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Preface

A research project to investigate the design and construction of reliable computing
systems was initiated by B. Randell at the University of Newcastle upon Tyne in
1972. In over ten years of research on system reliability, a substantial number of
papers have been produced by the members of this project. These papers have
appeared in a variety of journals and conference proceedings and it is hoped that
this book will prove to be a convenient reference volume for research workers active
in this important area. In selecting papers published by past and present members of
this project, I have used the following criteria: a paper is selected if it is concerned
with fault tolerance and is not a review paper and was published before 1983. I have
used these criteria (with only one or two exceptions!) in order to present a collection
of papers with a common theme and, at the same time, to limit the size of the book
to a reasonable length.

The papers have been grouped into seven chapters. The first chapter introduces
fundamental concepts of fault tolerance and ends with the earliest Newcastle paper
on reliability. The project perhaps became well known after the invention of recovery
blocks — a simple yet effective means of incorporating fault tolerance in software.
The second chapter contains papers on recovery blocks, starting with the paper
which first introduced the concept. Chapter 3 contains papers on exception handling
while chapter four includes papers that deal with fault tolerance in concurrent sys-
tems. It is now generally agreed that systems should be designed and constructed
hierarchically. The papers in Chapt. 5 explore the issues of constructing recoverable
objects in such ‘multi-level” systems. Chapter 6 contains papers on distributed sys-
tems and reports on work done — both conceptual and experimental — in this im-
portant area. The concluding chapter comprises just a single paper. This is the only
review paper in this volume and is included here since in it, its author (Randell)
summarizes the principles of system structuring and fault tolerance that have
emerged from the work of this project.

In a very amusing book?, John Gall presented a fundamental theorem’ for

systems:
New Systems Mean New Problems

I can therefore confidently predict continued employment for those of us who spend
our time trying to make computer systems more reliable. Indeed, I am looking for-
ward to the appearance of a second volume of collected papers ten years hence.

In compiling this book I have had help from many people, but special thanks go
to my colleagues Tom Anderson and Brian Randell for their advice and comments.
Finally, it is a pleasure to acknowledge the continued financial support for the
project by the UK Science and Engineering Research Council and the Ministry of

Defence.
Santosh K. Shrivastava

1 John Gall: “Systemantics; How Systems Work and Especially How They Fail.” Kangaroo
Pocket Books, New York, 1977
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Introduction

B. RANDELL

It was in January 1972 that a long term programme of research into the prob-
lems of designing highly reliable computing systems was initiated at the Uni-
versity of Newcastle upon Tyne. However the origins of the project can be
readily traced back some years earlier.

I had joined the University on May 1969, following a period of some years
in the United States at the IBM T.J. Watson Research Center. There, one of my
principal interests was system design methodology, a situation which led to my
participation in the 1968 NATO Conference on Software Engineering. Quite a
number of the attendees have since remarked on the great influence this confer-
ence had on their subsequent work and thinking. This was certainly true in my
case, aided by the fact that the task which Peter Naur and I undertook in the
week following the conference of editing the conference report called for re-
peated listening to tapes of many stimulating and entertaining discussions and
presentations. (Incidentally, | have always treasured Doug Mcllroy’s description
of our resulting report as “a triumph of mis-applied quotation™!)

One major theme of the conference was the great disparity between the level
of reliance that organizations were willing to place on complex real time sys-
tems and the very modest levels of reliability that were often being achieved —
for example, it was also at about this time that there was considerable public
debate over the proposed Anti-Ballistic Missile System, which we understood
was to involve relying completely on a massively complicated computer system
to position and detonate a nuclear device in the upper atmosphere in the path
of each incoming missile!

At the NATO Conference there was thus much discussion about improved
methods of software design, though there was a mainly implicit assumption
that high reliability was best achieved by making a system fault-free, rather
than fault-tolerant. Another much-debated topic concerned the practicality of
attempting to provide rigorous correctness proofs for software systems of sig-
nificant size and complexity. Such discussions, I am sure, played a large part in
ensuring that, by the time I reached Newcastle, I was seeking to do something
constructive about the problems of achieving high reliability from complex
computing systems, and yet, was feeling rather pessimistic about the practi-
cality of proving the correctness of other than relatively small and simple pro-
grams.

The plan for a major research project at Newcastle on system reliability in
fact was developed very quickly in discussion with my colleague Jim Eve. This
discussion was, I must admit, prompted by the impending visit of a delegation
from the Computing Science Committee of the U.K. Science Research Council,
whose aim was, we were told, to encourage the submission of new research pro-
posals. The speed and scale of the Newcastle response to this invitation were
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somewhat greater than the committee had bargained for. Thus our initial re-
search proposal, submitted in March 1970, led to our being awarded just a very
modest grant intended merely to enable us to prepare a report surveying the
current state-of-the-art, and to refine our proposal. I managed to kill two birds
with one report, since a somewhat shortened version served as the paper that I
had been invited to give at IFIP71 on Operating Systems, whilst the complete
version met with sufficient approval for Newcastle to be awarded, in November
1971, funds for the full project proposal. Since then, I am pleased to say, our
work has continued to be supported by the Science and Engineering Research
Council, as it later became known, together in more recent years with the Royal
Radar and Signals Establishment of the U.K. Ministry of Defence.

From the start, our aim was to study the general problems of achieving high
reliability from complex computing systems, rather than concentrate on prob-
lems specific to a particular application area or make of computer. Quoting
from the original project proposal: “The intent is to investigate problems con-
cerned with the provision of reliable service by a computing system, not-
withstanding the presence of software and hardware errors. The approach will
be based on the development of computer architecture and programming tech-
niques which facilitate the structuring of complex computing systems so that
the existence of errors can be detected and the extent of their ramifications be
determined automatically, and so that uninterrupted service (albeit probably of
degraded quality until the faulty hardware or software is repaired) can be pro-
vided . .. (The proposed project) is thus parallel and complementary to work
on achieving high reliability from individual hardware components, and on
program validation. Both of these topics are of importance, but it is clear that
for the foreseeable future, the designers of large-scale computing systems will
not be able to achieve adequate system reliability be depending entirely on the
reliability of the hardware and software components which make up their sys-
tem.”

Initially, and indeed for a number of years, the Newcastle project con-
centrated largely on the area that has since become known as “design fault
tolerance”, with particular reference to software faults. With situations such as
that reported at the NATO Conference of OS/360 suffering more than 1000
separate bugs per release, there were few to challenge the reality of problems of
residual design faults in software, though the notion of trying to provide means
of tolerating such faults, rather than just preventing their existence, was much
more controversial. In fact, though dealing mainly with software problems, we
have always attempted to avoid undue separation of hardware and software
issues. However it is only now that there is much general recognition of the fact
that, thanks to the “opportunities” provided by VLSI to design ever more com-
plex chips, hardware systems might suffer not only from operational faults but
also design faults, even years after the first deliveries occurred.

Looking back over the course of the Newcastle project, one can see that we
started by studying the problems of difficult faults in (relatively) simple sys-
tems and then gradually increased the difficulty of the systems that we were
prepared to consider. Thus we started with the problem of tolerating bugs in
isolated sequential programs, before dealing in turn with the difficulties as-
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sociated with input/output, competition for shared resources, cooperating pro-
cesses within a single computing system, and, finally, distributed computing
systems. This can be contrasted with the approach which is more typical of a
project concerned immediately with the complexities of some actual large com-
puting system. This usually involves first considering just simple kinds of fault
(in particular of completely predictable location and effect) and only gradually
attempting to consider more complicated (but not necessarily less likely) fault
situations. Each approach has its merits, but we are convinced that the
approach that we followed has proved the more appropriate, given our wish to
obtain results of reasonably general applicability, whilst avoiding undue design
complexity.

Our eventual concentration on distributed systems arose not so much be-
cause of the challenge of the additional complications that they posed, interest-
ing though these are, but rather from the view that all other sorts of system
were merely simplified special cases — as C. T. Davies once put it: “I have yet
to come across an interesting non-distributed system.” In this arena we have
taken as another archetypical “difficult” fault: the situation where erroneous
data has entered the system and spread amongst the component computers, be-
fore being detected. In principle, such a problem could arise no matter the
granularity of distribution — within a single VLSI chip, amongst a set of mul-
tiprocessing units, or in a geographically dispersed collection of computers. In
practice, however, we have for convenience concentrated on the latter case.
Thus, whereas in the early years of the project we worked mainly on topics re-
lated to processor architectures and programming languages, we have more re-
cently found ourselves interacting principally with the networking, operating
systems and database communities. Moreover, whereas at times we have con-
centrated particularly on mechanisms to be incorporated in fault tolerant sys-
tems, at other times much of our effort has concerned methodologies for the de-
sign of such systems. This in fact illustrates what is at once a great advantage,
and a great difficulty, of trying to undertake a programme of general research
in the area of computing system reliability — many different facets of comput-
ing science are highly relevant, and the problem is to decide what issues one
can safely ignore!

Despite the above characterization of the overall progression of our re-
search over the years, I must admit that the work of the project has not so much
followed a detailed long term plan of work, but rather has evolved dynamically,
not the least as the circumstances and the personnel involved with the project
have changed. Nevertheless, we believe it is fair to claim that there has been a
good degree of at least retrospective coherence and continuity to the work, cen-
tered as it has been from the start on a concern for structure as a means of cop-
ing with complexity. It is to be hoped that the present selection and organi-
sation, by my colleague Santosh Shrivastava, of a representative collection of
the project’s publications will enable readers to gain an understanding of our
overall approach, as well as provide them with details of many of the different
investigations that have been carried out by the project. What such a collection
of formal papers cannot do, however, is give any impression of the enjoyment
and sense of exhileration that has usually typified the activities of the project.
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Thus I would like to close these brief introductory remarks by making clear the
personal debt that I owe to all the staff, students and visitors who have been in-
volved with the project for the way in which they have made it such a stimulat-
ing and pleasant environment, over all these years.



Chapter 1
System Reliability

Introduction

In our every day conversations we tend to use the terms ‘fault’, ‘error’ and ‘fai-
lure’ (often interchangeably) to indicate the fact that something is ‘wrong’ with
a system. However, in any discussion on reliability and fault tolerance, more
precision is called for to avoid confusion. The definitions for these terms pre-
sented here in the first paper by Anderson and Lee owe their origins to the un-
published work of Melliar-Smith and to his collaborative work with Randell
(see their joint paper in Chap. 3). In true computer science fashion, Melliar-
Smith and Randell defined a system recursively as composed out of ‘smaller’
systems and defined the occurrence of a failure to be the event when the behav-
iour of a system does not agree with that required by the specification. Why
does a system fail? To answer this is it necessary to examine the internal state of
the system, which then leads us to the notions of ‘errors’ and ‘faults’.

The second paper of this chapter presents basic concepts for the con-
struction of fault-tolerant software systems. The paper contains a number of im-
portant ideas which include (i) ‘recovery blocks’ as a means of coping with soft-
ware faults; (ii) ‘conversations’ for structuring the interactions between com-
municating processes so as to make the problem of error recovery manageable;
and (iii) an approach to the construction of ‘multilevel’ fault-tolerant systems.
Over the years, these ideas have been developed considerably, for example
Chap. S reports in detail the work done on multilevel systems.

This chapter ends with a paper by Randell. This paper is of interest on two
counts. First it reports on the survey work performed prior to the launching of
the project and secondly this early paper on system reliability makes an in-
structive reading in the light of the previous two contributions. Randell stresses
the importance of system reliability, which is matched by the importance of ad-
equate performance, and promotes the concept of designing systems that con-
tain effective provisions for coping with ‘software bugs’. This objective is
reflected in a number of papers that appear in subsequent chapters.



Fault Tolerance Terminology Proposals

T. ANDERSON and P. A. LEE

Abstract. At present, the fault tolerance community is hampered by using a set of conflicting
terms to refer to closely related fault tolerance concepts. This paper presents informal, but pre-
cise, definitions and terminology for these concepts. In particular, the terms fault, error and
failure are carefully defined and distinguished. The aim is to promote discussion in the hope
that an agreed terminology will emerge.

Introduction

It is important that detailed technical discussions on any subject can be con-
ducted with reference to an agreed terminology for the relevant concepts. Un-
fortunately, when causes of unreliability in computing systems are discussed a
range of different (but rarely distinguished) terms is available, and this can be a
source of confusion. Confusion also stems from attempts to isolate or combine
issues relating to the hardware/software dichotomy.

For some years, members of the Reliability Project at the University of
Newcastle upon Tyne have been developing and refining a set of terms with
precise interpretations for use in discussions on system reliability and fault
tolerance. The terms are intended to be applicable to all levels of a computing
system and not just to either the hardware or the software. These terms and
their definitions are presented here to promote discussion and obtain the re-
actions of the fault tolerance community, with the hope that a coherent and
agreed terminology will emerge.

The paper first discusses the notion of a system since this is basic to all of
the other definition. Next, the causes of unreliability within a system are exam-
ined, and finally, the means by which reliability can be enhanced are summa-
rized.

On Systems

Any identifiable mechanism which maintains a pattern of behaviour at an in-
terface with its environment can be regarded as a system. Physical systems have
a hierarchical structure since they are built up from component systems, and so
on. This is reflected in the following definition: a system consists of a set of
components which interact under the control of a design. A component is simply
another system. The design is also a system, but has special characteristics. In
this paper, the design of a system will always refer to that part of the system
which actually supports and controls the interaction of the components (and
does not refer to any design document, such as a circuit diagram) or to the pro-
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cess by which the system was designed . As a special case, a system may be con-
sidered to be atomic, with the implication that any further internal structure of
that system is not of interest and can be ignored.

A system is said to interact with an environment, responding to stimuli at an
interface (or interfaces) between the system and its environment. An interface is
simply a place of interaction between two systems, and so (of course) the en-
vironment must be another system. The external behaviour of a system can be
described in terms of a finite set of external states, together with a function de-
fining transitions between states. The environment provides input as stimuli,
and perceives the system as passing through a sequence of external states at dis-
crete instants of time.

The external behaviour of a system is the manifestation of internal activity
within the system, and for a non-atomic system this activity can be examined in
more detail. The internal state of a system is defined to be a tuple comprising
the external states of the components of the system. An abstraction function
maps internal states to external states. Internal state transitions are a conse-
quence of changes of state by the components; these changes are determined by
interactions between the components. The pattern of these interactions is speci-
fied and controlled by the design of the system, which also determines the way
in which interactions between the system and the environment impinge upon
the components. Note that the state of a system is defined without reference to
the design of the system. This is deliberate, and distinguishes the ongoing ac-
tivity of the system from its internal organization, which is usually fixed — the
state of the design itself will not be intended to change.

These system definitions are intended to be sufficiently general that they are
applicable to any system whatsoever. In particular they cover computing sys-
tems considered as hardware or software systems and can be applied at many
different levels in such systems. For example, a single printed circuit board can
be regarded as a system — the components are the electronic components sol-
dered to the board while the design is implemented as the tracks and wires
which provide their interconnection. A central processor is a system with com-
ponents such as registers, arithmetic, logical and control units, and has as its de-
sign the data highways linking them. A complete computing system has as com-
ponents the central processor, primary and secondary storage, and peripherals,
with the design implemented as the data buses and cabling which interconnect
them. Note that the structure (and activity) of a system can be examined at dif-
ferent levels of abstraction (as opposed to levels of structure); a more abstract
view of a computing system takes as components the various processes imple-
mented in software, which interact through a design constructed, for example,
as shared data areas controlled by means of semaphores.

A particularly important change in viewpoint can be identified at an in-
terpretive interface, where a component of a system is interpreted (i.e. executed)

1 There are two reasons for this nonstandard use of the word “design”. First, it makes it clear
that a “design fault” (see next section) is a defect which is actually present in a system. Sec-
ond, we have not found a better alternative.



by, and thereby governs and directs the operation of, the rest of the system.
When this is the case it is natural and appropriate to regard the interpreted
component as the design of a system whose components are abstractions of the
other components of the original system. The paradigm here, of course, is the
interface between hardware and software in a computing system. It will often
be more useful to regard software as the design of an abstract system rather
than merely a bit-pattern stored on some magnetic medium.

All systems are designed and built to be used, and support interfaces which
can therefore be presumed to have useful properties. One unfortunate, but
prevalent, consequence of the complexity of computing systems is that their be-
haviour may depart from that desired by their users. The unreliability of a sys-
tem is usually assessed in terms of the frequency and extent of such departures,
and also in terms of any costs incurred because of undesired system behaviour.
However, any assessment of unreliability must surely distinguish between un-
desirable behaviour which is a result of deficiencies of the system itself as op-
posed to misunderstandings on the part of the users of the system. To make this
distinction a specification of system behaviour is required.

In practice, a specification must serve many purposes; those of designers,
builders, vendors and users of a system. As a result the specification of a system
is rarely complete or precise, is open to question and change, and may even be
undocumented. Such a specification cannot be used to define the reliability of a
system. System reliability can only be defined and assessed with respect to an
authoritative specification of behaviour, which can be applied as a test in any
situation to determine whether the behaviour of the system should or should
not be deemed acceptable. For the purpose of definition the role of the specifi-
cation is absolute. (Systems and their specifications are discussed in more detail
elsewhere.) [1]

Thus, a failure of a system is said to occur when the behaviour of the system
first deviates from that required by the specification of the system. To extend
this definition to include the occurrence of failures after the first deviation from
specified behaviour is not completely straightforward (the specification might
have to define what constitutes acceptable behaviour subsequent to a breach of
the specification). However, complications can be avoided by adopting the con-
vention that once the system has returned to satisfactory operation its sub-
sequent behaviour can again be assessed with respect to the specification (i.e.
ignoring any earlier failures).

The reliability of a system is usually characterized by a function R (¢) which
expresses the probability that no failure of the system will have occured by time
1.

On Faults and Errors

An authoritative specification cannot be challenged, so the occurrence of a sys-
tem failure must be due to the presence of defects within the system. Such de-
ficiencies will be referred to as faults when they are internal to a component or
the design, and as errors when the system state is defective. This section pro-
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vides precise definitions for these concepts, corresponding closely to established
usage.

Consider a system which moves through a sequence of internal states s, s,,
s, ...1n response to the interactions of the system with its environment. As-
sume that while the system progressed through states s, to s,_ its external be-
haviour conformed to the system specification, but that on entering state s, its
behaviour conflicted with the specification. That is, the system fails when it
reaches internal state s,. In this situation it seems natural to seek a “cause” to
which the “effect” of failure can be attributed; that is, to identify some earlier
(internal) event which can be held responsible for the failure. The internal state
transitions are the obvious candidates.

An internal state transition is said to be either valid or erroneous; an errone-
ous tramsition is an internal state transition to which a subsequent failure could
be attributed. That is, there exists a sequence of interactions with the system
which would lead to a failure which would be attributed to the erroneous tran-
sition. An internal state of a system is said to be either valid or erroneous; an
erroneous state is an internal state which could lead to a failure by a sequence of
valid transitions.

For example, suppose that the transition from s;_; to s; was considered to be
responsible for the eventual failure of the above system. Internal states s,, . . .,
s;_ are then valid states while s;, . . ., s, are erroneous states, assuming that the
only erroneous transition is that from s;_; to s;. Note that a valid transition is
one which cannot be blamed for a subsequent failure — there is no implication
that the system is operating as was intended. Thus the transition from s; to s; 4 |
is valid even though states s; and s; , ; are erroneous.

Having identified an erroneous transition as being the cause of a failure it is
natural to ask what caused that transition to be erroneous. One explanation for
an erroneous transition is the occurrence of a failure of a component of the sys-
tem. If one (or more) of the components fails to meet its specification this could
certainly place the system in an erroneous state. When this is the case the above
discussion can be applied to the failing component considered as a system: the
component has failed and must therefore itself have passed through a sequence
of erroneous states as a result of an erroneous transition. And so on — the ulti-
mate cause of a failure can be pursued as far as is considered worthwhile.

If, however, all components meet their specification when an erroneous
transition takes place, the problem must lie in the design of the system. An
obvious specification of behaviour for the design of a system is that it should
ensure that all internal state transitions of the system are valid in the absence of
any failure of the components. Then, if there is an erroneous transition and no
components have failed the design of the system must be held to have failed.
Thus, the design can be considered to be in an erroneous state. Although the
state of the design of a system is usually not intended to change this cannot be
guaranteed, and an erroneous transition within the design may result in a pre-
viously valid design becoming erroneous. Of course, there is also the possibility
that the design may have been erroneous from the outset (i.e. the initial state of
the design was erroneous) in which case an erroneous transition may be regard-
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ed as having occurred sometime during the design-process or the construction
of the system.

These definitions are intended to reflect the situation when, after a system
failure, the history of system activity is scrutinized in order to identify the
cause of the failure. A post-mortem of this nature will often proceed by observ-
ing that the internal state at the time of failure is clearly erroneous, that the
initial state of the system (or some other earlier state) was valid, and that there
must therefore have been an erroneous transition at some stage. For the pur-
poses of definition, it is the identification of erroneous transitions which de-
termines whether a state is valid or erroneous. In turn, an erroneous transition
must be the outcome of a failure of either a component or the design of the sys-
tem. This seems quite natural: a system consists of a set of components together
with a design; a failure of a system must be a consequence of a failure of either
a component or the design.

When a system is in an erroneous state, an examination of the external states
of the components of the system will enable a decision to be made as to which
components have external states that would have to be changed for the internal
state of the system to be valid. The states of such components are said to be er-
rors in the system. An error is thus a part of an erroneous state which constitutes
a difference from a valid state.

Even though the external state of a component may be an error in the sys-
tem of which it is a part, the component need not be in an erroneous state when
it is considered as a system in its own right. The internal state of the component
may be perfectly valid but not be compatible with the states of other com-
ponents of the containing system. To avoid confusion, an error in a component
or in the design of a system will be referred to as a faulf in the system. A com-
ponent fault can result in an eventual component failure; a design fault can lead
to a design failure. Either of these internal failures will produce an erroneous
transition in the operation of the system and this transition can be referred to as
the manifestation of a fault. The manifestation of a fault will produce errors in
the state of the system, which could lead to a failure.

Note that the only difference between a fault and an error is with respect to
the structure of the system; a fault in a system is an error in a component or in
the design of the system. A fault is the cause of an error and an error is the
cause of a failure, but the distinction between error and failure does not merely
reflect system structure (though an error is part of an internal state while a fail-
ure relates to external states). Rather, the difference is that between a condition
(or state) and an event. A system contains an error when its state is erroneous,
whereas a system failure is the event of not producing behaviour as specified.

Examination of the possible causes of system failure has revealed an impor-
tant dichotomy. The erroneous transition which gave rise to the failure must
either be due to a design fault, or one of the components must have failed. On
the one hand, a mistake made in designing or constructing a system can intro-
duce a fault into the design of the system, either because of an inappropriate
selection of a component or because of inappropriate (or missing) interactions
between components. Precise identification of the fault, and of the resulting de-
sign failure as an event, can only be made with respect to a corrected design for
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the system. If, on the other hand, the design of a system is considered to be
without blemish, then an erroneous transition can only occur because of a fail-
ure of one of the components of the system. These two possibilities are the only
sources of an erroneous transition, and thus of errors and consequent system
failure. It should be clear that although these possibilities are distinct for a sys-
tem viewed as an assembly of particular components, a more refined examina-
tion of the system which considers a failing component as a system of interact-
ing subcomponents would be expected to explain many component failures as
being due to design faults within the component. Eventually, all system failures
can be attributed to design faults at some level, unless a failure of a component
which is considered to be atomic is held responsible. (Even failure of an atomic
component may be considered to be due to a design fault in that a component
of inadequate reliability was selected.)

In contrast to the definition of failure presented earlier, the definitions of
erroneous transition and erroneous state, and therefore of error and fault, in-
clude a significant subjective element. This is considered to be an important
(and unavoidable) feature of these definitions. Consider the attribution of a
failure to an erroneous transition, which results in (or, as is more likely in prac-
tice, is a result of) the identification of a fault as the source of the problem.
Such an attribution must envisage a correction to the system which would re-
move the fault and prevent the erroneous transition from occuring. The changes
which can be made to correct a faulty system will rarely be unique; a judgement
must be made as to the most appropriate correction. This subjective decision
determines the fault, the erroneous transition and the errors which it introduced
into the state of the system.

On Fault Tolerance

Two complementary approaches have been noted [2] for constructing highly re-
liable systems. The first approach, which may be termed fault prevention, tries
to ensure that the implemented system does not and will not contain any faults.
Fault prevention has two aspects:

(i) fault avoidance techniques are employed to avoid introducing faults into
the system (e.g. design methodologies and quality control);

(ii) fault removal techniques are used to find and remove faults which were
inadvertently introduced into the system (e.g. testing and validation).

The second approach is known as fault tolerance (and is, of course, the
subject of this book). Fault tolerance techniques attempt to intervene and
prevent faults from causing system failures — they are necessary because com-
plex systems are certain to contain residual faults despite extensive application
of fault prevention. Four constituent phases of fault tolerance can be identified
[4, 1] and these are: (1) error detection; (ii) damage assessment; (iii) error recov-
ery; and (iv) fault treatment and continued system service.

(i) Error detection: In order to tolerate a fault in a system its effects must first be
detected. While a fault cannot be directly detected by a system, any manifes-
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tation of the fault will generate errors somewhere in the system. Thus the usual
starting point for fault tolerance techniques is the detection of an erroneous
state.

(ii) Damage assessment: When an error is detected much more of the system
state may be suspect than that initially discovered to be erroneous. Because of
the likely delay between the manifestation of a fault and the detection of its er-
roneous consequences, invalid information may have spread within the system,
leading to other errors which have not (yet) been detected. Thus before any at-
tempt is made to deal with a detected error it may be necessary to assess the
extent to which the system state has been damaged. This assessment will de-
pend on decisions made by the system designer concerning damage confine-
ment, and on exploratory techniques for identifying damage.

(iii) Error recovery: Following error detection and damage assessment, tech-
niques for error recovery must be utilized. These techniques will aim to trans-
form the current erroneous system state into a well defined and error-free state
from which normal system operation can continue. Without such a transforma-
tion system failure is likely to ensue.

(iv) Fault treatment and continued service: Although the error recovery phase
may have returned the system to an error-free state, techniques may still be re-
quired to enable the system to continue providing the service required by its
specification, by ensuring that the fault whose effects have been recovered from
does not immediately recur. The first aspect of fault treatment is to attempt to
accurately locate the fault. Following this, steps can be taken to repair the fault
or to reconfigure the rest of the system to avoid the fault; alternatively, no ac-
tion is taken if the fault is thought to be transient.

These four phases form the basis for all fault tolerance techniques and thus
can and should form the basis for the design and implementation of a fault
tolerant system. There can be considerable interplay between the various
phases which tends to blur their identification in a particular system. For
example, a protection mechanism usually provides one form of error detection
and can also play an important role in the design and implementation of the
damage assessment phase. Similarly, any damage assessment undertaken by a
system will utilize exploratory measures to identify possible damage, measures
which will themselves use error detection techniques. The provision of error re-
covery will normally be dependent upon the damage assessment provided (or
assumed) in the system, although some forms of error recovery attempt to mini-
mize the need for damage assessment.

It should be noted that most existing fault tolerant systems are only intended
to provide tolerance to a range of predicted component faults. Rarely is any
provision made for the unanticipatable effects of design faults. When tolerance
to design faults is required, very general strategies must be employed for each
of the four phases of fault tolerance identified above.

Finally, when a system emobodies fault tolerance techniques the basic defi-
nitions of the previous section require modification. The revised definitions
are:

an erroneous transition is a transition to which, in the absence of actions for

fault tolerance, a subsequent failure could be attributed;
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an erroneous state is an internal state which, in the absence of actions for
fault tolerance, could lead to a failure by a sequence of valid transitions.
The changes are needed because the success of actions for fault tolerance in
averting failure implies that a fault which could be tolerated would not be a
fault according to the original definitions.

Acknowledgement. Many of the definitions presented in this paper are an elaboration and
modification of those proposed by Melliar-Smith and Randell [3].
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System Structure for Software Fault Tolerance

B. RANDELL

Abstract. This paper presents and dicusses the rationale behind a method for structuring com-
plex computing systems by the use of what we term “recovery blocks,” “conversations,” and
“fault-tolerant interfaces.” The aim is to facilitate the provision of dependable error detection
and recovery facilities which can cope with errors caused by residual design inadequacies, par-
ticularly in the system software, rather than merely the occasional malfunctioning of hardware
components.

Index Terms. Acceptance test, alternate block, checkpoint, conversation, error detection, error
recovery, recovery block, recursive cache.

I. Introduction

The concept of “fault-tolerant computing” has existed for a long time. The first
book on the subject [10] was published no less than ten years ago, but the notion
of fault tolerance has remained almost exclusively the preserve of the hardware
designer. Hardware structures have been developed which can “tolerate™ faults,
i.e., continue to provide the required facilities despite occasional failures, either
transient or permanent, of internal components and modules. However, hard-
ware component failures are only one source of unreliability in computing sys-
tems, decreasing in significance as component reliability improves, while soft-
ware faults have become increasingly prevalent with the steadily increasing size
and complexity of software systems.

In general, fault-tolerant hardware designs are expected to be correct, i.e.,
the tolerance applies to component failures rather than design inadequacies,
although the dividing line between the two may on occasion be difficult to de-
fine. But all software faults result from design errors. The relative frequency of
such errors reflects the much greater logical complexity of the typical software
design compared to that of a typical hardware design. The difference in com-
plexity arises from the fact that the “machines” that hardware designers pro-
duce have a relatively small number of distinctive internal states, whereas the
designer of even a small software system has, by comparison, an enormous
number of different states to consider — thus one can usually afford to treat
hardware designs as being “correct,” but often cannot do the same with soft-
ware even after extensive validation efforts. (The difference in scale is evi-
denced by the fact that a software simulator of a computer, written at the level
of detail required by the hardware designers to analyze and validate their logi-
cal design, is usually one or more orders of magnitude smaller than the operat-
ing system supplied with that computer.)
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If all design inadequacies could be avoided or removed this would suffice to
achieve software reliability. (We here use the term “design” to include “im-
plementation,” which is actually merely low-level design, concerning itself with
detailed design decisions whose correctness nevertheless can be as vital to the
correct functioning of the software as that of any high-level design decision.)
Indeed many writers equate the terms “software reliability” and “program cor-
rectness.” However, until reliable correctness proofs (relative to some correct
and adequately detailed specification), which cover even implementation de-
tails, can be given for systems of a realistic size, the only alternative means of
increasing software reliability is to incorporate provisions for software fault
tolerance.

In fact there exist sophisticated computing systems, designed for en-
vironments requiring near-continuous service, which contain ad hoc checks and
checkpointing facilities that provide a measure of tolerance against some soft-
ware errors as well as hardware failures [11]. They incidentally demonstrate the
fact that fault tolerance does not necessarily require diagnosing the cause of the
fault, or even deciding whether it arises from the hardware or the software.
However there has been comparatively little specific research into techniques
for achieving software fault tolerance, and the constraints they impose on com-
puting system design.

It was considerations such as these that led to the establishment at the Uni-
versity of Newcastle upon Tyne of a project on the design of highly reliable
computing systems, under the sponsorship of the Science Research Council of
the United Kingdom. The aims of the project were and are “to develop, and
give a realistic demonstration of the utility of, computer architecture and pro-
gramming techniques which will enable a system to have a very high prob-
ability of continuing to give a trustworthy service in the presence of hardware
faults and/or software errors, and during their repair. A major aim will be
to develop techniques which are of general utility, rather than limited to spe-
cialised environments, and to explore possible tradeoffs between reliability and
performance.”

A modest number of reports and papers have emanated from the project to
date, including a general overview [12], papers concerned with addressing and
protection [6], {7], and a preliminary account of our work on error detection and
recovery [5]. The present paper endeavors to provide a rather more extensive
discussion of dur work on system error recovery techniques, and concentrates
on techniques for system structuring which facilitate software fault tolerance. A
companion paper [1] presents a proof-guided methodology for designing the er-
ror detection routines that our method requires.

I1. Fault Tolerance in Software

All fault tolerance must be based on the provision of useful redundancy, both
for error detection and error recovery. In software the redundancy required is
not simple replication of programs but redundancy of design.
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The scheme for facilitating software fault tolerance that we have developed
can be regarded as analogous to what hardware designers term “stand-by spar-
ing.” As the system operates, checks are made on the acceptability of the results
generated by each component. Should one of these checks fail, a spare com-
ponent is switched in to take the place of the erroneous component. The spare
component is, of course, not merely a copy of the main component. Rather it is
of independent design, so that there can be hope that it can cope with the cir-
cumstances that caused the main component to fail. (These circumstances will
comprise the data the component is provided with and, in the case of errors due
to faulty process synchronization, the timing and form of its interactions with
other processes.)

In contrast to the normal hardware stand-by sparing scheme, the spare soft-
ware component is invoked to cope with merely the particular set of circum-
stances that resulted in the failure of the main component. We assume the fail-
ure of this component to be due to residual design inadequacies, and hence that
such failures occur only in exceptional circumstances. The number of different
sets of circumstances that can arise even with a software component of com-
paratively modest size is immense. Therefore the system can revert to the use of
the main component for subsequent opertions — in hardware this would not
normally be done until the main component had been repaired.

The variety of undetected errors which could have been made in the design
of a nontrivial software component is essentially infinite. Due to the complexity
of the component, the relationship between any such error and its effect at run
time may be very obscure. For these reasons we believe that diagnosis of the
original cause of software errors should be left to humans to do, and should be
done in comparative leisure. Therefore our scheme for software fault tolerance
in no way depends on automated diagnosis of the cause of the error — this
would surely result only in greatly increasing the complexity and therefore the
error proneness of the system.

The recovery block scheme for achieving software fault tolerance by means
of stand-by sparing has two important characteristics.

1) It incorporates a general solution to the problem of switching to the use
of the spare component, i.e., of repairing any damage done by the erroneous
main component, and of transferring control to the appropriate spare com-
ponent.

2) It provides a method of explicitly structuring the software system which
has the effect of ensuring that the extra software involved in error detection and
in the spare components does not add to the complexity of the system, and so
reduce rather than increase overall system reliability.

III. Recovery Blocks

Although the basic recovery block scheme has already been described else-
where [5], it is convenient to include a brief account of it here. We will then de-
scribe several extensions to the scheme directed at more complicated situations
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than the basic scheme was intended for. Thus we start be considering the prob-
lems of fault tolerance, i.e., of error detection and recovery, within a single-
sequential process in which assignments to stored variables provide the only
means of making recognizable progress. Considerations of the problems of
communication with other processes, either within the computing system (e.g.,
by a system of passing messages, or the use of shared storage) or beyond the
computing system (e.g., by explicit input—output statements) is deferred until a
later section.

The progress of a program is by its execution of sequences of the basic
operations of the computer. Clearly, error checking for each basic operation is
out of the question. Apart from questions of expense, absence of an awareness
of the wider scene would make it difficult to formulate the checks. We must
aim at achieving a tolerable quantity of checking and exploit our knowledge of
the functional structure of the system to distribute these checks to best ad-
vantage. It is standard practice to structure the text of a program of any signifi-
cant complexity into a set of blocks (by which term we include module, pro-
cedure, subroutine, paragraph, etc.) in order to simplify the task of understand-
ing and documenting the program. Such a structure allows one to provide a
functional description of the purpose of the program text constituting a block.
(This text may of course include calls on subsidiary blocks.) The functional de-
scription can then be used elsewhere in place of the detailed design of the
block. Indeed, the structuring of the program into blocks, and the specification
of the purpose of each block, is likely to precede the detailed design of each
block, particularly if the programming is being performed by more than one
person.

When executed on a computer, a program which is structured into blocks
evokes a process which can be regarded as being structured into operations.
Operations are seen to consist of sequences of smaller operations, the smallest
operations being those provided by the computer itself. Our scheme of system
structuring is based on the selection of a set of these operations to act as units of
error detection and recovery, by providing extra information with their cor-
responding blocks, and so turning the blocks into recovery blocks.

The scheme is not dependent on the particular form of block structuring
that is used, or the rules governing the scopes of variables, methods of parame-
ter passing, etc. All that is required is that when the program is executed the
acts of entering and leaving each operation are explicit, and that operations are
properly nested in time. (In addition, although it is not required, considerable
advantage can be taken of information which is provided indicating whether
any given variable is local to a particular operation.) However, for convenience
of presentation, we will assume that the program text is itself represented by a
nested structure of Algol or PL/I-style blocks.

A recovery block consists of a conventional block which is provided with a
means of error detection (an acceptance test) and zero or more stand-by spares
(the additional alternates). A possible syntax for recovery blocks is as follows.
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(recovery block) :: = ensure {acceptance test) by
{primary alternate)
<othér alternates) else error
(primary alternate) ::= (alternate)
{other alternates) ::= (empty) | {other alternates)
else by (alternate)
(alternate) ::= (statement list)

acceptance test) ::= (logical expression)

The primary alternate corresponds exactly to the block of the equivalent
conventional program, and is entered to perform the desired operation. The ac-
ceptance test, which is a logical expression without side effects, is evaluated on
exit from any alternate to determine whether the alternate has performed ac-
ceptably. A further alternate, if one exists, is entered if the preceding alternate
fails to complete (e.g., because it attempts to divide by zero, or exceeds a time
limit), or fails the acceptance test. However before an alternate is so entered, the
state of the process is restored to that current just before entry to the primary
alternate. If the acceptance test is passed, any further alternates are ignored, and
the statement following the recovery block is the next to be executed. However,
if the last alternate fails to pass the acceptance test, then the entire recovery
block is regarded as failed, so that the block in which it is embedded fails to
complete and recovery is then attempted at that level.

In the illustration of a recovery block structure in Fig. 1, double vertical
lines define the extents of recovery blocks, while single vertical lines define the
extents of alternate blocks, primary or otherwise. Figure 2 shows that the alter-
nate blocks can contain, nested within themselves, further recovery blocks.

Consider the recovery block structure shown in Fig. 2. The acceptance test
BT will be invoked on completion of primary alternate BP. If the test succeeds,
the recovery block B is left and the program text immediately following is
reached. Otherwise the state of the system is reset and alternate BQ is entered.
If BQ and then BR do not succeed in passing the acceptance test the recovery
block B as a whole, and therefore primary alternate AP, are regarded as having
failed. Therefore the state of the system is reset even further, to that current just
before entry to AP, and alternate AQ is attempted.

Deferring for the moment questions as to how the state of the system is reset
when necessary, the recovery block structure can be seen as providing a very
general framework for the use of stand-by sparing which is in full accordance
with the characteristics discussed earlier, in Sect. IIl. There is no need for, in-
deed no possibility of, attempts at automated error diagnosis because of the
fact that the system state is reset after an error, deleting all effects of the faulty
alternate. Once the system state is reset, switching to the use of an alternate is
merely a matter of a simple transfer of control.

The concept of a recovery block in fact has much in common with that of a
sphere of control, as described by Davies [2]. However, we have limited our-

18



by

else by

A: ensure AT

else error

AP:  begin
(program text)
end
AQ: begin
(program text)
end

Fig. 1. Simple recovery block

TA: ensure AT
by

else by

else error

[AP: begin declare Y

(program text)

B: ensure BT
by |:BP:
else by |:BQ:
else by |:BR:
else error

(program text)

end

-_AQ: begin declare Z

{program text)

[C: ensure CT
by

else by

else error

D: ensure DT
by

else error
end

Fig. 2. More complex recovery block

CP:

rCQ:

DP:

begin declare U
{program text)
end

begin declare V
(program text)
end

begin declare W
(program text)
end

begin

(program text)
end
begin

{program text)
end

begin
(program text)
end
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selves to preplanned error recovery facilities, and base all error recovery on
automatic reversal to a previously reached recovery point. Thus, once a process
has “committed” itself by accepting the results of a recovery block, the only
form of recovery we envisage involves a more global process reversal, to the be-
ginning of a recovery block whose results have not yet been accepted. In con-
trast, Davies is prepared to allow for the possibility of recovery following com-
mitment, by means of programmer-supplied “error compensation algorithms.”

Although the scheme is related to those which are used in artificial intel-
ligence-type back-tracking programs [4], there are major differences — in our
scheme back up, being caused by residual design inadequacies, occurs very in-
frequently and is due to unforeseeable circumstances, rather than very fre-
quently and as an essential element of the basic algorithm.

The utility of the recovery block scheme for stand-by sparing in software
rests on the practicability of producing useful aceptance tests and alternates,
and on the cost of providing means for resetting the system state. We will dis-
cuss each of these points in turn.

A. Acceptance Tests

The function of the acceptance test is to ensure that the operation performed by
the recovery block is to the satisfaction of the program which invoked the
block. The acceptance test is therefore performed by reference to the variables
accessible to that program, rather than variables local to the recovery block,
since these can have no effect or significance after exit from the block. Indeed
the different alternates will probably have different sets of local variables.
There is no question of there being separate acceptance tests for the different
alternates. The surrounding program may be capable of continuing with any of
a number of possible results of the operation, and the acceptance test must es-
tablish that the results are within this range of acceptability, without regard for
which alternate can generate them.

There is no requirement that the test be, in any formal sense, a check on the
absolute “correctness” of the operation performed by the recovery block.
Rather it is for the designer to decide upon the appropriate level of rigor of the
test. Ideally the test will ensure that the recovery block has met all aspects of its
specification that are depended on by the program text that calls it — in prac-
tice, if only for reasons of cost and/or complexity, something less than this
might have to suffice. (A methodological approach to the design of appropriate
acceptance test is described by Anderson [1].)

Although when an acceptance test is failed all the evidence is hidden from
the alternate which is then called, a detailed log is kept of such incidents, for
off-line analysis. Some failures to pass the acceptance test may be spurious be-
cause a design inadequacy in the acceptance test itself has caused an unneces-
sary rejection of the operation of an alternate. In fact the execution of the pro-
gram of the acceptance test itself might suffer an error and fail to complete.
Such occurrences, which hopefully will be rare since the aim is to have accep-
tance tests which are much simpler than the alternates they check, are treated as
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ensure sorted (S) A (sum (S) = sum (prior S))

by quickersort (S)

else by quicksort (S)

else by bubblesort (S)

else error Fig. 3. Fault-tolerant sort program

failures in the enclosing block. Like all other failures they are also recorded in
the error log. Thus the log provides a means of finding these two forms of in-
adequacy in the design of the acceptance test — the remaining form of in-
adequacy, that which causes the acceptance of an incorrect set of results, is of
course more difficult to locate.

When an acceptance test is being evaluated, any nonlocal variables that
have been modified must be available in their original as well as their modified
form because of the possible need to reset the system state. For convenience
and increased rigor, the acceptance test is enabled to access such variables
either for their modified value or for their original (prior) value. One further
facility available inside an acceptance test will be a means of checking whether
any of the variables that have been modified have not yet been accessed within
the acceptance test — this is intended to assist in detecting sins of commission,
as well as omission, on the part of the alternate.

Figure 3 shows a recovery block whose intent is to sort the elements of the
vector S. The acceptance test incorporates a check that the set of items in S af-
ter operation of an alternate are indeed in order. However, rather than incur the
cost of checking that these elements are a permutation of the original items, it
merely requires the sum of the elements to remain the same.

B. Alternates

The primary alternate is the one which is intended to be used normally to per-
form the desired operation. Other alternates might attempt to perform the de-
sired operation in some different manner, presumably less economically, and
preferably more simply. Thus as long as one of these alternates succeeds the de-
sired operation will have been completed, and only the error log will reveal any
troubles that occurred.

However in many cases one might have an alternate which performs a less
desirable operation, but one which is still acceptable to the enclosing block in
that it will allow the block to continue properly. (One plentiful source of both
these kinds of alternates might be earlier releases of the primary alternate!)

Figure 4 shows a recovery block consisting of a variety of alternates. (This
figure is taken from Anderson [1].) The aim of the recovery block is to extend
the sequence § of items by a further item 7, but the enclosing program will be
able to continue even if afterwards § is merely “consistent.” The first two alter-
nates actually try, by different methods, to join the item 7 onto the sequence S§.
The other alternates make increasingly desperate attempts to produce at least
some sort of consistent sequence, providing appropriate warnings as they do so.
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Fig. 4. Recovery block with alternates which achieve different, but still acceptable though
less desirable, results

C. Restoring the System State

By making the resetting of the system state completely automatic, the pro-
grammers responsible for designing acceptance tests and alternates are shielded
from the problems of this aspect of error recovery. No special restrictions are
placed on the operations which are performed within the alternates, on the call-
ing of procedures or the modification of global variables, and no special pro-
gramming conventions have to be adhered to. In particular the error-prone task
of explicit preservation of restart information is avoided. It is thus that the re-
covery block structure provides a framework which enables extra program text
to be added to a conventional program, for purposes of specifying error detec-
tion and recovery actions, with good reason to believe that despite the increase
in the total size of the program its overall reliability will be increased.

All this depends on being able to find a method of automating the resetting
of the system state whose overheads are tolerable. Clearly, taking a copy of the
entire system state on entry to each recovery block, though in theory satis-
factory, would in normal practice be far too inefficient. Any method involving
the saving of sufficient information during program execution for the program
to be executable in reverse, instruction by instruction, would be similarly im-
practical.

Whenever a process has to be backed up, it is to the state it had reached just
before entry to the primary alternate — therefore the only values that have to be
reset are those of nonlocal variables that have been modified. Since no explicit
restart information is given, it is not known beforehand which nonlocal vari-
ables should be saved. Therefore we have designed various versions of a mech-
anism which arranges that nonlocal variables are saved in what we term a “re-
cursive cache” as and when it is found that this is necessary, i.e., just before
they are modified. The mechanisms do this by detecting, at run time, as-
signments to nonlocal variables, and in particular by recognizing when an as-
signment to a nonlocal variable is the first to have been made to that variable
within the current alternate. Thus precisely sufficient information can be pre-
served.

The recursive cache is divided into regions, one for each nested recovery
level, i.e., for each recovery block that has been entered and not yet left. The
entries in the current cache region will contain the prior values of any variables
that have been modified within the current recovery block, and thus in case of
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failure it can be used to back up the process to its most recent recovery point.
The region will be discarded in its entirety after it has been used for backing up
a process. However if the recovery block is completed successfully, some cache
entries will be discarded, but those that relate to variables which are nonlocal to
the enclosing environment will be consolidated with those in the underlying re-
gion of the cache.

A full description of one version of the mechanism has already been pub-
lished [5], so we will not repeat this description here. We envisage that the
mechanism would be at least partly built in hardware, at any rate if, as we have
assumed here, recovery blocks are to be provided within ordinary programs
working on small data items such as scalar variables. If however one were pro-
gramming solely in terms of operations on large blocks of data, such as entire
arrays or files, the overheads caused by a mechanism built completely from
software would probably be supportable. Indeed the recursive cache scheme,
which is essentially a means for secretly preventing what is sometimes termed
“update in place,” can be viewed as a generalization of the facility in CAP’s
“middleware” scheme [11] for preventing individual application programs from
destructively updating files.

The various recursive cache mechanisms can all work in terms of the basic
unit of assignment of the computer, e.g., a 32-bit word. Thus they ensure that
just those scalar variables and array elements which are actually modified are
saved. It would of course be possible to structure a program so that all its vari-
ables are declared in the outermost block, and within each recovery block each
variable is modified, and so require that a maximum amount of information be
saved. In practice we believe that even a moderately well-structured program
will require comparatively little space for saved variables. Measurements of
space requirements will be made on the prototype system now being imple-
mented, but already we have some evidence for this from some simple exper-
iments carried out by interpretively executing a number of Algol W programs.
Even regarding each Algol block as a recovery block it was found that the
amount of extra space that would be needed for saved scalar variables and ar-
ray elements was in every case considerably smaller at all times than that need-
ed for the ordinary data of the program.

The performance overheads of the different recursive cache mechanisms are
in the process of being evaluated. Within a recovery block only the speed of
store instructions is affected, and once a particular nonlocal variable has been
saved subsequent stores to that variable take place essentially at full speed. The
overheads involved in entering and leaving recovery blocks differ somewhat be-
tween the various mechanisms, but two mechanisms incur overheads which de-
pend just linearly on the number of different nonlocal variables which are
modified. It is our assessment that these overheads will also be quite modest.
Certainly it would appear that the space and time overheads incurred by our
mechanisms will be far smaller than would be incurred by any explicitly pro-
grammed scheme for saving and restoring the process state.
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IV. Error Recovery Amongst Interacting Processes

In the mechanism described so far, the only notion of forward progress is that
of assignment to a variable. In order to reset the state of a process after the fail-
ure of an acceptance test, it was necessary only to undo assignments to nonlocal
variables. In practice, however, there are many other ways of making forward
progress during computations, e.g., positioning a disk arm or magnetic tape,
reading a card, printing a line, receiving a message, or obtaining real-time data
from external sensors. These actions are difficult or even impossible to undo.
However, their effects must be undone in order not to compromise the inherent
“recoverability” of state provided by the recursive cache mechanisms.

Our attempts to cope with this kind of problem is based on the observation
that all such forms of progress involve interaction among processes. In some
cases, one or more of these processes may be mechanical, human, or otherwise
external, e.g., the process representing the motion of the card-reading machin-
ery. In other cases, the progress can be encapsulated in separate but interacting
computational processes, each of which is structured by recovery blocks. In this
section, we will explore the effect of this latter type of interaction on the back-
tracking scheme, still restricting each process to simple assignment as the only
method of progress. Then in Section V we will explore the more general prob-
lem.

Consider first the case of two or more interacting processes which have the
requirement that if one attempts to recover from an error, then the others must
also take recovery action, “to keep in step.” " '

For example, if one process fails after having received, and destroyed, infor-
mation from another process, it will require the other process to resupply this
information. Similarly, a process may have received and acted upon informa-
tion subsequently discovered to have been sent to it in error and so must aban-
don its present activity.

Maintaining, naturally, our insistence on the dangers of attempted pro-
grammed error diagnosis, we must continue to rely on automatic backing up of
processes to the special recovery points provided by recovery block entries.
Each process while executing will at any moment have a sequence of recovery
points available to it, the number of recovery points being given by the level of
dynamic nesting of recovery blocks.

An isolated process could “use up” recovery points just one at a time by suf-
fering a whole series of ever more serious errors. However given an arbitrary set
of interacting processes, each with its own private recovery structure, a single
error on the part of just one process could cause al// the processes to use up
many or even all of their recovery points, through a sort of uncontrolled
domino effect.

The problem is illustrated in Fig. 5, which shows three processes, each of
which has entered four recovery blocks that it has not yet left. The 'dotted lines
indicate interactions between processes (i.e., an information flow resulting in an
assignment in at least one process). Should Process 1 now fail, it will be backed
up to its latest, i.e., its fourth recovery point, but the other processes will not be
affected. If Process 2 fails, it will be backed up to its fourth recovery point past
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an interaction with Process 1, which must therefore also be backed up to the re-
covery point immediately prior to this interaction, i.e., its third recovery point.
However if Process 3 fails, all the processes will have to be backed up right to
their starting points!

The domino effect can occur when two particular circumstances exist in
combination.

1) The recovery block structures of the various processes are uncoordinated,
and take no account of process interdependencies caused by their interactions.

2) The processes are symmetrical with respect to failure propagation —
either member of any pair of interacting processes can cause the other to back
up. »

By removing either of these circumstances, one can avoid the danger of the
domino effect. Our technique of structuring process interactions into “con-
versations,” which we describe next, is a means of dealing with point 1) above;
the concept of multilevel processes, described in Section V of this paper, will be
seen to be based on avoiding symmetry of failure propagation.

A. Process Conversations

If we are to provide guaranteed recoverability of a set of processes which by
interacting have become mutually dependent on each other’s progress, we must
arrange that the processes cooperate in the provision of recovery points, as well
as in the interchange of ordinary information. To extend the basic recovery
block scheme to a set of interacting processes, we have to provide a means for
coordinating the recovery block structures of the various processes, in effect to
provide a recovery structure which is common to the set of processes. This
structure we term a conversation.

Conversations, like recovery blocks, can be thought of as providing firewalls
(in both time and space) which serve to limit the damage caused to a system by
errors. Figure 6 represents this view of a recovery block as providing a firewall
for a single process. The downward pointing arrow represents the overall prog-
ress of the process. The top edge of the recovery block represents the en-
vironment of the process on entry, which is preserved automatically and can be
restored for the use of an alternate block. The bottom edge represents the ac-
ceptable state of the process on exit from the recovery block, as checked by the
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Fig. 6. Recovery block in a single-sequential process
Fig. 7. Parallel processes within a recovery block

Fig. 8. Parallel processes within a recovery block, with a further recovery block for one of the
processes. Interaction between the processes at points £ and F must now be prohibited

acceptance test, and beyond which it is assumed that errors internal to the re-
covery block should not propagate. (Of course the strength of this firewall is on-
ly as good as the rigour of the acceptance test.) The sides show that the process
is isolated from other activities, i.e., that the process is not subject to external
influences which cannot be recreated automatically for an alternate, and that it
does not generate any results which cannot be suppressed should the acceptance
test be failed. (These side firewalls are provided by some perhaps quite conven-
tional protection mechanism, to complement the top and bottom firewalls pro-
vided by the recursive cache mechanism and acceptance test.)

The manner in which the processing is performed within the recovery block
is of no concern outside it, provided that the acceptance test is satisfied. For in-
stance, as shown in Fig. 7, the process may divide into several parallel processes
within the recovery block. The recursive cache mechanisms that we have devel-
oped permit this, and place no constraints on the manner in which this parallel-
ism is expressed, or on the means of communication between these parallel pro-
cesses.

Any of the parallel processes could of course enter a further recovery block,
as shown in Fig. 8. However, by doing so it must lose the ability to communi-
cate with other processes for the duration of its recovery block. To see this, con-
sider the consequences of an interaction between the processes at points E and
F. Should process Y now fail its acceptance test it would resume at point 4 with
an alternate block. But there is no way of causing process X to repeat the in-
teraction at E without backing up both processes to the entry to their common
recovery block at K. Thus communication, whether it involve explicit message
passing facilities, or merely reference to common variables, would destroy the
value of the inner recovery block, and hence must be prohibited.

A recovery block which spans two or more processes as is shown in Fig. 9 is
termed a conversation. Two or more processes which already possess the means
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Fig. 9. Parallel processes with conversations which provide recovery blocks for local com-
munication

Fig. 10. Example of invalid conversations which are not strictly nested

of communicating with each other may agree to enter into a conversation.
Within the conversation these processes may communicate freely between
themselves, but may not communicate with any other processes. At the end of
the conversation all the processes must satisfy their respective acceptance tests
and none may proceed until all have done so. Should any process fail, all the pro-
cesses must automatically be backed up to the start of the conversation to at-
tempt their alternates.

As is shown in Fig. 9, it is possible that the processes enter a conversation at
differing times. However all processes must leave the conversation together,
since no process dare discard its recovery point until all processes have satisfied
their respective acceptance tests. In entering a conversation a process does not
gain the ability to communicate with any process with which it was previously
unable to communicate — rather, entry to a conversation serves only to restrict
communication, in the interests of error recovery.

As with recovery blocks, conversations can of course occur within other con-
versations, so as to provide additional possibilities for error detection and re-
covery. However conversations which intersect and are not strictly nested can-
not be allowed. Thus structures such as that shown in Fig. 10 must be prohibit-
ed, as can be demonstrated by an argument similar to that given in relation to
Fig. 8.

V. Multilevel Systems

We turn now to a method of structuring systems which uses assymetrical failure
propagation in order to avoid the uncontrolled domino effect described in
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Fig. 11. Fully interpretive multilevel system

Fig. 12. Multilevel file system interpretive only at level 1 (see Madnick and Alsop [8])

Sect. IV. In so doing we extend the scope of our discussions to cover more com-
plex means of making recognizable progress than simple assignments. More-
over, we also face for the first time the possibility of reliability problems arising
from facilities used to provide the means of constructing and executing pro-
cesses and of using recovery blocks and conversations. The method of structur-
ing which permits these extensions of our facilities for fault tolerance involves
the use of what we (and others) term multilevel systems.

A multilevel system is characterized by the existence of a sequence of de-
fined “abstract” or “virtual” machines which denote the internal interfaces be-
tween the various levels. A given virtual machine provides a set of apparently
atomic facilities (operations, objects, resources, etc.). These can be used to con-
struct the set of facilities that constitute a further (higher) virtual machine in-
terface, possibly of a very different appearance. Each virtual machine is there-
fore an abstraction of the virtual machine below it. Since we are concerning
ourselves with computer systems, we in general expect each virtual machine to
have the characteristics of a programmable computer. Thus it is capable of
executing a program that specifies which operations are to be applied to which
operands, and their sequencing.

Our use of the term virtual machine is quite general. In particular our con-
cept of multilevel systems includes systems whose levels are entirely different
from each other (as in Fig. 11) as well as systems whose levels have much in
common with each other (as in Fig. 12), for example being constructed by ap-
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plying a protection scheme on a single computer. However, in each case the
operations that a given virtual machine provides can be regarded as atomic at
the level above it and as implemented by the activity of the level immediately
below the virtual machine interface. Thus from the viewpoint of level i of the
system in Fig. 12, the whole of the file accessing operation is performed by level
7. Indeed even the operation of addition, and the whole process of instruction
fetching and decoding, can be regarded as being provided by level 7. This is the
case no matter which actual level below level 7 is in fact responsible for the con-
struction of these facilities out of more basic ones.

Some virtual machine interfaces allow the facilities they provide to be used
without much, or even any, knowledge of the underlying structures used to con-
struct these facilities. Virtual machine interfaces which have this characteristic
can be termed opaque interfaces. Such virtual machine interfaces are total (in
the sense that a mathematical function which is defined for all possible argu-
ments is total) and have associated documentation which completely defines
the interface. Being total and completely documented are necessary rather than
sufficient conditions for a virtual machine interface to be usefully opaque, a
characteristic which only well-chosen ones possess in any great measure, but
this is a subject which we will not pursue further here.

Opaque virtual machine interfaces facilitate the understanding of existing
complex systems, and the design of new ones. They do this by enabling the
complexity of the system to be divided and conquered, so that no single person
or group of persons has to master all the details of the design. They can there-
fore in themselves contribute to the overall reliability of a system, by simplify-
ing the tasks of its designers. However, if design errors are made, or operational
failures of physical components occur, it will be found that existing methods of
constructing opaque virtual machine interfaces are somewhat inadequate. The
sought-after opacity of the interface will in many cases be lost, since error re-
covery (either manual or predesigned) will need an understanding of two or
more levels of the system. Hence our interest in providing facilities for tolerat-
ing faults, including those due to design errors, which can be used by designers
whose detailed understanding of the system is limited to that of a single level
and the two virtual machine interfaces that bound it. (A very different ap-
proach to these problems, based on the use of programmer-supplied error di-
agnosis and recovery code, has been described by Parnas [9].)

All this presupposes that the virtual machine interfaces have some physical
realization in the operational system. Conceptual levels, though of value during
system design and in providing documentation of the behavior of a reliable sys-
tem, typically play no part in failure situations ~ for example the levels in the
THE system [3] have no relevance to the problem of coping with, say, an actual
memory parity error. The actual physical realization in existing multilevel sys-
tems can vary widely — from, for example, the provision of physically separate
storage and highways for microprograms and programs, to the use of a single
control bit to distinguish between supervisor and user modes of instruction ex-
ecution. What we now describe are additional general characteristics and facili-
ties that we believe any such physical realization of a virtual machine interface
should possess in order to support our techniques for system fault tolerance.
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A. Errors Above a Virtual Machine Interface

Everything that appears to happen in a given level is in fact the result of activity
for which the level below is (directly or indirectly) responsible. This applies not
only to the ordinary operations performed at a level but also to any recovery
actions which might be required. Consider for example a level i which uses our
recovery block scheme to provide itself with some measure of fault tolerance,
and which makes recognizable progress by means of simple assignment state-
ments. Then it is level i-1 which is responsible not only for the actual as-
signments, but also for any saving of prior values of variables and reinstatement
of them when required.

Similarly, if the virtual machine which supports level i includes any more
exotic operations which change the system state as seen by level i, e.g., magnetic
tape rewind, then level i-1 will have the responsibility of undoing their effects,
e.g., repositioning the tape (whether level i-I undertakes this responsibility it-
self, or instead delegates it to level i-2 is irrelevant).

Provided that level i-1 fulfills its responsibilities level i can thus assume that
error detection will automatically be followed by a return to the most recent re-
covery point. This will occur whether the detection of a level i error occurs at
level i itself (e.g., by means of an acceptance test) or below level i because of
incorrect use by level i of one of the operations provided to it by level i-1 (e.g.,
division by zero).

It should be noted that both progress and fall back, as recognizable in the
level above a virtual machine interface, are provided by progress on the level
below, i.e., the level i-1 keeps going forwards, or at least tries to, even if it is
doing so in order to enable level i to (appear to) go backwards.

For example, level i might read cards from an “abstract card reader” while
level i-1 actually implements this abstract card reader by means of spooling.
When level i encounters an error and tries to go backwards, it must appear to
“unread” the cards read during the current recovery block. But level i-1 im-
plements this “unreading” by merely resetting a pointer in its school buffer — a
positive or forward action on its part.

All this assumes level i-1 is trouble free — what we must now discuss are the
complications caused by level i-1 being unable, for various reasons, to maintain
its own progress, and in particular that progress on which level i is relying.

B. Errors Below a Virtual Machine Interface

Needless to say, the programs which provide a virtual machine interface can
themselves, if appropriate, incorporate recovery blocks for the purpose of local
error detection and recovery. Thus when level i-I makes a mistake, which is de-
tected, while performing some operation for level #, if an alternate block
manages to succeed where the primary alternate had failed the operation can
nevertheless be completed. In such circumstances the program at level i need
never know that any error occurred. (For example, a user process may be un-
aware that the operating system had to make several attempts before it succeed-
ed in reading a magnetic tape on behalf of the user process.) But if all the alter-
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nates of the outermost recovery block of the level i-1 program performing an
operation for level i fail, so that the recovery capability at level i-1 is exhausted,
then the operation must be rejected and recovery action undertaken at level i.

This case of an error detected at level i-1 forcing level i back to a recovery
point in order to undertake some alternative action is very similar to the one
mentioned earlier in Section V-A — namely that of an error detected at level i-1,
but stemming from the incorrect use of an operation by level i The error log
which is produced for later offline analysis will indicate the difference between
the two cases, but this information (leave alone further information which
might be needed for diagnostic purposes) will not be available at level i

The situation is much more serious if level i-1 errs, and exhausts any recov-
ery capability it might have, whilst performing an inverse operation on behalf
of level i, i.e., fails to complete the act of undoing the effects of one or more
operations that level 7 has used to modify its state. This possibility might seem
rather small when the inverse operation is merely that of resetting the prior val-
ue of a scalar variable. However when an inverse operation is quite complex
(e.g., one that involves undoing the changes a process has caused to be made to
complicated data structures in a large filing system) one might have to cope
with residual design inadequacies, as well as the ever-present possibility of
hardware failure.

When an inverse operation cannot be completed, the level i cannot be
backed up, so it has to be abandoned. This is perhaps the most subtle cause for
level i-1 to abandon further attempts to execute a level i process — more famil-
iar ones include the sudden inability of level i-1 to continue fetching and decod-
ing level i instructions, locating level i operands, etc., either because of level
i-I's own inadequacy, or that of the level i-2 machine on which it depends. (For
example, level 3 of Fig. 11, the APL interpreter, might find that the file in
which it keeps the APL program belonging to a particular user was unreadable,
a fault which perhaps was first detected at level 2, by the microprogram).

There is one other important class of errors detected below a virtual ma-
chine interface which can be dealt with without necessarily abandoning level i,
the level above the interface. After level i has passed an acceptance test, but be-
fore all the information constituting its recovery point has been discarded, there
is the chance for level i-1 to perform any checking that is needed on the overall
acceptability, in level i-1 terms, of the sequence of operations that have been
carried out for level i.

For example, level i may have been performing operations which were, as
far as it was concerned, disk storage operations. Level i-I could in fact have
buffered the information so stored. Before the present level of fall back capa-
bility of level i is discarded, level i-1 may wish to ensure that the information
has been written to disk and checked. If level i-I finds that it cannot ensure this,
but instead encounters some problem from which it itself is unable to recover,
then it can in essence cause level i to fail, and to fall back and attempt an alter-
nate. This will be in the hope that whatever problem it was that level -1 got
into (on behalf of level i) this time, next time the sequence of operations that
level i requests will manage to get dealt with to the satisfaction of level i-1 as
well as of level i.
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In fact an intersting example of this case of level i-I inducing a failure in
level i occurs in the mechanization of conversations. Consider a level i process
which is involved in a conversation with some other level i process and which
after completing its primary alternate satisfies is acceptance test. At this mo-
ment level i-1 must determine whether the other process has also completed its
primary alternate and passed its acceptance test. If necessary the process must
be suspended until the other process has been completed, as discussed in Sec-
tion IV-A. If the other process should fail, then the first process must also be
forced to back up just as if it had failed its own acceptance test even though it
had in fact passed it.

C. Fault-Tolerant Virtual Machine Interfaces

We have so far discussed the problems of failures above and below a virtual
machine interface quite separately. In fact, except for the highest level and the
one that we choose to regard as the lowest level, every level is of course simul-
taneously below one virtual machine interface and above another such in-
terface. Therefore each interface has the responsibility for organizing the in-
teraction between two potentially unreliable levels in a multilevel system. The
aim is to embody within the interface all the rules about interaction across levels
that we have been describing, and so simplify the task of designing the levels on
either side of the interface.

If this can be done then it will be possible to design levels which are separat-
ed by opaque virtual machine interfaces independently of each other, even in
the case where the possibility of failures is admitted. By enabling the design of
error recovery facilities to be considered separately for different levels of the
system, in the knowledge that the fault-tolerant interface will arrange their
proper interaction, their design should be greatly simplified — a very important
consideration if error recovery facilities in complex systems are to be really re-
lied upon.

Various different kinds of virtual machine interfaces are provided in current
multilevel systems. These range from an interface which involves complete in-
terpretation (e.g., the APL machine interface in Fig. 11 and the lowest inferface
in Fig. 12), to one where many of the basic facilities provided above the in-
terface are in fact the same as those made available to the level immediately
below the interface by some yet lower virtual machine interface (e.g., the other
interfaces in Fig. 12). These latter kinds of interface, because of their perfor-
mance characteristics, can be expected to predominate in systems which have
many levels — in theory the multilevel file system (Fig. 12) could be built using
a hierarchy of complete interpreters, but this is of course wildly impractical.

It is not appropriate within the confines of this already lengthy paper to give
a fully detailed description of even a single kind, leave alone the various dif-
ferent kinds, of fault-tolerant virtual machine interface. However we have at-
tempted, with Fig. 13, to show the main features of a fault-tolerant interface of
the complete interpreter kind. For purposes of comparison, Fig. 14 shows the
equivalent interface in a conventional complete interpreter.
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The basic difference between a fault-tolerant interpreter and a conventional
interpreter is that, for each different type of instruction to be interpreted, the
fault tolerant interpreter, in general, provides a set of three related procedures
rather than just a single procedure. The three procedures are as follows.

1) An Interpretation Procedure: This is basically the same as the single pro-
cedure provided in a conventional interpreter, and provides the normal inter-
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pretation of the particular type of instruction. But within the procedure, the in-
terface ensures that before any changes are made to the state of the interpreted
process or the values of any of its variables, a test is made to determine whether
any information should first be saved in order that fall back will be possible.

2) An Inverse Procedure: this will be called when a process is being backed up,
and will make use of information saved during any uses of the interpretation
procedure.

3) An Acceptance Procedure: This will be called when an alternate block has
passed its acceptance test, and allows for any necessary tidying up and checking
related to the previous use of the normal interpretation procedure.

When the instruction is one that does not change the system state, inverse
and acceptance procedures are not needed. If the instruction is, for example,
merely a simple assignment to a scalar, the interpretation procedure saves the
value and the address of the scalar before making the first assignment to the
scalar within a new recovery block. The inverse procedure uses this information
to reset the scalar, and there is a trivial acceptance procedure. A nontrivial ac-
ceptance procedure would be needed if, for example, the interpreter had to
close a file and perhaps do some checking on the filed information in order to
complete the work stemming from the use of the interpretation procedure.

A generalization of the recursive cache, as described in Sect. III-C, is used to
control the invocation of inverse and acceptance procedures. The cache records
the descriptors for the inverse and acceptance procedures corresponding to in-
terpretation procedures that have been executed and caused system state infor-
mation to be saved. Indeed each cache region can be thought of as containing a
linear “program,” rather than just a set of saved prior values. The “program”
held in the current cache region indicates the sequence of inverse procedures
calls that are to be “executed” in order to back up the process to its most recent
recovery point. (If the process passes its acceptance test the procedure calls in
the “program” act as calls on acceptance procedures.) The program of inverse/
acceptance calls is initially null, but grows as the process performs actions
which add to the task of backing it up. As with the basic recursive cache mech-
anism, the cache region will be discarded in its entirety after it has been used
for backing up a process. Similarly, if the recovery block or conversation is
completed successfully, some entries will be discarded, but those that relate to
variables which are nonlocal to the enclosing environment will be consolidated
with the existing “program” in the underlying region of the cache.

This then is a very brief account, ignoring various simple but important
“mere optimizations,” of the main characteristics of a failure-tolerant virtual
machine interface of the complete interpreter kind. Being so closely related to
the basic recursive cache mechanism, it will perhaps<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>