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Preface

This book stems from a career-long interest in understanding how 
structural engineers worked in the past. Although we admire the great 
works of Roman engineering and the medieval cathedrals of Europe, 
we tend to think that modern engineering is somehow superior to the 
engineering that produced these structures. The premise of this book 
is that, for all its evident differences, modern engineering cannot claim 
superiority to the engineering of any period in the history of civiliza-
tion. That contemporary engineering is based on a different mindset 
and a different set of values from the work of any of these other periods 
is evident. But the works that appeared in the engineering of other 
periods are not reproducible by contemporary methodology: each  
age defines its own artifacts and its own ways of producing these 
artifacts.

The late nineteenth century is a particularly significant time  
for understanding contemporary engineering: Although nineteenth- 
century engineering is different from modern engineering in the sense 
described, this period is closely related to the present time. Although 
Roman and medieval engineering are defined primarily by experience-
based procedures, they are somewhat informed by emerging ideas from 
speculative science. By the nineteenth century, however, ideas of science 
were sufficiently advanced, and ideas about the role of science in 
society, such as positivism, were sufficiently widespread that engineers 
began to think of themselves as scientists of a sort and began to think 
that they were responsible for applying scientific procedures to con-
structed works.

A particularly interesting feature that emerged from the study  
of nineteenth-century engineering methods was the efficiency and  
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accuracy of some of the procedures employed, as compared with the way we accomplish 
these tasks in the present age. Particularly in truss design, both analytical and graphical, 
most of the procedures employed in the nineteenth century appear to be more efficient than 
those that we teach to students in contemporary engineering programs. The reliance on 
graphical methods, especially for trusses and arches, is particularly revealing of the late 
nineteenth-century mindset and does influence the actual form of the structures.

In preparing this book I tried to focus on ordinary procedures used to design and 
construct ordinary works without placing emphasis on the exceptional engineering works 
that mark this period. Thus, although the reader can find references to the design of major 
works, most of the discussions in this book describe smaller works and the significant body 
of engineering design that went into their construction.
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Introduction

This book concerns the methods used for structural engineering design 
in the late nineteenth century. Even as the opportunities for business, 
industry, and transportation were expanding during this time, the 
methods of the civil engineering and the structural engineering profes-
sions were also expanding, in part to meet the demands of the expan-
sion of industry. The intent of the present book is to capture, through 
investigation of writings, archival evidence, and examination of built 
works, the methods of structural design of bridges and buildings in the 
period from 1870 through 1900, roughly, the period known to histo-
rians as the Gilded Age (1865–1893). The value of this exercise is 
three-fold. First, understanding the intent of the designer is the key to 
a successful rehabilitation, whether architectural or structural. Second, 
the preservation of design methods for historic structures is at least as 
important as the preservation of the structures themselves. Third, 
many of the methods used in structural design in the late 1800s are 
valuable in their own right—quick, computationally efficient, under-
standing of the behavior of the structure, and often giving special 
insight into the actual performance of the structure.

In undertaking the historic preservation of structures from the 
late nineteenth century, understanding design intent is important—the 
way that a bridge or building was designed and the way that the ele-
ments of the structure were intended to function. Too often in historic 
preservation projects, we overlook the designer’s conception of the 
structure and impose a modern outlook on the structure, with the 
result that significant historic fabric is removed unnecessarily. One of 
the most widespread misunderstandings concerning historic structures 
is the idea that the older structures were designed for lighter loading 
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than modern-day structures. In fact, road bridges were designed for deck loads of up to 
100 lbs/ft2 (see, for instance, Waddell 1894); the 1,000 lb/ft on a 10-ft lane dictated by this 
loading is well above the lane loading requirements of AASHTO HS-20 (AASHTO 2013). 
Extraordinary vehicles, such as freight drays and road rollers, imposed very heavy loads on 
bridges. A passage of a steamroller is illustrated in the photo of the circa 1890 opening of 
the St. Mary’s Street Bridge in San Antonio, TX (Figure I-1). Equally important is under-
standing in exactly what way nineteenth-century bridge design may have differed from 
modern design. Although most bridge decks do meet the AASHTO uniformly distributed 
lane load requirement, few nineteenth-century bridge designers imposed limits on the con-
centrated loads that the bridge could resist. A distributed load of 100 lbs/ft2 placed to create 
maximum force in each member was usually the only loading requirement. As a result, 
focusing attention on the floor system of a bridge under rehabilitation is more important 
than on the main load-carrying system, such as truss, girder, or suspension cable.

Building floor loads used in the nineteenth century were similar to those used today. 
However, the approach to wind loads on buildings was very different. Because much heavier 
roof structures were present, uplift of the roof structure generally was not considered to be 
a design issue, although the possibility of wind loads causing a force reversal in a web 
member of a truss was considered by applying wind pressure to the windward side of a roof 
and by removing all load from the lee side.

Although the primary intent of this book is simply to present the methods of late 
nineteenth-century structural design and to recognize the inherent truth, simplicity, and value 

Figure I-1. Opening of St. Mary’s Street Bridge, San Antonio, TX, circa 1890.
Source: Reproduced by permission of the Huntington Library, San Marino, CA.
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of these methods, greater sympathy and understanding for the methods by which a structure 
was designed may follow directly from the review of these methods. For all the merit of 
contemporary engineering analysis, it is worth considering from the outset that the designers 
of the original structure probably knew what they were doing. In evaluating the notion that 
many shorter span masonry bridges were designed empirically, understanding the success of 
this design method for structures of this type is important. Some of the most admired and 
most enduring masonry structures in the world also were designed empirically, whereas, 
conversely, contemporary structural analysis is not always able to explain the behavior of 
these structures. A frequent response of contemporary engineers in rehabilitation projects 
involving masonry bridges is to find the structure deficient by some form of modern struc-
tural analysis or to declare it “unrateable” and in need of reinforcement by saddling the 
arch or installing internal anchors. This response may be appropriate in a few cases, but it 
needs to result from a positive determination of why the structure is deficient, including the 
contradiction of the original designers’ findings that this was an appropriate design, for 
instance, clear evidence of scour or formation of hinges in the arch ring. To say that the 
bridge was designed for horses and buggies is incorrect; bridge decks in urban settings 
usually were designed for loads of 100 lbs/ft2, a load appropriate to the heavy vehicles that 
were in use at the time.

Similar arguments apply to building structures. An examination of contemporary docu-
ments reveals that the live loads in widespread use were greater than the loads used in design 
in contemporary codes and that the safety factors generally were greater. The underlying 
assumption of a rehabilitation effort could be that the original designers had it right.

Although significant recent attention has been directed toward the preservation of 
bridges and buildings, the ideas that are reflected in the design of a historic structure also 
merit preservation. For the reasons described herein, it is important that we retain the ability 
to understand a structure from the same viewpoint as a nineteenth-century engineer. The 
methods presented in this book have intrinsic value, that is, they are interesting on their 
own account. The methods also have comparative value: comparing the methods presented 
here with contemporary methods is a useful exercise. As an example, consider the Rankine-
Gordon formula for column capacity (Chapter 9). This formula has a firm basis in reason, 
calculating the residual axial force capacity for an eccentrically loaded column. As such, it 
considers eccentricities without introducing the idealization of a perfectly straight, perfectly 
concentrically loaded column and the three curves (yield, Euler Buckling Theory, and inter-
polation) necessary to draw a complete column curve according to either the AISC (2011) 
specification for steel or the National Design Specification for Wood Construction (American 
Wood Council 2006). The methods presented in this book also have pedagogical value as 
an accompaniment to the current building codes and standards: it is useful to provide stu-
dents with alternative means of achieving the same ultimate objective, which is to build 
worthy structures. This book is intended as an initial step toward the preservation of these 
ideas, in addition to preserving the structures themselves.

Finally, the methods outlined in this book may, in some cases, be superior to the 
methods used in contemporary practice. The rapidity of computation and the intimate rela-
tion between the structure and its analysis present in early methods of analysis have been 
lost by the numerically intensive analytical methods employed in the present. In the graphical 
analysis of a load-carrying structure, for instance, the forces acting on a structure, the 
bending moments, and a suitable shape for the structure can be inferred from a single 
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diagram. The flow of forces through a truss under variable loading can be immediately 
understood using some of the analytical methods for trusses that the book will explore. 
Some of the historic computation methods also depend on an ability to visualize the trans-
mission of forces through a structure that is not evident in the application of computer-based 
methods of analysis. In particular, graphic analysis is practically a concurrent method of 
analysis and design in which a diagram of the paths of load resistance in a structure is 
created.

Modern methods of analysis are based on increasingly precise computations, where 
efficiency is unnecessary because the computer is the primary calculating instrument. Because 
of the difficulty of computations in the late nineteenth century, methods from this period 
show an economy of calculation that could significantly benefit modern engineering. A few 
of these calculation methods are described in Chapter 5.

Sources of Information

The principal source of information for this book is the textbooks of the period. A very 
great number of very useful textbooks have been made available as free books on Google 
.com or HathiTrust.com. The most useful books have been the design manuals, such as 
Kidder’s Architects’ and Builders’ Pocket-Book, or Trautwine’s The Civil Engineer’s Pocket-
Book. Additionally, several catalogs have been consulted. Various other academic source 
materials are available and have been very useful to the development of this work. Engineer-
ing professors often mimeographed and bound their course notes, and some of these materi-
als remain available in libraries throughout the country. Notable among these is George 
Fillmore Swain’s notes, while the notes of Augustus Jay Du Bois and Charles Crandall also 
have been consulted. The records of the Berlin Iron Bridge Company, mostly available at 
the Huntington Library in San Marino, CA, also have been found to be very revealing of 
contemporary ideas of bridge and building design. Almost all of the published textbooks 
cited at the end of each chapter in this work are also available as free eBooks on Google 
.com or HathiTrust.com.

Many images have been obtained from the online material available in the Library of 
Congress’s collection of Historic American Buildings Survey/Historic American Engineering 
Record (HABS/HAER) measured drawings and photographs. The catalog number is given 
in the caption for each of these images. The search box for this catalog can be found at 
http://www.loc.gov/pictures/collection/hh/.

Organization and Format of the Book

This book is divided into three major sections covering the three major types of design 
practiced in the nineteenth century: empirical, analytical, and graphical. Empirical rules for 
engineering fall generally into three classes. The first type of empirical rule is practice based, 
that is depending on precedent without further consideration. Contemporary examples of 
this type of rule include the application of span/depth rules. These methods particularly 
apply to the design of masonry arches, which is described in Chapter 2. A second class of 
empirical rule is a rational analysis that is abbreviated and used to develop rules to be applied 

http://www.loc.gov/pictures/collection/hh/
http://Google.com
http://Google.com
http://HathiTrust.com
http://Google.com
http://Google.com
http://HathiTrust.com
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to the design of specific structures. Examples of this practice are Hatfield’s rules, described 
in Chapter 3. Chapter 4, describing the empirical design of metal structures, contains several 
results of column tests curve-fitted to the development of semiempirical formulas of the  
third class.

The following section of the book describes analytical procedures for design. Unlike 
the previous section, this section is divided by type of structure: the subject of Chapter 6 is 
the analysis of arches in masonry or iron and steel. Chapter 7 covers the analytical methods 
used for trusses in wood or iron, applied to building structures, highway bridges, and rail-
road bridges. The topic of Chapter 8 is analytical methods for the design of beams and 
girders, including continuous girders, whereas Chapter 10 describes the developed methods 
for the analysis of portal frames, which can be extended to more general frames.

Finally, the book describes the highly evolved methods of graphic analysis used during 
this time period. Chapter 11 is an introduction to graphical analysis to give the reader the 
opportunity to study the terms used and the general methods used in graphical analysis. The 
analysis method can be applied to arches, beams, and frames, and includes refined develop-
ments in geometry. Chapter 12 covers the graphical analysis of trusses, Chapter 13 is about 
the graphical analysis of arches, Chapter 14 concerns the graphical analysis of beams, and 
Chapter 15 describes the graphical analysis of portal frames and is comparable to the ana-
lytical methods presented in Chapter 10.

In the concluding Chapter 16, the influence of analysis and design methods on the 
design outcome is investigated. The remainder of the chapter consists of a case for the pres-
ervation of the methods of analysis of the late nineteenth century.

References Cited
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9

Empirical Structural Design

Throughout the past two millennia, two distinct currents of thought 
have guided the practitioners of the building arts: the empirical tradi-
tion and the scientific tradition. The empirical tradition in building is 
the application of skill and experience to the solution of problems: a 
carpenter who uses experience to size and erect floor framing is prac-
ticing empirical design. The scientific tradition, conversely, is the appli-
cation of the results of speculative and experimental science to the 
practice of building. The application of Euler’s formula Pcr = π2EI/l2 to 
the design of columns is a common example of scientifically based 
design. Building practice has relied much more on the empirical 
approach throughout most of the nineteenth century and earlier. Even 
today, while purporting to design according to scientific principles, the 
engineering profession relies on the empirical approach to a greater 
degree than generally supposed.

Merriam-Webster’s online dictionary defines the word empirical 
as “relying on experience or observation alone often without due 
regard for system and theory.” On this basis, a significant body of 
engineering works in the United States is clearly designed empirically. 
Equally clear is that a large component of empirical design pervades 
the thinking of the contemporary engineering profession. The readiest 
example of empirical design is the choice of #4 @ 12 for a reinforcing 
bar size and spacing—a decision that is made without calculations for 
minor components of a concrete structure. In this instance, experience, 
not reason, dictates the configuration of the reinforcement.

Scientifically based design stands in opposition to the empirical 
tradition. Design decisions are based on analyzing the structure  
and understanding its response, using the laws of mechanics,  

1
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strengthening by experiments, and proportioning members based on their expected response. 
Examples of this might be the analysis of a wood beam according to the Bernoulli-Euler 
theory of bending and the sizing of the beam based on limiting the maximum calculated 
bending stress. For reinforced concrete, scientific design would require determining the 
ultimate bending moment of a reinforced concrete slab (based on factored loading), the 
sizing of the reinforcement on the basis of its yield strength, and the moment arm of  
the reinforcement about the center of the compressive stress block on the compression face 
of the slab.

In the realm of built works, such as buildings and bridges, the application of empirical 
design must be considered alongside the application of scientific design. To begin with con-
struction in ancient Rome, as seen through the Roman architect and writer M. Vitruvius 
Pollio, there is already a balanced application of scientific principles and the experience of 
builders to the design of public buildings, such as temples and basilicas (Granger 1931).

Vitruvius’s principal mode of structural design is the development of rules for the 
proportioning of the elements of a building. His prescriptions for architecture involve apply-
ing rules of proportioning, or “symmetry” in the Vitruvian sense, to the production of works 
of architecture. Thus, columns are designed to shaft height/diameter ratios between 7 and 
9½, depending on the order of the column (Figure 1-1). Although these ratios are partly 
intended to be pleasing to the eye, they are also an expression of a structural necessity. 
Where Vitruvius relates the intercolumniation to the height/diameter ratio, within the pre-
scriptions of the Ionic order, he is suggesting the thickening of columns for larger spacing, 
both for the visual requirements of the building front and for the structural requirements 
of columns that will be called on to carry a greater load as well. More explicit is the sug-
gestion that stone architraves (with a depth of 1/2 a column diameter) often break where 
an intercolumniation of 3 diameters is used, whereas for temples with an intercolumniation 
greater than 3 diameters, the architrave must be constructed of wood. For civil architecture, 
Vitruvius’s prescriptions are similar. For the walls of occupied basements, the spacing of 
buttresses is to be the height of the wall, the buttresses are to taper from the projection at 
the bottom of the wall equal to the height of the wall to a projection equal to the thickness 
of the wall at the top, and the width of the buttresses is to be equal to the thickness of the 
wall (Granger 1931).

However, Vitruvius also participates in an important scientific tradition, inheriting 
some ideas from the Greek natural philosopher, Aristotle, and the adherents of his school. 
Aristotle taught that matter is composed of four elements: earth, water, fire, and air. Earth 
and water are heavy, and fire and air are light. A stone composed primarily of earth will be 
heavy but will have little resistance to moisture ingress. Fire, being light, will weaken a stone. 
These ideas can be found applied to building materials in Vitruvius’s Book II (Granger 
1931), which describes the properties of materials. Although Vitruvius’s science seems erro-
neous, it enabled choices that a modern engineer would also make, for example, to allow 
freshly quarried stones to sit for a year to exude the weakening effect of the moisture, or 
to avoid stones subjected to fire that have been weakened by the addition of the element 
fire and should not be reused. Aristotle’s followers also produced a short book titled 
Mechanical Problems (Hett 1936) that influenced Vitruvius and many later architects. In 
this work, most mechanical actions are based on the circle and its derivatives, the balance, 
and the lever. A lever is said to work because the effort applied to the longer arm moves 
with a greater velocity than the weight at the end of the shorter arm. Many other objects, 
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Figure 1-1. Column shaft diameter to height ratios, according to Vitruvius.
Source: From Leveil (n.d.).
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including the beam, are explained in terms of the action of the lever. In the case of a beam, 
an external lever tends to open the beam about a fulcrum in the compression face and an 
internal lever within the beam counteracts the effect of the external lever. Motion, in the 
Aristotelian sense, may be natural: downward for heavy objects; or such motion may be 
forced or constrained by other agencies so that the object moves in other directions. Ideas 
about motion are applied to building objects, such as arches, columns, buttresses, and beams.

The medieval architects are known to have worked on the basis of established  
precedents and according to geometrical ratios. The greatest of the Gothic cathedrals 
resulted from the investigation and use of schemes of proportioning and the cautious increase 
of the size of buildings proportioned according to these schemes. Shown in Figure 1-2 is the 
section of the nave of Amiens Cathedral and some of the geometric logic that ensured the 
stability of that structure. Much of the attention of modern interpreters of medieval archi-
tecture has been on the construction of geometric diagrams representing the proportioning 
schemes evident in a given building. However, a few texts make it possible to infer the 
medieval mindset concerning structural design. The thirteenth-century drawings of Villard 

Figure 1-2. Equilateral triangles superimposed on section of Amiens Cathedral.
Source: Image of the cathedral from Durand (1901).
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de Honnecourt show various geometrical constructions applied to the layout of building 
structures. Other documents refer to buildings laid out in harmonic ratios, according to the 
square and the circle. Elevations of buildings are completed according to the square, as at 
Cologne, or the triangle, as at Amiens. The design of piers is based on proportioning as 
most of the major nave piers in Gothic buildings have a height/width ratio between 7 and 
9. Most of the remaining documents concerning the design of medieval buildings refer 
explicitly to geometric ratios. However, a set of documents relating to the construction of 
the Cathedral of Milan from 1399 to 1401 is particularly revealing. (For a review of these 
documents, see Ackerman 1949.) In this case, the native engineers had to defend their design 
for the cathedral against the criticism of a visiting French architect, Jean Mignot. Mignot 
declared from his arrival onward that the structure was threatening ruin and appealed to 
the Duke of Milan. The reports of the various experts and council members are almost the 
only medieval construction documents in which theory is discussed, rather than a particular 
project, and are thus among the most studied records from medieval architecture. Mignot’s 
list of 54 faults or “doubts” is presented on January 11, 1400, along with the responses of 
the Milanese architects. In a further council meeting, on January 25, Mignot elaborates on 
his main objections: the four towers intended to sustain the tiburio (crossing tower) are not 
built with sufficient foundation or piers, and the buttresses around the chevet are 
inadequate.

In the earlier meeting, in defense of their chevet scheme, the Milanese architects make 
the statement that “pointed arches do not exert a thrust on the buttresses.” Having had 
some time to think about this, Mignot counters two weeks later:

And what is worse, it has been rebutted that the science of geometry does not have a place 
in these matters, because craft is one thing and theory is another. The said master Jean 
says that craft without theoretical knowledge is worthless, and that whether vaults are 
round or pointed, if they don’t have good foundation, they are nothing, and nevertheless 
when they are pointed, they have the greatest thrust and weight. (di Milano 1877; transla-
tion by author)

The Milanese architects, however, did insert iron tie rods to resist the thrust of the 
arch that they may not have understood well. The insertion of the iron tie rods can be 
interpreted as a gesture of empirical design, made by the Milanese engineers: with what little 
theoretical knowledge they may have displayed in the construction of the arches and vaults 
of the cathedral, they were aware of the horizontal thrust that they exerted on their sup-
ports, or the power of the iron tie rods to resist the horizontal thrust of the arches.

Fillippo Brunelleschi, celebrated as one of the first Renaissance architects, is renowned 
for his courage in vaulting the 72-braccia (144 ft, approximately) octagon prepared for the 
crossing of the Cathedral of Florence, the measures taken to relieve or redirect the forces 
from the weight of the dome, and especially for the machines that he invented for the con-
struction of this dome. There is really very little science in Brunelleschi’s activities; although 
he was partially educated, he was a particularly skilled mechanic and inventor (King 2000), 
and the greater part of his design for the dome at Florence must be characterized as 
empirical.

Conversely, Leon Battista Alberti made great contributions as an architectural theorist, 
as exemplified by his Ten Books on Architecture (Bonelli and Portoghesi 1966). In speaking 



14 engineering iron and stone

of machines and structures, he sounds a much more practical note. Ten Books contains 
detailed descriptions of the functioning of machines, principally cranes. Alberti’s discussions 
are consistent with the descriptions of such machines in Vitruvius. His view of weights is 
Aristotelian: “Loads are heavy by nature and obstinately search for the lowest point, and 
with all their power do not allow themselves to be raised” (Book VI, Chapter 6, Bonelli 
and Portoghesi, 1966, p. 477). By the art or ingenuity of men, according to Alberti, weights 
can be moved in different directions than their nature dictates.

Empirical design also was practiced widely in the nineteenth century. Although by this 
time scientific theories certainly had come to be applied regularly to the design of buildings, 
empirical rules and practical knowledge were a necessary adjunct to such design. Textbooks 
from the time contain a significant proportion of practical instruction, and course programs 
in the universities where civil engineering was taught also contain a large share of practical 
instruction. For instance, Baker (1907), in his Treatise on Masonry Construction, alternates 
practical and theoretical considerations. As an example of his practical mindset, in refuting 
Rankine’s insistence on the middle third rule, Baker states, “A reasonable theory of the arch 
will not make a structure appear instable which shows every evidence of stability” (p. 451).

The conflict between differing theories about where the thrust line may lie in an arch, 
described in greater detail in Chapter 6, is a particularly good example of the conflict 
between theoretical ideas about arch behavior and empirical understanding of arch stability. 
The design of bridges in the nineteenth century was similarly composed of equal parts 
empirical knowledge and rational design. Although extremely sophisticated methods were 
applied to the design of masonry arches, such as the application of Méry’s method to the 
design of the Union Arch, described in detail in Chapter 13, the determination of the con-
figuration of these structures continued to be based on conventional ratios.

Another empirical builder of note, Rafael Guastavino, and later his son, produced clay 
tiles that were laid up flat in Portland cement to form vaults and domes in various configu-
rations. Both the elder and the younger Guastavinos proposed in treatises that the domes 
their company built did not exert thrust on their supports. They argued that, being cohesive 
in nature and monolithic in character, their domes had an inherent resistance to bending, 
unlike voussoir arches and domes; therefore, they did not generate horizontal thrust. 
Although Rafael Guastavino the elder did resort to structural engineering arguments in 
explaining the action of his constructions, he was almost entirely an empirical builder, decid-
ing on the number of layers of tile required by his vaults based on size and other consider-
ations. However, many of the major structures designed and built by the company, such as 
the massive dome over the crossing of the Cathedral of St. John the Divine in New York, 
were built with iron reinforcing. When Rafael Guastavino the younger patented his system 
of construction, he showed probable locations for metal reinforcement (see Figure 1-3). The 
denial that their domes exerted thrust, coupled with their insertion of iron to resist the thrust, 
resembles the approach of the engineers at Milan, previously discussed. Any reader interested 
in a thorough study of the structural engineering achievements of Rafael Guastavino is 
directed to John Allen Ochsendorf (2010).

Wood structures have lent themselves to empirical design from the beginning of  
construction through the present. In the nineteenth century, many of these rules were codi-
fied and applied almost universally to design. Length-to-thickness ratios between 10 : 1 and 
20 : 1 are usually applied to wood columns, whereas joists can reach span/depth ratios of 
20 : 1.
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Figure 1-3. Guastavino’s dome or vault.
Source: U.S. Patent Office, Patent No. 947,177, 1910.
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Builders and architects adopted a multiplicity of basic configurations for iron bridges; 
many of them have commercial significance due to patents obtained on the design of the 
bridges. The two fundamental trends are effectively the arch and the truss. The arch, of 
course, follows the application of the stone arch and reproduces this form in cast iron. The 
oldest cast-iron bridge in the United States, James Finley’s bridge at Brownsville, PA (Figure 
1-4), is modeled on a stone arch. Other early examples of iron arch bridges include the 
patented design for iron arches of Thomas Moseley (Figure 1-5). The truss form was rela-
tively slow to develop into the familiar assembly of smaller pieces into a single load-bearing 
structure. Early trusses were more experiments in bracing a longer top and bottom chord. 
Bow’s methods, which evolved into methods for the analysis of trusses, were originally 
intended as analysis methods for braced beams. The web members were thought of as 
bracing for the remainder of the structure, either an arch, as in Moseley’s designs, or a beam, 
as in a queen-post or a Howe truss.

Many of the bridge forms used by engineers of this time led to statically indeterminate 
structures, especially those types of bridges that had multiple web systems, for instance, the 
double Pratt truss (Whipple truss), the double Warren truss, and the multiple Warren truss, 
as shown in the examples of the Hayden Bridge, OR (Figure 1-6), the Sugar Creek Bridge 

Figure 1-4. Dunlap’s Creek Bridge (1839), Brownsville, PA.
Source: Photograph by the author.
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near Troy, PA (Figure 1-7), and the Slate Run Bridge in Slate Run, PA (Figure 1-8), respec-
tively. The statically indeterminate aspect of these bridges was managed through an empirical 
procedure of dividing the bridge into multiple systems and analyzing each of the systems 
separately.

The knowledge developed by bridge engineers and incorporated into their designs and 
textbooks went well beyond the application of methods for stress analysis in the chords of 
the trusses. It included careful adaptation of details to various conditions and a willingness 
to allow statical indeterminacy in the design of bridges by permitting approximate analysis. 
The adoption of conventional bridge forms and the application of these forms to nearly all 
bridges of spans of 200 ft or less amount to a form of empirical design. In the end, such 
bridges were eventually built almost exclusively as through Pratt trusses.

Column design in this period is based on a semiempirical understanding of column 
behavior, bolstered by a few widely publicized experiments. It was certainly understood that 
buckling reduced the apparent strength of longer columns, but consistent means for measur-
ing the strength of a column were not used. For steel columns, various competing formulas 
for the reduction of the strength of a column were applied with different factors, based on 

Figure 1-5. Arched wrought iron bridge by Thomas Moseley. Upper Pacific Mills Bridge moved to 
Merrimack College, North Andover, MA (HAER MASS,5-,LAWR,6-).
Source: Photograph by Martin Stupich.
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the nature of the column cross section. For timber columns, strictly empirical formulas for 
the reduction of strength were applied.

In the final analysis, structural design of bridges and buildings in the nineteenth century 
contains significant elements of both empirical design and rational/scientific design. This is 
more the nature of structural design than a temporary condition, in which the empirical 
elements will be overcome by the rationality of the scientific method. The actions of struc-
tures are too complex to examine in detail scientifically; the understanding of the producers 
and the users of the structures depends so much on the visual associations produced by a 
conventional structure that it is necessary to add a significant part of collective building 
experience into the design of the simplest and the most complex of structures.

At present, empirical design is widely used by engineers in several basic forms. The 
first form is the use of empirical rules, such as span/depth ratios for the proportioning of 
structural elements. Although this practice usually is implicit in a designer’s selection of the 
preliminary size of an element for design, at least the building code for reinforced design 
makes the use of span/depth ratios explicit. Design professionals in structural engineering 

Figure 1-6. Hayden Bridge spanning McKenzie River at Southern Pacific Railroad (moved from 
Springfield, Lake County, OR), Springfield, Lane County, OR. Double-intersection Pratt truss (HAER 
ORE, 20-SPRIF, 2-).
Source: Historic American Engineering Record.
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also use invariant bay sizes for certain building uses and for certain structural materials. 
The design of bridges is still ruled by empirically based ratios: slab depth/span ratios, 
although not codified, are firmly established in the minds of bridge designers. Distribution 
factors, however, are embodied in the design code; these factors are critical in determining 
the live load distributed to each girder. The determination of these factors was, until recently, 
strictly empirical, being based on arbitrary ratios of the girder spacing to a constant (called 
S-over factors). In recent bridge design codes, the distribution of loads to girders is based 
on an empirical multivariate formula to determine the number of wheel loads to be distrib-
uted to each girder (AASHTO 2012).

A more widespread application of empirical design is the insistence of structural engi-
neers in contemporary practice on using methods for design that are better justified by prec-
edent than by any form of rational analysis. An example of this type of design is a one-way 
slab. In the usual design procedure, the slab is assumed to be simply supported and uniformly 
loaded for the calculation of bending moments; furthermore, a unit strip is assumed to 
behave the same as the slab, and the slab is assumed to be reinforced at mid-depth. None of 

Figure 1-7. Double Warren truss bridge (1907), Bronson Road over Sugar Creek, near Troy, PA.
Source: Photograph by the author.
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these assumptions are justifiable on the basis of carefully observed slab behavior. Surely the 
slab has multiple spans, and surely the reinforcement will sink to the bottom throughout 
most of the slab. The use of certain minimum values not necessarily embraced by the building 
codes, in a variety of situations, also qualifies as empirical design. Examples are sidewalk 
control joints every 5 ft, a minimum slab on grade thickness of 4 in., and a great variety of 
other procedures that are indispensable for effective practice of engineering.

Structural engineers, especially following the building codes that have appeared over 
the past century, often find themselves applying formulas for which it is impossible to see 
the rational basis. This is a form of empirical design in which the analysis that precedes the 
design has become so complicated or cumbersome that the design is ultimately based on 
ignorance of the principles used in the analysis.

In spite of their seeming irrationality, the methods practiced by all the designers 
described in this chapter, empirical or scientific, have a convincing justification: they work. 
James Ackerman’s words about the serious errors in the fourteenth-century design of the 
Cathedral of Milan are appropriate here:

Time and again northern masters expose the inadequacy of the entire structural system, 
attribute to it faults of the greatest magnitude, and leave, convinced that the work is 
destined to ruin. The Milanese plod stubbornly along … determined to accept no foreign 
solutions to the major problems in construction. … Only one argument, and an incontro-
vertible one, speaks in favor of the Milanese: the Cathedral was built entirely according 
to their designs and it stands (1949, p. 104).

Figure 1-8. Upper Bridge at Slate Run, spanning Pine Creek at State Route 414, Slate Run, Lycoming 
County, PA. Quintuple Warren truss bridge (HAER PA,41-SLARU.V,1–3).
Source: Photograph by Joseph Eliot.
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Empirical Design of 
Masonry Structures: Brick, 
Stone, and Concrete

This chapter is concerned with the application of empirical rules to the 
design of masonry structures. Such rules relate the depth or thickness 
of the masonry in an element, such as an arch, vault, or wall, to the 
conditions of span, radius, geometry, or material that dictate the thick-
ness requirement. In the empirical design of masonry, the determina-
tion of the size of the wall, arch, vault, or buttress depends only on 
the application of geometrical ratios and has little regard for loading, 
stress, forces, or other conditions. Empirical techniques were widely 
applied to bridge structures in the nineteenth century, according to 
rules promulgated by various authors, such as William John Macquorn 
Rankine and John Trautwine, among others. Similar rules were applied 
to the design of arches in buildings. The thickness of walls in buildings 
generally was determined in relation to the overall height of the wall 
supported.

A typical masonry arch bridge, as illustrated in Figure 2-1, has 
as its principal load-carrying component a barrel vault or “arch barrel.” 
The arch barrel consists of an arch face of carefully constructed 
masonry on the visible sides of the bridge, often with rougher sheeting 
between the two faces. The strength of a masonry arch bridge is well 
established. As long as the supports of the arch remain fixed in the 
horizontal direction, the arch resists vertical loads by the development 
of horizontal and vertical internal forces that tend to follow the shape 
of the arch barrel. The self-weight of the arch and of the fill above the 
arch tends to introduce greater axial compression into the arch barrel 
that prestresses the arch and increases its resistance to moments induced 

2
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by axle loads or other concentrated loads. At the supports, the arch has both horizontal and 
vertical reactions, which must be resisted by the foundation system.

A level road surface is provided by the construction of vertical spandrel walls above 
the arch barrel. Fill is placed between the spandrel walls so the spandrel walls are primarily 
earth-retaining structures. As such, the spandrel walls are subjected to transverse soil pres-
sures, often including the effect of surcharge due to loading on the roadway surface. Wing 
walls, either in plane with the spandrels or angled (as shown in Figure 2-2), are provided 
at the ends of the structure, as the lower grade is brought up to the level of the roadway. 
A parapet usually is provided above the level of the road surface on road bridges.

Rankine’s and Trautwine’s Formulas

The foundation of an arch bridge consists of abutments at the ends of the bridge and of 
internal piers between spans. The abutment must resist the horizontal and vertical reactions 

Figure 2-1. Pithole stone arch bridge, spanning Pithole Creek at Eagle Rock Road (State Route 1004), 
Pithole City, Venango County, PA (HAER PA,61-PIT,1-).
Source: Photograph by Joseph Eliot.
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due to the weight of the arch and to superimposed loads. At an internal pier, however, the 
resultant horizontal reaction from two adjacent arches of similar spans tends to be in equi-
librium and to impose a relatively small horizontal force component on the pier. Although 
graphical methods for analysis of arches are widespread by the late nineteenth century 
(graphical methods of arch analysis will be reviewed in Chapter 13), some authors are more 
interested in the development of analytical procedures for the determination of the forces 
in an arch. Rankine (1865) appears to be foremost among those authors favoring an analyti-
cal approach, although many of the other English and some of the French authorities advo-
cate similarly. Conversely, the application of analytical formulas is not indicated for most 
projects, even according to Rankine. Instead, it is customary to announce highly simplified 
rules for the calculation of the thickness of the arch at the crown and at the abutments and 
to work with simple rules for tapering the arch from the joint of rupture near the abutment 
to the crown. Rankine himself, having devoted dozens of pages to the development of ana-
lytical formulas for the arch (discussed in Chapter 6), gives one or two rules for the thickness 
of the arch, specifically intended to be employed in practice. A similar intent is evident in 
E. Sherman Gould’s paper, “Proportions of Arches from French Practice” (1883). Based on 
simple observation of the size of arches, he deduces empirical rules for the proportioning  
of arches.

The comparison of these formulas and the interpretation of design methods for arch 
bridges in general require conversion equations between the important geometric quantities 
for an arch bridge. To determine the angle of embrace or intrados radius for a segmental or 

Figure 2-2. Masonry arch bridge nomenclature.
Source: Drawing by Carmen Gerdes.
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semicircular arch, the following relations between the intrados radius r, the rise R, the span 
S, and the angle of embrace β can be used. The quantities are defined in Figure 2-3.

 S r= ( )2 2sin β  

 R r= − 



( )1 2cos β  

 r
R S

R
=

+ ( )2
2

2
2

 

 β = ( )−2 2
1sin S
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In consequence of the third formula, Table 2-1 presents the relation between the intra-
dos radius r and the span S for various ratios of span/rise S/R. The span/rise ratio increases 
for increasing radius and decreases for increasing angle of embrace.

Figure 2-3. Geometry of a masonry arch.
Source: Author-provided figure.

Table 2-1. Examples of Span, Rise, and Angle of 
Embrace Geometric Quantities
S/R r/S β
2 0.50 180°

4 0.56 63°

6 0.83 37°

8 1.06 28°

10 1.30 23°
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Rankine’s (1865) rules were developed based on the variation in arch pressures for 
arches of varying span and rise and the finding that these pressures vary approximately 
according to the radius of the arch; hence, the depth must vary according to the square root 
of the radius. The coefficients are empirically based, although Rankine provides a theoretical 
justification for the form of the coefficients based on previously established calculations of 
the force in an arch. In his own words,

To determine with precision the depth required for the keystone of an arch by direct 
deduction from the principles of stability and strength would be an almost impracticable 
problem from its complexity. That depth is always many times greater than the depth 
necessary to resist the direct crushing action of the thrust. The proportion in which it is 
so in some of the best existing examples has been calculated, and found to range from 3 
to 70. The smaller of these factors may be held to err on the side of boldness, and the 
latter on the side of caution; good medium values are those ranging from 20 to 40. The 
best course in practice is to assume a depth for the keystone according to an empirical 
rule founded on dimensions of good existing examples of bridges (p. 290).

Rankine’s rule for the thickness of the arch at the crown is as follows:

For the depth of the keystone, take a mean proportional between the radius of curvature 
of the intrados at the crown, and a constant, whose values are,

For a single arch………………………………………………… 0.12 ft
For an arch forming one of a series…………………………… 0.17 ft. (p. 425)

Whereas other authors assert a minimum value and a linear relationship between span 
or radius and ring thickness, Rankine considers a strict relationship of the depth of the 
keystone to the square root of the radius, expressed in more modern terms as

 t rkeystone for a single arch and= 0 35 1 2. ,/  

 t rkeystone for a multiple arch.= 0 41 1 2. ,/  

The input and output units in these formulas are feet.
Rankine justifies the square root relationship between arch depth and radius by several 

simplifications to a general formula he has developed for the tension in an arch loaded criti-
cally by a rolling load. Based on assumptions about the ratio between dead and live load 
and the span of the arch between joints of rupture, he arrives at a law similar to the one as 
shown, which varies depending on dead load/live load ratio and rise/radius ratio. Numeri-
cally, for conventional cases, the values presented as shown appear to be average results of 
this formula.

Trautwine’s (1874) rule is

 t r skeystone /= + +0 25 2 0 21 2. ( ) ./  

where r is the intrados radius, s is the span, and all input and output units are feet. The 
depth is to be increased by one-eighth for second-class work and by one-third for rubble or 
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brickwork arches. Trautwine was a proponent of the practical, as opposed to the mathemati-
cal. In his opening comments, Trautwine claims that the writings of Rankine, Henry 
Moseley, and Julius Weisbach are beyond the reach of ordinary engineers, and he further 
asserts that simple facts can be “buried out of sight under heaps of mathematical rubbish” 
(p. viii). Trautwine’s derivation of empirical rules, which results from completing a series of 
designs based on a parametric study of stone bridges, is representative of this viewpoint.

Rules Derived from French Practice

In keeping with Trautwine’s outlook, Gould (1883) developed a series of rules by a combi-
nation of observation of standing bridges and review of the writings of eminent French 
engineers. Jean-Rodolphe Perronet’s rule, endorsed by P. Léveillé, is to make the thickness 
of the arch at the crown e, in feet (Perronet would have originally stated his rule in feet), 
such that

 e S= +1 0 035.  

where S is the span in feet. Although Perronnet’s rules, like Rankine’s and Trautwines’s, are 
meant to cover all arch types, Julien Dejardin advances different rules for different arch 
forms, so

for rise/span = 1/2 (semicircular) e = 1 + 0.10R (effectively 0.05 S)
for rise/span = 1/6 e = 1 + 0.05 R
for rise/span = 1/8 e = 1 + 0.035 R
for rise/span = 1/10 e = 1 + 0.020 R

where R is the radius of the intrados. For elliptical, or false-elliptical (three-centered) arches,

for rise/span = 1/3 e = 1 + 0.07 R

Gould adopts the simplest and most all-embracing formula, Perronet’s, “because the 
results it gives tally so well with many existing structures” (p. 451). He adds a modification 
of 2% of the fill height, where the fill height at the crown exceeds 2 ft. He presents several 
formulas for the increase in the ring thickness from the crown to the joint of rupture, includ-
ing the commonly used projected vertical area formula, described following, and sets the 
joint of rupture arbitrarily at 30 deg from the horizontal. Thus, as shown in Figure 2-4, all 
that is required for the layout of an arch are Perronet’s rule or some other rule for determin-
ing the depth (often called thickness) of the keystone at the crown; a rule for locating the 
joint of rupture, which is effectively the beginning of the abutment; and, finally, a rule for 
increasing the depth of the arch ring from the crown to the abutment.

Figure 2-4, from Gould’s article, describes the empirical layout of a circular arch. The 
joint of rupture is located at 30 deg from horizontal. At this angle, the length of the joint 
is twice its vertically projected area, so twice the thickness at the crown, deduced from  
Perronet’s formula. The remainder of the extrados is plotted according to Gould’s interpreta-
tion of J. Dubosque: finding the bisector of the line joining the two known points of the 
extrados and plotting the circular arc that joins these two points. The bridge in the Allegheny 
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Courthouse and Jail was designed by architect Henry Hobson Richardson and modeled after 
the Bridge of Sighs in Venice. Unlike its Venetian model, the Pittsburgh bridge has an exposed 
arch ring that follows rules similar to Rankine’s and Trautwine’s rules (see Figure 2-5). The 
depth of the voussoirs varies, the depth at the abutment having a vertical projection approxi-
mately equal to the depth at the crown, similar to many of the aforementioned rules. The 
depth at the crown is somewhat larger than prescribed by either Rankine’s or Trautwine’s 
rules.

Although he presents all these formulas, Ira Osborn Baker is dubious concerning their 
merit (1907, p. 495). These formulas are derived by the investigation of actual structures, 
but Baker comments that the structures may have been chosen because they agreed with the 
formula, rendering this comparison meaningless, and that while the safety of the structures 
may be inferred, nothing is known about the degree of safety. He also expresses concern 
about the lack of consideration for differences in materials of construction, differences in 
loading, differences in fill height, and other factors. “Many masonry arches are excessively 
strong; and hence there are empirical formulas which agree with existing structures, but 
which differ from each other 300 or 400 per cent” (p. 495). The table of comparison Baker 
constructed for a few normative cases of bridge construction is reproduced in Table 2-2.

Figure 2-4. Plate describing the layout of a circular arch.
Source: Gould (1883).
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Figure 2-5. The Bridge of Sighs from H.H. Richardson’s Allegheny Courthouse and Jail, Pittsburgh, 
PA (1884-6) (HABS PA,2-PITBU,29–8).
Source: Photograph by Jack E. Boucher.

Table 2-2. Comparisons of Calculations of Depth of Arch Ring at Crown for 
Various Bridge Geometries

Formula

PROPORTION OF RISE TO SPAN

Semicircle Rise/Span = 1/6 Rise/Span = 1/12

SPAN SPAN SPAN

10 50 100 10 50 100 10 50 100

Trautwine’s 0.99 1.98 2.70 1.11 2.23 3.09 1.26 2.57 3.55

Rankine’s 0.77 1.73 2.45 1.00 2.25 3.16 1.25 2.79 3.95

Perronnet’s 1.51 3.26 5.43 1.51 3.26 5.43 1.51 3.26 5.43

Dejardin’s 1.50 3.50 6.00 1.42 3.07 5.17 1.26 2.30 2.60

Croizette-Desnoyer’s 1.38 2.48 3.30 1.56 2.86 3.85 1.62 3.01 4.05
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In addition to the rules for the depth of the arch ring at the key, Rankine and other 
authors describe the tapering of the arch from the abutment to the crown. Because mechan-
ics indicates a greater thrust at the abutment (horizontal and vertical force components) 
than at the crown (horizontal force component only), the arch barrel should become thicker 
as it approaches the abutment. Most authors state the simplest rule for this thickening, 
which is that the vertically projected area of each joint should be the same; that is, if φ 
is the angle of variation of the joints in the arch ring from the vertical and t is the thick-
ness of the arch at the crown, the thickness at any other part of the arch should be  
t/cosφ.

According to Rankine, the limits of the abutment, and of the haunching that is placed 
behind the arch barrel for stability, are the location of the joint of rupture. To an analyst, 
as will be seen in Chapter 5, the joint of rupture is the point of tangency of the thrust line 
with the intrados of the arch. However, in an empirically designed arch, the joint of rupture 
is the limit above which centering is required during the construction of the arch (Gould 
1883, p. 453).

Abutment Rules

In addition to the aforementioned development of the thickness of the arch ring at the abut-
ment, Rankine presents specific formulas for the size of abutments for arch bridges. Ran-
kine’s method is semiempirical; that is, calculating the center of pressure of the combined 
weight and lateral thrust on the abutment is required. The location of the center of pressure 
(on a horizontal plane at the base of the abutment) is expressed as a fraction q; for instance, 
for a rectangular pier q is limited to one-sixth of the thickness to ensure that the entire 
bearing is in contact. Rankine presents a target value of q based on observations on 
successfully built buttresses.

For interior piers, Rankine (1865, p. 428) proposes to determine the unbalanced lateral 
load by an empirical formula: multiply traveling (i.e., live) load per lineal foot × radius on 
intrados at the crown. Thus, the pier on a semicircular arch of span 50 ft, subjected to a 
load of 600 lb/ft (an estimate of a train load), would have to support an unbalanced lateral 
load of 15,000 lbs. By statics, the horizontal thrust due to live load could be no more than 
one-half of this quantity, in this case. For flatter arches, this proportion is greater. In practice, 
Rankine states that piers are constructed at least one-tenth of the span in width and more 
commonly one-sixth or one-seventh of the span.

Retaining Wall, Buttress, and Building Arch Rules

Trautwine (1874, p. 331) recommends height/base ratios ranging from 2 to 4 for rectangular 
retaining walls. He takes pains to point out that a retaining wall can be safely battered 
without diminishing its resistance. Similar to these considerations, Rankine states that 
according to the practice of British engineers, a value of q, the center of pressure through 
the base of the wall of up to 0.375, is tolerated, whereas the French engineers limit this 
value to 0.30–0.25.
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Kidder’s Architects’ and Builders’ Pocket-Book (1886, p. 187) describes empirical 
design procedures for buttresses, arches, and foundations for buildings. For the radius of 
arches over doors, windows, and other small openings in buildings, Kidder proposes a seg-
mental arch with radius equal to width of opening. Kidder quotes Rankine’s and Trautwine’s 
rules and presents a table based on Trautwine’s rule. Rankine’s rule, having no minimum 
thickness, is virtually unworkable for short-span arches (3-ft arch span yields keystone depth 
of 2.4 in.); it is really meant to be applied to bridges. Kidder notes that both formulas 
produce unstable arches for a proposed 20-ft-span arch and follows with a discussion of 
graphic analysis of arches. He quotes a rule from the New York City building code, where 
a thickness of approximately 4 in./4 ft of span is required. His procedure for the design of 
buttresses is strictly graphic and will be described in Chapter 13. For foundation work, the 
thickness of foundation walls is guided by experience and generally embodied into building 
codes, such as Kidder’s description of the building laws of New York and Boston. Footings 
are made slightly broader than the wall or pier that they support but are limited by the rule 
of having no back joints beyond the line of the wall or pier supported (Kidder, p. 143), 
unless the walls are in double courses (some of his diagrams violate this rule). The walls, at 
least according to the Boston building code of the time, must project a minimum of 12 in. 
beyond the supported element. A thorough reading of the New York, Boston, or Chicago 
building codes would enable the design of the entire foundation system for a conventional 
building.

Similarly, the Chicago building code (Chicago City Council 1905) gives explicit guid-
ance on the required thickness for the exterior and interior walls of various classes of build-
ings: office, commercial, hotel, theater, and so on. An example of a four-story mercantile 
building is shown in Figure 2-6. Floor-to-floor heights of 10 to 12 ft are assumed in most 
cases. The exception is the requirements for theaters, where the thickness of the wall is 
dependent on the unsupported height. For walls in commercial buildings up to 25 ft high, 
a thickness of 20 in. is required, resulting in a maximum height/thickness ratio of 15, 
whereas a wall up to 90 ft high is required be 30 in. thick, for a height/thickness ratio of 
36. The Monadnock Block in Chicago, shown in Figure 2-7, has walls said to be 6 ft thick 
at the base. The wall thickness is reduced every third floor. Although the walls are somewhat 
thicker than prescribed by the Chicago building code, the walls are perforated at the base, 
which may have induced the architects to use thicker walls.

The rules in the Cleveland building code (City of Cleveland, Ohio 1904) are presented 
in the graphic form shown in Figure 2-8. The result of these rules is load-bearing walls of 
similar thickness to those prescribed by the Chicago building code.

Although the empirical methods presented here are suitable for most types of bridge 
and building arches, and were probably used for the overwhelming majority of such arches, 
it was occasionally felt that a more analytical procedure may yield a better result. In such 
cases, the designers could have recourse to analytical procedures, such as those described in 
Chapter 6, or to graphical procedures, such as presented in Chapter 13. In the design of 
buildings, however, it is unlikely that designers would have used any but empirical methods 
for the design of arches, and, similarly, load-bearing walls were almost exclusively designed 
by empirical methods.
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Figure 2-6. Explicit design of a four-story masonry building and foundation wall.
Source: Chicago City Council (1905, sect. 101).
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Figure 2-7. Photograph of Monadnock block, Chicago (1891) (HABS ILL,16-CHIG,88-). The walls, 
almost 6 ft wide at the base, taper upward, changing every second level, in the manner of the diagram 
in Figure 2-6.
Source: Photograph by Cervin Robinson.
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Figure 2-8. Table B prescribing the thickness of brick masonry bearing walls for buildings of various 
heights.
Source: City of Cleveland, Ohio (1904).
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Empirical Design of  
Wood Structures

In the latter part of the nineteenth century, wood was a commonly 
used structural material owing to its wide availability in all regions of 
the country. Significantly larger sizes of timber and significantly longer 
timbers were available compared with current-day use of the material, 
although limitations in transportation may have restricted the number 
of species available. The Chicago building code 1905 (Chicago City 
Council) listed three basic types of wood: spruce or white pine, pre-
sumably from Wisconsin or Minnesota; loblolly yellow pine, probably 
from southeastern U.S. forests; and white oak, from the eastern forests 
of Ohio or Pennsylvania. Wood construction generally was done by 
skilled carpenters, often with little engineering input, using either stan-
dard practice or rules of thumb. The framed roof of the 1889 Altoona, 
PA, Masonic Temple, from Historic American Buildings Survey (HABS) 
records (Figure 3-1), shows the use of trusses and joists. The trusses 
include a significant amount of joinery in the connections between 
wood elements, and the joists appear to be toenailed to the supporting 
trusses. The roof sheathing consists of boards. A large amount of 
joinery also is shown in Robert Griffith Hatfield’s (1895) image of a 
framed opening for a chimney (Figure 3-2), where each element is 
mortised into the supporting element: header to trimmers, tail joists to 
header. This is typical of earlier carpentry applications and indicative 
of the skill of the carpenters and of the lack of standard fastenings. In 
applications ranging from residential to industrial, wood posts were 
widely used for the support of floors, whereas trusses were used to 
frame longer floor and roof spans. The design of all these features was 
often left to experience or to the application of derived rules, both of 
which methods are described in this chapter. Both these methods are 
instances of empirical design.

3
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Residential Floors

The sizes for structural elements in residential floors, according to the available textbooks, 
were often determined on the basis of semiempirical formulas. Hatfield (1871, p. 222) pres-
ents a formula for the safe load (in pounds) uniformly dispersed over a simply supported 
beam:

 Safe load
breadth depth squared S a

span in feet
=

× × × ×2
 

S in Hatfield’s notation is a constant dependent on the breaking strength of the timber 
(e.g., oak, 315; white pine, 240) used in construction and a is the reciprocal of the factor 
of safety to be used. This formula can be compared to that found in Frank Kidder’s book 
(1886, p. 309):

 Safe load
breadth depth squared A

span in feet
=

× × ×2
 

Figure 3-1. Masonic Temple, Altoona, PA, constructed 1889 (HABS PA,7-ALTO,109-).
Source: Historic American Building Survey.
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This result can be applied to the determination of the required depth for a given load:

 Square of depth
dist bet centers length squared f f

breadt
=

× × + ′
×

. ( )
2 hh A×

 

where f = live or superimposed load and f ′ = dead load.
In Kidder’s discussion, the values of A are generally one-fourth or less, compared with 

the values of S used by Hatfield, (e.g., white oak, S = 574, A = 105; Georgia pine, S = 510, 
A = 125). S and A are defined as, respectively, the breaking strength and the allowable stress 
of a 1-in., 12-in.-long billet loaded at the center. This is numerically 1/18 of the modulus of 
rupture or safe bending stress in pounds per square inch. Kidder generally recommends the 
use of safety factors of 3 for dwellings, public buildings, and stores, and further recommends 
increasing this value by 5/4 for factories and other buildings with long spans.

Figure 3-2. Top: Kidder (1886), showing terminology for wood elements used in trimming a stair 
opening. Bottom: Hatfield (1895), Figure 227, showing a framed opening for a chimney. Note that 
headers are mortised into trimmers.
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In The American House-Carpenter, Hatfield (1871) gives a large variety of formulas 
for the size of a column, the width or depth of a beam, and other important design values. 
Although these formulas are based on notions of the calculation of stresses, they are not 
directly recognizable as rationally based and in application function much like rules of 
thumb. The rules are elaborated in his later book, Theory of Transverse Strains (Hatfield 
1877). Both books and both sets of rules appear to be attempts to transform the designing 
of beams into a large set of rules of thumb.

An example of another rule for the design of joists is a beam rule, modified and spe-
cialized to floors in Hatfield’s Theory of Transverse Strains. See article 115, p. 89, “Rule for 
Floors of Dwellings.” In this article, Hatfield proposes a total load of 90 lbs/ft2, composed 
of 70 lbs/ft2 live load and 20 lbs/ft2 dead load. He derives the following rule:

 180 2 2cl Bbd=  

B is the breaking weight of a 1 in2 piece of wood 1 ft long loaded in the center and is 
equivalent to 1/18 × breaking stress in pounds per square inch. Example values of B for 
wood and iron materials are given in a table in the back of Hatfield’s book (e.g., Georgia 
pine, B = 850). The breadth b and the depth d of the rectangular beam are expressed in 
inches, c is the spacing of the joists, and l is their length, the latter two in feet. In the form 
as shown, the formula has an implicit safety factor of 4. Substituting the allowable bending 
stress 18Fb for B, the formula gives a more modern equivalent:

 ( )90 8 62 2 2lb/ft / /c L F bdb=  

In the seventh edition of The American House-Carpenter (1871), the same ideas appear 
in Rule XXXIX: When the weight is equally distributed, one-half of the quotient obtained 
by the preceding rule (concentrated load at center) may be represented by K:

 
wl
Sa

K
2

=  

where w is the total of the uniformly distributed load; l is the span in feet; S is a material 
constant, modified by geometric constants, identical to B previously; a is the inverse of the 
factor of safety; and K is the required value of bd2.

In the eighth edition of The American House-Carpenter (Hatfield 1895), posthumously 
edited by the son of the original author, the previous example can be compared with Eq. (28) 
(p. 109), also stated as Rule XXIII: “Multiply the given weight per superficial foot by the 
factor of safety, by the distance between the centres of the beams in feet, and by the square 
of the length in feet; divide the product by twice the value of B for the material of the beams, 
and the quotient will be equal to the breadth into the square of the depth.” Throughout all 
of Hatfield’s work, he derives condition-specific formulas for different loading and support 
conditions using mixed units and leaving the factor of safety to the designer. He then restates 
the formulas as rules for application. Although not strictly empirical, in the sense that 
mechanics is used to derive the formulas, the rules are intended to be used in conventional 
situations without necessarily having knowledge of the underlying mechanics.

Another carpentry manual, William Allen Sylvester’s Modern Carpentry and Building 
(1896), simply states the size of floor joists required for a single-family house. The presumed 
span is up to 15 ft as illustrated in the plans for Sylvester’s own house given in an appendix. 
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His guide specifications for a residence (p. 182) require 2 × 8 floor timbers, spaced 16 in. 
apart, and 2 × 6 for attic floors. In his guide for estimating (p. 104), a medium house has 
floor joists 2 × 8 through 2 × 10, whereas a heavy framed house has 2 × 12 joists for the 
first floor and 2 × 10 for the second floor. The universal use (even to the present day) of 2 
× 4 studs in bearing walls is certainly an empirical procedure. Sylvester prescribes this size 
for the studs in a bearing wall.

Sylvester also has a brief presentation of design of floor beams by rule, similar to 
Hatfield’s treatment of the topic. For example,

If the Dimensions are required to support a Given Weight.—RULE. Divide the product 
of the weight and the length in feet by 4 times the safe-load given in the table; the result 
is the square of the depth multiplied by the breadth or thickness: so we divide this result 
by the breadth, and extract the square root, which gives the depth. (p. 154)

Pillars

Rondelet’s rule for timber pillars (quoted in Stoney 1873) is, “Taking the force which would 
crush a cube as unity, the force requisite to break a timber pillar with fixed ends whose 
height is

12 times the thickness, will be 5/6
24 " " " " " 1/2
36 " " " " " 1/3
48 " " " " " 1/6
60 " " " " " 1/12
72 " " " " " 1/24” (p. 442)

Bindon Blood Stoney further cites the rules of R. P. Brereton as “the most useful rule 
yet published for the strength of large pillars of soft foreign timber with their ends adjusted 
in the ordinary manner, that is without any special precautions.” (p. 443) Brereton’s table 
for fir or pine is shown in Table 3-1, along with a modernization of the units.

The Chicago building code (Chicago City Council 1905, p. 250) specifies wood posts 
primarily by their L/d ratio, with reductions in allowable stress for greater slenderness. Table 
3-1 presents a set of similar values from the 1905 version of the Chicago building code 
(section 1006, “Posts with Flat Ends”) and a comparison to the current edition of the addi-
tional National Design Specification (NDS) (American Wood Council 2006) for No. 2 pine. 
The shading represents the actual values reported by Brereton; other values were interpo-
lated. The main difference between the empirical values and the NDS is the sharp falloff in 
allowable compressive stress at higher L/d ratios. This is primarily due to the NDS assump-
tion of a fully pinned end in contrast to the assumption, fundamentally consistent with 
nineteenth-century experimentation and practice, that the squared ends of large timbers 
provide rotational restraint. This is partly demonstrated by the results of the square-ended 
tests by Brereton reported by John Crehore (1886).

The values shown from Kidder (1886) are based on a form of Lewis D. B. Gordon’s 
formula (described in Chapter 9) for rectangular pillars and struts, where the breaking load 
is a strength value for the species of timber used, divided by the factor [1 + .004 (h/d)2]. A. 
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Jay Du Bois (1887, p. 375) proposes values of 550 for flat ends and 275 for timber pillars 
for pinned ends in Gordon’s formula, which is equivalent to a valve of .0036 to .0018 for 
the coefficient of the slenderness ratio in the version of Gordon’s formula presented here.

On the basis of the several authors quoted earlier, it is clear that the most important 
parameter in the design of wood pillars was the ratio of height to width. Although stresses 
were calculated for various situations, the initial concern in the design of columns was to 
keep this ratio within acceptable limits, generally less than 20 and in no case greater than 
30. The influence of squared ends was also recognized as a factor contributing to the strength 
of wood pillars. Figure 3-3 shows a nineteenth-century mill building in which apparent pains 
were taken to ensure that the girders bear fully on the squared ends of the column. The 
slenderness ratio of the column is most likely large enough that this treatment is needed to 
ensure the strength of the column. Shown in Figure 3-4 is a measured drawing of an indus-
trial building in which the unsupported length of both the columns and the beams was 
limited to approximately 15 times the depth of the member.

Trusses

Sylvester (1896) relates truss type directly to span without specifying sizes of timber. He 
says of a simple king-post truss:

Figure 51 represents a truss suitable for a span of 30 to 40 feet. The figures indicate stocky 
elements with a depth approximately 1/16 of the overall truss span. The top chords are 

Table 3-1. Various Prescribed and Tested Values of Wood Column Strength
Ratio of length to least 
breadth

10 15 20 25 30 35 40 45 50

Breaking weight in tons  
per square foot of  
section (Brereton, with 
interpolations by Stoney 
1873)

120 118 115 100 90 84 80 77 75

Brereton’s experimental 
values: square end; factor 
of safety (FS) = 4, psi

467 447 350 311

Brereton’s results 
transformed to psi/usual  
FS = 4

416 409 400 350 312 291 278 267 260

Kidder (1886, p. 222), 
hard-pine breaking load 
divided by FS = 4, psi

658 438 481 357 272 212 169 138 113

Chicago building code: 
white pine and spruce, psi

625 475 300

Cp NDS S-P-F no. 1 0.96 0.90 0.80 0.66 0.52 0.41 0.33 0.27 0.22

NDS Value S-P-F no. 1, psi 601 564 500 414 328 258 205 166 136
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Figure 3-3. Detailed view, Monadnock Mills, Claremont, NH (HAER NH, 10-, CLAR, 6-3).
Source: Photograph by Jet Lowe.

let into the bottom chord, while the kingpost is rendered as an iron tension member. Other 
trusses with a greater number of panels, up to a six panel Howe truss, are indicated for 
larger spaces, such as great halls, or for bridges. (p. 68)

Hatfield (1871) considers the design of several relatively complex trusses (such as those 
shown in Figure 3-5) by rule, first stating a rule for the determination of the force in a rafter 
(p. 273); this rule also can be used for the calculation of the top chord force:

Rule LIII. To obtain the dimensions of the rafter [m]ultiply the value of R [vertical strain 
per foot of surface supported—i.e., vertical component of load] by the span of the roof, 
by the length of the rafter, and by the distance apart from centres at which the roof trusses 
are placed, all in feet, and divide the product by the sum of twice the height of the roof 
multiplied by the value of P [transverse compression allowable stress (FS = 4)], set opposite 
the kind of wood used in the tie beam, added to the difference of the values of C [longi-
tudinal compression allowable stress (FS = 4) and P in the said table multiplied by 1¼ 
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times the length of the arc that measures the acute angle formed between the rafter and 
a vertical line, the arc having the height of the roof for radius, and the quotient will be 
the area of the abutting surface of the joint at the foot of the rafter. To the abutting surface 
add its half, and the sum will be the area of the cross section of the rafter.

The numerator in this complicated expression is double the moment of the loads; 
divided by twice the height of the roof, this gives the horizontal component of force in the 
rafter. Beyond this, Hatfield appears to be considering the interaction between transverse 
and longitudinal compression in sizing the required abutting surface and determining the 
size of the rafter on this basis. Similarly complicated rules are presented for the determina-
tion of the size of the ties and the size of the braces. All of the rules are based on the ad 
hoc determination of the forces, rather than a systematic treatment of the determination of 
the forces in all the bars in a truss. For instance, brace force is determined by multiplying 
the tributary area of the brace times the roof load and adding the force on the adjacent 
hanger rod. A similar treatment is also given to the attic truss and other truss forms (figure, 
p. 283).

In Frank Kidder’s essay on wooden trusses (1886, p. 392), simple trusses consisting of 
rafters and ties are to be used for spans up to 24 ft. Beyond this, one may use a braced truss 
of four panels, or a king-post truss from 25 to 35 ft. The queen-post truss is to be used for 

Figure 3-4. Section through Georgia Central of Georgia Railroad repair shops (circa 1853; HAER 
GA,26-SAV,55-).
Source: Historic American Engineering Record.
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spans up to 40 ft, with a modified form of this truss used for spans from 40 to 50 ft. Span-
to-depth ratios of 8 or less are recommended for various forms of truss.

Figure 3-6 illustrates a series of trusses designed by a builder-architect, Samuel Bartel, 
for the reconstruction of a commercial roof (Bartel 1914). The illustration shows empirically 
designed queen-post trusses in wood. The truss has a span/depth ratio of 6. The top and 
bottom chords have the same size, although the top chord receives much greater bending 
stresses. The rods appear to be much larger than necessary at 1 in. in diameter, and the 
compression members in the web are arguably undersized compared with the top and 
bottom chords. However, the truss is clearly competent to resist the loads imposed on it for 
a span of approximately 30 ft.

Empirical design was a fundamental means of designing wood structures in the late 
nineteenth century, especially relatively simple structures, such as residential framing or floor 
and roof joists. The empirical design of a wood beam could consist of following a rule, as 
noted in Kidder, Hatfield, Allen, and other authors, or by simply sizing a wood element in 
accordance with its span, using a span/depth ratio of around 12. Possibly a greater span/
depth ratio can be used for a joist, possibly less for a girder. A pillar certainly can be designed 
empirically, maintaining a least lateral dimension of about 1/20 the height of the pillar. Even 
a truss can be designed empirically by selecting the number of panels required on the basis 
of the span of the truss, maintaining a span/depth ratio of 8, and sizing the top chord on 
the basis of a beam rule. A significant amount of design of wood structures was accomplished 
on this basis.

Figure 3-5. Typical trusses.
Source: Hatfield (1895).
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Empirical Design of Iron 
and Steel Structures

Because iron and steel structures usually were designed, fabricated, and 
constructed as simply supported beams and columns, the design of 
such structures relied on analysis to a greater extent than did the design 
of masonry and timber structures. Nevertheless, empirical design 
played an important role in the design of iron structures, both in select-
ing initial proportions and in the application of rules to the final 
proportioning of structural elements. Empirical rules for metal struc-
tures took several forms. The first form was the simply prescriptive: 
Isami Hiroi’s rule for the depth of a girder, given following, is an 
example of this approach. A widespread practice also existed of judging 
metal structures, especially beams and girders, by span/depth ratios, 
whereas the actual design may have been accomplished by one of the 
analytical procedures outlined in Chapter 8. Finally, there was wide-
spread development of rules of thumb, similar to those used for wood 
structures (Chapter 3), whereby a more or less rational procedure is 
reduced to a rule for design written in variables that express load, 
dimensions of the area supported, dimensions of the beam or column, 
and strength of the material. Hiroi’s rule for the depth of a girder 
certainly also contains elements of this approach.

Various authors advance similar rules for the appropriate span/
depth ratios for girders. Bindon B. Stoney (1873, p. 322) gives the 
normal span/depth ratio of a plate girder as about 15. William Humber 
(1869, p. 25) says that plate girders vary in depth from 1/10 to 1/16 of 
the span and that the most economical depth is generally 1/12 of the 
span, whereas continuous girders vary in depth from 1/15 to 1/20 of 
the span. Stoney (article 461, p. 349) specifies that the depth of girders 
varies from 1/8 to 1/16 of the span, with 1/10 to 1/12 being the most 

4
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common. He further suggests distributing three-fourths of the area of the girder cross section 
to the web on the grounds of its relative contribution to strength. According to this notion, 
a double web box section with ¼-in. web plates 24 in. deep should have flange plates ¼ in. 
× 8 in. It is more efficient to add depth to the web than to add material to the flange and to 
keep the depth of the girder the same. F. W. Sheilds (1867, p. 44) gives the maximum eco-
nomical length for a plate girder as opposed to a lattice girder as 90 ft. Span to depth ratios, 
according to Sheilds, should range from 10 : 1 to 15 : 1 for plate girders. Kidder (1886,  
p. 285) says that the deepest beam is always the most economical. Hiroi (1893, p. 46) gives 
the range of plate girder depths as 1/9 to 1/12 of the span, with the former used for shorter 
and the latter for longer spans. According to Hiroi, a plate girder is uneconomical beyond a 
span of about 100 ft.

Sizes of the elements of girders also were dictated by the availability of stock. Stoney 
(1873, p. 322) argues in favor of plate girders for simple spans over trussed girders; he says 
further that economy of plate girders is better in shallow rather than in deep girders. The 
recommended minimum thickness of a plate web is ¼ in. Stoney (p. 326) recommends 
height/thickness of vertical plates of 15 unless provided with stiffeners. In cast-iron girders, 
the web is relatively thicker and contributes relatively more to the overall strength of the 
girder. There are other limitations on the size of elements that can be fabricated into girders, 
which limits the range in which a filled web or plate girder can be applied. Stoney (article 
439, p. 326) discusses maximum bar and plate sizes of iron available from rolling mills. If, 
according to Stoney, a builder has to pay a premium for plate iron more than 4 ft wide (in 
addition to the extra thickness required in a girder web), then it is likely that 4 ft times the 
span/depth ratio of 12 : 15 gives a practical limitation of 50 to 60 ft on the span of a plate 
girder. The span capacity of a trussed girder was greater: it will be shown in Chapter 7 that 
a span of 200 ft was routinely attainable with a trussed girder.

Mansfield Merriman and Henry S. Jacoby (1894) give an economical depth for a plate 
girder as the depth at which the weight of the web is approximately equal to the weight of 
the flanges. Kidder (1886, p. 346) calculates strength of riveted girders by an empirical rule, 
similar to those presented for wood girders in the previous chapter:

 
Safe load in tons area of one flange

height/ span in feet
= ×

× ×
10

3( )
 

The same formula, inverted, gives

 
Area of one flange in square inches load

span in feet 1 height
= ×

× ×
3

0/( oof web in inches)
 

The web plate is similarly designed: divide total uniformly distributed load, in tons, 
by the vertical sectional area of the web plate. If this number exceeds the number in a table, 
then stiffeners are required up to within one-eighth span from the middle of the girder. The 
entries in Table 4-1 represent average shear stress in the web, compared with the maximum 
permissible height/thickness ratio for the web. Kidder explains the information in Table 4-1 
as follows:

The height of the girder is measured in inches and is the height of the web-plate, or the 
distance between the flange-plates. The web we may make either one-half or three-eighths 
of an inch thick; and, if the girder is loaded with a concentrated load at the centre or any 
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other point, we should use vertical stiffeners the whole length of the girder, spaced the 
height of the girder apart. If the load is distributed, divide one-fourth of the whole load 
on the girder, in tons, by the vertical sectional area of the web-plate; and if the quotient 
thus obtained exceeds the figure given in the following table, under the number nearest 
that which would be obtained by the following expression (1.4 × height of girder/thickness 
of web), then stiffening pieces will be required up to within one-eighth of the span from 
the middle of the girder (p. 347).

Kidder’s example is as follows:

A brick wall 20 feet in length and weighing 40 tons, is to be supported by a riveted 
plate-girder with one web.

 Flange area square inches= × × × =( )/( )3 40 20 10 24 10  

Subtracting 5 square inches for 2 3 × 3 [× 3/8″] angle irons, we have 5 square inches: 
use 5/8″ × 8″ flanges

Use 3/8″ web and put two stiffeners at the ends of the girder
To find if it will be necessary to use more stiffeners, divide 1/4 of 40 tons by the area 

of the vertical section of the web, 9 square inches, and obtain 1.11.
The expression 1.4 × height of girder/thickness of web = 89.6, say 90, and the figure 

under it is 1.08, which is less than 1.11, showing we must use vertical stiffeners up to 
within 3 feet (1/8 span) of the center of the girder. (Kidder 1886, p. 347)

Kidder (p. 350) also describes the construction of cast-iron/wrought-iron, hybrid tied-
arch girders for the support of masonry. Construction considerations for this type of fitting 
are particularly important. The tie rod is pretensioned by heating prior to anchoring. These 
rods are proportioned by allowing 1 in.2 of cross section for every 10 net tons of load 
imposed on the span of the arch, based on a span/rise ratio of 10.

As a further example of the use of empirical procedures in the design of iron structures, 
Figure 4-1 illustrates Louis Sullivan’s preliminary design for the Farmer’s and Merchant’s 
Bank in Columbus, WI. The transverse section shows that the architect chose and a 12-in. 
(31.5 lbs/ft) I shape that is compatible with the 28-ft transverse span of the building.

Isami Hiroi (1893) gives Octave Chanute’s rules for girder webs: web thickness 1/80 
the height stiffener spacing no more than two times the web height. Hiroi also presents 
strictly empirical rules for the estimation of the weight of a plate girder, at least between 
20- and 80-ft span (which might be taken as limits on the span of a filled plate girder at the 
time):

single-track deck girder

 W = +10 2( )s a  

Table 4-1. From Kidder (1886, p. 347) for Determination of Stiffener 
Requirement in Plate Girders

l
t

× 1 4. 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

3.08 2.84 2.61 2.39 2.18 1.99 1.82 1.66 1.52 1.40 1.28 1.17 1.08 1.00 0.92
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For through girder with floor beams and stringers, this value of W is modified accord-
ing to

 ′ = +W W 300 s  

where W is the girder weight in pounds, s is the span in feet, and a is a constant from 
200 to 330 that depends on floor system and loading. (Hiroi 1893, p. 31)

Cast-iron girders and beams were treated separately due to the lesser tensile resistance 
of the material. Most authors worked with a tensile strength of about one-sixth of the 
compressive strength and so recommended apportioning six times the area of the top flange 
to the bottom flange.

Charles Haslett and Charles Hackley (1859, p. 212) give a rule for the determination 
of the breaking strength of a cast-iron beam proportioned according to this practice. The 
best dimensions of a cast-iron beam have a bottom flange area of six times the top flange 
area. The total distributed breaking weight is equal to the area of the bottom flange in inches 
times the depth of the beam in inches, divided by the span in feet. This can be compared to 
Fleeming Jenkin’s (1876) account of Hodgkinson’s rule: M = 16,500Std, for which the 
implied maximum stress = 8.25 tons/in.2 (breaking, or ultimate, stress), and in the units of 
Haslett and Hackley, the breaking weight in tons is W = 2.75Std/L*, L* in feet. In these 
formulas St is the area of the tension flange in square inches, d is the depth of the girder, 
and L* is the span of the beam. Kidder (1886) reiterates a version of Hodgkinson’s rule in 
a rule for the strength of a cast-iron beam:

 
Breaking load in tons area of bottom flange in

depth in
=

× ×
( . )

( .) .

2

2 1666/clear span in feet
 

Figure 4-1. Sullivan’s preliminary design for the Farmers and Merchants Bank, Columbus, WI (1911).
Source: Avery Architectural and Fine Arts Library, Columbia University.



 empirical design of iron and steel structures 53

Continuous Beams

Properties of continuous beams, primarily intended for use in wood framing but also appli-
cable to metal structures, are presented as simple rules in Kidder (p. 233). One of  
Kidder’s examples follows:

STRENGTH.—Continuous girder of TWO equal spans, loaded uniformly over each 
span

 Breaking weight =
× × ×2 2B D A

L
 

A represents a material strength (1/18 allowable tension ÷ 3), which needs to be mul-
tiplied by the safety factor of 3 if the breaking weight is the quantity sought. B and D are 
width and depth of the beam (in inches), and L is a single span in feet.

The coefficient A is referred to the strength of a beam of one-foot span, subjected to 
a mid-span load. The moment of resistance is Abd2, while the uniform load that can be 
supported is twice the concentrated load.

The remainder of the breaking loads are given similarly in proportional form:

Two equal spans, concentrated load at center, 4/3
Two equal spans, uniformly distributed load at center, 5/2
Three equal spans, concentrated load at the center, 5/3

Columns

The formulas developed by Hodgkinson (1846), William John Macquorn Rankine (1877, 
p. 360), and Lewis D. B. Gordon were used both for the design of iron columns and for the 
design of wood columns. The most widely used formula for the design of columns is very 
generally attributed to Gordon (1815–1876). The application of Gordon’s formula is dis-
cussed in detail in Chapter 9. As in the design of wood columns, the designer must be aware 
of the use of pinned end values versus fixed, or partially fixed values, where columns with 
flat ends are considered. Gordon’s formula also uses empirically developed coefficients for 
the modification of l/h ratios for various configurations of columns. Figure 4-2 shows an 
illustration from A. Jay Du Bois (1887) of the modifications applied to Gordon’s formula 
for cross-section properties and end conditions. The modification for open-latticed channel 
struts with flat ends is the substitution of 4,880 in the denominator and 2,440 for pinned 
ends. The corresponding values for single I bars are 1,720 and 860. Du Bois credits these 
values of the breaking strength of wrought iron columns to Shaler Smith and notes that a 
further safety factor of 6 + l/20d should be applied.

John Davenport Crehore (1886) refers to Hodgkinson’s and Gordon’s formulas for the 
strength of wrought iron and cast-iron girders as “empirical.” Although the application of 
these formulas certainly has empirical elements, particularly in the development of the coef-
ficients in Figure 4-2, the main discussion of the Rankine–Gordon rule for column strength 
is reserved for Chapter 9.
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There are other elements of empirical design in the sizing of steel columns and com-
pression members. The notes of the engineers of the Berlin Iron Bridge Company in East 
Berlin, CT, indicate that they did not reduce top chord allowable compressive stresses for 
increased length of these elements. Based on examination of the notes that are available, 
they used full allowable stress and used larger box sections to make it unnecessary to apply 
a reduction formula. The required reduction factor obtained, for instance, from a wrought 
iron box section 16 in. × 12 in., with a length of 190 in., should be, according to Du Bois’s 
version of the Gordon formula coefficients, 88%. From the records of the company, in the 
strain sheet for the bridge at North Anson, ME, the calculations indicate a strain of 77.0 
tons, and the design calls for a cross-sectional area of 14.8 in2, resulting in an unreduced 
stress of 5.17 tons/in2. The effect is more dramatic on smaller bridges. A five-panel 80-ft 
span bridge at Suffield, CT, has a span/width ratio of about 30, resulting in a reduction 
factor of 0.67, yet the top chord stress is 4.76 tons/in.2

It is difficult to find explicit rules for the proportioning of trusses, although it is equally 
difficult to find iron trusses from this time period with a span/depth ratio greater than 7 or 

Figure 4-2. Empirical modifications to Gordon’s formula for columns of various shapes.
Source: Du Bois (1887).
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8. Conversely, as is discussed in Chapter 7, there is a significant body of literature on the 
optimum proportioning of panels within trusses. Both struts and ties are most economical 
when inclined at 45 degrees (ties) or 50 degrees from the horizontal (struts). The result of 
this is that panels for single-system trusses are approximately square, and the number of 
panels for such trusses is effectively limited to 8, resulting in a span limit of approximately 
140 ft. To span greater distances, it becomes necessary, as discussed in Chapter 7, to use a 
double system.

To repeat the discussion at the beginning of this chapter, empirical design is less in 
evidence for metal structures compared with the practice of designing wood and masonry 
structures by empirical methods. However, elements of empirical design, especially prelimi-
nary design by the use of appropriate proportions, and the application of empirical rules 
that may have been derived more or less analytically, are well established in the late 
nineteenth-century structural design profession.
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Introduction to Analytical 
Computations in 
Nineteenth-Century 
Engineering

Analytical Methods

The introduction, use, and choice of analytical methods in the nine-
teenth century were subject to the large computational effort required 
to implement an analytical method. Although the theory of structural 
analysis was sufficiently well advanced by the later nineteenth century 
to manage problems, such as beams continuous over supports, arches 
with fixed supports, statically indeterminate trusses, multiple portal 
frames, and other such problems that routinely arose in practice, ana-
lytical methods for these structures required a very large amount of 
exacting calculations. Even as widespread and simple a structure as 
the masonry arch is 3 degrees statically indeterminate, and the curva-
ture of the structure’s axis with respect to the loading made difficult 
the computation of internal forces and bending moments along an 
arch, masonry or iron. The principal means of accomplishing such 
calculations was by the development of tables, with specialized indi-
viduals (known as computers) in engineering offices required to calcu-
late the entries in the table. Some examples of this type of computation 
are shown in Chapter 6, which covers the application of analytical 
methods to the masonry arch. The most prominent iron arch of the 
time was certainly the Eads Bridge in St. Louis, known as the St. Louis 
Arch. Several monographs were written by James Buchanan Eads on 
the computation of the stress in the St. Louis Arch (Eads 1868) as  

5
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well as by others, for example Malverd A. Howe (1906). A. Jay Du Bois, who is described 
in Chapter 11 and onward as a proponent of graphical methods, describes this type of large 
computational effort skeptically: “Those acquainted with the analytical investigation of the 
‘braced arch’ as contained in [Eads 1868] will not, we feel sure, be slow to recognize the 
advantages of the present [graphical] method.” (Du Bois 1877, p. vii)

Trusses, however, were routinely calculated, and methods were developed to write the 
forces in the members of a truss directly on a diagram to produce a “strain sheet.” As a 
result, truss computations were not as involved as arch computations. A detailed inquiry 
into truss computations is given in Chapter 7. Analytical methods also existed for the 
support moments in multispan girders, which were known to be statically indeterminate. 
The widespread Clapeyron’s method, or the three-moment equation, were frequently used 
for computations of this nature, as described in Chapter 8.

Modern methods of analysis are based on increasingly precise computations, where 
efficiency is less critical because the digital computer is the primary calculating instrument. 
Because of the difficulty of computations in the late nineteenth century, however, methods 
from this period sometimes show a remarkable economy of computational effort. There 
were two fundamental realms of computation: analytic and graphic. In the analytical realm, 
engineers of this period had limited resources for computation, primarily the 10-in. slide 
rule (three-digit precision) for multiplication, division, extraction of roots, and for trigo-
nometry; the 20-in. slide rule (four-digit precision) for similar tasks; various forms of adding 
machine for addition, multiplication, subtraction, and division; the Thacher calculator  
(five-digit precision); or published multiplication and reciprocal tables for greater precision 
in computation.

The illustration in Figure 5-1 shows the use of a 20-in. slide rule for the simple opera-
tion of multiplication (453 × 217) and division. The illustration in Figure 5-2 shows how a 
Thacher calculator can be used for greater precision for the same operation. Successive 
operations on a Thacher calculator, such as a multiplication followed by a division, required 
either writing an intermediate result or multiplying by a reciprocal. Published tables of four- 
or five-digit reciprocals were available for this purpose (Oakes 1865). A. L. Crelle (1897) 
published tables of the products of all pairs of three-digit numbers, which could be used for 
rapid multiplication. An example of the multiplication of two three-digit numbers on a Crelle 
table is shown in Figure 5-3. For larger numbers the procedure involved parsing the multi-
plicands into three-digit numbers. For instance, to multiply 35,453 and 73,217 requires the 
computer to multiply 217 × 453, 217 × 35, 73 × 453, and 73 × 35. Each of these four 
numbers can be looked up quickly and written in the correct alignment to be added by hand 
or by using an instrument. That is, the computer would write, in the order as given,

    98 301
   7 595
  33 069

 2 555

and then sum these quantities to obtain the result 2,595,762,301.
A computer placed Crelle’s results in tables. Tables often included 10 to 20 columns 

of calculations, as required for the assembly of a complex equation. Some of the analytical 
arch calculations shown in Chapter 6 exemplify this type of calculation. To satisfy an 
equation such as the following example from the analysis of an arch requires all of the 



 introduction to analytical computations in nineteenth-century engineering 61

Figure 5-1. Multiplication on a 20-in. slide rule.
Source: Photograph by the author.

variables and their summations to be put into a table such as Table B6-1-4, which has 
18 columns:
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According to the author presenting this large-scale tabular computation, Malverd 
Howe (1914), most of the table entries are calculated by the method of differences, with 
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occasional complete calculations for the verification of the values. The method of differences 
involves considering the trend of the values in a table by the methods of differential calculus 
and estimating subsequent values by extrapolating the truncated series approximation of 
the solution. An example of a practical application of differential methods to calculations 
in the nineteenth century is the work by James Pearson (1849).

Analytical methods were considered particularly valuable because of the precision of 
the answers compared with either of the two other methods available. Empirical design, 
obviously, gives answers that appear to be imprecise and may generally have been considered 
uneconomical relative to answers that were developed by other methods. Graphical analysis, 
although necessary for certain types of structures, gives answers that may have errors that 
result from imprecise measurement of lines or angles, resulting in a possibility of errors 
greater than the results of analysis.

Figure 5-2. Multiplication on a Thacher calculator.
Source: Photograph by Paul Kremer.
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The disadvantage of analytical methods, of course, was the length and tedium of the 
calculations that accompany this analysis. The example of the analysis of a bridge arch is 
given in Chapter 6. In Eads’s summary of the analysis of one of the arches of his bridge, he 
presents 20 pages of symbolic computations to determine the forces in the ribbed arch under 
uniform and concentrated loads and follows this with an additional 10 pages of tabular 
computations to calculate the desired numerical results (Eads 1868). In the application of 
the three-moment equation to the analysis of a multispan bridge, described in detail in 
Chapter 8, it is necessary to calculate a series of coefficients equal to the number of spans 
and to apply these coefficients sequentially to each of the spans while keeping separate  
all of the possible loading conditions of dead load and live load in each of the spans. 
Although a similar graphical solution is available, as described in Chapter 13, it was seldom 
employed.

As with the other methods explored in this book, analytical methods had a particular 
place in the toolbox of the late nineteenth-century engineer. These methods were particularly 
used for truss bridges and were necessary when continuous girders were employed. Analyti-
cal methods also were used in the analysis of columns and were an alternative to graphical 
methods in the analysis of building trusses and the analysis of arches.
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6

Analysis of Arches

The determination of the size of critical elements in arches was a fre-
quently recurring problem in the latter part of the nineteenth century. 
Arches were often used for the construction of permanent bridges and 
were also widely used in building facades. An example of a significant 
arch structure from this time period is shown in Figure 6-1. Two ana-
lytical methods for arches were prevalent in the late nineteenth century: 
strictly analytical and semigraphical. The semigraphical methods 
require some knowledge of graphic analysis, which is presented for-
mally in Chapter 12, so only a brief introduction to this topic is pre-
sented at the conclusion of this chapter. The analytical methods are 
primarily addressed through the methods presented in William John 
Macquorn Rankine’s Manual of Civil Engineering (1876a). Although 
this is an English work, it was widely distributed and widely used in 
the United States. It was previously encountered in Chapter 2, where 
the subject was empirical methods. Some work with Rankine’s analyti-
cal method may have been sufficient to convince an engineer of the 
merit of using empirical formulas instead of the exact analytical for-
mulas for the analysis of the arch. Further reference will be made to 
an American work, Malverd Abijah Howe’s Treatise on Arches (1897). 
The presentation of the semigraphical methods will refer to Frank 
Kidder’s Architects’ and Builders’ Pocket-Book (1886), in combination 
with Ira Osborn Baker’s A Treatise on Masonry Construction (1907), 
in addition to other works. Kidder (1886) is exclusively devoted to 
building structures, whereas Baker (1907) is authored by one of the 
authorities on masonry construction in the United States in the late 
nineteenth and early twentieth centuries.
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Analytical Methods

Simple, qualitative analytical methods that a modern engineer would recognize as a collapse 
mechanism analysis were widely known in the analysis of arches, although they seem to be 
relatively little used—more widely used methods include the strictly empirical methods 
described in Chapter 2 and the fully analytical methods described in this chapter. Hermann 
Haupt (1856, p.125), in his early American-oriented treatise on bridge construction, presents 
observations on the arch on the basis of a collapse analysis, attributed to Emiland M. 
Gauthey (1771), in which he solves the horizontal thrust of the triangle of opposing forces 
in the two sides of a symmetric arch about the joints of rupture. The joint of rupture is a 
point in the intrados (inside face) near the abutment, where the failure is initiated in the 
part closer to the center of the arch. That part of the arch between the joint of rupture and 
the abutment is simply considered part of the abutment. The remaining part of the arch 
between the joints of rupture is considered resisting and is designed for the horizontal thrust 
calculated. The conclusion to Haupt’s analysis is that “the former notion about the arch 
being perfectly equilibrated by a catenarian curve, is now regarded as a fallacy.” (p. 127) 

Figure 6-1. Example of a railroad masonry arch bridge. Baltimore and Ohio Railroad, Benwood 
Bridge, Marshall County, WV (HAER WVA, 26-BEN, 1–4).
Source: Photograph by William E. Barrett.
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Haupt cannot agree entirely with such a radical statement, saying that, while the catenary 
should not be used to shape the intrados, it may be used to find the proper direction of  
the joints.

Rankine (1876b), in his Manual of Applied Mechanics, develops a strictly analytical 
treatment of iron arch ribs, which he subsequently applies to masonry arches. The formulas 
that he develops are computationally complex and can only be adapted to a few special 
cases. He does make important inferences regarding his own empirical formula for arch 
proportions from one of the analytical formulas. Rankine considers both the initial curve 
of the arch and the variations in the curve induced by the loads. The initial curve has coor-
dinates x and y, and supports at ends x0, y0 and x1, y1. The arch deflects in the horizontal 
direction u and the vertical direction v. The slope dv/dx is designated i. The arch is subjected 
to a vertical load w and develops shears (vertical internal forces rather than true shears) F, 
bending moments M, and horizontal force H. The horizontal force does not vary along the 
length of the arch. Using the differential relationships between bending and deflection, he 
finds expressions for the shear, bending moment, slope, and vertical deflection at any point 
in the arch.
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Some of the variables given are shown in Figure 6-2. F and H represent the vertical 
and horizontal internal force in the arch. The variable w represents the distributed load and 
may vary with x. The variable i represents the slope of the arch centerline, and v represents 

Figure 6-2. Rankine (1876b) nomenclature for masonry arch analysis.
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the vertical deflection. In all cases a 0 subscript represents the value at the left support. Given 
four boundary conditions, these four equations constitute a formal solution of the unknown 
quantities, F0, M0, i0, and H. From these four constants, the remainder of the internal forces 
can be found. The process is, however, tedious, and many of the integrals can only be 
explicitly evaluated in very limited cases.

A more practical analytical scheme is described by Malverd Howe (1897). Rather than 
trying to develop general analytical formulas for specific cases, Howe subdivides the arch 
ring and calculates the loads and relevant geometric properties at discrete points chosen in 
the subdivision of the arch ring into angular segments. The calculation procedure, although 
tedious, uses tabular computations, which are familiar to most engineers in the nineteenth 
century. Howe’s advice on the construction of the tables is very specific and detailed. Using 
a discrete version of the same integral forms as Rankine, he finds the three unknown quanti-
ties H, M1, and M2 and the same support conditions for a fixed-fixed arch, for which the 
nomenclature is shown in Figure 6-3.

These conditions can be applied directly to a centerline divided into equal angular 
segments δs. Rather than imposing a specific load, Howe applies a unit load to each segment 
in turn and uses superposition to find the effect of actual loads. The computation of the 
horizontal thrust is accomplished in the first table (see Table B6-1-1), whereas the following 
table (Table B6-1-2) yields the support moments for unit loads at each of the segments. 
These quantities being computed, it is necessary to find the dead and live load influence on 
the remainder of the arch. This computational scheme did not present any particular diffi-
culty to a nineteenth-century engineer. Howe (1914), in fact, recommends carrying the 
calculations to three decimal places by use of a machine or a Crelle (1897) table, asserting 
that this presents no particular difficulty compared with calculations with three significant 
figures. Howe then uses a semigraphical procedure to find the dead loads required to make 
the dead load thrust line follow exactly the center of the arch, so that only live load moments 

Figure 6-3. Howe (1897) nomenclature for masonry arch analysis.
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need be computed. According to Howe, this is accomplished by modifying the density of 
the fill throughout the arch to remove the bending moments due to dead load from the arch. 
Because it is unlikely that an arch would be constructed this way (voids may be left over 
the haunches to reduce dead load but not in such a refined way as to calibrate the location 
of the dead load thrust line), this may be understood as an empirical dismissal of the impor-
tance of the moments due to dead loads in favor of calculating the response of the arch on 
the basis of the live loads only. Howe then finds the live load moments by superposition at 
the two supports and the crown, asserting that “If the ring is safe at these three points it 
will be safe at all other points.” (p. 69) The entire process of calculating a segmental arch 
with a span of 60 ft and a rise of 7.5 ft is illustrated in Box 6-1.

Box 6-1
The treatment shown here is described in detail in Howe’s A Treatise on Arches (1897), 
but is described in slightly simplified form and reduced to a tabular computation in the 
same author’s Symmetrical Masonry Arches (1914, p. 76). In the preface to the more 
detailed work, A Treatise on Arches, Howe says that the tables were computed by method 
of differences, where possible, with checks by direct computation every tenth value. This 
is evidently the method of finite differences, as elaborated by Pearson (1849), which 
permits the analyst to fill in lines in the table based on the differences between previous 
entries, rather than completing more laborious computations. In Howe’s development, 
the quantity mx represents the bending moment at the abcissa x on a simply supported 
straight beam (see Figure B6-1-1). It is used to simplify complex expressions in the fol-
lowing development.

For an arch subjected to vertical load only, Howe uses the condition equations and 
expressions for the axial force and bending moment in the arch to write explicit expres-
sions for the horizontal thrust and the bending moment at each support of an arch 
subjected to a single vertical load. The expressions used in the present development of 

Figure B6-1-1. Calculation of mx.
Source: Howe (1914).
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Table B6-1-1. Arch Geometry

Point φ sin φ cos φ R sin φ R cos φ

x y

40.9412-R sin φ R cosφ-75.00

1 26°40′09″ .44883 .89361 39.005 77.744 1.936 2.744

2 23°51′43″ .40453 .91452 36.194 79.563 4.747 4.563

3 21°03′15″ .35925 .93324 30.385 81.191 10.556 6.191

4 18°14′49″ .31312 .94971 27.041 82.624 13.900 7.624

5 15°26′23″ .26623 .96391 23.162 83.860 17.779 8.860

6 12°37′57″ .21870 .97579 19.026 84.893 21.915 9.893

7 9°49′31″ .17065 .98533 14.846 85.723 26.095 10.723

8 7°01′05″ .12218 .99251 10.630 86.348 30.311 11.348

9 4°12′39″ .07343 .99730 6.388 86.765 34.553 11.765

10 1°24′13″ .02450 .99970 2.131 86.974 38.410 11.974

C 0 0 1.00 0 87.000 40.9412 12.000

the topic neglect the effect of deformation due to axial force and temperature change, 
although Howe later gives additional expressions that include these effects:
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In these equations H is the horizontal internal force in the arch (neglecting the 
effect of axial compression and temperature change), mx is the bending moment in 
a straight simply supported beam at the same x-coordinate, ya is the average value 
of the y-coordinate of the centerline, M1 and M2 are the bending moments at 
the left and right supports, and n is the number of divisions in the full arch.

For example, this approach will be applied to a hypothetical arch with an 80-ft 
span, a 4-ft ring thickness, and a 10-ft rise. The first task, also completed in tabular form 
(Table B6-1-1), is to establish the x and y coordinates of the centerline of the arch ring. 
The table where these values are established is similar to Howe (1914, Table A, p. 75). 
The arch ring is divided into 20 equal segments; only one side of the axis of symmetry 
is represented. The radius of the intrados in this example is 85 ft, and the half-angle of 
embrace is 28°04′21″. The radius of the centerline is therefore 87 ft.
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To find H for a series of concentrated loads applied at points 1 through 10, it is 
necessary to find an expression for Σmx(y − ya) for this load case. The procedure used by 
Howe is to consider the bending moment diagram for a unit load placed at a (illustrated 
in Figure B6-1-1). The sum of the bending moment at x and (l − x) is [x(l − a) − xa]/l = 
x, as the sum of the two reactions is the unit load. For moments at a < x < (l − a), this 
sum is a constant a. As a result, for half the arch, the calculation of

 Σm y y x y y a y yx a a a

l

−( ) = −( ) + −( )∑ ∑
0

2a

a

/

 

by subtracting Σa(y − ya), which is equal to zero because ya is the average value of y over 
the domain, the simplest possible expression is obtained.

 Σm y y x y y a y yx a a a

a

−( ) = −( ) − −( )∑ ∑
0 0

a

 

This expression is used in the tabular evaluation of H, displayed in Table B6-1-2. 
The end moments are calculated once H is known. As a preliminary to this calculation, 
it is necessary to determine Σmx. By an argument similar to that used here, this is found 
to be

 Σm x n ax
x

x a

= + ′
=

=

∑
0

 

where n′ is the number of divisions between the load and the crown. So this quantity is 
calculated in Table B6-1-3 for a unit load at points 1 through 10.

The equation given for M1 and M2 is now solved by introducing an exact expression 
for mx and by simplifying as much as possible. The resulting equation is still somewhat 
complex and has the form shown as follows.
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This equation is a slight modification of the equation previously given for M1. In 
this equation R1 and R2 represent the left and right reaction on a straight simply sup-
ported bar with the same x coordinates as the arch under analysis. This equation is 
evaluated in Table B6-1-4 using a tabular calculation with 18 columns.

Howe balances the weight of the fill by an inverse procedure of drawing a con-
centric thrust line and finding the fill weights necessary to achieve this shape for the 
thrust line. He proposes modifying the density of the fill to achieve this effect. In this 
way, he dismisses any required dead load calculations. The dead load calculations for 
a constant density fill would be much less difficult than the calculations just completed, 
because an influence line for horizontal force and moment at the two supports has just 
been determined. In calculating the influence of the live load, Howe works with a 
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Table B6-1-2. Determination of Horizontal Thrust

Point

1 2 3 4 5 6 7 8 9 10 11

Values 
of y y − ya y(y − ya) x or a x(y − ya) Σ(y − ya)x −Σ(y − ya) aΣ(y − ya)

Columns  
(6) + (8) H

Load at 
Point

0 0 or 0′

1 2.744 −5.8245 −15.984 1.936 −11.277 −11.277 5.825 11.277 0 0.000 1 or 1′

2 4.563 −4.0055 −18.279 4.747 −19.016 −30.293 9.830 46.663 16.37 0.093 2 or 2′

3 6.191 −2.3775 −14.722 10.556 −25.102 −55.395 12.208 128.867 73.472 0.417 3 or 3′

4 7.624 −0.9445 −7.205 13.900 −13.129 −68.524 13.152 182.813 114.289 0.667 4 or 4′

5 8.860 0.2915 −2.578 17.779 −5.174 −73.698 12.861 228.656 154.958 0.880 5 or 5′

6 9.893 1.3245 13.791 21.915 30.550 −43.148 11.536 252.811 209.663 1.191 6 or 6′

7 10.723 2.1545 23.097 26.095 56.209 +13.061 9.382 244.823 257.884 1.465 7 or 7′

8 11.348 2.7795 31.536 30.311 84.234 +97.295 6.602 200.113 297.408 1.689 8 or 8′

9 11.765 3.1965 37.601 34.553 110.431 +207.726 3.406 117.688 325.414 1.848 9 or 9′

10 11.974 3.4055 40.771 38.410 130.786 +338.512 0.00 0.00 338.512 1.923 10 or 10′

85.685 88.028

2 2 Column 9 gives the value of the numerator of the formula for the calculation of H for each load. These 
values, divided by 176.056, the denominator, give the values of H shown in column 10.171.370 176.056

ya = 8.5685 Σ(y − ya)
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movable load in lbs/ft, say 400 lbs/ft, and finds the corresponding maximum forces for 
live loads.

Howe chooses the support points, the crown, and point 6 ft to investigate maximum 
moments due to variable load placement. For instance, having determined (somewhat 
arbitrarily) that for the maximum negative moment at the crown, loads at 1 through 7 
and 1′ to 7′ produce negative moments, he calculates the sum of the effect of a unit live 
load at each of these points, based on a tabular computation using the formula:

 M M V x Hy P x ax = + − − −1 1 ( )  

In this formula x represents the point at which moments are being calculated, 
namely at the crown, x = 40.94 ft, and a represents the x coordinate of the point where 
the individual loads are applied. The vertical reaction at the left support V1, is calculated 
from the values in Table B6-1-4, by the equation

 V R
M M

l
1 1

2 1= +
−( )

 

Following the example here, the effect at the crown is twice the effect of unit loads 
at points 1 through 7, which can be calculated according to Table B6-1-5. In this table, 
the variables M1, M2, R1 (used in finding V1) and H are determined from Table B6-1-4.
The values used in the table relate to the unit loads at point 1 through 7 until the point 
where a load of 400 lb/ft times the tributary area of each point is substituted. As a result, 
the negative moment at the crown caused by loading at points 1 through 7 and 1′ through 
7′ is equal to 2 × 8,986 ft-lb = −17,970 ft-lb. A check of loads 1 through 6 or 1 through 
8 would assist in verifying that the live load placement selected produces the maximum 
moments.

Table B6-1-3. Determination of Σm for Unit Loads
1 2 3 4 5 6

Load Unity at PointDivision Point x or a x
x

x a

=

=

∑
0

n′ n′a Col 5. + Col. 3 Σmx

1 1.936 1.936 9 17.424 19.360 1 or 1′

2 4.747 6.683 8 37.976 44.659 2 or 2′

3 10.556 17.239 7 73.892 91.131 3 or 3′

4 13.900 40.139 6 83.400 123.539 4 or 4′

5 17.779 57.918 5 88.895 146.813 5 or 5′

6 21.915 69.833 4 87.660 157.493 6 or 6′

7 26.095 95.928 3 78.285 174.213 7 or 7′

8 30.311 126.239 2 60.622 186.861 8 or 8′

9 34.553 160.792 1 34.553 195.342 9 or 9′

10 38.410 199.212 0 0 199.212 10 or 10′
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Table B6-1-4. Determination of End Moments for Unit Loads
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1 0.976 0.024 1.936 38.064 73.692 1,448.868 73.692 0.952 70.125 3,931.197 0.048 190.270 260.395 0.961 0.968 0.000 −1.929 −0.007

2 0.941 0.059 4.747 35.253 167.346 1,242.774 241.038 0.881 212.433 2,688.423 0.119 319.049 531.481 1.961 2.233 0.797 −3.397 0.525

3 0.868 0.132 10.556 29.444 310.811 866.949 551.849 0.736 406.216 1,821.474 0.264 480.687 886.903 3.272 4.557 3.573 −4.256 2.289

4 0.826 0.174 13.900 26.100 362.790 681.210 914.639 0.653 596.802 1,140.264 0.348 396.242 993.043 3.664 6.177 5.715 −4.126 3.202

5 0.778 0.222 17.779 22.221 395.067 493.773 1,309.706 0.556 727.574 646.491 0.444 287.349 1,014.923 3.745 7.341 7.540 −3.545 3.944

6 0.726 0.274 21.915 18.085 396.333 327.067 1,706.039 0.452 771.343 319.424 0.548 175.004 946.347 3.492 7.875 10.204 −1.162 5.821

7 0.674 0.326 26.095 13.905 362.851 193.349 2,068.890 0.348 719.198 126.075 0.652 82.248 801.446 2.957 8.711 12.552 0.885 6.798

8 0.621 0.379 30.311 9.689 293.683 93.877 2,362.573 0.242 572.274 32.198 0.758 24.399 596.673 2.201 9.343 14.471 2.927 7.330

9 0.568 0.432 34.553 5.447 188.210 29.670 2,550.783 0.136 347.353 2.528 0.864 2.184 349.537 1.290 9.767 15.834 4.777 7.356

10 0.520 0.480 38.410 1.590 61.072 2.528 2,611.855 0.040 103.821 0.000 0.960 0.000 103.821 0.383 9.961 16.476 6.133 6.899

sum = 6,225
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Table B6-1-5. Determination of Crown Moment for Distributed Live Load
Load at 
point x or a y M1

V1x 
(x = 40.94) Hy (x − a)

Live 
Load M

1 1.936 2.744 −1.929 39.992 0 38.064 1,936 0

2 4.747 4.563 −3.397 39.587 1.116 35.253 1,724 −308

3 10.556 6.191 −4.256 37.994 5.004 29.444 1,831 −1,299

4 13.900 7.624 −4.126 36.713 8.004 26.100 1,445 −2,190

5 17.779 8.860 −3.545 34.855 10.56 22.221 1,603 −2,358

6 21.915 9.893 −1.162 32.534 14.292 18.085 1,663 −1,671

7 26.095 10.723 0.885 29.909 17.58 13.905 1,679 −1,160

ΣM −8,986

Semigraphical Methods

Semigraphical methods depend on the construction of a thrust line and are focused on 
determining the proper placement of the thrust line and other characteristics. As described 
later in the book, the simplest method for constructing the thrust line is graphical. Additional 
clarification on the graphical construction of the thrust line is available in Chapter 13. The 
thrust line also can be constructed analytically by taking the bending moment at any point 
and dividing by the horizontal thrust to obtain a y coordinate.

The methods described in Baker (1907, Chapter 18) are procedures for determining 
the correct location of the line of pressure, with the understanding that it is possible to draw 
a line of pressure under any reasonable set of assumptions. Ira Osborn Baker (1907) 
describes and George Fillmore Swain (1896) presents some important terms relative to the 
description of failures in the arch. The line of resistance is defined as the locus of centers of 
pressure of the resistance to internal weights and external forces in the arch. Criteria for the 
stability of the arch generally are given in terms of the line of pressure. Swain’s criteria for 
stability are as follows.

• The true line of resistance must be within the arch ring, or within the middle third 
if there is to be no tension.

• The true pressure on any joint must not make with the normal to that joint a greater 
angle than the angle of repose.

• The maximum intensity of pressure at any joint must not exceed the allowable stress.

Baker also introduces what is now known as Heyman’s (1995) geometrical factor of 
safety in which a rough factor of safety against collapse of the arch is determined as the 
quotient between the half-thickness of the arch and the deviation of the line of resistance 
from the center.

The theories that Baker describes are these:
Least Crown Thrust. By locating the line of pressure as high in the arch as possible, 

the horizontal thrust at the crown, and consequently the thrust throughout the arch, can be 
minimized. The further requirement of this method is to ensure that the thrust line passes 
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through the intrados at the joint of rupture, as the selection of the joint of rupture gives the 
extent of the arch that needs to be considered (see Chapter 2). The level of the horizontal 
thrust to be considered is also limited if the designer adopts the rule of the middle third, in 
which the center of pressure at an arch joint has to be contained within the middle third of 
the thickness of the arch ring. This is illustrated in Figure 6-4, where the thrust line associ-
ated with the least pressure is found to pass through the extrados (or the outer limit of the 
middle third) at the crown and at the abutment and through the intrados (or the inner limit 
of the middle third) at the joint of rupture.

Least Pressure. In the least pressure method, a thrust line is drawn for which the pres-
sure (maximum compressive stress due to axial force + moment) in any joint is the minimum 
consistent with equilibrium. This generally means keeping the thrust line as close to the 
center of the arch as possible. A. Jay Du Bois (1887) espouses this theory, although Baker 
(1907) dismisses this theory as having no rational basis. Swain (1896) and Baker (1907) 
differ over the importance of the hypothesis of least crown thrust. While Baker says it is the 
most frequently employed for the determination of the true line of resistance in the arch, 
Swain ignores it in favor of a graphical and incremental construction of the thrust line lying 
closest to the centerline of the arch.

Scheffler’s Theory. Scheffler’s theory is an elaboration of the least crown thrust theory 
in which the absolute minimum thrust is determined by summation of moments through 
the joints from the crown downward, with the center of rotation considered to be the upper 
middle third line of the joint.

Figure 6-4. Various hypotheses concerning position of thrust line.
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Rational Theory. In the rational theory, which seems to be a composite of the afore-
mentioned theories adopted by Baker, both vertical and horizontal forces are accounted for 
at each joint. The joint of rupture is determined. This is done by a tabular computation, 
similar to that shown in Box 6-1. The horizontal thrust is calculated at each joint starting 
at the crown, assuming the horizontal crown thrust is placed at the upper end of the middle 
third. Following this, the horizontal thrust is calculated on the basis of the thrust line passing 
through the lower end of the middle third at each successive joint. The joint for which the 
calculated value of the horizontal thrust is a maximum is the joint of rupture. On the basis 
of the joint of rupture, a thrust line is drawn by accepted graphic methods on the basis of 
least crown thrust determined in this manner.

Winkler’s Theorem. According to Winkler’s theorem, the correct position of the thrust 
line is that in which the least squares sum of the deviations from the arch centerline are at 
a minimum. Although simple enough in statement, the application of this theorem requires 
drawing a thrust line, measuring the error at each joint, calculating the sum of the squares, 
and repeating the process until a satisfactory minimum is found.

Later authors, particularly Jacques Heyman (1995), have identified the construction 
of lines of pressure with the limit theorems of plastic analysis and have determined that the 
construction of a single statically admissible line of pressure, entirely within the arch, is 
sufficient to ensure stability. Baker (1907, p. 464) disputes the widely held view that a corol-
lary of Winkler’s theorem is that a statically admissible thrust line lying within the middle 
third implies that the true elastic thrust line is also within the middle third, although he does 
not express an opinion on Scheffler and Fournié’s (1864) similar claim for the middle half 
of the arch.

In general, analytical methods for arch analysis presented formidable but not insur-
mountable obstacles to successful analysis by the methods of nineteenth-century engineering. 
Although the mechanics of the response of an elastic arch were well understood, their appli-
cation in the case of the variable geometry and statical indeterminacy of an arch made it 
extremely tedious to complete a full analytical solution. Even discretizing the problem and 
solving by approximate methods (as Howe has done) results in a complex analysis performed 
on various large tables. Recourse to semigraphical methods was often taken, that is, the 
determination of possible lines of pressure by graphical methods with the determination of 
the correct line of pressure by analytical methods. Empirical methods, almost all developed 
on the basis of analyzing populations of analytically design arches, described in Chapter 2, 
were very often employed. For more complex structures, it was usual to make use of graphi-
cal methods, such as those described in Chapter 13.
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Analysis of Braced Girders 
and Trusses

In the usage of the nineteenth century, a truss may be considered a 
girder when it is used as the main support of a bridge span. As such, 
we will consider the analysis of trusses in this chapter, but we will 
include continuous trusses in the study of the analysis of continuous 
girders to be found in Chapter 8. This terminology follows the devel-
opment of trusses, which originally functioned more like a girder with 
a braced web (Figure 7-1), than the modern sense of a truss. In the 
evolution of the forms of these girders, the flanges became more attenu-
ated as the bars began to be considered as only axially loaded. The 
final result was the forms of truss that are more familiar to us and the 
forms of analysis in which trusses and solid-web girders are differing 
structural forms. The design of wood trusses by the application of 
rules, as propounded by Thomas Tredgold (1888), Robert Griffith 
Hatfield (1871), and others is covered in Chapter 3.

Three analytical methods prevail for trusses in the later nine-
teenth century. The first is the development of formulas that cover the 
forces in the chords, ties, and struts, in terms of the panel load, panel 
length, number of panels, and so on. John Davenport Crehore (1886) 
presents a variety of means of analyzing trusses, however, his work 
exemplifies the approach of developing formulas specific to a truss 
type. Crehore divides trusses into 12 classes and presents formulas for 
the forces in the bars of each of the classes, when the truss is subject 
to different forms of loading. George Fillmore Swain (1896) also 
develops similar formulas for certain classes of truss bridge, especially 
those with curved chords. The second is the application of the method 
of moments or of formulas derived from the method of moments. This 
method is used especially by A. Jay Du Bois (1888), but also by Swain 

7
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and others. The third is the method called indexing by Swain; in this method, the forces are 
traced through the truss by rapid analysis of the overall shear forces. Du Bois presents a 
variant of this method, and it is further available in Charles Lee Crandall’s work (1888) and 
the work of other authors.

Two other methods of analysis are deferred to a later chapter. Trusses can be examined 
graphically by constructing scaled diagrams representing the forces in each of the bars. Also 
available are semigraphical methods in which the forces in the truss loaded at a single panel 
point are determined graphically, and forces from loads at different panel points are summed 
analytically. Both graphical and semigraphical methods are described in Chapter 12.

The earliest bridge trusses in the United States certainly met the description of braced 
girders. Neither the Bollman truss nor the Fink truss (Figure 7-2) actually has a bottom 
chord. The two forms represent adaptation of the queen-post truss, already used for static 
loads on roofs, to the movable loads present on bridges. Each panel point is made into a 
loaded point and a tension cable is used for the support of each panel point.

One of the earliest codifications of methods for the analysis of trusses was by Robert 
Henry Bow (1874, p. 8). He discusses the distinction between trussing, as used in the web 
of a gable truss with continuous chords, that is, a structure that does not require additional 
stability, and bracing, the insertion of additional members to ensure the stability of a girder. 
Bow’s four classes are parallel chord, nonparallel chord, arches, and braced double arches. 
Considering the inverted truss, with a constant load w imposed at each upper panel point, 

Figure 7-1. Roof over Great Shed, Strasbourg Railway Station, Paris (1850).
Source: n.a. 1850.
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the distribution of the weight applied at this point can be traced through the remainder of 
the truss. An example of Bow’s analysis of an inverted, pitched bottom chord truss is shown 
in Figure 7-3. The truss in Figure 7-3 is a variant on the types of truss analyzed by Bow 
using this method.

In Bow’s analysis, the vertical load applied at the second panel is divided into two parts: 
the bottom chord and the diagonal in the second panel, 0.5 being written over the web diago-
nal and the bottom chord in the first panel. The 0.5 force in the second panel is transmitted 
through the second web vertical, where the remaining force is divided two-thirds to the web 
member and one-third to the bottom chord, based on the slopes of these members: 0.33 is 
written over the web member as the vertical component of force, 0.33 is written over the  
web diagonal, and 0.17 is written over the bottom chord in the second panel. Because this 

Figure 7-2. Bollman truss, Savage County, MD (HAER MD, 14-SAV,1–13). Fink truss, Clinton 
County, NJ (HAER NJ, 10-CLIN.V,1–1J).
Sources: (A) Photograph by William E. Barrett. (B) Photograph by Jack E. Boucher.

(A) (B)

Figure 7-3. First stage of Bow’s analysis of an inverted gable truss.
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force of magnitude 0.17 is equally transmitted into the bottom chord at the first panel, it is 
written over that member as well. The vertical force of 0.33 is similarly subdivided at the 
third panel point: three-fourths to the web and one-fourth to the bottom chord, and the 
result for the bottom chord is written under each part of the bottom chord to the support. 
This process is continued to mid-girder, and the resulting force in the bottom chord is the 
sum of all of the vertical components transformed to a resultant force by the slope of the 
bottom chord. The result of this analysis is a complete analysis of the truss for a single load, 
resulting in the correct reaction placed at the right support. The sum of the numbers over the 
top chord is the vertical component of the chord force (similarly for the diagonal web 
members).

This analysis was adapted by Bow (1874) to include a truss with every panel loaded. 
The diagonal forces also can be converted to compressive forces by multiplying by the secant 
of the angle each diagonal makes with the horizontal, resulting in a diagram (Figure 7-4) 
similar to Bow’s Figure 56. On the left is shown the distribution of the loads to the web 
and the summation of the vertical components of the bottom chord segments. The actual 
forces are shown on the right half of the truss. The bottom chord forces shown result from 
a choice of slope that makes these forces exactly twice their vertical component, that is, a 
slope of 30 degrees.

In discussing parallel chord trusses, which he calls Class the First, Bow takes a similar 
approach to the determination of the vertical component of the forces in a Warren girder. 
The proportion of the load at each point sustained by each of the supports is simply deter-
mined by the lever rule (left and right reactions are proportional to distance to right and 
left supports). If all the panel points are loaded, the total force in each brace and in the 
girder can be determined by combination of the force effects at the various points or by 
writing out formulas for the vertical force component at each point (later known as index 
stresses). Thus, for instance, for a truss of N panels, the maximum panel shear force at panel 
n for a unit load applied to every panel is (N-n)2/2N × w, where w is the panel load.

Figure 7-4. Summation of loads and forces on an inverted gable truss.
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Many of Bow’s methods were extended and completed by Crehore (1886). Crehore 
chose a much wider range of classes of truss and developed usable formulas for the force 
in the bars of trusses of various classes, rather than any attempting to write a general analysis 
method for all trusses. He develops the basic method of computing horizontal force com-
ponents from moments (p. 64) and the further procedures of using differences in horizontal 
force components in a panel to find the horizontal component of the force in a web bar. 
Formula for Class II (only bottom chord horizontal, p. 106) is a typical example of this 
treatment. These procedures will be discussed later in this chapter as part of the discussion 
of curved chord trusses. Crehore is also specific about the resolution and superposition of 
multiple systems. He presents explicit formulas for moments at a point due to various pat-
terns of loading tables (p. 33 has a good initial example) for combinatorial values of multiple 
loadings on trusses (for instance, pp. 425–428). An example of one of these tables is repro-
duced in Figure 7-5.

Olaus Henrici (1867) describes the construction and analysis of “skeleton structures” 
that are, in fact, trusses. In his comments, he shows a clear preference for statically deter-
minate forms (p. 13). He states, “This example also shows clearly that in any structure, if 
there are more bars than necessary to determine the figure, they are not only superfluous, 
but injurious and dangerous, because, not knowing the exact amount of error in each, it is 

Figure 7-5. Calculation table for trussed girder moments.
Source: Crehore (1886).
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not possible to ascertain the exact strain by calculation.” He proceeds to demonstrate the 
calculation of forces in bars of statically indeterminate trusses by solving for equilibrium at 
successive joints (pp. 25–33) and advocates (p. 33) proportioning the structure so that the 
stresses in each bar are at a maximum. For statically indeterminate structures with superflu-
ous bars, he takes a simple example derived from a suspended chain truss (p. 40) and writes 
equilibrium equations into which he substitutes displacement quantities for the bar forces. 
This permits him to solve for the bar forces. Having found bar forces based on equal bar 
areas, he chooses new bar areas based on the principle of having each bar at a maximum 
stress level. Solving the same equations again for the bar forces gives a new set of bar areas, 
resulting in an iterative procedure that increases the economy of the truss over a constant 
cross-sectional area solution.

Other authors, including Hermann Haupt (1856, p. 79–81), Francis Webb Sheilds 
(1867), and Bindon Blood Stoney (1873, pp. 87–164) write on the analysis of trusses. Haupt 
presents a graphical analysis of trusses, similar to that shown in William Merrill (1870). 
These methods are discussed in Chapter 12 under the graphical analysis of trusses. Sheilds 
develops formulas very much like those of Bow or Crehore, and Stoney reviews the signifi-
cant details of the construction of a truss bridge, the Boyne Lattice Bridge in an appendix. 
Haupt presents analysis methods for wooden Howe trusses. The methods are separated into 
analysis/design of the chords, bracing, and counter bracing. Some of the analysis methods 
for the chords are taken up more generally by Merrill, described in Chapter 12. Haupt’s 
analysis of the braces is highly simplified in that he simply applies panel loads to each brace 
and determines the brace force resulting from the panel loads by trigonometry. He does 
describe an interesting statically indeterminate type of truss, a wooden Howe truss with 
“arch braces,” that is, braces that extend directly from the abutment to the top chord. He 
says that this type of bracing has been added to several sagging bridges. In this case, he 
advises that the entire bridge weight should be carried by the arch braces, with the panel 
braces carrying only the load of the individual panel that they are supporting.

Indexing Methods for Parallel Chord Trusses

The method described in this section is based on the writings of Swain (1857–1931) but is 
evident in the works of other authors such as Bow (1874), Crandall (1888), and others. 
Swain was an 1877 graduate in civil engineering from the Massachusetts Institute of Tech-
nology (MIT), where he served as department head from 1887 to 1909. He finally published 
his lecture notes on structural engineering in three volumes in 1927. The lecture notes them-
selves were used in his courses at MIT (first edition dated 1892, second edition dated 1896). 
In his discussions on the design of truss bridges, Swain consolidated several ideas, visible in 
the work of other authors, notably Bow, Merrill, and Du Bois, on the rapid analysis of 
parallel chord truss bridges. The result was a method titled “indexing,” in which the analyst 
keeps track of panel shears caused by the loading and converts these panel shears to bar 
forces when necessary. The indices represent the vertical panel shear for the loading under 
consideration.

The principle of indexing is demonstrated by a simple six-panel Pratt truss, illustrated 
in Figure 7-6. Panel length is p and truss height is h, while l denotes the length of a diagonal. 
The panel load P for each is calculated as the product of panel length, half the floor width, 
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Figure 7-6. Illustration of the principle of indexing: 6-panel Pratt truss.

and the uniformly distributed floor load. Looking at an elementary example of a six-panel 
Pratt truss bridge, the support reactions under full load are 2.5P. The panel shear in the 
first, second, and third panels is, respectively, 2.5P, 1.5P, and 0.5P. As a result of this 
loading, the force in the braces in each panel is 2.5P(l/h), 1.5P(l/h), and 0.5P(l/h). Because 
the horizontal component of the brace forces [2.5P(p/h), 1.5P(p/h), and 0.5P(p/h)] combine 
in the top and bottom chords, the top and bottom chord forces can be represented as sums 
of panel shears, starting from the support, as illustrated in the figure.

For a conventional truss form, the strain sheet could be developed in a few minutes 
by an experienced designer, working from a scaled drawing of the truss and a calculation 
of the panel loads, simply by keeping track of the vertical component of the panel shears. 
The loading applied to road bridges was particularly simple, expressed as a “rolling load” 
in lbs/ft2 of deck, which can be easily transformed to a panel load. As an example, consider 
the eight-panel single intersection pin-connected Pratt Truss, depicted as Design “P” in the 
Phoenix Bridge Company Album of Designs (1888), reproduced in Figure 7-7. The bar 
forces and indices developed in this discussion are illustrated in Figure 7-8. A similar bridge, 
designed by the Phoenix Bridge Company (with seven panels instead of eight) is shown in 
Figure 7-9.

The dead load can be estimated from several sources, including the tables of bridge 
dead loads published by John Alexander Low Waddell (1894), or using the formulas for 
bridge dead load published by Frank Oliver Dufour (1909). According to Waddell, Table I, 
a 180-ft span Class A Pratt Truss bridge with 20-ft roadway has a weight of 957 lb/ft, which 
is here rounded to 500 lbs/ft/truss.

Span: 179 ft − 8 in.
Width: 21 ft − 8 in. + 25 ft − 0 in. sidewalks
Panel length: 22 ft − 5½ in.
Height: 26 ft − 0 in.
Loading: Weight: 500 lbs/ft/truss

Rolling load: 60 PSF (from Album of Designs (p. 19) for bridge > 120 ft)
Sidewalk load: 60 PSF (from Album of Designs)

Panel load: Dead: 5.61 tons/truss
Live: 10.7 tons/truss
Total: 16.3 tons/truss
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Figure 7-7. Phoenix Bridge Company eight-panel Pratt truss.
Source: J. B. Lipincott (1988).

Because the bar forces depend only on the number of panels, with the p/h and the 
l/h ratios as variables, it is possible to develop a generic table of the bar forces. Waddell, 
among others, published tables of forces for single-intersection and double-intersection 
Pratt trusses. To find the maximum force in a bar of a truss of a given type, it is nec-
essary to correct a tabulated value for the panel length/height (p/h) ratio of the truss, 
then multiply by the panel length and load. An example of the application of Waddell’s 
(1894) table (shown in Figure 7-10) for the truss in Figure 7-8 is shown following. In 
this truss tan θ = panel length/height (p/h) = 0.864, and sec θ = brace length/panel 
height (l/h) = 1.32.

In this table (Figure 7-10), the member in the bottom chord adjacent to mid-span is 
numbered Bottom Chord Member 4 and has an index force of 7-1/2 × (dead load + live 
load) = 7.5 (16.3 tons) = 122 tons, which, when multiplied by the panel length/height ratio 
of 0.864 = 106 tons. For web members, it is necessary to use a different factor for dead and 
live loads. For instance, the web diagonal in the third panel is labeled “diagonal 2” and has 
index stresses of 15/8 live load and 1-1/2 dead load. The force in the brace is then equal to 
10.7 (15/8) + 5.61 (1.5) = 28.5 tons. The maximum force in the brace is the index stress 
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Figure 7-8. Bar forces in eight-panel Pratt truss determined by the indexing method; to determine 
actual chord forces, multiply indices by p/h (panel length/height) ratio 0.863.

multiplied by the brace length/panel length ratio, thus 37.6 tons. In Box 7-1 is described  
the full application of the indexing method for the determination of bar forces in a single 
intersection and a double intersection Pratt truss. The panel count numbers written below 
the panel points in the lower part of Figure 7-8 are used in the boxed discussion for the 
calculation of forces in the web members

These numbers may also be used in a different way for the determination of forces in 
the bars of a truss. Adapted to a parallel chord truss, it is possible to use the subscripted 
panel counts to determine the force in the chords. For a load per panel P and a panel length 
p, the moment about any of the panel points is equal to half of the product of the upper 
and the lower index multiplied by Pp. Then the mid-span moment in the Phoenix truss in 
Figure 7-8 is

 M = × × =1 2 4 4 16 3 22 46 2930/ tons ft ton-ft( ) . .  

Then the fully loaded force in the top chord is this moment divided by the truss height

 F = ÷ =2930 26 113ton-ft ft tons  
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Box 7-1
Refer to Figure 7-8 for the results of this calculation. The p/h ratio of horizontal to verti-
cal force components is established by the slope of the struts and ties: 22′-5 1/2″ hori-
zontal to 26′ vertical, or 0.863 horizontal to 1 vertical. The l/h ratio of diagonal force 
in a panel to vertical force is 1.32. Maximum top and bottom chord forces are determined 
using full dead and live load, which are expressed as their vertical components, based on 
the total dead + live panel load of 16.3 tons. Because this truss has an even number of 
panels, the panel load is divided in half at the axis of symmetry at mid-span to give 8.15 
tons for the center panel. The vertical component of strut and tie forces accumulates 
panel by panel toward the support. The horizontal force in the chords is first expressed 
as a sum of vertical panel component forces.

Panel 1 has a horizontal component of

 57 1 0 863 49 3. . .× =  

The top chord force in Panel 2 is

 ( . . ) . .57 1 40 8 0 863 84 5+ × = tons  

In Panel 3, the top chord force is

 ( . . . ) .57 1 40 8 24 5 0 863 106+ + × = tons  

Finally, the top chord force in Panel 4 is

 ( . . . . ) .57 1 40 8 24 5 8 15 0 863 113+ + + × = tons  

The bottom chord force in Panel 1 and 2 is 49.3 tons, in Panel 3 is 84.5 tons, and in 
Panel 4 is 106 tons. The forces are left in index (vertical component) form on the diagram 
in Figure 7-8 to allow their direct addition on the diagram. The eventual solution of the 
forces involves multiplying all of the indices by a fixed number p/h and l/h ratio. This 
final conversion can be completed with one setting on a slide rule.

The maximum force in the ties and struts is established by placing the live load in 
all the panels up to the panel in which the tie and strut in question are located, whereas 
the dead load must remain on every panel. The procedure begins by numbering each of 
the panel points 1 through 7 from left to right and from right to left, as shown in the 
lower figure in Figure 7-8. For instance, the determination of the force in the diagonal 
tie in Panel 2 and the related vertical strut between Panel 2 and 3 are described. The 
dead load effect is found by summing the bottom numbers under the panel points to the 
right and subtracting the sum of the top numbers to the left, thus

 6 5 4 3 2 1 1 20+ + + + + − =  

This number, divided by the number of panels and multiplied by the panel dead 
load, gives the vertical component of the strut/tie force due to dead load (14.0 tons). The 
live load effect is found by summing the bottom numbers only (6 + 5 + 4 + 3 + 2 + 1), 
giving 21/8 × 10.7 = 28.1 tons. Dead + live load is 38.1 tons, the index written in this 
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panel. The vertical component is equal to the strut compressive force and, multiplied by 
the ratio 1.32, gives the tie force.

The vertical component of the force in the counter in Panel 4 is found in the same 
way, by loading panels 1, 2, and 3 to the left of the counter, thus

 dead load [ ( )] . .1 2 3 4 3 2 1 8 5 61 2 80+ + − + + + ÷ × = −

 live load 1 2 3 8 10 3 7 72+ +( ) ÷ × =. .

 force in counter = − × =( . . ) . .7 7 2 8 1 32 6 5  

The vertical component of the force in a counter in Panel 3 is

 dead load [ ( )] . .1 2 5 4 3 2 1 8 5 61 8 41+ − + + + + ÷ × = −  

 live load 1 2 8 10 3 3 87+( ) ÷ × =. .  

as the dead load effect in Panel 3 is greater than the live load effect, no counter is required. 
A check of the table in Figure 7-10 shows that the indices in this table are the same as 
those determined here.

This force corresponds to a panel shear of 130 tons as shown in Figure 7-8. To find, 
say, the bottom chord force in the third panel,

 M = × × ÷ =1 2 2 6 16 3 22 46 26 84/ tons ft ft tons( ) . .  

corresponding to a panel shear of 97.2 tons. Finding forces in the web members requires 
either dividing into dead load and live load forces, or adding a correction force for the 
missing live loads at some of the panels. The former procedure is illustrated in Box 7-1.

For longer trusses, it generally was desired to maintain an angle of approximately 45 
degrees for the braces, but the greater depth of the truss resulted in excessive spans for the 
floor system. There were a number of remedies for this condition, but the most widespread 
was the use of a double system of web diagonals, such as shown in Figures 7-11 and 7-12. 
This system could also take the form of a double intersection truss, or as a truss with sub-
divided panels (both shown in the boxed material) or in a number of other truss forms, such 
as the Post truss, the Baltimore truss, or the triangulated Warren truss shown in Figure 7-11. 
A more complete discussion of index analysis for these truss forms is also given in  
Swain (1927).

A truss with a double system, such as a Whipple truss (or double-intersection Pratt 
truss, Figure 7-12) is analyzed as two separate systems. The systems can be represented as 
solid lines and dashed lines. For instance, for a 16-panel Whipple truss with dead loads of 
10,000 at each upper chord panel point and 22,000 at each lower chord, the two systems 
have the indices shown in Figure 7-12 for the web system.

The index force on the inclined end post, that is, the vertical component of the force 
is 112 (solid system) + 96 (dashed system) + 22 (bottom chord panel loading) + 10 (top 
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chord panel loading) = 240 kips. The actual force in the end post is this force times the end 
post length/panel length.

The remainder of the top chord force can be found by adding in the horizontal force-
producing components of the dashed system and solid system loads. The top chord index 
force in the first panel is 240 + 112 + 2 × 96 kips = 544 kips, so that the force in the top 
chord in this panel is 566 kips × p/h, where p is the panel length and h is the height of the 
truss. The top chord force in the middle panel is 566 kips + 2(91 + 64 + 59 + 32 + 27) = 
1,112 kips. If the panel aspect ratio is p/h = 0.5, then the actual force in the top chord is 
534,000. Bottom chord forces may be found similarly and are given below the figure.

Live load forces in the web system are then managed using the subscripted indices used 
to count the panels from each side. To produce maximum live load force, the panels are 
loaded up to the panel under consideration. For instance, for the double-intersection Pratt 
truss shown, given a panel live load of 40 kips, the maximum live load force in the fifth 
panel is the sum of the lower indices in the panels to the right in the dashed system, that is 
(11 + 9 + 7 + 5 + 3 + 1)/16 × the panel live load. The index force is 36/16 × 40 t = 90 kips. 

Figure 7-9. Example of eight-panel Pratt truss road bridge, Waterford, Loudon County, VA (HAER 
VA,20-CLARK.V,1–5), constructed in 1889.
Source: Photograph by James DuSel.
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The live load force in the diagonal is then 90 kips 2, and the live load force in the post 
supporting the top of this diagonal is 90 kips. Alternatively, the web system forces may be 
computed using the full live load, and the sum of the upper indices to the left of the fifth 
panel may be computed, giving the increase due to the removal of the live load forces from 
the panel points to the left. The application of the full live load to the dashed system panel 
points gives a panel index of 80 kips. The increase in index force due to the removal of live 
load from the first five panels (dashed system only) is (1 + 3)/16 × 40 tons = 10 kips. So the 
total index force in the fifth panel due to live load is again computed as 90 kips.

Live loads due to “locomotive excess” are also reckoned for the chords and for the 
web system. The locomotive excess is the amount by which the weight of the locomotive 
drivers exceeds the distributed train load. It is calculated in an empirical way as the simple 
difference between the weight of the drivers of one or two locomotives and the following 
distributed train load. The form of the locomotive excess is one or two concentrated loads 

Figure 7-10. Table showing calculation of indices for single intersection Pratt trusses.
Source: Waddell (1894).
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Figure 7-11. Reduced panel length truss forms.
Source: Swain (1927).

Baltimore Truss

Subdivided Warren Truss

Post Truss

at a spacing of 10 to 30 ft. More precise loading conditions were generally handled using 
Cooper’s loading or some other train loading. The handling of locomotive excess loading is 
described thoroughly in Swain (1896, 1927).

In addition to the described procedure, bar forces in a double-intersection Pratt truss 
(with 15 or fewer panels) could be determined by consulting a table, such as the one shown 



 analysis of braced girders and trusses 93

in Figure 7-13. Each of the bars in the truss is shown in terms of the number of panel loads 
carried by the bar, whereas the actual force in the bar can be determined by multiplying by 
the ratio p/h or l/h, as appropriate. Indexing can be extended to many other truss forms, 
including triple and quadruple intersection trusses, Baltimore trusses, Warren trusses, Warren 
trusses with secondary system, Bollman trusses, Fink trusses, or others. The combination of 
published tables and the facility with which this method can be extended to trusses not 
included in the range of published tables make the indexing method a robust procedure for 
the analysis and design of parallel chord road and rail bridge trusses.

A similar principle may be applied to building trusses in common configurations. The 
records of the Berlin Iron Bridge Company include a notebook of standard designs for 
Polonceau or Fink and fan trusses with spans from 30 to 100 ft. These configurations, which 
are widely used in industrial construction, are properly termed “Polonceau” trusses, after 
their original author Camille Polonceau (Holzer 2010). However, due to the resemblance of 
the load paths between this truss and the Fink truss, described previously, this truss form is 
usually referred to as a “Fink” truss in the late nineteenth century literature. The designs 
for the 16-panel trusses show evidence of using similar principles to note quickly the forces 
in the members due to a uniformly distributed load. The task of analyzing these trusses is 
simplified by standardizing the number of panels (a Fink truss has 4, 8, 16, or 32 panels) 
and by maintaining a 6:12 roof pitch in all of the examples. In the example of the 90-ft 
span truss shown in Figure 7-14, with 16 panels of 5.625 ft each, the panel load of 1.26 
tons can be resolved into a component parallel to the top chord (0.56 tons) and perpendicu-
lar to the top chord (1.12 tons). The bar force of 1.12 tons is first noted on all of the odd 
numbered panels, where the purlin load is the only load acting on the truss bars. This force 
can be resolved into a force along the adjacent web members and recognized as equal in 
magnitude to the panel load, so the force in each of these elements is noted as 1.26 tons. 
The force in the web members incident at even numbered panels, is the sum of one panel 
load plus two half-panel loads transmitted from the adjacent panels, hence 2.25, whereas 
the force in the long web member is double this: 4.50. All of the bars perpendicular to the 
top chord are in the same geometric relationship, so the forces in these bars are 1.12, 2.25, 
or 4.50. The remainder of the web member forces can be completed on similar principles. 
The bottom chord forces can be found by finding the horizontal component of the reaction 
and subtracting 1.26 tons at the first joint, 2.52 at the second, and 5.04 at the third.  
The top chord force can be found by determining the force of 21.15 at the support and 
subtracting 0.56 tons at each successive panel point.

Figure 7-12. Indexing analysis of a double intersection Pratt (or Whipple) Truss.
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Figure 7-13. Tabulated index stresses for a double intersection Pratt truss.
Source: Waddell (1894).
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Analysis of Curved Chord Bridges

The principal authors describing the methods of analysis for curved chord bridges are Swain 
(1896) and Du Bois (1888). Du Bois’s methods rely in general on the method of sections 
(also known as method of moments or Ritter’s method) for the determination of the 
maximum forces in the bars of the truss. Although Swain uses the method of sections, he 
also determines algebraically some surprisingly simple procedures for the determination of 
member forces, at least for various forms of parabolic trusses. Finally, it is possible to show 
to what extent some of the procedures were used in practice by examination of the design 
standards of the Berlin Iron Bridge Company, which was a leading late nineteenth-century 
manufacturer of double parabolic, or lenticular, trusses.

According to Du Bois (4th ed., 1888, p. 123), the readiest method of solution for such 
bridges is the graphical method, at least for the fully loaded truss, whereas the readiest 
analytical method is the method of moments. Although Du Bois proposes using the graphical 
method as a check on analytical methods for highway and rail bridges with their variable 
loading, he and other authors consider the graphical method too cumbersome for everyday 
use. He makes the calculation of the height of the truss and the lever arms to use for the 
method of moments an initial stage of the calculation of the forces in the truss. The forces 
in the braces, that is, the web members, have to be calculated separately under individual 
sets of loads. Thus, the calculation of curved chord trusses is always a methodical procedure: 
find the geometry and lever arms for use in force calculation, find chord forces under full 
loading, and find brace and post forces under partial loading, all by the method of moments.

Figure 7-14. Analysis of 90-ft span Polonceau or Fink truss, Berlin Iron Bridge Company.
Source: Reproduced by permission from The Huntington Library, San Marino, CA.
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Swain (1896) uses similar arguments to develop the analysis of parabolic and other 
forms of curved chord truss. Beginning with a parabolic top chord and a flat bottom chord, 
Swain investigates the global moment on the truss. His initial discussion on the topic of 
curved chord trusses uses the method of moments for the determination of forces in the 
inclined ties, in the posts, and in the top and bottom chord (pp. 46–50), similarly to Du 
Bois. Following this, Swain enters into a specialized discussion of trusses with a parabolic 
chord. The basis of this discussion is the fundamental relationship between the forces in a 
truss with parabolic chords and the bending moments to which the truss is subjected. For 
a parabolic truss with a level bottom chord, for instance, the forces under full loading are 
particularly simple. Because the parabola is the shape of the bending moment diagram for 
a fully loaded truss, the horizontal component of the force in the top chord is constant; the 
force in the bottom chord is constant; the truss acts fundamentally as a tied arch, with 0 
force in the diagonals; and the vertical web members act simply as hangers. Swain extends 
this discussion to trusses with a parabolic top and bottom chord in any form, including 
lenticular trusses and sickle-shaped trusses. On this basis, the horizontal force under full 
loading in a parabolic truss of any kind can be found a constant:

 H wl hc= 2 8/  

where 

H is the horizontal component of the force in any top or bottom chord bar;
w is the uniformly distributed live load (Swain uses p, which is easily confused with the 

panel length);
hc is the height of the truss at the center; and
l is the span of the truss.

This can be put in a form more consistent with the later discussion, in which the panel 
length is factored out of most of the equations 

where
H wa am hcis /( ) ,2 8
a is the length of a panel (wa = the panel load P), and
m is the total number of panels (am = the span):

 H Pal hc= /8  

The analysis of the web members yields a more surprising result. The web, as described, 
is neutral under full loading of the truss, with the verticals acting as hangers. To find the 
maximum force in a web diagonal, it is necessary to place the live load only on each of the 
panel points between the diagonal and the abutment in the manner shown in Figure 7-15, 
where the loading is place to create the maximum force in the diagonal in the third panel 
from the left (shown bold). For this loading, the force can be obtained by a general method 
of sections. The result in Figure 7-16 shows that the horizontal component of the maximum 
diagonal force is equal to the differences in the coefficients M1/h1 and M2/h2 on either end 
of the diagonal. For this form of variable loading, the horizontal component of the force in 
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Figure 7-15. Live load placement for maximum stress in a diagonal.

Figure 7-16. Details of stress calculations in a parabolic bowstring truss.

a web diagonal in a parabolic truss is constant. In the end, the analysis of a parabolic truss 
requires the calculation of two quantities: the horizontal component of the chord force and 
the horizontal component of the force in the web diagonals. For this truss, or any truss, the 
horizontal component of force in the bottom chord is equal to M1/h1, the horizontal force 
in the top chord is M2/h2, and the horizontal component of the force in the diagonal is the 
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difference between the two. In the truss illustrated in Figure 7-16, the top chord horizontal 
component, say, in Panel 3 is

 
M h Pa h

Pa h a P
2 2 4

4

/ / /

/ panel length pa

= × ÷ ×[ ]
= = =

1 2 3 5 3 5 16

8

( ) ( )

( ) ( ; nnel load)
 

Whereas the bottom chord horizontal component in the same panel is

 M h Pa h Pa h1 1 4 4/ / / /= × ÷ × =1 2 2 6 2 6 16 8( ) ( ) ( )  

For the diagonal in Panel 3 under the loading causing maximum force,

 M h P a h Pa h1 1 4 4/ / / /= + + + + × ÷ ×[ ] =( )( ) ( ) .1 8 5 4 3 2 1 2 6 2 16 5 0  

 M h P a h Pa h2 2 4 4/ / / /= + + + + × ÷ ×[ ] =( )( ) ( ) .1 8 5 4 3 2 1 3 5 3 16 6 0  

For the diagonal in Panel 4 under the loading causing maximum force,

 M h P a h Pa h1 1 4 4/ / / /= + + + × ÷ ×[ ] =( )( ) ( ) .1 8 4 3 2 1 3 5 3 16 4 0  

 M h P a h Pa h2 2 4 4/ / / /= + + + × ÷ ×[ ] =( )( ) ( ) .1 8 4 3 2 1 4 4 4 16 5 0  

so the horizontal component of force in the diagonal can be seen to be equal between the 
two panels or more generally among all the panels. A complete calculation of the bar forces 
in a parabolic truss is given in Box 7-2.

A contemporary example (Figure 7-17) shows the calculations from the Berlin Iron 
Bridge Company from about 1894 on a parabolic lenticular truss bridge, 10 panels in length, 
with a total span of 150 ft and a center height of 22 ft. Panel loads are 7.5 tons live and 
3.0 tons dead. The depth of the truss is 27 ft at the center. The calculated horizontal force 
in the chords is 72.91 tons, resulting in a total maximum chord force of 76.64 in the panel 
adjacent to the support. This can be compared to the force of 76.50 shown on the drawing. 
For this truss, it is not necessary to calculate the force in the remaining chord elements, 
because it is not proposed to change the chord section along its length. The force in the 
center vertical, calculated by the aforementioned formula is +1.50 dead, 7.5 live (one full 
panel live load), −6.00 total, whereas the horizontal component of the maximum force in a 

Box 7-2
Swain (1927) calculates all of the bar forces in a parabolic truss with horizontal bottom 
chord, and in a lenticular truss, with parabolic bottom chord, using the integers repre-
senting panel numbers and the parameters of the center height of the truss hc, the panel 
length a, the distributed live load w, and the distributed dead load g.

Swain begins by expressing the height of the bridge at any point x:

 h h x l x lc= −( )( )4 1/ /  
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As shown in Figure B7-2-1, we want to find the maximum force in the diagonal n1, 
or at x = n1a (shown in bold). So there are m − n1 loaded panels, where m is the total 
number of panels in the bridge. Then, the left-hand reaction RL can be found to be

 R wa m n
m n

m
L = −( ) − +

1
1 1

2
( )

 

from which

 M wa n m n
m n

m
1

2
1 1

1 1
2

= −( ) − +( )
 

 M wa n m n
m n

m
2

2
1 1

11
1

2
= −( ) −

− +





( )
( )

 

Now, by the formula given for the height of the truss at a point
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M1/h1 and M2/h2, per the previous discussion, can be used to compute the horizontal 
component of the stress in the diagonal:
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Figure B7-2-1. Coordinate system for calculation of stresses in the web of a parabolic truss.

 



100 engineering iron and stone

As a result, the horizontal component of stress in the diagonal M1/h1 − M2/h2 is 
found to be equal to wa2m/8hc, that is, independent of n, which is constant throughout 
the truss.

For a parabolic lenticular truss (illustrated in Figure B7-2-2), the forces in the top 
and bottom chord, and in the diagonals, can be found from these equations without 
modification. Although the dead load force in a vertical is simply half of the panel load, 
the maximum live load force in a vertical is found by taking a section, such as the one 
shown in Figure B7-2-2, for the loading shown. As a result, the total compressive live 
load force is equal to the reaction less the vertical component of the force in the top chord 
bar to the left, less the vertical component of the bottom chord force in the bar to the 
right. Swain (1927) shows that this force again reduces to a particularly simple formula.

Starting from the same expression for the RL as used in the discussion, he determines 
the horizontal force component in the upper or lower chord in the section under inves-
tigation as M1/h1, as

 HC wa
m n m

hc

=
− +( )2 1 1

8
 

Based on the geometry of the upper chord, the vertical component of the upper 
chord (to the left) can be found to be

 VCU
wa m n m n

m
=

− +( ) − +( )1 11 2 1
4

 

Similarly, the vertical component in the lower chord (to the right) is

 VCL
wa m n m n

m
=

− +( ) − −( )1 11 2 1
4

 

Figure B7-2-2. Section for calculation of post force in a lenticular truss.
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Figure 7-17. Calculations of forces in the bars of a lenticular truss, Berlin Iron Bridge Company.
Source: Reproduced by permission from The Huntington Library, San Marino, CA.

Finally, subtracting VCU and VCL from Rl gives the force V in the vertical

 V wan
m n

m
=

− −( )
1

1 1
2

 

The remaining calculations, which involve finding vertical components correspond-
ing to the horizontal components in the chords and in the diagonals, are facilitated by 
developing similar formulas for the ratio of the vertical component to the horizontal 
component, based on the geometry of the truss. Such formulas do not appear in Swain’s 
work, but they are presented here.

For the chord, for a truss with an even number of panels the ratio of vertical/hori-
zontal component for panel n1 is

 
VC
HC

m n
h

am
c= − +( )2 1

4
1 2

 

whereas this ratio for the web diagonals is
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h

am
c= −( ) −( ) + −[ ]2 1 1

2
1 1 1 2

( )  



102 engineering iron and stone

Table 7-1. Calculation of Bar Forces in a Lenticular Truss

Panel
Diagonal 
HC

Diagonal 
VC/HC

Diagonal Resultant

Vertical 
Dead

Vertical 
Live

Vertical Total

Calculated
From 
Drawing Calculated

From 
Drawing

1 5.21 +1.50 −3.00 −1.50 1.50

2 5.21 0.900 7.00 7.20 +1.50 −5.25 −3.75 3.70

3 5.21 1.58 8.68 8.70 +1.50 −6.75 −5.25 5.30

4 5.21 1.62 9.92 10.00 +1.50 −7.50 −6.00 6.00

5 5.21 1.76 10.56 10.50 +1.50 −7.50 −6.00 6.00

diagonal is 5.21 tons, resulting, for instance, in a total force of 10.56 tons. A full calculation 
of the forces in the web members is shown in Table 7-1. All values are tabulated in tons.

Various analytical methods were available to late nineteenth-century bridge designers 
for the calculation of forces in bridge trusses under variable live loading. These methods 
tended to be specialized to one form of truss or another. The indexing method generally is 
suitable for parallel chord trusses; although complications arise in more intricate bridge 
forms, such as the Baltimore truss, the method is well adapted for rapid analysis of the 
single- and double-intersection Pratt, Warren, and Howe trusses. A general method, the 
method of moments, can be practiced for bridges with curved chords, and the laborious 
computations of this method can be dispensed with for trusses whose chords are parabolic. 
The most widely used analytical computation methods appear to be the indexing method 
and the direct method for calculating the forces in trusses with parabolic chords.
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Analysis of Girders:  
Beams, Plate Girders,  
and Continuous Girders

Wood, Wrought-Iron, and Cast-Iron Girders

Beams and girders, made of cast iron, plate iron, lattice work, or sawn 
wood, were in widespread use in the nineteenth century for the support 
of floors, roofs, and bridge structures. Several methods for proportion-
ing wood girders were practiced: some of the widely used empirical 
methods are covered in Chapter 3, but methods based on bending 
theory, either through the development of semiempirical rules of 
thumb, or through direct analysis, were also used and are discussed in 
this chapter. Similarly, iron plate and lattice girders were designed both 
by empirical methods and by analytical methods. Whereas the latter 
are the primary focus of this chapter, the former are also discussed, as 
the boundary between empirical and analytical design is indistinct in 
the design of this type of structure. The development of iron girder 
design generally follows a pattern from the empirical to the analytical, 
with many intermediate procedures that rely on empirical ideas. Exam-
ples of such ideas are “bending moments in an I-beam are carried by 
the flanges,” or “girder continuity doesn’t contribute to strength.” By 
the end of the nineteenth century, design of girders was primarily 
analytical. The application of continuous girders depended on the 
production of girders that were long enough for multiple spans and 
on the development of analytical procedures that were equal to the 
task of calculating bending moments in these girders.

Strongly held opinions about the merits of continuity in flexural 
members, especially in long-span steel bridges, were discussed in print. 
The debate between Mansfield Merriman (1876) and Charles Bender 

8
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(1876) is particularly revealing. The proponents of continuity focused on the potential mate-
rial saving, while opponents argued that such structures were sensitive to settlement and 
could not be calculated effectively. However, some interesting means of designing continuous 
girders were widely presented. These are also discussed in this chapter.

Prior to the second half of the nineteenth century, simple rules prevailed, such as those 
used in London building regulations after the Great Fire of 1666, and those presented in 
builder’s manuals. These rules focus on limiting the span lengths of joists and girders 
(Yeomans 1987). Thomas Tredgold (1820) and Peter Nicholson (1826) present formulas for 
the size of wood members, in part based on the experiments of Peter Barlow. Barlow’s results 
were presented in the form of a central breaking load W = 4ad2S/L, where S is a constant 
determined by experiment, d is the depth of the beam, L is the span length, and a is the 
width of the beam. These rules, semiempirical in nature, simplified the analysis of wood 
beams to the point where the rules could be applied by nontechnically trained mechanics. 
Such recipes also served in cases where the loading is complex, such as a stair trimmer. In 
cases of multiple loads, Frank Kidder (1886) recommends designing two or more beams of 
equal depth, assigning the various loads to different beams, and combining the width of the 
beams. Rule making is used to cover other structures: beams in general, trussed beams, and 
others by Kidder. Further information on the analysis and design of wood beams is available 
in Chapter 3.

For both cast-iron and wrought-iron girders, forms of analysis ranging from empirical 
to rational also were employed. Empirical design was certainly applied to the determination 
of appropriate span/depth ratios for iron girders. For the stress analysis of the girders them-
selves, semiempirical rules similar to those used in wood girder design also were widely 
circulated for iron girder design. There seem to be occasional transitional types of analysis 
between a truss and a girder: plate bracing is considered a form of bracing in a girder by 
Bow (1874, pp. 29–30), who deals with the subject qualitatively and by comparison to a 
lattice girder. Otherwise, emerging ideas about flexural analysis were applied to the analysis 
of these structures—some methods ignoring the web contribution to moment resistance, 
others taking account of the web for flexure. The design of the web seems to be particularly 
full of uncertainties, and various methods for proportioning the web were advanced.

Simply supported girders were by far the most common configuration for bridges and 
buildings in the late nineteenth century. Continuous girders were used in the form of trusses 
for which the chords are continuous over the supports. Few instances of continuous girders 
are available, especially in fixed-span bridges. However, the use of continuity in some form 
was impossible to avoid in movable bridges. In his course notes (1896, p. 121), Swain asserts, 
“Continuous girders are never built in this country except for swing bridges …. In Europe, 
however, continuous girders are often preferred, and French engineers rarely build girders 
of over one span without making them continuous.” Contentious discussions arose in the 
literature over the merits and demerits of continuous span fixed-span bridges (for example, 
the exchange between Merriman [1876] and Bender [1876]), but ultimately the profession 
in the United States appears to have decided in favor of multiple simple span girders for 
these bridges. The cantilever girder, a reasonable alternative to a statically indeterminate 
multispan girder, has often been used in place of a continuous span girder in construction. 
An example of a two-span continuous girder bridge from 1889, seen just prior to its demoli-
tion, has been documented by Historic American Engineering Record (HAER) (Figure 8-1). 
Similarly, an 1890 swing bridge documented by HAER is shown in Figure 8-2. Although, 
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according to Kidder (1886, p. 327), “girders resting on three or more supports are of quite 
frequent occurrence in building construction,” it is difficult to find examples of intentional 
use of continuous girders in building applications, and the topic of continuity in building 
structures is left to the discussions of portal frames in Chapters 10 and 15.

Simply Supported Iron Girders

Simply supported girders generally fell into three classes: cast-iron beams, plate girders, and 
lattice girders. Lattice girders, however, were analyzed by similar methods to truss analysis, 
and the discussion of the analysis of trussed girders is found in Chapter 7.

Other authors have their own formulas for computing the dead load of bridges. Isami 
Hiroi (1893) presents similar formulas for dead loads of rail bridges, and John Alexander 
Low Waddell (1894) presents extensive tables for the weight of highway bridges. Girders 
were widely used, and there is a need for the rapid determination of stresses in these  

Figure 8-1. Two-span Memorial Ave. Bridge over Lycoming Creek, Williamsport, PA (demolished), 
built 1889 (HAER PA,41-WILPO,3–9).
Source: Photograph by Lawrence Mohar.
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elements, whether for rail bridges, road bridges, or buildings. For girders used as floor beams 
or other repeated elements, the stresses are determined from bending moments calculated 
for uniformly distributed loads or simple concentrated loads, as appropriate. These beams 
rarely exceed 20 or 25 ft in span and are made with plate or latticed webs. When the floor 
beams repeated sufficiently, they were often tapered to reduce overall iron or steel weight.

Various ideas of proportional design were evident in the nineteenth century. As an 
example of these proportioning rules, Fleeming Jenkin (1873, p. 297) prefers wrought iron 
for spans of more than 30 ft. Plate girders have spans to 100 ft, lattice girders beyond. 
According to Jenkin, the depth/span ratio ranges from 1/8 to 1/15 of span. Milo Ketchum 
(1903, p. 221) has a brief discussion of the design of plate girders. According to him, the 
flanges are designed for the entire moment, so that the flange force is equal to the bending 
moment divided by girder depth. Ketchum further states that the web generally can account 
for one-sixth to one-eighth of the bending moment, based on the amount of perforation. 
Ketchum’s statement about the neglect of web contribution to moment resistance can be 
verified from several other sources. Kidder (1886, p. 347) also presents a rule for the design 

Figure 8-2. Bridgeport Swing Span Bridge, Bridgeport, AL (demolished), built 1890 (HAER 
ALA,36-BRIPO.V,1-).
Source: Photograph by C. N. Beasley.
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of girder flanges, similar to the Ketchum’s rule as described, in which the flanges alone are 
considered to provide bending resistance, and the contribution of the web is neglected. It is 
reduced to a rule, similar to the rules previously examined. According to this rule, the safe 
load in tons, taking the allowable stress in the iron as 5 tons/in.2 (which includes an allow-
ance for rivet holes) is equal to

 
10

3
× ×

×
area of one flange height of web in inches

span in feet
 

Further assumptions in the development of this formula are that the web does not 
contribute to bending resistance and that the difference in stress between the extreme  
fiber of the flange and the location of the flange centroid is offset by neglecting the contribu-
tion of the web to bending resistance. This formula can be inverted to find a rule for the 
sizing of the flange, so the required flange area, in square inches, is

 
3
10
× ×

×
the total load in tons span in feet

the height of the web in inchess
 

The application of these textbook and manual methods can be verified from the girder 
designs for bridges used as office standards by the Berlin Iron Bridge Company. In this book 
a series of standard designs for steel girder bridges are presented for various loading and 
support conditions. The bending analysis undertaken for these girders uses the simplification 
of dividing the bending moment by the height of the web plate to determine the flange force, 
and the stress in the flange (which consists of double angles riveted to the web plate) is 
apparently found by dividing the flange force by the net area (less rivet holes). This procedure 
is not followed by Swain (1896), who considers the computation of the web’s resistance to 
bending along with the flange (p. 7, for instance).

In working with buildings, Kidder (1886, pp. 280–303) provides rules of thumb and 
load tables for the rolled members available at the time. Sizes of rolled beams up to 15 in. 
deep appear to be suitable for spans up to 25 ft or more. For larger spans, it is probable 
that trusses or latticed girders would be used in preference to filled girders in building design. 
The load tables are presented in the form of safe uniform loads per foot of span, and the 
tabular value needs to be simply divided by the square of the span for a uniformly distributed 
load and other coefficients applied for other loading conditions, such as halving the capacity 
for a concentrated load at mid-span.

Bindon Blood Stoney (1873) recommends using plate iron for the higher shear zones 
near the supports. William Humber (1869) says that longitudinal strains taken by flange, 
shear by web (p. 26). An interesting theory of strains in webs of girders is advanced in 
Stoney’s “Chapter Concluding Remarks.” Natural strain trajectories are modified by resolu-
tion into the actual direction of the members of a latticed web structure. Francis Campin 
(1868, pp. 26–28) derives the expression (wx/2D)(L − x) for the flange force in a uniformly 
loaded girder at any point. In this expression w is the uniformly distributed load (lbs/ft), x 
is the distance from the left support in feet, D is the depth of the girder in feet, and L is the 
span of the girder in feet. Humber (1869, pp. 26–27) suggests using the web for shear only 
and calculating the stress in the flange directly by dividing the bending moment by the dis-
tance between the flanges, either algebraically or graphically. Where the flanges are curved, 
Campin adds a correction of the secant of the angle of the tangent to the curve, which is 
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more easily calculated graphically. Jenkin (1873, p. 294) proportions wrought-iron girder 
flanges similarly, allocating more material to the top flange due to the lesser strength in 
compression. He uses ultimate strength values of 25 tons/in.2 in tension and 20 tons/in.2 
compression—with a safety factor of 4; these become the working stresses used by a number 
of authors, including Waddell (1894, p. 12) and Berlin Iron Bridge Company.

Deflections of beams also are treated formally by various authors but are empirically 
treated by Kidder. According to Kidder (1886, p. 326), for rolled-iron beams, the deflection 
in inches can be approximately calculated by dividing the square of the span in feet by 70 
times the depth of the beam (in inches).

According to Stoney (1873, article 431), the shearing stress in the web is calculated as 
a simple quotient of the shear force and the web area. In article 432, he goes on to explain 
that the combination of normal and shear forces in the web of plate girder bridges creates 
uncertainty over the direction of the stress (strains). Hiroi derives a conventional form of 
equation for shearing stress but proposes designing girder webs to carry the entire shear as 
an average quantity (1893, p. 24). He also describes the design of stiffeners as the process 
of designing a conventional column inclined at 45 degrees by Gordon’s formula (see Chapter 
9), using a numerator of 8,000 lb/in.2 and a modifier of the height/thickness ratio of 3,000. 
Hiroi presents the results of a general analysis in tabular form, giving the allowable web 
shearing stress for various ratios of height of girder web/thickness (see Figure 8-3).

From Charles Haslett and Charles Hackley (1859, p. 211) a rectangular cast-iron bar 
will bear a central weight in pounds equal to the constant 1,490 times the width (inches) 
times the depth (inches) squared divided by the span in feet. Humber (1869) says that the 
best dimensions of a cast-iron beam have a bottom flange area of six times the top flange 
area (due to the difference between compressive and tensile capacity). Thus, the total dis-
tributed breaking weight is equal to the area of the bottom flange in inches times the depth 
of the beam in inches, divided by the span in feet. This can be compared to Fleeming Jenkin’s 
(1873, p. 294) account of Eaton Hodgkinson’s rule: M = 16,500 times the area of the tension 
flange (inches squared) times the depth (inches) for which the implied maximum stress equals 

Figure 8-3. Hiroi’s table of allowable girder web stress.
Source: Hiroi (1893), p. 27.
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8.25 tons/in. squared (breaking, or ultimate, stress). Kidder (1886, p. 307) reiterates Hodg-
kinson’s rule for the design of cast-iron beams for buildings that the breaking load in tons 
is equal to the constant 2.166 times the area of the tension flange (inches) times the depth 
of the beam (inches) divided by the span in feet. Based on the same assumption concerning 
distribution of material to the flanges, Haslett and Hackley’s (1859) implied maximum 
(breaking) stress is then 6.4 tons/in.2, indicating a more conservative approach, or allowing 
the use of lower grades of iron.

Most of the procedures prescribed for simply supported cast-iron beams rely on empiri-
cal formulas (see Chapter 4). In the description from Haslett and Hackley, having given (on 
p. 205) the precise method of calculating bending moments (strains) on a beam, the total 
concentrated breaking load is found from basic geometry and a generic value of maximum 
tensile stress (p. 212). This rule is said to apply to cast-iron beams with the bottom flange 
area equal to six times the top flange area. “Multiply the sectional area of the bottom flange 
in square inches by the depth of the beam in inches, and divide the product by the distance 
between the supports, measured in feet, then 2.14 times the quotient will give the breaking 
weight in tons.” The authors also refer to previous experiments in which the tensile strength 
of cast iron is found to be 1/36 the compressive strength.

Floor planks, spanning across rafters or purlins, are an instance of continuous beams, 
although they are generally treated as simply supported for simplicity. For mill building 
floors, various arched and reinforced floor types are described in Ketchum (1903,  
pp. 249–250). These include arched floors of various forms, concrete floors with expanded 
metal reinforcement, and patent floors, such as the Roebling Fireproof floor system and the 
Buckeye Fireproof Floor. For arched floors, Ketchum recommends a span/rise ratio of eight 
or less. His formula for the thrust exerted by an arch floor is

 T WL R= 1 5 2. /  

where 

T is the calculated horizontal thrust in lb/lineal ft,
W is the floor load in lb/ft2,
L is the span in ft, and
R is the rise in in.

Wood plank floor spans are sized based on a table of Ketchum’s (1907, p. 297), repro-
duced as Table 8-1. It is possible to reconstruct the calculations that produced this table, 
using a bending moment of wL2/8 and a working stress of 400 lbs/in.2 for spruce or white 
pine, and of 500 lbs/in.2 for yellow pine. For instance, for a 100 lbs/ft2 load and an 8-ft 
span, Ketchum recommends a thickness of 3.4 in. Using these values, the actual stress for 
this floor is approximately 400 lbs/in.2 The working stress for the remaining entries in the 
table is similar.

Continuous Girders

A relatively common industrial use of continuous girders is a multibay crane girder,  
an example of which is shown in Figure 8-4. Continuous girders were often analyzed by 
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Figure 8-4. A continuous crane girder in the Pennsylvania Railroad Juniata Locomotive Shops (1889).
Source: Photograph by Sikander Porter-Gill.

Table 8-1. Excerpt: Plank Floor Sizes (Spruce or White Pine)

Span 
in ft

Thickness, in Inches, for Various Loads per Square Foot of Planka

lb. lb. lb. lb. lb. lb. lb. lb. lb. lb. lb.

30 40 50 75 100 150 175 200 225 250 300

4 0.9 1.1 1.2 1.7 1.9 2.1 2.2 2.4 2.5 3.1 2.9

5 1.2 1.4 1.5 2.1 2.4 2.6 2.8 3.0 3.2 3.8 3.7

6 1.4 1.6 1.8 2.6 2.9 3.1 3.4 3.6 3.8 4.6 4.4

7 1.7 1.9 2.1 3.0 3.3 3.7 3.9 4.2 4.5 5.4 5.2

8 1.9 2.2 2.4 3.4 3.8 4.4 4.5 4.8 5.1 6.1 5.9

9 2.1 2.5 2.7 3.9 4.3 4.7 5.1 5.4 5.8 —

10 2.4 2.7 3.1 4.3 4.8 5.2 5.6 6.1 —

11 2.6 3.0 3.4 4.7 5.3 5.8 —

12 2.9 3.3 3.7 5.2 —

13 3.1 3.6 4.0 5.6 —

14 3.4 3.9 4.3 6.1 —

aFor yellow pine use 9/10 of the thickness.
Source: Adapted from Ketchum (1907).
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assuming or finding a point of inflection based on a set of simplifying assumptions. This is 
certainly the approach taken by Francis Webb Sheilds (1871), who recommends assuming 
a hinge at three-fourths the length of the outer span and treating the remainder of the span 
as if it were a cantilever projecting from the middle span. Humber (1869, article 29, p. 12) 
says that continuous beams can always be considered as a combination of fixed/fixed and 
fixed/pinned. The main objective of his analysis seems to be to locate the inflection point. 
These calculations are followed by some approximations for variable loading. Humber 
initially calculates fixed-end moments for a “beam of uniform strength,” which means a 
beam with a section modulus that varies as a parabola. This is a more accurate representa-
tion of many girder types (e.g., bowstring) than the simpler constant moment of inertia. 
According to Sheilds, the fixed/fixed uniformly loaded moments for such a beam are wL2/6. 
Humber’s further equations for moments in a multispan girder (article 33, pp. 14–15) must 
be considered approximate, because they use either fixed/pinned moments (at exterior piers) 
or fixed/fixed moments (at interior piers), varying the load placement to produce maximum 
negative or positive bending moment. He continues to use wL2/6 as the maximum moment 
due to movable load while taking 2/21 wL2 as the maximum support moment for the dead 
load on a multispan beam for negative moment calculations and 3/32 wL2 for positive 
moment calculations. This is certainly close to the calculated value on a four-span beam, 
but Humber considers this correct for all of the interior supports for an arbitrary number 
of piers (although an exception is made for three-span girders). Humber’s use of values  
for a beam of uniform strength where the beam undergoes moment reversals is questionable. 
However, his approximations of locations of points of inflection have value for bridge 
designers.

Jenkin (1873, p. 301) also uses the location of an inflection point and the calculation 
of moments in a statically determinate beam as a means of analyzing a two-span continuous 
girder. According to him, continuity is rarely worth the trouble, and when continuous girders 
are built they are of no more than two spans.

Hermann Haupt (1858, p. 102) says the following regarding continuous girder bridges, 
speaking primarily of wooden Howe trusses:

When a beam is laid over several supports, its strength for a given interval is much greater 
than when simply supported at the ends. The same principle is applicable to bridges, and 
when several supports occur in succession, it is of great advantage to continue the upper 
and lower chords, if the bridge is straight, across the piers. By this arrangement, the 
strength of chords of each central span in a series would be double that of the same spans 
disconnected, and the extreme spans would be stronger in the proportion of 3  
to 2.

The most widespread discussion of the analysis of multiple span bridges concerns the 
application of Clapeyron’s theorem, credited to Emile Clapeyron, also called the three-
moment equation, to the analysis of continuous girders. According to Merriman (1876), 
this is the three-moment equation in its most general form. It is applied to the arbitrary 
number of spans shown in the diagram in Figures 8-5 and 8-6.

 M l M l l M l P l k k P l k kr r r r r r r r r r r− − − + − −+ + + = − + − +1 1 1 1 1 1
2 3 2 22 2 3( ) ( ) ( kk3)  
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This expression comes from equating the slope at support r by expressing it as the 
result of forces to the left and forces to the right of the support. Based on the diagrams in 
Figure 8-6, the slope components can be found.

At the left support

 6 2 2 31
2 2 3EIt M l M l P l k k kr r r r r r r= − − + − ++ ( )  

At the right support

 6 21 1 1 1 1
2 3EIt M l M l P l k kr r r r r r r= + − + −− − − − − ( )  

Figure 8-5. Nomenclature for three-moment equation.

Figure 8-6. Conjugate beam analysis of a span in the three-moment equation.
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In these equations, which are formulated at a support numbered r, the moment M, the 
span length l, the slope t, and the load P are indexed to the support r or the span r to the 
right. The ratio k represents the proportion of the span (measured from the left) at which 
the load Pk is found. Looking, for instance, at Merriman’s span r, from support r to r + 1, 
with a load P, applied at distance kl from support r, the slope at r has three components, 
the slope due to Mr, to Mr+1, and the slope due to the applied load P. Using the conjugate 
beam diagrams in Figure 8-6 for each of these three components results in the aforemen-
tioned equations.

This equation can be viewed as a direct application of the conjugate beam method. 
The coefficients in the third part of Figure 8-6 are found from a direct calculation of the 
reactions on the conjugate beam. The bending moment at kl = P(k)(1 − k)l. The moment 
area is thus (1/2)Pl2k(1 − k). Based on the formula for the centroid of triangle, the right 
reaction of the moment area is (1/2)Pl k(1 − k)(1 + k). The slope equation for the left side 
can be obtained by substituting 1 − k for k, or by repeating this derivation for the geometry 
of the moment area. At least for single concentrated loads in the spans, the three-moment 
equation as given can be derived from the coefficients in this diagram by combining the 
moments for a single support point and eliminating 6EI between the equations.

A. Jay Du Bois (1888) reaches the same conclusions as Merriman, although his sign 
convention is different from Merriman’s. Du Bois takes downward directed loads, i.e., A 
and B, to be negative, whereas Merriman makes them positive, hence, an opposite sign 
convention. Merriman (and Du Bois) supplement the three-moment equation with a solution 
method that allows the direct determination of the moments at the supports for any single 
span loaded condition, using beam coefficients, constant for any beam configuration, that 
are computed from span and stiffness, and a pair of coefficients for the loading condition 
at the two ends of the loaded span. For dead load plus live load cases, the results of such 
an analysis must be superposed to obtain the full bending moments. This requires recourse 
to tabular computations of the support moments in a continuous girder. An application of 
this procedure is described in Box 8-1.

Kidder, in speaking about the strength and stiffness of continuous girders in building 
construction (1886, pp. 327–335), considers only the two-span and three-span cases and 
practically considers only uniformly distributed loading. He makes no use of the three-
moment equation or any of the formulas based on support moments developed and used 
by the bridge engineers of the time but begins with the calculation (by formula) of the 
support reactions and proceeds to the calculation of the support moments. Kidder concludes 
that a two-span beam is no stronger than a simply supported beam but that a three-span 
beam offers a 25% increase in strength. He does highlight the considerable gain in stiffness 
by the use of a continuous beam. His methodology in the handbook is the simple presenta-
tion of formulas, however; he has derived the formulas in a separate article.

Similar to other types of structure previously discussed, the methods used for the 
analysis of continuous beams varied from empirical formulas through devices to make the 
computation manageable, such as the assumption of hinge locations, to complex and 
detailed calculations of the forces in the girder. In most cases, the standard approach to 
continuous girder bridges appears to have been to use them only where necessary, for 
instance, in movable span structures. In building structures, approaches to analysis and 
design appear to be mostly the application of approximate methods or simplifying 
formulas.
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Box 8-1
The following example is a modification of Du Bois’s (1888) Example 3. A continuous 
bridge truss has a constant moment of inertia and five spans of 60 ft, 80 ft, 80 ft, 80 ft, 
and 60 ft. The supports are numbered 1 through 6. Dead load is 800 lbs/ft in all  
spans and live load of 1,200 lbs/ft in span 2 and 3. The method of undetermined coef-
ficients, and its application to solutions of the three-moment equation, is thoroughly 
described in Merriman (1876). The pattern for the coefficients c (representing loaded 
span effects on spans to the left of the load) and d (representing spans to the right of the 
load) is given, up to an index of 5. The calculation of the coefficients for each of the 
spans proceeds thus:

c1 = 0 d1 = 0
c2 = 1 d2 = 1
c3 = −2(l1 + l2)/l2 = −3.5 d3 = −2(l5 + l4)/l4 = −3.5
c4 = −2c3(l2 + l3)/l3 − c2(l2/l3) = 13 d4 = −2d3(l4 + l3)/l3 −d2(l4/l3) = 13
c5 = −2c4(l3 + l4)/l4 − c3(l3/l4) = −48.5 d5 = −2d4(l3 + l2)/l2 − d3(l3/l2) = −48.5

(di = ci for symmetric span configurations)

In a bridge consisting of s spans, numbered 1 through s, and s + 1 supports, num-
bered 1 through s + 1, when span r is the loaded span, it is found (Merriman 1876) that 
the moment at support n, for n < r + 1, is

 M c
Ad Bd

d l d l l
n n

s r s r

s s

= +
+ +

− + − +

−

2 1

1 2 1 22 ( )
 

and for n > r

 M d
Ac Bc

c l d l l
n s n

r r

s s s s s

= +
+ +− +

+

− − −
2

1

1 1 12 ( )
 

The coefficients ci and di are determined as shown. A and B are loading coefficients, 
both equal to wl3/4 for uniformly distributed loads and equal to the coefficients in P 
defined in Figure 8-6 for concentrated loads. In this case, for r = 1 (span 1 loaded), 
A B wL wL= = =1 4 27 2561

3
2
3/ / , M5 is calculated first, and the remaining moments are 

found easily, being proportional to M5.

 M d M wL2 5 5 2
22 619 93 568= = , / ,  

 M d M wL3 4 5 2
2702 93 568= = − / ,  

 M4 3 5 2
2189 93 568= = +d M wL/ ,  

 
M wL L L

L
5 2

3
2 2

2

27 256 13 2 48 5 1 75
27 256 4 731

= + −[ ]
= − = −

( / )/ ( . ) .
( / )( / ) 554 93 568 2

2/ , wL
 

r = 2 (span 2 loaded) A B= = 1 4 2
3/ wL

M2, being to the left of the loaded span, is calculated differently in this case.
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M wL L L

L
2 2

3
2 2

2

71 8 13 2 48 5 1 75
71 8 8 1 254 142

= − + −[ ]
= =

( / )/ ( . ) .
( / )( / , ) // ,2 508 2

2wL
 

The remaining support moments are calculated as for r = 1.

 M d M wL3 4 5 2
2130 2 508= = / ,  

 M d M wL4 3 5 2
235 2 508= = − / ,  

 
M wL L L

L
5 2

3
2 2

2

5 8 13 2 48 5 1 75
5 8 8 1 254 10

= − + −[ ]
= − =

( / )/ ( . )( . )
( / )( / , ) // ,2 508 2

2wL
 

r = 3 (span 3 loaded) A B wL= = 1 4 2
3/

 
M wL L L2 2

3
2 219 8 13 2 48 5 1 75

19 8 627 4 38
= + −[ ]
= − = −

( / )/ ( . )( . )
( / )/( / ) /22 508 2

2, wL
 

 M wL3 2
2133 2 508= / ,  

It is unnecessary to calculate M5 in this case, as it is equal to M2 by symmetry.
Table B8-1-1 presents loaded spans and support moments results. Following  

Merriman (1876), positive support moments result adjacent to the loaded span, opposite 
to the conventional modern sign convention for bending moments. Table B8-1-2 shows 
the dead load moments that result at each support for a dead load of 800 lbs/ft. The 
moment is expressed in lbs/ft. Any case of a fully loaded span can be solved using these 
coefficients, as in the example in Table B8-1-3. The first column is the summation of the 
rows of the previous table, showing the dead load moments resulting from all spans 
loaded. In this case, the live load has been placed in span 2 and span 3. The final result 
in the last column is obtained by multiplying the previous column by L2

2  (6,400 ft2).

Table B8-1-1. Support Moments for Various Span Loading Conditions

Support

M wL/ 2
2

Span 1 Load Span 2 Load Span 3 Load Span 4 Load Span 5 Load

2 2,619/93,568 142/2,508 −38/2,508 10/2,508 −54/93,568

3 −702/93,568 130/2,508 133/2,508 −35/2,508 189/93,568

4 189/93,568 −35/2508 133/2,508 130/2,508 −702/93,568

5 −54/93,568 10/2,508 −38/2,508 142/2,508 2,619/93,568

Table B8-1-2. Dead Load Moments: Five-Span Bridge Example

Support

Dead Loads

D L M L. . / 2
2 D L M L. . / 2

2 D L M L. . / 2
2 D L M L. . / 2

2 D L M L. . / 2
2

span 1 (lbs/ft) span 2 (lbs/ft) span 3 (lbs/ft) span 4 (lbs/ft) span 5 (lbs/ft)

2 22.3 45.3 −12.1 3.2 −5.0

3 −5.9 41.4 42.4 −10.8 1.6

4 1.6 −10.8 42.4 41.4 −5.9

5 −0.5 3.2 −12.1 45.3 22.3
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Table B8-1-3. Dead Load and Live Load Moments: Five-Span Bridge with Spans 2 and 3 Loaded

Support

Load Case—Spans 2 and 3 Loaded: 1,200 lbs/ft

TDLM L/ 2
2 L L M L. . / 2

2 L L M L. . / 2
2 L L M L. . / 2

2 L L M L. . / 2
2 L L M L. . / 2

2

Total Moment 
(lbs/ft)

Total Moment 
ton ft(lbs/ft) Span 1 (lbs/ft) Span 2 (lbs/ft) Span 3 (lbs/ft) Span 4 Span 5

2 58.2 67.9 18.0 144.1 461

3 68.7 62.2 63.7 194.6 623

4 68.7 −16.7 63.7 115.7 370

5 58.2 negligible 18.0 76.2 244
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While the application of analytical methods is necessary to the development of continu-
ous girders, simply supported girders can be designed by empirical or semi-empirical methods. 
The use of such methods persisted well into the late nineteenth century, but the design of 
practically all girders was by analytical methods by the end of the century.
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Analysis of Columns

The procedures generally used in the analysis of columns in the late 
1800s were developed in part by Eaton Hodgkinson (1846) on the 
basis of his experiments on iron columns. Essentially empirical, this 
work fitted column strength data, obtained from tests on small iron 
specimens, to a logarithmic curve. Different curves were determined 
for differing support conditions and for differing materials. Lewis  
D. B. Gordon, using Hodgkinson’s published data, arrived at empirical 
equations, which William John Macquorn Rankine (1877) verified by 
theoretically determining the point at which an eccentrically loaded 
column reaches breaking stress due to a combination of axial force 
and bending. Because of its basic simplicity for calculations, this for-
mulation became widely used in engineering practice in the United 
States and was known as Gordon’s formula. Authors such as William 
Merrill (1870) identify the Rankine-Gordon formula as being a sim-
plification of Hodgkinson’s curves: although this may be partially true 
of Gordon’s formula, Rankine’s development of the same equation 
proceeds from an entirely theoretical basis. Details of these formulas 
are given in the following.

Iron Columns

Cast-iron, and later wrought-iron columns were widely used in bridge 
and commercial and industrial building in the United States. Figure 
9-1 shows an example of a cast-iron column in an 1882 industrial 
building for the Phoenix Iron Company, which also produced sectional 
wrought-iron columns for use in bridges. Figure 9-2 shows a typical 

9
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metal (wrought iron or steel) building column, which is assembled by stitching plates and 
angles, or in this case channels and lattice bars, together with rivets applied in the shop. 
While Hodgkinson’s work is recognized in the development of column formulas, other 
American authors circulated this information in various forms. Merrill (1870), for instance, 
presents a thorough summary of Hodgkinson’s findings and applies both Gordon’s and 
Hodgkinson’s formulas to the interpretation of the results. He presents a pair of three-
dimensional plots that integrate the results of Hodgkinson’s small-scale tests into a set of 
results for use with cast-iron columns of various configurations, solid cylindrical and hollow 
cylindrical with square ends or rounded ends. Merrill is principally concerned with the use 
of wrought iron for ties, or tension members, and the use of cylindrical struts of cast iron, 
either solid or hollow. As such, his main interest in column theory is the work of previous 
writers on cylindrical sections. He reviews the results of Hodgkinson’s series of tests on solid 
cast-iron bars, constructed with either square or rounded ends. He notes the difference 
between very short bars, which have a breaking weight close to the compressive strength of 
the material, and longer bars, whose breaking weight is governed by buckling. An example 
presentation of Hodgkinson’s experiments is shown in Figure 9-3. While the results for solid 
bars are taken more or less directly from the results of Hodgkinson’s testing, the breaking 

Figure 9-1. Cast-iron column at Phoenix Iron Company foundry building, 1882 (HAER 
PA,15-PHOEN,4A–18).
Source: Photograph by Jet Lowe.
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weight of a hollow cylindrical bar is calculated as the difference between the breaking weight 
of a solid bar with a diameter equal to the outside diameter and a bar with diameter equal 
to the inside diameter. Merrill presents Hodgkinson’s and Gordon’s formulas for a solid 
cylindrical cast-iron bar. Hodgkinson’s formula is in two parts, a formula for the strength 
of a long bar and a correction for shorter bars. For a long bar, with rounded ends, Merrill 
presents Hodgkinson’s formula as

 W
d
l

= 33 380
3 76

1 7
,

.

.
 

Figure 9-2. Lattice wrought-iron or steel columns at Juniata Locomotive Shops, Altoona, PA, 1889.
Source: Photograph by Sikander Porter-Gill.
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Figure 9-3. Merrill’s presentation of the results of Rankine’s experiments.
Source: Merrill (1870).
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The coefficient is modified to 98,900 for flat ends, approximately tripling the breaking 
load. In this version of Hodgkinson’s formula, W is the breaking weight of the section, d is 
the diameter in inches, and l is the length of the column or strut in feet.

Plotting breaking weight versus l/d using this empirical formula results in a monotoni-
cally decreasing hyperbolic curve, where the breaking weight of the column decreases with 
increasing l/d ratio. Factoring out the dependence of the stress on the square of the diameter 
transforms this equation into an expression for buckling stress, found to be inversely pro-
portional to (l/d)1.7. For shorter columns, the inelastic buckling effects require a correction 
formula for l/d less than 15 for columns with rounded ends and less than 30 for columns 
with square ends. The actual breaking weight is given as

 
bc

b c+ 3
4

 

where b is the breaking weight calculated by the aforementioned buckling formula and c is 
the crushing strength of the material in pounds per square in. based on a crushing stress of 
100,000 to 120,000 lbs/in.2

A crushing strength of 100,000 lbs/in.2 is used in the calculations shown in Table 9-1, 
which compares the results of the application of Hodgkinson’s and Gordon’s formulas. The 
application of Hodgkinson’s formula requires the development of a table with nine columns 
of calculations and the use of a table of logarithms to evaluate separately the exponents of 
the length and the diameter. The further calculation of a correction factor for shorter struts 
is also required, such as a 5-ft strut 4 in. in diameter (l/d = 15). For a hollow section, this 
calculation would have to be completed twice.

Gordon’s formula takes the form of a reduction in the crushing strength of the material 
based on the characteristics of end conditions, slenderness ratio, material, and bending stiff-
ness of the cross section. In the most general form, as presented by A. Jay Du Bois (1887, 
p. 355), the formula is written as follows:

 
P

c
l
d

=
+

µ

1
2

2

 

Table 9-1. Comparison of Tabular Calculation of Column Strength by 
Hodgkinson’s and Gordon’s Formulas
Hodgkinson Column Calculations (Nine-column calculation required) 

Length
Log 
Length

Log 
Length 
×1.73 Diameter

Log 
Diameter

Log 
Diameter 
×3.76

Column 
breaking 
weight Correction

Column 
breaking 
weight

10 1 1.73 6 .778 2.92 1,627,000 — 1,627,000

Gordon Column Calculations

Length Diameter (l/d)2
Denom-
inator

Column 
breaking 
weight

10 6 400 1.267 2,232,000
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In this equation, μ is the breaking strength of the material, l/d is the height/diameter 
ratio of the column, and c is an empirically determined constant. Typical values for iron 
struts with pinned ends are μ = 40,000–80,000 (lbs/in.2), c = 1/2,250 for wrought iron, 
1/400 for cast iron, rounded (pinned) ends, and the value of c is doubled for flat (fixed) 
ends. It is noted that the radius of gyration r is approximately equal to d/2 for hollow, 
cylindrical shapes. The figure in Du Bois (1888, p. 344), which is reproduced in Figure 9-4, 
summarizes these values for wrought-iron shapes.

According to Merrill (1870), “Gordon’s formula appears to be an adaptation for 
engineers who are not familiar with the use of logarithms.” (p. 28) The formula certainly 
had simplicity in its favor. The calculation of column breaking weight according to Gordon’s 
formula requires no more than a five-column calculation consisting of addition and multi-
plication (see Table 8-1): the only lookup might be in using a Crelle (1897) table for mul-
tiplication. The formula also captures the double curvature of the curve relating slenderness 

Figure 9-4. Gordon’s formula adapted to various column sections.
Source: Du Bois (1888).
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ratio to maximum column stress. By changing coefficients, Gordon’s method can be adapted 
to any material—wood, wrought iron, steel—and any shape. Although often developed and 
presented strictly as an empirical relationship for columns, an equation equivalent in form, 
Rankine’s formula, can be derived from theoretical considerations of column buckling. In 
the following section, the rational basis of Rankine’s formula is explored.

The Rankine-Gordon Formula for Column Capacity

Du Bois’s application of Gordon’s formula for column loading is typical of the treatments 
of the period for iron columns of any type. Empirical constants for use in Gordon’s formula 
are given according to the shape of the column and other characteristics of the structure. 
(see Figure 9-4). The ultimate strength of the material is left in the numerator or modified 
by dividing by a factor of safety. As such, the formula can be used to calculate an ultimate 
or an allowable stress for the column. Examples of such constants are shown as follows, 
but other constants may be used. In the material from Du Bois reproduced in Figure 9-4, 
the slenderness ratio is modified to l/d. Du Bois’s recommended factors of safety, applied 
separately, range from four and up depending on the live load/dead load ratio (4 + l/20d 
for wrought iron; in this formula l = live load and d = dead load).

The Album of Designs, published by the Phoenix Bridge Company (1888), gives two 
sets of formulas for column strength: one for ultimate strength and one for allowable 
column load. For ultimate strength, the company recommends μ = 42,000 lbs/in.2 and 
c = 1/50,000 for flat-ended columns and c = 1/30,000 for rounded ends. The formulas 
for the Phoenix Bridge Company use l/r in place of l/d. Because, for a Phoenix column, 
Du Bois takes d as the distance between flange rivets, the difference between d/2 and r is 
somewhat greater than for an ordinary cylindrical column. After calculation of the 
maximum load on a column, a safety factor of 5 on column loads is recommended in the 
Album of Designs.

The Rankine-Gordon equation can be derived from basic principles, or it can be deter-
mined empirically. Both approaches are evident in the use of this formula in the nineteenth 
century. However, nearly all column data are fitted to a curve of this form. The derivation 
of this curve is given in John Davenport Crehore (1886, pp. 289–295) and is presented here 
in Box 9-1. Although the assumptions are similar to those used in the usual development 
of the Euler buckling load, Crehore uses the crushing strength of the material of the column 
as a limiting value and works with P explicitly as the limiting column load. The resulting 
equation, unlike a modern buckling equation, accounts for combined bending and axial 
force and yields the column capacity for an initially eccentrically loaded column.

In addition to Crehore’s analytical treatment of the rules for column design, he derives 
formulas of a similar character in empirical form based on expected proportions, leaving 
the proportionality constants to be determined experimentally. Starting, for instance, with 
the proportionality of bending stress and deflection (the right-hand side being an expression 
for deflection)

 B
Pl
Sh

1

2

2
~  
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Box 9-1
For a pinned/pinned column, the moment at a point x distant from the lower support is

 M EI
d y
dx

Pyx = − =
2

2
 

where P is the axial force (causing failure) and y is the lateral deflection of the column.
Calling Q the longitudinal pressure P/S and C the breaking compressive stress, the 

maximum moment of the internal forces must be diminished by the ratio of axial com-
pressive stress to total stress (C-Q)/C. Setting the simplifying term ε2

 ε2
2

=
−

=
−EI C Q

PC
Er C Q

QC
( ) ( )

 

where r is the radius of gyration of the column. Substituting this expression into the 
equation for bending moments as a function of x gives

 ε2
2

2

d y
dx

y= −  

This expression can be integrated with boundary conditions y(0) = y(l) = 0 to find

 l sin
y
a

n= 



 =−ε ε π1

0

0

 

Taking the least integral value n = 1, it is found that

 l
Er C Q

QC
2 2 2

2 2

= =
−

π ε
π ( )

 

A more modern procedure of solving the differential equation y″ + (1/ε2)y = 0 and 
apply the boundary conditions y(0) = y(l) = 0 gives the same result.

Hence, the breaking force, Q, can be expressed as

 
Q

C
Cl
Er

=
+





1
2

2 2π
 

Theoretical modifications can be made for differing end conditions, for instance, 
substituting ¼(l/r)2 for (l/r)2 for fixed ends.

where 

B1 is the bending stress,
P is the column load,
S is the cross-sectional area of the column,
l is the column length, and
h is the least lateral dimension of the column.
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Because the total stress on the column f = Q + B1, the breaking stress Q = P/S can be 
written in terms of the total stress f, taking account of the constant of proportionality a. 
Thus,

 f
P
S

Pl
aSh

= +
2

2
 

or, factoring out P/S

 

P
S

f
l

ah
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2

2

 

In an equation of this form, the values of f and a are determined experimentally. The 
similarity to the rationally derived formula in Box 9-1 can be seen. Although this formula, 
according to Crehore, was first presented by Thomas Tredgold, it is known and widely used 
as Gordon’s formula.

Regarding the effect of end-bearing conditions, Hodgkinson (1846) is more cautious 
than Gordon, generally presenting long column results with the square-end columns having 
approximately three times the capacity of a similar round-ended column, whereas applica-
tions of Gordon’s formula have a coefficient of exactly 4, as dictated by buckling theory for 
columns. Of course, a flat-ended column is not rigidly fixed, although it can develop signifi-
cant stabilizing moments at the ends, and a round-ended column is not fully pinned, as 
during buckling a small moment may be developed at the end of a round-ended column, so 
the use of a constant less than 4 is justifiable.

Bindon Blood Stoney (1873, pp. 285–286) provides additional guidance on the design 
of latticed columns. He simplifies a latticed column (“braced pillar”) to a column subjected 
to the required axial force, enhanced by the application of a transverse force P at each joint 
between bracing and chord. This transverse force P is found to be equal to WL/R, where 
W is the axial force in the column, L is the column length, and R is the radius of curvature 
of the column due to lateral deflection. Stoney then calculates the increase in compressive 
stress on the inside flange and the decrease in compression (or tension) on the outside flange. 
He is content to show that the change in stress in the flanges and in the bracing is insignifi-
cant. He also collects data on strength of wood columns as shown in Figure 9-5.

The Gordon formula gives a theoretically consistent procedure for the determination 
of the buckling load of a column, which is less evident in the rules for column design in 
current practice. According to the steel and wood column formulas in use at the present time 
(American Wood Council 2006, American Institute of Steel Construction 2010), a column 
capacity curve has an elastic buckling part at high L/d ratios, a maximum compressive capac-
ity at low L/d ratios, and an empirical interpolation between these two curves. Gordon’s 
formula, whether the coefficients used are rationally or empirically based, furnishes a single 
column curve of reasonable accuracy for a column with given geometric shape made of a 
given material. As an example, in Figure 9-6 a column curve for steel is shown along with 
Gordon’s formula specialized to an I beam, rounded ends, and mild steel, according to the 
theoretical (a = 50 kips/in.2, b = 476) and empirical (a = 50 kips/in.2, b = 1200, (r/d)2 = 1/10). 
Gordon’s formula is successful in capturing the shape of the column curve using a single 
formula, especially if one is willing to use empirical values of the coefficients a and b.
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Figure 9-5. Table XII reproduced from John Crehore.
Source: Crehore (1886).

Wood Columns

Wood columns also were used widely when sufficient material was available or economics 
dictated the use of wood. Figure 9-7 shows the use of a wood column in an 1891 Wisconsin 
paper mill. Referring to the table of representative wood column strengths presented in 
Chapter 3 (Table 3-1), we can note the divergence of the results between, for instance, Frank 
Kidder (1886) and Robert Maitland Brereton (1870). The principal reason for these differ-
ences is the assumption of flat ends or rounded ends, i.e., pinned conditions or fixed condi-
tions. Having flat ends on a column has been found to increase the column strength by a 
factor of 4 theoretically and by a factor of 3 experimentally. The column curve of Brereton 
shows the column close to full strength for short l/h ratios and tailing off to lower values 
relatively slowly due to the partial fixity at the ends of the column. In contrast, a theoretical 
curve for a pinned end column begins at the same value for low height/thickness ratios and 
drops off more quickly. As the numerator in Gordon’s formula is generally the breaking 
strength of the material in compression, this value (coefficient μ, according to Du Bois 
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[1888]; coefficient f, according to Crehore [1886]) is unaffected by the end conditions; the 
other coefficient (1/c or a) varies by a factor of 2 to 4. According to Crehore (Table XII, 
presented here as Figure 9-5), Brereton’s results or Rondelet’s rules correspond to a value 
of f of 5,000 psi and to a value of 250 of a (using the l/h ratio). It is of interest to investigate 
the theoretical coefficients presented by Crehore (see Box 9-1). The application of this theory 
leads to a value of f = 1,700 (120 tons of 2,000 lbs divided by 144 in.2) and a value of a 
of 2,900 (as the coefficient for (l/r)2, or 242 for the coefficient of (l/d)2 (E = 1,500,000 lbs/
in.2). Curves for these values are plotted in Figure 9-8. Although considering the constants 
in Gordon’s formula as empirical parameters yields a slightly better fit to Brereton’s reported 
results, the application of the theoretical formula of the same form, using plausible values 
of the modulus of elasticity and a reasonable range of 3 to 4 for the increase in b due to 
square ends, results in a reasonable fit.

The Chicago building code (City of Chicago 1905) covers four different species of 
timber and presents points on column curves for these materials: white pine and spruce, 
loblolly yellow pine, and white oak (Table 9-2). The values from the Chicago building code 
for square ends display the usual caution of a building code, decreasing the load for long 
columns more than either the theory or experiment justify. However, the design values for 
long columns are still greater than the values that would be used in contemporary design, 
which take no account of the increase in column strength afforded by square ends. The 
values for white pine and spruce are given in Chapter 3. The values for the other two mate-
rials are presented here. Although in form design values greatly resemble Rondelet’s rules, 
presented in Chapter 3, Rondelet’s rules are much more conservative, reducing overall 

Figure 9-6. Comparison of column curves for a steel column.

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250

AISC

gordon

Gordon empirical



132 engineering iron and stone

Figure 9-7. Whiting-Plover paper mill, Whiting, WI, Building No. 1., 1891 (HAER WIS,49-
WHIT,1C–2).
Source: unknown.

Table 9-2. Chicago Building Code (City of Chicago 1905) Design Rules for 
Squared-End Wood Posts
L/d Reduction in full strength White Pine/Spruce Loblolly Yellow Pine

0–15 1 1,000 750

15–30 7/8 875 650

30–40 3/4 750 560

40–45 5/8 625 460

45–50 1/2 500 375
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strength to half at an L/d of 24, compared with 45 for the Chicago building code. Appar-
ently, the Chicago building code represents an application of Rondelet’s rules to a square-
ended column, supposing an effective length factor of approximately 2 for a flat-ended 
timber column.

For steel and wood column design, the analytical procedures used in the late nineteenth 
century were based on experimental results. The procedures used were appropriate combina-
tions of the application of empirical rules and the application of analytical techniques to the 
design of columns. The widespread use of the Rankine-Gordon formula is particularly 
noteworthy as it resulted, especially for iron structures, in a theoretically defensible and 
consistent means of designing columns of all materials, lengths, configurations, and support 
conditions.
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Figure 9-8. Comparison of column design curves for wood.
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Analysis of Portal Frames

A portal frame is a type of rigid frame used to resist the collected wind 
loads on a structure. The most common use of this system is to solidify 
the two ends of a through truss bridge (the bridge portals) and to 
transmit the wind loads on the bridge to the ground. A latticed portal 
is shown in Figure 10-1. Portal frames also were applied to buildings 
when it was found inconvenient to use diagonal brace rods. Although 
this technique applied more commonly to the transverse frames in a 
mill building, there are also cases where portal frames were applied to 
longitudinal frames. Examples of single bay portal frames are trusses 
provided with knee braces (see, for instance, Ketchum, 1903, p. 342, 
Transformer Building Section), whereas multiple bay portal frames can 
be seen in the longitudinal direction of many mill buildings (Ketchum, 
1903, p. 368, ATSF RR locomotive shop). Portal frame structures also 
were used as bents in mill buildings. A combination of knee braces and 
moment connections between the truss and the columns, or the columns 
and the foundation were used to resist the lateral forces.

Milo Ketchum proposes an analytical treatment of portal frames 
of various configurations. This analysis depends in general on estab-
lishing equilibrium conditions in the frame and distributing the lateral 
force due to the wind to the supports of the portal. Some of the 
details of this analysis are illustrated in Figure 10-2. For many pinned 
base portal frames, one-half of the total horizontal force R is assumed 
to be distributed to each of the columns so that the horizontal reac-
tion at the base of each column is R/2. The vertical reaction of the 
windward column is −Rh/S (uplift) and at the leeward column is 
+Rh/S, where h is the height of the frame and S is the spacing of the 
columns.

10
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Internal forces in frames of various types can be worked out in general, without assum-
ing a distribution of the total force to the base, according to the configuration of the frame. 
For the frame that Ketchum labels (a) (see Figure 10-3), the forces in the bars are found by 
successive sections based on the known external forces. The section cut X-X on Figure 10-2 
shows that the force in GC = −V sec θ, by taking moments about the upper right corner of 
the frame. It is further found that the force in the three dashed bars is 0. The force in the 
other diagonal can be found from the section Y-Y to be +V sec θ. Similarly, based on section 
Y-Y, taking moments about D, it is found that the force in bar HG = −Hd/(h − d). Finally, 
based on moments about C, the force in bar GF is found to be [R(h − d) + Hd]/(h − d). 
Considering the wind in the direction shown only and considering the right side of the frame, 
GF is called the portal strut, GC the portal tie, and the remaining members the portal web. 
For the other side of the frame or for an opposite wind direction, the positions of the strut 
and tie are reversed. Whereas in the case shown the web members are 0 force, this is not 
true in general for other portal types, as is discussed following. The maximum shear in the 
posts is found to be equal to the force in HG, and the maximum moment in the posts is  
M = Hd.

Figure 10-1. Sayre, PA, converted railroad bridge over Cayuta Creek, circa 1910.
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In Figure 10-3, Ketchum (1903) presents six different types of portal frames, des-
ignated (a) through (f), for which he describes the determination of the design force or 
bending moment in each of the principal components: portal column (subject to axial 
force and bending moment), portal strut (subject to compression), portal tie (subject to 
tension), and portal web (subject to axial force resulting from shear). Figure 10-3 also 
identifies the principal components. C. L. Crandall (1888) also discusses type (e) and type 
(f) and reaches the same conclusions as Ketchum. To these may be added the types of 
portal frame discussed by Crandall, which are shown in Figure 10-4. He describes a 
lattice frame with a portal tie in a circular arc, type (g), and an arched lattice frame, 
type (h). Mansfield Merriman and Henry Sylvester Jacoby (1902, p. 273) discuss a com-
posite portal frame with elements of type (e) and type (f) in a single portal frame. Portal 
types (a) through (h) are shown in Table 10-1, along with the formulas proposed for the 
determination of the stresses in the principal components of each portal frame. A variant 
of type (g) in which a straight lattice beam is placed on top of a pair of quarters circle 
braces is shown in the view in Figure 10-5 from the Harrisburg, PA, train depot. A sketch 
analysis of a portal frame of type (a) is available in the 1910 student notes of Norman 
Maddock. John Alexander Low Waddell (1884) includes a brief discussion and algebraic 
analysis of two types of portals (pp. 49−53), one a single-panel variant on type (c), the 
other type (f).

The forces in the principal members of each of the types of portals shown can be 
calculated, as described in Ketchum. These forces, which depend primarily on the geometry 
of the portal, can be compared by means of Table 10-1. See also Chapter 15 for a descrip-
tion of the graphical solution of these portals. As a representative example, consider the 

Figure 10-2. Type (b) portal frame shown to illustrate the nomenclature used by Ketchum and 
throughout this chapter to find the forces in the elements of a portal frame.
Source: Ketchum (1903).
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Figure 10-3. Types of portal frames.
Source: Ketchum (1903).

Figure 10-4. Additional types of portal frames (g) (left) and (h) (right).
Source: Crandall (1888).

calculation of the maximum web member force in configuration (b) (see Figure 10-6). The 
calculation is done by cutting a section through bars GF, EF, and EC (in a procedure 
described as Ritter’s method in Chapter 7). The calculation of the force in Bar EF is accom-
plished by taking moments about G and finding the horizontal component of EF, that is, by 
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transmitting the force in EF to act at a point along the line of action EF, directly below the 
center of moments G.

Moment equilibrium is written

 ( )sin tanEF θ θh d Hh
V

h d−( ) + − −( ) =
2

0  

substituting 2Hh/s for V and solving for force EF gives the formula shown in Table 10-1.
The cases (g) and (h) investigated by Crandall may require further explanation. In the 

case marked (g) in Figure 10-4, the actual calculation of the forces is relatively difficult, so 
he presents the strut force as the moment acting at a section divided by the vertical distance 
between the strut and tie and says that the maximum can be found “near enough after one 
or two trials (1888, p. 77).” Similarly, the tie force is calculated by taking external moments 
divided by the distance z, shown on the diagram in Figure 10-4, from the tangent to the 
curved part of the tie to the strut, for a center of moments designated O. According to 
Crandall, the critical center of moments can be safely taken as the intersection of the column 
and the portal strut. The horizontal component given in the Table 10-1 is resisted by the 
gusset plate at the end of the curved bottom chord. In the design marked (h), the strut, tie, 
and web shear force vary continuously and must be found by calculation of shears and 

Table 10-1. Forces in Portal Struts, Portal Ties, and Web Members in Various 
Portal Frames Shown in Figures 10-3 and 10-4
Portal 
type Portal strut force Portal tie force

Maximum 
web member Note

a R H
d

h d
+

−
Hh

h d−
cscθ 0

b R H
h d
h d

+ +
−







( )
( )

Hh
h d( )−

cscθ Hh
h d( )−

cscθ E at midpoint of GC web 
force EF

c R H
d

h d
+

−
Hh

h d−
2Hh

s
cscθ tension only web

c′ R H
d

h d
+

−
Hh

h d−
Hh
s

cscθ panel shear forces divided 
in half 

d R H
d

h d
+

−
Hh

h d−
2Hh

s
cscθ

e R H
d

h d
+

−
Hd

h d−
Hh

s
d sl

2
÷ simplification, considering 

lattice bars resist shear only

f R H
d

h d
+

−
Hd

h d−
cscθ

—

g max Hh
Hhx
s

y−



 ÷





2
horiz. 
component

Hd
h d−

2Hd/s—horiz. 
component in 
tie at base

using Ketchum notation

θ is the vertical angle of the lattice bar closest to the end post, as shown in portal (a)
sl is the spacing of the lattice bars (supposed at 45-degree angle)
x is the horizontal distance from the column to the point where forces are being evaluated
y is the overall vertical distance between the portal strut and the portal tie at x
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moments at a section through the portal. The horizontal component of the flange force about 
a center of moments is (using Ketchum’s notation as follows)

 [ ( ) ]H h u Vx Hu y+ − − ÷  

where x is the horizontal distance from the portal/column joint to the center of moments, 
y is the vertical distance between the top and bottom flange, and u is the rise of the top 
flange from the joint. Web shear is the total shear 2Hh/s less the vertical component in the 
bottom flange plus the vertical component in the top flange.

A similar treatment of similar portal types is available in A. Jay Du Bois (1896,  
pp. 309ff.) He deals algebraically with the case of overhead x-bracing and with the case  
of a knee brace for both a vertical and an inclined end post.

Crandall (1888) discusses further the effect of the inclination of the end post, which 
is common in truss bridges on the stresses, particularly in the portal strut and tie. Where 
this is done, there is no effect on the horizontal forces in the portal, whereas vertical force 
components increase by a factor of sec ϕ, where ϕ represents the angle of inclination of the 
portal from the vertical. He also elaborates on some of the particular issues in the determi-
nation of the stresses in a portal tie that is curved into a circular arc to increase the headroom 

Figure 10-5. Portals at Harrisburg, PA, train station (HAER PA,22-HARBU,23–25).
Source: Photograph by F. Harlan Hambright.
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at the entrance to the portal. The complete analysis of a portal, as described by Crandall, 
requires the determination of the wind loading on the entire truss. Crandall (1888, p. 5) 
proposes a loading of 150 lbs/ft as an adequate estimate of the total lateral load on the 
upper system. The load on the portal is this load multiplied by the span of the bridge and 
divided by 2. The load is calculated similarly for the lower lateral system.

When multiple portals are used, as along the length of a mill building, Ketchum shows 
two methods for finding the distribution of the horizontal force to the columns. The first is 
to distribute vertical reaction to the columns in proportion to the distance from the center 
of the multiple portals. This is the method now known as the “cantilever method.” When 
the vertical column reactions are known, it is possible to find the horizontal forces in the 
columns. A much simpler procedure, preferred by Ketchum, is to divide the total horizontal 
force by the number of columns. This differs from the modern “portal method” only in 
assigning a equal shares of the horizontal load to the exterior and interior columns.

Similar treatments to Ketchum’s and Crandall’s are offered by other authors. Du Bois 
(1896) has a comprehensive article on wind bracing for bridges in which he gives a general 
approach to a bracing system consisting of an overhead strut, a horizontal tie at the clear-
ance level of the portal, and diagonal brace rods. He considers this variant of type (d) for 
a bridge with inclined end posts (or “batter braces”), subjected to wind load. He further 
notes that the total wind load on a bridge is conventionally taken as 75 lbs/lineal ft. After 
finding similar moments in the batter braces to those determined from the equations in Table 
10-1, he divides them into tension and compression based on the distance between the 
centroids of the channels making up the end post and asserts that the compressive stress 
must be added to the compressive stress that results from the loading on the bridge.

Figure 10-6. Statics of windward portal column and portal strut and tie.
Source: Adapted from Ketchum (1903).
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Three prevailing procedures for portal frame analysis for mill building bents are sum-
marized in the bachelor’s thesis by Arthur Shumway (1904). In this thesis, Shumway inves-
tigates three methods for the determination of portal frame stresses in mill buildings: an 
analytical method by James Greenleaf (1896) and graphical methods by Jerome Sondericker 
(1896) and by Ketchum (1903). Shumway’s prototype mill building frame has knee braces 
and is shown in Figure 10-7.

Greenleaf presents a strictly analytical determination of the forces in the columns and 
knee braces of a portal frame. He subdivides the portal frames into classes A (columns 
pinned, no knee braces), B (columns fixed, no knee braces), and C (knee braces provided) 
and investigates individual classes of column fixity within each of these basic cases. The 
result is formulas for the main cases used in the construction of mill buildings. In a later 
study, Shumway omits the cases without knee braces and repeats and amplifies Greenleaf’s 
calculations, using an example of a mill building with a fan truss roof. The compilation of 
stresses of both Greenleaf (case B-4) and Shumway (case 1-d) for the case of a mill building 
bent with knee braces, pinned at top and bottom (Figure 10-8) is as follows:

C = A(h − d)/d
B = A + C
Above point b, the maximum bending moment is at b and equals Cd.
Mx = Cx (x is the distance from the top of the column)
Below point b, the maximum bending moment is at b and equals Cd.
Mx = Cx-B(x − d)
Va = 1/s(ΣW 1/2l)

where 

Va is the vertical reaction at the column;
C designates the force in the column top;

Figure 10-7. Shumway’s typical mill building bent.
Source: Shumway (1904).
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B is the horizontal force at b, the point of attachment of the knee brace to the column;
A is the horizontal reaction at the bottom of the column;
h is the height of the column;
d is the distance from point b to the top of the column;
l is the height of the ridge; and
s is the span of the roof.

Shumway and Greenleaf investigate mill building bents with different characteristics 
according to these rules and determine the forces shown in Table 10-2. The notation used 
is that of Greenleaf. The table showing all of the cases of Greenleaf’s investigation of the 

Figure 10-8. Greenleaf’s typical mill building bent.
Source: Greenleaf (1896).

Table 10-2. Similar Building Case Investigated by Greenleaf (1896) and 
Shumway (1904)
Characteristic Greenleaf (case B-4) Shumway (case 1-d)

l overall height 61 ft 6 in. 30 ft

h height of columns 26 ft 20 ft

d moment arm of knee brace 10 ft 7¼ in. 5 ft

s spacing of columns 17 ft 7½ in. 16 ft

A reaction at base of column 14,250 lb 5400 lb

K stress (force) in knee brace 39,680 lb 30,540 lb

C force in column top 20,700 lb 16,200 lb
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Figure 10-9. Knee braces in a beam-column connection in a mill building bent, Whiting Foundry 
Equipment Company, Harvey, IL (1893): (a) general view, (b) detail of knee braces.
Source: Photographs by Michael Powers.

bent shown in Figure 10-8 is displayed in Table 10-3. An application of knee braces to the 
truss column bents of this type in a nineteenth century mill building is shown in Figure 10-9. 
Following the analytical determination of the forces in the column, Greenleaf proposes a 
graphical determination of the forces in the bars of the truss.
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Table 10-3. Greenleaf’s (1896) Compilation of Stresses in Mill Building Bents with Various Support Conditions
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Portal frames were a widely used, statically indeterminate structure type in the late 
nineteenth century and beyond. The methods generally available for their analysis used 
various forms of approximations to arrive at a reasonable result. The approximations 
included the use of approximate values of wind loading, such as a wind load per lineal foot 
on a bridge superstructure, and the approximate division of lateral loads on a frame between 
the two columns. Once the loads and reactions were known, analytical methods for the 
analysis of portal frames relied on taking successive sections and taking moments about 
strategic points, effectively Ritter’s method for trusses, described in Chapter 7. The forces 
in the bars in portal frames could also be determined graphically by the methods that are 
described in Chapter 15.
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Introduction to Graphical 
Methods of Analysis

Graphic statics is the representation of known forces and the solution 
of unknown forces using scaled diagrams. To display all of the proper-
ties of a plane force, two diagrams are necessary. In one diagram, 
drawn to a length scale, the direction, location, and sense, positive or 
negative, of a force are represented, whereas in the other, which is 
drawn to a force scale, the magnitude, direction, and sense of a force 
are shown. Two forces and their equilibrant (shown dashed) are drawn 
in the two complementary diagrams in Figure 11-1. Forces combine in 
the force diagram by placing the vectors representing their magnitude 
and direction in a tip-to-tail configuration. The sum of the three forces 
in the diagram, including the equilibrant force, is 0—the system of 
forces forms a closed loop with the same point of beginning and 
ending. In the funicular diagram, the magnitude of the force is not 
represented. The resultant force or its opposite—the equilibrant force—
is located so that its line of action passes through the intersection of 
the lines of action of its component forces.

To find the resultant of a larger system of forces, as in Figure 
11-2, an arbitrary point (known as the pole) is chosen in the force 
diagram, and the forces in the diagram are resolved into components 
passing through the pole. These components are then plotted in their 
correct direction and location on the funicular diagram, with the result 
that the location of the equilibrant or the resultant is known. This is 
demonstrated in the diagrams in Figure 11-2. Forces ab, bc, cd, and 
de are shown in the force diagram and the directions of these forces 
in the funicular diagram. Given a pole O in the force diagram, the 
components of ab are Oa and Ob, labeld a or b, and the components 
of the resultant are Oa and Oe. Thus, if Oa and Oe can be found on 

11
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the funicular diagram, the resultant, whose line of action passes through the intersection of 
Oa and Oe, can be located. Each pair of resultants of known forces is laid out in such a 
way that the two components intersect on the line of action of the force ab, bc, cd, or de. 
In this way the lines of action of the resultants Oa and Oe are located on the diagram, and 
the resultant can be drawn passing through the intersection of forces Oa and Oe. The strings 
a, e, and the resultant in the force and funicular polygon reduce to a triangle like that 
described in Figure 11-1. Effectively, any two strings of the funicular polygon intersect in a 
point on the line of action of the resultant of the forces between these two strings. Thus, 
for instance, string b and string e on the funicular polygon in Figure 11-2 intersect in a point 
on the line of action of the resultant of forces bc, cd, and de. This construction has many 
uses, a few of which will be described in detail in the following chapters.

The relationship between projective geometry and graphic statics, which is described 
more thoroughly in Box 11-1, is noted by Karl Culmann (1875) and discussed extensively 
by A. Jay Du Bois (1877), Henry T. Eddy (1878), and others. Culmann’s program appears 
to have been to transform statical calculations to graphic language. This is evident in his 
book on the topic, Die Graphische Statik. In this work, he provides methods for the graphi-
cal calculation of centers of gravity, moments of inertia, beams, and frames. He investigates 
the properties of forces in space through graphical diagrams. Erhard Scholz (1989) gives a 
modern account of Culmann’s attempts to bring out the projective geometry character of 

Figure 11-1. Simple spatial and force diagrams for three concurrent forces in equilibrium.

Figure 11-2. Force and funicular polygons for a system of five plane forces.
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Box 11-1. Projective Geometry and Graphic Statics
For a more formal treatment of projective geometry, the reader is referred to H. S. M. 
Coxeter (1955). The basis of plane projective geometry is the acceptance of an ideal point 
as the point of intersection of parallel lines, located in the direction of the parallel lines 
“at infinity.” Lines close to parallel can be seen to intersect at increasingly remote dis-
tances as the angle between the lines becomes smaller, with “intersecting at infinity” 
considered as the limiting case. Two points at infinity can be used to define the line  
at infinity, whereas an ordinary point and a point at infinity define a line in a given 
direction.

One of the results of this conception of plane geometry is that Euclid’s first axiom, 
“exactly one line can be drawn through two points” is interchangeable with the modified 
fifth axiom that any two lines intersect in exactly one point. So, any statement regarding 
lines and points and their incidence can be transformed to the “dual” statement, simply 
by interchanging “points” and “lines.” Following are examples of this dualization:

The dual figure to three collinear points (three points incident with a line) are three 
concurrent lines (three lines incident with a point).

The dual figure to any polygon is another polygon with edges and vertices inter-
changed. Each vertex in a pentagon, for instance is incident with two edges, and each 
edge in the dual figure is incident with two vertices.

Two constructions are particularly important in projective geometry: the construc-
tion of Desargues’s theorem, discussed in Box 11-2, and the construction of harmonic 
points on a line, discussed in Box 11-3.

To add to the construction of the force and funicular polygon described in Chapter 
11, one can choose an arbitrary point, called the pole of the force polygon, and use it to 
construct the components of each of the forces. These force directions are placed on the 
funicular polygon in such a way that they intersect on the line of action of each of the 
three forces in the system (Figure B11-1-1).

Figure B11-1-1. Construction of force and funicular polygon for three concurrent forces.
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the graphical calculations that he developed in Die Graphische Statik. Du Bois, in the preface 
to his book on graphic statics, quotes Jean-Victor Poncelet to describe the developments in 
geometry that resulted from the work of mathematicians and claims that projective geom-
etry, or geometry of position will eventually replace metric, or Euclidean, geometry, in the 
vocabulary of the engineer:

Little by little, algebraic knowledge will become less indispensable, and science, reduced 
to what it needs to be, to what it should already be, will thus be placed within the grasp 
of that class of men who have but a few rare moments to dedicate to its study. (p. xlviii)

In fact, throughout the rest of his book on graphic statics, Du Bois’s use of projective 
geometry is very limited. He discusses the application of Desargues’s theorem (discussed in 
Box 11-2) at one point in the development of the graphical calculation of support moments 

This construction shows the reciprocal nature of the two triangles. The triangle ac 
ab, bc on the force diagram represents three forces in equilibrium (and the corresponding 
concurrent lines on the funicular diagram), and the funicular triangle abc (and the cor-
responding concurrent lines on the force diagram) represents the lines of action of a set 
of internal forces, or strings, in equilibrium with the applied loads.

The connection to projective geometry, as described, can be seen in the duality 
between the two diagrams shown in Figure B11-1-1: edges of the force polygon corre-
spond to vertices of the funicular polygon and vice versa. The three edges of the force 
polygon correspond to three concurrent lines on the funicular polygon and vice versa. 
This is the configuration shown in Figure B11-1-1 and Table B11-1-1; however, the dia-
grams do not represent a pair of dual figures. In this configuration, the force polygon 
consists of six lines and four points: each line is incident with two points, and each point 
is incident with three lines. The funicular polygon consists of six lines and four points: 
each line is incident with two points and each point is incident with three lines. The dual 
figure of each of these polygons would have four lines and six points, each point incident 
with two lines and each line incident with three points. Thus, the dual figure would be 
a complete quadrilateral as described later in Box 11-3.

As Culmann points out (1875, pp. 280–282), extending the lines ABC of the funicu-
lar polygon or ab, bc, ca of the force polygon to their intersection with the line at infinity 
and adding the line at infinity results in two configurations of seven lines and seven points, 
with three points incident with each line and three lines incident with each point, that is 
a self-dual configuration. The roles of each of the elements in the force and funicular 
polygon are reciprocal, as described in Table B11-1-1.

Table B11-1-1. Reciprocity of Force and Funicular Polygons Following 
Culmann (1875)
Feature Force Funicular

External forces External force lines ab, bc, ca Points of application ab, bc, ca

Internal forces Points of intersection a, b, c Internal force lines a,b,c

Pole Of Line at ∞

Pole Line at ∞ Oe
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Box 11-2. Desargues’s Theorem
According to Desargues’s theorem, if two triangles have their vertices on lines incident 
with a common point, then the points of intersection of the corresponding sides of the 
triangle lie in a common line. The funicular polygon in Figure B11-2-1 is an example of 
a triangle with its vertices incident with a common point. To see how Desargues’s  
theorem works, one can add another funicular triangle a’b’c’ to the diagram in Figure 
B11-2-1. Then the intersection of sides a and a’, b and b’, and c and c’ all lie in a common 
line, which is labeled the Desargues line on the diagram. The theorem holds equally for 
pairs of triangles whose vertices lie in parallel lines, that is, lines radiating from a common 
point at infinity.

In constructing the corresponding set of reciprocal lines a’, b’, and c’ in the force 
polygon, it is found that the pole shifts in a direction identical to the direction of the 
Desargues line, as shown in Figure B11-2-2.

Figure B11-2-2. Force polygon for three concurrent forces with two alternative pole locations.

Figure B11-2-1. Desargues’s theorem applied to funicular diagram for three concurrent forces.
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These facts about the force and the funicular polygon, and particularly about 
changes in the location of the pole in the force polygon, are illustrated in Eddy’s diagram 
(Figure B11-2-3) in his article on reciprocity in graphic statics (1878). Eddy’s diagram 
shows four forces ab, bc, cd, de, and their resultant ae, plotted on two different force 
polygons, with poles at p and p′ and on two different funicular polygons. Because the 
resultant and any two reactions form a triad of forces in equilibrium, a consequence of 
Desargues’s theorem is that the strings of the funicular polygon intersect on a common 
line, which will be called a Desargues line. The corresponding Desargues line is shown 
on Eddy’s construction as pp′ slightly inclined from the horizontal.

The main value of these methods lies in the applications to solving statics problems, 
and the graphic solutions of beam, truss, and arch problems is shown in following 
chapters.

Figure B11-2-3. Application of Desargues’s theorem to force and funicular polygons.
Source: Eddy (1878).



 introduction to graphical methods of analysis 155

Box 11-3. Projective Geometry Transformations Following Coxeter (1955)
The study of projective geometry includes the study of the effect of transformations, such 
as perspectivities, and composition of perspectivities, known as projectivities, along with 
two-dimensional transformations of points to points and lines to lines (collineation) or 
points to lines and lines to points (correlation). These transformations generally do not 
preserve metric properties (distances) but do preserve the harmonic property described 
following. The two-dimensional transformations also preserve incidences, that is, for a 
collineation, three points incident with a given line remain so after transformation. For 
a correlation, the three points incident with a line transform to three lines incident with 
a point.

A quadrilateral with its two opposite sides extended to their point of intersection 
(that may be at infinity) is known as a “complete quadrilateral.” By connecting the two 
points of intersection of pairs of opposite sides and then drawing the diagonals of the 
quadrilateral, the line is divided into four parts that respect a ratio called the “harmonic 
ratio.”

The six points ABCD and PQ shown in Figure B11-3-1 form a complete quadri-
lateral. There is said to be a harmonic relationship among P, Q, R, and S. The point S is 
considered to be harmonic to R with respect to PQ, or reciprocally R is harmonic to S 
with respect to PQ, or P is harmonic to Q with respect to RS, or Q is harmonic to P 
with respect to RS. The first of these relationships may be abbreviated H (PQ, RS). This 
means that the line segments observe the harmonic ratio. Note that if R is at the midpoint 
between P and Q, S is at infinity.

The basic one-dimensional (linear) transformations of projective geometry are per-
spectivities and projectivities. A projectivity is a general transformation of a sequence of 

Figure B11-3-1. Complete quadrilateral ABCDPQ and harmonic construction H(PQ,RS).
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points that preserves the harmonic property, whereas a projectivity is a projection of the 
points of a line onto points of another line. A perspectivity from line a to line b about a 
focus O is shown in Figure B11-3-2. It can be proven that perspectivities preserve the 
harmonic relationship, that is, if H(AB,CD), then H(A’B’,C’D’) and that every projectiv-
ity is a composition of perspectivities.

Two-dimensional transformations are more complex, but one—the homology—is 
of interest in graphic statics and is revisited in Chapter 13 in the section on the 
graphical analysis of arches. A homology is a transformation of a plane by an axis 
and a center. The transformation is determined by the center, the axis, and two pairs 
of transformed points. As shown in Figure B11-3-3, a homology is defined with the 
center O, axis m, and a single pair of transformed points A, A’. Because the axis 
consists of invariant points, the line AB intersects the axis m at an invariant point, 
so the line A’ B’ must intersect the axis at the same point, giving the location of B’. 
The transformation preserves incidence, that is, the transform of line AB passes through 
A’ and B’.

Figure B11-3-3. A homology with center O and axis m.

Figure B11-3-2. A perspectivity with center O.



 introduction to graphical methods of analysis 157

Figure 11-3. Graphic analysis of an arch force polygon is in lower right, illustrated by strings S. 
Funicular polygons are drawn superimposed on the diagram of the arch.
Source: Howe (1914).

in a three-span beam. Other authors, such as Malverd Howe (1914) also provide an exten-
sive graphical treatment of the topic of arch analysis (see Figure 11-3).

Culmann’s Theorem

Culmann’s Theorem is a result that will be invoked in the graphical analysis of beams and 
is also applicable to the analysis of arches and trusses. Culmann’s Theorem is based on the 
similarity relationships between the force polygon and the funicular polygon. It allows the 
calculation of internal bending moments in beams on the basis of an evident force quantity 
in the force polygon and a length in the funicular polygon. Referring to Figure 11-4, given 
a system of forces shown on the funicular polygon and the corresponding force polygon, 

Figure 11-4. Culmann’s Theorem: The moment of the resultant force about A can be calculated as 
the product of the force H and the length S instead of the resultant force times the distance d.
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the moment of the resultant force about an arbitrary point A is equal to the magnitude of 
the resultant (shown on the force polygon) times the perpendicular distance from the line 
of action of the resultant to A, designated d on the funicular polygon. According to 
Culmann’s theorem, this is equal to the perpendicular distance from the pole to the resultant 
of the force diagram, designated H, and the distance S on the funicular polygon, measured 
between strings representing the components of the resultant along a line parallel to the 
resultant passing through the point A. The theorem is a consequence of the similarity of the 
shaded triangles in the force and funicular polygong.

The widespread applications of graphical statics to structural design in the late 1800s 
are more easily seen through the investigation of examples of areas where these techniques 
were commonly used. In the following four chapters, graphical statics is examined in its 
application to three important structural types. First, the uses of these techniques for the 
investigation of the forces in the bars of trusses will be investigated—this is undoubtedly 
the most widespread and the most enduring of the applications of graphical statics. The uses 
of graphical statics in the analysis of arches then is investigated. The analysis of arches will 
be followed by the presentation of some particulars on the graphical analysis of beams and 
portal frames.

Although further examples of graphical constructions are provided in the following 
chapters, it is worthwhile to consider some of the possible uses of graphical statics in struc-
tural engineering. The principal uses of graphical statics in structural engineering are in the 
analysis of trusses, arches, and beams, which are covered in Chapters 12, 13, and 14. Figure 
11-3 shows a graphical analysis of a low-rise symmetrical arch. The figure is taken from 
Howe (1914). Figure 11-5, taken from Charles Ezra Greene (1877), depicts the force 
polygon and the funicular polygon for a beam, a construction that will be examined in 
further detail in Chapter 14. In Figure 11-6, taken from Howard Drysdale Hess (1915), a 

Figure 11-5. Illustration of the force polygon (O12) and the funicular polygon A′C′D′E′K′FG′I′ for 
a beam.
Source: Greene (1877).
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truss is shown accompanied by its graphical analysis and construction details. The topic of 
the graphical analysis of arches will be discussed in further detail in Chapter 13.
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Graphical Analysis  
of Trusses

Like analytical methods, graphical analysis methods for trusses are 
divided into the method of joints and method of moments (now known 
as method of sections). The graphical method of joints was commonly 
used in trusses for buildings, due to its simplicity, ease of application, 
and self-correcting characteristics. The use of this method persisted 
through the 1950s (Sahag 1958, Turner 1966). The graphical method 
of moments was less commonly used: it is less straightforward and, 
like its analytical counterpart, only determines the forces in the three 
members cut in a given section. The two procedures of the graphical 
method of moments were named after their inventors Wilhelm Ritter 
and Karl Culmann. Although Ritter’s method has an analytical coun-
terpart, Culmann’s method is strictly graphical. Graphical methods 
were only occasionally used for bridge trusses, because of the variable 
loading on bridge structures; analysis of trusses by William Merrill’s 
method (1870) and the later efforts of Mansfield Merriman and Henry 
Sylvester Jacoby (1894) are exceptions. Bridge designers generally pre-
ferred the analytical methods discussed in Chapter 7.

Graphical Method of Joints

This method, also known as Maxwell’s method or the Cremona-
Maxwell method, consists of constructing force diagrams for the bar 
forces at each joint in sequence. Because a bar connects to two joints, 
once the force in one end of the bar is known, the force in the other 
end is also known and can be used to solve the next joint.

12
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The great advantage of the graphical method of joints is that all of the joint force 
diagrams can be superimposed on the same diagram. This requires the use of a system of 
notation developed by Robert Henry Bow (1873, p. 51), in which the space between each 
of the loads and reactions is given a letter of the alphabet, and each panel of the truss is 
given a number. Each force can be represented by a pair of alphanumerics. The first load 
from the left-hand side of the truss in Figure 12-1 is a-b, the force in the vertical at the 
center of the truss is 5-6, and the force in the top chord just to the left of the gable is c-5. 
The first set of forces drawn on the diagram are the loads and reactions, starting from a-b 
and closing with g-a. When all of these forces are vertical, this is a vertical line, known as 
the “load line” (shown in Figure 12-2).

When the load line is drawn, any joint with two unknown quantities can be solved. For 
the truss of Figure 12-1, the joint at the left or the right support has to be solved first. To solve 
this joint, take the forces at the joint in a clockwise direction, beginning with known forces 
and continuing to unknown forces. At the left support, the 2,500-lbs reaction, g-a, is known, 
and a-1 and 1-g are unknown. The point 1 must be at the intersection of the directions 
of line a-1, at a slope of 6 in 12 from a, and line 1-g, in a horizontal direction from g. 

Figure 12-1. Inclined chord Howe truss to be analyzed by graphic methods.

Figure 12-2. Load line for truss analysis.
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The force in a-1 can be read off as 5,000 horizontal, 2,500 vertical, or measured as 5,590 lbs. 
The force in 1-g is 5,000 lbs (see Figure 12-3).

Joint g-1-2 is next, with 2 being located on a vertical line from 1 and a horizontal line 
from g. Because 1 already lies on a horizontal from g, this can only be constructed if 1 and 
2 coincide, making 1-2 a 0-force member. With 1 and 2 known, the next joint to solve is 
2-1-a-b-3, with unknowns b-3 and 3-2. Unknown b-3 has a slope of 6 in 12, going up from 
left to right, and 3-2 has a slope of 6 in 12, going up from right to left, enabling the con-
struction of point 3. The force in b-3 is 4,000 horizontal and 2,000 vertical, and the force 
in 3-2 is 1,000 horizontal and 500 vertical (see Figure 12-4).

Continuing in like manner through the center of the truss, the diagram of the forces 
to the left of the gable, shown in Figure 12-5, can be constructed. Symmetry allows quick 
completion of the diagram for the truss, as shown in Figure 12-6.

Among many others, this method is described thoroughly by Luigi Cremona (1890), 
Swain (1896), Charles Ezra Greene (1877), Milo Ketchum (1903), Frank Kidder (1886), 
Merriman and Jacoby (1894), and nearly every other contemporary writer on graphic statics. 

Figure 12-3. Analysis of support joint by graphic method.

Figure 12-4. Analysis of second panel by graphic method.
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The method was preferred for the analysis of building trusses through at least the 1930s 
when more widespread calculating machinery made the analytical method of joints prefer-
able. Examples of the use of this method include bachelor of engineering theses from Cornell 
and Lehigh Universities (Shumway 1904, Dunnells 1897).

Kidder (1886, p. 436) presents extensive graphic analyses of commonly used roof truss 
forms (Figure 12-7). His analysis follows exactly the method as presented. He applies this 
method to various roof trusses from simple trusses to trusses with curved top and bottom 
chords. The design of such trusses in wood and iron is accomplished according to the rules 
previously described for the tensile and compressive resistance of these materials. Merriman 
and Jacoby (1894, part 2, p. 49) extend the method to trusses loaded by wind pressure only. 
In the method they present, a degree of statical indeterminacy at the supports is allowed 
and overcome by assuming the direction of the reaction at one of the supports is in the 
direction of the normal wind pressure on the windward side of the roof (Figure 12-8).

Figure 12-5. Analysis of half-truss by graphic method.

Figure 12-6. Analysis of complete truss by graphic method.
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Figure 12-7. Analysis of a roof truss for gravity loading.
Source: Kidder (1886).

Figure 12-8. Merriman and Jacoby approach to wind load design of a roof truss. Loading and truss 
configuration are shown in the upper figure, with assumed direction of windward support reaction. 
Computation of bar forces in the truss by Cremona-Maxwell method is shown in the lower figure.
Source: Merriman and Jacoby (1894).
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Graphical Method of Moments

It is not necessary to analyze each of the joints in turn to determine the force in a given bar 
in a complex truss. It is sufficient to cut a section through a portion of the truss in which 
there are three or fewer unknown bar forces and to apply the three equations of equilibrium 
in the plane to the portion of the truss cut off by the section. Although the analytical version 
of this method is now known as the “method of sections,” this method was known as the 
“method of moments” in the late nineteenth century. In the following material, two graphi-
cal versions of the method of moments are presented, named for their authors, Ritter and 
Culmann.

Ritter’s method consists in cutting a section through three bars of a truss, then taking 
moments graphically about the point where two of the bars intersect. The force through the 
third bar is the only unknown force acting on the system and can be found from moments. 
The moment acting on the truss can be computed graphically, as shown in Figures 12-9 
through 12-11 for a four-panel Fink, or Polonceau, truss. The moment arm of the top chord 
at section b about the intersection of the bottom chord and the web member coincides with 
the first web member. This line joins the intersection of the bottom chord and the web 
member and is drawn perpendicular to the top chord.

In Figure 12-9, Ritter’s method is used to find force in the top chord at section b. First 
the force and funicular polygons for the truss and its loading are drawn. By Culmann’s 
theorem (see Chapter 11), the moment at section b equals the horizontal distance from pole 
to load line in the force polygon times vertical distance between the two strings on the 
funicular polygon on a vertical line from the center of moments. These quantities are laid 
out as the base and vertical legs of the triangle (hypotenuse dashed) in Figure 12-10. Using 
the transformation described in Box 12-1, the moment arm of the top chord about center 
of moments is shown approximately two-thirds of the way up the vertical leg of the triangle 
in Figure 12-10. A line is drawn in Figure 12-10 as to the inner hypotenuse beginning at 

Figure 12-9. Force and funicular polygons for a four-panel Fink truss.
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Figure 12-10. Graphical determination of top chord force adjacent to gable, four-panel Fink truss.

Box 12-1
To explain the application of Ritter’s method, some preliminaries are necessary (Culmann 
1875). Moments can be represented graphically on the funicular diagram by drawing a 
scaled force perpendicular to a given moment arm. An example shown in Figure B12-1-1 
shows force OF and moment arm Or. Then, the area of the triangle drawn on these two 
lines represents (half ) the moment of the force. To find the force associated with a dif-
ferent moment arm, say Or′ in Figure B12-1-2, draw a line through r parallel to Fr′. The 
intersection of this line with OF, extended, gives OF′ such that OF′ × r′ = OF × r.

Figure B12-1-1. Transformation of forces and moment arms in Ritter’s method.

Figure B12-1-2. Proof by areas of transformation of forces and moment arms in Ritter’s method.

The geometrical proof of this transformation is given in Figure B12-1-2. The two 
hatched areas are equal. Let a = the difference between r′ and r and d = the difference 
between F′ and F. The hatched area to the left = r’d, and the hatched area above = Fa. 
However a/d = r′/F.

Substituting r′ = aF/d, the areas are equal. By subtracting one area from RF and 
adding it to r′F gives r′F′, we can conclude that rF = r′F′.
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Figure 12-11. Application of Culmann’s method of moments to a four-panel Fink truss.

the moment arm of the top chord. The intersection of the outer hypotenuse (parallel to the 
inner) with the horizontal defines the force in the top chord. The bottom chord force can 
be found similarly.

By Culmann’s method, the top chord force at a section is found by decomposing the 
resultant force (read from the force diagram) into a force along the top chord and a force 
passing through the point of intersection the other two members cut in the section (bottom 
chord and web). For the same truss shown in Figure 12-9, Figure 12-11 illustrates this 
process. On the force polygon, the resultant force at the section is found on the load line. 
The line of action of the resultant force is represented on the funicular polygon as passing 
through the point of intersection of the two strings representing components of the resultant 
force, well to the left of the support point. Following this step, the resultant force can be 
decomposed into a force x parallel to the top chord (to the left of the load line) and a 
force y passing through the intersection of the two other bars cut by the section. These 
directions are transferred to the force polygon, determining the forces in the top chord. 
As the force y is the resultant of the forces in the other two bars, their directions can be 
represented as components of y. This decomposition is also shown on the force diagram 
in Figure 12-11.
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Semigraphical Methods for Analysis of Bridge Trusses

Hermann Haupt (1858), in investigating simple wooden bridge trusses in a Howe configura-
tion, applied a simple semigraphical method to the determination of the forces in the chords 
under single-panel loading, which is extended by Merrill (1870), whose method is described 
following. Merrill’s method consists in finding the bar forces due to an individual panel load 
and summing all of the forces in each bar due to all of the panel loads present on the bridge. 
The forces due to a panel load are found by a simple graphic construction of the funicular 
diagram of the support reactions and the panel load and subsequently decomposing the two 
strings into components along all of the bars at the panel joint. This method is best illustrated 
by a simple example. For the six-panel Pratt truss shown in the upper diagram in Figure 
12-12, the direction of the reactions due to a force applied at the second panel point can 
be found by drawing lines to the points of support. By transferring the direction of these 
two resultant forces by the parallelogram rule, they are used to represent, by means of the 
upper line segments, the two components of the unit load applied at the panel point. Each 
of these line segments can be further decomposed into forces in the directions of the bottom 
chords, tie, and vertical strut, as illustrated in Figure 12-12. The figure taken from Merrill 
shows the further process of constructing similar diagrams at each panel point and determin-
ing the force in any member of the truss due to a unit load at a specific panel point. The 
actual determination of bar forces under a given train of loading consists of superimposing 

Figure 12-12. Example of semigraphical analysis of a Pratt truss by Merrill.
Source: Merrill (1870).
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the forces due to all of the panel point loadings that result from the weight of the locomo-
tive and train.

Merrill’s semigraphical discussion of detailed truss designs is used similarly by William 
Eads (1868) in a discussion of the action of a truss, meant to show that Eads’s arch design 
for the St. Louis Bridge was more economical.

Merriman and Jacoby (1894) present a different semigraphical method of bridge truss 
analysis. Dead load stresses are found in the same manner as stresses on bridge trusses, by 
drawing a Cremona-Maxwell diagram for the truss. Merriman and Jacoby further point out 
that maximum chord stresses result from all panels loaded condition and also can be cal-
culated by the previous graphic method. However, because of the variable nature of live 
load stresses in truss members, a modified procedure needs to be followed for the live load 
stresses in the web members. To determine maximum web stresses due to live load, Merri-
man and Jacoby note that it is only necessary to draw the web stresses for one load position 
and to recognize that for other load positions the web stresses increase by an integral factor.

For instance, given an eight-panel Warren truss, such as that shown in Figure 12-13, 
a unit load positioned as shown can be found graphically to result (in the dashed web 
member, three panels from the left support) in the force shown dashed on the force diagram. 
For a load positioned at the next position to the left, the force in the web member under 
consideration will double. For a force positioned at each of the panel points to the right of 
the web member under consideration, the total force will be 5 + 4 + 3 + 2 + 1, or 15 times 
the live load force in the force diagram. It is a simple matter to assemble a table of the 
maximum live load forces on the basis of the force diagram. Table 12-1 shows the maximum 
tensile and compressive live load force on each bar of the web of the truss shown in Figure 
12-13 as a multiple of the live load found from the diagram in the figure.

Graphical Analysis of Building Trusses by Swain

In describing the graphical analysis of various forms of building trusses, George Fillmore 
Swain considers both the method of joints and the method of sections (1896). He describes 
the process of computing a truss for design, requiring the completion of four truss diagrams, 
for dead load, snow on left, wind on left, and wind on right, combining the load effects as 

Table 12-1. Bar Force Multipliers for Web Bars in an Eight-Panel Warren Truss
Bar (numbered from  
left support)

Maximum tensile live  
load multiplier

Maximum compressive  
live load multiplier

1 0 35

2 35 0

3 1 21

4 21 1

5 3 15

6 15 3

7 10 6

8 6 10
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necessary. He shows these diagrams for a gabled Howe truss; a gabled Warren truss with a 
cambered bottom chord; an eight-panel Fink, or Polonceau, truss; and a pair of fan trusses: 
six-panel and 12-panel.

Both the Fink truss and the fan trusses present a problem in analysis, which Swain 
terms “ambiguous cases.” Although this discussion is available in Swain’s 1896 course notes, 
it is easier to find in his 1927 textbook. A different procedure to solve the same problem 
appears in Merriman and Jacoby (1894), part II, page 61. In general, it is only possible to 
solve for two unknown forces at a joint by Maxwell’s method. Most trusses can be solved 
directly in this fashion. A few types of statically determinate trusses have joints with more 
than two unknown forces when proceeding joint by joint. In the eight-panel Fink truss 
shown in Figure 12-14, it is possible to solve joints a-1-i, a-b-2-1, and 1-2-3-i directly. 
However, the following joint b-c-5-4-3-2 has three bars with unknown forces.

Swain’s procedure illustrated using the left half of the truss in Figure 12-14. Construct 
1, 2, 3 normally, then assume a location for 5 on a line following the roof pitch to C (shown 
as 5 on the partial force diagram at the lower left). Find 6 on the basis of 5 (follow slope 
of 5-6 to diagonal from D) and 7 on basis of 6. Point 4 must be on diagonals from 3 and 
7 (based on slope of 3-4 and 4-7). Point 4 must also be on a horizontal from 5, and 7 must 
remain on the horizontal from I, and 6 must remain on the sloped line from D. These 

Figure 12-13. Example of semigraphical analysis of a Warren truss for moving load by Merriman and 
Jacoby.
Source: Merriman and Jacoby (1894).
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conditions can only be satisfied by shifting the triangle 5-6-7 to the left, as shown. This can 
then be redrawn on the truss diagram.

The second procedure for the solution of this system is given by Merriman and Jacoby 
(1894). Consider an auxiliary member (drawn dashed) to temporarily replace the actual 
diagonal 2′ to 3′. The truss can be solved based on this member (shown on the lower half 
of the truss diagram), suppressing panel 5′ temporarily. This procedure correctly locates 
point 7. Points 6′ and 5′ can be correctly located on the line 5′, 7, and the remainder of the 
points for the actual truss follow immediately from this. The completed diagram for this 
truss is shown on the right half of the truss in Figure 12-14. A complete solution of the 
eight-panel Fink truss is shown in Figure 12-15.

Swain (1896) also describes the graphical method of moments for a similar truss. In 
the upper diagram in Figure 12-16, Swain determines the forces by the calculation of 

Figure 12-14. Swain’s and Merriman and Jacoby’s solution of an eight-panel Fink truss with ambigu-
ous members.
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moments and the transformation of the moment arm, using Culmann’s theorem, through 
an application of Ritter’s method. For instance, at a section through the first panel, he 
chooses the moment arm l6 to determine the force in the bottom chord. The global moment 
on the truss at that location is found by Culmann’s theorem to be H × a6b6 on the funicular 
polygon. To find this moment divided by l6, he lays off l6 perpendicular to a6b6 at b6 He 
then draws a similar triangle to a6b6l6 with base of length H at c6d6. Then, by similar triangles 
H × a6b6 = l6 × a6d6, so that a6d6, measured on the scale of forces, is equal to the force in 
the bottom chord at section. The diagram includes a similar graphical analysis of all the 
bars in the truss.

In the lower diagram in Figure 12-16, Swain undertakes an analysis of the same truss 
under the same loading conditions by Culmann’s method. The force in the bottom chord 
bar 5-6 is found by locating the resultant of the forces acting on the left side of the section 
shown lightly on the drawing of the truss; this is done by extending strings 0-1 and the 
closing line to their intersection. The resultant, passing through this point, is decomposed 
into s-t, passing through the point of intersection of the top chord and the web member, 
and s-t′, parallel to the bottom chord. When transferred to the force polygons, these 

Figure 12-15. Complete graphical solution of eight-panel Fink truss.
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Figure 12-16. Swain’s (1896) application of Ritter’s (upper diagram) and Culmann’s (lower diagram) 
methods to the analysis of an eight-panel Fink truss.
Source: Reproduced by permission from The Huntington Library, San Marino, CA. Call No. Rare Books 624550.
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directions yield the force in the bottom chord. Similar operations are performed at other 
sections throughout the truss.

Use of Graphical Methods of Truss Analysis

In the late 1800s, many graphic procedures were available for the determination of forces 
and deflections in trussed structures. These were widely used, depending on the ease of use 
and the perceived usefulness of the information extracted from the method. The construction 
of force diagrams for building trusses was a method widely used, because it was considered 
significantly simpler than its analytical counterpart. This method was used generally for the 
analysis of building trusses. Although the graphical method of moments was well known 
and taught in many engineering schools, these methods do not appear to have been so widely 
applied. An examination of theses from engineering schools on the East Coast from the late 
1890s shows a widespread application of graphic methods to the solution of building trusses. 
In the design of mill buildings, it was necessary to apply these methods to the analysis of 
braced bents that incorporated a roof truss. This topic will be described in more detail in 
Chapter 15.
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Graphical Analysis  
of Arches

Graphic analysis of arches consists of locating the internal compressive 
resultant within the arch under analysis or design. This line is alter-
nately known as the thrust line or the line of resistance. The funicular 
polygon construction, which is described in Chapter 11, is particularly 
useful for constructing the thrust line or line of resistance of an arch. 
The thrust line generally is defined (Heyman 1982) as a line composed 
of points in an arch where the external forces (loads and reactions) 
can be resisted without moments. This idea is illustrated for a section 
of an arch in Figure 13-1. If the reactions are known, a funicular 
polygon automatically determines the thrust line of an arch. From the 
construction of the thrust line of the arch, it is possible to determine 
the magnitude of the internal axial force from inspection of the force 
polygon. It is more convenient to calculate the bending moment directly 
as a product of the resultant force at a point and the deviation of the 
thrust line from the centerline axis of the arch (see Chapter 11). An 
alternative, for an arch subjected to vertical loads only, is to formulate 
Culmann’s theorem (Chapter 11) based on the horizontal component 
of the reaction, equivalent to the pole distance in a beam problem, and 
the bending moment at any point in the arch becomes the pole distance 
multiplied by the vertical distance between the funicular polygon and 
the centerline of the arch (Sondericker 1903, p. 74).

Moreover, by confining the thrust line to a predetermined portion 
of the arch ring, the stress in the arch can be mitigated. Although the 
middle one-third of the arch ring was often considered the proper limit 
on the thrust line location for an arch, less restrictive limits were 
observed by some authors, according to the discussion in the final 
section of this chapter. Because the determination of reactions is 

13
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approximate and is based on balancing the eccentricity of the thrust in some fashion, having 
the thrust line available allows the analyst to achieve this balance visually, resulting in a 
close approximation to the supposed actual thrust line.

Some methods for the determination of an arch thrust line are reviewed in this chapter; 
however, trial and error remains the most generally applicable method. In most cases, the 
required analysis is for a symmetrical arch, with the result that only half the force polygon 
needs to be used and that the string at mid-span, representing the crown thrust of the arch, 
is horizontal. Figure 13-2 shows the general procedure. Divide the arch into sections, then 
determine the weight and locate the centroid of each section. The weights of the sections 
are put in order into a force diagram. Choose a pole location: for a symmetric arch, the 
pole can be such that the crown thrust is horizontal, and rays are drawn from the pole to 
the intersection points of the loads on the load lines. Transfer the direction of these rays to 
the funicular diagram in such a way that the two rays that are components of a given load 
intersect on the line of action of that load. The location of the resultant of the forces  
can be found on the funicular diagram by joining the two external strings, as shown in 
Figure 13-2.

Masonry arches lend themselves to graphical analysis for three important reasons. 
First, a fixed arch is, in general, three degrees statically indeterminate and, on these grounds 
alone, particularly difficult to solve analytically. The approximate analytical methods of 
dealing with static indeterminacy in arches given in Chapter 6 demonstrate how tedious this 
type of analysis can be. Second, the curve of the arch complicates transforming vertical loads 
into the coordinate system of the arch. As a result, even statically determinate arches have 
relatively complex formulas to determine the forces in the arch. Third, for masonry arches, 
the lack of tensile resistance dictates distinct bounds on the solution that make approximate 
solutions credible. If the masonry is assumed to have no tensile resistance, then the line of 

Figure 13-1. Thrust line of an arch at a cross section.
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pressure in the arch is required to be within the arch, whereas if it is considered undesirable 
to generate tensile stresses, the line of pressure must be within the middle third of the arch 
(see, for instance, Baker 1907, p. 449). This principle is illustrated in Figure 13-3. The middle 
third condition may be considered a prerequisite for stability of the arch, or alternatively, 
it may be considered a desirable state for serviceability: many nineteenth-century authors 
do question the merit of this criterion as a stability condition. In fact, no arch to this author’s 
knowledge is able to maintain the “middle one-third rule” under all expected loading condi-
tions. In the words of Ira Osborn Baker (1907, p. 451), rebutting William John Macquorn 
Rankine’s assertion of the middle third rule, “A reasonable theory of the arch will not make 

Figure 13-2. Simple analysis of a symmetrical arch.

Figure 13-3. Various conditions of pressure within a segment of an arch.
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a structure appear instable which shows every evidence of security.” George F. Swain (1896, 
p. 123) gives the following conditions of safety of the arch:

•  The true line of resistance must be within the arch ring or with the middle third if 
there is to be no tension.

•  The true pressure on any joint must not make the normal to that joint a greater 
angle than the angle of repose.

•  The true maximum intensity of pressure at any joint must not exceed the allowable 
stress.

However, in spite of the first statement allowing the thrust line to stray from the middle 
third, Swain applies the middle third rule to the determination of the suitability of an arch 
in all his subsequent constructions.

The approximate analysis of the arch reduces to finding a suitable line of pressure 
within the arch for the given loads, an exercise that can be completed graphically by the 
construction of a funicular polygon appropriate for the given loads imposed on the structure. 
This construction can be done for dead or construction loads separately from dead plus live 
load, or for various configurations and locations of live load. The basis of the procedure is 
to divide the arch and its loading into segments, to use the series of these load segments for 
the construction of a force polygon, and to use the force polygon to complete a funicular 
polygon. The correct funicular polygon can be chosen by trial and error or by completing 
a single funicular polygon using a trial pole location and using the properties of the funicular 
polygon to determine the required funicular polygon.

Several theories, previously described in Chapter 6, were advanced for the determina-
tion of the correct line of resistance, or thrust line, for the arch. These included the deter-
mination of the minimum least squares error of the thrust line from the centerline of the 
arch, a laborious mathematical procedure that, if it was used, was probably applied intui-
tively by minimizing the deviation about the centerline of the arch. The least absolute pres-
sure was also used as a criterion, but Baker calls this “a meta-physical principle.” Most 
common (because easiest to apply) was to use the least permissible crown thrust. Although 
this has been considered as a principle to be applied analytically, it is also amenable to 
graphical analysis.

The basis of the application of graphical statics to the determination of stability in a 
masonry arch is the construction of a funicular polygon for the given loads (see Chapter 
11) that lies within the arch. Although we will consider primarily symmetric loading cases, 
the method is equally applicable to nonsymmetric loading. The arch is subdivided into seg-
ments: if the arch and the loading are symmetric, it suffices to consider half the arch, noting 
that the line of pressure will be horizontal at the axis of symmetry. If only vertical loads are 
considered (no horizontal earth pressure), a vertical load line is drawn to a force scale. A 
pole is selected and the polar rays are drawn to the points of intersection of the loads on 
the load line. This initial pole may be selected on a horizontal line from the point of sym-
metry of the load line, or it may be selected arbitrarily. By constructing the polar rays on 
the funicular diagram as the components of the load segments, it is possible to determine a 
funicular polygon appropriate for the loads on the arch. As the objective of the construction 
is to draw a funicular polygon within the arch (or within the middle third of the arch), the 
pole location must be moved, and a correct funicular polygon drawn, either by trial and 
error or by a more efficient procedure, such as Méry’s method.
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In Méry’s method, the initial choice of a pole is arbitrary, resulting in an arbitrary 
funicular polygon. The intersection of the two strings representing the crown thrust and the 
support reaction gives a point on the line of action of the resultant of all the loading. Then 
a horizontal line can be drawn from the crown, representing the crown thrust, and an 
inclined line can be drawn from the abutment intersecting the line of action of the resultant 
at the same point as the crown thrust. The construction of the funicular polygon can be 
completed, either by locating the correct pole location on the basis of these two external 
strings or by constructing the remaining strings directly by incidences. The basis of the latter 
method is described later in this chapter. This procedure is illustrated in Box 13-1 and the 
accompanying figures are taken from Frank Kidder’s Architects’ and Builders’ Pocket-Book. 
(1886).

Hermann Haupt (1856, p. 137) citing Thomas Tredgold, shows a particularly simple 
method of constructing the thrust line where the two resultants are located, and on the 
simple assumption of a parabolic thrust line, it is possible to construct by tangents. Haupt’s 
point of view on where the thrust line should be to ensure the stability of the arch is “the 
load upon the different parts of the arch and the curve of its intrados must bear such a 
relation to each other that the line of pressure will never fall outside the limits of any joint, 
but will approach as nearly to the center of the joints as possible.”

In Haupt’s construction, having found or estimated the position of the resultant, the 
support reaction, and the crown thrust, the two segments of the crown thrust and support 
reaction are divided into a number of segments, equal to the number of segments between 
the loads (in the case shown in Figure 13-4, three). The tangents to a parabola may be 
constructed by connecting the point farthest from the resultant on one line segment with 
the point closest to the resultant on the other (shown in Figure 13-4) and proceeding  

Figure 13-4. Haupt’s construction of approximate thrust line of a (semicircular) arch.
Source: Haupt (1856).
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Box 13-1. Construction of Line of Pressure
This example, taken from Kidder (1886), presents the solution of the line of pressures 
for a semicircular arch symmetrically loaded only with self-weight in two steps: finding 
the joint of rupture and solving for the arch between joints of rupture. In the left-hand 
portion of Figure B13-1-1, the half arch is divided into 10 equal segments, and the load 
on each segment computed and shown on the load line as A-1, 1-2, and so on. An arbri-
trary initial selection of pole is made (O), and the preliminary funicular polygon is drawn, 
the catenary line a, b, …, n. By extending ab and kn to their point of intersection, the 
line of action of the resultant is found to pass through O on the funicular diagram. Then, 
drawing a horizontal line from the middle third point at the crown A (producing least 
crown thrust) and locating its intersection with a line through B, the exterior middle third 
point at the abutment, the pole O on the force diagram can be determined. Filling in the 
rest of the polar rays and transferring to the funicular diagram results in the funicular 
diagram as shown. It is noted that this diagram passes out of the middle third of the 
arch, with the error being greatest at the seventh joint. Hence, the seventh joint is identi-
fied as the joint of rupture, and a modified arch is considered in the figure on the right. 
Here, the same construction is completed with the abutment moved to the seventh joint, 
and a funicular polygon is found that is contained within the middle third or the arch. 
Note that the crown thrust had to increase in the second construction. It is remarkable 
that the force diagram and both funicular diagrams are combined into a single compact 
drawing in this construction. Although the procedure for constructing a modified funicu-
lar polygon by intersections, without redrawing the force polygon is not used here, this 
procedure is shown later in the discussion of the analysis of Union Arch. Also noteworthy 
is Kidder’s empirical statement regarding the second construction, “This time we see that 
the line of resistance lies within the middle third, except just a short distance at the 
springing, and hence we may consider the arch stable” (Kidder 1886, p. 193). Evidently, 
it is considered permissible for the thrust line to leave the middle third of the arch past 
the joint of rupture. The application of this method to building design does not generally 
require the consideration of nonsymmetric loading. A more complex load case for a sym-
metrically loaded arch is also considered by Kidder, and the combination of the empirical 
rules presented in this chapter and this graphic method would equip an architect to design 
most masonry arches that occur in practice. This method is applicable to any symmetric 
arch, symmetrically loaded. It considerably simplifies the task of locating a thrust line 
that passes through a desired point at the abutment and at the crown of the arch.

Figure B13-1-1. Kidder’s construction of line of resistance for a semicircular arch.
Source: Kidder (1886).
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sequentially to connect all of the points. This construction is exact for equal loads and 
resembles the version of Méry’s method described in this chapter in connection with the 
Union Arch.

When the construction of a line of pressure is known, it is possible to apply some of 
the methods outlined in Swain or Baker for achieving a closer solution of the correct line 
of pressure. To review, Baker considered four primary means of determining the actual line 
of resistance in an arch:

Least Crown Thrust. This is the method employed by Kidder in the aforementioned 
example. The minimum horizontal thrust consistent with the line of pressure remaining in 
the middle one-third of the arch ring is the actual thrust line.

Least Pressure. In the least pressure method, a thrust line is drawn for which the 
maximum pressure in any joint is at a minimum. Generally this is accomplished by keeping 
the thrust line as close to the center of the arch as possible.

Scheffler’s Theory. Scheffler’s theory is a semigraphical procedure for the solution of 
the least crown thrust theory, in which the absolute minimum thrust is determined by sum-
mation of moments through the joints from the crown downward, with the center of rotation 
considered to be the upper middle-third line of the joint.

Winkler’s Theorem. According to Winkler’s theorem, the correct position of the thrust 
line is that in which the least squares sum of the deviations from the arch centerline are at 
a minimum. Although simple enough in statement, the application of this theorem requires 
drawing a thrust line, measuring the error at each joint, calculating the sum of the squares, 
and repeating the process until a satisfactory minimum is found.

Swain (1896, p. 127), citing Baker articles 683 and 684 (1907), asserts that the true 
line of resistance for a vertically loaded arch is the one closest to the centerline. Whether or 
not he means closest in a least squares sense is unclear, although he speaks of the sum of 
vertical deviations.

In practice, Scheffler’s theory and the least crown thrust theory are closely related. Both 
criteria result in a thrust line that is as elevated as possible, usually contacting the extrados 
of the arch at the crown and close to the intrados at the supports. Similarly, Winkler’s 
theorem and the least pressure principle result in similar thrust line configurations that are 
closer to the center of the arch at the crown and at the supports. The results of the two 
different sets of criteria are very little different for semicircular arches but begin to deviate 
for segmental arches of smaller angle of embrace.

Swain (1896, p. 128) asserts what is now known as the lower bound theorem of plas-
ticity (Heyman 1982) as applied to the arch by saying, for instance, that if a line of resistance 
can be drawn within the arch, the true line of resistance lies within the arch.

[I]t follows, therefore, that if a line of resistance can be drawn in the arch ring, the true 
line of resistance lies within the arch ring: or if a line of resistance can be drawn within 
the middle third, the true line of resistance will lie within the middle third … this is only 
a special case of a general principle, first demonstrated in 1879 by the Italian engineer 
Castigliano, that in any statically undetermined structure, the condition of stress will 
always be that corresponding to the minimum work.

For instance, for the segmental arch shown in Figure 13-5, the least crown thrust condition 
is approximately a parabolic line of pressure passing through the extrados at the crown and 
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through the intrados at the support. The greatest crown thrust (shown dashed), however, is 
an approximately parabolic line of pressure passing through the intrados at the crown and 
the extrados at the abutment. However, it is also possible to draw a parabola (shown bold) 
that is very close to the centerline of the arch along its entire length. This represents the 
least pressure configuration and moreover has significantly lower least squares error (and is 
thus a closer approximation by Winkler’s hypothesis) than either of the other two thrust 
lines. Malverd A. Howe (1906, p. 34) adds that the line of pressure may well pass out of 
the middle third, “as long as p [compressive stress] is so small that there is no danger of the 
stone being crushed the arch is stable. It is a recognized fact that this condition exists in a 
large number of arches now standing.”

The design of a stone arch bridge, according to Swain (1896, p. 128) is to assume the 
span, rise, and shape of the intrados; then compute the thickness at the crown by one of 
the empirical formulas from Chapter 2; assume the thickness at the springing and the shape 
of the extrados; and then proceed to see whether a line of resistance can be drawn within 
the middle third. Swain then subdivides the arch and fill into segments, computes their 
weight and centroid location, and proceeds to draw a line of resistance by the method of 
drawing a force and funicular polygon. Having satisfied himself that the arch can resist 
symmetric loading, Swain proposes the investigation of live load on one-half the span. In 
this case, the funicular polygon is not so easy to draw, the crown thrust being inclined with 
respect to the horizontal, so Swain employs a procedure for supposing three points of the 
line of resistance (at the supports and the crown) and drawing a funicular polygon through 
these three points.

Unsymmetrically Loaded Arch

The process of finding an appropriate thrust line for an unsymmetrically loaded arch is more 
complicated and can be accomplished in one of two ways. This can be done by a process 
of finding successive approximations to the thrust line, using the properties of the funicular 

Figure 13-5. Positions of least crown thrust, greatest crown thrust, and least pressure thrust lines.
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polygon. Swain (1896) suggests a more exact general procedure for drawing a funicular 
polygon through any three given points. This makes the trial and error in finding the correct 
funicular polygon unnecessary, although Swain’s procedure is somewhat exacting.

Analysis of Buttresses

Kidder (1886) includes both graphical and semigraphical analysis of the resistance of stone 
buttresses to thrust. He divides a rectangular buttress into horizontal layers and finds the 
intersection of the resultant of the thrust and partial buttress weight with the horizontal 
plane at the bottom of each layer. In analyzing a buttress with steps, such as shown in Figure 
13-6, he divides the buttress into trapezoidal segments by means of vertical cutting planes 
and finds the center of gravity of each trapezoidal segment by the “method of diagonals,” 
a general method for finding the center of gravity of a quadrilateral (Figure 13-7). The 
diagonals of the quadrilateral are drawn. The length of the shorter segment of each diagonal 
is set off on the longer side using a divider. Connecting the ends of the transcribed lengths 
with the dashed line results in a triangle at the center of the quadrilateral. The center of 
gravity of this triangle (open circle), easily found by medians, is also the center of gravity 
of the quadrilateral. The centroid of the pier with offsets is found analytically by taking 
moments of the three sections.

Figure 13-6. Graphical solution of stability of buttresses.
Source: Kidder (1886).
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The Analysis of Union Arch

The drawing of the analysis of the Union Arch, signed by Montgomery Meigs and Albert 
Rives, shown in Figure 13-8, is a summary of an engineering analysis of a monumental stone 
arch (Souvenir History 1890). This analysis depends on the application of advanced tech-
niques in graphical statics, which are justified by results from projective geometry. This 
drawing, dated 1859, is almost coincident with the first publication of Culmann’s synthesis 
of graphical statics. It invokes Méry’s (1840) method, which was a method of the analysis 
of vaults in which the thrust line for a symmetric arch is drawn by the construction of an 
arbitrary funicular polygon rectified by the procedure as discussed. The method used on the 
design drawing of the Union Arch begins with drawing a preliminary funicular polygon, 
which is transformed into a polygon having the required properties of passing through two 
given points: one at the crown and one at the abutment, and of the crown thrust being 
horizontal. Based on the arbitrary pole location and starting point, the diagram represents 
one possible line of thrust for an arch. The drawing in Figure 13-9 illustrates the transfor-
mation to the correct polygons, using a simple system of one resultant and two reactions.

When the upper diagram shown in Figure 13-8 is completed on the basis of an arbitrary 
pole selection and an arbitrary starting point for the funicular polygon, the lower diagram 
is also determined by the horizontal orientation of the crown thrust, the point through which 
the crown thrust passes, and the intersection of the crown thrust and the abutment resultant 
on the line of action of the resultant of the loads. Other legs of the funicular polygon can 
be filled in by projecting two points onto the line from the upper diagram to the transformed 
diagram below. This procedure can be justified in terms of the forces represented by the 

Figure 13-7. Graphical solution of centroid of a general quadrilateral.
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Figure 13-8. Design drawing of Cabin John Bridge.
Source: Unknown (circa 1890).

Figure 13-9. Summary of transformation used in Mery’s method analysis of Union Arch.
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Figure 13-10. Details of a homology.
Source: Adapted from Coxeter (1955).

force and funicular diagrams: the transformed string in the force polygon intersects the other 
components of each force on the line of action of that force.

The triangles representing either the reactions/resultant, or the reactions/resultant for 
the new string in the force polygon, can be recognized to be Desargues triangles (see Box 
11-2). They are drawn with vertices on three lines that pass through a single point, for the 
case of parallel gravity loads, the point at infinity. The transformation that passes the upper 
figures to the lower figures is a two-dimensional projectivity of the type known as a collinea-
tion (points are transformed to points and lines to lines), and the transformation itself is 
called a homology by H. S. M. Coxeter (1955). The transformation is defined strictly in 
terms of incidences (see diagram and discussion in the following paragraph) and is deter-
mined when one pair of points, the axis of the homology (Desargues line) and the center of 
the homology are known (intersection of the line joining common vertices).

In the example of the Union Arch, the parallel lines passing through the vertices deter-
mine the center of the transformation (point at infinity in the vertical direction). The hori-
zontal line from crown determines one point on the axis, whereas the line from the abutment 
to abutment on the upper and the lower diagram determines a second point on the axis. 
The intersection of the crown thrust with the line of action of the resultant furnishes a pair 
of points, so the transformation is determined. Remaining points can be found directly by 
incidences.

A homology is a transformation based on a point and a line, known, respectively, as 
the center and the axis of the homology (Figure 13-10). Points transform to an image that 
is collinear with the center and point being transformed. Points on the axis are invariant, 
that is, their image in the transform is the same as the initial point. The homology is then 
determined by a pair of a point A and its transform A′. To construct the corresponding 
transform X′ of an arbitrary point X, draw a line through X from the center. The line AX 
intersects the axis at C. Because the transformation preserves incidences, the line A′X′ is 
also incident with C, while X′ must also be incident with OX. Thus, X′ is at the intersection 
of OX and A′C.

In the case of the Union Arch, the construction of the homology is used to make the 
arbitrary thrust line, shown at the top of the drawing, into a thrust line that acts in a hori-
zontal direction at the crown, acts through the abutment of the arch, and is everywhere else 
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contained within the arch. Only the last condition is not automatic with this construction: 
to be satisfied, the arch must have the correct geometry, and the analyst may have to experi-
ment with the construction.
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Graphical Analysis  
of Beams

In the following chapter, we will investigate some effective means of 
analyzing beams by graphical methods. These methods follow those 
developed and expounded by Karl Culmann and other workers in 
graphic statics. Graphical methods were championed by several Ameri-
can authors, including A. Jay Du Bois and Charles Ezra Greene. The 
methods adopted in Chapter 13 for the analysis of arches are equally 
applicable to beams and can give a large amount of information in a 
relatively quick construction. Graphical methods were not as widely 
used for beams as for arches, because the analytical complexities dis-
cussed in Chapter 13 for arches are not necessarily present in beams. 
Nevertheless, an investigation of the application of graphical methods 
to the analysis of beams is illuminating.

Beam reactions are found by completing the funicular polygon 
of the loading and reactions of the beam. Thus, a beam with two 
concentrated loads ab and bc, as shown in Figure 14-1, has a force 
polygon with four strings, a, b, c, and d. The reactions are designated 
ad and da, with the location of the point d at some point on the load 
line, initially unknown. However, because the string d must intersect 
the line of action of the right reaction at cd and the left reaction at ac, 
the position of d on the force polygon is found by connecting these 
two points on the funicular polygon and transferring the direction to 
the force polygon. The location of the resultant of the loads can be 
found immediately by extending string a and c to their point of inter-
section. These procedures are described in every textbook or set of 
printed course notes on graphic statics, including George F. Swain 
(1896), A Jay Du Bois (1877), and Mansfield Merriman and Henry 
Sylvester Jacoby (1894).

14
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Finding Bending Moments in Beams

Finding bending moments in beams graphically is an application of Culmann’s theorem. 
Designating the perpendicular distance from the pole to the load line in Figure 14-1 as H, the 
bending moment about the point on the beam marked α is equal to the resultant force bd 
(measured on the force polygon in Figure 14-1) times the horizontal distance δ from α to the 
resultant at the intersection of strings a and d (measured on the funicular polygon). By 
inspection of the geometry, it can be seen that the triangle bdO on the force polygon (in 
Figure 14-1) is similar to the triangle 1-2-3 outlined on the funicular polygon (in Figure 14-
2). By proportions, then, the bending moment at α is equal to H times the vertical leg 2–3 of 
the triangle 1-2-3 (distance between strings b and d). This is a specialization of Culmann’s 
theorem, presented in Chapter 11. The pole distance is measured from the pole to the load 
line on the force polygon and has units of force, whereas the ordinate of the funicular 
polygon is measured from the closing string to the funicular polygon along a vertical line and 
has units of length. As a result of this analysis, the funicular diagram for a beam is equivalent 
to the bending moment diagram. This result, which is discussed by Du Bois (1877, p. 87), 
Swain (1896), Charles E. Greene (1877), and others, originates with Culmann (1875).

Figure 14-1. Funicular (left) and force (right) polygon for simply supported beam.

Figure 14-2. Application of Culmann’s theorem to determination of bending moments in beams.
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Graphical statics applies effectively to beams with uniformly distributed loads and with 
variable loads. For complex variable loads, the application of the method simplifies the 
determination of the maximum bending moment in a beam. An example of this type of 
analysis is taken from Du Bois (1877), for the investigation of the moments on a beam due 
to a complex locomotive loading. In the example, suppose that the maximum bending 
moment of a 50-ft span beam is to be determined on the basis of the movable load group 
shown in Figure 14-3. The loading configuration resembles a Mogul engine such as that 
shown in Figure 14-4. It is necessary to construct a load line for the load group and, using 
an arbitrary pole location, construct a corresponding funicular diagram. Then, rather than 
moving the funicular diagram as the loads move, it suffices to move a closing string along 
the funicular diagram for supports spaced 50 ft apart. The horizontal pole distance remains 
fixed for all of the variants of this construction. Thus, among the five alternative positions 
of a 50-ft long closing string shown in Figure 14-3, the position of the load train that  

Figure 14-3. Determination of maximum bending moment in simply supported beam with moving 
load.
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produces the largest distance between the funicular polygon and the closing string also 
produces the greatest bending moment.

Various authors also combined the graphical method of analysis with the principles of 
beam bending to produce deflection diagrams of beams. This result is made possible by the 
combination of Culmann’s theorem with bending theory, which recognizes the analogy 
between the calculation of the bending moment from the loads and the calculation of deflec-
tions from the curvatures. That is, a beam loaded by the curvature has bending moments 
equal to the deflection at any point. The method was applied by Fleeming Jenkin (1876) in 
his article on bridges by determining the bending moment in a beam segment by segment, 
hence the radius of curvature from k = M/EI, then drawing the radii of curvature to scale 
and scaling the mid-span deflection of the beam (Figure 14-5). Other authors work more 
formally with the elastic properties of the beam. For instance, James B. Chalmers (1881,  
p. 199 ff) constructs the elastic curve of a statically determinate beam by loading the beam 
with the curvature diagram.

As an example of the graphical determination of deflections in a beam, consider the 
simply supported beam shown in Figure 14-6, which is subjected to a single concentrated 
load. The first funicular polygon can be used to find the maximum bending moment. Sub-
sequently, this funicular polygon can be subdivided into a series of concentrated curvatures 
M/EI, and a force polygon can be drawn with pole distance H′ = EI/Han. In this equation, 

Figure 14-4. Mogul engine circa 1900. The cast-iron bridge at Brownsville, PA, also shown in Figure 
1-4, is visible in the background of this photograph (under the right-hand arch).
Source: Monongahela Railway Company Photograph Collection, 1893–1993, AIS.2009.07, Archives Service 
Center, University of Pittsburgh.
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Figure 14-5. Excerpt from Jenkin showing the construction of the elastic curve of a beam based on 
its curvatures.
Source: Jenkin (1876).

Figure 14-6. First force and funicular polygon in calculation of elastic curve of a beam.

the factor a represents the scale of the funicular polygon representing the bending moments, 
for example a funicular polygon drawn on a length of 10 in., representing a span of 10 ft, 
a = 12. The factor n represents the diminution of the deflections on the deflection diagram, 
that is, if the deflections are drawn doubled, n = 1/2.

It is possible to take the bending moment diagram for a beam and reapply the calcula-
tion of the first funicular polygon to find the bending moment of the curvature, that is, the 
deflections of the beam. It is necessary to keep track of the units by taking account of the 
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scale of the drawing that was used to find the bending moment and the scale of the drawing 
used to find the deflections.

Figure 14-6 depicts a simply supported beam with a point load at an arbitrary loca-
tion. To be able to complete a direct calculation of the deflections, the funicular polygon 
is drawn. The first funicular polygon is divided into an arbitrary number of segments, and 
the area of each segment is computed in square feet. The associated force polygon (force 
polygon 2) is calculated and drawn to an arbitrary scale (Figure 14-7), whereas to the 
same scale a pole distance H′ = EI/Han is chosen. On the basis of this force polygon, a 
second funicular polygon is drawn representing the deflections of the beam, diminished 
by the factor n.

In the example shown, let the span be 10 ft (represented on the drawing as 2.5 in.;  
a = 48), the force P = 7 kips. Let EI = 105 in.2-kips. On the first force diagram, H = 4 kips, 

Figure 14-7. Second force and funicular polygon for calculation of elastic curve of a beam.
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and the maximum bending moment is 1 in. (ordinate of funicular polygon) × 48 × 4 kips = 
176 in.-kips. Then, for n = 2, H′ is drawn to scale the second pole distance, is 1.8 ft2. 
The deflected shape is shown on the deflection diagram (Figure 14-7), and using the factor 
n = 2, can be scaled directly as approximately 2 in.

These discussions make it possible to consider the application of graphic method of 
drawing the elastic curve to the graphical determination of unknown support moments in 
continuous span girders. Such methods are discussed by Culmann (1875) and Robert 
Hudson Graham (1887), among others, in Europe, and in the United States by Du Bois 
(1877) and Greene (1877). The approaches of Du Bois and Greene differ markedly from 
each other: Du Bois describes a strictly graphical method of constructing the bending 
moments at the supports (see Figure 14-8). The method is relatively simple to apply, although 
challenging to understand, but is sensitive to drafting errors and to accumulating error, and 
little evidence of the actual use of this method has been found. Greene’s more pragmatic 
method involves the application of formulas to the analytical determination of support 
moments, followed by graphical construction of the moments between the supports. In 
speaking of continuous girders, these authors are usually thinking of trussed girders. If these 

Figure 14-8. Du Bois’s method of determining support bending moments in a continuous beam by 
graphical statics.
Source: Du Bois (1877).
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girders are variable in cross section or the top or bottom chords vary along the length, the 
determination of the bending stiffness for the girders is also approximate.

Greene’s Method

Greene presents his graphical method for the analysis of continuous girders, first for a two-
span girder and then for a multiple-span girder. Greene uses the moment-area method 
combined with trial and error as a means of determining deflections with respect to beam 
tangents. In the two-span girder method, he employs a trial-and-error approach to drawing 
the closing lines on adjacent spans. For the two-span girder, Greene begins by determining 
the areas of the moments (or curvatures, if the beam stiffness is variable) for the parts  
of the bending moment diagram above or below the axis. He observes that if a line tangent 
to the slope of the beam at a support is drawn, the sum of the moment areas on either side 
of the interior support has to be proportional to the deflection of the beam end from the 
tangent line. Thus, the ratio of moment area of AB to that of BC in Figure 10 of the plate 
shown in Figure 14-9 must be equal to the ratio of AM to CN, the line MN representing 

Figure 14-9. Plate showing method of constructing bending moments at support of a continuous beam.
Source: Greene (1877).



 graphical analysis of beams 199

the tangent to the deflected beam at the interior support. The procedure, then, is to draw a 
trial closing string A′B′ and B′C′ to calculate the moments of the areas of positive and nega-
tive moment in each span about the interior support and to see how different they are from 
equality. According to Greene, no more than one additional trial should be needed to achieve 
a satisfactory solution by this method. However, it is also possible to superimpose the effect 
of the curvature of a simply supported beam, which can be computed for any state of beam 
loading, with the moment area of the triangle representing the bending moment induced by 
the support moment, with the height of the triangle as an unknown and its centroid as an 
invariant. Then the determination of the support moments for arbitrary loading reduces to 
an algebraic equation determined on the basis of quantities measured on the diagram. 
Although this is properly categorized a semigraphical method, as soon as the support 
moments are determined, the remainder of the moments can be calculated graphically for 
the loading condition under investigation. This method is applied to a two-span beam in 
Box 14-1.

Box 14-1. Example Application of Greene’s Method
We will use the example of a two-span beam with two different span lengths and with 
the live load placed in the longer span only, to demonstrate the application of the semi-
graphical version of Greene’s method. The beam has an interior support, designated B, 
a left span AB equal to 80 ft, and a right span AC equal to 100 ft. Dead load is 1,000 
lbs/ft, and live load is 2,000 lbs/ft. The entire live load will be placed on the longer span, 
and the live load will be removed from the shorter span to obtain the greatest possible 
positive bending moment. Then the ratio of the deflection at A from the tangent at C, 
the line AL to the deflection at B, the line BK, using the notation of Greene’s Figure 10 
(Figure 14-9), has to be equal to 1.8, the ratio of the combined spans to the longer span. 
Based on the second moment-area theorem, this is equal to the moments of the areas of 
the entire system about A to the moment of the moment area of the shorter span about 
point B. Given a support moment equal to f, this reduces to
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The application of graphical methods to the analysis of multispan beams, or to the 
determination of the deflections of beams, has potential for avoiding tedious and error-prone 
calculations. The result of such graphical calculations is a set of diagrams that convey the 
important information about a beam at a glance that have their own quality of elegance 
and completeness. However, as a practical method for beam analysis, these methods appear 
to have been little used in the United States in the design of continuous beams. Instead, 
approximate methods or long tabular calculations or, especially the use of simply supported 
girders in place of continuous girders, found greater favor.
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When this quantity is determined, it can be divided by the pole distance (force units) and 
laid off on the funicular diagram of the two-span beam. The remainder of the moments 
in the beam then can be determined by scaling from the moment diagrams, such as in 
Figure B14-1-1.

Figure B14-1-1. Application of moment areas to two-span beam analysis.
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Graphical Analysis of  
Portal Frames and Other 
Indeterminate Frames

The determination of forces in portal frames, described analytically in 
Chapter 10, can also be accomplished graphically. The graphic method 
extends easily to the analysis of column-supported truss roofs in mill 
buildings, stabilized by knee braces. In addition, other authors touch 
on further applications of graphic statics to the analysis of rigid frames 
and other statically indeterminate structures. These topics form the 
following chapter, primarily using Milo Ketchum’s (1903) comprehen-
sive treatment of the analysis of portal frames by graphical methods. 
Because the portal frame is one degree statically indeterminate, it is 
necessary to determine, by solution or by assumption, one redundant 
quantity before the structure can be analyzed. The standard assump-
tion, still used by present-day engineers, for a one bay-one story portal 
frame is that the horizontal reaction is evenly divided between the two 
columns. Where there are more columns, some other assumption must 
be made regarding the distribution of horizontal forces to the columns. 
The algebraic method of portal analysis in Chapter 10 also uses  
this assumption. Jerome Sondericker (1904) makes a more accurate 
assumption that the deflections at the top of the windward and leeward 
columns are equal, which is especially applicable to frames where the 
windward columns receive lateral load directly.

Ketchum’s method for the graphical analysis of a portal frame 
requires the insertion of fictitious truss members so that the structure 
can be analyzed as a truss. The portal of type (a), presented in Chapter 
10, Figure 10-3, is shown in Figure 15-1, along with the fictitious truss 
members (shown dashed). The three web members of the portal, found 
be to 0-force, are drawn lightly. For total lateral force of 2,000 lbs, 
and dimensions h = 24 ft, d = 16 ft, and s = 16 ft, the force diagram 

15
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that results is shown in Figure 15-2. On the force diagram, the fictitious members are also 
shown dashed. The truss is numbered according to Bow’s (1873) notation with exterior 
zones a and b, and interior zones 1–7.

In the diagram in Figure 15-2, the forces in the fictitious elements are shown as dashed 
lines, whereas the forces in the actual elements can be read off the diagram. The reactions 
4-a and b-4 are shown as solid lines. The force in the portal strut 3-a is found to be 2,000 
lbs, and the force in the portal tie 3-4 is 3,000 lbs × √2. Because the fictitious forces in 2-a 
and b-6 are substitutes for the shear in the column, the actual position of numbers 2 and 6 
on the force diagram is on the vertical projection to the load line (2′ and 6′), indicating that 
2-3 and 5-6 have 0 axial force. Similarly, from the force 7-4 on the diagram must be  
subtracted the vertical component of 7-a, resulting in the projection of 7 to the load line. 
The force in 7-4 is thus 3,000 lbs. Similar diagrams for Ketchum’s portals (b) through (f) 
are shown in the Box 15-1.

The result of these analyses is that the force diagrams of the bars in the portal frame 
determine a regular pattern, which is related to the pattern of the bars being analyzed and 
which can be constructed quickly for the determination of the forces in these bars. As 
Ketchum also shows, a similar procedure can be used to solve for the wind load forces in 
a mill building bent, consisting of a truss, a pair of columns, and knee braces extending 
from near the top of the column to the first bottom chord panel point in the truss, a form 
of construction that was widespread in the late nineteenth century.

Figure 15-1. Portal type (a), with fictitious members inserted.
Source: Ketchum (1903).
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Figure 15-2. Force diagram for portal type (a).
Source: Ketchum (1903).

Box 15-1 
Ketchum applies: a procedure similar to the one described in the body of this chapter to 
portal (b) (see Figure 10-3). Figure B15-1-1 is Ketchum’s representation of the graphical 
analysis of this portal. This system is considered similar to a three-hinged arch, as long 
as there is a joint in the middle of the strut (the dashed lines represent the lines of action 
of the resultants, passing through the middle of the top chord). The analysis proceeds 
normally through the establishment of points d, a, and b representing the external reac-
tions. On this basis, all of the points shown in the figure can be established, except the 
solid lines 2-3 and 12-11. To see how to obtain the actual force in 11-d, for instance, it 
is necessary to recognize that the force in this member is the vertical component of the 
sum of the fictitious forces 11-12 and 12-b. This is found on the diagram by dropping 
verticals from points 3 and 11 to the load line, which is the procedure given by Ketchum.

Portal (c) is illustrated in Figure B15-1-2, while Figure B15-1-3 shows the graphic 
analysis of portal (c). Using the fictitious members the portal frame (c) can be solved as 
indicated in Figure B15-1-2. Similarly to the other portals described, when the fictitious 
members are removed, the point 1 has be projected to the point 1′ on the load line—the 
physical meaning of this is that the vertical component of the force in 1-b, a fictitious 
member, is deducted from the force in C-1. Similarly, the points 2 and 9 are projected to 
2′ and 9′. The axial force in C-1 is then correct on the diagram, although no account is 
taken of the shear or bending moment in this member. The forces in the remaining bars 
of the frame are given on the diagram in Figure B15-1-3.
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Figure B15-1-1. Analysis of portal type (b).
Source: Ketchum (1903).

To modify this discussion for the portal c′ (Figure 10-3), where the diagonals act 
both in tension and compression, it is necessary to add panels to the portal. This is shown 
in Figure B15-1-4. The vertical reaction at the leeward column is equal to the vertical 
and horizontal shear in each panel of the portal frame, because the panels are square  
(θ = 45°). The vertical component of V is divided equally between each strut/tie in each 
panel, resulting in the diagram shown in Figure B15-1-5.

Portal type (d) is illustrated in Figure B15-1-6, while its force diagram is shown in 
Figure B15-1-7.
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Figure B15-1-2. Portal (c): diagonal web members analyzed in tension only.

Figure B15-1-3. Force diagram of portal (c) with diagonal web members in tension only.
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Figure B15-1-4. Portal type (c) with vertical shear force distributed equally between tension and 
compression web members in a panel.

Figure B15-1-5. Force diagram of portal type (c) with vertical shear force distributed equally 
between tension and compression web members in a panel.
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Figure B15-1-6. Portal type (d).

Figure B15-1-7. Force diagram for portal frame type (d).
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Figure 15-3. Ketchum’s analysis of a wind-loaded mill building bent.
Source: Ketchum (1903).

Ketchum considers two primary types of bents: those that have pinned column bases 
and those that have fixed column bases. For the pinned base bent, the force diagram is 
shown in Figure 15-3: external forces produce the triangle ABC. The fictitious members ab, 
bc, and cB are established, and the internal forces are solved by standard procedures of 
graphic statics. The final position of point c, removing the effect of the fictitious members, 
is at the intersection of the load line and 1-c, that is from c-1 as shown must be deducted 
the vertical component of the fictitious force c-x. This point is located on Ketchum’s solution 
of the bent shown in Figure 15-3. In constructing this diagram, Ketchum uses x for each of 
the spaces between purlin loads, rather than a separate letter for each space.

The analysis for a system with fixed column bases is similar to the previous analysis, 
except that the point of inflection in the column is chosen to be half the distance from  
the ground to the knee brace connection. From there, the structure is divided, the column 
shear is applied at the half height of the column, and the analysis proceeds similarly to the 
analysis as previously outlined. An example of a structure considered to have fixed column 
bases is furnished by Berlin Iron Bridge Company’s Newport News Shipbuilding Dry Dock, 
shown in Figure 15-4.
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Ketchum gives similar attention to a multiple portal. In this case, he divides the lateral 
force equally among the columns, whereas the vertical reaction is in proportion to the dis-
tance from the center of the multiple bent. Thus, for a five-bay, six-column portal (shown 
in Ketchum 1903, Figure 63) the horizontal force at the base of each column is one-sixth 
of the total horizontal force, whereas the vertical reaction at the exterior column is five times 
the vertical reaction at the column supporting the middle bay, based on the ratio of distances 
to the center of the system. Although no assumption is made for the location of the point 
of inflection in the portal strut, the previous assumptions ensure that the point of inflection 
is located at the mid-span of each strut. The compound system of portals providing lateral 
support to the train shed in the Harrisburg, PA, train station, constructed in 1887, provides 
an example of a multibay portal, encompassing 20 bays in all (Figure 15-5).

As an approximate method, Sondericker (1904) proposes resolving the wind force on 
the windward column into a force applied at the top of the column, a force applied at the 
level of the knee brace, and a force applied at the base, similar to Ketchum’s procedure. 
Sondericker advocates a semigraphical approach in which the forces on the columns are 
found independently of the graphic analysis of the truss. The method is described in detail 
in Box 15-2. In the case presented there, Sondericker’s method produces considerably larger 

Figure 15-4. Fixed base mill building bents. Newport News Shipbuilding Drydock.
Source: Berlin Iron Bridge Company (ca. 1890).
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Figure 15-5. Train shed at Harrisburg, PA, train station.

Box 15-2 
Sondericker (1904) shows a different graphic method for the analysis of mill building 
bents, which is subsequently used by Arthur Shumway (1904) in his bachelor of engi-
neering thesis. Sondericker’s work presents various clever graphic statics solutions to 
various problems of combined bending and axial tension/compression. The solution 
Sondericker, and later Shumway, employs for a mill building bent with knee braces is 
to divide each column into a part that resists axial forces only and into a part that 
acts as a beam, the two parts connected by rigid links. Analytical statics is employed 
to determine the reactions and the internal forces in the beam, whereas graphical statics 
is applied to the columns and the trusses that they support. This procedure is illustrated 
in the diagram from Sondericker (pp. 82–84) and in the example that follows.  
Ketcham’s and Sondericker’s procedures have identical results where no force is con-
sidered to act directly on the windward column. For other load distributions, the results 
of Sondericker’s method differ from the results obtained by Ketchum’s method.

For comparison and illustration a mill building bent with both ends of the columns 
pinned (illustrated in Figure B15-2-1) will be considered. Given normal loading at each 
windward panel point of 4 kips (one-half at eave and crown) and a value of W of 400 
lbs/ft, c = 20 ft, a = 15 ft, panel lengths of 10 ft (40 ft overall), and a roof pitch of 6:12, 
this structure can be investigated by Sondericker’s and Ketchum’s methods. In Ketchum’s 
method, the total horizontal force of 11,580 lbs is divided equally between the two hori-
zontal reactions, H1 = H2 = 5,790, V1 = −1,130 lbs, V2 = 6,030 lbs, S1 = 7,160 lbs, S2 = 
23,160 lbs R1 = 9,370 lbs, R2 = 17,370. To find these quantities graphically by Ketchum’s 
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method, the diagram shown in Figure B15-2-2 is constructed. In working with the loads 
on the windward column, Ketchum applies this load at the top at the level of the knee 
brace and at the base, with the distribution based on tributary area.

Based on the diagram in Figure B15-2-2, the force in the knee braces 1-a and a-7 
can be found to be 7,300 (horizontal component 6,500) and 25,600 (horizontal compo-
nent 23,000). The windward column x-a has a force on the diagram of about 4,600 lbs 
from which the vertical component of about 6,000 lbs of the fictitious member b-x must 
be deducted, yielding a compressive force of 1,400 lbs. Similarly, the leeward column is 
found to have a force of approximately 6,400 lbs compression.

Figure B15-2-1. Stresses in a mill building bent (a) by Sondericker’s method and (b) by Ketchum’s 
method.
Source: Modified from Sondericker (1904).
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According to Sondericker’s derivation, based on equal lateral deflections of the truss, 
the following are the calculated values of each of the quantities.

In the aforementioned equations, ΣH is inclusive of W.

 S1 = − =23 200 11 200 12 000, , ,

 S2 = − =23 200 4 800 18 400, , ,

 H1 = + =5 800 1 200 7 000, , ,  

 H2 = − −5 800 1 200 4 600, , ,  

 R1 = − =17 400 4 400 13 000, , ,

 R2 = − =17 400 3 600 13 800, , ,  

The formulas used in determining these values are given by Sondericker (1904,  
p. 86) for the case where the column bases are pinned. In consequence of these values 
and the removal of the force W from the trussed system

Figure B15-2-2. Graphic analysis of wind-loaded mill building bent by Ketchum’s method.
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 V1 = 1 150, ( )upward reaction  

 V2 = 6 050,  

These forces are then inserted into the graphical analysis of the roof truss and the 
knee braces, resulting in the force diagram shown in Figure B15-2-3. Sondericker’s 
method gives a greater force to the windward knee brace and a lesser force to the leeward 
knee brace.

Figure B15-2-3. Graphic analysis of a wind-loaded mill building bent by Sondericker’s method.

forces in the knee braces. However, if no force is applied directly to the windward column, 
then Sondericker’s and Ketchum’s methods yield the same results.

In general, the selection and the design of a lateral system for a bridge or a building 
was recognized as an important engineering decision. The literature on the analysis and 
design of bridges includes extensive discussions of the systems for transferring wind forces 
from the span of the bridge to the supports, and the discussion of the design of the portal 
itself is significant. The varied forms of portals are a reaction to the difficulties of obtaining 
moment resistance at the joint between the portal strut and the column. Similar problems 
existed in the design of industrial buildings, which, when stripped of the masonry walls that 
generally provided lateral resistance to commercial building frames, the bents of columns 
and trusses themselves were called on to resist wind loads. Because of the ready availability 
of graphical methods, and their accuracy in determining forces in complex structures, these 
methods were frequently called on for the analysis of laterally loaded framed structures.
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Concluding Remarks— 
The Preservation of Historic 
Analytical Methods

In the introduction to this book, we identified three fundamental 
reasons for the importance of the study of historic methods of struc-
tural design. These reasons were, first, that understanding the intent 
of the designer is the key to a successful rehabilitation, whether archi-
tectural or structural. Second, the preservation of design methods for 
historic structures is at least as important as the preservation of the 
structures themselves. Third, many of the methods used in structural 
design in the late 1800s are valuable in their own right—quick, com-
putationally efficient, understanding of the behavior of the structure, 
and often giving special insight into the actual performance of the 
structure. In this final chapter we will briefly review these reasons in 
light of the methods of analysis and design that have been introduced 
in the preceding chapters.

The analytical and design methods of the late nineteenth century 
are an embodiment of the spirit of the age and of the spirit of the 
engineering and construction professions. Although the growing appli-
cation of scientific principles is observable in these methods, the appli-
cation of science to engineering is inseparable from the use of empirical 
knowledge. To approach works from this period, it is necessary to have 
some understanding of the engineering methods used in their design 
and construction and particularly to understand the balance of analyti-
cal, graphical, and empirical analysis methods that gave rise to the 
structures that we now admire. For instance, it is hard to interpret the 
structure of a masonry arch bridge (Figure 16-1), or a Thacher (1884) 
truss bridge (Figure 16-2), without understanding the assumptions that 
went into their design and the conceptions of structural behavior  
that resulted in the selections of materials, member sizes, member 

16
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Figure 16-1. Wissahickon Creek Bridge, Philadelphia and Reading Railroad, 1881 (HAER PA,51-
PHILA,698-).
Source: Photograph by Joseph Eliot.

Figure 16-2. Thacher truss bridge, Rockingham County, VA, 1898 (HAER VA, 83-BROAD,2-).
Source: Photograph by Jet Lowe.
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configurations, connections, and supports that are reflected in the final design. The masonry 
bridge was designed by empirical or graphical methods, both of which have largely disap-
peared from the repertoire of the modern engineer—the bridge is not amenable to treatment 
as a framed structure, and the analysis of the arch is particularly difficult to undertake by 
modern methods. The Thacher truss, a hybrid of a Fink truss and a Pratt truss, is easiest to 
solve by the indexing method presented in Chapter 7 and challenging to solve by any modern 
method.

Instead of automatically using modern forms of analysis on a structure of these types, 
it is better to recognize and celebrate the widespread recourse of the profession to empirical 
and to semiempirical methods of analysis. We have noted that empirical design is a preferred 
method for a nineteenth-century designer: most decisions, even those arrived at rationally, 
were informed, enhanced, supplemented, and completed by empirical knowledge. Such 
knowledge often was used where analytical knowledge was lacking or where analytical 
methods provided misleading information. The empirical thinking of a nineteenth-century 
structural designer took three basic forms: the application of general ratios representing 
good design, application of other rules of thumb, and finally the simplification of complex 
analyses to the point of being manageable.

An example of the application of general ratios representing good design is the use of 
span/depth ratios as a means of establishing the size of structural members, either for pre-
liminary or final design. This type of application is most often applied as preliminary design. 
Without necessarily quoting a span/depth ratio of approximately 15, an experienced car-
penter recognizes that 2 × 8 wood floor joists can span 10 ft, 2 × 10 12 ft to 14 ft, and 
2 × 12, up to 16 ft. Many structural engineers are familiar with the rule for steel beams of 
one-half inch of depth per foot of span. All authors on iron girders advanced proposals for 
the general depth/span ratios that need to be observed, with values ranging from 1 : 10 to 
1 : 15, the larger being generally appropriate for bridge girders. From there, the width of 
flanges and the depth of flanges were also stated to be according to proportioning rules.

An engineer who calls for #4 reinforcing bars at 12 in. spacing without doing any 
further analysis is relying on experience, bolstered by the certainty that this form of rein-
forcement is effective in instances similar to the case in question; in other words, he or she 
is practicing empirical design. Other professional examples can be presented. Steel channels 
applied as stair stringers are rarely designed explicitly: they are simply chosen as C 10 × 
15.3 or C 12 × 20.7, primarily on the functional or dimensional requirements for the stair. 
The evidence that built-up girder design was completed by sizing the flanges for the required 
resisting moment, neglecting the contribution of the web, is an example of the kind of sim-
plifications that were practiced in nineteenth-century engineering.

Empirical design is also present in the imposition of appropriate minimum sizes, such 
as George Fillmore Swain’s (1896) statement that the minimum web thickness of a built-up 
box member is 5/16 in. Although these minimum values were disputed or ignored by some 
manufacturers, such as the Berlin Iron Bridge Company, they are an instance of overruling 
the results of an analysis by the exercise of engineering judgment, formed on the basis of 
experience or skill.

The most persistent forms of empirical design involve some component of rational 
design presented as empirical formulas. Such a formula either involves the simplification of 
a rationally based procedure or curve-fitting to experimentally determined data. The first 
type of formula is a universal feature of building codes, both in the nineteenth century and 
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in the twenty-first century. Ready examples of such a procedure are available in ASCE 7 
(2010), in the determination of wind loads on buildings, or in the AASHTO Standard 
Specifications for Highway Bridges (2013), in the formula for the determination of distribu-
tion factors to girders, which was determined by multiple regression, not on experimentally 
determined data, but on data determined by finite element analysis in a parametric study. 
The nineteenth century furnishes similar examples, such as the rules by Robert Griffith 
Hatfield (1871) or John Daveport Crehore (1886). Similar rules are stated by Frank Kidder 
(1886) for the application of engineering principles by architects and builders. The other 
type of empirical formula has a basis in the collection of experimental data. In the nineteenth 
century Eaton Hodgkinson (1857) collected data from a limited number of tests and deter-
mined an empirically based formula for the strength of short and long columns. In the 
current century, our application of the Euler formula and the transition between elastic 
buckling and inelastic buckling reflect some interpretation of the results of testing, and the 
application of exponential laws to the determination of an interpolation curve between 
elastic and inelastic column behavior, which is based on probabilistic interpretations of 
empirical data (AISC 2011). The Rankine-Gordon formula in the nineteenth century can 
either be viewed as an analytical formula with the coefficients predetermined on the basis 
of the strength and stiffness of the material in question, or as an empirical formula with the 
coefficients of the formula to be determined empirically.

A critical look at empirical design invites comparison with contemporary engineering 
practice. Although twenty-first century engineering relies on a significant component of 
analytical thinking and analytical procedures, there remains a base of empirical design. 
Beyond its necessity for preliminary design, the use of empirical design persists throughout 
the design process. The application of proportioning is widespread, from Table 9.5 of ACI 
318 (2011), through the evaluation of preliminary designs on the basis of span/depth ratios, 
to the customary proportions assigned to concrete and steel beam cross sections, to the 
adoption of slenderness ratios for columns that generally fall within predictable limits.

The analytical methods of the nineteenth century further test the assumptions of 
twenty-first century analysis. One example of a divergence between modern and nineteenth-
century methods is the construction of column curves. In the present specifications for steel 
and wood, this is a cumbersome procedure, with the application of two formulas—a straight 
line yield ceiling and a hyperbolic Euler curve—with an empirical interpolation function 
between the two. The formula used in the nineteenth century represents a different viewpoint 
of the same problem. A single curve with most of the characteristics desired can be produced 
based on a different set of considerations. The contemporary application of the buckling 
limit state for columns leads to other incorrect conclusions. Although often analyzed as such, 
columns are never pinned at the ends: the flat surface on which they bear produces some 
rotational restraint, observable in tests of flat-ended columns. What is the reason for this 
predominance of the buckling limit state in the analysis of intermediate and long columns? 
Apparently, the understanding of the engineering profession of the early twentieth century 
suggests that this shift was motivated by a desire to use more rational and scientific methods. 
Euler buckling theory is significantly more advanced mathematically than the Rankine-
Gordon theory of column strength, but the mathematical sophistication does not necessarily 
make it a better theory to apply to problems of columns buckling in actual structures, and, 
of course, the application of this rational theory requires the further use of an empirical 
formula in the transition between elastic and inelastic behavior.
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The application of indexing methods to truss analysis, or the tracing of loads through 
the truss as practiced by Robert Henry Bow (1874), although sometimes less systematic, is 
a much more efficient method for analyzing a truss than the method of joints. Particularly 
in the case of a parallel chord truss, developing the indices for the forces in all the bars is 
a rapid process and promotes the visualization of the flow of forces through the truss. Similar 
tactics can be used for the analysis of pitched top chord trusses. However, for standardized 
trusses, such as the Fink truss with a 6 : 12 top chord pitch, the forces in the bars can be 
deduced almost instantly or calculated once in terms of panel length and load. By the end 
of the nineteenth century all of these tactics made the design of trusses very expedient. The 
analysis of trusses in the present day need not be any more difficult than it was 100 years 
ago. The charts developed for various truss types and printed in references in the nineteenth 
century (shown, for instance, in Figure 7-10) are equally applicable today.

The analysis of portal frames was done by approximate methods that eventually gave 
rise to the portal method. For a single portal frame, the essence of the portal method was 
simply to distribute half the lateral force to each column. This procedure only created prob-
lems when the windward column also was loaded laterally in addition to the roof truss or 
frame. The analyst then had to choose between Ketchum’s method, in which each column’s 
horizontal reaction is half the total lateral force, or Sondericker’s (1904) method, in which 
the distribution of wind force to the two columns depends on equal deflections in the 
columns. This analysis, though, depended on a limited number of cases and could be readily 
reduced to a few formulas to be followed in different cases, such as base hinged or base 
fixed. The formulas that are available from Ketchum or Sondericker are still effective and 
may still be used for the design of a laterally loaded frame.

Graphical analysis was extraordinarily well developed by the end of the nineteenth 
century and fell into decline after the turn of the century. It was still applied to the design 
of trusses and was still taught in engineering schools through about 1950, but, as an analog 
method, graphical analysis of trusses was finally supplanted by the widespread use of the 
digital computer. The most compelling form of graphical analysis is surely the analysis of 
statically determinate trusses. In a single self-checking, self-correcting diagram, it is possible 
to infer the forces in all of the bars of the truss under a given loading condition. The diagram 
can be used to construct tables of bar forces under different conditions of load and panel 
length, and the modifications required by different slopes in the top chord can, in many 
cases, be introduced easily.

Less frequently used, but equally compelling, are the applications of graphical analysis 
to the design of beams. In these methods, the loads on the beams are used to construct a 
diagram that instantly results in the bending moment diagram for the beam and, based on 
Culmann’s theorem, can be applied to the numerical determination of bending moments in 
the beam. Through the intervention of various other forms of analysis, it is possible to extend 
these methods to the analysis of beams continuous over several supports, although these 
methods were only used infrequently. Possibly the most often used of these methods was 
the method of Charles Ezra Greene (1877) for the determination of the bending moments 
in continuous girders.

Graphical analysis was particularly effective in the analysis and design of masonry 
arches. The ability to trace directly a (statically admissible) thrust line for any structure, 
including a masonry arch, was a defining feature of graphical analysis, and this method was 
widely employed and refined for the analysis of masonry arches. The contributions of Méry’s 
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(1840) method to this analysis were significant and were often used as a means of reducing 
the number of trial thrust lines required to be drawn. The method was suitable for large 
bridge arches and for small arches framing over openings in the walls of buildings. Although 
analytical methods did exist for arches, they were cumbersome and depended on large 
tabular computations.

The genius of nineteenth-century engineering was the effective combination of these 
three fundamental methods—empirical, analytical, and graphical—and the selection of 
applications that were best suited to each method. Graphical analysis was universally 
adopted for trusses in buildings that had inclined top chords, less amenable to an analytical 
treatment, whereas analytical methods were almost universally used for bridge trusses, which 
tended to have parallel chords and for which the multiplicity of loading conditions made 
graphical analysis more cumbersome. Of course, empirical methods also were used for 
trusses, especially in the matter of appropriate span/depth ratios and sensible top chord pitch 
(the result of which is a span/depth ratio, e.g., 6 : 12 that is equivalent to a span/depth ratio 
of 4, which is about right for a pitched top chord metal truss) and were applied as an 
empirical principle to the design of trusses for mill buildings, the application of camber to 
the bottom chord of trusses, and especially to the development of connection details for 
trusses. Graphical methods also were used in trusses for the determination of deflections. 
Similarly, for beams, analytical or semiempirical formulas were sufficient for the design of 
most beams, but the determination of the maximum moment in a beam subjected to difficult 
loading patterns (such as produced by a locomotive) called for graphical analysis. Con-
versely, the production of ordinary wood or iron beams allowed the application of empirical 
methods, simply prescribing a span/depth ratio, and semiempirical methods, such as the 
collection of rules assembled by Hatfield (1871) or Kidder (1886). The design of ordinary 
arches was primarily empirical and the design of unusual arches primarily graphical.

Among the procedures of the nineteenth-century engineers that we have investigated, 
some appear to be potentially useful to twenty-first century engineers. Surely, the earlier 
engineers’ facility with the design and analysis of trusses could prove useful to the contem-
porary engineering profession: not only in the type of truss to use for various building types 
and the methods to use to stiffen the overall building frame, but also in the effective analysis 
of the truss for gravity loads and the effective analysis of the truss/column/knee brace system 
under wind loads. The indexing methods for bridge trusses outlined in Chapter 7 can cer-
tainly be used as a means of checking building truss designs, and they have significant utility 
for the assessment of existing truss bridges.

Some of the other procedures used by nineteenth-century engineers also can be under-
stood to be particularly efficient. The simplicity of the Rankine-Gordon formula for columns 
and its ability to encompass most column characteristics is worth noting. Moreover, the 
observation made by the earlier century’s engineers that square-ended columns actually show 
some characteristics of fixed columns could be incorporated into column design to advan-
tage, especially for wood columns. The National Design Specification (American Wood 
Council 2006) ignores this effect but supposes that a square ended column is actually pinned 
as if it were provided with a hinge.

Although arch analysis is rarely needed for new construction, the author is aware of 
several instances where a nineteenth-century method could be applied to advantage for the 
analysis of an arch for assessment of a bridge from the nineteenth century. Attempts to 
subject this type of bridge directly to a current method of analysis usually result in erroneous 
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and overly conservative results. In keeping with the discussion on empirical design, it is first 
necessary to understand the construction characteristics of the arch, particularly on the use 
of haunching or filling, which is present in most arches of this period. Following this, an 
analytical or a graphical method can be particularly useful in determining the forces in the 
arch. Arches are particularly amenable to graphic analysis. The adoption of a method such 
as Méry’s method has a long history in the application to the analysis of masonry arches, 
and its usefulness has not diminished. Although, as a practical matter, the statically indeter-
minate nature of the problem can be solved only qualitatively, the application of graphic 
methods can establish effective limits on the redundant quantities and can surely verify the 
safety of the arch as effectively as any other analytical method.

Graphic analysis, in general, is a neglected tool in the application of structural analysis 
to structural design. The ability to draw a shape for a structure appropriate to the loading 
that the structure is carrying could be particularly valued by engineering designers, and 
the resulting forms, while possibly regarded as innovative, will, in fact, represent the spirit 
of the engineers of the late 1800s who thought primarily through graphic structural 
analysis.

Finally, without being used directly as a design method, a greater recourse to empirical 
knowledge can be useful to any structural engineer. It is possible empirically to determine 
or check most design output, either by the use of span/depth ratios or by the simple applica-
tion of practical experience. In either case, the review of how these methods were applied 
in the design of structures can have an effect on the way that a contemporary engineer 
works. Surely in the late nineteenth century this point was well understood.
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methods, 41–42
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graphical methods, 163

Kidder, Frank, 222, 224; arches, graphical 
methods, 181, 182, 182f, 183, 185; 
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of, 219, 220f
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methods, 121, 122–123, 124f, 126; 
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graphical methods, 161

Merriman, Mansfield: beams, graphical 
methods, 191; girders, analytical 
methods, 105–106, 113, 115; girders, 
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semigraphical methods, 169–170, 169f, 
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162f, 163f, 164f, 165f
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Perronet, Jean-Rodolphe, 28
Phoenix Bridge Company, 85, 86f, 127, 127f
Phoenix Iron Company, 121, 122f
pillars, wooden, 41–42, 42t, 43f, 44f
plate girders, continuous girders, and beams, 
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girders, 105–106, 111, 112f, 113–115, 
114f, 116–118b, 117t, 118t, 119; iron 
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St. John the Divine, Cathedral of, 14
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Swain, George Fillmore, 221; arches, graphical 
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175, 172f, 173f, 174f

Sylvester, William Allen, 40–43
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63f
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Thacher truss bridge, 219, 220f, 221
Theory of Transverse Strains (Hatfield), 40
thrust line, of arches, 14, 68–69, 74, 75–77, 
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Treatise on Masonry Construction (Baker), 
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16f, 17f, 18f, 19f, 20f; iron and steel 
structures, 54–55; wooden 
structures, 42–45, 44f, 45f, 46f. See also 
braced girders and trusses, analytical 
methods

trusses, graphical methods, 161, 175; building 
trusses, Swain and, 170–175, 172f, 
173f, 174f; method of joints, 161–164, 
162f, 163f, 164f, 165f; method of 
moments, 166, 166f, 167b, 167f, 168, 
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Union Arch, 14, 182, 183, 186–189, 187f, 
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methods, 184–185

Villard de Honnecourt, 13
Vitruvius Pollio, M., 10, 11f, 14
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Warren truss, 16, 19f, 20f, 89, 90, 92f, 93, 
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38f, 39f; pillars, 41–42, 42t, 43f, 44f; 
residential floors, 38–41; trusses, 42–45, 
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