the stabilizing effect of viscosity. It has been
recognized only recently that most of the motions observed by Bénard were instabilities driven by
the variation of surface tension with temperature and not the thermal instability due to a top-heavy
density gradient (Drazin & Reid, 1981, p. 34). The importance of instabilities driven by surface
tension decreases as the layer becomes thicker. Later experiments on thermal convection in
thicker layers (with or without a free surface) have obtained convective cells of many forms,
not just hexagonal. Nevertheless, the phenomenon of thermal convection in a layer of fluid is
still commonly called the Bénard convection. Rayleigh’s solution of the thermal convection
problem is considered a major triumph of linear stability theory. The concept of a critical Ray-
leigh number finds application in such geophysical problems as solar convection, cloud
formation in the atmosphere, and the motion of the earth’s core.

The formulation of the problem starts with a fluid layer of thickness d confined between
two isothermal walls where the lower wall is maintained at a higher temperature, T0, than
the upper wall, T0 e DT, where DT > 0 (see Figure 11.8). Use Cartesian coordinates centered
in the middle of the fluid layer with the z-axis vertical; start from the Boussinesq set of
equations,

V,~u ¼ 0,
v~u

vt
þ ð~u,VÞ~u ¼ � 1

r0
V~p� g

h

1� að~T � T0Þ
i

ez þ nV2~u,
v~T

vt
þ ð~u,VÞ~T ¼ kV2~T,

(4.10, 4.86, 4.89)

and the simplified equation for the density in terms of the temperature: r ¼ ro½1� að~T � T0Þ�,
where r0 and T0 are the reference density and temperature.Here again, the total flowvariables

11. INSTABILITY484



(background plus perturbation) carry a tilde (w). We decompose the total flow field into
a motionless background plus perturbations:

~u ¼ 0þ uðx, tÞ, ~T ¼ TðzÞ þ T0ðx, tÞ, and ~p ¼ PðzÞ þ pðx, tÞ: (11.22)

The basic state is represented by a quiescent fluid with temperature and pressure distribu-
tions TðzÞ and P(z) that satisfy the equations,

0 ¼ � 1

r0
VP� g½1� aðT � T0Þ� ez and 0 ¼ k

v2T

vz2
: (11.23)

The preceding thermal equation gives the linear vertical temperature distribution:

TðzÞ ¼ T0 � 1

2
DT � Gz, (11.24)

where G h DT/d is the magnitude of the vertical temperature gradient. Substituting (11.22)
into the Boussinesq equation set and subtracting (11.23) produces:

V,u ¼ 0,
vu

vt
þ ðu,VÞu ¼ � 1

r0
Vpþ gaT0ez þ nV2u, and

vT0

vt
� wGþ ðu,VÞT0 ¼ kV2T0,

wherew is the vertical component of the fluid velocity, and theewG term in the final equation
comes from evaluating ðu,VÞT using (11.24). For small perturbations, it is appropriate to line-
arize the second two equations by dropping quadratic and higher order terms:

V,u ¼ 0,
vu

vt
¼ � 1

r0
Vpþ gaT0ez þ nV2u, and

vT0

vt
� wG ¼ kV2T0: (11.25, 11.26, 11.27)

These equations govern the behavior of perturbations to the basic state. A simple scaling anal-
ysis based on these equations leads to the Rayleigh number when T0w DT, and Vw 1/d. From
(11.27), the vertical velocity scale is found by equating the advective and diffusion terms:

wGwkV2T0wk
1

d2
DT ¼ k

1

d

DT

d
¼ k

1

d
G, so wwk=d:

FIGURE 11.8 Flow geometry for the thermal convection between horizontal surfaces separated by a distance d.
The lower surface is maintained at a higher temperature than the upper surface, and the coordinates are centered
between them. For a given fluid and a fixed geometry, when the temperature difference DT is small, the fluid
remains motionless and heat is transferred between the plates by thermal conduction. However, a sufficiently high
DT will cause a cellular flow pattern to appear and thermal convection of heat to occur.
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Forming a ratio of the last two terms in (11.26) leads to:

buoyant force

viscous force
w

gaT0

nð1=d2Þww
gaðDT=dÞd
nð1=d2Þðk=dÞ ¼ gaGd4

nk
¼ Ra:

The perturbation equations can be written in terms of w and T0 by taking the Laplacian of
the z-component of (11.26):

v

vt
V2w ¼ � 1

r0
V2vp

vz
þ gaV2T0 þ nV4w: (11.28)

Thepressure term in (11.28) can be eliminated by taking thedivergence of (11.26), using (11.25),

v

vt
V,u ¼ � 1

r0
V2pþ ga

v

vz
T0 þ nV2V,u, or 0 ¼ � 1

r0
V2pþ ga

v

vz
T0,

and then differentiating with respect to z to obtain:

0 ¼ � 1

r0
V2vp

vz
þ ga

v2T0

vz2
,

which can be subtracted from (11.28) to find:

v

vt
V2w ¼ þgaV2

HT
0 þ nV4w, (11.29)

where V2
H ¼ v2=vx2 þ v2=vy2 is the horizontal Laplacian operator.

Equations (11.27) and (11.29) govern the development of perturbations on the system. The
boundary conditions on the upper and lower rigid surfaces are that the no-slip condition is
satisfied and that the walls are maintained at constant temperatures. These conditions
require u ¼ v ¼ w ¼ T0 ¼ 0 at z ¼ �d/2. Because the conditions on u and v hold for all x
and y, it follows from the continuity equation that vw/vz ¼ 0 at the walls. The boundary
conditions therefore can be written as

w ¼ vw=vz ¼ T0 ¼ 0 on z ¼ �d=2: (11.30)

Dimensionless independent variables are used in the rest of the analysis via the
transformation:

t/ðd2=kÞt and ðx, y, zÞ/ðxd, yd, zdÞ,
where the dimensional variables are on the left side and the new dimensionless variables are
on the right-hand side; note that we are avoiding the introduction of new symbols for the
dimensionless variables. Equations (11.27), (11.29), and (11.30) then become:

�

v

vt
� V2

�

T0 ¼ Gd2

k
w,

�

1

Pr

v

vt
� V2

�

V2w ¼ gad2

n
V2
HT

0, and

w ¼ vw=vz ¼ T0 ¼ 0 on z ¼ �1

2
:

(11.31, 11.32, 11.33)

where Pr h n/k is the Prandtl number.
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The method of normal modes is now introduced. Because the coefficients in (11.31)
and (11.32) are independent of x, y, and t, solutions exponential in these variables are
allowed. We therefore assume normal modes given by the first version of (11.1) with
K ¼ (k, l, 0):

w ¼ bwðzÞ expfikxþ ilyþ stg, and T0 ¼ bTðzÞ expfikxþ ilyþ stg:
The requirement that solutions remain bounded as x, y /N implies that the wave numbers
k and lmust be real. In other words, the normal modes must be oscillatory in the directions of
unboundedness. The temporal growth rate s ¼ sr þ isi is allowed to be complex. With
this dependence, the operators in (11.31) and (11.32) primarily transform to algebraic multi-
pliers via:

v=vt/s, V2
H/� k2 � l2h � K2, and V2/� K2 þ d2=dz2,

where K ¼ jKj is the magnitude of the (dimensionless) horizontal wave number. Equations
(11.31) and (11.32) then become

 

sþ K2 � d2

dz2

!

bT ¼ Gd2

k
bw and

 

s

Pr
þ K2 � d2

dz2

!  

d2

dz2
� K2

!

bw ¼ �gad2K2

n
bT :

(11.34, 11.35)

Making the substitution WhðGd2=kÞbw, (11.34) and (11.35) reduce to:

 

sþ K2 � d2

dz2

!

bT ¼ W and

 

s

Pr
þ K2 � d2

dz2

! 

d2

dz2
� K2

!

W ¼ �RaK2
bT : (11.36, 11.37)

The boundary conditions (11.33) become

W ¼ vW=vz ¼ bT ¼ 0 on z ¼ �1=2: (11.38)

Here we note that s is real for Ra > 0 (see Exercise 11.6). The Bénard problem is one of
two well-known problems in which s is real. (The other one is Taylor-Couette flow between
rotating cylinders, discussed in the following section.) In most other problems s is complex,
and the marginal state (sr ¼ 0) contains propagating waves (as is true for the Kelvin-Helm-
holtz instability). In the Bénard and Taylor problems, however, the marginal state corre-
sponds to s ¼ 0, and is therefore stationary and does not contain propagating waves. In
these flows, the onset of instability is marked by a transition from the background state
to another steady state. In such a case we commonly say that the principle of exchange of stabil-
ities is valid, and the instability sets in as a cellular convection, which will be explained
shortly.

Two solutions for Rayleigh-Bénard flow are presented in the remainder of this section.
First, the solution is presented for the case that is easiest to realize in a laboratory
experiment, namely, a layer of fluid confined between two rigid plates on which no-slip
conditions are satisfied. The solution to this problem was first given by Jeffreys in 1928.
The second solution for a layer of fluid with two stress-free surfaces is presented after
the first.
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For the marginal state s ¼ 0, the equation pair (11.36) and (11.37) become
 

d2

dz2
� K2

!

bT ¼ �W and

 

d2

dz2
� K2

!2

W ¼ RaK2
bT : (11.39)

Eliminating bT , we obtain
 

d2

dz2
� K2

!3

W ¼ �RaK2W : (11.40)

The boundary condition (11.38) becomes

W ¼ vW=vz ¼ ðd2=dz2 � K2Þ2W ¼ 0 on z ¼ �1=2: (11.41)

We have a sixth-order homogeneous differential equation with six homogeneous boundary
conditions. Nonzero solutions for such a system can only exist for a particular value of Ra (for
a given K). It is therefore an eigenvalue problem. Note that the Prandtl number has dropped
out of the marginal state.

The point to observe is that the problem is symmetric with respect to the two boundaries,
thus the eigenfunctions fall into two distinct classesdthose with the vertical velocity
symmetric about the midplane z ¼ 0, and those with the vertical velocity antisymmetric
about the midplane (Figure 11.9). The gravest even mode therefore has one row of cells,
and the gravest oddmode has two rows of cells. It can be shown that the smallest critical Ray-
leigh number is obtained by assuming disturbances in the form of the gravest even mode,
which also agrees with experimental findings of a single row of cells.

Because the coefficients of the governing equation (11.40) are independent of z, the general
solution can be expressed as a superposition of solutions of the form:WfexpðqzÞ, where the
six roots of q are found from

�

q2 � K2
�3¼ �RaK2:

The three roots of this equation for q2 are:

q2 ¼ �K2

"

�

Ra

K4

�1=3

�1

#

and q2 ¼ K2

"

1þ 1

2

�

Ra

K4

�1=3

ð1� i
ffiffiffi

3
p

Þ
#

: (11.42)

FIGURE 11.9 Flowpattern and eigenfunction structure of the gravest evenmode and the gravest oddmode in the
Bénard problem. The even mode is observed first as the temperature difference between the surfaces is increased.
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Taking square roots, the six roots for q are �iq0, �q, and �q*, where

q0 ¼ K

"

�

Ra

K4

�1=3

�1

#1=2

and q and its conjugate q* are given by the two roots of the second part of (11.42).
The even solution of (11.40) is therefore

W ¼ A cos qozþ B cosh qzþ C cosh q�z,

where A, B, and C are constants. To apply the boundary conditions on this solution, we find
the following derivatives:

dW=dz ¼ �Aq0 sin q0zþ Bq sinh qzþ Cq� sinh q�z, and
	

d2=dz2 � K2

2

W ¼ A
�

q20 þ K2
�2
cos q0zþ B

�

q2 � K2
�2
cosh qzþ B

�

q�2 � K2
�2
cosh q�z:

The boundary conditions (11.41) then require:

2

6

6

6

6

6

4

cos
q0
2

cosh
q

2
cosh

q�

2

�q0 sin
q0
2

q sinh
q

2
q� sinh

q�

2
�

q20 þ K2
�2

cos
q0
2

�

q2 � K2
�2

cosh
q

2

�

q�2 � K2
�2
cosh

q�

2

3

7

7

7

7

7

5

2

4

A
B
C

3

5 ¼ 0:

Here,A, B, and C cannot all be zero if we want to have a nonzero solution, which requires that
the determinant of the matrix must vanish. This gives a relation between Ra and the corre-
sponding eigenvalue K (Figure 11.10). Points on the curve K(Ra) represent marginally stable
states, which separate regions of stability and instability. The lowest value of Ra for marginal
stability is found to be Racr ¼ 1708, attained at Kcr ¼ 3.12. As all values of K are allowed by the
system, the flow first becomes unstable when the Rayleigh number reaches a value of

Racr ¼ 1708:

The wavelength at the onset of instability is: lcr ¼ 2pd=Kcry2d. Laboratory experiments
agree remarkably well with these predictions, and the solution of the Bénard problem is
considered one of the major successes of the linear stability theory.

The solution for a fluid layer with stress-free surfaces is somewhat simpler and was first
given by Rayleigh. This case can be approximately realized in a laboratory experiment if
a layer of liquid is floating on top of a somewhat heavier liquid. Here the boundary condi-
tions are w ¼ T0 ¼ m(vu/vz þ vw/vx) ¼ m(vv/vz þ vw/vy) ¼ 0 at the surfaces, the latter two
conditions resulting from zero stress. Because w vanishes (for all x and y) on the boundaries,
it follows that the vanishing stress conditions require vu/vz ¼ vv/vz ¼ 0 at the boundaries.
On differentiating the continuity equation with respect to z, it follows that v2w/vz2 ¼ 0 on
the free surfaces. In terms of the complex amplitudes, the eigenvalue problem is therefore
defined by (11.39) and with boundary conditions:

W ¼ ðd2=dz2 � K2Þ2W ¼ d2W=dz2 ¼ 0 on z ¼ �1=2:
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By expanding and simplifying the products of operators, the boundary conditions can be
rewritten as

W ¼ d2W=dz2 ¼ d4W=dz4 ¼ 0 on z ¼ �1=2, (11.43)

which should be compared with the conditions (11.41) for rigid boundaries.
Successive differentiation of (11.40) shows that all even derivatives of W vanish on the

boundaries. The eigenfunctions must therefore be

W ¼ A sinðnpzÞ,
where A is any constant and n is an integer. Substitution into equation (11.40) leads to the
eigenvalue relation

Ra ¼ �

n2p2 þ K2
�3
=K2, (11.44)

which gives the Rayleigh number in the marginal state. For a given K2, the lowest value of Ra
occurs when n ¼ 1, which is the gravest mode. The critical Rayleigh number is obtained by
finding the minimum value of Ra as K2 is varied, that is, by setting dRa/dK2 ¼ 0:

dRa

dK2
¼ 3

�

p2 þ K2
�2

K2
� 3
�

p2 þ K2
�3

K4
¼ 0,

FIGURE 11.10 Stable andunstable regions forBénardconvection inaplot of thedimensionlesswavenumberKvs.
Ra, theRayleighnumber (11.21). The lowest possibleRa value forwhich theflowmaybeunstable is 1708, and thewave
number of the first mode of instability is 3.12/d, where d is the separation between the horizontal surfaces.
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which requires K2
cr ¼ p2=2. The corresponding value of Ra is:

Racr ¼ �

27=4
�

p4 ¼ 657:5:

For a layer with a free upper surface (where the stress is zero) and a rigid bottom wall, the
solution of the eigenvalue problem gives Racr ¼ 1101 and Kcr ¼ 2.68. This case is of interest
in laboratory experiments having the most visual effects, as originally conducted by Bénard.

The linear theory specifies the horizontal wavelength at the onset of instability, but not the
horizontal pattern of the convective cells. This is because a given wave number vector K can
be decomposed into two orthogonal components in an infinite number of ways. If we assume
that the experimental conditions are horizontally isotropic, with no preferred directions, then
regular polygons in the form of equilateral triangles, squares, and regular hexagons are all
possible structures. Bénard’s original experiments showed only hexagonal patterns, but
we now know that he was observing a different phenomenon. The observations summarized
in Drazin and Reid (1981) indicate that hexagons frequently predominate initially. As Ra is
increased, the cells tend to merge and form rolls, on the walls of which the fluid rises or sinks
(Figure 11.11). The cell structure becomesmore chaotic as Ra is increased further, and the flow
becomes turbulent when Ra > 5 � 104.

The magnitude or direction of flow in the cells cannot be predicted by linear theory. After
a short time of exponential growth, the flow becomes fast enough for the nonlinear terms to
be important and it reaches a nonlinear equilibrium stage. The flow pattern for a hexagonal
cell is sketched in Figure 11.12. Particles in the middle of the cell usually rise in a liquid and

FIGURE 11.11 Two-dimensional
convection rolls in Bénard convec-
tion. Fluid alternately ascends and
descends between the rolls. The
horizontal spacing between roll
centers is nearly the same as the
spacing between the horizontal
surfaces.

FIGURE 11.12 Above the critical Rayleigh number, complicated flow patterns may exist because a range of
wave numbers is unstable for the first mode. A commonly observed Bénard-convection flow pattern involves
hexagonal cells. Once such cell is shown here.
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fall in a gas. This has been attributed to the property that the viscosity of a liquid decreases
with temperature, whereas that of a gas increases with temperature. The rising fluid loses
heat by thermal conduction at the top wall, travels horizontally, and then sinks. For a steady
cellular pattern, the continuous generation of kinetic energy is balanced by viscous dissipa-
tion. The generation of kinetic energy is maintained by continuous release of potential energy
due to heating at the bottom and cooling at the top.

11.5. DOUBLE-DIFFUSIVE INSTABILITY

An interesting instability results when the density of the fluid depends on two opposing
gradients. The possibility of this phenomenon was first suggested by Stommel et al. (1956),
but the dynamics of the process was first explained by Stern (1960). Turner (1973), review arti-
cles by Huppert and Turner (1981), and Turner (1985) discuss the dynamics of this phenom-
enon and its applications to various fields such as astrophysics, engineering, and geology.
Historically, the phenomenon was first suggested with oceanic application in mind, and
this is how we shall present it. For sea water the density depends on the temperature ~T
and salt content ~s (kilograms of salt per kilograms of water), so that the density is given by:

~r ¼ r0

h

1� að~T � T0Þ þ bð~s� s0Þ
i

,

where the value of a determines how fast the density decreases with temperature, and the
value of b determines how fast the density increases with salinity. As defined here, both
a and b are positive. The key factor in this instability is that the diffusivity ks of salt in water
is only 1% of the thermal diffusivity k. Such a system can be unstable even when the density
decreases upwards. By means of the instability, the flow releases the potential energy of the
component that is “heavy at the top.” Therefore, the effect of diffusion in such a system can
be to destabilize a stable density gradient. This is in contrast to a medium containing a single
diffusing component, for which the analysis of the preceding section shows that the effect of
diffusion is to stabilize the system even when it is heavy at the top.

Consider the two situations of Figure 11.13, both of which can be unstable although each is
stably stratified in density (dr=dz < 0). Consider first the case of hot and salty water lying
over cold and fresh water (Figure 11.13a), that is, when the system is top heavy in salt. In
this case both dT=dz and dS/dz are positive, and we can arrange the composition of water
such that the density decreases upward. Because ks � k, a displaced particle would be
near thermal equilibrium with the surroundings, but would exchange negligible salt. A
rising particle therefore would be constantly lighter than the surroundings because of the
salinity deficit, and would continue to rise. A parcel displaced downward would similarly
continue to plunge downward. The basic state shown in Figure 11.13a is therefore unstable.
Laboratory observations show that the instability in this case appears in the form of a forest of
long narrow convective cells, called salt fingers (Figure 11.14). Shadowgraph images in the
deep ocean have confirmed their existence in nature.

We can derive a criterion for instability by generalizing our analysis of the Bénard convec-
tion so as to include salt diffusion. Assume a layer of depth d confined between stress-free
boundaries maintained at constant temperature and constant salinity. If we repeat the

11. INSTABILITY492



FIGURE 11.13 Two kinds of double-diffusive instabilities. (a) Finger instability, showing up- and down-going
salt fingers and their temperature, salinity, and density. Arrows indicate the direction of fluid motion. (b) Oscillating
instability, finally resulting in a series of convecting layers separated by “diffusive’’ interfaces. Across these
interfaces T and S vary sharply, but heat is transported much faster than salt.

FIGURE 11.14 Salt fingers, produced by pouring a salt solution on top of a stable temperature gradient. Flow
visualization by fluorescent dye and a horizontal beam of light. J. Turner, Naturwissenschaften, 72, 70e75, 1985;
reprinted with the permission of Springer-Verlag GmbH & Co.
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derivation of the perturbation equations for the normal modes of the system, the equations
that replace (11.39) are found to be:

 

d2

dz2
� K2

!

bT ¼ �W ,
ks

k

 

d2

dz2
� K2

!

bs ¼ �W , and

 

d2

dz2
� K2

!2

W ¼ �RaK2
bT þ Rs0K2

bs,

(11.45)

where bs ðzÞ is the complex amplitude of the salinity perturbation, and we have defined

Rah
gad4ðdT=dzÞ

nk
and Rs0h

gbd4ðdS=dzÞ
nk

:

Note that k (and not ks) appears in the definition of Rs0. In contrast to (11.45), a positive sign
appeared in (11.39) in front of Ra because in the preceding section Ra was defined to be posi-
tive for a top-heavy situation.

It is seen from the first two equations of (11.45) that the equations for bT and bsks=k are the
same. The boundary conditions are also the same for these variables:

bT ¼ bsks=k ¼ 0 at z ¼ �1=2:

It follows that we must have bT ¼ ksbs=k everywhere. Equations (11.45) therefore become:

ðd2=dz2 � K2ÞbT ¼ �W and ðd2=dz2 � K2Þ2W ¼ ðRs� RaÞK2
bT ,

where

Rsh
k

ks
Rs0 ¼ gbd4ðdS=dzÞ

nks
:

The preceding set is now identical to the set (11.39) for the Bénard convection, with (Rs � Ra)
replacing Ra. For stress-free boundaries, the solution of the preceding section shows that the
critical value is

Rs� Ra ¼ 27

4
p4 ¼ 657,

which can be written as

gd4

n

�

b

ks

dS

dz
� a

k

dT

dz

�

¼ 657: (11.46)

Even if a ðdT=dzÞ � b ðdS=dzÞ> 0 (i.e., r decreases upward), the condition (11.46) can be quite
easily satisfied because ks is much smaller than k. The flow can therefore be made unstable
simply by ensuring that the factor within [ ] is positive and making d large enough.

The analysis predicts that the lateral width of the cell is of the order of d, but such wide
cells are not observed at supercritical stages when (Rs � Ra) far exceeds 657. Instead, long
thin salt fingers are observed, as shown in Figure 11.14. If the salinity gradient is large,
then experiments as well as calculations show that a deep layer of salt fingers becomes
unstable and breaks down into a series of convective layers, with fingers confined to the
interfaces. Oceanographic observations frequently show a series of staircase-shaped vertical
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distributions of salinity and temperature; with a positive overall dS/dz and dT=dz such distri-
butions can indicate salt finger activity.

The double-diffusive instability may also occur when cold fresh water overlays hot salty
water (Figure 11.13b). In this case both dT=dz and dS/dz are negative, and we can choose
their values such that the density decreases upward. Again the system is unstable, but
the dynamics are different. A particle displaced upward loses heat but no salt. Thus it
becomes heavier than the surroundings and buoyancy forces it back toward its initial posi-
tion, resulting in an oscillation. However, a stability calculation shows that less than perfect
heat conduction results in a growing oscillation, although some energy is dissipated. In this
case the growth rate s is complex, in contrast to the situation of Figure 11.13a where it is
real.

Laboratory experiments show that the initial oscillatory instability does not last long,
and eventually results in the formation of a number of horizontal convecting layers, as
sketched in Figure 11.13b. Consider the situation when a stable salinity gradient in an
isothermal fluid is heated from below (Figure 11.9). The initial instability starts as a growing
oscillation near the bottom. As the heating is continued beyond the initial appearance of the
instability, a well-mixed layer develops, capped by a salinity step, a temperature step, and
no density step. The heat flux through this step forms a thermal boundary layer, as shown
in Figure 11.15. As the well-mixed layer grows, the temperature step across the thermal
boundary layer becomes larger. Eventually, the Rayleigh number across the thermal
boundary layer becomes critical, and a second convecting layer forms on top of the first.
The second layer is maintained by heat flux (and negligible salt flux) across a sharp laminar
interface on top of the first layer. This process continues until a stack of horizontal layers
forms one upon another. From comparison with the Bénard convection, it is clear that
inclusion of a stable salinity gradient has prevented a complete overturning from top to
bottom.

FIGURE 11.15 Distributions of salinity, temperature, and density generated by heating a linear salinity gradient
from below. As heating continues the mixed layer depth will increase until a second mixed layer forms. Eventually,
the flow pattern sketched and described in Figure 11.13b forms. Top to bottom overturning motion is not possible
because of the overall stratification.
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The two examples in this section show that in a double-component system in which the
diffusivities for the two components are different, the effect of diffusion can be destabilizing,
even if the system is judged hydrostatically stable. In contrast, diffusion is stabilizing in
a single-component system, such as the Bénard system. The two requirements for the
double-diffusive instability are that the diffusivities of the components be different, and
that the components make opposite contributions to the vertical density gradient.

11.6. CENTRIFUGAL INSTABILITY: TAYLOR PROBLEM

In this section we shall consider the instability of a Couette flow between concentric
rotating cylinders, a problem first solved by G. I. Taylor in 1923. In many ways the problem
is similar to the Bénard problem, in which there is a potentially unstable arrangement of
temperature. In the Couette-flow problem the source of the instability is the unstable arrange-
ment of angular momentum. Whereas convection in a heated layer is brought about by
buoyant forces becoming large enough to overcome the viscous resistance, the convection
in a Couette flow is generated by the centrifugal forces being able to overcome the viscous
forces. We shall first present Rayleigh’s discovery of an inviscid stability criterion for the
problem and then outline Taylor’s solution of the viscous case. Experiments indicate that
the instability initially appears in the form of axisymmetric disturbances, for which
v/vq ¼ 0. Accordingly, we shall limit ourselves only to the axisymmetric case.

The problemwas first considered by Rayleigh in 1888. Neglecting viscous effects, he discov-
ered the source of instability for this problem and demonstrated a necessary and sufficient
condition for instability. LetUq(r) be the angular-directed velocity in the r-q plane at any radial
distance from the origin. For inviscid flowsUq(r) can be any function, but only certain distribu-
tions canbestable. Imagine that twofluid ringswithequalmass at radialdistances r1 and r2 (>r1)
are interchanged. As the motion is inviscid, Kelvin’s theorem requires that the circulation G ¼
2prUq (proportional to the angular momentum rUq) should remain constant during the inter-
change. That is, after the interchange, the fluid at r2 will have the circulation (namely, G1) that
it had at r1 before the interchange. Similarly, the fluid at r1 will have the circulation (namely,
G2) that it had at r2 before the interchange. Conservation of circulation requires that the kinetic
energy Emust change during the interchange. Because E ¼ U2

q=2 ¼ G2=8p2r2 we have

Efinal ¼
1

8p2

"

G2
2

r21
þ G2

1

r22

#

,

Einitial ¼ 1

8p2

"

G2
1

r21
þ G2

2

r22

#

,

so that the kinetic energy change per unit mass is:

DE ¼ Efinal � Einitial ¼
1

8p2
ðG2

2 � G2
1Þ
 

1

r21
� 1

r22

!

:

Because r2 > r1, a velocity distribution for which G2
2 > G2

1 would make DE positive, and this
implies that an external source of energy would be necessary to perform the interchange of
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the fluid rings. Under this condition a spontaneous interchange of the rings is not possible, and
the flow is stable. On the other hand, if G2 decreases with r, then an interchange of rings will
result in a release of energy; such a flow is unstable. It can be shown that in this situation the
centrifugal force in the new location of an outwardly displaced ring is larger than the prevail-
ing (radially inward) pressure gradient force.

Rayleigh’s criterion can therefore be stated as follows: An inviscid Couette flow is unstable if

dG2=dr < 0
�

unstable
�

:

The criterion is analogous to the inviscid requirement for static instability in a density-stratified
fluid:

dr=dz > 0 ðunstableÞ:
Therefore, the stratification of angular momentum in a Couette flow is unstable if it decreases
radially outwards. When the outer cylinder is held stationary and the inner cylinder is
rotated, dG2/dr < 0 and Rayleigh’s criterion implies that the flow is inviscidly unstable. As
in the Bénard problem, however, merely having a potentially unstable arrangement does
not cause instability in a viscous medium.

This inviscid Rayleigh criterion is modified in a viscous version of the problem. Taylor’s
solution of the viscous problem is outlined in what follows. Using cylindrical polar coordi-
nates (R, 4, z) and assuming axial symmetry, the equations of motion are:

D~uR
Dt

�
~u24
R

¼ �1

r

v~p

vR
þ n

 

V2~uR � ~uR
R2

!

,
D~u4
Dt

þ ~uR~u4
R

¼ n

 

V2~u4 � ~u4
R2

!

,

D~uz
Dt

¼ �1

r

v~p

vz
þ nV2~uz, and

v

vR
ðR~uRÞ þ v~uz

vz
¼ 0,

(11.47)

where

D

Dt
¼ v

vt
þ ~uR

v

vR
þ ~uz

v

vz
and V2 ¼ v2

vR2
þ 1

R

v

vR
þ v2

vz2
:

We decompose the motion into a background state plus perturbation:

~u ¼ Uþ u and ~p ¼ Pþ p: (11.48)

The background state is given by (see Section 8.2):

UR ¼ Uz ¼ 0, U4 ¼ ARþ B=R and
1

r

dP

dR
¼ U2

4

R
, (11.49)

where

Ah
U2 R

2
2 � U1R

2
1

R2
2 � R2

1

, Bh

�

U1 � U2

�

R2
1 R

2
2

R2
2 � R2

1

:

Here, U1 and U2 are the angular speeds of the inner and outer cylinders, respectively, and R1

and R2 are their radii (Figure 11.16).
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Substituting (11.48) into (11.47), neglecting nonlinear terms, and subtracting the back-
ground state (11.49), we obtain the perturbation equations:

vuR
vt

� 2U4u4
R

¼ �1

r

vp

vR
þ n

�

V2uR � uR
R2

�

,
vu4
vt

þ
�

dU4

dR
þU4

R

�

uR ¼ n

�

V2u4 � u4
R2

�

,

vuz
vt

¼ �1

r

vp

vz
þ nV2uz, and

v

vR
ðRuRÞ þ vuz

vz
¼ 0:

(11.50)

As the coefficients in these equations depend only on R, the equations admit solutions
that depend on z and t exponentially. We therefore consider normal mode solutions of the
form:

�

uR,u4,uz, p
� ¼

	

buRðRÞ, bu4ðRÞ, buzðRÞ, bpðRÞ



expfikzþ stg:
The requirement that the solutions remain bounded as z/ �N implies that the axial wave
number k must be real. After substituting the normal modes into (11.50) and eliminating ûz
and bp, we get a coupled system of equations in buR and bu4. Under the narrow-gap approxima-
tion, for which d ¼ R2 e R1 is much smaller than (R1 þ R2)/2, these equations finally become
(see Chandrasekhar, 1961, for details):

FIGURE 11.16 Geometry of the flow and the instability in rotating Couette flow. The fluid resides between
rotating cylinders with radii R1 and R2. As for Bénard convection, the resulting instability forms as counter-rotating
rolls with a wavelength that is approximately twice the gap between the cylinders.
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ðd2=dR2 � k2 � sÞðd2=dR2 � k2ÞbuR ¼ ð1þ axÞbu4, and

ðd2=dR2 � k2 � sÞbu4 ¼ �Tak2buR,
(11.51)

where

ah ðU2=U1Þ � 1, xh ðR� R1Þ=d, dhR2 � R1,

and Ta is the Taylor number

Tah 4

 

U1R
2
1 � U2 R

2
2

R2
2 � R2

1

!

U1d
4

n2
: (11.52)

It is the ratio of the centrifugal force to viscous force, and equals 2(U1R1d/v)
2(d/R1) when only

the inner cylinder is rotating and the gap is narrow.
The boundary conditions are

buR ¼ dbuR=dR ¼ bu4 ¼ 0 at x ¼ 0, 1: (11.53)

The eigenvalues k at the marginal state are found by setting the real part of s to zero. On the
basis of experimental evidence, Taylor assumed that the marginal states are given by s ¼ 0.
This was later proven to be true for cylinders rotating in the same directions, but a general
demonstration for all conditions is still lacking.

A solution of the eigenvalue problem (11.51), subject to (11.53), was obtained by
Taylor. Figure 11.17 shows the results of his calculations and his own experimental

FIGURE 11.17 Taylor’s observation and narrow-gap calculation of marginal stability in rotating Couette flow
of water. The ratio of radii is R2/R1 ¼ 1.14. The region above the curve is unstable. The dashed line represents
Rayleigh’s inviscid criterion, with the region to the left of the line representing instability. The experimental and
theoretical results agree well and suggest that viscosity acts to stabilize the flow.
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verification of the analysis. The vertical axis represents the angular velocity of the inner
cylinder (taken positive), and the horizontal axis represents the angular velocity of the
outer cylinder. Cylinders rotating in opposite directions are represented by a negative
U2. Taylor’s solution of the marginal state is indicated, with the region above the curve

FIGURE 11.18 Instability of rotating Couette flow. Panels (a), (b), (c), and (d) correspond to increasing Taylor
number. At first the instability appears as periodic rolls that do not vary with the azimuthal angle. Next, the rolls
develop azimuthalwaveswith wavelengths that depend on the Taylor number. Eventually, the flow becomes turbulent.
D. Coles, Journal of Fluid Mechanics, 21, 385e425, 1965; reprinted with the permission of Cambridge University Press.
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corresponding to instability. Rayleigh’s inviscid criterion is also indicated by the straight
dashed line. Taylor’s viscous solution indicates that the flow remains stable until a critical
Taylor number of

Tacr ¼ 1708

ð1=2Þð1þ U2=U1Þ (11.54)

is attained. The nondimensional axial wave number at the onset of instability is found to be
kcr ¼ 3.12, which implies that the wavelength at onset is lcr ¼ 2pd/kcr z 2d. The height of one
cell is therefore nearly equal to d, so that the cross-section of a cell is nearly a square. In the
limit U2/U1/1, the critical Taylor number is identical to the critical Rayleigh number for
thermal convection discussed in the preceding section, for which the solution was given
by Jeffreys five years later. The agreement is expected, because in this limit a ¼ 0, and the
eigenvalue problem (11.51) reduces to that of the Bénard problem (11.39). For cylinders
rotating in opposite directions the Rayleigh criterion predicts instability, but the viscous solu-
tion can be stable.

Taylor’s analysis of the problem was enormously satisfying, both experimentally and
theoretically. He measured the wavelength at the onset of instability by injecting dye and
obtained an almost exact agreement with his calculations. The observed onset of instability
in the U1 U2 -plane (Figure 11.17) was also in remarkable agreement. This has prompted
remarks such as, “the closeness of the agreement between his theoretical and experimental
results was without precedent in the history of fluid mechanics” (Drazin & Reid, 1981,
p. 105). It even led some people to suggest happily that the agreement can be regarded as
a verification of the underlying Navier-Stokes equations, which make a host of assumptions
including a linearity between stress and strain rate.

The instability appears in the form of counter-rotating toroidal (or doughnut-shaped)
vortices (Figure 11.18a) called Taylor vortices. The streamlines are in the form of helixes,
with axes wrapping around the annulus, somewhat like the stripes on a barber’s pole. These
vortices themselves become unstable at higher values of Ta, when they give rise to wavy
vortices for which v/vf s 0 (Figure 11.18b). In effect, the flow has now attained the next
higher mode. The number of waves around the annulus depends on the Taylor number,
and the wave pattern travels around the annulus. More complicated patterns of vortices
result at a higher rate of rotation, finally resulting in the occasional appearance of turbulent
patches (Figure 11.18d), and then a fully turbulent flow.

Phenomena analogous to the Taylor vortices are called secondary flows because they are
superposed on a primary flow (such as the Couette flow in the present case). There are
two other situations where a combination of curved streamlines (which give rise to centrif-
ugal forces) and viscosity result in instability and steady secondary flows in the form of
vortices. One is the flow through a curved channel, driven by a pressure gradient. The other
is the appearance of Görtler vortices in a boundary-layer flow along a concave wall
(Figure 11.19). The possibility of secondary flows signifies that the solutions of the Navier-
Stokes equations are nonunique in the sense that more than one steady solution is allowed under
the same boundary conditions. We can derive the form of the primary flow only if we exclude
the secondary flow by appropriate assumptions. For example, we can derive the expression
(11.50) for Couette flow by assuming Ur ¼ 0 and Uz ¼ 0 and thereby rule out the secondary
flow.
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11.7. INSTABILITY OF CONTINUOUSLY
STRATIFIED PARALLEL FLOWS

An instability of great geophysical importance is that of an inviscid stratified fluid in hori-
zontal parallel flow. If the density and velocity vary discontinuously across an interface, the
analysis in Section 11.3 shows that the flow is unconditionally unstable. Although only the
discontinuous case was studied by Kelvin and Helmholtz, the more general case of contin-
uous distribution is also commonly called the Kelvin-Helmholtz instability.

The problem has a long history. In 1915, Taylor, on the basis of his calculations with assumed
distributions of velocity and density, conjectured that a gradient Richardson number (to be
definedshortly)mustbe less than¼for instability.Othervaluesof thecriticalRichardsonnumber
(ranging from 2 to¼)were suggested by Prandtl, Goldstein, Richardson, Synge, andChandrase-
khar. Finally,Miles (1961)was able toproveTaylor’s conjecture, andHoward (1961) immediately
and elegantly generalizedMiles’ proof. A short record of the history is given in Miles (1986). In
this section we shall prove the Richardson number criterion in the manner given by Howard.

Consider a horizontal parallel flowU(z) directed along the x-axis. The z-axis is taken verti-
cally upward. The basic flow is in equilibriumwith the undisturbed density field rðzÞ and the
basic pressure field P(z). We shall only consider two-dimensional disturbances on this basic
state, assuming that they are more unstable than three-dimensional disturbances; this is
called Squires’ theorem and is demonstrated in Section 11.8 in another context. The disturbed
state has velocity, pressure, and density fields of:

~u ¼ Uex þ u ¼ ðU þ u, 0,wÞ, ~p ¼ Pþ p, and ~r ¼ rþ r,

where, as before, the tilde indicates a total flow variable. The continuity equation reduces to
vu=vxþ vw=vz ¼ 0, and the disturbed velocity field is assumed to satisfy the inviscid Bous-
sinesq momentum equation:

v~u

vt
þ ð~u,VÞ~u ¼ � 1

r0
V~p� g

ðrþ rÞ
r0

ez,

where the density variations are neglected except in the vertical component. Here, r0 is
a reference density. The basic flow satisfies

FIGURE 11.19 Görtler vor-
tices in a boundary layer along
a concave wall. The instability
phenomenon here is essentially
the same as that in Taylor-
Couetteflow, theonlydifference
being the lack of the inner
curved surface.
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0 ¼ � 1

r0

vP

vz
� g

r

r0
:

Subtracting the last two equations and dropping nonlinear terms, we obtain the perturbation
equation of motion:

vu

vt
þ ðu,VÞðUexÞ þUðex,VÞu ¼ � 1

r0
Vp� g

r

r0
ez:

The horizontal (x) and vertical (z) components of the preceding equation are

vu

vt
þ w

vU

vz
þU

vu

vx
¼ � 1

r0

vp

vx
and

vw

vt
þU

vw

vx
¼ � 1

r0

vp

vx
� g

r

r0
: (11.55)

In the absence of diffusion the density of fluid particles does not change: D~r=Dt ¼ 0, or

v

vt
ðrþ rÞ þ ðU þ uÞ v

vx
ðrþ rÞ þ w

v

vz
ðrþ rÞ ¼ 0:

Keeping only the linear terms, and using the fact that r is a function of z only, we obtain

vr

vt
þU

vr

vx
þ w

vr

vz
¼ 0,

which can be written as

vr

vt
þU

vr

vx
� roN

2w

g
¼ 0, (11.56)

where N is the buoyancy frequency in an incompressible flow:

N2h � g

r0

dr

dz
: (7.128)

The last term in equation (11.56) represents the density change at a point due to the vertical
advection of the basic density field across the point.

The continuity equation can be satisfied with a stream function u ¼ vj=vz and
w ¼ �vj=vx. Equations (11.55) and (11.56) then become

v2j

vtvz
� vj

vx

dU

dz
þU

v2j

vxvz
¼ � 1

r0

vp

vx
, � v2j

vtvx
�U

v2j

vx2
¼ �gr

r0
� 1

r0

vp

vz
,

vr

vt
þU

vr

vx
þ roN

2

g

vj

vx
¼ 0: (11.57)

Since the coefficients of derivatives in (11.57) are independent of x and t, exponential vari-
ations in these variables are allowed. Consequently, we assume traveling-wave normal mode
solutions of the form:

½r,p,j� ¼ ½brðzÞ, bpðzÞ, bjðzÞ�expfikðx� ctÞg,
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where quantities denoted by (^) are complex amplitudes. Because the flow is unbounded in
x, the wave number k must be real. The eigenvalue c ¼ cr þ ici can be complex, and the solu-
tion is unstable if there exists a ci > 0, similar to the development in Section 11.3. Substituting
the normal modes, (11.57) becomes:

ðU � cÞ v
bj

vz
� vU

vz
bj ¼ � 1

r0
bp, k2ðU � cÞbj ¼ �g

br

r0
� 1

r0

vbp

vz
, ðU � cÞbr þ r0N

2

g
bj ¼ 0:

(11.58, 11.59, 11.60)

We seek a single equation for bj. The pressure can be eliminated by taking the z-derivative of
(11.58) and subtracting (11.59). The density can be eliminated via substitution from (11.60) to
produce:

ðU � cÞ
 

d2

dz2
� k2

!

bj � v2U

vz2
bj þ N2

U � c
bj ¼ 0: (11.61)

This is the Taylor-Goldstein equation, which governs the behavior of perturbations in a strat-
ified parallel flow. Note that the complex conjugate of (11.61) is also a valid equation
because we can take the imaginary part of the equation, change the sign, and add it to
the real part of the equation. Now because the Taylor-Goldstein equation does not involve
any i, a complex conjugate of the equation shows that if bj is an eigenfunction with eigen-
value c for some k, then bj* is a possible eigenfunction with eigenvalue c* for the same k.
Therefore, to each eigenvalue with a positive ci there is a corresponding eigenvalue with
a negative ci. In other words, to each growing mode there is a corresponding decaying mode.
A nonzero ci therefore ensures instability.

The boundary conditions are that w ¼ 0 on rigid boundaries, presuming these are located
at z ¼ 0 and d. This requires vj=vx ¼ ikbjexpfikðx� ctÞg ¼ 0 at the walls, which is possible
only if

bjð0Þ ¼ bjðdÞ ¼ 0: (11.62)

A necessary condition involving the Richardson number for linear instability of inviscid
stratified parallel flows can be derived by defining a new field variable f (not the velocity
potential) by

fh
bj

ðU � cÞ1=2
or bj ¼ ðU � cÞ1=2f: (11.63)

Then we obtain the derivatives:

vbj

vz
¼ ðU � cÞ1=2vf

vz
þ f

2ðU � cÞ1=2
dU

dz
,

v2bj

vz2
¼ ðU � cÞ1=2v

2f

vz2
þ 1

ðU � cÞ1=2

 

df

dz

dU

dz
þ 1

2
f
d2U

dz2

!

� f

4ðU � cÞ3=2
�

dU

dz

�2

:
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The Taylor-Goldstein equation then becomes, after some rearrangement:

d

dz

�

ðU � cÞdf
dz

�

�
(

k2ðU � cÞ þ 1

2

d2U

dz2
þ ð1=4ÞðdU=dzÞ2�N2

U � c

)

f ¼ 0: (11.64)

Now multiply equation (11.64) by f* (the complex conjugate of f), integrate from z ¼ 0 to
z ¼ d, and use the boundary conditions f(0) ¼ f(d) ¼ 0. The first term gives:

Z
d

0

d

dz

�

ðU � cÞdf
dz

�

f�dz ¼
Z
d

0

�

d

dz

�

ðU � cÞdf
dz

f�
�

� ðU � cÞdf
dz

df�

dz

�

dz ¼ �
Z
d

0

ðU � cÞ








df

dz









2

dz:

Integrals of the other terms in (11.64) are also simple to manipulate. We finally obtain:

Z
d

0

(

N2 � ð1=4ÞðdU=dzÞ2
U � c

gjfj2dz ¼
Z
d

0

ðU � cÞ
(









df

dz









2

þ k2jfj2
)

dzþ
Z
d

0

1

2

d2U

dz2
jfj2dz: (11.65)

The last term in the preceding equation is real. The imaginary part of the first term can be
found by noting that:

1

U � c
¼ U � c�

jU � cj2
¼ U � cr þ ici

jU � cj2
:

Taking the imaginary part of (11.65) leads to:

ci

Z
d

0

(

N2 � ð1=4ÞðdU=dzÞ2
jU � cj2

)

jfj2dz ¼ �ci

Z
d

0

(









df

dz









2

þ k2jfj2
)

dz:

The integral on the right side is positive. If the flow is such that N2 > (1/4)(dU/dz)2 every-
where, then the preceding equation states that ci times a positive quantity equals ci times
a negative quantity; this is impossible and requires that ci ¼ 0 for such a case. Thus, defining
the gradient Richardson number:

RiðzÞhN2=ðdU=dzÞ2, (11.66)

we can say that linear stability is guaranteed if the inequality

Ri >
1

4

�

stable

�

(11.67)

is satisfied everywhere in the flow.
Note that the criterion does not state that the flow is necessarily unstable if Ri < ¼ some-

where, or even everywhere, in the flow. Thus Ri < ¼ is a necessary but not sufficient condition
for instability. For example, in a jet-like velocity profile uf sech2z and an exponential density
profile, theflowdoesnot becomeunstable until theRichardsonnumber falls below0.214.A crit-
ical Richardson number lower than ¼ is also found in the presence of boundaries, which stabi-
lize the flow. In fact, there is no unique critical Richardson number that applies to all
distributions of U(z) and N(z). However, several calculations show that in many shear layers
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(having linear, tanh, or error function profiles for velocity and density), the flow does become
unstable to disturbances of certain wavelengths if the minimum value of Ri in the flow (which
is generally at the center of the shear layer where jdU/dzj is greatest) is less than ¼. The most
unstable wave, defined as the first to become unstable as Ri is reduced below ¼, is found to
have a wavelength lz 7h, where h is the thickness of the shear layer. Laboratory (Scotti &
Corcos, 1972) as well as geophysical observations (Eriksen, 1978) show that the requirement

Rimin <
1

4

is a useful guide for the prediction of instability of a stratified shear layer.
Similar to the previous analysis, another useful result concerning the behavior of the

complex phase speed c in an inviscid parallel shear flow can be determined by considering
an alternative version of (11.63):

Fh
bj

U � c
, (11.68)

which leads to derivatives:

vbj

vz
¼ ðU � cÞvF

vz
þ dU

dz
F,

v2bj

vz2
¼ ðU � cÞv

2F

vz2
þ 2

dU

dz

dF

dz
þ d2U

dz2
F:

When (11.68) is substituted into the Taylor-Goldstein equation (11.61), the result is:

ðU � cÞ
"

ðU � cÞd
2F

dz2
þ 2

dU

dz

dF

dz
� k2ðU � cÞF

#

þN2F ¼ 0,

and the terms involving d2U/dz2 have canceled out. This can be rearranged in the form

d

dz

�

ðU � cÞ2dF
dz

�

� k2ðU � cÞFþN2F ¼ 0:

Multiplying by F*, integrating (by parts when necessary) over the depth of flow, and using
the boundary conditions, we obtain

�
Z

ðU � cÞ2








dF

dz









2

dz� k2
Z

ðU � cÞ2jFj2dzþ
Z

N2jFj2dz ¼ 0,

which can be written as

Z

ðU � cÞ2Qdz ¼
Z

N2jFj2dz where Qh jdF=dzj2 þ k2jFj2

is positive. Equating real and imaginary parts, we obtain
Z

h

ðU � crÞ2�c2i

i

Qdz ¼
Z

N2jFj2dz and ci

Z

ðU � crÞQdz ¼ 0: (11.69, 11.70)
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For instability ci s 0, for which (11.70) shows that (U e cr) must change sign somewhere in
the flow:

Umin < cr < Umax, (11.71)

which states that cr lies in the range of U. Recall that we have assumed solutions of
the form

expfikðx� ctÞg ¼ expfikðx� crtgexpf þ kcitg,
which means that cr is the phase velocity in the positive x direction, and kci is the growth rate.
Equation (11.71) shows that cr is positive if U is everywhere positive, and is negative if U is
everywhere negative. In these cases we can say that unstable waves propagate in the direc-
tion of the background flow.

Limits on the maximum growth rate can also be predicted. Equation (11.69) gives
Z

�

U2 � 2Ucr þ c2r � c2i
�

Qdz > 0,

which, on using (11.70), becomes
Z

�

U2 � c2r � c2i
�

Qdz > 0: (11.72)

Now because (Umin e U) < 0 and Umax e U > 0, it is always true that
Z

½Umin �U�½Umax �U�dz � 0,

which can be recast as
Z

�

UmaxUmin þU2 �UðUmax þUminÞ
�

Qdz � 0:

Using (11.72), this gives
Z

�

UmaxUmin þ c2r þ c2i �UðUmax þUminÞ
�

Qdz � 0,

and after using (11.70), this becomes
Z

�

UmaxUmin þ c2r þ c2i � crðUmax þUminÞ
�

Qdz � 0:

Because the quantity within [,]-brackets is independent of z, and !Qdz > 0, we must have
[ ] � 0. With some rearrangement, this condition can be written as

�

cr � 1

2
ðUmax þUminÞ

�2

þ c2i �
�

1

2
ðUmax �UminÞ

�2

:

This shows that the complex wave velocity, c, of any unstable mode of a disturbance in parallel
flows of an inviscid fluid must lie inside the semicircle in the upper half of the c-plane, which
has the range of U as the diameter (Figure 11.20). This result was first derived by Howard
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(1961) and is valid for flows with and without stratification. It is called the Howard semi-
circle theorem and states that the maximum growth rate is limited by:

kci < ðk=2ÞðUmax �UminÞ:
The theorem is very useful in searching for eigenvalues c(k) in numerical solution of insta-
bility problems.

11.8. SQUIRE’S THEOREM AND THE ORR-SOMMERFELD
EQUATION

In our studies of the Bénard and Taylor problems, we encountered two flows in which
viscosity has a stabilizing effect. Curiously, viscous effects can also be destabilizing, as indi-
cated by several calculations of wall-bounded parallel flows. In this section we shall derive
the equation governing the stability of parallel flows of a homogeneous viscous fluid. Let
the primary flow be directed along the x direction and vary in the y direction so that
U ¼ (U(y), 0, 0). We decompose the total flow as the sum of the basic flow plus the
perturbation:

~u ¼ ðU þ u, v,wÞ, and ~p ¼ Pþ p:

Both the background and the perturbed flows satisfy the Navier-Stokes equations. The
perturbed flow satisfies the x-momentum equation:

vu

vt
þ ðU þ uÞ v

vx
ðU þ uÞ þ v

v

vy
ðU þ uÞ ¼ � v

vx
ðPþ pÞ þ 1

Re
V2ðU þ uÞ, (11.73)

where the variables have been made dimensionless with a characteristic length scale L (say,
the width of flow), and a characteristic velocity U0 (say, the maximum velocity of the basic

FIGURE 11.20 Depiction of the
Howard semicircle theorem. In
inviscid parallel flows the complex
eigenvalue c must lie within the
semicircle shown. This theorem
limits both the real part (the phase
speed) and the imaginary part (the
growth rate divided by k) of the
eigenvalue.
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flow); time is scaled by L/U0 and the pressure is scaled by rU2
0. The Reynolds number is

Re ¼ U0L/v.
The background flow satisfies:

0 ¼ �vP

vx
þ 1

Re
V2U:

Subtracting this from (11.73) and neglecting terms nonlinear in the perturbations, we obtain
the x-momentum equation for the perturbations:

vu

vt
þU

vu

vx
þ v

vU

vy
¼ �vp

vx
þ 1

Re
V2u: (11.74)

Similarly the y-momentum, z-momentum, and continuity equations for the pertur-
bations are:

vv

vt
þU

vv

vx
¼ �vp

vy
þ 1

Re
V2v,

vw

vt
þU

vw

vx
¼ �vp

vz
þ 1

Re
V2w, and

vu

vx
þ vv

vy
þ vw

vz
¼ 0: (11.75)

The coefficients in (11.74) and (11.75) depend only on y, so that the equations admit solutions
exponential in x, z, and t. Accordingly, we assume normal modes of the form:

½u,p� ¼
h

buðyÞ, bpðyÞ
i

expfiðkxþmz� kctÞg: (11.76)

As the flow is unbounded in x and z, the wave number components k and m must be real.
However, the wave speed c ¼ cr þ ici may be complex. Without loss of generality, we can
consider only positive values for k and m; the sense of propagation is then left open by
keeping the sign of cr unspecified. The normal modes represent waves that travel
obliquely to the basic flow with a wave number magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

and have an
amplitude that varies as exp(kcit). Solutions are therefore stable if ci < 0 and unstable
if ci > 0.

Substitution of (11.76) into the perturbation equations (11.74) and (11.75) produces:

ikðU � cÞbu þ bvðdU=dyÞ ¼ �ikpþ ð1=ReÞ
h

d2bu=dy2 � ðk2 þm2Þbu
i

,

ikðU � cÞbv ¼ �dbp=dyþ ð1=ReÞ
h

d2bv=dy2 � ðk2 þm2Þbv
i

,

ikðU � cÞbw ¼ �imbp þ ð1=ReÞ
h

d2 bw=dy2 � ðk2 þm2Þbw
i

, and

ikbu þ dbv=dyþ imbw ¼ 0:

(11.77)

These are the normal mode equations for three-dimensional disturbances.
Before proceeding further, we shall first prove Squire’s Theorem (1933) which states that to

each unstable three-dimensional disturbance there corresponds a more unstable two-dimensional one.
To prove this theorem, consider the Squire transformation:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

, c ¼ c, ku ¼ kbu þmbw, v ¼ bv, p=k ¼ bp=k, and kRe ¼ kRe: (11.78)
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After substituting (11.78) into (11.77), and adding the first and third equations, the result is

ikðU � cÞuþ vðdU=dyÞ ¼ �ikpþ ð1=ReÞ
h

d2u=dy2 � k
2
u
i

,

ikðU � cÞv ¼ �dbp=dyþ ð1=ReÞ
h

d2v=dy2 � k
2
v
i

, and

ikuþ dv=dy ¼ 0:

These equations are exactly the same as (11.77), but with m ¼ bw ¼ 0. Thus, to each three-
dimensional problem corresponds an equivalent two-dimensional one. Moreover, Squire’s
transformation (11.78) shows that the equivalent two-dimensional problem is associated
with a lower Reynolds number since k > k. It follows that the critical Reynolds number at
which the instability starts is lower for two-dimensional disturbances. Therefore, we only
need to consider a two-dimensional disturbance if we want to determine the minimum
Reynolds number for the onset of instability.

The three-dimensional disturbance (11.76) is a wave propagating obliquely to the basic
flow. If we orient the coordinate system with the new x-axis in this direction, the equations
of motion are such that only the component of the basic flow in this direction affects the
disturbance. Thus, the effective Reynolds number is reduced.

Interestingly, Squire’s theorem also holds for several other problems that do not involve
the Reynolds number. Equation (11.78) shows that the growth rate for a two-dimensional
disturbance is expðkcitÞ, whereas (11.76) shows that the growth rate of a three-dimensional
disturbance is exp(kcit). The two-dimensional growth rate is therefore larger because Squire’s
transformation requires k > k and c ¼ c. We can therefore say that the two-dimensional
disturbances are more unstable.

Because of Squire’s theorem, we only need consider the equation set (11.77) with
m ¼ bw ¼ 0. The two-dimensionality allows the use of a stream function j(x,y,t) for the
perturbation field via the usual relationships: u ¼ vj=vy and v ¼ �vj=vx. Again, we
assume normal modes of the form:

½u, v,j� ¼ ½buðyÞ, bvðyÞ,fðyÞ�expfikðx� ctÞg:
(To be consistent, we should denote the complex amplitude of j by bj; we are using f [not the
potential] instead to follow the standard notation for this variable in the literature.) Then we
must have bu ¼ vf=vy and bv ¼ �ikf, and a single equation in terms of f can now be found
by eliminating the pressure from (11.77). This effort yields a fourth-order ordinary differen-
tial equation:

ðU � cÞ
 

d2f

dy2
� k2f

!

� d2U

dy2
f ¼ 1

ikRe

 

d4f

dy4
� 2k2

d2f

dy2
þ k4f

!

: (11.79)

The boundary conditions are the no-slip conditions which require

f ¼ df=dy ¼ 0 at y ¼ y1 and y2: (11.80)

Equation (11.79) is the well-known Orr-Sommerfeld equation, which governs the stability of
nearly parallel viscous flows such as those in a straight channel or in a boundary layer. It
is essentially a vorticity equation because the pressure has been eliminated. Analytical
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solutions of the Orr-Sommerfeld equations are difficult to obtain, and only the results of some
simple flows will be discussed in the later sections. However, we shall first present certain
results obtained by ignoring the viscous terms on the right side of this equation.

11.9. INVISCID STABILITY OF PARALLEL FLOWS

Insight into the viscous stability of parallel flows can be obtained by first assuming that the
disturbances obey inviscid dynamics. The governing equation can be found by letting Re/N
in the Orr-Sommerfeld equation, giving

ðU � cÞ
 

d2f

dy2
� k2f

!

� d2U

dy2
f ¼ 0, (11.81)

which is called the Rayleigh equation. If the flow is bounded by walls at y1 and y2 where v ¼ 0,
then the boundary conditions are

f ¼ 0 at y ¼ y1 and y2: (11.82)

The set (11.81) and (11.82) defines an eigenvalue problem, with c(k) as the eigenvalue and f as
the eigenfunction. As these equations do not involve i, taking the complex conjugate shows
that if f is an eigenfunction with eigenvalue c for some k, then f* is also an eigenfunction
with eigenvalue c* for the same k. Therefore, to each eigenvalue with a positive ci there is
a corresponding eigenvalue with a negative ci. In other words, to each growing mode there is
a corresponding decaying mode. Stable solutions therefore can have only a real c. Note that
this is true of inviscid flows only. The viscous term in the full Orr-Sommerfeld equation
(11.79) involves an i, and the foregoing conclusion is no longer valid.

We shall now show that certain velocity distributionsU(y) are potentially unstable accord-
ing to the inviscid Rayleigh equation (11.81). In this discussion it should be noted that we are
only assuming that the disturbances obey inviscid dynamics; the background flow profileU(y)
may be that of a steady laminar viscous flow.

The first deduction that can be made from (11.81) is Rayleigh’s inflection point criterion
that states that a necessary (but not sufficient) criterion for instability of an inviscid parallel flow
is that the basic velocity profile U(y) has a point of inflection. To prove the theorem, rewrite the
Rayleigh equation (11.81) in the form

d2f

dy2
� k2f� 1

U�c

d2U

dy2
f ¼ 0,

and consider the unstable mode for which ci > 0, and therefore U e cs 0. Multiply this
equation by f*, integrate from y1 to y2, by parts where necessary, and apply the boundary
condition (11.82). The first term transforms as follows:

Z

f�ðd2f=dy2Þdy ¼ ½f�ðdf=dyÞ�y2y1 �
Z

ðdf�=dyÞðdf=dyÞdy ¼ �
Z

jdf=dyj2dy,

where the limits on the integrals have not been explicitly written. The Rayleigh equation then
gives
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Z

ðjdf=dyj2 þ k2jfj2Þdyþ
Z

1

U � c

d2U

dy2
jfj2dy ¼ 0: (11.83)

The first term is real. The second term in (11.83) is complex, and its imaginary part can be
found by multiplying the numerator and denominator by (U e c*). Thus, the imaginary
part of (11.83) implies:

ci

Z

1

jU � cj2
d2U

dy2
jfj2dy ¼ 0: (11.84)

For the unstable case, for which ci s 0, (11.84) can be satisfied only if d2U/dy2 changes sign
at least once in the open interval y1 < y < y2. In other words, for instability the background
velocity distribution must have at least one point of inflection (where d2U/dy2 ¼ 0) within
the flow. Clearly, the existence of a point of inflection does not guarantee a nonzero ci.
The inflection point is therefore a necessary but not sufficient condition for inviscid
instability.

Some seventy years after Rayleigh’s discovery, the Swedish meteorologist Fjortoft in
1950 discovered a stronger necessary condition for the instability of inviscid parallel flows.
He showed that a necessary condition for instability of inviscid parallel flows is that
(U � U1)(d

2U/dy2) < 0 somewhere in the flow, where U1 is the value of U at the point of inflec-
tion. To prove the theorem, take the real part of (11.83):

Z

U � cr

jU � cj2
d2U

dy2
jfj2dy ¼ �

Z

ðjdf=dyj2 þ k2jfj2Þdy < 0: (11.85)

Suppose that the flow is unstable, so that ci s 0, and a point of inflection does exist according
to the Rayleigh criterion. Then it follows from (11.84) that

ðcr �U1Þ
Z

1

jU � cj2
d2U

dy2
jfj2dy ¼ 0: (11.86)

Adding equations (11.85) and (11.86), we obtain
Z

U �U1

jU � cj2
d2U

dy2
jfj2dy < 0,

so that (U e U1)(d
2U/dy2) must be negative somewhere in the flow.

Some common velocity profiles are shown in Figure 11.21. Only the two flows shown in
the bottom row can possibly be unstable, for only they satisfy Fjortoft’s theorem. Flows
(a), (b), and (c) do not have an inflection point: flow (d) does satisfy Rayleigh’s condition
but not Fjortoft’s because (U e U1)(d

2U/dy2) is positive. Note that an alternate way of stating
Fjortoft’s theorem is that the magnitude of vorticity of the basic flow must have a maximum within
the region of flow, not at the boundary. In flow (d), the maximummagnitude of vorticity occurs
at the walls.

The criteria of Rayleigh and Fjortoft essentially point to the importance of having
a point of inflection in the velocity profile. They show that flows in jets, wakes, shear
layers, and boundary layers with adverse pressure gradients, all of which have a point
of inflection and satisfy Fjortoft’s theorem, are potentially unstable. On the other hand,
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plane Couette flow, Poiseuille flow, and a boundary-layer flow with zero or favorable
pressure gradient have no point of inflection in the velocity profile and are stable in the
inviscid limit.

However, neither of the two conditions is sufficient for instability. An example is the sinu-
soidal profile U ¼ sin(y), with boundaries at y ¼ �b. It has been shown that the flow is stable
if the width is restricted to 2b < p, although it has an inflection point at y ¼ 0.

FIGURE 11.21 Examples of parallel flows. Points of inflection are denoted by I. Profiles (a), (b), and (c) are
inviscidly stable. Profiles (d), (e), and (f) may be inviscidly unstable by Rayleigh’s inflection point criterion. Only
profiles (e) and (f) satisfy Fjortoft’s criterion of inviscid instability.
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Invisicd parallel flows satisfy Howard’s semicircle theorem, which was proved in Section
11.7 for the more general case of a stratified shear flow. The theorem states that the phase
speed cr of an unstable mode with wave number k has a value that lies between the minimum
and the maximum values of U(y) in the flow field. Growing and decaying modes are charac-
terized by a nonzero ci, whereas neutral modes can have only a real c ¼ cr. Thus, it follows
that neutral modes must haveU ¼ c somewhere in the flow field. The neighborhood y around
yc at which U ¼ c ¼ cr is called a critical layer. The location yc is a critical point of the inviscid
governing equation (11.81), because the highest derivative drops out at this value of y, and the
eigenfunction for this k and c may be discontinuous across this layer. The full Orr-Sommer-
feld equation (11.79) has no such critical layer because the highest-order derivative does not
drop out when U ¼ c. It is apparent that in a real flow a viscous boundary layer must form at
the location where U ¼ c, and that the layer becomes thinner as Re/ N.

The streamline pattern in the neighborhood of the critical layer where U ¼ c was given by
Kelvin in 1888, and indicates the nature of the nearby unstable modes having the same k but
small positive ci. The discussion provided here is adapted from Drazin and Reid (1981).
Consider a flow viewed by an observer moving with the phase velocity c ¼ cr. Then the basic
velocity field seen by this observer is (U e c), so that the stream functiondue to the basic flow is

J ¼
Z

ðU � cÞdy:

The total stream function is obtained by adding the perturbation:

bj ¼
Z

ðU � cÞdyþ AfðyÞ expfikxg: (11.87)

whereA is an arbitrary constant, and the time factor in the second term is omitted because the
disturbance is neutrally stable. Near the critical layer y ¼ yc, a Taylor series expansion of the
real part of (11.87) is approximately

bjy

�

y� yc
�2

2

�

dU

dy

�

y¼yc

þAfðycÞ cosðkxÞ,

where f(yc) is assumed to be real. The streamline pattern corresponding to this equation
is sketched in Figure 11.22, showing the so-called Kelvin cat’s eye pattern that is

FIGURE 11.22 TheKelvin cat’s eye pattern near a critical layer, showing streamlines as seen by an observermoving
with a neutrally stable wave having c ¼ cr. This flow pattern is reminiscent of those shown in Figures 11.4e11.6.
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visually similar to the illustrations of the Kelvin-Helmholtz instability given in Figures
11.4 through11.6.

11.10. RESULTS FOR PARALLEL AND NEARLY PARALLEL
VISCOUS FLOWS

The dominant intuitive expectation is that viscous effects are stabilizing. The stability of
thermal and centrifugal convections discussed in Sections 11.4 and 11.6 confirm this expec-
tation. However, the actual situation is more complicated. Consider the Poiseuille-flow
and Blasius boundary-layer velocity profiles in Figure 11.21. Neither has an inflection
point so both are inviscidly stable. Yet, in experiments, these flows are known to undergo
transition to turbulence at some Reynolds number, and this suggests that viscous effects
are destabilizing in these flows. Thus, fluid viscosity may be stabilizing as well as destabiliz-
ing, a duality confirmed by stability calculations of parallel viscous flows.

Analytical solution of the Orr-Sommerfeld equation is notoriously complicated and will
not be presented here. The viscous term in (11.79) contains the highest-order derivative,
and therefore the eigenfunction may contain regions of rapid variation in which the viscous
effects become important. Sophisticated asymptotic techniques are therefore needed to treat
these boundary layers. Alternatively, solutions can be obtained numerically. For our
purposes, we shall discuss only certain features of these calculations for the two-stream shear
layer, plane Poiseuille flow, plane Couette flow, pipe flow, and boundary layers with pressure
gradients. This section concludes with an explanation of how viscosity can act to destabilize
a flow. Additional information can be found in Drazin and Reid (1981), and in the review
article by Bayly, Orszag, and Herbert (1988).

Two-Stream Shear Layer

Consider a shear layer with the velocity profileU(y) ¼ U0tanh(y/L), so thatU(y)/ �U0 as
y/L / �N. This profile has its peak vorticity at its inflection point and is of the type shown
in Figure 11.21f. A stability diagram for solution of the Orr-Sommerfeld equation for this
velocity distribution is sketched in Figure 11.23. At all Reynolds numbers the flow is unstable
to waves having lowwave numbers in the range 0 < k < ku, where the upper limit ku depends
on the Reynolds number Re ¼ U0L/n. For high values of Re, the range of unstable wave
numbers increases to 0 < k < 1/L, which corresponds to a wavelength range ofN > l > 2pL.
It is therefore essentially a long-wavelength instability. In the limit kL / 0, these results
simplify to those given in Section 11.3 for a vortex sheet.

Figure 11.23 implies that the critical Reynolds number for the onset of instability in a shear
layer is zero. In fact, viscous calculations for all flows with inflectional profiles show a small
critical Reynolds number; for example, for a jet of the form u ¼ Usech2(y/L), it is Recr ¼ 4.
These wall-free shear flows therefore become unstable very quickly, and the inviscid predic-
tion that these flows are always unstable is a fairly good description. The reason the inviscid
analysis works well in describing the stability characteristics of free shear flows can be
explained as follows. For flows with inflection points the eigenfunction of the inviscid solu-
tion is smooth. On this zero-order approximation, the viscous term acts as a regular
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perturbation, and the resulting correction to the eigenfunction and eigenvalues can be
computed as a perturbation expansion in powers of the small parameter 1/Re. This is true
even though the viscous term in the Orr-Sommerfeld equation contains the highest-order
derivative.

The instability in flows with inflection points is observed to form rolled-up regions of
vorticity, much like in the calculations of Figure 11.6 or in the photographs in Figures 11.4
and 11.5. This behavior is robust and insensitive to the detailed experimental conditions.
They are therefore easily observed. In contrast, the unstable waves in a wall-bounded shear
flow are extremely difficult to observe, as discussed in the next section.

Plane Poiseuille Flow

The flow in a channel with parabolic velocity distribution has no point of inflection and is
inviscidly stable. However, linear viscous calculations show that the flow becomes unstable
at a critical Reynolds number of 5780. Nonlinear calculations, which consider the distortion
of the basic profile by the finite amplitude of the perturbations, give a critical Reynolds
number of 2510, which agrees better with the observations of transition. In any case, the inter-
esting point is that viscosity is destabilizing for this flow. The solution of the Orr-Sommerfeld
equation for Poiseuille flow and other parallel flows with rigid boundaries, which do not
have an inflection point, is complicated. In contrast to flows with inflection points, the
viscosity here acts as a singular perturbation, and the eigenfunction has viscous boundary
layers on the channel walls and around critical layers where U ¼ cr. The disturbances that
cause instability in these flows are called Tollmien-Schlichting waves, and their experimental
detection is discussed in the next section. In his 1979 text, Yih gives a thorough discussion of
the solution of the Orr-Sommerfeld equation using asymptotic expansions in the limit

FIGURE 11.23 Marginal stability curve for a shear layer with a velocity profile of U0tanh(y/L) in terms of the
Reynolds number U0L/n and the dimensionless wave number kL of the disturbance. This flow is only unstable to
low wave number disturbances.
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sequence Re/ N, then k / 0 (but kRe [ 1). He follows closely the analysis of Heisenberg
(1924). Yih presents Lin’s (1955) improvements on Heisenberg’s analysis with Shen’s (1954)
calculations of the stability curves.

Plane Couette Flow

This is the flow confined between two parallel plates; it is driven by the motion of one of
the plates parallel to itself. The basic velocity profile is linear, with Uf y. Contrary to the
experimentally observed fact that the flow does become turbulent at high Reynolds numbers,
all linear analyses have shown that the flow is stable to small disturbances. It is now believed
that the observed instability is caused by disturbances of finite magnitude.

Pipe Flow

The absence of an inflection point in the velocity profile signifies that the flow is inviscidly
stable. All linear stability calculations of the viscous problem have also shown that the flow is
stable to small disturbances. In contrast, most experiments show that the transition to turbu-
lence takes place at a Reynolds number of about Re ¼ Umaxd/v w 3000. However, careful
experiments, some of them performed by Reynolds in his classic investigation of the onset
of turbulence, have been able to maintain laminar flow up to Re ¼ 50,000. Beyond this the
observed flow is invariably turbulent. The observed transition has been attributed to one
of the following effects: 1) It could be a finite amplitude effect; 2) the turbulence may be initi-
ated at the entrance of the tube by boundary-layer instability (Figure 9.2); and 3) the insta-
bility could be caused by a slow rotation of the inlet flow which, when added to the
Poiseuille distribution, has been shown to result in instability. This is still under investiga-
tion. New insights into the instability and transition of pipe flow were described by Eckhardt
et al. (2007) by analysis via dynamical systems theory and comparison with recent very care-
fully crafted experiments by them and others. They characterized the turbulent state as
a chaotic saddle in state space. The boundary between laminar and turbulent flow was found
to be exquisitely sensitive to initial conditions. Because pipe flow is linearly stable, finite
amplitude disturbances are necessary to cause transition, but as Reynolds number increases,
the amplitude of the critical disturbance diminishes. The boundary between laminar and
turbulent states appears to be characterized by a pair of vortices closer to the walls that
give the strongest amplification of the initial disturbance.

Boundary Layers with Pressure Gradients

Recall from Section 9.7 that when pressure decreases in the direction of flow the pressure
gradient is said to be favorable, and when pressure increases in the direction of flow the pres-
sure gradient is said to be adverse. It was shown there that boundary layers with an adverse
pressure gradient have a point of inflection in the velocity profile. This has a dramatic effect
on stability characteristics. A schematic plot of the marginal stability curve for a boundary
layer with favorable and adverse gradients of pressure is shown in Figure 11.24. The ordinate
in the plot represents the longitudinal wave number, and the abscissa represents the
Reynolds number based on the free-stream velocity and the displacement thickness d* of
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the boundary layer. Themarginal stability curve divides stable and unstable regions, with the
region within the loop representing instability. Because the boundary layer thickness grows
along the direction of flow, Red increases with x, and points at various downstream distances
are represented by larger values of Red.

The following features can be noted in the figure. Boundary-layer flows are stable for low
Reynolds numbers, but may become unstable as the Reynolds number increases. The effect of
increasing viscosity is therefore stabilizing in this range. For boundary layers with a zero
pressure gradient (Blasius flow) or a favorable pressure gradient, the instability loop shrinks
to zero as Red / N. This is consistent with the fact that these flows do not have a point of
inflection in the velocity profile and are therefore inviscidly stable. In contrast, for boundary
layers with an adverse pressure gradient, the instability loop does not shrink to zero; the
upper branch of the marginal stability curve now becomes flat with a limiting value of kN
as Red / N. The flow is then unstable to disturbances with wave numbers in the range
0 < k < kN. This is consistent with the existence of a point of inflection in the velocity profile,
and the results of the shear layer calculations (Figure 11.23). Note also that the critical Rey-
nolds number is lower for flows with adverse pressure gradients.

Table 11.1 summarizes the results of the linear stability analyses of some common
parallel viscous flows. The first two flows in the table have points of inflection in the
velocity profile and are inviscidly unstable; the viscous solution shows either a zero or
a small critical Reynolds number. The remaining flows are stable in the inviscid limit.
Of these, the Blasius boundary layer and the plane Poiseuille flow are unstable in the pres-
ence of viscosity, but have high critical Reynolds numbers. Although the idealized tanh
profile for a shear layer, assuming straight and parallel streamlines, is immediately
unstable, more recent work by Bhattacharya et al. (2006), which allowed for the basic

FIGURE 11.24 Sketch of marginal stability curves for laminar boundary layers with favorable and adverse
pressure gradients in terms of the displacement-thickness Reynolds number Uod*/n and the dimensionless wave
number kd* of the disturbance. The addition of the inflection point in the adverse-pressure gradient case increases
the parametric realm of instability.

11. INSTABILITY518



flow to be two dimensional, has yielded a finite critical Reynolds number, modifying
somewhat Table 11.1.

While the results presented in the preceding paragraphs document flows where viscous
effects are destabilizing, the mechanism of this destabilization has not been identified. One
means of describing the destabilization mechanism relies on use of the equation for inte-
grated kinetic energy of the disturbance:

d

dt

Z

1

2
u2i dV ¼ �

Z

uiuj
vUi

vxj
dV �L, (11.88)

where V is a stationary volume having stream-wise control surfaces chosen to coincide with
the walls where no-slip conditions are satisfied or where ui / 0, and having a length (in the
stream-wise direction) that is an integer number of disturbance wavelengths (see
Figure 11.25). In (11.88), L ¼ n!(vui/vxj)

2dV is the total viscous dissipation rate of kinetic
energy inV. This disturbance kinetic energy equation can be derived from the incompressible
Navier-Stokes momentum equation for the flow (see Exercise 11.13).

TABLE 11.1 Linear Stability Results of Common Viscous Parallel Flows

Flow U (y)/U0 Recr Remarks

Jet sech2 (y/L) 4

Shear layer tanh (y/L) 0 Always unstable

Blasius 520 Re based on d*

Plane Poiseuille 1 e (y/L)2 5780 L ¼ half e width

Pipe flow 1e (r/R)2 N Always stable

Plane Couette y/L N Always stable

FIGURE 11.25 A control volume for deriving (11.88). Here there is zero net flux across boundaries. This control
volume can be extended to boundary-layer flow stability, when the boundary layer forms on the lower wall, by
placing the upper control surface far enough from the lower wall so that the disturbance velocity ui / 0 on this
control surface, even if this control surface may not abut the upper wall.

11.10. RESULTS FOR PARALLEL AND NEARLY PARALLEL VISCOUS FLOWS 519



For two-dimensional disturbances in a shear flow defined by U ¼ [U(y), 0, 0], the distur-
bance energy equation becomes:

d

dt

Z

1

2

�

u2 þ v2
�

dV ¼ �
Z

uv
vU

vy
dV �L,

and has a simple interpretation. The first term is the rate of change of kinetic energy of the two-
dimensional disturbance, and the second term is the rate of production of disturbance energy
by the interaction of the product uv (also knownas theReynolds shear stress) and themean shear
vU/vy. (The concept of Reynolds stresses is explained in Chapter 12.) The point to note here is
that the value of the product uv averaged over a period is zero if the velocity components u and
v are out of phase; for example, themean value of uv is zero if u ¼ sin t and v ¼ cos t. In inviscid
parallel flows without a point of inflection in the velocity profile, the u and v components are
such that thedisturbancefield cannot extract energy from thebasic shear flow, thus resulting in
stability. The presence of viscosity, however, changes the phase relationship between u and v,
which causes the spatial integral ofeuv(vU/vy) to be positive and larger than the viscous dissi-
pation rate. This is how viscous effects can cause instability.

11.11. EXPERIMENTAL VERIFICATION OF BOUNDARY-LAYER
INSTABILITY

This section presents the results of stability calculations of the Blasius boundary-layer
profile and compares them with experiments. Because of the nearly parallel nature of the
Blasius flow, most stability calculations are based on an analysis of the Orr-Sommerfeld
equation, which assumes a parallel flow. The first calculations were performed by Tollmien
in 1929 and Schlichting in 1933. Instead of assuming exactly the Blasius profile (which can be
specified only numerically), they used the profile
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which, like the Blasius profile, has a zero curvature at the wall. The calculations of Tollmien
and Schlichting showed that unstable waves appear when the Reynolds number is high
enough; the unstable waves in a viscous boundary layer are called Tollmien-Schlichting waves.
Until 1947 these waves remained undetected, and the experimentalists of the period believed
that the transition in a real boundary layer was probably a finite-amplitude effect. The spec-
ulation was that large disturbances cause locally adverse pressure gradients, which resulted
in a local separation and consequent transition. The theoretical view, in contrast, was that
small disturbances of the right frequency or wavelength can amplify if the Reynolds number
is large enough.

Verification of the theory was finally provided by some clever experiments conducted by
Schubauer and Skramstad in 1947. The experiments were conducted in a wind tunnel
specially designed to suppress fluctuations in the free-stream flow. The experimental tech-
nique used was novel. Instead of depending on natural disturbances, they introduced
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periodic disturbances of known frequency by means of a vibrating metallic ribbon stretched
across the flow close to the wall. The ribbon was vibrated by passing an alternating current
through it in the field of a magnet. The subsequent development of the disturbance was
measured downstream via hot-wire anemometry. Such techniques later become standard.

The experimental data are shown in Figure 11.26, which also shows the calculations of
Schlichting and the more accurate calculations of Shen (1954). Instead of the wave number,
the ordinate represents the frequency of the disturbance, which is easier to measure. It is
apparent that the agreement between Shen’s calculations and the experimental data is
very good.

The prediction of the Tollmien-Schlichting waves is regarded as a major accomplishment
of linear stability theory. The ideal conditions for their existence are two dimensionality and
negligible fluctuations in the free stream. These waves have been found to be very sensitive to
small deviations from the ideal conditions, and that is why they can be observed only under
very carefully controlled experimental conditions with artificial excitation. People who care
about historical fairness have suggested that the waves should only be referred to as TS
waves, to honor Tollmien, Schlichting, Schubauer, and Skramstad. TS waves have also
been observed in natural flow (Bayly et al., 1988).

FIGURE 11.26 Marginal stability curve for a Blasius boundary layer. Theoretical solutions of Shen and
Schlichting are compared with experimental data of Schubauer and Skramstad.
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Nayfeh and Saric (1975) treated Falkner-Skan flows in a study of nonparallel stability and
found that generally there is a decrease in the critical Reynolds number. The decrease is least
for favorable pressure gradients, about 10% for zero pressure gradients, and grows rapidly as
the pressure gradient becomesmore adverse. Grabowski (1980) applied linear stability theory
to the boundary layer near a stagnation point on a body of revolution. His stability predictions
were found to be close to those of parallel-flow stability theory obtained from solutions of the
Orr-Sommerfeld equation.Reshotko (2001) provides a reviewof temporally and spatially tran-
sient growth as a path from subcritical (Tollmien-Schlichting) disturbances to transition.
Growth or decay is studied from the Orr-Sommerfeld and Squire equations. Growth may
occur because eigenfunctions of these equations are not orthogonal as the operators are not
self-adjoint. Results for Poiseuille pipe flow and compressible blunt body flows are given.

Fransson and Alfredsson (2003) have shown that the asymptotic suction profile (solved in
Exercise 9.26) significantly delays transition stimulated by free-stream turbulence or by Toll-
mien-Schlichting waves. Specifically, the value of Recr ¼ 520 based on d* in Table 11.1 is
increased for suction velocity ratio v0/UN ¼ e.00288 to more than 54,000. The very large
stabilizing effect is a result of the change in the shape of the stream-wise velocity profile
from the Blasius profile to an exponential.

11.12. COMMENTS ON NONLINEAR EFFECTS

To this point we have discussed only linear stability theory, which considers infinitesimal
perturbations and predicts exponential growthwhen the relevant parameter exceeds a critical
value. The effect of the perturbations on the basic field is neglected in the linear theory. An
examination of (11.88) shows that the perturbation field must be such that the average uv
(the average taken over awavelength) must be nonzero for the perturbations to extract energy
from the basic shear; similarly, the heat flux, the average of uT0, must be nonzero in a thermal
convection problem. These rectified fluxes of momentum and heat change the basic velocity
and temperature fields. Linear instability theory neglects these changes of the basic state. A
consequence of the constancy of the basic state is that the growth rate of the perturbations is
also constant, leading to predictions of exponential growth. However, after some time, the
perturbations eventually become so large that the rectified fluxes of momentum and heat
significantly change the basic state, which in turn alters the growth of the perturbations.

A frequent effect of nonlinearity is to change the basic state in such a way as to arrest the
growth of the disturbances after they have reached significant amplitude via their initial
exponential growth. (Note, however, that the effect of nonlinearity can sometimes be desta-
bilizing; for example, the instability in a pipe flow may be a finite-amplitude effect because
the flow is stable to infinitesimal disturbances.) Consider the thermal convection in the
annular space between two vertical cylinders rotating at the same speed. The outer wall of
the annulus is heated and the inner wall is cooled. For small heating rates the flow is steady.
For large heating rates a system of regularly spaced waves develop and progress azimuthally
at a uniform speed without changing their shape. (This is the equilibrated form of baroclinic
instability, discussed in Section 13.17.) At still larger heating rates an irregular, aperiodic, or
chaotic flow develops. The chaotic response to constant forcing (in this case the heating rate)
is an interesting nonlinear effect and is discussed further in Section 11.14. Meanwhile, a brief
description of the transition from laminar to turbulent flow is given in the next section.
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11.13. TRANSITION

The process by which a laminar flow changes to a turbulent one is called transition. Insta-
bility of a laminar flow does not immediately lead to turbulence, which is a severely
nonlinear and chaotic flow state. After the initial breakdown of laminar flow because of
amplification of small disturbances, the flow goes through a complex sequence of changes,
finally resulting in the chaotic state we call turbulence. The process of transition is greatly
affected by such experimental conditions as intensity of fluctuations of the free stream,
roughness of the walls, and shape of the inlet. The sequence of events that leads to turbu-
lence is also greatly dependent on boundary geometry. For example, the scenario of transi-
tion in wall-bounded shear flows is different from that in free shear flows such as jets and
wakes.

Early stages of transition consist of a succession of instabilities on increasingly complex
basic flows, an idea first suggested by Landau in 1944 (see Landau and Lifshitz, 1959).
The basic state of wall-bounded parallel shear flows becomes unstable to two-dimensional
TS waves, which grow and eventually reach equilibrium at some finite amplitude. This
steady state can be considered a new background state, and calculations show that it is
generally unstable to three-dimensional waves of short wavelength, which vary in the cross-
stream or span-wise direction. (If x denotes the stream-wise flow direction and y denotes
the wall-normal direction, then the z-axis lies in the span-wise direction.) We shall call this
the secondary instability. Interestingly, the secondary instability does not reach equilibrium
at finite amplitude but directly evolves to a fully turbulent flow. Recent calculations of the
secondary instability have been quite successful in reproducing critical Reynolds numbers
for various wall-bounded flows, as well as predicting three-dimensional structures observed
in experiments.

A key experiment on the three-dimensional nature of the transition process in a boundary
layer was performed by Klebanoff, Tidstrom, and Sargent (1962). They conducted a series of
controlled experiments by which they introduced three-dimensional disturbances on a field
of TS waves in a boundary layer. The TS waves were as usual artificially generated by an elec-
tromagnetically vibrated ribbon, and the three dimensionality of a particular span-wise
wavelength was introduced by placing spacers (small pieces of transparent tape) at equal
intervals underneath the vibrating ribbon (Figure 11.27). When the amplitude of the TS
waves became roughly 1% of the free-stream velocity, the three-dimensional perturbations
grew rapidly and resulted in a span-wise irregularity of the stream-wise velocity displaying
peaks and valleys in the amplitude of u. The three-dimensional disturbances continued to
grow until the boundary layer became fully turbulent. The chaotic flow seems to result
from the nonlinear evolution of the secondary instability, and numerical calculations have
accurately reproduced several characteristic features of real flows (see Figures 7 and 8 in
Bayly et al., 1988).

It is interesting to compare the chaos observed in turbulent shear flows with that in
controlled low-order dynamical systems such as the Bérnard convection or Taylor vortex
flow. In these low-order flows only a very small number of modes participate in the dynamics
because of the strong constraint of the boundary conditions. All but a few low modes are
identically zero, and the chaos develops in an orderly way. As the constraints are relaxed
(we can think of this as increasing the number of allowed Fourier modes), the evolution
toward apparent chaos becomes less orderly.
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Transition in a free shear layer, such as a jet or a wake, occurs in a different manner.
Because of the inflectional velocity profiles involved, these flows are unstable at very low
Reynolds numbers, that is, of order 10 compared to about 103 for wall-bounded flows. The
breakdown of the laminar flow therefore occurs quite readily and close to the origin
of such a flow. Transition in a free shear layer is characterized by the appearance of
a rolled-up row of vortices, whose wavelength corresponds to the one with the largest
growth rate. Frequently, these pairs of vortices regroup themselves and result in a dominant
wavelength twice that of the original wavelength. Small-scale turbulence develops in the
strain fields between and within these larger scale vortices, finally leading to turbulence.

11.14. DETERMINISTIC CHAOS

The discussion in the previous section has shown that dissipative nonlinear systems such
as fluid flows reach a random or chaotic state when the parameter measuring nonlinearity

FIGURE 11.27 Three-dimensional unstable waves initiated by a vibrating ribbon. Measured distributions of
intensity of the u-fluctuation at two distances from the ribbon are shown. Clearly the span-wise variation enhances the
signature of the instability. P. S. Klebanoff et al., Journal of Fluid Mechanics, 12, 1e34, 1962; reprinted with the permission

of Cambridge University Press.
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(say, the Reynolds number or the Rayleigh number) is large. The evolution from laminar flow
to the chaotic state generally takes place through a sequence of transitions, with the exact
route depending on the flow geometry and other characteristics. It has been realized that
chaotic behavior not only occurs in continuous systems having an infinite number of degrees
of freedom, but also in discrete nonlinear systems having only a small number of degrees of
freedom, governed by ordinary nonlinear differential equations. In this context, a chaotic
system is defined as one in which the solution is extremely sensitive to initial conditions. That
is, solutions with arbitrarily close initial conditions evolve into quite different states. Other
symptoms of a chaotic system are that the solutions are aperiodic, and that the spectrum of
fluctuations is broadband instead of being composed of a few discrete frequencies or wave
numbers.

Numerical integrations (to be shown later in this section) have recently demonstrated that
nonlinear systems governed by a finite set of deterministic ordinary differential equations
allow chaotic solutions in response to a steady forcing. This fact is interesting because in
a dissipative linear system a constant forcing ultimately (after the decay of the transients)
leads to a constant response, a periodic forcing leads to a periodic response, and a random
forcing leads to a random response. In the presence of nonlinearity, however, a constant
forcing can lead to a variable response, both periodic and aperiodic. Consider again the
experiment mentioned in Section 11.12, namely, the thermal convection in the annular space
between two vertical cylinders rotating at the same speed. The outer wall of the annulus is
heated and the inner wall is cooled. For small heating rates the flow is steady. For large heat-
ing rates a system of regularly spaced waves develops and progresses azimuthally at
a uniform speed, without the waves changing shape. At still larger heating rates an irreg-
ular, aperiodic, or chaotic flow develops. This experiment shows that both periodic and
aperiodic flow can result in a nonlinear system even when the forcing (in this case the
heating rate) is constant. Another example is the periodic oscillation in the flow behind
a blunt body at Re w40 (associated with the initial appearance of the von Karman vortex
street) and the breakdown of the oscillation into turbulent flow at larger values of the
Reynolds number.

It has been found that transition to chaos in the solution of ordinary nonlinear differential
equations displays a certain universal behavior and proceeds in one of a few different ways.
Transition to turbulence in fluid flowsmay be related to the development of chaos in the solu-
tions of these simple systems. In this section we shall discuss some of the elementary ideas
involved, starting with the definitions for phase space and attractors, moving on to the
Lorenz model of thermal convection and scenarios for transition to chaos, and then
concluding with a description of the implications of such phenomena. An introduction to
the subject of chaos is given by Bergé, Pomeau, and Vidal (1984); a useful review is given
in Lanford (1982). The subject has far-reaching cosmic consequences in physics and evolu-
tionary biology, as discussed by Davies (1988).

Very few nonlinear equations have analytical solutions. For nonlinear systems, a typical
procedure is to find a numerical solution and display its properties in a space whose axes
are the dependent variables. Consider the equation governing the motion of a simple
pendulum of length l:

€X þ ðg=lÞsinX ¼ 0,
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where X is the angular displacement and €X is the angular acceleration. The equation is
nonlinear because of the sinX term. The second-order equation can be split into two coupled
first-order equations:

_X ¼ Y and _Y ¼ �ðg=lÞsinX: (11.89)

Starting with some initial conditions on X and Y, one can integrate (11.89) forward in time.
The behavior of the system can be studied by describing how the variables Y (¼ _X) and X
vary as functions of time. For the pendulum problem, the space whose axes are _X and X is
called a phase space, and the evolution of the system is described by a trajectory in this space.
The dimension of the phase space is called the degree of freedom of the system; it equals the
number of independent initial conditions necessary to specify the system. For example, the
degree of freedom for the set (11.89) is two.

Dissipative systems are characterized by the existence of attractors,which are structures in
the phase space toward which neighboring trajectories approach as t/ N. An attractor can
be a fixed point representing a stable steady flow or a closed curve (called a limit cycle) repre-
senting a stable oscillation (Figure 11.28a, b). The nature of the attractor depends on the value
of the nonlinearity parameter, which will be denoted by R in this section. As R is increased,
the fixed point representing a steady solutionmay change from being an attractor to a repeller
with spirally outgoing trajectories, signifying that the steady flow has become unstable to
infinitesimal perturbations. Frequently, the trajectories are then attracted by a limit cycle,
which means that the unstable steady solution gives way to a steady oscillation (Fig-
ure 11.28b). For example, the steady flow behind a blunt body becomes oscillatory as Re is
increased, resulting in the periodic von Karman vortex street (Figure 9.17).

The branching of a solution at a critical value Rcr of the nonlinearity parameter is called
a bifurcation. Thus, we say that the stable steady solution of Figure 11.28a bifurcates to a stable
limit cycle as R increases through Rcr. This can be represented on the graph of a dependent
variable (say, X) versus R (Figure 11.28c). At R ¼ Rcr, the solution curve branches into two
paths; the two values of X on these branches (say, X1 and X2) correspond to the maximum
and minimum values of X in Figure 11.28b. It is seen that the size of the limit cycle grows
larger as (R � Rcr) becomes larger. Limit cycles, representing oscillatory response with ampli-
tude independent of initial conditions, are characteristic features of nonlinear systems. Linear
stability theory predicts an exponential growth of the perturbations if R > Rcr, but a nonlinear
theory frequently shows that the perturbations eventually equilibrate to a steady oscillation
whose amplitude increases with (R � Rcr).

A famous fluid-flow example involving these concepts comes from thermal convection in
a layer heated from below (the Bénard problem). Lorenz (1963) demonstrated that the devel-
opment of chaos is associated with the flow’s attractor acquiring certain strange properties.
He considered a layer with stress-free boundaries. Assuming nonlinear disturbances in the
form of rolls invariant in the y direction, and defining a disturbance stream function in the
x-z plane by u ¼ e vj/vz and w ¼ vj/vx, he substituted solutions of the form

jfXðtÞ cosðpzÞ sinðkxÞ and T0fYðtÞ cosðpzÞ cosðkxÞ þ ZðtÞ sinð2pzÞ (11.90)

into the equations of motion. Here, T0 is the departure of temperature from the state of no
convection, k is the wave number of the perturbation, and the boundaries are at z ¼ �½.
It is clear that X is proportional to the speed of convective motion, Y is proportional to
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the temperature difference between the ascending and descending currents, and Z is
proportional to the distortion of the average vertical profile of temperature from linearity.
(Note in (11.90) that the x-average of the term multiplied by Y(t) is zero, so that this term
does not cause distortion of the basic temperature profile.) As discussed in Section 11.4,
Rayleigh’s linear analysis showed that solutions of the form (11.90), with X and Y
constants and Z ¼ 0, would develop if Ra slightly exceeds the critical value
Racr ¼ 27p4/4. Equations (11.90) are expected to give realistic results when Ra is slightly
supercritical but not when strong convection occurs because only the lowest wave
number terms are retained.

FIGURE 11.28 Attractors in a phase plane of X and _X. In (a), point P is an attractor. For a larger value of R, the
nonlinearity parameter, panel (b) shows that P becomes an unstable fixed point (a repeller), and the trajectories are
attracted to an orbit or limit cycle that encircles P. Panel (c) is the bifurcation diagram corresponding to this
situation.
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On substitution of (11.90) into the equations of motion, Lorenz finally obtained the system:

_X ¼ PrðY� XÞ, _Y ¼ �XZþ rX � Y, and _Z ¼ XY� bZ, (11.91)

where Pr is the Prandtl number, r ¼ Ra/Racr, and b ¼ 4p2/(p2þ k2). Equations (11.91) are a set
of nonlinear equations with three degrees of freedom, which means that the phase space is
three dimensional.

Equations (11.91) allow the steady solution X ¼ Y ¼ Z ¼ 0, representing the state of no
convection. For r > 1 the system possesses two additional steady-state solutions, which we

shall denote by X ¼ Y ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðr� 1Þp

, Z ¼ r� 1; the two signs correspond to the two
possible senses of rotation of the rolls. (The fact that these steady solutions satisfy (11.91)
can easily be checked by substitution and setting _X ¼ _Y ¼ _Z ¼ 0.) Lorenz showed that
the steady-state convection becomes unstable if r is large. Choosing Pr ¼ 10, b ¼ 8/3, and
r ¼ 28, he numerically integrated the set and found that the solution never repeats itself; it
is aperiodic and wanders about in a chaotic manner. Figure 11.29 shows the variation of
X(t), starting with some initial conditions. (The variables Y(t) and Z(t) also behave in a similar
way.) It is seen that the amplitude of the convecting motion initially oscillates around one of
the steady values X ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðr� 1Þp

, with the oscillations growing in magnitude. When it is
large enough, the amplitude suddenly goes through zero to start oscillations of opposite
sign about the other value of X. That is, the motion switches in a chaotic manner between
two oscillatory limit cycles, with the number of oscillations between transitions seemingly
random. Calculations show that the variables X, Y, and Z have continuous spectra and
that the solution is extremely sensitive to initial conditions.

The trajectories in the phase space of the Lorenz model of thermal convection are shown in
Figure 11.30. The centers of the two loops represent the two steady convections

FIGURE 11.29 Variation of X(t) in the Lorenz model. Note that the solution oscillates erratically around
the two steady values X and X0 and does not have a reliable period. P. Bergé, Y. Pomeau, and C. Vidal, Order
Within Chaos, 1984; reprinting permitted by Heinemann Educational, a division of Reed Educational & Professional

Publishing Ltd.
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X ¼ Y ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðr� 1Þp

and Z ¼ r� 1. The structure resembles two rather flat loops of ribbon,
one lying slightly in front of the other along a central band, with the two joined together at the
bottom of that band. The trajectories go clockwise around the left loop and counterclockwise
around the right loop; two trajectories never intersect. The structure shown in Figure 11.30 is
an attractor because orbits starting with initial conditions outside of the attractor merge onto it
and then follow it. The attraction is a result of dissipation in the system. The aperiodic attrac-
tor, however, is unlike the normal attractor in the form of a fixed point (representing steady
motion) or a closed curve (representing a limit cycle). This is because two trajectories on the
aperiodic attractor, with infinitesimally different initial conditions, follow each other closely
only for a while, eventually diverging to very different final states. This is the basic reason
for sensitivity to initial conditions.

For these reasons the aperiodic attractor is called a strange attractor. The idea of a strange
attractor is not intuitive because it has the dual property of attraction and divergence. Trajec-
tories starting from the neighboring regions in phase space are drawn toward it, but once on
the attractor the trajectories eventually diverge and result in chaos. An ordinary attractor in
phase space allows the trajectories from slightly different initial conditions to merge, so that
the memory of initial conditions is lost. However, the strange attractor ultimately accentuates
small initial condition differences. The idea of the strange attractor was first conceived by
Lorenz, and since then attractors of other chaotic systems have also been studied. They all
have the common property of aperiodicity, continuous spectra, and sensitivity to initial
conditions.

Thus far we have described a discrete dynamical system having only a small number of
degrees of freedom and seen that aperiodic or chaotic solutions result when the nonlinearity

FIGURE 11.30 The Lorenz attractor. All nearby initial conditions are attracted to this double loop structure,
but any two such trajectories will eventually diverge, even if they begin very close together. The centers of the two
loops represent the two steady solutions (X, Y, Z).
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parameter is large. Several routes or scenarios of transition to chaos in such systems have
been identified. Two of these are described briefly here.

(1) Transition through subharmonic cascade: As R is increased, a typical nonlinear system
develops a limit cycle of a certain frequency u. With further increase of R, several
systems are found to generate additional frequencies u/2, u/4, u/8, . . The addition
of frequencies in the form of subharmonics does not change the periodic nature of the
solution, but the period doubles each time a lower harmonic is added. The period
doubling takes place more and more rapidly as R is increased, until an accumulation
point (Figure 11.31) is reached, beyond which the solution wanders about in a chaotic
manner. At this point the peaks disappear from the temporal-frequency spectrum,
which becomes broadband. Many systems approach chaotic behavior through period
doubling. Feigenbaum (1978) proved the important result that this kind of transition
develops in a universalway, independent of the particular nonlinear systems studied. If
Rn represents the value for development of a new subharmonic, then Rn converges in
a geometric series with

Rn � Rn�1

Rnþ1 � Rn
/4:6692 as n/N

That is, the horizontal gap between two bifurcation points is about a fifth of the previous
gap. The vertical gap between the branches of the bifurcation diagram also decreases,
with each gap about two-fifths of the previous gap. In other words, the bifurcation

FIGURE 11.31 Bifurcation diagram during period doubling. The period doubles at each value Rn of the
nonlinearity parameter. For large n the “bifurcation tree” becomes self-similar. Chaos sets in beyond the accumu-
lation point RN. This process may mimic the transition from laminar to turbulent flow under some circumstances.
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diagram (Figure 11.31) becomes “self-similar” as the accumulation point is approached.
(Note that Figure 11.31 has not been drawn to scale, for illustrative purposes.) Experi-
ments in low Prandtl number fluids (such as liquid metals) indicate that Bénard convec-
tion in the form of rolls develops oscillatory motion of a certain frequency u at Ra ¼ 2Racr.
As Ra is further increased, additional frequencies u/2, u/4, u/8, u/16, and u/32 have been
observed. The convergence ratio has been measured to be 4.4, close to the value of 4.669
predicted by Feigenbaum’s theory. The experimental evidence is discussed further in
Bergé, Pomeau, and Vidal (1984).

(2) Transition through quasi-periodic regime: Ruelle and Takens (1971) have mathematically
proven that certain systems need only a small number of bifurcations to produce chaotic
solutions. As the nonlinearity parameter is increased, the steady solution loses stability
and bifurcates to an oscillatory limit cycle with frequency u1. As R is increased, two more
frequencies (u2 and u3) appear through additional bifurcations. In this scenario the ratios
of the three frequencies (such as u1/u2) are irrational numbers, so that the motion
consisting of the three frequencies is not exactly periodic. (When the ratios are rational
numbers, the motion is exactly periodic. To see this, think of the Fourier series of
a periodic function in which the various terms represent sinusoids of the fundamental
frequency u and its harmonics 2u, 3u,. . Some of the Fourier coefficients could be zero.)
The spectrum for these systems suddenly develops broadband characteristics of chaotic
motion as soon as the third frequency u3 appears. The exact point at which chaos sets in is
not easy to detect in a measurement; in fact the third frequency may not be identifiable in
the spectrum before it becomes broadband. The Ruelle-Takens theory is fundamentally
different from that of Landau, who conjectured that turbulence develops due to an infinite
number of bifurcations, each generating a new higher frequency, so that the spectrum
becomes saturated with peaks and resembles a continuous one. According to Bergé,
Pomeau, and Vidal (1984), the Bénard convection experiments in water seem to suggest
that turbulence in this case probably sets in according to the Ruelle-Takens scenario.

The development of chaos in the Lorenz attractor is more complicated and does not follow
either of the two routes mentioned in the preceding discussion.

Closure

Perhaps the most intriguing characteristic of a chaotic system is the extreme sensitivity to
initial conditions. That is, solutions with arbitrarily close initial conditions evolve into two
quite different states. Most nonlinear systems are susceptible to chaotic behavior. The
extreme sensitivity to initial conditions implies that nonlinear phenomena (including the
weather, in which Lorenz was primarily interested when he studied the convection problem)
are essentially unpredictable, no matter how well we know the governing equations or the
initial conditions. Although the subject of chaos has become a scientific revolution recently,
the central idea was conceived by Henri Poincaré in 1908. He did not, of course, have the
computing facilities to demonstrate it through numerical integration.

It is important to realize that the behavior of chaotic systems is not intrinsically nonde-
terministic; as such the implication of deterministic chaos is different from that of the
uncertainty principle of quantum mechanics. In any case, the extreme sensitivity to initial
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conditions implies that the future is essentially unknowable because it is never possible to
know the initial conditions exactly. As discussed by Davies (1988), this fact has interesting
philosophical implications regarding the evolution of the universe, including that of living
species.

We have examined certain elementary ideas about how chaotic behavior may result in
simple nonlinear systems having only a small number of degrees of freedom. Turbulence
in a continuous fluid medium is capable of displaying an infinite number of degrees of
freedom, and it is unclear whether the study of chaos can throw a great deal of light on
more complicated transitions such as those in pipe or boundary-layer flow. However, the
fact that nonlinear systems can have chaotic solutions for a large value of the nonlinearity
parameter (see Figure 11.29) is an important result by itself.

EXERCISES

11.1. A perturbed vortex sheet nominally located at y ¼ 0 separates inviscid flows of
differing density in the presence of gravity with downward acceleration g. The upper
stream is semi-infinite and has density r1 and horizontal velocity U1. The lower
stream has thickness h density r2, and horizontal velocity U2. A smooth flat
impenetrable surface located at y ¼ eh lies below the second layer. The interfacial
tension between the two fluids is s. Assume a disturbance occurs on the vortex sheet
with wave number k ¼ 2p/l, and complex wave speed c, i.e.,
½y�sheet ¼ fðx, tÞ ¼ fo Refeikðx�ctÞg. The four boundary conditions are:

1) u1, v1 / 0 as y / þN.
2) v2 ¼ 0 on y ¼ eh.
3) u1 , n ¼ u2 , n ¼ normal velocity of the vortex sheet on both sides of the vortex

sheet.

4) p1 � p2 ¼ s
v2f

vx2
on the vortex sheet (s ¼ interfacial surface tension).

a) Following the development in Section 11.3, show that:

c ¼ r1U1 þ r2U2 cothðkhÞ
r1 þ r2 cothðkhÞ

�
"

ðg=kÞðr2 � r1Þ þ sk

r1 þ r2 cothðkhÞ
� r1r2ðU1 �U2Þ2 cothðkhÞ

ðr1 þ r2 cothðkhÞÞ2
#1=2

:

b) Use the result of part a) to show that the vortex sheet is unstable when:
�

tanhðkhÞ þ r2

r1

��

g

k

ðr2 � r1Þ
r2

þ sk

r2

�

< ðU1 �U2Þ2:

c) Will the sheet be stable or unstable to long wavelength disturbances (k / 0)
when r2 > r1 for a fixed velocity difference?

d) Will the sheet be stable or unstable to short wavelength disturbances (k /N)
for a fixed velocity difference?

e) Will the sheet ever be unstable when U1 ¼ U2?
f) Under what conditions will the thickness h matter?
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11.2. Consider a fluid layer of depth h and density r2 lying under a lighter, infinitely deep
fluid of density r1 < r2. By setting U1 ¼ U2 ¼ 0, in the results of Exercise 11.1, the
following formula for the phase speed is found:

c ¼ �
�ðg=kÞðr2 � r1Þ þ sk

r1 þ r2 cothðkhÞ
�1=2

:

Now invert the sign of gravity and consider why drops formwhen a liquid is splashed
on the underside of a flat surface.Are long or shortwavesmore unstable?Does a profes-
sional painterwant interior ceiling paintwith high or low surface tension? For a smooth
finish should the painter apply thin or thick coats of paint? Assuming the liquid has the
properties of water (surface tension z 0.072 N/m, density z 103 kg/m) and that the
lighter fluid is air, what is the longest neutrally stable wavelength on the underside
of a horizontal surface? [This is the Rayleigh-Taylor instability and it occurs when density
andpressure gradients point in opposite directions. Itmay be readily observedby accel-
erating rapidly downward an upward-open cup of water.]

11.3. Inviscid horizontal flow in the half space y > 0 moves at speed U over a porous
surface located at y ¼ 0. Here the fluid density r is constant and gravity plays no roll.
A weak vertical velocity fluctuation occurs at the porous surface:
½v�surface¼ vo Refeikðx�ctÞg, where vo � U.

U y 

x

[v] e c a f r u s 

a) The velocity potential for the flow may be written ~f ¼ Uxþ f, where f leads to
[v]surface at y ¼ 0 and f vanishes as y / þN. Determine the perturbation potential
f in terms of vo, U, r, k, c, and the independent variables (x,y,t).

b) The porous surface responds to pressure fluctuations in the fluid via:
½p� ps�y¼0¼ �g½v�surface, where p is the pressure in the fluid, ps is the steady static
pressure that is felt on the surface when the vertical velocity fluctuations are
absent, and g is a real material parameter that defines the porous surface’s flow
resistance. Determine a formula for c in terms of U, g, r, and k.

c) What is the propagation velocity, Re{c}, of the surface velocity fluctuation?
d) What sign should g have for the flow to be stable? Interpret your answer.

11.4. Repeat Exercise 11.3 for a compliant surface nominally lying at y ¼ 0 that is perturbed
from equilibrium by a small surface wave: ½y�surface ¼ zðx, tÞ ¼ zo Refeikðx�ctÞg.

y

x

(x,t)

U
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a) Determine the perturbation potential f in terms ofU, r, k, and c by assuming that f
vanishes as y / þN, and that there is no flow through the compliant surface.
Ignore gravity.

b) The compliant surface responds to pressure fluctuations in the fluid via:
½p� ps�y¼0¼ �gzðx, tÞ, where p is the pressure in the fluid, ps is the steady pressure

that is felt on the surface when the surface wave is absent, and g is a real material
parameter that defines the surface’s compliance. Determine a formula for c in
terms of U, g, r, and k.

c) What is the propagation velocity, Re{c}, of the surface waves?
d) If g is positive, is the flow stable? Interpret your answer.

11.5. As a simplified version of flag waving, consider the stability of a simple membrane in
a uniform flow. Here, the undisturbed membrane lies in the x-z plane at y ¼ 0, the
flow is parallel to the x-axis at speedU, and the fluid has density r. Themembrane has
mass per unit area ¼ rm and uniform tension per unit length ¼ T. The membrane
satisfies a dynamic equation based on pressure forces and internal tension combined
with its local surface curvature:

rm
v2z

vt2
¼ p2 � p1 þ T

 

v2z

vx2
þ v2z

vz2

!

:

Here, the vertical membrane displacement is given by y ¼ zðx, z, tÞ, and p1 and p2 are
the pressures acting on the membrane from above and below, respectively. The
velocity potentials for the undisturbed flow above (1) and below (2) the membrane
are f1 ¼ f2 ¼ Ux. For the following items, assume a small amplitude wave is
present on the membrane zðx, tÞ ¼ zo Refeikðx�ctÞg with k a real parameter, and
assume that all deflections and other fluctuations are uniform in the z-direction
and small enough for the usual linear simplifications. In addition, assume the static
pressures above and below the membrane, in the absence of membrane motion, are
matched.

φ1

φ2

y

x

ζ(x,t)

U

a) Using the membrane equation, determine the propagation speed of the membrane
waves, Re{c}, in the absence of fluid loading (i.e., when p2 e p1 ¼ r ¼ 0).

b) Assuming inviscid flow above and below the membrane, determine a formula for
c in terms of T, rm, r, U, and k.

c) Is the membrane more or less unstable ifU, T, r, and rm are individually increased
with the others held constant?

d) What is the propagation speed of themembrane waves whenU ¼ 0? Compare this
to your answer for part a) and explain any differences.
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11.6. Prove that sr > 0 for the thermal instability discussed in Section 11.4 via the
following steps that include integration by parts and use of the boundary conditions
(11.38).
a) Multiply (11.36) by bT

�
and integrate the result from z¼ e1/2 to z¼þ1/2, where z

is the dimensionless vertical coordinate, to find: sI1 þ I2 ¼ R

bT
�
Wdz, where

I1h
R jbT j2dz, I2h

R ½jdbT=dzj2 þ K2jbT j2�dz, and the limits of the integrations have
been suppressed for clarity.

b) Multiply (11.37) by W* and integrate from z ¼ e½ to z ¼ þ½ to find:
s

Pr
J1 þ J2 ¼ RaK2

Z

W�
bTdz where J1h

R ½jdW=dzj2 þ K2jW j2�dz,
J2h

R ½jd2W=dz2j2 þ 2K2jdW=dzj2 þ K4jW j2�dz, and again the limits of the
integrations have been suppressed.

c) Combine the results of parts a) and b) to eliminate the mixed integral of W and bT ,
and use the result of this combination to show that si ¼ 0 for Ra > 0. [Note: The
integrals I1, I2, J1, and J2 are all positive definite.]

11.7. Consider the thermal instability of a fluid confined between two rigid plates, as
discussed in Section 11.4. It was stated there without proof that the minimum critical
Rayleigh number of Racr ¼ 1708 is obtained for the gravest even mode. To verify this,
consider the gravest odd mode for which

W ¼ A sinq0 zþ B sinh q zþ C sinh q�z:

(Compare this with the gravest even mode structure: W ¼A cos q0 z þ B cosh q z þ
C cosh q*z.) Following Chandrasekhar (1961, p. 39), show that the minimum Rayleigh
number is now 17,610, reached at the wave number Kcr ¼ 5.365.

11.8. Consider the centrifugal instability problem of Section 11.6. Making the narrow-gap
approximation, work out the algebra of going from (11.50) to (11.51).

11.9. Consider the centrifugal instability problem of Section 11.6. From (11.51) and (11.53),
the eigenvalue problem for determining the marginal state (s ¼ 0) is

ðd2=dR2 � k2Þ2buR ¼ ð1þ axÞbu4,
	

d2=dR2 � k2

2
bu4 ¼ �Tak2buR, (11.92, 11.93)

with buR ¼ dbuR=dR ¼ bu4 ¼ 0 at x ¼ 0 and 1. Conditions on bu4 are satisfied by
assuming solutions of the form

bu4 ¼
X
N

m¼1

Cm sinðmpxÞ: (11.94)

Inserting this into (11.92), obtain an equation for buR, and arrange so that the solution
satisfies the four remaining conditions on buR. With buR determined in this manner and
bu4 given by (11.94), (11.93) leads to an eigenvalue problem for Ta(k). Following Chan-
drasekhar (1961, p. 300), show that the minimum Taylor number is given by (11.54)
and is reached at kcr ¼ 3.12.

11.10. For a Kelvin-Helmholtz instability in a continuously stratified ocean, obtain a globally
integrated energy equation in the form
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1

2

d

dt

Z

�

u2 þ w2 þ g2r2=r20N
2
�

dV ¼ �
Z

uw
vU

vz
dV:

(As in Figure 11.25, the integration in x takes place over an integer number of
wavelengths.) Discuss the physical meaning of each term and the mechanism
of instability.

11.11. 1Consider the inviscid stability of a constant vorticity layer of thickness h between
uniform streams with flow speeds U1 and U3. Region 1 lies above the layer, y > h/2
with U(y) ¼ U1. Region 2 lies within the layer, jyj � h/2, UðyÞ ¼ 1=2ðU1 þU3Þ þ
ðU1 �U3Þðy=hÞ. Region 3 lies below the layer, y < eh/2 with U(y) ¼ U3.

U

+ = h

h

2/

y

x

U

U

1

1 noigeR

2iR

2/– =

3 noigeR

R ge i no 2

3

y

y

a) Solve the Rayleigh equation, f 00 � k2f � fU00

U � c
¼ 0, in each region, then use

appropriate boundary and matching conditions to obtain:

f1ðyÞ ¼ ðA coshðkh=2Þ þ B sinhðkh=2ÞÞe�kðy�h=2Þ for y > þh=2,

f2ðyÞ ¼ A coshðkyÞ þ B sinhðkyÞ for jyj � h=2,

f3ðyÞ ¼ ðA coshðkh=2Þ � B sinhðkh=2ÞÞeþkðyþh=2Þ for y < �h=2:

where f defines the spatial extent of the disturbance: v0 ¼ fðyÞeikðx�ctÞ and
u0 ¼ �ðf 0=ikÞeikðx�ctÞ, and A and B are undetermined constants.

b) The linearized horizontal momentum equation is:
vu0

vt
þU

vu0

vx
þ v0

vU

vy
¼ �1

r

vp0

vx
.

Integrate this equation with respect to x, require the pressure to be continuous
at y ¼ � h/2, and simplify your results to find two additional constraint
equations:

ðc�U1Þf 01ðþh=2Þ ¼ ðc�U1Þf 02ðþh=2Þ þU1 �U3

h
f2ðþh=2Þ, and

ðc�U3Þf 03ð�h=2Þ ¼ ðc�U3Þf 02ð�h=2Þ þU1 �U3

h
f2ð�h=2Þ:

1Developed from Sherman, F. S. (1990).Viscous Fluid Flow. New York: McGraw-Hill, pp. 466e467.
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c) Define co ¼ c� ð1=2ÞðU1 þU3Þ (this is the phase speed of the disturbance waves
in a frame of reference moving at the average speed), and use the results of parts a)
and b) to determine a single equation for co:

c2o ¼
�

U1 �U3

2kh

�2n

ðkh� 1Þ2�e�2kh
o

:

[This part of this problem requires patience and algebraic skill.]
d) From the result of part c), co will be real for kh [ 1 (short wave disturbances),

so the flow is stable or neutrally stable. However, for kh � 1 (long wave
disturbances), use the result of part c) to show that:

coy � i

�

U1 �U3

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4

3
khþ.

r

:

e) Determine the largest value of kh at which the flow is unstable.
11.12. Consider the inviscid instability of parallel flows given by the Rayleigh equation:

ðU � cÞ
 

d2bv

dy2
� k2bv

!

� d2U

dy2
bv ¼ 0, (11.95)

where the y-component of the perturbation velocity is v ¼ bvðyÞ expfikðx� ctÞg.
a) Note that this equation is identical to the Rayleigh equation (11.81) for the stream

function amplitude f, as it must be because bvðyÞ ¼ �ikf. For a flow bounded by
walls at y1 and y2, note that the boundary conditions are identical in terms of f
and bv.

b) Show that if c is an eigenvalue of (11.95), then so is its conjugate c* ¼ cr e ici. What
aspect of (11.95) allows this result to be valid?

c) Let U(y) be antisymmetric, so that U(y) ¼ eU(ey). Demonstrate that if c(k) is an
eigenvalue, then ec(k) is also an eigenvalue. Explain the result physically in
terms of the possible directions of propagation of perturbations in such an
antisymmetric flow.

d) Let U(y) be symmetric so that U(y) ¼ U(ey). Show that in this case bv is either
symmetric or antisymmetric about y ¼ 0.

[Hint: Letting y / �y, show that the solution bvð � yÞ satisfies (11.95) with the same
eigenvalue c. Form a symmetric solution, SðyÞ ¼ bvðyÞ þ bvð�yÞ ¼ Sð�yÞ, and an
antisymmetric solution, AðyÞ ¼ bvðyÞ � bvð�yÞ ¼ �Að�yÞ. Then write A[S-eqn] e S
[A-eqn] ¼ 0 where S-eqn indicates the differential equation (11.95) in terms of S.
Canceling terms this reduces to (SA0 e AS0)0 ¼ 0, where the prime (0) indicates a y-
derivative. Integration gives SA0 e AS0 ¼ 0, where the constant of integration is zero
because of the boundary conditions. Another integration gives S ¼ bA, where b is
a constant of integration. Because the symmetric and antisymmetric functions cannot
be proportional, it follows that one of them must be zero.]
Comments: If v is symmetric, then the cross-stream velocity has the same sign

across the entire flow, although the sign alternates every half wavelength along the
flow. This mode is consequently called sinuous. On the other hand, if v is
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antisymmetric, then the shape of the jet expands and contracts along the length. This
mode is now generally called the sausage instability because it resembles a line of
linked sausages.

11.13. Derive (11.88) starting from the incompressible Navier-Stokes momentum equation
for the disturbed flow:

v

vt
ðUi þ uiÞ þ ðUj þ ujÞ

v

vxj
ðUi þ uiÞ ¼ � 1

r

v

vxi
ðPþ pÞ þ n

v2

vxjvxj
ðUi þ uiÞ, (11.96)

where Ui and ui represent the basic flow and the disturbance, respectively. Subtract
the equation of motion for the basic state from (11.96), multiply by ui, and integrate
the result within a stationary volume having stream-wise control surfaces chosen
to coincide with the walls where no-slip conditions are satisfied or where ui / 0,
and having a length (in the stream-wise direction) that is an integer number of distur-
bance wavelengths.

11.14. 2The process of transition from laminar to turbulent flow may be driven both by
exterior flow fluctuations and nonlinearity. Both of these effects can be simulated
with the simple nonlinear logistic map xnþ1 ¼ Axnð1� xnÞ and a computer
spreadsheet program. Here, xn can be considered to be the flow speed at the point of
interest with A playing the role of the nonlinearity parameter (Reynolds number), x0
(the initial condition) playing the role of an external disturbance, and iteration of the
equation playing the role of increasing time. The essential feature illustrated by this
problem is that increasing the nonlinearity parameter or changing the initial
condition in the presence of nonlinearity may fully alter the character of the
resulting sequence of xn values. Plotting xn vs. n should aid understanding for parts
b) through e).
a) Determine the background solution of the logistic map that occurs when xnþ1 ¼ xn

in terms of A.
Now, using a spreadsheet program, set up a column that computes xnþ1 for n ¼ 1 to 100
for user selectable values of x0 and A for 0 < x0 < 1, and 0 < A < 4.
b) For A ¼ 1.0, 1.5, 2.0, and 2.9, choose a few different values of x0 and

numerically determine if the background solution is reached by n ¼ 100. Is
the flow stable for these values of A, i.e., does it converge toward the
background solution?

c) For the slightly larger value, A ¼ 3.2, choose x0 ¼ 0.6875, 0.6874, and 0.6876. Is
the flow stable or oscillatory in these three cases? If it is oscillatory, how many
iterations are needed for it to repeat?

d) For A ¼ 3.5, is the flow stable or oscillatory? If it is oscillatory, how many
iterations are needed for it to repeat? Does any value of x0 lead to a stable
solution?

e) For A ¼ 3.9, is the flow stable, oscillatory, or chaotic? Does any value of x0 lead to
a stable solution?

2Provided to the third author by Professor Werner Dahm.
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Bergé, P., Pomeau, Y., & Vidal, C. (1984). Order Within Chaos. New York: Wiley.
Bhattacharya, P., Manoharan, M. P., Govindarajan, R., & Narasimha, R. (2006). The critical Reynolds number of

a laminar incompressible mixing layer from minimal composite theory. Journal of Fluid Mechanics, 565, 105e114.
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. London: Oxford University Press. New York:

Dover reprint, 1981.
Coles, D. (1965). Transition in circular Couette flow. Journal of Fluid Mechanics, 21, 385e425.
Davies, P. (1988). Cosmic Blueprint. New York: Simon and Schuster.
Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic Stability. London: Cambridge University Press.
Eckhardt, B., Schneider, T. M., Hof, B., & Westerweel, J. (2007). Turbulence transition in pipe flow. Annual Review of

Fluid Mechanics, 39, 447e468.
Eriksen, C. C. (1978). Measurements and models of fine structure, internal gravity waves, and wave breaking in the

deep ocean. Journal of Geophysical Research, 83, 2989e3009.
Feigenbaum, M. J. (1978). Quantitative universality for a class of nonlinear transformations. Journal of Statistical

Physics, 19, 25e52.
Fjørtoft, R. (1950). Application of integral theorems in deriving criteria of instability for laminar flows and for the

baroclinic circular vortex. Geofysiske Publikasjoner Oslo, 17(6), 1e52.
Fransson, J. H. M., & Alfredsson, P. H. (2003). On the disturbance growth in an asymptotic suction boundary layer.

Journal of Fluid Mechanics, 482, 51e90.
Grabowski, W. J. (1980). Nonparallel stability analysis of axisymmetric stagnation point flow. Physics of Fluids, 23,

1954e1960.
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12.1. INTRODUCTION

Nearly all macroscopic flows encountered in the natural world and in engineering practice
are turbulent. Winds and currents in the atmosphere and ocean; flows through residential,
commercial, and municipal water (and air) delivery systems; flows past transportation
devices (cars, trains, aircraft, ships, etc.); and flows through turbines, engines, and reactors
used for power generation and conversion are all turbulent. Turbulence is an enigmatic state
of fluid flow that may be simultaneously beneficial and problematic. For example, in air-
breathing combustion systems, it is exploited for mixing reactants but, within the same
device, it also leads to noise and efficiency losses. Within the earth’s ocean and atmosphere,
turbulence sets the mass, momentum, and heat transfer rates involved in pollutant disper-
sion and climate regulation.

Turbulence involves fluctuations that are unpredictable in detail, and it has not been
conquered by deterministic or statistical analysis. However, useful predictions about it are
still possible and these may arise from physical intuition, dimensional arguments, direct
numerical simulations, or empirical models and computational schemes. In spite of our
everyday experience with it, turbulence is not easy to define precisely and there is a tendency
to confuse turbulence with randomness. A turbulent fluid velocity field conserves mass,
momentum, and energy while a purely random time-dependent vector field need not.
With some humor, Lesieur (1987) said:

Turbulence is a dangerous topic which is at the origin of serious fights in scientific meetings since
it represents extremely different points of view, all of which have in common their complexity, as well as
an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved.
(p. 000)

This chapter presents basic features of turbulence beginning with this listing of generic
characteristics.

(1) Fluctuations: Turbulent flows contain fluctuations in the dependent-field quantities
(velocity, pressure, temperature, etc.) even when the flow’s boundary conditions
are steady. Turbulent fluctuations appear to be irregular, chaotic, and unpredictable.

(2) Nonlinearity: Turbulence is found to occur when the relevant nonlinearity parameter, say
the Reynolds number Re, the Rayleigh number Ra, or the inverse Richardson number
Rie1, exceeds a critical value. The nonlinearity of turbulence is evident since it is the final
state of a nonlinear transition process. Once the critical parametric value is exceeded
small perturbations can grow spontaneously and may equilibrate as finite amplitude
disturbances. However, the new equilibrium state can become unstable to more com-
plicated disturbances, and so on, until the flow eventually reaches a nonrepeating
unpredictable state (turbulence). The nonlinearity of a turbulent flow is also evident in
vortex stretching, a key process by which three-dimensional turbulent flows maintain
their fluctuations.

(3) Vorticity: Turbulence is characterized by fluctuating vorticity. A cross-section view of
a turbulent flow typically appears as a diverse collection of streaks, strain regions, and
swirls of various sizes that deform, coalesce, divide, and spin. Identifiable structures in
a turbulent flow, particularly those that spin, are called eddies. Turbulence always
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involves a range of eddy sizes and the size range increases with increasing Reynolds
number. The characteristic size of the largest eddies is the width of the turbulent region;
in a turbulent boundary layer this is the thickness of the layer (Figure 12.1). Such layer-
spanning eddies commonly contain most of the fluctuation energy in a turbulent flow
and may be several orders of magnitude larger than the smallest eddies.

(4) Dissipation: On average, the vortex stretching mechanism transfers fluctuation energy
and vorticity to smaller and smaller scales via nonlinear interactions, until velocity
gradients become so large that the energy is converted into heat (i.e., dissipated) by the
action of viscosity and the motion of the smallest eddies. Persistent turbulence therefore
requires a continuous supply of energy to make up for this energy loss.

(5) Diffusivity: Due to the prevalence of agitation and overturning motions (macroscopic
mixing), turbulent flows are characterized by a rapid rate of mixing and diffusion of
species, momentum, and heat compared to equivalent laminar flows that lack fluctuations.

These features of turbulence suggest that many flows that seem random, such as wind-
driven ocean-surface waves or internal waves in the ocean or the atmosphere, are not turbu-
lent because they are not simultaneously dissipative, vortical, and nonlinear.

Although imperfect, a simple definition of turbulence as a dissipative flow state character-
ized by nonlinear fluctuating three-dimensional vorticity is offered for the reader who may
benefit from keeping a concise description in mind while gaining a greater appreciation
of this subject. Incompressible turbulent mean flows in systems not large enough to be
influenced by the Coriolis force are emphasized in this chapter. The fluctuations in such
flows are three dimensional. In large-scale geophysical systems, on the other hand, the exis-
tence of stratification and the Coriolis force severely restricts vertical motion and leads to
chaotic flow that may be nearly two dimensional or geostropic. Geostrophic turbulence is
briefly mentioned in Chapter 13. More extensive treatments of turbulence are provided

FIGURE 12.1 Turbulent boundary-layer flow showing a typical large eddy of size l, the average layer thickness
d, and the instantaneous interface between turbulent and nonturbulent (typically irrotational) fluid. Here, as in most
turbulent flows, the size of the largest eddies is comparable to the overall layer thickness.
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in Monin and Yaglom (1971, 1975), Tennekes and Lumley (1972), Hinze (1975), and
Pope (2000).

12.2. HISTORICAL NOTES

Turbulence is a leading topic in modern fluid dynamics research, and some of the best-
known physicists have worked in this area during the last century. Among them are G. I.
Taylor, Kolmogorov, Reynolds, Prandtl, von Karman, Heisenberg, Landau, Millikan, and
Onsagar. A brief historical outline is given in what follows; further interesting details can
be found in Monin and Yaglom (1971). The reader is expected to fully appreciate these histor-
ical remarks only after reading the chapter.

The first systematic work on turbulence was carried out by Osborne Reynolds in 1883. His
experiments in pipe flows showed that the flow becomes turbulent or irregular when the
dimensionless ratio Re ¼ UL/n, later named the Reynolds number by Sommerfeld, exceeds
a certain critical value. (Here n is the kinematic viscosity, U is the velocity scale, and L is
the length scale.) This dimensionless number subsequently proved to be the parameter
that determines the dynamic similarity of viscous flows. Reynolds also separated turbulent
flow-dependent variables into mean and fluctuating components, and arrived at the concept
of turbulent stress. The meaning of the Reynolds number and the existence of turbulent
stresses are foundational elements in our present understanding of turbulence.

In 1921 the British physicist G. I. Taylor, in a simple and elegant study of turbulent diffu-
sion, introduced the idea of a correlation function. He showed that the root-mean-square
distance of a particle from its source point initially increases with time as t, and subsequently
as t1/2, as in a random walk. Taylor continued his outstanding work in a series of papers
during 1935e1936 in which he laid down the foundation of the statistical theory of turbu-
lence. Among the concepts he introduced were those of homogeneous and isotropic turbu-
lence and of a turbulence spectrum. Although real turbulent flows are not isotropic
(turbulent shear stresses, in fact, vanish for isotropic flows), the mathematical techniques
involved have proved valuable for describing the small scales of turbulence, which are
isotropic or nearly so. In 1915 Taylor also introduced the mixing length concept, although
it is generally credited to Prandtl for making full use of the idea.

During the 1920s Prandtl and his student von Karman, working in Göttingen, Germany,
developed semi-empirical theories of turbulence. The most successful of these was the mix-
ing length theory, which is based on an analogy with the concept of mean free path in the
kinetic theory of gases. By guessing at the correct form for the mixing length, Prandtl was
able to deduce that the average turbulent velocity profile near a solid wall is logarithmic,
one of the most reliable results for turbulent flows. It is for this reason that subsequent text-
books on fluid mechanics have for a long time glorified the mixing length theory. Recently,
however, it has become clear that the mixing length theory is not helpful since there is really
no rational way of predicting the form of themixing length. In fact, the logarithmic law can be
justified from dimensional considerations alone.

Some very important work was done by the British meteorologist Lewis Richardson. In
1922 he wrote the very first book on numerical weather prediction. In this book he proposed
that the turbulent kinetic energy is transferred from large to small eddies, until it is
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destroyed by viscous dissipation. This idea of a spectral energy cascade is at the heart of our
present understanding of turbulence. However, Richardson’s work was largely ignored at
the time, and it was not until some 20 years later that the idea of a spectral cascade took
a quantitative shape in the hands of Kolmogorov and Obukhov in Russia. Richardson
also did another important piece of work that displayed his amazing physical intuition.
On the basis of experimental data for the movement of balloons in the atmosphere, he
proposed that the effective diffusion coefficient of a patch of turbulence is proportional
to l4/3, where l is the scale of the patch. This is called Richardson’s four-third law, which
has been subsequently found to be in agreement with Kolmogorov’s famous five-third
law for the energy spectrum.

The Russian mathematician Kolmogorov, generally regarded as the greatest probabilist of
the twentieth century, followed up on Richardson’s idea of a spectral energy cascade. He
hypothesized that the statistics of small scales are isotropic and depend on only two param-
eters, namely n, the kinematic viscosity, and 3, the average rate of kinetic energy dissipation
per unit mass of fluid. On dimensional grounds, he derived that the smallest scales must be
of size h ¼ (n3/ 3)1/4. His second hypothesis was that, at scales much smaller than l (see
Figure 12.1) and much larger than h, there must exist an inertial subrange of turbulent
eddy sizes for which n plays no role; in this range the statistics depend only on a single
parameter 3. Using this idea, in 1941 Kolmogorov and Obukhov independently derived
that the spectrum in the inertial subrange must be proportional to 32/3k�5/3, where k is the
wave number. The five-thirds law is one of the most important results of turbulence theory
and is in agreement with high Reynolds number observations.

Recent decades have seen much progress in theory, calculations, and measurements.
Among these may be mentioned the work on the modeling, coherent structures, direct
numerical simulations, and multidimensional diagnostics. Observations in the ocean and
the atmosphere (which von Karman called “a giant laboratory for turbulence research”), in
which the Reynolds numbers are very large, are shedding new light on the structure of strat-
ified turbulence.

12.3. NOMENCLATURE AND STATISTICS FOR TURBULENT FLOW

The dependent-field variables in a turbulent flow (velocity components, pressure, temper-
ature, etc.) are commonly analyzed and described using definitions and nomenclature
borrowed from the theory of stochastic processes and random variables even though fluid-
dynamic turbulence is not entirely random. Thus, the characteristics of turbulent-flow field
variables are commonly specified in terms of their statistics ormoments. In particular, a turbu-
lent field quantity, ~w, is commonly separated into is first moment, w, and its fluctuations,
wh~w� w, which have zero mean. This separation is known as the Reynolds decomposition
and is further described and utilized in Section 12.5.

To define moments precisely, specific terminology is needed. A collection of independent
realizations of a random variable, obtained under identical conditions, is called an ensemble.
The ordinary arithmetic average over the collection is called an ensemble average and is
denoted herein by an over bar. When the number N of realizations in the ensemble is large,
N/N, the ensemble average is called an expected value and is denoted with angle brackets.
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With this terminology and notation, the mth-moment, um, of the random variable u at location
x and time t is defined as the ensemble average of um:

humðx, tÞi ¼ lim
N/N

umðx, tÞh lim
N/N

1

N

X
N

n¼1

ðuðx, t:nÞÞm, (12.1)

where u(x,t:n) is nth the realization in the ensemble. The limit N/N can only be taken
formally in theoretical analysis, so when dealing with measurements, um is commonly
used in place of humi and good experimental design ensures that N is large enough for reli-
able determination of the first few moments of u. Thus, the over-bar notation for ensemble
average is favored in the remainder of this chapter. Collectively, the moments for integer
values of m are known as the statistics of u(x,t).

Under certain circumstances, ensemble averaging is not necessary for moment estimation.
When u is stationary in time, its statistics do not depend on time, and um at x can be reliably
estimated from time averaging:

umðxÞ ¼ 1

Dt

Z tþDt=2

t�Dt=2
umðx, tÞdt, (12.2)

when Dt is large enough. Time averages are relevant for turbulent flows that persist with
the same boundary conditions for long periods of time, an example being the turbulent
boundary-layer flow on the hull of a long-range ship that traverses a calm sea at a constant
speed. Example time histories of temporally stationary and nonstationary processes are
shown in Figure 12.2. When u is homogeneous or stationary in space, its statistics do not
depend on location, and um at time t can be reliably estimated from spatial averaging
in a volume V,

umðtÞ ¼ 1

V

Z

V

umðx, tÞdV, (12.3)

FIGURE12.2 Sample time series indicating temporally stationary (a) andnonstationaryprocesses (b).The timeseries
in (b) clearly shows that the average value of u decreases with time compared to the time series in (a).
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when V is large enough and defined appropriately. This type of average is often relevant in
confined turbulent flows subject to externally imposed temporal variations, an example
being the in-cylinder swirling and tumbling gas flow driven by piston motion and valve
flows in an internal combustion piston engine.

For the discussions in this chapter, all moments denoted by over bars are ensemble aver-
ages determined from (12.1), unless otherwise specified. Equations (12.2) and (12.3) are
provided here because they are commonly used to convert turbulent flow measurements
into moment values. In particular, (12.2) or (12.3) are used in atmospheric and oceanic field
measurements because ongoing natural phenomena like weather or the slow meandering of
ocean currents make it is practically impossible to precisely repeat field observations under
identical circumstances. For such measurements, a judicious selection of Dt or V is necessary;
they should be long or large enough for reliable moment estimation but small enough so that
the resulting statistics are only weakly influenced by ongoing natural variations.

Before defining and describing specific moments, several important properties of the
process of ensemble averaging defined by (12.1) must be mentioned. First, ensemble aver-
aging commutes with differentiation, that is, the application order of these two operators
can be interchanged:

vum

vt
¼ 1

N

X
N

n¼1

v

vt
ðuðx, t:nÞÞm ¼ v

vt

 

1

N

X
N

n¼1

ðuðx, t:nÞÞm
!

¼ v

vt
um:

Similarly, ensemble averaging commutes with addition, multiplication by a constant, time
integration, spatial differentiation, and spatial integration. Thus the following are all true:

um þ vm ¼ um þ vm, Aum ¼ Aum,
vum

vt
¼ v

vt
um, (12.4, 12.5, 12.6)

Z b

a
umdt ¼

Z b

a
umdt ,

vum

vxj
¼ v

vxj
um,

Z

umdx ¼
Z

umdx, (12.7, 12.8, 12.9)

where v is another random variable; a, b, m, and A are all constants; and dx represents
a general spatial increment. In particular, (12.5) with m ¼ 0 implies A ¼ A, so if A ¼ u
then u ¼ u; the ensemble average of an average is just the average. However, the ensemble
average of a product of random variables is not necessarily the product of the ensemble
averages. In general,

umsum and uvsu v,

when m s 1, and u and v are different random variables.
The simplest statistic of a random variable u is its first moment, mean, or average, u. From

(12.1) with m ¼ 1, u is:

uðx, tÞh 1

N

X
N

n¼ 1

uðx, t:nÞ: (12.10)

In general, umay depend on both space and time, and is obtained by summing theN separate
realizations of the ensemble, u(x,t:n) for 1� n �N, at time t and location x, and then dividing
the sumbyN. A graphical depiction of ensemble averaging, as specified by (12.10), is shown in
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Figure 12.3 for time-series measurements recorded at the same point x in space. The left panel
of the figure shows four members, u(x,t:n) for 1 � n � 4, of the ensemble. Here the average
value of u decreases with increasing time. Time records such as these might represent atmo-
spheric temperature measurements during the first few hours after sunset on different days,
or they might represent a component of the flow velocity from an engine cylinder in the first
10 or 20 milliseconds after an exhaust valve opens. The right panel of Figure 12.3 shows the
ensemble average uðx, tÞ obtained from the first two, four, and eightmembers of the ensemble.
The solid smooth curve in the lower right panel of Figure 12.3 is the expected value that would
be obtained from ensemble averaging in the limit N/N. The dashed curve is a time average
computed from only the fourth member of the ensemble using (12.2) withm ¼ 1 and Dt equal
to one-tenth of the total time displayed for each time history. Figure 12.3 clearly shows the
primary effect of averaging is to suppress fluctuations since they become less prominent as
N increases and are absent from the expected value. In addition, it shows that differences
between an ensemble average of many realizations and a finite-duration temporal average
of a single realization may be small, even when the flow is not stationary in time.

Although useful and important in many situations, the average or first moment alone does
not directly provide information about turbulent fluctuations. Such information is commonly
reported in terms of one or more higher order central moments defined by:

ðu� huiÞm h
1

N

X
N

n¼ 1

ðuðx, t:nÞ � huðx, tÞiÞm, (12.11)

where in practice uðx, tÞ often replaces hui. The central moments primarily carry information
about the fluctuations since (12.11) explicitly shows that the mean is removed from each
ensemble member. The first central moment is zero by definition. The next three have special

u

t

n = 1

n = 2

n = 3

n = 4

t

N = 4

N = 2

N = 8

time average, Δt = 1/10 

u

N

FIGURE 12.3 Illustration of ensemble and temporal averaging. The left panel shows four members of an
ensemble of time series for the decaying random variable u. In all four cases, the fluctuations are different but the
decreasing trend with increasing N is clearly apparent in each. The right panel shows averages of two, four, and
eight members of the ensemble in the upper three plots. As the sample number N increases, fluctuations in the
ensemble average decreases. The lowest plot on the right shows the N/N curvedthis is the expected value of
u(t)dand a simple sliding time average of the n ¼ 4 curve where the duration of the time average is one-tenth of the
time period shown. In this case, time and ensemble averaging produce nearly the same curve.
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names: ðu� uÞ2 is the variance of u, ðu� uÞ3 is the skewness of u, and ðu� uÞ4 is the kurtosis

of u. In addition, the square root of the variance,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu� uÞ2
q

, is known as the standard deviation,

the square root of the second moment,
ffiffiffiffiffi

u2
p

¼ urms, is known as the root mean square, and
these are equal when u ¼ 0. In the study of turbulence, a field variable’s first moment and
variance are most important.

EXAMPLE 12.1

Compute the time average of the function uðtÞ ¼ Ae�t=s þ B cosðutÞ using (12.2). Presuming this

function is meant to represent a turbulent field variable with zero-mean fluctuations, B cos(ut),

superimposed on a decaying time-dependent average, Aeet/s, what condition on Dt leads to an

accurate recovery of the decaying average? And, what condition on Dt leads to suppression of the

fluctuations?

Solution

Start by directly substituting the given function into (12.2):

uðtÞ ¼ 1

Dt

Z

tþDt=2

t�Dt=2

�

Ae�t=s þ B cosðutÞ
�

dt,

and evaluating the integral:

uðtÞ ¼ 1

Dt

�

�As exp

�

� tþ Dt=2

s

�

þ As exp

�

� t� Dt=2

s

�

þ B

u
sin
h

uðtþ Dt=2Þ
i

� B

u
sin
h

uðt� Dt=2Þ
i

�

:

This can be simplified to find:

uðtÞ ¼
�

sinhðDt=2sÞ
Dt=2s

�

Ae�t=s þ
�

sinðuDt=2Þ
uDt=2

�

B cosðutÞ:

In the limit Dt/0, both factors in [,]-braces go to unity and the original function is recovered.

Thus, the condition for properly determining the decaying average is Dt � s; the averaging interval

Dt must be short compared to the time scale for decay, s. However, to suppress the contribution

of the fluctuations represented by the second term, its coefficient must be small. This occurs

when uDt[ 1 which implies the averaging interval must be many fluctuation time periods

long. Therefore, a proper averaging interval should satisfy: 1 � uDt � us, but such a choice for

Dt is not possible unless us [ 1.

12.4. CORRELATIONS AND SPECTRA

While moments of a random variable are important and interesting, they do not convey
information about the temporal duration or spatial extent of fluctuations, nor do they indicate
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anything about relationships between one or more dependent-field variables at different
places and times. In the study of turbulence, correlations and spectra are commonly used
to further characterize fluctuations and are described in this section. Furthermore, since we
seek to describe fluctuations, all the random variables in this section are assumed to have
zero mean, an assumption that is consistent with the Reynolds decomposition. The material
presented here starts with general definitions that are simplified for a temporally stationary
random variable sampled at the same point in space, or a spatially stationary random variable
sampled at different points at the same time. Other approaches to specifying the temporal and
spatial character of fluctuations, such as structure functions, fractal dimensions, multi-fractal
spectra, and multiplier distributions, etc., are beyond the scope of this text.

In three spatial dimensions, the correlation function of the random variable ui at location x1
and time t1 with the random variable uj at location x2 and time t2 is defined as

Rijðx1, t1,x2, t2Þh uiðx1, t1Þujðx2, t2Þ, (12.12)

where we will soon interpret ui and uj as turbulent-flow velocity-component fluctuations.
Note that this Rij is not the rotation tensor defined in Chapter 3. The correlation function
Rij can be computed via (12.1) when each realization of the ensemble contains time history
pairs: ui(x,t:n) and uj(x,t;n). First, the N pairs ui(x1,t1:n) and uj(x2,t2:n) are selected from the
realizations and multiplied together. Then the N pair-products are summed and divided
by N to complete the calculation of Rij.

The correlation Rij specifies how similar ui(x1,t1) and uj(x2,t2) are to each other. The
magnitude of Rij is zero when positive values of ui(x1,t1:n) are associated with equal likeli-
hood with both positive and negative values of uj(x2,t2:n). In this case, ui(x1,t1) and uj(x2,t2)
are said to be uncorrelated when Rij ¼ 0, or weakly correlated if Rij is small and positive. If,
a positive value of ui(x1,t1:n) is mostly associated with a positive value of uj(x2,t2:n),
and a negative value of ui(x1,t1:n) is mostly associated with a negative value of uj(x2,t2:n),
then the magnitude of Rij is large and positive. In this case, ui(x1,t1) and uj(x2,t2) are said
to be strongly correlated. It is also possible for ui(x1,t1:n) to be mostly associated with values
of uj(x2,t2:n) having the opposite sign so that Rij is negative. In this case, ui(x1,t1) and ui(x2,t2)
are said to be anticorrelated.

When is j in (12.12) the resulting function is called a cross-correlation function. When i ¼ j
in (12.12) and uj(x2,t2) is replaced by ui(x2,t2), the resulting function is called an autocorrelation
function; for example, i ¼ 1 implies

R11ðx1, t1,x2, t2Þh u1ðx1, t1Þu1ðx2, t2Þ: (12.13)

The two definitions, (12.12) and (12.13), may be normalized to define the correlation coeffi-
cients. For example when i ¼ 1 and j ¼ 2:

r12ðx1, t1, x2, t2Þh R12ðx1, t1, x2, t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R11ðx1, t1, x1, t1ÞR22ðx2, t2, x2, t2Þ
p ¼ u1ðx1, t1Þu2ðx2, t2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21
	

x1, t1



q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u22
	

x2, t2



q and (12.14)

r11ðx1, t1, x2, t2Þh R11ðx1, t1,x2, t2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R11ðx1, t1,x1, t1ÞR11ðx2, t2, x2, t2Þ
p ¼ u1ðx1, t1Þu1ðx2, t2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21
	

x1, t1



q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21
	

x2, t2



q , (12.15)
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which are restricted to lie between e1 (perfect anticorrelation) and þ1 (perfect correlation).
For any two functions u and v, it can be proved that

uðx1, t1Þvðx2, t2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ðx1, t1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2ðx2, t2Þ
q

, (12.16)

which is called the Schwartz inequality. It is analogous to the rule that the inner product of two
vectors cannot be larger than the product of their magnitudes. Obviously, from (12.15),
r11(x1,t1,x1,t1) is unity.

For temporally stationary processes that are sampled at the same point in space,
x ¼ x1 ¼ x2, the above formulas simplify, and the listing of x as an argument may be dropped
to streamline the notation. The statistics of temporally stationary random processes are inde-
pendent of the time origin, so we can shift the time origin to t1 when computing a correlation

so that uiðt1Þujðt2Þ ¼ uið0Þujðt2 � t1Þ ¼ uið0ÞujðsÞ, where s ¼ t2 � t1 is the time lag, without

changing the correlation. Or, we can change t1 in (12.13) into t, uiðtÞujðt2Þ ¼ uiðtÞujðtþ sÞ,
without changing the correlation. Thus, the correlation and autocorrelation functions can
be written:

RijðsÞ ¼ uiðtÞujðtþ sÞ and R11ðsÞ ¼ u1ðtÞu1ðtþ sÞ, (12.17)

where the over bar can be regarded as either an ensemble or time average in this case.
Furthermore, under these conditions, the autocorrelation is symmetric:

R11ðsÞ ¼ u1ðtÞu1ðtþ sÞ ¼ u1ðt� sÞu1ðtÞ ¼ u1ðtÞu1ðt� sÞ ¼ R11ðesÞ:
However, this is not the case for cross correlations, Rij(s) s Rij(es) when i s j. The value of
a cross-correlation function at s ¼ 0, uiðtÞujðtÞ, is simply written as uiuj and called the corre-
lation of ui and uj.

Figure 12.4 illustrates several of these concepts for two temporally stationary random vari-
ables u(t) and v(t). The left panel shows u(t), u(t þ to), v(t), and the time shift to is indicated
near the top. The right panel shows the autocorrelation of u, the cross correlation of u and
u with an imposed time shift of to, and the cross correlation of u and v. The tic-mark spacing

represents the same amount of time in both panels. The time shift necessary for uðtÞuðtþ sÞ to
reach zero is comparable to the width of peaks or valleys of u(t). As expected, the autocorre-
lation is maximumwhen the two time arguments of u under the ensemble average are equal,
and this correlation peak is symmetric about this time shift. Correlation is a mathematical
shape-comparison indicator that is sensitive to time alignment. Consider u(t), u(t þ to), and

uðtþ toÞuðtþ sÞ. When s ¼ 0 the peaks and valleys of u(t) and u(t þ to)dwhich are of course

are identicaldare not temporally aligned so uðtþ toÞuðtþ sÞ in Figure 12.4 is nearly zero
when s ¼ 0. However, as s increasesdthis corresponds to moving the time history of u(t)
to the leftdthe peaks and valleys of u(t) and u(t þ to) come closer into temporal alignment.
Perfect alignment is reached when s ¼ to and this produces the correlation maximum in

uðtþ toÞuðtþ sÞ at s ¼ to. The cross-correlation function results in Figure 12.4 can be under-
stood in a similar manner by looking for temporal alignment in u and v as v slides to the
left with increasing s. As shown in the left panel, the largest peak of u is temporally aligned
with the largest peak of v when s ¼ tþ and this leads to the positive correlation maximum in

uðtÞvðtþ sÞ at s ¼ tþ. However, as s increases further, the largest peak of u becomes

12.4. CORRELATIONS AND SPECTRA 551



temporally aligned with the deepest valley of v, and this leads to the cross-correlation
minimum at s ¼ te. Thus, the zeros and extrema of correlation functions indicate the time
shifts necessary to temporally misalign, align, or anti-align field-variable fluctuations. Such
timing information cannot be obtained from moments.

Several time scales can be determined from the autocorrelation function. For turbulence,
the most important of these is the integral time scale Lt. Under normal conditions R11 goes
to 0 as s / N because the turbulent fluctuation u1 becomes uncorrelated with itself after
a long time. The integral time scale is found by equating the area under the autocorrelation
coefficient curve to a rectangle of unity height and duration Lt:

Lth

Z N

0
r11ðsÞds ¼ ð1=R11ð0ÞÞ

Z N

0
R11ðsÞds, (12.18)

where r11(s) ¼ R11(s)/R11(0) is the autocorrelation coefficient for the stream-wise velocity
fluctuation u1. Of course, (12.18) can be written in terms of r22 or r33, but for the purposes
at hand this is not necessary. The calculation in (12.18) is shown graphically in Figure 12.5.
The integral time scale is a generic specification of the time over which a turbulent fluctuation
is correlated with itself. In other words, Lt is a measure of the memory of the turbulence. The
correlation time tc is also shown in Figure 12.5 as the time when r11(s) first reaches zero. When
temporally averaging a single random-variable time history of length Dt to mimic an
ensemble average, the equivalent number of ensemble members can be estimated from
N z Dt/tc. A third time scale, the Taylor microscale lt, can also be extracted from r11(s). It
is obtained from the curvature of the autocorrelation peak at s ¼ 0 and is given by:

l2t h � 2
h

d2r11=ds
2
i

s¼0

.

(12.19)
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FIGURE 12.4 Sample results for auto- and cross-correlation functions of u(t), u(t þ to), and v(t). These three time
series are shown on the left. The upper curve on the right is the autocorrelation function, uðtÞuðtþ sÞ, of the upper
time series on the left. The tic marks on the axes represent the same time interval so the width of a peak of u(t) is
about equal to the correlation time determined from uðtÞuðtþ sÞ. The correlation of u(t þ to) and u(t) is shown as the
middle curve on the right, and it is just a shifted replica of uðtÞuðtþ sÞ. The cross correlation of u(t) and v(t) is the
lower curve on the right. Here the maximum cross correlation occurs when s ¼ tþ and the peaks of u and v coincide.
Similarly, u and v are most anti-correlated when peaks in u align with valleys in v at s ¼ te.
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(see Exercise 12.9). The Taylor microscale lt is much less than Lt in high Reynolds number
turbulence, and it indicates where a turbulent fluctuation, u1(t) in (12.19), is well correlated
with itself.

A second (and equivalent) means of describing the characteristics of turbulent fluctua-
tions, which also complements the information provided by moments, is the energy spectrum
Se(u) defined as the Fourier transform of the autocorrelation function R11(s):

SeðuÞh 1

2p

Z
þN

�N

R11ðsÞ expf�iusg ds: (12.20)

Thus, Se(u) and R11(s) are a Fourier transform pair:

R11ðsÞh
Z
þN

�N

SeðuÞ expfþiusg du: (12.21)

The relationships (12.20) and (12.21) are not special for Se(u) and R11(s) alone, but hold for
many function pairs for which a Fourier transform exists. Roughly speaking, a Fourier trans-
form can be defined if the function decays to zero fast enough as its argument goes to infinity.
Since R11(s) is real and symmetric, then Se(u) is real and symmetric (see Exercise 12.6). Substi-
tution of s ¼ 0 in (12.21) gives

u21h

Z
þN

�N

SeðuÞdu: (12.22)

This shows that the integrand increment Se(u)du is the contribution to the variance (or fluc-
tuation energy) of u1 from the frequency band du centered at u. Therefore, the function Se(u)
represents the way fluctuation energy is distributed across frequency u. From (12.20) it also
follows that

Seð0Þ ¼ 1

2p

Z
N

�N

R11ðsÞds ¼ u21
p

Z
N

0

r11ðsÞds ¼ u21
p
Lt,

r

t tc

FIGURE 12.5 Sample plot of an autocorrelation coefficient showing the integral time scale Lt, and the corre-
lation time tc. The normalization requires r(0) ¼ 1. In the limit s/N, rðsÞ/0 and thereby indicates that the random
process used to construct r becomes uncorrelated with itself when the time shift s is large enough.
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which shows that the spectral value at zero frequency is proportional to the variance of u1
and the integral time scale.

From (12.16) to this point, ui and uj have been considered stationary functions of time
measured at the same point in space. In a similar manner, we now consider ui and uj to be
stationary functions in space measured at the same instant in time t. For simplicity we
drop the listing of t as an independent variable. In this case, the correlation tensor only
depends on the vector separation between x1 and x2, r ¼ x2 e x1,

RijðrÞh uiðxÞujðxþ rÞ: (12.23)

An instantaneous field measurement of ui(x) is needed to calculate the spatial autocorre-
lation Rij(x). This is a difficult task in three dimensions, although planar particle imaging
velocimetry (PIV) makes it possible in two. However, single-point measurements of a time
series u1(t) in turbulent flows are still quite common and spatial results may be obtained
approximately by rapidly moving a probe in a desired direction. If the speed U0 of the probe
is high enough, we can assume that the field of turbulence is frozen and does not change while
the probe moves through it during the measurement. Although the probe actually records
a time series u1(t), it can be transformed into a spatial series u1(x) by replacing t by x/U0.
The assumption that the turbulent fluctuations at a point are caused by the advection of
a frozen field past the point is called Taylor’s hypothesis, and the accuracy of this approxima-
tion increases as the ratio urms/U0 decreases.

12.5. AVERAGED EQUATIONS OF MOTION

In this section, the equations of motion for the mean state in a turbulent flow are derived.
The contribution of turbulent fluctuations appears in these equations as a correlation of
velocity-component fluctuations. A turbulent flow instantaneously satisfies the Navier-
Stokes equations. However, it is virtually impossible to predict the flow in detail at high Rey-
nolds numbers, as there is an enormous range of length and time scales to be resolved.
Perhaps more importantly, we seldom want to know all the details. If a commercial aircraft
must fly from Los Angeles, California, to Sydney, Australia, and turbulent skin-friction fluc-
tuations occur in a frequency range from a few Hz to more than 104 Hz, the economically
important parameter is the average skin friction because the time of the flight (many hours)
is much longer than even the longest fluctuation time scale. Here, the integrated effect of the
fluctuations approaches zero when compared to the integral of the average. This situation
where the overall duration of the flow far exceeds turbulent-fluctuation time scales is very
common in engineering and geophysical science.

The following development of the mean flow equations is for incompressible turbulent
flow with constant viscosity where density fluctuations are caused by temperature fluctua-
tions alone. The first step is to separate the dependent-field quantities into components rep-
resenting the mean (capital letters and those with over bars) and those representing the
deviation from the mean (lowercase letters and those with primes):

~ui ¼ Ui þ ui, ~p ¼ Pþ p, ~r ¼ rþ r0, and ~T ¼ T þ T0 (12.24)
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wheredas in the preceding chapterdthe complete field quantities are denoted by a tilde
(~). As mentioned in Section 12.3, this separation into mean and fluctuating components
is called the Reynolds decomposition. Although it doubles the number of dependent-field
variables, this decomposition remains useful and relevant more than a century after it
was first proposed. However, it leads to a closure problem in the resulting equation set
that has still not been resolved. The mean quantities in (12.24) are regarded as expected
values,

~ui ¼ Ui, ~p ¼ P, ~r ¼ r, and ~T ¼ T, (12.25)

and the fluctuations have zero mean,

ui ¼ 0, p ¼ 0, r0 ¼ 0, and T0 ¼ 0: (12.26)

The equations satisfied by the mean flow are obtained by substituting (12.24) into the gov-
erning equations and averaging. Here, the starting point is the Boussinesq set:

v~ui
vt

þ ~uj
v~ui
vxj

¼ v~ui
vt

þ v

vxj
ð~uj~uiÞ ¼ � 1

r0

v~p

vxi
� g
h

1� að~T � T0Þ
i

di3 þ n
v2~ui
vx2j

, (4.86)

v~ui
vxi

¼ 0, and
v~T

vt
þ ~uj

v~T

vxj
¼ v~T

vt
þ v

vxj
ð~uj~TÞ ¼ k

v2~T

vx2j
, (4.10, 4.89)

where the first equality in (4.86) and (4.89) follows from adding ~uiðv~uj=vxjÞ ¼ 0 and
~Tðv~uj=vxjÞ ¼ 0, respectively, to the leftmost sides of these equations. Simplifications for
constant-density flow are easily obtained at the end of this effort.

The continuity equation for the mean flow is obtained by putting the velocity decomposi-
tion of (12.24) into (4.10) and averaging:

v~ui
vxi

¼ v

vxi
ðUi þ uiÞ ¼ v

vxi
ðUi þ uiÞ ¼ v

vxi
ðUi þ uiÞ ¼

vUi

vxi
¼ 0, (12.27)

where (12.8), Ui ¼ Ui, and ui ¼ 0 have been used. Subtracting (12.27) from (4.10) produces:

vui=vxi ¼ 0: (12.28)

Thus, the mean and fluctuating velocity fields are each divergence free.
The procedure for the mean momentum equation is similar but requires slightly more

effort. Substituting (12.24) into (4.86) produces:

vðUi þ uiÞ
vt

þ v

vxj

		

Uj þ ujÞðUi þ uiÞ

 ¼ � 1

r0

vðPþ pÞ
vxi

� g
h

1� aðT þ T0 � T0Þ
i

di3

þ n
v2
	

Ui þ ui



vx2j
: (12.29)
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The averages of each term in this equation can be determined by using (12.26) and the prop-
erties of an ensemble average: (12.4) through (12.6) and (12.8). The term-by-term results are:

vðUi þ uiÞ
vt

¼ v
	

Ui þ ui



vt
¼ vðUi þ uiÞ

vt
¼ vUi

vt
,

v

vxj

�

ðUj þ ujÞðUi þ uiÞ
�

¼ v

vxj

�

UiUj þUiuj þ uiUj þ uiuj

�

¼ v

vxj

�

UiUj þ uiUj þUiuj þ uiuj

�

¼ v

vxj

�

UiUj þ uiuj

�

,

1

r0

vðPþ pÞ
vxi

¼ 1

r0

vðPþ pÞ
vxi

¼ 1

r0

vðPþ pÞ
vxi

¼ 1

r0

vP

vxi
,

g½1� aðT þ T0 � T0Þ�di3 ¼ g
h

1� aðT þ T0 � T0Þ
i

di3 ¼ g
h

1� aðT � T0Þ
i

di3, and

n
v2
	

Ui þ ui



vx2j
¼ n

v2
	

Ui þ ui



vx2j
¼ n

v2
	

Ui þ ui



vx2j
¼ n

v2U

vx2j
:

Collecting terms, the ensemble average of the momentum equation is:

vUi

vt
þ v

vxj
ðUiUjÞ þ

v

vxj
ðuiujÞ ¼ � 1

r0

vP

vxi
� g
h

1� aðT � T0Þ
i

di3 þ n
v2Ui

vx2j
:

This equation can be mildly rearranged by using the final result of (12.27) and combing the
gradient terms together to form the mean stress tensor sij:

vUi

vt
þUj

vUi

vxj
¼ �g

h

1� aðT � T0Þ
i

di3 þ
1

r0

vsij
vxj

¼ �g
h

1� aðT � T0Þ
i

di3 þ
1

r0

v

vxj

�

�Pdij þ 2mSij � r0uiuj

�

, (12.30)

where Sij ¼ 1=2ðvUi=vxj þ vUj=vxiÞ is the mean strain-rate tensor, and (4.40) has been used to
put themean viscous stress in the form shown in (12.30). The correlation tensor uiuj in (12.30) is
generally nonzero even though ui ¼ 0. Its presence in (12.30) is important because it has no
counterpart in the instantaneous momentum equation (4.86) and it links the character of the
fluctuations to the mean flow. Unfortunately, the process of reaching (12.30) does not provide
any new equations for this correlation tensor. Thus, the final equality of (12.27), and (12.30) do
not comprise a closed system of equations, even when the flow is isothermal.

The new tensor in (12.30), er0uiuj, plays the role of a stress and is called the Reynolds stress

tensor. When present, Reynolds stresses are often much larger than viscous stresses, m(vUi/
vxj þ vUi/vxj), except very close to a solid surface where the fluctuations go to zero and
mean flow gradients are large. The Reynolds stress tensor is symmetric since uiuj ¼ ujui,

so it has six independent Cartesian components. Its diagonal components u21, u
2
2, and u23

are normal stresses that augment the mean pressure, while its off-diagonal components
u1u2, u1u3, and u2u3 are shear stresses.
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An explanation why the average product of the velocity fluctuations in a turbulent flow
is not expected to be zero follows. Consider a shear flow where the mean shear dU/dy is
positive (Figure 12.6). Assume that a fluid particle at level y travels upward because of
a fluctuation (v > 0). On average this particle retains its original horizontal velocity during
the migration, so when it arrives at level y þ dy it finds itself in a region where a larger
horizontal velocity prevails. Thus the particle is on average slower (u < 0) than the neigh-
boring fluid particles after it has reached the level y þ dy. Conversely, fluid particles that
travel downward (v < 0) tend to cause a positive u at their new level y � dy. Taken
together, a positive v is associated with a negative u, and a negative v is associated with
a positive u. Therefore, the correlation uv is negative for the velocity field shown in
Figure 12.6, where dU/dy > 0. This makes sense, since in this case the x-momentum should
tend to flow in the negative y-direction as the turbulence tends to diffuse the gradients and
decrease dU/dy.

The Reynolds stresses arise from the nonlinear advection term ujðvui=vxjÞ of the
momentum equation, and are the average stress exerted by turbulent fluctuations on the
mean flow. Another way to interpret the Reynolds stress is that it is the rate of mean
momentum transfer by turbulent fluctuations. Consider again the shear flow U(y) shown
in Figure 12.6, where the instantaneous velocity is (U þ u, v, w). The fluctuating velocity
components constantly transport fluid particles, and associated momentum, across a plane
AA normal to the y-direction. The instantaneous rate of mass transfer across a unit area is
r0v, and consequently the instantaneous rate of x-momentum transfer is r0(U þ u)v. Per
unit area, the average rate of flow of x-momentum in the y-direction is therefore

r0ðU þ uÞv ¼ r0Uuþ r0uv ¼ r0uv:

FIGURE 12.6 A schematic illustration of the development of nonzero Reynolds shear stress in a simple shear
flow. A fluid particle that starts at y and is displaced upward to y þ dy by a positive vertical velocity fluctuation v
brings an average horizontal fluid velocity of U(y) that is lower than U(y þ dy). Thus, a positive vertical velocity
fluctuation v is correlated with negative horizontal velocity fluctuation u, so uv < 0. Similarly, a negative v displaces
the fluid particle to y e dywhere it arrives on average with positive u, so again uv < 0. Thus, turbulent fluctuations in
shear flow are likely to produce negative nonzero Reynolds shear stress.
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Generalizing, r0uiuj is the average flux of i-momentum along the j-direction, which also equals the
average flux of j-momentum along the i-direction.

The sign convention for the Reynolds stress is the same as that explained in Section 2.4. On
a surface whose outward normal points in the positive i-direction, a positive sij points along
the j-direction. According to this convention, the Reynolds shear stresses er0uiuj (i s j) on
a rectangular element are directed as in Figure 12.7, if they are positive. Such a Reynolds
stress causes mean transport of x-momentum along the negative y-direction.

The mean flow thermal energy equation comes from substituting the velocity and temper-
ature decompositions of (12.24) into (4.89) and averaging. The substitution step produces:

v

vt
ðT þ T0Þ þ v

vxj

�

	

Uj þ uj

	

T þ T0

�

¼ k
v2

vx2j
ðT þ T0Þ:

The averages of each term in this equation are:

v

vt
ðT þ T0Þ ¼ v

vt
ðT þ T0Þ ¼ vT

vt
,

v

vxj

�

	

Uj þ uj

	

T þ T0

�

¼ v

vxj

�

UjT þ ujT þUjT0 þ ujT0
�

¼ Uj
vT

vxj
þ v

vxj
ðujT0Þ, and

k
v2

vx2j
ðT þ T0Þ ¼ k

v2

vx2j
ðT þ T0Þ ¼ k

v2T

vx2j
,

where the final equality of (12.27), (12.4) through (12.6), and (12.8) have been used. Collecting
terms, the mean temperature equation takes the form:

vT

vt
þUj

vT

vxj
þ v

vxj
ðujT0Þ ¼ k

v2T

vx2j
: (12.31)

FIGURE 12.7 Positive directions of Reynolds stresses on a square element. These stress components are
consistent with those drawn in Figure 2.4.
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When multiplied by roCp and rearranged, (12.31) becomes the heat transfer equivalent of
(12.30) and can be stated in terms of the mean heat flux Qj:

r0Cp

 

vT

vt
þUj

vT

vxj

!

¼ � vQj

vxj
¼ � v

vxj

 

� k
vT

vxj
þ r0CpujT0

!

, (12.32)

where k ¼ roCpk is the thermal conductivity. Equation (12.32) shows that the fluctuations
cause an additional mean turbulent heat flux of r0CpujT0 that has no equivalent in (4.89).
The turbulent heat flux is the thermal equivalent of the Reynolds stress er0uiuj found in
(12.30). Unfortunately, the process of reaching (12.31) and (12.32) has not provided any
new equations for the turbulent heat flux. However, some understanding of the turbulent
heat flux can be gained by considering diurnal heating of the earth’s surface. During daylight
hours, the sun may heat the surface of the earth, resulting in a mean temperature that
decreases with height and in the potential for turbulent convective air motion. When such
motions occur, an upward velocity fluctuation is mostly associated with a positive tempera-
ture fluctuation, giving rise to an upward heat flux r0Cpu3T0 > 0.

The final mean-flow equation commonly considered for turbulent flows is that for trans-
port of a dye or a nonreacting molecular species that is merely carried by the turbulent flow
without altering the flow. Such passive contaminants are commonly called passive scalars or
conserved scalars and the rate at which they are mixed with nonturbulent fluid is often of
significant technological interest for pollutant dispersion and premixed combustion.
Consider a simple binary mixture composed of a primary fluid with density r and a contam-
inant fluid (the passive scalar) with density rs. The density rm that results from mixing these
two fluids is rm ¼ ~yrs þ ð1� ~yÞr, where ~y is the volume fraction of the passive scalar. The
relevant conservation equation for the passive scalar is:

v

vt
ðrm~YÞ þ

v

vxj
ðrm~Y~ujÞ ¼

v

vxj

 

rmkm
v

vxj
~Y

!

, (12.33)

(see Kuo, 1986) where ~uj is the instantaneous mass-averaged velocity of the mixture, ~Y is the
mass fraction of the passive scalar, and km is the mass-based molecular diffusivity of the
passive scalar (see (1.1)). If the mean and fluctuating mass fraction of the conserved scalar
are Y and Y0, and the mixture density is constant, then the mean-flow passive scalar conser-
vation equation is (see Exercise 12.12):

vY

vt
þUj

vY

vxj
¼ v

vxj

 

km
vY

vxj
� ujY0

!

, (12.34)

where ujY0 is the turbulent flux of the passive scalar. This equation is valid when the mixture
density is constant, and this occurs when r ¼ rs ¼ constant and when the contaminant is
dilute so that rm z r ¼ constant. If the amount of a passive scalar is characterized by
a concentration (mass per unit volume), molecular number density, or mole fractiondinstead
of a mass fractiondthe forms of (12.33) and (12.34) are unchanged but the diffusivity may
need to be adjusted and molecular number or mass density factors may appear (see Bird
et al., 1960; Kuo, 1986). Equation (12.34) is of the same form as (12.32), and temperature
may be considered a passive scalar in turbulent flows when it does not induce buoyancy,
cause chemical reactions, or lead to significant density changes.
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To summarize, (12.27), (12.30), (12.32), and (12.34) are the mean flow equations for incom-
pressible turbulent flow (in the Boussinesq approximation). The process of reaching these
equations is known as Reynolds averaging, and it may be applied to the full compressible-
flow equations of fluid motion as well. The equations that result from Reynolds averaging
of any form of the Navier-Stokes equations are commonly known as RANS equations. The
constant-density mean flow RANS equations commonly used in hydrodynamics are
obtained from the results provided in this section by dropping the gravity term and the
“0” from r0 in (12.30), and reinterpreting the mean pressure as the deviation from hydrostatic
(as explained in Section 4.9, “Neglect of Gravity in Constant Density Flows”).

The primary problem with RANS equations is that there are more unknowns than equa-
tions. The system of equations for the first moments depends on correlations involving pairs
of variables (second moments). And, RANS equations developed for these pair correlations
involve triple correlations. For example, the conservation equation for the Reynolds stress
correlation, uiuj, is:

vuiuj
vt

þUk

vuiuj
vxk

þ vuiujuk
vxk

¼ �uiuk
vUj

vxk
� ujuk

vUi

vxk
� 1

r

 

ui
vp

vxj
þ uj

vp

vxi

!

� 2n
vui
vxk

vuj
vxk

þ n
v2

vx2k
uiuj þ ga

�

ujT0di3 þ uiT0dj3
�

(12.35)

(see Exercise 12.16), and triple correlations appear in the third term on the left. Similar conser-
vation equations for the triple correlations involve quadruple correlations, and the equations
for the quadruple correlations depend on fifth-order correlations, and so on. This problem
persists at all correlation levels and is known as the closure problem in turbulence. At the present
time there are three approaches to the closure problem. The first, known as RANS closure
modeling (see Section 12.10), involves terminating the equation hierarchy at a given level and
closing the resulting system of equations with models developed from dimensional analysis,
intuition, symmetry requirements, andexperimental results. The second, knownasdirect numer-
ical simulations (DNS) involvesnumerically solving the time-dependentequationsofmotionand
then Reynolds averaging the computational output to determine mean-flow quantities. The
third, known as large-eddy simulation (LES), combines elements of the other two and involves
some modeling and some numerical simulation of large-scale turbulent fluctuations.

A secondary problem associated with the RANS equations is that the presence of the
Reynolds stresses in (12.30) excludes the possibility of converting it into a Bernoulli equation,
even when the density is constant and the terms containing v/vt and n are zero.

12.6. HOMOGENEOUS ISOTROPIC TURBULENCE

It is clear from (12.27), (12.30), (12.32), and (12.34) that even with suitable boundary condi-
tions the RANS equations for the mean flow are not directly solvable (even numerically)
because of the closure problem. However, the idealization of turbulence as being homoge-
neous (or spatially stationary) and isotropic allows some significant simplifications. Turbu-
lence behind a grid towed through a nominally quiescent fluid bath is approximately
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homogeneous and isotropic, and turbulence in the interior of a real inhomogeneous turbulent
flow is commonly assumed to be homogeneous and isotropic. Homogenous isotropic turbu-
lence is discussed in greater detail in Batchelor (1953) and Hinze (1975).

If the turbulent fluctuations are completely isotropic, that is, if they do not have any direc-
tional preference, then the off-diagonal components of uiuj vanish, and the normal stresses
are equal. This is illustrated in Figure 12.8, which shows a cloud of data points (sometimes
called a scatter plot) on a uv-plane. The dots represent the instantaneous values of the (u,v)-
velocity component pair at different times. In the isotropic case there is no directional pref-
erence, and the dots form a symmetric pattern. In this case positive u is equally likely to be
associated with both positive and negative v. Consequently, the average value of the product uv is
zero when the turbulence is isotropic. In contrast, the scatter plot in an anisotropic turbulent field
has an orientation. The figure shows a case where a positive u is mostly associated with
a negative v, giving uv < 0.

If, in addition, the turbulence is homogeneous, then there are no spatial variations in the
flow’s statistics and all directions are equivalent:

v

vxi
unj ¼ 0, u21 ¼ u22 ¼ u23, and

�

vu1
vx1

�n

¼
�

vu2
vx2

�n

¼
�

vu3
vx3

�n

, (12.36)

but relative directions must be respected,
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¼
�

vu2
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�n

¼
�

vu3
vx2

�n

: (12.37)

Note that the continuity equation requires derivatives in the third set of equalities of (12.36)
to be zero when n ¼ 1.

The spatial structure of the flow may be ascertained by considering the two-point correla-
tion tensor, defined by (12.23), which reduces to the Reynolds stress correlation when r ¼ 0.
In homogenous flow, Rij does not depend on x, and can only depend on r. If the turbulence is
also isotropic, the direction of r cannot matter. In this special situation, only two different

FIGURE 12.8 Scatter plots of
velocity fluctuation samples in
isotropic and anisotropic turbu-
lent fields. Each dot represents
a (u,v)-pair at a sample time and
many sample times are repre-
sented in each panel. The isotropic
case produces a symmetric cloud
of points and indicates uv ¼ 0.
The anisotropic case shows the
data clustering around the line v ¼
eu and this indicates a negative
correlation of u and v; uv < 0.
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types of velocity-field correlations survive. These are described by the longitudinal ( f ) and
transverse (g) correlation coefficients defined by:

fðrÞh ujjðxþ rÞujjðxÞ=u2jj and gðrÞh utðxþ rÞutðxÞ=u2t, (12.38)

where uk is parallel to r, utis perpendicular to r, u2jj ¼ u2t ¼ u2, and f(0) ¼ g(0) ¼ 1. The
geometries for these two correlation functions are shown in Figure 12.9, where solid vectors
indicate velocities and the dashed vector represents r. Longitudinal and transverse integral
scales and Taylor microscales are defined by:

Lf h

Z
N

0

fðrÞdr, Lgh

Z
N

0

gðrÞdr, l2f h � 2=
h

d2f=dr2
i

r¼0
, and l2gh � 2=

h

d2g=dr2
i

r¼0
, (12.39)

similar to the temporal integral scale and temporal Taylor microscale defined in (12.18) and
(12.19), respectively. The most general possible form of Rij(r) that satisfies all the necessary
symmetries is:

Rij ¼ FðrÞrirj þ GðrÞdij, (12.40)

where the components of r are ri, jrj ¼ r, and the functions FðrÞ ¼ u2ðfðrÞ � gðrÞÞr�2 and
GðrÞ ¼ u2gðrÞ can be found by equating the diagonal components of Rij (Exercise 12.17).
For incompressible flow, g(r) can be eliminated from (12.40) to find:

Rij ¼ u2
�

fðrÞdij þ
r

2

df

dr

�

dij �
rirj
r2

��

(12.41)

(Exercise 12.18), and Lg ¼ Lf=2 and lg ¼ lf=
ffiffiffi

2
p

.

r

r

longitudinal

transverse

FIGURE 12.9 Longitudinal and transverse correlation geometries. In the longitudinal case, ujj is parallel to the
displacement r. In the transverse case, ut is perpendicular to r. Here r is shown horizontal but it may point in any
direction.
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Admittedly, the preceding formulae do not readily produce insights; however, the trace of
Rij evaluated at r ¼ 0 is twice the average kinetic energy e (per unit mass) of the turbulent
fluctuations

Riið0Þ ¼ uiui ¼ 2,
1

2

	

u21 þ u22 þ u23

 ¼ 2e,

and e is an important element in understanding and modeling turbulence. We know from
Section 4.8 that the kinetic energy of a flowing fluid may be converted into heat (dissipated)
by the action of viscosity. Thus, the average kinetic energy dissipation rate 3 (per unit mass) in
an incompressible turbulent flow comprised entirely of fluctuations is the average of (4.58):

3 ¼ n

2

�

vui=vxj þ vuj=vxi

�2
: (12.42)

When the flow is isotropic, the various directional symmetries, (12.36), and (12.37) imply:

3 ¼ 6n

(

�

vu1
vx1

�2

þ
�

vu1
vx2

�2

þ
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¼ �15nu2
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d2f

dr2

#

r¼0

¼ 30n
u2

l2f
¼ 15n

u2

l2g
, (12.43)

where everything inside the {,}-braces has been put in terms of the first and second directions,
and the second equality follows from the results of Exercise 12.19. Until the development of
modern multidimensional measurement techniques, (12.43) was the primary means avail-
able for estimating 3 from measurements in turbulent flows. Even today, fully resolved
three-dimensional turbulent flowmeasurements are seldom possible, so reduced dimension-
ality relationships like (12.43), based on some assumed homogeneity and isotropy, commonly
appear in the literature. In addition, Taylor-scale Reynolds numbers,

Rlh lðg or fÞ

ffiffiffiffiffi

u2
q

=n, (12.44)

are occasionally quoted with Rl > 102 being a nominal condition for fully turbulent flow
(Dimotakis, 2000).

These concepts from homogeneous isotropic turbulence also allow the energy spectrum
S11(k1) of stream-wise velocity fluctuations along a stream-wise line through the turbulent
field to be defined in terms of the autocorrelation function (12.23) when i ¼ j ¼ 1:

S11ðk1Þ ¼ 1

2p

Z
þN

�N

R11ðr1Þ expf�ik1r1gdr1 ¼ u21
2p

Z
þN

�N

fðr1Þ exp �ik1r1gdr1,f (12.45)

where “1” implies the stream-wise flow direction. Measured spectra reported in the
turbulence literature are commonly produced using (12.45) or its alternative involving
finite-window Fourier transformations (see Exercise 12.8). The basic procedure is to collect
time-series measurements of u1, convert them to spatial measurements using Taylor’s frozen
turbulence hypothesis, compute R11 from the spatial series, and then use (12.45) to determine
S11(k1). As described in the next section, the functional dependence of a portion of S11 on k1
and 3 can be anticipated from dimensional analysis and insights derived from the progres-
sion or cascade of fluctuation kinetic energy through a turbulent flow. Additional relation-
ships for Rij and its associated spectrum tensor may be found (Hinze, 1975).

12.6. HOMOGENEOUS ISOTROPIC TURBULENCE 563



12.7. TURBULENT ENERGY CASCADE AND SPECTRUM

As mentioned in the introductory section of this chapter, turbulence rapidly dissipates
kinetic energy, and an understanding of how this happens is possible via a term-by-term
inspection of the equations that govern the kinetic energy in the mean flow and the average
kinetic energy of the fluctuations.

An equation for the mean flow’s kinetic energy per unit mass, E ¼ ð1=2ÞU2
i , can

be obtained by multiplying (12.30) by Ui, and averaging (Exercise 12.15). With Sij ¼
1=2ðvUi=vxj þ vUj=vxiÞ defining the mean strain-rate tensor, the resulting energy-balance

or energy-budget equation for E is

vE
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þUj
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vxj
Time rate of
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¼ v

vxj

�

�UjP
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�

transport

� 2nSijSij
viscous

dissipation

þ uiuj
vUi

vxj
loss to

turbulence

� g

r0
rU3

loss to
potential
energy

:

(12.46)

The left side is merely the total time derivative of E following a mean-flow fluid
particle, while the right side represents the various mechanisms that bring about
changes in E.

The first three divergence terms on the right side of (12.46) represent transport of mean
kinetic energy by pressure, viscous stresses, and Reynolds stresses. If (12.46) is integrated
over the volume occupied by the flow to obtain the rate of change of the total (or global)
mean-flow kinetic energy, then these transport terms can be transformed into a surface inte-
gral by Gauss’ theorem. Thus, these terms do not contribute to the total rate of change of E
if Ui ¼ 0 on the boundaries of the flow. Therefore, these three terms only transport or
redistribute mean-flow kinetic energy from one region to another; they do not generate it
or dissipate it.

The fourth term is the product of the mean flow’s viscous stress (per unit mass) 2v Sij and
the mean strain rate Sij. It represents the direct viscous dissipation of mean kinetic energy via its
conversion into heat.

The fifth term is analogous to the fourth term. It can be written as uiuj ðvUi=vxjÞ ¼ uiuj Sij
so that it is a product of the turbulent stress (per unit mass) and the mean strain rate. Here,
the doubly contracted product of a symmetric tensor uiuj and the tensor vUi/vxj is equal to
the product of uiuj and the symmetric part of vUi/vxj, namely Sij, as proved in Section 2.10. If
the mean flow is given by U(y) alone, then uiuj ðvUi=vxjÞ ¼ uv ðdU=dyÞ. From the preceding
section, uv is likely to be negative if dU/dy is positive. Thus, the fifth term is likely to be
negative in shear flows. So, by analogy with the fourth term, it must represent a mean-
flow kinetic energy loss to the fluctuating velocity field. Indeed, this term appears on
the right-hand side of the equation for the rate of change of the turbulent kinetic
energy, but with the sign reversed. Therefore, this term generally results in a loss of mean
kinetic energy and a gain of turbulent kinetic energy. It is commonly known as the shear
production term.
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The sixth term represents the work done by gravity on the mean vertical motion. For
example, an upward mean motion results in a loss of mean kinetic energy, which is accom-
panied by an increase in the potential energy of the mean field.

The two viscous terms in (12.46), namely, the viscous transport 2nv(Ui Sij)/vxj and the
mean-flow viscous dissipation �2nSijSij, are small compared to the equivalent turbulence
terms in a fully turbulent flow at high Reynolds numbers. Compare, for example, the
mean-flow viscous dissipation and the shear-production terms:

2nSijSij
uiuj ðvUi=vxjÞ

w
nðU=LÞ2
u2rmsðU=LÞw

n

UL
¼ 1

Re
� 1,

where U is the velocity scale for the mean flow, L is a length scale for the mean flow (e.g., the
overall thickness of a boundary layer), and urms is presumed to be of the same order of magni-
tude as U, a presumption commonly supported by experimental evidence. The direct influ-
ence of viscous terms is therefore negligible on themean kinetic energy budget. However, this
is not true for the turbulent kinetic energy budget, in which viscous terms play a major role.
What happens is as follows: Themean flow loses energy to the turbulent field bymeans of the
shear production term and the turbulent kinetic energy so generated is then dissipated by
viscosity.

An equation for the mean kinetic energy e ¼ ð1=2Þu2i of the turbulent velocity fluctuations
can be obtained by setting i ¼ j (12.35) and dividing by two. With S0ij ¼ 1=2ðvui=vxj þ vuj=vxiÞ
defining the fluctuation strain-rate tensor, the resulting energy-budget equation for e is:
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:

(12.47)

The first three terms on the right side are in divergence form and consequently represent the
spatial transport of turbulent kinetic energy via turbulent pressure fluctuations, viscous
diffusion, and turbulent stresses.

The fourth term 3 ¼ 2nS0ijS
0
ij is the viscous dissipation of turbulent kinetic energy, and it is not

negligible in the turbulent kinetic energy budget (12.47), although the analogous term 2nSijSij
is negligible in the mean-flow kinetic energy budget (12.46). In fact, the viscous dissipation 3

is always positive and its magnitude is typically similar to that of the turbulence-production
terms in most locations.

The fifth term uiuj ðvUi=vxjÞ is the shear-production term and it represents the rate at
which kinetic energy is lost by the mean flow and gained by the turbulent fluctuations. It
appears in the mean-flow kinetic energy budget with the other sign.

The sixth term gau3T0 can have either sign, depending on the nature of the background
temperature distribution Tðx3Þ. In a stable situation in which the background temperature
increases upward (as found, e.g., in the atmospheric boundary layer at night), rising fluid
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elements are likely to be associated with a negative temperature fluctuation, resulting in
u3T0 < 0, which means a downward turbulent heat flux. In such a stable situation gau3T0
represents the rate of turbulent energy loss via work against the stable background density
gradient. In the opposite case, when the background density profile is unstable, the turbulent
heat flux correlation u3T0 is upward, and convective motions cause an increase of turbulent
kinetic energy (Figure 12.10). Thus, gau3T0 is the buoyant production of turbulent kinetic
energy; it can also be a buoyant destruction when the turbulent heat flux is downward. In
isotropic turbulence, the upward thermal flux correlation u3T0 is zero because there is no
preference between the upward and downward directions.

The buoyant generation of turbulent kinetic energy lowers the potential energy of the
mean field. This can be understood from Figure 12.10, where it is seen that the heavier fluid
has moved downward in the final state as a result of the heat flux. This can also be demon-
strated by deriving an equation for the mean potential energy, in which the term gau3T0
appears with a negative sign on the right-hand side. Therefore, the buoyant generation of turbu-
lent kinetic energy by the upward heat flux occurs at the expense of the mean potential energy.
This is in contrast to the shear production of turbulent kinetic energy, which occurs at the
expense of the mean kinetic energy.

The kinetic energy budgets for constant density flow are recovered from (12.46) and (12.47)
by dropping the terms with gravity and re-interpreting the mean pressure as the deviation
from hydrostatic (see Section 4.9, “Neglect of Gravity in Constant Density Flows”).

The shear-production term represents an essential link between the mean and fluctuating
fields. For it to be active (or nonzero), the flow must have mean shear and the turbulence
must be anisotropic. When the turbulence is isotropic, the off-diagonal components of the

FIGURE 12.10 Heat flux in an unstable environment. Here warm air from below may rise and cool air may sink
thereby generating turbulent kinetic energy by lowering the mean potential energy. In the final state, the upper air is
warmer and less dense and the lower air is cooler and denser.
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Reynolds stress uiuj are zero (see Section 12.6) and the on-diagonal ones are equal (12.36).
Thus the double sum implied by uiuj ðvUi=vxjÞ reduces to:

u21ðvU1=vx1Þ þ u22ðvU2=vx2Þ þ u23ðvU3=vx3Þ ¼ u21ðvUi=vxiÞ ¼ 0,

where the final equality holds from (12.27). Experimental observations suggest the largest
eddies in a turbulent shear flow generally span the cross-stream distance L between those
locations in a turbulent flow giving the maximum average velocity difference DU
(Figure 12.11). In a layer with only one sign for the mean shear, L spans the layer as in Fig-
ure 12.11a, but for consistency when the shear has both signs, such as in turbulent pipe
flow, L is the pipe radius as in Figure 12.11b. These largest eddies feel the mean sheardwhich
must be of order DU/Ldand are distorted or made anisotropic by it. Energy is provided to
these largest eddies by the mean flow as it forces them to deform and turn over. In this situ-
ation, turbulent velocity fluctuations are also of order DU, so the energy input rate _W to
a region of turbulence by the mean flow (per unit mass of fluid) is

_W w uiuj ðvUi=vxjÞw ðDUÞ2½DU=L� ¼ ðDUÞ3=L, (12.48)

where L and DU are commonly called the outer length scale and velocity difference. Of course
the details of _W will vary with flow geometry but its parametric dependence is set by (12.48).
In reaching (12.48), it was implicitly assumed that the outer scale Reynolds number
ReL ¼ DUL/n is so large that viscosity plays no role in the interaction between the mean
flow and the largest eddies of the turbulent shear flow.

In temporally stationary turbulence, the turbulent kinetic energy e cannot build up (or
shrink to zero) so the work input at the largest scales from the mean flow must be balanced
by the kinetic energy dissipation rate:

_W ¼ 3 , so 3 w ðDUÞ3=L: (12.49)

Thus, 3 does not depend on n, but is determined instead by the inviscid properties of the
largest eddies, which extract energy from the mean flow. Second-tier eddies that are some-
what smaller than the largest ones are distorted and forced to roll over by the strain field

ΔU

L

(b)
(a) U + ΔU

L

U

FIGURE 12.11 Schematic drawings of a turbulent flow without boundaries (a), and one with boundaries (b).
Here the outer scale of the turbulence L spans the cross-stream distance over which the outer scale velocity
difference DU develops. Here L may be the half width of the flow when the flow is symmetric as in (b). This choice
of L and DU ensures that mean-flow velocity gradients will be of order DU/L.
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of the largest eddies, and these thereby extract energy from the largest eddies by the same
mechanism that the largest eddies extract energy from the mean flow. Thus the average
turbulent-kinetic-energy cascade pattern is set, and third-tier eddies extract energy from
second-tier eddies, fourth-tier eddies extract energy from third-tier eddies, and so on. So,
turbulent kinetic energy is on average cascaded down from large to small eddies by interactions
between eddies of neighboring size. Small eddies are essentially advected in the velocity field
of large eddies, since the scales of the strain-rate field of the large eddies are much larger
than the size of a small eddy. Therefore, small eddies do not interact directly with the large
eddies or the mean field, and are therefore nearly isotropic. The turbulent kinetic-
energy cascade process is essentially inviscid with decreasing eddy scale size l0 and eddy-
velocity u0 as long as the eddy Reynolds number u0l0/n is much greater than unity. The
cascade terminates when the eddy Reynolds number becomes of order unity and viscous
effects are important. This average cascade process was first discussed by Richardson
(1922), and is a foundational element in the understanding of turbulence.

In 1941, Kolmogorov suggested that the dissipating eddies are essentially homogeneous
and isotropic, and that their size depends on those parameters that are relevant to the small-
est eddies. These parameters are the rate 3, the rate at which kinetic energy is supplied to the
smallest eddies, and n, the kinematic viscosity that smears out the velocity gradients of the
smallest eddies. Since the units of 3 are m2/s3, dimensional analysis only allows one way
to construct a length scale h and a velocity scale uK from 3 and n:

h ¼ 	

n3=3

1=4

and uK ¼ ðn3Þ1=4: (12.50)

These are called the Kolmogorov microscale and velocity scale, and the Reynolds number deter-
mined from them is

huK=n ¼ ðn3Þ1=4	n3=3
1=4=n ¼ 1,

which appropriately suggests a balance of inertial and viscous effects for Kolmogorov-scale
eddies. The relationship (12.50) and the recognition that n does not influence 3 suggests that
a decrease of n merely decreases the eddy size at which viscous dissipation takes place. In particular,
the size of h relative to L can be determined by eliminating 3 from (12.49) and the first equa-
tion of (12.50) to find:

h=Lw Re
�3=4
L , where ReL ¼ DUL=n: (12.51)

Therefore, the sizes of the largest and smallest eddies in high Reynolds number turbulence
potentially differ by many orders of magnitude. For flow in a fixed-size device, the length
scale L is fixed, so increasing the input velocity that leads to shear (or decreasing n) leads
to an increase in ReL and a decrease in the size of the Kolmogorov eddies. In the ocean
and the atmosphere, the Kolmogorov microscale h is commonly of the order of millimeters.
However, in engineering flows hmay be much smaller because of the larger power densities
and dissipation rates. Landahl and Mollo-Christensen (1986) give a nice illustration of this.
Suppose a 100-W household mixer is used to churn 1 kg of water in a cube 0.1 m (¼ L)
on a side. Since all the power is used to generate turbulence, the rate of energy dissipation
is 3 ¼ 100 W/kg ¼ 100 m2/s3. Using n ¼ 10�6 m2/s for water, we obtain h ¼ 10e5 m
from (12.50).

12. TURBULENCE568



Interestingly, the path that leads to (12.51) can also be used for either of the Taylor micro-
scales (generically labeled lT here). Eliminating 3 from (12.43) and (12.49) produces:

ðDUÞ3
L

f
nu2

l2T
/

l2T
L2

f
nu2

ðDUÞ3L
¼ u2

ðDUÞ2
� n

DUL

�

f
1

ReL
, or

lT

L
f Re

�1=2
L , (12.52)

where the final two proportionalities are valid when the fluctuation velocity is proportional
to the DU. The negative half-power of the outer-scale Reynolds number matches that for
laminar boundary-layer thicknesses (see (9.30)). Thus, the Taylor microscale can be inter-
preted as an internal boundary-layer thickness that develops at the edge of a large eddy
during a single rotational movement having a path-length length L. However, it is not
a distinguished length scale in the partition of turbulent kinetic energy even though
(12.43) associates lT with 3. The reason for this anonymity is that the velocity fluctuation
appearing in (12.43) is not appropriate for eddies that dissipate turbulent kinetic energy.
The appropriate dissipation-scale velocity is given by the second equality of (12.50). Thus,
in high Reynolds number turbulence, lT is larger than h, as is clear from a comparison of
(12.51) and (12.52) with Re/N. In addition, (12.52) implies Rel ~ (ReL)

1/2, so a nominal
condition for fully turbulent flow is ReL > 104 (Dimotakis, 2000). Above such a Reynolds
number, the following ordering of length scales should occur: h < lT < L(f or g) < L.

Richardson’s cascade, Kolmogorov’s insights, the simplicity of homogeneous isotropic
turbulence, and dimensional analysis lead to perhaps the most famous and prominent
feature of high Reynolds number turbulence: the universal power law form of the energy
spectrum in the inertial subrange. Consider the one-dimensional energy spectrum S11(k1)d
it is the one most readily determined from experimental measurementsdand associate
eddy size l with the inverse of the wave number: l ~ 2p/k1. For large eddy sizes (small
wave numbers), the energy spectrum will not be universal because these eddies are
directly influenced by the geometry-dependent mean flow. However, smaller eddies
a few tiers down in the cascade may approach isotropy. In this case the mean shear no
longer matters, so their spectrum of fluctuations S11 can only depend on the kinetic energy
cascade rate 3, the fluid’s kinematic viscosity n, and the wave number k1. From (12.45), the
units of S11 are found to be m3/s2; therefore dimensional analysis using S11, 3, n, and k1
requires:

S11ðk1Þ
n5=431=4

¼ F

 

k1n
3=4

31=4

!

, or
S11ðk1Þ
u2Kh

¼ Fðk1hÞ for k1[2p=L, (12.53)

where F is an undetermined function, and both parts of (12.50) have been used to reach the
second form of (12.53). Furthermore, for eddy sizes somewhat less than L, but also somewhat
greater than h, 2p/L� k1 � 2p/h, the spectrummust be independent of both the mean shear
and the kinematic viscosity. This wave number range is known as the inertial subrange. Turbu-
lent kinetic energy is transferred through this range of length scales without much loss to
viscosity. Thus, the form of the spectrum in the inertial subrange is obtained from dimen-
sional analysis using only S11, 3, and k1:

S11ðk1Þ ¼ const , 32=3 , k
5=3
1 for 2p=L � k1 � 2p=h: (12.54)
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The constant has been found to be universal for all turbulent flows and is approximately 0.25
for S11(k1) subject to a double-sided normalization:

Z þN

�N
S11ðk1Þdk1 ¼ u21 ¼

Z þN

0
2S11ðk1Þdk1: (12.55)

Equation (12.54) is usually called Kolmogorov’s ke5/3 law and it is one of the most important
results of turbulence theory. When the spectral form (12.54) is subject to the normalization,

e ¼
Z þN

0
SðKÞdK,

where K is the magnitude of the three-dimensional wave-number vector, the constant in the
three-dimensional form of (12.54) is approximately 1.5 (see Pope, 2000). If the Reynolds
number of the flow is large, then the dissipating eddies are much smaller than the energy-
containing eddies, and the inertial subrange is broad.

Figure 12.12 shows a plot of experimental spectral measurements of 2S11 from several
different types of turbulent flows (Chapman, 1979). The normalizations of the axes follow
(12.53), 3 is calculated from (12.43), h is calculated from (12.50), and the Taylor-Reynolds
numbers (labeled Rl in the figure) come from the longitudinal autocorrelation f(r). The
collapse of the data at high wave numbers to a single curve indicates the universal
character of (12.53) at high wave numbers. The spectral form of Pao (1965) adequately
fits the data and indicates how the spectral amplitude decreases faster than ke5/3 as k1h
approaches and then exceeds unity. The scaled wave number at which the data are
approximately a factor of two below the e5/3 power law is k1h z 0.2 (dashed vertical
line), so the actual eddy size where viscous dissipation is clearly felt is lD z 30h. The
various spectra shown in Figure 12.12 turn horizontal with decreasing k1h where k1L is of
order unity.

Because very large Reynolds numbers are difficult to generate in an ordinary labora-
tory, the Kolmogorov spectral law (12.54) was not verified for many years. In fact, doubts
were raised about its theoretical validity. The first confirmation of the Kolmogorov law
came from the oceanic observations of Grant et al. (1962), who obtained a velocity spec-
trum in a tidal flow through a narrow passage between two islands just off the west coast
of Canada. The velocity fluctuations were measured by hanging a hot film anemometer
from the bottom of a ship. Based on the water depth and the average flow velocity, the
outer-scale Reynolds number was of order 108. Such large Reynolds numbers are typical
of geophysical flows, since the length scales are very large. Thus, the tidal channel data
and results from other geophysical flows prominently display the ke5/3 spectral form in
Figure 12.12.

For the purpose of formulating predictions, the universality of the high wave number
portion of the energy spectrum of turbulent fluctuations suggests that a single-closure
model might adequately represent the effects of inertial subrange and smaller eddies on
the nonuniversal large-scale eddies. This possibility has inspired the development of
a wide variety of RANS equation closure models, and it provides justification for the central
idea behind large-eddy simulations (LES) of turbulent flow. Such models are described in
Pope (2000).
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12.8. FREE TURBULENT SHEAR FLOWS

Persistent turbulence is maintained by the presence of mean-flow shear. This shear may
exist because of a mismatch of fluid momentum within a flow, or because of the presence
of one or more solid boundaries near the moving fluid. Turbulent flows in the former cate-
gory are called free turbulent shear flows, and those in the latter are called wall-bounded turbu-
lent shear flows. This section covers free turbulent flows that develop away from solid

FIGURE 12.12 One-dimensional energy spectra S11(k1) from a variety of turbulent flows plotted in Kolmogorov
normalized form, reproduced from Chapman (1979). Here k1 is the stream-wise wave number, h is the Kolmogorov
scale defined by (12.50), and 3 is the average kinetic energy dissipation rate determined from (12.43). Kolmogorov’s
e5/3 power law is indicated by the sloping line. The collapse of the various spectra to this line and to each other as
k1h approaches and then exceeds unity strongly suggests that high-wave-number turbulent velocity fluctuations are
universal when the Reynolds number is high enough. The dashed vertical line indicates the location where the
spectral data are a factor of two below the e5/3 line established at lower wave numbers.
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boundaries. Such flows include jets, wakes, shear layers, and plumes; the first three are
depicted in Figure 12.13. A plume is a buoyancy-driven jet that develops vertically so its
appearance is similar to that shown in Figure 12.13a when the flow direction is rotated to
be vertical. Jets, wakes, and plumes may exist in planar and axisymmetric geometries.
Although idealized, such free shear flows are important for mixing reactants and in remote
sensing, and are scientifically interesting because their development can sometimes be
described by a single length scale and one boundary condition or origin parameter. Such
a description commonly results from a similarity analysis in which the mean flow is assumed

FIGURE12.13 Three generic free turbulent shear flows: (a) jet, (b)wake, and (c) shear layer. In each case, the region of
turbulence coincides with the region of shear in the mean velocity profile, and entrainment causes the cross-stream
dimensionL or d of eachflow to increasewith increasingdownstreamdistance. Thefluid outside the region of turbulence
is assumed to be irrotational.
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to be self-preserving. This section presents one such similarity analysis for a single free turbu-
lent shear flow (the planar jet), and then summarizes the similarity characteristics of a variety
of planar and axisymmetric free turbulent shear flows. In most circumstances, free turbulent
shear flows are simpler than wall-bounded turbulent shear flows. However, the outer portion
of a turbulent boundary layer (from y ~ 0.2d to its unconstrained edge) is similar to a free
shear flow.

In snapshots and laser-pulse images, free shear flows usually appear with an erratic
boundary that divides nominally turbulent from irrotational (or nonturbulent) fluid. Locally,
the motion of this boundary is determined by the velocity induced by the turbulent vortices
inside the region of turbulence. Typically, these vortices induce the surrounding nonturbulent
fluid to flow toward the region of turbulence, and this induced flow, commonly called entrain-
ment, causes the cross-stream size (L or d) of the turbulent region to increase with increasing
downstream distance. Because of entrainment, a passive scalar in the body of the turbulent
flow is diluted with increasing downstream distance. The actual mechanism of entrainment
involves both large- and small-eddy motions, and it may be altered within limits in some
free shear flows by introducing velocity, pressure, or geometrical perturbations.

When a time-lapse image or an ensemble average of measurements from a free shear flow
is examined, the edge of the region of turbulence is diffuse and the average velocity field and
average passive scalar fields are found to be smooth functions. Significantly, the shapes of
these mean profiles from different downstream locations within the same flow are commonly
found to be self-similar when scaled appropriately. When this happens, the flow is in a state
of moving equilibrium, in which both the mean and the turbulent fields are determined solely
by the local length and velocity scales, a situation called self-preservation.

Some characteristics of the self-preserving state may be determined from a similarity anal-
ysis of the mean momentum equation (12.30) for a variety of free turbulent shear flows. The
details of such an analysis are provided here for the plane turbulent jet. The scalings for other
free turbulent shear flows are listed in Table 12.1, and are covered in this chapter’s exercises.
A plane turbulent jet is formed by fast-moving fluid that emerges into a quiescent reservoir
from a long slot of width d, as shown in Figure 12.13a. Here, the long dimension of the slot is

TABLE 12.1 Self-Similar Far-Field Results for Some Free Turbulent Shear Flows

Flow Mean Fields x Profile Widths

Planar Jet Uðx,yÞ
U0

¼ UCLðxÞ
U0

FðxÞ ¼ 2:4
�rs

r

�1=2�x

d

��1=2
FðxÞ

Yðx, yÞ
Y0

¼ YCLðxÞ
Y0

HðxÞ ¼ 2:0
�rs

r

�1=2�x

d

��1=2
HðxÞ

y/x (x1/2)U ¼ 0.11

(x1/2)Y ¼ 0.14

Planar Plume
Uðx,yÞ ¼ UCLðxÞFðxÞ ¼ 1:9

 

gðr� rsÞU0d

r

!1=3

FðxÞ

Yðx, yÞ
Y0

¼ YCLðxÞ
Y0

HðxÞ ¼ 2:4

 

rU2
0

gðr� rsÞd

!1=3
�x

d

��1
HðxÞ

y/x (x1/2)U ¼ 0.12

(x1/2)Y ¼ 0.13

(Continued)
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perpendicular to the page so the mean velocity field has onlyU andV components. Using the
x-y coordinates shown in Figure 12.13a, the self-preserving form for the jet’s mean stream-
wise velocity and Reynolds shear-stress correlation is:

Uðx,yÞ ¼ UCLðxÞFðy=dðxÞÞ, and � uv ¼ JðxÞGðy=dðxÞÞ, (12.56, 12.57)

where UCL(x) is the mean stream-wise velocity on the centerline of the flow (y ¼ 0), J(x) is
a function that sets the amplitude of the turbulent shear stress with increasing downstream

TABLE 12.1 Self-Similar Far-Field Results for Some Free Turbulent Shear Flowsdcont’d

Flow Mean Fields x Profile Widths

Round Jet Uðx, rÞ
U0

¼ UCLðxÞ
U0

FðxÞ ¼ 6:0
�rs

r

�1=2�x

d

��1
FðxÞ

Yðx, rÞ
Y0

¼ YCLðxÞ
Y0

HðxÞ ¼ 5:0
�rs

r

�1=2�x

d

��1
HðxÞ

r/x (x1/2)U ¼ 0.090

(x1/2)Y ¼ 0.11

Round Plume
Uðx, rÞ ¼ UCLðxÞFðxÞ ¼ 3:5

 

gðr� rsÞU0d

r

!1=3
�x

d

��1=3
FðxÞ

Yðx, rÞ
Y0

¼ YCLðxÞ
Y0

HðxÞ ¼ 9:4

 

rU2
0

gðr� rsÞd

!1=3
�x

d

��5=3
HðxÞ

r/x (x1/2)U ¼ 0.11

(x1/2)Y ¼ 0.10

Shear Layer
Uðx,yÞ ¼ U2 þ ðU1 �U2Þ

R x
�N Fðx0Þdx0
RþN
�N Fðx0Þdx0

y� yCLðxÞ
x

(Dx80)U ¼
0.085 �

U1 �U2
1
2ðU1 þU2Þ

Planar Wake Uðx,yÞ ¼ UN � DUCLðxÞFðxÞ
DUCLðxÞ

UN
¼ 1:8 ð x

qp
Þ�1=2; qp ¼ drag force

rU2
N,span

y=
ffiffiffiffiffiffiffi

qpx
q

(x1/2)U ¼ 0.31

Round Wake Uðx,yÞ ¼ UN � DUCLðxÞFðxÞ
DUCLðxÞ

UN
¼ ð0:4 to 2:0Þ

� x

qr

��2=3
; q2r ¼ drag force

rU2
N

r=ðq2r xÞ1=3 (x1/2)U ¼ 0.4 to 0.9

TABLE 12.1 NOMENCLATURE

d ¼ slot- or nozzle-exit width or diameter
U0 ¼ slot- or nozzle-exit fluid velocity
rs ¼ slot- or nozzle-exit fluid density
r ¼ nominally quiescent reservoir fluid density
Y0 ¼ slot- or nozzle-exit passive scalar mass fraction
x ¼ stream-wise, centerplane, or centerline coordinate
y ¼ distance from the flow’s centerplane
r ¼ radial distance from the flow’s centerline
yCL(x) ¼ location of the point in the shear layer where U ¼ (U1 þ U2)/2
(Dx80)U ¼ difference in x that spans the central 80% of the velocity difference U1 e U2

UN ¼ uniform velocity outside the wake
x ¼ profile similarity variable
F(x), H(x) ¼ velocity and mass fraction profiles, approximately ¼ expf� lnð2Þx2=x21=2g
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distance, F and G are undetermined profile functions, and d(x) is a characteristic cross-stream
length scale. The profile functions must confine the region of turbulence, so F, G / 0 as
y=d/�N, and they must allow the jet to spread equally upward and downward, so F
must be even and Gmust be odd; thus F(0) ¼ 1 and G(0) ¼ 0. When the self-preserving forms
(12.56) and (12.57) are successful, the turbulence is said to have one characteristic length
scale. These two equations are the similarity-solution forms (see (8.32)) for the steady
mean-flow RANS equations when x and y are the independent variables.

For two-dimensional, constant-density flow with steady boundary conditions, the mean
flow equations are:

vU

vx
þ vV

vy
¼ 0, U

vU

vx
þ V

vU

vy
¼ � 1

r

vP

vx
þ n

 

v2U

vx2
þ v2U

vy2

!

� vu2

vx
� vuv

vy
, and (12.58, 12.59)

U
vV

vx
þ V

vV

vy
¼ � 1

r

vP

vy
þ n

 

v2V

vx2
þ v2V

vy2

!

� vuv

vx
� vv2

vy
: (12.60)

For this analysis, the simplest possible form of these equations is adequate. Thus, the jet
flow is assumed to be thin, so the boundary-layer approximations are made: U [ V,
and v/vy [ v/vx. In addition, pressure gradients are presumed small within the nomi-
nally quiescent reservoir fluid so that vP/vx z 0, and the jet flow’s Reynolds number is
assumed to be high enough so that viscous stresses can be ignored compared to Reynolds
stresses. With these simplifications, the two momentum equations (12.59) and (12.60)
become:

U
vU

vx
þ V

vU

vy
y � vuv

vy
, and 0y � 1

r

v

vy

	

Pþ rv2



: (12.61)

Because the viscous terms have been dropped, these equations are independent of the
Reynolds number and should be valid for all Re that are high enough to justify this approx-
imation. Multiplying (12.58) by U and adding it to the first part of (12.61) produces:

v

vx

	

U2

þ v

vy
ðVU þ uvÞy 0,

which can be integrated in the cross-stream direction between infinite limits to obtain:

v

vx

Z
þN

�N

U2dyþ ½VU þ uv�y¼þN
y¼�Ny 0:

When evaluated, the terms in [,]-brackets are zero becauseU,V, and uv are all presumed to go
to zero as y/�N. This equation can be integrated in the stream-wise direction from 0 to x to
find:

Jsh rs

Z
þN

�N



U2
�

x¼0
dyy r

Z
þN

�N

U2dy ¼ const: (12.62)

In (12.62), Js is the momentum injected into the flow per unit span of the slot and the two
integrals in (12.62) come from evaluating Js at x ¼ 0 and at a location well downstream in
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the jet. Here, rs is the density of the fluid that emerges from the nozzle, and any difference
between r and rs is presumed to be insignificant downstream in the jet because the fluid
that comes from the slot is mixed with and diluted by the nominally quiescent
fluid entrained into the jet. The basis for this presumption is provided further on in this
section. Overall, (12.62) can be regarded as a constraint that requires the turbulent flow
to contain the same amount of stream-wise momentum at all locations downstream of
the nozzle.

To determine the form of the similarity solution for the plane jet, first eliminate V from
(12.61) using an integrated form of (12.58), V ¼ � R y0 ðvU=vxÞd�y, to find

U
vU

vx
�
2

4

Z

y

0

�

vU

vx

�

d�y
3

5

vU

vy
y � vuv

vy
,

where V(0) ¼ 0 by symmetry and y is an integration variable. Then, substitute (12.56) and
(12.57) into this equation to reach a single equation involving the two amplitude functions,
UCL and J, and the two profile functions, F and G:

UCLF
v

vx
ðUCLFÞ �

2

4

Z

y

0

v

vx
ðUCLFÞd�y

3

5

v

vy
ðUCLFÞy � v

vy
ðJGÞ:

Although somewhat tedious, the terms of this equation can be expanded and simplified
to find:

�

dU0
CL

UCL

�

F2 �
�

dU0
CL

UCL
þ d0

�

F0
Z
x

0

Fd�x ¼
(

J

U2
CL

)

G0, (12.63)

where a prime indicates differentiation of a function with respect to its is argument, x ¼ y/d,
and x is an integration variable. For a simple similarity solution to exist, the coefficients inside
{,}-braces in (12.63) should not be functions of x. Setting each equal to a constant produces
two ordinary differential equations and an algebraic one:

dU0
CL

UCL
¼ C1,

dU0
CL

UCL
þ d0 ¼ C2, and

J

U2
CL

¼ C3: (12.64)

The first two of these imply d0 ¼C2eC1, which is readily integrated to find:
d(x) ¼ (C2 e C1)(x e xo), where xo is a constant and is known as the virtual origin of the
flow. It is traditional to choose C2 e C1 ¼ 1 and to presume that xo is small so that d ¼ x. In
experiments, xo is typically found to be of order d, the width of the slot. With d ¼ x, the first
equation of (12.64) may be integrated to determine:UCL ¼ C4x

g, whereC4 and g are constants.
Substituting this into (12.62) leads to:

Js ¼ r

Z
þN

�N

U2dy ¼ rU2
CL

Z
þN

�N

F2
	

x



dy ¼ rU2
CLd

Z
þN

�N

F2
	

x



dx ¼ rC2
4x

2gþ1
Z
þN

�N

F2
	

x



dx:

(12.65)
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Here the final definite integral is just a dimensionless number, so the final form of (12.65) can
only be independent of xwhen 2g þ 1 ¼ 0, or g ¼ e1/2. Thus, the results of (12.64) imply that
(12.56) and (12.57) may be rewritten:

Uðx,yÞ ¼ C5ðJs=rÞ1=2x�1=2Fðy=xÞ and

� uv ¼ C3U
2
CLGðy=xÞ ¼ C3C

2
5ðJs=rÞx�1Gðy=xÞ,

(12.66, 12.67)

where the constants C3 and C4 and the profile functions F and G must be determined from
experimental measurements, direct numerical simulations, or an alternate theory. They
cannot be determined from this type of simple similarity analysis because (12.63) is one equa-
tion for two unknown profile functions, a situation that is a direct legacy of the closure
problem. However, the parametric dependencies shown in (12.66) and (12.67) are those
found in experiments, and this is the primary reason for seeking self-preserving forms via
a similarity analysis.

The result (12.66) may be used to determine the volume flux (per unit span) _V in the jet via
a simple integration,

_VðxÞ ¼
Z
þN

�N

Uðx, yÞdy ¼ C5ðJs=rÞ1=2xþ1=2
Z
þN

�N

FðxÞdx, (12.68)

where again the definite integral is just a dimensionless number. Therefore, the volume flux
in the jet increases with increasing downstream distance like x1/2, so the dilution assumption
made about Js in (12.62) should be valid sufficiently far from the jet nozzle. At such distances,
commonly known as the far field of the jet, the mean mass fraction Yðx, yÞ of slot fluid (or any
other suitably defined passive scalar like a dye concentration) will also follow a similarity
form:

Yðx, yÞ ¼ YCLðxÞHðy=xÞ, (12.69)

where YCL is the centerline nozzle-fluid mass fraction, and H is another profile function
defined so that H(0) ¼ 1 and H /0 as y=d/�N. Conservation of slot fluid requires:

_Ms ¼ rs

Z
þN

�N

½U�y¼0dyy r

Z
þN

�N

Yðx,yÞUðx,yÞdy

¼ rYCLC5ðJs=rÞ1=2xþ1=2
Z
þN

�N

HðxÞFðxÞdx,
(12.70)

where _Ms is the slot-fluid mass injection rate per unit span. In (12.70) the stream-wise turbu-
lent scalar transport term uY0 has been neglected because it tends to be much smaller than the
stream-wise mean scalar transport term YU. Reducing (12.70) to a single relationship for YCL,
and substituting this into (12.69) produces:

Yðx, yÞ ¼ C6

�

_Ms=
ffiffiffiffiffiffi

rJs
p

�

x�1=2Hðy=xÞ, (12.71)
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where C6 is another constant. The equations (12.66), (12.67), and (12.71) represent the

outcomes from this similarity analysis and can be compared with the u f xe1/3, d f x2/3

behavior of a planar laminar jet derived in Section 9.10.
Over the years some success has been achieved in determining the various profile shapes

and the constants. For example, when the slot exit velocity is uniform and equal to U0, then
Js ¼ rsU

2
0d and _Ms ¼ rsU0d so (12.66) and (12.71) reduce to:

Uðx,yÞ ¼ C5U0ðrs=rÞ1=2ðx=dÞ�1=2Fðy=xÞ, and
Yðx, yÞ ¼ C7Y0ðrs=rÞ1=2ðx=dÞ�1=2Hðy=xÞ,

(12.72, 12.73)

where Y0 is the mass fraction of a passive scalar in the slot fluid. Here Y0 ¼ 1 if the slot fluid is
the passive scalar, but Y0 may be much less than one if it represents a trace contaminant or
a dye concentration. In addition, the profile functions F andH are smooth, bell-shaped curves
commonly specified by their one-sided half-widths (x1/2)U and (x1/2)Y, the values of y/d that
produce F and H ¼ 1/2, respectively. For example when a Gaussian function is fit to mean
profiles of U, the function F becomes:

Fðy=xÞ ¼ exp
n

� lnð2Þðy=xÞ2=ðx1=2Þ2U
o

:

Approximate empirical values for C5, C6, (x1/2)U, and (x1/2)Y from Chen and Rodi (1980) and
Pope (2000) are provided in Table 12.1 for the plane turbulent jet along with results for other
free shear flows. The similarity forms shown in this table for the planar and round wakes
should also be followed in the far-field of jets in coflowing streams. Unfortunately, variations
in the empirical constants between experiments may be �20% (or even more; see the round-
wake results) and these variations are thought to be caused by unintentional experimental
artifacts, such as unmeasured vibrations, geometrical imperfections, or fluctuations in one
of the input flows.

Interestingly, as pointed out in George (1989), such variation in similarity constants is
consistent with the type of similarity analysis presented earlier in this section. The three
equations (12.64) determined from the coefficients of the similarity momentum equation
specify the simplest possibility leading to self-similarity of the mean flow. A more general
version of (12.64) that also leads to self-similarity is:

dU0
CL

UCL
¼ C8

�

dU0
CL

UCL
þ d0

�

¼ C9
J

U2
CL

, (12.74)

which specifies that the x-dependence of the three coefficients must be equal. Here, d ~ xm,
UCL ~ xn, and J ~ x2nþme1 satisfy (12.74) as do d ~ exp{ax}, UCL ~ exp{eax}, and J ~ exp
{eax}; thus, multiple possibilities are allowed by (12.63) for the plane jet’s similarity solution.
While the second law of thermodynamics and the constraint (12.62) rule out some of these
possibilities, (12.74) or its equivalent for other free shear flows and conditions at the flow’s
origin (x ¼ 0) apparently allow the expected self-similar states for a particular shear flow
to vary somewhat from experiment to experiment.
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EXAMPLE 12.2

Pure methane gas issues from a round nozzle with diameter d ¼ 1 cm at a speed of U0 ¼ 20 m/s

into a combustion chamber nominally filled with quiescent air at room temperature and pressure.

Assuming the volume fraction of oxygen in air is 0.21, use the round turbulent jet similarity law to

estimate the centerline distance from the nozzle exit where the stoichiometric condition is reached,

and the centerline speed and nominal width of the jet flow at that point.

Solution

Using subscripts “A” for air and “M” for methane, and molecular weights of 28.96 and 16.04 for

air and methane, respectively, the Reynolds number of the flow is:

ffiffiffiffiffiffiffiffiffiffiffi

Js=rA
p

=nw ðrM=rAÞ1=2U0d=nA ¼ ð16:04=28:96Þ1=2ð20m=sÞð0:01mÞ=	1:5� 10�5 m2s�1Þ w 104,

which is high enough to form a turbulent jet. Since the relevant chemical reaction is

CH4 þ 2O2 / CO2 þ 2H2O, the mole fraction of methane is half that of oxygen at the stoichio-

metric condition. Thus, at the location of interest x, there are two equations relating mean volume

fractions, yA þ yM ¼ 1 and yM ¼ 0:5ð0:21yAÞ, that are readily solved to find: yA ¼ 1/1.105 ¼ 0.905,

and yM ¼ 1 e (1/1.105) ¼ 0.095. With this composition, the mixture density is within 4% or so of the

density of air. The requisite mass fraction of methane is:

YM ¼ ð0:095Þð16:04Þ=½ð0:905Þð28:96Þ þ ð0:095Þð16:04Þ� ¼ 0:0549:

The location x is found from the entry in Table 12.1 for the mass-fraction field of a round turbulent

jet. This means setting YM ¼ 5:0 Y0ðrs=rAÞ1=2ðx=dÞ�1 and solving for x to find:

x ¼ 5:0 ðY0=YMÞðrs=rAÞ1=2d ¼ 5:0ð1:0=0:0549Þð16:04=28:96Þ1=2ð0:01mÞy 0:68m:

Using the Table 12.1 entry for the velocity field of a round turbulent jet, the jet centerline velocity at

this location is:

UCLðxÞ ¼ 6:0Uo ðrs=rAÞ1=2ðx=dÞ�1 ¼ 6:0ð20m=sÞð16:04=28:96Þ1=2ð68Þ�1 y 1:3m=s:

The nominal width of the flow will be approximately four times larger than the jet’s mean

concentration profile half radius r1/2. From the round jet profile width entry in Table 12.1, we

have:

ðx1=2ÞY ¼ 0:11 ¼ ðr1=2=xÞY so 4r1=2 ¼ 4ð0:11Þð0:68mÞy 0:30m:

Thus, the width of a jet’s cone of turbulence is a little less than half the downstream distance.

When the mean velocity and mass fraction fields of a free turbulent shear flow are self-
similar, their corresponding fluctuations are commonly self-similar with the same depen-
dence on the downstream coordinate as that found for the mean fields. However, the profile
functions for the various Reynolds stress components or the passive scalar variance are typi-
cally not bell-shaped curves. Sample free shear flow measurements for the Reynolds stress
components for the plane turbulent jet are shown in Figure 12.14. Results such as these indi-
cate how fluctuation energy varies within a turbulent flow and may be used to develop and
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test closure models for RANS equations. Here u2, v2, and w2 are the velocity component vari-
ances (commonly called turbulent intensities) in the stream-wise (x), slot-normal (y), and slot-
parallel (z) directions, respectively. The Reynolds stresses uw and vw are zero throughout the
planar jet since the flow is homogeneous in the z-direction and there is no reason for w to be
mostly of one sign if u or v is either positive or negative. Similarly, the Reynolds stress uv is
zero on the jet centerline by symmetry. In Figure 12.14, the Reynolds stress reaches
a maximum magnitude roughly where vU/vy is maximum. This is also close to the region
where the turbulent kinetic energy e reaches a maximum. Such correspondences are
commonly exploited in the development of turbulence models.

The terms in the turbulent kinetic energy budget for a two-dimensional jet are shown in
Figure 12.15. Under the boundary layer assumption for derivatives, v/vy [ v/vx, the
budget equation (12.47) becomes

0 ¼ �U
ve

vx
� V

ve

vy
� uv

vU

vy
� v

vy

�

1

r0
pvþ 1

2
ev

�

� 3, (12.75)

where the left side represents ve=vt. Here, the viscous transport and the term
ðv2 � u2ÞðvU=vxÞ arising out of the shear production have been neglected because they are
small. The balance of terms shown in this figure is analyzed in Townsend (1976). Here, T
denotes turbulent transport represented by the fourth term on the right-hand side of
(12.75). The shear production is zero on the jet centerline where both vU/vy and uv are
zero, and reaches a maximum close to the position of the maximum Reynolds stress. Near
the center of the jet, the dissipation is primarily balanced by the downstream advection

FIGURE 12.14 Sketch of the observed variation of the turbulent kinetic energy e and the nonzero Reynolds
stress components across a planar jet. Here, uv ¼ 0 on the jet’s centerline (y ¼ 0), and uw ¼ vw ¼ 0 throughout the
flow because the mean flow is symmetric about y ¼ 0, and because the flow is homogeneous in the z-direction.
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�U(ve/vx), which is positive because the turbulent kinetic energy e decays downstream.
Away from the jet’s center, but not too close to the jet’s outer edge, the production and dissi-
pation terms balance. In the outer parts of the jet, the transport term balances the cross-stream
advection. In this region V is negative (i.e., toward the center) due to entrainment of the
surrounding fluid, and also e decreases with increasing y. Therefore the cross-stream advec-
tion �V(ve/vy) is negative, signifying that the entrainment velocity V tends to decrease the
turbulent kinetic energy at the outer edge of the jet. A temporally stationary state is therefore
maintained by the transport term T carrying e away from the jet’s center (where T < 0) into
the outer parts of the jet (where T > 0).

12.9. WALL-BOUNDED TURBULENT SHEAR FLOWS

At sufficiently high Reynolds number, the characteristics of free turbulent shear flows dis-
cussed in the preceding section are independent of Reynolds number andmay be self-similar
based on a single length scale. However, neither of these simplifications occurs when the flow
is bounded by one or more solid surfaces. The effects of viscosity are always felt near the wall
where turbulent fluctuations go to zero, and this gives rise to a second fundamental length
scale ln that complements the turbulent layer thickness d. In addition, the persistent effects
of viscosity are reflected in the fact that the skin-friction coefficient for a smooth flat plate
or smooth round pipe depends on Re, even when Re/ N, as seen in Figure 9.11. Therefore,
Re independence of the flow as Re/ N does not occur in wall-bounded turbulent shear
flows when the wall(s) is(are) smooth.

FIGURE 12.15 Sketch of measurements of the terms in the kinetic energy budget of a planar turbulent jet. Here
the turbulent transport terms are lumped together and indicated by T. Information of this type is used to build,
adjust, and validate closure models for RANS equations.
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The importance of wall-bounded turbulence in engineering applications and geophys-
ical situations is hard to overstate since it sets fundamental limits for the efficiency of trans-
portation systems and on the exchange of mass, momentum, and heat at the earth’s surface.
Thus, the literature on wall-bounded turbulent flows is large and the material provided
here merely covers the fundamentals of the mean flow. A more extensive presentation
that includes turbulence intensities is provided in Chapter 7 of Pope (2000). Vortical struc-
tures in wall-bounded turbulence are discussed in Kline et al. (1967), Cantwell (1981), and
Adrian (2007). The review articles by George (2006) and Marusic et al. (2010) are also
recommended.

Three generic wall-bounded turbulent shear flows are described in this section: pres-
sure-driven channel flow between smooth stationary parallel plates, pressure-driven
flow through a smooth round pipe, and the turbulent boundary-layer flow that develops
from nominally uniform flow over a smooth flat plate. The first two are fully confined while
the boundary layer has one free edge. The main differences between turbulent and laminar
wall-bounded flows are illustrated on Figure 12.16. In general, mean turbulent-flow
profiles (solid curves) are blunter, and turbulent-flow wall-shear stresses are higher than
those of equivalent steady laminar flows (dashed curves). In addition, a turbulent
boundary-layer, mean-velocity profile approaches the free-stream speed very gradually
with increasing y so the full thickness of the profile shown in the right panel of Figure 12.16
lies beyond the extent of the figure. Throughout this section, the density of the flow is taken
to be constant.

Fully developed channel flow is perhaps the simplest wall-bounded turbulent flow. Here,
the modifier fully developed implies that the statistics of the flow are independent of the down-
stream direction. The analysis provided here is readily extended to pipe flow, after a suitable
redefinition of coordinates. Further extension of channel flow results to boundary-layer flows
is not as direct, but can be made when the boundary-layer approximation replaces the fully

U(r)

U(y)/U∞

y

1

Channel & Pipe
Boundary Layer

FIGURE 12.16 Sample profiles for wall-bounded turbulent flows (solid curves) compared to equivalent
laminar profiles (dashed curves). In general turbulent profiles are blunter with higher skin friction; that is, m(dU/
dy) evaluated at the wall is greater in turbulent flows than in equivalent laminar ones. In channel and pipe flows,
the steady laminar profile is parabolic while a mean turbulent flow profile is more uniform across the central 80%
of the channel or pipe. For boundary layers having the same displacement thickness, the steady laminar profile
remains linear farther above the wall and converges to the free-stream speed more rapidly than the mean
turbulent profile.
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developed flow assumption. If we align the x-axis with the flow direction, and chose the y-
axis in the cross-stream direction perpendicular to the plates so that y ¼ 0 and y ¼ h define
the plate surfaces, then fully developed channel flow must have vU/vx ¼ 0. Hence, U can
only depend on y, and it is the only mean velocity component because the remainder of
(12.27) implies vV/vy ¼ 0, and the boundary conditions V ¼ 0 on y ¼ 0 and h then require
V ¼ 0 throughout the channel. Under these circumstances, the mean flow momentum equa-
tions are:

0 ¼ � vP

vx
þ vs
vy

and 0 ¼ � v

vy

	

Pþ rv2



, (12.76)

where s ¼ mðvU=vyÞ � r0uv is the total average stress and it cannot depend on x. Integrating
the second of these equations from the lower wall up to y produces:

Pðx, yÞ � Pðx, 0Þ ¼ �rv2 þ r


v2
�

y¼0
¼ �rv2,

where the final equality follows because the variance of the vertical velocity fluctuation is
zero at the wall (y ¼ 0). Differentiating this with respect to x produces:

v

vx
Pðx, yÞ � d

dx
Pðx, 0Þ ¼ �r

v

vx
v2 ¼ 0, (12.77)

where P(x,0) is the ensemble-average pressure on y ¼ 0 and the final equality follows from
the fully developed flow assumption. Thus, the stream-wise pressure gradient is only a func-
tion of x; vP(x,y)/vx ¼ dP(x,0)/dx. Therefore, the only way for the first equation of (12.76) to
be valid is for vP/vx and vs=vy to each be constant, so the total average stress distribution sðyÞ
in turbulent channel flow is linear as shown in Figure 12.17a. Away from the wall, s is due
mostly to the Reynolds stress, close to the wall the viscous contribution dominates, and at
the wall the stress is entirely viscous.

FIGURE 12.17 Variation of total shear stress across a turbulent channel flow (a) and through a zero-pressure-
gradient turbulent boundary layer (b). In both cases, the Reynolds shear stress dominates away from the wall but
the viscous shear stress takes over close to the wall. The shape of the two stress curves is set by momentum
transport between the fast-moving part of the flow and the wall where U ¼ 0.
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For a boundary layer on a flat plate, the stream-wise mean-flow momentum equation is

U
vU

vx
þ V

vU

vy
¼ �1

r

vP

vx
þ 1

r

vs
vy

, (12.78)

where s is a function of x and y. The variation of the stress across a boundary layer is sketched
in Figure 12.17b for the zero-pressure-gradient (ZPG) condition. Here, a constant stress layer,
vs=vy z 0, occurs near the wall since both U and V/ 0 as y / 0. When the pressure
gradient is not zero, the stress profile approaches the wall with a constant slope. Although
it is not shown in the figure, the structure of the near-wall region of the turbulent boundary
layer is similar to that depicted for the channel flow in Figure 12.17a with viscous stresses
dominating at and near the wall.

The partitioning of the stress based on its viscous and turbulent origins leads to the iden-
tification of two different scaling laws for wall-bounded turbulent flows. The first is known
as the law of the wall and it applies throughout the region of the boundary layer where
viscosity matters and the largest relevant length scale is y, the distance from the wall. This
region of the flow is typically called the inner layer. The second scaling law is known as the
velocity defect law, and it applies where the flow is largely independent of viscosity and the
largest relevant length scale is the overall thickness of the turbulent layer d. This region of
the flow is typically called the outer layer. Fortunately, the inner and outer layers of wall-
bounded turbulent flow overlap, and in this overlap region the form of the mean stream-
wise velocity profile may be deduced from dimensional analysis.

Inner Layer: Law of the Wall

Consider theflownear thewall of a channel, pipe, orboundary layer. LetUNbe the centerline
velocity in the channel or pipe, or the free-stream velocity outside the boundary layer. Let d be
the thickness of the flow between the wall and the location whereU ¼ UN. Thus, dmay be the
channelhalfwidth, the radiusof thepipe, or theboundary-layer thickness.Assume that thewall
is smooth, so that any surface roughness is too small to affect the flow. Physical considerations
suggest that the near-wall velocity profile should depend only on the near-wall parameters and
not on UN or the thickness of the flow d. Thus, very near the smooth surface, we expect

U ¼ Uðr, s0, n,yÞ, (12.79)

where s0 is the shear stress on the smooth surface. This equation may be recast in dimension-
less form as:

Uþ h
U

u)
¼ f

�yu)
n

�

¼ f

�

y

ln

�

¼ f
	

yþ



where u2) h
s0
r
, (12.80, 12.81)

f is an undetermined function, u) is the friction velocity or shear velocity, and ln ¼ n/u) is the
viscous wall unit. Equation (12.80) is the law of the wall and it states that U/u) should be
a universal function of yu)/n near a smooth wall. The superscript plus signs are standard
in the literature and indicate a dimensionless law-of-the-wall variable.

The inner part of the wall layer, right next to the wall, is dominated by viscous effects and
is called the viscous sublayer. In spite of the fact that it contains fluctuations, the Reynolds
stresses are small here because the presence of the wall quells wall-normal velocity
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fluctuations. At high Reynolds numbers, the viscous sublayer is thin enough so that the stress
is uniform within the layer and equal to the wall shear stress s0. Therefore the mean velocity
gradient in the viscous sublayer is given by

mðdU=dyÞ ¼ s0/U ¼ s0y=m or Uþ ¼ yþ, (12.82)

where the second two equalities follow from integrating the first. Equation (12.82) shows that
the velocity distribution is linear in the viscous sublayer, and experiments confirm that this
linearity holds up to yu*/v w 5, which may be taken to be the limit of the viscous sublayer.

Outer Layer: Velocity Defect Law

Now consider the velocity distribution in the outer part of a turbulent boundary layer. The
gross characteristics of the turbulence in the outer region are inviscid and resemble those of
a free shear flow. The existence of Reynolds stresses in the outer region results in a drag on
the flow and generates a velocity defect DU ¼ UN � U, just like the planar wake. Therefore, in
the outer layer we expect,

U ¼ Uðr, s0, d,yÞ, (12.83)

and by dimensional analysis can write:

UN �U

u�
¼ F

�y

d

�

¼ FðxÞ (12.84)

so that the deficit velocity, UN e U, is proportional to the friction velocity u* and a profile
function. This is called the velocity defect law, and this is its traditional form. In the last two
decades, it has been the topic of considerable discussion in the research community, and
alternative velocity and length scales have been proposed for use in (12.84), especially for
turbulent boundary-layer flows.

Overlap Layer: Logarithmic Law

From the preceding discussion, the mean velocity profiles in the inner and outer layers of
a wall-bounded turbulent flow are governed by different laws, (12.80) and (12.84), in which
the independent coordinate y is scaled differently. Distances in the outer part are scaled by d,
whereas those in the inner part are scaled by the much smaller viscous wall unit ln ¼ n/u*.
Thus, wall-bounded turbulent flows involve at least two turbulent length scales, and this
prevents them from reaching the same type of self-similar form with increasing Reynolds
number as that found for simple free turbulent shear flows.

Interestingly, a region of overlap in the two profile forms can be found by taking the limits
yþ /N and x / 0 simultaneously. Instead of matching the mean velocity directly, in this
case it is more convenient to match mean velocity gradients. (The following short derivation
closely follows that in Tennekes and Lumley, 1972.) From (12.80) and (12.84), dU/dy in the
inner and outer regions is given by

dU

dy
¼ u2�

n

df

dyþ
and � dU

dy
¼ u�

d

dF

dx
, (12.85, 12.86)
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respectively. Equating these and multiplying by y/u*, produces:

�x
dF

dx
¼ yþ

df

dyþ
, (12.87)

an equation that should be valid for large yþ and small x. As the left-hand side can only be
a function of x and the right-hand side can only be a function of yþ, both sides must be equal
to the same universal constant, say 1/k, where k is the von Karman constant (not the thermal
diffusivity). Experiments show that kz 0.4 with some dependence on flow type and pres-
sure gradient, as is discussed further later on. Setting each side of (12.87) equal to 1/k, inte-
grating, and using (12.80) gives:

Uþ h
U

u�
¼ fðyþÞ ¼ 1

k
lnðyþÞ þ B and FðxÞ ¼ �1

k
lnðxÞ þ A, (12.88, 12.89)

where B and A are constants with values around 4 or 5, and 1, respectively, again with
some dependence on flow type and pressure gradient. Equation (12.88) or (12.89) is the
mean velocity profile in the overlap layer or the logarithmic layer. In addition, the
constants in (12.88), k and B, are known as the logarithmic-law (or log-law) constants.
As the derivation shows, (12.88) and (12.89) are only valid for large yþ and small
y/d, respectively. The foregoing method of justifying the logarithmic velocity distribu-
tion near a wall was first given by Clark B. Millikan in 1938. The logarithmic law,
however, was known from experiments conducted by the German researchers, and
several derivations based on semi-empirical theories were proposed by Prandtl and
von Karman. One such derivation using the so-called mixing length theory is presented
in the following section.

The logarithmic law (12.88) may be the best-known and most important result for wall-
bounded turbulent flows. Experimental confirmation of this law is shown in Figure 12.18 in
law-of-the-wall coordinates for the turbulent boundary-layer data reported in Oweis et al.
(2010). Nominal specifications for the extent of the viscous sublayer, the buffer layer, the
logarithmic layer, and the wake region are shown there as well. On this log-linear plot,
the linear viscous sublayer profile appears as a curve for yþ < 5. However, a logarithmic
velocity profile will appear as a straight line on a log-linear plot, and such a linear region
is evident for approximately two decades in yþ starting near yþ ~ 102. The extent of this log-
arithmic region increases in these coordinates with increasing Reynolds number. The region
5 < yþ < 30, where the velocity distribution is neither linear nor logarithmic, is called the
buffer layer. Neither the viscous stress nor the Reynolds stresses are negligible here, and
this layer is dynamically important because turbulence production reaches a maximum
here. Overall, the measured results collapse well to a single curve below yþw104 (or y/
d ~ 0.2) in conformance with the law of the wall. For larger values of yþ, the collapse
ends where the overlap region ends and the boundary layer’s wake flow begins. Although
the wake region appears to be smaller than the log-region on the plot, this is an artifact of
the logarithmic horizontal axis. A turbulent boundary layer’s wake region typically
occupies the outer 80% of the flow’s full thickness. These velocity profiles do not collapse
in the wake region when plotted with law-of-the-wall normalizations because the wake-
flow similarity variable is y/d (not y/ln) and ratio dþ ¼ d/ln is different at the three different
Reynolds numbers. The fitted curves shown in Figure 12.18 are mildly adjusted versions of
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those recommended in Monkewitiz et al. (2007) for smooth-flat-plate ZPG turbulent
boundary layers.

For fully developed channel and pipe flows, the mean stream-wise velocity profile does
not evolve with increasing downstream distance. However, turbulent boundary layers do
thicken. The following parameter results are developed from the systematic fitting and
expansion efforts for ZPG turbulent boundary layers described in Monkewitz et al. (2007),
and are intended for use when Rex > 106:

Momentum thickness ¼ qz0:016� Re�0:15
x ,

Displacement thickness ¼ d�zq exp

�

7:11k

lnðReqÞ
�

,

99% thickness ¼ d99 ¼ 0:2d�


k�1lnðRed�Þ þ 3:30
�

, and

Skin friction coefficient ¼ Cf ¼ s0
1

2
rU2

N

y
2:0

½k�1lnðRed�Þ þ 3:30�2
,

Viscous
Sublayer

Buffer
Layer

Logarithmic 
Layer

Wake

Reθ

INNER LAYER

OUTER LAYER

y+= 5 y+= 30

107,000

56,000

156,000

FIGURE 12.18 Mean velocity profile of a smooth-flat-plate turbulent boundary layer plotted in log-linear
coordinates with law-of-the-wall normalizations. The data are replotted from Oweis et al. (2010) and represent
three Reynolds numbers. The extent of the various layers within a wall-bounded turbulent flow are indicated
by vertical dashed lines. The log-layer-to-wake-region boundary is usually assumed to begin at y/d z 0.15 to
0.20 in turbulent boundary layers. Overall the data collapse well for the inner layer region, as expected, and the
logarithmic layer extends for approximately two decades. The wake region shows differences between the
Reynolds numbers because its similarity variable is y/d, and d/ln differs between the various Reynolds
numbers.
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where x is the downstream distance, Rex ¼ UNx/n, Req ¼ UNq/n, and Red* ¼ UNd*/n. Other
common ZPG turbulent boundary-layer skin-friction correlations are those by Schultz-
Grunow (1941) and White (2006),

Cf y 0:370
	

log10Rex

�2:584

and Cf y
0:455

½lnð0:06RexÞ�2
,

respectively. These formulae should be used cautiously because the influence of a boundary
layer’s virtual origin has not been explicitly included and it may be substantial (Chauhan
et al., 2009; see also Marusic, 2010).

EXAMPLE 12.3

Estimate the boundary layer thicknesses on the underside of the wing of a large commercial

airliner on its landing approach. Use the flat-plate results provided above, a chord-length distance

of x ¼ 8 m, a flow speed of 100 m/s, and a nominal value of k z 0.4.

Solution

First compute the downstream-distance Reynolds number Rex using the nominal kinematic

viscosity air: Rex ¼ ð100 m=sÞð8 mÞ=ð1:5� 10�5 m2=sÞ ¼ 53� 106. This Reynolds number is

clearly high enough for turbulent flow, so the estimates are:

qz 0:016� Re�0:15
x ¼ 0:016ð8 mÞ	53� 106


�0:15 ¼ 0:0089m,

d�zqexp

�

7:11k

lnðReqÞ
�

¼ ð0:0089 mÞexp
(

7:11ð0:4Þ
ln
	ð0:0089 mÞð100m=sÞ=1:5� 10�5 m2=s




)

y 0:0115 m, and

d99 ¼ 0:2d�


k�1lnðRed�Þ þ 3:30
�¼ 0:2ð0:0115 mÞ

"

0:4�1ln

 

ð0:0115 mÞð100m=sÞ
1:5� 10�5 m2=s

!

þ 3:30

#

y 0:072 m:

Here we note that q and d* are almost an order of magnitude smaller than d99, and that all three

boundary-layer thicknesses are miniscule compared to the wing’s chord length of 8 m. The latter

finding is a primary reasonwhy boundary-layer thicknesses are commonly ignored in aerodynamic

analyses.

For the purpose of completeness, the following approximate mean velocity profile functions
are offered for wall-bounded turbulent flows:

inner profile yþ ¼ Uþ
inner þ e�kB

�

exp
	

kUþ
inner


� 1� kUþ
inner �

1

2

	

kUþ
inner


2�1

6

	

kUþ
inner


3
�

, and

outer profile Uþ
outer ¼ 1

k
ln
	

yþ

þ Bþ 2P

k
Wðy=dÞ,
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where the inner profile from Spalding (1961) is specified in implicit form, k and B are the log-
law constants from (12.88), and P and W are the wake strength parameter and a wake func-
tion, respectively, both introduced by Coles (1956). The wake functionW and the length scale
d in its argument are empirical and are typically determined by fitting curves to experimental
profile data.

Of the three generic wall-bounded turbulent flows, the boundary layer’s wake is typically
the most prominent. For ZPG boundary layers the wake strength is P ¼ 0.44 (Chauhan
et al., 2009). When the pressure gradient is favorable, P is lower, and when the pressure
gradient is adverse, P is higher. The wake function is typically chosen to go smoothly from
zero to unity as y goes from zero to d. Among the simplest possibilities for W(x) are 3x2 e 2x3

and sin2(px/2), however more sophisticated fits are currently in use (see Monkewitz et al.,
2007; Chauhan et al., 2009). In the outer profile form given above, d is interpreted as the
100% boundary-layer thickness where U first equals the local free-stream velocity as y
increases. In practice, this requirement cannot be evaluated with finite-precision experimental
data so d is often approximated as being the 99% or the 99.5% thickness, d99 or d99.5, respectively.
Of course, for channel or pipe flows, d is half the channel height or the pipe radius, respectively.

As of this writing, new and important concepts and results for wall-bounded turbulence
continue to emerge. These include the possibility that the overlap layer might instead be of
power law form (Barenblatt, 1993; George & Castillo, 1997) and a reinterpretation of the layer
structure in terms of stress gradients (Wei et al., 2005; Fife et al., 2005). The comparisons in
Monkewitz et al. (2008) suggest that the logarithmic law should be favored over a power
law, while the implications of the stress gradient balance approach are still under consider-
ation. These and other topics in the current wall-bounded turbulent flow literature are dis-
cussed in Marusic et al. (2010).

The one additional topic raised here concerns the universality of wall-bounded turbulent
flow profiles. Are all wall-bounded turbulent flows universal (statistically the same) when
scaled appropriately? To answer this question, consider the inner, outer, and overlap layers
separately. First of all, the viscous sublayer profile Uþ ¼ yþ (12.82) is universal using law-of-
the-wall normalizations. However, geometrical considerations suggest that the wake flow
region is not universal. Consider the zone of maximum average fluid velocity at the outer
edge of the wake of a wall-bounded flow. This maximum velocity zone occurs on the center-
line of a channel flow (a plane), on the centerline of a pipe flow (a line), and at the edge of
a boundary layer (a slightly tilted, nearly planar surface). Thus, the ratio of the maximum-
velocity area to the bounding-wall surface area is one-half for channel flow, vanishingly small
for pipe flow, and slightly greater than unity for boundary-layer flow. On this basis, the three
wake flows are distinguished. Additionally, the boundary layer differs from the other two
flows because it is bounded on one side only. The boundary layer’s wake-flow region
entrains irrotational fluid at its free edge and does not collide or interact with turbulent
flow arising from an opposing wall, as is the case for channel and pipe flows. Thus, the
wake-flow regions of these wall-bounded turbulent flows should all be different and not
universal.

Now consider the overlap layer in which the mean velocity profile takes a logarithmic form.
Logarithmic profiles have been observed in all three generic wall-bounded turbulent flows.
However, in each circumstance, these layers inherit properties from the universal viscous sub-
layer and from a nonuniversal wake flow. Thus, the log-law (12.88) may imperfectly approach
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universality, and this situation is found in experiments. In particular, the current published
literature (Nagib & Chauhan, 2008) supports the following values for the logarithmic-law
constants at high Reynolds numbers:

Channel flow: k ¼ 0.37 B ¼ 3.7

Pipe flow: k ¼ 0.41 B ¼ 5.0

ZPG boundary layer: k ¼ 0.384 B ¼ 4.17

This observed flow-to-flow variation in log-law constants is not anticipated by the analysis
presented earlier in this section because the geometric differences in the wake-flow regions
were not accounted for in (12.83). However, the previous analysis remains valid for each
outer-layer flow geometry. Thus, the log-law (12.88) does describe the overlap layer of
a wall-bounded turbulent flow when the log-law constants are appropriate for that flow’s
geometry.

Interestingly, there is another issue at play here for turbulent boundary layers. From
a flow-parameter perspective, a turbulent boundary layer differs from fully developed
channel and pipe flows because the pressure gradient that may exist in a boundary layer
flow is not directly linked to the wall shear stress s0. In fully developed channel and pipe
flow, a stationary control volume calculation (see Exercise 12.31) requires:

dP=dx ¼ �2so=h or dP=dx ¼ �4so=d, (12.90, 12.91)

respectively, where h is the channel height and d is the pipe diameter. Thus, the starting
points for the dimensional analysis of the inner and outer layers of the mean velocity profile,
(12.79) and (12.83), need not include dP/dx for pipe and channel flows because s0 is already
included. Yet, there is no equivalent to (12.90) or (12.91) for turbulent boundary layers. More
general forms of (12.79) and (12.83) that would be applicable to all turbulent boundary layers
need to include vP/vx, especially since vP/vx does not drop from the mean stream-wise
momentum equation, (12.78), for any value of y when vP/vx is nonzero. The apparent
outcome of this situation is that the log-law constants in turbulent boundary layers depend
on the pressure gradient. Surprisingly, the following empirical correlation, offered by Nagib
and Chauhan (2008),

kB ¼ 1:6 ½expð0:1663BÞ � 1�, (12.92)

collapses measured values of k and B from all three types of wall-bounded shear flows for
0.15 < k < 0.80, and e4 < B < 12. Here, the most extreme values of k and B arise from turbu-
lent boundary layers in adverse (low values of k and B) and favorable (high values of k and B)
pressure gradients.

Rough Surfaces

In deriving the logarithmic law (12.88), we assumed that the flow in the inner layer is
determined by viscosity. This is true only for hydrodynamically smooth surfaces, for which
the average height of the surface roughness elements is smaller than the thickness of the
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viscous sublayer. For a hydrodynamically rough surface, on the other hand, the roughness
elements protrude out of the viscous sublayer. An example is the terrestrial boundary layer,
where the trees, buildings, etc., act as roughness elements. A wake develops behind each
roughness element, and shear stress is transmitted to the wall by the resulting drag on the
roughness elements. Viscosity becomes irrelevant for determining either the velocity distri-
bution or the overall drag on the surface. This is why the friction coefficients for a rough
pipe and a rough flat surface become constant as Re / N.

The velocity distribution near a rough surface is again logarithmic, but the intercept
constant can be set by noting that the mean velocityU is expected to be negligible somewhere
within the roughness elements (Figure 12.19b). We can therefore assume that (12.88) applies
for y > y0, where y0 is a measure of the roughness heights and is defined as the value of y at
which the logarithmic distribution gives U ¼ 0. Appropriately evaluating the constant B in
(12.88) then produces:

Uþ ¼ U

u�
¼ 1

k
ln

�

y

y0

�

: (12.93)

12.10. TURBULENCE MODELING

The closure problem arising from Reynolds-averaging of the equations of fluid motion has
lead to the development of approximate models to close systems of RANS equations. Because
of the practical importance of such models for weather forecasting and performance predic-
tion for engineered devices, RANS-closure modeling efforts have existed for more than
a century and continue to this day. This section presents a truncated overview of the essential
elements leading to the so-called k-3 closure model for the RANS mean-flow momentum
equation (12.30). Second-order closures, large-eddy simulations, and other RANS closure
schemes are described in Part Two of Pope (2000). The review article by Speziale (1991) is
also recommended.

FIGURE 12.19 Logarithmic velocity distributions near smooth (a) and rough (b) surfaces. The presence of
roughness may eliminate the viscous sublayer when the roughness elements protrude higher than several ln. In this
case the log-law may be extended to a virtual wall location y0 where U appears to go to zero.
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The primary purpose of a turbulent-mean-flow closure model is to relate the Reynolds
stress correlations uiuj to the mean velocity field Ui. Prandtl and von Karman developed
certain semi-empirical theories that attempted to provide this relationship. These theories
are based on drawing an analogy between molecular-motion-based laminar momentum
and scalar transport, and eddy-motion-based turbulent momentum and scalar transport.
The outcome of such modeling efforts is typically an eddy viscosity nT (first intro-
duced by Boussinesq in 1877) and eddy diffusivities kT and kmT for the closure-model
equations:

uiuj ¼
2

3
edij � nT

 

vUi

vxj
þ vUj

vxi

!

, uiT0 ¼ �kT
vT

vxi
, and uiY0 ¼ �kmT

vY

vxi
: (12.94, 12.95, 12.96)

Equation (12.94) is mathematically analogous to the stress-rate-of-strain relationship for
a Newtonian fluid (4.37) with the term that includes the turbulent kinetic energy e playing
the role of a turbulent pressure. It represents the turbulent viscosity hypothesis. Similarly,
(12.95) and (12.96) are mathematically analogous to Fourier’s law and Fick’s law for molec-
ular diffusion of heat and species, respectively, and these equations represent the gradient
diffusion hypothesis for turbulent transport of heat and a passive scalar.

To illustrate the implications of such hypotheses, substitute (12.94) into (12.30) to find:

vUi

vt
þUj

vUi

vxj
¼ �1

r

vP

vxj
þ v

vxj

 

½nþ nT �
 

vUi

vxj
þ vUj

vxi

!

� 2

3
edij

!

(12.97)

for constant-density flow. The factor in [,]-brackets is commonly known as the effective
viscosity, and correspondence between this mean-flow equation and its unaveraged coun-
terpart, (4.86) simplified for constant density, is clear and compelling. Mean flow equations
for T and Y similar to (12.97) are readily obtained by substituting (12.95) and (12.96) into
(12.32) and (12.34), respectively. Unfortunately, the molecular-dynamics-to-eddy-dynamics
analogy is imperfect. Molecular sizes are typically much less than fluid-flow gradient
length scales while turbulent eddy sizes are typically comparable to fluid-flow gradient
length scales. For ordinary fluid-molecule sizes, averages taken over small volumes
include many molecules and these averages converge adequately for macroscopic
transport predictions. Equivalent averages over eddies may be unsuccessful because
turbulent eddies are so much larger than molecules. Thus, nT, kT, and kmT are not properties
of the fluid or fluid mixture, as n, k, and km are. Instead, nT, kT, and kmT are properties of
the flow, and this transport-flow relationship must be modeled. Hence, (12.97) and its
counterparts for T and Y must be regarded as approximate because (12.94) through
(12.96) have inherent limitations. Nevertheless, RANS closure models involving (12.94)
through (12.96) are sufficiently accurate for many tasks involving computational fluid
dynamics.

From dimensional considerations, nT, kT, and kmT should all be proportional to the
product of a characteristic turbulent length scale lT and a characteristic turbulent velocity
uT:

nT , kT , or kmTwlTuT : (12.98)
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For simplicity, consider fully developed, temporally stationary unidirectional shear flowU(y)
where y is the cross-stream coordinate (Figure 12.20). The mean-flowmomentum equation in
this case is:

0 ¼ �1

r

dP

dx
þ v

vy

�

n
vU

vy
� uv

�

¼ �1

r

dP

dx
þ v

vy

�

½nþ nT �
�

vU

vy

��

: (12.99)

A Mixing Length Model

An eddy viscosity for this equation can be constructed by interpreting lT as a mixing
length, defined as the cross-stream distance traveled by a fluid particle before it gives
up its momentum and loses its identity. In this situation, an eddy of size lT driven by
a local shear rate of dU/dy produces a velocity fluctuation of uT ~ lT(dU/dy) as it turns
over, so

�uv ¼ nT
dU

dy
wlTuT

dU

dy
wlT

�

lT
dU

dy

�

dU

dy
¼ l2T

�

dU

dy

�2

:

The mixing-length concept was first introduced by Taylor (1915), but the approach was fully
developed by Prandtl and his coworkers. For a wall-bounded flow it makes sense to assume
that lT is proportional to y when y ¼ 0 defines the wall. Thus, setting lT ¼ ky, where k is

uT

lT

U(y)
y

FIGURE 12.20 Schematic drawing of an eddy of size lT in a shear flow with mean velocity profile U(y). A
velocity fluctuation, u or v, that might be produced by this eddy must be of order lT(dU/dy). Therefore, we expect
that the Reynolds shear stress will scale like uvwl2TðdU=dyÞ2.
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presumed to be constant, completes a simple mixing-length turbulence model, and (12.99)
becomes:

0 ¼ �1

r

dP

dx
þ v

vy

 

n
dU

dy
þ k2y2

�

dU

dy

�2
!

: (12.100)

When the pressure gradient is zero or small enough to be ignored, (12.100) can be integrated
once to find:

n
dU

dy
þ k2y2

�

dU

dy

�2

¼ const: ¼ s0
r
,

where the final equality comes from evaluating the expression on the left at y ¼ 0. For points
outside the viscous sublayer, where the turbulence term dominates, the last equation reduces
to a simple ordinary differential equation that is readily integrated to reach:

dU

dy
y

ffiffiffiffiffi

s0
r

r

1

ky
, or

U

u�
y

1

k
ln yþ const:, (12.101)

which replicates the log-law (12.88). This simplest-level turbulence model is known as an
algebraic or zero-equation model. Such mixing length models can be generalized to a certain
extent by using a contracted form of the mean strain-rate tensor or the mean rotation-rate
tensor in place of (dU/dy)2. However, there is no rational approach for relating lT to the
mean flow field in general.

Since the development of modern computational techniques for solving partial differ-
ential equations, the need for simple intuitive approaches like the mixing length theory
has essentially vanished, and Prandtl’s derivation of the empirically known logarithmic
velocity distribution has only historical value. However, the relationship (12.98) remains
useful for estimating the order of magnitude of the eddy diffusivity in turbulent flows,
and for development of more sophisticated RANS closure models (see below). Consider
the estimation task first via the specific example of thermal convection between two hori-
zontal plates in air when the plates are separated by a distance L ¼ 3 m, and the lower
plate is warmer by DT ¼ 1	C. The equation for the vertical velocity fluctuation gives the
vertical acceleration as

Dw=DtwgaT0wgDT=T, (12.102)

since T0 is expected to be of order DT and a ¼ 1/T for a perfect gas. The time tr to rise
through a height L will be proportional to L/w, so (12.102) gives a characteristic vertical
velocity acceleration of

w=tr ¼ w2=LwDw=DtwgDT=T/ww
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gLDT=T
q

y 0:3 m=s:

The largest eddies will scale with the plate separation L, so the thermal eddy diffusivity, kT, is

kTwwLw0:9 m2=s,

which is significantly larger than the molecular value of 2 � 10�5 m2/s.
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One-Equation Models

Independently, Kolmogorov and Prandtl suggested that the velocity scale in (12.98) should
be determined from the turbulent kinetic energy:

uT ¼ c
ffiffi

e
p

,

where c is a model constant. The turbulent viscosity is then obtained from an algebraic spec-
ification of the turbulent length scale lT, and the solution of a transport equation for e that is
based on its exact transport equation (12.47). In this case, the dissipation rate 3 and the trans-
port terms must be modeled. For high Reynolds number turbulence, the scaling relationship
(12.48) and the gradient diffusion hypothesis lead to the following model equations for the
dissipation and the transport of turbulent kinetic energy:

3 ¼ C3ðeÞ3=2=lT and � 1

r0
puj þ 2nujS

0
ij �

1

2
u2i uj ¼

nT

se

ve

vxj
,

where C3 and se are model constants. So, for constant density, the turbulent kinetic energy
model equation is:

ve

vt
þUj

ve

vxj
¼ v

vxj

 

nT

se

ve

vxj

!

� 3� uiuj
vUi

vxj
, (12.103)

and this represents one additional nonlinear second-order partial-differential equation that
must be solved, hence the name one-equation model. As mentioned in Pope, one-equation
models provide a modest accuracy improvement over the simpler algebraic models.

Two-Equation Models

These models eliminate the need for a specified turbulent length scale by generating lT
from the solutions of transport equations for e and 3. The popular k-3 closure model of Jones
and Launder (1972) is described here. A k-u closure model also exists. (Throughout much of
the turbulence modeling literature “k” is used for the turbulent kinetic energy, so the model
name “k-3 ” is merely a specification of the dependent-field variables in the two extra partial
differential equations.) The k-3 model is based on the turbulent viscosity hypothesis (12.94)
with nT specified by (12.98), lT ¼ ðeÞ3=2=3, and uT ¼ (e)1/2:

nT ¼ Cm

h

ðeÞ3=2=3
i
ffiffi

e
p

¼ CmðeÞ2=3, (12.104)

where Cm is one of five model constants. The first additional partial-differential equation is
(12.103) for e. The second additional partial-differential equation is an empirical construction
for the dissipation:

v3

vt
þUj

v3

vxj
¼ v

vxj

 

nT

s3

v3

vxj

!

� C31

 

uiuj
vUi

vxj

!

3

e
� C32

ð3Þ2
e
: (12.105)

The standard model constants are from Launder and Sharma (1974):

Cm ¼ 0:09, C31 ¼ 1:44, C32 ¼ 1:92, C31 ¼ 1:44, se ¼ 1:0, and s3 ¼ 1:3,
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and these have been set so the model’s predictions reasonably conform to experimentally
determined mean velocity profiles, fluctuation profiles, and energy budgets of the type
shown in Figures 12.14 and 12.15 for a variety of simple turbulent flows. More recently
renormalization group theory has been used to justify (12.105) with slightly modified
constants (Yakhot & Orszag, 1986; Lam, 1992; see also Smith & Reynolds, 1992).

When the density is constant, (12.27), (12.30), (12.94), and (12.103) through (12.105) repre-
sent a closed set of equations. Ideally, the usual viscous boundary conditions would be
applied to Ui. However, steep near-wall gradients of the dependent field variables pose
a significant computational challenge. Thus, boundary conditions on solid surfaces are
commonly applied slightly above the surface using empirical wall functions intended to
mimic the inner layer of a wall-bounded turbulent flow. Wall functions allow the mean-
flow momentum equation (12.30) and the turbulence model equations, (12.103) and
(12.105), to be efficiently, but approximately, evaluated near a solid surface. Unfortunately,
wall functions that perform well with attached turbulent boundary layers are of questionable
validity for separating, impinging, and adverse-pressure-gradient flows. Furthermore, the
use of wall functions introduces an additional model parameter, the distance above the
wall where boundary conditions are applied.

Overall, the k-3 turbulence model is complete and versatile. It is commonly used to rank
the performance of fluid dynamic system designs before experimental tests are undertaken.
Limitations on its accuracy arise from the turbulent viscosity hypothesis, the 3 equation,
and wall functions when they are used. In addition, variations in inlet boundary conditions
for e and 3, which may not be known precisely, can produce changes in predicted results. In
recent years, two equation turbulence models based on the eddy viscosity hypothesis
have begun to be eclipsed by Reynolds stress models or second-order closures that directly
compute the Reynolds stress tensor from a modeled version of its exact transport equation
(12.35).

12.11. TURBULENCE IN A STRATIFIED MEDIUM

Effects of stratification become important in such laboratory flows as heat transfer from
a heated plate and in geophysical flows such as those in the atmosphere and in the ocean.
Some effects of stratification on turbulent flows will be considered in this section. Further
discussion can be found in Tennekes and Lumley (1972), Phillips (1977), and Panofsky and
Dutton (1984).

As is customary in the geophysical literature, the z-direction points upward opposing
gravity so the mean velocity of a horizontally flowing shear flow will be denoted by
U(z). For simplicity, U is assumed to be independent of x and y. Turbulence in a stratified
medium depends critically on the stability of the vertical density profile. In the neutrally
stable state of a compressible environment the density decreases upward, because of the
decrease of pressure, at a rate dra/dz called the adiabatic density gradient, as discussed in
Section 1.10. A medium is statically stable if the density decreases faster than the adiabatic
decrease. The effective density gradient that determines the stability of the environment is
then determined by the sign of d(r� ra)/dz, where r� ra is called the potential density. In the
following discussion, it is assumed that the adiabatic variations of density have been
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subtracted out, so that “density” or “temperature” really mean potential density or poten-
tial temperature.

The Richardson Numbers

First examine the equation for turbulent kinetic energy (12.47). Omitting the viscous trans-
port and assuming that the flow is independent of x and y, it reduces to

ve

vt
þU

ve

vx
¼ � v

vz

�

1

r0
pwþ ew

�

� uw
vU

vz
þ gawT0 � 3, (12.106)

where x increases in the downstream direction. The first term on the right side is the transport
of turbulent kinetic energy by vertical velocity fluctuations. The second term is the produc-
tion of turbulent energy by the interaction of Reynolds stress and the mean shear; this term is
almost always positive. The third term is the production of turbulent kinetic energy by the
vertical heat flux; it is called the buoyant production, and was discussed in Section 12.7. In
an unstable environment, in which the mean temperature T decreases upward, the heat-
flux correlation wT0 is positive (upward), signifying that the turbulence is generated convec-
tively by upward heat fluxes. In the opposite case of a stable environment, the turbulence is
suppressed by stratification. The ratio of the buoyant destruction of turbulent kinetic energy
to the shear production is called the flux Richardson number:

Rf ¼ �gawT0

�uwðdU=dzÞ ¼ buoyant destruction

shear production
: (12.107)

As the shear production is positive with the minus sign displayed, the sign of Rf depends on

the sign of wT0. For an unstable environment in which the heat flux is upward Rf is negative,
and for a stable environment it is positive. For Rf > 1, buoyant destruction removes turbu-
lence at a rate larger than the rate at which it is produced by shear production. However,
the critical value of Rf at which the turbulence ceases to be self-supporting is less than unity,
as dissipation is necessarily a large fraction of the shear production. Observations indicate
that the critical value is Rfcr z 0.25 (Panofsky & Dutton, 1984, p. 94). If measurements indi-
cate the presence of turbulent fluctuations, but at the same time a value of Rf much larger
than 0.25, then a fair conclusion is that the turbulence is decaying.When Rf is negative, a large
�Rf means strong convection and weak mechanical turbulence.

Instead of Rf, it is easier to measure the gradient Richardson number, defined as

Rih
N2

ðdU=dzÞ2
¼ agðdT=dzÞ

ðdU=dzÞ2
, (12.108)

where N is the buoyancy frequency and the second equality follows for stratification by
thermal variations. If we make the turbulent viscosity and gradient diffusion assumptions
(12.94) and (12.95), then the two Richardson numbers are related by

Ri ¼ ðvT=kTÞRf: (12.109)

The ratio vT/kT is the turbulent Prandtl number, which determines the relative efficiency of the
vertical turbulent exchanges of momentum and heat. The presence of a stable stratification
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damps vertical transport of both heat and momentum; however, the momentum flux is
reduced less because the internal waves in a stable environment can transfer momentum
(by moving vertically from one region to another) but not heat. Therefore, vT/kT > 1 for
a stable environment. Equation (12.109) then shows that turbulence can persist even when
Ri > 1, if the critical value of 0.25 applies on the flux Richardson number (Turner, 1981;
Bradshaw & Woods, 1978). In an unstable environment, on the other hand, vT/kT becomes
small. In a neutral environment it is usually found that vT z kT; the idea of equating the
eddy coefficients of heat and momentum is called the Reynolds analogy.

Monin-Obukhov Length

The Richardson numbers are ratios that compare the relative importance of mechanical
and convective turbulence. Another parameter used for the same purpose is not a ratio,
but has the unit of length. It is the Monin-Obukhov length, defined as

LM h � u3)=kagwT
0, (12.110)

where u) is the friction velocity, wT0 is the heat flux correlation, a is the coefficient of thermal

expansion, and k is the von Karman constant introduced for convenience. Although wT0 is
a function of z, the parameter LM is effectively a constant for the flow, as it is used only in
the logarithmic region of the earth’s atmospheric boundary layer in which both uw and

wT0 are nearly constant. The Monin-Obukhov length then becomes a parameter determined
from the boundary conditions of friction and the heat flux at the surface. Like Rf, it is positive
for stable conditions and negative for unstable conditions.

The significance of LM within the atmospheric boundary layer becomes clearer if we
write Rf in terms of LM, using the logarithmic velocity distribution (12.88), from which
dU/dz ¼ u)/kz. (Note that z is the distance perpendicular to the surface.) Using uw ¼ u2�
because of the near uniformity of stress in the logarithmic layer, (12.107) becomes

Rf ¼ z=LM: (12.111)

As Rf is the ratio of buoyant destruction to shear production of turbulence, (12.111) shows
that LM is the height at which these two effects are of the same order. For both stable and
unstable conditions, the effects of stratification are slight if z� jLMj. At these small heights,
then, the velocity profile is logarithmic, as in a neutral environment. This is called a forced
convection region, because the turbulence is mechanically forced. For z [ jLMj, the effects
of stratification dominate. In an unstable environment, it follows that the turbulence is gener-
ated mainly by buoyancy at heights z [ eLM, and the shear production is negligible. The
region beyond the forced convecting layer is therefore called a zone of free convection
(Figure 12.21), containing thermal plumes (columns of hot rising gases) characteristic of
free convection from heated plates in the absence of shear flow.

Observations as well as analysis show that the effect of stratification on the velocity distri-
bution in the surface layer is given by the log-linear profile (Turner, 1973):

U ¼ u�
k

�

ln
z

zo
þ 5

z

LM

�

:
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The form of this profile is sketched in Figure 12.22 for stable and unstable conditions. It shows
that the velocity is more uniform than ln(z) in the unstable case because of the enhanced
vertical mixing due to buoyant convection.

FIGURE 12.21 Forced and free convection zones in an unstable atmosphere. In strongly sheared regions, the
turbulence will not include buoyant effects (forced convection). However, where shear is weak, buoyant convection
will set the turbulent scales (free convection).

FIGURE 12.22 Effect of stability on velocity profiles in the surface layer. When the atmospheric boundary layer
is neutrally stable, the mean velocity profile is logarithmic. When it is stable, vertical turbulent motions are sup-
pressed so higher shear may exist in the mean flow; this is shown as the lower curve labeled stable. When the
atmospheric boundary layer is unstable, vertical turbulent motions are enhanced, mean flow shear is reduced, and
U(z) becomes more nearly uniform; this is shown as the upper curve labeled unstable.
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Spectrum of Temperature Fluctuations

An equation for the intensity of temperature fluctuations T02 can be obtained in a manner
identical to that used for obtaining the turbulent kinetic energy. The procedure is therefore to

obtain an equation for DT0/Dt by subtracting those for D~T=Dt and DT=Dt, and then to
multiply the resulting equation for DT0/Dt by T0 and taking the average. The result is

v

vt

�

1

2
T02
�

þU
v

vx

�

1

2
T02
�

¼ �wT0 dT
dz

� v

vz

�

1

2
T02w� k

vT02

vz

�

� 3T, (12.112)

where 3T ¼ kðvT0=vxjÞ2 is the dissipation rate of temperature fluctuations, analogous to the dissi-
pation of turbulent kinetic energy 3 defined within (12.47) . The first term on the right side is
the generation of T02 by the mean temperature gradient, wT0 being positive if dT=dz is nega-
tive. The second term on the right side is the turbulent transport of T02.

A wave number spectrum of temperature fluctuations can be defined such that

T02h
Z N

0
STðKÞdK,

where K is the magnitude of the three-dimensional wave number. As in the case of the kinetic
energy spectrum, an inertial range of wave numbers exists in which neither the production
by large-scale eddies nor the dissipation by conductive and viscous effects are important. As
the temperature fluctuations are intimately associated with velocity fluctuations, ST(K) in this
range must depend not only on 3T but also on the variables that determine the velocity spec-
trum, namely 3 and K. Therefore

ST ¼ STðK, 3, 3TÞ for 2p=L � K � 2p=h,

where L is the size of the largest eddies. The unit of ST is
	C2 m, and the unit of 3T is

	C2/s, so
dimensional analysis gives

ST f 3T3
�1=3K�5=3 for 2p=L � K � 2p=h, (12.113)

which was first derived by Obukhov in 1949. Comparing with (12.54), it is apparent that the
spectra of both velocity and temperature fluctuations in the inertial subrange have the same
Ke5/3 form.

The spectrum beyond the inertial subrange depends on whether the Prandtl number n/k of
the fluid is smaller or larger than one.We shall only consider the case of n=k[1, which applies
to water for which the Prandtl number is 7.1. Let hT be the scale responsible for smearing out
the temperature gradients and hbe theKolmogorovmicroscale atwhich the velocity gradients
are smeared out. For n=k[1 we expect that hT � h, because then the conductive effects
are important at scales smaller than the viscous scales. In fact, Batchelor (1959) showed
that hT ¼ hðk=nÞ1=2 � h. In such a case there exists a range of wave numbers 2p/h �
K� 2p/hT, in which the scales are not small enough for the thermal diffusivity to smear out
the temperature fluctuation. Therefore, ST(K) continues up to wave numbers of order 2p/hT,
although the kinetic energy spectrum has dropped off sharply. This is called the viscous
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convective subrange, because the spectrum is dominated by viscosity but is still actively convec-
tive. Batchelor (1959) showed that the spectrum in the viscous convective subrange is

STfK�1 for 2p=h � K � 2p=hT: (12.114)

Figure 12.23 shows a comparison of velocity and temperature spectra, observed in a tidal
flow through a narrow channel. The temperature spectrum shows that the spectral slope
increases from e5/3 in the inertial subrange to �1 in the viscous convective subrange.

12.12. TAYLOR’S THEORY OF TURBULENT DISPERSION

The large mixing rate in a turbulent flow is due to the fact that the fluid particles wander
away from their initial location. Taylor (1921) studied this problem and calculated the rate at
which a particle disperses (i.e., moves away) from its initial location. The presentation here is
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FIGURE 12.23 Temperature and velocity spectra measured by Grant et al. (1968). The measurements were
made at a depth of 23 m in a tidal passage through islands near the coast of British Columbia, Canada. The wave
number K is in cm�1. Solid points represent ST in (	C)2/cm�1, and open points represent S11 in (cm/s)2/cm�1.
Powers of K that fit the observation are indicated by straight lines. O. M. Phillips, The Dynamics of the Upper Ocean,
1977; reprinted with the permission of Cambridge University Press.
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directly adapted from his classic paper. He considered a point source emitting particles, say
a chimney emitting smoke. The particles are emitted into a stationary and homogeneous
turbulent medium in which the mean velocity is zero. Taylor used Lagrangian coordinates
X(a, t), which is the present location at time t of a particle that was at location a at time
t ¼ 0. We shall take the point source to be the origin of coordinates and consider an ensemble
of experiments in which we evaluate the location X(0, t) at time t of all the particles that
started from the origin (Figure 12.24). For notational simplicity the first argument in X(0, t)
will be dropped from here on so that X(0, t) ¼ X(t).

Rate of Dispersion of a Single Particle

Consider the behavior of a single component of X, say Xa (a ¼ 1, 2, or 3). (Recall that
a Greek subscript means that the summation convention is not followed.) The average
rate at which the magnitude of Xa increases with time can be found by finding
dðX2

aÞ=dt, where the over bar denotes an ensemble average and not a time average. We
can write

d

dt

	

X2
a


 ¼ 2Xa
dXa

dt
, (12.115)

where we have used the commutation rule (12.6). Defining ua ¼ dXa/dt as the Lagrangian
velocity component of a fluid particle at time t, (12.115) becomes

FIGURE 12.24 Three members of an ensemble of particle trajectories, X(t), at time t for particles released at the
origin of coordinates at t ¼ 0 in a turbulent flow with zero mean velocity. The distance traveled by the particles
indicates how tracer particles disperse in a turbulent flow.
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d

dt

	

X2
a


¼ 2Xaua ¼ 2

� Z t

0
uaðt0Þ dt0

�

ua

¼ 2

Z t

0
uaðt0ÞuaðtÞ dt0,

(12.116)

where we have used the commutation rule (12.7) for averaging and integration. We have also
written

Xa ¼
Z t

0
uaðt0Þ dt0,

which is valid when Xa and ua are associated with the same particle. Because the flow is
assumed to be stationary, u2a is independent of time, and the autocorrelation of ua(t) and
ua(t

0) is only a function of the time difference t� t0. Defining

raðsÞh uaðtÞuaðtþ sÞ
u2a

to be the autocorrelation coefficient of the Lagrangian velocity components of a particle,
(12.116) becomes

d

dt

	

X2
a


 ¼ 2u2a

Z t

0
raðt0 � tÞ dt0 ¼ 2u2a

Z t

0
raðsÞ ds, (12.117)

where we have changed the integration variable from t0 to s ¼ t � t0. Integrating, we obtain

X2
aðtÞ ¼ 2u2a

Z t

0
dt0
Z t0

0
raðsÞ ds, (12.118)

which shows how the variance of the particle position changes with time.
Another useful form of equation (12.118) is obtained by integrating it by parts. We have:

Z t

0
dt0
Z t0

0
raðsÞ ds ¼

"

t0
Z t0

0
raðsÞ ds

#t

t0¼0

�
Z t

0
t0raðt0Þ dt0

¼ t

Z t

0
raðsÞ ds�

Z t

0
t0raðt0Þ dt0

¼ t

Z t

0

�

1� s
t

�

raðsÞ ds:

Equation (12.118) then becomes

X2
aðtÞ ¼ 2u2at

Z t

0

�

1� s
t

�

raðsÞ ds: (12.119)

Two limiting cases are examined in what follows.
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Behavior for small t

If t is small compared to the correlation scale of ra(s), then ra(s)z 1 throughout the inte-
gral in (12.118) (Figure 12.25). This gives:

X2
aðtÞxu2at

2: (12.120)

Taking the square root of both sides, we obtain

ðXaÞrms ¼ ðuaÞrmst for t � Lt, (12.121)

which shows that the rms displacement increases linearly with time and is proportional to the
standard deviation of the turbulent fluctuations in the medium.

Behavior for large t

If t is large compared with the correlation scale of ra(s), then s/t in (11.119) is negligible,
giving

X2
a

	

t

 ¼ 2u2a Lt t, (12.122)

where

Lt ¼
Z N

0
raðsÞds

is the integral time scale determined from the Lagrangian correlation ra(s). Taking the square
root of (12.122) gives

ðXaÞrms ¼ ðuaÞrms

ffiffiffiffiffiffiffiffiffiffi

2Ltt
p

for t[Lt: (12.123)

FIGURE 12.25 Small and large values of time on a plot of the correlation function. For small times, r(s) is nearly
unity, while for large times it is nearly zero.
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The t1/2 behavior of (12.123) at large times is similar to the behavior in a random walk, in which
the average distance traveled in a series of random (i.e., uncorrelated) steps increases as t1/2.
This similarity is due to the fact that for large t the fluid particles have forgotten their initial
behavior at t ¼ 0. In contrast, the small time behavior described by (12.121) is due to complete
correlation, with each experiment giving Xaxuat. The random walk concept is discussed in
what follows.

Random Walk

The description provided here is adapted from Feynman et al. (1963, pp. 5e6, 41e48).
Imagine a person walking in a randommanner, by which wemean that there is no correlation
between the directions of two consecutive steps. Let the vectorRn represent the distance from
the origin after n steps, and the vector L represent the nth step (Figure 12.26). We assume that
each step has the same magnitude L. Then

Rn ¼ Rn�1 þ L,

which gives

R2
n ¼ Rn,Rn ¼ 	

Rn�1 þ L



,
	

Rn�1 þ L



¼ R2
n�1 þ L2 þ 2Rn�1,L:

Taking the average, we get

R2
n ¼ R2

n�1 þ L2 þ 2Rn�1,L: (12.124)

FIGURE 12.26 A sample realization of a random walk where the step length L is a uniform distance, but the
step direction is random. After n steps, the vector distance from the starting point is Rn. However, the root-mean-
square distance from the starting point is only L

ffiffiffi

n
p

(not Ln) because many of the n steps lie in nearly opposite
directions.
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The last term is zero because there is no correlation between the direction of the nth step and
the location reached after n � 1 steps. Using rule (12.124) successively, we get

R2
n ¼ R2

n�1 þ L2 ¼ R2
n�2 þ 2L2

¼ R2
1 þ

	

n� 1



L2 ¼ nL2:

The rms distance traveled after n uncorrelated steps, each of length L, is therefore

ðRnÞrms¼ L
ffiffiffi

n
p

, (12.125)

which is called a random walk.

Behavior of a Smoke Plume in the Wind

Taylor’s analysis can be easily adapted to account for the presence of a constant mean
velocity. Consider the dispersion of smoke into a wind blowing in the x-direction
(Figure 12.27). A photograph of the smoke plume, in which the film is exposed for a long
time, would outline the average width Zrms. As the x-direction in this problem is similar to
time in Taylor’s problem, the limiting behavior in (12.121) and (12.123) shows that the smoke
plume is parabolic with a pointed vertex.

FIGURE 12.27 Average cross-sectional shape of a smoke plume in a turbulent wind blowing uniformly
along the x-axis. Close to the chimney outlet, the rms width Zrms of the smoke plume is proportional x1/2.
Far from the chimney, Zrms is proportional to x. G. I. Taylor, Proc. London Mathematical Society, 20, 196e211,
1921.
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Turbulent Diffusivity

An equivalent eddy diffusivity can be estimated from Taylor’s analysis. The equivalence is
based on considering the spreading of a concentrated line source in a fluid of constant diffu-
sivity. What should the diffusivity be in order that the spreading rate equals that predicted by
(12.117)? The problem of the sudden introduction of a line vortex of strength G (Exercise 8.26)
is such a problem of diffusion from a concentrated line source. The tangential velocity in this
flow is given by

uq ¼ 	

G=2pr



exp
	� r2=4nt




:

The solution is therefore proportional to exp(�r2/4nt), which has a Gaussian shape in the
radial direction r, with a characteristic width of s ¼ ffiffiffiffiffiffiffi

2nt
p

. It follows that the momentum
diffusivity n in this problem is related to the variance s2 as

n ¼ 1

2

ds2

dt
, (12.126)

which can be calculated if s2(t) is known. Generalizing (12.126), we can say that the effective
diffusivityDT in a problem of turbulent dispersion of a patch of particles issuing from a point
is given by

DT h
1

2

d

dt

	

X2
a


 ¼ u2a

Z t

0
raðsÞds, (12.127)

where we have used (12.117). From (12.120) and (12.122), the two limiting cases of (12.127) are

DT y u2a t for t � Lt, and DT y u2a Lt for t � Lt: (12.128, 12.129)

Equation (12.128) shows the interesting fact that the eddy diffusivity initially increases
with time, a behavior different from that in molecular diffusion with constant diffusivity.
This can be understood as follows. The dispersion (or separation) of particles in a patch is
caused by eddies with scales less than or equal to the scale of the patch, since the larger
eddies simply advect the patch and do not cause any separation of the particles. As the patch
size becomes larger, an increasing range of eddy sizes is able to cause dispersion, giving DT f
t. This behavior shows that it is frequently impossible to represent turbulent diffusion by means of
a large but constant eddy diffusivity. Turbulent diffusion does not behave like molecular diffu-
sion. For large times, on the other hand, the patch size becomes larger than the largest eddies
present, in which case the diffusive behavior becomes similar to that of molecular diffusion
with a constant diffusivity given by (12.129).

12.13. CONCLUDING REMARKS

Turbulence is an area of classical fluid mechanics that is the subject of continuing research.
Frequent symposia are held to summarize and communicate new findings and promising
approaches and a few are listed in the “Supplementary Reading” section at the end of this
chapter.
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EXERCISES

12.1. Determine general relationships for the second, third, and fourth central moments

(variance ¼ s2, skewness ¼ S, and kurtosis ¼ K) of the random variable u in terms of

its first four ordinary moments: u, u2, u3, and u4.
12.2. Calculate the mean, mean square, variance, and rms value of the periodic time series

uðtÞ ¼ U þU0 cosðutÞ, where U, U0, and u are positive real constants.
12.3. Show that the autocorrelation function uðtÞuðtþ sÞ of a periodic series u¼Ucos(ut) is

itself periodic.
12.4. Calculate the zero-lag cross-correlation uðtÞvðtÞ between two periodic series u(t) ¼

cos ut and v(t) ¼ cos(ut þ f) by performing at time average over one period ¼
2p/u. For values of f ¼ 0, p/4, and p/2, plot the scatter diagrams of u vs. v at
different times, as in Figure 12.8. Note that the plot is a straight line if f ¼ 0, an
ellipse if f ¼ p/4, and a circle if f ¼ p/2; the straight line, as well as the axes of
the ellipse, are inclined at 45	 to the uv-axes. Argue that the straight line signifies
a perfect correlation, the ellipse a partial correlation, and the circle a zero
correlation.

12.5. If u(t) is a stationary random signal, show that u(t) and duðtÞ=dt are uncorrelated.
12.6. Let R(s) and S(u) be a Fourier transform pair. Show that S(u) is real and symmetric if

R(s) is real and symmetric.
12.7. Compute the power spectrum, integral time scale, and Taylor time scale when

R11ðsÞ ¼ u21expð�as2ÞcosðuosÞ, assuming that a and uo are real positive
constants.

12.8. There are two formulae for the energy spectrum Se(u) of the stationary zero-mean
signal uðtÞ:

SeðuÞ ¼ 1

2p

Z
þN

�N

R11ðsÞ expf�iusg ds and

SeðuÞ ¼ lim
T/N

1

2pT

�

�

�

�

�

�

�

Z

þT=2

�T=2

uðtÞ expf�iutgdt

�

�

�

�

�

�

�

2

:

Prove that these two are identical without requiring the existence of the Fourier
transformation of uðtÞ.

12.9. Derive the formula for the temporal Taylor microscale lt by expanding the
definition of the temporal correlation function (12.17) into a two-term Taylor
series and determining the time shift, s ¼ lt, where this two-term expansion
equals zero.

12.10. When x, r, and k1 all lie in the stream-wise direction, the wave number spectrum
S11ðk1Þ of the stream-wise velocity fluctuation u1ðxÞ defined by (12.45) can be
interpreted as a distribution function for energy across stream-wise wave number k1.
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Show that the energy-weighted mean-square value of the stream-wise wave
number is:

k21 h
1

u2

Z
þN

�N

k21S11ðk1Þdk1 ¼ � 1

u2

"

d2

dr2
R11ðrÞ

#

r¼0

, and that lf ¼
ffiffiffiffiffiffiffiffiffiffi

2=k21

q

:

12.11. In many situations, measurements are only possible of one velocity component at one
point in a turbulent flow, but consider a flow that has a nonzero mean velocity and
moves past the measurement point. Thus, the experimenter obtains a time history of
u1ðtÞ at a fixed point. In order to estimate spatial velocity gradients, Taylor’s frozen-
turbulence hypothesis can be invoked to estimate a spatial gradient from a time

derivative:
vu1
vx1

z� 1

U1

vu1
vt

where the “1”-axis must be aligned with the direction of

the average flow, i.e., Ui ¼ (U1, 0, 0). Show that this approximate relationship is true

when
ffiffiffiffiffiffiffiffi

uiui
p

=U1 � 1, pwru21, and Re is high enough to neglect the influence of
viscosity.

12.12. a) Starting from (12.33), derive (12.34) via an appropriate process of Reynolds
decomposition and ensemble averaging.

b) Determine an equation for the scalar fluctuation energy ¼ 1

2
Y02, one-half the scalar

variance.
c) When the scalar variance goes to zero, the fluid is well mixed. Identify the term in

the equation from part b) that dissipates scalar fluctuation energy.
12.13. Measurements in an atmosphere at 20	C show an rms vertical velocity of wrms ¼ 1 m/s

and an rms temperature fluctuation of Trms ¼ 0.1	C. If the correlation coefficient is 0.5,
calculate the heat flux rCpwT0.

12.14. a) Compute the divergence of the constant-density Navier-Stokes momentum

equation
vui
vt

þ uj
vui
vxj

¼ �1

r

vp

vxi
þ n

v2ui
vxjvxj

to determine a Poisson equation for the

pressure.

b) If the equation
v2G

vxjvxj
¼ dðxj�~xjÞ has solution: Gðxj,~xjÞ ¼

�1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj�~xjÞ2
q , then

use the result from part a) to show that:

PðxjÞ ¼
r

4p

Z

all ~x

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj�~xjÞ2
q

v2

v~xjv~xi
ðUiUj þ uiujÞd3~x in a turbulent flow.

12.15. Starting with the RANS momentum equation (12.30), derive the equation for the
kinetic energy of the average flow field (12.46).

12.16. Derive the RANS transport equation for the Reynolds stress correlation (12.35) via the
following steps.
a) By subtracting (12.30) from (4.86), show that the instantaneous momentum

equation for the fluctuating turbulent velocity ui is:

vui
vt

þ uk
vUi

vxk
þUk

vui
vxk

þ uk
vui
vxk

¼ � 1

r0

vp

vxi
þ n

v2ui
vx2k

þ gaT0di3 þ
v

vxk
uiuk.
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b) Show that: ui
Duj
Dt

þ uj
Dui
Dt

¼ v

vt
ðuiujÞ þUk

v

vxk
ðuiujÞ þ

v

vxk
ðuiujukÞ

c) Combine and simplify the results of parts a) and b) to reach (12.35).

12.17. Starting from (12.38) and (12.40), set r ¼ re1 and use R11 ¼ u2fðrÞ, and R22 ¼ u2gðrÞ,
to show that FðrÞ ¼ u2ðfðrÞ � gðrÞÞr�2 and GðrÞ ¼ u2gðrÞ.

12.18. a) Starting from Rij from (12.39), compute vRij=vrj for incompressible flow.

b) For homogeneous-isotropic turbulence use the result of part a) to show that the
longitudinal, fðrÞ, and transverse, gðrÞ, correlation functions are related by
gðrÞ ¼ fðrÞ þ ðr=2ÞðdfðrÞ=drÞ.

c) Use part b) and the integral length scale and Taylor microscale definitions to find

2Lg ¼ Lf and
ffiffiffi

2
p

lg ¼ lf .

12.19. In homogeneous turbulence: Rijðrb � raÞ ¼ uiðxþ raÞujðxþ rbÞ ¼ RijðrÞ, where
r ¼ rb � ra.

a) Show that ðvuiðxÞ=vxkÞðvujðxÞ=vxlÞ ¼ �ðv2Rij=vrkvrlÞr¼0.
b) If the flow is incompressible and isotropic, show that

�ðvu1ðxÞ=vx1Þ2 ¼ �1

2
ðvu1ðxÞ=vx2Þ2 ¼ þ2ðvu1ðxÞ=vx2Þðvu2ðxÞ=vx1Þ

¼ u2
�

d2f=dr2
�

r¼0
:

[Hint: Expand f(r) about r ¼ 0 before taking any derivatives.]

12.20. The turbulent kinetic energy equation contains a pressure-velocity correlation,
Kj ¼ pðxÞujðxþ rÞ. In homogeneous isotropic turbulent flow, the most general form
of this correlation is: Kj ¼ KðrÞrj. If the flow is also incompressible, show that K(r)
must be zero.

12.21. The velocity potential for two-dimensional water waves of small amplitude xo on
a deep pool can be written:

fðx1,x2, tÞ ¼ uxo

k
eþkx2 cosðut� kx1Þ,

where x1 and x2 are the horizontal and vertical coordinates with x2 ¼ 0 defining the
average free surface. Here, u is the temporal radian frequency of the waves and k
is the wave number.
a) Compute the two-dimensional velocity field: u ¼ ðu1,u2Þ ¼ ðvf=vx1, vf=vx2Þ.
b) Show that this velocity field is a solution of the two-dimensional continuity and

Navier-Stokes equations for incompressible fluid flow.

c) Compute the strain-rate tensor Sij ¼ 1=2ðvui=vxj þ vuj=vxiÞ.
d) Although this flow is not turbulent, it must still satisfy the turbulent kinetic

energy equation that contains an energy dissipation term. Denote the kinematic
viscosity by n, and compute the kinetic energy dissipation rate in this flow:

3 ¼ 2nSijSij,where theoverbar implies a timeaverageoveronewaveperiod is2p/u.
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Only time averages of even powers of the trig-functions are nonzero, for example:

cos2ðut� kxÞ ¼ sin2ðut� kxÞ ¼ 1=2 while cosðut� kxÞ ¼ sinðut� kxÞ ¼ 0.
e) The original potential represents a lossless flow and does not include any viscous

effects. Explain how this situation can occur when the kinetic-energy dissipation
rate is not zero.

12.22. A mass of 10 kg of water is stirred by a mixer. After one hour of stirring, the
temperature of the water rises by 1.0	C. What is the power output of the mixer in
watts? What is the size h of the dissipating eddies?

12.23. In locally isotropic turbulence, Kolmogorov determined that the wave number
spectrum can be represented by S11ðkÞ=ðn53Þ1=4¼ Fðkn3=4=31=4Þ in the inertial
subrange and dissipation range of turbulent scales, where F is an undetermined
function.
a) Determine the equivalent form for the temporal spectrum SeðuÞ in terms of the

average kinetic energy dissipation rate 3, the fluid’s kinematic viscosity n, and the
temporal frequency u.

b) Simplify the results of part a) for the inertial range of scales where n is dropped
from the dimensional analysis.

c) To obtain the results for parts a) and b), an implicit assumption has beenmade that
leads to the neglect of an important parameter. Add the missing parameter and
redo the dimensional analysis of part a).

d) Use the missing parameter and u to develop an equivalent wave number. Insist
that your result for Se only depend on this equivalent wave number and 3 to
recover the minus-five-thirds law.

12.24.1 Estimates for the importance of anisotropy in a turbulent flow can be developed
by assuming that fluid velocities and spatial derivatives of the average-flow (or
RANS) equation are scaled by the average velocity difference DU that drives the
largest eddies in the flow having a size L, and that the fluctuating velocities and
spatial derivatives in the turbulent kinetic energy (TKE) equation are scaled by the
kinematic viscosity n and the Kolmogorov scales h and uK (see (12.50)). Thus, the
scaling for a mean velocity gradient is: vUi=vxjwDU=L, while the mean-square

turbulent velocity gradient scales as: ðvui=vxjÞ2wðuK=hÞ2¼ n2=h4, where the “~” sign

means “scales as.” Use these scaling ideas in parts a) and d):

a) The total energy dissipation rate in a turbulent flow is 2nSijSij þ 2nS0ijS
0
ij,

where Sij ¼
1

2

 

vUi

vxj
þ vUj

vxi

!

and S0ij ¼
1

2

 

vui
vxj

þ vuj
vxi

!

. Determine how the ratio

S0ijS
0
ij

SijSij
depends on the outer-scale Reynolds number: ReL ¼ DU,L=n.

b) Is average-flow or fluctuating-flow energy dissipation more important?

1Obtained from Prof. Werner Dahm.
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c) Show that the turbulent kinetic energy dissipation rate, 3 ¼ 2nS0ijS
0
ij can be

written:

3 ¼ n
hvui
vxj

vui
vxj

þ v2

vxivxj
uiuj

i

.

d) For homogeneous isotropic turbulence, the second term in the result of part c)
is zero but it is nonzero in a turbulent shear flow. Therefore, estimate how

v2

vxivxj
uiuj

vui
vxj

vui
vxj

,

depends on ReL in turbulent shear flow as means of assessing

how much impact anisotropy has on the turbulent kinetic energy dissipation rate.
e) Is an isotropic model for the turbulent dissipation appropriate at high ReL in

a turbulent shear flow?
12.25. Determine the self-preserving form of the average stream-wise velocity Ux(x,r) of

a round turbulent jet using cylindrical coordinates where x increases along the jet axis
and r is the radial coordinate. Ignore gravity in your work. Denote the density of the
nominally quiescent reservoir fluid by r.

x

r

Ux(x,r)

UCL (x)

d

a) Place a stationary cylindrical control volume around the jet’s cone of turbulence
so that circular control surfaces slice all the way through the jet flow at its origin
and at a distance x downstream where the fluid density is r. Assuming that the
fluid outside the jet is nearly stationary so that pressure does not vary in the axial
direction and that the fluid entrained into the volume has negligible x-direction
momentum, show

J0h

Z d=2

0
r0U

2
02prdr ¼

Z D=2

0
rU2

x

	

x, r



2prdr,

where J0 is the jet’s momentum flux, r0 is the density of the jet fluid, and U0 is the
jet exit velocity.

b) Simplify the exact mean-flow equations

vUx

vx
þ 1

r

v

vr
ðrUrÞ ¼ 0, and

Ux
vUx

vx
þUr

vUx

vr
¼ �1

r

vP

vx
þ n

r

v

vr

�

r
vUx

vr

�

� 1

r

v

vr

	

ruxur

 � v

vx

	

ru2x



,
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when vP/vx z 0, the jet is slender enough for the boundary-layer approximation
v/vr [ v/vx to be valid, and the flow is at high Reynolds number so that the viscous
terms are negligible.
c) Eliminate the average radial velocity from the simplified equations to find:

Ux
vUx

vx
�
8

<

:

1

r

Z r

0
�r vUx

vx
d�r
9

=

;

vUx

vr
¼ �1

r

v

vr

	

ruxur



,

where r is just an integration variable.
d) Assume a similarity form: Uxðx, rÞ ¼ UCLðxÞfðxÞ, �uxur ¼ JðxÞgðxÞ, where

x ¼ r=dðxÞ and f and g are undetermined functions, use the results of parts a) and
c), and choose constant values appropriately to find
Uxðx,yÞ ¼ const:ðJ0=rÞ1=2x�1Fðy=xÞ.

e) Determine a formula for the volume flux in the jet. Will the jet fluid be diluted with
increasing x?

12.26. Consider the turbulent wake far from a two-dimensional body placed perpendicular
to the direction of a uniform flow.

Uo

ΔU
x

U(x,y)y δ(x)

a) Use a large rectangular control volume that encloses the body but only intersects
the wake vertically at x somewhere downstream of the body to show that the
average fluid-dynamic drag force per unit span, FD=b, acting on the body is
given by:

FD=b

rU2
o

¼ q ¼
Z
þN

�N

"

Uðx,yÞ
Uo

�

1�Uðx,yÞ
Uo

�

� u2

U2
o

#

dy,

where q is the momentum thickness of the wake flow (a constant), andU(x,y) is the
average horizontal velocity profile a distance x downstream of the body.

b) When DU � Uo, find the conditions necessary for a self-similar form for the
wake’s velocity deficit, Uðx,yÞ ¼ Uo � DUðxÞfðxÞ, to be valid based on the result
of part a) and the steady two-dimensional continuity and boundary-layer RANS
equations. Here, x ¼ y/d(x) and d is the transverse length scale of the wake.

c) Determine how DU and d must depend on x in the self-similar region. State your
results in appropriate dimensionless form using q and Uo as appropriate.
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12.27. Consider the two-dimensional shear layer that forms between two steady streams
with flow speed U2 above and U1 below y ¼ 0, that meet at x ¼ 0, as shown. Assume
a self-similar form for the average horizontal velocity:

U2

U(x,y)
U1

y

x

Uðx,yÞ ¼ U1 þ ðU2 �U1ÞfðxÞ with x ¼ y=dðxÞ:

a) What are the boundary conditions on f(x) as y / �N?

b) If the flow is laminar, use
vU

vx
þ vV

vy
¼ 0 and U

vU

vx
þ V

vU

vy
¼ n

v2U

vy2
with

dðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

nx=U1

p

to obtain a single equation for f(x). There is no need to solve this
equation.

c) If the flow is turbulent, use:
vU

vx
þ vV

vy
¼ 0 and U

vU

vx
þ V

vU

vy
¼ � v

vy
ðuvÞ with

�uv ¼ ðU2 �U1Þ2gðxÞ to obtain a single equation involving f and g. Determine
how d must depend on x for the flow to be self-similar.

d) Does the laminar or the turbulent mixing layer grow more quickly as x increases?
12.28. Consider an orifice of diameter d that emits an incompressible fluid of density ro at

speed Uo into an infinite half space of fluid with density rN. With gravity acting
and rN > ro, the orifice fluid rises, mixes with the ambient fluid, and forms
a buoyant plume with a diameter D(z) that grows with increasing height above the
orifice. Assuming that the plume is turbulent and self-similar in the far-field
(z [ d), determine how the plume diameter D, the mean centerline velocity Ucl,
and the mean centerline mass fraction of orifice fluid Ycl depend on the vertical
coordinate z via the steps suggested below. Ignore the initial momentum of the
orifice fluid. Use both dimensional and control-volume analysis as necessary.
Ignore stream-wise turbulent fluxes to simplify your work. Assume uniform flow
from the orifice.

z

r

∞

g

D(z)
U

d

ρ

CL(z)f(r/z)
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a) Place a stationary cylindrical control volume around the plume with circular
control surfaces that slice through the plume at its origin and at height z. Use
similarity forms for the average vertical velocity Uzðz, rÞ ¼ UclðzÞfðr=zÞ and
nozzle fluid mass fraction Yðz, rÞ ¼ ðrN � rÞ=ðrN � roÞ ¼ YclðzÞhðr=zÞ to
conserve the flux of nozzle fluid in the plume, and find:

_mo ¼ R

source roUodA ¼ RD=2
0 roYðz, rÞUzðz, rÞ2prdr.

b) Conserve vertical momentum using the same control volume assuming that all
entrained fluid enters with negligible vertical momentum, to determine:

�
Z

source
roU

2
o dAþ

Z D=2

0
r
	

z, r



U2
z

	

z, r



2prdr ¼
Z

volume
g½rN � rðz, rÞ�dV,

where r ¼ Yro þ ð1� YÞrN.
c) Ignore the source momentum flux, assume z is large enough so that YCL � 1,

and use the results of parts a) and b) to find: UclðzÞ ¼ C1$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=rNz3
p

and
rN � ro

rN
YclðzÞ ¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2=g3r2Nz53

q

where C1 and C2 are dimensionless constants,

and B ¼ R

sourceðrN � roÞgUodA.

12.29. Laminar and turbulent boundary-layer skin friction are very different. Consider skin-
friction correlations from zero-pressure-gradient (ZPG) boundary-layer flow over
a flat plate placed parallel to the flow.

Laminar boundary layer: Cf ¼ s0
ð1=2ÞrU2

¼ 0:664
ffiffiffiffiffiffiffiffi

Rex
p (Blasius boundary layer).

Turbulent boundary layer: see correlations in Section 12.9.
Create a table of computed results at Rex ¼ Ux/n ¼ 104, 105, 106, 107, 108, and 109

for the laminar and turbulent skin-friction coefficients, and the friction force acting on
1.0 m2 plate surface in sea-level air at 100 m/s and in water at 20 m/s assuming
laminar and turbulent flow.

12.30. Derive the following logarithmic velocity profile for a smooth wall: Uþ ¼ ð1=kÞ
ln yþ þ 5:0 by starting from U ¼ ðu�=kÞln yþ þ const: and matching the profile to the
edge of the viscous sublayer assuming the viscous sublayer ends at y ¼ 10.7 v/u�.

12.31.2 Derive the log-law for the mean flow profile in a zero-pressure gradient (ZPG) flat-
plate turbulent boundary layer (TBL) through the following mathematical and
dimensional arguments.
a) Start with the law of the wall, U=u� ¼ fðyu�=nÞ or Uþ ¼ fðyþÞ, for the near-wall

region of the boundary layer, and the defect law for the outer region,
Ue �U

u�
¼

F
�y

d

�

. These formulae must overlap when yþ / þN and y/d / 0. In this

matching or overlap region, set U and vU=vy from both formulas equal to get
two equations involving f and F.

b) In the limit as yþ / þN, the kinematic viscosity must drop out of the equation
that includes df/dyþ. Use this fact, to show that U=u� ¼ AI lnðyu�=nÞ þ BI as

2Inspired by exercise 7.20 in Pope (2000), p. 311.

EXERCISES 615



yþ / þNwhere AI and BI are constants for the near-wall or inner boundary layer
scaling.

c) Use the result of part b) to determine FðxÞ ¼ �AI lnðxÞ � BO where x ¼ y/d,
and AI and BO are constants for the wake flow or outer boundary layer
scaling.

d) It is traditional to setAI ¼ 1/k, and to keep BI but to drop its subscript. Using these
new requirements determine the two functions, fI and FO, in the matching
region. Which function explicitly depends on the Reynolds number of the
flow?

12.32. Prove (12.90) and (12.91) by considering a stationary control volume that resides
inside the channel or pipe and has stream-normal control surfaces separated by
a distance dx and stream-parallel surfaces that coincide with the wall or walls that
confine the flow.

12.33. A horizontal smooth pipe 20 cm in diameter carries water at a temperature of 20	C.
The drop of pressure is dp/dx ¼ e8 N/m2 per meter. Assuming turbulent flow, verify
that the thickness of the viscous sublayer is z 0.25 mm. [Hint: Use dp/dx as given by
(12.91) to find s0 ¼ 0.4 N/m2, and therefore u�¼ 0.02 m/s.]

12.34. The cross-section averaged flow speed Uav in a round pipe of radius a may be
written:

Uav h
volume flux

area
¼ 1

pa2

Z
a

0

UðyÞ2prdr ¼ 2

a2

Z
a

0

UðyÞða� yÞdy,

where r is the radial distance from the pipe’s centerline, and y ¼ a e r is the distance
inward from the pipe’s wall. Turbulent pipe flow has very little wake, and the viscous
sublayer is very thin at high Reynolds number; therefore assume the log-law profile,
UðyÞ ¼ ðu�=kÞlnðyu�=nÞ þ u�B, holds throughout the pipe to find

Uav y u�½ð1=kÞlnðau�=nÞ þ B� 3=2k�:

Now use the definitions Cf ¼ s0=ð1=2ÞrU2
av, Red ¼ 2Uava=n, f ¼ 4Cf ¼ Darcy friction

factor, k ¼ 0.41, and B ¼ 5.0, and switch to base-10 logarithms to reach Prandtl’s 1935

correlation for turbulent pipe flow friction: f
�1=2 ¼ 2:0log10ðRedf

1=2Þ � 1:0. When the

second constant is adjusted from e1.0 to e0.8, this correlation is valid for Red 
 4000

(White, 2006) and yields f-values substantially larger than the laminar pipe flow

result f ¼ 64=Red.
12.35. Perhaps the simplest way to model turbulent flow is to develop an eddy viscosity

from dimensional analysis and physical reasoning. Consider turbulent Couette flow
with wall spacing h. Assume that eddies of size l produce velocity fluctuations of
size lðvU=vyÞ so that the turbulent shear stress correlation can be modeled as:

�uvfl2ðvU=vyÞ2. Unfortunately, l cannot be a constant because it must disappear
near the walls. Thus, more educated guessing is needed, so for this problem assume
vU/vy will have some symmetry about the channel centerline (as shown) and
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try: l ¼ Cy for 0 � y � h/2 where C is a positive dimensionless constant and y is the
vertical distance measured from the lower wall. With this turbulence model, the
RANS equation for 0 � y � h/2 becomes:

U
vU

vx
þ V

vU

vy
¼ �1

r

dp

dx
þ 1

r

vsxy
vy

where sxy ¼ m
vU

vy
þ rC2y2

�

vU

vy

�2

:

Determine an analytic form for U(y) after making appropriate simplifications of the
RANS equation for fully developed flow assuming the pressure gradient is zero.
Check to see that your final answer recovers the appropriate forms as y / 0 and
C / 0. Use the fact that Uðy ¼ h=2Þ ¼ Uo=2 in your work if necessary.

12.36. Turbulence largely governs the mixing and transport of water vapor (and other
gases) in the atmosphere. Such processes can sometimes be assessed by considering
the conservation law (12.34) for a passive scalar.

a) Appropriately simplify (12.34) for turbulence at high Reynolds number that is
characterized by: an outer length scale of L, a large-eddy turnover time of T,
and a mass-fraction magnitude of Yo. In addition, assume that the molecular
diffusivity km is at most as large as n ¼ m=r ¼ the fluid’s kinematic viscosity.

b) Now consider a simple model of how a dry turbulent wind collects moisture as
it blows over a nominally flat water surface (x1 > 0) from a dry surface (x1 < 0).
Assume the mean velocity is steady and has a single component with a linear

gradient, Uj ¼ ðSx2, 0, 0Þ, and use a simple gradient diffusion model: �ujY0 ¼
DULð0, vY=vx2, 0Þ, where DU and L are (constant) velocity and length scales that
characterize the turbulent diffusion in this case. This turbulence model allows the
turbulent mean flow to be treated like a laminar flow with a large diffusivity ¼
DUL (a turbulent diffusivity). For the simple boundary conditions: YðxjÞ ¼ 0 for

x1 < 0, YðxjÞ ¼ 1 at x2 ¼ 0 for x1 > 0, and YðxjÞ/0 as x2/N, show that
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Yðx1,x2,x3Þ ¼
Z
N

x

exp

�

�1

9
z3
�

dz

,

Z
N

0

exp

�

�1

9
z3
�

dz

where x ¼ x2

�

S

DULx1

�1=3

for x1,x2 > 0:

12.37. Estimate the Monin-Obukhov length in the atmospheric boundary layer if the surface
stress is 0.1 N/m2 and the upward heat flux is 200 W/m2.

12.38. Consider one-dimensional turbulent diffusion of particles issuing from a point
source. Assume a Gaussian-Lagrangian correlation function of particle velocity:

rðsÞ ¼ e�s2=t2c ,

where tc is a constant. By integrating the correlation function from s ¼ 0 to N, find
the integral time scale Lt in terms of tc. Using the Taylor theory, estimate the eddy
diffusivity at large times t/Lt [ 1, given that the rms fluctuating velocity is 1 m/s
and tc ¼ 1 s.
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• To specify the effects of planetary rotation on

waves in stratified fluids

• To describe the instabilities of very long

waves that span a significant range of

latitude

• To provide an introduction to geostrophic

turbulence and the reversed energy

cascade

13.1. INTRODUCTION

The subject of geophysical fluid dynamics deals with the dynamics of the atmosphere and
the ocean. Motions within these fluid masses are intimately connected through continual
exchanges of momentum, heat, and moisture, and cannot be considered separately on
a global scale. The field has been largely developed by meteorologists and oceanographers,
but nonspecialists have also been interested in the subject. Taylor was not a geophysical fluid
dynamicist, but he held the position of a meteorologist for some time, and through this
involvement he developed a special interest in the problems of turbulence and instability.
Although Prandtl was mainly interested in the engineering aspects of fluid mechanics, his
well-known textbook (Prandtl, 1952) contains several sections dealing with meteorological
aspects of fluid mechanics. Notwithstanding the pressure for technical specialization, it is
worthwhile to learn something of this fascinating field even if one’s primary interest is in
another area of fluid mechanics.

Together the atmosphere and ocean have a large and consequential impact on humanity.
The combined dynamics of the atmosphere and ocean are leading contributors to global
climate. We all live within the atmosphere and are almost helplessly affected by the weather
and its rather chaotic behavior which modulates agricultural success. Ocean currents effect
navigation, fisheries, and pollution disposal. Populations that occupy coastlines can do little
to prevent hurricanes, typhoons, or tsunamis. Thus, understanding and reliably predicting
geophysical fluid dynamic events and trends are scientific, economic, humanitarian, and
even political priorities. This chapter provides the basic elements necessary for developing
an understanding of geophysical fluid dynamics.

The two features that distinguish geophysical fluid dynamics from other areas of fluid
dynamics are the rotation of the earth and the vertical density stratification of the medium.
We shall see that these two effects dominate the dynamics to such an extent that entirely new
classes of phenomena arise, which have no counterpart in the laboratory-scale flows empha-
sized in the preceding chapters. (For example, the dominant mode of flow in the atmosphere
and the ocean is along the lines of constant pressure, not from high to low pressures.) The
motion of the atmosphere and the ocean is naturally studied in a coordinate frame rotating
with the earth. This gives rise to the Coriolis force (see Section 4.7). The density stratification
gives rise to buoyancy forces (Section 4.11 and Chapter 7). In addition, important relevant
material includes vorticity, boundary layers, instability, and turbulence (Chapters 5, 9, 11,
and 12). The reader should be familiar with these topics before proceeding further with
the present chapter.
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Because Coriolis forces and stratification effects play dominating roles in both the atmo-
sphere and the ocean, there is a great deal of similarity between the dynamics of these two
media; this makes it possible to study them together. There are also significant differences,
however. For example the effects of lateral boundaries, due to the presence of continents,
are important in the ocean but less so in the atmosphere. The intense currents (like the
Gulf Stream and the Kuroshio) along the western ocean boundaries have no atmospheric
analog. On the other hand phenomena like cloud formation and latent heat release due to
moisture condensation are typically atmospheric phenomena. Plus, processes are generally
slower in the ocean, in which a typical horizontal velocity is 0.1 m/s, although velocities
of the order of 1e2 m/s are found within the intense western boundary currents. In contrast,
typical velocities in the atmosphere are 10e20 m/s. The nomenclature can also be different in
the two fields. Meteorologists refer to a flow directed to the west as an “easterly wind” (i.e.,
from the east), while oceanographers refer to such a flow as a “westward current.” Atmo-
spheric scientists refer to vertical positions by heights measured upward from the earth’s
surface, while oceanographers refer to depths measured downward from the sea surface.
However, we shall always take the vertical coordinate z to be upward, so no confusion should
arise.

We shall see that rotational effects caused by the presence of the Coriolis force have oppo-
site signs in the two hemispheres. Note that all figures and descriptions given here are valid for the
northern hemisphere. In some cases the sense of the rotational effect for the southern hemi-
sphere has been explicitly mentioned. When the sense of the rotational effect is left unspec-
ified for the southern hemisphere, it has to be assumed as opposite to that in the northern
hemisphere.

13.2. VERTICAL VARIATION OF DENSITY IN
THE ATMOSPHERE AND OCEAN

An important variable in the study of geophysical fluid dynamics is the density stratifica-
tion. In (1.35) we saw that the static stability of a fluid medium is determined by the sign of
the potential density gradient:

drq
dz

¼ dr

dz
þ gr

c2
, (13.1)

where c is the speed of sound. A medium is statically stable if the potential density decreases
with height. The first term on the right-hand side corresponds to the in situ density change
due to all sources such as pressure, temperature, and concentration of a constituent such
as the salinity in the sea or the water vapor in the atmosphere. The second term on the right
side is the density gradient due to the pressure decrease with height in an adiabatic environ-
ment and is called the adiabatic density gradient. The corresponding temperature gradient is
called the adiabatic temperature gradient. For incompressible fluids c ¼N and the adiabatic
density gradient is zero.

As shown in Section 1.10, the temperature of a dry adiabatic atmosphere decreases
upward at the rate of z 10�C/km; that of a moist atmosphere decreases at the rate
of z 5e6�C/km. In the ocean, the adiabatic density gradient is gr/c2 w4 � 10�3 kg/m4,
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for a typical sound speed of c ¼ 1520 m/s. The potential density in the ocean increases with
depth at a much smaller rate of 0.6 � 10�3 kg/m4, so it follows that most of the in situ density
increase with depth in the ocean is due to the compressibility effects and not to changes in
temperature or salinity. As potential density is the variable that determines the static
stability, oceanographers take into account the compressibility effects by referring all their
density measurements to the sea-level pressure. Unless specified otherwise, throughout
the present chapter potential density will simply be referred to as density, omitting the
qualifier potential.

The mean vertical distribution of the in situ temperature in the lower 50 km of the atmo-
sphere is shown in Figure 13.1. The lowest 10 km is called the troposphere, in which the
temperature decreases with height at the rate of 6.5�C/km. This is close to the moist adiabatic
lapse rate, which means that the troposphere is close to being neutrally stable. The neutral
stability is expected because turbulent mixing due to frictional and convective effects in
the lower atmosphere keeps it well stirred and therefore close to the neutral stratification.
Practically all the clouds, weather changes, and water vapor of the atmosphere are found
in the troposphere. The layer is capped by the tropopause, at an average height of 10 km, above
which the temperature increases. This higher layer is called the stratosphere, because it is very
stably stratified. The increase of temperature with height in this layer is caused by the absorp-
tion of the sun’s ultraviolet rays by ozone. The stability of the layer inhibits mixing and

FIGURE 13.1 Sketch of the vertical distribution of temperature in the lower 50 km of the atmosphere. In the
lowest layer, the troposphere, the temperature decreases with height and this is where nearly all weather occurs.
The next layer is the stratosphere where temperature increases with height. The troposphere is separated from the
stratosphere by the tropopause, and the stratosphere ends at the stratopause.

13. GEOPHYSICAL FLUID DYNAMICS624



consequently acts as a lid on the turbulence and convective motion of the troposphere. The
increase of temperature stops at the stratopause at a height of nearly 50 km.

The vertical structure of density in the ocean is sketched in Figure 13.2, showing typical
profiles of potential density and temperature. Most of the temperature increase with height
is due to the absorption of solar radiation within the upper layer of the ocean. The density
distribution in the ocean is also affected by the salinity. However, there is no characteristic
variation of salinity with depth, and a decrease with depth is found to be as common as an
increase with depth. In most cases, however, the vertical structure of density in the ocean is
determined mainly by that of temperature, the salinity effects being secondary. The upper
50e200 m of ocean is well mixed, due to the turbulence generated by the wind, waves,
current shear, and the convective overturning caused by surface cooling. Temperature
gradients decrease with depth, becoming quite small below a depth of 1500 m. There is
usually a large temperature gradient in the depth range of 100e500 m. This layer of high
stability is called the thermocline. Figure 13.2 also shows the profile of buoyancy frequency
N, defined by

N2h � g

r0

dr

dz
,

where r of course stands for the potential density and r0 is a constant reference density
(cf. (1.29) and (7.128)). The buoyancy frequency reaches a typical maximum value of
Nmax w 0.01s�1 (period w 10 min) in the thermocline and decreases both upward and
downward.

13.3. EQUATIONS OF MOTION

In this section we shall review the relevant equations of motion, which are derived and
discussed in Chapter 4. The equations of motion for a stratified medium, observed in

FIGURE 13.2 Typical ver-
tical distributions of: (a)
temperature and density, and
(b) buoyancy frequency in
the ocean. Temperature falls
while density increases with
increasing depth. The buoy-
ancy frequency peaks in the
region of the thermocline
where temperature changes
most rapidly with depth.
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a system of coordinates rotating at an angular velocity U with respect to the “fixed stars,”
are:

V,u ¼ 0,
Du

Dt
þ 2U� u ¼ 1

r0
Vp� gr

r0
ez þ F, and

Dr

Dt
¼ 0, (13.2)

where F is the friction force per unit mass. The diffusive effects in the density equation are
omitted in set (13.2) because they are not considered here.

Set (13.2) makes the so-called Boussinesq approximation, discussed in Section 4.18, in which
the density variations are neglected everywhere except in the gravity term. Along with other
restrictions, it assumes that the vertical scale of the motion is less than the “scale height” of
the medium c2/g, where c is the speed of sound. This assumption is very good in the ocean, in
which c2/g w 200 km. In the atmosphere it is less applicable, because c2/g w 10 km. Under
the Boussinesq approximation, the principle of mass conservation is expressed by V,u ¼ 0. In
contrast, the density equation Dr/Dt ¼ 0 follows from the nondiffusive heat equation DT/
Dt ¼ 0 and an incompressible equation of state of the form dr/r0 ¼ �adT. (If the density is
determined by the concentration S of a constituent, say the water vapor in the atmosphere
or the salinity in the ocean, then Dr/Dt ¼ 0 follows from the nondiffusive conservation
equation for the constituent in the form DS/Dt ¼ 0, plus the incompressible equation of state
dr/r0 ¼ bdS.)

The equations can be written in terms of the pressure and density perturbations from a state
of rest. In the absence of any motion, suppose the density and pressure have the vertical
distributions rðzÞ and pðzÞ, where the z-axis is taken vertically upward. As this state is hydro-
static, we must have

dp

dz
¼ �rg: (13.3)

In the presence of a flow field u(x,t), we can write the density and pressure as

rðx, tÞ ¼ rðzÞ þ r0ðx, tÞ,
pðx, tÞ ¼ pðzÞ þ p0ðx, tÞ, (13.4)

where r0 and p0 are the changes from the state of rest. With this substitution, the first two
terms on the right-hand side of the momentum equation in (13.2) give

� 1

r0
Vp� gr

r0
ez ¼ � 1

r0
Vðpþ p0Þ � g

r0
ðrþ r0Þez ¼ � 1

r0

�

dp

dz
ez þ Vp0

�

� g

r0
ðrþ r0Þez:

Subtracting the hydrostatic state (13.3), this becomes

� 1

r0
Vp� gr

r0
ez ¼ � 1

r0
Vp0 � gr0

r0
ez,

which shows that we can replace p and r in (13.2) by the perturbation quantities p0 and r0.
The friction force per unit mass F in equation (13.2) needs to be related to the velocity field.

From Section 4.4, the friction force is given by Fi ¼ vsij/vxj, where sij is the viscous stress
tensor. The stress in a laminar flow is caused by the molecular exchanges of momentum.
From (4.35), the viscous stress tensor in an isotropic incompressible medium in laminar
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flow is given by m(vui/vxj þ vuj/vxi). In large-scale geophysical flows, however, the frictional
forces are provided by turbulent momentum exchange and viscous effects are negligible. The
complexity of turbulent behavior makes it impossible to relate the stress to the velocity field
in a simple way. To proceed, then, we adopt the eddy viscosity hypothesis (12.94), which sets
the turbulent stress proportional to the velocity gradient field.

Geophysical media are in the form of shallow stratified layers, in which the vertical veloc-
ities are much smaller than horizontal velocities. This means that the exchange of momentum
across a horizontal surface is much weaker than that across a vertical surface. We expect then
that the vertical eddy viscosity nv is much smaller than the horizontal eddy viscosity nH, and
we assume that the turbulent stress components have the form:

sxz ¼ szx ¼ rnv
vu

vz
þ rnH

vw

vx
,

syz ¼ szy ¼ rnv
vv

vz
þ rnH

vw

vy
,

sxy ¼ syx ¼ rnH

�

vu

vy
þ vv

vx

�

,

sxx ¼ 2rnH
vu

vx
, syy ¼ 2rnH

vv

vy
, szz ¼ 2rnv

vw

vz
:

(13.5)

The difficulty with set (13.5) is that the expressions for sxz and syz depend on the fluid rotation
in the vertical plane and not just the deformation. In Section 4.5, we saw that a requirement
for a constitutive equation is that the stresses should be independent of fluid rotation and
should depend only on the deformation. Therefore, sxz should depend only on the combina-
tion (vu/vz þ vw/vx), whereas the expression in (13.5) depends on both deformation and rota-
tion. A tensorially correct geophysical treatment of the frictional terms is discussed, for
example, in Kamenkovich (1967). However, the assumed form (13.5) leads to a simple formu-
lation for viscous effects, as we shall see shortly. As the eddy viscosity assumption is of ques-
tionable validity (which Pedlosky [1971] describes as a “rather disreputable and desperate
attempt”), there does not seem to be any purpose in formulating the stress-strain relation
in more complicated ways merely to obey the requirement of invariance with respect to
rotation.

With the assumed form for the turbulent stress, the components of the frictional force
Fi ¼ vsij/vxj become:

Fx ¼ vsxx
vx

þ vsxy
vy

þ vsxz
vz

¼ nH

 

v2u

vx2
þ v2u

vy2

!

þ nv
v2u

vz2
,

Fy ¼ vsyx
vx

þ vsyy
vy

þ vsyz
vz

¼ nH

 

v2v

vx2
þ v2v

vy2

!

þ nv
v2v

vz2
,

Fz ¼ vszx
vx

þ vszy
vy

þ vszz
vz

¼ nH

 

v2w

vx2
þ v2w

vy2

!

þ nv
v2w

vz2
:

(13.6)
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Estimates of the eddy coefficients vary greatly. Typical suggested values are nv w 10 m2/s
and nH w 105 m2/s for the lower atmosphere, and nv w 0.01 m2/s and nH w 100 m2/s for
the upper ocean. In comparison, the molecular values are n ¼ 1.5 � 10�5 m2/s for air and
n ¼ 10�6 m2/s for water.

13.4. APPROXIMATE EQUATIONS FOR A THIN LAYER
ON A ROTATING SPHERE

The atmosphere and the ocean are very thin layers in which the depth scale of flow is a few
kilometers, whereas the horizontal scale is of the order of hundreds, or even thousands, of
kilometers. The trajectories of fluid elements are nearly horizontal while vertical velocities
are much smaller than horizontal velocities. In fact, the continuity equation suggests that
the scale of the vertical velocity W is related to that of the horizontal velocity U by

W

U
w

H

L
,

where H is the depth scale and L is the horizontal length scale. Stratification and Coriolis
effects usually constrain the vertical velocity to be even smaller than UH/L.

Large-scale geophysical flow problems should be solved using spherical polar coordi-
nates. If, however, the horizontal length scales are much smaller than the radius of the earth
(¼ 6371 km), then the curvature of the earth can be ignored, and the motion can be studied by
adopting a localCartesian system on a tangent plane (Figure 13.3). On this plane we take an xyz

FIGURE 13.3 Local Cartesian coordinates. The x-axis points into the plane of the paper. The y-axis is tangent to
the earth’s surface and points toward the north pole. The z-axis is vertical, opposing gravity. The earth’s angular
rotation vector has positive y and z components in the northern hemisphere.
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coordinate system, with x increasing eastward, y northward, and z upward. The correspond-
ing velocity components are u (eastward), v (northward), and w (upward).

The earth rotates at a rate,

U ¼ 2p rad=day ¼ 0:73� 10�4 s�1,

around the polar axis, in a counterclockwise sense looking from above the north pole. From
Figure 13.3, the components of angular velocity of the earth in the local Cartesian system are
U ¼ (Ux, Uy, Uz) ¼ (0, Ucosq, Usinq), where q is the latitude. The Coriolis acceleration is
therefore:

2U� u ¼
�

�

�

�

�

�

ex ey ez
0 2U cos q 2U sin q

u v w

�

�

�

�

�

�

¼ 2U
�

ex
�

w cos q� v sin q
	þ eyu sin q� ezu cos q




:

In the term multiplied by ex we can use the condition wcos q� vsin q, because the thin-sheet
approximation requires that w� v. The three components of the Coriolis acceleration are
therefore

2U� uy ð�2Uv sin q, 2Uu sin q,� 2Uu cos qÞ ¼ ð�fv, fu, � 2Uu cos qÞ, (13.7)

where we have defined

f ¼ 2U sin q (13.8)

to be twice the vertical component ofU. As vorticity is twice the angular velocity, f is called the
planetary vorticity. More commonly, f is referred to as the Coriolis parameter, or the Coriolis
frequency. It is positive in the northern hemisphere and negative in the southern hemisphere,
varying from �1.45 � 10�4 s�1 at the poles to zero at the equator. This makes sense, since
a person standing at the north pole spins around himself in a counterclockwise sense at
a rate U, whereas a person standing at the equator does not spin around himself but simply
translates. The quantity,

Ti ¼ 2p=f ,

is called the inertial period, for reasons that will be clear in Section 13.11; it does refer to
a component of the vector.

The vertical component of the Coriolis force, namely �2Uu cos q, is generally negligible
compared to the dominant terms in the vertical equation of motion, namely gr0/r0 and
r�1
0 ðvp0=vzÞ. Using (13.6), (13.7), and (13.8), the equations of motion (13.2) reduce to:

Du

Dt
� fv ¼ � 1

r0

vp

vx
þ nH

 

v2u

vx2
þ v2u

vy2

!

þ nv
v2u

vz2
,

Dv

Dt
þ fu ¼ � 1

r0

vp

vy
þ nH

 

v2v

vx2
þ v2v

vy2

!

þ nv
v2v

vz2
,

Dw

Dt
¼ � 1

r0

vp

vz
� gr

r0
þ nH

 

v2w

vx2
þ v2w

vy2

!

þ nv
v2w

vz2
:

(13.9)
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These are the equations of motion for a thin shell on a rotating earth. Note that only the
vertical component of the earth’s angular velocity appears as a consequence of the flatness
of the fluid trajectories.

f-Plane Model

The Coriolis parameter f ¼ 2U sin q varies with latitude q. However, this variation is
important only for phenomena having very long time scales (several weeks) or very long
length scales (thousands of kilometers). For many purposes we can assume f to be a constant,
say f0 ¼ 2U sin q0, where q0 is the central latitude of the region under study. A model using
a constant Coriolis parameter is called an f-plane model.

b-Plane Model

The variation of f with latitude can be approximately represented by expanding f in a
Taylor series about the central latitude q0:

f ¼ f0 þ by, (13.10)

where

bh

�

df

dy

�

q0

¼
�

df

dq

dq

dy

�

q0

¼ 2U cos q0
R

:

Here, we have used f ¼ 2U sin q and dq/dy ¼ 1/R, where the radius of the earth is nearly
R ¼ 6371 km. A model that takes into account the variation of the Coriolis parameter in
the simplified form f ¼ f0 þ by, with b as constant, is called a b-plane model.

13.5. GEOSTROPHIC FLOW

Consider quasi-steady, large-scale motions in the atmosphere or the ocean, away from
boundaries. For these flows an excellent approximation for the horizontal equilibrium is
a balance between the Coriolis force and the pressure gradient:

�fv ¼ � 1

r0

vp

vx
, and fu ¼ � 1

r0

vp

vy
: (13.11, 13.12)

Herewe have neglected the nonlinear acceleration terms, which are of orderU2/L, in compar-
ison to the Coriolis forcewfU (U is the horizontal velocity scale, and L is the horizontal length
scale). The ratio of the nonlinear term to the Coriolis term is called the Rossby number:

Rossby number ¼ Nonlinear acceleration

Coriolis force
w

U2=L

fU
¼ U

fL
¼ Ro: (13.13)

For a typical atmospheric value of Uw 10 m/s, fw 10�4 s�1, and Lw 1000 km, the Rossby
number turns out to be 0.1. The Rossby number is even smaller for many flows in the ocean,
so that the neglect of nonlinear terms is justified for many flows.
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The balance of forces represented by (13.11), in which the horizontal pressure gradients
are balanced by Coriolis forces, is called a geostrophic balance. In such a system the velocity
distribution can be determined from a measured distribution of the pressure field. The
geostrophic equilibrium breaks down near the equator (within a latitude belt of�3�), where
f becomes small. It also breaks down if the frictional effects or unsteadiness become
important.

Velocities in a geostrophic flow are perpendicular to the horizontal pressure gradient. This
is because (13.11) implies that u,Vp ¼ 0, that is:

�

uex þ vey
	

,Vp ¼ 1

r0f

�

�ex
vp

vy
þ ey

vp

vx

�

,

�

ex
vp

vx
þ ey

vp

vy

�

¼ 0:

Thus, the horizontal velocity is along, and not across, the lines of constant pressure. If f is
regarded as constant, then the geostrophic balance (13.11) shows that p/fr0 can be regarded
as a stream function. The isobars on a weather map are therefore nearly the streamlines of the
flow.

Figure 13.4 shows the geostrophic flow around low- and high-pressure centers in the
northern hemisphere. Here the Coriolis force acts to the right of the velocity vector. This
requires the flow to be counterclockwise (viewed from above) around a low-pressure region
and clockwise around a high-pressure region. The sense of circulation is opposite in the
southern hemisphere, where the Coriolis force acts to the left of the velocity vector. (Frictional
forces become important at lower levels in the atmosphere and result in a flow partially across
the isobars. This will be discussed in Section 13.7, where it is shown that flow around a low-
pressure center spirals inward due to frictional effects.)

FIGURE 13.4 Circular geostrophic flow around ideal low- and high-pressure centers in the northern hemi-
sphere. The pressure force (�Vp) is indicated by a thin arrow, and the Coriolis force is indicated by a thick arrow.
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The flow along isobars at first surprises a reader unfamiliar with the effects of the Coriolis
force. A question commonly asked is: How is such a motion set up? A typical manner of
establishment of such a flow is as follows. Consider a horizontally converging flow in the
surface layer of the ocean. The convergent flow sets up the sea surface in the form of a gentle
hill, with the sea surface dropping away from the center of the hill. A fluid particle starting to
move down the hill is deflected to the right in the northern hemisphere, and a steady state is
reached when the particle finally moves along the isobars.

Thermal Wind

In the presence of a horizontal gradient of density, the geostrophic velocity develops
a vertical shear. This is easy to demonstrate from an analysis of the geostrophic and hydro-
static balance using (13.11), (13.12), and

0 ¼ �vp

vz
� gr: (13.14)

Eliminating p between (13.11) and (13.14), and also between equations (13.12) and (13.14), we
obtain, respectively,

vv

vz
¼ � g

r0f

vr

vx
, and

vu

vz
¼ g

r0f

vr

vy
: (13.15)

Meteorologists call these the thermal wind equations because they give the vertical variation of
wind from measurements of horizontal temperature (and pressure) gradients. The thermal
wind is a baroclinic phenomenon, because the surfaces of constant p and r do not coincide.

Taylor-Proudman Theorem

A striking phenomenon occurs in the geostrophic flow of a homogeneous fluid. It can only
be observed in a laboratory experiment because stratification effects cannot be avoided in
natural flows. Consider then a laboratory experiment in which a tank of fluid is steadily
rotated at a high angular speed U and a solid body is moved slowly along the bottom of
the tank. The purpose of making U large and the movement of the solid body slow is to
make the Coriolis force much larger than the advective acceleration terms, which must be
made negligible for geostrophic equilibrium. Away from the frictional effects of boundaries,
the balance is therefore geostrophic in the horizontal and hydrostatic in the vertical. Setting
f ¼ 2U in (13.11) and (13.12) produces

�2Uv ¼ �1

r

vp

vx
and � 2Uu ¼ �1

r

vp

vy
: (13.16, 13.17)

It is useful to define an Ekman number as the ratio of viscous to Coriolis forces (per unit
volume):

Ekman number ¼ viscous force

Coriolis force
¼ rnU=L2

rfU
¼ n

fL2
¼ E: (13.18)

Under the circumstances already described here, both Ro and E are small.
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Elimination of p by cross differentiation of the horizontal momentum equations (13.16)
and (13.17) gives

2U

�

vv

vy
þ vu

vx

�

¼ 0:

Using the continuity equation, this gives

vw

vz
¼ 0: (13.19)

Also, differentiating (13.16) and (13.17) with respect to z, and using (13.14), we obtain

vv

vz
¼ vu

vz
¼ 0: (13.20)

Taken together, (13.19) and (13.20) imply

vu=vz ¼ 0: (13.21)

Thus, the fluid velocity cannot vary in the direction ofU. In other words, steady slowmotions
in a rotating, homogeneous, inviscid fluid are two dimensional. This is the Taylor-Proudman
theorem, first derived by Proudman in 1916 and demonstrated experimentally by Taylor soon
afterward.

In Taylor’s experiment, a tank was made to rotate as a solid body, and a small cylinder was
slowly dragged along the bottom of the tank (Figure 13.5). Dye was introduced from point A
above the cylinder and directly ahead of it. In a nonrotating fluid the water would pass over
the top of the moving cylinder. In the rotating experiment, however, the dye divides at a point
S, as if it had been blocked by a vertical extension of the cylinder, and flows around this imag-
inary cylinder, called the Taylor column. Dye released from a point B within the Taylor column
remained there and moved with the cylinder. The conclusion was that the flow outside the
upward extension of the cylinder is the same as if the cylinder extended across the entire
water depth and that a column of water directly above the cylinder moves with it. The motion
is two dimensional, although the solid body does not extend across the entire water depth.
Taylor did a second experiment, in which he dragged a solid body parallel to the axis of rota-
tion. In accordance with vw/vz ¼ 0, he observed that a column of fluid is pushed ahead. The
lateral velocity components u and v were zero. In both of these experiments, there are shear
layers at the edge of the Taylor column.

In summary, Taylor’s experiment established the following striking fact for steady inviscid
motion of homogeneous fluid in a strongly rotating system: Bodies moving either parallel or
perpendicular to the axis of rotation carry along with their motion a so-called Taylor column
of fluid, oriented parallel to the axis of rotation. The phenomenon is analogous to the hori-
zontal blocking caused by a solid body (say a mountain) in a strongly stratified system, shown
in Figure 7.30.

13.6. EKMAN LAYER AT A FREE SURFACE

In the preceding section, we discussed a steady linear inviscid motion expected to be valid
away from frictional boundary layers. We shall now examine the motion within frictional
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layers over horizontal surfaces. In viscous flows unaffected by Coriolis forces and pressure
gradients, the only term which can balance the viscous force is either the time derivative
vu/vt or the advection u,Vu. The balance of vu/vt and the viscous force gives rise to a viscous
layer whose thickness increases with time, as in the suddenly accelerated plate discussed in
Section 8.7. The balance of u,Vu and the viscous force give rise to a viscous layer whose
thickness increases in the direction of flow, as in the boundary layer over a semi-infinite plate
discussed in Sections 9.3 through 9.5. In a rotating flow, however, we can have a balance
between the Coriolis and the viscous forces, and the thickness of the viscous layer can be
invariant in time and space. Two examples of such layers are given in this and the following
sections.

Consider first the case of a frictional layer near the free surface of the ocean, which is acted
on by a wind stress s in the x-direction. We shall not consider how the flow adjusts to the

FIGURE 13.5 Taylor’s experiment in a strongly rotating flow of a homogeneous fluid. When the short cylinder
is moved toward the axis of rotation, an extension of the cylinder forms in the fluid above it. Dye released above the
cylinder at point A flows around the extension of cylinder as if it were a solid object. Dye released above the
cylinder at point B follows the motion of the short cylinder.
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steady state but examine only the steady solution. We shall assume that the horizontal pres-
sure gradients are zero and that the field is horizontally homogeneous. From (13.9), the hori-
zontal equations of motion for flow within the ocean are:

�fv ¼ nv
d2u

dz2
and fu ¼ nv

d2v

dz2
: (13.22, 13.23)

Defining z ¼ 0 on the surface of the ocean, the boundary conditions are:

rnvðdu=dzÞ ¼ s at z ¼ 0, dv=dz ¼ 0 at z ¼ 0, and u,v/0 as z/N: (13.24, 13.25, 13.26)

Multiplying equation (13.23) by the imaginary root, i ¼ ffiffiffiffiffiffiffi�1
p

, and adding equation (13.22),
we obtain

d2V

dz2
¼ if

nv
V, (13.27)

where we have defined the complex velocity

Vh uþ iv:

The solution of (13.27) is

V ¼ A eð1þiÞz=d þ B e�ð1þiÞz=d, where d ¼
ffiffiffiffiffiffiffiffiffiffiffi

2nv=f
q

: (13.28, 13.29)

The constant B is zero because the field must remain finite as z/ �N, and d is the thickness
of the Ekman layer. The surface boundary conditions (13.24) and (13.25) can be combined as
rnv(dV/dz) ¼ s at z ¼ 0, from which (13.28) gives

A ¼ sdð1� iÞ
2rnv

:

Substitution of this into (13.28) gives the velocity components:

u ¼ s=r
ffiffiffiffiffiffiffi

fnv
p ez=dcos

�

�z

d
þ p

4



,

v ¼ � s=r
ffiffiffiffiffiffiffi

fnv
p ez=dsin

�

�z

d
þ p

4



:

The Swedish oceanographer Ekman worked out this solution in 1905. The solution is
shown in Figure 13.6 for the case of the northern hemisphere, in which f is positive. The veloc-
ities at various depths within the ocean are plotted in Figure 13.6a where each arrow repre-
sents the velocity vector at a certain depth. Such a plot of v versus u is sometimes called
a hodograph. The vertical distributions of u and v are shown in Figure 13.6b. The hodograph
shows that the surface velocity is deflected 45� to the right of the applied wind stress. (In the
southern hemisphere the deflection is to the left of the surface stress.) The velocity vector
rotates clockwise (looking down) with depth, and the magnitude exponentially decays
with an e-folding scale of d, the Ekman layer thickness. The tips of the velocity vector at
various depths form a spiral, called the Ekman spiral.
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The components of the volume transport in the Ekman layer are:

R 0
�N u dz ¼ 0,

R 0
�N v dz ¼ � s

rf
:

(13.30)

This shows that the net transport is to the right of the applied stress and is independent of nv. In fact,
the result

R

v dz ¼ �s=fr follows directly from a vertical integration of the equation of
motion in the form �rfv ¼ ds/dz so that the result does not depend on the eddy viscosity
assumption. The fact that the transport is to the right of the applied stress makes
sense because then the net (depth-integrated) Coriolis force, directed to the right of the
depth-integrated transport, can balance the wind stress.

The horizontal uniformity assumed in the solution is not a serious limitation. Since
Ekman layers near the ocean surface have a thickness (~50 m) much smaller than the
scale of horizontal variation (L > 100 km), the solution is still locally applicable. The
assumed absence of a horizontal pressure gradient can also be reconsidered. Because
of the thinness of the layer, any imposed horizontal pressure gradient remains constant
across the layer. The presence of a horizontal pressure gradient merely adds a depth-
independent geostrophic velocity to the Ekman solution. Suppose the sea surface slopes

FIGURE 13.6 Ekman layer below a water surface on which a shear stress s is applied in the x-direction. The left
panel (a) shows the horizontal fluid velocity components (u, v) at various depths; values of �z/d are indicated along
the curve traced out by the tip of the velocity vector. The flow speed is highest near the surface. The right panel (b)
shows vertical distributions of u and v. Here, the Coriolis force produces significant depth dependence in the fluid
velocity even though s is constant and unidirectional.
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down to the north, so that there is a pressure force acting northward throughout the
Ekman layer and below (Figure 13.7). This means that at the bottom of the Ekman layer
(z/d / �N) there is a geostrophic velocity U to the right of the pressure force. The
surface Ekman spiral forced by the wind stress joins smoothly to this geostrophic velocity
as z/d / �N.

Pure Ekman spirals are not observed in the surface layer of the ocean, mainly
because the assumptions of constant eddy viscosity and steadiness are particularly
restrictive. When the flow is averaged over a few days, however, several instances
have been found in which the current does look like a spiral. One such example is
shown in Figure 13.8.

Explanation in Terms of Vortex Tilting

We have seen in previous chapters that the thickness of a viscous layer usually grows in
a nonrotating flow, either in time or in the direction of flow. The Ekman solution, in contrast,
results in a viscous layer that does not grow either in time or space. This can be explained by
examining the vorticity equation (Pedlosky, 1987). The vorticity components in the x- and
y-directions are:

ux ¼ vw

vy
� vv

vz
¼ �dv

dz
,

uy ¼ vu

vz
� vw

vx
¼ du

dz
,

FIGURE 13.7 Ekman layer at a free surface in the presence of a pressure gradient. The geostrophic velocity
forced by the pressure gradient is U. The flow profile in this case is the sum of U and the profile shown in
Figure 13.6.
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FIGURE 13.8 An observed velocity distribution near the coast of Oregon. Velocity is averaged over 7 days.
Wind stress had a magnitude of 1.1 dyn/cm2 and was directed nearly southward, as indicated at the top of the
figure. The upper panel shows vertical distributions of u and v, and the lower panel shows the hodograph in which
depths are indicated in meters. The hodograph is similar to that of a surface Ekman layer (of depth 16 m) lying over
the bottom Ekman layer (extending from a depth of 16 m to the ocean bottom). P. Kundu, in Bottom Turbulence, J. C.
J. Nihoul, ed., Elsevier, 1977; reprinted with the permission of Jacques C. J. Nihoul.

where we have used w ¼ 0. Using these, the z-derivative of the equations of motion (13.22)
and (13.23) gives:

�f
dv

dz
¼ nv

d2uy

dz2
,

�f
du

dz
¼ nv

d2ux

dz2
:

(13.31)
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The right sides of these equations represent diffusion of vorticity. Without Coriolis forces this
diffusion would cause a thickening of the viscous layer. The presence of planetary rotation,
however, means that vertical fluid lines coincide with the planetary vortex lines. The tilting
of vertical fluid lines, represented by terms on the left-hand sides of equations (13.31),
then causes a rate of change of the horizontal component of vorticity that just cancels the
diffusion term.

13.7. EKMAN LAYER ON A RIGID SURFACE

Consider a steady viscous layer on a solid surface in a rotating flow that is independent of
the horizontal coordinates x and y. This can be the atmospheric boundary layer over the solid
earth or the boundary layer over the ocean bottom.We assume that at large distances from the
surface the velocity is toward the x-direction and has a magnitudeU. Viscous forces are negli-
gible far from the wall, so that the Coriolis force can be balanced only by a pressure gradient:

fU ¼ �1

r

dp

dy
: (13.32)

This simply states that the flow outside the viscous layer is in geostrophic balance, U being
the geostrophic velocity. For our assumed case of positive U and f, we must have dp/dy < 0,
so that the pressure falls with ydthat is, the pressure force is directed along the positive y
direction, resulting in a geostrophic flow U to the right of the pressure force in the northern
hemisphere. The horizontal pressure gradient remains constant within the thin boundary
layer.

Near the solid surface friction forces are important, so that the balance within the
boundary layer is

�fv ¼ nv
d2u

dz2
and fu ¼ nv

d2v

dz2
þ fU, (13.33, 13.34)

where we have replaced �r�1(dp/dy) by fU in accordance with (13.32). The boundary condi-
tions are:

u ¼ U, v ¼ 0 as z/N, (13.35)

u ¼ 0, v ¼ 0 at z ¼ 0, (13.36)

where z is taken vertically upward from the solid surface. Multiplying equation (13.34) by i
and adding equation (13.33), the equations of motion become

d2V

dz2
¼ if

nv
ðV �UÞ, (13.37)

where we have again used the complex velocity V h u þ iv. The boundary conditions (13.35)
and (13.36) in terms of the complex velocity are:

V ¼ U as z/N, (13.38)
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V ¼ 0 at z ¼ 0: (13.39)

The particular solution of (13.37) is V ¼ U. The total solution is, therefore,

V ¼ A e�ð1þiÞz=d þ B eð1þiÞz=d þU, (13.40)

where dh
ffiffiffiffiffiffiffiffiffiffiffi

2nv=f
p

, as before. To satisfy (13.38), we must have B ¼ 0. Condition (13.39) gives
A ¼ �U. The velocity components then become:

u ¼ U
�

1� e�z=dcos ðz=dÞ
,
v ¼ Ue�z=dsin ðz=dÞ:

(13.41)

According to (13.41), the tip of the velocity vector describes a spiral for various values of z
(Figure 13.9a). As with the Ekman layer at a free surface, the frictional effects are confined

within a layer of thickness d ¼ ffiffiffiffiffiffiffiffiffiffiffi

2nv=f
p

, which increases with vv and decreases with the rota-

tion rate f. Interestingly, the layer thickness is independent of the magnitude of the free-
stream velocity U; this behavior is quite different from that of a steady nonrotating boundary
layer on a semi-infinite plate (the Blasius solution of Section 9.3) in which the thickness is

proportional to 1=
ffiffiffiffi

U
p

.
Figure 13.9b shows the vertical distribution of the velocity components. Far from the wall

the velocity is entirely in the x-direction, and the Coriolis force balances the pressure
gradient. As the wall is approached, frictional effects decrease u and the associated Coriolis
force, so that the pressure gradient (which is independent of z) forces a component v in the
direction of the pressure force. Using (13.41), the net transport in the Ekman layer normal to
the uniform stream outside the layer is

FIGURE 13.9 Ekman
layer above a rigid surface
for a steady outer-flow
velocity of U (parallel to
the x-axis). The left panel
shows velocity vectors at
various heights; values of
z/d are indicated along
the curve traced out by
the tip of the velocity
vectors. The right panel
shows vertical distribu-
tions of u and v.
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Z N

0
v dz ¼ U

�

nv

2f

�1=2

¼ 1

2
Ud,

which is directed to the left of the free-stream velocity, in the direction of the pressure force.
If the atmosphere were in laminar motion, nv would be equal to its molecular value for air,

and the Ekman layer thickness at a latitude of 45� (where f x 10�4 s�1) would bezd ~ 0.4 m.
The observed thickness of the atmospheric boundary layer is of order 1 km, which implies an
eddy viscosity of order nv ~ 50 m2/s. In fact, Taylor (1915) tried to estimate the eddy viscosity
by matching the predicted velocity distributions (13.41) with the observed wind at various
heights.

The Ekman layer solution on a solid surface demonstrates that the three-way balance
among the Coriolis force, the pressure force, and the frictional force within the boundary
layer results in a component of flow directed toward the lower pressure.

The balance of forces within the boundary layer is illustrated in Figure 13.10. The net
frictional force on an element is oriented approximately opposite to the velocity vector u.
It is clear that a balance of forces is possible only if the velocity vector has a component
from high to low pressure, as shown. Frictional forces therefore cause the flow around
a low-pressure center to spiral inward. Mass conservation requires that the inward
converging flow rise within a low-pressure system, resulting in cloud formation and rainfall.
This is what happens in a cyclone, a low-pressure system. In contrast, within a high-pressure
system the air sinks as it spirals outward due to frictional effects. The arrival of high-pressure
systems therefore brings in clear skies and fair weather, because the sinking air suppresses
cloud formation.

Frictional effects, in particular the Ekman transport by surface winds, play a fundamental
role in the theory of wind-driven ocean circulation. Possibly the most important result of

FIGURE 13.10 Balance of forces within an Ekman layer. For steady flow without friction, pressure and Coriolis
forces would balance. When friction is added, pressure and Coriolis forces must counteract it. Since friction acts
opposite the direction of flow, the velocity u must have a component toward lower pressure when friction is present.
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such theories was given by Henry Stommel in 1948. He showed that the northward increase
of the Coriolis parameter f is responsible for making the currents along western ocean bound-
aries (e.g., the Gulf Stream in the Atlantic and the Kuroshio in the Pacific) much stronger than
the currents on the eastern side. These are discussed in books on physical oceanography
and will not be presented here. Instead, we shall now turn our attention to the influence of
Coriolis forces on inviscid wave motions.

13.8. SHALLOW-WATER EQUATIONS

Surface and internal gravity waves were discussed in Chapter 7. There the effect of plan-
etary rotation was assumed to be small, which is valid if the frequency u of the wave is much
larger than the Coriolis parameter f. Here, we are considering phenomena slow enough for u
to be comparable to f. Consider surface gravity waves on a shallow layer of homogeneous
fluid whose mean depth is H. If we restrict ourselves to wavelengths l much larger than
H, then the vertical velocities are much smaller than the horizontal velocities. In Section
7.2 we determined that the pressure distribution is hydrostatic, and that fluid particles
execute a horizontal rectilinear motion that is independent of z. When the effects of planetary
rotation are included, the horizontal velocity is still depth independent, although the particle
orbits are no longer rectilinear but elliptic on a horizontal plane, as we shall see in the
following section.

Consider a layer of fluid of average depth H lying over a flat horizontal bottom
(Figure 13.11). Set z ¼ 0 on the bottom surface, and let h be the displacement of the free
surface. When the pressure on the fluid’s surface is set to zero, the pressure at height z
from the bottom, which is hydrostatic, is given by

p ¼ rgðH þ h� zÞ:
The horizontal pressure gradients are therefore

vp

vx
¼ rg

vh

vx
,

vp

vy
¼ rg

vh

vy
: (13.42)

FIGURE 13.11 Geometry for a fluid layer of average thickness H above a flat bottom coincident with z ¼ 0. At
any horizontal location the liquid’s surface height is H þ h.
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Since these are independent of z, the resulting horizontal motion is also depth independent
so vu/vx and vv/vy are independent of z. Therefore, the continuity equation, vu/vx þ vv/
vy þ vw/vz ¼ 0, requires that w vary linearly with z, from zero at the bottom to the
maximum value at the free surface. Integrating the continuity equation vertically across
the water column from z ¼ 0 to z ¼ H þ h, and noting that u and v are depth independent,
we obtain

ðH þ hÞvu
vx

þ ðH þ hÞvv
vy

þ wðhÞ � wð0Þ ¼ 0, (13.43)

where w(h) is the vertical velocity at the surface and w(0) ¼ 0 is the vertical velocity at the
bottom. The surface velocity is given by

wðhÞ ¼ Dh

Dt
¼ vh

vt
þ u

vh

vx
þ v

vh

vy
,

which we recognize as the exact kinematic boundary condition on a free surface with two
independent horizontal dimensions (cf. (7.17)). The continuity equation (13.43) then
becomes

ðH þ hÞvu
vx

þ ðH þ hÞvv
vy

þ vh

vt
þ u

vh

vx
þ v

vh

vy
¼ 0,

which can be written as

vh

vt
þ v

vx

�

uðH þ hÞ
�

þ v

vy

�

vðH þ hÞ
�

¼ 0: (13.44)

This says simply that the divergence of the horizontal fluid transport depresses the free
surface. For small amplitude waves, the quadratic nonlinear terms can be neglected in
comparison to the linear terms, so that the divergence term in (13.44) simplifies to HV,u.

The linearized continuity and momentum equations are then:

vh

vt
þH

�

vu

vx
þ vv

vy

�

¼ 0,
vu

vt
� fv ¼ �g

vh

vx
, and

vv

vt
þ fu ¼ �g

vh

vy
: (13.45)

In the momentum equations of (13.45), the pressure gradient terms are written in the form
(13.42) and the nonlinear advective terms have been neglected under the small amplitude
assumption. Equations (13.45), called the shallow water equations, govern the motion of
a layer of fluid in which the horizontal scale is much larger than the depth of the layer.
These equations will be used in the following sections for studying various types of gravity
waves.

Although the preceding analysis has been formulated for a layer of homogeneous fluid,
(13.45) are applicable to internal waves in a stratified medium, if we replace H by the equiv-
alent depth He, defined by

c2 ¼ gHe, (13.46)

where c is the speed of long nonrotating internal gravity waves. This will be demonstrated in
the following section.
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13.9. NORMAL MODES IN A CONTINUOUSLY
STRATIFIED LAYER

In the preceding section we considered a homogeneous medium and derived the govern-
ing equations for waves of wavelength larger than the depth of the fluid layer. Now consider
a continuously stratified medium and assume that the horizontal scale of motion is much
larger than the vertical scale. The pressure distribution is therefore hydrostatic, and the line-
arized equations of motion are:

vu

vx
þ vv

vy
þ vw

vz
¼ 0, (13.47)

vu

vt
� fv ¼ � 1

r0

vp

vx
,
vv

vt
þ fu ¼ � 1

r0

vp

vy
, (13.48, 13.49)

0 ¼ �vp

vz
� gr,

vr

vt
� r0N

2

g
w ¼ 0, (13.50, 13.51)

where p and r represent perturbations of pressure and density from the state of rest. The
advective term in the density equation (13.51) is written in the linearized form
wðdr=dzÞ ¼ �r0N

2w=g, whereN(z) is the buoyancy frequency. In this form the rate of change
of density at a point is assumed to be due only to the vertical advection of the background
density distribution rðzÞ, as discussed in Section 7.8.

In a continuously stratified medium, it is convenient to use the method of separation of
variables and write q ¼ P

qnðx,y, tÞjnðzÞ for a dependent-field variable q. The solution is
thus written as the sum of various vertical modes jn(z), which are called normal modes
because they turn out to be orthogonal to each other. The vertical structure of a mode is
described by jn while qn describes the horizontal propagation of the mode. Although each
mode propagates only horizontally, the sum of a number of modes can also propagate verti-
cally if the various qn are out of phase.

We assume separable solutions of the form:

½u,v, p=r0� ¼
X
N

n¼ 0

½un,vn,pn�jnðzÞ, (13.52)

w ¼
X
N

n¼ 0

wn

Z z

�H
jnðzÞ dz, (13.53)

r ¼
X
N

n¼ 0

rn
djn

dz
, (13.54)

where the amplitudes un, vn, pn, wn, and rn are functions of (x,y,t). The z-axis is measured from
the upper free surface of the fluid layer, and z ¼ �H represents the bottom wall. The reasons
for assuming the various forms of z-dependence in (13.52) through (13.54) are the following:
Variables u, v, and p have the same vertical structure in order to be consistent with (13.48) and
(13.49). The continuity equation (13.47) requires that the vertical structure of w should be the
integral of jn(z). Equation (13.50) requires that the vertical structure of r must be the z-deriv-
ative of the vertical structure of p.
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Substitution of (13.53) and (13.54) into (13.51) gives

X
N

n¼ 0

�

vrn

vt

djn

dz
� r0N

2

g
wn

Z z

�H
jn dz

�

¼ 0:

This is valid for all values of z, and the modes are linearly independent, so the quantity
within brackets must vanish for each mode, which implies

djn=dz

N2
R z
�Hjn dz

¼ r0

g

wn

vrn=vt
h � 1

c2n
: (13.55)

As the first term is a function of z alone and the second term is a function of (x,y,t) alone, for
consistency both terms must be equal to a constant that we take to be �1=c2n. The vertical
structure is then given by

1

N2

djn

dz
¼ � 1

c2n

Z z

�H
jn dz:

Taking the z-derivative,

d

dz

�

1

N2

djn

dz

�

þ 1

c2n
jn ¼ 0, (13.56)

which is the differential equation governing the vertical structure of the normal modes. Equa-
tion (13.56) has the so-called Sturm-Liouville form, for which the various solutions are
orthogonal.

Equation (13.55) also gives

wn ¼ � g

r0c2n

vrn

vt
:

Substitution of (13.52) through (13.54) into (13.47) through (13.51) finally gives the normal
mode equations:

vun
vx

þ vvn
vy

þ 1

c2n

vpn
vt

¼ 0, (13.57)

vun
vt

� fvn ¼ �vpn
vx

,
vvn
vt

þ fun ¼ �vpn
vy

, (13.58, 13.59)

pn ¼ � g

r0
rn, wn ¼ 1

c2n

vpn
vt

: (13.60, 13.61)

Once (13.57) through (13.59) have been solved for un, vn, and pn, the amplitudes rn and wn can
be obtained from (13.60) and (13.61). The set (13.57) through (13.59) is identical to the set
(13.45) governing the motion of a homogeneous layer, provided pn is identified with gh and
c2n is identified with gH. In a stratified flow each mode (having a fixed vertical structure)
behaves, in the horizontal dimensions and in time, just like a homogeneous layer, with an
equivalent depth He defined by

c2nh gHe: (13.62)
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Boundary Conditions on jn

At the bottom of the fluid layer, the boundary condition is

w ¼ 0 at z ¼ �H:

To write this condition in terms of jn, we first combine the hydrostatic equation (13.50) and
the density equation (13.51) to give w in terms of p:

w ¼ gðvr=vtÞ
r0N2

¼ � 1

r0N2

v2p

vz vt
¼ � 1

N2

X
N

n¼ 0

vpn
vt

djn

dz
: (13.63)

The requirement w ¼ 0 then yields the bottom boundary condition:

djn

dz
¼ 0 at z ¼ �H: (13.64)

We now formulate the surface boundary condition. The linearized surface boundary
conditions are:

w ¼ vh

vt
, p ¼ r0gh at z ¼ 0, (13.65’)

where h is the free surface displacement. These conditions can be combined into:

vp

vt
¼ r0gw at z ¼ 0:

Using (13.63) this becomes:

g

N2

v2p

vz vt
þ vp

vt
¼ 0 at z ¼ 0:

Substitution of the normal mode decomposition (13.52) gives:

djn

dz
þN2

g
jn ¼ 0 at z ¼ 0: (13.65)

The boundary conditions on jn are therefore (13.64) and (13.65).

Vertical Mode Solution for Uniform N

For a medium of uniform N, a simple solution can be found for jn. From (13.56), (13.64),
and (13.65), the vertical structure of the normal modes is given by

d2jn

dz2
þN2

c2n
jn ¼ 0, (13.66)

with the boundary conditions (13.64) and (13.65). The set (13.64) through (13.66) defines an
eigenvalue problem, with jn as the eigenfunction and cn as the eigenvalue. The solution of
(13.66) is
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jn ¼ An cos
Nz

cn
þ Bn sin

Nz

cn
: (13.67)

Application of the surface boundary condition (13.65) gives

Bn ¼ �cnN

g
An: (13.68)

The bottom boundary condition (13.64) then gives

tan
NH

cn
¼ cnN

g
, (13.69)

whose roots define the eigenvalues of the problem.
The solution of (13.69) is indicated graphically in Figure 13.12. The first root occurs for

NH/cn ¼ 1, for which we can write tan(NH/cn) z NH/cn, so that (13.69) gives (indicating
this root by n ¼ 0):

c0 ¼ ffiffiffiffiffiffiffi

gH
p

: (13.70)

The vertical modal structure is found from (13.67). Because the magnitude of an eigenfunc-
tion is arbitrary, we can set A0 ¼ 1, obtaining

j0 ¼ cos
Nz

c0
� c0N

g
sin

Nz

c0
x 1�N2z

g
x 1,

FIGURE 13.12 Calculation of eigenvalues cn of vertical normal modes in a fluid layer of depth H and uniform
stratification N. The eigenvalues occur where the curves defined by cnN/g and tan(NH/cn) cross. As drawn, these
crossing points lie slightly above np for n ¼ 0, 1, and 2.
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where we have used Njzj/c0 � 1 (with NH/c0 � 1), and N2z/g � 1 (with N2H/g ¼
(NH/c0)(c0N/g) � 1, both sides of (13.69) being much less than 1). For this mode the vertical
structure of u, v, and p is therefore nearly depth independent. The corresponding structure for
w (given by ! j0 dz, as indicated in (13.53)) is linear in z, with zero at the bottom and
a maximum at the upper free surface. A stratified medium therefore has a mode of motion
that behaves like that in an unstratified medium; this mode does not feel the stratification.
The n ¼ 0 mode is called the barotropic mode.

The remaining modes n � 1 are baroclinic. For these modes cnN/g � 1 but NH/cn is not
small, as can be seen in Figure 13.12, so that the baroclinic roots of (13.69) are nearly given by

tan
NH

cn
¼ 0,

which gives

cn ¼ NH

np
, n ¼ 1, 2, 3, .: (13.71)

Taking a typical depth-average oceanic value of N ~ 10�3 s�1 and H ~ 5 km, the eigenvalue
for the first baroclinic mode is c1 ~ 2 m/s. The corresponding equivalent depth is
He ¼ c21=gw 0:4 m.

An examination of the algebraic steps leading to (13.69) shows that neglecting the right-
hand side is equivalent to replacing the upper boundary condition (13.65) by w ¼ 0 at
z ¼ 0. This is called the rigid lid approximation. The baroclinic modes are negligibly distorted by
the rigid lid approximation. In contrast, the rigid lid approximation applied to the barotropic
mode would yield c0 ¼ N, as (13.71) shows for n ¼ 0. Note that the rigid lid approximation
does not imply that the free surface displacement corresponding to the baroclinic modes is
negligible in the ocean. In fact, excluding the wind waves and tides, much of the free surface
displacements in the ocean are due to baroclinic motions. The rigid lid approximation merely
implies that, for baroclinic motions, the vertical displacements at the surface are much
smaller than those within the fluid column. A valid baroclinic solution can therefore be
obtained by setting w ¼ 0 at z ¼ 0. Further, the rigid lid approximation does not imply that
the pressure is constant at the level surface z ¼ 0; if a rigid lid were actually imposed at
z ¼ 0, then the pressure on the lid would vary due to the baroclinic motions.

The vertical mode shape under the rigid lid approximation is given by the cosine
distribution

jn ¼ cos
npz

H
, n ¼ 0, 1, 2,.,

because it satisfies djn/dz ¼ 0 at z ¼ 0, �H. The nth mode jn has n zero crossings within the
layer (Figure 13.13).

A decomposition into normal modes is only possible in the absence of topographic varia-
tions and mean currents with shear. It is valid with or without Coriolis forces and with or
without the b-effect. However, the hydrostatic approximation here means that the frequencies
are much smaller than N. Under this condition the eigenfunctions are independent of the
frequency, as (13.56) shows. Without the hydrostatic approximation the eigenfunctions jn

become dependent on the frequency u. This is discussed, for example, in LeBlond andMysak
(1978).
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Summary

Small amplitude motion in a frictionless continuously stratified ocean can be decom-
posed in terms of noninteracting vertical normal modes. The vertical structure of each
mode is defined by an eigenfunction jn(z). If the horizontal scale of the waves is
much larger than the vertical scale, then the equations governing the horizontal propa-
gation of each mode are identical to those of a shallow homogeneous layer, with the layer
depth H replaced by an equivalent depth He defined by c2n ¼ gHe. For a medium of con-
stant N, the baroclinic (n � 1) eigenvalues are given by cn ¼ NH/pn, while the barotropic
eigenvalue is c0 ¼ ffiffiffiffiffiffiffi

gH
p

. The rigid lid approximation is quite good for the baroclinic
modes.

13.10. HIGH- AND LOW-FREQUENCY REGIMES IN
SHALLOW-WATER EQUATIONS

We shall now examine what terms are negligible in the shallow-water equations for the
various frequency ranges. Our analysis is valid for a single homogeneous layer or for a strat-
ified medium. In the latter case H has to be interpreted as the equivalent depth, and c has to
be interpreted as the speed of long nonrotating internal gravity waves. The b-effect is
considered in this section. As f varies only northward, horizontal isotropy is lost whenever
the b-effect is included, and it becomes necessary to distinguish between the different hori-
zontal directions. We shall follow the usual geophysical convention that the x-axis is
directed eastward and the y-axis is directed northward, with u and v the corresponding
velocity components.

FIGURE 13.13 Vertical distribu-
tions of the first three normal modes
in a stratified medium of uniform
buoyancy frequency for a fluid layer
of depth H. The first mode (n ¼ 0) is
nearly uniform through the depth.
The second mode (n ¼ 1) shows one-
half wavelength in eH < z < 0. The
third mode (n ¼ 2) shows one full
wavelength in eH < z < 0. Note that
all modes must have djn/dz ¼ 0 on
z ¼ eH, while djn/dz is only
approximately zero a z ¼ 0.
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The simplest way to perform the analysis is to examine the v-equation. A single equation
for v can be derived by first taking the time derivatives of the momentum equations in (13.45)
and using the continuity equation to eliminate vh/vt. This gives

v2u

vt2
� f

vv

vt
¼ gH

v

vx

�

vu

vx
þ vv

vy

�

,
v2v

vt2
þ f

vu

vt
¼ gH

v

vy

�

vu

vx
þ vv

vy

�

: (13.72, 13.73)

Now take v/vt of (13.73) and use (13.72) to obtain

v3v

vt3
þ f

�

f
vv

vt
þ gH

v

vx

�

vu

vx
þ vv

vy

��

¼ gH
v2

vy vt

�

vu

vx
þ vv

vy

�

: (13.74)

To eliminate u, we first obtain a vorticity equation by cross differentiating and subtracting the
momentum equations in (13.45):

v

vt

�

vu

vy
� vv

vx

�

� f0

�

vu

vx
þ vv

vy

�

� bv ¼ 0:

Here, we have made the customary b-plane approximation valid if the y-scale is small
enough so that Df/f � 1. Accordingly, we have treated f as constant (and replaced it by an
average value f0) except when df/dy appears; this is why we have written f0 in the second
term of the preceding equation. Taking the x-derivative, multiplying by gH, and adding to
(13.74), we finally obtain a vorticity equation in terms of v only:

v3v

vt3
� gH

v

vt
V2
Hvþ f20

vv

vt
� gHb

vv

vx
¼ 0, (13.75)

where V2
H ¼ v2=vx2 þ v2=vy2 is the horizontal Laplacian operator.

Equation (13.75) is Boussinesq, linear, and hydrostatic, but otherwise quite general in the
sense that it is applicable to both high and low frequencies. Consider wave solutions of the
form

v ¼ bv eiðkxþly�utÞ,

where k is the eastward wave number and l is the northward wave number. Then (13.75)
gives

u3 � c2uK2 � f20u� c2bk ¼ 0, (13.76)

where K2 ¼ k2 þ l2 and c ¼ ffiffiffiffiffiffiffi

gH
p

. It can be shown that all roots of (13.76) are real, two of the
roots being superinertial (u [ f ) and the third being subinertial (u � f ). Equation (13.76) is
the complete dispersion relation for linear shallow-water equations. In various parametric
ranges it takes simpler forms, representing simpler waves.

First, consider high-frequency waves u [ f. The third term of (13.76) is negligible
compared to the first term. Moreover, the fourth term is also negligible in this range.
Compare, for example, the fourth and second terms:

c2bk

c2uK2
w

b

uK
w 10�3,
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where we have assumed typical values of b ¼ 2 � 10�11 m�1 s�1, u ¼ 3f ~ 3 � 10�4 s�1, and
2p/K ~ 100 km. For u [ f, therefore, the balance is between the first and second terms in
(13.76), and the roots are u ¼ �K

ffiffiffiffiffiffiffi

gH
p

, which correspond to a propagation speed of
u=K ¼ ffiffiffiffiffiffiffi

gH
p

. The effects of both f and b are therefore negligible for high-frequency waves,
as is expected as they are too fast to be affected by the Coriolis effects.

Next consider u > f, but u ~ f. Then the third term in (13.76) is not negligible, but the
b-effect is. These are gravity waves influenced by Coriolis forces; gravity waves are discussed
in the next section. However, the time scales are still too short for the motion to be affected by
the b-effect.

Last, consider very slow waves for which u � f. Then the b-effect becomes important,
and the first term in (13.76) becomes negligible. Compare, for example, the first and the
last terms:

u3

c2bk
� 1:

Typical values for the ocean are c ~ 200 m/s for the barotropic mode, c ~ 2 m/s for the bar-
oclinic mode, b ¼ 2 � 10�11 m�1 s�1, 2p/k ~ 100 km, and u ~ 10�5 s�1. This makes the afore-
mentioned ratio about 0.2� 10�4 for the barotropic mode and 0.2 for the baroclinic mode. The
first term in (13.76) is therefore negligible for u [ f.

Equation (13.75) governs the dynamics of a variety of wave motions in the ocean and the
atmosphere, and the discussion in this section shows what terms can be dropped under
various limiting conditions. An understanding of these limiting conditions will be useful
in the following sections.

13.11. GRAVITY WAVES WITH ROTATION

In this chapter we examine several free-wave solutions of the shallow-water equations. In
this section we focus on gravity waves with frequencies in the range u > f, for which the b-
effect is negligible, as demonstrated in the preceding section. Consequently, the Coriolis
frequency f is regarded as constant here. Consider progressive waves of the form

ðu,v,hÞ ¼ ðbu, bv, bhÞeiðkxþly�utÞ,

where bu, bv, and bh are the complex amplitudes, and the real part of the right-hand side is
meant. Then (13.45) gives

�iubu � fbv ¼ �ikgbh,� iubv þ fbu ¼ �ilgbh,� iubh þ iHðkbu þ lbvÞ ¼ 0: (13.77, 13.78, 13.79)

Solving for bu and bv between (13.77) and (13.78), we obtain:

bu ¼ gbh

u2 � f2
ðuk þ iflÞ,

bv ¼ gbh

u2 � f2
ð�ifk þ ulÞ:

(13.80)

13.11. GRAVITY WAVES WITH ROTATION 651



Substituting these in (13.79), we obtain

u2 � f2 ¼ gHðk2 þ l2Þ: (13.81)

This is the dispersion relation of gravity waves in the presence of Coriolis forces. (The rela-
tion can be most simply derived by setting the determinant of the set of linear homogeneous
equations (13.77) through (13.79) to zero.) It can be written as

u2 ¼ f2 þ gHK2, (13.82)

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ l2
p

is the magnitude of the horizontal wave number. The dispersion relation
shows that the waves can propagate in any horizontal direction and have u > f. Gravity
waves affected by Coriolis forces are called Poincaré waves, Sverdrup waves, or simply rotational
gravity waves. (Sometimes the name “Poincaré wave” is used to describe those rotational
gravity waves that satisfy the boundary conditions in a channel.) In spite of its names, the
solution was first worked out by Kelvin (Gill, 1982, p. 197). A plot of (13.82) is shown in
Figure 13.14. It is seen that the waves are dispersive except for u [ f when equation
(13.82) gives u2 z gHK2, so that the propagation speed is u=K ¼ ffiffiffiffiffiffiffi

gH
p

. The high-frequency
limit agrees with our previous discussion of surface gravity waves unaffected by Coriolis
forces.

Particle Orbit

The symmetry of the dispersion relation (13.81) with respect to k and l means that the
x- and y-directions are not felt differently by the wave field. The horizontal isotropy is a result
of treating f as constant. (We shall see later that Rossby waves, which depend on the b-effect,
are not horizontally isotropic.) We can therefore orient the x-axis along the wave number

FIGURE 13.14 Dispersion rela-
tions for Poincaré and Kelvin waves.
Here, u is the wave frequency. K is
the magnitude of the wave number,
and f is the local inertial frequency.
At frequencies u[ f, the ordinary
shallow-water wave dispersion rela-
tionship u2 ¼ gHK2 is recovered.
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vector and set l ¼ 0, so that the wave field is invariant along the y-axis. To find the particle
orbits, it is convenient to work with real quantities. Let the displacement be

h ¼ bh cosðkx� utÞ,
where bh is real. The corresponding velocity components can be found by multiplying (13.80)
by exp(ikx � iut) and taking the real part of both sides. This gives

u ¼ ubh

kH
cosðkx� utÞ,

v ¼ fbh

kH
sinðkx� utÞ:

(13.83)

To find the particle paths, take x ¼ 0 and consider three values of time corresponding to
ut ¼ 0, p/2, and p. The corresponding values of u and v from (13.83) show that the
velocity vector rotates clockwise (in the northern hemisphere) in elliptic paths
(Figure 13.15). The ellipticity is expected, since the presence of Coriolis forces means
that fu must generate vv/vt according to the equation of motion (13.45). (In equation
(13.45), vh/vy ¼ 0 due to our orienting the x-axis along the direction of propagation of
the wave.) Particles are therefore constantly deflected to the right by the Coriolis force,
resulting in elliptic orbits. The ellipses have an axis ratio of u/f and the major axis is oriented
in the direction of wave propagation. The ellipses become narrower as u/f increases,
approaching the rectilinear orbit of gravity waves unaffected by planetary rotation.
However, the sea surface in a rotational gravity wave is no different from that for ordinary
gravity waves, namely oscillatory in the direction of propagation and invariant in the
perpendicular direction.

Inertial Motion

Consider the limit u / f, that is, when the particle paths are circular. The dispersion rela-
tion (13.82) then shows that K / 0, implying a horizontal uniformity of the flow field. Equa-
tion (13.79) shows that bh must tend to zero in this limit, so that there are no horizontal

FIGURE13.15 Particle orbit in
a gravity wave traveling in the
positive x-direction.Lookingdown
on the surface, the orbit is an
ellipse having major and minor
axes proportional to the wave
frequency u and the inertial
frequency f. Velocity components
corresponding to ut ¼ 0, p/2, and
p are indicated.
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pressure gradients in this limit. Because vu/vx ¼ vv/vy ¼ 0, the continuity equation shows
that w ¼ 0. The particles therefore move on horizontal sheets, each layer decoupled from
the one above and below it. The balance of forces is

vu=vt� fv ¼ 0 and vv=vtþ fu ¼ 0:

The solution of this set is of the form

u ¼ q cosðftÞ and v ¼ �q sinðftÞ,
where the speed q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

is constant along the path. The radius r of the orbit can be
found by adopting a Lagrangian point of view, and noting that the equilibrium of forces
is between the Coriolis acceleration fq and the centrifugal acceleration ru2 ¼ rf 2, giving
r ¼ q/f. The limiting case of motion in circular orbits at a frequency f is called inertial motion,
because in the absence of pressure gradients a particle moves by virtue of its inertia alone.
The corresponding period 2p/f is called the inertial period. In the absence of planetary
rotation such motion would be along straight lines; in the presence of Coriolis forces the
motion is along circular paths, called inertial circles. Near-inertial motion is frequently
generated in the surface layer of the ocean by sudden changes of the wind field, essentially
because the equations of motion (13.45) have a natural frequency f. Taking a typical current
magnitude of q ~ 0.1 m/s, the radius of the orbit is r ~ 1 km.

13.12. KELVIN WAVE

In the preceding sectionwe considered a shallow-water gravity wave propagating in a hor-
izontally unbounded ocean. We saw that the crests are horizontal and oriented in a direction
perpendicular to the direction of propagation. The absence of a transverse pressure gradient
vh/vy resulted in a transverse flow and elliptic orbits. This is clear from the third equation in
(13.45), which shows that the presence of fu must result in vv/vt if vh/vy ¼ 0. In this section
we consider a gravity wave propagating parallel to a wall, whose presence allows a pressure
gradient vh/vy that can decay away from the wall. We shall see that this allows a gravity
wave in which fu is geostrophically balanced by �g(vh/vy), and v ¼ 0. Consequently the
particle orbits are not elliptic but rectilinear.

Consider first a gravity wave propagating in a channel. From Figure 7.5 we know that the
fluid velocity under a crest is in the direction of wave propagation, and that under a trough it
is the opposite. Figure 13.16 shows two transverse sections of the wave, one through a crest
(left panel) and the other through a trough (right panel). The wave is propagating into the
plane of the paper, along the x-direction. Then the fluid velocity under the crest is into the
plane of the paper and that under the trough is out of the plane of the paper. The constraints
of the sidewalls require that v ¼ 0 at the walls, and we are exploring the possibility of a wave
motion in which v is zero everywhere. Then the equation of motion along the y-direction
requires that fu can only be geostrophically balanced by a transverse slope of the sea surface
across the channel:

fu ¼ �g
vh

vy
:
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In the northern hemisphere, the surface must slope as indicated in the figure, that is, down-
ward to the left under the crest and upward to the left under the trough, so that the pressure
force has the current directed to its right. The result is that the amplitude of the wave is
larger on the right-hand side of the channel, looking into the direction of propagation, as
indicated in Figure 13.16. The current amplitude, like the surface displacement, also decays
to the left.

If the left wall in Figure 13.16 is moved away to infinity, we get a gravity wave trapped to
the coast (Figure 13.17). A coastally trapped long gravity wave, in which the transverse
velocity v ¼ 0 everywhere, is called a Kelvin wave. It is clear that it can propagate only in
a direction such that the coast is to the right (looking in the direction of propagation) in
the northern hemisphere and to the left in the southern hemisphere. The opposite direction
of propagation would result in a sea surface displacement increasing exponentially away
from the coast, which is not possible.

FIGURE 13.17 Coastal Kelvin wave propagating along the x-axis. The sea surface shape across a section
through a crest is indicated by the continuous line, and that along a trough is indicated by the dashed line.

FIGURE 13.16 Free surface distribution in a Kelvin gravity wave propagating into the plane of the paper (the
x-direction) within a channel. The wave crests and troughs are enhanced on the right side of the channel.
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An examination of the transverse momentum equation,

vv

vt
þ fu ¼ �g

vh

vy
,

reveals fundamental differences between Poincaré waves and Kelvin waves. For a Poincaré
wave the crests are horizontal, and the absence of a transverse pressure gradient requires
a vv/vt to balance the Coriolis force, resulting in elliptic orbits. In a Kelvin wave a transverse
velocity is prevented by a geostrophic balance of fu and �gðvh=vyÞ.

From the shallow-water set (13.45), the equations of motion for a Kelvin wave propagating
along a coast aligned with the x-axis (Figure 13.17) are:

vh

vt
þH

vu

vx
¼ 0,

vu

vt
¼ �g

vh

vx
, and fu ¼ �g

vh

vy
: (13.84)

Assume a solution of the form:

½u,h� ¼
h

buðyÞ, bhðyÞ
i

eiðkx�utÞ:

Then (13.84) gives

�iubh þ iHkbu ¼ 0,

�iubu ¼ �igkbh,

fbu ¼ �g
dbh

dy
:

(13.85)

The dispersion relation can be found solely from the first two of these equations; the third
equation then determines the transverse structure. Eliminating û between the first two, we
obtain

bh

h

u2 � gHk2
i

¼ 0:

A nontrivial solution is therefore possible only if u ¼ �k
ffiffiffiffiffiffiffi

gH
p

, so that the wave propagates
with a nondispersive speed:

c ¼ ffiffiffiffiffiffiffi

gH
p

: (13.86)

The propagation speed of a Kelvin wave is therefore identical to that of nonrotating gravity waves. Its
dispersion equation is a straight line and is shown in Figure 13.14. All frequencies are
possible.

To determine the transverse structure, eliminate bu between the first and third equation of
(13.85), giving

dbh

dy
� f

c
bh ¼ 0:

The solution that decays away from the coast is

bh ¼ h0 e
�fy=c,
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where h0 is the amplitude at the coast. Therefore, the sea surface slope and the velocity field
for a Kelvin wave have the form:

h ¼ h0 e
�fy=c cos kðx� ctÞ,

u ¼ h0

ffiffiffiffi

g

H

r

e�fy=c cos kðx� ctÞ,
(13.87)

where we have taken the real parts, and have used equation (13.85) in obtaining the u
field.

Equations (13.87) show that the transverse decay scale of the Kelvin wave is

Lh
c

f
,

which is called the Rossby radius of deformation. For a deep sea of depth H ¼ 5 km, and a mid-

latitude value of f ¼ 10�4 s�1, we obtain c ¼ ffiffiffiffiffiffiffi

gH
p ¼ 220 m=s and L ¼ c/f ¼ 2200 km. Tides

are frequently in the form of coastal Kelvin waves of semidiurnal frequency. The tides are
forced by the periodic changes in the gravitational attraction of the moon and the sun. These
waves propagate along the boundaries of an ocean basin and cause sea level fluctuations at
coastal stations.

Analogous to the surface or “external” Kelvin waves discussed in the preceding para-
graphs, we can have internal Kelvin waves at the interface between two fluids of different
densities (Figure 13.18). If the lower layer is very deep, then the speed of propagation is given
by (see (7.117)):

c ¼
ffiffiffiffiffiffiffiffi

g0H
p

,

FIGURE 13.18 Internal Kelvin wave at an interface. Dashed line indicates position of the interface when it is at
its maximum height. Displacement of the free surface is much smaller than that of the interface and is oppositely
directed.
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where H is the thickness of the upper layer and g0 ¼ g(r2 � r1)/r2 is the reduced gravity. For
a continuously stratified medium of depth H and buoyancy frequency N internal Kelvin
waves can propagate at any of the normal mode speeds

c ¼ NH=np, n ¼ 1, 2,.:

The decay scale for internal Kelvin waves, L ¼ c/f, is called the internal Rossby radius of defor-
mation, whose value is much smaller than that for the external Rossby radius of deformation.
For n ¼ 1, a typical value in the ocean is L ¼ NH/pf ~ 50 km; a typical atmospheric value is
much larger, being of order L ~ 1000 km.

Internal Kelvin waves in the ocean are frequently forced by wind changes near coastal
areas. For example, a southward wind along the west coast of a continent in the northern
hemisphere (say, California) generates an Ekman layer at the ocean surface, in which the
mass flow is away from the coast (to the right of the applied wind stress). The mass flux
in the near-surface layer is compensated by the movement of deeper water toward the
coast, which raises the thermocline. An upward movement of the thermocline, as indicated
by the dashed line in Figure 13.18, is called upwelling. The vertical movement of the thermo-
cline in the wind-forced region then propagates poleward along the coast as an internal
Kelvin wave.

13.13. POTENTIAL VORTICITY CONSERVATION
IN SHALLOW-WATER THEORY

In this section we shall derive a useful conservation law for the vorticity of a shallow layer
of fluid. From Section 13.8, the equations of motion for a shallow layer of homogeneous fluid
are:

vu

vt
þ u

vu

vx
þ v

vu

vy
� fv ¼ �g

vh

vx
, (13.88)

vv

vt
þ u

vv

vx
þ v

vv

vy
þ fu ¼ �g

vh

vy
, (13.89)

vh

vt
þ v

vx
ðuhÞ þ v

vy
ðvhÞ ¼ 0, (13.90)

where h(x,y,t) is the depth of flow and h is the height of the sea surface measured from an
arbitrary horizontal plane (Figure 13.19). The x-axis is taken eastward and the y-axis is
taken northward, with u and v the corresponding velocity components. The Coriolis
frequency f ¼ f0 þ by is regarded as dependent on latitude. The nonlinear terms have
been retained, including those in the continuity equation, which has been written in the
form (13.44); note that h ¼ H þ h. We saw in Section 13.8 that the constant density of the
layer and the hydrostatic pressure distribution make the horizontal pressure gradient
depth independent, so that only a depth-independent current can be generated. The
vertical velocity is linear in z.

Avorticity equation can be derived by differentiating (13.88) with respect to y, (13.89) with
respect to x, and subtracting. As expected, these steps eliminate the pressure, and we obtain:

13. GEOPHYSICAL FLUID DYNAMICS658



v

vt

�

vv

vx
� vu

vy

�

þ v

vx

�

u
vv

vx
þ v

vv

vy

�

� v

vy

�

u
vu

vx
þ v

vu

vy

�

þ f0

�

vu

vx
þ vv

vy

�

þ bv ¼ 0: (13.91)

Following the customary b-plane approximation, we have treated f as constant (and
replaced it by an average value f0) except when df/dy appears. We now introduce

zh
vv

vx
� vu

vy

as the vertical component of relative vorticity, that is, the vorticity measured relative to the
rotating earth. Then the nonlinear terms in (13.91) can easily be rearranged in the form

u
vz

vx
þ v

vz

vy
þ
�

vu

vx
þ vv

vy

�

z:

Equation (13.91) then becomes

vz

vt
þ u

vz

vx
þ v

vz

vy
þ
�

vu

vx
þ vv

vy

�

ðzþ f0Þ þ bv ¼ 0,

which can be written as

Dz

Dt
þ ðzþ f0Þ

�

vu

vx
þ vv

vy

�

þ bv ¼ 0, (13.92)

where D/Dt is the derivative following the horizontal motion of the layer:

D

Dt
h

v

vt
þ u

v

vx
þ v

v

vy
:

The horizontal divergence (vu/vx þ vv/vy) in (13.92) can be eliminated by using the conti-
nuity equation (13.90), which can be written as

Dh

Dt
þ h

�

vu

vx
þ vv

vy

�

¼ 0:

FIGURE 13.19 Shallow layer of instantaneous depth h(x,y,t) when the ocean bottom is not flat. Here h is the sea
surface deflection measured from a conveniently chosen horizontal plane.
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Equation (13.92) then becomes

Dz

Dt
¼ zþ f0

h

Dh

Dt
� bv:

This can be written as

Dðzþ fÞ
Dt

¼ zþ f0
h

Dh

Dt
, (13.93)

where we have used

Df

Dt
¼ vf

vt
þ u

vf

vx
þ v

vf

vy
¼ vb:

Because of the absence of vertical shear, the vorticity in a shallow-water model is purely
vertical and independent of depth. The relative vorticity measured with respect to the
rotating earth is z, while f is the planetary vorticity, so that the absolute vorticity is (z þ f).
Equation (13.93) shows that the rate of change of absolute vorticity is proportional to the
absolute vorticity times the vertical stretching Dh/Dt of the water column. It is apparent
that Dz/Dt can be nonzero even if z ¼ 0 initially. This is different from a nonrotating
flow in which stretching a fluid line changes its vorticity only if the line has an initial
vorticity. (This is why the process was called the vortex stretching; see Section 5.7.) The
difference arises because vertical lines in a rotating earth contain the planetary vorticity
even when z ¼ 0. Note that the vortex tilting term, discussed in Section 5.6, is absent in
the shallow-water theory because the water moves in the form of vertical columns without
ever tilting.

Equation (13.93) can be written in the compact form

D

Dt

�

2þ f

h

�

¼ 0, (13.94)

where f ¼ f0 þ by, and we have assumed by � f0. The ratio (z þ f)/h is called the potential
vorticity in shallow-water theory. Equation (13.94) shows that the potential vorticity is conserved
along the motion, an important principle in geophysical fluid dynamics. In the ocean, outside
regions of strong current vorticity such as coastal boundaries, the magnitude of z is much
smaller than that of f. In such a case (z þ f ) has the sign of f. The principle of conservation
of potential vorticity means that an increase in h must make (z þ f ) more positive in the
northern hemisphere and more negative in the southern hemisphere.

As an example of application of the potential vorticity equation, consider an eastward flow
over a step (at x ¼ 0) running north�south, across which the layer thickness changes discon-
tinuously from h0 to h1 (Figure 13.20). The flow upstream of the step has a uniform speed U,
so that the oncoming stream has no relative vorticity. To conserve the ratio (z þ f )/h, the flow
must suddenly acquire negative (clockwise) relative vorticity due to the sudden decrease in
layer thickness. The relative vorticity of a fluid element just after passing the step can be
found from

f

h0
¼ zþ f

h1
,
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giving z ¼ f(h1 � h0)/h0 < 0, where f is evaluated at the upstream latitude of the streamline.
Because of the clockwise vorticity, the fluid starts to move south at x ¼ 0. The southward
movement decreases f, so that z must correspondingly increase to keep ( f þ z) constant.
This means that the clockwise curvature of the stream reduces, and eventually becomes
a counterclockwise curvature. In this manner an eastward flow over a step generates
stationary undulatory flow on the downstream side. In Section 13.15 we shall see that
the stationary oscillation is due to a Rossby wave generated at the step whose westward
phase velocity is canceled by the eastward current. We shall see that the wavelength is
2p

ffiffiffiffiffiffiffiffiffi

U=b
p

.
Suppose we try the same argument for a westward flow over a step. Then a particle

should suddenly acquire clockwise vorticity as the depth of flow decreases at x ¼ 0, which

FIGURE 13.21 Westward flow over a step change in depth. Unlike the eastward flow depicted in Figure 13.20,
the westward flow is not oscillatory and feels the upstream influence of the step. Looking down from above, the
step causes one southward deflection that starts before the step and recovers after it.

FIGURE 13.20 Eastward flow over a step change in depth. Looking down from above, the step causes
southward deflection of the streamlines that is eventually countered by latitude change and results in stationary
spatial oscillations of wavelength 2p

ffiffiffiffiffiffiffiffiffi

U=b
p

.
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would require the particle to move north. It would then come into a region of larger f,
which would require z to decrease further. Clearly, an exponential behavior is predicted,
suggesting that the argument is not correct. Unlike an eastward flow, a westward current
feels the upstream influence of the step so that it acquires a counterclockwise curvature before
it encounters the step (Figure 13.21). The positive vorticity is balanced by a reduction in f,
which is consistent with conservation of potential vorticity. At the location of the step the
vorticity decreases suddenly. Finally, far downstream of the step a fluid particle is again
moving westward at its original latitude. The westward flow over a topography is not
oscillatory.

13.14. INTERNAL WAVES

In Chapter 7.8 we studied internal gravity waves unaffected by Coriolis forces. We saw
that they are not isotropic; in fact the direction of propagation with respect to the vertical
determines their frequency. We also saw that their frequency satisfies the inequality u 	
N, where N is the buoyancy frequency. Their phase-velocity vector c and the group-velocity
vector cg are perpendicular and have oppositely directed vertical components (Figure 7.29
and Figure 7.31). That is, phases propagate upward if the groups propagate downward,
and vice versa. In this section we shall study the effect of Coriolis forces on internal waves,
assuming that f is independent of latitude.

Internal waves are ubiquitous in the atmosphere and the ocean. In the lower atmosphere
turbulent motions dominate, so that internal wave activity represents a minor component of
the motion. In contrast, the stratosphere contains a great deal of internal wave activity, and
very little convective motion, because of its stable density distribution. They generally prop-
agate upward from the lower atmosphere, where they are generated. In the ocean they may
be as common as the waves on the surface, and measurements show that they can cause the
isotherms to go up and down by as much as 50�100 m. Sometimes the internal waves break
and generate smaller-scale turbulence in a somewhat similar manner to bubble and foam
generation by breaking surface waves.

We shall now examine the nature of the fluid motion in internal waves. The equations of
motion are:

vu

vx
þ vv

vy
þ vw

vz
¼ 0,

vu

vt
� fv ¼ � 1

r0

vp

vx
,

vv

vt
þ fu ¼ � 1

r0

vp

vy
,

vw

vt
¼ � 1

r0

vp

vz
� rg

r0
,

vr

vt
� r0N

2

g
w ¼ 0:

(13.95)
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We have not made the hydrostatic assumption because we are not assuming that the hori-
zontal wavelength is long compared to the vertical wavelength. The advective term in the
density equation is written in a linearized form wðdr=dzÞ ¼ �r0N

2w=g. Thus the rate of
change of density at a point is assumed to be due only to the vertical advection of the back-
ground density distribution rðzÞ. Because internal wave activity is more intense in the ther-
mocline whereN varies appreciably (Figure 13.2), we shall be somewhat more general than in
Chapter 7 and let N be depth independent.

An equation forw can be formed from the set (13.95) by eliminating all other variables. The
algebraic steps of such a procedure are shown in Section 7.8 without the Coriolis forces. This
gives

v2

vt2
V2wþN2V2

Hwþ f2
v2w

vz2
¼ 0, (13.96)

where V2hv2=vx2 þ v2=vy2 þ v2=vz2 and V2
Hhv2=vx2 þ v2=vy2: Because the coefficients in

(13.96) are independent of the horizontal directions, equation (13.96) can have solutions
that are trigonometric in x and y. We therefore assume a solution of the form

½u, v,w� ¼ ½bu ðzÞ, bvðzÞ, bwðzÞ� eiðkxþly�utÞ: (13.97)

Substitution into (13.96) gives

ð�iuÞ2
"

ðikÞ2 þ ðilÞ2 þ d2

dz2

#

bw þN2

"

ðikÞ2 þ ðilÞ2
#

bw þ f2
d2 bw

dz2
¼ 0,

from which we obtain

d2 bw

dz2
þ ðN2 � u2Þðk2 þ l2Þ

u2 � f2
bw ¼ 0: (13.98)

Defining

m2ðzÞh ðk2 þ l2Þ½N2ðzÞ � u2�
u2 � f2

, (13.99)

equation (13.98) becomes

d2 bw

dz2
þm2

bw ¼ 0: (13.100)

Form2< 0, the solutions of (13.100) are exponential in z signifying that the resulting motion is
surface-trapped. It represents a surface wave propagating horizontally. For a positive m2, on
the other hand, solutions are trigonometric in z, giving internal waves propagating vertically
as well as horizontally. From (13.99), therefore, internal waves are possible only in the
frequency range:

f < u < N,

where we have assumed N > f, as is true for much of the atmosphere and the ocean.
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WKB Solution

To proceed further, we assume that N(z) is a slowly varying function in that its fractional
change over a vertical wavelength is much less than unity. We are therefore considering only
those internal waves whose vertical wavelength is short compared to the scale of variation of
N. If H is a characteristic vertical distance over which N varies appreciably, then we are
assuming that

Hm[1:

For such slowly varying N(z), we expect that m(z) given by (13.99) is also a slowly varying
function, that is, m(z) changes by a small fraction in a distance 1/m. Under this assumption
the waves locally behave like plane waves, as if m is constant. This is the so-called WKB
approximation (after Wentzel-Kramers-Brillouin), which applies when the properties of the
medium (in this case N) are slowly varying.

To derive the approximate WKB solution of equation (13.100), we look for a solution in the
form

bw ¼ AðzÞeifðzÞ,
where the phase f and the (slowly varying) amplitude A are real. (No generality is lost by
assuming A to be real. Suppose it is complex and of the form A ¼ AexpðiaÞ, where A and
a are real. Then bw ¼ Aexp ½iðfþ aÞ�, a form in which (f þ a) is the phase.) Substitution
into (13.100) gives

d2A

dz2
þ A

"

m2 �
�

df

dz

�2
#

þ i2
dA

dz

df

dz
þ iA

d2f

dz2
¼ 0:

Equating the real and imaginary parts, we obtain

d2A

dz2
þ A

"

m2 �
�

df

dz

�2
#

¼ 0, 2
dA

dz

df

dz
þ A

d2f

dz2
¼ 0: (13.101, 13.102)

In (13.101) the term d2A/dz2 is negligible because its ratio with the second term is

d2A=dz2

Am2
w

1

H2m2
� 1:

Equation (13.101) then becomes approximately

df

dz
¼ �m, (13.103)

whose solution is

f ¼ � R z m dz,

the lower limit of the integral being arbitrary.
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The amplitude is determined by writing (13.102) in the form

dA

A
¼ �ðd2f=dz2Þdz

2ðdf=dzÞ ¼ �ðdm=dzÞdz
2m

¼ �1

2

dm

m
,

where (13.103) has been used. Integrating, we obtain ln A ¼ �1

2
ln mþ const:, that is,

A ¼ A0
ffiffiffiffi

m
p ,

where A0 is a constant. The WKB solution of (13.100) is therefore

bw ¼ A0
ffiffiffiffi

m
p e�i

R z
m dz: (13.104)

Because of neglect of the b-effect, the waves must behave similarly in x and y, as indicated
by the symmetry of the dispersion relation (13.99) in k and l. Therefore, we lose no generality
by orienting the x-axis in the direction of propagation and taking:

k > 0 l ¼ 0 u > 0:

To find u and v in terms of w, use the continuity equation vu/vx þ vw/vz ¼ 0, noting that the
y-derivatives are zero because of our setting l ¼ 0. Substituting the wave solution (13.97) into
the continuity equation gives

ikbu þ dbw

dz
¼ 0: (13.105)

The z-derivative of bw in (13.104) can be obtained by treating the denominator
ffiffiffiffi

m
p

as approx-
imately constant because the variation of bw is dominated by the wiggly behavior of the local
plane wave solution. This gives

dbw

dz
¼ A0

ffiffiffiffi

m
p ð�imÞe�i

R z
m dz ¼ �iA0

ffiffiffiffi

m
p

e�i
R z

m dz,

so that equation (13.105) becomes

bu ¼ H
A0

ffiffiffiffi

m
p
k

e�i
R z

m dz: (13.106)

An expression for bv can now be obtained from the horizontal equations of motion in (13.95).
Cross differentiating, we obtain the vorticity equation

v

vt

�

vu

vy
� vv

vx

�

¼ f

�

vu

vx
þ vv

vy

�

:

Using the wave solution (13.97), this gives

bu

bv
¼ iu

f
:

Equation (13.106) then gives
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bv ¼ �if

u

A0
ffiffiffiffi

m
p
k

e�i
R z

m dz: (13.107)

Taking real parts of equations (13.104), (13.106), and (13.107), we obtain the velocity field:

u ¼ H
A0

ffiffiffiffi

m
p
k

cos

�

kx�
Z z

m dz� ut

�

,

v ¼ H
A0f

ffiffiffiffi

m
p

uk
sin

�

kx�
Z z

m dz� ut

�

,

w ¼ A0
ffiffiffiffi

m
p cos

�

kx�
Z z

m dz� ut

�

,

(13.108)

where the dispersion relation is

m2 ¼ k2ðN2 � u2Þ
u2 � f2

: (13.109)

The meaning of m(z) is clear from (13.108). If we call the argument of the trigonometric
terms the phase, then it is apparent that v(phase)/vz ¼ m(z), so that m(z) is the local vertical
wave number. Because we are treating k, m, u > 0, it is also apparent that the upper signs
represent waves with upward phase propagation, and the lower signs represent downward phase
propagation.

Particle Orbit

To find the shape of the hodograph in the horizontal plane, consider the point x ¼ z ¼ 0.
Then (13.108) gives:

u¼ Hcos ut,

v ¼ � f

u
sin ut,

(13.110)

where the amplitude of u has been arbitrarily set to one. Taking the upper signs in (13.110),
the values of u and v are indicated in Figure 13.22a for three values of time corresponding to
ut ¼ 0, p/2, and p. It is clear that the horizontal hodographs are clockwise ellipses, with the
major axis in the direction of propagation x, and the axis ratio is f/u. The same conclusion
applies for the lower signs in (13.110). The particle orbits in the horizontal plane are therefore
identical to those of Poincaré waves (Figure 13.15).

However, the plane of the motion is no longer horizontal. From the velocity components
equation (13.108), we note that

u

w
¼ H

m

k
¼ Htan q, (13.111)

where q ¼ tan�1(m/k) is the angle made by the wave number vector K with the horizontal
(Figure 13.23). For upward phase propagation, equation (13.111) gives u/w ¼ �tan q, so
that w is negative if u is positive, as indicated in Figure 13.23. A three-dimensional sketch
of the particle orbit is shown in Figure 13.22b. It is easy to show (Exercise 13.6) that the phase
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FIGURE 13.23 Vertical section of an internal wave. The three parallel lines are constant phase lines corre-
sponding to one full wavelength, with the arrows indicating fluid motion along the lines. The phase velocity is
perpendicular to the crests. The group velocity is parallel to the crests. The angle q of the wave number with respect
to the horizontal depends on the wave frequency u, the buoyancy frequency N, and the local inertial frequency f.

FIGURE 13.22 Particle orbit in an internal wave having x-direction wave number ks 0, and y-direction wave
number l ¼ 0. Theupper panel (a) shows aprojection on a horizontal plane; points corresponding tout ¼ 0,p/2, andp

are indicated. The sense of rotation is the same as that of the surface-gravity-wave particle orbit shown in Figure 13.15
and is valid for the northern hemisphere. The lower panel (b) shows a three-dimensional view of the orbit.
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velocity vector c is in the direction of K, that c and cg are perpendicular, and that the fluid
motion u is parallel to cg; these facts are discussed in Chapter 7 for internal waves unaffected
by Coriolis forces.

The velocity vector at any location rotates clockwise with time. Because of the vertical
propagation of phase, the tips of the instantaneous vectors also turn with depth. Consider
the turning of the velocity vectors with depth when the phase velocity is upward, so
that the deeper currents have a phase lead over the shallower currents (Figure 13.24).
Because the currents at all depths rotate clockwise in time (whether the vertical component
of c is upward or downward), it follows that the tips of the instantaneous velocity vectors
should fall on a helical spiral that turns clockwise with depth. Only such a turning in
depth, coupled with a clockwise rotation of the velocity vectors with time, can result in
a phase lead of the deeper currents. In the opposite case of a downward phase propagation,
the helix turns counterclockwise with depth. The direction of turning of the velocity vectors
can also be found from (13.108), by considering x ¼ t ¼ 0 and finding u and v at various
values of z.

Discussion of the Dispersion Relation

The dispersion relation (13.109) can be written as

u2 � f2 ¼ k2

m2
ðN2 � u2Þ: (13.112)

Introducing tan q ¼ m/k, (13.112) becomes

FIGURE 13.24 Helical-spiral traced out by the tips of instantaneous velocity vectors in an internal wave
with upward phase speed. Heavy arrows show the velocity vectors at two depths, and light arrows indicate that
they are rotating clockwise with increasing time. Note that the instantaneous vectors turn clockwise with increasing
depth.
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u2 ¼ f2sin2qþN2cos2q,

which shows that u is a function of the angle made by the wave number with the horizontal
and is not a function of the magnitude of K. For f ¼ 0 the aforementioned expression reduces
to u ¼ N cos q, derived in Section 7.8 without Coriolis forces.

A plot of the dispersion relation (13.112) is presented in Figure 13.25, showing u

as a function of k for various values of m. All curves pass through the point u ¼ f,
which represents inertial oscillations. Typically, N [ f in most of the atmosphere and
the ocean. Because of the wide separation of the upper and lower limits of the internal
wave range f 	 u 	 N, various limiting cases are possible, as indicated in Figure 13.25.
They are

(1) High-frequency regime (u ~ N, but u 	 N): In this range f 2 is negligible in comparison
with u2 in the denominator of the dispersion relation (13.109), which reduces to:

m2x
k2ðN2 � u2Þ

u2
, that is, u2x

N2k2

m2 þ k2
:

Using tan q ¼ m/k, this gives u ¼ N cos q. Thus, the high-frequency internal waves are
the same as the nonrotating internal waves discussed in Chapter 7.

(2) Low-frequency regime (u w f, but u � f ): In this range u2 can be neglected in comparison
to N2 in the dispersion relation (13.109), which becomes:

m2x
k2N2

u2 � f2
, that is, u2x f2 þ k2N2

m2
:

The low-frequency limit is obtained by making the hydrostatic assumption, that is,
neglecting vw/vt in the vertical equation of motion.

(3) Mid-frequency regime ( f � u � N): In this range the dispersion relation (13.109)
simplifies to

FIGURE 13.25 Dispersion relation for internal waves. The different regimes are indicated on the left-hand side
of the figure. The wave frequency u increases monotonically with increasing horizontal wave number k. The
buoyancy frequency N and the local inertial frequency f set the upper and lower limits for u.
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m2x
k2N2

u2
,

so that both the hydrostatic and the nonrotating assumptions are applicable.

Lee Wave

Internal waves are frequently found in the lee (that is, the downstream side) of mountains.
In stably stratified conditions, the flow of air over a mountain causes a vertical displacement
of fluid particles, which sets up internal waves as it moves downstream of the mountain. If
the amplitude is large and the air is moist, the upwardmotion causes condensation and cloud
formation.

Due to the effect of a mean flow, the lee waves are stationary with respect to the ground.
This is shown in Figure 13.26, where the westward phase speed is canceled by the eastward
mean flow. We shall determine what wave parameters make this cancellation possible. The
frequency of lee waves is much larger than f, so that rotational effects are negligible. The
dispersion relation is therefore

u2 ¼ N2k2

m2 þ k2
: (13.113)

However, we now have to introduce the effects of the mean flow. The dispersion rela-
tion (13.113) is still valid if u is interpreted as the intrinsic frequency, that is, the
frequency measured in a frame of reference moving with the mean flow. In a medium
moving with a velocity U, the observed frequency of waves at a fixed point is Doppler
shifted to

u0 ¼ uþK,U,

where u is the intrinsic frequency; this is discussed further in Section 7.1. For a stationary
wave u0 ¼ 0, which requires that the intrinsic frequency is u ¼ �K,U ¼ kU. (Here �K,U is

FIGURE 13.26 Schematic streamlines in a lee wave downstream of a mountain. The thin line drawn through
crests shows that the phase propagates downward and westward when the eastward velocity U is accounted for.
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positive because K is westward and U is eastward.) The dispersion relation (13.113) then
gives

U ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p :

If the flow speed U is given, and the mountain introduces a typical horizontal wave number
k, then the preceding equation determines the vertical wave number m that generates
stationary waves. Waves that do not satisfy this condition would radiate away.

The energy source of lee waves is at the surface. The energy therefore must propagate
upward, and consequently the phases propagate downward. The intrinsic phase speed is
therefore westward and downward in Figure 13.26. With this information, we can determine
which way the constant phase lines should tilt in a stationary lee wave. Note that the wave
pattern in Figure 13.26 would propagate to the left in the absence of a mean velocity, and only
with the constant phase lines tilting backward with height would the flow at larger height
lead the flow at a lower height.

Further discussion of internal waves can be found in Phillips (1977) and Munk (1981); lee
waves are discussed in Holton (1979).

13.15. ROSSBY WAVE

To this point we have discussed wave motions that are possible with a constant Coriolis
frequency f and found that these waves have frequencies larger than f. We shall now consider
wave motions that owe their existence to the variation of fwith latitude. With such a variable
f, the equations of motion allow a very important type of wave motion called the Rossby wave.
Their spatial scales are so large in the atmosphere that they usually have only a few wave-
lengths around the entire globe (Figure 13.27). This is why Rossby waves are also called plan-
etary waves. In the ocean, however, their wavelengths are only about 100 km. Rossby-wave
frequencies obey the inequality u � f. Because of this slowness the time derivative terms
are an order of magnitude smaller than the Coriolis acceleration and the pressure gradients
in the horizontal equations of motion. Such nearly geostrophic flows are called quasi-
geostrophic motions.

Quasi-Geostrophic Vorticity Equation

We shall first derive the governing equation for quasi-geostrophic motions. For
simplicity, we shall make the customary b-plane approximation valid for by � f0, keeping
in mind that the approximation is not a good one for atmospheric Rossby waves, which
have planetary scales. Although Rossby waves are frequently superposed on a mean
flow, we shall derive the equations without a mean flow, and superpose a uniform
mean flow at the end, assuming that the perturbations are small and that a linear super-
position is valid. The first step is to simplify the vorticity equation for quasi-geostrophic
motions, assuming that the velocity is geostrophic to the lowest order. The small departures
from geostrophy, however, are important because they determine the evolution of the
flow with time.
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We start with the shallow-water potential vorticity equation:

D

Dt

�

zþ f

h

�

¼ 0,

which can be written as

h
D

Dt
ðzþ fÞ � ðzþ fÞDh

Dt
¼ 0:

We now expand the material derivative and substitute h ¼ H þ h, where H is the uniform
undisturbed depth of the layer, and h is the surface displacement. This gives

ðH þ hÞ
�

vz

vt
þ u

vz

vx
þ v

vz

vy
þ bv

�

� ðzþ f0Þ
�

vh

vt
þ u

vh

vx
þ v

vh

vy

�

¼ 0: (13.114)

Here, we have used Df/Dt ¼ v(df/dy) ¼ bv. We have also replaced f by f0 in the second
term because the b-plane approximation neglects the variation of f except when it involves
df/dy. For small perturbations we can neglect the quadratic nonlinear terms in (13.114),
obtaining

H
vz

vt
þHbv� f0

vh

vt
¼ 0: (13.115)

FIGURE 13.27 Observed height
(in decameters ¼ km/100) of the 50
kPa pressure surface in the northern
hemisphere. The center of the picture
represents the north pole. The undu-
lations are due to Rossby waves.
J. T. Houghton, The Physics of the
Atmosphere, 1986; reprinted with the

permission of Cambridge University
Press.
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This is the linearized form of the potential vorticity equation. Its quasi-geostrophic version is
obtained if we substitute the approximate geostrophic expressions for velocity:

ux � g

f0

vh

vy
,

vx
g

f0

vh

vx
:

(13.116)

From this the vorticity is found as

z ¼ g

f0

 

v2h

vx2
þ v2h

vy2

!

,

so that the vorticity equation (13.115) becomes

gH

f0

v

vt

 

v2h

vx2
þ v2h

vy2

!

þ gHb

f0

vh

vx
� f0

vh

vt
¼ 0:

Denoting c ¼ ffiffiffiffiffiffiffi

gH
p

, this becomes

v

vt

 

v2h

vx2
þ v2h

vy2
� f20
c2
h

!

þ b
vh

vx
¼ 0: (13.117)

This is the quasi-geostrophic form of the linearized vorticity equation, which governs the
flow of large-scale motions. The ratio c/f0 is recognized as the Rossby radius. Note that we
have not set vh/vt ¼ 0 in (13.115) during the derivation of (13.117), although a strict val-
idity of the geostrophic relations (13.116) would require that the horizontal divergence,
and hence vh/vt, be zero. This is because the departure from strict geostrophy determines
the evolution of the flow described by (13.117). We can therefore use the geostrophic rela-
tions for velocity everywhere except in the horizontal divergence term in the vorticity
equation.

Dispersion Relation

Assume solutions of the form:

h ¼ bh eiðkxþly�utÞ:

We shall regard u as positive; the signs of k and l then determine the direction of phase prop-
agation. A substitution into the vorticity equation (13.117) gives

u ¼ � bk

k2 þ l2 þ f20=c
2
: (13.118)

This is the dispersion relation for Rossby waves. The asymmetry of the dispersion relation with
respect to k and l signifies that the wave motion is not isotropic in the horizontal, which is
expected because of the b-effect. Although we have derived it for a single homogeneous
layer, it is equally applicable to stratified flows if c is replaced by the corresponding internal
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value, which is c ¼ ffiffiffiffiffiffiffiffi

g0H
p

for the reduced-gravity model (see Section 7.7) and c ¼ NH/np for
the nth mode of a continuously stratified model. For the barotropic mode c is very large, and
f20=c

2 is usually negligible in the denominator of (13.118).
The dispersion relation u(k,l) in (13.118) can be displayed as a surface, taking k and l along

the horizontal axes and u along the vertical axis. The section of this surface along l ¼ 0 is indi-
cated in the upper panel of Figure 13.28, and sections of the surface for three values of u are
indicated in the bottom panel. The contours of constant u are circles because the dispersion
relation (13.118) can be written as

�

k þ b

2u

�2

þl2 ¼
�

b

2u

�2

� f20
c2
:

The definition of group velocity,

FIGURE 13.28 Dispersion
relation u(k,l) for a Rossby
wave.Theupperpanel showsu
versus k for l ¼ 0. Regions of
positive and negative group
velocity cgx are indicated. The
lower panel showsaplane view
of the surface u(k,l), showing
contours of constant u on
a kl-plane. The values of uf0/bc
for the three circles are 0.2, 0.3,
and 0.4. Arrows perpendicular
to u contours indicate direc-
tionsofgroupvelocity vector cg.
A. E. Gill, Atmosphere�Ocean
Dynamics, 1982; reprinted with
the permission of Academic Press

and Mrs. Helen Saunders-Gill.
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cg ¼ ex
vu

vk
þ ey

vu

vl
,

shows that the group velocity vector is the gradient of u in the wave number space.
The direction of cg is therefore perpendicular to the u contours, as indicated in the
lower panel of Figure 13.28. For l ¼ 0, the maximum frequency and zero group speed
are attained at kc/f0 ¼ �1, corresponding to umax f0/bc ¼ 0.5. The maximum frequency
is much smaller than the Coriolis frequency. For example, in the ocean the ratio
umax=f0 ¼ 0:5bc=f20 is of order 0.1 for the barotropic mode, and of order 0.001 for a bar-
oclinic mode, taking a typical mid-latitude value of f0 ~ 10�4 s�1, a barotropic gravity
wave speed of c ~ 200 m=s, and a baroclinic gravity wave speed of c ~ 2 m/s. The
shortest period of mid-latitude baroclinic Rossby waves in the ocean can therefore be
more than a year.

The eastward phase speed is

cx ¼ u

k
¼ � b

k2 þ l2 þ f20=c
2
: (13.119)

The negative sign shows that the phase propagation is always westward. The phase speed
reaches a maximumwhen k2 þ l2 / 0, corresponding to very large wavelengths represented
by the region near the origin of Figure 13.28. In this region the waves are nearly nondisper-
sive and have an eastward phase speed:

cxx � bc2

f20
:

With b ¼ 2 � 10�11 m�1 s�1, a typical baroclinic value of c ~ 2 m/s, and a mid-latitude
value of f0 ~ 10�4 s�1, this gives cx ~ 10�2 m/s. At these slow speeds the Rossby waves
would take years to cross the width of the ocean at mid-latitudes. The Rossby waves in
the ocean are therefore more important at lower latitudes, where they propagate faster.
(The dispersion relation (13.118), however, is not valid within a latitude band of 3�
from the equator, for then the assumption of a near geostrophic balance breaks down.
A different analysis is needed in the tropics. A discussion of the wave dynamics of the
tropics is given in Gill (1982) and in the review paper by McCreary (1985).) In the atmo-
sphere c is much larger, and consequently the Rossby waves propagate faster. A typical
large atmospheric disturbance can propagate as a Rossby wave at a speed of several
meters per second.

Frequently, the Rossby waves are superposed on a strong eastward mean current, such as
the atmospheric jet stream. If U is the speed of this eastward current, then the observed east-
ward phase speed is

cx ¼ U � b

k2 þ l2 þ f20=c
2
: (13.120)

Stationary Rossby waves can therefore formwhen the eastward current cancels the westward
phase speed, giving cx ¼ 0. This is how stationary waves are formed downstream of the topo-
graphic step in Figure 13.20. A simple expression for the wavelength results if we assume
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l ¼ 0 and the flow is barotropic, so that f20=c
2 is negligible in (13.120). This gives U ¼ b/k2 for

stationary solutions, so that the wavelength is 2p
ffiffiffiffiffiffiffiffiffi

U=b
p

.
Finally, note that we have been rather cavalier in deriving the quasi-geostrophic vorticity

equation in this section, in the sense that we have substituted the approximate geostrophic
expressions for velocity without a formal ordering of the scales. Gill (1982) has given
a more precise derivation, expanding in terms of a small parameter. Another way to justify
the dispersion relation (13.118) is to obtain it from the general dispersion relation (13.76)
derived in Section 13.10:

u3 � c2uðk2 þ l2Þ � f20u� c2bk ¼ 0: (13.121)

For u � f, the first term is negligible compared to the third, reducing (13.121) to (13.118).

13.16. BAROTROPIC INSTABILITY

In Section 11.9 we discussed the inviscid stability of a shear flow U(y) in a nonrotating
system, and demonstrated that a necessary condition for its instability is that d2U/dy2 must
change sign somewhere in the flow. This was called Rayleigh’s inflection point criterion. In terms
of vorticity z ¼ �dU=dy, the criterion states that dz=dy must change sign somewhere in the
flow. We shall now show that, on a rotating earth, the criterion requires that dðzþ fÞ=dy
must change sign somewhere within the flow.

Consider a horizontal current U(y) in a medium of uniform density. In the absence of
horizontal density gradients only the barotropic mode is allowed, and U(y) does not vary
with depth. The vorticity equation is

�

v

vt
þ u$V

�

ðzþ fÞ ¼ 0: (13.122)

This is identical to the potential vorticity equation D/Dt[(z þ f )/h] ¼ 0, with the added
simplification that the layer depth is constant because w ¼ 0. Let the total flow be decom-
posed into background flow plus a disturbance:

u ¼ UðyÞ þ u0,
v ¼ v0:

The total vorticity is then

z ¼ zþ z0 ¼ �dU

dy
þ
�

vv0

vx
� vu0

vy

�

¼ �dU

dy
þ V2j,

where we have defined the perturbation stream function:

u0 ¼ �vj

vy
, v0 ¼ vj

vx
:
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Substituting into (13.122) and linearizing, we obtain the perturbation vorticity equation:

v

vt
ðV2jÞ þU

v

vx
ðV2jÞ þ

 

b� d2U

dy2

!

vj

vx
¼ 0: (13.123)

Because the coefficients of (13.123) are independent of x and t, there can be solutions of the
form:

j ¼ bj ðyÞ eikðx�ctÞ:

The phase speed c is complex and solutions are unstable if its imaginary part ci > 0. The
perturbation vorticity equation (13.123) then becomes

ðU � cÞ
"

d2

dy2
� k2

#

bj þ
"

b� d2U

dy2

#

bj ¼ 0:

Comparing this with (11.81) derived without Coriolis forces, it is seen that the effect of plan-
etary rotation is the replacement of �d2U/dy2 by (b � d2U/dy2). The analysis of the section
therefore carries over to the present case, resulting in the following criterion: A necessary
condition for the inviscid instability of a barotropic current U(y) is that the gradient of the absolute
vorticity,

d

dy
ðzþ fÞ ¼ b� d2U

dy2
, (13.124)

must change sign somewhere in the flow. This result was first derived by Kuo (1949).
Barotropic instability quite possibly plays an important role in the instability of currents in

the atmosphere and in the ocean. The instability has no preference for any latitude, because

FIGURE 13.29 Profiles of velocity and vorticity in a westward tropical wind. The velocity distribution is bar-
otropically unstable as dðzþ fÞ=dy (shown as the dashed curve) changes sign within the flow. J. T. Houghton, The
Physics of the Atmosphere, 1986; reprinted with the permission of Cambridge University Press.
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the criterion involves b and not f. However, the mechanism presumably dominates in the
tropics because mid-latitude disturbances prefer the baroclinic instability mechanism dis-
cussed in the following section. An unstable distribution of westward tropical wind is shown
in Figure 13.29.

13.17. BAROCLINIC INSTABILITY

The weather maps at mid-latitudes invariably show the presence of wavelike hori-
zontal excursions of temperature and pressure contours, superposed on eastward
mean flows such as the jet stream. Similar undulations are also found in the ocean on
eastward currents such as the Gulf Stream in the north Atlantic. A typical wavelength
of these disturbances is observed to be of the order of the internal Rossby radius, that
is, about 4000 km in the atmosphere and 100 km in the ocean. They seem to be propa-
gating as Rossby waves, but their erratic and unexpected appearance suggests that
they are not forced by any external agency, but are due to an inherent instability of
mid-latitude eastward flows. In other words, the eastward flows have a spontaneous
tendency to develop wavelike disturbances. In this section we shall investigate the insta-
bility mechanism that is responsible for the spontaneous relaxation of eastward jets into
a meandering state.

The poleward decrease of the solar irradiation results in a poleward decrease of air
temperature and a consequent increase of air density. An idealized distribution of the
atmospheric density in the northern hemisphere is shown in Figure 13.30. The density
increases northward due to the lower temperatures near the poles and decreases upward
because of static stability. According to the thermal wind relation (13.15), an eastward
flow (such as the jet stream in the atmosphere or the Gulf Stream in the Atlantic) in equi-
librium with such a density structure must have a velocity that increases with height. A
system with inclined density surfaces, such as the one in Figure 13.30, has more potential
energy than a system with horizontal density surfaces, just as a system with an inclined
free surface has more potential energy than a system with a horizontal free surface. It is
therefore potentially unstable because it can release the stored potential energy by means
of an instability that would cause the density surfaces to flatten out. In the process,
vertical shear of the mean flow U(z) would decrease, and perturbations would gain
kinetic energy.

FIGURE 13.30 Lines of
constant density in the
northern hemispheric at-
mosphere. The lines are
nearly horizontal and the
slopes are greatly exagger-
ated in the figure. The
velocity U(z) shown at the
left is into the plane of
paper.
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Instability of baroclinic jets that release potential energy by flattening out the density
surfaces is called the baroclinic instability. Our analysis would show that the preferred scale
of the unstable waves is indeed of the order of the Rossby radius, as observed for the mid-
latitude weather disturbances. The theory of baroclinic instability was developed in the
1940s by Vilhem Bjerknes and others, and is considered one of the major triumphs of
geophysical fluid mechanics. Our presentation is essentially based on the review article by
Pedlosky (1971).

Consider a basic state in which the density is stably stratified in the vertical with a uniform
buoyancy frequency N, and increases northward at a constant rate vr=vy. According to the
thermal wind relation, the constancy of vr=vy requires that the vertical shear of the basic east-
ward flow U(z) also be constant. The b-effect is neglected as it is not an essential requirement
of the instability. (The b-effect does modify the instability, however.) This is borne out by the
spontaneous appearance of undulations in laboratory experiments in a rotating annulus, in
which the inner wall is maintained at a higher temperature than the outer wall. The b-effect is
absent in such an experiment.

Perturbation Vorticity Equation

The equations for total flow are:

vu

vt
þ u

vu

vx
þ v

vu

vy
� fv ¼ � 1

r0

vp

vx
,

vv

vt
þ u

vv

vx
þ v

vv

vy
þ fu ¼ � 1

r0

vp

vy
,

0 ¼ �vp

vz
� rg,

vu

vx
þ vv

vy
þ vw

vz
¼ 0,

vr

vt
þ u

vr

vx
þ v

vr

vy
þ w

vr

vz
¼ 0,

(13.125)

where r0 is a constant reference density. We assume that the total flow is composed of a basic
eastward jet U(z) in geostrophic equilibrium with the basic density structure rðy, zÞ shown in
Figure 13.30, plus perturbations, that is:

u ¼ UðzÞ þ u0ðx,y, zÞ,
v ¼ v0ðx, y, zÞ,
w ¼ w0ðx,y, zÞ,
r ¼ rðy, zÞ þ r0ðx,y, zÞ,
p ¼ pðy, zÞ þ p0ðx,y, zÞ:

(13.126)
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The basic flow is in geostrophic and hydrostatic balance:

fU ¼ � 1

r0

vp

vy
,

0 ¼ �vp

vz
� rg:

(13.127)

Eliminating the pressure, we obtain the thermal wind relation:

dU

dz
¼ g

fr0

vr

vy
, (13.128)

which states that the eastward flow must increase with height because vr=vy > 0. For
simplicity, we assume that vr=vy is constant, and that U ¼ 0 at the surface z ¼ 0. Thus the
background flow is

U ¼ U0z

H
,

where U0 is the velocity at the top of the layer at z ¼ H.
We first form a vorticity equation by cross differentiating the horizontal equations of

motion in (13.125), obtaining

vz

vt
þ u

vz

vx
þ v

vz

vy
� ðzþ fÞ vw

vz
¼ 0: (13.129)

This is identical to (13.92), except for the exclusion of the b-effect here; the algebraic steps are
therefore not repeated. Substituting the decomposition (13.126), and noting that z ¼ z0
because the basic flow U ¼ U0z/H has no vertical component of vorticity, (13.129) becomes

vz0

vt
þU

vz0

vx
� f

vw0

vz
¼ 0, (13.130)

where the nonlinear terms have been neglected. This is the perturbation vorticity equation,
which we shall now write in terms of p0.

Assume that the perturbations are large-scale and slow, so that the velocity is nearly
geostrophic:

u0x � 1

r0f

vp0

vy
, v0x

1

r0f

vp0

vx
, (13.131)

from which the perturbation vorticity is found as

z0 ¼ 1

r0f
V2
Hp

0: (13.132)

We now express w0 in (13.130) in terms of p0. The density equation gives

v

vt
ðrþ r0Þ þ ðU þ u0Þ v

vx
ðrþ r0Þ þ v0

v

vy
ðrþ r0Þ þ w0 v

vz
ðrþ r0Þ ¼ 0:

Linearizing, we obtain
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vr0

vt
þU

vr0

vx
þ v0

vr

vy
� r0N

2w0

g
¼ 0, (13.133)

where N2 ¼ �gr�1
0 ðvr=vzÞ. The perturbation density r0 can be written in terms of p0 by

using the hydrostatic balance in (13.125), and subtracting the basic state (13.127). This
gives

0 ¼ �vp0

vz
� r0g, (13.134)

which states that the perturbations are hydrostatic. Equation (13.133) then gives

w0 ¼ � 1

r0N2

��

v

vt
þU

v

vx

�

vp0

vz
� dU

dz

vp0

vx

�

, (13.135)

where we have written vr=vy in terms of the thermal wind dU/dz. Using (13.132) and
(13.135), the perturbation vorticity equation (13.130) becomes:

�

v

vt
þU

v

vx

�

"

V2
Hp

0 þ f2

N2

v2p0

vz2

#

¼ 0: (13.136)

This is the equation that governs the quasi-geostrophic perturbations on an eastward current
U(z).

Wave Solution

We assume that the flow is confined between two horizontal planes at z ¼ 0 and z ¼ H
and that it is unbounded in x and y. Real flows are likely to be bounded in the y direction,
especially in a laboratory situation of flow in an annular region, where the walls set
boundary conditions parallel to the flow. The boundedness in y, however, simply sets
up normal modes in the form sin(npy/L), where L is the width of the channel. Each of
these modes can be replaced by a periodicity in y. Accordingly, we assume wavelike
solutions:

p0 ¼ bp ðzÞ eiðkxþly�utÞ: (13.137)

The perturbation vorticity equation (13.136) then gives

d2bp

dz2
� a2bp ¼ 0, (13.138)

where

a2h
N2

f2
ðk2 þ l2Þ: (13.139)

The solution of (13.138) can be written as

bp ¼ A cosh a

�

z�H

2

�

þ B sinh a

�

z�H

2

�

: (13.140)
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Boundary conditions have to be imposed on (13.140) in order to derive an instability crite-
rion. These are:

w0 ¼ 0 at z ¼ 0,H:

The corresponding conditions on p0 can be found from (13.135) and U ¼ U0z=H. We obtain:

�v2p0

vt vz
�U0z

H

v2p0

vx vz
þU0

H

vp0

vx
¼ 0 at z ¼ 0,H,

where we have also used U ¼ U0z/H. The two boundary conditions are therefore:

v2p0

vt vz
�U0

H

vp0

vx
¼ 0 at z ¼ 0,

v2p0

vt vz
�U0

H

vp0

vx
þU0

v2p0

vx vz
¼ 0 at z ¼ H:

Instability Criterion

Using (13.137) and (13.140), the foregoing boundary conditions require:

A

�

ac sinh
aH

2
�U0

H
cosh

aH

2

�

þ B

�

�ac cosh
aH

2
þU0

H
sinh

aH

2

�

¼ 0,

A

�

aðU0 � cÞ sinh aH

2
�U0

H
cosh

aH

2

�

þ B

�

aðU0 � cÞ cosh aH

2
�U0

H
sinh

aH

2

�

¼ 0,

where c ¼ u/k is the eastward phase velocity.
This is a pair of homogeneous equations for the constants A and B. For nontrivial solutions

to exist, the determinant of the coefficients must vanish. This gives, after some straightfor-
ward algebra, the phase velocity:

c ¼ U0

2
� U0

aH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

aH

2
� tanh

aH

2

��

aH

2
� coth

aH

2

�

s

: (13.141)

Whether the solution grows with time depends on the sign of the radicand. The behavior
of the functions under the radical sign is sketched in Figure 13.31. It is apparent that the first
factor in the radicand is positive because aH/2 > tanh(aH/2) for all values of aH. However,
the second factor is negative for small values of aH for which aH/2 < coth(aH/2). In this
range the roots of c are complex conjugates, with c ¼ U0/2�ici. Because we have assumed
that the perturbations are of the form exp(�ikct), the existence of a nonzero ci implies the
possibility of a perturbation that grows as exp(kcit), and the solution is unstable. The
marginal stability is given by the critical value of a satisfying:

acH

2
¼ coth

�

acH

2

�

,
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whose solution is

acH ¼ 2:4,

and the flow is unstable if aH < 2.4. Using the definition of a in (13.139), it follows that the
flow is unstable if

HN

f
<

2:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ l2
p :

As all values of k and l are allowed, we can always find a value of k2þ l2 low enough to satisfy
the aforementioned inequality. The flow is therefore always unstable (to low wave numbers). For
a north-south wave number l ¼ 0, instability is ensured if the east-west wave number k is
small enough such that

HN

f
<

2:4

k
: (13.142)

In a continuously stratified ocean, the speed of a long internal wave for the n ¼ 1 baro-
clinic mode is c ¼ NH/p, so that the corresponding internal Rossby radius is c/f ¼ NH/pf.
It is usual to omit the factor p and define the Rossby radius in a continuously stratified
fluid as

FIGURE 13.31 Baroclinic instability. The upper panel shows behavior of the functions in (13.141), and the lower
panel shows growth rates of unstable waves.
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Lh
HN

f
:

The condition (13.142) for baroclinic instability is therefore that the east-west wavelength be
large enough so that

l > 2:6L:

However, the wavelength l ¼ 2.6L does not grow at the fastest rate. It can be shown from
(13.141) that the wavelength with the largest growth rate is

lmax ¼ 3:9L:

This is therefore the wavelength that is observed when the instability develops. Typical
values for f,N, andH suggest that lmax ~ 4000 km in the atmosphere and 200 km in the ocean,
which agree with observations. Waves much smaller than the Rossby radius do not grow, and
the ones much larger than the Rossby radius grow very slowly.

Energetics

The foregoing analysis suggests that the existence of planet-encircling weather waves is
due to the fact that small perturbations can grow spontaneously when superposed on an
eastward current maintained by the sloping density surfaces (Figure 13.30). Although the
basic current does have a vertical shear, the perturbations do not grow by extracting energy
from the vertical shear field. Instead, they extract their energy from the potential energy stored
in the system of sloping density surfaces. The energetics of the baroclinic instability is there-
fore quite different than that of the Kelvin-Helmholtz instability (which also has a vertical
shear of the mean flow), where the perturbation Reynolds stress u0w0 interacts with the
vertical shear and extracts energy from the mean shear flow. The baroclinic instability is
not a shear flow instability; the Reynolds stresses are too small because of the small w in
quasi-geostrophic large-scale flows.

The energetics of the baroclinic instability can be understood by examining the equation
for the perturbation kinetic energy. Such an equation can be derived by multiplying the equa-
tions for vu0/vt and vv0/vt by u0 and v0, respectively, adding the two, and integrating over the
region of flow. Because of the assumed periodicity in x and y, the extent of the region of inte-
gration is chosen to be one wavelength in either direction. During this integration, the
boundary conditions of zero normal flow on the walls and periodicity in x and y are used
repeatedly. The procedure is similar to that for the derivation of (11.88) and is not repeated
here. The result is

dK

dt
¼ �g

Z

w0r0 dx dy dz,

where K is the global perturbation kinetic energy:

Kh
r0

2

Z

ðu02 þ v02Þ dx dy dz:
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In unstable flows we must have dK/dt > 0, which requires that the volume integral of

w0r0 must be negative. Let us denote the volume average of w0r0 by w0r0. A negative

w0r0 means that on average the lighter fluid rises and the heavier fluid sinks. By such
an interchange the center of gravity of the system, and therefore its potential energy,
is lowered. The interesting point is that this cannot happen in a stably stratified system
with horizontal density surfaces; in that case an exchange of fluid particles raises the
potential energy. Moreover, a basic state with inclined density surfaces (Figure 13.30)

cannot have w0r0 < 0 if the particle excursions are vertical. If, however, the particle excur-
sions fall within the wedge formed by the constant density lines and the horizontal
(Figure 13.32), then an exchange of fluid particles takes lighter particles upward (and
northward) and denser particles downward (and southward). Such an interchange
would tend to make the density surfaces more horizontal, releasing potential energy
from the mean density field with a consequent growth of the perturbation energy.
This type of convection is called sloping convection. According to Figure 13.32 the
exchange of fluid particles within the wedge of instability results in a net poleward trans-
port of heat from the tropics, which serves to redistribute the larger solar heat received
by the tropics.

In summary, baroclinic instability draws energy from the potential energy of the mean
density field. The resulting eddy motion has particle trajectories that are oriented at a small
angle with the horizontal, so that the resulting heat transfer has a poleward component. The
preferred scale of the disturbance is the Rossby radius.

13.18. GEOSTROPHIC TURBULENCE

Two common modes of instability of a large-scale current system were presented in
the preceding sections. When the flow is strong enough, such instabilities can make
a flow chaotic or turbulent. A peculiarity of large-scale turbulence in the atmosphere
or the ocean is that it is essentially two dimensional in nature. The existence of the

FIGURE 13.32 Wedge of instability
(shaded) in a baroclinic instability. The
wedge is bounded by constant density
lines and the horizontal. Unstable
waves have a particle trajectory that
falls within the wedge and causes
lighter fluid particles to move upward
and northward, and heaver fluid
particles to move downward and
southward.
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Coriolis force, stratification, and small thickness of geophysical media severely restricts
the vertical velocity in large-scale flows, which tend to be quasi-geostrophic, with the
Coriolis force balancing the horizontal pressure gradient to the lowest order. Because
vortex stretching, a key mechanism by which ordinary three-dimensional turbulent
flows transfer energy from large to small scales, is absent in two-dimensional flow,
one expects that the dynamics of geostrophic turbulence are likely to be fundamentally
different from that of three-dimensional, laboratory-scale turbulence discussed in
Chapter 12. However, we can still call the motion turbulent because it is unpredictable
and diffusive.

A key result on the subject was discovered by the meteorologist Fjortoft (1953),
and since then Kraichnan, Leith, Batchelor, and others have contributed to various
aspects of the problem. A good discussion is given in Pedlosky (1987), to which the
reader is referred for a fuller treatment. Here, we shall only point out a few important
results.

An important variable in the discussion of two-dimensional turbulence is enstrophy, which
is the mean square vorticity z2. In an isotropic turbulent field we can define an energy spec-
trum S(K), a function of the magnitude of the wave number K, as

u2 ¼
Z N

0
SðKÞ dK:

It can be shown that the enstrophy spectrum is K2S(K), that is,

z2 ¼
Z N

0
K2SðKÞ dK,

which makes sense because vorticity involves the spatial derivatives of velocity.
We consider a freely evolving turbulent field in which the shape of the velocity spectrum

changes with time. The large scales are essentially inviscid, so that both energy and enstro-
phy are nearly conserved:

d

dt

Z N

0
SðKÞ dK ¼ 0,

d

dt

Z N

0
K2SðKÞ dK ¼ 0, (13.143, 13.144)

where terms proportional to the molecular viscosity v have been neglected on the right-hand
sides of the equations. The enstrophy conservation is unique to two-dimensional turbulence
because of the absence of vortex stretching.

Suppose that the energy spectrum initially contains all its energy at wave number K0.
Nonlinear interactions transfer this energy to other wave numbers, so that the sharp spectral
peak smears out. For the sake of argument, suppose that all of the initial energy goes to two
neighboring wave numbers K1 and K2, with K1 < K0 < K2. Conservation of energy and ens-
trophy requires that:

S0 ¼ S1 þ S2,

K2
0S0 ¼ K2

1S1 þ K2
2S2,

where Sn is the spectral energy at Kn. From this we can find the ratios of energy and enstrophy
spectra before and after the transfer:
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S1
S2

¼ K2 � K0

K0 � K1

K2 þ K0

K1 þ K0
,

K2
1S1

K2
2S2

¼ K2
1

K2
2

K2
2 � K2

0

K2
0 � K2

1

:

(13.145)

As an example, suppose that nonlinear smearing transfers energy to wave numbers

K1 ¼ K0/2 and K2 ¼ 2K0. Then (13.145) shows that S1/S2 ¼ 4 and K2
1S1=K

2
2S2 ¼ ¼, so that

more energy goes to lower wave numbers (large scales), whereas more enstrophy goes to
higher wave numbers (smaller scales). This important result on two-dimensional turbu-
lence was derived by Fjortoft (1953). Clearly, the constraint of enstrophy conservation in
two-dimensional turbulence has prevented a symmetric spreading of the initial energy
peak at K0.

The unique character of two-dimensional turbulence is evident here. In three-dimensional
turbulence studied in Chapter 12, the energy goes to smaller and smaller scales until it is
dissipated by viscosity. In geostrophic turbulence, on the other hand, the energy goes to
larger scales, where it is less susceptible to viscous dissipation. Numerical calculations are
indeed in agreement with this behavior and show that energy-containing eddies grow in
size by coalescing. On the other hand, the vorticity becomes increasingly confined to thin
shear layers on the eddy boundaries; these shear layers contain very little energy. The back-
ward (or inverse) energy cascade and forward enstrophy cascade are represented schemati-
cally in Figure 13.33. It is clear that there are two inertial regions in the spectrum of
a two-dimensional turbulent flow, namely, the energy cascade region and the enstrophy
cascade region. If energy is injected into the system at a rate 3, then the energy spectrum
in the energy cascade region has the form S(K) f 3

2/3K�5/3; the argument is essentially the
same as in the case of the Kolmogorov spectrum in three-dimensional turbulence (Section
12.7), except that the transfer is backward. A dimensional argument also shows that the

FIGURE 13.33 Energy and ens-
trophy cascade in two-dimensional
turbulence.Here the two-dimensional
character of the turbulence causes
turbulent kinetic energy to cascade
upward to larger scales, while ens-
trophy cascades to smaller scales.
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energy spectrum in the enstrophy cascade region is of the form S(K)f a2/3K�3, where a is the
forward enstrophy flux to higher wave numbers. There is negligible energy flux in the ens-
trophy cascade region.

As the eddies grow in size, they become increasingly immune to viscous dissipation, and
the inviscid assumption implied in (13.143) becomes increasingly applicable. (This would not
be the case in three-dimensional turbulence in which the eddies continue to decrease in size
until viscous effects drain energy out of the flow.) In contrast, the corresponding assumption
in the enstrophy conservation equation (13.144) becomes less and less valid as enstrophy
goes to smaller scales, where viscous dissipation drains enstrophy out of the system. At later
stages in the evolution, then, (13.144) may not be a good assumption. However, it can be
shown (see Pedlosky, 1987) that the dissipation of enstrophy actually intensifies the process
of energy transfer to larger scales, so that the red cascade (that is, transfer to larger scales)
of energy is a general result of two-dimensional turbulence.

The eddies, however, do not grow in size indefinitely. They become increasingly slower as
their length scale l increases, while their velocity scale u remains constant. The slower
dynamics makes them increasingly wavelike, and the eddies transform into Rossby-wave
packets as their length scale becomes of order (Rhines, 1975):

lw

ffiffiffi

u

b

r

ðRhines lengthÞ,

where b ¼ df/dy and u is the rms fluctuating speed. The Rossby-wave propagation results in
an anisotropic elongation of the eddies in the eastewest (“zonal”) direction, while the eddy
size in the northesouth direction stops growing at

ffiffiffiffiffiffiffiffi

u=b
p

. Finally, the velocity field consists of
zonally directed jets whose northesouth extent is of order

ffiffiffiffiffiffiffiffi

u=b
p

. This has been suggested as
an explanation for the existence of zonal jets in the atmosphere of the planet Jupiter (Wil-
liams, 1979). The inverse energy cascade regime may not occur in the earth’s atmosphere
and the ocean at mid-latitudes because the Rhines length (about 1000 km in the atmosphere
and 100 km in the ocean) is of the order of the internal Rossby radius, where the energy is
injected by baroclinic instability. (For the inverse cascade to occur,

ffiffiffiffiffiffiffiffi

u=b
p

needs to be larger
than the scale at which energy is injected.)

Eventually, however, the kinetic energy has to be dissipated by molecular effects at the
Kolmogorov microscale h, which is of the order of a few millimeters in the ocean and the
atmosphere. A fair hypothesis is that processes such as internal waves drain energy out of
the mesoscale eddies, and breaking internal waves generate three-dimensional turbulence
that finally cascades energy to molecular scales.

EXERCISES

13.1. The Gulf Stream flows northward along the east coast of the United States with
a surface current of average magnitude 2 m/s. If the flow is assumed to be in
geostrophic balance, find the average slope of the sea surface across the current at
a latitude of 45�N. [Answer: 2.1 cm per km]

13.2. A plate containing water (v ¼ 10�6 m2/s) above it rotates at a rate of 10 revolutions per
minute. Find the depth of the Ekman layer, assuming that the flow is laminar.
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13.3. Assume that the atmospheric Ekman layer over the earth’s surface at a latitude of 45�N
can be approximated by an eddy viscosity of vv ¼ 10 m2/s. If the geostrophic velocity
above the Ekman layer is 10 m/s, what is the Ekman transport across isobars? [Answer:
2203 m2/s]

13.4. Find the axis ratio of a hodograph plot for a semidiurnal tide in the middle of the
ocean at a latitude of 45�N. Assume that the mid-ocean tides are rotational surface
gravity waves of long wavelength and are unaffected by the proximity of coastal
boundaries. If the depth of the ocean is 4 km, find the wavelength, the phase
velocity, and the group velocity. Note, however, that the wavelength is comparable
to the width of the ocean, so that the neglect of coastal boundaries is not very
realistic.

13.5. An internal Kelvin wave on the thermocline of the ocean propagates along the west
coast of Australia. The thermocline has a depth of 50 m and has a nearly discontinuous
density change of 2 kg/m3 across it. The layer below the thermocline is deep. At
a latitude of 30�S, find the direction and magnitude of the propagation speed and the
decay scale perpendicular to the coast.

13.6. Using the dispersion relation m2 ¼ k2(N2 � u2)/(u2�f 2) for internal waves, show that

the group velocity vector is given by ½cgx, cgz� ¼ ðN2 � f2Þ km
ðm2 þ k2Þ3=2ðm2f2 þ k2N2Þ1=2

½m,�k�.
[Hint: Differentiate the dispersion relation partially with respect to k andm.] Show that
cg and c are perpendicular and have oppositely directed vertical components. Verify
that cg is parallel to u.

13.7. Suppose the atmosphere at a latitude of 45�N is idealized by a uniformly stratified
layer of height 10 km, across which the potential temperature increases by 50�C.
a) What is the value of the buoyancy frequency N?
b) Find the speed of a long gravity wave corresponding to the n ¼ 1 baroclinic

mode.
c) For the n ¼ 1 mode, find the westward speed of nondispersive (i.e., very large

wavelength)Rossbywaves. [Answer:N ¼ 0.01279 s�1; c1 ¼ 40.71m/s; cx ¼ �3.12m/s]
13.8. Consider a steady flow rotating between plane parallel boundaries a distance L apart.

The angular velocity is U and a small rectilinear velocity U is superposed. There is
a protuberance of height h � L in the flow. The Ekman and Rossby numbers are both
small: Ro � 1, E � 1. Obtain an integral of the relevant equations of motion that relates
the modified pressure and the streamfunction for the motion, and show that the
modified pressure is constant on streamlines.
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CHAPTER OBJECTIVES

• To introduce the fundamental concepts and

vocabulary associated with aircraft and

aerodynamics

• To quantify the ideal-flow performance of

simple two-dimensional airfoil sections

• To present the lifting line theory of Prandtl

and Lanchester for a finite-span wing

• To describe the means by which fish, birds,

insects, and sails exploit lift forces for flight

and/or propulsion
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14.1. INTRODUCTION

Aerodynamics is the branch of fluidmechanics that deals with the determination of the fluid
mechanical forces and moments on bodies of interest. The subject is called incompressible aero-
dynamics if the flow speeds are low enough (Mach number< 0.3) for compressibility effects to
be negligible. At larger Mach numbers where fluid-compressibility effects are important the
subject is normally called gas dynamics. Aerodynamic parametric ranges of interest are
usually consistent with: 1) neglecting buoyancy forces and fluid stratification, 2) assuming
uniform constant-density flow upstream of the body, and 3) presuming viscous effects are
confined to thin boundary layers adjacent to the body surface (Figure 9.1). Airfoil stall is
a notable exception to this last presumption.

This chapter presents the elementary aspects of incompressible aerodynamics of aircraft
wing shapes. Thus, with the simplifications just stated, the flows considered here are
primarily ideal flows, and a significant portion of the material in Chapter 6 is relevant
here. In addition, much of the material in this chapter also applies to ship propellers and
to turbomachines (e.g., fans, turbines, compressors, and pumps) since the blades of these
devices may all have similar cross sections.

14.2. AIRCRAFT TERMINOLOGY

Modern commercial aircraft embody nearly all the principles of aerodynamics presented
in this chapter. Thus, a review of aircraft terminology and control strategies is provided in
this section. Figure 14.1 shows three views of a commercial airliner. The body of the aircraft,
which houses the passengers and other payload, is called the fuselage. The engines (jet or
propeller) are often attached to the wings but they may be mounted on the fuselage too.
Figure 14.2 shows an overhead (or planform) view of an airliner wing. The location where
a wing attaches to the fuselage is called the wing root. The outer end of a wing furthest
from the fuselage is called the wing tip, and the distance between the wing tips is called
the wingspan, s. The distance between the leading and trailing edges of the wing is called
the chord length, c, and it varies in the span-wise direction. The area of the wing when viewed
from above is called the planform area, A. The slenderness of the wing planform is measured
by its aspect ratio:

Lh s2=A ¼ s=c, where c ¼ A=s (14.1, 14.2)

is the average chord length.
The various possible rotational motions of an aircraft can be referred to three aircraft-

fixed axes, called the pitch axis, the roll axis, and the yaw axis (Figure 14.3). A positive aero-
dynamic drag force points opposite to the direction of flight. Negative drag is called thrust
and it must be produced by the aircraft’s engines for full execution of the aircraft’s flight
envelope (take-off, cruise, landing, etc.). Lift is the aerodynamic force that points perpen-
dicular to the direction of flight. It must be generated by the wings to counter the weight
of the aircraft in flight. Movable surfaces on the wings and tail fin, known as control surfaces,
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can alter the distribution of lift and drag forces on the aircraft and provide the primary
means for controlling the direction of flight. However, variation of engine thrust can also
be used to steer the aircraft.

Control Surfaces

The aircraft is controlled by the pilot seated in the cockpit, whodwith hydraulic assistanced
sets the engine thrust and moves the control surfaces described in the following para-
graphs. For the most part, these control surfaces act to change the local camber or curva-
ture of the wings or fins to alter the lift force generated in the vicinity of the control
surface.

FIGURE 14.1 Three views of a commercial airliner and its control surfaces (NASA). The top view shows the
wing planform. The wing is both backward swept and tapered. The various control surfaces shown modify the
trailing edge geometry of the wing and tail fins. Landing gear details have been omitted.
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FIGURE 14.3 Aircraft axes. These are defined by the names of aircraft rotations about these axes. Positive pitch
raises the aircraft’s nose. Positive roll banks the aircraft for a right turn. Positive yaw moves the aircraft’s nose to the
right from the point of view of the pilot.

FIGURE 14.4 The aileron. As shown, this aileron deflection would increase lift by increasing the camber of the
effective foil shape.

FIGURE 14.2 Wing planform geometry. The span, s, is the straight-line distance between wing tips and is
shown at the bottom of the figure. The sweepback angle is shown near the starboard wing root. The chord c
depends on location along the span.
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Aileron: These are flaps near eachwing tip (Figure 14.1), joined to themainwing by a hinged
connection, as shown in Figure 14.4. Theymove differentially in the sense that onemoves up
while the other moves down. A depressed aileron increases the lift, and a raised aileron
decreases the lift, so that a rolling moment results when they are differentially actuated.
Ailerons are located near each wing tip to generate a large rolling moment with minimal
angular deflection. The pilot generally controls the ailerons bymoving a control stick, whose
movement to the left or right causes a roll to the left or right. In larger aircraft the aileron
motion is controlled by rotating a small wheel that resembles half of an automobile steering
wheel.
Elevator: The elevators are hinged to the trailing edge of the horizontal stabilizers (tail
fins). Unlike ailerons they move together, and their movement generates a pitching
motion of the aircraft. The elevator movements are imparted by the forward and
backward movement of a control stick, so that a backward pull lifts the nose of the
aircraft.
Rudder: The yawing motion of the aircraft is governed by the hinged rear portion of the
vertical tail fin, called the rudder. The pilot controls the rudder by pressing his feet against
two rudder pedals so arranged that moving the left pedal forward moves the aircraft’s
nose to the left.
Flap: During takeoff, the speed of the aircraft is too small to generate enough lift to support
the weight of the aircraft. To overcome this, a section of the rear of the wing is split, so that
it can be rotated downward and moved aft to increase the lift (Figure 14.5). A further
function of the flap is to increase both lift and drag during landing.

Modern airliners also have spoilers on the top surface of each wing. When raised slightly,
they cause early boundary-layer separation on part of the top of the wing and this decreases
or spoils the wing’s lift. They can be deployed together or individually. Reducing the lift on
one wing will bank the aircraft so that it will turn in the direction of the lowered wing. When
deployed together, overall lift is decreased and the aircraft descends. Spoilers have another
function as well. During landing immediately after touchdown, they are deployed fully to
eliminate a significant fraction of the aircraft’s wing lift and thereby ensure that the aircraft
stays on the ground and does not become unintentionally airborne again, even in gusty
winds. In addition, the spoilers increase drag and slow the aircraft to shorten the length of
its landing roll.

FIGURE 14.5 The flap. As shown, this flat deflection would increase lift by increasing the camber of the
effective foil shape. The design of flaps often exploits the flow in the slot formed between the main wing and the
rotating flap element to increase lift and delay stall.
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An aircraft is said to be in trimmed flight when there are no moments about its center of
gravity and the drag force is minimal. Trim tabs are small adjustable surfaces within or adja-
cent to the major control surfacesdailerons, elevators, and rudder. Deflections of these
surfaces may be set and held to adjust for a change in the aircraft’s center of gravity in flight
due to consumption of fuel or a change in the direction of the prevailing wind with respect to
the flight path. These are set for steady-level flight on a straight path with minimum deflec-
tion of the major control surfaces.

14.3. CHARACTERISTICS OF AIRFOIL SECTIONS

Figure 14.6 shows the shape of the cross section of a wing, called an airfoil section (spelled
aerofoil in the British literature). The leading edge of the profile is generally rounded, whereas
the trailing edge is sharp. The straight line joining the centers of curvature of the leading and
trailing edges is called the chord. The meridian line of the section passing midway between
the upper and lower surfaces is called the camber line. The maximum height of the camber
line above the chord line is called the camber of the section. Normally the camber varies
from nearly zero for high-speed supersonic wings, to z 5% of chord length for low-speed
wings. The angle a between the chord line and the direction of flight (i.e., the direction of
the undisturbed stream) is called the angle of attack or angle of incidence.

The forces on airfoils are usually studied in a foil-fixed frame of reference with a uniform
flow approaching the foil along the x-axis with the y-axis pointing vertically upward. The
aerodynamic force F on an airfoil can be resolved into a drag force D parallel to the oncoming
stream, and a lift force L perpendicular to the oncoming stream (see Figure 14.7). In steady-
level flight the lift equals the weight of the aircraft while its drag is balanced by engine thrust.
These forces may be expressed in dimensionless form via the coefficients of lift and drag:

CDh
D

�

1=2
�

rU2A
, and CLh

L
�

1=2
�

rU2A
: (4.107, 4.108)

Measurements or specifications of CD and CL are the primary means for stating airfoil perfor-
mance. The drag results from the stress and pressure distributions on the foil’s surface. These
are called the friction drag and the pressure drag (or form drag), respectively. The lift is almost
entirely due to the pressure distribution. Figure 14.8 shows the distribution of the pressure

FIGURE 14.6 Airfoil geom-
etry. A rounded leading edge and
a sharp trailing edge are essential
geometrical features of airfoils.
For the material discussed in
this chapter, the most important
parameters are: the angle of attack
a, the chord length c, and the
maximum camber. An airfoil’s
thickness distribution is often
modified to minimize drag and/
or prevent stall.
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coefficient Cp ¼ ðp� pNÞ=ð1=2ÞrU2 on an airfoil at a moderate angle of attack. The outward
arrows correspond to a negative Cp, while a positive Cp is represented by inward arrows. It is
seen that the pressure coefficient is negative over most of the surface, except over small
regions near the nose and the tail. However, the pressures over most of the upper surface

FIGURE 14.8 Distribution of the pressure coefficient Cp over an airfoil. The upper panel shows Cp plotted
normal to the surface and the lower panel shows Cp plotted normal to the chord line. Note that negative values
appear on the upper half of the vertical axis in the lower panel. And, on the upper or suction foil surface, a pressure
minimum occurs near the foil’s leading edge. Thus, the suction-side boundary layer faces an adverse pressure
gradient over most of the upper surface of the foil.

FIGURE 14.7 Forces on an airfoil. Lift L acts perpendicular to the oncoming stream and may be positive or
negative. Drag D acts parallel to the oncoming stream and is positive for passive objects.
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are smaller than those over the bottom surface, which results in a net lift force. The top and
bottom surfaces of an airfoil are popularly referred to as the suction side and the compression
(or pressure) side, respectively.

In steady ideal flow, the Kutta-Zhukhovsky lift theorem (see Section 6.5) requires the lift on
a two-dimensional airfoil to be

L ¼ rUG, (6.62)

whereU is the free-streamvelocity andG is the clockwise circulation around the body. Thus, lift
development on an airfoil is synonymous with circulation development. As was seen in
Section 6.3 for 0 < G < 4paU, the amount of circulation held by a cylinder determines the loca-
tion of stagnation points where the oncoming stream attaches and separates from the cylin-
der’s surface. This is also true for an airfoil with circulation; foil-surface flow attachment
and separation locations are set by the foil’s circulation strength. In subsonic aerodynamics,
airfoil circulation is determined by the net amount of vorticity trapped in the foil’s viscous
boundary layers. Thus, asymmetrical foil shapes intended for positive lift generation are
designed to place more vorticity in the suction-side boundary layer than in the pressure-side
boundary layer. For fixed chord length and free-stream flow speed, three common strategies
are followed for robust lift generation and control. The first allows the other two to be effective.

For reliable subsonic lift generation, a foil should have a sharp tailing edge. At low to
moderate angles of attack, jaj up to approximately 15� to 20�, a sharp trailing edge causes
the suction and pressure side boundary layers to separate together at the foil’s trailing
edge. Thus, a sharp trailing edge becomes the downstream flow separation point, so its loca-
tion thereby determines the foil’s circulation for a given foil shape and free-stream speed. The
actual fluid-dynamic interaction leading to this situation involves the foil’s viscous boundary
layers and is described later. However, this possibility for controlling circulation was exper-
imentally observed before the development of boundary-layer theory. In 1902, the German
aerodynamicist Wilhelm Kutta proposed the following rule: in flow over a two-dimensional
body with a sharp trailing edge, there develops a circulation of magnitude just sufficient to move
the rear stagnation point to the trailing edge. This statement is called the Kutta condition, some-
times also called the Zhukhovsky hypothesis. It is applied in ideal-flow aerodynamics as
a simple means of capturing the viscous flow effects of a foil’s attached boundary layers.

A second strategy for controlling a foil’s lift is to change its angle of attack a. For jaj < 15�
to 20�, increasing a increases the lift, and nominal extreme CL values from e2 to þ2 can be
obtained from well-designed, single-piece airfoils.

The final strategy for controlling a foil’s lift is to change its camber. For a fixed angle of
attack, increasing camber increases the lift. This is the primary reason for moveable control
surfaces at the trailing edges of the wings and tail fins of an aircraft. Angular rotation of such
control surfaces locally changes a foil’s camber line and thereby changes the lift force gener-
ated by the portion of the wing or fin spanned by the control surface.

Two additional considerations are worth mentioning here. Most foils have a rounded
leading edge to keep the foil’s suction-side boundary layer attached, and this increases lift
and decreases drag. A properly designed leading edge recovers nearly all of the ideal-flow
leading edge suction that occurs on foils of negligible thickness (see Exercise 14.7). And,
when a foil is pitched upward to a sufficiently high angle of attack, the Kutta condition
will fail and the foil’s suction-side boundary layer will separate upstream of the foil’s trailing
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edge. This situation is called stall and its onset depends on: the foil’s shape, the Reynolds
number of the flow, the foil’s surface roughness, and other three-dimensional effects. Stall
occurs when the suction-side boundary layer cannot overcome the adverse pressure gradient
aft of the pressure minimum on the foil’s suction side. For small violations of the Kutta condi-
tion where the suction-side boundary layer separates at ~80% or 90% of the chord length,
a typical foil’s lift is not strongly affected but its drag increases. For more severe violations
of the Kutta condition, where the suction-side boundary layer separates upstream of the
mid-chord location, the foil’s lift is noticeably reduced and its drag is greatly increased. In
nearly all cases, stall leads to such undesirable foil performance that its onset places impor-
tant limitations on an aircraft’s operating envelope.

The physical reason for the Kutta condition is illustrated in Figure 14.9 where the same
simple airfoil and nearby streamlines are shown at three different times. Here, the foil is
held fixed and flow is impulsively accelerated to speedU at t ¼ 0. Figure 14.9a shows stream-
lines near the foil immediately after the fluid has started moving but before boundary layers
have developed on either its suction or pressure sides. The fluid velocity at this stage has
a near discontinuity adjacent to the foil’s surface. And, the fluid goes around the foil’s trailing
edge with a very high velocity and overcomes a steep deceleration and pressure rise from the
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FIGURE 14.9 Flow patterns over a stationary airfoil at a low angle of attack in an impulsively started horizontal
flow. (a) Streamlines immediately after the velocity jumps to a positive value. Here the boundary layers on the foil
have not had a chance to develop and the rear stagnation (separation) point B occurs on the suction surface of the
foil. The foil-surface vorticity at the trailing edge is nearly singular and induces a counterclockwise fluid velocity
that draws fluid around the sharp trailing edge. (b) If the pressure-side boundary layer develops first, it will
separate from the trailing edge as shown. However, the pressure distribution near the trailing edge and the induced
velocities from the foil’s near-wake vorticity both act to bring B to the trailing edge. (c) Steady-flow pattern
established after the flow has moved a chord length or two. Here the leading edge stagnation point A has moved
onto the pressure side of the foil and the net circulation trapped in the foil’s boundary layers satisfies the Kutta
condition. In this case the rear stagnation (separation) point lies at the foil’s trailing edge. The net circulation of the
whole flow field remains zero because the unsteady flow process leading to this flow pattern produces a counter-
rotating starting vortex, shown in (c) as a dashed spiral.
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trailing edge to the rear flow-separation (and -stagnation) point at B. The flow is able to turn
the sharp trailing-edge corner because the vorticity on the foil’s surface near the trailing edge
at this instant is nearly singular at the trailing edge and it induces counterclockwise fluid
motion (shown in Figure 14.9a by a dashed arrow). Overall at this time, the flow is irrota-
tional away from the foil’s surface, the foil’s net circulation is zero, it generates no lift, the
forward flow-attachment stagnation point at A is very close to the nose of the foil, and the
rear stagnation point at B resides on the foil’s suction surface.

Figure 14.9b shows the flow a short time later in a hypothetical situation where the foil’s
pressure-side boundary layer has developed first. In this case, the points A and B have not
moved much. However, the pressure-side boundary layer now separates at the sharp trail-
ing edge because the slowly moving boundary-layer fluid near the foil’s surface does not
have sufficient kinetic energy to negotiate the steep pressure rise near the stagnation point
B nor can it turn the sharp trailing-edge corner. Furthermore, the separated pressure-side
boundary-layer flow has carried the near singularity of vorticity, which initially resided
on the foil’s surface at its trailing edge, into the foil’s near wake as a concentrated vortex.
Two phenomena near the trailing edge now act to eliminate the zone of separated flow
caused by pressure-side boundary-layer separation at the trailing edge. First, the Bernoulli
equation ensures that the stagnation pressure at B is higher than the pressure in the moving
fluid that is leaving the trailing edge from the pressure side of the foil. The resulting
pressure gradient between B and the trailing edge pushes the stationary fluid near B toward
the foil’s trailing edge. Second, the induced velocities from the vorticity in the separated
pressure-side boundary layer and from the near-wake concentrated vortex both induce
the stationary fluid near B to move toward the foil’s trailing edge. Together these two
phenomena cause the rear stagnation point at B to move to the foil’s trailing edge. Although
an actual impulsively started flow involves simultaneous suction- and pressure-side
boundary layer development, the outcome is the same; the rear stagnation point winds
up at the trailing edge.

Figure 14.9c shows the final condition after the flow has traveled a chord length or two past
the foil. The leading-edge stagnation point has traveled under the nose of the foil and onto the
foil’s pressure side, and the suction-surface separation point B has been drawn to the foil’s
trailing edge. (The ideal airfoil trailing edge is a perfect cusp with zero included angle that
allows the pressure and suction side flows tomeet and separate from the foil without changing
direction and without a stagnation point. However, structural requirements cause real foils to
have finite included-angle trailing edges, thus point B is a stagnation point evenwhen the trail-
ing edge’s included angle is very small; see Section 6.4 and Exercise 14.2.) Once the flow shown
in Figure 14.9c is established, the foil now carries more vorticity in its suction-side boundary
layer than it does in its pressure-side boundary layer. This difference causes the flow to sweep
upward ahead of the foil and downward behind it. The foil’s net circulation is that necessary to
satisfy the Kutta condition, GKutta. If the foil’s circulation is further increased beyond GKutta, the
rear stagnation point moves under the foil and onto the pressure surface. Although it is an ideal-
flow possibility, G > GKutta is not observed in real airfoil flows.

The net circulation in the impulsively started flow described in this section and illustrated in
Figure 14.9 ismaintained at zero by the presence of an opposite sign vortex, known as a starting
vortex, in the fluid that was near the foil when the flow beganmoving. In the scenario described
earlier, this vortex is the remnant of the vorticity shed by the pressure-side boundary layer

14. AERODYNAMICS700



before point B moved to the foil’s trailing edge and the cast-off concentrated vorticity that
initially caused the flow to fully turn the foil’s sharp trailing-edge corner.

The equivalence of the final circulation magnitude bound to the foil and that in the starting
vortex is illustrated in Figure 14.10 where the sense of the foil’s circulation is clockwise and
that in the starting vortex is counterclockwise. For the flow shown in this figure, imagine that
the fluid is stationary and the airfoil is moving to the left. Consider a material circuit ABCD
large enough to enclose both the initial and final locations of the airfoil. Initially the trailing
edge was within the region BCD, which now contains the starting vortex only. According to
Kelvin’s circulation theorem, the circulation around any material circuit remains constant, if
the circuit remains in a region of inviscid flow (although viscous processes may go on inside
the region enclosed by the circuit). The circulation around the large circuit ABCD therefore
remains zero, since it was zero initially. Consequently the counterclockwise circulation of
the starting vortex around DBC is balanced by an equal clockwise circulation around
ADB. The wing is therefore left with a circulation G equal and opposite to the circulation
of the starting vortex.

It is clear from the discussion and illustrations in Figure 14.9 that a value of circulation
other than GKutta would result a readjustment of the flow. Thus, with every change in flow
speed, angle of attack, or airfoil camber (via flap deflection) a new starting vortex is cast
off and left behind the foil. A new value of circulation around the airfoil is established to
once again place the rear stagnation point at the foil’s trailing edge.

Interestingly, fluid viscosity is not only responsible for the drag, but also for the development of
circulation and lift. In developing the circulation, the flow leads to a steady state where further
boundary-layer separation is prevented. The establishment of circulation around an airfoil-
shaped body in a real fluid is truly remarkable.

Historical Notes

According to von Karman (1954), the connection between the lift of airplane wings and the
circulation around them was recognized and developed by three persons. One of them was
the Englishman Frederick Lanchester (1887�1946). He was a multisided and imaginative
person, a practical engineer as well as an amateur mathematician. His trade was automobile

FIGURE 14.10 A material cir-
cuit in a stationary fluid that
contains an impulsively started
airfoil moving to the left. The entire
outer part of the circuit was initially
in stationary fluid. Thus, the circu-
lation on ABCD must be zero.
Therefore, if the sub-circuit ABD
contains the airfoil with circulation
G, then the other sub-circuit BCD
must contain a starting vortex with
circulation eG.
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building; in fact, he was the chief engineer and general manager of the Lanchester Motor
Company. He once took von Karman for a ride around Cambridge in an automobile that
he built himself, but von Karman “felt a little uneasy discussing aerodynamics at such rather
frightening speed” (p. 34). The second person is the German mathematician Wilhelm Kutta
(1867�1944), well known for the Runge-Kutta scheme used in the numerical integration of
ordinary differential equations. He started out as a pure mathematician, but later became
interested in aerodynamics. The third person is the Russian physicist Nikolai Zhukhovsky,
who developed the mathematical foundations of the theory of lift for wings of infinite
span, independently of Lanchester and Kutta. An excellent history of flight and the science
of aerodynamics is provided by Anderson (1998).

14.4. CONFORMAL TRANSFORMATION FOR GENERATING
AIRFOIL SHAPES

In the study of airfoils, one is interested in finding the flow pattern and the surface-
pressure distribution. The direct solution of the Laplace equation for the prescribed boundary
shape of the airfoil is straightforward using a computer, but analytically it is more difficult. In
general, analytical solutions are possible only when the airfoil is assumed thin. This is called
thin airfoil theory, in which the airfoil is replaced by a vortex sheet coinciding with the camber
line. An integral equation is developed for the local vorticity distribution from the condition
that the camber line be a streamline (velocity tangent to the camber line). The velocity at each
point on the camber line is the superposition (i.e., integral) of velocities induced at that point
due to the vorticity distribution at all other points on the camber line plus that from the
oncoming stream (at infinity). Since the maximum camber is small, evaluations are made
on the x-axis of the x�y-plane. The Kutta condition is enforced by requiring the strength
of the vortex sheet at the trailing edge to be zero. Thin airfoil theory is treated in detail in
Kuethe and Chow (1998, Chapter 5) and Anderson (2007, Chapter 4). An indirectway to solve
the problem involves the method of conformal transformation, in which a mapping function
is determined such that the airfoil shape is transformed into a circle. Then a study of the flow
around the circle determines the flow pattern around the airfoil. This is called Theodorsen’s
method, which is complicated and will not be discussed here.

Instead, we shall deal with the case in which a given transformation maps a circle into an
airfoil-like shape and determines the properties of the airfoil generated thereby. This is the
Zhukhovsky transformation:

z ¼ zþ b2

z
, (14.3)

where b is a constant. It maps regions of the z-plane into the z-plane, some examples of which
are discussed in Section 6.6. Here, we shall consider circles in different configurations in the
z-plane and examine their transformed shapes in the z-plane. It will be seen that one of them
will result in an airfoil shape.

First consider the transformation of a circle into a straight line. Start from a circle, centered at
the origin in the z-plane, whose radius b is the same as the constant in the Zhukhovsky transfor-
mation (Figure 14.11). For a point z ¼ beiq on the circle, the corresponding point in the z-plane is
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z ¼ b eiq þ b e�iq ¼ 2b cos q:

As q varies from 0 to p, z goes along the x-axis from 2b to�2b. As q varies from p to 2p, z goes
from �2b to 2b. The circle of radius b in the z-plane is thus transformed into a straight line of
length 4b in the z-plane. It is clear that the region outside the circle in the z-plane is mapped
into the entire z-plane. (It can be shown that the region inside the circle is also transformed
into the entire z-plane. This, however, is of no concern to us, since we shall not consider
the interior of the circle in the z-plane.)

Next consider the transformation of a circle into a circular arc. Again start with a circle
in the z-plane, but this time let its radius be a (>b), let it be centered at point Q along the
vertical the h-axis, and let it cut the horizontal x-axis at (�b, 0), as shown in Figure 14.12. If
a point on the circle in the z-plane is represented by z ¼ Reiq, then the corresponding point
in the z-plane is

z ¼ Reiq þ b2

R
e�iq,

FIGURE 14.12 Transformation of a circle into a circular arc. This situation is similar to that shown in
Figure 14.11 except that here the circle is displaced upward and its radius is larger. The object created in the z-plane
is a circular arc.

FIGURE 14.11 Transformation of a circle into a straight line. Here the z-plane contains the circle of radius b and
the transformation z ¼ z þ b2/z converts it into a line segment of length 4b in the z-plane.
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whose real and imaginary parts are:

x ¼ ðRþ b2=RÞcos q,
y ¼ ðR� b2=RÞsin q:

(14.4)

Eliminating R, we obtain

x2 sin2q� y2 cos2q ¼ 4b2 sin2q cos2q: (14.5)

To understand the shape of the curve represented by (14.5) we must express q in terms of x, y,
and the known constants. From triangle OQP, we obtain

QP2 ¼ OP2 þOQ2 � 2ðOQÞðOPÞcos ðQ bOPÞ:
Using QP ¼ a ¼ b/cos b and OQ ¼ b tan b, this becomes

b2

cos2 b
¼ R2 þ b2 tan2 b� 2Rb tan b cosð90� � qÞ,

which simplifies to

2b tan b sin q ¼ R� b2=R ¼ y=sin q, (14.6)

where (14.4) has been used. We now eliminate q between (14.5) and (14.6). First note from
(14.6) that cos2q ¼ (2b tan b � y)/2b tan b, and cot2q ¼ (2b tan b � y)/y. Then divide (14.5)
by sin2q, and substitute these expressions for cos2q and cot2q. This gives

x2 þ ðyþ 2b cot 2bÞ2 ¼ ð2b csc 2bÞ2,
where b is known from cos b ¼ b/a. This is the equation of a circle in the z-plane, having the
center at (0, �2bcot 2b) and a radius of 2bcsc2b. The Zhukhovsky transformation has thus
mapped a complete circle into a circular arc.

Now consider what happens when the center of the circle in the z-plane is displaced to
a point Q on the real axis (Figure 14.13). The radius of the circle is again a (>b), and we
assume that a is slightly larger than b:

ah bð1þ eÞ e � 1: (14.7)

FIGURE 14.13 Transformation of a circle into a symmetric airfoil. This situation is similar to that shown in
Figure 14.11 except that here the circle is displaced to the left and its radius is larger. The object created in the z-
plane has a symmetric (zero camber) airfoil shape.
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A numerical evaluation of the Zhukhovsky transformation (14.3), with assumed values for
a and b, shows that the corresponding shape in the z-plane is a symmetrical airfoil shape,
a streamlined body that is symmetrical about the x-axis. Note that the airfoil in Figure 14.13
has a rounded nose and thickness, while the one in Figure 14.12 has camber but no thickness.

Therefore, a potentially realistic airfoil shape with both thickness and camber can be
generated by starting from a circle in the z-plane that is displaced in both h and x directions
(Figure 14.14). The following relations can be proved for e � 1:

cy 4b, camber ¼ y
1

2
bc, and tmax=cy 1:3e: (14.8)

Here tmax is the maximum thickness, which is reached nearly at the quarter chord position
x ¼ �b, and camber as defined in Figure 14.6 is indicated in Figure 14.14.

Such airfoils generated from the Zhukhovsky transformation are called Zhukhovsky airfoils.
They have the property that the trailing edge is a cusp, which means that the upper and lower
surfaces are tangent to each other at the trailing edge. Without the Kutta condition, the trail-
ing edge is a point of infinite velocity. If the trailing edge angle is nonzero (Figure 14.15a),
then a stagnation point occurs at the trailing edge because the suction and pressure side flows
must change direction when they meet (Exercise 14.2). However, the cusped trailing edge of
a Zhukhovsky airfoil (Figure 14.15b) does not require any flow deflection so it is not a stag-
nation point. In that case the tangents to the upper and lower surfaces coincide at the trailing
edge, and the fluid leaves the trailing edge smoothly. The trailing edge for the Zhukhovsky
airfoil is simply an ordinary point where the velocity is neither zero nor infinite.

FIGURE 14.14 Transformation of a circle into a cambered airfoil. This situation combines the effects illustrated
in Figures 14.11e14.13. The circle is displaced upward and leftward, and its radius is larger. The resulting shape in
the z-plane is that of an airfoil.

FIGURE 14.15 Shapes of the trailing edge: (a) trailing edge with finite angle; and (b) cusped trailing edge.
Application of the Kutta condition to a trailing edge with a finite included angle results in a stagnation point at the
trailing edge. A cusped trailing edge avoids the stagnation point.
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14.5. LIFT OF A ZHUKHOVSKY AIRFOIL

The preceding section has shown how a circle in the z-plane can be transformed into an
airfoil in the z-plane with the help of the Zhukhovsky transformation. The performance of
such an airfoil can be determined with the aid of the transformation. Start with flow around
a circle with clockwise circulation G in the z-plane, in which the approach velocity is inclined
at an angle a with the x-axis (Figure 14.16). The corresponding pattern in the z-plane is the
flow around an airfoil with circulation G and angle of attack a. It can be shown that the circu-
lation does not change during a conformal transformation. If w ¼ f þ ij is the complex
potential, then the velocities in the two planes are related by

dw

dz
¼ dw

dz

dz

dz
:

FIGURE 14.16 Transformation of flow around a circle with circulation in the z-plane into flow around
a Zhukhovsky airfoil in the z-plane. The stagnation points S and B in the upper panel are mapped into the
stagnation points S0 and B0 in the lower panel. The angle of attack a is the same in both complex planes.
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Using the Zhukhovsky transformation (14.3), this becomes

dw

dz
¼ dw

dz

z2

z2 � b2
: (14.9)

Here dw/dz ¼ u � iv is the complex velocity in the z-plane, and dw/dz is the complex velocity
in the z-plane. Equation (14.9) shows that the velocities in the two planes become equal as
z/ N, which means that the free-stream velocities are inclined at the same angle a in the
two planes.

Point B with coordinates (b, 0) in the z-plane is transformed into the trailing edge B0 of
the airfoil. Because z2 � b2 vanishes there, it follows from (14.9) that the velocity at the
trailing edge will in general be infinite. If, however, we arrange that B is a stagnation point
in the z-plane at which dw/dz ¼ 0, then dw/dz at the trailing edge will have a zero-over-
zero form. Our discussion of Figure 14.15b has shown that this will in fact result in a finite
velocity at B0.

From (6.37), the tangential velocity at the surface of the circle in the z-plane is given by

uq ¼ �2U sin q� G

2p a
, (14.10)

where q is measured from the free-stream-aligned diameter CQE. At point B, we have uq ¼ 0
and q ¼ �(a þ b). Therefore (14.10) gives

G ¼ 4pUa sinðaþ bÞ, (14.11)

which is the clockwise circulation required by the Kutta condition. It shows that the circula-
tion around an airfoil depends on the speedU, the chord length c ðx4aÞ, the angle of attack a,
and the camber/chord ratio b/2. The coefficient of lift is

CL ¼ L

ð1=2Þ rU2c
x2pðaþ bÞ, (14.12)

where we have used 4axc, L ¼ rUG, and sinðaþ bÞxðaþ bÞ for small angles of attack. Equa-
tion (14.12) shows that the lift can be increased by adding a certain amount of camber. The lift
is zero at a negative angle of attack a ¼ �b, so that the angle (a þ b) can be called the absolute
angle of attack. The fact that the lift of an airfoil is proportional to the angle of attack allows
the pilot to control the lift simply by adjusting the attitude (orientation) of the airfoil with
respect to its flight direction.

A comparison of the theoretical lift equation (14.12) with typical experimental results for
a Zhukhovsky airfoil is shown in Figure 14.17. The small disagreement can be attributed to
the finite thickness of the foil-surface boundary layers whose displacement thicknesses
change the effective shape of the airfoil. The sudden drop of the lift at a þ bz 20� is the
signature of stall, and it is caused by early suction-side boundary-layer separation that
worsens with increasing angle of attack. Stall is further discussed in Section 14.7.

Zhukhovsky airfoils are not practical for two basic reasons. First, they demand a cusped
trailing edge, which cannot be practically constructed or maintained. Second, the camber
line in a Zhukhovsky airfoil is nearly a circular arc, and therefore the maximum camber
lies close to the center of the chord. However, a maximum camber within the forward portion
of the chord is usually preferred so as to obtain a desirable pressure distribution. To get
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around these difficulties, other families of airfoils have been generated from circles by means
of more complicated transformations. Nevertheless, the results for a Zhukhovsky airfoil
given here have considerable application as reference values, and the conformal mapping
technique remains an efficient means for assessing airfoil designs.

14.6. ELEMENTARY LIFTING LINE THEORY FOR WINGS
OF FINITE SPAN

The foregoing two-dimensional results apply only towings of infinite span. However, many
of the concepts of two-dimensional aerodynamics can be extrapolated to three-dimensional
flow and wings of finite span when the vorticity shed from a three-dimensional wing is
accounted for. The lifting line theory of Prandtl and Lanchester is the simplest means for
accomplishing this task and it provides useful insights into how lift and drag develop on finite
span wings. Lifting line theory is based on several approximations to the three-dimensional
flow field of a finite wing, so our starting point is a description of such a flow.

Figure 14.18 shows a schematic view of a finite-span wing, looking downstream from the
aircraft. As the pressure on the lower surface of the wing is greater than that on the upper
surface, air flows around the wing tips from the lower into the upper side. Therefore, there
is a span-wise component of velocity toward the wing tip on the underside of the wing and
toward the wing root on the upper side, as shown by the streamlines in Figure 14.19a. The
span-wise momentum acquired as the fluid passes the wing continues into the wake down-
stream of the trailing edge. On the stream surface extending downstream from the wing,
therefore, the lateral component of the flow is outward (toward the wing tips) on the under-
side and inward on the upper side. On this surface, then, there is vorticity oriented in the
stream-wise direction. This stream-wise vorticity has opposite signs on the two sides of

FIGURE 14.17 Comparison of theoretical and experimental lift coefficients for a cambered Zhukhovsky airfoil.
The lift curve slopes match well and boundary-layer thicknesses may account for the offset between theoretical and
measured curves. The most important difference is that the real airfoil stalls while the ideal one does not.
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the wing-center axis OQ. The stream-wise vortex filaments downstream of the wing are
called trailing vortices, which form a vortex sheet (Figure 14.19b) in the near wake of the
wing. As discussed in Section 5.8, a vortex sheet is composed of closely spaced vortex fila-
ments that generate a discontinuity in tangential velocity.

Downstream of the wing, each half of the vortex sheet rolls up on itself and forms two
distinct counter-rotating vortices called tip vortices (Figure 14.20). The circulation of each
tip vortex is equal to G0, the circulation at the center of the wing. Tip vortices may become
visually evident when an aircraft flies in humid air. The decreased pressure (due to the
high velocity) and temperature in the core of the tip vortices may cause atmospheric moisture
to condense into droplets or ice crystals, which may be seen in the form of vapor trails extend-
ing for many kilometers behind an aircraft traversing a clear sky. This textbook’s cover shows
the trailing-vortex-induced distortion of a cloud layer behind a commercial airliner. Here the
aircraft’s mass is more than 100,000 kilograms. Thus, the strength of its trailing vortices is
sufficient to cause substantial cloud motion on a scale comparable to the aircraft’s wingspan.
As an aircraft proceeds after takeoff, the tip vortices get longer, which means that kinetic
energy is being constantly supplied to generate them. Thus, an additional drag force must
be experienced by a wing of finite span. This is called the induced drag, and it can be predicted
with lifting line theory.

FIGURE14.19 Flowover awingof finite span: (a) top viewof streamlinepatterns on theupper and lower surfaces of
thewing; and (b) cross section of trailing vortices behind thewing. The trailing vortices change sign atO, the center of the
wing.

FIGURE 14.18 Flow around wing tips. Low suction-side pressures and high pressure-side pressures cause fluid
to move toward the wing tips on the underside of a finite wing, and to move away from the wing tips on the topside
of a finite wing. This three-dimensional flow eventually produces the tip vortices.
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One of Helmholtz’s vortex theorems states that a vortex filament cannot end in the fluid,
but must either end at a solid surface or form a closed vortex loop or ring. In the case of the
finite wing, the tip vortices are the extension of the vorticity trapped in the wing’s boundary
layers. The tip vortices start at the wing and are joined together downstream of the aircraft
by the various starting vortices of the wing. Starting vortices are left behind at the point
where the aircraft took off and where the wing’s lift was changed for aircraft maneuvers
(ascent, descent, turns, etc.). In any case, the starting vortices are usually so far behind
the wing that their effect on the wing’s performance may be neglected and the tip vortices
may be regarded as extending an infinite distance aft of the wing.

Three assumptions are needed for the simple version of lifting line theory presented here.
The first is that the wing’s aspect ratio, span/(average chord), is so large that the flow at any
span-wise locationmay be treated as two dimensional. A second assumption is that the actual
physical structure of the aircraft does not matter and that the aircraft’s main wing may be
replaced by a single (straight) vortex segment of variable strength. This vortex segment is
called the bound vortex. It moveswith the aircraft and lies along the aircraft’s wings, nominally
located at the center of lift at any span-wise location along the wing. The bound vortex forms
the lifting line segment fromwhich the theory draws its name. In general, the bound vortex is
strongest near the midspan and weakest near the wing tips. According to one of the Helm-
holtz theorems (Section 5.3), a vortex cannot begin or end in the fluid; it must end at a wall
or form a closed loop. Therefore, as the bound vortex weakens from wing root to wing tip
it releases vortex filaments that turn parallel to the stream-wise direction and are advected
downstream, eventually coalescing to form the tip vortices. A third assumption made in lift-
ing line theory is that the interaction of these trailing vortex filaments with each other can be
ignored. Thus, each trailing vortex filament starts at the bound vortex and is assumed to lie
along a straight semi-infinite horizontal line parallel to the upstream flowdirection. Although
a formal mathematical account of the theory was first published by Prandtl, many of the
important underlying ideas were first conceived by Lanchester. The historical controversy
regarding the credit for the theory is noted at the end of this section.

With these assumptions and the geometry shown in Figure 14.21, a relation can be derived
between the distribution of circulation along the wingspan and the strength of the trailing
vortex filaments. Suppose that the clockwise circulation of the bound vortex changes from

FIGURE 14.20 Rolling up of trailing vortices to form tip vortices. The mutual interaction of the trailing vortices
eventually produces two counter-rotating wing-tip vortices having the same circulation as that bound to the center
of the main wing. The effect of such vortices on a cloud layer is shown on the cover of this textbook.
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G to G � dG at a certain point (Figure 14.21a). Then another vortex AC of strength dG must
emerge from the location of the change. In fact, the strength and sign of the circulation
around AC is such that, when AC is folded back onto AB, the circulation is uniform along
the composite vortex tube. (Recall the vortex theorem of Helmholtz, which says that the
strength of a vortex tube is constant along its length.) Now consider the vortex strength or
circulation distribution G(y) that represents the main wing (Figure 14.21b). The change in
circulation in length dy is dG, which is a decrease if dy > 0. It follows that the magnitude
of the trailing vortex filament of width dy is e(dG/dy)dy. For simple wings, the trailing
vortices will be stronger near the wing tips where dG/dy is the largest.

The critical contribution of lifting line theory is that it allows an approximate means of
assessing the impact of the trailing vortex filaments on the performance of the bound vortex
representing the aircraft’s wing. The simplest means of assessing this impact is to determine
the velocity induced at a point y1 on the lifting line by the trailing vortex filament that leaves
the wing at location y, and then integrating over the trailing filament contributions from all
possible y values. Based on the Biot-Savart law (5.17), a straight semi-infinite trailing vortex
filament that leaves the wing at y with strength e(dG/dy)dy and remains horizontal induces
a downward velocity of magnitude:

dwðy1Þ ¼ �ðdG=dyÞdy
4p
�

y� y1
�

at location y (< y1) along the lifting line (Exercise 14.10 with q1 ¼ 0 and q2 ¼ 90�). This velocity
increment is half the velocity induced by an infinitely long vortex element. The bound vortex
does not induce a velocity on itself, so for a wing of span s, the total downward velocity at y1
due to the entire trailing vortex sheet is therefore

wðy1Þ ¼ 1

4p

Z s=2

�s=2

dG

dy

dy
�

y1 � y
�, (14.13)

FIGURE 14.21 The mechanism leading to trailing vortices. (a) When the bound vortex having strength G

weakens, it sheds a vortex filament AC of strength dG into the wing’s wake and continues along the wing as the
vortex AB with strength G e dG. (b) The shed vortex filament that leaves the bound vortex at location y induces
a downward velocity at location y1 of the bound vortex when y > y1. The induced velocity from all trailing vortex
filaments is known as downwash.
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which is called the downwash at y1 on the lifting line. The vortex sheet also induces a smaller
downward velocity in front of the airfoil and a larger one behind the airfoil (Figure 14.22).

This downwash velocity adds to the free-stream velocity so that the incident flow at any
location along the wing is the vector resultant of U and w (Figure 14.23). The downwash
therefore changes the local angle of attack of the airfoil, decreasing it by the angle

3 ¼ tan
w

U
x

w

U
,

where the approximate equality follows when w� U, the most common situation in appli-
cations. Thus, the effective angle of attack at any span-wise location is

ae ¼ a� 3 ¼ a� w

U
: (14.14)

Because the aspect ratio is assumed large, 3 is assumed to be small. Each element dy of the
finite wing may then be assumed to act as though it is an isolated two-dimensional section
set in a stream of uniform velocity Ue, at an angle of attack ae. According to the Kutta-
Zhukhovsky lift theorem, a circulation G superimposed on the actual resultant velocity Ue

generates an elemental aerodynamic force dLe ¼ rUeGdy, which acts normal to Ue. This force

FIGURE 14.23 Lift and lift-induced drag on a wing element dy in the presence of a downwash velocity w. The
downwash velocity locally lowers the angle of attack of the free stream and rotates the lift vector backward to
produce the lift-induced drag.

FIGURE 14.22 Variation of
downwash ahead of and behind
an airfoil. The downwash is
weaker upstream of the wing
and stronger downstream of it.
The actual profile can be deter-
mined from the Biot-Savart law
(see (5.17) and Exercise 14.10).
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may be resolved into two components, the conventional lift force dL normal to the direction
of flight and a component dDi parallel to the direction of flight (Figure 14.23). Therefore

dL ¼ dLe cos 3 ¼ rUeG dy cos 3x rUG dy,

dDi ¼ dLe sin 3 ¼ rUeG dy sin 3x rwG dy:

In general w, G, Ue, 3, and ae are all functions of y, so that for the entire wing:

L ¼
Z s=2

�s=2
rUG dy,

Di ¼
Z s=2

�s=2
rwG dy:

(14.15)

These expressions have a simple interpretation: whereas the interaction of U and G
generates L, which acts normal to U, the interaction of w and G generates Di, which
acts normal to w.

The drag force Di induced by the trailing vortices is called the induced drag and is zero for
a wing of infinite span. It arises on a wing of finite span because it continuously creates trail-
ing vortices and the rate of generation of trailing-vortex kinetic energy must equal the rate of
work done against the induced drag, namely DiU. For this reason, the induced drag is also
known as the vortex drag. It is analogous to the wave drag experienced by a ship, which contin-
uously radiates gravity waves during its motion. As we shall see, the induced drag is the
largest part of the total drag experienced by an airfoil (away from stall).

A basic reason why there must be a downward velocity behind the wing is the following:
The fluid exerts an upward lift force on the wing, and therefore the wing exerts a downward
force on the fluid. The fluid must therefore constantly gain downward momentum as it goes
past the wing.

For a given G(y), w(y) can be determined from (14.13) and Di can then be determined from
(14.15). However, G(y) itself depends on the distribution of w(y) because the effective angle of
attack is changed due to w(y). To see how G(y) may be estimated, first note that the lift coef-
ficient for a two-dimensional Zhukhovsky airfoil is nearly CL ¼ 2p (a þ b). For a finite wing
we may assume

CL ¼ K

�

a� wðyÞ
U

þ bðyÞ
�

, (14.16)

where (a�w/U) is the effective angle of attack,�b(y) is the angle of attack for zero lift (found
from experimental data such as Figure 14.17), and K is the lift-curve slope, a constant whose
value is nearly six for most airfoils (K ¼ 2p for Zhukhovsky and thin airfoils). An expression
for the circulation can be obtained by noting that the lift coefficient is related to the circulation
as CL ¼ L=ðð1=2ÞrU2cÞ ¼ G=ðð1=2ÞUcÞ, so that G ¼ ð1=2ÞUcCL. Equation (14.16) is then
equivalent to the assumption that the circulation for a wing of finite span is

GðyÞ ¼ K

2
UcðyÞ

�

a� wðyÞ
U

þ bðyÞ
�

: (14.17)

ForagivenU,a, c(y), andb(y), (14.13)and(14.17)definean integralequation fordeterminingG(y).
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An approximate solution to these two equations can be obtained by changing y and y1 to
angular variables g and g1:

y ¼ �ðs=2Þcos g and y1 ¼ �ðs=2Þcos g1,

so that g ¼ 0 and g ¼ p correspond to the left (port) and right (starboard) wing tips,
respectively, and then assuming a Fourier series form for the circulation strength of the
lifting line:

G ¼
XN

n¼1
Gn sinðngÞ, (14.18)

where the Gn are undetermined coefficients. When (14.18) is substituted into (14.13), the
resulting equation is:

wðy1Þ ¼ 1

2ps

Z
p

0

X
N

n¼1

nGn
cosðngÞdg

cos g1 � cos g
¼ 1

2ps

X
N

n¼1

nGn

Z
p

0

cosðngÞdg
cos g1 � cos g

¼ 1

2s

X
N

n¼1

nGn
sinðng1Þ
sin g1

,

(14.19)

where the final equality comes from evaluating the integral. Combing (14.17) through (14.19)
and dropping the subscript “1” from g, produces a single equation for the coefficients Gn:

K

2
Ucðaþ bÞ ¼

X
N

n¼1

�

1þ nKc

4s sin g

�

Gn sinðngÞ, (14.20)

whereK, c, a, and bmay all be functions of the transformed span coordinate g. Thus, (14.20) is
not a typical Fourier series solution because the coefficients of sin(ng) inside the sum depend
on g. In practice, (14.20) can be solved approximately by truncating the sum after N terms,
and then requiring its validity at N points along the wing to convert it into N algebraic equa-
tions for G1, G2, . GN. Fortunately in many circumstances, just a few terms in the sum are
needed to adequately represent G(y).

With an approximate solution for G(y) provided by several Gn computed algebraically
from (14.20), the wing’s lift and induced drag computed from (14.15) are:

L ¼ ps

4
rUG1, and Di ¼

p

8
r
X
N

n¼1

nG2
n: (14.21, 14.22)

Thus, the wing’s performance is maximized when G1 s 0 and Gn ¼ 0 for all n > 1, because
this produces the maximum lift-to-drag ratio. In this case (14.18) reduces to:

G ¼ G1sinðgÞ ¼ G1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2y=sÞ2
q

, (14.23)

which is known as an elliptical lift distribution. The downwash for an elliptical lift distribution
is constant across the wingspan,

wðyÞ ¼ G1=2s, (14.24)
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as can be found from substituting (14.23) into (14.19). The induced drag for an elliptical lift
distribution is

Di ¼
p

8
rG2

1 ¼
2L2

prU2s2
, (14.25)

where (14.21) has been used to introduce L in the second equality. Thus, the induced drag
coefficient for an elliptical lift distribution is:

CDi
¼ Di
�

1=2
�

rU2A
¼ C2

L

pðs2=AÞ ¼
C2
L

pL
, (14.26)

where CL and CD are given by (4.107) and (4.108) in Section 4.3, A is the wing’s planform
area, and L is the wing’s aspect ratio. Equation (14.26) shows that CDi

/0 when the flow is
two dimensional, that is, in the limit L /N. More importantly, it shows that the induced
drag coefficient increases as the square of the lift coefficient. We shall see in the following
section that the induced drag generally makes the largest contribution to the total drag
of an airfoil.

Since an elliptic circulation distribution minimizes the induced drag, it is of interest to
determine the circumstances under which such a circulation can be established. Consider
an element dy of the wing (Figure 14.24). The lift on the element is:

dL ¼ rUG dy ¼ CL
1

2
rU2c dy, (14.27)

where cdy is a wing area element. If the circulation distribution is elliptic, then the downwash
is independent of y. In addition, if the wing profile is geometrically similar at every point
along the span and has the same geometrical angle of attack a, then the effective angle of

FIGURE 14.24 Wing with an elliptic planform. Here the variation in the chord over the span can produce an
elliptical lift distribution. This planform is similar to that of the British Spitfire, a WWII combat aircraft.
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attack and hence the lift coefficient CL will be independent of y. Equation (14.27) shows that
the chord length c is then simply proportional to G, and so c(y) is also elliptically distributed.
Thus, an untwisted wing with elliptic planform, or composed of two semi-ellipses
(Figure 14.24), will generate an elliptic circulation distribution. However, the same effect
can also be achieved with nonelliptic planforms if the angle of attack varies along the
span, that is, if the wing has twist (see Exercise 14.14).

The results of lifting line theory have had an enormous impact on the design and devel-
opment of subsonic aircraft. However, the results presented here are approximate because
of the geometrical assumptions made about the aircraft’s wings, its trailing vortices, and
the tip vortices. Thus, an elliptical lift distribution is only approximately optimal, and
a more general theory would produce refinements. Yet, with suitable geometric modifica-
tions lifting line theory can be applied to multiple-wing aircraft and rotating propellers.
Furthermore, its implications help explain near-ground effects for landing aircraft, and the
L-pattern commonly formed by flocks of migrating birds.

Lanchester Versus Prandtl

There is some controversy in the literature about who should get more credit for devel-
oping lifting line theory. Since Prandtl in 1918 first published the theory in a mathematical
form, textbooks for a long time have called it the Prandtl Lifting Line Theory. Lanchester
was bitter about this, because he felt that his contributions were not adequately recognized.
The controversy has been discussed by von Karman (1954, p. 50), who witnessed the devel-
opment of the theory. He gives a lot of credit to Lanchester, but falls short of accusing his
teacher Prandtl of being deliberately unfair. Here we shall note a few facts that von Karman
brings up.

Lanchester was the first person to study a wing of finite span. He was also the first person
to conceive that a wing can be replaced by a bound vortex, which bends backward to form the
tip vortices. Last, Lanchester was the first to recognize that the minimum power necessary to
fly is that required to generate the kinetic energy field of the downwash field. It seems, then,
that Lanchester had conceived all of the basic ideas of the wing theory, which he published in
1907 in the form of a book called Aerodynamics. In fact, a figure from his book looks very
similar to the current Figure 14.20.

Many of these ideas were explained by Lanchester in his talk at Göttingen, long before
Prandtl published his theory. Prandtl, his graduate student von Karman, and Carl Runge
were all present. Runge, well known for his numerical integration scheme of ordinary differ-
ential equations, served as an interpreter, because neither Lanchester nor Prandtl could speak
the other’s language. As von Karman said, “both Prandtl and Runge learned very much from
these discussions.”

However, Prandtl did not want to recognize Lanchester for priority of ideas, saying that he
conceived of them before he saw Lanchester’s book. Such controversies cannot be settled,
and great intellects have been involved in controversies before.

In view of the fact that Lanchester’s book was already in print when Prandtl published
his theory, and the fact that Lanchester had all the ideas but not a formal mathematical
theory, we have called it the Lifting Line Theory of Prandtl and Lanchester at the outset of
this section.
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14.7. LIFT AND DRAG CHARACTERISTICS OF AIRFOILS

Before an aircraft is built its wing design is tested in a wind tunnel, and the results are
generally given as plots of CL and CD versus the angle of attack a. A typical plot is shown in
Figure 14.25 where it is seen that, for �4� < a < 12�, the variation of CL with a is approxi-
mately linear, a typical value of dCL/da (¼ K) being z 0.1 per degree. The lift reaches
a maximum value at a z 15�. If the angle of attack is increased further, the steep adverse
pressure gradient on the upper surface of the airfoil causes the flow to separate before
reaching the wing’s trailing edge, and a large wake is formed (Figure 14.26). The drag coef-
ficient increases and the lift coefficient drops. The wing is said to stall as the suction-side
boundary-layer separation point moves toward the leading edge. Beyond the stalling inci-
dence angle the lift coefficient levels off again and remains atz 0.7e0.8 up to a values of
10s of degrees.

For a fixed-shape wing, the maximum possible lift coefficient depends largely on the Rey-
nolds number Re. For chord-based Reynolds numbers of Re ~ 105�106, the suction-side

FIGURE 14.26 Stalling of an airfoil. Here the Kutta condition is no longer satisfied, and the flow separates near
the leading edge on the foil’s suction side. In this situation, the foil’s lift and drag are comparable.

FIGURE 14.25 Generic lift and drag coefficients vs. angle of attack. There is lift at a ¼ 0 so the foil shape has
nonzero camber. The drag increase is almost quadratic with increasing angle of attack in accordance with (14.26).
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boundary layer may separate before it undergoes transition, and stall may begin before
a reaches 10� leading to maximum lift coefficients < 0.9. At larger Reynolds numbers, say
Re > 107, the suction-side boundary layer transitions to turbulence before it separates
and is therefore able to stay attached up to a-values approaching or exceeding 20�.
Maximum lift coefficients near or even slightly above two may be obtained at the highest
Reynolds numbers.

The angle of attack at zero lift, denoted by �b here, is a function of the airfoilsection’s
camber. (For a Zhukhovsky airfoil, b ¼ 2(camber)/chord.) The effect of increasing the
airfoil camber is to raise the entire graph of CL versus a, thus increasing the maximum
values of CL without stalling. A cambered profile delays stall because its leading edge
points into the airstream while the rest of the airfoil is inclined to the stream.
Rounding the airfoil nose is also essential, since an airfoil of zero thickness would
undergo separation at the leading edge. Trailing edge flaps act to increase the camber
and thereby the lift coefficient when they are deployed, and this allows lower aircraft
landing speeds.

Various terms are in common usage to describe the different components of the drag. The
total drag of a body can be divided into a friction drag due to the tangential stresses on the
surface and pressure drag due to the normal stresses. The pressure drag can be further subdi-
vided into an induced drag and a form drag. The induced drag is the drag that results from the
work done by the body to supply the kinetic energy of the downwash field as the trailing
vortices increase in length. The form drag is defined as the part of the total pressure drag
that remains after the induced drag is subtracted out. (Sometimes the skin friction and
form drags are grouped together and called the profile drag, which represents the drag due
to the wing’s geometrical profile alone and not due to the finiteness of the wing.) The
form drag depends strongly on the shape and orientation of the airfoil and can be minimized
by good design. In contrast, relatively little can be done about the induced drag if the wing’s
aspect ratio is fixed.

Normally the induced drag constitutes the major part of the total drag of a wing. As CDi

is nearly proportional to C2
L, and CL is nearly proportional to a, it follows that CDi

fa2.
This is why the drag coefficient in Figure 14.25 seems to increase quadratically with angle
of attack.

For high-speed aircraft, the appearance of shock waves can adversely affect the
behavior of the lift and drag characteristics. In such cases the maximum flow speeds can
be close to or higher than the speed of sound even when the aircraft is flying at subsonic
speeds. Shock waves can form when the local flow speed exceeds the local speed of
sound. To reduce their effect, the wings are given a sweepback angle, as shown in
Figure 14.2. The maximum flow speeds depend primarily on the component of the
oncoming stream perpendicular to the leading edge; this component is reduced as a result
of the sweepback. Thus, increased flight speeds are achievable with highly swept wings.
This is particularly true when the aircraft flies at supersonic speeds in which there is
invariably a shock wave in front of the nose of the fuselage, extending downstream in
the form of a cone. Highly swept wings are then used in order that the wing does not
penetrate this shock wave. For flight speeds exceeding Mach numbers of order 2, the
wings have such large sweepback angles that they resemble the Greek letter D; these
wings are sometimes called delta wings.
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14.8. PROPULSIVE MECHANISMS OF FISH AND BIRDS

The propulsive mechanisms of many animals are based on lift generation by wing-like
surfaces. Just the basic ideas of this interesting subject are presented here. More detail is
provided by Lighthill (1986).

First consider swimming fish. They develop forward thrust by horizontally oscillating their
tails from side to side. Fish tails like that shown in Figure 14.27a have a cross section resem-
bling that of a symmetric airfoil. One-half of the oscillation is represented in Figure 14.27b,
which shows the top view of the tail. The sequence 1 to 5 represents the positions of the
tail during the tail’s motion to the left. A quick change of orientation occurs at one extreme
position of the oscillation during 1 to 2; the tail then moves to the left during 2 to 4, and
another quick change of orientation occurs at the other extreme during 4 to 5.

Suppose the tail is moving to the left at speed V, and the fish is moving forward at speed
U. The fish controls these magnitudes so that the resultant fluid velocity Ur (relative to the
tail) is inclined to the tail surface at a positive angle of attack. The resulting lift L is perpen-
dicular to Ur and has a forward component L sin q. (It is easy to verify that there is a similar
forward propulsive force when the tail moves from left to right.) This thrust, working at the
rate UL sin q, propels the fish. To achieve this propulsion, the tail of the fish pushes side-
ways on the water against a force of L cos q, which requires work at the rate VL cos q. Since
V/U ¼ tan q, the conversion of energy is ideally perfectdall of the oscillatory work done by
the fish tail goes into the translation. In practice, however, this is not the case because of the
presence of induced drag and other effects that generate a wake.

Most fish stay afloat by controlling the buoyancy of an internal swim bladder. In contrast,
some large marine mammals such as whales and dolphins develop both a forward thrust and
a vertical lift by moving their tails vertically. They are able to do this because their tail surface
is horizontal, in contrast to the vertical tail shown in Figure 14.27. A review by Fish and
Lauder (2006) provided evidence that leading-edge tubercles as seen on humpback whale
flippers increase lift and reduce drag at high angles of attack. This is because separation is

FIGURE 14.27 Propulsion of fish.
(a) The cross section of the tail along
AA is that of a symmetric airfoil. Five
positions of the tail during its motion
to the left are shown in (b). The lift
force L is normal to the resultant speed
Ur of water with respect to the tail.
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delayed due to the creation of stream-wise vortices on the suction side. Cetacean flukes or
flippers and fish tail fins as well as dorsal and pectoral fins are flexible and can vary their
camber during a stroke. As a result they are very efficient propulsive devices.

Now consider flying birds, who flap their wings to generate both the lift to support their
body weight and the forward thrust to overcome drag. Figure 14.28 shows a vertical section
of the wing positions during the upstroke and downstroke of the wing. (Birds have cambered
wings, but this is not shown in the figure.) The angle of inclination of the wing with the
airstream changes suddenly at the end of each stroke, as shown. The important point is
that the upstroke is inclined at a greater angle to the airstream than the downstroke. As
the figure shows, the downstroke develops a lift force L perpendicular to the resultant
velocity of the air relative to the wing. Both a forward thrust and an upward force result
from the downstroke. In contrast, very little aerodynamic force is developed during the
upstroke, as the resultant velocity is then nearly parallel to the wing. Birds therefore do
most of the work necessary for flight during the downstroke.

Liu et al. (2006) provide the most complete description to date of wing planform, camber,
airfoil section, and span-wise twist distribution of seagulls, mergansers, teals, and owls.
Moreover, flapping as viewed by video images from free flight was digitized and modeled
by a two-jointed wing at the quarter chord point. The data from this paper can be used to
model the aerodynamics of bird flight.

Using previously measured kinematics and experiments on an approximately 100-times
upscaled model, Ramamurti and Sandberg (2001) calculated the flow about a Drosophila

FIGURE 14.28 Propulsion of a bird. A cross section of the wing is shown during upstroke and downstroke.
During the downstroke, a lift force L acts normal to the resultant speedUr of air with respect to the wing. During the
upstroke, Ur is nearly parallel to the wing and very little aerodynamic force is generated.
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(fruit fly) in flight. They matched Reynolds number (based on wing-tip speed and average
chord) and found that viscosity had negligible effect on thrust and drag at a flight Reynolds
number of 120. The wings were near elliptical plates with axis ratio 3:1.2 and thickness about
1/80 of the span. Averaged over a cycle, the mean thrust coefficient (thrust/[dynamic pres-
sure �wing surface]) was 1.3 and the mean drag coefficient close to 1.5.

14.9. SAILING AGAINST THE WIND

People have sailed without the aid of an engine for thousands of years and have known
how to reach an upwind destination. Actually, it is not possible to sail exactly against the
wind, but it is possible to sail at z 40e45� to the wind. Figure 14.29 shows how this is
made possible by the aerodynamic lift on the sail, which is a piece of stretched and stiffened
cloth. The wind speed is U, and the sailing speed is V, so that the apparent wind speed rela-
tive to the boat isUr. If the sail is properly oriented, this gives rise to a lift force perpendicular
to Ur and a drag force parallel to Ur. The resultant force F can be resolved into a driving
component (thrust) along the motion of the boat and a lateral component. The driving
component performs work in moving the boat; most of this work goes into overcoming
the frictional drag and in generating the gravity waves that radiate outward from the hull.
The lateral component does not cause much sideways drift because of the shape of the
hull. It is clear that the thrust decreases as the angle q decreases and normally vanishes
when q isz 40e45�. The energy for sailing comes from the wind field, which loses kinetic
energy after passing the sail.

FIGURE 14.29 Principle of sailing against the wind. A small component of the sail’s lift pushes the boat
forward at an angle q < 90� to the wind. Thus by traversing a zig-zag course at angles �q, a sailboat can reach an
upwind destination. A sailboat’s keel may make a contribution to its upwind progress too.
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In the foregoing discussion we have not considered the hydrodynamic forces exerted by the
water on the hull. At constant sailing speed the net hydrodynamic force must be equal and
opposite to the net aerodynamic force on the sail. The hydrodynamic force can be decomposed
into a drag (parallel to the direction of motion) and a lift. The lift is provided by the sailboat’s
keel, which is a thin vertical surface extending downward from the bottom of the hull. For the
keel to act as a lifting surface, the longitudinal axis of the boat points at a small angle to the
direction of motion of the boat, as indicated near the bottom right part of Figure 14.29. This
keel-angle of attack is generally < 3� and is not noticeable. The hydrodynamic lift developed
by the keel opposes the aerodynamic lateral force on the sail. It is clear that without the keel the
lateral aerodynamic force on the sail would topple the boat around its longitudinal axis.

To arrive at a destination directly against the wind, one has to sail in a zig-zag path, always
maintaining an angle of z 45� to the wind. For example, if the wind is coming from the east,
we can first proceed northeastward as shown, then change the orientation of the sail to
proceed southeastward, and so on. In practice, a combination of a number of sails is used
for effective maneuvering. The mechanics of sailing yachts is discussed in Herreshoff and
Newman (1966).

EXERCISES

14.1. Consider the elementary aerodynamics of a projectile of mass m with CL ¼ 0 and
CD ¼ constant. In Cartesian coordinates with gravity g acting downward along the
y-axis, a set of equations for such a projectile’s motion are:

m
dVx

dt
¼ �D cos q,m

dVy

dt
¼ �mg�D sin q, tan q ¼ Vy=Vx, and D ¼ 1

2
r
	

V2
x þ V2

y




ACD,

whereVx andVy are the horizontal and vertical components of the projectile’s velocity,
q is the angle of the projectile’s trajectory with respect to the horizontal, D is the drag
force on the projectile, r is the air density, and A is projectile’s frontal area. Assuming
a shallow trajectory, whereV2

x[V2
y andmg[D sin q, show that the distance traveled

by the projectile over level ground is: xy
2m

rACD
ln

�

1þ rACDV
2
o cos qo sin qo

mg

�

if it is

launched from ground level with speed of Vo at an angle of qo with respect to the hori-
zontal. Does this answer make sense as CD/0?

y

x

g

14.2. As a model of a two-dimensional airfoil’s trailing edge flow, consider the potential
fðr, qÞ ¼ ðUd=nÞðr=dÞncosðnqÞin the usual r-q coordinates (Figure 3.3a). HereU, d, and
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n are positive constants, the fluid has density r, and the foil’s trailing edge lies at the
origin of coordinates.

a) Sketch the flow for n ¼ 3/2, 5/4, and 9/8 in the angle range jqj < p/n, and
determine the full included angle of the foil’s trailing edge in terms of n.

b) Determine the fluid velocity at r ¼ d and q ¼ 0.

c) If p0 is the pressure at the origin of coordinates and pd is the pressure at r ¼ d and

q ¼ 0, determine the pressure coefficient: Cp ¼ ðp0 � pdÞ=ð1=2ÞrU2 as a function

of n. In particular, what is Cp when n ¼ 1 and when n > 1?

14.3. Consider an airfoil section in the xy-plane, the x-axis being aligned with the chord
line. Examine the pressure forces on an element ds ¼ (dx, dy) on the surface, and show
that the net force (per unit span) in the y-direction is

Fy ¼ �
Z c

0
pu dxþ

Z c

0
p1 dx,

where pu and p1 are the pressure on the upper and the lower surfaces and c is the
chord length. Show that this relation can be rearranged in the form

Cyh
Fy

�

1=2
�

rU2c
¼
I

Cpd
	x

c




,

where Cp ¼ ðp0 � pNÞ=ð1=2ÞrU2, and the integral represents the area enclosed in a Cp

versus x/c diagram, such as Figure 14.8. Neglect shear stresses. [Note that Cy is not
exactly the lift coefficient, since the airstream is inclined at a small angle awith respect
to the x-axis.]

14.4. The measured pressure distribution over a section of a two-dimensional airfoil at 4�
incidence has the following form:
Upper Surface: Cp is constant at �0.8 from the leading edge to a distance equal to 60%
of chord and then increases linearly to 0.1 at the trailing edge.
Lower Surface: Cp is constant at�0.4 from the leading edge to a distance equal to 60% of
chord and then increases linearly to 0.1 at the trailing edge.
Using the results of Exercise 14.3, show that the lift coefficient is nearly 0.32.

14.5. The Zhukhovsky transformation z ¼ z þ b2/z transforms a circle of radius b,
centered at the origin of the z-plane, into a flat plate of length 4b in the z-plane. The
circulation around the cylinder is such that the Kutta condition is satisfied at the
trailing edge of the flat plate. If the plate is inclined at an angle a to a uniform
stream U, show that:

(i) The complex potential in the z-plane is w ¼ U
�

z e�ia þ 1=zb2 eia
� þ iG

2p
ln ðz e�iaÞ,

where G ¼ 4pUb sin a. Note that this represents flow over a circular cylinder with
circulation in which the oncoming velocity is oriented at an angle a.

(ii) The velocity components at point P (�2b, 0) in the z-plane are
h3

4
U cos a,

9

4
U sin a

i

.

(iii) The coordinates of the transformed point P0 in the xy-plane are [�5b/2, 0].
(iv) The velocity components at [�5b/2, 0] in the xy-plane are [Ucosa, 3Usina].
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14.6. In Figure 14.12, the angle at A0 has beenmarked 2b. Prove this. [Hint: Locate the center
of the circular arc in the z-plane.]

14.7. Ideal flow past a flat plate inclined at angle awith respect to a horizontal free stream
produces lift but no drag when the Kutta condition is applied at the plate’s trailing
edge. However, pressure forces can only act in the plate-normal direction and this
direction is not perpendicular to the flow. Therefore, to achieve zero drag, another
force must act on the plate. This extra force is known as leading-edge suction and its
existence can be assessed from the potential for flow around the tip of a flat plate that
is coincident with the x-axis for x > 0. In two-dimensional polar coordinates, this
velocity potential is f ¼ 2Uo

ffiffiffiffiffi

ar
p

cosðq=2Þ where Uo and a are velocity and length
scales, respectively, that characterize the flow.

y

r

xq

a) Determine ur and uq, the radial and angular-directed velocity components,
respectively.

b) If the pressure far from the origin is pN, determine the pressure p at any location
(r, q).

c) Use the given potential, a circular control volume of radius 3 centered at the origin
of coordinates, and the control volume version of the ideal flow momentum
equation,

R

C

ruðu,nÞdx ¼ � R
C

pndxþ F, to determine the force F (per unit depth

into the page) that holds the plate stationary when 3/0. Here, n is the outward
unit normal vector to the control volume surface, and dx is the length increment of
the circular control surface.

d) If the plate is released from rest, in what direction will it initially accelerate?
14.8. Consider a cambered Zhukhovsky airfoil determined by the following parameters:

a ¼ 1.1, b ¼ 1.0, and b ¼ 0.1. Using a computer, plot its contour by evaluating the
Zhukhovsky transformation. Also plot a few streamlines, assuming an angle of attack
of 5�.

14.9. A thin Zhukhovsky airfoil has a lift coefficient of 0.3 at zero incidence. What is the lift
coefficient at 5� incidence?
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14.10. Lifting line theory involves calculating vortex-induced velocities from the Biot-Savart
induction law, (5.17). Consider an idealized vortex segment of uniform strengthG that
lies along the z-axis between z1 and z2, and has a sense of rotation that points along the
z-axis. In this case the induced velocity u at the location (R, 4, z) will be given by the
integral:

uðx, tÞ ¼
Z
z2

z1

du ¼ G

4p

Z
z2

z1

ez � ðx� x0Þ
jx� x0j3

dz:

z

y
ϕ

(x y, , 0) 
x 1

z

z

2

θ2

θ1

u = uϕeϕ

•

•

Γ

eϕ

(x, y, z) =

=

 ( ,R z ϕ, )

( ,R 0 ϕ, )

a) Evaluate this integral to show that uðx, tÞ ¼ ðG=4pRÞðcos q1 � cos q2Þe4 where the
angles q1 and q2 are defined in the figure.

b) Show that the velocity induced by an infinite ideal-line vortex is recovered from
the part a) result for an appropriate choice of angles.

c) What is the induced velocity on the z-axis (R ¼ 0) when z < z1 or z > z2?
14.11.1 The simplest representation of a three-dimensional aircraft wing in flight is the

rectangular horseshoe vortex.

U

s

L
L

L

a) Calculate the induced downwash at the center of the wing.
b) Assuming the result of part a) applies along the entire wingspan, estimate CDi

, the
lift-induced coefficient of drag, in terms of the wing’s aspect ratio: AR ¼ s2/A, and
the wing’s coefficient of lift CL ¼ L=ð1=2ÞrU2A, where A is the planform area of
the wing.

c) Explain why the result of part b) appears to surpass the performance of the
optimal elliptic lift distribution.
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14.12. The circulation across the span of a wing follows the parabolic law
G ¼ G0ð1� ð2y=sÞ2Þ. Calculate the induced velocity w at midspan, and compare the
value with that obtained when the distribution is elliptic.

14.13. An untwisted elliptic wing of 20-m span supports a weight of 80,000 N in a level flight
at 300 km/hr. Assuming sea level conditions, find a) the induced drag and b) the
circulation around sections halfway along each wing.

14.14.1 Awing with a rectangular planform (span ¼ s, chord ¼ c) and uniform airfoil section
without camber is twisted so that its geometrical angle, aw, decreases from ar at the
root (y ¼ 0) to zero at the wing tips (y ¼ � s/2) according to the distribution:

awðyÞ ¼ ar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2y=sÞ2
q

.

a) At what global angle of attack, at, should this wing be flown so that it has an
elliptical lift distribution? The local angle of attack at any location along the span
will be at þ aw. Assume the two-dimensional lift curve slope of the foil section is K.

b) Evaluate the lift and the lift-induced drag forces on the wing at the angle of attack
determined in part a) when: ar ¼ 2�, K ¼ 5.8 rad.e1, c ¼ 1.5 m, b ¼ 9 m, the air
density is 1 kg/m3, and the airspeed is 150 m/s.

14.15. Consider the wing shown in Figure 14.24. If the foil section is uniform along the span
and the wing is not twisted, show that the three-dimensional lift coefficient, CL,3D is
related to the two-dimensional lift coefficient of the foil section, CL,2D, by:
CL, 3D ¼ CL, 2D=ð1þ 2=LÞ, where L ¼ s2/A is the aspect ratio of the wing.

14.16. Thewing-tip vortices from large, heavy aircraft can cause a disruptive rolling torque on
smaller, lighter ones. Lifting line theory allows the roll torque to be estimated when the
small airplane’swing ismodeled as a single linear vortexwith strengthGðyÞthat resides
at x ¼ 0 between y ¼ es/2 and y ¼ þs/2. Here, the small airplane’s wing will be
presumed rectangular (span s, chord c) with constant foil-shape, and the trailing vortex
from the heavy airplane’s wing will be assumed to lie along the x-axis and produce

a vertical velocity distribution at x ¼ 0 given by: wðyÞ ¼ G0

2py
½1� expð�jyj=[Þ�. To

simplify your work for the following items, ignore the trailing vortices (shown as
dashed lines) from the small airplane’s wing and assume U[ w. [Note this w differs
by a sign from that specified in (14.17).]

a) Determine a formula for the rolling moment, M ¼ Rþs=2
�s=2 rUyGðyÞdy, on the small

aircraft’s wing in terms of G0, s, c, [, the air density r, the flight speed of the small
aircraft U, and the lift-curve slope of the small aircraft’s wing section
K ¼ dCL, 2D=da, where a is the small-aircraft-wing angle of attack.

w(y)

x

Γ

y
z

U

1Obtained by the third author while a student in a course taught by Professor Fred Culick.
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b) Calculate M when r ¼ 1.2 kg/m3, U ¼ 150 m/s, K ¼ 6.0/rad, s ¼ 9 m, c ¼ 1.5 m,
G0 ¼ 50 m2/s, and s/(2 [) ¼ 1. Comment on the magnitude of this torque.

14.17. Consider the ideal rectilinear horseshoe vortex of a simple wing having span s. Use
the (x, y, z) coordinates shown for the following items.

z

x

y
U

–s/2

+s/2L

L

L

a) Determine a formula for the induced vertical velocityw at (x, y, 0) for x > 0 and y > 0.
b) Using the results of part a), evaluate the induced vertical velocity at the following

three locations: (s, 0, 0), (0, s, 0), and (s, s, 0).
c) Imagine that you are an efficiency-minded migrating bird and that the rectilinear

horseshoe vortex shown is produced by another member of your flock. Describe
where you would choose to center your ownwings. List the coordinates of the part
b) location that is closest to your chosen location.

14.18. As an airplane lands, the presence of the ground changes the plane’s aerodynamic
performance. To address the essential features of this situation, consider uniform flow
past a horseshoe vortex (heavy solid lines below) with wingspan b located a distance h
above a large, flat boundary defined by z ¼ 0. From themethod of images, the presence
of the boundary can be accounted for by an image horseshoe vortex (heavy dashed
lines below) of opposite strength located a distance h below the boundary.
a) Determine the direction and the magnitude of the induced velocity at x ¼ (0, 0, h),

the center of the wing.

(0,+b/2,+h)

(0,0,+h)

(0,+b/2,–h)

y
z

x

U

(0,–b/2,+h)

x

(0,–b/2,–h)
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b) Assuming the result of part a) applies along the entire wingspan, estimate L and
Di, the lift and lift-induced drag, respectively, in terms of b, h, G, and r ¼ fluid
density.

c) Compare the result of part b) to that obtained for the horseshoe vortex without
a large, flat surface: L ¼ rUGb and Di ¼ rG2=p. Which configuration has more
lift? Which one has less drag? Why?

14.19. Before modifications, an ordinary commercial airliner with wingspan s ¼ 30 m
generates two tip vortices of equal and opposite circulation having Rankine velocity
profiles (see (3.28)) and a core size so ¼ 0.5 m for test-flight conditions. The addition
of wing-tip treatments (sometimes known as winglets) to both of the aircraft’s wing
tips doubles the tip vortex core size at the test condition. If the aircraft’s weight is
negligibly affected by the change, has the lift-induced drag of the aircraft been
increased or decreased? Justify your answer. Estimate the percentage change in the
induced drag.
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CHAPTER OBJECTIVES

• To introduce the fundamental compressible

flow interactions between velocity, density,

pressure, and temperature

• To describe the features of isentropic flows in
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15.1. INTRODUCTION

Up to this point, this text has primarily covered incompressible flows. This chapter pre-
sents some of the elementary aspects of flows in which pressure-induced changes in density
are important. The subject of compressible flow is also called gas dynamics, and it has wide
applications in high-speed flows around objects of engineering interest. These include
external flows such as those around projectiles, rockets, re-entry vehicles, and airplanes;
and internal flows in ducts and passages such as nozzles and diffusers used in jet engines
and rocket motors. Compressibility effects are also important in astrophysics. Recommended
gas dynamics texts that further discuss the material presented here are Shapiro (1953),
Liepmann and Roshko (1957), and Thompson (1972).

Several startling and fascinating phenomena arise in compressible flows (especially in the
supersonic range) that defy expectations developed from incompressible flows. Discontinu-
ities (shock waves) appear within the flow, and a rather strange circumstance arises in which
an increase of flow area accelerates a supersonic stream. And, in subsonic compressible duct
flow, friction can increase the flow’s speed and heat addition can lower the flow’s tempera-
ture. These phenomena, which have no counterparts in low-speed flows, are therefore
worthy of our attention. Except for the treatment of friction in constant area ducts in Section
15.8, the material presented here is limited to that of frictionless flows outside boundary
layers. In spite of this simplification, the results presented here have a great deal of practical
value because boundary layers are especially thin in high-speed flows. Gravitational effects,
which are of minor importance in high-speed flows, are also neglected.

As discussed in Section 4.11, the importance of compressibility in the equations of motion
can be assessed by considering the Mach number M, defined as

MhU=c, (4.111)

where U is a representative flow speed, and c is the speed of sound, a thermodynamic quan-
tity defined by:

c2h ðvp=vrÞs: (1.19)

Here the subscript s signifies that the partial derivative is taken at constant entropy. In partic-
ular, the dimensionless scaling (4.109) of the compressible-flow continuity equation for isen-
tropic conditions leads to:

V,u ¼ eM2

�

r0

r

�

D

Dt

�

p� p0
r0U2

�

, (4.110)

where r0 and p0 are appropriately chosen reference values for density and pressure. In (4.110),
the pressure is scaled by fluid inertia parameters as is appropriate for primarily frictionless
high-speed flow. In engineering practice, the incompressible flow assumption is presumed
valid if M < 0.3, but not at higher Mach numbers. Equation (4.110) suggests that M ¼ 0.3 corre-
sponds to ~10% departure from perfectly incompressible flow behavior when the remainder
of the right side of (4.110) is of order unity.

Although the significance of the ratio U/c was known for a long time, the Swiss aerody-
namist Jacob Ackeret introduced the term Mach number, just as the term Reynolds number
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was introduced by Sommerfeld many years after Reynolds’ experiments. The name of the
Austrian physicist Ernst Mach (1836e1916) was chosen because of his pioneering studies
on supersonic motion and his invention of the so-called Schlieren method for optical visuali-
zation of flows involving density changes; see von Karman (1954, p. 106). (Mach distin-
guished himself equally well in philosophy. Einstein acknowledged that his own thoughts
on relativity were influenced by “Mach’s principle,” which states that properties of space
have no independent existence but are determined by the mass distribution within it.
Strangely, Mach never accepted either the theory of relativity or the atomic structure of
matter.)

Using the Mach number, compressible flows can be nominally classified as follows:

(i) Incompressible flow: M ¼ 0. Fluid density does not vary with pressure in the flow field.
The flowing fluid may be a compressible gas but its density may be regarded as
constant.

(ii) Subsonic flow: 0 < M < 1. The Mach number does not exceed unity anywhere in the
flow field. Shock waves do not appear in the flow. In engineering practice, subsonic
flows for which M< 0.3 are often treated as being incompressible.

(iii) Transonic flow: The Mach number in the flow lies in the range 0.8e1.2. Shock
waves may appear. Analysis of transonic flows is difficult because the governing
equations are inherently nonlinear, and also because a separation of the inviscid and
viscous aspects of the flow is often impossible. (The word transonic was invented
by von Karman and Hugh Dryden, although the latter argued in favor of spelling
it transsonic. Von Karman [1954] stated, “I first introduced the term in a report to
the U.S. Air Force. I am not sure whether the general who read the word knew what
it meant, but his answer contained the word, so it seemed to be officially accepted”
[p. 116].)

(iv) Supersonic flow: M > 1. Shock waves are generally present. In many ways analysis
of a flow that is supersonic everywhere is easier than an analysis of a subsonic or
incompressible flow as we shall see. This is because information propagates along
certain directions, called characteristics, and a determination of these directions greatly
facilitates the computation of the flow field.

(v) Hypersonic flow: M > 3. Very high flow speeds combined with friction or shock
waves may lead to sufficiently large increases in a fluid’s temperature that molecular
dissociation and other chemical effects occur.

Perfect Gas Thermodynamic Relations

As density changes are accompanied by temperature changes, thermodynamic principles
are constantly used throughout this chapter. Most of the necessary concepts and relations
have been summarized in Sections 1.8 and 1.9, which may be reviewed before proceeding
further. The most frequently used relations, valid for a perfect gas with constant specific
heats, are listed here for quick reference:

Internal energy: e ¼ CvT,

Enthalpy: h ¼ CpT,
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Thermal equation of state: p ¼ rRT,

Specific heats: Cv ¼ R

g� 1
, Cp ¼ gR

g� 1
, Cp � Cv ¼ R, and g ¼ Cp=Cv, (15.1)

Speed of sound: c ¼
ffiffiffiffiffiffiffiffiffiffi

gRT
p

¼
ffiffiffiffiffiffiffiffiffiffiffi

gp=r
q

,

Entropy change: S2 � S1 ¼ Cp ln

�

T2

T1

�

� R ln

�

p2
p1

�

¼ Cv ln

�

T2

T1

�

� R ln

�

r2

r1

�

:

An isentropic process of a perfect gas between states 1 and 2 obeys the following relations:

p2
p1

¼
�

r2

r1

�g

, and
T2

T1
¼
�

r2

r1

�g�1

¼
�

p2
p1

�ðg�1Þ=g
: (15.2)

Some important properties of air at ordinary temperatures and pressures are:

R ¼ 287 m2=
�

s2 K
�

, Cv ¼ 717 m2=
�

s2 K
�

, Cp ¼ 1004 m2=
�

s2 K
�

, and g ¼ 1:40;

(15.3)

these values are useful for solution of the exercises at the end of this chapter.

15.2. ACOUSTICS

Perhaps the simplest and most common form of compressible flow is found when the pres-
sure and velocity variations are small compared to steady reference values and the variations
in pressure are isentropic. This branch of compressible flow is known as acoustics and is con-
cernedwith the study of soundwaves. Acoustics is the linearized theory of compressible fluid
dynamics and is a broad field with its own rich history (see Pierce, 1989). Our primary con-
cern here is to deduce how the speed of sound enters the inviscid equations of fluid motion
and to develop some insight into the behavior of pressure disturbances in compressible flow.

To determine the field equation governing acoustic phenomena, the dependent field vari-
ables may be separated into nominally steady and fluctuating values:

ui ¼ Ui þ u0i, p ¼ p0 þ p0, r ¼ r0 þ r0, and T ¼ T0 þ T0, (15.4)

where Ui, p0, r0, and T0 are constants applicable to the region of interest, and all the fluctu-
ating quantitiesddenoted by primes in (15.4)dare considered to be small compared to these.
In addition, the isentropic condition allows the pressure to be Taylor expanded about the
reference thermodynamic state specified by p0 and r0:

p ¼ p0 þ p0 ¼ p0 þ
�

vp

vr

�

s
ðr� r0Þ þ

1

2

 

v2p

vr2

!

s
ðr� r0Þ2 þ . ¼ p0 þ c2r0 þ 1

2

 

v2p

vr2

!

s
r02 þ.

For small isentropic variations, the second-order and higher terms can be neglected, and this
leads to a simple relationship between acoustic pressure and density fluctuations:

p0y c2r0, (15.5)
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where c2 is given by (1.19). Using (15.2) and evaluating the derivative at the local reference
values yields

c2 ¼ gp0=r0 ¼ gRT0, (15.6)

where T0 is the local reference temperature. Thus, we see that c is larger in monotonic and
low-molecular weight gases (where g and R are larger), and that it increases with increasing
local temperature. Equation (15.5) is valid when the fractional density change or condensation
hr0=r0 ¼ p0=r0c2 is much less than unity. Thus, the primary parametric requirement for the
validity of acoustic theory is:

p0=r0c2 � 1: (15.7)

For ordinary sound levels in air, acoustic-pressure magnitudes are of order 1 Pa or less, so the
ratio specified in (15.7) is typically less than 10e5 since r0c

2 ¼ gp0 z 1.4 �105 Pa. Addition-
ally, positive p0 is called compression while negative p0 is called expansion (or rarefaction).
Acoustic pressure disturbances are commonly composed of equal amounts of compression
and expansion.

The first approximate expression for cwas found by Newton, who assumed that p0/p0 was
equal to r0/r0 (Boyle’s law) as would be true if the process undergone by a fluid particle was
isothermal. In this manner Newton arrived at the expression c ¼ ffiffiffiffiffiffiffiffiffi

RT0
p

. He attributed the
discrepancy of this formula with experimental measurements as due to “unclean air.”
However, the science of thermodynamics was virtually nonexistent at the time, so that the
idea of an isentropic process was unknown to Newton. The correct expression for the sound
speed was first given by Laplace.

The field equation for acoustic pressure disturbances is obtained from the continuity equa-
tion (4.7) and the Euler equation (4.41) with g ¼ 0, by linearizing these equations and then
combining them to reach a single equation for p0. The linearization is accomplished by insert-
ing (15.4) into (4.7) and (4.41) with g ¼ 0, and dropping the terms that include products of
primed field variables:

vr

vt
þ vruj

vxj
¼ vðr0 þ r0Þ

vt
þ
v
�

r0Uj þ r0Uj þ r0u
0
j þ r0u0j

�

vxj
y

vr0

vt
þUj

vr0

vxj
þ r0

vu0j
vxj

¼ 0, (15.8)

vui
vt

þ uj
vui
vxj

þ 1

r

vp

vxi
¼ vðUi þ u0iÞ

vt
þ ðUj þ u0jÞ

vðUi þ u0iÞ
vxj

þ 1

ro þ r0
vðPþ p0Þ

vxi

y
vu0i
vt

þUj
vu0i
vxj

þ 1

ro

vp0

vxi
¼ 0:

(15.9)

The next steps involve using (15.6) to eliminate r0 from (15.8), and mildly rewriting (15.8)
and (15.9),

1

c2

 

v

vt
þUj

v

vxj

!

p0 þ r0

 

v

vxj

!

u0j ¼ 0 and

 

v

vt
þUj

v

vxj

!

u0i þ
1

ro

�

v

vxi

�

p0 ¼ 0, (15.10, 15.11)

to see that the differentiation operations in the two equations are identical but act on different
field variables. In this case cross-differentiation can be used to eliminate u0i. Applying
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(v/vt þ Ujv/vxj) to (15.10) and er0v/vxj to (15.11) and adding the resulting equations
leads to:

1

c2

 

v

vt
þUj

v

vxj

!2

p0 � v2p0

vxjvxj
¼ 0, (15.12)

which is the field equation for acoustic pressure disturbances in a uniform flow.
To highlight the importance of the sound speed, consider one-dimensional pressure

disturbances p0(x,t) that only vary along the x-axis in a stationary fluid (Uj ¼ 0). For this
case, the simplified forms of (15.12) and (15.11) are:

1

c2
v2p0

vt2
� v2p0

vx2
¼ 0, and u01ðx, tÞ ¼ � 1

ro

Z

vp0

vx
dt, (15.13, 15.14)

where (15.11) has been integrated to show how u01 and p0 are related. Equation (15.13) is the
one-dimensional wave equation, and its solutions are of the form:

p0ðx, tÞ ¼ fðx� ctÞ þ gðxþ ctÞ, (15.15)

where f and g are functions determined by initial conditions (see Exercise 15.1). Equation
(15.15) is known as d’Alembert’s solution, and f(x e ct) and g(x þ ct) represent traveling pres-
sure disturbances that propagate to the right and left, respectively, with increasing time.
Consider a pressure pulse p0ðx, tÞ that propagates to the right and is centered at x ¼ 0 with
shape f(x) at t ¼ 0 as shown in Figure 15.1. An arbitrary time t later, the wave is centered
at x ¼ ct and its shape is described by f(x e ct). Similarly, when p0(x,t) ¼ g(x þ ct), the pressure
disturbance propagates to the left and is located at x¼ ect at time t. Thus, the speed at which
acoustic pressure disturbances travel is c, and this is independent of the shape of the pressure
disturbance waveform.

However, the disturbance waveform does influence the fluid velocity u01. It can be deter-
mined from (15.14) and (15.15), and is given by

u01ðx, tÞ ¼ 1

roc
ðfðx� ctÞ � gðxþ ctÞÞ (15.16)

(see Exercise 15.2). Thus, the fluid velocity includes rightward- and leftward-propagating
components that are matched to the pressure disturbance. Moreover, (15.16) shows that

ct

p´

x

f(x) f(x – ct)

FIGURE 15.1 Propagation of an acoustic pressure disturbance p0 that travels to the right with increasing time.
At t ¼ 0 the disturbance is centered at x ¼ 0 and has waveform f(x). At time t later, the disturbance has moved
a distance ct but its waveform shape has not changed.
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the compression portions of f and g lead to fluid velocity in the same direction as wave prop-
agation; the fluid velocity from f(x e ct) is to the right when f > 0, and the fluid velocity from
g(x þ ct) is to the left when g > 0. Similarly, the expansion portions of f and g lead to fluid
velocity in the direction opposite of wave propagation; the fluid velocity from f(x e ct) is
to the left when f < 0, and the fluid velocity from g(x þ ct) is to the right when g < 0. These
fluid velocity directions are worth noting because they persist with the same signs when the
wave amplitudes exceed those allowed by the approximation (15.7).

Now consider one-dimensional pressure waves p0(x, t) when Uj ¼ (U, 0, 0) so that (15.12)
becomes

1

c2

�

v

vt
þU

v

vx

�2

p0 � v2p0

vx2
¼ 0:

The general solution of this equation is:

p0ðx, tÞ ¼ fðx� ðcþUÞtÞ þ gðxþ ðc�UÞtÞ: (15.17)

When U > 0, the travel speed of the downstream-propagating waves is enhanced and that of
the upstream-propagating waves is reduced. However, when the flow is supersonic, U > c,
both portions of (15.17) travel downstream, and this represents a major change in the char-
acter of the flow. In subsonic flow, both upstream and downstream pressure disturbances
may influence the flow at the location of interest, while in supersonic flow only upstream
disturbances may influence the flow. For aircraft moving through a nominally quiescent
atmosphere, this means that a ground-based observer below the aircraft’s flight path may
hear a subsonic aircraft before it is overhead. However, a supersonic aircraft does not radiate
sound forward in the direction of flight so the same ground-based observer will only hear
a supersonic aircraft after it has passed overhead (see Section 15.9).

Linear acoustic theory is valuable and effective for weak pressure disturbances, but it also
indicates how nonlinear phenomena arise as pressure-disturbance amplitudes increase. The
speed of sound in gases depends on the local temperature, c ¼ ffiffiffiffiffiffiffiffiffiffi

gRT
p

. For air at 15�C, this
gives c ¼ 340 m/s. The nonlinear terms that were dropped in the linearization (15.8) and
(15.9) may change the waveform of a propagating nonlinear pressure disturbance depending
onwhether it is a compression or expansion. Because g > 1, the isentropic relations show that
if p0 > 0 (compression), then T0 > 0 so the sound speed c increases within a compression
disturbance. Therefore, pressure variations within a region of nonlinear compression travel
faster than a zero-crossing of p0 where c ¼ ffiffiffiffiffiffiffiffiffiffiffi

gRT0
p

and therefore may catch up with the
leading edge of the compressed region. Such compression-induced changes in c cause
nonlinear compression waves to spontaneously steepen as they travel. The opposite is true
for nonlinear expansion waves where p0 < 0 and T0 < 0, so c decreases. Here, any pressure
variations within the region of expansion fall farther behind the leading edge of the expan-
sion. This causes nonlinear expansion waves to spontaneously flatten as they travel. When
combined these effects cause a nonlinear sinusoidal pressure disturbance involving equal
amounts of compression and expansion to evolve into a saw-tooth shape (see Chapter 11
in Pierce, 1989). Pressure disturbances that do not satisfy the approximation (15.7) are called
finite amplitude waves.

The limiting form of a finite-amplitude compression wave is a discontinuous change of
pressure, commonly known as a shock wave. In Section 15.6 it will be shown that
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finite-amplitude compressionwaves are not isentropic and that they propagate through a still
fluid faster than acoustic waves.

15.3. BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW

This section presents fundamental results for steady compressible flows that can be
analyzed using one spatial dimension. The specific emphasis here is on flow through
a duct whose centerline may be treated as being straight and whose cross section varies
slowly enough so that all dependent flow-field variables (u, p, r, T) are well approximated
at any location as being equal to their cross-section-averaged values. If the duct area A(x)
varies with the distance x along the duct, as shown in Figure 15.2, the dependent flow-field
variables are taken as u(x), p(x), r(x), and T(x). Unsteadiness (and much complexity) can be
introduced by including t as an additional independent variable.

In this situation a control volume development of the basic equations is appropriate. Start
with scalar equations representing conservation of mass and energy using the stationary
control volume shown in Figure 15.2. For steady flowwithin this control volume, the integral
form of the continuity equation (4.5) requires:

r1u1A1 ¼ r2u2A2, or ruA ¼ _m ¼ const:, (15.18)

where _m is the mass flow rate in the duct, and the second form follows from the first because
the locations 1 and 2 are arbitrary. Forming a general differential of the second form and
dividing the result by _m produces:

dr

r
þ du

u
þ dA

A
¼ 0: (15.19)

FIGURE 15.2 One-dimensional compressible flow in a duct with smoothly varying centerline direction and
cross-sectional area. A stationary control volume in this duct is indicated by dotted lines. Conditions at the
upstream and downstream control surfaces are denoted by “1” and “2,” respectively. In some circumstances, heat Q
may be added to the fluid in the volume. When the control surfaces normal to the flow are only a differential
distance apart, then x2 ¼ x1 þ dx, A2 ¼ A1 þ dA, u2 ¼ u1 þ du, p2 ¼ p1 þ dp, r2 ¼ r1 þ dr, etc., where x is the duct’s
centerline coordinate, A is the duct’s cross-sectional area, and u, p, and r are the cross-section averaged flow speed,
pressure, and density.
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For steady flow in a stationary control volume, the integral form of the energy equation
(4.48) simplifies to:

Z

A�
r

�

eþ 1

2
u2i

�

ujnjdA ¼
Z

A�
uisijnjdA�

Z

A�
qjnjdA, (15.20)

where e is the internal energy per unit mass,A* is the control surface, nj is the outward normal
on the control surface, the body force has been neglected, sij is the stress tensor, and qj is heat
flux vector. The term on the left side represents the net flux of internal and kinetic energy out
of the control volume. The first term on the right side represents the rate of work done on the
control surface, and the second term on the right-hand side represents the heat input through
the control surface. Here the minus sign in front of the final term occurs because qjnj is posi-
tive when heat leaves the control volume. A term-by-term evaluation of (15.20) with the
chosen control volume produces:

�
�

eþ 1

2
u2
�

1

_mþ
�

eþ 1

2
u2
�

2

_m ¼ ðupAÞ1�ðupAÞ2 þ _mQ, (15.21)

where _m ¼ r1u1A1 ¼ r2u2A2 has been used, and Q is the heat added per unit mass of flow-
ing fluid so that:

�
Z

A�
qjnjdA ¼ _mQ:

Here the wall shear stress does no work, because ui ¼ 0 in (15.20) at the wall. Thus the surface
work done on the control volume comes from the pressure on the control surfaces lying
perpendicular to the flow direction. Dividing (15.21) by _m and noting that upA= _m ¼ p=r
allows it to be simplified to:

�

eþ p

r
þ 1

2
u2
�

2

�
�

eþ p

r
þ 1

2
u2
�

1

¼ Q, or h2 þ 1

2
u22 � h1 � 1

2
u21 ¼ Q, (15.22)

where h ¼ e þ p/r, is the enthalpy per unit mass. This energy equation is valid even if there
are frictional or nonequilibrium conditions (e.g., shock waves) between sections 1 and 2. It
implies that the sum of enthalpy and kinetic energy remains constant in an adiabatic flow. There-
fore, enthalpy plays the same role in a flowing system that internal energy plays in a nonflow-
ing system. The difference between the two types of systems is the flow work required to push
matter along the duct.

Now consider momentum conservation without the body force using the same control
volume. The simplified version of (4.17) is:

Z

A�
ruiujnj dA ¼

Z

A�
sijnj dA: (15.23)

The term on the left side represents the net flux of momentum out of the control volume and
the term on the right side represents forces on the control surface. When applied to the
control volume in Figure 15.2 for the x-direction, (15.23) becomes
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� _mu1 þ _mu2 ¼ ðpAÞ1�ðpAÞ2 þ F, (15.24)

where F is the x-component of the force exerted on the fluid in the control volume by the
walls of the duct between locations 1 and 2. When the control volume has differential length,
x2¼ x1þ dx, then (15.24) can be written:

_m
du

dx
¼ � d

dx
ðpAÞ þ p

dA

dx
� Ff ¼ �A

dp

dx
� Ff , (15.25)

where Ff is the perimeter friction force per unit length along the duct, and the second term in
the middle portion of (15.25) is the pressure force on the control volume that occurs when the
duct walls expand or contract. This term also appears in the derivation of (4.19), the inviscid
steady-flow constant-density Bernoulli equation. For inviscid flow, Ff is zero and (15.25)
simplifies to

ruA
du

dx
¼ �A

dp

dx
, or uduþ dp

r
¼ 0, (15.26)

where _m in (15.25) has been replaced by ruA. The second equation of (15.26) is the Euler equa-
tion without a body force. A frictionless and adiabatic flow is isentropic, so the property rela-
tion (1.18) implies:

TdS ¼ dh� dp=r ¼ 0, so dh ¼ dp=r:

Inserting the last relationship into the second equation of (15.26) and integrating produces:

hþ 1

2
u2 ¼ const:

This is the steady Bernoulli equation for isentropic compressible flow (4.78) without the body
force term. It is identical to (15.22) when Q¼ 0.

To summarize, the equations for steady one-dimensional compressible flow in a duct with
slowly varying area are (15.19), (15.22), and (15.25).

15.4. REFERENCE PROPERTIES IN COMPRESSIBLE FLOW

In incompressible flows, boundary conditions or known properties or profiles typically
provide reference values for h, c, T, p, and r. In compressible flows, these thermodynamic
variables depend on the flow’s speed. Thus, reference values for thermodynamic variables
must include a specification of the flow speed. The most common reference conditions are
the stagnation state (u ¼ 0) and the sonic condition (u ¼ c), and these are discussed in turn
in this section.

If the properties of a compressible flow (h, r, u, etc.) are known at a certain point, the refer-
ence stagnation properties at that point are defined as those that would be obtained if the
local flow were imagined to slow down to zero velocity isentropically. Stagnation properties
are denoted by a subscript zero in gas dynamics. Thus the stagnation enthalpy is defined as

h0h hþ 1

2
u2:
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For a perfect gas, this implies

CpT0 ¼ CpT þ 1

2
u2, (15.27)

which defines the stagnation temperature. Ratios of local and stagnation variables are often
sought, and these can be expressed in terms of the Mach number, M. For example (15.27)
can be rearranged to find:

T0

T
¼ 1þ u2

2CpT
¼ 1þ g� 1

2

u2

gRT
¼ 1þ g� 1

2
M2, (15.28)

where Cp ¼ gR/(g � 1) from (15.1) has been used. Thus the stagnation temperature T0 can be
found for a given T andM. The isentropic relations (15.2) can then be used to obtain the stag-
nation pressure and stagnation density:

p0
p

¼
�

T0

T

�g=ðg�1Þ
¼
	

1þ g� 1

2
M2


g=ðg�1Þ
, and

r0

r
¼
�

T0

T

�1=ðg�1Þ
¼
	

1þ g� 1

2
M2


1=ðg�1Þ
:

(15.29, 15.30)

In a general flow the stagnation properties can vary throughout the flow field. If, however,
the flow is adiabatic (but not necessarily isentropic), then h þ u2/2 is constant throughout the
flow as shown by (15.22). It follows that h0, T0, and c0 ð¼

ffiffiffiffiffiffiffiffiffiffiffi

gRT0
p Þ are constant throughout an

adiabatic flow, even in the presence of friction. In contrast, the stagnation pressure p0 and density
r0 decrease if there is friction. To see this, consider the entropy change in an adiabatic flow
between sections 1 and 2 in a smoothly varying duct, with 2 being the downstream section.
Let the flow at both sections hypothetically be brought to rest by isentropic processes, giving
the local stagnation conditions p01, p02, T01, and T02. Then the entropy change between the two
sections can be expressed as

S2 � S1 ¼ S02 � S01 ¼ �R ln
p02
p01

þ Cp ln
T02

T01
,

from the final equation of (15.1). The last term is zero for an adiabatic flow in which T02 ¼ T01.
As the second law of thermodynamics requires that S2 > S1, it follows that

p02 < p01,

which shows that the stagnation pressure falls due to friction. And, from p0 ¼ r0RT0, r0 must
fall too for constant T0.

It is apparent that all stagnation properties are constant along an isentropic flow. If such
a flow happens to start from a large reservoir where the fluid is practically at rest, then the
properties in the reservoir equal the stagnation properties everywhere in the flow
(Figure 15.3).

In addition to the stagnation properties, there is another useful set of reference quantities.
These are called sonic or critical conditions and are commonly denoted by an asterisk. Thus,
p*, r*, c*, and T* are properties attained if the local fluid is imagined to expand or compress
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isentropically until it reaches M ¼ 1. The sonic area A* is often the most useful or important
because the stagnation area is infinite for any compressible duct flow. If M is known where
the duct area is A, the passage area, A*, at which the sonic conditions are attained can be
determined to be

A

A� ¼ 1

M

	

2

gþ 1

�

1þ g� 1

2
M2
�


ð1=2Þðgþ1Þ=ðg�1Þ
(15.31)

(see Exercise 15.4).
We shall see in the following section that sonic conditions can only be reached at the throat

of a duct, where the area is minimum. However, a throat need not actually exist in the flow;
the sonic variables are simply reference values that are reached if the flowwere brought to the
sonic state isentropically. From its definition it is clear that the value of A* in a flow remains
constant in isentropic flow. The presence of shock waves, friction, or heat transfer changes the
value of A* along the flow.

The values of T0/T, P0/P, r0/r, and A/A* at a point can be determined from (15.28)
through (15.31) if the local Mach number is known. For g ¼ 1.4, these ratios are tabulated
in Table 15.1. The reader should examine this table at this point. Examples 15.1 and 15.2 illus-
trate the use of this table.

15.5. AREA-VELOCITY RELATIONSHIP IN ONE-DIMENSIONAL
ISENTROPIC FLOW

Some surprising consequences of compressibility are found in isentropic flow through
a duct of varying area. The natural application area for this topic is in the design of nozzles
and diffusers. A nozzle is a device through which the flow expands from high to low pressure
to generate a high-speed jet. Examples of nozzles are the exit ducts of a fireman’s hose or
a rocket motor. A diffuser’s function is opposite that of a nozzle (and it has little or nothing
to do with the diffusive transport of heat or species by molecular motion). In a diffuser

FIGURE 15.3 Schematic of an isentropic compressible-flow process starting from a reservoir. An isentropic
process is both adiabatic (no heat exchange) and frictionless. Stagnation properties, indicated with a subscript 0, are
uniform everywhere and are equal to the properties in the reservoir.
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TABLE 15.1 Isentropic Flow of a Perfect Gas (g¼ 1.4)

M p/p0 r/r0 T/T0 A/A) M p/p0 r/r0 T/T0 A/A)

0 1 1 1 N 0.62 0.7716 0.8310 0.9286 1.1656

0.02 0.9997 0.9998 0.9999 28.9421 0.64 0.7591 0.8213 0.9243 1.1451

0.04 0.9989 0.9992 0.9997 14.4815 0.66 0.7465 0.8115 0.9199 1.1265

0.06 0.9975 0.9982 0.9993 9.6659 0.68 0.7338 0.8016 0.9153 1.1097

0.08 0.9955 0.9968 0.9987 7.2616 0.7 0.7209 0.7916 0.9107 1.0944

0.1 0.9930 0.9950 0.9980 5.8218 0.72 0.7080 0.7814 0.9061 1.0806

0.12 0.9900 0.9928 0.9971 4.8643 0.74 0.6951 0.7712 0.9013 1.0681

0.14 0.9864 0.9903 0.9961 4.1824 0.76 0.6821 0.7609 0.8964 1.0570

0.16 0.9823 0.9873 0.9949 3.6727 0.78 0.6690 0.7505 0.8915 1.0471

0.18 0.9776 0.9840 0.9936 3.2779 0.8 0.6560 0.7400 0.8865 1.0382

0.2 0.9725 0.9803 0.9921 2.9635 0.82 0.6430 0.7295 0.8815 1.0305

0.22 0.9668 0.9762 0.9904 2.7076 0.84 0.6300 0.7189 0.8763 1.0237

0.24 0.9607 0.9718 0.9886 2.4956 0.86 0.6170 0.7083 0.8711 1.0179

0.26 0.9541 0.9670 0.9867 2.3173 0.88 0.6041 0.6977 0.8659 1.0129

0.28 0.9470 0.9619 0.9846 2.1656 0.9 0.5913 0.6870 0.8606 1.0089

0.3 0.9395 0.9564 0.9823 2.0351 0.92 0.5785 0.6764 0.8552 1.0056

0.32 0.9315 0.9506 0.9799 1.9219 0.94 0.5658 0.6658 0.8498 1.0031

0.34 0.9231 0.9445 0.9774 1.8229 0.96 0.5532 0.6551 0.8444 1.0014

0.36 0.9143 0.9380 0.9747 1.7358 0.98 0.5407 0.6445 0.8389 1.0003

0.38 0.9052 0.9313 0.9719 1.6587 1.0 0.5283 0.6339 0.8333 1

0.4 0.8956 0.9243 0.9690 1.5901 1.02 0.5160 0.6234 0.8278 1.0003

0.42 0.8857 0.9170 0.9659 1.5289 1.04 0.5039 0.6129 0.8222 1.0013

0.44 0.8755 0.9094 0.9627 1.4740 1.06 0.4919 0.6024 0.8165 1.0029

0.46 0.8650 0.9016 0.9594 1.4246 1.08 0.4800 0.5920 0.8108 1.0051

0.48 0.8541 0.8935 0.9559 1.3801 1.1 0.4684 0.5817 0.8052 1.0079

0.5 0.8430 0.8852 0.9524 1.3398 1.12 0.4568 0.5714 0.7994 1.0113

0.52 0.8317 0.8766 0.9487 1.3034 1.14 0.4455 0.5612 0.7937 1.0153

0.54 0.8201 0.8679 0.9449 1.2703 1.16 0.4343 0.5511 0.7879 1.0198

0.56 0.8082 0.8589 0.9410 1.2403 1.18 0.4232 0.5411 0.7822 1.0248

0.58 0.7962 0.8498 0.9370 1.2130 1.2 0.4124 0.5311 0.7764 1.0304

0.6 0.7840 0.8405 0.9328 1.1882 1.22 0.4017 0.5213 0.7706 1.0366

(Continued)
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TABLE 15.1 Isentropic Flow of a Perfect Gas (g¼ 1.4)dcont’d

M p/p0 r/r0 T/T0 A/A) M p/p0 r/r0 T/T0 A/A)

1.24 0.3912 0.5115 0.7648 1.0432 1.88 0.1539 0.2627 0.5859 1.5308

1.26 0.3809 0.5019 0.7590 1.0504 1.9 0.1492 0.2570 0.5807 1.5553

1.28 0.3708 0.4923 0.7532 1.0581 1.92 0.1447 0.2514 0.5756 1.5804

1.3 0.3609 0.4829 0.7474 1.0663 1.94 0.1403 0.2459 0.5705 1.6062

1.32 0.3512 0.4736 0.7416 1.0750 1.96 0.1360 0.2405 0.5655 1.6326

1.34 0.3417 0.4644 0.7358 1.0842 1.98 0.1318 0.2352 0.5605 1.6597

1.36 0.3323 0.4553 0.7300 1.0940 2.0 0.1278 0.2300 0.5556 1.6875

1.38 0.3232 0.4463 0.7242 1.1042 2.02 0.1239 0.2250 0.5506 1.7160

1.4 0.3142 0.4374 0.7184 1.1149 2.04 0.1201 0.2200 0.5458 1.7451

1.42 0.3055 0.4287 0.7126 1.1262 2.06 0.1164 0.2152 0.5409 1.7750

1.44 0.2969 0.4201 0.7069 1.1379 2.08 0.1128 0.2104 0.5361 1.8056

1.46 0.2886 0.4116 0.7011 1.1501 2.1 0.1094 0.2058 0.5313 1.8369

1.48 0.2804 0.4032 0.6954 1.1629 2.12 0.1060 0.2013 0.5266 1.8690

1.5 0.2724 0.3950 0.6897 1.1762 2.14 0.1027 0.1968 0.5219 1.9018

1.52 0.2646 0.3869 0.6840 1.1899 2.16 0.0996 0.1925 0.5173 1.9354

1.54 0.2570 0.3789 0.6783 1.2042 2.18 0.0965 0.1882 0.5127 1.9698

1.56 0.2496 0.3710 0.6726 1.2190 2.2 0.0935 0.1841 0.5081 2.0050

1.58 0.2423 0.3633 0.6670 1.2344 2.22 0.0906 0.1800 0.5036 2.0409

1.6 0.2353 0.3557 0.6614 1.2502 2.24 0.0878 0.1760 0.4991 2.0777

1.62 0.2284 0.3483 0.6558 1.2666 2.26 0.0851 0.1721 0.4947 2.1153

1.64 0.2217 0.3409 0.6502 1.2836 2.28 0.0825 0.1683 0.4903 2.1538

1.66 0.2151 0.3337 0.6447 1.3010 2.3 0.0800 0.1646 0.4859 2.1931

1.68 0.2088 0.3266 0.6392 1.3190 2.32 0.0775 1.1609 0.4816 2.2333

1.7 0.2026 0.3197 0.6337 1.3376 2.34 0.0751 0.1574 0.4773 2.2744

1.72 0.1966 0.3129 0.6283 1.3567 2.36 0.0728 0.1539 0.4731 2.3164

1.74 0.1907 0.3062 0.6229 1.3764 2.38 0.0706 0.1505 0.4688 2.3593

1.76 0.1850 0.2996 0.6175 1.3967 2.4 0.0684 0.1472 0.4647 2.4031

1.78 0.1794 0.2931 0.6121 1.4175 2.42 0.0663 0.1439 0.4606 2.4479

1.8 0.1740 0.2868 0.6068 1.4390 2.44 0.0643 0.1408 0.4565 2.4936

1.82 0.1688 0.2806 0.6015 1.4610 2.46 0.0623 0.1377 0.4524 2.5403

1.84 0.1637 0.2745 0.5963 1.4836 2.48 0.0604 0.1346 0.4484 2.5880

1.86 0.1587 0.2686 0.5910 1.5069 2.5 0.0585 0.1317 0.4444 2.6367

(Continued)
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TABLE 15.1 Isentropic Flow of a Perfect Gas (g¼ 1.4)dcont’d

M p/p0 r/r0 T/T0 A/A) M p/p0 r/r0 T/T0 A/A)

2.52 0.0567 0.1288 0.4405 2.6865 3.16 0.0215 0.0643 0.3337 4.9304

2.54 0.0550 0.1260 0.4366 2.7372 3.18 0.0208 0.0630 0.3309 5.0248

2.56 0.0533 0.1232 0.4328 2.7891 3.2 0.0202 0.0617 0.3281 5.1210

2.58 0.0517 0.1205 0.4289 2.8420 3.22 0.0196 0.0604 0.3253 5.2189

2.6 0.0501 0.1179 0.4252 2.8960 3.24 0.0191 0.0591 0.3226 5.3186

2.62 0.0486 0.1153 0.4214 2.9511 3.26 0.0185 0.0579 0.3199 5.4201

2.64 0.0471 0.1128 0.4177 3.0073 3.28 0.0180 0.0567 0.3173 5.5234

2.66 0.0457 0.1103 0.4141 3.0647 3.3 0.0175 0.0555 0.3147 5.6286

2.68 0.0443 0.1079 0.4104 3.1233 3.32 0.0170 0.0544 0.3121 5.7358

2.7 0.0430 0.1056 0.4068 3.1830 3.34 0.0165 0.0533 0.3095 5.8448

2.72 0.0417 0.1033 0.4033 3.2440 3.36 0.0160 0.0522 0.3069 5.9558

2.74 0.0404 0.1010 0.3998 3.3061 3.38 0.0156 0.0511 0.3044 6.0687

2.76 0.0392 0.0989 0.3963 3.3695 3.4 0.0151 0.0501 0.3019 6.1837

2.78 0.0380 0.0967 0.3928 3.4342 3.42 0.0147 0.0491 0.2995 6.3007

2.8 0.0368 0.0946 0.3894 3.5001 3.44 0.0143 0.0481 0.2970 6.4198

2.82 0.0357 0.0926 0.3860 3.5674 3.46 0.0139 0.0471 0.2946 6.5409

2.84 0.0347 0.0906 0.3827 3.6359 3.48 0.0135 0.0462 0.2922 6.6642

2.86 0.0336 0.0886 0.3794 3.7058 3.5 0.0131 0.0452 0.2899 6.7896

2.88 0.0326 0.0867 0.3761 3.7771 3.52 0.0127 0.0443 0.2875 6.9172

2.9 0.0317 0.0849 0.3729 3.8498 3.54 0.0124 0.0434 0.2852 7.0471

2.92 0.0307 0.0831 0.3696 3.9238 3.56 0.0120 0.0426 0.2829 7.1791

2.94 0.0298 0.0813 0.3665 3.9993 3.58 0.0117 0.0417 0.2806 7.3135

2.96 0.0289 0.0796 0.3633 4.0763 3.6 0.0114 0.0409 0.2784 7.4501

2.98 0.0281 0.0779 0.3602 4.1547 3.62 0.0111 0.0401 0.2762 7.5891

3.0 0.0272 0.0762 0.3571 4.2346 3.64 0.0108 0.0393 0.2740 7.7305

3.02 0.0264 0.0746 0.3541 4.3160 3.66 0.0105 0.0385 0.2718 7.8742

3.04 0.0256 0.0730 0.3511 4.3990 3.68 0.0102 0.0378 0.2697 8.0204

3.06 0.0249 0.0715 0.3481 4.4835 3.7 0.0099 0.0370 0.2675 8.1691

3.08 0.0242 0.0700 0.3452 4.5696 3.72 0.0096 0.0363 0.2654 8.3202

3.1 0.0234 0.0685 0.3422 4.6573 3.74 0.0094 0.0356 0.2633 8.4739

3.12 0.0228 0.0671 0.3393 4.7467 3.76 0.0091 0.0349 0.2613 8.6302

3.14 0.0221 0.0657 0.3365 4.8377 3.78 0.0089 0.0342 0.2592 8.7891

(Continued)
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TABLE 15.1 Isentropic Flow of a Perfect Gas (g¼ 1.4)dcont’d

M p/p0 r/r0 T/T0 A/A) M p/p0 r/r0 T/T0 A/A)

3.8 0.0086 0.0335 0.2572 8.9506 4.42 0.0038 0.0187 0.2038 15.4724

3.82 0.0084 0.0329 0.2552 9.1148 4.44 0.0037 0.0184 0.2023 15.7388

3.84 0.0082 0.0323 0.2532 0.2817 4.46 0.0036 0.0181 0.2009 16.0092

3.86 0.0080 0.0316 0.2513 9.4513 4.48 0.0035 0.0178 0.1994 16.2837

3.88 0.0077 0.0310 0.2493 9.6237 4.5 0.0035 0.0174 0.1980 16.5622

3.9 0.0075 0.0304 0.2474 9.7990 4.52 0.0034 0.0171 0.1966 16.8449

3.92 0.0073 0.0299 0.2455 9.9771 4.54 0.0033 0.0168 0.1952 17.1317

3.94 0.0071 0.0293 0.2436 10.1581 4.56 0.0032 0.0165 0.1938 17.4228

3.96 0.0069 0.0287 0.2418 10.3420 4.58 0.0031 0.0163 0.1925 17.7181

3.98 0.0068 0.0282 0.2399 10.5289 4.6 0.0031 0.0160 0.1911 18.0178

4.0 0.0066 0.0277 0.2381 10.7188 4.62 0.0030 0.0157 0.1898 18.3218

4.02 0.0064 0.0271 0.2363 10.9117 4.64 0.0029 0.0154 0.1885 18.6303

4.04 0.0062 0.0266 0.2345 11.1077 4.66 0.0028 0.0152 0.1872 18.9433

4.06 0.0061 0.0261 0.2327 11.3068 4.68 0.0028 0.0149 0.1859 19.2608

4.08 0.0059 0.0256 0.2310 11.5091 4.7 0.0027 0.0146 0.1846 19.5828

4.1 0.0058 0.0252 0.2293 11.7147 4.72 0.0026 0.0144 0.1833 19.9095

4.12 0.0056 0.0247 0.2275 11.9234 4.74 0.0026 0.0141 0.1820 20.2409

4.14 0.0055 0.0242 0.2258 12.1354 4.76 0.0025 0.0139 0.1808 20.5770

4.16 0.0053 0.0238 0.2242 12.3508 4.78 0.0025 0.0137 0.1795 20.9179

4.18 0.0052 0.0234 0.2225 12.5695 4.8 0.0024 0.0134 0.1783 21.2637

4.2 0.0051 0.0229 0.2208 12.7916 4.82 0.0023 0.0132 0.1771 21.6144

4.22 0.0049 0.0225 0.2192 13.0172 4.84 0.0023 0.0130 0.1759 21.9700

4.24 0.0048 0.0221 0.2176 13.2463 4.86 0.0022 0.0128 0.1747 22.3306

4.26 0.0047 0.0217 0.2160 13.4789 4.88 0.0022 0.0125 0.1735 22.6963

4.28 0.0046 0.0213 0.2144 13.7151 4.9 0.0021 0.0123 0.1724 23.0671

4.3 0.0044 0.0209 0.2129 13.9549 4.92 0.0021 0.0121 0.1712 23.4431

4.32 0.0043 0.0205 0.2113 14.1984 4.94 0.0020 0.0119 0.1700 23.8243

4.34 0.0042 0.0202 0.2098 14.4456 4.96 0.0020 0.0117 0.1689 24.2109

4.36 0.0041 0.0198 0.2083 14.6965 4.98 0.0019 0.0115 0.1678 24.6027

4.38 0.0040 0.0194 0.2067 14.9513 5.0 0.0019 0.0113 0.1667 25.0000

4.4 0.0039 0.0191 0.2053 15.2099
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a high-speed stream is decelerated and compressed. For example, air may enter the jet engine
of an aircraft after passing through a diffuser, which raises the pressure and temperature of
the air. In incompressible flow, a nozzle profile converges in the direction of flow to increase
the flow velocity, while a diffuser profile diverges. We shall see that such convergence and
divergence must be reversed for supersonic flows in nozzles and diffusers.

Conservation of mass for compressible flow in a duct with smoothly varying area is spec-
ified by (15.19). For constant density flow dr/dx ¼ 0 and (15.19) implies dA/dx þ du/dx ¼ 0,
so a decreasing area leads to an increase of velocity. When the flow is compressible, friction-
less, and adiabatic then (15.26) implies

udu ¼ �dp=r ¼ c2dr=r, (15.32)

because the flow is isentropic under these circumstances. Thus, the Euler equation requires
that an increasing speed (du > 0) in the direction of flow must be accompanied by a fall of
pressure (dp< 0). In terms of the Mach number, (15.32) becomes

dr=r ¼ �M2du=u: (15.33)

This shows that for M� 1, the percentage change of density is much smaller than the
percentage change of velocity. The density changes in the continuity equation (15.19) can
therefore be neglected in low Mach number flows, a fact also mentioned in Section 15.1.
Substituting (15.33) into (15.19), we obtain a velocity-area differential relationship that is
valid in compressible flow:

du

u
¼ � 1

1�M2

dA

A
: (15.34)

This relation leads to the following important conclusions about compressible flows:

(i) At subsonic speeds (M < 1) a decrease of area increases the speed of flow. A subsonic
nozzle therefore must have a convergent profile, and a subsonic diffuser must have
a divergent profile (upper row of Figure 15.4). The behavior is qualitatively the same as
in incompressible (M¼ 0) flows.

(ii) At supersonic speeds (M > 1) the denominator in (15.34) is negative, and we arrive
at the conclusion that an increase in area leads to an increase of speed. The reason
for such a behavior can be understood from (15.33), which shows that for M > 1 the
density decreases faster than the velocity increases, thus the area must increase in an
accelerating flow in order for ruA to remain constant.

Therefore, the supersonic portion of a nozzle must have a divergent profile, and the super-
sonic part of a diffuser must have a convergent profile (bottom row of Figure 15.4).

Suppose a nozzle is used to generate a supersonic stream, starting from a low-speed, high-
pressure air stream at its inlet (Figure 15.5). Then the Mach number must increase continu-
ously from M ¼ 0 near the inlet to M > 1 at the exit. The foregoing discussion shows that
the nozzle must converge in the subsonic portion and diverge in the supersonic portion.
Such a nozzle is called a convergentedivergent nozzle. From Figure 15.5 it is clear that the
Mach number must be unity at the throat, where the area is neither increasing nor decreasing
(dA / 0). This is consistent with (15.34), which shows that du can be nonzero at the throat
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FIGURE 15.5 A convergentedivergent nozzle. When the pressure difference between the nozzle inlet and outlet
is large enough, a compressible flowmay be continuously accelerated from low speed to a supersonic Mach number
through such a nozzle. When this happens the Mach number is unity at the minimum area, known as the nozzle’s
throat.

FIGURE 15.4 Shapes of nozzles and diffusers in subsonic and supersonic regimes. Nozzles are devices that
accelerate the flow and are shown in the left column. Diffusers are devices that decelerate the flow and are shown in
the right column. The area change with increasing downstream distance, dA/dx, switches sign for nozzles and
diffusers and when the flow switches from subsonic to supersonic.
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only if M ¼ 1. It follows that the sonic velocity can be achieved only at the throat of a nozzle or
a diffuser and nowhere else.

It does not, however, follow that M must necessarily be unity at the throat. According to
(15.34), wemay have a case whereMs 1 at the throat if du ¼ 0 there. As an example, the flow
in a convergentedivergent tube may be subsonic everywhere, with M increasing in the
convergent portion and decreasing in the divergent portion, with Ms 1 at the throat
(Figure 15.6a). In this case the nozzle may also be known as a venturi tube. For entirely
subsonic flow, the first half of the tube here is acting as a nozzle, whereas the second half
is acting as a diffuser. Alternatively, we may have a convergentedivergent tube in which
the flow is supersonic everywhere, with M decreasing in the convergent portion and
increasing in the divergent portion, and again Ms 1 at the throat (Figure 15.6b).

EXAMPLE 15.1

The nozzle of a rocket motor is designed to generate a thrust of 30,000 N when operating at

an altitude of 20 km. The pressure and temperature inside the combustion chamber are 1000 kPa

and 2500 K. The gas constant of the fluid in the jet is R ¼ 280 m2/(s2K), and g ¼ 1.4. Assuming that

the flow in the nozzle is isentropic, calculate the throat and exit areas. Use the isentropic table

(Table 15.1).

Solution

At an altitude of 20 km, the pressure of the standard atmosphere (Section A.4 in Appendix A) is

5467 Pa. If subscripts 0 and e refer to the stagnation and exit conditions, then a summary of the

information given is as follows:

pe ¼ 5467 Pa, p0 ¼ 1000 kPa, T0 ¼ 2500 K, and Thrust ¼ reu
2
eAe ¼ 30 kN:

FIGURE 15.6 Convergentedivergent passages in which the condition at the throat is not sonic. This occurs
when the flow is entirely subsonic as in (a), and when it is entirely supersonic as in (b).
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Here, we have used the facts that the thrust equals mass flow rate times the exit velocity, and the

pressure inside the combustion chamber is nearly equal to the stagnation pressure. The pressure

ratio at the exit is

pe
p0

¼ 5467

ð1000Þð1000Þ ¼ 5:467� 10�3:

For this ratio of pe/p0, the isentropic table (Table 15.1) gives:

me ¼ 4:15, Ae=A
� ¼ 12:2, and Te=T0 ¼ 0:225:

The exit temperature and density are therefore:

Te ¼ ð0:225Þð2500Þ ¼ 562 K,
re ¼ pe=RTe ¼ 5467=ð280Þð562Þ ¼ 0:0347 kg=m3:

The exit velocity is

ue ¼ Me
ffiffiffiffiffiffiffiffiffiffiffi

gRTe
p ¼ 4:15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1:4Þð280Þð562Þp ¼ 1948 m=s:

The exit area is found from the expression for thrust:

Ae ¼ Thrust

reu2e
¼ 30; 000

ð0:0347Þð1948Þ2 ¼ 0:228 m2:

Because Ae/A* ¼ 12.2, the throat area is

A� ¼ 0:228

12:2
¼ 0:0187 m2:

15.6. NORMAL SHOCK WAVES

A shock wave is similar to a step-change compression sound wave except that it has finite
strength. The thickness of such waves is typically of the order of micrometers, so that fluid
properties vary almost discontinuously across a shock wave. The high gradients of velocity
and temperature result in entropy production within the wave so isentropic relations cannot
be used across a shock. This section presents the relationships between properties of the flow
upstream and downstream of a normal shock, where the shock is perpendicular to the direc-
tion of flow. The shock wave is treated as a discontinuity and the actual process by which
entropy is generated is not addressed. However, the entropy rise across the shock predicted
by this analysis is correct. The internal structure of a shock as predicted by the Navier-Stokes
equations under certain simplifying assumptions is given at the end of this section.

Stationary Normal Shock Wave in a Moving Medium

To get started, consider a thin control volume shown in Figure 15.7 that encloses
a stationary shock wave. The control surface locations 1 and 2, shown as dashed lines in
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the figure, can be taken close to each other because of the discontinuous nature of the wave.
In this case, the area change and the wall-surface friction between the upstream and the
downstream control volume surfaces can be neglected. Furthermore, external heat addition
is not of interest here so the basic equations are (15.18) and (15.24) with F ¼ 0, both simplified
for constant area, and (15.22) with Q¼ 0:

r1u1 ¼ r2u2, p1 � p2 ¼ �r1u
2
1 þ r2u

2
2, and h1 þ 1

2
u21 ¼ h2 þ 1

2
u22: (15.35, 15.36, 15.37)

The Bernoulli equation cannot be used here because the process inside the shock wave is
dissipative. The equations (15.35) through (15.37) contain four unknowns (h2, u2, p2, r2).
The additional relationship comes from the thermodynamics of a perfect gas (15.1):

h ¼ CpT ¼ gR

g� 1

p

rR
¼ gp

ðg� 1Þr,

so that (15.37) becomes

g

g� 1

p1
r1

þ 1

2
u21 ¼ g

g� 1

p2
r2

þ 1

2
u22: (15.38)

There are now three unknowns (u2, p2, r2) and three equations: (15.35), (15.36), and (15.38),
so the remainder of the effort to link the conditions upstream and downstream of a shock is
primarily algebraic. Elimination of r2 and u2 from these gives, after some algebra:

p2
p1

¼ 1þ 2g

gþ 1

	

r1u
2
1

gp1
� 1




:

This can be expressed in terms of the upstream Mach number M1 by noting that ru2/gp ¼
u2/gRT ¼ M2. The pressure ratio then becomes

FIGURE 15.7 A normal shock wave trapped in a steady nozzle flow. Here a control volume is shown that has
control surfaces immediately upstream (1) and downstream (2) of the shock wave. Shock waves are very thin in
most gases, so the area change and wall friction of the duct need not be considered as the flow traverses the shock
wave.
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p2
p1

¼ 1þ 2g

gþ 1

�

M2
1 � 1

�

: (15.39)

Let us now derive a relation between M1 and M2. Because ru2 ¼ rc2M2 ¼ r(gp/r)M2 ¼
gpM2, the momentum equation (15.36) can be written

p1 þ gp1M
2
1 ¼ p2 þ gp2M

2
2:

Using (15.39), this gives

M2
2 ¼ ðg� 1ÞM2

1 þ 2

2gM2
1 þ 1� g

, (15.40)

which is plotted in Figure 15.8. Because M2 ¼M1 (state 2 ¼ state 1) is a solution of (15.35),
(15.36), and (15.38), that is shown as well, indicating two possible solutions for M2 for all
M1 > [(g � 1)/2g]1/2. As is shown below, M1 must be greater than unity to avoid violation
of the second law of thermodynamics, so the two possibilities for the downstream state are:
1) no change from upstream, and 2) a sudden transition from supersonic to subsonic flow
with consequent increases in pressure, density, and temperature. The density, velocity, and
temperature ratios can be similarly obtained from the equations provided so far. They are:

r2

r1
¼ u1

u2
¼ ðgþ 1ÞM2

1

ðg� 1ÞM2
1 þ 2

, (15.41)

FIGURE 15.8 Normal shock-
wave solution for M2 as function
ofM1 for g ¼ 1.4. The trivial (no
change) solution is also shown as
the straight line with unity slope.

Asymptotes are [(g� 1)/2g]1/2 ¼
0.378 for M1 or M2 /N. The
second law of thermodynamics
limits valid shock-wave solutions
to those havingM1 > 1.
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T2

T1
¼ 1þ 2ðg� 1Þ

ðgþ 1Þ2
gM2

1 þ 1

M2
1

ðM2
1 � 1Þ: (15.42)

The normal shock relations (15.39) through (15.43) were worked out independently by
the British engineer W. J. M. Rankine (1820e1872) and the French ballistician Pierre Henry
Hugoniot (1851e1887). These equations are sometimes known as the Rankine-Hugoniot
relations.

An important quantity is the change of entropy across the shock. Using (15.1), the entropy
change is

S2 � S1
Cv

¼ ln

	

p2
p1

�

r1

r2

�g


¼ ln

(

	

1þ 2g

gþ 1
ðM2

1 � 1Þ



"
�

g� 1
�

M2
1 þ 2

ðgþ 1ÞM2
1

#g)

, (15.43)

which is plotted in Figure 15.9. This figure shows that the entropy change across an expan-
sion shock in a perfect gas would decrease, which is impermissible. However, expansion
shocks may be possible when the gas follows a different equation of state (Fergason et al.,
2001). When the upstreamMach number is close to unity, Figure 15.9 shows that the entropy
change may be very small. The dependence of S2 e S1 on M1 in the neighborhood of M1 ¼ 1
can be ascertained by treatingM2

1 � 1 as a small quantity and expanding (15.43) in terms of it
(see Exercise 15.5) to find:

S2 � S1
Cv

y
2gðg� 1Þ
3ðgþ 1Þ2

�

M2
1 � 1

�3
: (15.44a)

FIGURE 15.9 Entropy change (S2 � S1)/Cv as a function ofM1 for g ¼ 1.4. Note higher-order contact atM ¼ 1 to
the horizontal line corresponding to zero entropy change as M1 / 1 from above. Negative entropy changes are
predicted for M1 < 1, so shock waves do not occur unless the upstream speed is supersonic, M1 > 1.
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This equation explicitly shows that S2 e S1 will only be positive for a perfect gas when
M1 > 1. Thus, stationary shock waves do not occur when M1 < 1 because of the second
law of thermodynamics. However, when M1 > 1, then (15.40) requires that M2 < 1.
Thus, the Mach number changes from supersonic to subsonic values across a normal shock,
and this is the only possibility. A shock wave is therefore analogous to a hydraulic
jump (see Section 7.6) in a gravity current, in which the Froude number jumps from
supercritical to subcritical values; see Figure 7.20. Equations (15.39), (15.41), and (15.42)
then show that the jumps in p, r, and T are also from lower to higher values, so that
a shock wave leads to compression and heating of a fluid at the expense of stream-
wise velocity.

Interestingly, terms involving the first two powers of (M2
1 � 1) do not appear in (15.44a).

Using the pressure ratio from (15.39), (15.44a) can be rewritten:

S2 � S1
Cv

y
g2 � 1

12g2

�

p2 � p1
p1

�3

: (15.44b)

This shows that as the wave amplitude Dp ¼ p2 e p1 decreases the entropy jump goes to zero
like (Dp)3. Thus weak shock waves are nearly isentropic and this is the primary reason that
loud acoustic disturbances are successfully treated as isentropic. Because of the adiabatic
nature of the process, the stagnation properties T0 and h0 are constant across the shock. In
contrast, the stagnation properties p0 and r0 decrease across the shock due to the dissipative
processes inside the wave front.

Moving Normal Shock Wave in a Stationary Medium

Frequently, one needs to calculate the properties of flow due to the propagation of
a shock wave through a still medium, for example, that caused by an explosion. The
Galilean transformation necessary to analyze this problem is indicated in Figure 15.10.
The left panel shows a stationary shock, with incoming and outgoing velocities u1 and

FIGURE 15.10 Stationary and moving shocks. The stationary shock shown in the left panel corresponds to
a situation like that depicted in Figure 15.7 where the incoming flow moves toward the shock. The moving shock
situation shown on the right corresponds to a blast wave that propagates away from an explosion into still air.
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u2, respectively. To this flow we add a velocity u1 directed to the left, so that the fluid
entering the shock is stationary, and the fluid downstream of the shock is moving to the
left at a speed u1 � u2, as shown in the right panel of the figure. This is consistent with
acoustic results in Section 15.2 where it was found that the fluid within a compression
wave moves in the direction of wave propagation. The shock speed is therefore u1, with
a supersonic Mach number M1 ¼ u1/c1 > 1. It follows that a finite pressure disturbance prop-
agates through a still fluid at supersonic speed, in contrast to infinitesimal waves that propa-
gate at the sonic speed. The expressions for all the thermodynamic properties of the
flow, such as (15.39) through (15.44), are still applicable.

Normal Shock Structure

We conclude this section on normal shock waves with a look into the structure of
a shock wave. The viscous and heat conductive processes within the shock wave result
in an entropy increase across the wave. However, the magnitudes of the viscosity m and
thermal conductivity k only determine the thickness of the shock wave and not the
magnitude of the entropy increase. The entropy increase is determined solely by the
upstream Mach number as shown by (15.43). We shall also see later that the wave drag
experienced by a body due to the appearance of a shock wave is independent of viscosity
or thermal conductivity. (The situation here is analogous to the viscous dissipation in
fully turbulent flows, Section 12.7, in which the average kinetic-energy dissipation rate
3 is determined by the velocity and length scales of a large-scale turbulence field
(12.49) and not by the magnitude of the viscosity; a change in viscosity merely changes
the length scale at which the dissipation takes place, namely, the Kolmogorov
microscale.)

A shock wave can be considered a very thin boundary layer involving a large stream-wise
velocity gradient du/dx, in contrast to the cross-stream (or wall-normal) velocity gradient
involved in a viscous boundary layer near a solid surface. Analysis shows that the thickness
d of a shock wave is given by

ðu1 � u2Þd=nw1,

where the left side is a Reynolds number based on the velocity change across the shock,
its thickness, and the average kinematic viscosity. Taking a typical value for air of
n w 10�5 m2/s, and a velocity jump of Du w 100 m/s, we obtain a shock thickness of
10e7 m. This is not much larger than the mean free path (average distance traveled by
a molecule between collisions), which suggests that the continuum hypothesis and the
assumption of local thermodynamic equilibrium are both of questionable validity in
analyzing shock structure.

With these limitations noted, some insight into the structure of shock waves may be
gained by considering the one-dimensional steady Navier-Stokes equations, including heat
conduction and Newtonian viscous stresses, in a shock-fixed coordinate system. The solution
we obtain provides a smooth transition between upstream and downstream states, looks
reasonable, and agrees with experiments and kinetic theory models for upstream Mach
numbers less than about 2. The equations for conservation of mass, momentum, and energy,
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respectively, are the steady one-dimensional versions of (4.7), (4.38) without a body force, and
(4.60) written in terms of enthalpy h:

dðruÞ
dx

¼ 0, ru
du

dx
þ dp

dx
¼ d

dx

��

4

3
mþ my

�

du

dx

�

, and

ru
dh

dx
� u

dp

dx
¼
�

4

3
mþ my

� �

du

dx

�2

þ d

dx

�

k
dT

dx

�

:

By adding the product of u and the momentum equation to the energy equation, these can be
integrated once to find:

ru ¼ m, muþ p ¼ m00
du

dx
þmV, and m

�

hþ 1

2
u2
�

¼ m00u
du

dx
þ k

dT

dx
þmI,

where m, V, and I are the constants of integration and m00 ¼ (4/3)m þ mv. When these are eval-
uated upstream (state 1) and downstream (state 2) of the shock where gradients vanish, they
yield the Rankine-Hugoniot relations derived earlier. We also need the equations of state for
a perfect gas with constant specific heats to solve for the structure: h ¼ CpT, and p ¼ rRT.
Multiplying the energy equation by Cp/k we obtain the form:

m
Cp

k

�

CpT þ 1

2
u2
�

¼ m00Cp

2k

du2

dx
þ Cp

dT

dx
þm

Cp

k
I:

This equation has an exact integral in the special case Pr00 h m00Cp/k ¼ 1 that was found by
Becker in 1922. For most simple gases, Pr00 is likely to be near unity so it is reasonable to
proceed assuming Pr00 ¼ 1. The Becker integral is CpT þu2/2 ¼ I. Eliminating all variables
but u from the momentum equation, using the equations of state, mass conservation, and
the energy integral, we reach:

muþ ðm=uÞ �R=Cp
� �

I � u2=2
�� m00 du=dx ¼ mV:

With Cp/R ¼ g/(g � 1), multiplying by u/m leads to

��2g=ðgþ 1Þ��m00=m�udu=dx ¼ � u2 þ �2g=�gþ 1
��

uV � 2I
�

g� 1
��

gþ 1
�

h
�

U1 �U
��

U �U2

�

:

Divide by V2 and let u/V ¼ U. The equation for the structure becomes

�UðU1 �UÞ�1ðU �U2Þ�1dU ¼ ½ðgþ 1Þ=2g�ðm=m00Þdx,
where the roots of the quadratic are

U1;2 ¼ ½g=ðgþ 1Þ�
n

1� �1� 2
�

g2 � 1
�

I=
�

g2V2
��1=2

o

,

the dimensionless speeds far up- and downstream of the shock. The left-hand side of the
equation for the structure is rewritten in terms of partial fractions and then integrated to
obtain

½U1 lnðU1 �UÞ �U2 lnðU �U2Þ�=ðU1 �U2Þ ¼ ½ðgþ 1Þ=ð2gÞ�m
Z

dx=m00 h ½ðgþ 1Þ=ð2gÞ�h:
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The resulting shock structure is shown in Figure 15.11 in terms of the stretched coordinate
h ¼ !(m/m00)dx where m00 is often a strong function of temperature and thus of x. A similar
structure is obtained for all except quite small values of Pr00. In the limit Pr00 / 0, Hayes
(1958) points out that there must be a “shock within a shock” because heat conduction alone
cannot provide the entire structure. In fact, Becker (1922, footnote, p. 341) credits Prandtl for
originating this idea. Cohen and Moraff (1971) provided the structure of both the outer (heat
conducting) and inner (isothermal viscous) shocks. Here, the variable h is a dimensionless
length scale measured very roughly in units of mean free paths. We see that a measure of
shock thickness is of the order of 5 mean free paths from this analysis.

15.7. OPERATION OF NOZZLES AT DIFFERENT BACK PRESSURES

Nozzles are used to accelerate a fluid stream and are employed in such systems as wind
tunnels, rocket motors, ejector pumps, and steam turbines. A pressure drop is maintained
across the nozzle to accelerate fluid through it. This section presents the behavior of
the flow through a nozzle as the back pressure pB on the nozzle is varied when the nozzle-
supply pressure is maintained at a constant value p0 (the stagnation pressure). Here the pB
is the pressure in the nominally quiescent environment into which the nozzle flow is directed.
In the following discussion, the pressure pexit at the exit plane of the nozzle equals the back
pressure pB if the flow at the exit plane is subsonic, but not if it is supersonic. This must be true
because subsonic flow allows the downstream pressure pB to be communicated up into the
nozzle exit, and sharp pressure changes are only allowed in a supersonic flow.

Convergent Nozzle

Consider first the case of a convergent nozzle shown in Figure 15.12, which examines
a sequence of states a through c during which the back pressure is gradually lowered.
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FIGURE 15.11 Shock structure velocity profile for the case U1 ¼ 0.848485, U2 ¼ 0.31818, corresponding to
M1 ¼ 2.187. The units of the horizontal coordinate may be approximately interpreted as mean-free paths. Thus,
a shock wave is typically a small countable number of mean-free-paths thick.
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For curve a, the flow throughout the nozzle is subsonic. As pB is lowered, the Mach
number increases everywhere and the mass flux through the nozzle also increases. This
continues until sonic conditions are reached at the exit, as represented by curve b. Further
lowering of the back pressure has no effect on the flow inside the nozzle. This is because
the fluid at the exit is now moving downstream at the velocity at which no pressure
changes can propagate upstream. Changes in pB therefore cannot propagate upstream after
sonic conditions are reached at the nozzle exit. We say that the nozzle at this stage is choked
because the mass flux cannot be increased by further lowering of back pressure. If pB is
lowered further (curve c in Figure 15.12), supersonic flow is generated downstream of
the nozzle, and the jet pressure adjusts to pB by means of a series of oblique compression
and expansion waves, as schematically indicated by the oscillating pressure distribution

FIGURE 15.12 Pressure distribu-
tion along a convergent nozzle for
different values of back pressure pB:
(a) diagram of the nozzle, and (b)
pressure distributions as pB is low-
ered. Here the highest possible flow
speed at the nozzle exit is sonic. When
pB is lowered beyond the point of
sonic flow at the nozzle exit, the flow
continues to accelerate outside the
nozzle via expansion waves that lead
to nonuniform pressures (curve c).
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for curve c. Oblique compression and expansion waves are explained in Sections 15.9 and
15.10. It is only necessary to note here that they are oriented at an angle to the direction of
flow, and that the pressure increases through an oblique compression wave and decreases
through an oblique expansion wave.

ConvergenteDivergent Nozzle

Now consider the case of a convergentedivergent passage, also known as a Laval nozzle
(Figure 15.13). Completely subsonic flow applies to curve a. As pB is lowered to pb, the sonic

FIGURE 15.13 Pressure distribution along a convergentedivergent (aka Laval) nozzle for different values of the
back pressure pB. Flow patterns for cases c, d, e, and g are indicated schematically on the right. The condition f is the
pressure matched case and usually corresponds to the nozzle’s design condition. For this case, the flow looks like that
of c or d without the shock wave. H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, New York, 1957;

reprinted with the permission of Dr. Anatol Roshko.
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condition is reached at the throat. On further reduction of the back pressure, the flow
upstream of the throat does not respond, and the nozzle flow is choked in the sense that it
has reached the maximum mass flow rate for the given values of p0 and throat area. There
is a range of back pressures, shown by curves c and d, in which the flow initially becomes
supersonic in the divergent portion, but then adjusts to the back pressure by means of
a normal shock standing inside the nozzle. The flow downstream of the shock is, of course,
subsonic. In this range the position of the shock moves downstream as pB is decreased, and
for curve d the normal shock stands right at the exit plane. The flow in the entire divergent
portion up to the exit plane is now supersonic and remains so on further reduction of pB.
When the back pressure is further reduced to pe, there is no normal shock anywhere within
the nozzle, and the jet pressure adjusts to pB by means of oblique compression waves down-
stream of the nozzle’s exit plane. These oblique waves vanish when pB ¼ pf. On further reduc-
tion of the back pressure, the adjustment to pB takes place outside the exit plane by means of
oblique expansion waves.

EXAMPLE 15.2

A convergentedivergent nozzle is operating under off-design conditions, resulting in the

presence of a shock wave in the diverging portion. A reservoir containing air at 400 kPa and 800 K

supplies the nozzle, whose throat area is 0.2 m2. The Mach number upstream of the shock is

M1 ¼ 2.44. The area at the nozzle exit is 0.7 m2. Find the area at the location of the shock and the exit

temperature.

Solution

Figure 15.14 shows the profile of the nozzle, where sections 1 and 2 represent conditions across the

shock. As a shock wave can exist only in a supersonic stream, we know that sonic conditions are

reached at the throat, and the throat area equals the critical area A*. The values given are therefore:

p0 ¼ 400 kPa, T0 ¼ 800 K, Athroat ¼ A�
1 ¼ 0:2 m2, M1 ¼ 2:44, and A3 ¼ 0:7m2:

FIGURE 15.14 Drawing for Example 15.2. This is case c from Figure 15.13 where a normal shock occurs in
the nozzle.
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Note that A* is constant upstream of the shock because the flow is isentropic there; this is why

Athroat¼A1*.

The technique of solving this problem is to proceed downstream from the given stagnation

conditions. For M1¼ 2.44, the isentropic table Table 15.1 gives:

A1=A
�
1 ¼ 2:5, so that A1 ¼ A2 ¼ ð2:5Þð0:2Þ ¼ 0:5 m2:

This is the nozzle’s cross-section area at the location of the shock. For M1 ¼ 2.44, the normal shock

Table 15.2 gives:

M2 ¼ 0:519, and p02=p01 ¼ 0:523:

There is no loss of stagnation pressure up to section 1, so p01 ¼ p0, which implies

p02 ¼ 0:523p0 ¼ 0:523
�

400
� ¼ 209:2 kPa:

TABLE 15.2 One-Dimensional Normal-Shock Relations (g ¼ 1.4)

M1 M2 p2/p1 T2/T1 (p0)2/(p0)1 M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

1 1 1 1 1 1.4 0.74 2.12 1.255 0.958

1.02 0.98 1.047 1.013 1 1.42 0.731 2.186 1.268 0.953

1.04 0.962 1.095 1.026 1 1.44 0.723 2.253 1.281 0.948

1.06 0.944 1.144 1.039 1 1.46 0.716 2.32 1.294 0.942

1.08 0.928 1.194 1.052 0.999 1.48 0.708 2.389 1.307 0.936

1.1 0.912 1.245 1.065 0.999 1.5 0.701 2.458 1.32 0.93

1.12 0.896 1.297 1.078 0.998 1.52 0.694 2.529 1.334 0.923

1.14 0.882 1.35 1.09 0.997 1.54 0.687 2.6 1.347 0.917

1.16 0.868 1.403 1.103 0.996 1.56 0.681 2.673 1.361 0.91

1.18 0.855 1.458 1.115 0.995 1.58 0.675 2.746 1.374 0.903

1.2 0.842 1.513 1.128 0.993 1.6 0.668 2.82 1.388 0.895

1.22 0.83 1.57 1.14 0.991 1.62 0.663 2.895 1.402 0.888

1.24 0.818 1.627 1.153 0.988 1.64 0.657 2.971 1.416 0.88

1.26 0.807 1.686 1.166 0.986 1.66 0.651 3.048 1.43 0.872

1.28 0.796 1.745 1.178 0.983 1.68 0.646 3.126 1.444 0.864

1.3 0.786 1.805 1.191 0.979 1.7 0.641 3.205 1.458 0.856

1.32 0.776 1.866 1.204 0.976 1.72 0.635 3.285 1.473 0.847

1.34 0.766 1.928 1.216 0.972 1.74 0.631 3.366 1.487 0.839

1.36 0.757 1.991 1.229 0.968 1.76 0.626 3.447 1.502 0.83

1.38 0.748 2.055 1.242 0.963 1.78 0.621 3.53 1.517 0.821

(Continued)
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TABLE 15.2 One-Dimensional Normal-Shock Relations (g ¼ 1.4)dcont’d

M1 M2 p2/p1 T2/T1 (p0)2/(p0)1 M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

1.8 0.617 3.613 1.532 0.813 2.42 0.521 6.666 2.06 0.532

1.82 0.612 3.698 1.547 0.804 2.44 0.519 6.779 2.079 0.523

1.84 0.608 3.783 1.562 0.795 2.46 0.517 6.894 2.098 0.515

1.86 0.604 3.869 1.577 0.786 2.48 0.515 7.009 2.118 0.507

1.88 0.6 3.957 1.592 0.777 2.5 0.513 7.125 2.138 0.499

1.9 0.596 4.045 1.608 0.767 2.52 0.511 7.242 2.157 0.491

1.92 0.592 4.134 1.624 0.758 2.54 0.509 7.36 2.177 0.483

1.94 0.588 4.224 1.639 0.749 2.56 0.507 7.479 2.198 0.475

1.96 0.584 4.315 1.655 0.74 2.58 0.506 7.599 2.218 0.468

1.98 0.581 4.407 1.671 0.73 2.6 0.504 7.72 2.238 0.46

2 0.577 4.5 1.688 0.721 2.62 0.502 7.842 2.26 0.453

2.02 0.574 4.594 1.704 0.711 2.64 0.5 7.965 2.28 0.445

2.04 0.571 4.689 1.72 0.702 2.66 0.499 8.088 2.301 0.438

2.06 0.567 4.784 1.737 0.693 2.68 0.497 8.213 2.322 0.431

2.08 0.564 4.881 1.754 0.683 2.7 0.496 8.338 2.343 0.424

2.1 0.561 4.978 1.77 0.674 2.72 0.494 8.465 2.364 0.417

2.12 0.558 5.077 1.787 0.665 2.74 0.493 8.592 2.386 0.41

2.14 0.555 5.176 1.805 0.656 2.76 0.491 8.721 2.407 0.403

2.16 0.553 5.277 1.822 0.646 2.78 0.49 8.85 2.429 0.396

2.18 0.55 5.378 1.837 0.637 2.8 0.488 8.98 2.451 0.389

2.2 0.547 5.48 1.857 0.628 2.82 0.487 9.111 2.473 0.383

2.22 0.544 5.583 1.875 0.619 2.84 0.485 9.243 2.496 0.376

2.24 0.542 5.687 1.892 0.61 2.86 0.484 9.376 2.518 0.37

2.26 0.539 5.792 1.91 0.601 2.88 0.483 9.51 2.541 0.364

2.28 0.537 5.898 1.929 0.592 2.9 0.481 9.645 2.563 0.358

2.3 0.534 6.005 1.947 0.583 2.92 0.48 9.781 2.586 0.352

2.32 0.532 6.113 1.965 0.575 2.94 0.479 9.918 2.609 0.346

2.34 0.53 6.222 1.984 0.566 2.96 0.478 10.055 2.632 0.34

2.36 0.527 6.331 2.003 0.557 2.98 0.476 10.194 2.656 0.334

2.38 0.525 6.442 2.021 0.549 3 0.475 10.333 2.679 0.328

2.4 0.523 6.553 2.04 0.54
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The value of A* changes across a shock wave. The ratio A2=A
�
2 can be found from the isentropic table

(Table 15.1) corresponding to a Mach number of M2 ¼ 0.519. (Note that A�
2 simply denotes the area

that would be reached if the flow from state 2 were accelerated isentropically to sonic conditions.)

For M2¼ 0.519, Table 15.1 gives:

A2=A
�
2 ¼ 1:3, which leads to A�

2 ¼ A2=1:3 ¼ 0:5=1:3 ¼ 0:3846 m2:

The flow from section 2 to section 3 is isentropic, during which A* remains constant, so

A3=A
�
3 ¼ A3=A

�
2 ¼ 0:7=0:3846 ¼ 1:82:

Now find the conditions at the nozzle exit from the isentropic table (Table 15.1). However, the value

of A/A* ¼ 1.82 may be found either in the supersonic or the subsonic branch of the table. Since the

flow downstream of a normal shock can only be subsonic, use the subsonic branch. ForA/A*¼ 1.82,

Table 15.1 gives

T3 ¼ T03 ¼ 0:977:

The stagnation temperature remains constant in an adiabatic process, so that T03 ¼ T0. Thus

T3 ¼ 0:977 ð800Þ ¼ 782 K:

15.8. EFFECTS OF FRICTION AND HEATING
IN CONSTANT-AREA DUCTS

For steady one-dimensional compressible flow in a duct of constant cross-sectional area,
the equations of mass, momentum, and energy conservation are:

r1u1 ¼ r2u2, p1 þ r1u
2
1 ¼ p2 þ r2u

2
2 þ p1f , and h1 þ 1

2
u21 þ h1q ¼ h2 þ 1

2
u22, (15.45)

where f ¼ F/(p1A) is a dimensionless friction parameter and q ¼ Q/h1 is a dimensionless
heat transfer parameter. In terms of Mach number, for a perfect gas with constant specific
heats, the momentum and energy equations become, respectively:

p1
�

1þ gM2
1 � f

� ¼ p2
�

1þ gM2
2

�

, and h1

�

1þ g� 1

2
M2

1 þ q

�

¼ h2

�

1þ g� 1

2
M2

2

�

:

Using mass conservation, the thermal equation of state p ¼ rRT, and the definition of the
Mach number, all thermodynamic variables can be eliminated resulting in

M2

M1
¼ 1þ gM2

2

1þ gM2
1 � f

"

1þ ��g� 1
�

2
�

M2
1 þ q

1þ ððg� 1Þ=2ÞM2
2

#1=2

:

Bringing the unknown M2 to the left-hand side and assuming q and f are specified along
with M1,
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M2
2

�

1þ 1

2
ðg� 1ÞM2

2

�

�

1þ gM2
2

�2
¼

M2
1

�

1þ 1

2
ðg� 1ÞM2

1 þ q

�

�

1þ gM2
1 � f

�2
hA:

This is a biquadratic equation for M2 with the solution:

M2
2 ¼ �ð1� 2AgÞ � ½1� 2Aðgþ 1Þ�1=2

ðg� 1Þ � 2Ag2
: (15.46)

Figures 15.15 and 15.16 are plots ofM2 versusM1 from (15.46), first with f as a parameter and
q ¼ 0 (Figure 15.15), and then with q as a parameter and f ¼ 0 (Figure 15.16). Generally, flow
properties are known at the inlet station (1) and the flow properties at the outlet station (2) are

FIGURE 15.15 Flow in a constant-area duct with the dimensionless friction f as a parameter without heat
exchange, q ¼ 0, at g ¼ 1.4. The shaded region in the upper left is inaccessible because DS < 0. For any duct inlet
value of M1 the curves indicate possible outlet states. Interestingly, for M1 < 1, all possible M2 values are at a higher
Mach number. For M1 > 1, the two possible final states are both at lower Mach numbers.
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sought. Here, the dimensionless friction f and heat transfer q are presumed to be specified.
Thus, once M2 is calculated from (15.45), all of the other properties may be obtained from
the dimensionless formulation of the conservation laws above. When q and f ¼ 0, two solu-
tions are possible: the trivial solutionM1 ¼ M2 and the normal shock solution given in Section
15.6. We also showed that the upper left branch of the solution M2 > 1 when M1 < 1 is inac-
cessible because it violates the second law of thermodynamics, that is, it results in a sponta-
neous decrease of entropy.

Effect of Friction

Referring to the left branch of Figure 15.15, the solution indicates the surprising result that
friction accelerates a subsonic flow leading toM2 >M1. This happens because friction causes
the pressure, and therefore the density, to drop rapidly enough so that the fluid velocity must
increase to maintain a constant mass flow. For this case of adiabatic flow with friction, the
relevant equations for differential changes in pressure, velocity, and density in terms of the
local Mach number M¼ u/c are:

�dp

p1
¼ 1� �g� 1

�

M2

1�M2
df , and

du

u
¼ �dr

r
¼ p1

p

df

1�M2
, (15.47)

FIGURE 15.16 Flow in a constant-area duct with the dimensionless heat exchange q as a parameter without
friction, f ¼ 0, at g ¼ 1.4. The shaded region in the upper left is inaccessible because DS < 0. Here, heat addition is
seen to have much the same effect as friction.
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and these may be derived from (15.45) with q ¼ 0 (Exercise 15.10). In particular since df >
0, (15.47) implies that dp/p1 may have a large negative magnitude compared to df as M
approaches unity from below. We will discuss in what follows what actually happens
when there is no apparent solution for M2. When M1 is supersonic, two solutions are
generally possibledone for which 1 < M2 < M1 and the other where M2 < 1. They are
connected by a normal shock. Whether or not a shock occurs depends on the down-
stream pressure. There is also the possibility of M1 insufficiently large or f too large
so that no solution is indicated. We will discuss that in the following but note that the
two solutions coalesce when M2 ¼ 1 and the flow is choked. At this condition the
maximum mass flow is passed by the duct. In the case 1 < M2 < M1 , the flow is decel-
erated and the pressure, density, and temperature all increase in the downstream direc-
tion. The stagnation pressure is always decreased by friction as the entropy is increased.
In summary, friction’s net effect is to drive a compressible duct flow toward M2¼ 1 for
any value of M1.

Effect of Heat Transfer

The range of solutions is twice as rich in this case as qmay take both signs while fmust be
positive. Figure 15.16 shows that for q > 0 solutions are similar in most respects to those with
friction ( f > 0). Heating accelerates a subsonic flow and lowers the pressure and density.
However, heating generally increases the fluid temperature except in the limited range 1=g <
M2

1 < 1 in which the fluid temperature decreases with heat addition. The relevant equations
for differential changes in temperature and flow speed in terms of the local Mach number
M ¼ u/c are:

dT

T1
¼
�

1� gM2

1�M2

�

dq, and
udu

h1
¼
�

1� g
�

M2

1�M2
dq, (15.48)

and these can be derived from (15.45) with f ¼ 0 (Exercise 15.11). When 1=g < M2
1 < 1, the

energy from heat addition goes preferentially into increasing the velocity of the fluid.
The supersonic branch M2 > 1 when M1 < 1 is inaccessible because those solutions violate
the second law of thermodynamics. Again, as with f too large or M1 too close to 1, there is
a possibility no indicated solution when q is too large; this is discussed in what follows.
WhenM1 > 1, two solutions forM2 are generally possible and they are connected by a normal
shock. The shock is absent if the downstream pressure is low and present if the downstream
pressure is high. Although q > 0 (and f > 0) does not always indicate a solution (if the flow
has been choked), there will always be a solution for q < 0. Cooling a supersonic flow accel-
erates it, thus decreasing its pressure, temperature, and density. If no shock occurs,M2 > M1.
Conversely, cooling a subsonic flow decelerates it so that the pressure and density increase.
The temperature decreases when heat is removed from the flow except in the limited
range 1=g < M2

1 < 1 in which the heat removal decelerates the flow so rapidly that the
temperature increases.

For high molecular-weight gases, near critical conditions (high pressure, low tempera-
ture), the gas dynamic relationships may be completely different from those developed
here for perfect gases. Cramer and Fry (1993) found that nonperfect gases may support
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expansion shocks, accelerated flow through “antithroats,” and generally behave in unfa-
miliar ways.

Figures 15.15 and 15.16 show that friction or heat input in a constant-area duct both drive
a compressible flow in the duct toward the sonic condition. For any givenM1, the maximum f
or q > 0 that is permissible is the one for whichM ¼ 1 at the exit station. The flow is then said
to be choked, and the mass flow rate through that duct cannot be increased without
increasing p1 or decreasing p2. This is analogous to flow in a convergent duct. Imagine pour-
ing liquid through a funnel from one container into another. There is a maximum volumetric
flow rate that can be passed by the funnel, and beyond that flow rate, the funnel overflows.
The same thing happens here. If f or q is too large, such that no (steady-state) solution is
possible, there is an external adjustment that reduces the mass flow rate to that for which
the exit speed is just sonic. For M1 < 1 and M1 > 1 the limiting curves for f and q indicating
choked flow intersect M2 ¼ 1 at right angles. Qualitatively, the effect is the same as choking
by area contraction.

15.9. PRESSURE WAVES IN PLANAR COMPRESSIBLE FLOW

To this point, the emphasis in this chapter has been on steady one-dimensional flows in
which flow properties vary only in the direction of flow. This section presents compress-
ible flow results for more than one spatial dimension. To get started, consider a point
source emitting infinitesimal pressure (acoustic) disturbances in a still compressible fluid
in which the speed of sound is c. If the point source is stationary, then the pressure-distur-
bance wave fronts are concentric spheres. Figure 15.17a shows the intersection of these
wave fronts with a plane containing the source at times corresponding to integer multiples
of Dt.

When the source propagates to the left at speed U < c, the wave-front diagram changes to
look like Figure 15.17b, which shows four locations of the source separated by equal time
intervals Dt, with point 4 being the present location of the source. At the first point, the source
emitted a wave that has spherically expanded to a radius of 3cDt in the time interval 3Dt.
During this time the source has moved to the fourth location, a distance of 3UDt from the first
point of wave-front emission. The figure also shows the locations of the wave fronts emitted
while the source was at the second and third points. Here, the wave fronts do not intersect
because U < c. As in the case of the stationary source, the wave fronts propagate vertically
upward and downward, and horizontally upstream and downstream from the source.
Thus, a body moving at a subsonic speed influences the entire flow field.

Now consider the case depicted in Figure 15.17c where the source moves supersonically,
U > c. Here, the centers of the spherically expanding wave fronts are separated by more than
cDt, and no pressure disturbance propagates ahead of the source. Instead, the edges of the
wave fronts form a conical tangent surface called the Mach cone. In planar two-dimensional
flow, the tangent surface is in the form of a wedge, and the tangent lines are calledMach lines.
An examination of the figure shows that the half-angle of the Mach cone (or wedge), called
the Mach angle m, is given by sin m¼ (cDt)/(UDt), so that

sin m ¼ 1=M: (15.49)
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The Mach cone becomes wider as M decreases and becomes a plane front (that is, m ¼ 90�)
when M¼ 1.

The point source considered here could be part of a solid body, which sends out pressure
waves as it moves through the fluid. Moreover, after a simple Galilean transformation, Fig-
ure 15.17b and c apply equally well to a stationary point source with a compressible fluid
moving past it at speed U. From Figure 15.17c it is clear that in a supersonic flow an observer
outside the source’s Mach cone would not detect or hear a pressure signal emitted by the
source, hence this region is called the zone of silence. In contrast, the region inside the Mach
cone is called the zone of action, within which the effects of the disturbance are felt. Thus,
the sound of a supersonic aircraft passing overhead does not reach an observer on the ground

FIGURE 15.17 Wave fronts emitted by a point source in a still fluid when the source speed U is: (a) U ¼ 0;
(b) U < c; and (c) U > c. In each case the wave fronts are emitted at integer multiples of Dt. At subsonic source
speeds, the wave fronts do not overlap and they spread ahead of the source. At supersonic source speeds, all the
wave fronts lie behind the source within the Mach cone having a half-angle sine1(1/M).
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until its Mach cone reaches the observer, and this arrival occurs after the aircraft has passed
overhead.

At every point in a planar supersonic flow there are two Mach lines, oriented at �m to the
local direction of flow. Pressure disturbance information propagates along these lines, which
are the characteristics of the governing differential equation. It can be shown that the nature of
the governing differential equation is hyperbolic in a supersonic flow and elliptic in
a subsonic flow.

When the pressure disturbances from the source are of finite amplitude, they may evolve
into a shock wave that is not normal to the flow direction. Such oblique shock waves are
commonly encountered in ballistics and supersonic flight, and differ from normal shock
waves because they change the upstream flow velocity’s magnitude and direction. A generic
depiction of an oblique shock wave is provided in Figure 15.18 in two coordinate systems.
Part a of this figure shows the stream-aligned coordinate system where the shock wave
resides at an angle s from the horizontal. Here the velocity upstream of the shock is hori-
zontal with magnitude V1, while the velocity downstream of the shock is deflected from
the horizontal by an angle d and has magnitude V2. Part b of Figure 15.18 shows the same
shock wave in a shock-aligned coordinate system where the shock wave is vertical, and
the fluid velocities upstream and downstream of the shock are (u1, v) and (u2, v), respectively.
Here v is parallel to the shock wave and is not influenced by it (see Exercise 15.18). Thus an
oblique shock may be analyzed as a normal shock involving u1 and u2 to which a constant
shock-parallel velocity v is added. Using the Cartesian coordinates in Figure 15.18b where
the shock coincides with the vertical axis, the relationships between the various components
and angles are:

ðu1, vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ v2
q

ðsin s, cos sÞ ¼ V1ðsin s, cos sÞ,
and

ðu2, vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u22 þ v2
q

ðsinðs� dÞ, cosðs� dÞÞ ¼ V2ðsinðs� dÞ, cosðs� dÞÞ:

FIGURE 15.18 Two coordinate systems for an oblique shock wave. (a) Stream-aligned coordinates where the
oblique shock wave lies at shock angle ¼ s and produces a flow-deflection of angle ¼ d. (b) Shock-normal coor-
dinates which are preferred for analysis because an oblique shock wave is merely a normal shock with a super-
imposed shock-parallel velocity v.
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The angle s is called the shock angle orwave angle and d is called the deflection angle. The normal
Mach numbers upstream (1) and downstream (2) of the shock are:

Mn1 ¼ u1=c1 ¼ M1 sin s > 1,
Mn2 ¼ u2=c2 ¼ M2 sinðs� dÞ < 1:

Because u2 < u1, there is a sudden change of direction of flow across the shock and the flow is
turned toward the shock by angle d.

Superposition of the tangential velocity v does not affect the static properties, which are
therefore the same as those for a normal shock. The expressions for the ratios p2/p1, r2/r1,
T2/T1, and (S2 e S1)/Cv are therefore those given by (15.39) and (15.41) through (15.43), if
M1 is replaced by Mn1¼M1 sin s. For example:

p2
p1

¼ 1þ 2g

gþ 1
ðM2

1 sin
2s� 1Þ, (15.50)

r2

r1
¼

�

gþ 1
�

M2
1 sin

2s
�

g� 1
�

M2
1 sin

2sþ 2
¼ u1

u2
¼ tan s

tan ðs� dÞ: (15.51)

Thus, the normal shock table, Table 15.2, is applicable to oblique shock waves if we use
M1sins in place of M1.

The relation between the upstream and downstream Mach numbers can be found from
(15.40) by replacing M1 by M1 sin s and M2 by M2 sin (s e d). This gives

M2
2 sin

2ðs� dÞ ¼
�

g� 1
�

M2
1 sin

2 sþ 2

2gM2
1 sin

2 sþ 1� g
: (15.52)

An important relation is that between the deflection angle d and the shock angle s for
a given M1, given in (15.51). Using the trigonometric identity for tan (s e d), this becomes

tan d ¼ 2 cot s
M2

1 sin
2 s� 1

M2
1

�

gþ cos 2s
�þ 2

: (15.53)

Aplot of this relation is given in Figure 15.19. The curves represent d versus s for constantM1.
The value of M2 varies along the curves, and the locus of points corresponding to M2 ¼ 1 is
indicated. It is apparent that there is a maximum deflection angle dmax for oblique shock solu-
tions to be possible; for example, dmax ¼ 23� for M1 ¼ 2. For a given M1, d becomes zero at
s ¼ p/2 corresponding to a normal shock, and at s ¼ m ¼ sin�1(1/M1) corresponding to
the Mach angle. For a fixed M1 and d < dmax, there are two possible solutions: a weak shock
corresponding to a smaller s and a strong shock corresponding to a larger s. It is clear that
the flow downstream of a strong shock is always subsonic; in contrast, the flow downstream
of a weak shock is generally supersonic, except in a small range in which d is slightly smaller
than dmax.

Oblique shock waves are commonly generated when a supersonic flow is forced to
change direction to go around a structure where the flow area cross section is reduced.
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Two examples are shown in Figure 15.20 that show supersonic flow past a wedge of half-
angle d, or the flow past a compression bend where the wall turns into the flow by an
angle d. If M1 and d are known, then s can be obtained from Figure 15.19, and Mn2

(and therefore M2 ¼ Mn2/sin(s e d)) can be obtained from the shock table (Table 15.2).
An attached shock wave, corresponding to the weak solution, forms at the nose of the
wedge, such that the flow is parallel to the wedge after turning through an angle d. The
shock angle s decreases to the Mach angle m1 ¼ sin�1(1/M1) as the deflection d tends to

FIGURE 15.19 Plot of
oblique shock solutions. The
strong shock branch is indi-
cated by dashed lines on the
right, and the heavy dotted
line indicates the maximum
deflection angle dmax. (From

Ames Research Staff, 1953,

NACA Report 1135.)

FIGURE 15.20 Twopossi-
ble means for producing obli-
que shocks in a supersonic
flow. In both cases a solid
surface causes theflow to turn,
and the flow area is reduced.
The geometry shown in the
right panel is sometimes
called a compression corner.
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zero. It is interesting that the corner velocity in a supersonic flow is finite. In contrast, the
corner velocity in a subsonic (or incompressible) flow is either zero or infinite, depending
on whether the wall shape is concave or convex. Moreover, the streamlines in Figure 15.20
are straight, and computation of the field is easy. By contrast, the streamlines in a subsonic
flow are curved, and the computation of the flow field is not easy. The basic reason for this
is that, in a supersonic flow, the disturbances do not propagate upstream of Mach lines or
shock waves emanating from the disturbances, hence the flow field can be constructed
step by step, proceeding downstream. In contrast, disturbances propagate both upstream
and downstream in a subsonic flow so that all features in the entire flow field are related
to each other.

As d is increased beyond dmax, attached oblique shocks are not possible, and a detached
curved shock stands in front of the body (Figure 15.21). The central streamline goes through
a normal shock and generates a subsonic flow in front of the wedge. The strong shock solution
of Figure 15.19 therefore holds near the nose of the body. Farther out, the shock angle
decreases, and the weak shock solution applies. If the wedge angle is not too large, then
the curved detached shock in Figure 15.21 becomes an oblique attached shock as the Mach
number is increased. In the case of a blunt-nosed body, however, the shock at the leading
edge is always detached, although it moves closer to the body as the Mach number is
increased.

We see that shock waves may exist in supersonic flows and their location and orienta-
tion adjust to satisfy boundary conditions. In external flows, such as those just described,
the boundary condition is that streamlines at a solid surface must be tangent to that

FIGURE 15.21 A detached shock wave. When the angle of the wedge shown in the left panel of Figure 15.20 is
too great for an oblique shock, a curved shock wave will form that does not touch body. A portion of this detached
shock wave will have the properties of a normal shock wave.
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surface. In duct flows the boundary condition locating the shock is usually the down-
stream pressure.

From the foregoing analysis, it is clear that large-angle supersonic flow deflections should
be avoided when designing efficient devices that produce minimal total pressure losses. Effi-
cient devices tend to be slender and thin, and their performance may be analyzed using
a weak oblique shock approximation that can be obtained from the results above in the limit
of small flow deflection angle, d � 1. To obtain this expression, simplify (15.53) by noting that
as d / 0, the shock angle s tends to the Mach angle m1 ¼ sin�1(1/M1). And, from (15.50) we
note that (p2 e p1)/p1 / 0 as M2

1 sin
2 s� 1/0 (as s / m and d/ 0). Then from (15.50) and

(15.53):

tan d ¼ 2 cot s
gþ 1

2g

 

p2 � p1
p1

!

1

M2
1

�

gþ 1� 2 sin2 s
�þ 2

: (15.54)

As d/0, tan dzd, cot m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 � 1

q

, sin sz 1=M1, and

p2 � p1
p1

¼ gM2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 � 1

q d: (15.55)

The interesting point is that the relation (15.55) is also applicable to weak expansion waves
and not just weak compression waves. By this we mean that the pressure increase due to
a small deflection of the wall toward the flow is the same as the pressure decrease due to
a small deflection of the wall away from the flow. This extended range of validity of (15.55)
occurs because the entropy change across a weak shock may be negligible even when the
pressure change is appreciable (see (15.44b) and the related discussion). Thus, weak shock
waves can be treated as isentropic or reversible. Relationships for a weak shock wave can
therefore be applied to a weak expansion wave, except for some sign changes. In the final
section of this chapter, (15.55) is used to estimate the lift and drag of a thin airfoil in super-
sonic flow.

When an initially horizontal supersonic flow follows a curving wall, the wall radiates
compression and expansion waves into the flow that modulate the flow’s direction and
Mach number. When the wall is smoothly curved these compression and expansion waves
follow Mach lines, inclined at an angle of m ¼ sin�1(1/M) to the local direction of flow
(Figure 15.22). In this simple circumstance where there is no upper wall that radiates
compression or expansion waves downward into the region of interest, the flow’s orientation
and Mach number are constant on each Mach line. In the case of compression, the Mach
number decreases along the flow, so that theMach angle increases. TheMach lines may there-
fore coalesce and form an oblique shock as in Figure 15.22a. In the case of a gradual expan-
sion, the Mach number increases along the flow and the Mach lines diverge as in
Figure 15.22b.

If the wall has a sharp deflection (a corner) away from the approaching stream, then the
pattern of Figure 15.22b takes the form of Figure 15.23 where all the Mach lines originate
from the corner. In this case, this portion of the flow where it expands and turns, and is
not parallel to the wall upstream or downstream of the corner, is known as a Prandtl-Meyer
expansion fan. The Mach number increases through the fan, withM2 >M1. The first Mach line
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is inclined at an angle of m1 to the upstreamwall direction, while the last Mach line is inclined
at an angle of m2 to the downstream wall direction. The pressure falls gradually along any
streamline through the fan. Along the wall, however, the pressure remains constant along
the upstream wall, falls discontinuously at the corner, and then remains constant along the
downstream wall. Figure 15.23 should be compared with Figure 15.20, in which the wall
turns inward and generates an oblique shock wave. By contrast, the expansion in Figure 15.23
is gradual and isentropic away from the wall.

The flow through a Prandtl-Meyer expansion fan is calculated as follows. From Fig-
ure 15.18b, conservation of momentum tangential to the shock shows that the tangential
velocity is unchanged, or:

V1 cos s ¼ V2 cosðs� dÞ ¼ V2 ðcos s cos dþ sin s sin dÞ:
We are concerned here with very small deflections, d/ 0 so s/ m. Here, cos dz 1, sindz d,

V1 z V2(1 þ d tans), so (V2 e V1)/V1 z ed tansz �d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 � 1

q

, where tansz 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 � 1

q

.

Thus, the velocity change dV for an infinitesimal wall deflection dd can be written as

FIGURE 15.22 Gradual compression and expansion in supersonic flow. (a) A gradual compression corner like
the one shown will eventually result in an oblique shock wave as the various Mach lines merge, each carrying
a fraction of the overall compression. (b) A gradual expansion corner like the one shown produces Mach lines that
diverge so the expansion becomes even more gradual farther from the wall.

FIGURE 15.23 The Prandtl-Meyer expansion fan. This is the flow field developed by a sharp expansion corner.
Here the flow area increases downstream of the corner so it accelerates a supersonic flow.
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dd ¼ �ðdV=VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

(first quadrant deflection). Because V ¼ Mc, dV/V ¼ dM/M þ dc/c.

With c ¼ ffiffiffiffiffiffiffiffiffiffi

gRT
p

for a perfect gas, dc/c ¼ dT/2T. Using (15.28) for adiabatic flow of a perfect
gas, dT/T¼e(ge 1)M dM/[ 1þ ((ge 1)/2)M2], then

dd ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

M

dM

1þ 1

2
ðg� 1ÞM2

:

Integrating d from 0 (radians) and M from 1 gives dþ n(M) ¼ const., where

nðMÞ ¼
Z
M

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

1þ 1

2
ðg� 1ÞM2

dM

M
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

gþ 1

g� 1

s

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g� 1

gþ 1

�

M2 � 1
�

s

� tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

(15.56)

is called the Prandtl-Meyer function. The sign of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

originates from the identification of

tan s ¼ tan m ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

for a first quadrant deflection (upper half-plane). For a fourth

quadrant deflection (lower half-plane), tan m ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p

: For example, for
Figure 15.22a or b with d1, d2, and M1 given, we would write

d1 þ nðM1Þ ¼ d2 þ nðM2Þ, and then nðM2Þ ¼ d1 � d2 þ nðM1Þ
would determine M2. In Figure 15.22a, d1 e d2 < 0, so v2 < v1 and M2 <M1. In Figure 15.22b,
d1e d2> 0, so v2> v1 and M2>M1.

15.10. THIN AIRFOIL THEORY IN SUPERSONIC FLOW

Simple expressions can be derived for the lift and drag coefficients of an airfoil in super-
sonic flow if the thickness and angle of attack are small. Under these circumstances the pres-
sure disturbances caused by the airfoil are small, and the total flow can be built up by
superposition of small disturbances emanating from points on the body. Such a linearized
theory of lift and drag was developed by Ackeret. Because all flow inclinations are small,
we can use the relation (15.55) to calculate the pressure changes due to a change in flow direc-
tion. We can write this relation as

p� pN
pN

¼ gM2
Nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p , (15.57)

where pN and MN refer to the properties of the free stream, and p is the pressure at a point
where the flow is inclined at an angle d to the free-stream direction. The sign of d in (15.57)
determines the sign of (p e pN).

To see how the lift and drag of a thin body in a supersonic stream can be estimated, consider
a flat plate inclined at a small angle a to a horizontal stream (Figure 15.24). At the leading edge
there is a weak expansion fan above the top surface and a weak oblique shock below the
bottom surface. The streamlines ahead of these waves are straight. The streamlines above
the plate turn through an angle a by expanding through an expansion fan, downstream of
which they become parallel to the plate with a pressure p2 < pN. The upper streamlines
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then turn sharply across an oblique shock emanating from the trailing edge, becoming parallel
to the free stream once again. Opposite features occur for the streamlines below the plate
where the flow first undergoes compression across an oblique shock coming from the leading
edge, which results in a pressure p3 > pN. It is, however, not important to distinguish between
shock and expansionwaves in Figure 15.24, because the linearized theory treats them the same
way, except for the sign of the pressure changes they produce.

The pressures above and below the plate can be found from (15.47), giving:

p2 � pN
pN

¼ � gM2
Na

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p , and
p3 � pN

pN
¼ gM2

Na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p :

The pressure difference across the plate is therefore

p3 � p2
pN

¼ 2agM2
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p :

FIGURE 15.24 Inclined flat plate in a supersonic stream as a simple illustration of supersonic aerodynamics.
The upper panel shows the flow pattern and the lower panel shows the pressure distribution on the suction and
pressure sides of the simple foil. Here, an ideal compressible flow analysis does predict a drag component, unlike an
equivalent ideal incompressible flow.
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If b is the chord length, then the lift L and drag D forces per unit span are:

L ¼ �

p3 � p2
�

b cos ay
2agM2

NpNb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p , and D ¼ �

p3 � p2
�

b sin ay
2a2gM2

NpNb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p :

(15.58)

Using the relationship rU2 ¼ gpM2, the lift and drag coefficients are:

CL ¼ L
�

1=2
�

rNU2
Nb

y
4a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p , and CD ¼ D
�

1=2
�

rNU2
Nb

y
4a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N � 1

p : (15.59)

These expressions do not hold at transonic speedsMN / 1, when the process of linearization
used here breaks down. The expression for the lift coefficient should be compared to the
incompressible expression CL ¼ 2pa derived in the preceding chapter. Note that the flow
in Figure 15.24 does have a circulation because the velocities at the upper and lower surfaces
are parallel but have different magnitudes. However, in a supersonic flow it is not necessary
to invoke the Kutta condition (discussed in the preceding chapter) to determine the magni-
tude of the circulation. The flow in Figure 15.24 does leave the trailing edge smoothly.

The drag in (15.59) is the wave drag experienced by a body in a supersonic stream, and exists
even in an inviscid flow. The d’Alembert paradox therefore does not apply in a supersonic flow.
The supersonic wave drag is analogous to the gravity wave drag experienced by a shipmoving
at a speed greater than the velocity of surface gravity waves, in which a system of bowwaves is
carriedwith the ship. Themagnitude of the supersonicwavedrag is independent of the value of
the viscosity, although the energy spent in overcoming this drag is finally dissipated through
viscous effects within the shock waves. In addition to the wave drag, additional drags due to
viscous and finite-span effects, considered in the preceding chapter, act on a real wing.

In this connection, it is worth noting the difference between the airfoil shapes used in
subsonic and supersonic airplanes. Low-speed airfoils have a streamlined shape, with
a rounded nose and a sharp trailing edge. These features are not helpful in supersonic
airfoils. The most effective way to reduce the drag of a supersonic airfoil is to reduce its thick-
ness. Supersonic wings are characteristically thin and have sharp leading edges.

EXERCISES

15.1. The field equation for one-dimensional acoustic pressure fluctuations in an ideal
compressible fluid is (15.13).
a) Change the independent variables x and t to x ¼ x� ct and z ¼ xþ ct to simplify

(15.13) to
v2p0

vxvz
¼ 0.

b) Use the simplified equation in part b) to find the general solution to the original field
equation: p0ðx, tÞ ¼ fðx� ctÞ þ gðxþ ctÞ where f and g are undetermined functions.

c) When the initial conditions are: p0 ¼ F(x) and vp0/vt ¼ G(x) at t ¼ 0, show that:

fðxÞ ¼ 1

2

	

FðxÞ � 1

c

Z x

0
Gð�xÞd�x




, and gðxÞ ¼ 1

2

	

FðxÞ þ 1

c

Z x

0
Gð�xÞd�x




,

where x is just an integration variable.
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15.2. Starting from (15.15) use (15.14) to prove (15.16).
15.3. Consider two approaches to determining the upper Mach number limit for incom-

pressible flow.
a) First consider pressure errors in the simplest possible steady-flow Bernoulli

equation. Expand (15.29) for small Mach number to determine the next term in the

expansion: p0 ¼ pþ ð1=2Þru2 þ. and determine the Mach number at which this
next term is 5% of p when g¼ 1.4.

b) Second consider changes to the density. Expand (15.30) for small Mach number
and determine the Mach number at which the density ratio r0/r differs from unity
by 5% when g ¼ 1.4.

c) Which criterion is correct? Explain why the criteria for incompressibility deter-
mined in parts a) and b) differ, and reconcile them if you can.

15.4. The critical area A* of a duct flow was defined in Section 15.4. Show that the relation
between A* and the actual area A at a section, where the Mach number equals M, is
that given by (15.31). This relation was not proved in the text. [Hint: Write

A

A� ¼ r�c�

ru
¼ r�

r0

r0

r

c�

c

c

u
¼ r�

r0

r0

r

ffiffiffiffiffiffiffiffiffiffiffiffi

T�

T0

T0

T

s

1

M
:

Then use the other relations given in Section 15.4.]
15.5. The entropy change across a normal shock is given by (15.43). Show that this reduces

to expressions (15.44a and b) for weak shocks. [Hint: Let M2
1 � 1� 1. Write the terms

within the two sets of brackets in equation (15.43) in the form [1 þ 31] [1 þ 32]
g, where

31 and 32 are small quantities. Then use series expansion ln(1 þ 3) ¼ 3 e 32/2 þ 33/
3 þ. . This gives equation (15.44) times a function ofM1 in which we can setM1¼1.]

15.6. Show that the maximum velocity generated from a reservoir in which the stagnation
temperature equals T0 is umax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2CpT0
p

:What are the corresponding values of
T andM?

15.7. In an adiabatic flow of air through a duct, the conditions at two points are u1¼ 250m/s,
T1 ¼ 300 K, p1 ¼ 200 kPa, u2 ¼ 300 m/s, and p2 ¼ 150 kPa. Show that the loss of
stagnation pressure is nearly 34.2 kPa. What is the entropy increase?

15.8. A shock wave generated by an explosion propagates through a still atmosphere. If the
pressure downstream of the shock wave is 700 kPa, estimate the shock speed and the
flow velocity downstream of the shock.

15.9. Using dimensional analysis, G. I. Taylor deduced that the radius R(t) of the blast wave
from a large explosion would be proportional to (E/r1)

1/5t2/5 where E is the explosive
energy, r1 is the quiescent air density ahead of the blast wave, and t is the time since
the blast (see Example 1.4). The goal of this problem is to (approximately) determine
the constant of proportionality assuming perfect-gas thermodynamics.
a) For the strong shock limit where M2

1[1, show:

r2

r1
y

gþ 1

g� 1
,

T2

T1
y

g� 1

gþ 1

p2
p1
, and u1 ¼ M1c1y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gþ 1

2

p2
r1

s

:
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b) For a perfect gas with internal energy per unit mass e, the internal energy per unit
volume is re. For a hemispherical blastwave, the volume inside the blastwavewill be
ð2=3ÞpR3. Thus, set r2e2 ¼ E=ð2=3ÞpR3, determine p2, set u1 ¼ dR/dt, and integrate
the resultingfirst-order differential equation to show thatR(t) ¼ K(E/r1)

1/5t2/5when
R(0)¼ 0 and K is a constant that depends on “gamma”.

c) Evaluate K for g ¼ 1.4. A similarity solution of the non-linear gas-dynamic
equations in spherical coordinates produces K ¼ 1.033 for g ¼ 1.4 (see Thompson
1972, p. 501). What is the percentage error in this exercise’s approximate analysis?

15.10. Starting from the set (15.45) with q¼ 0, derive (15.47) by letting station (2) be a
differential distance downstream of station (1).

15.11. Starting from the set (15.45) with f¼ 0, derive (15.48) by letting station (2) be a
differential distance downstream of station (1).

15.12. Awedge has a half-angle of 50�. Moving through air, can it ever have an attached
shock? What if the half-angle were 40�? [Hint: The argument is based entirely on
Figure 15.19.]

15.13. Air at standard atmospheric conditions is flowing over a surface at a Mach number of
M1 ¼ 2. At a downstream location, the surface takes a sharp inward turn by an angle
of 20�. Find the wave angle s and the downstream Mach number. Repeat the calcu-
lation by using the weak shock assumption and determine its accuracy by comparison
with the first method.

15.14. A flat plate is inclined at 10� to an airstream moving at MN ¼ 2. If the chord length is
b¼ 3 m, find the lift and wave drag per unit span.

15.15. A perfect gas is stored in a large tank at the conditions specified by p0, T0. Calculate
the maximum mass flow rate that can exhaust through a duct of cross-sectional area
A. Assume that A is small enough that during the time of interest p0 and T0 do not
change significantly and that the flow is adiabatic.

15.16. For flow of a perfect gas entering a constant area duct at Mach number M1, calculate
themaximum admissible values of f , q for the samemass flow rate. Case (a) f ¼ 0; case
(b) q¼ 0.

15.17. Using thin airfoil theory calculate the lift and drag on the airfoil shape given by yu ¼ t
sin(px/c) for the upper surface and y1 ¼ 0 for the lower surface. Assume a supersonic
stream parallel to the x-axis. The thickness ratio t/c� 1.

15.18. Write momentum conservation for the volume of the small cylindrical control volume
shown in Figure 4.17 where the interface is a shock with flow from side 1 to side 2. Let
the two end faces approach each other as the shock thickness/ 0 and assume viscous
stresses may be neglected on these end faces (outside the structure). Show that the n
component of momentum conservation yields (15.36) and the t component gives u , t
is conserved or v is continuous across the shock.
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CHAPTER OBJECTIVES

• To properly introduce the subject of biofluid

mechanics including the necessary language

• To describe the components of the human

circulation system and document their

nominal characteristics

• To present analytical results of relevant

models of steady and pulsatile blood flow

• To review the parametric impact of the

properties of rigid, flexible, branched, and

curved tubes on blood flow

• To provide an overview of fluid transport

in plants.

16.1. INTRODUCTION

This chapter is intended to be of an introductory nature to the vast field of biofluid
mechanics. Here, we shall consider the ideas and principles of the preceding chapters in
the context of fluid motion in biological systems. Topical emphasis is placed on fluid motion
in the human body, and some aspects of the fluid mechanics of plants.
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The human body is a complex system that requires materials such as air, water,
minerals, and nutrients for survival and function. Upon intake, these materials have to
be transported and distributed around the body as required. The associated biotransport
and distribution processes involve interactions with membranes, cells, tissues, and
organs comprising the body. Subsequent to cellular metabolism in the tissues, waste
byproducts have to be transported to the excretory organs for synthesis and removal.
In addition to these functions, biotransport systems and processes are required for
homeostasis (physiological regulationdfor example, maintenance of pH and of body
temperature), and for enabling the movement of immune substances to aid in the body’s
defense and recovery from infection and injury. Furthermore, in certain other specialized
systems such as the cochlea in the ear, fluid transport enables hearing and motion
sensing. Evidently, in the human body, there are multiple types of fluid dynamic systems
that operate at macro-, micro-, nano-, and pico-scales. Systems at the micro and macro
levels, for example, include cells (micro), tissue (microemacro), and organs (macro).
Transport at the micro, nano, and pico levels include ion channeling, binding, signaling,
endocytosis, and so on. Tissues constitute organs, and organs as systems perform various
functions. For example, the cardiovascular system consists of the heart, blood vessels
(arteries, arterioles, venules, veins, capillaries), lymphatic vessels, and the lungs. Its func-
tion is to provide adequate blood flow and to regulate that flow as required by the
various organs of the body. In this chapter, as related to the human body, we shall restrict
attention to some aspects of the cardiovascular system for blood circulation.

16.2. THE CIRCULATORY SYSTEM IN THE HUMAN BODY

The primary functions of the cardiovascular system are: 1) to pick up oxygen and nutri-
ents from the lungs and the intestine, respectively, and deliver them to tissues (cells) of the
body, 2) to remove waste and carbon dioxide from the body for excretion through the
kidneys and the lungs, respectively, and 3) to regulate body temperature by advecting
the heat generated and transferring it to the environment outside the skin. The circulatory
system in a normal human body (as in all vertebrates and some other select groups of
species) can be considered as a closed system, meaning that the blood never leaves the
system of blood vessels. The motive mechanism for blood flow is the prevailing pressure
gradient.

The circulations associated with the cardiovascular system may be considered under three
subsystems. These are the 1) systemic circulation, 2) pulmonary circulation, and 3) coronory
circulation (see Figure 16.1). In the systemic circulation, blood flows to all of the tissues in
the body except the lungs. Contraction of the left ventricle of the heart pumps oxygen-rich
blood to a relatively high pressure and ejects it through the aortic valve into the aorta. Branches
from the aorta supply blood to the various organs via systemic arteries and arterioles. These, in
turn, carry blood to the capillaries in the tissues of various organs. Oxygen and nutrients are
transported by diffusion across the walls of the capillaries to the tissues. Cellularmetabolism in
the tissues generates carbon dioxide and byproducts (waste). Carbon dioxide dissolves in the
blood and waste is carried by the bloodstream. Blood drains into venules and veins.
These vessels ultimately empty into two large veins called the superior vena cava (SVC) and
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inferior vena cava (IVC) that return carbon dioxideerich blood to the right atrium. The mean
blood pressure of the systemic circulation ranges from a high of 93 mm Hg in the arteries to
a low of a few mm Hg in the venae cavae. Figure 16.2 shows that pressure falls continuously
as blood moves farther from the heart. The highest pressure in the vessels of the circulatory
system is in the aorta and in the systemic arteries while the lowest pressure is in the venae
cavae.

FIGURE 16.1 Schematic of blood flow in systemic and pulmonary circulation showing the major branches.
Reproduced with permission from Silverthorn, D. U. (2001), Human Physiology: An Integrated Approach, 2nd ed.,

Prentice Hall, Upper Saddle River, NJ.
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In pulmonary circulation, contraction of the right atrium ejects carbon dioxideerich blood
through the tricuspid valve into the right ventricle. Contraction of the right ventricle pumps
the blood through the pulmonic valve (also called semilunar valve) into the pulmonary
arteries. These arteries bifurcate and transport blood into the complex network of pulmonary
capillaries in the lungs. These capillaries lie between and around the alveoli walls. During
respiratory inhalation, the concentration of oxygen in the air is greater in the air sacs of
the alveolar region than in the capillary blood. Oxygen diffuses across capillary walls into
the blood. Simultaneously, the concentration of carbon dioxide in the blood is higher than
in the air and carbon dioxide diffuses from the blood into the alveoli. Carbon dioxide exits
through the mouth and nostrils. Oxygenated blood leaves the lungs through the pulmonary
veins and enters the left atrium. When the left atrium contracts, it pumps blood through the
bicuspid (mitral) valve into the left ventricle. Figures 16.3 and 16.4 provide an overview of
external and cellular respiration and the branching of the airways, respectively.

Blood is pumped through the systemic and pulmonary circulations at a rate of about 5.2
liters per minute under normal conditions. The systemic and pulmonary circulations
described above constitute one cardiac cycle. The cardiac cycle denotes any one or all of
such events related to the flow of blood that occur from the beginning of one heartbeat to
the beginning of the next. Throughout the cardiac cycle, the blood pressure increases and
decreases. The frequency of the cardiac cycle is the heart rate. The cardiac cycle is controlled
by a portion of the autonomic nervous system (that part of the nervous system which does
not require the brain’s involvement in order to function).

In coronary circulation, blood is supplied to and from the heart muscle itself. The
muscle tissue of the heart, or myocardium, is thick and it requires coronary blood vessels

FIGURE 16.2 Pressure gradient in the blood vessels. The highest pressures are found in the aorta which
conveys oxygen-rich blood away from the heart. The lowest pressures are found in the largest veins which convey
oxygen-poor blood toward the heart. Reproduced with permission from Silverthorn, D. U. (2001), Human Physiology:
An Integrated Approach, 2nd ed., Prentice Hall, Upper Saddle River, NJ.
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to deliver blood deep into the myocardium. The vessels that supply blood with a high
concentration of oxygen to the myocardium are known as coronary arteries. The main
coronary artery arises from the root of the aorta and branches into the left and right coro-
nary arteries. Up to about seventy-five percent of the coronary blood supply goes to the
left coronary artery, with the remainder going to the right coronary artery. Blood flows
through the capillaries of the heart and returns through the cardiac veins which remove
the deoxygenated blood from the heart muscle. The coronary arteries that run on the
surface of the heart are relatively narrow vessels and are commonly affected by athero-
sclerosis and can become blocked, causing angina or a heart attack. The coronary arteries
are classified as end circulation, since they represent the only source of blood supply to the
myocardium.

FIGURE 16.3 Overview of external and cellular respiration. Cells collect oxygen and nutrients from
the stream blood and discard carbon dioxide and wastes into the bloodstream. Reproduced with permission

from Silverthorn, D. U. (2001), Human Physiology: An Integrated Approach, 2nd ed., Prentice Hall, Upper Saddle

River, NJ.
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FIGURE 16.4 Branching of the airways in the human lungs. Areas have units of cm2. Reproduced with permission from Silverthorn, D. U. (2001),Human
Physiology: An Integrated Approach, 2nd ed., Prentice Hall, Upper Saddle River, NJ.
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The Heart as a Pump

The heart has four pumping chambersdtwo atria (upper) and two ventricles (lower).
The left and right parts of the heart are separated by a muscle called the septum which
keeps the blood volumes in each part separate. The upper chambers interact with the
lower chambers via the heart valves. The heart has four valves which ensure that blood
flows only in the desired direction. The atrio-ventricular valves (AV) consist of the
tricuspid (three flaps) valve between the right atrium and the right ventricle, and the
bicuspid (two flaps, also called the mitral) valve between the left atrium and the left
ventricle. The pulmonary valve is between the right ventricle and the pulmonary artery,
and the aortic valve is between the left ventricle and the aorta. Both the pulmonary and
aortic valves have three symmetrical half-moon-shaped valve flaps (cusps), and are called
the semilunar valves. The function of the four chambers in the heart is to pump blood
through pulmonary and systemic circulations. The atria receive blood from the veinsdthe
right atrium receives carbon dioxideerich blood from the SVC and IVC, and the left
atrium receives oxygen-rich blood from the pulmonary veins. The heart is controlled by
a single electrical impulse and both sides of the heart act synchronously. Electrical activity
stimulates the heart muscle (myocardium) of the chambers of the heart to make them
contract. This is immediately followed by mechanical contraction of the heart. Both atria
contract at the same time. The contraction of the atria moves the blood from the upper
chambers through the valves into the ventricles. The atrial muscles are electrically sepa-
rated from the ventricular muscles except for one pathway through which an electrical
impulse is conducted from the atria to the ventricles. The impulse reaching the ventricles
is delayed by about 110 ms while the conduction occurs through the pathway. This delay
allows the ventricles to be filled before they contract. The left ventricle is a high-pressure
pump and its contraction supplies systemic circulation while the right ventricle is a low-
pressure pump supplying pulmonary circulation (lungs offer much less resistance to flow
than systemic organs).

From the above discussions, we see that the pumping action of the heart can be regarded
as a two-step processda contraction step (systole) and a filling (relaxation) step (diastole).
Systole describes that portion of the heartbeat during which contraction of the heart muscle
and hence ejection of blood takes place. A single beat of the heart involves three operations:
atrial systole, ventricular systole, and complete cardiac diastole. Atrial systole is the contrac-
tion of the heart muscle of the left and right atria, and occurs over a period of 0.1 s. As the
atria contract, the blood pressure in each atrium increases, which forces the mitral and
tricuspid valves to open, forcing blood into the ventricles. The AV valves remain open
during atrial systole. Following atrial systole, ventricular systole, which is the contraction
of the muscles of the left and right ventricles, occurs over a period of 0.3 s. The ventricular
systole generates enough pressure to force the AV valves to close, and the aortic and
pulmonic valves open. (The aortic and pulmonic valves are always closed except for the
short period of ventricular systole when the pressure in the ventricle rises above the pres-
sure in the aorta for the left ventricle and above the pressure in the pulmonary artery for the
right ventricle.) During systole, the typical pressures in the aorta and the pulmonary artery
rise to 120 mm Hg and 24 mm Hg, respectively (1 mm Hg ¼ 133 Pa). In normal adults,
blood flow through the aortic valve begins at the start of ventricular systole and rapidly
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accelerates to a peak value of approximately 1.35 m/s during the first one-third of systole.
Thereafter, the blood flow begins to decelerate. Pulmonic valve peak velocities are lower,
and in normal adults they are about 0.75 m/s. Contraction of the ventricles in systole ejects
about two-thirds of the blood from these chambers. As the left ventricle empties, its pres-
sure falls below the pressure in the aorta, and the aortic valve closes. Similarly, as the pres-
sure in the right ventricle falls below the pressure in the pulmonary artery, the pulmonic
valve closes. Thus, at the end of the ventricular systole, the aortic and pulmonic valves
close, with the aortic valve closing a little earlier than the pulmonic valve. Diastole
describes that portion of the heartbeat during which the chamber refilling takes place.
The cardiac diastole is the period of time when the heart relaxes after contraction in prep-
aration for refilling with circulating blood. The ventricles refill or ventricular diastole occurs
during atrial systole. When the ventricle is filled and ventricular systole begins, then the AV
valves are closed and the atria begin refilling with blood, or atrial diastole occurs. About
a period of 0.4 s following ventricular systole, both the atria and the ventricles begin refill-
ing and both chambers are in diastole. During this period, both AV valves are open and
aortic and pulmonic valves are closed. The typical diastolic pressure in the aorta is 80
mm Hg, and in the pulmonary artery it is 8 mm Hg. Thus, the typical systolic and diastolic
pressure ratios are 120/80 mm Hg for the aorta and 24/8 mm Hg for the pulmonary artery.
The systolic pressure minus the diastolic pressure is called the pressure pulse, and for the
aorta (left ventricle) it is 40 mm Hg. The pulse pressure is a measure of the strength of
the pressure wave. It increases with increased stroke volume (say, due to activity or exer-
cise). Pressure waves created by the ventricular contraction diminish in amplitude with
the distance from the heart and are not perceptible in the capillaries. Figure 16.5 shows
the pressure throughout the systemic circulation.

FIGURE 16.5 Pressure variations throughout the systemic circulation. The largest pressure fluctuations occur in
the left ventricle. These are gradually damped out by the flexibility of the arteries, blood viscosity, and the branched
nature of the system. Reproduced with permission from Silverthorn, D. U. (2001), Human Physiology: An Integrated
Approach, 2nd ed., Prentice Hall, Upper Saddle River, NJ.
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Net Work Done by the Ventricle on the Blood During One Cardiac Cycle

The work done by the ventricle on blood may be calculated from the area enclosed by the
pressureevolume curve for the ventricle. Consider, for example, the left ventricle (LV).
Figure 16.6 shows the pressureevolume curve for the LV. Blood pressure is measured in
mm of Hg, and the volume in mL. At A, the ventricular pressure and volume are at their
lowest values. With the increase of atrial pressure, the bicuspid valve will open and let blood
flow into the ventricle. AB represents diastolic ventricular filling. During AB work is being
done by the blood in the LV to increase the volume. At B, the ventricular volume is filled
to its maximum and this volume is called the end diastolic volume (EDV). The ventricular
muscles begin to contract, pressure increases, and the bicuspid valve closes. BC is the
constant-volume contraction of the ventricle. No work is done during BC but energy is stored
as elastic energy in the muscles. At C, ventricular pressure is greater than that in the aorta, the
aortic valve opens, and blood is ejected into the aorta. Ventricular volume decreases, but
the ventricle continues to contract and the pressure increases. However, at D, pressure in
the aorta exceeds that of the ventricular pressure and the aortic valve closes. During CD,
work is done by the heart muscles on blood. The volume in the LVat D is at its lowest value,

FIGURE 16.6 Left ventricular pressureevolume curve for one cardiac cycle. The work done by the left venticle
is the shaded area. The cardiac cycle follows the edge of the shaded area in the counterclockwise direction.
Reproduced with permission from Silverthorn, D. U. (2001), Human Physiology: An Integrated Approach, 2nd ed.,

Prentice Hall, Upper Saddle River, NJ.
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and this is called the end systolic volume (ESV). DA is the constant-volume pressure decrease
in the ventricle due to muscle relaxation and no work is done during this process. Ventricular
pressure falls below that in the aorta causing the aortic valve to close. ABCD constitutes one
cardiac cycle, and the area within the pressure-volume diagram represents the net work done
by the LVon blood. The energy required to perform this work is derived from the oxygen in
the blood. A similar development applies for the right ventricle.

Typically, the work done by the heart is only about 10e15% of the total input energy. The
remainder is dissipated as heat.

The volume of blood pumped by the LV into the systemic circulation in a cardiac cycle
is called the stroke volume (SV), and it is expressed in mL/beat. The normal stroke volume
is 70 mL/beat.

SV ¼ EDV � ESV (16.1)

A parameter that is related to stroke volume is ejection fraction (EF). EF is the fraction of
blood ejected by the LV during systole. At the start of systole, the LV is filled with blood to
the EDV. During systole, the LV contracts and ejects blood until it reaches ESV. EF is given by

EF ¼ ðSV=EDVÞ � 100%: (16.2)

Cardiac output (CO) is the volume of blood being pumped by the heart (in particular, by
a ventricle) in a minute. It is the time-averaged flow rate. It is equal to the heart rate multi-
plied by the stroke volume. Thus,

CO ¼ SV �HR, (16.3)

whereHR is the heart rate in beats/min. For a normal adult, the typicalHR is between 70 and
75 beats per minute. With 70 beats per minute, and 70 mL blood ejection with each beat of the
heart, the CO is 4900 mL/m. This value is typical for a normal adult at rest, although COmay
reach up to 30 L/m during extreme activity (say, exercise). Heart rate can vary by a factor of
approximately 3, between 60 and 180 beats per minute, while the stroke volume can vary
between 70 and 120 mL, a factor of only 1.7. The cardiac index (CI) relates CO with the
body surface area, BSA, as given by:

CI ¼ CO=BSA ¼ SV �HR=BSA, (16.4)

where BSA is in square meters.

Nature of Blood

Blood is about 7% of the human body weight. Its density is approximately 1054 kg/m3.
The pH of normal blood is in the range 7.35 < pH < 7.45. The normal adult has a blood
volume of about 5 liters. At any given time, about 13% of the total blood volume resides
in the arteries and about 7% resides in the capillaries. Blood is a complex circulating liquid
tissue consisting of several types of formed elements (corpuscles or cells; about 45% by
volume) suspended in a fluid medium known as plasma (about 55% by volume; 2.7e3.0 liters
in a normal human). The plasma is a dilute electrolyte solution (almost 92% water) contain-
ing, about 8% by weight, three major types of blood proteinsdfibrinogen (5%), globulin
(45%), and albumin (50%) in water. Beta lipoprotein and lipalbumin are also present in trace
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amounts. Plasma proteins are large molecules with high molecular weight and do not pass
through the capillary wall. The formed elements (cells) consist of red blood cells (erythro-
cytes; about 45% of blood volume), white blood cells (leukocytes; about 1% of blood volume),
and platelets (thrombocytes; <1% of blood volume). Thus, the formed elements in blood
consist of 95% red blood cells, 0.13% white blood cells, and about 4.9% platelets. The specific
gravity of red blood cells is about 1.06. The white blood cells further consist of monocytes,
lymphocytes, neutrophils, eosinophils, and basophils.

In humans, mature red blood cells lack a nucleus and organelles. They are produced in the
bonemarrow, and the cell life span is about 125 days. The red blood cell is biconcave in shape.
It consists of a concentrated solution of hemoglobin, an oxygen-carrying protein, surrounded
by a flexible membrane. The hemoglobin transports oxygen (and some carbon dioxide) from
the lungs to capillaries in various tissues. The cell is about 8.5 mm in diameter with transverse
dimensions of 2.5 mm at the thickest portion and about 1 mmat the thinnest portion. However,
its flexibility is such that it can bend and pass through capillaries as small as 5 mm in diameter.
The surface area of the cell is about 163 (mm)2, and the intracellular fluid volume is about
87 (mm)3. There are approximately 5 � 106 red blood cells in each mm3 of blood. The bicon-
cave shape of the cell provides it with a very large ratio of surface area to volume. This
enables efficient gas exchange in the capillaries. The percentage of blood volume made up
by red blood cells is referred to as the hematocrit. Hematocrit ranges from 42 to 45 in normal
blood, and plays a major role in determining the rheological properties of blood. White blood
cells, or leukocytes, are cells of the immune system which defend the body against infectious
disease and foreignmaterials. Several different and diverse types of leukocytes exist and they
are all produced in the bone marrow. There are normally about 104 white blood cells in each
mm3 of blood. Platelets or thrombocytes are cell fragments circulating in blood that are
involved in the cellular mechanisms of hemostasis leading to the formation of blood clots.
They are smaller in size than red or white blood cells. Low levels of platelets predisposes
to a person bleeding, while high levels increase the risk of thrombosis (coagulation of blood
in the heart or a blood vessel).

Blood is a non-Newtonian fluid. Its viscosity depends on the viscosity of the plasma, its
protein content, the hematocrit, the temperature, the shear rate (also called the rate of
shearing strain), and the narrowness of the vessel in which it is flowing (for example,
a narrow diameter capillary). The dependence on the narrowness of the vessel diameter
is called the Fahraeus-Lindqvist effect. The presence of white cells and platelets does not
significantly affect the viscosity since they are such a small fraction of the formed elements.
We will briefly discuss the various dependencies of blood viscosity.

The viscosity of plasma and blood are often given in terms of relative viscosity as
compared to that of water (viscosity of water is about 0.8 centipoise at 30�C; 1 centipoise
(1 cP) ¼ 0.01 Poise ¼ 1 dyne s/cm2 ¼ 0.1 N s/m2). The viscosity of plasma depends on its
protein content and ranges between 1.1 and 1.6 centipoise. The viscosity of whole blood at
a physiological hematocrit of 45% is about 3.2 cP. Higher hematocrit results in higher
viscosity. At a hematocrit of 60%, the relative viscosity of blood is about 8. Blood viscosity
increases with decreasing temperature, and the increase is approximately 2% for each �C.
The dependence of viscosity on flow rate in vessels is complicated. As noted in earlier chap-
ters, flow rates through tubes are significantly influenced by the shear stress, s, and the asso-
ciated rate of shearing strain (or shear rate), _g. For Newtonian fluids, s is linearly related to _g.

16.2. THE CIRCULATORY SYSTEM IN THE HUMAN BODY 789



For example, s ¼ m _g and the slope of this characteristic is the viscosity, m. For whole blood,
this relationship between s and _g is complicated for the following reasons. In a blood volume
at rest, above a minimum hematocrit of about 5e8%, blood cells form a continuous structure.
A finite stress (called the yield stress), sy, is required to break this continuous structure into
a suspension of aggregates in the plasma. This yield stress also depends on the concentration
of plasma proteins, in particular, fibrinogen. An empirical correlation for the yield stress is
given by the expression:

ffiffiffiffiffi

sy
p ¼ ðH � 0:1Þ�CF þ 0:5

�

, (16.5)

where H is the hematocrit expressed as a fraction and it is > 0.1, and CF is the fibrinogen
content in grams per 100 mL and 0.21 < CF < 0.46. For 45% hematocrit blood, the yield stress
is in the range 0.01 < sy < 0.06 dyne/cm2 (1 dyne/cm2 ¼ 0.1 N/m2). Beyond the yield stress,
when sheared in the bulk, up to about _g < 50 sec�1, the aggregates in blood break into
smaller units called rouleaux formations. For shear rates up to about 200 sec�1, the rouleaux
progressively break into individual cells. Beyond this, no further reduction in structure is
noted to occur with an increase in the shearing rate.

For whole blood, at low shear rates, _g < 200 sec�1, the variation of s with _g is noted to
be nonlinear. This behavior at low _g is non-Newtonian. Low _g values are associated with
flows in small arteries and capillaries (microcirculation). At higher shear rates,
_g > 200 sec�1, the relationship between s and _g is linear, and the viscosity approaches
an asymptotic value of about 3.5 cP. Blood flows in large arteries have such high shear
rates, and the viscosity in such cases may be assumed as constant and equal to 3.5 cP.
Since whole blood behaves like a non-Newtonian yield stress fluid, the slope of the shear
stressdrate of strain characteristic at any given point on the curvedis defined as the
apparent viscosity of blood at that point, mapp. Clearly, mapp is not a constant but depends
on the prevailing _g at that point (see Figure 16.7). There are a number of constitutive equa-
tions available in the literature that attempt to model the relationship between shear stress
and shear rate of flowing blood. A commonly used one is called the Casson model and it is
expressed as follows:

ffiffiffiffiffi
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þ
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s

, (16.6)

where mp is plasma viscosity and kc is the Casson viscosity coefficient (a dimensionless
number). An expression based on a least squares fit of the experimental data and expressed
in Casson form is that of Whitmore (1968):

ffiffiffiffiffi
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þ 2:0: (16.7)

This expression is plotted in Figure 16.8. Apparent viscosity significantly increases at low
rates of shear. It must be noted that although the Casson model is suitable at low shear rates,
it still assumes that blood can be modelled as a homogeneous fluid.

In blood vessels of less than about 500 mm in diameter, the inhomogeneous nature of blood
starts to have an effect on the apparent viscosity. This feature will be discussed next.
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FIGURE 16.7 Shear stress versus shear rate for blood flow. Note that the shear stress is finite at
small (approximately zero) shear rates. Blood is a non-Newtonian fluid. Reproduced with permission from Whitmore,

R. L. (1968), Rheology of Circulation, Pergamon Press, New York.

FIGURE 16.8 A least square fit of apparent viscosity as a function of shear rate in Casson form. The apparent
viscosity of blood falls with increasing shear rate making it a shear-thinning fluid. Reproduced with permission from

Whitmore, R. L. (1968), Rheology of Circulation, Pergamon Press, New York.
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Fahraeus-Lindqvist Effect

When blood flows through narrow tubes of decreasing radii, approximately in the range
15 mm < d < 500 mm, the apparent viscosity, mapp, decreases with decreasing radius of the
vessel. This is a second non-Newtonian characteristic of blood and is called the Fahraeus-
Lindqvist (FL) effect. The reduced viscosity in narrow tubes is beneficial to the pumping action
of the heart.

The basis for the FL effect is the Fahraeus effect. When blood of constant hematocrit (feed
hematocrit or bulk hematocrit,HF) flows from a large vessel into a small vessel (vessel sizes in
the ranges cited earlier), the hematocrit in the small vessel (dynamic or tube hematocrit, HT)
decreases as the tube diameter decreases (see Figure 16.9). This phenomenon is called the
Fahraeus effect and must not be confused with a diminution of particle concentration in the
smaller vessel because of an entrance effect whereby particle entry into the smaller vessel
is hindered (see Goldsmith et al., 1989, for detailed discussions). To separate such an entry-
screening effect and confirm the Fahraeus effect, HT may be compared with the hematocrit
in the blood flowing out (discharge hematocrit, HD) from the smaller tube into a discharge
vessel of comparable size to the feed vessel. In the steady state, HF ¼ HD. In vivo and in vitro
experiments show that HT < HD in tubes up to about 15 mm in diameter. The HT/HD ratio
decreases from about 1 to about 0.46 as the capillary diameter decreases from about 600
mm to about 15 mm. While the discharge hematocrit value may be 45%, the corresponding
dynamic hematocrit in a narrow-sized vessel such as an arteriole may be just 20%. As a conse-
quence, the apparent viscosity decreases in the diameter range 15 mm< d< 500 mm.However,
for tubes less than about 15 mm in diameter, the ratio HT/HD starts to increase.

Why does the hematocrit decrease in small blood vessels? The reason for this effect is not
fully understood at this time. In blood vessel flow, there seems to be a tendency for the red
cells to move toward the axis of the tube, leaving a layer of plasma, whose width, usually
designated by d, increases with increasing shear rate. This tendency to move away from
the wall is not observed with rigid particles; thus, the deformability of the red cell appears
to be the reason for lateral migration. Deformable particles are noted to experience a net radial
hydrodynamic force even at low Reynolds numbers and tend to migrate toward the tube axis
(see Fung, 1993, for detailed discussions). Chandran et al. (2007) state that as the blood flows
through a tube, the blood cells (with their deformable biconcave shape) rotate (spin) in the
shear field. Due to this spinning, they tend to move away from the wall and toward the center
of the tube. The cell-free plasma layer reduces the tube hematocrit. As the size of the vessel
gets smaller, the fraction of the volume occupied by the cell-free layer increases, and the tube
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FIGURE 16.9 The Fahraeus effect. Here the hematocrit falls as blood moves from larger to smaller vessels
because of non-Newtonian effects, the particulate nature of blood cells, and other factors.
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hematocrit is further lowered. A numerical validation of this reasoning is available in a paper
by Liu and Liu (2006). There is yet another reason. Blood vessels have many smaller-sized
branches. If a branching daughter vessel is so located that it draws blood from the larger
parent vessel, mainly from the cell-free layer, then the hematocrit in the branch will end
up being lower. This is called plasma skimming. In all these circumstances, the tube hematocrit
is lowered. The viscosity of blood at the core may be higher due to a higher core hematocrit,
Hc, there, but the overall apparent viscosity in the tube flow is lower.

As the tube diameter becomes less than about 6 mm, the apparent viscosity increases
dramatically. The erythrocyte is about 8 mm in diameter and can enter tubes somewhat
smaller in size, and a tube of about 2.7 microns is about the smallest size that an RBC
can enter (Fournier, 2007; Fung, 1993). When the tube diameter becomes very small, the
pressure drop associated with the flow increases greatly and there is increase in apparent
viscosity.

If we consider laminar blood flow in straight, horizontal, circular, feed, and capillary
tubes, a number of straightforward relationships among QF, Qc, Qp, HF, HT, Hc, d, and
a may be established based on the law of conservation of blood cells. Here, Q denotes flow
rate, subscripts c and p denote core and plasma regions, respectively, and a is the radius of
the capillary tube. Thus,

QFHF ¼ QcHc, Qc þQp ¼ QF, and HTa
2 ¼ Hcða� dÞ2, (16.8)

where a is the radius of the capillary tube. Equation (16.8) will be useful in modeling the FL
phenomenon. A simple mathematical model for the FL effect is included in a subsequent
section.

Nature of Blood Vessels

All blood vessels other than capillaries are usually composed of three layers: the tunica
intima, tunica media, and tunica adventitia. The tunica intima consists of a layer of endothe-
lial cells lining the lumen of the vessel (the hollow internal cavity in which the blood flows),
as well as a subendothelial layer made up of mostly loose connective tissue. The endothelial
cells are in direct contact with the blood flow. An internal elastic lamina often separates the
tunica intima from the tunica media. The tunica media is composed chiefly of circumferen-
tially arranged smooth muscle cells. Again, an external elastic lamina often separates the
tunica media from the tunica adventitia. The tunica adventitia is primarily composed of loose
connective tissue made up of fibroblasts and associated collagen fibers. In the largest arteries,
such as the aorta, the amount of elastic tissue is considerable. Veins have the same three
layers as arteries, but boundaries are indistinct, walls are thinner, and elastic components
are not as well developed.

Blood flows under high pressure in the aorta (about 120 mm Hg systolic, 80 mm Hg dia-
stolic, pressure pulse of 40 mm Hg at the root) and the major arteries. These vessels have
strong walls. The aorta is an elastic artery, about 25 mm in diameter with a wall thickness
of about 2 mm, and is quite distensible. During left ventricular systole (about one-third of
the cardiac cycle), the aorta expands. This stretching provides the potential energy that
will help maintain blood pressure during diastole. During the diastole (about two-thirds
of the cardiac cycle), the pressure pulse decays exponentially and the aorta contracts
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passively. Medium arteries are about 4 mm in diameter with a wall thickness of about 1 mm.
Arterioles are about 50 mm in diameter and have thin muscular walls (usually only one to two
layers of smooth muscle) of about 20 mm thickness. Their vascular tone is controlled by regu-
latory mechanisms, and they constrict or relax as needed to maintain blood pressure. Arte-
rioles are the primary site of vascular resistance and blood-flow distribution to various
regions is controlled by changes in resistance offered by various arterioles. True capillaries
average from 9 to 12 mm in diameter, just large enough to permit passage of cellular compo-
nents of blood. The thin wall consists of extremely attenuated endothelial cells. In cross
section, the lumen of small capillaries may be encircled by a single endothelial cell, while
larger capillaries may be made up of portions of 2 or 3 cells. No smooth muscle is present.
Venules are about 20 mm in diameter and allow deoxygenated blood to return from the capil-
lary beds to the larger veins. They have three layers: an inner endothelium layer which acts as
a membrane, a middle layer of muscle and elastic tissue, and an outer layer of fibrous connec-
tive tissue. The middle layer is poorly developed. The walls of venules are about 2 mm in
thickness, and thus are very much thinner than those of arterioles. Veins are thin-walled,
distensible, and collapsible tubes. Some of them may be collapsed in normal function.
They transport blood at a lower pressure than the arteries. They are about 5 mm in diameter
and the wall thickness is about 500 mm. They are surrounded by helical bands of smooth
muscles which help maintain blood flow to the right atrium. Most veins have one-way flaps
called venous valves. These valves prevent gravity from causing blood to flow back and collect
in the lower extremities. Veins more distal to the heart have more valves. Pulmonary veins
and the smallest venules have no valves. Veins also have a thick collagen outer layer, which
helps maintain blood pressure. In the venous system, a large increase in the blood volume
results in a relatively small increase in pressure compared to the arterial system (see Chan-
dran et al., 2007). The veins act as the main reservoir for blood in the circulatory system and
the total capacity of the veins is more than sufficient to hold the entire blood volume of the
body. This capacity is reduced through the constriction of smooth muscles, minimizing the
cross-sectional area (and hence volume) of the individual veins and therefore the total venous
system. The superior vena cava is a large, yet short vein that carries deoxygenated blood from
the upper half of the body to the heart’s right atrium. The inferior vena cava is the large vein
that carries deoxygenated blood from the lower half of the body into the heart. The vena cava
is about 30 mm in diameter with a wall thickness of about 1.5 mm. The venae cavae have no
valves. Figure 16.10 shows the cross-sectional areas of different parts of the systemic circula-
tion with velocity of blood flow in each part. The fastest flow is in the arterial system. The
slowest flow is in the capillaries and venules.

As stated earlier, arterioles are the primary site of vascular flow resistance, and blood-flow
distribution to various regions is controlled by changes in resistance offered by various arte-
rioles. To quantify the resistance of the arterioles in an averaged sense, the concept of total
peripheral resistance is introduced. Total peripheral resistance essentially refers to the cumula-
tive resistance of the thousands of arterioles involved in the systemic or pulmonary circula-
tion, respectively. For systemic circulation, with time averaging of quantities over a cardiac
cycle:

Total Peripheral Resistance ¼ R ¼ Dp

Q
, (16.9)
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where R denotes resistance, Dp is the difference between the time-averaged pressure at the
aortic valve and the time-averaged venous pressure at the right atrium, and Q is the time-
averaged flow rate (cardiac output). The units of peripheral resistance would therefore be
in mm Hg per cm3/s. This unit of measuring resistance is called the peripheral resistance
unit (PRU). Letting pA and pV denote the time-averaged pressures at the aortic valve and
at the right atrium, respectively:

Dp ¼ pA � pV , (16.10)

and, with pV ¼ 0, Dp ¼ pA, the time-averaged arterial pressure. Then, pA ¼ QR. The
average pressure, pA, may be estimated as:

pA ¼ 1

3
pS þ 2

3
pD ¼ pD þ 1

3
ðpS � pDÞ, (16.11)

FIGURE 16.10 Vessel diameter, total cross-sectional area, and velocity of flow. The total cross-sectional area
available for flow is largest at the capillary size because there are so many. The highest blood-flow speeds are found
in the largest arteries and veins. Reproduced with permission from Silverthorn, D. U. (2001), Human Physiology: An
Integrated Approach, 2nd ed., Prentice Hall, Upper Saddle River, NJ.
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where ps is the systolic pressure, pD is the diastolic pressure, and (ps e pD) is the pressure
pulse (see Kleinstreuer, 2006). For a normal person at rest, with pA ¼ 100 mmHg and
Q ¼ 86.6 cm3/s, then R ¼ 1.2 PRU. An expression similar to that in (16.9) would apply
for pulmonary circulation and would involve the difference between time-averaged pres-
sures at the pulmonary artery and at the left atrium, and the flow rate in pulmonary
circulation (same as that in systemic circulation). Since the difference between time-aver-
aged pressures in pulmonary circulation is about an order of magnitude smaller than in
the systemic circulation, the corresponding PRU would be an order of magnitude
smaller.

16.3. MODELING OF FLOW IN BLOOD VESSELS

There are approximately 100,000 km of blood vessels in the adult human body (Brown
et al., 1999). In this section, we examine several models for describing blood flow in some
important vessels.

Blood flow in the circulatory system is in general unsteady. In most regions it is pulsatile
due to the systolic and diastolic pumping. In pulsatile flow, the flow has a periodic behavior
and a net directional motion over the cycle. Pressure and velocity profiles vary periodically
with time, over the duration of a cardiac cycle. A dimensionless parameter called the
Womersley number, a, is used to characterize the pulsatile nature of blood flow, and it is
defined by:

a ¼ a

ffiffiffiffi

u

n

r

, (16.12)

where a is the radius of the tube, u is the frequency of the pulse wave (heart rate expressed in
radians/sec), and n is the kinematic viscosity. This definition shows that the Womersley
number is a composite parameter of the Reynolds number, Re ¼ 2au/n, and the Strouhal
number, St ¼ 2au/u. The square of the Womersley number is called the Stokes number. The
Womersley number denotes the ratio of unsteady inertial forces to viscous forces in the
flow. It ranges from as large as about 20 in the aorta, to significantly greater than 1 in all large
arteries, to as small as about 10�3 in the capillaries.

Let us estimate the Womersley number for an illustration. With a normal heart rate of
72 beats per minute, u ¼ (2p 72/60) z 8 rad/s. Take r ¼ 1.05 g cm�3, m ¼ 0.04 g cm�1 s�1,
and an artery of radius a ¼ 0.5 cm. Then az 7. Decreasing a values correspond to increasing
role of viscous forces and, for a < 1, viscous effects are dominant. In that highly viscous
regime, the flow may be regarded as quasi-steady. With increasing a, inertial forces become
important. In pulsatile flows, flow separation may occur both by a geometric adverse
pressure gradient, and/or by time-varying changes in the driving pressure. Geometric
adverse-pressure gradients may arise due to varying cross-sectional areas through which
the flow passes. On the other hand, time-varying changes in a cardiac cycle result in acceler-
ation and deceleration during the cycle. An adverse-pressure gradient during the decelera-
tion phase may result in flow separation.

Blood vessel walls are viscoelastic in their behavior. The ability of a blood vessel wall to
expand and contract passively with changes in pressure is an important function of large
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arteries and veins. This ability of a vessel to distend and increase volume with increasing
transmural pressure difference (inside minus outside pressure) is quantified as vessel
compliance. During systole, pressure from the left ventricle is transmitted as a wave due
to the elasticity of the arteries. Due to the compliant nature of the arteries and their finite
thickness, the pressure travels like a wave at a speed much faster than the flow velocity. Since
blood vessels may have many branches, the reflection and transmission of waves in such
branching vessels significantly complicate the understanding of such flows. In this chapter,
a reasonably simplified picture of these various complex features will be presented. Further
reading in advanced treatments such as the book by Fung (1997) will be necessary to obtain
a comprehensive understanding.

Steady Blood Flow Theory

First we start with the study of laminar, steady flow of blood in circular tubes, and in
subsequent sections, we shall consider more realistic models. In the simplest model, blood
flow in a vessel is modeled as a laminar, steady, incompressible, fully developed flow of
a Newtonian fluid through a straight, rigid, cylindrical, horizontal tube of constant circular
cross section (see Figure 16.11). Such a flow is called circular Poiseuille flow or more commonly
Hagen-Poiseuille flow, and is covered in Section 8.2. The primary question here is: How valid is
a Hagen-Poiseuille model for blood flow? Issues related to the assumptions inherent in
Hagen-Poiseuille flow are summarized in the following paragraphs.

In the normal body, blood flow in vessels is generally laminar. However, at high flow rates,
particularly in the ascending aorta, the flow may become turbulent at or near peak systole.
Disturbed flow may occur during the deceleration phase of the cardiac cycle (Chandran
et al., 2007). Turbulent flowmay also occur in large arteries at branch points. However, under
normal conditions, the critical Reynolds number, Rec, for transition of blood flow in long,
straight, smooth blood vessels is relatively high, and the blood flow remains laminar. Let
us consider some estimates. The aorta is about 40 cm long and the average velocity u of
flow in it is about 40 cm/s. The lumen diameter at the root of the aorta is d ¼ 25 mm, and
the corresponding Re ¼ rud/m is ~3000. The maximum Reynolds number may be as high
as 9000. The average value for Re in the vena cava is also about 3000. Arteries have varying
sizes and the maximum Re is about 1000. For Newtonian fluid flow in a straight cylindrical
rigid tube, Rec is about ~3000. However, aorta and arteries are distensible tubes, and this Rec
criterion does not apply. In the case of blood flow, laminar flow conditions generally prevail
even at Reynolds numbers as high as 10,000 (Mazumdar, 2004). In summary, the laminar flow
assumption is reasonable in many cases.

FIGURE 16.11 Poiseuille flow.
Here the x-axis is coincident with
the tube axis, and the radial coordi-
nate is r. The fluid velocity has
a parabolic profile and is entirely in
the x-direction. The shear within the
flow is zero at r ¼ 0 and increases
linearly with r, reaching a maximum
at r ¼ a, the tube radius.
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Blood flow in the circulatory system is generally unsteady and pulsatile. The large
arteries have elastic walls and are subject to substantially pulsatile flow. The steady-flow
assumption is inapplicable until the flow has reached smaller muscular arteries and arteri-
oles in the circulatory system. Blood flow in arteries has been described by several authors
(see McDonald, 1974; Pedley, 1980; Ku, 1997).

In the heart chambers and blood vessels, blood may be considered incompressible. In the
walls of the heart and in the blood vessel walls, it may not be considered as incompressible
(Fung, 1997).

The fully developed flow assumption is very restrictive in describing blood flow in
vessels. Since blood flow remains laminar at very high Reynolds numbers, the entry
length is very large in many cases, and branches and curved vessels hinder flow
development.

Flow in large blood vessels may be generally regarded as Newtonian. The Newtonian
fluid assumption is inapplicable at low shear rates such as those that would occur in arteri-
oles and capillaries.

Many blood vessels are not straight but are curved and have branches. However, flowmay
be regarded to occur in straight sections in many cases of interest.

Arterial walls are not rigid but are viscoelastic and distensible. The pressure pulse gener-
ated during left ventricular contraction travels through the arterial wall. The speed of wave
propagation depends upon the elastic properties of the wall and the fluid-structure interac-
tion. Arterial branches and curves may cause reflections of the wave.

Gravitational and hydrostatic effects become very important for orientations of the body
other than the supine position.

Systemic arteries are generally circular tubes but may have tapering cross sections, while
the veins and pulmonary arteries tend to be elliptical.

However, there remain many situations where the Hagen-Poiseuille model is reasonably
applicable. Thus, a recapitulation of the results from Chapter 8 is provided here using
cylindrical coordinates (r, q, x) where x is the axial coordinate, r is the radial distance from
the x-axis, and q is the circumferential (azimuthal) angle. The axial flow velocity, u ¼ u(r),
in a pipe of radius, a (see (8.6)) is:

uðrÞ ¼ r2 � a2

4m

�

dp

dx

�

: (16.13)

In a fully developed flow, the pressure gradient, (dp/dx), is a constant, and it may be
expressed in terms of the overall pressure difference:

�

dp

dx

�

¼ �Dp

L
¼ �

�

p1 � p2
�

L
, (16.14)

where Dp is the imposed pressure difference, subscripts 1 and 2 denote inlet and exit ends,
respectively, and L is the length of the entire tube. With (16.14), (16.13) becomes

uðrÞ ¼
�

a2Dp

4mL

��

1� r2

a2

�

: (16.15)

The maximum velocity occurs at the center of the tube, r ¼ 0, and is given by

16. INTRODUCTION TO BIOFLUID MECHANICS798



umax ¼
�

Dp a2

4mL

�

: (16.16)

The volume flow rate is:

Q ¼
Z a

0
u2prdr ¼ �pa4

8m

�

dp

dx

�

¼ pa4

8m

�

p1 � p2
�

L
¼ p a4

8m

Dp

L
¼ umax

2
pa2: (16.17)

Equation (16.17) is called the Poiseuille formula. The average velocity over the cross
section is:

V ¼ Q

A
¼ Q

pa2
¼ umax

2
, (16.18)

where A is the cross section of the tube. The shear stress at the tube wall is:

sxrjr¼a ¼ s ¼ �m

�

du

dr

�	

	

	

	

r¼a
¼ �a

2

�

dp

dx

�

¼ �a

2

Dp

L
, (16.19)

where the negative sign has been included to give s > 0 with ðdu=drÞ < 0 (the velocity
decreases from the tube centerline to the tube wall). The maximum shear stress occurs at
the walls, and the stress decreases toward the center of the vessel.

The Hagen-Poiseuille equation and its derivatives are most applicable to flow in
the muscular arteries. Modifications are likely to be required outside this range (see
Brown et al., 1999). For an application of Poiseuille flow relationships in the context
of perfused tissue heat transfer and thermally significant blood vessels, see Baish
et al. (1986a, 1986b).

With the results for the Hagen-Poiseuille flow, we have from (16.9):

Total Peripheral Resistance ¼ R ¼ Dp

Q
¼ 8mL

pa4
(16.20)

Equation (16.20) shows that peripheral resistance to the flow of blood is inversely propor-
tional to the fourth power of vessel diameter.

Hagen-Poiseuille Flow and the Fahraeus-Lindqvist Effect

Consider laminar, steady flow of blood through a straight, rigid, cylindrical, horizontal
tube of constant circular cross section and radius a, as shown in Figure 16.12, and let the
flow be divided into two regions: a central core containing RBCs with axial velocity uc and
a cell-free plasma layer of thickness d surrounding the core with axial velocity up. In addition,
let the viscosities of the core and the plasma layer be mc and mp, respectively. Let the shear
rates be such that each region can be considered Newtonian, and that we could employ
Hagen-Poiseuille theory.

The shear stress distribution in the core region is governed by:

sxr ¼ �mc
duc

dr
¼ �r

2

Dp

L
, (16.21)
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subject to conditions:

duc

dr
¼ 0, at r ¼ 0, (16.22)

sxrjc ¼ sxrjp, at r ¼ ða� dÞ: (16.23)

The shear stress distribution in the plasma region is governed by:

sxr ¼ �mp
dup

dr
¼ �r

2

Dp

L
, (16.24)

subject to conditions:

uc ¼ up, at r ¼ ða� dÞ, (16.25)

up ¼ 0, at r ¼ a: (16.26)

Integration of (16.21) and (16.24) subject to the indicated conditions yields the following
expressions for the axial velocities in the plasma and core regions:

up ¼ a2

4mp

Dp

L

�

1�
�

r

a

�2�

, for a� d � r � a, (16.27)

and

uc ¼ a2

4mp

Dp

L

"

1�
�

a� d

a

�2

� mp

mc

�

r

a

�2

þ mp

mc

�

a� d

a

�2
#

, for 0 � r � a� d: (16.28)

The volume flow rates in the plasma, Qp, and core region, Qc, are:

Qp ¼ 2p

Z a

a�d

uprdr ¼ pD p

8mpL

h

a2 � ða� dÞ2
i2
, (16.29)

and

Core

PlasmaFIGURE 16.12 Fahraeus-
Lindqvist effect. When the
core and the plasma flows
have different viscosities and
occupy different regions of the
tube, the relationship between
the volume flow rate and the
pressure drop in a round tube
can be found in terms of the
geometry and the viscosities.
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Qc ¼ 2p

Z a�d

0
ucrdr ¼ pa2Dp

4mpL

"

a2 �
�

1� mp

2mc

� ða� dÞ4
a2

#

: (16.30)

The total flow rate of blood within the tube, Q, is the sum of the flow rates in the plasma and
core regions. Therefore:

Q ¼ Qp þQc ¼ pa4Dp

8mpL

�

1�
�

1� d

a

�4�

1� mp

mc

��

: (16.31)

From (16.31), we could calculate the apparent viscosity of the two-region fluid by measuring
Q and DP/L. Define mapp, by analogy with Hagen-Poiseuille flow, as given by:

Q ¼ pa4Dp

8mappL
: (16.32)

From (16.31) and (16.32), the apparent viscosity, mapp, may be expressed in terms of mp as:

mapp ¼ mp

�

1�
�

1� d

a

�4�

1� mp

mc

���1

: (16.33)

In the limit ðd=aÞ � 1,

�

1� d

a

�4

zð1� 4d=aÞ. Then, (16.33) reduces to:

mapp ¼ mc

"

1þ 4
d

a

�

mc

mp
� 1

�

#�1

/mc/m: (16.34)

In (16.31) and (16.33), d and mc are unknown. From (16.8), we have Hc/H ¼ 1 þ (Qp/QC).
We still need input from experimental data to set up a modeling procedure for the
Fahraeus-Lindqvist effect. Fournier (2007) recommends the use of Charm and Kurland’s
(1974) equation for this purpose (see reference for details):

mc ¼ mp
1

1� acHc
, (16.35)

where,

ac ¼ 0:070 exp

�

2:49Hc þ 1107

T
expð�1:69HcÞ

�

, (16.36)

and T is temperature in K. Equation (16.36) may be used to a hematocrit of 0.60. With this
input, a modeling procedure can be developed for various flow and tube parameters.

Effect of Developing Flow

When we discussed Poiseuille flow, we noted that the fully developed flow assumption
that is often invoked in the study of blood flow in vessels is very restrictive. We will now
learn about some of the limitations of this assumption.

When a fluid under the action of a pressure gradient enters a cylindrical tube, it takes
a certain distance called the inlet or entrance length, l, before the flow in the tube becomes
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steady and fully developed. When the flow is fully developed and laminar, the velocity
profile is parabolic. Within the inlet length, the velocity profile changes in the direction of
the flow and the fluid accelerates or decelerates as it flows. There is a balance among pres-
sure, viscous, and inertia (acceleration) forces. Compared to fully developed flow, the
entrance region is subject to large velocity gradients near the wall and these result in high
wall-shear stresses. The entry of blood from the ventricular reservoir into the aortic tube
or from a large artery into a smaller branch will involve an entrance length. It must be under-
stood, however, that the inlet length with pulsating flow (say, in the proximal aorta) is
different from that for a steady flow.

If we assume that the fluid enters the tube from a reservoir, the profile at the inlet is virtu-
ally flat. The transition from a flat velocity distribution, at the entrance of a tube, to the fully
developed parabolic velocity profile is illustrated in Figure 16.13. Once inside the tube, the
layer of fluid immediately in contact with the wall will become stationary (no-slip condition)
and the laminae adjacent to it slide on it subject to viscous forces and a boundary layer is
formed. The presence of the endothelial lining on the inside of a blood vessel wall does
not negate the no-slip condition. The motion of the bulk of the fluid in the central region
of the tube will not be affected by the viscous forces and will have a flat velocity profile.
As flow progresses down the tube, the boundary layer will grow in thickness as the viscous
shear stress slows more and more of the fluid.

Eventually, the boundary layer fills the whole of the tube and steady viscous flow is estab-
lished or the flow is fully developed. In the literature (see, for example, Mohanty & Asthana,
1979), there are discussions which divide the entrance region into two parts, the inlet region
and the filled region. At the end of the inlet region, the boundary layers meet at the tube axis
but the velocity profiles are not yet similar. In the filled region, adjustment of the completely
viscous profile takes place until the Poiseuille similar profile is attained at the end of it. In our
discussion here, wewill treat the entrance region as a regionwith a potential core and a devel-
oping boundary layer at the wall. The shape of the velocity profile in the tube depends on
whether the flow is laminar or turbulent, as does the length of the entrance region, l. This
is a direct consequence of the differences in the nature of the shear stress in laminar and
turbulent flows. The magnitude of the pressure gradient, vp/vx, is larger in the entrance
region than in the fully developed region. There is also an expenditure of kinetic energy
involved in transition from a flat to a parabolic profile. For steady flow of a Newtonian fluid
in a rigid-walled horizontal circular tube, the entrance length may be estimated from:

FIGURE 16.13 Developing velocity profile in a tube flow. The first profile on the left corresponds to the
beginning of flow development: The wall shear stress is high and a large fraction of the flow is still at a uniform
speed. As the fluid moves down the tube, the influence of the wall shear stress spreads toward the tube centerline
and eventually the flow reaches a smooth, unchanging profile that is parabolic for Newtonian fluids.
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[

d
¼ 0:06 Re for laminar flow and Re > 50,

[

d
¼ 0:693 Re1=4 for turbulent flow:

(16.37)

For steady flow at low Reynolds number, the entrance region is approximately one tube
radius long (for Re � 0.001, say in capillaries, [=d ¼ 0:65). In large arteries, the entrance
length is relatively long and over a significant length of the artery the velocity gradients
are high near the wall. This affects the mass exchange of gas and nutrient molecules between
the blood and artery wall.

Unsteady flow through the entrance region with a pulsating flow depends on the
Womersley and Reynolds numbers. For a medium-sized artery, the Reynolds number is
typically on the order of 100 to 1000, and theWomersley number ranges from 1 to 10. Pedley
(1980) has estimated the wall shear stress in the entrance region for pulsatile flow using
asymptotic boundary-layer theory while He and Ku (1994) have employed a spectral
element simulation to investigate unsteady entrance flow in a straight tube. For a mean
Re of 200 and a varying from 1.8e12.5 and an inlet waveform 1 þ sin ut, He and Ku
have computed variations in entrance length during the pulsatile cycle. The amplitude of
the entrance-length variation decreases with an increase in a. The phase lag between the
entrance length and the inlet flow waveform increases for a up to 5.0 and decreases for
larger values of a. For low a, the maximum entrance length during pulsatile flow is approx-
imately the same as the steady entrance length for the peak flow and is primarily dependent
on the Reynolds number. For high a, the Stokes boundary-layer growth is faster and the
entrance length is more uniform during the cycle. For a � 12.5, the pulsatile entrance length
is approximately the same length as the entrance length of the mean flow. At all a, the wall-
shear rate converges to its fully developed value at about half the length at which the
centerline velocity converges to its fully developed value. This leads to the conclusion
that the upstream flow conditions leading to a specific artery may or may not be fully devel-
oped and can be predicted only by the magnitudes of the Reynolds number andWomersley
number.

Effect of Tube Wall Elasticity on Poiseuille Flow

Here, we will include the elastic behavior of the vessel wall and examine the effect on
the Hagen-Poiseuille model. Consider a pressure-gradient-driven, laminar, steady flow of
a Newtonian fluid in a long, circular, cylindrical, thin-walled, elastic tube. Let the initial
radius of the tube be a0, and h be the wall thickness, and it is small compared to a0. Because
the tube is elastic, it will distend more at the high pressure end (inlet) than at the outlet end.
The tube radius, a, will now be a function of x.

The variation in tube radius due to wall elasticity has to be ascertained. The difference
between the exterior pressure on the outside of the tube, pe, and the pressure inside the
tube, p(x), at any cross section of the tube (the negative of transmural pressure difference),
is (pe e p(x)). This pressure difference acts across h at every cross section, and will induce
a circumferential stress. There will be a corresponding circumferential strain. This strain is
the ratio of the change in radius to the original radius of the tube. In this way, we can ascertain
the cross section at x.
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Consider the static force equilibrium on a cylindrical segment of the blood vessel consist-
ing of the top half cross section and of unit length. Let sqq denote the average circumferential
(hoop) stress in the tube wall. The net downward force due to the pressure difference will be
balanced by the net upward force; this balance is:

2sqqh ¼
Z p

0
ðpðxÞ � peÞ aðxÞ sin qdq, (16.38)

which results in:

sqq ¼ ðpðxÞ � peÞaðxÞ
h

: (16.39)

From Hooke’s law, the circumferential strain sqq is given by:

eqq ¼ sqq

E
¼ ðaðxÞ � a0Þ

a0
¼
�

aðxÞ
a0

�

� 1, (16.40)

where E is the Young’s modulus of the tube wall material, and we have neglected the radial
stress srr as compared to sqq in the thin-walled tube. The wall is considered thin if (h/a) � 1.
From (16.39) and (16.40), we get the pressure-radius relationship:

aðxÞ ¼ a0
h

1� a0
Eh

ðpðxÞ � peÞ
i�1

: (16.41)

Since the flow is laminar and steady, we can still apply the Hagen-Poiseuille formula, (16.17),
to the flow. Thus,

Q ¼ � p

8m

�

dp

dx

�

ðaðxÞÞ4: (16.42)

Therefore,

dp

dx
¼ � 8mQ

pðaðxÞÞ4
: (16.43)

With (16.41):

h

1� a0
Eh

ðpðxÞ � peÞ
i�4

dp ¼ � 8m

pa0
Q dx: (16.44)

This is subject to the conditions, P ¼ P1 at x ¼ 0, and P ¼ P2 at x ¼ L. By integration of (16.44)
and from the boundary conditions:

Eh

3a0




h

1� a0
Eh

ðp2 � peÞ
i�3

�
h

1� a0
Eh

ðp1 � peÞ
i�3
�

¼ � 8m

pa0
L Q: (16.45)

Solving for Q,

Q ¼ pa30Eh

24mL




h

1� a0
Eh

ðp1 � peÞ
i�3

�
h

1� a0
Eh

ðp2 � peÞ
i�3
�

: (16.46)
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From (16.46), we see that the flow is a nonlinear function of pressure drop if wall elasticity
is taken into account. In the above development, we have assumed Hookean behavior for the
stress-strain relationship. However, blood vessels do not necessarily obey Hooke’s law, their
zero-stress states are open sectors, and their constitutive equations may be nonlinear (see
Zhou & Fung, 1997).

Pulsatile Blood Flow Theory

As stated earlier, blood flow in the arteries is pulsatile in nature. One of the earliest
attempts to model pulsatile flow was carried out by Otto Frank in 1899 (see Fung, 1997).

Elasticity of the Aorta and the Windkessel Theory

Recall that when the left ventricle contracts during systole, pressure within the chamber
increases until it is greater than the pressure in the aorta, leading to the opening of the aortic
valve. The ventricular muscles continue to contract, increasing the chamber pressure while
ejecting blood into the aorta. As a result, the ventricular volume decreases. The pressure in
the aorta starts to build up and the aorta begins to distend due to wall elasticity. At the end
of the systole, ventricular muscles start to relax, the ventricular pressure rapidly falls below
that of the aorta, and the aortic valve closes. Not all of the blood pumped into the aorta,
however, immediately goes into systemic circulation. A part of the blood is used to distend
the aorta and a part of the blood is sent to peripheral vessels. The distended aorta acts as an
elastic reservoir or a Windkessel (the name in German for an elastic reservoir), the rate of
outflow from which is determined by the total peripheral resistance of the system. As the dis-
tended aorta contracts, the pressure diminishes in the aorta. The rate of pressure decrease in the
aorta is much slower compared to that in the heart chamber. In other words, during the systole
part of the heart pumping cycle, the large fluctuation of blood pressure in the left ventricle is
converted to a pressure wave with a high mean value and a smaller fluctuation in the dis-
tended aorta (Fung, 1997). This behavior of the distended aorta was thought to be analogous
to the high-pressure air chamber (Windkessel) of nineteenth-century fire engines in Germany,
and hence the nameWindkessel theory was used by Otto Frank to describe this phenomenon.

In the Windkessel theory, blood flow at a rate Q(t) from the left ventricle enters an elastic
chamber (the aorta) and a part of this flows out into a single rigid tube representative of all of
the peripheral vessels. The rigid tube offers constant resistance, R, equal to the total periph-
eral resistance that was evaluated in the Hagen-Poiseuille model, (16.9). From the law of
conservation of mass, assuming blood is incompressible:

Rate of Inflow into Aorta ¼ Rate of change of volume of elastic chamber

þ Rate of outflow into rigid tube: (16.47)

Let the instantaneous blood pressure in the elastic chamber be p(t), and its volume be v(t). The
pressure on the outside of the aorta is taken to be zero. The rate of change of volume of an
elastic chamber is given by:

dv

dt
¼
�

dv

dp

��

dp

dt

�

: (16.48)
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In (16.48), the quantity ðdv=dpÞ is the compliance, K, of the vessel and is a measure of the
distensibility. Compliance at a given pressure is the change in volume for a change in pres-
sure. Here pressures are always understood to be transmural pressure differences. Compli-
ance essentially represents the distensibility of the vascular walls in response to a certain
pressure. Also, from (16.9), the rate of flow into peripherals is given by (p(t)/R), where we
have assumed pV ¼ 0. Therefore, (16.47) becomes

QðtÞ ¼ K

�

dp

dt

�

þ
�

pðtÞ
R

�

: (16.49)

Equation (16.49) is a linear equation of the form:

Q ¼ dy

dx
þ Py, (16.50)

whose solution is

ye
R

Pdx ¼ Aþ
Z

Qe
R

Pdx dx: (16.51)

From (16.49) and (16.51), with p0 denoting p at t ¼ 0, the instantaneous pressure p in the aorta
as a function of the left ventricular ejection rate Q(t) is given by

pðtÞ ¼ 1

K
e�t=RK

Z t

0
QðsÞes=RKdsþ p0e

�t=RK: (16.52)

In (16.52), p0 would be the aortic pressure at the end of diastolic phase.
A fundamental assumption in the Windkessel theory is that the pressure pulse wave

generated by the heart is transmitted instantaneously throughout the arterial system and
disappears before the next cardiac cycle. In reality, pressure waves require finite but small
transmission times, and are modified by reflection at bifurcations, bends, tapers, and at the
end of short tubes of finite length, and so on. We will now account for some of these
features.

Pulse Wave Propagation in an Elastic Tube: Inviscid Theory

Consider a homogeneous, incompressible, and inviscid fluid in an infinitely long, hori-
zontal, cylindrical, thin-walled, elastic tube. Let the fluid be initially at rest. The propagation
of a disturbance wave of small amplitude and long wavelength compared to the tube radius
is of interest to us. In particular, we wish to calculate the wave speed. Since the disturbance
wavelength is much greater than the tube diameter, the time-dependent internal pressure can
be taken to be a function only of (x, t).

Before we embark on developing the solution, we need to understand the inviscid approx-
imation. For flow in large arteries, the Reynolds and Womersley numbers are large; the wall
boundary layers are very thin compared to the radius of the vessel. The inviscid approxima-
tion may be useful in giving us insights in understanding such flows. Clearly, this will not be
the case with arterioles, venules, and capillaries. However, the inviscid analysis is strictly of
limited use since it is the viscous stress that is dominant in determining flow stability in large
arteries.
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Under the various conditions prescribed, the resulting flow may be treated as one
dimensional.

Let A(x,t) and u(x,t) denote the cross-sectional area of the tube and the longitudinal
velocity component, respectively. The continuity equation is:

vA

vt
þ vðAuÞ

vx
¼ 0, (16.53)

and the equation for the conservation of momentum is:

rA

�

vu

vt
þ u

vu

vx

�

¼ �v
��

p� pe
�

A
�

vx
, (16.54)

where (p e pe) is the transmural pressure difference. Since the tube wall is assumed to be
elastic (not viscoelastic), under the further assumption that A depends on the transmural
pressure difference (p e pe) alone, and the material obeys Hooke’s law, we have from
(16.41) the pressure-radius relationship (referred to as the tube law):

p� pe ¼ Eh

a0

�

1� a0
a



¼ Eh

a0

2

6

41�
�

A0

A

�

1

2

3

7

5, (16.55)

where A ¼ pa2, and A0 ¼ pa20. The equations (16.53), (16.54), and (16.55) govern the wave
propagation. We may simplify this equation system further by linearizing it. This is possible
if the pressure amplitude (p e pe) compared to p0, the induced fluid speed u, and (A e A0)
compared to A0, and their derivatives are all small. If the pulse is moving slowly relative
to the speed of sound in the fluid, the wave amplitude is much smaller than the wavelength,
and the distension at one cross section has no effect on the distension elsewhere, the assump-
tions are reasonable. As discussed by Pedley (2000), in normal human beings, the mean blood
pressure, relative to atmospheric, at the level of the heart is about 100 mm Hg, and there is
a cyclical variation between 80 and 120 mm Hg, so the amplitude-to-mean ratio is 0.2, which
is reasonably small. Also, in the ascending aorta, the pulse wave speed, C, is about 5m/s, and
the maximum value of u is about 1 m/s, and (u/c) is also around 0.2. In that case, the system
of equations reduce to

vA

vt
þ A0

vu

vx
¼ 0, (16.56)

and

r
vu

vt
¼ �vp

vx
, (16.57)

and

p� pe ¼ Eh

2a0A0
ðA� A0Þ, and

vp

vA
¼ Eh

2a0A0
: (16.58)

Differentiating (16.56) with respect to t and (16.57) with respect to x, and subtracting the
resulting equations, we get
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v2A

vt2
¼ A0

r

v2p

vx2
, (16.59)

and with (16.58), we obtain:

v2p

vt2
¼ Eh

2a0A0

v2A

vt2
¼ vp

vA

A0

r

v2p

vx2
: (16.60)

Combining (16.59) and (16.60), we produce:

v2p

vx2
¼ 1

c2
v2p

vt2
, or,

v2p

vt2
¼ c2ðA0Þv

2p

vx2
, (16.61)

where c2 ¼ Eh

2ra0
¼ A

r

dp

dA
. Equation (16.61) is the wave equation, and the quantity,

c ¼
ffiffiffiffiffiffiffiffiffi

Eh

2ra0

s

¼
ffiffiffiffiffiffiffiffiffiffiffi

A

r

dp

dA

s

, (16.62)

is the speed of propagation of the pressure pulse. This is known as the Moens-Korteweg
wave speed. If the thin wall assumption is not made, following Fung (1997), by evaluating
the strain on the midwall of the tube:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh

2rða0 þ h=2Þ

s

: (16.63)

Next, similar to (16.61), we can develop:

v2u

vx2
¼ 1

c2
v2u

vt2
, (16.64)

for the velocity component u. The wave equation (16.61) has the general solution:

p ¼ f1
�

t� x

c



þ f2
�

tþ x

c



, (16.65)

where f1 and f2 are arbitrary functions; f2 is zero if the wave propagates only in the þx
direction. This result states that the small-amplitude disturbance can propagate along
the tube, in either direction, without change of shape of the waveform, at speed c(a0).
Also, the velocity waveform is predicted to be of the same shape as the pressure wave-
form.

In principle, the Moens-Korteweg wave speed given in (16.63) must enable the determina-
tion of the arterial modulus E as a function of a by noninvasive measurement of the values of
arterial dimensions (a, h), the waveforms of the arterial inner radius at two sites, the transit
time (as the time interval between the waveform peaks), and hence the pulse-wave velocity.
More details in this regard are available in the book by Mazumdar (1999).

Next, consider the solutions of wave equations (16.61) and (16.64):

p ¼ bp1fðx� ctÞ þ bp2gðxþ ctÞ, (16.66)
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and

u ¼ bu1fðx� ctÞ þ bu2gðxþ ctÞ, (16.67)

where bp1, bu1, bp2, and bu2 are the pressure and velocity amplitudes for waves traveling in the
positive x-direction and negative x-direction, respectively. From (16.57):

bp1 ¼ rcbu1, and bp2 ¼ �rcbu2: (16.68)

This equation (16.68) relates the amplitudes of the pressure and velocity waves.
The above analysis would equally apply if the inviscid fluid in the tube was initially in

steady motion, say from left to right. In that case, u would have to be regarded as a small
perturbation superposed on the steady flow, and c would be the speed of the perturbation
wave relative to the undisturbed flow.

Let us now examine the limitations of this model. For typical flow in the aorta, the speed of
propagation of the pulse is about 4 m/s (Brown et al., 1999), about 5 m/s in the ascending
aorta, rising to about 8 m/s in more peripheral arteries. These predictions are very close to
measured values in normal subjects, either dogs or humans (Pedley, 2000). The peak flow
speed is about 1 m/s. The speed of propagation in a collapsible vein might be as low as 1
m/s, and this may lead to phenomena analogous to sonic flow (Brown et al., 1999). From
(16.62), for given E, h, r, and size of vessel, the wave speed is a constant. Experimental studies
indicate, however, that the wave speed is a function of frequency. The shape of the waveform
does not remain the same. The theory must be modified to account for peaking of the pres-
sure pulse due to wave reflection from arterial junctions, wave-front steepening due to
nonlinear dispersion effects (Lighthill, 1978), and observed velocity waveform by including
dissipative effects due to viscosity (Lighthill, 1978; Pedley, 2000). The neglect of the inertial
terms and the effects of viscosity have therefore to be examined to address these concerns
and to develop a systematic understanding. These issues will be addressed in later sections
in the following order. First, we will learn about pulsatile viscous flow in a single rigid-
walled, straight tube. This implies the assumption of an infinite wave speed. Subsequent
to that, we will examine the effects of wall elasticity on pulsatile viscous flow in a single
tube to gain a more realistic understanding. This allows us to understand wave transmission
at finite speed. Following this, we will study blood vessel bifurcation. This will be extended
to understand the effects of wave reflection from arterial junctions under the inviscid flow
approximation.

Pulsatile Flow in a Rigid Cylindrical Tube: Viscous Effects Included,
Infinite Wave Speed Assumption

Consider the axisymmetric flow of a Newtonian incompressible fluid in a long, thin,
circular, cylindrical, horizontal, rigid-walled tube. Clearly, the assumption of a rigid wall
implies that the speed of wave propagation is infinite and unrealistic. However, the develop-
ment presented here will provide us with useful insights and these will be helpful in formu-
lating a much improved theory in the next section.

We again employ the cylindrical coordinates (r, q, x) with velocity components (ur, uq, and
ux), respectively. Let l be the wavelength of the pulse. This is long, and a � l. Since the wave
speed is infinite, all the velocity components are very much smaller than the wave speed.
These assumptions enable us to drop the inertial terms in the momentum equations. With
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the additional assumptions of axisymmetry (uq ¼ 0, and v=vq ¼ 0Þ, and rigid tube wall
(ur ¼ 0), and omitting the subscript x in ux for convenience, the continuity equation may
be written:

vu

vx
¼ 0, (16.69)

and the r-momentum equation is:

0 ¼ �vp

vr
; (16.70)

the x-momentum equation is:

r
vu

vt
¼ �vp

vx
þ m

"

v2u

vr2
þ 1

r

vu

vr

#

: (16.71)

We see that u ¼ u(r, t) and p ¼ p(x, t). Therefore, we are left with just one equation:

m

"

v2u

vr2
þ 1

r

vu

vr

#

� r
vu

vt
¼ vp

vx
: (16.72)

In (16.72), since p ¼ p(x, t), vp=vx will be a function only of t. Since the pressure waveform is
periodic, it is convenient to express the partial derivative of pressure using a Fourier series.
Such a periodic function depends on the fundamental frequency of the signal, u, heart rate
(unit, rad/s), and the time t. Recall that u is also called the circular frequency, u/2p is
the frequency (unit, Hz), and l is the wavelength (unit, m). Also, l ¼ c/(u/2p), where
c is wave speed. The wavelength is the wave speed divided by frequency, or the distance
traveled per cycle.

We set

vp

vx
¼ �Geiut, (16.73)

where G is a constant denoting the amplitude of the pressure gradient pulse and
eiut ¼ cos ut þ i sin ut. With this representation for P(t), (16.72) becomes:

m

"

v2u

vr2
þ 1

r

vu

vr

#

� r

�

vu

vt

�

¼ vp

vx
¼ �Geiut: (16.74)

This is a linear, second-order, partial differential equation with a forcing function. For u ¼ 0,
the flow is described by the Hagen-Poiseuille model. Womersley (1955a, 1955b), has solved
this problem, and we will provide essential details.

For u s 0, we may try solutions of the form:

uðr, tÞ ¼ UðrÞeiut, (16.75)

whereU(r) is the velocity profile in any cross section of the tube. The real part in (16.75) gives
the velocity for the pressure gradient G cos ut and the imaginary part gives the velocity
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for the pressure gradient G sin ut. Assume that the flow is identical at each cross section
along the tube. From (16.74) and (16.75), we get:

d2U

dr2
þ 1

r

dU

dr
� iur

m
U ¼ G

m
: (16.76)

This is a Bessel’s differential equation, and the solution involves Bessel functions of zeroth
order and complex arguments. Thus,

UðrÞ ¼ C1J0
�

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðiur=mÞ
p

r


þ C2Y0

�

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðiur=mÞ
p

r


þ G

uri
, (16.77)

where C1 and C2 are constants. In (16.77), from the requirement thatU is finite at r ¼ 0, C2 ¼ 0.
For a rigid-walled tube, U ¼ 0 at r ¼ a. Therefore,

C1J0
�

i3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ður=mÞ
p

a


þ G

uri
¼ 0: (16.78)

From (16.12), the Womersley number is defined by a ¼ a
ffiffiffiffiffiffiffiffi

u=n
p

. Therefore, from (16.78), we
may write,

C1 ¼ iG

ur

1

J0ði3=2aÞ
: (16.79)

Therefore, from (16.77),

U ðrÞ ¼ � iG

ur

 

1� J0ði3=2a r=aÞ
J0ði3=2aÞ

!

: (16.80)

Introduce, for convenience:

F1 ðaÞ ¼ J0ði3=2a r=aÞ
J0ði3=2aÞ

: (16.81)

Now, from (16.75):

uðr, tÞ ¼ UðrÞeiut ¼ � iG

ur
ð1� F1ðaÞÞeiut ¼ Ga2

ima2
ð1� F1ðaÞÞeiut: (16.82)

In the above development, we have found the velocity as a function of radius r and time t for
the entire driving-pressure gradient. Since we have represented both vp=vx and u(r, t) in
terms of Fourier modes, we could also express the solution for both these quantities in terms
of individual Fourier modes or harmonics explicitly as:

vp

vx
¼ �

X
N

n¼ 0

Gne
inut, (16.83)

where N is the number of modes (harmonics), and the n ¼ 0 term represents the mean
pressure gradient. Similarly, for velocity,
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uðr, tÞ ¼ u0ðrÞ þ
X
N

1

unðrÞeinut: (16.84)

In (16.84),

u0ðrÞ ¼ G0a
2

4m

�

1� r2

a2

�

(16.85)

is the mean flow and is recognized as the steady Hagen-Poiseuille flow with G0 as the mean
pressure gradient, and for each harmonic:

unðrÞ ¼ Gna2

ima2n
ð1� F1ðanÞÞ: (16.86)

We can now write down the expressions for un (r) in the limits of an small and large. These
are, for an small:

unðrÞzGna2

4m

�

1� r2

a2

�

, (16.87)

which represents a quasi-steady flow, and for an large:

unðrÞzGna2

ima2n




1� exp

�

�
ffiffiffiffiffi

u

2n

r

ð1þ iÞ ða� rÞ
��

, (16.88)

which is the velocity boundary layer on a plane wall in an oscillating flow. This flow was dis-
cussed in Chapter 8 (Stokes’ second problem).

The volume flow rate, Q(t), may be obtained by integrating the velocity profile across the
cross section. Thus, from (16.85) and (16.86):

QðtÞ ¼
Z a

0
u2prdr ¼ pa2

(

G0a
2

8m
þ a2

im

X
N

1

Gn

a2n
½1� F2ðanÞ�einut

)

, (16.89)

or equivalently, with (16.82),

QðtÞ ¼
Z a

0
2peiut

Ga2

ima2
ð1� F1ðaÞÞ rdr ¼ pa4

ima2
Gð1� F2ðaÞÞ eiut, (16.90)

where

F2ðaÞ ¼ 2J1ði3=2aÞ
i3=2aJ0ði3=2aÞ

: (16.91)

The real part of (16.90) gives the volume flow rate when the pressure gradient is G cos ut and
the imaginary part gives the rate when the pressure gradient is G sin ut.

Next, the wall shear rate sðtÞjr¼a is given by:

sðtÞjr¼a ¼ vu

vr

	

	

	

	

r¼a
¼ G0a

2
þ a

2

X
N

1

GnFðanÞeinut: (16.92)
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We may now examine the flow rates in the limit cases of a / 0 and a / N. As a / 0, by
Taylor’s expansion,

F2ðaÞz1� ia2

8
�Oða4Þ, (16.93)

and from (16.90) in the limit as a / 0,

Q ¼ pGa4

8m
einut, (16.94)

and the magnitude of the volumetric flow rate Q0 in the limit as a / 0 is

jQ0j ¼ pGa4

8m
, (16.95)

as would be expected (the Hagen-Poiseuille result). As a / N:

F2ðaÞz 2

i1=2a

�

1þ 1

2a

�

: (16.96)

Next, in Hagen-Poiseuille flow, the steady flow rate is the maximum attainable and there is
no phase lag between the applied pressure gradient and the flow. To understand the phase
difference between the applied pressure gradient pulse and the flow rate in the present
flow model, we set

ð1� F2ðaÞÞ ¼ ZðaÞ, ZðaÞ ¼ XðaÞ þ iYðaÞ: (16.97)

Then from (16.90):

Q ¼ pGa4

ma2




�

Y cosðutÞ þ X sinðutÞ� � i½X cosðutÞ � Y sinðutÞ�
�

: (16.98)

The magnitude of Q is

jQj ¼ pGa4

ma2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

: (16.99)

The phase angle between the applied pressure gradient Geiut and the flow rate (16.90) is now
noted to be

tan f ¼ X

Y
: (16.100)

With increasing u, the phase lag between the pressure gradient and the flow rate increases,
and the flow rate decreases. Thus, the magnitude of the volumetric flow rate, jQj, given by
(16.99) will be considerably less than the magnitude jQ0j given by (16.95) as would be
expected. For an arterial flow, with a ¼ 8, X z 0.85, Y z 0.16, the pulsed volumetric flow
rate, jQj, would be about one-tenth of the steady value, jQ0j. For more detailed discussions
and comparisons with measured values of pressure gradients and flow rates in blood vessels,
see Nichols and O’Rourke (1998).
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The preceding analysis assumed an infinite wave speed of propagation. In order to accom-
modate the requirement of wave transmission at a finite wave speed, we need to account for
vessel wall elasticity. This is discussed in the next section.

Wave Propagation in a Viscous Liquid Contained in an Elastic Cylindrical Tube

Blood vessel walls are viscoelastic. But in large arteries the effect of nonlinear viscoelas-
ticity on wave propagation is not so severe (Fung, 1997). Even where viscoelastic effects
are important, an understanding based on elastic walls will be useful. In this section, we
will first study the effects of elastic walls. Then, we will briefly discuss the effects of wall
viscoelasticity.

Consider a long, thin, circular, cylindrical, horizontal elastic tube containing a Newtonian,
incompressible fluid. Let this system be set in motion solely due to a pressure wave, and the
amplitude of the disturbance be small enough so that quadratic terms in the amplitude are
negligible compared with linear ones.

In the formulation, we have to consider the fluid flow equations together with the equa-
tions of motion governing tube wall displacements. Assume that the tube wall material obeys
Hooke’s law. Since the tube is thin, membrane theory for modeling the wall displacements is
adequately accurate, and we will neglect bending stresses.

The primary question is, how does viscosity attenuate velocity and pressure in this flow?
We shall employ the cylindrical coordinates (r, q, x) with velocity components (ur, uq, and

ux), respectively. With the assumption of axisymmetry, uq ¼ 0 and v=vq ¼ 0. For convenience,
we write the ur component as v, and we omit the subscript x in ux.

Restricting the analysis to small disturbances, the governing equations for the
fluid are:

vu

vx
þ 1

r

v ðrvÞ
vr

¼ 0, (16.101)

r
vu

vt
¼ �vp

vx
þ m

 

v2u

vr2
þ 1

r

vu

vr
þ v2u

vx2

!

, (16.102)

r
vv

vt
¼ �vp

vr
þ m

 

v2v

vr2
þ 1

r

vv

vr
þ v2v

vx2
� v

r2

!

, (16.103)

where u and v are the velocity components in the axial and radial directions, respectively.
These have to be supplemented with the tube wall displacement equations. Let the

tube wall displacements in the (r, q, x) directions be (h, z, and x), respectively, and the
tube material density be rw. The initial radius of the tube is a0, and the wall thickness
is h.

For this thin elastic tube, the circumferential (hoop) tension and the tension in the axial
direction are related by Hooke’s law as follows:

Tq ¼ Eh

1� bn2
�

h

a0
þ bnvx

vx

�

, (16.104)
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and

Tx ¼ Eh

1� bn2
�

vx

vx
þ bn h

a0

�

, (16.105)

where bn is Poisson’s ratio.
By a force balance on a wall element of volume (h rdq dx), the equations governing wall

displacements may be written as:

• r-direction

rwh
v2h

vt2
¼ srrjr¼a�

Tq

a0
, (16.106)

and
• x-direction

rwh
v2x

vt2
¼ þvTx

vx
� srxjr¼a: (16.107)

There is no displacement equation for the q direction. In (16.106) and (16.107), srrjr¼a and
srxjr¼a refer to radial and shear stresses, respectively, which the fluid exerts on the tube
wall. These equations are based on the assumptions that shear and bending stresses in the
tube wall material are negligible and the slope of the disturbed tube wall (va/vx) is small.
These also imply that the ratios (a/l) and (h/l), where l is the wavelength of disturbance,
are small.

From (16.104) through (16.107), we obtain

rw h
v2h

vt2
¼ srrjr¼a �

Eh

1� bn

 

h

a20
þ bn

a0

vx

vx

!

, (16.108)

and

rw h
v2x

vt2
¼ �m

�

vu

vr
þ vv

vx

�	

	

	

	

r¼a
þ Eh

1� bn2
 

v2x

vx2
þ bn

a0

vh

vx

!

: (16.109)

In the above equations, from the theory of fluid flow, the normal compressive stress due to
fluid flow on an area element perpendicular to the tube’s radius is given by:

srr ¼ þp� 2m
vv

vr
, (16.110)

and the shear stress due to fluid flow acting in a direction parallel to the axis of the tube on an
element of area perpendicular to a radius is

srx ¼ m

�

vu

vr
þ vv

vx

�

: (16.111)

These are the radial and shear stresses exerted by the fluid on the wall of the vessel. With
(16.110) and (16.111), (16.108) and (16.109) become
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rwh
v2h

vt2
¼ þpjr¼a� 2m

vv

vr

	

	

	

	

r¼a
� Eh

1� bn2
 

h

a20
þ bn

a0

vx

vx

!

, (16.112)

and

rwh
v2x

vt2
¼ �m

�

vu

vr
þ vv

vx

�	

	

	

	

r¼a
þ Eh

1� bn2
 

v2x

vx2
þ bn

a0

vh

vx

!

: (16.113)

We have to solve (16.101) through (16.103), together with (16.112), and (16.113) subject to
prescribed conditions. The boundary conditions at the wall are that the velocity components
of the fluid be equal to those of the wall. Thus,

ujr¼a0
¼ vx

vt

	

	

	

r¼a0
, (16.114)

and

vjr¼a0
¼ vh

vt

	

	

	

r¼a0
: (16.115)

We note that the boundary conditions given in (16.114) and (16.115) are linearized conditions,
since we are evaluating u and v at the undisturbed radius a0.

We now represent the various quantities in terms of Fourier modes. Thus,

uðx, r, tÞ ¼ bu ðrÞeiðkx�utÞ, vðx, r, tÞ ¼ bvðrÞeiðkx�utÞ,

pðx, tÞ ¼ bpeiðkx�utÞ, xðx, tÞ ¼ bxeiðkx�utÞ,

hðx, tÞ ¼ bheiðkx�utÞ,

(16.116)

where buðrÞ, bvðrÞ, bp, bx, and bh are the amplitudes, u ¼ 2p/T is a real constant, the
frequency of the forced disturbance, T is the period of the heart cycle, k ¼ k1 þ ik2 is a complex
constant, with k1 being the wave number and k2 a measure of the decay of the disturbance as

it travels along the vessel (damping constant), jkj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2
p ¼ 2p=l, where l is the wave-

length of the disturbance, and c ¼ u/k1 is the wave speed.
The above formulation has been solved by Morgan and Kiely (1954) and by Womersley

(1957a, 1957b), and we will provide the essential details here. The analysis will be
restricted to disturbances of long wavelength, that is, a=l � 1, and large Womersley
number, a[1.

From (16.101):

	

	

	

v

u

	

	

	 ¼
	

	

	

	

	

bvðrÞ
buðrÞ

	

	

	

	

	

¼ Oðj ak jÞ: (16.117)

For small damping, we note that jkjzk1 ¼ 2p=l, and c ¼ u/k1 is the wave speed.
From (16.102) and (16.103), we may make the following observations. In (16.102), v2u=vx2

may be neglected in comparison with the other terms since a=l � 1 and la[1. In (16.103),
vp=vr is of a higher order of magnitude in a/l than is vp=vx. In fact, we may neglect all
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terms that are of order a/l. In effect, we are neglecting radial acceleration and damping
terms and taking the pressure to be uniform over each cross section. The fluid equations
become:

vu

vx
þ 1

r

v ðrvÞ
vr

¼ 0, (16.118)

r
vu

vt
¼ �vp

vx
þ m

 

v2u

vr2
þ 1

r

vu

vr

!

, (16.119)

vp

vr
¼ 0, (16.120)

p ¼ bpeiðkx�utÞ: (16.121)

Now substitute the assumed forms given in (16.116) into (16.118) and (16.119) to produce:

dðrbvÞ
dr

¼ �ikrbu, (16.122)

d2bu

dr2
þ 1

r

dbu

vr
þ iur

m
bu ¼ ikbp

m
: (16.123)

The boundary conditions given by (16.114) and (16.115) become:

buða0Þeiðkx�utÞ ¼ �iubxeiðkx�utÞ, (16.124)

bvða0Þeiðkx�utÞ ¼ �iubheiðkx�utÞ: (16.125)

We may now note that the linearization of the boundary conditions will involve an error of
the same order as that caused by neglecting the nonlinear terms in the equations. The error
would be small if bx and bh are very small compared to a.

Next, introduce the assumed form given in (16.116), and use (16.120) in the displacement
equations (16.112) and (16.113) to develop:

�rwhu
2
bh ¼ bp � 2m

 

dbv

dr

!	

	

	

	

	r¼a0
� Eh

1� bn2
 

bh

a20
þ
bink

a0
bx

!

, (16.126)

�rwhu
2
bx ¼ �m

 

dbu

dr
þ ikbv

!	

	

	

	

	r¼a0
þ Eh

1� bn2
 

� k2bx þ
bink

a0
bh

!

: (16.127)

Now invoke the assumptions that h=a � 1, r is of the same order of magnitude as rw, and

a2=l2 � 1 in (16.126) and (16.127). This amounts to neglecting the terms which represent
tube inertia, and approximating srx in (16.111) by mðvv=vxÞ and srr in (16.110) by p. After
considerable algebra, (16.126) and (16.127) reduce to:

bp ¼ Eh

a20
bh � ibn

a0k
m
dbu

dr

	

	

	

r¼a0
, (16.128)
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bx ¼ ibn

ka0
bh � 1� bn2

Ehk2
m
dbu

dr

	

	

	

r¼a0
: (16.129)

We are now left with (16.122), (16.123), (16.128), and (16.129), subject to boundary conditions
given by (16.124) and (16.125) and the pseudo boundary condition that u(r) be nonsingular
at r ¼ 0.

Equations (16.123) and (16.128) can be combined to give:

d2bu

dr2
þ 1

r

dbu

vr
þ iur

m
bu ¼ ik

m

Eh

a20
bh þ bn

a0

dbu

dr

	

	

	

r¼a0
: (16.130)

Satisfying the pseudo boundary condition, the solution to this Bessel’s differential equation is
given by:

buðrÞ ¼ AJ0ðbrÞ þ k

u

Eh

ra20
bh � bn

ba0
AJ1ðba0Þ, (16.131)

where b ¼ ffiffiffiffiffiffiffiffiffiffi

iu=n
p

, and A is an arbitrary constant. Next, from (16.122):

bv ¼ �ik

r

Z r

0
rbuðrÞdr: (16.132)

From (16.131) and (16.132):

bvðrÞ ¼ �ikA

b
J1ðbrÞ � ik2

u

Ehbh

ra20

r

2
þ ikbn

ba0
A
r

2
J1ðba0Þ: (16.133)

Equations (16.131) and (16.133) give the expressions for buðrÞ and bvðrÞ, respectively. Subjecting
them to the boundary conditions given in (16.124) and (16.125), introducing bb ¼ ba0, and

eliminating bx by the use of (16.129), the following two linear homogeneous equations for bh
are developed:

bh

"

u

k

bn

a0
� kEh

ura20

#

¼ A

2

4J0ðbbÞ þ J1ðbbÞ
8

<

:

ibumð1� bn2Þ
Ehk2

� bn
bb

9

=

;

3

5, (16.134)

bh

"

1� k2Eh

u22ra0

#

¼ AJ1ðbbÞ
"

k

ub
� kbn

2ub

#

: (16.135)

For nonzero solutions, the determinant of the above set of linear algebraic equations in bh and
A must be zero. As a result, the following characteristic equation is developed:

 

k2

u2

Eh

2ra0

!2"

2bb
J0ðbbÞ
J1ðbbÞ

� 4

#

þ
 

k2

u2

Eh

2ra0

! "

4bn � 1� 2bb
J0ðbbÞ
J1ðbbÞ

#

þ ð1� bn2Þ ¼ 0: (16.136)

The solution to this quadratic equation will give k2/u2 in terms of known quantities. Then we
can find k/u ¼ (k1þ ik2)/u. The wave speed, u/k1, and the damping factor may be evaluated
by determining the real and imaginary parts of k/u.

16. INTRODUCTION TO BIOFLUID MECHANICS818



Morgan and Kiely (1954) have provided explicit results for the wave speed, c, and the
damping constant, k2, in the limits of small and large a. Mazumdar (1999) has indicated
that by an in vivo study, the wave speed, u/k1, can be evaluated noninvasively by moni-
toring the transit time as the time interval between the peaks of ultrasonically measured
waveforms of the arterial diameter at two arterial sites at a known distance apart. Then
from (16.136), E can be calculated. From either (16.134) or (16.135), A can be expressed in
terms of bh, and with that, buðrÞ can be related to bp. Mazumdar gives details as to how the
cardiac output may be calculated with the information developed in conjunction with
pulsed Doppler flowmetry.

Figure 16.14 shows velocity profiles at intervals of Dut ¼ 15� of the flow resulting from
a pressure gradient varying as cos(ut) in a tube. As this is harmonic motion, only half a cycle
is illustrated, and for ut> 180�, the velocity profiles are of the same form but opposite in sign.
The Womersley number is a. The reversal of flow starts in the laminae near the wall. As the
Womersley number increases, the profiles become flatter in the central region, there is
a reduction in the amplitudes of the flow, and the rate of reversal of flow increases close to
the wall. At a ¼ 6.67, the central mass of the fluid is seen to reciprocate like a solid core.

Effect of Viscoelasticity of Tube Material

In general, the wall of a blood vessel must be treated as viscoelastic. This means that
the relations given in (16.104) and (16.105) must be replaced by corresponding relations
for a tube of viscoelastic material. In this problem, all the stresses and strains in the

FIGURE 16.14 Velocity profiles of a sinusoidally oscillating flow in a pipe. A the lowest value of a, the
Womersley number, the flow oscillations are slow enough so that the flow becomes fully developed, at least
momentarily, during an oscillation. At higher values of a, the flow is slower in the center of the tube but it moves
like a solid object. Reproduced from McDonald, D. A. (1974), Blood Flow in Arteries, The Williams & Wilkins Company,

Baltimore.
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problem are assumed to vary as ei(kx�ut), and we will further assume that the effect of the
strain rates on the stresses is small compared to the effect of the strains. For the purely
elastic case, only two real elastic constants were needed. Morgan and Kiely (1954) have
shown that by substituting suitable complex quantities for the elastic modulus and the
Poisson’s ratio, the viscoelastic behavior of the tube wall may be accommodated. They
introduce:

E	 ¼ E� iuE0, and bn
	 ¼ bn � iubn

0
, (16.137)

where, E0 and bn0 are new constants. In (16.104) and (16.105), E* and bn
	
replace E and bn, respec-

tively. The formulation will otherwise remain the same. An equation for k/u will arise as
before. The fact that E* and bn

	
are complex has to be taken into account while evaluating

the wave velocity and the damping factor. Morgan and Kiely provide results appropriate
for small and large a.

Morgan and Ferrante (1955) extended the study by Morgan and Kiely (1954) to the situ-
ation for small a values where there is Poiseuille-like flow in the thin, elastic-walled tube.
The flow oscillations are small and they are superimposed on a large steady-stream
velocity. The steady flow modifies the wave velocity. The wave velocity in the presence
of a steady flow is the algebraic sum of the normal wave velocity and the steady-flow
velocity. Morgan and Ferrante predict a decrease in the damping of a wave propagated
in the direction of the stream and an increase in the damping when propagated upstream.
However, the steady-flow component in arteries is so small in comparison with the pulse
wave velocity that its role in damping is of little importance (see McDonald, 1974).
Womersley (1957a) considered the situation where the flow oscillations are large in ampli-
tude compared to the mean stream velocity (this is similar to the situation in an artery),
predicting that the presence of a steady-stream velocity would produce a small increase
in the damping.

Blood Vessel Bifurcation: An Application of Poiseuille’s Formula
and Murray’s Law

Blood vessels bifurcate into smaller daughter vessels which in turn bifurcate to even
smaller ones. On the basis that the flow satisfies Poiseuille’s formula in the parent and all
the daughter vessels, and by invoking the principle of minimization of energy dissipation
in the flow, we can determine the optimal size of the vessels and the geometry of bifurcation.
We recall that Hagen-Poiseuille flow involves established (fully developed) flow in a long
tube. Here, for simplicity, we will assume that established Poiseuille flow exists in all the
vessels. This is obviously a drastic assumption but the analysis will provide us with some
useful insights.

Let the parent and daughter vessels be straight, circular in cross section, and lie in a plane.
Consider a parent vessel AB of length L0 and radius a0 in which the flow rate is Q, which

bifurcates into two daughter vessels BC and BD with lengths L1 and L2, radii a1 and a2, and
flow ratesQ1 andQ2, respectively. The axes of vessels BC and BD are inclined at angles q and
f with respect to the axis of AB, as shown in Figure 16.15. Points A, C, and D are fixed. The
optimal sizes of the vessels and the optimal location of B have to determined from the prin-
ciple of minimization of energy dissipation.
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The total rate of energy dissipation by flow rate Q in a blood vessel of length L and radius
a is equal to sum of the rate at which work is done on the blood, QDp, and the rate at which
energy is used up by the blood vessel by metabolism, Kpa2 L, where K is a constant. For

Hagen-Poiseuille flow, from (16.17): Q ¼ p a4

8m

Dp

L
. Therefore,

Total energy dissipation ¼ 8mL

pa4
Q2 þ Kpa2L ¼ bE1ðsayÞ: (16.138)

To obtain the optimal size of a vessel for transport, for a given length of vessel, we need to
minimize this quantity with respect to radius of the vessel. Thus,

vbE1

va
¼ �32mL

p
Q2a�5 þ 2KpLa ¼ 0: (16.139)

Solving for a:

a ¼
�

16m

p2
K

�1=6

Q1=3: (16.140)

Equation (16.140) gives the optimal radius for the blood vessel indicating that minimum
energy dissipation occurs under this condition. The optimal relationship, Q w a3, is called
Murray’s Law.

With (16.140), the minimum value for energy dissipation is

bE 1, min
¼ 3p

2
KLa2: (16.141)

Next, consider the flow with the branches. The minimum value for energy dissipation with
branches is

bE 2, min
¼ 3p

2
K
�

L0a
2
0 þ L1a

2
1 þ L2a

2
2

�

: (16.142)

FIGURE 16.15 Schematic of an arterial bifurcation from one large vessel into two smaller ones. Here a0, a1, and
a2 are the vessel radii and the branching angles with respect to the incoming flow direction are q and f.

16.3. MODELING OF FLOW IN BLOOD VESSELS 821



Also,

a0 ¼
�

16m

p2
K

�1=6

Q
1=3
0 , a1 ¼

�

16m

p2
K

�1=6

Q
1=3
1 , and a2 ¼

�

16m

p2
K

�1=6

Q
1=3
2 , (16.143)

and from mass conservation:

Q ¼ Q1 þQ2 / a30 ¼ a31 þ a32: (16.144)

The lengths L0, L1, and L2 depend on the location of point B. The optimum location of point B
is determined by examining associated variational problems (see Fung, 1997).

Any small movement of B changes bE2, min by dbE2, min and

dbE2, min ¼ 3p

2
K
�

dL0 a20 þ dL1 a21 þ dL2 a22
�

: (16.145)

The optimal location of B would make dbE2, min ¼ 0 for arbitrary small movement dL of

point B. By making such displacements of B, one at a time, in the direction of AB, in
the direction of BC, and finally in the direction of DB, and setting the value of the corre-

sponding dbE2, min to zero, we develop a set of three conditions governing optimization.

These are:

cos q ¼ a40 þ a41 � a42
2a20a

2
1

, cos f ¼ a40 � a41 þ a42
2a20a

2
2

, cosðqþ fÞ ¼ a40 � a41 � a42
2a21a

2
2

: (16.146)

Together with (16.144), the set (16.146) may be solved for the optimum angle q as

cos q ¼ a40 þ a41 �
�

a30 � a31
�4=3

2a20a
2
1

, (16.147)

and a similar equation for f. Comparison of these optimization results with experimental
data are noted to be excellent (see Fung, 1997).

Reflection of Waves at Arterial Junctions: Inviscid Flow and Long
Wavelength Approximation

Arteries have branches. When a pressure or a velocity wave reaches a junction where the
parent artery 1 bifurcates into daughter tubes 2 and 3 as shown in Figure 16.16, the incident
wave is partially reflected at the junction into the parent tube and partially transmitted
down the daughters. In the long wavelength approximation, we may neglect the flow at
the junction. Let the longitudinal coordinate in each tube be x, with x ¼ 0 at the bifurcation.
The incident wave in the parent tube comes from x ¼ �N.

Let pI be the oscillatory pressure associated with the incident wave, let pR be associated
with the reflected wave, and let pT1 and pT2 be associated with the transmitted waves. Let
the pressure be a single valued and continuous function at the junction for all time t. The
continuity requirement ensures that there are no local accelerations. Under these conditions,
at the junction:

pI þ pR ¼ pT1 ¼ pT2: (16.148)
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Next, let QI be the flow rate associated with the incident wave, let QR be associated
with the reflected wave, and let QT1 and QT2 be associated with the transmitted
waves. The flow rate is also taken to be single valued and continuous at the junction
for all time t. The continuity requirement ensures conservation of mass. At the
junction,

QI �QR ¼ QT1 þQT2: (16.149)

Let the undisturbed cross-sectional areas of the tubes be A1, A2, and A3, and the intrinsic
wave speeds be c1, c2, c3, respectively. In general, for a fluid of density r flowing under the
influence of a wave with intrinsic wave speed c, through a tube of cross-sectional area A,
the flow rate Q is related to the mean velocity u by

Q ¼ Au ¼ 
A

rc
p, (16.150)

where we have employed the relationship given in (16.68). The plus or the minus
sign applies depending on whether the wave is going in the positive x-direction or in
the negative x-direction. The quantity A/rc is called the characteristic admittance of
the tube and is denoted by Y, while rc/A is called the characteristic impedance of the
tube and is denoted by Z. Admittance is seen to be the ratio of the oscillatory flow to
the oscillatory pressure when the wave goes in the direction of the þx axis. With these
definitions,

Q ¼ Au ¼ 
Yp ¼ 
p

Z
: (16.151)

Equation (16.149) may be written in terms of admittances or impedances as:

Y1ðpI � pRÞ ¼
X
3

j¼ 2

YjpTj, or

�

pI � pR
�

Z1
¼
X
3

j¼ 2

pTj
Zj

: (16.152)

FIGURE 16.16 Schematic of an arterial bifurcation: reflection. Here the change in impedance at the junction can
cause a reflected wave to travel backward along the parent artery.
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We can simultaneously solve (16.148) and (16.152) to produce:

pR
pI

¼ Y1 �
P

Yj

Y1 þ
P

Yj
¼ R, and

pTj
pI

¼ 2Y1

Y1 þ
P

Yj
¼ T, (16.153)

or,

pR
pI

¼
Z�1
1 �PZ�1

j

Z�1
1 þPZ�1

j

, and
pTj
pI

¼ 2Z�1
1

Z�1
1 þPZ�1

j

: (16.154)

In (16.153), R and T are called the reflection and transmission coefficients, respectively. From
(16.153), the amplitudes of the reflected and transmitted pressure waves are R and T times
the amplitude of the incident pressure wave. These relations can be written in more explicit
manner as follows (see Lighthill, 1978).

The contribution of the incident wave to the pressure in the parent tube is given by

pI ¼ PI f

�

t� x

c1

�

, (16.155)

where PI is an amplitude parameter and f is a continuous, periodic function whose maximum
value is 1. The corresponding contribution to the flow rate is

QI ¼ A1u ¼ Y1PIf

�

t� x

c1

�

: (16.156)

The contributions to pressure from the reflected and transmitted waves to the parent and
daughter tubes, respectively, are:

pR ¼ PR g

�

tþ x

c1

�

, and pTj ¼ PTjhj

 

t� x

cj

!

, ð j ¼ 2; 3Þ, (16.157)

where PR and PT are amplitude parameters, and g and h are continuous, periodic functions.
The corresponding contributions to the flow rates are:

QR ¼ �Y1PR g

�

tþ x

c1

�

, and QTj ¼ YjPTjhj

 

t� x

cj

!

, ð j ¼ 2; 3Þ: (16.158)

Therefore, the pressure perturbation in the parent tube is given by (16.155) and (16.157)
to be:

p

PI
¼ f

�

t� x

c1

�

þ PR

PI
f

�

tþ x

c1

�

, (16.159)

and the flow rate, from (16.156) and (16.158), is:

Q ¼ Y1PI

�

f

�

t� x

c1

�

� PR

PI
f

�

tþ x

c1

��

: (16.160)

The transmission of energy by the pressure waves is of interest. The rate of work done
by the wave motion through the cross section of the tube or, equivalently, the rate of
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transmission of energy by the wave is clearly pAu or pQ, which is the same as P2/Z
from (16.151). Now we can calculate the incident, reflected, and transmitted quantities at
the junction. Thus,

Rate of energy transmission by incident wave ¼ p2I
Z1

, (16.161)

Rate of energy transmission by reflected wave ¼
�

RpI
�2

Z1
¼ R2p

2
I

Z1
(16.162)

The quantity R2 is called the energy reflection coefficient. Similarly, the energy transmission
coefficient, which is the rate of energy transfer in the two transmitted waves compared
with that in the incident wave, may be defined by

p2T2
Z2

þ p2T3
Z3

p2I
Z1

¼ Z�1
2 þ Z�1

3

Z�1
1

�

pT2
pI

�2

¼ Z�1
2 þ Z�1

3

Z�1
1

T2, (16.163)

where we have noted that in our case PT2 ¼ PT3.
A comparison of (16.159) and (16.160) shows that, if we include reflection at bifurcations,

the pressure and flow waveforms are no longer of the same shape. Pedley (1980) has offered
interesting discussions about the behavior of the waves at the junction. From (16.153), for real
values of cj and Yj, if

P

Yj < Y1, then the reflected wave has the same sign as the incident

wave, and the pressures in the two waves are in phase at x ¼ 0. They combine additively
to form a large-amplitude fluctuation at the junction, and the effect of the junction is similar
to that of a closed-end (PR ¼ P1). If

P

Yj > Y1, there is a phase change at x ¼ 0, the smallest-

amplitude pressure fluctuation occurs there, and the junction resembles an open end
(PR ¼ �P1). If

P

Yj ¼ Y1, there is no reflected wave, and the junction is said to be perfectly

matched. Pedley (2000) has noted that the increase in the pressure wave amplitude in the
aorta with distance down the vessel may indicate that there is a closed-end type of reflection
at (or beyond) the iliac bifurcation. Peaking of the pressure pulse is a consequence of the
closed-end type of reflection in a blood vessel.

Waves in more complex systems consisting of many branches may be analyzed by
repeated application of the results presented in this section.

Next, we will study blood flow in curved tubes. Almost all blood vessels have curvature
and the curvature affects both the nature (stability) and volume flow rate.

Flow in a Rigid-Walled Curved Tube

Blood vessels are typically curved and the curvature effects have to be accounted for in
modeling in order to get a realistic understanding. The aortic arch is a 3D bend twisting
through more than 180� (Ku, 1997). In a curved tube, fluid motion is not everywhere parallel
to the curved axis of the tube (see Figure 16.17), secondary motions are generated, the
velocity profile is distorted, and there is increased energy dissipation. However, curving of
a tube increases the stability of flow, and the critical Reynolds number increases significantly,
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and a critical Reynolds number of 5000 is easily obtained (see McDonald, 1974). Flows in
curved tubes are discussed in detail by McConalogue and Srivastava (1968), Singh (1974),
Pedley (1980), and Berger et al. (1983). In this section, we concentrate on some of the most
important aspects of flow in a uniformly curved vessel of small curvature. The wall is consid-
ered to be rigid. Pulsatile flow through a curved tube can induce complicated secondary
flows with flow reversals and is very difficult to analyze. It may be noted that steady viscous
flow in a symmetrical bifurcation resembles that in two curved tubes stuck together. Thus, an
understanding gained in studying curved flows will be beneficial in that regard as well.

Consider fully developed, steady, laminar, viscous flow in a curved tube of radius a and
a uniform radius of curvature R. Let us employ the toroidal coordinate system (r0, a, q),
where r0 denotes the distance from the center of the circular cross section of the pipe, a is
the angle between the radius vector and the plane of symmetry, and q is the angular
distance of the cross section from the entry of the pipe (see Figure 16.18). Let the corre-
sponding dimensional velocity components be (u0, v0, w0). As a fluid particle traverses
a curved path of radius R (radius of curvature) with a (longitudinal) speed w0 along the q

direction, it will experience a lateral (centrifugal) acceleration of w02/R, and a lateral force
equal to mp w

02/R, where mp is the mass of the particle. The radii of curvature of the particle
paths near the inner bend, the central axis, and the outer bend will be of increasing magni-
tude as we move away from the inner bend. Also, due to the no-slip condition, the veloc-
ities, w0, of particles near the inner and outer bends will be lower, while that of the
particle at the central axis will be the highest. The particle at the central axis will experience
the highest centrifugal force while that near the outer bend will experience the least. A
lateral pressure gradient will cause the faster flowing fluid near the center to be swept
toward the outside of the bend and to be replaced at the inside by the slower moving fluid
near the wall. In effect, a secondary circulation will be set up resulting in two vortices,

FIGURE 16.17 Schematic
of flow in a curved tube. Here
the radius of curvature isR and
the curve of the tube causes
a secondary flow within the
tube.
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called Dean vortices because Dean (1928) was the first to systematically study these
secondary motions in curved tubes (see Figure 16.17). Dean vortices significantly influence
the axial flow. The wall shear near the outside of the bend is relatively higher than the
(much reduced) wall shear on the inside of the bend. Fully developed flow upstream of
or through curved tubes exhibits velocity that skews toward the outer wall of the bend.
For most arterial flows, skewing will be toward the outer wall. If the flow into the entrance
region of a curved tube is not developed, then the inviscid core of the fluid in the curve can
act like a potential vortex with velocity skewing toward the inner wall.

Secondary flow in curved tubes is utilized in heart-lung machines to promote oxygenation
of blood (Fung, 1997). In the machine, blood flows inside the curved tube and oxygen flows
on the outside. The tube is permeable to oxygen. The secondary flow in the tube stirs up the
blood and results in faster oxygenation.

Let us now analyze the flow in a curved tube to better understand the salient features.

Introduce nondimensional variables, r ¼ r0/a, s ¼ Rq/a, u ¼ u0=W0, and p ¼ p0=rW2
0 , where

u ¼ (u, v, w) is the velocity vector, P is the pressure, r is the density, and W0 is the mean axial
velocity in the pipe. Restrict consideration to the case where the flow is fully developed
(vu/vs ¼ 0). Introduce the dimensionless ratio,

FIGURE 16.18 Toroidal coordinate system. This coordinate system is needed to analyze the flow in a round
tube with radius a that has a constant radius of curvature R.
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d ¼ radius of tube cross section

radius of curvature of the centerline
¼ a

R
: (16.164)

We restrict consideration to a uniformly curved tube, d ¼ constant, andwith a slight curva-
ture (weakly curved) d � 1. Since d is a constant, the velocity field is independent of s, the
components are functions only of r and a, and the pressure gradient vp/vs is independent
of s. With d constant, the only way that the transverse velocities are affected by the axial
velocity is through the centrifugal force, and it is the centrifugal force that drives the
secondary motion. This means that the centrifugal force terms must be of the same
order of magnitude as the viscous and inertial terms in the momentum equation, and
this requires rescaling the velocities. The transformation that accomplishes this is

ðu, v, wÞ/ð ffiffiffi

d
p
bu,

ffiffiffi

d
p
bv, bw). We will also let s ¼ Rq=a ¼ ffiffiffiffiffiffiffiffi

1=d
p

~s for convenience.
In the following, we shall omit writing the “^” on u, v, w, and the “~” on s for convenience.

When d� 1, the major contribution to the axial pressure gradient may be separated from the
transverse component, and we may write

p ¼ p0ðsÞ þ dp1ðr, a, sÞ þ.: (16.165)

Under all these restrictions, the governing equations become:

vu

vr
þ u

r
þ 1

r

vv

va
¼ 0, (16.166)

u
vu

vr
þ v

r

vu

va
� v2

r
� w2 cos a ¼ �vp1

vr
� 2

k

1

r

v

va

�

vv

vr
þ v

r
� 1

r

vu

va

�

, (16.167)

u
vv

vr
þ v

r

vv

va
þ uv

r
þ w2 sin a ¼ �1

r

vp1
va

þ 2

k

v

vr

�

vv

vr
þ v

r
� 1

r

vu

va

�

, (16.168)

u
vw

vr
þ v

r

vw

va
¼ �vp0

vs
þ 2

k

 

v2w

vr2
þ 1

r

vw

vr
þ 1

r2
v2w

va2

!

: (16.169)

The boundary conditions are:

u ¼ v ¼ w ¼ 0 at r ¼ 1, no singularity at r ¼ 0: (16.170)

The flow is governed by just one parameter k in the equations, and it is called the Dean
number. It is given by

k ¼
ffiffiffi

d
p 2 aW0

n
¼

ffiffiffi

d
p

2Re, (16.171)

where W0 is the mean axial velocity in the pipe. The Dean number is the Reynolds number
modified by the pipe curvature. The appearance of the 2 in the definition of the Dean number
is by convention. At higher Dean numbers, the flow can separate along the inner boundary
curve.

There are many different definitions of Dean number in the literature and the reader must
be careful to see which particular form is being used in any given discussion.
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From (16.169), vp0/vs is independent of s, and P0 can be written as P0 (s) ¼ eG s, where
G is a constant. Equation (16.166) admits the existence of a stream function for the secondary
flow, j, defined by

u ¼ 1

r

vj

va
, v ¼ �vj

vr
: (16.172)

Substitution of (16.172) into (16.169) yields

V2
1w� k

2

vp0
vs

¼ k

2r

�

vj

va

vw

vr
� vj

vr

vw

va

�

, (16.173)

while elimination of pressure from (16.167) and (16.168) yields

2

k
V4
1j� 1

r

�

vj

vr

v

va
� vj

va

v

vr

�

V2
1j ¼ �2w

�

sin a
vw

vr
þ cos a

r

vw

va

�

, (16.174)

where

V2
1j ¼ v2

vr2
þ 1

r

v

vr
þ 1

r2
v2

va2
: (16.175)

The boundary conditions are:

j ¼ vj

vr
¼ w ¼ 0, at r ¼ 1: (16.176)

Equations (16.173) and (16.174) subject to conditions (16.176) have to be solved.
For small Dean number, following Dean (1928), we expand w and j in terms of a series in

powers of the Dean number as follows:

w ¼
X
N

n¼0

k2nwnðr, aÞ, and j ¼ k
X
N

n¼0

k2njnðr, aÞ: (16.177)

The w0 term corresponds to Poiseuille flow in a straight tube with rigid walls. The j0

term is O(k). The series expansion in k is equivalent to the successive approximation of
inertia terms in lubrication theory. The leading term in the secondary flow takes the
form of a pair of counter-rotating helical vortices, placed symmetrically with respect to
the plane of symmetry. This flow pattern arises because of a centrifugally induced pres-
sure gradient, approximately uniform over the cross section. The dimensionless volume
flux is

Q

pa2W
¼ 1� 0:0306

�

K

576

�2

þ 0:0120

�

K

576

�4

þO
�

K6
�

, (16.178)

where K ¼ (2a/R)(Wmaxa/n)
2 ¼ 2(k)2 is another frequently used definition of Dean’s number.

Here, Wmax ¼ 2W ; Wmax and W are the maximum and mean velocities, respectively, in
a straight pipe of the same radius under the same axial pressure gradient and under fully
developed flow conditions. The first term corresponds to the Poiseuille straight pipe solution.
The effect of curvature is seen to reduce the flux.
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Many other authors define Dean’s number by

D ¼
ffiffiffiffiffi

2d
p bGa2

m

a

n
, (16.179)

where �bG is the dimensional pressure gradient,

bG ¼ �8mW

a2
: (16.180)

In terms of D, (16.178) becomes

Q

pa2W
¼ 1� 0:0306

�

D

96

�4

þ 0:0120

�

D

96

�8

þ O
�

D12
�

: (16.181)

Next, consider the friction factor for flow in a curved tube. Let lc and ls denote the flow
resistance in a curved and a straight pipe, respectively, while the flows are subject to pressure
gradients equal in magnitude. The ratio l is

l ¼ lc

ls
¼
�

Qc

Qs

��1

¼ 1þ 0:0306

�

K

576

�2

� 0:0110

�

K

576

�4

þ., (16.182)

whereQc and Qs are the fluxes in straight and curved pipes, respectively. The flow resistance
in a curved tube is not affected by the first-order terms and is increased only by higher order
terms. With regard to shear stress, the curvature increases axial wall shear on the outside wall
and decreases it on the inside, and it also generates a positive secondary shear in the
a direction.

The size of the coefficients suggests that the small D expansion is valid for values of D
up to about 100 or K z 600, and the results here are useful only for smaller blood vessels.
Pedley points out that in the canine aorta, where d z 0.2, the mean D is greater than
2000. As mentioned earlier, flow in a curved tube is much more stable than that in
a straight tube and the critical Reynolds number could be as high as 5000 which corre-
sponds to K z 1.6 � 106.

For intermediate values of D, only numerical solutions are possible due to the impor-
tance of nonlinear terms. Numerical results of Collins and Dennis (1975) for developed
flow up to a Dean number of 5000 are stated to compare very well with experimental
results. At intermediate values of D, a boundary layer develops on the outside wall of
the bend where the axial shear is high. The secondary flow in the core is approximately
uniform and continues to manifest a two-vortex structure. At higher values of D, there is
greater distortion of the secondary streamlines. The wall shear at r ¼ 1, a ¼ 0, is propor-
tional to D (z0.85D); see Pedley (2000).

At large Dean numbers, the centers of the two vortices move toward the outer bend, a ¼ 0,
and the flow is very much reduced compared with a straight pipe for equal magnitude pres-
sure gradients. Detailed studies using advanced computational methods are required to
resolve the flow structure at large D. They are as yet unavailable in the published literature.

Pedley (2000) discusses nonuniqueness of curved-tube flow results. WhenD is sufficiently
small, the steady-flow equations have just one solution and there is a single secondary flow
vortex in each half of the tube. However, there is a critical value ofD, above which more than
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one steady solution exists and these may correspond to four vortices, two in each half. Again,
detailed computational studies are necessary to resolve these features.

We will next study the flow of blood in collapsible tubes. The role of pressure difference,
(Pe e P(x)), on the vessel wall will be significant in such flows.

Flow in Collapsible Tubes

At large negative values of the transmural pressure difference (the difference between the
pressure inside and the pressure outside), the cross-sectional area of a blood vessel is either
very smalldthe lumen being reduced to two narrow channels separated by a flat region of
contact between the opposite wallsdor it may even fall to zero. There is an intermediate
range of values of transmural pressure difference in which the cross section is very compliant
and even the small viscous or inertial pressure drop of the flow may be enough to cause
a large reduction in area, that is, collapse. Collapse occurs in a number of situations; a listing
is given by Kamm and Pedley (1989). Collapse occurs, for example, in systemic veins above
the heart (and outside the skull) as a result of the gravitational decrease in internal pressure
with height; intramyocardial coronary blood vessels during systole; systemic arteries
compressed by a sphygmomanometer cuff, or within the chest during cardiopulmonary
resuscitation; pulmonary blood vessels in the upper levels of the lung; large intrathoracic
airways during forced expiration or coughing; and the urethra during micturition and in
the ureter during peristaltic pumping. Collapse, therefore occurs both in small and large
blood vessels, and as a result both at low and high Reynolds numbers. In certain cases, at
high Reynolds number, collapse is accompanied by self-excited, flow-induced oscillations.
There is audible sound. For example, Korotkoff sounds heard during sphygmomanometry
are associated with this.

A Note on Korotkoff Sounds

Korotkoff sounds, named after Dr. Nikolai Korotkoff, a physician who described them in
1905, are sounds that physicians listen for when they are taking blood pressure. When the
cuff of a sphygmomanometer is placed around the upper arm and inflated to a pressure
above the systolic pressure, there will be no sound audible because the pressure in the
cuff would be high enough to completely occlude the blood flow. If the pressure is now
dropped, the first Korotkoff sound will be heard. As the pressure in the cuff is the same
as the pressure produced by the heart, some blood will be able to pass through the upper
arm when the pressure in the artery rises during systole. This blood flows in spurts as the
pressure in the artery rises above the pressure in the cuff and then drops back down, result-
ing in turbulence that results in audible sound. As the pressure in the cuff is allowed to fall
further, thumping sounds continue to be heard as long as the pressure in the cuff is between
the systolic and diastolic pressures, as the arterial pressure keeps on rising above and drop-
ping back below the pressure in the cuff. Eventually, as the pressure in the cuff drops
further, the sounds change in quality, then become muted, then disappear altogether
when the pressure in the cuff drops below the diastolic pressure. Korotkoff described
five types of Korotkoff sounds. The first Korotkoff sound is the snapping sound first heard
at the systolic pressure. The second sounds are the murmurs heard for most of the area
between the systolic and diastolic pressures. The third and the fourth sounds appear at
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pressures within 10 mm Hg above the diastolic blood pressure, and are described as
“thumping” and “muting.” The fifth Korotkoff sound is silence as the cuff pressure drops
below the diastolic pressure. Traditionally, the systolic blood pressure is taken to be the
pressure at which the first Korotkoff sound is first heard and the diastolic blood pressure
is the pressure at which the fourth Korotkoff sound is just barely audible. There has recently
been a move toward the use of the fifth Korotkoff sound (i.e., silence) as the diastolic pres-
sure, as this has been felt to be more reproducible.

Starling Resistor: A Motivating Experiment for Flow in Collapsible Tubes

The study of flows in collapsible tubes is facilitated by a well-known experiment
carried out under varying conditions by different researchers. In the experiment,
a length of uniform collapsible tube is mounted at each end to a shorter length of rigid
tube and is enclosed in a chamber whose pressure pe can be adjusted. Fluid, say water,
flows through the tube. The inlet and outlet pressures at the ends of the collapsible tube
are p1 and p2. The volume rate of flow is Q. The pressures and the flow rate are next
varied in a systematic way and the results are noted. The setup described is called
a Starling resistor after physiologist Starling (see Fung, 1997). This experiment will
enable us understand some aspects of actual flows in physiological systems. There
are many different versions of the description of the Starling resistor experiment in
the literature. The experiments have been carried out under both steady flow and
unsteady flow conditions. We will describe the experiments as reported by Kamm
and Pedley (1989).

CASE (1): (P1 e P2) IS INCREASED WHILE (P1 e PE) IS HELD CONSTANT

This is accomplished either by reducing p2 with p1 and pe fixed, or by simultaneously
increasing p1 and pe while p2 is held constant. With either procedure, Q at first increases,
but above a critical value it levels off and the condition of flow limitation is reached. In
this condition, however much the driving pressure is increased the flow rate remains
constant, or it may even fall as a result of increasingly severe tube collapse. This exper-
iment is relevant to forced expiration from the lung, to venous return, and to
micturition.

CASE (2): (P1 e P2) OR Q IS INCREASED WHILE (P2 e PE) IS HELD CONSTANT AT

SOME NEGATIVE VALUE

In this case, the tube is collapsed at low flow rates, but starts to open up from the upstream
end asQ increases above a critical value, so that the resistance falls and (p1e p2) ceases to rise.
This is termed pressure-drop limitation. This experiment does not seem to apply to any partic-
ular physiological condition.

CASE (3): (P1 e P2) IS HELD CONSTANT WHILE (P2 e PE) IS DECREASED FROM

A LARGE POSITIVE VALUE

In this case, the tube first behaves as though it were rigid and the flow rate is nearly
constant. Then as (p2 e pe) becomes sufficiently negative to produce partial collapse, the
resistance rises and Q begins to fall. This experiment is relevant to pulmonary capillary
flows.
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CASE (4): PE FIXED

The outlet end is connected to a flow resistor. The pressure downstream of the flow resistor
is fixed (flow is exposed to atmosphere). Thus p2 is equal to atmospheric pressure plus Q
times the fixed resistance; p1 is varied.

In this case, p2 varies with Q due to the presence of a fixed downstream resistance. The
degree of tube collapse (progressive collapse) also varies with Q for the same reason. At
high flow rates, the tube is distended and its resistance is low. As the flow rate is reduced below
a critical value the tube starts to collapse. Its resistance and (p1 e p2) both increase as Q is
decreased. Only when the tube is severely collapsed alongmost of its length does (p1e p2) start
to decrease again as Q approaches zero. When p1 is approximately equal to pe, virtually the
entire tube is collapsed (Fung, 1997). The tube often flutters in Case 4 (see discussions in Fung).

CASE (5): UNSTEADY FLOW EXPERIMENTS

Excepting at small Reynolds numbers, there is always some parameter range where flow
oscillations occur. The oscillations have a wide variety of modes.

The experiments reveal the importance of a tube law relating transmural pressure
difference with the area of cross section of the collapsible tube and the flow and pressure
drop limitations when analyzing collapsible tubes. Shapiro (1977a, 1977b) has developed
a comprehensive one-dimensional theory for steady flow based on a suitable tube law.
Kamm and Shapiro (1979) have extended it to unsteady flow in a collapsible tube. In
the following, we shall discuss the steady-flow theory.

One-Dimensional Flow Treatment

The equations describing one-dimensional flow in a collapsible tube are similar to those in
gas dynamics or channel flow of a liquid with a free surface (see Shapiro, 1977a). Here, we
will study the one-dimensional, steady-flow formulation for the collapsible tube. However,
first let us recapitulate the traditional basic equations for one-dimensional flow in a smoothly
varying elastic tube (see “Pulse Wave Propagation in an Elastic Tube: Inviscid Theory” in
Section 16.3).

We studied flow in an elastic tube with cross section A(x, t) and longitudinal velocity
u(x, t). The constant external pressure on the tube was set at pe. The primary mechanism
of unsteady flow in the tube was wave propagation. The transmural pressure difference
(p e pe) was related to the local cross-sectional area by a “tube law” which involved
hoop tension, which may be expressed as

ðp� peÞ ¼ bPðAÞ, (16.183)

where the functional form bP depends on data. For disturbances of small amplitude and long
wavelength compared to the tube diameter:

A ¼ A0 þ A0, p� pe ¼ bPðA0Þ þ p0, jA0 j � A0, j p0 j � bPðA0Þ, (16.184)

and the wave speed is given by

c2 ¼ A

r

dbP

dA
¼ A

r

d
�

p� pe
�

dA
: (16.185)
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Tube collapse is associated with negative transmural pressure difference, and the pres-
sure difference is supported by bending stiffness of the tube wall (see Figure 16.19).
Contrast this with positive transmural pressure difference discussed earlier, which was sup-
ported by hoop tension. Following Shapiro (1977a), introduce

P ¼
�

p� pe
�

Kp
, and a ¼ A

A0
, (16.186)

where Kp is a parameter proportional to the bending stiffness of the wall material, and A0

is the reference area of the tube for zero transmural pressure difference. The pressure
difference is supported primarily by the bending stiffness of the tube wall. For a linear
elastic tube wall material, Kp is proportional to the modulus of elasticity E, and the
bending moment of inertia I, as in

FIGURE 16.19 Behavior of a collapsible tube. Here a is the tube area ratio and is 1 when the pressure inside the
tube is greater than the pressure outside the tube. The vertical axis is proportional to the interior minus exterior
pressure difference. As the pressure in the tube decreases, the available cross-sectional area is reduced, and
this reduction takes place rapidly when the tube collapses. Reproduced with permission from the American Society of

Mechanical Engineers, NY.
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KpfEI, I ¼ ðh=a0Þ3=ð1� bn2Þ, (16.187)

where h is wall thickness and bn is Poisson’s ratio.
From a fit of experimental data (see Shapiro, 1977a), the tube law for flow in a collapsible

tube is taken to be

�Pza�n � 1, and n ¼ 3

2
: (16.188)

For P < 0, the tube is partially collapsed. If the tube is in longitudinal tension, say, TL, then
there will be a local curvature RL in the longitudinal plane. The effect of TL is to change Pe

by TL/RL, and the tube law (16.188) will not hold (see Cancelli & Pedley, 1985). We will
here assume that TL/R � (p epe). Now, if the tube law (16.188) and transmural pressure
difference are assumed to be uniform along the length of the tube, then with (16.185), at
any location x, the phase velocity of long area waves is given by

c2 ¼ A

r

v
�

p� pe
�

vA
¼
"

nKpa
�n

r

#

, (16.189)

for the square of the wave speed.
The assumptions of uniformity of tube law and transmural pressure difference are not

valid under most physiological circumstances and these have to be relaxed. The physical
causes that negate uniformity include: friction, gravity, variations of external pressure or
of muscular tone, longitudinal variations in A0, and longitudinal changes in the mechanical
properties of the tube. To address some of these issues, we consider a more general formu-
lation given by Shapiro.

The flow will still be considered steady, one dimensional, and incompressible.
The governing equations now are:

dA

A
þ du

u
¼ 0, (16.190)

and

�Adp� swsdx� rgAdz ¼ rAudu ¼ rAu2
du

u
, (16.191)

where sw is the wall shear stress, s is the perimeter of the tube, and z is the elevation in the
gravity field g. For the shear stress, Shapiro (1977a) considers the cases of fully developed
turbulent flow and fully developed laminar Poiseuille flow in the tube. For turbulent flow,

swsdx
A

¼ 1

2
ru2

4fT dx

de
, (16.192)

where de ¼ 4A/s is the equivalent hydraulic diameter and fT is skin friction coefficient for
turbulent flow, while for laminar flow:

swsdx
A

¼ mu

d0

1

a

4f 0Ldx
d0

, where f 0LðaÞ ¼
�

A

Ae

�

fL, (16.193)

and d0 is the diameter for A0, and fL is laminar skin friction coefficient.
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With (16.190), (16.191) may be written

d ðpþ rgzÞ þ swsdx
A

� ru2
dA

A
¼ 0, (16.194)

where the appropriate expression for the shear stress must be introduced depending on the
nature of the flow.

Shapiro (1977a) introduces a dimensionless speed index, S:

S ¼ u

c
, so that

 

dS2

S2

!

¼ 2
du

u
� 2

dc

c
: (16.195)

This index facilitates in the development of the theory and in the interpretation of results. Its
role is comparable in significance to that of Mach number and Froude number in gas
dynamics and in free-surface channel flow, respectively (Shapiro, 1977a). By analogy with
gas dynamics, in steady flow, when S < 1 (subcritical), friction causes the area and pressure
to decrease in the downstream direction, and the velocity to increase. When S > 1 (supercrit-
ical), the area and pressure increase along the tube, while the velocity decreases. In general,
whatever the effect of changes of A0, Pe, z, etc., in a subcritical flow, the effect is of opposite
sign in supercritical flow. For example, let Pe be increased while all other independent vari-
ables such as A0, elasticity, etc., are held constant. Then A and p will decrease for S < 1, but
they will increase for S> 1.When S ¼ 1, choking of flow and flow limitation as at the throat of
a Laval nozzle will occur. Again, as in gas dynamics, there is the possibility of continuous
transitions from supercritical to subcritical flow, and also rapid transitions from supercritical
to subcritical as in shock waves.

In the steady-flow problem, the known quantities are dA0, dPe, gdz, fdx, dKp, vP/vx, and
vP/va, while the unknowns are du, dA, dp, da, dS, and so on.

In order to develop the final set of equations relating the dependent and independent vari-
ables, a number of useful relationships may be established between the differential
quantities.

The external pressure is pe(x), dpe ¼ (dpe/dx) dx, the area A0 ¼ A0(x), and dAe ¼ (dA0/dx) dx.
Since a ¼ A/A0,

da

a
¼
�

dA

A
� dA0

A0

�

: (16.196)

The bending stiffness parameter is Kp ¼ Kp(x), dKp ¼ (dKp/dx) dx, and the tube law is

P ¼ p� pe
KpðxÞ ¼ P ða, xÞ, / dp ¼ dpe þ KpdPþ P dKp: (16.197)

The appropriate form of (16.185) is

c2ðA, xÞ ¼ A

r

�

v
�

p� pe
�

vA

�

x

/ c2ða, xÞ ¼ a

r
Kp

vP

va

	

	

	

x¼constant
: (16.198)

In (16.197),

dP ¼ vP

va
daþ vP

vx
dx: (16.199)
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With (16.198) and (16.199), (16.197) becomes

dp ¼ dpe þ rc2
da

a
þ Kp

vP

vx
dxþ Pd Kp: (16.200)

With (16.198) and (16.197), we obtain

2
dc

c
¼
 

1þ av2P=va2

vP=va

!

da

a
þ dKp

Kp
þ aKp

rc2
v

vx

�

vP

vx

�

dx, (16.201)

and, with (16.195), (16.196) becomes
 

dS2

S2

!

¼ �2
da

a
� 2

dA0

A0
� 2

dc

c
: (16.202)

We now have (16.194), (16.196), (16.200), (16.201), and (16.202). With these, Shapiro
(1977a) developed a series of equations that relate each dependent variable as a linear
sum of terms, each containing an independent variable multiplied by appropriate coeffi-
cients (influence coefficients by analogy with one-dimensional gas dynamics). A compre-
hensive listing of equations is provided in the paper by Shapiro. From the listing, the
most important dependent variables turn out to be da/dx and dS2/dx. Once these are
known, other dependent quantities such as P, u, and c may be calculated easily. We now
list these equations.

Let us consider cases where P is just a function of a alone, that is, P(a). For the tube law,

p� peðxÞ ¼ KpðxÞPðaÞ, (16.203)

the equation governing the variation in a is

ð1� S2Þ1
a

da

dx
¼ S2

A0

dA0

dx
� 1

rc2

�

dpe
dx

þ rg
dz

dx
þ RQþ P

dKp

dx

�

, (16.204)

where R is viscous resistance per unit length (laminar or turbulent) andQ is flow rate, and the
equation governing the speed index is

ð1� S2Þ 1

S2
dS2

dx
¼ 1

A0

dA0

dx
½�2þ ð2�MÞS2�

þ M

rc2

�

dpe
dx

þ rg
dz

dx
þ RQ

�

,

þ 1

rc2
dKp

dx

�

MP� ð1� S2Þa dP

da

�

,

(16.205)

where

M ¼ 3þ av2P=va2

vP=va
: (16.206)
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The equations for da/dx and dS2/dx are coupled and must be solved simultaneously by
using numerical procedures. Shapiro (1977a) has included results for several limit cases.
These include several examples in which a smooth transition through the critical condition
S ¼ 1 is possible, that is, continuous passage of flow from regime S < 1 through S ¼ 1 into
S > 1 might occur. Figure 16.20 shows the transition from subcritical to supercritical flow
by means of a minimum in the neutral area A0. The pressure decreases continuously in the
axial direction, and the area A of the deformed cross section would also decrease continu-
ously in the axial direction. Figure 16.20 shows the transition through S ¼ 1 caused by
a weight or clamp, a sphincter or pressurized cuff, due to changing pe. The fluid pressure
and the area both decrease continuously in the axial direction. S ¼ 1 occurs in the region
where a sharp constriction exists.

Pedley (2000) points out that when S ¼ 1, the right-hand side of (16.205) is �M times that
of (16.204). Therefore, at S ¼ 1 , it is possible for da/dx or dS2/dx to be nonzero as long as the
right-hand sides are zero. Of the terms on the right-hand side, RQ is associated with friction
and is always positive. This means that at least one of d (pe þ rgz)/dx, dKp/dx, or �dA0/dx

FIGURE: 16.20 Smooth transition through the critical condition. In each case the fluid speed increases and the
pressure drops continuously as the area decreases. Reproduced with permission from the American Society of Mechanical

Engineers, NY.
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should be negative, that is, the external pressure, the height, or the stiffness should decrease
with x or the undisturbed cross-sectional area should increase. An example where dz/dx in
a vertical collapsible tube is negative (¼ �1) is the jugular vein of an upright giraffe and this
problem has been discussed in detail by Pedley. Apparently, the giraffe jugular vein is nor-
mally partially collapsed!

In the next section, we learn about the modeling of a Casson fluid flow in a tube. We recall
that blood behaves as a non-Newtonian fluid at low shear rates below about 200/s, and the
apparent viscosity increases to relatively large magnitudes at low rates of shear. The
modeling of such a fluid flow is important and will enable us to understand blood flow at
various shear rates.

Laminar Flow of a Casson Fluid in a Rigid-Walled Tube

As shear rates decrease below about 200/s, the apparent viscosity of blood rapidly
increases (see Figure 16.7). As mentioned earlier, the variation of shear stress in blood flow
with shear rate is accurately expressed by (16.6):

s1=2 ¼ s1=2y þ Kc _g
1=2, for s � sy, and _g ¼ 0, for s < sy, (16.207)

where sy and Kc are determined from viscometer data. The yield stress sy for normal blood
at 37�C is about 0.04 dynes/cm2. In modeling the flow, this behavior must be included.

Consider the steady laminar axisymmetric flow of a Casson fluid in a rigid-walled, hori-
zontal, cylindrical tube under the action of an imposed pressure gradient, (p1 � p2) /L. We
shall employ cylindrical coordinates (r, q, x) with velocity components (uy, uq, and ux), respec-
tively. With the assumption of axisymmetry, ðuq ¼ 0, and v=vq ¼ 0Þ For convenience, we
write the uy component as v, and we omit the subscript x in ux.

The maximum shear stress in the flow, sw, would be at the vessel wall. If the magnitude of
sw is equal to or greater than the yield stress, sy, then there will be flow. We may estimate the
minimum pressure gradient required to cause flow of a yield stress fluid in a cylindrical tube
by a straightforward force balance on a cylindrical volume of fluid of radius r and length Dx.
For steady flow, the viscous force opposing motion must be balanced by the force due to the
applied pressure gradient. Thus,

srx 2pr Dx ¼ �pr2
�

pjxþDx � pjx
�

, (16.208)

and, as Dx / 0,

srxðrÞ ¼ r

2

dp

dx
¼

�

p1 � p2
�

r

2L
: (16.209)

The shear stress at the wall, sw ¼ � (a/2) (dp/dx) ¼ (p1 � p2)a/2L. When sy is equal to or less
than sw, there will be fluid motion. The minimum pressure differential to cause flow is given
by (p1 � p2)jmin ¼ 2Lsy/a. With sy ¼ 0.04 dynes/cm2, for a blood vessel of L/a ¼ 500, the
minimumpressure drop required for flow is 0.04 dynes/cm2 or 0.03mmHg. Recall that during
systole, the typical pressures in the aorta and the pulmonary artery rise to 120 mm Hg and
24 mm Hg, respectively.
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For axisymmetric blood flow in a cylindrical tube, at low shear rates, the fully developed
flow is noted to consist of a central core region where the shear rate is zero and the velocity
profile is flat, surrounded by a region where the flow has a varying velocity profile (see
Figure 16.21). In the core, the fluid moves as if it were a solid body (also called plug flow).

Let the radius of this core region be ac. Then,

s ¼ sy at r ¼ ac, and _g ¼ 0 for 0 � r < ac,

ac ¼ 2Lsy=ðp1 � p2Þ ¼ a

�

sy
sw

�

,

s1=2 ¼ s1=2y þ Kc _g
1=2 for ac < r � a: (16.210)

In the core region, _g ¼ 00ðdu=drÞ ¼ 00u ¼ constant ¼ uc ðsayÞ.
Outside the core region, the velocity is a function of r only, and

_g ¼ �du

dr
¼
h

sþ sy � 2
ffiffiffiffiffiffiffissy

p i

K2
c

: (16.211)

Let (p1 e p2) ¼ Dp, s ¼ Dp r/2L, and sy ¼ Dp ac/2L. From (16.211),

�du

dr
¼ 1

2K2
c

Dp

L
ðrþ ac � 2

ffiffiffiffiffiffi

rac
p Þ: (16.212)

By integration,

u ¼ 1

2K2
c

Dp

L

�

4

3

ffiffiffiffiffiffiffiffi

acr3
p

� r2

2
� acrþ C

�

, (16.213)

where C is the integration constant. With the no-slip boundary condition at the wall of the
vessel, u ¼ 0 at r ¼ a:

C ¼ �
�

4

3

ffiffiffiffiffiffiffiffi

aca3
p

� a2

2
� aca

�

: (16.214)

FIGURE 16.21 Velocity profile for axisymmetric blood flow in a circular tube. Here the profile is flattened in the
center of the tube because of the non-Newtonian character of blood.
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Therefore,

u ¼ 1

4K2
c

Dp

L

�

�

a2 � r2Þ � 8

3

ffiffiffiffi

ac
p �

ffiffiffiffiffi

a3
p

�
ffiffiffiffi

r3
p 

þ 2acða� rÞ
�

, (16.215)

in (ac � r � a). With u ¼ uc at r ¼ rc, in terms of sw and sy, (16.215) becomes

u ¼ asw
2K2

c


�

1�
�r

a

2
�

� 8

3
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in (ac � r � a). We get the velocity in the core, uc, by setting:
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in (16.216). In terms of pressure gradient, a and ac, uc becomes
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The volume rate of flow is given by

Q ¼ pa2cuc þ
Z a

ac

2prudr: (16.219)

After considerable algebra,
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The Casson model predicts results that are in very good agreement with experimental
results for blood flow over a large range of shear rates (see Charm & Kurland, 1974).

Pulmonary Circulation

Pulmonary circulation is the movement of blood from the heart, to the lungs, and back
to the heart again. The veins bring oxygen-depleted blood back to the right atrium. The
contraction of the right ventricle ejects blood into the pulmonary artery. In the human
heart, the main pulmonary artery begins at the base of the right ventricle. It is short
and widedapproximately 5 cm in length and 3 cm in diameter, and extends about
4 cm before it branches into the right and left pulmonary arteries that feed the two lungs.
The pulmonary arteries are larger in size and more distensible than the systemic arteries
and the resistance in pulmonary circulation is lower. In the lungs, red blood cells release
carbon dioxide and pick up oxygen during respiration. The oxygenated blood then leaves
the lungs through the pulmonary veins, which return it to the left heart, completing the
pulmonary cycle. The pulmonary veins, like the pulmonary arteries, are also short, but
their distensibility characteristics are similar to those of the systemic circulation (Guyton,
1968). The blood is then distributed to the body through the systemic circulation before
returning again to the pulmonary circulation. The pulmonary circulation loop is virtually
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bypassed in fetal circulation. The fetal lungs are collapsed, and blood passes from the
right atrium directly into the left atrium through the foramen ovale, an open passage
between the two atria. When the lungs expand at birth, the pulmonary pressure drops
and blood is drawn from the right atrium into the right ventricle and through the pulmo-
nary circuit.

The rate of blood flow through the lungs is equal to the cardiac output except for the
one to two percent that goes through the bronchial circulation (Guyton, 1968). Since
almost the entire cardiac output flows through the lungs, the flow rate is very high.
However, the low pulmonic pressures generated by the right ventricle are still sufficient
to maintain this flow rate because pulmonary circulation involves a much shorter flow
path than systemic circulation, and the pulmonary arteries are, as noted earlier, larger
and more distensible.

The nutrition to lungs themselves are supplied by bronchial arteries which are a part of
systemic circulation. The bronchial circulation empties into pulmonary veins and returns
to the left atrium by passing alveoli.

The Pressure Pulse Curve in the Right Ventricle

The pressure pulse curves of the right ventricle and pulmonary artery are illustrated in
Figure 16.22. As described by Guyton (1968), approximately 0.16 second prior to ventricular
systole, the atrium contracts, pumping a small quantity of blood into the right ventricle, and
thereby causing about 4 mm Hg initial rise in the right ventricular diastolic pressure even
before the ventricle contracts. Following this, the right ventricle contracts, and the right
ventricular pressure rises rapidly until it equals the pressure in the pulmonary artery. The
pulmonary valve opens, and for approximately 0.3 second blood flows from the right
ventricle into the pulmonary artery. When the right ventricle relaxes, the pulmonary valve
closes, and the right ventricular pressure falls to its diastolic level of about zero. The systolic

FIGURE 16.22 Pressure pulse contours in the right ventricle, and pulmonary artery. Reproduced with permission

from Guyton, A. C. and Hall, J. E. (2000), Textbook of Medical Physiology, W. B. Saunders Company, Philadelphia.
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pressure in the right ventricle of the normal human being averages approximately 22mmHg,
and the diastolic pressure averages about 0 to 1 mm Hg.

Effect of Pulmonary Arterial Pressure on Pulmonary Resistance

At the end of systole, the ventricular pressure falls while the pulmonary arterial pressure
remains elevated, then falls gradually as blood flows through the capillaries of the lungs. The
pulse pressure in the pulmonary arteries averages 14 mm Hg which is almost two-thirds as
much as the systolic pressure. Figure 16.23 shows the variation in pulmonary resistance with
pulmonary arterial pressure. At low arterial pressures, pulmonary resistance is very high and
at high pressures the resistance falls to low values. The rapid fall is due to the high distensi-
bility of the pulmonary vessels.

The ability of lungs to accommodate greatly increased blood flow with little increase in
pulmonary arterial pressure helps to conserve the energy of the heart. As described by Guy-
ton, the only reason for flow of blood through the lungs is to pick up oxygen and to release
carbon dioxide. The ability of pulmonary vessels to accommodate greatly increased blood
flow without an increase in pulmonary arterial pressure accomplishes the required gaseous
exchange without overworking the right ventricle.

In the earlier sections, we discussed several modeling procedures in relation to systemic
blood circulation. The modeling of the blood flow in pulmonary vessels is similar to what
we studied in those sections.

A discussion of gas and material exchange in the capillary beds is beyond the scope
of this introductory chapter. Additional information on this topic can be found in
Grotberg (1994).

FIGURE 16.23 Effect of pulmonary arterial pressure on pulmonary resistance. At low pressures, the lungs’
resistance drops dramatically, and this allows increased blood flow rates for moderate increases in pulmonary
arterial pressure. Reproduced with permission from Guyton, A. C. and Hall, J. E. (2000), Textbook of Medical Physiology,
W. B. Saunders Company, Philadelphia.
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16.4. INTRODUCTION TO THE FLUID MECHANICS OF PLANTS

Plant life comprises 99% of the earth’s biomass (Bidwell, 1974; Rand, 1983).
The basic unit of a plant is a plant cell. Plant cells are formed at meristems, and then

develop into cell types which are grouped into tissues. Plants have three tissue types: 1)
dermal; 2) ground; and 3) vascular. Dermal tissue covers the outer surface and is composed
of closely packed epidermal cells that secrete a waxy material that aids in the prevention of
water loss. The ground tissue comprises the bulk of the primary plant body. Parenchyma,
collenchyma, and sclerenchyma cells are common in the ground tissue. Vascular tissue trans-
ports food, water, hormones, and minerals within the plant.

Basically, a plant has two organ systems: 1) the shoot system, and 2) the root system. The
shoot system is above ground and includes the organs such as leaves, buds, stems, flowers,
and fruits. The root system includes those parts of the plant below ground, such as the roots,
tubers, and rhizomes. There is transport between the roots and the shoots (see Figure 16.24).

FIGURE 16.24 Overview of plant fluid mechanics. Transport of water and solutes between the leaves and
the roots through the vascular tissues is essential. Transpiration of water at the leaves actually helps to lift sap
from the roots. Reproduced with permission from Annual Review of Fluid Mechanics, Vol. 15 � 1983. Annual Reviews:
www.AnnualReviews.org.
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Transport in plants occurs on three levels: 1) the uptake and loss of water and solutes by
individual cells, 2) short-distance transport of substances from cell to cell at the level of
tissues or organs, and 3) long-distance transport of sap within xylem and phloem at the level
of the whole plant.

The transport occurs as a result of gradients in chemical concentration (Fickian diffu-
sion), hydrostatic pressure, and gravitational potential. These three driving potentials
are grouped under one single quantity, the water potential. The water potential is desig-
nated j, and

j ¼ p� RTcþ rgz, (16.221)

where p is hydrostatic pressure (bar), R is gas constant (¼ 83.141cm3 bar/mole K), T
is temperature (K), c is the concentration of all solutes in assumed dilute solution (mole/cm3),
r is density of water (g/cm3), g is acceleration due to gravity (¼ 980 cm/sec2), and z is height
(cm); j is in bars (Conversion: 1 bar ¼ 106 dyne/cm2).

Transport at the cellular level in a plant depends on the selective permeability of plasma
membranes which controls the movement of solutes between the cell and the extracellular
solution. Molecules move down their concentration gradient across a membrane without
the direct expenditure of metabolic energy (Fickian diffusion). Transport proteins embedded
in the membrane speed up the movement across the membrane. Differences in water poten-
tial, j, drive water transport in plant cells. Uptake or loss of water by a cell occurs by osmosis
across a membrane. Water moves across a membrane from a higher water potential to a lower
water potential. If a plant cell is introduced into a solution with a higher water potential than
that of the cell, osmotic uptake of water will cause the cell to swell. As the cell swells, it will
push against the elastic wall, creating a “turgor” pressure inside the cell. Loss of water causes
loss of turgor pressure and may result in wilting.

In contrast to the human circulatory system, the vascular system of plants is open. Unlike
the blood vessels of human physiology, the vessels (conduits) of plants are formed of indi-
vidual plant cells placed adjacent to one another. During cell differentiation the common
walls of two adjacent cells develop pores which permit fluid to pass between them. Vascular
tissue includes xylem, phloem, parenchyma, and cambium cells. Xylem and phloemmake up
the big transportation system of vascular plants. Long-distance transport of materials (such
as nutrients) in plants is driven by the prevailing pressure gradient.

In this section we restrict attention to the vascular system that includes xylem and phloem
cells.

Xylem

The term xylem applies to woody walls of certain cells of plants. Xylem cells tend to
conduct water and minerals from roots to leaves. Generally speaking, the xylem of a plant
is the system of tubes and transport cells that circulates water and dissolved minerals. Xylem
is made of vessels that are connected end to end to enable efficient transport. The xylem
contains tracheids and vessel elements (see Figure 16.25, from Rand, 1983). Xylem tissue
dies after one year and then develops anew (e.g., rings in the tree trunk).

Water and mineral salts from soil enter the plant through the epidermis of roots, cross the
root cortex, pass into the stele, and then flow up xylem vessels to the shoot system. The xylem
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flow is also called transpirational flow. Perforated end walls of xylem vessel elements enhance
the bulk flow.

The movement of water and solutes through xylem vessels occurs due to a pressure
gradient. In xylem, it is actually tension (negative pressure) that drives long-distance trans-
port. Transpiration (evaporation of water from a leaf) reduces pressure in the leaf xylem and
creates a tension that pulls xylem sap upward from the roots. While transpiration enables the
pull, the cohesion of water due to hydrogen bonding transmits the upward pull along the
entire length of the xylem from the leaves to the root tips. The pull extends down only
through an unbroken chain of water molecules. Cavitation, formation of water vapor pockets
in the xylem vessel, may break the chain. Cavitation will occur when xylem sap freezes in
water and as a result the vessel function will be compromised. Absorption of solar energy
drives transpiration by causing water to evaporate from the moist walls of mesophyll cells
of a leaf and by maintaining a high humidity in the air spaces within the leaf. To facilitate
gas exchange between the inner parts of leaves, stems, and fruits, plants have a series of open-
ings known as stomata. These enable exchange of water vapor, oxygen, and carbon dioxide.

The pressure gradient for transpiration flow is essentially created by solar power, and in
principle, a plant expends no energy in transporting xylem sap up to the leaves by bulk flow.
The detailed mechanism of transpiration from a leaf is very complicated and depends on the
interplay of adhesive and cohesive forces of water molecules at mesophyll celleair space
interfaces, resulting in surface tension gradients and capillary forces. This will not be dis-
cussed in this section.

FIGURE 16.25 Fluid-conducting cells in the vascular tissue of plants. Reproduced with permission from Annual
Review of Fluid Mechanics, Vol. 15 � 1983. Annual Reviews: www.AnnualReviews.org.
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Xylem sap flows upward to veins that branch throughout each leaf, providing each with
water. Plants lose a huge amount of water by transpirationdan average-sized maple tree
loses more than about 200 liters of water per hour during the summer. Flow of water up
the xylem replaces water lost by transpiration and carries minerals to the shoots. At night,
when transpiration is very low, root cells are still expending energy to pump mineral ions
into the xylem, accumulation of minerals in the stele lowers water potential, generating
a positive pressure, called root pressure, that forces fluid up the xylem. It is the root pressure
that is responsible for guttation, the exudation of water droplets that can be seen in the
morning on tips of grass blades or leaf margins of some plants. Root pressure is not the
main mechanism driving the ascent of xylem sap. It can force water upward by only a few
meters, and many plants generate no root pressure at all. Small plants may use root pressure
to refill xylem vessels in spring. Thus, for the most part, xylem sap is not pushed from below
but pulled upward by the leaves.

Xylem Flow

Water and minerals absorbed in the roots are brought up to the leaves through the xylem.
The upward flow in the xylem (also called the transpiration flow) is driven by evaporation at
the leaves. In the xylem, the flow may be treated as quasi-steady. The rigid tube model for
flow description is appropriate because plant cells have stiff walls. The xylem is about
0.02 mm in radius and the typical values for flow are velocity 0.1 cm/s, the kinematic
viscosity of the fluid 0.1 cm2/s, and the Reynolds number, Re ¼ ud/v is 0.04. In view of
the low Reynolds number, the Stokes flow in a rigid tube approximation is appropriate.

Phloem

Phloem cells are usually located outside the xylem and conduct food from the leaves to
the rest of the plant. The two most common cells in the phloem are the companion cells and
sieve cells. Phloem cells are laid out end-to-end throughout the plant to form long tubes
with porous cross walls between cells. These tubes enable translocation of the sugars
and other molecules created by the plant during photosynthesis. Phloem flow is also called
translocation flow. Phloem sap is an aqueous solution with sucrose as the most prevalent
solute. It also contains minerals, amino acids, and hormones. Dissolved food, such as
sucrose, flows through the sieve cells. In general, sieve tubes carry food from a sugar source
(for example, mature leaves) to a sugar sink (roots, shoots, or fruits). A tuber or a bulb may
be either a source or a sink, depending on the season. Sugar must be loaded into sieve-tube
members before it can be exported to sugar sinks. Companion cells pass sugar they accu-
mulate into the sieve-tube members via plasmodesmata. Translocation through the phloem
is dependent on metabolic activity of the phloem cells (in contrast to transport in the
xylem).

Unlike the xylem, phloem is always alive. In contrast to xylem sap, the direction that
phloem sap travels is variable depending on locations of source and sink.

The pressure-flow hypothesis is employed to explain the movement of nutrients
through the phloem. It proposes that water-containing nutrient molecules flow under
pressure through the phloem. The pressure is created by the difference in water concen-
tration of the solution in the phloem and the relatively pure water in the nearby xylem
ducts.
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At their “source”dthe leavesdsugars are pumped by active transport into the
companion cells and sieve elements of the phloem. The exact mechanism of sugar trans-
port in the phloem is not known, but it cannot be simple diffusion. As sugars and other
products of photosynthesis accumulate in the phloem, the water potential in the leaf
phloem is decreased and water diffuses from the neighboring xylem vessels by osmosis.
This increases the hydrostatic pressure in the phloem. Turgor pressure builds up in the
sieve tubes (similar to the creation of root pressure). Water and dissolved solutes are
forced downward to relieve the pressure. As the fluid is pushed down (and up) the
phloem, sugars are removed by the cortex cells of both stem and root (the “sinks”)
and consumed or converted into starch. Starch is insoluble and exerts no osmotic effect.
Therefore, the osmotic pressure of the contents of the phloem decreases. Finally, relatively
pure water is left in the phloem. At the same time, ions are being pumped into the xylem
from the soil by active transport, reducing the water potential in the xylem. The xylem
now has a lower water potential than the phloem, so water diffuses by osmosis from
the phloem to the xylem. Water and its dissolved ions are pulled up the xylem by tension
from the leaves. Thus it is the pressure gradient between “source” (leaves) and “sink”
(shoot and roots) that drives the contents of the phloem up and down through the sieve
tubes.

Phloem Flow

Phloem flow occurs mainly through cells called sieve tubes which are arranged end to end
and are joined by perforated cell walls called sieve plates (see Figure 16.26, from Rand &
Cooke, 1978). As a model of Phloem flow, Rand et al. (1980) have derived an approximate
formula for the pressure drop for flow through a series of sieve tubes with periodically
placed sieve plates with pores (see Figure 16.27, from Rand et al., 1980). The approximation
arises from treating the transport through the pore as creeping conical flow (see Happel &
Brenner, 1983).

FIGURE 16.26 Sieve tube with sieve plate. These cells and cell structure convey phloem through the plant.
Reproduced with permission from the American Society of Agricultural Engineers, MI.
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The approximate formula given by Rand et al. (1980) is:

Dp ¼ 8mQ
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(16.222)

In (16.222), Dp is the pressure drop due to one sieve tube and one sieve plate, m is the
viscosity of fluid in (g/cms), Q is the flow rate in (cm3/s), N is the number of pores in
the sieve plate, a is sieve tube radius in cm, r is average radius of sieve pore in cm, L is
the sieve tube length in cm, [ is sieve plate thickness in cm, and the effective tube radius
ae ¼ a=

ffiffiffiffi

N
p

.
Rand et al. (1980) note that the approximate formula has not been tested for N s 1.

EXERCISES

16.1. Consider steady laminar flow of a Newtonian fluid in a long, cylindrical, elastic tube of
length L. The radius of the tube at any cross section is a ¼ a(x). Poiseuille’s formula for
the flow rate is a good approximation in this case.
a) Develop an expression for the outlet pressure p(L) in terms of the higher inlet

pressure, the flow rate _Q, fluid viscosity m, and a(x).
b) For a pulmonary blood vessel, we may assume that the pressure-radius

relationship is linear: a ðxÞ ¼ a0 þ ap=2, where a0 is the tube radius when the

FIGURE 16.27 Sieve tube with pores and stream lines for conical flow through one pore. This geometry was
used to derive the pressure drop formula (16.222) which is based on creeping conical flow. Reproduced with

permission from the American Society of Agricultural Engineers, MI.
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transmural pressure is zero and a is the compliance of the tube. For a tube of length
L, show that

_Q ¼ p

20maL

n

½að0Þ�5�½aðLÞ�5
o

,

where a (0) and a(L) are the values of a(x) at x ¼ 0 and x ¼ L, respectively.
16.2. For pulsatile flow in a rigid cylindrical tube of length L, the pressure drop Dp may be

expressed as: Dp ¼ f(L, a, r, m, u, U), where a is tube radius, r is density, m is viscosity,
u is frequency, and U is the average velocity of flow. Using dimensional analysis,
show that

Dp

rU2
¼ C1

�

L

a

�C2

ðReÞC3ðStÞC4 ,

where C1, C2, C3, and C4 are constants, Re is Reynolds number, and St is Strouhal
number defined as au/U.

16.3. Localized narrowing of an artery may be caused by the formation of artherosclerotic
plaque in that region. Such localized narrowing is called stenosis. It is important to
understand the flow characteristics in the vicinity of a stenosis. Flow in a tube with
mild stenosis may be approximated by axisymmetric flow through a converging-
diverging tube. In this context, follow the details described in Morgan & Young
(1974) and obtain expressions for the velocity profile and wall shear stress.

16.4. Shapiro (1997a) in his analysis of the steady flow in collapsible tubes has developed
a series of equations that relate the dependent variables du, dA, dp, da, dS, etc., with the
independent variables such as dA0, dpe, g dz, fT dx, etc. In Section IVof that study, explicit
calculations of certain simple flows are presented. In particular, consider pure pressure-
gravity flows. Discuss the flow behavior patterns in this case.

16.5. Consider the Power-law model to describe the non-Newtonian behavior of blood. In
this model, s ¼ mgn, where s is the shear stress and the _g is the rate of shearing strain.
Determine the flux for the flow of such a fluid in a rigid cylindrical tube of radius R.
Show that when n ¼ 1, the results correspond to the Poiseuille flow.

16.6. Consider the Herschel-Bulkley model to describe the non-Newtonian behavior of
blood. In this model,

s ¼ m _g n þ s0, s � s0

_g ¼ 0, s < s0

Determine the flux for the flow of such a fluid in a rigid cylindrical tube of radius R.
Show that in the limit s0 ¼ 0, the results for the Herschel-Bulkley model coincide
with those for the Power-law model.
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Conversion Factors, Constants, and
Fluid Properties
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Atmospheric Pressure 854

A.4. Properties of Dry Air at
Atmospheric Pressure 855

A.5. The Standard Atmosphere 855

A.1. CONVERSION FACTORS

Length: 1 m ¼ 3.2808 ft

1 in. ¼ 2.540 cm

1 mile ¼ 1.609 km

1 nautical mile ¼ 1.852 km

Mass1: 1 kg ¼ 0.06854 slug¼ 1000 g4 2.205 lbs

1 metric ton ¼ 1000 kg

Time: 1 day ¼ 86,400 s

Density1: 1 kgme3¼ 1.941� 10�3 slugs fte34 0.06244 lbs/ft3

Velocity: 1 knot ¼ 0.5144 m/s

Force: 1 N ¼ 105 dyn¼ 0.2248 lbs

Pressure: 1 dyn cme2 ¼ 0.1 N/m2 ¼ 0.1 Pa

1 bar ¼ 105 Pa

Energy: 1 J ¼ 107 erg ¼ 0.2389 cal

1 cal ¼ 4.186 J

Energy flux: 1 Wme2 ¼ 2.39� 10�5 cal cm�2 s�1

A P P E N D I X A

1At the earth’s surface, the weight of a 1 kg mass is 2.205 lbs.
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A.2. PHYSICAL CONSTANTS

Avogadro’s Number: 6.023� 1023 gmolee1

Boltzmann’s Constant: 1.381� 10e23 J Ke1

Gravitational Acceleration: 9.807 m se2¼ 32.17 ft se2 (at the surface of the earth)

Graviational Constant: 6.67� 10e11 m3 kg�1 se2

Planck’s Constant: 6.626� 10e34 J s

Speed of Light in Vacuum: 2.998� 108 m se1

Universal Gas Constant: 8.314 J gmolee1 Ke1

A.3. PROPERTIES OF PURE WATER AT ATMOSPHERIC PRESSURE

Here, r ¼ density, a ¼ coefficient of thermal expansion, m ¼ shear viscosity, n ¼ kinematic
viscosity ¼ m/r, k ¼ thermal diffusivity ¼ k/(rCp), (k is first defined in Section 1.5) Pr ¼
Prandtl number, and 1.0� 10�n is written as 1.0E� n.

T �C r kg/m3 a KL1 m kgmL1 sL1 n m2/s k m2/s Cp J kgL1 KL1 Pr n/k

0 1000 �0.6E� 4 1.787E� 3 1.787E� 6 1.33E� 7 4217 13.4

10 1000 +0.9E� 4 1.307E� 3 1.307E� 6 1.38E� 7 4192 9.5

20 998 2.1E� 4 1.002E� 3 1.004E� 6 1.42E� 7 4182 7.1

30 996 3.0E� 4 0.799E� 3 0.802E� 6 1.46E� 7 4178 5.5

40 992 3.8E� 4 0.653E� 3 0.658E� 6 1.52E� 7 4178 4.3

50 988 4.5E� 4 0.548E� 3 0.555E� 6 1.58E� 7 4180 3.5

Latent heat of vaporization at 100 �C ¼ 2.257� 106 J/kg.
Latent heat of melting of ice at 0 �C ¼ 0.334� 106 J/kg.
Density of ice ¼ 920 kg/m3.
Surface tension between water and air at 20 �C ¼ 0.0728 N/m.
Sound speed at 20 �C¼ 1481 m/s.
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A.4. PROPERTIES OF DRY AIR AT ATMOSPHERIC PRESSURE

T �C r kg/m3 m kgmL1 sL1 n m2/s k m2/s Pr n/k

0 1.293 1.71E� 5 1.33E� 5 1.84E� 5 0.72

10 1.247 1.76E� 5 1.41E� 5 1.96E� 5 0.72

20 1.200 1.81E� 5 1.50E� 5 2.08E� 5 0.72

30 1.165 1.86E� 5 1.60E� 5 2.25E� 5 0.71

40 1.127 1.87E� 5 1.66E� 5 2.38E� 5 0.71

60 1.060 1.97E� 5 1.86E� 5 2.65E� 5 0.71

80 1.000 2.07E� 5 2.07E� 5 2.99E� 5 0.70

100 0.946 2.17E� 5 2.29E� 5 3.28E� 5 0.70

At 20�C and 1 atm: Specific heat capacity at constant pressure: Cp¼ 1004 J kge1 Ke1

Specific heat capacity at constant volume: Cv¼ 717 J kge1 Ke1

Ratio of specific heat capacities: g¼ 1.40

Coefficient of thermal expansion: a¼ 3.41� 10e3 Ke1

Speed of sound: c¼ 343 m se1

Constants for dry air: Gas constant: R¼ 287 J kge1 Ke1

Molecular mass: 28.966 g gmolee1

or kg kmolee1

A.5. THE STANDARD ATMOSPHERE

The following average values are accepted by international agreement. Here, z is the
height above sea level.

z km T �C p kPa r kg/m3

0 15.0 101.3 1.225

0.5 11.5 95.5 1.168

1 8.5 89.9 1.112

2 2.0 79.5 1.007

3 �4.5 70.1 0.909

(Continued)
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z km T �C p kPa r kg/m3

4 �11.0 61.6 0.819

5 �17.5 54.0 0.736

6 �24.0 47.2 0.660

8 �37.0 35.6 0.525

10 �50.0 26.4 0.413

12 �56.5 19.3 0.311

14 �56.5 14.1 0.226

16 �56.5 10.3 0.165

18 �56.5 7.5 0.120

20 �56.5 5.5 0.088
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Mathematical Tools and Resources

O U T L I N E

B.1. Partial and Total Differentiation 857

B.2. Changing Independent Variables 860

B.3. Basic Vector Calculus 861

B.4. The Dirac Delta function 863

B.5. Common Three-Dimensional
Coordinate Systems 863

B.6. Equations in Curvilinear
Coordinate Systems 866

B.1. PARTIAL AND TOTAL DIFFERENTIATION

In fluid mechanics, the field quantities like fluid velocity, fluid density, pressure, etc. may
vary in time, t, and across three-dimensional space, herein specified by three coordinates as
a vector x ¼ (x, y, z) or (x1, x2, x3). For multivariable functions, such as fðx1, x2, x3, tÞ, there are
important differences between partial and total derivatives, for example between vf=vt and
df=dt.

Partial Differentiation

ðv=vtÞfðx1, x2, x3, tÞ means differentiate the function fðx1, x2, x3, tÞ with respect to time, t,
treating all other independent variables as constants. Additional information and specifica-
tions are not needed. And, multiple partial derivatives that operate on different variables can
be applied in either order, that is, ðv=vxiÞðvf=vtÞ ¼ ðv=vtÞðvf=vxiÞ and ðv=vxiÞðvf=vxjÞ ¼
ðv=vxjÞðvf=vxiÞ.

Total Differentiation

ðd=dtÞfðx1, x2, x3, tÞ means differentiate the function fðx1, x2, x3, tÞ with respect to time, t,
including the time variation of the spatial coordinates. This total time derivative has meaning
along a time-space path specified through the three-dimensional domain. Such a path spec-
ification may be given as a vector function of time, for example x ¼ (X1(t), X2(t), X3(t)).

A P P E N D I X B
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Without such a path specification, the total time derivative of f is not fully defined; however,
when the path is specified, then:

d

dt
fðx1, x2, x3, tÞ ¼ vf

vx1

dX1

dt
þ vf

vx2

dX2

dt
þ vf

vx3

dX3

dt
þ vf

vt
:

When studying fluid mechanics, the time-space path, x(t), most commonly chosen is that of
a fluid particle. This path specification is commonly denoted by use of capital Ds:

D

Dt
fðx, tÞh

�

d

dt
fðx, tÞ

�

following a fluid particle

¼
�

vf

vx1

dX1

dt
þ vf

vx2

dX2

dt
þ vf

vx3

dX3

dt
þ vf

vt

�

following a fluid particle

:

(B.1.1)

Here, the evaluation of the total derivative following a fluid particle can be formally completed
by using the fluid-particle velocity matching condition specified above:

fluid particle velocityh
d

dt
xðtÞ ¼

�

dX1ðtÞ
dt

,
dX2ðtÞ
dt

,
dX3ðtÞ
dt

�

¼ ðu1, u2, u3ÞjxðtÞ ¼ uðx, tÞ, (B.1.2)

where u(x,t) is the fluid velocity at the particle location, and u1, u2, and u3 are the
Cartesian components of the fluid velocity. The third equality in (B.1.2) provides three
velocity-component matching conditions:

dX1=dt ¼ u1, dX2=dt ¼ u2, and dX3=dt ¼ u3: (B.1.3)

When the various parts of (B.1.3) are substituted into (B.1.1), a final form for Df=Dt
emerges:

D

Dt
fðx, tÞ ¼ vf

vt
þ u1

vf

vx1
þ u2

vf

vx2
þ u3

vf

vx3
¼ vf

vt
þ u,Vf ¼ vf

vt
þ ui

vf

vxi
, (B.1.4)

which is the same as (3.4). Here the final two equalities involve vector and index notation,
respectively. These notations are described in Chapter 2. All three forms of Df=Dt are used
in this text. Total and partial differentiation are the same when they operate on the same inde-
pendent variable and this independent variable is the only independent variable.

Uses of Partial and Total Derivatives

There are situations in the study of fluid mechanics where a first-order partial differential
equation, involving both time and space derivatives, like:

Aðx, tÞvfðx, tÞ
vt

þ Bðx, tÞvfðx, tÞ
vx

¼ gðx, t, fÞ (B.1.5)

needs to be solved to find f(x, t). To accomplish this task, let’s assume there exists a curve C in
x-t space described by equations x ¼ X(s) and t¼ T(s) that allows (B.1.5) to be recast as a total
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derivative with respect to s. Here s is the arc length in x-t space along the curve C. The total
derivative of f along s is:

df

ds
¼ vfðx, tÞ

vt

dTðsÞ
ds

þ vfðx, tÞ
vx

dXðsÞ
ds

: (B.1.6)

Thus, (B.1.5) can be simplified to

df

ds
¼ g when

dT

ds
¼ A and

dX

ds
¼ B: (B.1.7)

Taking a ratio of the last two equations produces:

dX

dT
¼ BðX, TÞ

AðX, TÞ, (B.1.8)

which parametrically specifies a set of curves C. Along any such curve, df=ds ¼ g and this
equation can be integrated starting from an initial condition or boundary condition to
determine f.

EXAMPLE B.1

Consider one-dimensional unidirectional wave propagation as specified by:

vfðx, tÞ
vt

þUðtÞvfðx, tÞ
vx

¼ 0 where fðx, 0Þ ¼ fðxÞ, (B.1.9, B.1.10)

f represents a traveling disturbance of some type, and U is the propagation velocity. In this case

A ¼ 1 and B ¼ U; thus, (B.1.8) specifies the C curves via

dX

dT
¼ UðTÞ, or XðTÞ ¼ Xo þ

Z T

0
UðsÞds: (B.1.11)

With A ¼ 1, the middle equation of (B.1.7) implies T ¼ To þ s, so (B.1.11) leads to:

x ¼ XðsÞ ¼ Xo þ
Z Toþs

o
UðsÞds, and t ¼ TðsÞ ¼ To þ s: (B.1.12, B.1.13)

These two equations define the set of C curves in x-t space along which the behavior of f is easily

determined from the first equation of (B.1.7) with g ¼ 0:

df

ds
¼ 0, or fo ¼ fðx, tÞ ¼ fðXðsÞ, TðsÞÞ ¼ f

�

Xo þ
Z Toþs

0
UðsÞds, To þ s

�

: (B.1.14)

Here fo is the constant value of f(x, t) that is found when s varies along a particular C curve, and Xo

and To are constants of integration that specify the x-t location of s ¼ 0 on this C curve. These

constants can be evaluated using the initial condition specified in (B.1.10) in terms of f at

t ¼ To þ s ¼ 0, and the last form for f in (B.1.14):

fo ¼ fðXo, 0Þ ¼ fðXoÞ: (B.1.15)
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Here it is important to note that the constant fo may be different for the various C curves that start

from different x-t locations. To reach the final solution of (B.1.9), eliminate fo and Xo from (B.1.15)

using (B.1.12) through (B.1.14) in favor of x, t, and f(x, t):

fðx, tÞ ¼ f

�

x�
Z t

o
UðsÞds

�

: (B.1.16)

This approach to differential equation solving where special paths are found that simplify the

governing equation (or equations) can be formalized and generalized; it is called the method of

characteristics. But, independent of this and perhaps more important, the two fundamental and

enduring features of partial differential equation solving are displayed here.

i) Partial differential equations are solved by rearrangement and integration. Extra differentiation

is typically not useful; always look for ways to integrate to find a solution.

ii) Difficulty is not entirely eliminated by changing from partial to total derivatives or vice versa. In

the above example, there is initially one unknown function, f, and two independent coordinates,

x and t, but this is transformed (via the method of characteristics) into a problem with two

unknown functions, f and X, and one independent variable, s or t.

Integration of Partial Derivatives

There is really nothing special here except to note that constants of integration turn into
functions that may depend on all the not-integrated-over independent variables. For
example, consider fðx, y, z, tÞ that solves the partial differential equation: vf=vx ¼
Axþ By. Direct integration with y, z, and t treated as constants produces:

f ¼
Z

ðAxþ ByÞdx ¼ Ax2=2þ Byxþ Cðy, z, tÞ,

where C(y, z, t) is an unknown function that does not depend on x; it replaces the usual
constant of integration in one-variable indefinite integration.

B.2. CHANGING INDEPENDENT VARIABLES

Two situations commonly arise in the study of fluid mechanics where changing the inde-
pendent variable(s) is advantageous. The first situation is changing coordinate systems. Here
the number of new and old independent variables will usually be the same. Consider the
situation where a partial differential equation is known in Cartesian-time coordinates
ðx, y, z, tÞ, but it will be easier to solve in another coordinate system ðx, j, z, sÞ. Assume the
transformation between the two coordinate systems is given by: x ¼ Xðx, y, z, tÞ,
j ¼ Yðx, y, z, tÞ, z ¼ Zðx, y, z, tÞ, and s ¼ Tðx, y, z, tÞ. Cartesian and temporal partial deriv-
atives can be transformed as follows:

v

vx
¼ vX

vx

v

vx
þ vY

vx

v

vj
þ vZ

vx

v

vz
þ vT

vx

v

vs
,

v

vy
¼ vX

vy

v

vx
þ vY

vy

v

vj
þ vZ

vy

v

vz
þ vT

vy

v

vs
,

v

vz
¼ vX

vz

v

vx
þ vY

vz

v

vj
þ vZ

vz

v

vz
þ vT

vz

v

vs
, and

v

vt
¼ vX

vt

v

vx
þ vY

vt

v

vj
þ vZ

vt

v

vz
þ vT

vt

v

vs
:

(B.2.1)
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EXAMPLE B.2

Consider the case where ðx, y, z, tÞ and ðx, j, z, sÞ represent Cartesian systems with parallel axes

that are moving with respect to each other at a constant velocity (U, V, W) when observed in

ðx, y, z, tÞ, so that x ¼ x�Ut, j ¼ y� Vt, z ¼ z�Wt, and s ¼ t. Application of the above deriv-

ative transformations (B.2.1) produces:

v

vx
¼ v

vx
,

v

vy
¼ v

vj
,

v

vz
¼ v

vz
, and

v

vt
¼ �U

v

vx
� V

v

vj
�W

v

vz
þ v

vs
: (B.2.2)

Perhaps unexpectedly, extra differentiations only appear in the transformed time derivative, even

though the time variable transformation equation was simplest.

The second situation that requires changing independent variables occurs when a combi-
nation of independent variables (and parameters) is found that might simplify a partial
differential equation. Here the usual goal is to convert a partial differential equation having
multiple independent variables into a total differential equation with one independent vari-
able. If h ¼ Hðx, y, z, tÞ is the combination variable, then a straightforward application of the
chain rule for partial differentiation produces:

v

vx
¼ vH

vx

d

dh
,

v

vy
¼ vH

vy

d

dh
,

v

vz
¼ vH

vz

d

dh
, and

v

vt
¼ vH

vt

d

dh
: (B.2.3)

EXAMPLE B.3

Consider a function with two independent variables, fðx, tÞ, for which we hypothesize the

existence of a special combination (or similarity) variable h ¼ xta, where a is a real number, that

facilitates the solution of the partial differential equation for fðx, tÞ. Mathematically, this hypothesis

can be stated as: fðx, tÞ ¼ fðhÞ ¼ fðxtaÞ, and partial derivatives of f can be obtained from the first

and last equations of (B.2.3) with H ¼ xta:

v

vx
fðx, tÞ ¼ vðxtaÞ

vx

d

dh
fðhÞ ¼ ta

df

dh
, and

v

vt
fðx, tÞ ¼ vðxtaÞ

vt

d

dh
fðhÞ ¼ axta�1 df

dh
¼ a

t
h
df

dh
:

Second-order derivatives are generated by appropriately differentiating these first-order results.

B.3. BASIC VECTOR CALCULUS

The gradient operator, V, is the general-purpose directional derivative for multiple spatial
coordinates. It is a vector operator, and it exists in all suitably defined coordinate systems. Its
properties are a combination of those of ordinary partial derivatives and ordinary vectors. It
has components and its position and operation character (multiply, dot product, cross
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product, etc.) matter within a set or grouping of functions or variables. For example,
ðu,VÞvsvðV,uÞ in general, even though these two expressions would be an equal if V
were replaced by a constant factor. Some properties of V are listed here:

• In Cartesian coordinates, x ¼ ðx, y, zÞ: V ¼ ex
v
vx þ ey

v
vy þ ez

v
vzwhere the es are unit vectors.

• The gradient of the scalar field r is: Vr ¼ ex
vr
vx þ ey

vr
vy þ ez

vr
vz:

• The divergence of a vector field u ¼ ðu, v, wÞ is: V,u ¼ vu
vx þ vv

vy þ vw
vz :

• The curl of a vector field u ¼ ðu, v, wÞ is: V� u ¼ det

�

�

�

�

�

ex ey ez
v=vx v=vy v=vz
u v w

�

�

�

�

�

.

Vector Identities Involving V

Here r and f are scalar functions, u and F are vector functions, and x is the position vector.

V,x ¼ 3 (B.3.1)

V� x ¼ 0 (B.3.2)

V,ðx=jxj3Þ ¼ 0 (B.3.3)

ðu,VÞx ¼ u (B.3.4)

VðrfÞ ¼ rVfþ fVr (B.3.5)

V,ðruÞ ¼ rV,uþ ðu,VÞr (B.3.6)

V� ðruÞ ¼ rV� uþ ðVrÞ � u (B.3.7)

V,ðu� FÞ ¼ ðV� uÞ,F� u,ðV� FÞ (B.3.8)

Vðu,FÞ ¼ u� ðV� FÞ þ F� ðV� uÞ þ ðu,VÞFþ ðF,VÞu (B.3.9)

V� ðu� FÞ ¼ ðF,VÞu� FðV,uÞ þ uðV,FÞ � ðu,VÞF (B.3.10)

V� ðVrÞ ¼ 0 (B.3.11)

V,ðV� uÞ ¼ 0 (B.3.12)

V� ðV� uÞ ¼ VðV,uÞ � V2u (B.3.13)

Integral Theorems Involving V

These are discussed in Sections 2.12 and 2.13.

• For a closed surface A that contains volume V with n ¼ the outward normal on A, Gauss’
Theorem is:

Z

A

r ndA ¼
Z

V

Vr dV for scalars; and

Z

A

u,ndA ¼
Z

V

V,udV for vectors:

• For a closed curve C that bounds surface Awith n¼ the normal to A and t the tangent to C,
Stokes’ Theorem is:

H

C

u,t ds ¼ R

A

ðV� uÞ,ndA, where s is the arc length along C.
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B.4. THE DIRAC DELTA FUNCTION

The Dirac delta function is commonly denoted d(x), where x is a real variable. It is a unit-
area impulse that exists at only one point in space; it is zero everywhere except where its
argument is zero. The Dirac delta-function can be defined as a limit of a smooth function,
such as:

dðxÞ ¼ lim
s/0

ð
ffiffiffiffiffiffi

2p
p

sÞ�1expf�x2=2s2g: (B.4.1)

The value of d(x) is infinite at x¼ 0 but its integral is unity. Here are a few properties of d(x) for
a, b, and xo real constants and b > a:

xdðx� aÞ ¼ adðx� aÞ, (B.4.2)

Z
b

a

dðx� xoÞdx ¼
�

1 for a � xo � b
0 for xo < a or b < xo

	

, (B.4.3)

Z
þN

�N

fðxÞdðx� xoÞdx ¼ fðxoÞ: (B.4.4)

These properties ease the evaluation of complicated integrals when a Dirac delta function
appears in the integrand. In more dimensions where x ¼ ðx, y, zÞ, the following notation is
common:

dðx� xoÞ ¼ dðx� xoÞdðy� yo



d
�

z� zoÞ:

In the study of fluid mechanics, the usual notation for the Dirac delta-function is poten-
tially confusing because d is also commonly used to denote a length scale of interest in the
flow field, such as a boundary-layer thickness or the length scale of a similarity variable.
Thus, specific mention of the Dirac delta function is made where it is used in the text.

EXAMPLE B.4

Evaluate the integral: I ¼ RþN
�NFðxÞ½ðxo � xÞ2 þ r2o ��1=2eikxdðx� ctÞdx. Here the limits of integra-

tion ensure that xwill equal ct somewhere in the integration. Equation (B.4.4) implies that the value

of this integral is determined by replacing x with ct in the integrand; therefore:

I ¼ FðctÞ½ðxo � ctÞ2 þ r2o ��1=2eikct.

B.5. COMMON THREE-DIMENSIONAL COORDINATE SYSTEMS

In all cases that follow, x, j, and z are constants.
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Cartesian Coordinates (Figure B.1)

Position: x ¼ ðx, y, zÞ ¼ ðx1, x2, x3Þ ¼ x1e1 þ x2e2 þ x3e3
Unit vectors: ex, ey, and ez, or e1, e2, and e3
Unit vector dependencies: vei=vxj ¼ 0 for i and j¼ 1, 2, or 3; that is, Cartesian unit vectors
are independent of the coordinate values

Gradient operator: V ¼ ex
v
vx þ ey

v
vy þ ez

v
vz ¼ e1

v
vx1

þ e2
v
vx2

þ e3
v
vx3

Surface integral, S, of f(x,y,z) over the plane defined by x¼ x: S ¼ R
þN

y¼�N

R
þN

z¼�N
fðx, y, zÞdzdy

Surface integral, S, of f(x,y,z) over the plane defined by y ¼ j: S ¼ R
þN

x¼�N

R
þN

z¼�N
fðx, j, zÞdzdx

Surface integral, S, of f(x,y,z) over the plane defined by z¼ z:S ¼ R
þN

x¼�N

R
þN

y¼�N
fðx, y, zÞdydx

Volume integral, V, of f(x,y,z) over all space: V ¼ R
þN

x¼�N

R
þN

y¼�N

R
þN

z¼�N
fðx, y, zÞdzdydx

Cylindrical Coordinates (Figure B.2)

x, x1

y, x2

z, x3

x

x

y

z
R

x

ϕ
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Position: x ¼ (R, 4, z) ¼ ReR + zez; x ¼ R cos 4, y ¼ R sin 4; z ¼ z, or R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

,
4 ¼ tan�1ðy=xÞ
Unit vectors: eR ¼ ex cos 4þ ey sin 4, e4 ¼ �ex sin 4þ ey cos 4, ez ¼ same as Cartesian

Unit vector dependencies: veR=vR ¼ 0, veR=v4 ¼ e4, veR=vz ¼ 0

ve4=vR ¼ 0, ve4=v4 ¼ �eR, ve4=vz ¼ 0
vez=vR ¼ 0, vez=v4 ¼ 0, vez=vz ¼ 0

Gradient operator: V ¼ eR
v
vR þ e4

1
R

v
v4

þ ez
v
vz

Surface integral,S, of f(R,q,z) over the cylinderdefinedbyR¼ x:S ¼ R
2p

4¼0

R
þN

z¼�N
fðx, 4, zÞxdzd4

Surface integral, S, of f(R,q,z) over the half plane defined by4¼j:S¼ R
þN

R¼0

R
þN

z¼�N
fðR, j, zÞdzdR

Surface integral, S, of f(R,q,z) over the plane defined by z¼ z: S ¼ R
þN

R¼ 0

R
2p

4¼ 0

fðR, 4, zÞRd4dR

Volume integral, V, of f(R,q,z) over all space: V ¼ R
þN

z¼�N

R
þN

R¼ 0

R
2p

4¼ 0

fðR, 4, zÞRd4dRdz

Spherical Coordinates (Figure B.3)

Position: x ¼ (r, q, 4) ¼ rer; x ¼ r cos 4 sin q, y ¼ r sin 4 sin q, z ¼ r cos q; or

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

, q ¼ tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

=zÞ, and 4 ¼ tan�1ðy=xÞ
Unit vectors: er ¼ ex sin q cos 4þ ey sin q sin4þ ez cos q,
eq ¼ ex cos q cos4þ ey cos q sin 4� ez sin q, e4 ¼ �ex sin 4þ ey cos 4

Unit vector dependencies: ver=vr ¼ 0, ver=vq ¼ eq, ver=v4 ¼ e4 sin q

veq=vr ¼ 0, veq=vq ¼ �er, veq=v4 ¼ e4cos q

ve4=vr ¼ 0, ve4=vq ¼ 0, ve4=v4 ¼ �er sin q� eq cos q

Gradient operator: V ¼ er
v
vr þ eq

1
r

v
vq
þ e4

1
r sin q

v
v4

Surface integral, S, of f(r,q,4) over the sphere defined by r¼ x: S¼ R
p

q¼0

R
2p

4¼0

fðx, q, 4Þx2 sinqd4dq

y

x

z

x

ϕ

θ
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Surface integral, S, of f(r,q,4) over the cone defined by q¼ j: S ¼ R
þN

r¼0

R
2p

4¼0

fðr, j, 4Þr sinjd4dr

Surface integral, S, of f(r,q,4) over the half plane defined by4¼ z: S ¼ R
þN

r¼ 0

R
p

q¼ 0

fðr, q, zÞrdqdr

Volume integral, V, of f(r,q,4) over all space: V ¼ R
þN

r¼ 0

R
p

q¼ 0

R
2p

4¼ 0

fðr, q, 4Þr2 sin qd4dqdr

B.6. EQUATIONS IN CURVILINEAR COORDINATE SYSTEMS

Plane Polar Coordinates (Figure 3.3a)

Position and velocity vectors x ¼ (r, q) ¼ rer; u ¼ (ur, uq) ¼ urer + uqeq

Gradient of a scalar j: Vj ¼ er
vj
vr þ eq

1

r

vj

vq

Laplacian of a scalar j: V2j ¼ 1

r

v

vr

�

r
vj

vr



þ 1

r2
v2j

vq2

Divergence of a vector: V,u ¼ 1

r

v

vr
ðrurÞ þ 1

r

vuq
vq

Curl of a vector, vorticity: u ¼ V� u ¼ ez

�1

r

vðruqÞ
vr

� 1

r

vur
vq



Laplacian of a vector: V2u ¼ er

�

V2ur � ur
r2

� 2

r2
vuq
vq



þ eq

�

V2uq þ 2

r2
vur
vq

� uq
r2



Strain rate Sij and viscous stress sij for an incompressible fluid where sij ¼ 2mSij:

Srr ¼ vur
vr ¼ 1

2m
srr, Sqq ¼ 1

r

vuq
vq

þ ur
r

¼ 1

2m
sqq, Srq ¼ r

2

v

vr

�uq
r



þ 1

2r

vur
vq

¼ 1

2m
srq

Equation of continuity: vr
vt þ

1

r

v

vr
ðrrurÞ þ 1

r

v

vq
ðruqÞ ¼ 0

Navier-Stokes equations with constant r, constant n, and no body force:

vur
vt þ ur

vur
vr þ uq

r
vur
vq

� u2
q
r ¼ �1

r
vp

vr
þ n
�

V2ur � ur
r2

� 2

r2
vuq
vq



,

vuq
vt þ ur

vuq
vr þ uq

r
vuq
vq

þ uruq
r ¼ � 1

rr

vp

vq
þ n
�

V2uq þ 2

r2
vur
vq

� uq
r2



,

where V2 ¼ 1

r

v

vr

�

r
v

vr



þ 1

r2
v2

vq2
.

Cylindrical Coordinates (Figure B.2)

Position and velocity vectors: x ¼ (R, 4, z)¼ ReR + zez; u ¼ (uR, u4, uz)¼ uReR + u4e4 + uzez

Gradient of a scalar j: Vj ¼ eR
vj
vRþ e4

1

R

vj

v4
þ ez

vj

vz

Laplacian of a scalar j: V2j ¼ 1

R

v

vR

�

R
vj

vR



þ 1

R2

v2j

v42
þ v2j

vz2
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Divergence of a vector: V,u ¼ 1

R

v

vR
ðRuRÞ þ 1

R

vu4
v4

þ vuz
vz

Curl of a vector, vorticity: u ¼ V� u ¼ eR

�1

R

vuz
v4

� vu4
vz



þ e4

�vuR
vz

� vuz
vR



þ ez
�1

R

vðRu4Þ
vR

� 1

R

vuR
v4



Laplacian of a vector: V2u ¼ eR

�

V2uR � uR
R2

� 2

R2

vu4
v4



þ e4

�

V2u4 þ 2

R2

vuR
v4

� u4
R2



þezV
2uz

Strain rate Sij and viscous stress sij for an incompressible fluid where sij ¼ 2mSij:

SRR ¼ vuR
vR

¼ 1

2m
sRR, S44 ¼ 1

R

vu4
v4

þ uR
R

¼ 1

2m
s44, Szz ¼ vuz

vz
¼ 1

2m
szz

SR4 ¼ R

2

v

vR

�u4
R



þ 1

2R

vuR
v4

¼ 1

2m
sR4, S4z ¼ 1

2R

vuz
v4

þ1

2

vu4
vz

¼ 1

2m
s4z,

SzR ¼ 1

2

�vuR
vz

þvuz
vR



¼ 1

2m
szR

Equation of continuity:
vr

vt
þ 1

R

v

vR
ðRruRÞ þ 1

R

v

v4
ðru4Þ þ v

vz
ðruzÞ ¼ 0

Navier-Stokes equations with constant r, constant n, and no body force:

vuR
vt

þ ðu,VÞuR � u24
R

¼ �1

r

vp

vR
þ n
�

V2uR � uR
R2

� 2

R2

vu4
v4



,

vu4
vt

þ ðu,VÞu4 þ uRu4
R

¼ � 1

rR

vp

v4
þ n
�

V2u4 þ 2

R2

vuR
v4

� u4
R2



,

vuz
vt

þ ðu,VÞuz ¼ �1

r

vp

vz
þ nV2uz,

where: u,V ¼ uR
v

vR
þ u4

R

v

v4
þ uz

v

vz
and V2 ¼ 1

R

v

vR
ðR v

vR
Þ þ 1

R2

v2

v42
þ v2

vz2
.

Spherical Coordinates (Figure B.3)

Position and velocity vectors: x ¼ (r, q, 4) ¼ rer; u ¼ (ur, uq, u4) ¼ urer + uqeq + u4e4

Gradient of a scalar j: Vj ¼ er
vj

vr
þ e4

1

r

vj

vq
þ e4

1

r sin q

vj

v4

Laplacian of a scalar j: V2j ¼ 1

r2
v

vr

�

r2
vj

vr



þ 1

r2 sin q

v

vq

�

sin q
vj

vq



þ 1

r2sin2q

v2j

v42

Divergence of a vector: V,u ¼ 1

r2
v

vr
ðr2urÞ þ 1

r sin q

vðuq sin qÞ
vq

þ 1

r sin q

vu4
v4
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Curl of a vector, vorticity: u ¼ V�u ¼ er
r sin q

�vðu4 sin qÞ
vq

� vuq
v4



þ eq
r

� 1

sin q

vur
v4

� vðru4Þ
vr



þ e4

r

�vðruqÞ
vr

� vur
vq



Laplacian of a vector: V2u ¼ er

�

V2ur � 2ur

r2
� 2

r2 sin q

vðuq sin qÞ
vq

� 2

r2 sin q

vu4
v4



þ

eq

�

V2uqþ 2

r2
vur
vq

� uq

r2sin2q
� 2 cos q

r2sin2q

vu4
v4



þ e4

�

V2u4þ 2

r2 sin q

vur
v4

þ 2 cos q

r2sin2q

vuq
v4

� u4

r2sin2q



Strain rate Sij and viscous stress sij for an incompressible fluid where sij ¼ 2mSij:

Srr ¼ vur
vr ¼ 1

2m
srr, Sqq ¼ 1

r

vuq
vq

þur
r
¼ 1

2m
sqq, S44 ¼ 1

r sin q

vu4
v4

þur
r
þuq cot q

r
¼ 1

2m
s44,

Sq4 ¼ sin q

2r

v

vq

� u4
sin q



þ 1

2r sin q

vuq
v4

¼ 1

2m
sq4, S4r ¼ 1

2r sin q

vur
v4

þ r

2

v

vr

�u4
r



¼ 1

2m
s4r,

Srq ¼ r

2

v

vr

�uq
r



þ 1

2r

vur
vq

¼ 1

2m
srq

Equation of continuity:
vr

vt
þ 1

r2
v

vr
ðrr2urÞ þ 1

r sin q

v

vq
ðruq sin qÞ þ 1

r sin q

v

v4
ðru4Þ ¼ 0:

Navier-Stokes equations with constant r, constant n, and no body force:

vur
vt

þ ðu,V Þur �
u2q þ u24

r

¼ �1

r

vp

vr
þ n
h

V2ur � 2ur
r2

� 2

r2 sin q

vðuq sin qÞ
vq

� 2

r2 sin q

vu4
v4

i

,

vuq
vt

þ ðu,V Þuq þ uruq
r

� u24 cot q

r

¼ � 1

rr

vp

vq
þ n
h

V2uq þ 2

r2
vur
vq

� uq

r2 sin2 q
� 2 cos q

r2 sin2 q

vu4
v4

i

,

vu4
vt

þ ðu,V Þu4 þ u4ur
r

þ uqu4 cot q

r

¼ � 1

rr sin q

vp

v4
þ n
h

V2u4 þ 2

r2 sin q

vur
v4

þ 2 cos q

r2 sin2 q

vuq
v4

� u4

r2 sin2 q

i

,

where

u,V ¼ ur
v

vr
þ uq

r

v

vq
þ u4
r sin q

v

v4
,

V2 ¼ 1

r2
v

vr

�

r2
v

vr



þ 1

r2 sin q

v

vq

�

sin q
v

vq



þ 1

r2 sin2 q

v2

v42
:
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Founders of Modern Fluid Dynamics

O U T L I N E

Ludwig Prandtl (1875e1953) 869

Geoffrey Ingram Taylor (1886e1975) 870

Supplemental Reading 871

LUDWIG PRANDTL (1875e1953)

Ludwig Prandtl was born in Freising, Germany, in 1875. He studied mechanical engi-
neering in Munich. For his doctoral thesis he worked on a problem on elasticity under
August Föppl, who himself did pioneering work in bringing together applied and theoret-
ical mechanics. Later, Prandtl became Föppl’s son-in-law, following the good German
academic tradition in those days. In 1901, he became professor of mechanics at the Univer-
sity of Hanover, where he continued his earlier efforts to provide a sound theoretical basis
for fluid mechanics. The famous mathematician Felix Klein, who stressed the use of math-
ematics in engineering education, became interested in Prandtl and enticed him to come to
the University of Göttingen. Prandtl was a great admirer of Klein and kept a large portrait
of him in his office. He served as professor of applied mechanics at Göttingen from 1904 to
1953; the quiet university town of Göttingen became an international center of aerodynamic
research.

In 1904, Prandtl conceived the idea of a boundary layer, which adjoins the surface of
a body moving through a fluid, and is perhaps the greatest single discovery in the history
of fluid mechanics. He showed that frictional effects in a slightly viscous fluid are confined
to a thin layer near the surface of the body; the rest of the flow can be considered inviscid. The
idea led to a rational way of simplifying the equations of motion in the different regions of the
flow field. Since then the boundary-layer technique has been generalized and has become
a most useful tool in many branches of science.

Prandtl’s work onwings of finite span (the Prandtl-Lanchester wing theory) elucidated the
generation of induced drag. In compressible fluid motions he contributed the Prandtl-
Glauert rule of subsonic flow and the Prandtl-Meyer expansion fan in supersonic flow
around a corner, and published the first estimate of the thickness of a shock wave. He
made notable innovations in the design of wind tunnels and other aerodynamic equipment.
His advocacy of monoplanes greatly advanced heavier-than-air aviation. In experimental
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fluid mechanics he designed the Pitot-static tube for measuring velocity. In turbulence theory
he contributed the mixing length theory.

Prandtl liked to describe himself as a plain mechanical engineer. So naturally he was also
interested in solid mechanics; for example, he devised a soap-film analogy for analyzing
the torsion stresses of structures with noncircular cross sections. In this respect he was
like G. I. Taylor, and his famous student von Karman; all three of them did a considerable
amount of work on solid mechanics. Toward the end of his career Prandtl became inter-
ested in dynamic meteorology and published a paper generalizing the Ekman spiral for
turbulent flows.

Prandtl was endowed with rare vision for understanding physical phenomena. His
mastery of mathematical tricks was limited; indeed many of his collaborators were better
mathematicians. However, Prandtl had an unusual ability of putting ideas in simple mathe-
matical forms. In 1948, Prandtl published a simple and popular textbook on fluid mechanics,
which has been referred to in several places here. His varied interest and simplicity of anal-
ysis is evident throughout this book. Prandtl died in Göttingen in 1953.

GEOFFREY INGRAM TAYLOR (1886e1975)

Geoffrey Ingram Taylor’s name almost always includes his initials G. I. in references, and
his associates and friends simply refer to him as “G. I.” He was born in 1886 in London. He
apparently inherited a bent toward mathematics from his mother, who was the daughter of
George Boole, the originator of “Boolean algebra.” After graduating from the University of
Cambridge, Taylor started to work with J. J. Thomson in pure physics.

He soon gave up pure physics and changed his interest to mechanics of fluids and solids.
At this time a research position in dynamic meteorology was created at Cambridge and it was
awarded to Taylor, although he had no knowledge of meteorology! At the age of 27 he was
invited to serve as meteorologist on a British ship that sailed to Newfoundland to investigate
the sinking of the Titanic. He took the opportunity to make measurements of velocity, temper-
ature, and humidity profiles up to 2000 m by flying kites and releasing balloons from the
ship. These were the very first measurements on the turbulent transfers of momentum and
heat in the frictional layer of the atmosphere. This activity started his lifelong interest in
turbulent flows.

During World War I he was commissioned as a meteorologist by the British Air Force. He
learned to fly and became interested in aeronautics. He made the first measurements of the
pressure distribution over a wing in full-scale flight. Involvement in aeronautics led him to
an analysis of the stress distribution in propeller shafts. This work finally resulted in a funda-
mental advance in solid mechanics, the “Taylor dislocation theory.”

Taylor had an extraordinarily long and productive research career (1909e1972). The
amount and versatility of his work can be illustrated by the size and range of his Collected
Works published in 1954: Volume I contains “Mechanics of Solids” (41 papers, 593 pages);
Volume II contains “Meteorology, Oceanography, and Turbulent Flow” (45 papers, 515
pages); Volume III contains “Aerodynamics and theMechanics of Projectiles and Explosions”
(58 papers, 559 pages); and Volume IV contains “Miscellaneous Papers on Mechanics of
Fluids” (49 papers, 579 pages). Perhaps G. I. Taylor is best known for his work on turbulence.
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When asked, however, what gave him maximum satisfaction, Taylor singled out his work on
the stability of Couette flow.

Professor George Batchelor, who has encountered many great physicists at Cambridge,
described G. I. Taylor as one of the greatest physicists of the century. He combined a remark-
able capacity for analytical thought with physical insight by which he knew “how things
worked.” He loved to conduct simple experiments, not to gather data to understand
a phenomenon, but to demonstrate his theoretical calculations; in most cases he already
knewwhat the experiment would show. Professor Batchelor has stated that Taylor was a thor-
oughly lovable man who did not suffer from the maladjustment and self-concern that many
of today’s institutional scientists seem to suffer (because of pressure!), and this allowed his
creative energy to be used to the fullest extent.

He thought of himself as an amateur, and worked for pleasure alone. He did not take up
a regular faculty position at Cambridge, had no teaching responsibilities, and did not visit
another institution to pursue his research. He never had a secretary or applied for a research
grant; the only facility he needed was a one-room laboratory and one technical assistant. He
did not “keep up with the literature,” tended to take up problems that were entirely new, and
chose to work alone. Instead of mastering tensor notation, electronics, or numerical compu-
tations, G. I. Taylor chose to do things his own way, and did them better than anybody else.

Supplemental Reading

Batchelor, G. K. (1976). Geoffrey Ingram Taylor, 1886e1975. Biographical Memoirs of Fellows of the Royal Society, 22,
565e633

Batchelor, G. K. (1986). Geoffrey Ingram Taylor, 7 March 1886e27 June 1975. Journal of Fluid Mechanics, 173, 1e14
Oswatitsch, K., & Wieghardt, K. (1987). Ludwig Prandtl and his Kaiser-Wilhelm-Institute. Annual Review of Fluid

Mechanics, 19, 1e25
Von Karman, T. (1954). Aerodynamics. New York: McGraw-Hill.
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Visual Resources

Following is a list of films, all but the first by the National Committee for Fluid Mechanics
Films (NCFMF), founded in 1961 by the late Ascher H. Shapiro, then professor of Mechanical
Engineering at the Massachusetts Institute of Technology. Descriptive text for the films was
published separately as described below.

The Fluid Dynamics of Drag, Parts I, II, III, IV (1960)
Text: Ascher H. Shapiro, Shape and Flow: The Fluid Dynamics of Drag, Doubleday and Co.,
New York (1961).
Vorticity, Parts I, II (1961)
The text for this and all following films is: NCFMF, Illustrated Experiments in Fluid
Mechanics, MIT Press, Cambridge, MA (1972).
Deformation of Continuous Media (1963)
Flow Visualization (1963)
Pressure Fields and Fluid Acceleration (1963)
Surface Tension in Fluid Mechanics (1964)
Waves in Fluids (1964)
*Boundary Layer Control (1965)
Rheological Behavior of Fluids (1965)
Secondary Flow (1965)
Channel Flow of a Compressible Fluid (1967)
Low-Reynolds-Number Flows (1967)
Magnetohydrodynamics (1967)
Cavitation (1968)
Eulerian and Lagrangian Descriptions in Fluid Mechanics (1968)
Flow Instabilities (1968)
Fundamentals of Boundary Layers (1968)
Rarefied Gas Dynamics (1968)
Stratified Flow (1968)
Aerodynamic Generation of Sound (1969)
Rotating Flows (1969)
Turbulence (1969)

Although these films are decades old, they remain excellent visualizations of the
principles of fluid mechanics. All but the one marked with an asterisk are available for
viewing on the MIT website: http://web.mit.edu/fluids/www/Shapiro/ncfmf.html. It would be
very beneficial to view the film appropriate to the corresponding section of the text.
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Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Ackeret, Jacob, 730e731, 773
Acceleration

advective, 70e71
fluid particle, 70e71
unsteady, 70e71

Acoustics, 732e736
Added or Apparent mass, 236e237
Adiabatic density gradient, 596e597, 623
Adiabatic process, 17, 761, 763e764
Adiabatic temperature gradient, 19, 623
Advection, 176
Advective derivative, 176
Aerodynamics

aircraft parts and controls, 692e693
airfoil forces, 696e698, 697f
airfoil geometry, 697f
conformal transformation, 702e705
defined, 692
finite wing span, 708e716
gas, 692
generation of circulation, 698, 700, 701
incompressible, 692
Kutta condition, 698e700
lift and drag characteristics, 717e718
Prandtl and Lanchester lifting line theory, 716
propulsive mechanisms of fish and birds,
719e721

sailing, 721e722
Zhukhovsky airfoil lift, 706e708

Air, physical properties of, 731e732
Aircraft, parts and controls, 692e696
Airfoil(s)

angle of attack/incidence, 696
camber line, 696
chord, 696
compression side, 696e698
conformal transformation, 702e705
drag, induced/vortex, 709, 712f, 713, 714e715
finite span, 708e716
forces, 696e698, 697f
geometry, 696f
lift and drag characteristics, 717e718
stall, 707, 717

suction side, 696e698
supersonic flow, 773
thin airfoil theory, 702
Zhukhovsky airfoil lift, 706e708

Alternating tensor, 50e51
Analytic function, 216e217
Anderson, John D., Jr., 701e702
Angle of attack/incidence, 696, 712e713
Angular momentum principle/theorem, for fixed

volume, 125e127
Antisymmetric tensors, 55e58
Aorta, elasticity, 805e806
Apparent or Added mass, 233
Arterioles, 793e794

resistance, 794e796
Aris, R., 112e113
Aspect ratio of wing, 692
Asymptotic expansion, 516e517
Atmosphere

properties of standard, 855e856
scale height of, 21

Attractors, 526

aperiodic, 528e529
dissipative systems and, 526
fixed point, 526
limit cycle, 526
strange, 529

Autocorrelation function, 550e551

normalized, 550e551
of a stationary process, 551

Averages, 545e549
Axisymmetric irrotational flow, 231e236

B
Babuska-Brezzi stability condition, 447e448
Baroclinic flow, 178e179
Baroclinic instability, 678e679
Baroclinic/internal mode, 291e292
Barotropic flow, 128e129, 176, 178e179
Barotropic instability, 676e678
Barotropic/surface mode, 291e292, 647e648
Baseball dynamics, 399
Batchelor, G. K., 142, 374e375, 560e561, 600e601,

686, 871
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Bayly, B. J., 475, 515, 521, 523
Bearing number, 319e320
Becker, R., 753e755
Bergé, P., 525, 528f, 531
Bénard, H., 491

convection, 484
thermal instability, 484e492

Bender, C. M., 362
Bernoulli equations, 128e134

applications of, 131e134
energy, 130
one-dimensional, 737e738
steady flow, 128e129
unsteady irrotational flow, 143e169

b-plane model, 630
Bifurcation, 526
Biofluid mechanics

flow in blood vessels, 796e843
human circulatory system, 780e796
plants, 844e849

Biot and Savart, law of, 181e183
Bird, R. B., 114, 149, 559
Birds, flight of, 719
Blasius solution, boundary layer, 369e373
Blasius theorem, 219e221
Blast wave, 28f, 776e777
Blocking, in stratified flow, 298e299
Blood

composition, 788e793
coronary circulation, 782e784
Fahraeus-Lindqvist effect, 789, 792,

799e801
flow, 796
flow in vessels, modelling of, 796e797
plasma, 788e792
pulmonary circulation, 782, 841e842
systemic circulation, 794e796
total peripheral resistance, 794e796
viscosity, 789e790

Blood vessels

bifurcation, 820e822
Casson fluid flow in rigid tube, 839e841
composition of, 793
flow in, 796
flow in collapsible tube, 831
flow in rigid walled curved tube, 825
Hagen-Poiseuille flow, 797
nature, 793e796
pulsatile flow, 805

Body forces, 102
Body of revolution

flow around arbitrary, 236
flow around streamlined, 235

Bohlen, T., 377
Bond number, 150
Boundary conditions, 137e139, 681e682

geophysical fluids, 646
at infinity, 202
kinematic, 257
on solid surface, 202

Boundary layer

approximation, 368e369, 380, 401
Blasius solution, 369e373
breakdown of laminar solution, 404
closed form solution, 367e369
concept, 362
displacement thickness, 367e369
drag coefficient, 373
dynamics of sports balls, 395e396
effect of pressure gradient, 384e387, 517e520
Falkner-Skan solution, 373e375
flat plate and, 369e373
flow past a circular cylinder, 388e389
flow past a sphere, 395e396
instability, 520e522
Karman momentum integral, 375e377
momentum thickness, 369
perturbation techniques, 475
secondary flows, 407e408
separation, 384e388
simplification of equations, 314
skin friction coefficient, 372e373
technique, 2
Thwaites method, 377e380
transition to turbulence, 382e383
two-dimensional jets, 399e407
u ¼ 0.99U thickness, 367

Bound vortices, 710
Boussinesq approximation, 125,

135e137

continuity equation and, 135
geophysical fluid and, 626
heat equation and, 137
momentum equation and, 136
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Brunt-Väisälä frequency, 294e295
Buckingham’s pi theorem, 22
Buffer layer, 586e587
Bulk strain rate, 78
Bulk viscosity, coefficient of, 113e114
Buoyancy frequency, 294e295, 625
Buoyant production, 565e566, 597
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C
Camber line, airfoil, 696
Cantwell, B. J., 582
Capillarity, 9
Capillary number, 150
Capillary waves, 269, 270e271
Cardiac cycle, 782

net work done by ventricle on blood in one, 787
Cardiac output, 788
Cardiovascular system (human), functions, 780
Carey, G. F., 447e448
Cascade, enstrophy, 687e688
Casson fluid, laminar flow in a rigid walled tube,

839e841
Casson model, 790, 791f
Casten, R. G., 419
Castillo, L., 589
Cauchy-Riemann conditions, 216e217
Cauchy’s equation of motion, 111
Cavitation, 846
Central moments, 548e549
Centrifugal force, effect of, 119e121
Centrifugal instability (Taylor), 496e501
Chandrasekhar, S., 475, 498e499, 502
Chang, G. Z., 472
Chaos, deterministic, 524e540
Characteristics, method of, 279
Chester, W., 347
Chord, airfoil, 696
Chorin, A. J., 439e440, 445
Chow, C. Y., 702
Circular Couette flow, 316e317
Circular cylinder

flow at various Re, 388e395
flow past, boundary layer, 388e395
flow past, with circulation, 210e211
flow past, without circulation, 208e209

Circular Poiseuille flow, 315e316
Circulation, 79e80

Kelvin’s theorem, 96e99
Closure problem in turbulence, 560
Cnoidal waves, 286
Coefficient of bulk viscosity, 113e114
Cohen, I. M., 753e755
Coles, D., 500f, 588
Collapsible tubes

flow in, 831
one-dimensional steady flow in, 833
Starling resistor experiment, 832

Comma notation, 55, 183
Complex potential, 216e219
Complex variables, 216e219
Complex velocity, 217

Compressible flow

classification of, 731
friction and heating effects, 761e765
internal versus external, 730
Mach cone, 765e766
Mach number, 730, 731
one-dimensional, 736e738, 740e748
shock waves, normal, 748e753
shock waves, oblique, 767e768, 767f
speed of sound, 732e736
stagnation and sonic properties, 738e740
supersonic, 773e775

Compressible medium, static equilibrium of, 18, 18f

potential temperature and density, 19e21
scale height of atmosphere, 21

Compression waves, 254, 280e282
Computational fluid dynamics (CFD)

advantages of, 422e423
conclusions, 470
defined, 421e422
examples of, 449
finite difference method, 423e428
finite element method, 429e436
incompressible viscous fluid flow, 436e448
sources of error, 422

Concentric cylinders, laminar flow between, 316e318
Conformal mapping, 222e225

application to airfoil, 702e705
Conservation laws

Bernoulli equation, 128e134
boundary conditions, 137e143
Boussinesq approximation, 135e137
differential form, 96
integral form, 96
of mass, 96e99
mechanical energy equation, 123e124
of momentum, 101e111
Navier-Stokes equation, 114e115
rotating frame, 116e121
thermal energy equation, 123e124
time derivatives of volume integrals, 86e88

Conservative body forces, 102, 178e179
Consistency, 426e428
Constitutive equation, for Newtonian fluid, 111e114
Continuity equation, 98e99

Boussinesq approximation and, 135
one-dimensional, 736

Continuum hypothesis, 5
Control surfaces, 96e97
Control volume, 97e98
Convection, 70e71

-dominated problems, 437e439
forced, 598
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Convection (Continued )
free, 598
sloping, 684e685

Convergence, 426e428
Conversion factors, 853
Corcos, G. M., 505e506
Coriolis force, effect of, 118e119
Coriolis frequency, 629
Coriolis parameter, 629
Coronary arteries, 782e784
Coronary circulation, 782e784
Correlation, auto- and cross-, 550e551
Correlation coefficient, 550e551
Couette flow

circular, 316e317
plane, 314, 517

Courant, R., 778
Cramer, M. S., 764e765
Creeping flow, around a sphere, 340, 347
Creeping motions, 340
Cricket ball dynamics, 396e398
Critical layers, 514
Critical Re

blood flow, 797
Critical Re for transition

over circular cylinder, 393e394
over flat plate, 395e396
over sphere, 395e396

Cross-correlation function, 550e551
Cross product, vector, 51e52
Curl, vector, 54
Curtiss, C. F., 149
Curvilinear coordinates, 866

D
D’Alembert’s paradox, 208e209,

221e222
D’Alembert’s solution, 734
Davies, P., 525, 531e532
Dead water phenomenon, 289, 290
Dean number, 828e829
Defect law, velocity, 584, 585
Deflection angle, 767e768
Deformation

of fluid elements, 123e124
Rossby radius of, 657

Degree of freedom, 525e526
Delta wings, 718
Dennis, S. C. R., 830
Density

adiabatic density gradient, 596, 623
potential, 19e21
stagnation, 738e739

Derivatives

advective, 176
material, 176
particle, 176
substantial, 176
time derivatives of volume integrals,

86e88
Deviatoric stress tensor, 112
Diastole, 785e786
Differential equations, nondimensional parameters

determined from, 143e151
Diffuser flow, 740e747
Diffusion of vorticity

from impulsively started plate,
326e330

from line vortex, 335
from vortex sheet, 333

Diffusivity eddy, 594

effective, 607
heat, 311
momentum, 311
thermal, 137
vorticity, 178e179, 333

Dimensional analysis, 21e22
Dimensional homogeneity, 21e22
Dimensional matrix, 23e24
Dipole. See Doublet
Dirichlet problem, 429
Discretization error, 422

of transport equation, 425
Dispersion

of particles, 602e603
relation, 259, 275, 668e670, 673e676
Taylor’s theory, 601e602

Dispersive wave, 273e278, 283
Displacement thickness, 367e369
Dissipation

of mean kinetic energy, 519
of temperature fluctuation, 600
of turbulent kinetic energy, 564e569,

595e600
viscous, 137

Divergence

flux, 98
tensor, 53
theorem, 58, 98
vector, 52e53

Doppler shift of frequency, 255e256
Dot product, vector, 41e52
Double-diffusive instability, 492e496
Doublet

in axisymmetric flow, 205e206
in plane flow, 205e206
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Downwash, 711e712
Drag

characteristics for airfoils, 717
on circular cylinder, 394e395
coefficient, 343, 373
on flat plate, 373
force, 696e698
form, 387e388, 718
induced/vortex, 712f, 713e715
pressure, 696e698, 718
profile, 718
skin friction, 373, 696e698, 718
on sphere, 395e396
wave, 713, 775

Drazin, P. G., 475, 482f, 484, 491, 501, 514, 515
Dussan, V., E. B., 168
Dutton, J. A., 596, 597
Dynamic pressure, 133, 145e146
Dynamic similarity

nondimensional parameters and, 143e151
Dynamic viscosity, 7e8

E
Eddy diffusivity, 594
Eddy viscosity, 593e594
Effective gravity force, 119e121
Eigenvalues and eigenvectors of symmetric tensors,

56e58
Einstein summation convention, 41
Ekman layer

at free surface, 633e637
on rigid surface, 639e642
thickness, 639e640, 641

Ekman number, 632
Ekman spiral, 635
Ekman transport at a free surface, 636
Element point of view, 434e436
Elliptic circulation, 715e716
Elliptic cylinder, ideal flow, 224e225
Elliptic equation, 224e225
End diastolic volume (EDV), 787e788
End systolic volume (ESV), 787e788
Energy

baroclinic instability, 684
Bernoulli equation, 125e133, 153e167
spectrum, 553e554

Energy equation

integral form, 96
mechanical, 123e124
one-dimensional, 736e738
thermal, 114e115

Energy flux

group velocity and, 273e278

in internal gravity wave, 302e304
in surface gravity wave, 264e265

Ensemble average, 545e546
Enstrophy, 686
Enstrophy cascade, 687e688
Enthalpy

defined, 14
stagnation, 738e739

Entrainment

in laminar jet, 399e400, 403
turbulent, 573

Entropy

defined, 15
production, 215

Epsilon delta relation, 51
Equations of motion

averaged, 554e560
Boussinesq, 135, 626
Cauchy’s, 111
for Newtonian fluid, 111e115
in rotating frame, 116e120
for stratified medium, 625e626
for thin layer on rotating sphere, 628e630

Equations of state, 14e15

for perfect gas, 16e17
Equipartition of energy, 264
Equivalent depth, 643
Eriksen, C. C., 505e506
Euler equation, 115, 128

one-dimensional, 737e738
Euler momentum integral, 153
Eulerian description, 70
Eulerian specifications, 70
Exchange of stabilities, principle of, 487
Expansion coefficient, thermal, 16

F
Fahraeus effect, 792
Fahraeus-Lindqvist (FL) effect, 789, 792e793

mathematical model, 796e797
Falkner, V. W., 373e374
Falkner-Skan solution, 373e375
Far-field of a turbulent flow, 573te574t
Feigenbaum, M. J., 530e531
Fermi, E., 140
Feynman, R. P., 605
Fick’s law of mass diffusion, 6e7
Finite difference method, 423, 425
Finite element method

element point of view, 434e436
Galerkin’s approximation, 430e431
matrix equations, 431e434
weak or variational form, 429e430
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First law of thermodynamics, 13e14

thermal energy equation and, 123e124
Fish, locomotion of, 719e721
Fixed point, 526
Fixed volume

angular momentum principle for,
125e127

Fjortoft, R., 512, 686e687
Fjortoft’s theorem, 512e513
Flat plate, boundary layer and

Blasius solution, 369e373
closed form solution, 367e369
drag coefficient, 373

Fletcher, C. A. J., 436, 439
Flow limitation, 832
Fluid mechanics, applications, 2e3
Fluid mechanics, visual resources, 873
Fluid, definition, 3e4
Fluid particle, 13
Fluid statics, 9e12
Flux divergence, 98
Flux of vorticity, 79e80
Force field, 102
Force potential, 102
Forces

conservative body, 102, 178e179
Coriolis, 118e119
on a surface, 48e50

Forces in fluid

body, 102
line, 102
surface, 102

Form drag, 387e388, 718
Fourier’s law of heat conduction, 7
f-plane model, 630
Franca, L. P., 439, 448
Frank, Otto, 805
Frequency, wave

circular or radian, 254
Doppler shifted, 255e256
intrinsic, 255e256
observed, 255e256

Free turbulent shear flow, 571e581
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Friction drag, 373, 696e698, 718
Friction, effects in constant-area ducts,

761e763
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Froude number, 146, 282, 836

internal, 147
Fry, R. N., 764
Fully developed flow, 312
Fuselage, 692
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Galerkin least squares (GLS), 448
Galerkin’s approximation, 430e431
Galilean Transformation, 75
Gallo, W. F., 370
Gas constant

defined, 16e17
universal, 16e17

Gas dynamics, 692
See also Compressible flow

Gases, 3e5
Gauge pressure, defined, 9e10
Gauss’ theorem, 58e60, 98
Gaussian vortex, 17
Geophysical fluid dynamics

approximate equations for thin layer on rotating
sphere, 628e630

background information, 622e623
baroclinic instability, 678e679
barotropic instability, 676e678
Ekman layer at free surface, 633e637
Ekman layer on rigid surface, 639e642
equations of motion, 625e628
geostrophic flow, 630e632
gravity waves with rotation, 651e652
Kelvin waves, 654e658
normal modes in continuous stratified layer,

644e645
Rossby waves, 671
shallow-water equations, 642e643, 649e651
vertical variations of density, 623e625
vorticity conservation in shallow-water theory,

658e662
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Geostrophic balance, 631
Geostrophic flow, 630e632
Geostrophic turbulence, 685e688
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Glowinski scheme, 446
Glowinski, R., 446, 448
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Goldstein, S., 363, 502
Görtler vortices, 501
Gower, J. F. R., 392f
Grabowski, W. J., 522
Gradient operator, 52e54
Gravity force, effective, 119e121
Gravity waves

deep water, 265e269
at density interface, 286e293
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dispersion, 267, 273e278, 299e300
energy issues, 302e304
equation, 257e262
finite amplitude, 279e280
group velocity and energy flux, 273e278
hydraulic jump, 280e283
infinite layer, 289, 290f
internal, 296e299
motion equations, 293e296
nonlinear steepening, 280e282
parameters, 254e255
refraction, 267e268
with rotation, 651e652
shallow water, 265e269, 279e286, 292e293
standing, 271e273
Stokes’ drift, 284f, 285e286
in stratified fluid, 296e299
surface, 254, 256e265
surface tension, 269e271
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Group velocity

concept, 273e278
of deep water wave, 275
energy flux and, 273e278
Rossby waves, 671
wave dispersion and, 273e278
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Hagen-Poiseuille flow, 797

application, 820
effect of developing flow, 801e803
effect of vessel wall elasticity, 801e803
Fahraeus-Lindqvist effect and, 796e797

Half-body, flow past a, 207e208
Harlow, F. H., 443
Harmonic function, 202
Hatsopoulos, G. N., 37
Hayes, W. D., 755
Heart, pumping action, 785e786
Heat diffusion, 311
Heat equation, 137

Boussinesq equation and, 137
Heat flux, turbulent, 565e566
Heating, effects in constant-area ducts, 761e763
Heisenberg, W., 516e517
Hele-Shaw, H. S., 322, 324, 357, 358, 359
Hele-Shaw flow, 324, 357e358
Helmholtz vortex theorems, 179e180
Hematocrit, 789e790

plasma skimming, 792e793
Herbert, T., 475, 515
Herreshoff, H. C., 722
Hinze, J. O., 544, 561, 563
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Holton, J. R., 671
Homogeneous isotropic turbulence, 560e563
Hooke’s law, blood vessels and, 804
Hou, S., 452, 453f
Houghton, J. T., 672f, 677f
Howard, L. N., 502, 507e508, 514
Howard’s semicircle theorem, 507e508
Hughes, T. J. R., 436, 439, 466
Hugoniot, Pierre Henry, 750e751
Human body, biotransport and distribution processes,

780
Huppert, H. E., 492
Hydraulic jump, 280e282
Hydrostatics, 11e12
Hydrostatic waves, 267
Hypersonic flow, 731

I
Images, method of, 188e189, 213e214
Incompressible aerodynamics. See Aerodynamics
Incompressible fluids, 113e114, 115
Incompressible viscous fluid flow, 436e448

convection-dominated problems, 437e439
Glowinski scheme, 446
incompressibility condition, 439e440
MAC scheme, 442e446
mixed finite element, 447e448

Induced/vortex drag, 712f, 713e715

coefficient, 717
Inertia forces, 338e339
Inertial circles, 653e654
Inertial motion, 653e654
Inertial period, 629, 653e654
Inertial sublayer, 584e585
Inertial subrange, 569e570
Inflection point criterion, Rayleigh, 511e512, 676
inf-sup condition, 447e448
Initial and boundary condition error, 422
Inlet (entrance) length, 801e802
Inner layer, law of the wall, 584e585
Input data error, 422
Instability

background information, 475
baroclinic, 678e685
barotropic, 676e678
boundary layer, 517e522
centrifugal (Taylor), 496e501
of continuously stratified parallel flows, 502e508
destabilizing effect of viscosity, 516e517
double-diffusive, 492e496
inviscid stability of parallel flows, 511e515
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Instability (Continued )
Kelvin-Helmholtz instability, 477e483
marginal versus neutral state, 476
method of normal modes, 475e476
mixing layer, 515e516
nonlinear effects, 522
Orr-Sommerfeld equation, 508e511
oscillatory mode, 476
pipe flow, 517
plane Couette flow, 517
plane Poiseuille flow, 516e517
principle of exchange of stabilities, 487
results of parallel viscous flows, 515e520
salt finger, 492, 494e496
sausage instability, 538
secondary, 523
sinuous mode, 537
Squire’s theorem, 508e511
thermal (Bénard), 484e492

Integral time scale, 552e553
Interface, conditions at, 137e138
Internal energy, 13, 124
Internal Froude number, 147
Internal gravity waves, 254
See also Gravity waves

energy flux, 302e304
at interface, 287e288, 287f
in stratified fluid, 296e299
in stratified fluid with rotation, 662e671
WKB solution, 664e666

Internal Rossby radius of deformation, 657e658
Intrinsic frequency, 255e256, 588
Inversion, atmospheric, 17
Inviscid stability of parallel flows, 511e515
Inviscid theory

application of complex variables, 216e219
around body of revolution, 233
axisymmetric, 231e236
blood flow, 806e809
conformal mapping, 222e225
doublet/dipole, 205e206
forces on two-dimensional body, 219e222
images, method of, 188e189, 213e214
irrotational flow, 79
long wave length approximation, 822e825
numerical solution of plane, 225e230
over elliptic cylinder, 224e225
past circular cylinder with circulation, 210e211
past circular cylinder without circulation,

208e209
past half-body, 207e208
relevance of, 198e200
sources and sinks, 201

uniqueness of, 213
unsteady, 130
velocity potential and Laplace equation, 191
at wall angle, 217e218

Irrotational vector, 54
Irrotational vortex, 84, 171e172, 218
Isentropic flow, one-dimensional, 740e748
Isentropic process, 17
Isotropic tensors, 50e51, 111e113
Isotropic turbulence, 560e563
Iteration method, 225e230
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Karamcheti, K., 728
Karman. See under von Karman
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Keller, H. B., 472
Kelvin-Helmholtz instability, 477e483
Kelvin’s circulation theorem, 96e99
Kelvin waves

external, 654e658
internal, 657e658
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defined, 65e66
Lagrangian and Eulerian specifications, 69e70
linear strain rate, 76e77
material derivative, 176
one-, two-, and three-dimensional flows, 66e67
parallel shear flows and, 82
path lines, 72
polar coordinates, 66e67
reference frames and streamline pattern, 75
relative motion near a point, 76
shear strain rate, 82e83
streak lines, 72e73
stream function, 99e100
streamlines, 71e72
viscosity, 8
vortex flows and, 83e84
vorticity and circulation, 78e79
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of mean flow, 564e565
of turbulent flow, 565e566
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spectral law, 569e570
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Kronecker delta, 50e51
Krylov, V. S. , 169
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698
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Lamb, H., 129, 139e140
Lamb surfaces, 129
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solution, 373e375
Laminar flow

creeping flow, around a sphere, 314e315
defined, 310e311
diffusion of vortex sheet, 333f
Hele-Shaw, 314
high and low Reynolds number flows,
338e347

oscillating plate, 337e338
pressure change, 311
similarity solutions, 326e337
steady flow between concentric cylinders,
316e318

steady flow between parallel plates,
312e314

steady flow in a pipe, 315e316
Laminar flow, of a Casson fluid in a rigid walled tube,

839e841
Laminar jet, 399e407
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Lift force, airfoil, 696e698

characteristics for airfoils, 717e718
Zhukhovsky, 706e708

Lifting line theory

Prandtl and Lanchester, 716
results for elliptic circulation, 715e716

Lift theorem, Kutta-Zhukhovsky, 211e212, 221e222,
698, 712e713
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Lighthill, M. J., 188e189, 278fe279f, 279, 283, 719
Limit cycle, 526
Lin, C.-Y., 391, 468e470
Linear strain rate, 76e77
Line forces, 102
Line vortex, 171e172, 335f
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Logarithmic law, 585e590
Long-wave approximation. See Shallow-water

approximation
Lorenz, E., 475e476, 526e529, 531

model of thermal convection, 526e527
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cone, 765e766
line, 765e766
number, 282, 692

MAC (marker-and-cell) scheme, 442e446
Magnus effect, 212e213
Marchuk, G. I., 442e443
Marginal state, 476
Mass, conservation of, 96e99
Mass transport velocity, 285
Material derivative, 70
Material volume, 96e97
Matrices

dimensional, 23
multiplication of, 44e45
rank of, 23e24
transpose of, 40e41

Matrix equations, 431e434
Mean continuity equation, 555
Mean heat equation, 558e559
Mean momentum equation, 555e556
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Mechanical energy equation, 123e124
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Mixed finite element, 447e448
Mixing layer, 515e516
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Modeling error, 422
Moens-Korteweg wave speed, 807e808
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Moments, 545e549, 560
Momentum

conservation of, 101e111
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Momentum equation, Boussinesq equation and, 136
Momentum integral, von Karman, 375e377
Momentum principle, for control volume, 737e738
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incompressibility condition, 439e440

Nayfeh, A. H., 362, 522
Neutral state, 476
Newman, J. N., 722
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at low Reynolds number, 339, 345
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See also Boundary layers
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region of, 339
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Normal strain rate, 76e77
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Noye, J., 427e428
Nozzle flow, compressible, 748e750
Numerical solution

Laplace equation, 225e230
of plane flow, 225e230

O
Oblique shock waves, 767e770
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Orifice flow, 133e134
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Oscillating plate, flow due to, 337e338
Oscillatory mode, 476, 495
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Oseen’s approximation, 345
Oseen’s equation, 345
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results of viscous, 515e520
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Path lines, 72
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Pearson, J. R. A., 347
Pedlosky, J., 627, 637e639, 679, 686, 688
Peletier, L. A., 370
Perfect differential, 128
Perfect gas, 16e17
Peripheral resistance unit (PRU), 794e796
Permutation symbol, 50e51
Perturbation pressure, 260, 266e267
Perturbation techniques, 475

asymptotic expansion, 516e517
nonuniform expansion, 345
regular, 515e516
singular, 516e517

Perturbation vorticity equation, 679e681
Petrov-Galerkin methods, 431
Peyret, R., 445, 446
Phase propagation, 675
Phase space, 525e526
Phenomenological laws, 6e7
Phillips, O. M., 274e275, 596, 671
Phloem, 847e848

flow, 848e850
Pipe flow, dimensional analysis

instability and, 516
Pipe, steady laminar flow in a, 315e316
Pitch axis of aircraft, 692e693
Pi theorem, Buckingham’s, 22
Pitot tube, 131e132
Plane Couette flow, 314, 517
Plane irrotational flow, 200e203
Plane jet

self-preservation, 571e573
turbulent kinetic energy, 573

Plane Poiseuille flow, 314

instability of, 516e517
Planetary vorticity, 185e187, 629
Planetary waves. See Rossby waves
Plants

fluid mechanics, 844e849
physiology, 844e845

Plasma, blood, 788e789

skimming, 792e793
viscosity, 789e790

Plastic state, 4
Platelets (thrombocytes), 788e789
Pohlhausen, K., 375e377
Poincaré, Pitot, Henri, 531
Poincaré waves, 652, 656
Point of inflection criterion, 384e385
Poiseuille flow

circular, 315
instability of, 516e517
plane laminar, 314

Polar coordinates, 66e67

cylindrical, 839
Pomeau, Y., 525, 531
Potential, body force, 119e121
Potential, complex, 216e219
Potential density gradient, 17, 596
Potential energy

baroclinic instability, 678e685
mechanical energy equation and, 123e124
of surface gravity wave, 264

Potential flow. See Irrotational flow
Potential temperature and density, 19e21
Potential vorticity, 660
Prager, W., 64
Prandtl, L., 40e41, 212, 362, 502, 528, 529e531,

544e545, 595, 600e601, 622, 753e755,
869e870

mixing length, 544, 593e594
Prandtl and Lanchester lifting line theory, 716
Prandtl-Meyer expansion fan, 771e773
Prandtl number, 149, 486

turbulent, 597e598
Pressure

absolute, 9e10
coefficient, 147, 207e208
defined, 5, 9e10
drag, 696e698, 718
dynamic, 133, 145e146
gauge, 9e10
Laplace, 9
stagnation, 133
waves, 258, 765e773

Pressure-drop limitation, 832
Pressure gradient

boundary layer and effect of, 384e387, 517
constant, 312e314

Pressure pulse, 785e786
Principal axes, 56, 80e81
Principle of exchange of stabilities, 487
Probstein, R. F., 139
Profile drag, 718
Proudman, I., 347, 633
Pulmonary circulation, 782, 841e842
Pulsatile flow, 796, 805e806

aorta elasticity and Windkessel theory, 805e806
inviscid theory, 806e809
in rigid cylindrical tube, 809e814
tube material viscoelasticity, 819e820
wall viscoelasticity, 814e819

Q
Quasi-geostrophic motion, 671e673
Quasi-periodic regime, 529e531
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Rankine, W. J. M., 750e751

vortex, 84e85
Rankine-Hugoniot relations, 753e755
RANS equations, 560
Rayleigh

equation, 511
inflection point criterion, 511e512, 676
inviscid criterion, 497, 499f
number, 490e491

Rayleigh, Lord (J. W. Strutt), 142
Red blood cells, 789
Reduced gravity, 292
Refraction, shallow-water wave, 267e268
Regular perturbation, 515e516
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Relative vorticity, 659e661
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decomposition, 554e555
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stress, 556e557
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Rossby number, 630
Rossby radius of deformation, 657,
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Rossby waves, 671e676
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flow outside, 317e318
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Rotation tensor, 76
Rough surface turbulence, 590e591
Ruelle, D., 530e531
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Salt finger instability, 492, 494e496
Sargent, L. H., 523
Saric, W. S., 522
Scalars, defined, 40
Scale height, atmosphere, 21
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Schlieren method, 730e731
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Secondary instability, 523
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Second-order tensors, 45e47
Seiche, 271e273
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Separated flow, 198e199
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Shames, I. H., 251
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Shear production of turbulence, 564e567, 597
Shear strain rate, 82e83
Shear stress, 7e8
Shen, S. F., 516e517, 521
Sherman, F. S., 318
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Shock angle, 767e768
Shock structure, 753e755
Shock waves

normal, 748e755
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structure of, 753e755

SI (système international d’unités), units of
measurement, 3

conversion factors, 853
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See also Dynamic similarity

geometric, 222
Similarity solution, 326

for boundary layer, 369e373
decay of line vortex, 335f
diffusion of vortex sheet, 333f
for impulsively started plate, 326e337
for laminar jet, 399e407

Singly connected region, 213
Singularities, 216e217
Singular perturbation, 516e517
Sink, boundary layer, 412
Skan, S. W., 373e374, 377
Skewness, 548e549
Skin friction coefficient, 372e373
Sloping convection, 684e685
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Solenoidal vector, 54
Solid-body rotation, 83e84, 83f, 171e172
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Solitons, 286e287
Sommerfeld, A., 45e46, 179e180, 191, 544, 730e731
Sonic conditions, 739e740
Sonic properties, compressible flow, 738e740
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speed of, 16, 17, 731e732
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near a wall, 213
plane, 201

Spalding, D. B., 589
Spatial distribution, 11
Specific heats, 14
Specific impulse, 109
Spectrum

energy, 553e554
as function of frequency, 553e554
as function of wave number, 545
in inertial subrange, 545, 569e570
temperature fluctuations, 600e601

Speziale, C. G., 591
Sphere

creeping flow around, 340, 347
flow around, 233
flow at various Re, 395e399

Oseen’s approximation, 345
Stokes’ creeping flow around, 340, 347

Spiegel, E. A., 135
Sports balls, dynamics of, 395e399
Squire’s theorem, 502e503, 508e511
Stability, 426e428
See also Instability

Stagnation density, 738e739
Stagnation flow, 217e218
Stagnation points, 698
Stagnation pressure, 133, 738e739
Stagnation properties, compressible flow, 738e740
Stagnation temperature, 738e739
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Standing waves, 271e273
Starling resistor, flow in a collapsible tube, 832
State functions, 14, 16
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Stationary turbulent flow, 546e547
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Bernoulli equation and, 128e129
between concentric cylinders, 316e318
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in a pipe, 315e316
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Stern, M. E., 492
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Stokes’ drift, 284f, 285e286
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Stokes’ stream function, 231
Stokes’ theorem, 60e61, 79e80
Stokes’ waves, 283
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tensor, 76

Strange attractors, 529
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Stratified turbulence, 545
Stratopause, 624
Stratosphere, 622, 624
Streak lines, 72e73
Stream function
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generalized, 99e100
in plane flow, 83e84

Stokes, 231
Streamlines, 71e72
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Stress tensor
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Reynolds, 556
symmetric, 111

Strouhal number, 391
Sturm-Liouville form, 645
Subcritical gravity flow, 282
Subharmonic cascade, 529e531
Sublayer

inertial, 569e570
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viscous, 584e585

Subrange

inertial, 545, 569e570
viscous convective, 600e601

Subsonic flow, 148e149, 731
Substantial derivative, 176
Sucker, D., 472
Supercritical gravity flow, 282
Supersonic flow, 148e149, 731

airfoil theory, 773e775
expansion and compression, 771

Surface forces, 102
Surface gravity waves, 254
See also Gravity waves

in deep water, 265e269
features of, 256e269
in shallow water, 265e269

Surface tension, 8e9
Surface tension, generalized, 139
Sverdrup waves, 652
Sweepback angle, 718
Symmetric tensors, 55e56

eigenvalues and eigenvectors of, 56
Systemic circulation, 780e781

pressure throughout, 785e786
Systole, 785e786

systolic blood pressure, measurement,
831e832
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Taylor, T. D., 445, 499e501, 544, 622
Taylor, G. I., 544, 593e594, 641

centrifugal instability, 496e501
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hypothesis, 554, 563
number, 498e501

theory of turbulent dispersion, 601e607
vortices, 501

Taylor-Goldstein equation, 503e504
Taylor microscale, 552e553, 561e562, 569
Taylor-Proudman theorem, 632e633
TdS relations, 16e17
Temam, R., 445
Temperature

adiabatic temperature gradient, 17, 623
fluctuations, spectrum, 600e601
potential, 19e21
stagnation, 738e739

Tennekes, H., 543, 585e586, 596
Tennis ball dynamics, 398e399
Tensors, Cartesian

boldface versus indicial notation, 41e42
comma notation, 62
contraction and multiplication, 47e48
cross product, 51e52
dot product, 51e52
eigenvalues and eigenvectors of symmetric, 56
force on a surface, 48e49
Gauss’ theorem, 58e59
invariants of, 47
isotropic, 50e51, 112e113
Kronecker delta and alternating, 50e51
multiplication of matrices, 44e45
operator del, 52e53
rotation of axes, 42e43
scalars and vectors, 39e41
second-order, 45e47
Stokes’ theorem, 60e61
strain rate, 56
symmetric and antisymmetric, 55e56
vector or dyadic notation, 41

Tezduyar, T. E., 448
Theodorsen’s method, 702
Thermal conductivity, 7
Thermal convection, Lorenz model of, 526e527
Thermal diffusivity, 137
Thermal energy equation, 123e124

Boussinesq equation and, 135e137
Thermal energy, 13
Thermal expansion coefficient, 16
Thermal instability (Bénard), 484e492
Thermal wind, 632
Thermocline, 625
Thermodynamic pressure, 111e112
Thermodynamics

entropy relations, 16e17
equations of state, 14, 16
first law of, 13e14, 123e124
second law of, 15, 125

INDEX888



specific heats, 14e15
speed of sound, 16
thermal expansion coefficient, 16

Thin airfoil theory, 702, 773e775
Thomson, R. E., 392f
Thorpe, S. A., 481f
Three-dimensional flows, 66e67
Thwaites, B., 376e380
Thwaites method, 377e380
Tidstrom, K. D., 523
Tietjens, O. C., 37, 728
Time derivatives of volume integrals

general case, 86e87
material volume, 96e97

Time lag, 551
Tip vortices, 709
Tollmien-Schlichting wave, 422, 516e517
Total peripheral resistance, 794e796, 799
Townsend, A. A., 580e581
Trace velocity, 255
Trailing vortices, 708e709, 713
Transition to turbulence, 382e383, 523e524
Translocation, 847
Transonic flow, 731
Transpiration, 846e847
Transport phenomena, 5e8
Transport terms, 98
Transpose, 40e41
Tropopause, 624
Troposphere, 624
Truesdell, C. A., 113e114
Tube collapse, 833, 834
Turbulent flow/turbulence

averaged equations of motion, 554e560
averages, 545
buoyant production, 565e566, 597
cascade of energy, 564e570
characteristics of, 542e543
commutation rules, 602e603
correlations and spectra, 549e554
defined, 310e311
dispersion of particles, 601e607
dissipating scales, 567e568
dissipation of mean kinetic energy, 563
dissipation of turbulent kinetic energy, 563
eddy diffusivity, 594, 607
eddy viscosity, 592e594
entrainment, 573
free shear , 571e581
geostrophic, 685e688
heat flux, 558e559
homogeneous, 546e547
inertial subrange, 545, 569e570

integral time scale, 552e553
intensity variations, 578e579
isotropic, 560e563
in a jet, 571e575
kinetic energy of, 563
kinetic energy of mean flow, 563
law of the wall, 584e585
logarithmic law, 585e590
mean continuity equation, 555
mean heat equation, 558e559
mean momentum equation, 555e556
mixing length, 544, 593e594
Monin-Obukhov length, 598e599
research on, 545
Reynolds analogy, 597e598
Reynolds stress, 556e557
rough surface, 590e591
self-preservation, 571e573
shear production, 564e567
stationary, 546e547
stratified, 596e601
Taylor theory of, 601e607
temperature fluctuations, 600e601
transition to, 382e383, 523e524
velocity defect law, 585
viscous convective subrange,

600e601
viscous sublayer, 584e585
wall-bounded flow, 581e591

Turner, J. S., 283, 286, 298e299, 483f, 492, 597e599
Two-dimensional flows, 66, 219e222
Two-dimensional jets. See Jets, two-dimensional

laminar

U
Unbounded ocean, 654
Uniform flow, axisymmetric flow, 218, 221, 223, 232
Unsteady irrotational flow, 130
Upwelling, 658

V
Vallentine, H. R., 251
Van Dyke, M., 71, 362
Vapor trails, 709
Variables, random, 549e550
Variance, 548e549
Vascular system, plant, 845

phloem, 847e849
xylem, 845e847

Vector(s)

cross product, 51e52
curl of, 54
defined, 40e43, 45
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Vector(s) (Continued )
divergence of, 52e53
dot product, 51e52
operator del, 52e53

Velocity defect law, 585
Velocity gradient tensor, 76
Velocity potential, 130, 200e203
Ventricles, work done on blood, 785
Veronis, G., 135
Vertical shear, 632
Vidal, C., 525, 531
Viscoelastic, 4
Viscosity

coefficient of bulk, 113e114
destabilizing, 508e509
dynamic, 7e8
eddy, 592e594
irrotational vortices and, 171e172
kinematic, 8
net force, 174e176
rotational vortices and, 173

Viscosity, blood, 789e790
Viscous convective subrange, 600e601
Viscous dissipation, 137
Viscous fluid flow, incompressible, 436e448
Viscous sublayer, 584e585
Vogel, W. M., 618
Volumetric strain rate, 78

von Karman, 701e702, 716
constant, 585e586
momentum integral, 375e377
vortex streets, 298, 389e392

von Karman, T., 2, 375, 544, 585e586, 592, 716,
730e731, 870

Vortex

bound, 710
decay, 335f
drag, 713
Görtler, 501
Helmholtz theorems, 179e180
interactions, 187e191
irrotational, 218
lines, 172, 314
sheet, 191, 289, 480, 708e709
starting, 699e701
stretching, 186, 660, 685e686
Taylor, 499e501
tilting, 186, 637e639, 660
tip, 709
trailing, 708e709, 711e712
tubes, 172e173
von Karman vortex streets, 298,

389e392

Vortex flows

irrotational, 84
Rankine, 84e85
solid-body rotation, 83e84, 83f

Vorticity, 78e79

absolute, 185, 660
baroclinic flow and, 178e179
diffusion, 178e179, 311, 333f
equation in nonrotating frame, 180e181
equation in rotating frame, 183e187
flux of, 79e80
Helmholtz vortex theorems, 179e180
Kelvin’s circulation theorem, 96e99
perturbation vorticity equation, 679e681
planetary, 185e187, 629
potential, 660
quasi-geostrophic, 671e673
relative, 659e661
shallow-water theory, 658e662

W
Wake, 198e199
Wall angle, flow at, 217e218
Wall-bounded turbulent shear flow, 581e591
Wall jet, 404e405
Wall, law of the, 584e585
Water, physical properties of, 854
Wavelength, 255
Wave number, 255
Waves
See also Internal gravity waves;

Surface gravity waves

acoustic, 732e736
amplitude of, 254
angle, 767e768
capillary, 269
cnoidal, 286
compression, 254
deep-water, 265e269
at density interface, 286e293
dispersive, 273e278, 299e300
drag, 713, 753
energy flux, 264e265, 273e278
equation, 257e258
group speed, 264e265, 273
hydrostatic, 267
Kelvin, 654e658
lee, 670e671
packet, 274, 275f
parameters, 254e255
particle path and streamline, 262, 263f
phase of, 255
phase speed of, 255
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Poincaré, 652, 656
potential energy, 264
pressure, 258, 765e773
pressure change, 267
refraction, 267e268
Rossby, 671e676
shallow-water, 265e269
shock, 748e755
solitons, 286e287
solution, 681e682
sound, 732e736
standing, 271e273
Stokes’, 283
surface tension effects, 269e271
Sverdrup, 652

Wedge of instability, 684e685
Welch, J. E., 443
Wen, C. Y., 391, 468e470
White blood cells (leukocytes), 789
Whitham, G. B., 283
Williams, G. P., 688
Windkessel theory, 805e806
Wing(s)

aspect ratio, 692
bound vortices, 710
drag, induced/vortex, 709, 713
delta, 718
finite span, 708e716
lift and drag characteristics, 717e718

Prandtl and Lanchester lifting line theory, 716
span, 708
tip, 692
tip vortices, 709
trailing vortices, 708e709, 713

WKB approximation, 664
Womersley number, 796
Woods, J. D., 480, 597e598
Work, 14e15

X
Xylem, 845e847

flow, 847

Y
Yaglom, A. M., 543, 544
Yakhot, V., 595e596
Yanenko, N. N., 442e443
Yaw axis of aircraft, 692e693
Yih, C. S., 516e517

Z
Zhukhovsky, N.

airfoil lift, 706e708
hypothesis, 698
lift theorem, 211e212, 221e222, 698, 701e702
transformation, 702e703, 706e707

Zone of action, 766e767
Zone of silence, 766e767
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