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Preface 

A research project to investigate the design and construction of reliable computing 
systems was initiated by B. Randell at the University of Newcastle upon Tyne in 
1972. In over ten years of research on system reliability, a substantial number of 
papers have been produced by the members of this project. These papers have 
appeared in a variety of journals and conference proceedings and it is hoped that 
this book will prove to be a convenient reference volume for research workers active 
in this important area. In selecting papers published by past and present members of 
this project, I have used the following criteria: a paper is selected if it is concerned 
with fault tolerance and is not a review paper and was published before 1983. I have 
used these criteria (with only one or two exceptions!) in order to present a collection 
of papers with a common theme and, at the same time, to limit the size of the book 
to a reasonable length. 

The papers have been grouped into seven chapters. The first chapter introduces 
fundamental concepts of fault tolerance and ends with the earliest Newcastle paper 
on reliability. The project perhaps became well known after the invention of recovery 
blocks - a simple yet effective means of incorporating fault tolerance in software. 
The second chapter contains papers on recovery blocks, starting with the paper 
which first introduced the concept. Chapter 3 contains papers on exception handling 
while chapter four includes papers that deal with fault tolerance in concurrent sys
tems. It is now generally agreed that systems should be designed and constructed 
hierarchically. The papers in Chapt. 5 explore the issues of constructing recoverable 
objects in such 'multi-level' systems. Chapter 6 contains papers on distributed sys
tems and reports on work done - both conceptual and experimental - in this im
portant area. The concluding chapter comprises just a single paper. This is the only 
review paper in this volume and is included here since in it, its author (Randell) 
summarizes the principles of system structuring and fault tolerance that have 
emerged from the work of this project. 

In a very amusing book" John Gall presented a 'fundamental theorem' for 
systems: 

New Systems Mean New Problems 

I can therefore confidently predict continued employment for those of us who spend 
our time trying to make computer systems more reliable. Indeed, I am looking for
ward to the appearance of a second volume of collected papers ten years hence. 

In compiling this book I have had help from many people, but special thanks go 
to my colleagues Tom Anderson and Brian Randell for their advice and comments. 
Finally, it is a pleasure to acknowledge the continued financial support for the 
project by the UK Science and Engineering Research Council and the Ministry of 
Defence. 

Santosh K. Shrivastava 

John Gall: "Systemantics; How Systems Work and Especially How They Fail." Kangaroo 
Pocket Books, New York, 1977 
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Introduction 

B. RANDELL 

It was in January 1972 that a long term programme of research into the prob
lems of designing highly reliable computing systems was initiated at the Uni
versity of Newcastle upon Tyne. However the origins of the project can be 
readily traced back some years earlier. 

I had joined the University on May 1969, following a period of some years 
in the United States at the IBM T.J. Watson Research Center. There, one of my 
principal interests was system design methodology, a situation which led to my 
participation in the 1968 NATO Conference on Software Engineering. Quite a 
number of the attendees have since remarked on the great influence this confer
ence had on their subsequent work and thinking. This was certainly true in my 
case, aided by the fact that the task which Peter Naur and I undertook in the 
week following the conference of editing the conference report called for re
peated listening to tapes of many stimulating and entertaining discussions and 
presentations. (Incidentally, I have always treasured Doug McIlroy's description 
of our resulting report as "a triumph of mis-applied quotation"!) 

One major theme of the conference was the great disparity between the level 
of reliance that organizations were willing to place on complex real time sys
tems and the very modest levels of reliability that were often being achieved -
for example, it was also at about this time that there was considerable public 
debate over the proposed Anti-Ballistic Missile System, which we understood 
was to involve relying completely on a massively complicated computer system 
to position and detonate a nuclear device in the upper atmosphere in the path 
of each incoming missile! 

At the NATO Conference there was thus much discussion about improved 
methods of software design, though there was a mainly implicit assumption 
that high reliability was best achieved by making a system fault-free, rather 
than fault-tolerant. Another much-debated topic concerned the practicality of 
attempting to provide rigorous correctness proofs for software systems of sig
nificant size and complexity. Such discussions, I am sure, played a large part in 
ensuring that, by the time I reached Newcastle, I was seeking to do something 
constructive about the problems of achieving high reliability from complex 
computing systems, and yet, was feeling rather pessimistic about the practi
cality of proving the correctness of other than relatively small and simple pro
grams. 

The plan for a major research project at Newcastle on system reliability in 
fact was developed very quickly in discussion with my colleague Jim Eve. This 
discussion was, I must admit, prompted by the impending visit of a delegation 
from the Computing Science Committee of the U.K. Science Research Council, 
whose aim was, we were told, to encourage the submission of new research pro
posals. The speed and scale of the Newcastle response to this invitation were 



somewhat greater than the committee had bargained for. Thus our initial re
search proposal, submitted in March 1970, led to our being awarded just a very 
modest grant intended merely to enable us to prepare a report surveying the 
current state-of-the-art, and to refine our proposal. I managed to kill two birds 
with one report, since a somewhat shortened version served as the paper that I 
had been invited to give at IFIP71 on Operating Systems, whilst the complete 
version met with sufficient approval for Newcastle to be awarded, in November 
1971, funds for the full project proposal. Since then, I am pleased to say, our 
work has continued to be supported by the Science and Engineering Research 
Council, as it later became known, together in more recent years with the Royal 
Radar and Signals Establishment of the U.K. Ministry of Defence. 

From the start, our aim was to study the general problems of achieving high 
reliability from complex computing systems, rather than concentrate on prob
lems specific to a particular application area or make of computer. Quoting 
from the original project proposal: "The intent is to investigate problems con
cerned with the provision of reliable service by a computing system, not
withstanding the presence of software and hardware errors. The approach will 
be based on the development of computer architecture and programming tech
niques which facilitate the structuring of complex computing systems so that 
the existence of errors can be detected and the extent of their ramifications be 
determined automatically, and so that uninterrupted service (albeit probably of 
degraded quality until the faulty hardware or software is repaired) can be pro
vided ... (The proposed project) is thus parallel and complementary to work 
on achieving high reliability from individual hardware components, and on 
program validation. Both of these topics are of importance, but it is clear that 
for the foreseeable future, the designers of large-scale computing systems will 
not be able to achieve adequate system reliability be depending entirely on the 
reliability of the hardware and software components which make up their sys
tem." 

Initially, and indeed for a number of years, the Newcastle project con
centrated largely on the area that has since become known as "design fault 
tolerance", with particular reference to software faults. With situations such as 
that reported at the NATO Conference of OS/360 suffering more than 1000 
separate bugs per release, there were few to challenge the reality of problems of 
residual design faults in software, though the notion of trying to provide means 
of tolerating such faults, rather than just preventing their existence, was much 
more controversial. In fact, though dealing mainly with software problems, we 
have always attempted to avoid undue separation of hardware and software 
issues. However it is only now that there is much general recognition of the fact 
that, thanks to the "opportunities" provided by VLSI to design ever more com
plex chips, hardware systems might suffer not only from operational faults but 
also design faults, even years after the first deliveries occurred. 

Looking back over the course of the Newcastle project, one can see that we 
started by studying the problems of difficult faults in (relatively) simple sys
tems and then gradually increased the difficulty of the systems that we were 
prepared to consider. Thus we started with the problem of tolerating bugs in 
isolated sequential programs, before dealing in tum with the difficulties as-
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sociated with input/output, competition for shared resources, cooperating pro
cesses within a single computing system, and, finally, distributed computing 
systems. This can be contrasted with the approach which is more typical of a 
project concerned immediately with the complexities of some actual large com
puting system. This usually involves first considering just simple kinds of fault 
(in particular of completely predictable location and effect) and only gradually 
attempting to consider more complicated (but not necessarily less likely) fault 
situations. Each approach has its merits, but we are convinced that the 
approach that we followed has proved the more appropriate, given our wish to 
obtain results of reasonably general applicability, whilst avoiding undue design 
complexity. 

Our eventual concentration on distributed systems arose not so much be
cause of the challenge of the additional complications that they posed, interest
ing though these are, but rather from the view that all other sorts of system 
were merely simplified special cases - as C. T. Davies once put it: "I have yet 
to come across an interesting non-distributed system." In this arena we have 
taken as another archetypical "difficult" fault: the situation where erroneous 
data has entered the system and spread amongst the component computers, be
fore being detected. In principle, such a problem could arise no matter the 
granularity of distribution - within a single VLSI chip, amongst a set of mul
tiprocessing units, or in a geographically dispersed collection of computers. In 
practice, however, we have for convenience concentrated on the latter case. 
Thus, whereas in the early years of the project we worked mainly on topics re
lated to processor architectures and programming languages, we have more re
cently found ourselves interacting principally with the networking, operating 
systems and database communities. Moreover, whereas at times we have con
centrated particularly on mechanisms to be incorporated in fault tolerant sys
tems, at other times much of our effort has concerned methodologies for the de
sign of such systems. This in fact illustrates what is at once a great advantage, 
and a great difficulty, of trying to undertake a programme of general research 
in the area of computing system reliability - many different facets of comput
ing science are highly relevant, and the problem is to decide what issues one 
can safely ignore! 

Despite the above characterization of the overall progression of our re
search over the years, I must admit that the work of the project has not so much 
followed a detailed long term plan of work, but rather has evolved dynamically, 
not the least as the circumstances and the personnel involved with the project 
have changed. Nevertheless, we believe it is fair to claim that there has been a 
good degree of at least retrospective coherence and continuity to the work, cen
tered as it has been from the start on a concern for structure as a means of cop
ing with complexity. It is to be hoped that the present selection and organi
sation, by my colleague Santosh Shrivastava, of a representative collection of 
the project's publications will enable readers to gain an understanding of our 
overall approach, as well as provide them with details of many of the different 
investigations that have been carried out by the project. What such a collection 
of formal papers cannot do, however, is give any impression of the enjoyment 
and sense of exhileration that has usually typified the activities of the project. 
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Thus I would like to close these brief introductory remarks by making clear the 
personal debt that lowe to all the staff, students and visitors who have been in
volved with the project for the way in which they have made it such a stimulat
ing and pleasant environment, over all these years. 
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Chapter 1 
System Reliability 

Introduction 

In our every day conversations we tend to use the terms 'fault', 'error' and 'fai
lure' (often interchangeably) to indicate the fact that something is 'wrong' with 
a system. However, in any discussion on reliability and fault tolerance, more 
precision is called for to avoid confusion. The definitions for these terms pre
sented here in the first paper by Anderson and Lee owe their origins to the un
published work of Melliar-Smith and to his collaborative work with Randell 
(see their joint paper in Chap. 3). In true computer science fashion, Melliar
Smith and Randell defined a system recursively as composed out of 'smaller' 
systems and defined the occurrence of a failure to be the event when the behav
iour of a system does not agree with that required by the specification. Why 
does a system fail? To answer this is it necessary to examine the internal state of 
the system, which then leads us to the notions of 'errors' and 'faults' .. 

The second paper of this chapter presents basic concepts for the con
struction of fault-tolerant software systems. The paper contains a number of im
portant ideas which include (i) 'recovery blocks' as a means of coping with soft
ware faults; (ii) 'conversations' for structuring the interactions between com
municating processes so as to make the problem of error recovery manageable; 
and (iii) an approach to the construction of 'multilevel' fault-tolerant systems. 
Over the years, these ideas have been developed considerably, for example 
Chap. 5 reports in detail the work done on multilevel systems. 

This chapter ends with a paper by Randell. This paper is of interest on two 
counts. First it reports on the survey work performed prior to the launching of 
the project and secondly this early paper on system reliability makes an in
structive reading in the light of the previous two contributions. Randell stresses 
the importance of system reliability, which is matched by the importance of ad
equate performance, and promotes the concept of designing systems that con
tain effective provisions for coping with 'software bugs'. This objective IS 

reflected in a number of papers that appear in subsequent chapters. 
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Fault Tolerance Terminology Proposals 

T. ANDERSON and P. A. LEE 

Abstract. At present, the fault tolerance community is hampered by using a set of conflicting 
terms to refer to closely related fault tolerance concepts. This paper presents informal, but pre
cise, definitions and terminology for these concepts. In particular, the terms fault, error and 
failure are carefully defined and distinguished. The aim is to promote discussion in the hope 
that an agreed terminology will emerge. 

Introduction 

It is important that detailed technical discussions on any subject can be con
ducted with reference to an agreed terminology for the relevant concepts. Un
fortunately, when causes of unreliability in computing systems are discussed a 
range of different (but rarely distinguished) terms is available, and this can be a 
source of confusion. Confusion also stems from attempts to isolate or combine 
issues relating to the hardware/software dichotomy. 

For some years, members of the Reliability Project at the University of 
Newcastle upon Tyne have been developing and refining a set of terms with 
precise interpretations for use in discussions on system reliability and fault 
tolerance. The terms are intended to be applicable to all levels of a computing 
system and not just to either the hardware or the software. These terms and 
their definitions are presented here to promote discussion and obtain the re
actions of the fault tolerance community, with the hope that a coherent and 
agreed terminology will emerge. 

The paper first discusses the notion of a system since this is basic to all of 
the other definition. Next, the causes of unreliability within a system are exam
ined, and finally, the means by which reliability can be enhanced are summa
rized. 

On Systems 

Any identifiable mechanism which maintains a pattern of behaviour at an in
terface with its environment can be regarded as a system. Physical systems have 
a hierarchical structure since they are built up from component systems, and so 
on. This is reflected in the following definition: a system consists of a set of 
components which interact under the control of a design. A component is simply 
another system. The design is also a system, but has special characteristics. In 
this paper, the design of a system will always refer to that part of the system 
which actually supports and controls the interaction of the components (and 
does not refer to any design document, such as a circuit diagram) or to the pro-
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cess by which the system was designed 1. As a special case, a system may be con
sidered to be atomic, with the implication that any further internal structure of 
that system is not of interest and can be ignored. 

A system is said to interact with an environment, responding to stimuli at an 
interface (or interfaces) between the system and its environment. An interface is 
simply a place of interaction between two systems, and so (of course) the en
vironment must be another system. The external behaviour of a system can be 
described in terms of a finite set of external states, together with a function de
fining transitions between states. The environment provides input as stimuli, 
and perceives the system as passing through a sequence of external states at dis
crete instants of time. 

The external behaviour of a system is the manifestation of internal activity 
within the system, and for a non-atomic system this activity can be examined in 
more' detail. The internal state of a system is defined to be a tuple comprising 
the external states of the components of the system. An abstraction function 
maps internal states to external states. Internal state transitions are a conse
quence of changes of state by the components; these changes are determined by 
interactions between the components. The pattern of these interactions is speci
fied and controlled by the design of the system, which also determines the way 
in which interactions between the system and the environment impinge upon 
the components. Note that the state of a system is defined without reference to 
the design of the system. This is deliberate, and distinguishes the ongoing ac
tivity of the system from its internal organization, which is usually fixed - the 
state of the design itself will not be intended to change. 

These system definitions are intended to be sufficiently general that they are 
applicable to any system whatsoever. In particular they cover computing sys
tems considered as hardware or software systems and can be applied at many 
different levels in such systems. For example, a single printed circuit board can 
be regarded as a system - the components are the electronic components sol
dered to the board while the design is implemented as the tracks and wires 
which provide their interconnection. A central processor is a system with com
ponents such as registers, arithmetic, logical and control units, and has as its de
sign the data highways linking them. A complete computing system has as com
ponents the central processor, primary and secondary storage, and peripherals, 
with the design implemented as the data buses and cabling which interconnect 
them. Note that the structure (and activity) of a system can be examined at dif
ferent levels of abstraction (as opposed to levels of structure); a more abstract 
view of a computing system takes as components the various processes imple
mented in software, which interact through a design constructed, for example, 
as shared data areas controlled by means of semaphores. 

A particularly important change in viewpoint can be identified at an in
terpretive interface, where a component of a system is interpreted (i.e. executed) 

1 There are two reasons for this nonstandard use of the word "design". First, it makes it clear 
that a "design fault" (see next section) is a defect which is actually present in a system. Sec
ond, we have not found a better alternative. 
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by, and thereby governs and directs the operation of, the rest of the system. 
When this is the case it is natural and appropriate to regard the interpreted 
component as the design of a system whose components are abstractions of the 
other components of the original system. The paradigm here, of course, is the 
interface between hardware and software in a computing system. It will often 
be more useful to regard software as the design of an abstract system rather 
than merely a bit-pattern stored on some magnetic medium. 

All systems are designed and built to be used, and support interfaces which 
can therefore be presumed to have useful properties. One unfortunate, but 
prevalent, consequence of the complexity of computing systems is that their be
haviour may depart from that desired by their users. The unreliability of a sys
tem is usually assessed in terms of the frequency and extent of such departures, 
and also in terms of any costs incurred because of undesired system behaviour. 
However, any assessment of unreliability must surely distinguish between un
desirable behaviour which is a result of deficiencies of the system itself as op
posed to misunderstandings on the part of the users of the system. To make this 
distinction a specification of system behaviour is required. 

In practice, a specification must serve many purposes; those of designers, 
builders, vendors and users of a system. As a result the specification of a system 
is rarely complete or precise, is open to question and change, and may even be 
undocumented. Such a specification cannot be used to define the reliability of a 
system. System reliability can only be defined and assessed with respect to an 
authoritative specification of behaviour, which can be applied as a test in any 
situation to determine whether the behaviour of the system should or should 
not be deemed acceptable. For the purpose of definition the role of the specifi
cation is absolute. (Systems and their specifications are discussed in more detail 
elsewhere.) [l] 

Thus, afailure of a system is said to occur when the behaviour of the system 
first deviates frbm that required by the specification of the system. To extend 
this definition to include the occurrence of failures after the first deviation from 
specifi'ed behaviour is not completely straightforward (the specification might 
have to define what constitutes acceptable behaviour subsequent to a breach of 
the specification). However, complications can be avoided by adopting the con
vention that once the system has returned to satisfactory operation its sub
sequent behaviour can again be assessed with respect to the specification (i.e. 
ignoring any earlier failures). 

The reliability of a system is usually characterized by a function R (t) which 
expresses the probability that no failure of the system will have occured by time 
t. 

On Faults and Errors 

An authoritative specification cannot be challenged, so the occurrence of a sys
tem failure must be due to the presence of defects within the system. Such de
ficiencies will be referred to as faults when they are internal to a component or 
the design, and as errors when the system state is defective. This section pro-
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vides precise definitions for these concepts, corresponding closely to established 
usage. 

Consider a system which moves through a sequence of internal states Sl' S2' 

S3' ... in response to the interactions of the system with its environment. As
sume that while the system progressed through states Sl to Sn _] its external be
haviour conformed to the system specification, but that on entering state Sn its 
behaviour conflicted with the specification. That is, the system fails when it 
reaches internal state Sn. In this situation it seems natural to seek a "cause" to 
which the "effect" of failure can be attributed; that is, to identify some earlier 
(internal) event which can be held responsible for the failure. The internal state 
transitions are the obvious candidates. 

An internal state transition is said to be either valid or erroneous; an errone
ous transition is an internal state transition to which a subsequent failure could 
be attributed. That is, there exists a sequence of interactions with the system 
which would lead to a failure which would be attributed to the erroneous tran
sition. An internal state of a system is said to be either valid or erroneous; an 
erroneous state is an internal state which could lead to a failure by a sequence of 
valid transitions. 

For example, suppose that the transition from Sj_] to Sj was considered to be 
responsible for the eventual failure of the above system. Internal states Sl' ... , 

Sj _] are then valid states while Sj, ... , Sn are erroneous states, assuming that the 
only erroneous transition is that from Sj _] to Sj. Note that a valid transition is 
one which cannot be blamed for a subsequent failure - there is no implication 
that the system is operating as was intended. Thus the transition from Sj to Sj + ] 
is valid even though states Sj and Sj + ] are erroneous. 

Having identified an erroneous transition as being the cause of a failure it is 
natural to ask what caused that transition to be erroneous. One explanation for 
an erroneous transition is the occurrence of a failure of a component of the sys
tem. If one ( or more) of the components fails to meet its specification this could 
certainly place the system in an erroneous state. When this is the case the above 
discussion can be applied to the failing component considered as a system: the 
component has failed and must therefore itself have passed through a sequence 
of erroneous states as a result of an erroneous transition. And so on - the ulti
mate cause of a failure can be pursued as far as is considered worthwhile. 

If, however, all components meet their specification when an erroneous 
transition takes place, the problem must lie in the design of the system. An 
obvious specification of behaviour for the design of a system is that it should 
ensure that all internal state transitions of the system are valid in the absence of 
any failure of the components. Then, if there is an erroneous transition and no 
components have failed the design of the system must be held to have failed. 
Thus, the design can be considered to be in an erroneous state. Although the 
state of the design of a system is usually not intended to change this cannot be 
guaranteed, and an erroneous transition within the design may result in a pre
viously valid design becoming erroneous. Of course, there is also the possibility 
that the design may have been erroneous from the outset (i.e. the initial state of 
the design was erroneous) in which case an erroneous transition may be regard-
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ed as having occurred sometime during the design-process or the construction 
of the system. 

These definitions are intended to reflect the situation when, after a system 
failure, the history of system activity is scrutinized in order to identify the 
cause of the failure. A post-mortem of this nature will often proceed by observ
ing that the internal state at the time of failure is clearly erroneous, that the 
initial state of the system (or some other earlier state) was valid, and that there 
must therefore have been an erroneous transition at some stage. For the pur
poses of definition, it is the identification of erroneous transitions which de
termines whether a state is valid or erroneous. In turn, an erroneous transition 
must be the outcome of a failure of either a component or the design of the sys
tem. This seems quite natural: a system consists of a set of components together 
with a design; a failure of a system must be a consequence of a failure of either 
a component or the design. 

When a system is in an erroneous state, an examination of the external states 
of the components of the system will enable a decision to be made as to which 
components have external states that would have to be changed for the internal 
state of the system to be valid. The states of such components are said to be er
rors in the system. An error is thus a part of an erroneous state which constitutes 
a difference from a valid state. 

Even though the external state of a component may be an error in the sys
tem of which it is a part, the component need not be in an erroneous state when 
it is considered as a system in its own right. The internal state of the component 
may be perfectly valid but not be compatible with the states of other com
ponents of the containing system. To avoid confusion, an error in a component 
or in the design of a system will be referred to as a fault in the system. A com
ponent fault can result in an eventual component failure; a design fault can lead 
to a design failure. Either of these internal failures will produce an erroneous 
transition in the operation of the system and this transition can be referred to as 
the manifestation of a fault. The manifestation of a fault will produce errors in 
the state of the system, which could lead to a failure. 

Note that the only difference between a fault and an error is with respect to 
the structure of the system; a fault in a system is an error in a component or in 
the design of the system. A fault is the cause of an error and an error is the 
cause of a failure, but the distinction between error and failure does not merely 
reflect system structure (though an error is part of an internal state while a fail
ure relates to external states). Rather, the difference is that between a condition 
(or state) and an event. A system contains an error when its state is erroneous, 
whereas a system failure is the event of not producing behaviour as specified. 

Examination of the possible causes of system failure has revealed an impor
tant dichotomy. The erroneous transition which gave rise to the failure must 
either be due to a design fault, or one of the components must have failed. On 
the one hand, a mistake made in designing or constructing a system can intro
duce a fault into the design of the system, either because of an inappropriate 
selection of a component or because of inappropriate (or missing) interactions 
between components. Precise identification of the fault, and of the resulting de
sign failure as an event, can only be made with respect to a corrected design for 
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the system. If, on the other hand, the design of a system is considered to be 
without blemish, then an erroneous transition can only occur because of a fail
ure of one of the components of the system. These two possibilities are the only 
sources of an erroneous transition, and thus of errors and consequent system 
failure. It should be clear that although these possibilities are distinct for a sys
tem viewed as an assembly of particular components, a more refined examina
tion of the system which considers a failing component as a system of interact
ing subcomponents would be expected to explain many component failures as 
being due to design faults within the component. Eventually, all system failures 
can be attributed to design faults at some level, unless a failure of a component 
which is considered to be atomic is held responsible. (Even failure of an atomic 
component may be considered to be due to a design fault in that a component 
of inadequate reliability was selected.) 

In contrast to the definition of failure presented earlier, the definitions of 
erroneous transition and erroneous state, and therefore of error and fault, in
clude a significant subjective element. This is considered to be an important 
(and unavoidable) feature of these definitions. Consider the attribution of a 
failure to an erroneous transition, which results in (or, as is more likely in prac
tice, is a result of) the identification of a fault as the source of the problem. 
Such an attribution must envisage a correction to the system which would re
move the fault and prevent the erroneous transition from occuring. The changes 
which can be made to correct a faulty system will rarely be unique; a judgement 
must be made as to the most appropriate correction. This subjective decision 
determines the fault, the erroneous transition and the errors which it introduced 
into the state of the system. 

On Fault Tolerance 

Two complementary approaches have been noted [2] for constructing highly re
liable systems. The first approach, which may be termed fault prevention, tries 
to ensure that the implemented system does not and will not contain any faults. 
Fault prevention has two aspects: 

(i) fault avoidance techniques are employed to avoid introducing faults into 
the system (e.g. design methodologies and quality control); 

(ii) fault removal techniques are used to find and remove faults which were 
inadvertently introduced into the system (e.g. testing and validation). 

The second approach is known as fault tolerance (and is, of course, the 
subject of this book). Fault tolerance techniques attempt to intervene and 
prevent faults from causing system failures - they are necessary because com
plex systems are certain to contain residual faults despite extensive application 
of fault prevention. Four constituent phases of fault tolerance can be identified 
[4, 1] and these are: (i) error detection; (ii) damage assessment; (iii) error recov
ery; and (iv) fault treatment and continued system service. 
(i) Error detection: In order to tolerate a fault in a system its effects must first be 
detected. While a fault cannot be directly detected by a system, any manifes-
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tation of the fault will generate errors somewhere in the system. Thus the usual 
starting point for fault tolerance techniques is the detection of an erroneous 
state. 
(ii) Damage assessment: When an error is detected much more of the system 
state may be suspect than that initially discovered to be erroneous. Because of 
the likely delay between the manifestation of a fault and the detection of its er
roneous consequences, invalid information may have spread within the system, 
leading to other errors which have not (yet) been detected. Thus before any at
tempt is made to deal with a detected error it may be necessary to assess the 
extent to which the system state has been damaged. This assessment will de
pend on decisions made by the system designer concerning damage confine
ment~ and on exploratory techniques for identifying damage. 
(iii) Error recovery: Following error detection and damage assessment, tech
niques for error recovery must be utilized. These techniques will aim to trans
form the current erroneous system state into a well defined and error-free state 
from which normal system operation can continue. Without such a transforma
tion system failure is likely to ensue. 
(iv) Fault treatment and continued service: Although the error recovery phase 
may have returned the system to an error-free state, techniques may still be re
quired to enable the system to continue providing the service required by its 
specification, by ensuring that the fault whose effects have been recovered from 
does not immediately recur. The first aspect of fault treatment is to attempt to 
accurately locate the fault. Following this, steps can be taken to repair the fault 
or to reconfigure the rest of the system to avoid the fault; alternatively, no ac
tion is taken if the fault is thought to be transient. 

These four phases form the basis for all fault tolerance techniques and thus 
can and should form the basis for the design and implementation of a fault 
tolerant system. There can be considerable interplay between the various 
phases which tends to blur their identification in a particular system. For 
example, a protection mechanism usually provides one form of error detection 
and can also play an important role in the design and implementation of the 
damage assessment phase. Similarly, any damage assessment undertaken by a 
system will utilize exploratory measures to identify possible damage, measures 
which will themselves use error detection techniques. The provision of error re
covery will normally be dependent upon the damage assessment provided (or 
assumed) in the system, although some forms of error recovery attempt to mini
mize the need for damage assessment. 

It should be noted that most existing fault tolerant systems are only intended 
to provide tolerance to a range of predicted component faults. Rarely is any 
provision made for the unanticipatable effects of design faults. When tolerance 
to design faults is required, very general strategies must be employed for each 
of the four phases of fault tolerance identified above. 

Finally, when a system emobodies fault tolerance techniques the basic defi
nitions of the previous section require modification. The revised definitions 
are: 

12 

an erroneous transition is a transition to which, in the absence of actions for 
fault tolerance, a subsequent failure could be attributed; 



an erroneous state is an internal state which, in the absence of actions for 
fault tolerance, could lead to a failure by a sequence of valid transitions. 

The changes are needed because the success of actions for fault tolerance in 
averting failure implies that a fault which could be tolerated would not be a 
fault according to the original definitions. 

Acknowledgement. Many of the definitions presented in this paper are an elaboration and 
modification of those proposed by Melliar-Smith and Randell [3]. 
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System Structure for Software Fault Tolerance 

B. RANDELL 

Abstract. This paper presents and dicusses the rationale behind a method for structuring com
plex computing systems by the use of what we term "recovery blocks," "conversations," and 
"fault-tolerant interfaces." The aim is to facilitate the provision of dependable error detection 
and recovery facilities which can cope with errors caused by residual design inadequacies, par
ticularly in the system software, rather than merely the occasional malfunctioning of hardware 
components. 

Index Terms. Acceptance test, alternate block, checkpoint, conversation, error detection, error 
recovery, recovery block, recursive cache. 

I. Introduction 

The concept of "fault-tolerant computing" has existed for a long time. The first 
book on the subject [10] was published no less than ten years ago, but the notion 
of fault tolerance has remained almost exclusively the preserve of the hardware 
designer.·Hardware structures have been developed which can "tolerate" faults, 
i.e., continue to provide the required facilities despite occasional failures, either 
transient or permanent, of internal components and modules. However, hard
ware component failures are only one source of unreliability in computing sys
tems, decreasing in significance as component reliability improves, while soft
ware faults have become increasingly prevalent with the steadily increasing size 
and complexity of software systems. 

In general, fault-tolerant hardware designs are expected to be correct, i.e., 
the tolerance applies to component failures rather than design inadequacies, 
although the dividing line between the two may on occasion be difficult to de
fine. But all software faults result from design errors. The relative frequency of 
such errors reflects the much greater logical complexity of the typical software 
design compared to that of a typical hardware design. The difference in com
plexity arises from the fact that the "machines" that hardware designers pro
duce have a relatively small number of distinctive internal states, whereas the 
designer of even a small software system has, by comparison, an enormous 
number of different states to consider - thus one can usually afford to treat 
hardware designs as being "correct," but often cannot do the same with soft
ware even after extensive validation efforts. (The difference in scale is evi
denced by the f~ct that a software simulator of a computer, written at the level 
of detail required by the hardware designers to analyze and validate their logi
cal design, is usually one or more orders of magnitude smaller than the operat
ing system supplied with that computer.) 
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If all design inadequacies could be avoided or removed this would suffice to 
achieve software reliability. (We here use the term "design" to include "im
plementation," which is actually merely low-level design, concerning itself with 
detailed design decisions whose correctness nevertheless can be as vital to the 
correct functioning of the software as that of any high-level design decision.) 
Indeed many writers equate the terms "software reliability" and "program cor
rectness." However, until reliable correctness proofs (relative to some correct 
and adequately detailed specification), which cover even implementation de
tails, can be given for systems of a realistic size, the only alternative means of 
increasing software reliability is to incorporate provisions for software fault 
tolerance. 

In fact there exist sophisticated computing systems, designed for en
vironments requiring near-continuous service, which contain ad hoc checks and 
checkpointing facilities that provide a measure of tolerance against some soft
ware errors as well as hardware failures [11]. They incidentally demonstrate the 
fact that fault tolerance does not necessarily require diagnosing the cause of the 
fault, or even decid.ing whether it arises from the hardware or the software. 
However there has been coniparatively little specific research into techniques 
for achieving software fault tolerance, and the constraints they impose on com
puting system design. 

It was considerations such as these that led to the establishment at the Uni
versity of Newcastle upon Tyne of a project on the design of highly reliable 
computing systems, under the sponsorship of the Science Research Council of 
the United Kingdom. The aims of the project were and are "to develop, and 
give a realistic demonstration of the utility of, computer architecture and pro
gramming techniques which will enable a system to have a very high prob
ability of continuing to give a trustworthy service in the presence of hardware 
faults and/or software errors, and during their repair. A major aim will be 
to develop techniques which are of general utility, rather than limited to spe
cialised environments, and to explore possible tradeoffs between reliability and 
performance. " 

A modest number of reports and papers have emanated from the project to 
date, including a general overview [12], papers concerned with addressing and 
protection [6], [7], and a preliminary account of our work on error detection and 
recovery [5]. The present paper endeavors to provide a rather more extensive 
discussion of our work on system error recovery techniques, and concentrates 
on techniques for system structuring which facilitate software fault tolerance. A 
companion paper [1] presents a proof-guided methodology for designing the er
ror detection routines that our method requires. 

II. Fault Tolerance in Software 

All fault tolerance inust be based on the provision of useful redundancy, both 
for error detection and error recovery. In software the redundancy required is 
not simple replication of programs but redundancy of design. 
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The scheme for facilitating software fault tolerance that we have developed 
can be regarded as analogous to what hardware designers term "stand-by spar
ing." As the system operates, checks are made on the acceptability of the results 
generated by each component. Should one of these checks fail, a spare com
ponent is switched in to take the place of the erroneous component. The spare 
component is, of course, not merely a copy of the main component. Rather it is 
of independent design, so that there can be hope that it can cope with the cir
cumstances that caused the main component to fail. (These circumstances will 
comprise the data the component is provided with and, in the case of errors due 
to faulty process synchronization, the timing and form of its interactions with 
other processes.) 

In contrast to the normal hardware stand-by sparing scheme, the spare soft
ware component is invoked to cope with merely the particular set of circum
stances that resulted in the failure of the main component. We assume the fail
ure of this component to be due to residual design inadequacies, and hence that 
such failures occur only in exceptional circumstances. The number of different 
sets of circumstances that can arise even with a software component of com
paratively modest size is immense. Therefore the system can revert to the use of 
the main component for subsequent opertions - in hardware this would not 
normally be done until the main component had been repaired. 

The variety of undetected errors which could have been made in the design 
of a nontrivial software component is essentially infinite. Due to the complexity 
of the component, the relationship between any such error and its effect at run 
time may be very obscure. For these reasons we believe that diagnosis of the 
original cause of software errors should be left to humans to do, and should be 
done in comparative leisure. Therefore our scheme for software fault tolerance 
in no way depends on automated diagnosis of the cause of the error - this 
would surely result only in greatly increasing the complexity and therefore the 
error proneness of the system. 

The recovery block scheme for achieving software fault tolerance by means 
of stand-by sparing has two important characteristics. 

1) It incorporates a general solution to the problem of switching to the use 
of the spare component, i.e., of repairing any damage done by the erroneous 
main component, and of transferring control to the appropriate spare com
ponent. 

2) It provides a method of explicitly structuring the software system which 
has the effect of ensuring that the extra software involved in error detection and 
in the spare components does not add to the complexity of the system, and so 
reduce rather than increase overall system reliability. 

III. Recovery Blocks 

Although the basic recovery block scheme has already been described else
where [5], it is convenient to include a brief account of it here. We will then de
scribe several extensions to the scheme directed at more complicated situations 
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than the basic scheme was intended for. Thus we start be considering the prob
lems of fault tolerance, i.e., of error detection and recovery, within a single
sequential process in which assignments to stored variables provide the only 
means of making recognizable progress. Considerations of the problems of 
communication with other processes, either within the computing system (e.g., 
by a system of passing messages, or the use of shared storage) or beyond the 
computing system (e.g., by explicit input-output statements) is deferred until a 
later section. 

The progress of a program is by its execution of sequences of the basic 
operations of the computer. Clearly, error checking for each basic operation is 
out of the question. Apart from questions of expense, absence of an awareness 
of the wider scene would make it difficult to formulate the checks. We must 
aim at achieving a tolerable quantity of checking and exploit our knowledge of 
the functional structure of the system to distribute these checks to best ad
vantage. It is standard practice to structure the text of a program of any signifi
cant complexity into a set of blocks (by which term we include module, pro
cedure, subroutine, paragraph, etc.) in order to simplify the task of understand
ing and documenting the program. Such a structure allows one to provide a 
functional description of the purpose of the program text constituting a block. 
(This text may of course include calls on subsidiary blocks.) The functional de
scription can then be used elsewhere in place of the detailed design of the 
block. Indeed, the structuring of the program into blocks, and the specification 
of the purpose of each block, is likely to precede the detailed design of each 
block, particularly if the programming is being performed by more than one 
person. 

When executed on a computer, a program which is structured into blocks 
evokes a process which can be regarded as being structured into operations. 
Operations are seen to consist of sequences of smaller operations, the smallest 
operations being those provided by the computer itself. Our scheme of system 
structuring is based on the selection of a set of these operations to act as units of 
error detection and recovery, by providing extra information with their cor
responding blocks, and so turning the blocks into recovery blocks. 

The scheme is not dependent on the particular form of block structuring 
that is used, or the rules governing the scopes of variables, methods of parame
ter passing, etc. All that is required is that when the program is executed the 
acts of entering and leaving each operation are explicit, and that operations are 
properly nested in time. (In addition, although it is not required, considerable 
advantage can be taken of information which is provided indicating whether 
any given variable is local to a particular operation.) However, for convenience 
of presentation, we will assume that the program text is itself represented by a 
nested structure of Algol or PLlI-style blocks. 

A recovery block consists of a conventional block which is provided with a 
means of error detection (an acceptance test) and zero or more stand-by spares 
(the additional. alternates). A possible syntax for recovery blocks is as follows. 
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(recovery block) :: = ensure (acceptance test) by 

(primary alternate) 

(other alternates) else error 

(primary alternate) :: = (alternate) 

(other alternates) : : = (empty) I (other alternates) 

else by (alternate) 

(alternate) : : = (statement list) 

(acceptance test) :: = (logical expression) 

The primary alternate corresponds exactly to the block of the equivalent 
conventional program, and is entered to perform the desired operation. The ac
ceptance test, which is a logical expression without side effects, is evaluated on 
exit from any alternate to determine whether the alternate has performed ac
ceptably. A further alternate, if one exists, is entered if the preceding alternate 
fails to complete (e.g., because it attempts to divide by zero, or exceeds a time 
limit), or fails the acceptance test. However before an alternate is so entered, the 
state of the process is restored to that current just before entry to the primary 
alternate. If the acceptance test is passed, any further alternates are ignored, and 
the statement following the recovery block is the next to be executed. However, 
if the last alternate fails to pass the acceptance test, then the entire recovery 
block is regarded as failed, so that the block in which it is embedded fails to 
complete and recovery is then attempted at that level. 

In the illustration of a recovery block structure in Fig. 1, double vertical 
lines define the extents of recovery blocks, while single vertical lines define the 
extents of alternate blocks, primary or otherwise. Figure 2 shows that the alter
nate blocks can contain, nested within themselves, further recovery blocks. 

Consider the recovery block structure shown in Fig. 2. The acceptance test 
BT will be invoked on completion of primary alternate BP. If the test succeeds, 
the recovery block B is left and the program text immediately following is 
reached. Otherwise the state of the system is reset and alternate BQ is entered. 
If BQ and then BR do not succeed in passing the acceptance test the recovery 
block B as a whole, and therefore primary alternate AP, are regarded as having 
failed. Therefore the state of the system is reset even further, to that current just 
before entry to AP, and alternate AQ is attempted. 

Deferring for the moment questions as to how the state of the system is reset 
when necessary, the recovery block structure can be seen as providing a very 
general framework for the use of stand-by sparing which is in full accordance 
with the characteristics discussed earlier, in Sect. II. There is no need for, in
deed no possibility of, attempts at automated error diagnosis because of the 
fact that the system state is reset after an error, deleting all effects of the faulty 
alternate. Once the system state is reset, switching to the use of an alternate is 
merely a matter of a simple transfer of control. 

The concept of a recovery block in fact has much in common with that of a 
sphere of control, as described by Davies [2]. However, we have limited our-
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A: ensure AT 
by 

else by 

else error 

begin 
(program text) 

end 

begin 
(program text) 

end 

Fig. 1. Simple recovery block 

A: ensureAT 
by 

else by 

else error 

AP: begin declare Y 
(program text) 

B: ensure BT 
by 

else by 

else by 

lBP: begin declare U 
(program text) 

end 

L
BQ: begin declare V 

(program text) 
end 

lBR: begin declare W 
(program text) 

end 

else error 
(program text) 

end 

AQ: begin declare Z 
(program text) 

C: ensure CT 
by 

else by 

else error 

D: ensureDT 
by 

else error 
end 

L
CP: begin 

(program text) 
end 

LQ: begin 
(program text) 

end 

lP: begin 
(program text) 

end 

Fig. 2. More complex recovery block 
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selves to preplanned error recovery facilities, and base all error recovery on 
automatic reversal to a previously reached recovery point. Thus, once a process 
has "committed" itself by accepting the results of a recovery block, the only 
form of recovery we envisage involves a more global process reversal, to the be
ginning of a recovery block whose results have not yet been accepted. In con
trast, Davies is prepared to allow for the possibility of recovery following com
mitment, by means of programmer-supplied "error compensation algorithms." 

Although the scheme is related to those which are used in artificial intel
ligence-type back-tracking programs [4], there are major differences - in our 
scheme back up, being caused by residual design inadequacies, occurs very in
frequently and is due to unforeseeable circumstances, rather than very fre
quently and as an essential element of the basic algorithm. 

The utility of the recovery block scheme for stand-by sparing in software 
rests on the practicability of producing useful aceptance tests and alternates, 
and on the cost of providing means for resetting the system state. We will dis
cuss each of these points in turn. 

A. Acceptance Tests 

The function of the acceptance test is to ensure that the operation performed by 
the recovery block is to the satisfaction of the program which invoked the 
block. The acceptance test is therefore performed by reference to the variables 
accessible to that program, rather than variables local to the recovery block, 
since these can have no effect or significance after exit from the block. Indeed 
the different alternates will probably have different sets of local variables. 
There is no question of there being separate acceptance tests for the different 
alternates. The surrounding program may be capable of continuing with any of 
a number of possible results of the operation, and the acceptance test must es
tablish that the results are within this range of acceptability, without regard for 
which alternate can generate them. 

There is no requirement that the test be, in any formal sense, a check on the 
absolute "correctness" of the operation performed by the recovery block. 
Rather it is for the designer to decide upon the appropriate level of rigor of the 
test. Ideally the test will ensure that the recovery block has met all aspects of its 
specification that are depended on by the program text that calls it - in prac
tice, if only for reasons of cost and/or complexity, something less than this 
might have to suffice. (A methodological approach to the design of appropriate 
acceptance test is described by Anderson [1].) 

Although when an acceptance test is failed all the evidence is hidden from 
the alternate which is then called, a detailed log is kept of such incidents, for 
off-line analysis. Some failures to pass the acceptance test may be spurious be
cause a design inadequacy in the acceptance test itself has caused an unneces
sary rejection of the operation of an alternate. In fact the execution of the pro
gram of the acceptance test itself might suffer an error and fail to complete. 
Such occurrences, which hopefully will be rare since the aim is to have accep
tance tests which are much simpler than the alternates they check, are treated as 
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ensure sorted (S) /\ (sum (S) = sum (prior S» 
by quickersort (S) 
else by quicksort (S) 
else by bubblesort (S) 
else error Fig. 3. Fault-tolerant sort program 

failures in the enclosing block. Like all other failures they are also recorded in 
the error log. Thus the log provides a means of finding these two forms of in
adequacy in the design of the acceptance test - the remaining form of in
adequacy, that which causes the acceptance of an incorrect set of results, is of 
course more difficult to locate. 

When an acceptance test is being evaluated, any nonlocal variables that 
have been modified must be available in their original as well as their modified 
form because of the possible need to reset the system state. For convenience 
and increased rigor, the acceptance test is enabled to access such variables 
either for their modified value or for their original (prior) value. One further 
facility available inside an acceptance test will be a means of checking whether 
any of the variables that have been modified have not yet been accessed within 
the acceptance test - this is intended to assist in detecting sins of commission, 
as well as omission, on the part of the alternate. 

Figure 3 shows a recovery block whose intent is to sort the elements of the 
vector S. The acceptance test incorporates a check that the set of items in S af
ter operation of an alternate are indeed in order. However, rather than incur the 
cost of checking that these elements are a permutation of the original items, it 
merely requires the sum of the elements to remain the same. 

B. Alternates 

The primary alternate is the one which is intended to be used normally to per
form the desired operation. Other alternates might attempt to perform the de
sired operation in some different manner, presumably less economically, and 
preferably more simply. Thus as long as one of these alternates succeeds the de
sired operation will have been completed, and only the error log will reveal any 
troubles that occurred. 

However in many cases one might have an alternate which performs a less 
desirable operation, but one which is still acceptable to the enclosing block in 
that it will allow the block to continue properly. (One plentiful source of both 
these kinds of alternates might be earlier releases of the primary alternate!) 

Figure 4 shows a recovery block consisting of a variety of alternates. (This 
figure is taken from Anderson [1].) The aim of the recovery block is to extend 
the sequence S of items by a further item i, but the enclosing program will be 
able to continue even if afterwards S is merely "consistent." The first two alter
nates actually try, by different methods, to join the item i onto the sequence S. 
The other alternates make increasingly desperate attempts to produce at least 
some sort of consistent sequence, providing appropriate warnings as they do so. 
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ensure consi tent sequences (S) 
by extend S with (i) 
else by concatenate to S (construct sequence (i» 
else by warning ("lost item ') 
else by S := con truct sequence (i)' warning (correction, "10 t equence") 
else by S: = empty sequence; warning ("lost sequence and item") 
else error 

Fig. 4. Recovery block with alternates which achieve different, but still acceptable though 
less desirable, results 

C. Restoring the System State 

By making the resetting of the system state completely automatic, the pro
grammers responsible for designing acceptance tests and alternates are shielded 
from the problems of this aspect of error recovery. No special restrictions are 
placed on the operations which are performed within the alternates, on the call
ing of procedures or the modification of global variables, and no special pro
gramming conventions have to be adhered to. In particular the error-prone task 
of explicit preservation of restart information is avoided. It is thus that the re
covery block structure provides a framework which enables extra program text 
to be added to a conventional program, for purposes of specifying error detec
tion and recovery actions, with good reason to believe that despite the increase 
in the total size of the program its overall reliability will be increased. 

All this depends on being able to find a method of automating the resetting 
of the system state whose overheads are tolerable. Clearly, taking a copy of the 
entire system state on entry to each recovery block, though in theory satis
factory, would in normal practice be far too inefficient. Any method involving 
the saving of sufficient information during program execution for the program 
to be executable in reverse, instruction by instruction, would be similarly im
practical. 

Whenever a process has to be backed up, it is to the state it had reached just 
before entry to the primary alternate - therefore the only values that have to be 
reset are those of nonlocal variables that have been modified. Since no explicit 
restart information is given, it is not known beforehand which nonlocal vari
ables should be saved. Therefore we have designed various versions of a mech
anism which arranges that nonlocal variables are saved in what we term a "re
cursive cache" as and when it is found that this is necessary, i.e., just before 
they are modified. The mechanisms do this by detecting, at run time, as
signments to nonlocal variables, and in particular by recognizing when an as
signment to a nonlocal variable is the first to have been made to that variable 
within the current alternate. Thus precisely sufficient information can be pre
served. 

The recursive cache is divided into regions, one for each nested recovery 
level, i.e., for each recovery block that has been entered and not yet left. The 
entries in the current cache region will contain the prior values of any variables 
that have been modified within the current recovery block, and thus in case of 
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failure it can be used to back up the process to its most recent recovery point. 
The region will be discarded in its entirety after it has been used for backing up 
a process. However if the recovery block is completed successfully, some cache 
entries will be discarded, but those that relate to variables which are nonlocal to 
the enclosing environment will be consolidated with those in the underlying re
gion of the cache. 

A full description of one version of the mechanism has already been pub
lished [5], so we will not repeat this description here. We envisage that the 
mechanism would be at least partly built in hardware, at any rate if, as we have 
assumed here, recovery blocks are to be provided within ordinary programs 
working on small data items such as scalar variables. If however one were pro
gramming solely in terms of operations on large blocks of data, such as entire 
arrays or files, the overheads caused by a mechanism built completely from 
software would probably be supportable. Indeed the recursive cache scheme, 
which is essentially a means for secretly preventing what is sometimes termed 
"update in place," can be viewed as a generalization of the facility in CAP's 
"middleware" scheme [11] for preventing individual application programs from 
destructively updating files. 

The various recursive cache mechanisms can all work in terms of the basic 
unit of assignment of the computer, e.g., a 32-bit word. Thus they ensure that 
just those scalar variables and array elements which are actually modified are 
saved. It would of course be possible to structure a program so that all its vari
ables are declared in the outermost block, and within each recovery block each 
variable is modified, and so require that a maximum amount of information be 
saved. In practice we believe that even a moderately well-structured program 
will require comparatively little space for saved variables. Measurements of 
space requirements will be made on the prototype system now being imple
mented, but already we have some evidence for this from some simple exper
iments carried out by interpretively executing a number of Algol W programs. 
Even regarding each Algol block as a recovery block it was found that the 
amount of extra space that would be needed for saved scalar variables and ar
ray elements was in every case considerably smaller at all times than that need
ed for the ordinary data of the program. 

The performance overheads of the different recursive cache mechanisms are 
in the process of being evaluated. Within a recovery block only the speed of 
store instructions is affected, and once a particular nonlocal variable has been 
saved subsequent stores to that variable take place essentially at full speed. The 
overheads involved in entering and leaving recovery blocks differ somewhat be
tween the various mechanisms, but two mechanisms incur overheads which de
pend just linearly on the number of different nonlocal variables which are 
modified. It is our assessment that these overheads will also be quite modest. 
Certainly it would appear that the space and time overheads incurred by our 
mechanisms will be far smaller than would be incurred by any explicitly pro
grammed scheme for saving and restoring the process state. 
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IV. Error Recovery Amongst Interacting Processes 

In the mechanism described so far, the only notion of forward progress is that 
of assignment to a variable. In order to reset the state of a process after the fail
ure of an acceptance test, it was necessary only to undo assignments to nonlocal 
variables. In practice, however, there are many other ways of making forward 
progress during computations, e.g., positioning a disk arm or magnetic tape, 
reading a card, printing a line, receiving a message, or obtaining real-time data 
from external sensors. These actions are difficult or even impossible to undo. 
However, their effects must be undone in order not to compromise the inherent 
"recoverability" of state provided by the recursive cache mechanisms. 

Our attempts to cope with this kind of problem is based on the observation 
that all such forms of progress involve interaction among processes. In some 
cases, one or more of these processes may be mechanical, human, or otherwise 
external, e.g., the process representing the motion of the card-reading machin
ery. In other cases, the progress can be encapsulated in separate but interacting 
computational processes, each of which is structured by recovery blocks. In this 
section, we will explore the effect of this latter type of interaction on the back
tracking scheme, still restricting each process to simple assignment as the only 
method of progress. Then in Section V we will explore the more general prob
lem. 

Consider first the case of two or more interacting processes which have the 
requirement that if one attempts to recover from an error, then the others must 
also take recovery action, "to keep in step." . 

For example, if one process fails after having received, and destroyed, infor
mation from another process, it will require the other process to resupply this 
information. Similarly, a process may have received and acted upon informa
tion subsequently discovered to have been sent to it in error and so must aban
don its present activity. 

Maintaining, naturally, our insistence on the dangers of attempted pro
grammed error diagnosis, we must continue to rely on automatic backing up of 
processes to the special recovery points provided by recovery block entries. 
Each process while executing will at any moment have a sequence of recovery 
points available to it, the number of recovery points being given by the level of 
dynamic nesting of recovery blocks. 

An isolated process could "use up" recovery points just one at a time by suf
fering a whole series of ever more serious errors. However given an arbitrary set 
of interacting processes, each with its own private recovery structure, a single 
error on the part of just one process could cause all the processes to use up 
many or even all of their recovery points, through a sort of uncontrolled 
domino effect. 

The problem is illustrated in Fig. 5, which shows three processes, each of 
which has entered four recovery blocks that it has not yet left. The 'dotted lines 
indicate interactions between processes (i.e., an information flow resulting in an 
assignment in at least one process). Should Process 1 now fail, it will be backed 
up to its latest, i.e., its fourth recovery point, but the other processes will not be 
affected. If Process 2 fails, it will be backed up to its fourth recovery point past 
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an interaction with Process 1, which must therefore also be backed up to the re
covery point immediately prior to this interaction, i.e., its third recovery point. 
However if Process 3 fails, all the processes will have to be backed up right to 
their starting points! 

The domino effect can occur when two particular circumstances exist in 
combination. 

1) The recovery block structures of the various processes are uncoordinated, 
and take no account of process interdependencies caused by their interactions. 

2) The processes are symmetrical with respect to failure propagation -
either member of any pair of interacting processes can cause the other to back 
up. 

By removing either of these circumstances, one can avoid the danger of the 
domino effect. Our technique of structuring process interactions into "con
versations," which we describe next, is a means of dealing with point 1) above; 
the concept of multilevel processes, described in Section V of this paper, will be 
seen to be based on avoiding symmetry of failure propagation. 

A. Process Conversations 

If we are to provide guaranteed recoverability of a set of processes which by 
interacting have become mutually dependent on each other's progress, we must 
arrange that the processes cooperate in the provision of recovery points, as well 
as in the interchange of ordinary information. To extend the basic recovery 
block scheme to a set of interacting processes, we have to provide a means for 
coordinating the recovery block structures of the various processes, in effect to 
provide a recovery structure which is common to the set of processes. This 
structure we term a conversation. 

Conversations, like recovery blocks, can be thought of as providing firewalls 
(in both time and space) which serve to limit the damage caused to a system by 
errors. Figure 6 represents this view of a recovery block as providing a firewall 
for a single process. The downward pointing arrow represents the overall prog
ress of the process. The top edge of the recovery block represents the en
vironment of the process on entry, which is preserved automatically and can be 
restored for the use of an alternate block. The bottom edge represents the ac
ceptable state of the process on exit from the recovery block, as checked by the 
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Fig. 8. Parallel processes within a recovery block, with a further recovery block for one of the 
processes. Interaction between the processes at points E and Fmust now be prohibited 

acceptance test, and beyond which it is assumed that errors internal to the re
covery block should not propagate. (Of course the strength of this firewall is on
ly as good as the rigour of the acceptance test.) The sides show that the process 
is isolated from other activities, i.e., that the process is not subject to external 
influences which cannot be recreated automatically for an alternate, and that it 
does not generate any results which cannot be suppressed should the acceptance 
test be failed. (These side firewalls are provided by some perhaps quite conven
tional protection mechanism, to complement the top and bottom firewalls pro
vided by the recursive cache mechanism and acceptance test.) 

The manner in which the processing is performed within the recovery block 
is of no concern outside it, provided that the acceptance test is satisfied. For in
stance, as shown in Fig. 7, the process may divide into several parallel processes 
within the recovery block. The recursive cache mechanisms that we have devel
oped permit this, and place no constraints on the manner in which this parallel
ism is expressed, or on the means of communication between these parallel pro
cesses. 

Any of the parallel processes could of course enter a further recovery block, 
as shown in Fig. 8. However, by doing so it must lose the ability to communi
cate with other processes for the duration of its recovery block. To see this, con
sider the consequences of an interaction between the processes at points E and 
F. Should process Y now fail its acceptance test it would resume at point A with 
an alternate block. But there is no way of causing process X to repeat the in
teraction at E without backing up both processes to the entry to their common 
recovery block at K. Thus communication, whether it involve explicit message 
passing facilities, or merely reference to common variables, would destroy the 
value of the inner recovery block, and hence must be prohibited. 

A recovery block which spans two or more processes as is shown in Fig. 9 is 
termed a conversation. Two or more processes which already possess the means 
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Fig. 9. Parallel processes with conversations which provide recovery blocks for local com
munication 

Fig. 10. Example of invalid conversations which are not strictly nested 

of communicating with each other m~y agree to enter into a conversation. 
Within the conversation these processes may communicate freely between 
themselves, but may not communicate with any other processes. At the end of 
the conversation all the processes must satisfy their respective acceptance tests 
and none may proceed until all have done so. Should any process fail, all the pro
cesses must automatically be backed up to the start of the conversation to at
tempt their alternates. 

As is shown in Fig. 9, it is possible that the processes enter a conversation at 
differing times. However all processes must leave the conversation together, 
since no process dare discard its recovery point until all processes have satisfied 
their respective acceptance tests. In entering a conversation a process does not 
gain the ability to communicate with any process with which it was previously 
unable to communicate - rather, entry to a conversation serves only to restrict 
communication, in the interests of error recovery. 

As with recovery blocks, conversations can of course occur within other con
versations, so as to provide additional possibilities for error detection and re
covery. However conversations which intersect and are not strictly nested can
not be allowed. Thus structures such as that shown in Fig. 10 must be prohibit
ed, as can be demonstrated by an argument similar to that given in relation to 
Fig. 8. 

V. Multilevel Systems 

We turn now to a method of structuring systems which uses assymetrical failure 
propagation in order to avoid the uncontrolled domino effect described in 
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4 APL statements 
- ----- (APL machine) 

3 Instructions 
------ (S/370 machine) 

2 Micro-in tructions 
- ----- (IBM micro-instruction maChine) 
Hardware logic core storage etc. 

Fig. 11. Fully interpretive multilevel system 

8 User Program 

7 Access Methods 

6 Logical File System 

5 Basic File Sy tem 

4 File Organisation Strategy Modules 

3 Device Strategy Modules 

2 Input/Output Control System 

Central Processor, Peripheral Devices, etc. 

Fig. 12. Multilevel file system interpretive only at level I (see Madnick and Alsop [8]) 

Sect. IV. In so doing we extend the scope of our discussions to cover more com
plex means of making recognizable progress than simple assignments. More
over, we also face for the first time the possibility of reliability problems arising 
from facilities used to provide the means of constructing and executing pro
cesses and of using recovery blocks and conversations. The method of structur
ing which permits these extensions of our facilities for fault tolerance involves 
the use of what we (and others) term multilevel systems. 

A multilevel system is characterized by the existence of a sequence of de
fined "abstract" or "virtual" machines which denote the internal interfaces be
tween the various levels. A given virtual machine provides a set of apparently 
atomic facilities (operations, objects, resources, etc.). These can be used to con
struct the set of facilities that constitute a further (higher) virtual machine in
terface, possibly of a very different appearance. Each virtual machine is there
fore an abstraction of the virtual machine below it. Since we are concerning 
ourselves with computer systems, we in general expect each virtual machine to 
have the characteristics of a programmable computer. Thus it is capable of 
executing a program that specifies which operations are to be applied to which 
operands, and their sequencing. 

Our use of the term virtual machine is quite general. In particular our con
cept of multilevel systems includes systems whose levels are entirely different 
from each other (as in Fig. 11) as well as systems whose levels have much in 
common with each other (as in Fig. 12), for example being constructed by ap-

28 



plying a protection scheme on a single computer. However, in each case the 
operations that a given virtual machine provides can be regarded as atomic at 
the level above it and as implemented by the activity of the level immediately 
below the virtual machine interface. Thus from the viewpoint of level i of the 
system in Fig. 12, the whole of the file accessing operation is performed by level 
7. Indeed even the operation of addition, and the whole process of instruction 
fetching and decoding, can be regarded as being provided by level 7. This is the 
case no matter which actual level below level 7 is in fact responsible for the con
struction of these facilities out of more basic ones. 

Some virtual machine interfaces allow the facilities they provide to be used 
without much, or even any, knowledge of the underlying structures used to con
struct these facilities. Virtual machine interfaces which have this characteristic 
can be termed opaque interfaces. Such virtual machine interfaces are total (in 
the sense that a mathematical function which is defined for all possible argu
ments is total) and have associated documentation which completely defines 
the interface. Being total and completely documented are necessary rather than 
sufficient conditions for a virtual machine interface to be usefully opaque, a 
characteristic which only well-chosen ones possess in any great measure, but 
this is a subject which we will not pursue further here. 

Opaque virtual machine interfaces facilitate the understanding of existing 
complex systems, and the design of new ones. They do this by enabling the 
complexity of the system to be divided and conquered, so that no single person 
or group of persons has to master all the details of the design. They can there
fore in themselves contribute to the overall reliability of a system, by simplify
ing the tasks of its designers. However, if design errors are made, or operational 
failures of physical components occur, it will be found that existing methods of 
constructing opaque virtual machine interfaces are somewhat inadequate. The 
sought-after opacity of the interface will in many cases be lost, since error re
covery (either manual or predesigned) will need an understanding of two or 
more levels of the system. Hence our interest in providing facilities for tolerat
ing faults, including those due to design errors, which can be used by designers 
whose detailed understanding of the system is limited to that of a single level 
and the two virtual machine interfaces that bound it. (A very different ap
proach to these problems, based on the use of programmer-supplied error di
agnosis and recovery code, has been described by Pamas [9].) 

All this presupposes that the virtual machine interfaces have some physical 
realization in the operational system. Conceptual levels, though of value during 
system design and in providing documentation of the behavior of a reliable sys
tem, typically play no part in failure situations - for example the levels in the 
THE system [3] have no relevance to the problem of coping with, say, an actual 
memory parity error. The actual physical realization in existing multilevel sys
tems can vary widely - from, for example, the provision of physically separate 
storage and highways for microprograms and programs, to the use of a single 
control bit to distinguish between supervisor and user modes of instruction ex
ecution. What we now describe are additional general characteristics and facili
ties that we believe any such physical realization of a virtual machine interface 
should possess in order to support our techniques for system fault tolerance. 
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A. Errors Above a Virtual Machine Interface 

Everything that appears to happen in a given level is in fact the result of activity 
for which the level below is (directly or indirectly) responsible. This applies not 
only to the ordinary operations performed at a level but also to any recovery 
actions which might be required. Consider for example a level; which uses our 
recovery block scheme to provide itself with some measure of fault tolerance, 
and which makes recognizable progress by means of simple assignment state
ments. Then it is level ;-1 which is responsible not only for the actual as
signments, but also for any saving of prior values of variables and reinstatement 
of them when required. 

Similarly, if the virtual machine which supports level; includes any more 
exotic operations which change the system state as seen by level ;, e.g., magnetic 
tape rewind, then level ;-1 will have the responsibility of undoing their effects, 
e.g., repositioning the tape (whether level ;-1 undertakes this responsibility it
self, or instead delegates it to level ;-2 is irrelevant). 

Provided that level ;-1 fulfills its responsibilities level; can thus assume that 
error detection will automatically be followed by a return to the most recent re
covery point. This will occur whether the detection of a level ; error occurs at 
level; itself (e.g., by means of an acceptance test) or below level; because of 
incorrect use by level; of one of the operations provided to it by level ;-1 (e.g., 
division by zero). 

It should be noted that both progress and fall back, as recognizable in the 
level above a virtual machine interface, are provided by progress on the level 
below, i.e., the level ;-1 keeps going forwards, or at least tries to, even if it is 
doing so in order to enable level; to (appear to) go backwards. 

For example, level; might read cards from an "abstract card reader" while 
level ;-1 actually implements this abstract card reader by means of spooling. 
When level; encounters an error and tries to go backwards, it must appear to 
"unread" the cards read during the current recovery block. But level ;-1 im
plements this "unreading" by merely resetting a pointer in its school buffer - a 
positive or forward action on its part. 

All this assumes level ;-1 is trouble free - what we must now discuss are the 
complications caused by level ;-1 being unable, for various reasons, to maintain 
its own progress, and in particular that progress on which level; is relying. 

B. Errors Below a Virtual Machine Interface 

Needless to say, the programs which provide a virtual machine interface can 
themselves, if appropriate, incorporate recovery blocks for the purpose of local 
error detection and recovery. Thus when level ;-1 makes a mistake, which is de
tected, while performing some operation for level ;, if an alternate block 
manages to succeed where the primary alternate had failed the operation can 
nevertheless be completed. In such circumstances the program at level ; need 
never know that any error occurred. (For example, a user process may be un
aware that the operating system had to make several attempts before it succeed
ed in reading a magnetic tape on behalf of the user process.) But if all the alter-
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nates of the outermost recovery block of the level ;-1 program performing an 
operation for level; fail, so that the recovery capability at level ;-1 is exhausted, 
then the <?peration must be rejected and recovery action undertaken at level ;. 

This case of an error detected at level ;-1 forcing level; back to a recovery 
point in order to undertake some alternative action is very similar to the one 
mentioned earlier in Section V-A - namely that of an error detected at level ;-1, 
but stemming from the incorrect use of an operation by level ;. The error log 
which is produced for later offline analysis will indicate the difference between 
the two cases, but this information (leave alone further information which 
might be needed for diagnostic purposes) will not be available at level ;. 

The situation is much more serious if level ;-1 errs, and exhausts any recov
ery capability it might have, whilst performing an inverse operation on behalf 
of level ;, i.e., fails to complete the act of undoing the effects of one or more 
operations that level; has used to modify its state. This possibility might seem 
rather small when the inverse operation is merely that of resetting the prior val
ue of a scalar variable. However when an inverse operation is quite complex 
(e.g., one that involves undoing the changes a process has caused to be made to 
complicated data structures in a large filing system) one might have to cope 
with residual design inadequacies, as well as the ever-present possibility of 
hardware failure. 

When an inverse operation cannot be completed, the level ; cannot be 
backed up, so it has to be abandoned. This is perhaps the most subtle cause for 
level ;-1 to abandon further attempts to execute a level; process - more famil
iar ones include the sudden inability of level ;-1 to continue fetching and decod
ing level; instructions, locating level; operands, etc., either because of level 
;-1's own inadequacy, or that of the level ;-2 machine on which it depends. (For 
example, level 3 of Fig. 11, the APL interpreter, might find that the file in 
which it keeps the APL program belonging to a particular user was unreadable, 
a fault which perhaps was first detected at level 2, by the microprogram). 

There is one other important class of errors detected below a virtual ma
chine interface which can be dealt with without necessarily abandoning level ;, 
the level above the interface. After level; has passed an acceptance test, but be
fore all the information constituting its recovery point has been discarded, there 
is the chance for level ;-1 to perform any checking that is needed on the overall 
acceptability, in level ;-1 terms, of the sequence of operations that have been 
carried out for level ;. 

For example, level; may have been performing operations which were, as 
far as it was concerned, disk storage operations. Level ;-1 could in fact have 
buffered the information so stored. Before the present level of fall back capa
bility of level; is discarded, level ;-1 may wish to ensure that the information 
has been written to disk and checked. If level ;-1 finds that it cannot ensure this, 
but instead encounters some problem from which it itself is unable to recover, 
then it can in essence cause level; to fail, and to fall back and attempt an alter
nate. This will be in the hope that whatever problem it was that level ;-1 got 
into (on behalf of level ;) this time, next time the sequence of operations that 
level; requests will manage to get dealt with to the satisfaction of level ;-1 as 
well as of level ;. 
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In fact an intersting example of this case of level ;-1 inducing a failure in 
level; occurs in the mechanization of conversations. Consider a level; process 
which is involved in a conversation with some other level; process and which 
after completing its primary alternate satisfies is acceptance test. At this mo
ment level ;-1 must determine whether the other process has also completed its 
primary alternate and passed its acceptance test. If necessary the process must 
be suspended until the other process has been completed, as discussed in Sec
tion IV -A. If the other process should fail, then the first process must also be 
forced to back up just as if it had failed its own acceptance test even though it 
had in fact passed it. 

C. Fault-Tolerant Virtual Machine Interfaces 

We have so far discussed the problems of failures above and below a virtual 
machine interface quite separately. In fact, except for the highest level and the 
one that we choose to regard as the lowest level, every level is of course simul
taneously below one virtual machine interface and above another such in
terface. Therefore each interface has the responsibility for organizing the in
teraction between two potentially unreliable levels in a multilevel system. The 
aim is to embody within the interface all the rules about interaction across levels 
that we have been describing, and so simplify the task of designing the levels on 
either side of the interface. 

If this can be done then it will be possible to design levels which are separat
ed by opaque virtual machine interfaces independently of each other, even in 
the case where the possibility of failures is admitted. By enabling the design of 
error recovery facilities to be considered separately for different levels of the 
system, in the knowledge that the fault-tolerant interface will arrange their 
proper interaction, their design should be greatly simplified - a very important 
consideration if error recovery facilities in complex systems are to be really re
lied upon. 

Various different kinds of virtual machine interfaces are provided in current 
multilevel systems. These range from an interface which involves complete in
terpretation (e.g., the APL machine interface in Fig. 11 and the lowest inferface 
in Fig. 12), to one where many of the basic facilities provided above the in
terface are in fact the same as those made available to the level immediately 
below the interface by some yet lower virtual machine interface (e.g., the other 
interfaces in Fig. 12). These latter kinds of interface, because of their perfor
mance characteristics, can be expected to predominate in systems which have 
many levels - in theory the multilevel file system (Fig. 12) could be built using 
a hierarchy of complete interpreters, but this is of course wildly impractical. 

It is not appropriate within the confines of this already lengthy paper to give 
a fully detailed description of even a single kind, leave alone the various dif
ferent kinds, of fault-tolerant virtual machine interface. However we have at
tempted, with Fig. 13, to show the main features of a fault-tolerant interface of 
the complete interpreter kind. For purposes of comparison, Fig. 14 shows the 
equivalent interface in a conventional complete interpreter. 
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The basic difference between a fault-tolerant interpreter and a conventional 
interpreter is that, for each different type of instruction to be interpreted, the 
fault tolerant interpreter, in general, provides a set of three related procedures 
rather than just a single procedure. The three procedures are as follows. 

1) An Interpretation Procedure: This is basically the same as the single pro
cedure provided in a conventional interpreter, and provides the normal inter-
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pretation of the particular type of instruction. But within the procedure, the in
terface ensures that before any changes are made to the state of the interpreted 
process or the values of any of its variables, a test is made to determine whether 
any information should first be saved in order that fall back will be possible. 

2) An Inverse Procedure: this will be called when a process is being backed up, 
and will make use of information saved during any uses of the interpretation 
procedure. 

3) An Acceptance Procedure: This will be called when an alternate block has 
passed its acceptance test, and allows for any necessary tidying up and checking 
related to the previous use of the normal interpretation procedure. 

When the instruction is one that does not change the system state, inverse 
and acceptance procedures are not needed. If the instruction is, for example, 
merely a simple assignment to a scalar, the interpretation procedure saves the 
value and the address of the scalar before making the first assignment to the 
scalar within a new recovery block. The inverse procedure uses this information 
to reset the scalar, and there is a trivial acceptance procedure. A nontrivial ac
ceptance procedure would be needed if, for example, the interpreter had to 
close a file and perhaps do some checking on the filed information in order to 
complete the work stemming from the use of the interpretation procedure. 

A generalization of the recursive cache, as described in Sect. III-C, is used to 
control the invocation of inverse and acceptance procedures. The cache records 
the descriptors for the inverse and acceptance procedures corresponding to in
terpretation procedures that have been executed and caused system state infor
mation to be saved. Indeed each cache region can be thought of as containing a 
linear "program," rather than just a set of saved prior values. The "program" 
held in the current cache region indicates the sequence of inverse procedures 
calls that are to be "executed" in order to back up the process to its most recent 
recovery point. (If the process passes its acceptance test the procedure calls in 
the "program" act as calls on acceptance procedures.) The program of inverse/ 
acceptance calls is initially null, but grows as the process performs actions 
which add to the task of backing it up. As with the basic recursive cache mech
anism, the cache region will be discarded in its entirety after it has been used 
for backing up a process. Similarly, if the recovery block or conversation is 
completed successfully, some entries will be discarded, but those that relate to 
variables which are nonlocal to the enclosing environment will be consolidated 
with the existing "program" in the underlying region of the cache. 

This then is a very brief account, ignoring various simple but important 
"mere optimizations," of the main characteristics of a failure-tolerant virtual 
machine interface of the complete interpreter kind. Being so closely related to 
the basic recursive cache mechanism, it will perhaps be most readily appreciat
ed by people who are already familiar with the published description [5] of the 
detailed functioning of one recursive cache mechanism. 
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VI. Conclusions 

The techniques for structuring fault-tolerant systems which we have described 
have been designed especially for faults arising from design errors, such as are 
at present all too common in complex software systems. However we believe 
they are also of potential applicability to hardware and in particular allow the 
various operational faults that hardware can suffer from to be treated as simple 
special cases. In fact the techniques we have sketched for fault tolerance in mul
tilevel systems would appear to provide an appropriate means of integrating 
provisions for hardware reconfiguration into the overall structure of the system. 
Indeed as a general approach to the structuring of a complex activity where the 
possibility of errors is to be considered, there seems to be no a priori reason why 
the structuring should not extend past the confines of the computer system. 
Thus, as others have previously remarked [2], the structuring could apply to the 
environment and perhaps even the activity of the people surrounding the com
puter system. 

The effectiveness of this approach to fault-tolerant system design will de
pend critically on the acceptance tests and additional alternate blocks that are 
provided. An experimental prototype systems is currently being developed 
which should enable us to obtain experience in the use of this approach, to 
evaluate its merits, and to explore possible performance-reliability tradeoffs. 
In our opinion, one lesson is however already clear. If it is considered important 
that a complex system be provided with extensive error recovery facilities 
whose dependability can be the subject of plausible a priori arguments, then the 
system structure will have to conform to comparatively restrictive rules. Putting 
this another way, it will not be sufficient for designers to argue for the use of 
very sophisticated control structures and intercommunication facilities on the 
grounds of performance characteristics and personal freedom of design, unless 
they can clearly demonstrate that these do not unduly compromise the re
coverability of the system. 
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Operating Systems: 
The Problems of Performance and Reliability 

B. RANDELL 

The problems of achieving satisfactory levels of system performance and reliability are 
amongst the most difficult that operating system designers and implementors have to face. 
This is particularly the case with generic operating systems, i.e., systems intended for use in 
many different versions, in a wide variety of different environments. The present paper at
tempts to explore the reasons for these difficulties, and to discuss the interplay between per
formance and reliability, and, in particular, the problems of achieving high reliability in the 
presence of hardware failures and software errors. 

1. Introduction 

The task of preparing a survey paper on operating systems is daunting, to say 
the least. A mere catalogue of the numerous existing operating systems, and of 
research efforts in operating system design, would be inadequate. Moreover the 
subject, despite an almost frantic rate of development, is still, at least in this 
author's opinion, in far too disorganised and immature a state for a worthwhile 
analytical survey and classification to be feasible. There is not even any general 
agreement as to the meaning of the term "operating system". Paraphrasing Bar
ron [3], who was in fact discussing assemblers: 

"What is an operating system? Like many other things in computing it is difficult to define 
precisely, though any experienced programmer will recognise one when he sees it". 

However, the definition given by Creech [4] is adequate for most purposes: 

"An operating system can be defined to be that part of a computer system which attempts 
to so allocate and co-ordinate the resources of the system to achieve the optimum performance 
of that system. The resources involved include processors, peripheral 110 devices, operating 
system facilities, memory and time. The task is further complicated by the fact the operating 
system itself must use these resources". 

This definition is better appreciated when one realises the extent of the 
spectrum of systems that it covers - from say, the LAP6 operating system [27] 
which contains less than 5000 instructions, and took less than two man years to 
develop, to IBM's OS/360, which contains several million lines of code, and has 
taken several man-millenia of effort to develop. (Incidentally, for those of you 
who are not familiar with LAP6, it is worth mentioning that this system pro
vides a filling system and facilities for program preparation and assembly, and 
on-line editing, all on a LINC computer with 2048 12-bit words Of memory.) 

Rather than attempt a general survey, therefore, the present paper con
centrates on just two aspects of operating systems, aspects which however are 
among the most important to the users of such systems, namely performance 
and reliability. The decision to concentrate on just these two aspects of system 
behaviour, and to ignore such other important aspects as functional capability, 
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arises from the nature of the problems relating to system performance and re
liability that face the operating system designer. Virtually every decision taken 
by the designers and implementors of an operating system has the potential of 
having a significant (and in the present state of our knowledge, often unforsee
able) effect on the overall performance and reliability of the system. Further
more, there are systems such as OS/360, which might be described as generic 
rather than specific in nature, beeing designed for a whole range of en
vironments and machine configurations. In the case of such systems, the de
signers and implementors have only an indirect (though by no means small) in
fluence on the levels of performance' and reliability that will be achieved in a 
given installation. Even the criteria by which performance and reliability are 
judged will vary from installation to installation. Thus many of the problems of 
achieving acceptable performance and reliability at a particular installation will 
have to be tackled by the staff of that installation. For these reasons, and others, 
the problems of performance and reliability of operating systems are par
ticularly difficult ones, and their discussion seems appropriate on an occasion 
such as the present one. 

There is one somewhat tricky problem involved in discussing these two 
particular aspects of operating systems, and that is their psychological conno
tations. The topic of system performance can have overtones of mindless pre
occupation with easily measurable (though not so easily evaluatable) attributes 
such as response time and storage utilization; the topic of system reliability can 
arouse the somewhat puritanical reaction that anything other than absolute re
liability (particularly as far as software is concerned) is unacceptable. One of 
my aims in this talk is to convey my own, somewhat different views of these two 
topics. 

2. System Performance and Reliability 

The implication of the term "system performance" is that it is a measure of the 
rate at which a system is capable of doing useful work. In the same vein, "sys
tem reliability" can be regarded as a measure of the trustworthiness of the re
sults produced by a system. 

Quite crude characterizations of computing systym performance (e.g. CPU 
utilization) and reliability can be adequate for comparing two different com
puting systems if their functional capabilities are identical or near-identical. 
However when two computing systems have very different functional capabili
ties it is in general very difficult to find means of characteristing performance 
and reliability which will facilitate meaningful comparisons of the two systems. 
Similarly, two different installations can have very different opinions as to the 
relative' importance of the various aspects of a system's performance and re
liability. Thus it is hardly surprising that there are no generally accepted stan
dards for measuring performance and reliability, and it is not the intention here 
to propose any. 

Performance and reliability are both "commodities" which are of value to 
users, and whose "production" will involve the incurrence of costs. Enough dif-
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ferent computing systems have been produced and installed that one can at
tempt to quantify the relationship that holds between system performance 
(however crudely this might be measured) and cost - Grosch's "law" that per
formance is proportional to the square of cost, is a well-known example. Such a 
relationship may tell us more about a certain manufacturer's pricing policies 
than the realities of his development and manufacturing costs. However it does 
indicate that there is at least a certain level of understanding amongst customers 
of the need to assess their performance· requir~ments, and of how the perfor
mance that they obtain from a system is, or should be, related to the amount 
that they paid for it. The situation with regard to system reliability is very dif
ferent. A really naive user will not realise just how unreliable both the hardware 
and the software of the computing system that the manufacturer deli vers to him 
might be. Most users will be hard put to quantify the value that they place on 
obtaining a certain level of reliability, leave alone have any idea how best to 
allocate the money that they wish to spend in order to obtain this level of re
liability. 

The specific role of the operating system in all this is rather interesting. It is 
perhaps not too cynical or misleading to regard the task of the operating system 
as that of enabling an installation to achieve the inherent performance capabili
ties, and surpass the inherent reliability capabilities, of the basic hardware. Of 
course it is not unknown for the amount of resources used by the operating sys
tem itself (CPU time, storage, etc.) to be so great as to cause one to question 
whether it is in fact making a positive contribution to the capacity of the com
puting system to produce useful work. Similarly, an operating system may con
tain so many errors that these errors become the dominant factor in the overall 
reliability of the computing system, rather than hardware failures, whether or 
not these failures are dealt with adequately by the operating system. 

So far no mention has been made of any interact.ions between performance 
and reliability, but obviously these exist. Reliability is at least in part bought at 
the expense of performance - precautionary measures such as attempts to de
tect the occurrence of errors, multiple recording of data, etc., all use up re
sources and can impact performance. Conversely, the lack ofreliability at some 
point within a system, can sometimes be dealt with by the system, using fall
back and recovery techniques, so that the problem manifests itself to a user of 
the system simply as reduced performance. It is when an error goes undetected 
that the system will produce untrustworthy results, or perhaps no results at all 
(which can of course also happen even if the error is detected, if the system is 
not capable of coping with the situation). 

Clearly, operating system designers have to be aware of these interactions 
between performance and reliability, and must attempt rational trade-off de
cisions. These decisions are very difficult for two reasons. Firstly, in our present 
state of knowledge, it is often difficult to predict what impact a particular fea
ture, which is intended, say, to improve computing system reliability, will have 
on either reliability or performance. Secondly, it is very difficult, even when 
these impacts can be predicted, to judge whether the feature is worthwhile, in 
view of the lack, discussed earlier, of accepted norms for relating reliability to 
cost. This second point is more serious when one is designing a generic operat-
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ing system, intended for use in various versions in many different environments, 
rather than a special operating system, for a specific environment, for which an 
assessment of the relative value of performance and reliability can be obtained. 
Of course the sad reality is that both the performance and reliability achieved 
by the early versions of most operating systems are far from adequate, and 
many iterations are usually needed before adequate levels are obtained. 

Let me now turn from this attempt to discuss system performance and re
liability in general terms, to discuss a particular problem in operating system 
design which illustrates the confusion which surrounds these two topics. 

3. The Deadlock Problem 

The problem of deadlock has been achieving ever greater attention during the 
last few years, and much worthwhile research has been done. However there 
has been a tendency to regard the problem as solely one of program correctness, 
and hence system reliability. In fact this problem is a very good example of the 
interaction between reliability and performance. 

Deadlocks arise when two or more processes are allowed. to proceed to the 
point where each reaches a situation where it is waiting fOf some action by one 
of the other processes. The standard simple example involves two processes, 
one having obtained resource A and requested resource B, the other having ob
tained resource B and requested resource A. Potential sources of deadlock 
problems are process communication facilities, and shared resources such as 
storage, I/O devices and operating system services. When viewed as an abstract 
problem in the theory of operating system design, the usual assumption is that 
the essence of the problem is to ensure that deadlocks will not occur under any 
circumstance. With this in mind various authors, sometimes using differing as
sumptions as to the amount of information that will be available to the system 
about the future behaviour of processes, have produced various algorithms for 
the scheduling of processes and the allocation of resources to processes. 

Now one can in fact always avoid deadlocks by disallowing any parallel ac
tivity, but for performance reasons this is unlikely to be practicable. This fact 
makes it clear that deadlock avoidance strategies must be assessed not only by 
the extent to which they succeed in their goal of avoiding all deadlocks, but also 
by the extent to which they allow multiple acitivities to proceed in parallel. In 
fact in many cases it is feasible to provide restart facilities which enable a dead
lock situation to be resolved by the rather brutal technique .of abandoning one 
or more processes, and later restarting them. As Needham and Hartley [21] 
have pointed out, it is then appropriate to regard the task of the operating sys
tem designer, with respect to the deadlock problem, as being that of finding a 
suitable trade-off between such factors as cost and effectiveness of a scheduling 
and allocation algorithm, the frequency with which it fails to avoid deadlocks, 
and costs of restarting after a deadlock. It would be, to say the very least, aes
thetically pleasing if one could satisfy oneself that the best trade-off, in terms of 
system performance was achieved by algorithms which guranteed the avoid-
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ance of deadlocks, but there is no reason to suppose that this is always or even 
often the case. 

It should however be admitted that there are varying qualities of restart, the 
ideal restart being one whose occurrence is not noticeable to the users of the 
system, or at least which does not require any overt action on the part of the 
users. Where restart facilities fall badly below this ideal it is all too easy to jus
tify an inadequate solution to the deadlock problem by not taking the costs to 
the users of restarts into account in the trade-off decisions. This is certainly the 
case where deadlocks can be directly caused by simple (accidental of wilful) ac
tions by a user, as is the case in OS/360 (see Holt [15]). 

4. System Performance Problems 

Let us, for the moment, leave aside the problems of reliability, and concentrate 
on the problems of achieving acceptable performance from an operating sys
tem. As mentioned earlier, every design decision, indeed every instruction writ
ten by an implementor, is potentially the source of considerable influence on 
system performance. When designing a system we can have a set of precon
ceived ideas as to which aspects of the design, and which parts of the coding, 
will be most critical with respect to performance. However these intuitions can 
be very wrong. The reasons for this can range all the way from insufficient 
understanding of underlying principles, to silly coding mistakes. 

For example, during recent years much work has been done on so-called 
"virtual memory" systems, either of the paging type, such as Atlas, or of the 
segmenting type, such as the B5000. Considerable effort has gone into the de
sign and study of "replacement algorithms", i.e. algorithms for choosing which 
information to remove from working storage when space is needed in order to 
bring further information into working storage from backing storage. However 
it is now becoming clear that the question of which replacement algorithm is 
used is comparatively unimportant. Much more important, from the point of 
view of performance, is the problem of avoiding thrashing, the situation in 
which the system spends virtually all of its efforts transferring information to 
and from between working storage and backing storage. The usual cause of 
thrashing is that too many programs have been allowed to compete for CPU 
time and hence working storage, so that programs are excessively "space
squeezed" and continually need access to information which is not in working 
storage. In certain circumstances it may be regarded as acceptable for one of the 
duties of the operators to be that of looking out for the symptoms of thrashing, 
and when necessary instructing the operating system to desist from trying to run 
one or more currently active jobs. This is the case with, for example, the MCP 
operating system on the B5000 and its successors [23], and the THE system on 
the X8 [7]. However in general it is not acceptable to wait until thrashing has 
become so pronounced that it is eventually noticed by the operator; instead, 
strategies for avoiding thrashing by controlling the level of multiprogramming 
of working storage will be included in the operating system, perhaps as an ex-
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tension to the basic replacement algorithm [24]. These strategies, which can of
ten be simple to the point of naivete, can have a far greater effect on perform
ance than the basic replacement strategy. 

At the other end of the spectrum, horror stories about the massive effects of 
conceptually trivial coding errors are legion. One particular one that I re
member is, it so happens, also concerned with a trivial memory system. Many 
experiments had been conducted, and many incremental improvements had 
been made to the storage management strategies. In fact, by far the biggest 
single performance improvement was due to the eventual (and accidental) dis
covery of a trivial mistake in the coding of the terminal communication routine. 

All this is of course a clear indication of our willingness to design and im
plement systems of a level of complexity which challenges, and often defeats, 
our ability to comprehend them. Unfortunately, the analysis of even very 
simple algorithms, so as to determine what their performance will be, can be 
extremely laborious, even when gross simplifying assmptions are made as to the 
statistical properties of the input data. (Such analyses can however produce 
quite unexpected and illuminating results, despite the simplicity of the algor
ithms - see Knuth [19].) Luckily, as Knuth also shows, almost equally valuable 
information can be obtained much more easily by experiment, using trace 
routines, and routines which record the frequency of execution of the various 
statements making up an algorithm. What is surprising is that such simple tools 
are not more commonly used to assist in program development. 

Basically similar, but more extensive monitoring facilities, either hardware 
or software, are now coming into common use for "tuning" operating systems 
[13]. As I am sure you know, several companies now offer a service which in
volves spending a day or so monitoring the behaviour of an installation's 
operating system and standard application programs, and then making rec
ommendations for modifications in order to improve system performance. The 
quite spectacular improvements which are almost always made are more an 
indication of the lamentable state of the original system, and of the lack of 
understanding of the system by the installation staff, than of any great con
ceptual sophistication in the tools and techniques that these companies use. 
Clearly this tuning process is a very worthwhile (though not necessarily as in
tellectually satisfying as it is demanding) method of making improvements in a 
complex operating system. In fact, I must admit that I think of the task as in
volving a kind of pathology, being concerned with trying to analyse the obscure 
causes of unpleasant symptoms in diseased organisms. 

This type of tuning is an "after the fact" method of improving the quality of 
an operating system. It therefore in no sense replaces the activity, which one 
would like to think was a standard component of any system design and im
plementation project, of analysing and monitoring first the design, later the par
tially implemented system, and where necessary, of causing re-design and re
implementation to be undertaken. Ideally one would expect that the designer of 
an operating system component would be working from a detailed specifi
cation, not only of what the component was supposed to do, but also of the es
timated resources (CPU time, storage space, channel time, etc.) that it was ex
pected to need. Also available to him would be similar estimates relating to 
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those other components with which his component would have to interact. As 
the system implementation proceeded, the estimates would be checked against 
what was achieved in practice. It would thus become clear where the redesign 
of a component was necessary, either because its design had been based on 
premises that had turned out to be untrue, or in a further attempt to make it 
conform more closely to the original estimates of its resource utilization. 

All this may seem rather utopian at the moment. For example, in some 
operating systems one is forced to assume that the designers of system com
ponents which use disk access routines were as ignorant of the time taken by 
these routines, as the designers of the disk access routines were of the frequency 
with which these routines would be used. In many cases, simple back-of-the-en
vel ope type calculations would be sufficient to expose gross disparities in the 
system design, but comparatively few software designers and implementors are 
trained or motivated to work this way. This is, I feel, indicative of how far we 
are from having an occupation which truly merits the title of "software en
gineering". 

However, it is one thing to find out that a partially implemented system 
should be changed, and quite another to carry out the proposed changes. Com
ments about the need for structure and modularity, and advocating the use of 
(decent) high level languages, are all clearly appropriate at this point, even if 
they do sound like mere motherhood [22]. Perhaps as important, whenever the 
number of designers and implementors warrants it, are automated or semi
automated techniques for policing and co-ordinating their work. A simple 
example would be facilities for maintaining up to date, and accurate, lists of 
which system modules use, or modify, which common data structures. (Hop
kins [16] has given an all too graphic account of what has happened in OS/360 
due to a vast number of inadequately co-ordinated attempts to improve the 
performance of individual modules and groups of modules.) 

Let me conclude this discussion on system design problems by returning 
briefly to my earlier point about the dangers of over-ambitious design goals. It 
is very noticeable that some of the more successful operating systems, from a 
practical point of view, are those whose designers have had a clear idea of the 
intended environment, and have resisted the temptation to attempt a giant leap 
in all directions at once, so to speak, by implementing the most sophisticated 
and general system that they could envisage. Just two examples of this are the 
Cambridge Multi-Access System [28] and APLl360 [9]. In the Cambridge Sys
tem, it was decided that the main uses of the terminals would be for file editing 
and job submission, and that these facilities could be, if carefully designed, pro
vided quite economically. On the other hand, the more general ability to in
teract from a terminal with any user-supplied program, which it was felt would 
place a heavy load on system resources, was provided only as a special mode of 
use, called "expensive mode", the use of which was very carefully rationed. The 
designers of the APLl360 system were very conscious of the need to avoid ex
cessive information transfer between working storage and backing storage, 
which was a flailing-arm disk. Such information transfers could be caused by 
switching between users, and by user commands to load and save "workspaces" 
containing programs and data. Switching between users was performed under 
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the control of the system, and was calculated to be manageable - the worry was 
the load and save commands. By the simple expedient of allowing such com
mands only from a terminal, not from within APL programs, the maximum rate 
at which such commands can be given has been severely limited. It would be 
difficult to ascertain how much this decision has contributed to APLl360's un
doubted efficiency, but certainly a potentially difficult bottleneck has thus been 
completely avoided. 

5. System Reliability 

As users have become (sometimes unintentionally) more dependent on their 
computer systems - often far more dependent than the quality of either the 
hardware or the software would justify - the subject of system reliability has 
become ever more important. However, as discussed earlier, it is no use obtain
ing reliability unless it is matched by adequate performance. A result that is 
"guaranteed" correct, produced after all need for it has passed, may well be less 
valuable than a timely result which has some (hopefully small, and known) 
probability of being incorrect. 

Needless to say, a complex system will not in general be designed to pro
duce a single result, but rather a whole set of results, to each of which a dif
ferent reliability requirement might be attached. (For example, in a system 
which maintains a large inventory file, inserting an incorrect value into the file 
may be regarded as much worse than occasionally failing to answer, or answer
ing incorrectly, requests for information from the file). In such circumstances it 
is only sensible to try to design the system in such a way that its more com
monly occurring faults at least do not affect the more crucial of the results that 
the system is producing, even though they might affect the overall reliability 
(and performance) - the terms "graceful degradation" and "fail-soft" are the 
currently fashionable ones for characterising computing systems that are de
signed in this way. In fact a look at one of the most obviously successful projects 
that involved obtaining ultra-high reliability from a complex software system, 
the Project Apollo Ground System [2], is most instructive. One of the most 
striking features is the care which has been taken, in the design of the en
vironment which surrounds the system, to minimise the extent to which reliance 
is put on the correct and continuous functioning of the system. . 

A typical dictionary definition of system is "a whole composed of com
ponents in orderly arrangement according to some scheme or plan". From this 
definition (and resisting the temptation to question whether the phrase "orderly 
arrangement" is fully applicable to complex computing systems) one is led to 
the view that the task of achieving reliabiltiy of a system can be split up into: 
(i) that of making sure that the components of which the system is constructed 

are reliable; 
(ii) that of coping with the consequences of any failures to achieve (i) com

pletely. 
Let us take as the level of components of interest to us in a computing sys

tem such major hardware modules as processors, memories, channels, I/O de-
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vices, etc., and the major software modules which make up the operating sys
tem, and consider what reliability one might reasonably expect from such com
ponents. 

6. Hardware Reliability 

Much progress has been made in achieving ultra-high reliability from hardware 
modules which are essentially electronic such as processors and memories; Dar
ton [5], for example, has reported on a small demonstration computer which is 
to all intents and purposes absolutely reliable. (Any single failure can be detect
ed, the offending circuit board identified, and replaced, all without interrupting 
the system - the time to replace a board is infinitesimal compared to the mean 
time between failures.) However, as I am sure you all know, much of this prog
ress has yet to be reflected in the average present-day computing installation. 

The situation is worse with electro-mechanical devices, where the levels of 
redundancy needed to achieve comparable reliability are much higher. Thus 
the "hidden" ninth spindle on an IBM 2314 disk drive, kept as a spare, although 
of value in increasing the probability of there being eight spindles in working 
order, does not prevent loss of data caused oy a head crash. To do this would 
require duplication of the entire set of eight spindles, and that all data be auto
matically recorded in duplicate. It is unlikely that this would be regarded as the 
most effective way of utilizing the eight extra spindels. 

In summary therefore, there seems little chance that the operating system 
designer will be able to avoid taking at least some of the responsibility for cop
ing with the consequences of hardware failures. It is, however, I think reason
able to expect improved hardware facilities for reporting and identifying mod
ules that are in error, for system reconfiguration, etc., such as in the Burroughs 
0825 [1] and the IBM 9020 [17], to become more widespread. 

7. Software Reliability 

A common view of software reliability is that it is achieved solely by ensuring 
that the software is correct, i.e., is free of bugs. Software bugs are seen as the 
equivalent of design errors in hardware, with there being no equivalent to the 
failure that can occur after all the design errors have been removed, such as are 
caused by component ageing. This view is somewhat simplistic - for a start, the 
distinction between hardware design errors and later hardware failures can be 
somewhat arbitrary. However what is more to the point is that in today's cruel 
world it is rarely possible to wait until all the bugs have been removed from a 
complex software system, before it is used to provide service. (For that matter, 
it is not uncommon for blatant hardware design errors to be found many years 
after installation of a complex computing system). Indeed there are many who 
would deny the possibility of a large software system ever reaching a bug-free 
state. Certainly the current statistical evidence is on their side - it was recently 
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stated that each release of OS/360, which is (one hopes) an extreme case, has 
on average over one thousand distinct errors reported in it. 

It is worth examining what we mean by the term "correctness". Needless to 
say, the results produced by a system can only be "correct" with respect to some 
criterion. One would like to assume that such a criterion would be part of the 
detailed specification that was used to guide the design and implementation of 
a system. However, for other than very simple systems, such specifications are 
unlikely to be accurate or complete. Rather, they are often little more than an 
initial bargaining offer, subject to renegotiation as the system implementation 
proceeds and the designers and their customers start getting detailed feedback. 
Naturally, to a user, the fact that a system is correct with respect to some inad
equate or obsolete specification will be irrelevant - to him it will be, in essence, 
incorrect. 

It is against this background that the current research on the topic of pro
gram correctness should be assessed. Much of this work derives from that of 
Floyd [10], who proposed the use of automated theorem proving techniques to 
check the consistency of a program with programmer-supplied formal as
sertions about the relationships which should hold amongst the values of the 
variables at various stages during the execution of a program. This has in fact 
been done by King [18], but King's work, impressive though it is, makes it clear 
that, at the present state of development, even quite simple programs can tax 
the abilities of automated theorem proving techniques. Of direct importance to 
the problems of system reliability is the work of Dijkstra and his colleagues on 
the T.H.E. system [7], who took as their goal the task of satisfying themselves, a 
priori, as to the "correctness" of their design for a multiprogramming system. 
The degree to which they achieved their goal is indeed remarkable - however 
the techniques of system structuring that they developed are, I believe, of great 
importance in themselves, irrespective of whether they are used for facilitating 
the construction of correctness "proofs". 

All of this is not intended to downgrade the importance of efforts to ensure 
that bugs are located and removed from software, or of research efforts aimed 
at improving our ability to specify accurately the intended behaviour of soft
ware, and to construct correct software, and at providing rigorous proofs of 
software correctness. Rather, the point is that for the forseeable future, complex 
computing systems must, I believe contain effective provisions for coping with 
software bugs, as well as hardware failures, if such systems are to achieve really 
high reliability. 

8. Coping with Unreliable Components 

One obvious distinction can be made between the problems of coping with un
reliable hardware, and unreliable software. This is that one would expect es
timates of the probability of the occurrence of the various kinds of hardware 
failures, based on experimental trials of prototype hardware, to be available. In 
contrast, predictions as to what software errors will be made must be pre
dictions of the frailty of humans, rather than of hardware. In fact the situation 
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with regard to coping with software errors is somewhat paradoxical; in order to 
know exactly what precautions to take, one would like to know what errors are 
likely to be made. However, if one really knew this, one would take extra care 
in the preparation of the relevant parts of the program, in order to avoid mak
ing the errors! In practice this distinction between hardware and software is less 
important than one might imagine, for various reasons: 
(i) in many cases, one has to try and cope with an error situation without 

knowing whether its underlying cause is a program bug or a hardware fail
ure - indeed in some cases one may never find out; 

(ii) many of the precautions that one takes because of possible software errors 
are quite general and not dependent on the specific type, or the location, of 
the error; 

(iii) it is not always wise to rely too heavily on the accuracy of the hardware 
failure rate estimates. 

The features that are built into an operating system in an effort to cope with 
error situations can be divided into: 
(i) preparations for the possibility of errors; 
(ii) error detection facilities; 
(iii) error recovery facilities. 

The first category includes techniques such as multiple recording of impor
tant information, e.g. file directories, the preparation of fall-back and restart fa
cilities such as dumps, audit trails, etc. (see for example Fraser [11]), and the 
provision and use of protection mechanisms. This latter topic is receiving much 
attention at the moment, but is I am sure still at a very early stage of devel
opment. One approach, involving the idea of "capabilities", is due to Dennis 
and van Horn [6], and has been developed by Lampson [20] and by Yngve and 
Fabry, a description of whose work has been given by Wilkes [28]. The idea is 
that a given process (which might be part of the activity of the operating sys
tem, or arise from the execution of a user's program) should have, at any given 
moment, a list of "capabilities" associated with it which indicate and delineate, 
what the process is permitted to do. The intention is that each process be given 
the minimum set of capabilities that it needs in order to perform its function. If 
any errors are encountered, the capability mechanism limits their possible 
consequences, and increases their chances of being detected. The topic of pro
tection mechanisms is closely related to that of addressing structures - if a pro
cess cannot obtain the address of an object, even accidentally, it cannot harm 
the object. My own view is that this relationship has yet to be fully exploited, 
and that future protection mechanisms may well owe as much to work on ad
dressing structures, such as that of the B6500 (see Hauck and Dent [14]), as to 
the work on the capability concept. 

In general, an operating system, in addition to containing its own error de
tection mechanisms, should be capable of dealing with reports it receives of er
rors that have been detected (but which cannot be dealt with) within its com
ponents, and those that have, shall we say, escaped the vigilance of the system, 
and have been detected outside the system, perhaps by the operators. (In fact, 
this classification can be applied more finely, at every discernable level in the 
system.) Its own error detection mechanisms will, ideally, only be needed for er-
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rors within the system itself - in practice they might, regrettably, have to be 
used for attempts at detecting errors that occur inside components, even hard
ware components such as processors and memory. However the aim should be 
that all components have a reliable mechanism for error detection, if not error 
correction. 

All error detection is based on the provision of redundant information, 
whose consistency can be checked. The idea of hardware and data redundancy 
is well-known, but program redundancy is more novel. Clearly program re
dundancy is something quite different from having multiple identical copies of 
a program - rather it involves redundancy in the specification of the intended 
process. (In fact Floyd's work on program correctness proofs, described earlier, 
uses just such redundancy, but the consistency checks are applied before, rather 
than during, execution.) Examples of program redundancy, some involving re
dundancy already implicit in the data, others involving the deliberate in
troduction of explicitly redundant data, include: 
(i) positive checking - at a multi-way branch, where the path to be taken de

pends on the value of a variable, each path is taken only as the result of a 
positive check, leaving an extra error path to be taken if none of these 
checks apply; 

(ii) sum checks - a typical example is to maintain a sum check on a table, ad
justed with each change to a table entry, and checked at appropriate in
tervals; 

(iii) bi-directional links - even where a uni-directional linked list would suf
fice, bi-directionallinks are used, and checks are made that an item which 
points at another item is itself pointed at by that item; 

(iv) dog tags - a set of unique names are generated, and one is attached, for 
example, to each page of information. A process which accesses a page will 
do so by using its address. However the process will also have a copy of the 
dog tag, which will be checked against the dog tag kept with the page, 
wherever it is stored. 

This list is clearly not exhaustive - techniques such as these form part of the 
folklore (but not, with few exceptions, such as Watson [26], the literature) of 
operating system design, and are probably re-invented almost daily. In fact the 
idea of dog tags was used by Eckert [8], and the idea of using assertions for 
manually checking programs can be found in the writings of both von Neu
mann [12] and Turing [25]! 

The sorts of actions which I consider as part of error recovery include de
termination of the extent of the damage, reporting of the error, and, to what
ever extent possible, the repairing of the damage so that the system can contin
ue to provide service. Determination of the extent of the damage can be ex
plicit, from a knowledge of where the error occurred (this of course is where the 
protection mechanism is exceedingly useful, providing that it itself is not involved 
in the error), or explicit, by tentative exploration, during which facilities are 
exercised and consistency checks are made on data. Error repair usually in
volves such acts as file recovery, the re-establishment of system data structures, 
etc., and in the case of identifiable hardware failure, perhaps retrying the action 
which caused failure, or if necessary, reconfiguring the system to isolate the 
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failed component. In the case of software error it will often be the case that all 
one can do is to make sure that those services which are not affected by the er
ror are resumed with as little delay as possible. 

Perhaps it is appropriate to conclude this topic by noting that these prob
lems of error recovery are amongst the most tricky (particularly when one tries, 
as one should, to allow for further errors occurring during the recovery process 
itself) and the most important of the whole design. Indeed one might suggest 
that error recovery should be amongst the first problems that are treated during 
the system design process, rather than, as so often happens, one of the last. 

9. Conclusions 

I have attempted to give you my own personal perspective on two problem 
areas in operating system design. These particular problems interest me be
cause they are what I think of as "system" problem as opposed to "component" 
problems. As such their main enemy is complexity - the complexity that we are 
all too willing to build into our systems. If a system is simple enough then per
formance and reliability are unlikely to be too much of a problem. Complex, 
highly complex, systems have been created and have been made to work, but at 
a cost of what a decade ago would have been unbelievable amounts of pro
gramming time and effort. However there will be no easy solutions to the prob
lems of performance and reliability unless and until we have learnt how to re
duce and master this complexity. 
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Chapter 2 

Recovery Blocks 

Introduction 

Recovery blocks provide a means of introducing a measure of tolerance against 
software faults. The four aspects of fault tolerance - error detection, damage 
assessment, error recovery and fault treatment - are embodied in a recovery 
block in a disciplined fashion. Acceptance tests are used for detecting errors 
and damage assessment for a single sequential process is particularly simple -
the program in execution is assumed to be effected. (Damage assessment for 
concurrent processes poses complications and is the subject of Chapt. 4.) Error 
recovery involves restoring all modified non-local variables to their values at 
the beginning of the recovery block. Finally, fault treatment consists of execut
ing an alternative module in an attempt to avoid the fault(s) that resulted in the 
failure of the previous module. 

This chapter begins with the paper which originally presented the recovery 
block concept. The paper not only argued for the use of backward error re
covery as the most appropriate means of coping with software faults, but also 
proposed a stack-like mechanism (the recursive cache, later to be termed the 
recovery cache) for managing recovery data. By exploiting the block structure 
of a language to its fullest advantage, the recovery cache manages to store mini
mum recovery data for any program. Lastly, the authors of the paper speculat
ed on the possibility of 'undoing' more complex operations than memory up
dates (e.g. file updates, message passing) and proposed the idea of 'reverse pro
cedures', whereby a programmer can explicitly program 'undo' operations (this 
concept of programmer provided 'undo' actions was later developed and incor
porated in the language Concurrent Pascal, see Chapt. 4). 

The second paper examines the recovery block concept in detail and an
swers a number of questions that are commonly asked about this approach (e.g. 
what types of faults are tolerated? Can realistic alternative algorithms be de
signed?). 

The remaining five papers report on the experimental work performed to 
evaluate the recovery block concept. The paper by Anderson and Kerr de
scribes the first implementation of recovery blocks, a novel recovery-cache al
gorithm and a computer architecture for supporting fault-tolerant programs. 
The following paper describes a similar experimental system in which recovery 
blocks were incorporated in the language Pascal. While developing programs 
with recovery blocks to run on these systems, we were often pleasantly surprised 
to find recovery blocks doing what they are supposed to do - tolerate unan
ticipated situations! Thus Anderson and Kerr report a genuine fault in the pri
mary of a recovery block they had programmed which was detected by the ac
ceptance test. The paper by Shrivastava and Akinpelu reports on some per-
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formance measurements for recovery blocks, which generally support the belief 
that recovery blocks do not impose any serious runtime and recovery data space 
overheads. The recovery cache mechanism should ideally form an integral part 
of a given computer; this not being possible for the existing hardware, Lee et al. 
describe an alternative means of providing hardware support for backward er
ror recovery. The basic idea is simple: connect the 'recovery cache box' as a pe
ripheral device to the processor; the box monitors the processor bus activity and 
converts all store 'write' cycles to 'read modify write' cycles and caches prior 
values. (It is necessary for this box to be located between the main store and the 
processor). Lastly, Verhofstad describes an experimental file system in which 
the concept of recovery cache is applied to disc pages, thereby making file up
dates recoverable. 

Despite the work on recovery blocks reported here, certain doubts still ling
er. Can acceptance tests be designed such that subtle errors will be detected? 
What evidence is there that an alternative will succeed where the primary has 
failed? These questions can only be answered by using recovery blocks in real 
(or close to real) applications. Work in this direction is currently under way at 
Newcastle and initial results from this work are very encouraging. 
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A Program Structure for Error Detection 
and Recovery 

1. 1. HORNING, H. C. LAUER, P. M. MELLIAR-SMITH and B. RANDELL 

Abstract. The paper describes a method of structuring programs which aids the design and va
lidation of facilities for the detection of and recovery from software errors. Associated with the 
method is a mechanism for the automatic preservation of restart information at a level of over
head which is believed to be tolerable. 

1. Introduction 

Prior research into reliable computing has concentrated on the reliability of the 
hardware, on the detection of hardware errors, and on the configuring of sys
tems to allow continuation of service in the presence of hardware errors. But 
observation of present-day large systems indicates that software faults represent 
a problem whose significance is at least as great as that of the hardware faults. 
Whilst conceding the importance of current research on improving the quality 
of software (e.g. work on program "correctness proofs"), the present paper is 
based on the view that it is also worth providing error detection and recovery 
facilities for both hardware and software errors. In what follows we will con
centrate on software errors although we believe much of our work is of equal 
relevance to many types of hardware errors. 

This paper describes the recovery block concept, a method of structuring 
programs which is aimed at aiding the design of error detection and recovery 
facilities, and the recursive cache, an associated mechanism which provides 
means for automatic "back-tracking" at a level of overhead which is believed to 
be tolerable. 

2. Error Detection and Recovery 

Reliable operation of a computing system depends on both error detection and 
error recovery. Several classes of error detection techniques are available, some 
of which operate automatically on an instruction-by-instruction basis, while 
others take a broader view of correct operation based on programmed checks 
and assertions. It is characteristic of error detection that several techniques can 
readily be used together, and the recovery block concept aims to provide error 
recovery after any kind of detected error. 

Recovery and restart of the program after error detection is a difficult prob
lem. Where instruction-by-instruction error detection is provided, the number 
of possible errors is too great to provide explicit recovery action for each pos
sible case, while any automatic recovery operation which simply aims to repair 
the state of the program so as to allow its continuation in a valid manner cannot 
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be expected to achieve correctness rather than mere legality. Alternatively, on 
detection of an error by a programmed check, the number of possible ways in 
which the program may have erred is very large and obscure side-effects of the 
error may have spread into the system. The analysis, with certainty, of such an 
erroneous program state is in general beyond our capabilities, and therefore re
pair of the program state cannot be recommended. 

For many applications, frequently the applications requiring the highest re
liability, error recovery by repetition of whole job steps or other major program 
units must imply a substantial recovery overhead and a degradation of service. 
Such applications require a recovery mechanism which can achieve local recov-
ery from an error whenever possible. . 

It is characteristic of error recovery operations that they are very much more 
error prone than the main programs, and are very difficult to check. It is an ob
jective of the recovery block concept that the error recovery actions should be 
testable and that they should be checked with the same rigour as the main pro
gram. It is of course obvious that repetition of the operation with the same pro
gram will not always achieve recovery from a program error. 

The recovery block concept is aimed at the provision of a well-structured 
context for explicitly considered error recovery operations. These can be con
structed at various levels within the program so that if a local recovery opera
tion should fail a more global recovery action can be substituted. Another aim 
is that the structure should make explicit the nature of the checks which are ap
plied and also the nature of the action to be taken in the event of error, the 
number of such actions being strictly limited. 

3. Recovery Blocks 

A well-structured program is constructed from identifiable operations, many of 
which are themselves constructed from further smaller operations. The pro
posed scheme is based on the selection of a set of these operations upon which 
to base the recovery operations. These will be referred to as Recovery Blocks. 
Recovery blocks can be nested like Algol blocks, but a recovery block must 
have a more complex internal structure than an Algol block so as to support er
ror recovery. Each recovery block contains a primary block, an acceptance test, 
and zero or more alternate blocks. 
- The primary block corresponds exactly to the block of the Algol-like pro

gram, and is entered to perform the desired operation. 
- The acceptance test is executed on exit from the primary block to confirm 

that the primary block has performed acceptably. 
- If the primary block is detected to be in error, the alternate block is entered 

and is required to perform the desired operation in a different way or to per
form some alternative action acceptable to the program as a whole. The ac
ceptance test is then repeated. 
The diagram of a recovery block's structure given in Fig. 1 is intended to be 

illustrative, rather than syntactically representative. The double vertical lines 
define the scopes of recovery block, while the single vertical lines define the 
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recovery block A 

acceptance test AT 

primary block AP 

[ program 

alternate block AQ 

[ program 

Fig. 1. A diagramatic representation of a recovery block structure. The primary block corre
sponds exactly to the block of the Algol-like program and is entered to perform the desired 
operation. The acceptance test is executed on exit from the primary block to confirm that the 
primary block has performed acceptably. If the primary block is detected to be in error, the 
alternate block is entered and is required to perform the desired operation in a different way. 
The acceptance test is then repeated 

scopes of primary and alternate blocks. Figure 2 shows how the primary and 
alternate blocks can contain, nested within themselves, further recovery blocks. 

4. Acceptance Tests 

The acceptance test is a section of program which is invoked on exit from a pri
mary or alternate block. This acceptance test can be regarded as an assertion of 
the effects of the execution of the recovery block which are required for the cor
rect operation of the surrounding program [1]. The acceptance test provides a 
binary decision as to whether the assertion is satisfied and thus as to whether 
the recovery block has been executed in a manner acceptable to the rest of the 
system. There is no requirement that the test be, in any formal sense, a check on 
the absolute 'correctness' of the operation - it is for the designer to decide on 
the appropriate level of rigour of the test. For each recovery block there is a 
single acceptance test, invoked on exit from the primary and also on exit from 
the alternate should the alternate be required. Thus in Fig. 2, the acceptance 
test BT is invoked on completion of primary block BP, so as to check the ac
ceptability of the results of BP. 

The acceptance test does not lie within the primary block, but can be con
sidered to be a part of the next enclosing block. Thus the acceptance test cannot 
access the local variables of the primary or alternate blocks; indeed there is no 
reason why the local declarations of these blocks should be the same. The func
tion of the acceptance test is to ensure that the operation performed by the re
covery block is to the satisfaction of the program which invoked it. The accep
tance test is therefore performed by reference to the variables accessible to that 
program, rather than to local variables which can have no effect or significance 
after exit. 
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declare X 

recovery block A 

acceptance test AT 
primary block AP 

declare Y 

program 
recovery block B 

acceptance test BT 
primary block BP 

[
declare U 

program 

alternate block BQ 

[
declare V 

program 

alternate block BR 

[
declare W 

program 

program 

alternate block AQ 

declare W 
pn;)gram 

recovery block C 

acceptance test CT 
primary block CP 

[ program 

alternate block CQ 

[ program 

recovery block D l acceptance test DT 
primary block DP 

[ program 

program 

Fig. 2. A more complex recovery block structure, showing how the primary and alternate 
blocks can contain, nested within themselves, further recovery blocks 
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The acceptance test can reference any variable within the current scope im
mediately enclosing the recovery block. The primary block may modify some 
of these variables. For convenience and increased rigour, the acceptance test is 
enabled to access such variables either for their modified value or for their 
original unmodified value. 

5. Rejection by an Acceptance Test 

There are four possible causes for the rejection of a primary or alternate block. 
These are: 
a) an error within the block, detected explicitly by the acceptance test, 
b) failure to terminate, detected by a timeout, 
c) detection of an error within the block by one of the implicit error detection 

mechanisms (e.g. protection violation, devide by zero, etc), 
d) explicit or implicit rejection within an inner recovery block which exhausts 

the recovery capability at that level. 
If the primary of a recovery block is rejected then the recursive cache mech

anism invokes an alternate. When this alternate terminates, its results are sub
mitted to the same acceptance test, and should the acceptance test be satisfied, 
the program proceeds using the results generated by the alternate. If the accep
tance test is again not satisfied then a further alternate is tried. Thus, in Fig. 2, 
if the results of primary block BP are rejected by acceptance test BT, then alter
nate block BQ is invoked. If the results from BQ are still unacceptable to BT, 
then BR must be invoked. 

Should all the alternate blocks have been obeyed, and all have failed to 
satisfy the acceptance test, then the entire recovery block must be regarded as 
having failed. This causes rejection of the enclosing block which invoked the 
recovery block, and the alternate to that enclosing block must be attempted in
stead. Thus, in Fig. 2, if the results from alternate block BR are still unaccept
able to acceptance test BT, then recovery block B as a whole, and therefore pri
mary block AP, must be regarded as having failed. The next program to be at
tempted is alternate block AQ. 

If an error occurs during the execution of the program of an acceptance test, 
this is regarded as an error occurring within the next enclosing recovery block. 
The alternate invoked is therefore that for the enclosing block rather than that 
for the block whose acceptability is being tested. Thus if an error is detected 
whilst executing the program of acceptance test BT, the alternate block AQ 
must be entered. 

6. Primary and Alternate Blocks 

It is an objective of the recovery block concept that primary blocks can be writ
ten in exactly the same manner as in a conventional system. There are no 
restrictions on the operations which are performed by the primary blocks, no 
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restrictions on the calling of procedures or the modification of global variables, 
no requirements for the explicit preservation of restart information, and no 
special programming conventions. 

Similarly the intention is that the alternate blocks can be written in exactly 
the same manner. The design of an alternate block is not affected by the prior 
unsuccessful execution of the primary block. The recursive cache mechanism 
described below ensures that an alternate block is executed as though the pri
mary had never been entered, and as though the alternate had been substituted 
for the primary in a conventional program structure. 

When an alternate block is entered it must therefore be presented with 
exactly the same environment as was its primary when it was entered. All the 
operations of the primary must have been undone, all the non-local variables 
altered by the primary must have been restored to their previous values. It is a 
requirement on the mechanisation that this recovery be achievable with reason
able efficiency both for assignments, as described below in section 8, and for 
more complex operations, as described in Sect. 11. The recovery block scheme 
provides a structuring of programs in time and space so that the recovery infor
mation can be retained with greater facility and efficiency than would be pos
sible with, for instance, a core image checkpoint mechanism. 

In particular it should be noted that the alternate has no access to the reason 
why the primary was rejected and no access to any results calculated by the pri
mary. It is important that a record of each rejection is preserved for subsequent 
investigation, but it is envisaged that the records will lie beyond the scope of 
the program being run. There may be occasions when it would be convenient 
for the alternate to know what had gone wrong with the primary, but the num
ber of possible error conditions is very large, and it is not always easy to dis
tinguish one error from another. Since the alternate cannot be expected to 
categorise and accommodate each cause of error explicitly, it would appear 
preferable that the alternate should always start again from the entry to the 
recovery block without any record of previous rejections. Errors which are ex
pected to be sufficiently frequent that special handling would be appropriate 
can perhaps be regarded as normal program conditions rather tnan unforesee
able errors. 

As mentioned earlier, an alternate block might perform the desired opera
tion in a different way, presumably less efficiently, but perhaps by a simpler 
and less error-prone algorithm. However the more likely case is for an alternate 
block to be designed to provide an operation which, though less desirable, is 
still acceptable to the program as a whole. Thus the recovery block structure 
might be used as a means of structuring the rather ad hoc error recovery facili
ties that many existing systems incorporate [2]. 

7. Orthogonality of Design 

We believe that the recovery block concept should not impose any constraint on 
the programming or the architecture of the computer, for any design which im-
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poses constraints may preclude, or be precluded by, other techniques intended 
to facilitate reliable computing. 

Each primary and alternate block is programmed in exactly the same man
ner as a conventional program, written in any desired programming language 
and with any desired programming style or methodology. Extensions to existing 
languages are required only to define the recovery block structure, and to per
mit access to prior values of variables during acceptance tests. 

It is natural to equate the recovery blocks with a subset of the blocks of an 
Algol-like program, but it is not necessary that all the Algol blocks be recovery 
blocks, or even that the programming language provide an Algol-like block 
structure. The only requirements are that the recovery blocks should be ex
plicitly defined, that they should be dynamically nested, and that entry to and 
exit from recovery blocks should be explicit. Clearly, well-structured program
ming techniques are to be encouraged, but the recursive cache concept does 
not depend on them. It is applicable to programming in assembler on a S/360 
as to Algol on a B6700. Thus the recovery block concept its substantially or
thogonal to programming languages and methodologies. 

The recursive cache mechanism, described below, operates entirely with 
"words" in a single linear virtual address space. The user may program with 
various sizes of data, may use vectors, heaps, own variables, complex list struc
tures, parameters, or even recursive procedures. It is assumed that the computer 
architecture will accommodate this variety and, by a display, descriptors, in
dexing or other mechanisms, will convert all store references into references to 
words in a linear virtual address space. The address of such a word will be 
known as a "virtual address". The mechanism operates entirely with these 
words and their virtual addresses, and the significance of this data to the user 
program is of no concern to the cache mechanism. The description below is in 
terms of a classical Algol stack machine, but it is believed that conventional 
computer architectures can readily be accommodated, and thus the error recov
ery scheme is orthogonal to the architecture of the computer. 

8. The Recursive Cache Mechanism 

The requirement that an alternate block be presented with exactly the same en
vironment as was its primary could be mechanised by appropriate core image 
check points, (or even by retaining enough information to allow programs to be 
executed backwards, instruction by instruction [3]), but the associated over
heads would defeat the purpose of the concept. Consequently a specialised 
mechanisation is presented which aims to reduce the overheads to an accept
able level, while remaining invisible to the user. 

The heavy overhead of recording a conventional checkpoint on entry to 
each recovery block is caused by the recording of the entire context of the re
covery block, a substantial quantity of information. But in many cases only a 
few of the non-local variables will be modified by the recovery block, and all 
that would be needed to restore the environment are the virtual addresses and 
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prior values of those variables which are actually modified [4]. Thus in this 
mechanisation only on writing into a "word" is the virtual address and previous 
value of that word recorded, in an additional storage area to be called the 
cache. 

Since only the values of the variables on entry to the recovery block need be 
preserved, it is appropriate to associate with each word a boolean flag to indi
cate that the required value has already been preserved in the cache. All these 
flags are cleared on entry to the recovery block, and each writing operation tests 
the appropriate flag. If the flag is clear, than the virtual address and current val
ue of the word must be recorded in the cache, and the flag must be set. If it is 
set, then no special action is required before the write operation. 

Because the recovery blocks are nested, the cache can be organised as a 
stack, as is shown in Fig. 3. Stack marks are placed in the cache stack to indi
cate recovery block entries, and similar stack marks in the main stack facilitate 
the recognition of variables local to the current primary or alternate block. The 
marks divide the main stack and cache stack into (possibly empty) regions. 
Each main stack word contains a value and a boolean flag which (for non-local 
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variables) indicates modification within the current recovery block. Each cache 
entry contains the virtual address of a word and the value of that word on entry 
to the recovery block. Note that the set of words flagged in the main stack cor
responds exactly to the set of words recorded within in the top region of the 
cache stack. 

The term recursive cache was originally introduced by (inaccurate) analogy 
to the cache of the IBM 360/85. In fact our usage of cache can be viewed as 
matching its dictionary meaning of a "hiding-place", since prior values of vari
ables are hidden in the cache in case they might be needed again. In contrast 
IBM's usage of this term, which they have now abandoned in favour of "buffer
store", was in relation to the high speed store of a demand paged virtual 
memory system; such a high speed store would contain current values of vari
ables. 

9. The Algorithm of the Mechanisation 

On entry to a recovery block, stack marks are placed in the main and cache 
stacks, and all the flags are cleared. The flags will subsequently be reset by ex
amination of the appropriate cache region and the same technique may be used 
to clear them. For examples see stages (b) or (c) in Fig. 4. 

Reading any variable (local or global, whether modified or not) is done by 
fetching the value of the word with the appropriate virtual address, stage (e) in 
Fig. 4. The flag is ignored. Thus no overhead is incurred on reading, an impor
tant consideration. 

Assignment to a local variable is also performed conventionally, important 
because many assignments are to local variables, stages (b) or (c) in Fig. 4. 
Local variables do not need to be cached and thus the flag is of no significance. 

Assignment to a non-local variable involves testing the flag. If on as
signment the flag is found to be clear, then the flag must be set and an entry, 
comprising the virtual address of the word and its current value, is pushed onto 
the cache stack. The assignment is then performed, stages (d) or (e) in Fig. 4. If 
the flag is set then the prior value has already been cached and the assignment 
proceeds conventionally, stage (f) in Fig. 4. 

The performance of an acceptance test implies exit from the primary or 
alternate block, and therefore the deletion of all local variables from the main 
stack. If the acceptance test involves access to prior values of variables, these 
values may be obtained by searching the top region of the cache stack, though 
it may be appropriate first to check the flag of the word in the main stack, 
where the required value will be if it is actually unchanged. 

If the acceptance test should reject the block then the environment must be 
restored to exactly the situation existing on entry. This is done by popping each 
entry of the top region of the cache stack, and using its value to reset the word 
at the virtual address cited, the flag also being cleared, stage (h) of Fig. 4. Note 
that this must clear all the flags, the condition established on entry to a recovery 
block. By removal of stack marks, this operation may be performed repeatedly 
to obtain recovery at an outer recovery block. 

61 



declare X 
X:=I 

acce 
faile 

declare Y 
Y:=2 

ptance test AT 
d 

declare W 
W:=7 

(a) 

X 
(b) 

declare U 
U:=3 

Y:=4 

X:=Y +1 

Y:=6 

(c) 

U f-3 
Y f-2 
X I 

(d) 

Y,2 
X, I 

() e 

U 3 
Y 4* 
X 5* 

(f) 

X, I 

(g) 

Y _6 
X 5* 

(h) 

(i) 

W 7 
X I 

, .. -- stack 
: mark 

Y 2 
I 

Y,2 

U 3 
Y -4* 

X -I 

Y,2 
X, I 

U 3 
Y 6* 
X 5* 

X I 

Fig. 4. The states ofthe stack and the cache during the execution of the program of Fig. 2. For 
descriptions of the various operations depicted, see the text, Sect. 9 

62 



The action if the acceptance test is passed is more complex. The aim is to set 
up the cache and the stack as though the accepted block had consisted solely of 
its non-local assignments, some of which might of course be local to the enclos
ing block, others of which might have been preceded by assignments to the 
same variables during this enclosing block. First, all the flags are cleared. Then 
the entries in the top-but-one region of the cache stack are accessed and the 
flags are set for all the words those entries address. Next the entries of the top 
region of the cache are processed. 

If the word addressed by the cache entry is local to the enclosing recovery 
block then the cached value may be discarded as caching is not required for 
local variables. Similarly, if the flag of the word addressed is set then the cached 
value may be discarded, for the value cached in the lower cache region is the 
true value of the word on entry to that recovery block. 

If the flag is not set, then the cached value is the value that a nonlocal vari
able had on entry to the enclosing recovery block. The cache entry must there
fore be included in the top-but-one region of the cache stack, and the flag must 
be set. 

While the top region of the cache stack is being processed it may be neces
sary to enlarge the top-but-one region. It is therefore appropriate to process this 
top region in the reverse sequence (FIFO rather than LIFO). When the top re
gion has been fully processed and the stack marks removed, processing may re
sume on the enclosing, now the current, recovery block. Stage (g) of Fig. 4 
shows a few of the possible circumstances. The main overheads of this im
plementation are incurred at block entry and block exit time, and will depend 
linearly on the number of different non-local assignments that have occurred. 
The scanning of the cache that is involved is comparatively simple, and is in 
our opinion quite appropriate for hardware implementation. The one instance 
of a search is that involved in accessing the prior value of a variable that has 
been changed, which occurs only in acceptance tests. The space needed in the 
cache will depend on the program structure, but for a given choice of recovery 
blocks no unnecessary information will be saved, a claim which would be very 
difficult to make for a system with programmer-specified check-pointing. 

10. Assignments and Procedure Calls Within Acceptance Tests 

In the basic scheme, an acceptance test is a transparent operation whose sole ef
fect is to provide a binary decision on the acceptability of a recovery block. In 
practice however an acceptance test may be a quite complex program contain
ing assignments and procedure calls. 

Because of notational problems, it would appear to be inappropriate to al
Iowan acceptance test to contain a recovery block. But if the acceptance test is 
allowed to call procedures which contain recovery blocks, then the required ef
fect is readily achieved. The use of procedures may be very desirable for the 
proper structuring of complex acceptance tests. 

Only minor extensions to the basic recursive cache mechanism are required 
to accommodate procedure calls within acceptance tests. The most significant 
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extension required is to allow an acceptance test to pass to a procedure, as a pa
rameter, a reference to the previous value of a variable which has been altered 
within the recovery block. The parameter may be of course a complex data 
structure, only parts of which have been altered. It would appear necessary to 
extend the address or reference to the parameter with a recovery block level 
field, which can be carried over into any subsequently derived address or refer
ence. This level field can be used to ensure recovery of the correct values from 
the cache. 

Modification of these original values within an ceptance test is clearly 
reprehensible and without any possible justification. The appending of the level 
number to an ddress could therefore be used to render the data thus referenced 
read only. 

11. Recoverable Procedures 

The programs discussed above generated their results entirely by assignment to 
storage locations, and were recovered simply by reversal of those assignments. 
But many programming operations generate results other than by assignments, 
or need to preserve some results even when the processing of the operation is 
abandoned and an alternate is attempted. Typical examples are operations 
which involve file access and input-output interfaces, accounting routines, di
agnostic traces, and interactive user interfaces. It is characteristic of such pro
grams that error recovery is more complex than automatic reversal of as
signments, and an opportunity must be provided for the program designer to 
specify the appropriate recovery action. 

It is proposed that operations requiring special recovery action should be 
structured into procedures, to be known as recoverable procedures. A recover
able procedure is not itself a recovery block with an acceptance test and alter
nates, though its body consists of a recovery block. Such a procedure may de
clare own variables, whose values are not automatically reset by the recursive 
cache mechanism in the event of error, but can be restored by program within 
the recoverable procedure. It may be appropriate to allow several recoverable 
procedures to be associated and to share a set of own variables. Such a structure 
would follow naturally from the classes of Simula [5] or the Type mechanism of 
Campbell and Habermann [6]. 

Just as the recovery of simple variables involves the saving of a value on 
first assignment within a recovery block, mUltiple further assignments without 
special action, and the restoration of the prior value in the event of an error, so 
the recoverable procedure must provide three entry points, the save, the normal 
and the reverse entry points as is shown in Fig. 5. The save entry point preserves 
such recovery information as the programmer specifies before performing the 
required action, and the mechanism will enter here the first time that the pro
cedure is called within a recovery block. Subsequent calls of the procedure 
within the recovery block will enter at the normal entry point. (The assumption 
is that the information saved on the occasion of the first call of the procedure 
suffices to allow the system to be reinstated to the satisfaction of the pro-
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grammer, even if there are many further calls). It is important to note that the 
program which calls the recoverable procedure is not aware of the save entry 
point, which is invoked automatically by the cache mechanism. The reverse en
try point is also invoked automatically by the cache mechanism, in the event of 
an error in the block that invoked the procedure, so as to provide an oppor
tunity to restore the recoverable procedure in accordance with the information 
saved on entry through the save entry point. 

An example of a recoverable procedure might be a file access interface 
which maintains own variables indicating the current position of each file. The 
save operation would simply record the values of these variables on entry to 
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each recovery block, while the reverse operation would use the saved values to 
reposition the files. 

12. The Mechanisation of Recoverable Procedures 

When the program enters the scope within which the recoverable procedure is 
declared, a descriptor providing access to the procedure is placed on the main 
stack, as are the own variables of the procedure. Both the descriptor and the 
own variables are provided with flags for use by the cache mechanism, just as 
any other variables on the main stack. An example is shown in Fig. 5. 

When the recoverable procedure is invoked for the first time, the flag on its 
descriptor will be found clear, indicating that the procedure has not been used 
previously within this recovery block. The cache mechanism now sets the flag 
and records the descriptor and its virtual address in the cache. It then enters the 
save entry point of the procedure. The recoverable procedure now obtains a 
further area of the cache stack within which to record its recovery information 
and enters its internal recovery blocks which perform the saving of recovery in
formation and the function required of the procedure. 

Subsequent calls on the recoverable procedure within the same recovery 
block will find the flag on the descriptor already set. The recoverable procedure 
will then be entered through the normal entry point with no special action. But 
should the program enter a further recovery block before again calling the re
coverable procedure, then the flag on its descriptor will have been cleared and a 
further set of recovery information must be recorded in the cache stack to cor
respond to the new recovery block within which recovery may be required. 

On successful exit from a recovery block, the descriptor and its associated 
save area in the cache stack are treated by the cache mechanism just like any 
other variable recorded in the cache stack. They are transferred from one cache 
region to the next, resetting the main stack descriptor flag, until either they be
come local or the descriptor is already present in that cache region. Within the 
recovery blocks inside the recoverable procedure, the own variables of the pro
cedure, and the variables within the save area in the cache stack, are regarded 
as non-local and can be restored just like any other variable in the event of er
ror. But once the acceptance test of the first recovery block of the procedure is 
satisfied, during the exit from the recovery block these variables are regarded 
as local within the next recovery block, regardless of their position in the main 
stack, and their cached prior values are therefore discarded. Thus exit from the 
recoverable procedure effectively renders permanent any assignments to the 
own variables, and subsequent recovery can only be through the recovery pro
gram contained within the recoverable procedure. However any assignments 
made by the procedure to non-local variables, either directly or through some 
parameter mechanism, are treated normally and therefore can be undone by the 
cache mechanism. 

After an error, the top cache stack region is processed in the conventional 
manner, and when the descriptor for the recoverable procedure is found, the 
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cache mechanism invokes the reverse entry point of the procedure. The reverse 
entry point may involve a recovery block, further procedure calls and recovery 
blocks, and any other processing necessary to restore the own variables to ap
propriate values. (We have yet to consider the need for allowing assignments to 
other non-local variables from within a reverse operation.) 

13. Exercising the Alternates 

Within many systems containing error recovery mechanisms, the mechanisms 
are not tested with sufficient rigour. Adequate validation of a system's ability to 
cope with errors occurring in the midst of attempts to recovery froIn an earlier 
detected error can be particularly difficult. Thus errors remain within the re
covery programs and the reliability of the system is adversely affected. 

It is proposed that, in the recovery block system, provision should be made 
for the automatic exercising of the alternates, either all alternates being exer
cised or only a proportion on a probabilistic basis. Rejections would be record
ed for subsequent analysis. This provision can be made either by an explicit 
mechanism, or else perhaps by appropriate programming of the acceptance 
tests. 

14. Further Research 

The recovery block scheme is only in the early stages of development, and its 
value has yet to be demonstrated. At present, a programmed emulator in
corporating a recursive cache mechanism is being implemented for our dual 
processor PDP11/45, and a variety of application programs, structured into re
covery blocks, will be programmed to test the concept for both efficacy and 
cost. Subsequently we hope to extend the recovery block concept into the code 
of the operating system. 

We have already received encouragement from some brief experiments car
ried out by a colleague, David Wyeth, which involved interpretive execution of 
a number of Algol W programs. Even regarding each block as being a recovery 
block, it was found that the amount of space that would be needed for a cache 
was in every case considerably smaller than that needed for the stack. It would 
of course be possible to design a program, and its recovery block structure, so 
that the cache size greatly exceeded that of the stack. We believe this to be un
likely in practice, but could imagine that a scheme for removing part of the 
cache to backing storage, which could take advantage of the simplified patterns 
of access to the cache, might be worthwhile. 

The most significant limitation of the recovery blocks described here is that 
they apply only to a single sequential process in isolation. In fact some useful 
progress has been made towards the recovery of asynchronous co-operating 
processes, and investigation continues. We hope to publish some preliminary 
results in this area shortly. 
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The recovery block concept is only one aspect of a project at the University 
of Newcastle upon Tyne to investigate computer system reliability. Another, 
closely related, aspect of this research is the design of highly structured address
ing and protection schemes. A proposed 'recursive virtual machine architecture' 
has been documented separately [7]; a simplified version of this architecture is 
also being incorporated in the emulator. 

15. Conclusion 

Just as existing protection schemes provide error containment firewalls in 
space, so the recovery block concept can be thought of as providing firewalls in 
time. It allows programs containing provisions for error detection and recovery 
to be structured so as to distinguish clearly between the main program, the ac
ceptance tests, and the action to be taken in error conditions. The provision of 
successive levels of error recovery permits attempts at purely local error recov
ery with low overheads, while the errors are contained so that the alternative 
programs can be run within the same environment as was the main program. 
The recoverable procedure concept provides a means for the extension of the 
recovery block concept into more complex situations. These structuring tech
niques are complemented by a hardware mechanism, whose overheads are in 
our opinion quite tolerable, which ensures that, for a given choice of recovery 
blocks, no unnecessary information is saved. 
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A Reconsideration of the Recovery Block Scheme 

P.A. LEE 

The recovery block scheme has been introduced as a method of providing fault tolerance at 
the software level in a computing system. From the widespread interest that has been ex
pressed in the scheme there appears to be a standard set of questions which are posed about its 
implementation and utility. This paper presents a brief overview of the recovery block scheme 
and then examines in detail the issues that these questions raise. 

The reliance which is being placed on present day computing systems has led to 
an increasing demand for reliability, particularly at the software levels in a sys
tem. Most techniques for producing reliable software (for instance, metho
dologies for program construction and testing) have concentrated on the praise
worthy aim of eliminating faults from the software before reliance is placed on 
its behaviour. However, it is widely recognised that complex systems are likely 
to contain residual design faults, both in the software and hardware. Efforts 
aimed at providing tolerance against such faults should have a beneficial effect 
on the reliability of a system. The recovery block scheme was introduced by 
Horning et al. (1974) as a method of providing fault tolerance at the software 
levels in a system, particularly against residual design faults. The concepts of 
the recovery block scheme have been widely presented by various members of 
the Science Research Council sponsored 'Reliability Project' at Newcastle Uni
versity, and from the questions asked at such presentations it would appear that 
there is a fairly standard set of doubts and misunderstandings about the 
scheme. The purpose of this paper is twofold: firstly, to present these questions 
with their answers, in the hope of clarifying the issues they raise; and secondly, 
to relate the recovery block scheme to some of the recent work of the Re
liability Project. 

The Recovery Block Scheme 

For completeness, this section presents a brief overview of the recovery block 
scheme. For further details the reader is referred to Horning et al. (1974), Ran
dell (1975) and Anderson and Kerr (1976). 

Recovery blocks provide a means for a programmer to specify redundancy 
at the software level in a system by means of standby-spare algorithms which 
are used, as necessary, to replace failing algorithms. The outline of a recovery 
block is presented in Fig. l. 

The essential components of a recovery block are a set of algorithms (called 
alternates) and an acceptance test. The alternates are simply statement lists, with 
the first or primary alternate representing the preferred algorithm. The accep
tance test is a programmer-provided error detection mechanism to check on the 
acceptability of the results produced by the alternates. Although the recovery 
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ensure (acceptance test) 
by (first (primary) alternate) 
else by (second alternate) 

else by (nth alternate) 
else error Fig. 1. Recovery block outline 

block scheme fits most easily into block structured languages such as ALGOL 
and PLlI, it can in fact be used with other high and low level languages. Indeed, 
the scheme can also be used for much more abstract levels in computing sys
tems, such as those which support job control languages and data base access
ing. However, this paper concentrates on its use within individual sequential 
programs. 

The execution of a recovery block is as follows: on initial entry, the primary 
alternate is entered. At the end of the alternate the acceptance test (a boolean 
expression) is evaluated - if this test yields 'true' (that is, the results from the 
alternate are acceptable) then the recovery block is exited. However, if the ac
ceptance test yields 'false', or if an error is detected by the underlying machine 
during the execution of the alternate, then backward error recovery occurs in 
that the state of the program is automatically reset to the state that existed 
when the recovery block was entered, and then the sequence of execution de
scribed above is repeated except that the next alternate is used in place of the 
failing alternate. A record of the errors and acceptance test failures which oc
curred is produced for subsequent use by the programmer. If all of the alter
nates fail, then this is regarded as a failure of that recovery block and an error 
condition is raised. As recovery blocks can be nested to any depth (conceptually 
at least) the failing recovery block may itself be embedded in an alternate of an 
enclosing recovery block. If this is the case then the error condition will result in 
the failure of the enclosing alternate. Otherwise, the program is terminated. 

The underlying machine which is executing the programs containing recov
ery blocks provides the mechanisms for switching control between alternates 
and to enable the backward error recovery of the objects of the program to be 
accomplished. (Objects for which backward error recovery is provided will be 
termed recoverable objects.) These mechanisms will be transparent to the pro
gram and, for example, could be built into the hardware of the machine. A 
mechanism called the recursive or recovery cache has been proposed to im
plement the backward error recovery. The recovery cache essentially provides 
three functions: (a) recording recovery data; (b) performing recovery; and (c) 
discarding recovery data when recovery is no longer required. There are several 
ways in which the recording of recovery data can be implemented. The basis of 
the method proposed in the three papers referenced above is as follows: when 
an object which is not local to an alternate is updated for the first time from 
within that alternate, the original value of that object together with its address 
will be stored in the recovery cache, and will be used to restore the state of that 
object if recovery is invoked. Thus a minimum of recovery data is maintained 
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in the recovery cache. (This method implemented in hardware would be ap
propriate for providing backward error recovery for simple objects such as in
tegers, reals and characters, and structures of the same.) Other implementations 
for recording recovery data will be discussed subsequently. The underlying ma
chine will also provide mechanisms to detect errors in the execution of pro
grams. Typical errors detected would include illegal instructions, division by 
zero and memory access violations. 

Doubts and Misunderstandings 

QI. What types of fault are recovery blocks intended to provide tolerance 
against? 

AI. There are essentially two types of fault that can occur in a system: (a) com
ponent faults, when a component does not function according to its specifi
cation; and (b) algorithmic faults, which are faults in the interrelationships be
tween components. (This fault classification is discussed in more detail by Ran
dell, Lee and Treleaven (1978).) At the hardware level in a system both com
ponent and algorithmic faults can occur, algorithmic faults being missing or in
correct connections between components. At the software level, faults are al
gorithmic (although can be regarded as component faults at another level of ab
straction). Algorithmic faults are residual design faults in a system. The lo
cation and effects of such faults are unanticipatable, since in general they arise 
from unmastered complexity in the design of the system. Recovery blocks are 
designed to provide tolerance against algorithmic faults in both the software 
(program 'bugs') and in the hardware. After recovery, such faults are avoided 
by switching to the next alternate in the hope, perhaps vain, that the set of cir
cumstances that led to the failure of the previous alternate are not repeated. 
Treatment of the fault is left for manual off-line diagnosis (aided by the error 
record mentioned previously) and repair. 

A recovery block can also provide tolerance against some anticipated com
ponent faults in the underlying machine. If the underlying machine detects an 
error which it can attribute to a fault in its operation but which may have 
caused damage to the executing program, than an automatic retry facility can 
be provided - the error recovery for the program can be invoked to rectify any 
damage that may have been caused to the data of the program, and the same 
alternate re-entered. In this way, a recovery block can provide tolerance against 
the damage that has been caused either by transient component failures or by 
permanent component failures which result in reconfiguration or replacement 
of components at the hardware level. 

Q2. As recovery blocks increase the size of the programming task, in that the 
alternates have to be programmed, surely the use of recovery blocks will in
crease the complexity of the program and therefore detract from, rather than 
increase, the overall reliability? 

71 



A2. It is true that the use of recovery blocks increases the size of the program
ming task. However, each alternate in a recovery block, when executed, starts 
from exactly the same state because of the error recovery capability that is pro
vided. Thus the design of each alternate can (and preferably should) be in
dependent of any other. The designer of one alternate need have no knowledge 
of the design of the other alternates, leave alone any responsibility for coping 
with any damage that a previous alternate might have caused. Equally, the de
signer of a program containing recovery blocks does not necessarily have to be 
concerned with which of the various alternates was eventually used. It is there
fore argued that the increase of size in programs containing recovery blocks 
does not provide a corresponding increase in complexity. Indeed, the structure 
of recovery blocks may provide a means of reducing the complexity found in 
systems which have extensive ad hoc error detection and recovery facilities. 

Q3. Is it always possible to generate alternative algorithms for a particular 
problem? 

A3. The simple answer to this question is yes. The justification for this answer is 
as follows: there are essentially two different ways in which a recovery block 
can be used. The first and obvious situation is when it is required that each 
alternate of the recovery block produces exactly the same results. For some 
problems it is comparatively easy to obtain different algorithms for the alter
nates - sorting and mathematical functions such as integration are obvious 
examples. However, for other problems it may be difficult for a programmer to 
design different algorithms, particularly without making the same mistakes in 
each algorithm. To overcome this difficulty it is likely that separate pro
grammers will be required, each working independently on a specification of 
the problem to provide an alternate to be incorporated in the final program. 
This is not a new concept and, for example, has been advocated by Gilb (1974) 
and Fischler et al. (1975). 

A further source of alternates may be obtained from previous versions of an 
algorithm. A common occurrence with software products is that a new version 
is introduced, often simply for performance considerations. Clearly, there will 
be situations in which the previous version can be used as a secondary alternate 
enabling the new version to be introduced into the system with the knowledge 
that if (when) it failed, then the original version was still available as a backup. 

The second situation in which recovery blocks can be used is to provide 
what may be termed graceful degradation in software. It is not necessary that 
each alternate of a recovery block produces exactly the same results; the con
straint on the alternates is that they produce acceptable results, as defined by 
the acceptance test. Thus, while the primary alternate attempts to produce the 
desired results, the second and subsequent alternates may only attempt to pro
vide an increasingly degraded service. The more degraded the service, the sim
pler the alternate may be and consequently the greater the hope that it does not 
contain any design faults. Simllarly, as each alternate is essentially different, it 
is more likely that a design fault will not be repeated in all alternates, whether 
produced by the same programmer or not. As an example of a recovery block 
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ensure (con istency of di c tran fer queue) 
by (algorithm which enters request in optimal queue po ition) 
else by (algorithm which enter reque t at end of queue) 
else by ( end warning 'request ignored') 
else error 

Fig. 2. Recovery block example 

designed in this manner, consider the part of a program that has to enter a disc
to-core transfer request into a queue of outstanding requests. The outline of 
such a program is presented in Fig. 2. 

The acceptance test for this recovery block simply checks that the transfer 
queue is in a consistent state. The primary alternate attempts to place the new 
transfer request in the optimal position in the queue, for example, to minimise 
disc head movement. The second alternate avoids the complications of the pri
mary alternate by simply placing the new request at the end of the queue. The 
third alternate is more desperate, and leaves the existing queue alone, provid
ing a warning that the new request has been ignored. While this may cause 
problems for the program requesting the transfer, at least the rest of the system 
is allowed to proceed without disruption. If this alternate fails, indicating that 
the queue was inconsistent when the recovery block was entered, then recovery 
has to take place at a more global level. 

It should be noted that while the recovery block scheme enables redundancy 
to be specified at the algorithmic level in programs, it does not provide for re
dundancy in the data structures of programs. Thus, while an alternate can de
fine any data structures local to its environment, the structures which are global 
to the recovery block must be fixed and their structure invariant. Therefore, 
there may be situations in which the static structure of global data adds to the 
problems of designing alternates. 

Q4. It is common in fault tolerant hardware systems that a component is re
placed when it fails. Does the recovery block scheme provide a software equiv
alent to this? 

A4. An analogy can certainly be drawn between the replacement of faulty hard
ware components and the replacement of faulty alternates in the recovery block 
scheme. Borgerson (1973) has defined two terms for fault tolerant hardware: 
spontaneous replacement, in which the failing component is detected and re
placed by an identical component; and spontaneous reconfiguration, which re
sults in some degradation of the system. The two different ways in which re
covery blocks can be used, as discussed above, could be described as providing 
spontaneous replacement and spontaneous reconfiguration at the software level. 
However, two points should be noted: firstly, a hardware component is usually 
replaced with one of identical design and construction - this is not usually the 
case with alternates. Secondly, the replacement of a hardware component is 
usually permanent; the replaced component may be repaired, but then kept as a 
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standby-spare until needed. With recovery blocks, however, the failing alter
nate is only temporarily replaced, just for that execution of the block. On sub
sequent entries to the block that alternate will again be used in the hope that 
the new set of inputs does not cause the fault to manifest itself again. 

The use of alternates of differing design and construction can be contrasted 
with another common feature in fault tolerant hardware systems, namely triple 
modular redundancy (and its variants). In TMR systems three identical com
ponents and voting circuits which examine the outputs from the components 
are used in order to mask the effects of any single component failure. In theory, 
a TMR system could be used to provide a means of tolerating design faults, as 
discussed by Avizienis (1975). This would involve the provision of three dif
ferent versions of each component which, although designed independently, 
would all be intended to produce identical answers, preferably all at the same 
speed. The utility of such a scheme seems limited. 

Q5. How should acceptance tests be designed? 

A5. The acceptance test is a programmer-provided error detection mechanism 
which provides a check on the results of an alternate at the last possible mo
ment, that is just before the recovery block is left and a set of recovery data is 
discarded. Clearly, a programmer can provide as little or as much checking as 
he considers necessary. Ideally, the acceptance test should test for the absolute 
correctness of the results. However, even if such a strict test could be designed, 
it may not be appropriate for four reasons: (a) because of performance con
siderations; (b) because the test for correctness may involve objects external to 
the computing system - for example, a stock control data base system may not 
be able to check its internal representation of the stock level against that actu
ally in the warehouse; (c) because the alternates provide an increasingly de
graded service and hence their results will not be exactly the same; and (d) be
cause the likely complexity of such a test would make the acceptance test prone 
to design faults which would detract from the usefulness of the recovery block 
by rejecting correct results, or causing their rejection through the occurrence of 
errors during the execution of the acceptance test. 

Thus in general the acceptance test will, as its name suggests, be a test on the 
acceptability of the results of the alternate rather than a test of their absolute 
correctness. For example, an acceptance test on a sorting algorithm might only 
check that the sorted elements were in order and their checksum was equal to 
the original value, but because of performance considerations would not check 
that any items from the original set had been modified or lost. 

When the alternates of a recovery block have been designed to provide 
gracefully degradable software it is clear that the acceptance test can only be as 
rigorous as a check on the results from the weakest alternate. This has led some 
people to suggest that there should be a separate acceptance test for each alter
nate. Such a structure can be easily obtained by nesting recovery blocks, as il
lustrated in Fig. 3. 

While this structure may appear satisfactory in isolation, it must be recog
nised that, in general, a recovery block will form only part of a program and 
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ensure (true) 
by ensure (be t acceptance te t) 

by (best algorithm) else error; 
else by ensure (next best acceptance test) 

by (next be t algorithm) else error; 

else error; Fig. 3. Multiple acceptance tests 

that the acceptance test provides a check on the consistency of the results which 
are to be used by the rest of that program. (Indeed, it can be argued that the 
acceptance test should be the first part of the recovery block program to be de
signed.) Hence, it is likely that a single test of acceptance will often be required 
whether the alternates produce the same or different results. 

The recovery cache mechanism can provide some run time assistance which 
may aid the design and implementation of acceptance tests: firstly, it can enable 
the prior values of objects to be referenced, so that the acceptance test can com
pare the current state with that on entry to the recovery block; and secondly, it 
can be designed to monitor the behaviour of the acceptance test with respect to 
the variables that had and had not been updated by an alternate. For example, 
it could raise an error condition if the acceptance test did not access all of the 
variables that had been updated by an alternate - this can ensure that the ac
ceptance test performs at least some minimal checking of the new states of all 
updated objects and enables unintended updates to be detected. 

The design of acceptance tests is a difficult area and still requires further 
research. While acceptance tests for specific problems can usually be specified, 
it is not yet clear whether a general methodology can be obtained, although 
there is some hope that the proof-directed methodology suggested by Anderson 
(1975) will provide some guidelines. It may also be noted that while the accep
tance test is important, it will not be the only error detection mechanism in the 
system. As discussed previously, the underlying machine will provide mecha
nisms to detect errors in the execution of the program containing recovery 
blocks. Further programmer-provided checks could be incorporated into the 
alternates by means of assert statements, which raise an error condition if an 
error is detected, (Indeed, the structure depicted in Fig. 3 can be obtained 
through the use of assert statements instead of the nested recovery block, as de
scribed by Shrivastava and Akinpelu (1977).) 

Q6. Can the recovery cache provide backward error recovery for all of the ob
jects provided by the underlying machine? 

A6. It is likely that there will be objects on the interface presented by the 
underlying machine for which backward error recovery is not available (for in
stance, the pages on a disc) or appropriate (for instance, objects shared by par
allel processes). One method of dealing with such unrecoverable objects is to 
construct multi-level systems, whereby a new interface is constructed by soft-
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ware to provide new recoverable objects which are abstractions of unrecover
able objects. The implementation of the recovery for these new objects, 
although achieved by programmer-provided actions, will be transparent to the 
programs running on the new interface and extensions to the recovery cache 
mechanism can ensure that this recovery is automatically invoked as required. 
Two systems have been constructed at Newcastle demonstrating this approach. 
In the system described by Verhofstad (1977), the unrecoverable disc pages 
provided by a machine are used to provide a recoverable filing system for user 
programs. The second system (Shrivastava and Banatre, 1978) provides back
ward error recovery for processes sharing data for the purpose of competing for 
the resources of the system. It is beyond the scope of this paper to describe the 
implementation of such multi-level systems. The interested reader is referred to 
the paper by Anderson, Lee and Shrivastava (1977) which describes a con
ceptual model of recovery in such multi-level systems. 

Q 7. What happens if the recovery cache fails? 

A7. In any fault tolerant system there have to be some components which are 
reliable in that the correct operation of these components is necessary for the 
correct operation of the fault tolerant aspects of the system. For hardware sys
tems, such components are referred to as the 'hardcore'. The recovery cache is a 
major part of the 'hardcore' for the recovery block scheme, and it is assumed 
that its operation will be reliable. There are two justifications for placing so 
much reliance on the recovery cache: firstly, it would appear that the design of 
the recovery cache is sufficiently simple that standard hardware design prac
tices can ensure that there are no residual faults in its design. The second justifi
cation is that in such circumstances any hardware component can be made as 
reliable as is necessary, through the application of fault tolerance techniques -
cost is usually the only limiting factor. The recovery cache should only be a 
small part of a complete system, and hence the cost incurred in making it re
liable should be acceptable. 

Q8. What are the run time overheads involved in the use of recovery blocks? 

A8. As with any system that provides redundancy and fault tolerance, the use of 
recovery blocks incurs run time space and time overheads which may not be 
present in fault intolerant programs. (It must be noted that the costs involved in 
a priori testing and validation of reliable fault intolerant programs may be sub
stantial, and have led Hecht (1976) to suggest the adoption of the recovery 
block scheme to reduce these costs.) The space overheads for programs using 
recovery blocks stems from the extra storage required for the alternates, the ac
ceptance tests and for use by the recovery cache. As discussed previously, the 
recovery cache can record a minimum of recovery data, which it is hoped will 
in general be a small percentage of the data space of a program. Shrivastava 
and Akinpelu (1977) report on experiments in which the figures for programs 
containing a single recovery block were between 3% and 39% (with an average 
of 17%), which are considerably less than the 100% overhead that recording the 
complete data space of the program would have entailed. 
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The execution time overheads required to support recovery blocks will de
pend on the time required to evaluate the acceptance test and on the recovery 
cache implementation. As discussed previously, the acceptance test overhead is 
the responsibility of the programmer, although Kim and Ramamoorthy (1976) 
have proposed an architecture which attempts to mitigate this overhead. The 
overheads imposed by the recovery cache will depend in the main on the im
plementation of the mechanism used to record recovery data. There are many 
implementations known for this function, each of which has different tradeoffs. 
Tha algorithm discussed previously, which records the old values of objects just 
before they were updated, optimises the normal progress of a program at the 
expense of the extra time required to restore the state if recovery is invoked. An 
algorithm which inhibited the update of an object, and recorded the new value 
of the object in the recovery cache would optimise the time required for recov
ery. (Indeed, with this organisation the recovery cache could act as a high speed 
buffer store and also possibly increase the speed of the normal execution of the 
program.) Also, at the expense of extra space, the time to record recovery data 
can be minimised or vice versa, as exemplified by the schemes described by 
Horning et al. (1974) and Anderson and Kerr (1976). It must also be noted that 
the recovery cache is intended to be provided as part of the underlying machine 
(for example, to be built in hardware) and should therefore be fast, particularly 
as some of its operations could be performed in parallel with the execution of 
the program. Thus it is felt that for a given set of constraints, a suitable im
plementation of the recovery cache can be specified. The programmer also has 
some control over the recovery time - recovery blocks can be nested to provide 
as fine a grain of recovery as is desired so as to minimise recovery time, at the 
expense of course of increased recording of recovery data. 

In all of the above mechanisms the execution speed of the majority of in
structions provided by the underlying machine will not be affected at all by the 
recovery block scheme. Apart from the instructions specific to the utilisation of 
recovery blocks (for example, start recovery block, end recovery block) the only 
instructions incurring any extra overhead will be those that write to the objects 
of a program and therefore require intervention by the recovery cache mecha
nism. Indeed, further optimisations can be applied so that only those in
structions which write to an object that is external to an alternate are inter
cepted. 

Although the overheads of a given mechanism can be quantified, it is dif
ficult (impossible) to quantify the increased reliability that is obtained through 
the use of recovery blocks, since this is totally dependent on their effective de
ployment by the programmer. However, it is felt that the overheads associated 
with their use and implenientation can be organised to be tolerable and accept
able. 

Q9. Is the recovery block scheme the best technique for providing fault tolerant 
software? 

A9. Exception handling (for example, as proposed by Goodenough (1975)) is 
often advocated as an alternative to the recovery block scheme. Exception 
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handling can be thought of as a method of programming (forward) error recov
ery for anticipated faults. Thus for specific faults which can be anticipated and 
whose full consequences can be foreseen, exception handling can provide ef
ficient recovery for it only involves correcting the known (anticipated) errors; in 
contrast, backward error recovery involves complete state restoration (albeit ef
ficiently implemented by the recovery cache), not just restoration of the errone
ous parts. However, the recovery block scheme can provide tolerance against 
unanticipated faults, while backward error recovery need make no assumptions 
about the fault and the damage it may have caused, and is in consequence a 
general recovery technique. Thus recovery blocks and exception handling tech
niques should be regarded as complementary rather than competitive ap
proaches to achieving fault tolerant software. These topics are discussed further 
by Melliar-Smith and Randell (1977) who also present an example of a pro
gram combining both methods, using exception handlers to deal with simple 
anticipated faults, such as invalid input data, while utilising recovery blocks to 
deal with unanticipated faults, including those in the exception handlers them
selves. 

Conclusion 

This paper has discussed the concepts and implementation of the recovery 
block scheme and has attempted to answer the questions which most frequently 
arise in discussions of the scheme. There is no other scheme known to the 
author which attacks effectively the area of fault tolerant computing that recov
ery blocks address, namely the tolerance of unanticipated design faults, par
ticularly in the software level of a system. Experimentation with the implemen
tation and utilisation of recovery blocks is being continued both at Newcastle 
and elsewhere and should shed further light on the scheme and determine its 
actual effectiveness. 
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Recovery Blocks in Action: 
A System Supporting High Reliability 

T. ANDERSON and R. KERR 

Keywords and Phrases. Error detection, error recovery, recovery block, recovery cache, relia
bility, software fault-tolerance. 

Abstract. The need for reliable complex systems motivates the development of techniques by 
which acceptable service can be maintained, even in the presence of residual errors. Recovery 
blocks allow a software designer to include tests on the acceptability of the various phases of a 
system's operation, and to specify alternative actions should the acceptance tests fail. This ap
proach relies on certain architectural features, ideally implemented in hardware, by which 
control and data structures can be retrieved after errors. 

A brief account is presented of the recovery block scheme, together with a description of a 
new implementation of the underlying cache mechanism. The salient features of a proposed 
computer architecture are described, which incorporates this implementation and also pro
vides a high level of detection for errors such as the corruption of code and data. A prototype 
system has been constructed to test the viability of these techniques by executing programs 
containing recovery blocks on an emulator for the proposed architecture. Experience in run
ning this system are recounted with respect to the execution of programs based on erroneous 
algorithms and also with respect to errors introduced by deliberate attempts to corrupt the 
system. 

Introduction 

Complex computing systems can never be guaranteed to be entirely error-free. 
Techniques by which systems can be made to withstand the effects of errors and 
continue to provide acceptable service are therefore necessary. There are three 
key issues involved in providing an acceptable service in the presence of errors. 
These are: 
- the ability to detect errors before an intolerable degree of damage is in

curred, 
- the ability to discard faulty information arising from the error and to retrieve 

a valid system state, 
- the ability to continue, with the expectation that further useful work can be 

performed. 
A group of research workers at Newcastle is actively engaged in developing 

techniques which bear upon these issues from two complementary standpoints, 
namely architectural and methodological. A system embodying the architec
tural features in order to support programs which adopt a methodological ap
proach to the attainment of reliability has been implemented. 

This paper describes techniques developed by the Newcastle reliability 
group and recounts our experiences in running the system. 
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Recovery Blocks 

Recovery blocks have been proposed [Horning et al. (1974)] as a notation by 
which a programmer can make provision in the design of his program for 
checks on the acceptability of intermediate stages in the execution of the pro
gram, and also for alternative courses of action should these checks prove nega
tive. Ways in which recovery blocks can be used in systems which aim to pro
vide software fault tolerance have been reported [Randell (1975)], as has a 
proof-guided methodology for constructing the checks for acceptable program 
behaviour [Anderson (1975)]. 

Because recovery blocks play such a central role in our approach to obtain
ing greater program reliability, this section provides a summary of the basic re
covery block scheme. 

A recovery block may be represented as: 

ensure (acceptance test) 
by (1st (primary) alternate) 

else by (2nd alternate) 

else by (nth alternate) 
else error 

where n ~ 1. The acceptance test yields a logical value, and its evaluation 
should have no side effect. All of the alternates are statement lists. Each alter
nate is executed in turn until the acceptance test holds. Before an alternate is 
entered the state of the program is set to what it was on entry to the recovery 
block. 

A more precise description can be given by considering the recovery block 
as a means of providing recovery from detected error conditions. An error con
dition is raised whenever the underlying system detects an erroneous situation, 
such as an attempt to divide by zero or to reference an invalid memory location. 
Moreover, if an acceptance test is evaluated and yields the value false then an 
erroneous situation has arisen and the system will again raise an error condi
tion. Whenever an error condition is raised it is recorded by the system to form 
an error log which accompanies the output from the program. 

A recovery block is executed by performing each alternate in turn, starting 
with the primary alternate, until for some alternate the acceptance test is satis
fied. Error-free execution of an alternate is followed by evaluation of the ac
ceptance test. If this evaluation is also error-free (which requires that the test 
yield the value true) then the acceptance test has been satisfied and execution of 
the recovery block is complete. Otherwise an error condition will have been 
raised, to which the system responds by restoring the state of the program. to 
that current just before entry to the primary alternate, and then execution re
sumes with the next alternate in sequence, if one exists. If, however, all the 
alternates have been attempted and none has satisfied the acceptance test then 
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an error condition is raised external to the recovery block, in that any further 
recovery can only be performed by an enclosing recovery block. 

In the event of an error condition being raised for which there is no enclos
ing recovery block then the system terminates the execution of the program. 

For both convenience and increased rigour in acceptance testing, the ability 
to access the value that a variable had on entry to a recovery block is helpful. 
The notation prior <variable) is employed for this purpose. 

The acceptance test of the recovery block thus provides a means by which 
the programmer can incorporate his own checks for erroneous behavior to aug
ment the basic checks that are undertaken by the underlying system. The sec
ond and subsequent alternates all endeavour to pass the same test of ac
ceptability but the programmer is free to employ completely different algor
ithms to achieve this end. Although two alternates will often encode different 
algorithms to compute the same function this need not be the case. A sub
sequent alternate may be intended to have very different effects to the primary 
alternate, but still with the intention of satisfying the acceptance test. The great
er the degree of independence between alternates the less is the risk that they all 
embody a common design inadequacy. Each alternate is able to operate in
dependently of the others since all are designed to start execution from the 
same situation. Any effects that earlier alternates may have had on the initial 
situation are nullified by the restoration of the program state. 

An outline of a simple recovery block is presented as an example. 

ensure data still valid 
by apply fast update 

else by apply slow but sure update 
else by warning ('update has not been applied') 

else error 

Acceptable behaviour for this recovery block is that the data on which it 
operates must remain valid (by some unspecified criterion). The recovery block 
is also intended to update the data, but presumably the enclosing program can 
continue as long as validity of the data is maintained. The primary alternate at
tempts to perform the update by means of an efficient, but possitily suspect, 
technique. If as a result the data under consideration becomes invalid, then the 
effects of the fast update are undone, and the second alternate is invoked. This 
alternate applies a less efficient algorithm in which, for some reason, greater 
confidence is placed - for instance the method might be very simple. If the ac
ceptance test is again failed, then (after back-up) the third alternate performs 
no update at all and merely issues a warning message, leaving the data as it was 
on entry to the recovery block. A third failure of the acceptance test could only 
be due to the data being invalid originally and the system's only recourse would 
be to raise an error condition to be handled externally. 

Recovery block notation can be regarded as a major extension of the assert 
statement employed in programming languages such as ALGOL W. An accep
tance test itself behaves very like assert (acceptance test) but, in the event of the 
test being negative, the recovery block provides both automatic backing up and 
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alternative code to be executed. Recovery blocks can be nested to produce a 
hierarchy of self-checking program modules which provide the programmer 
with a structured and disciplined approach for incorporating the (apparently) 
redundant program components needed to enhance reliability. 

The Recovery Cache 

To implement recovery blocks, the underlying system must be able to perform 
the required state restoration, and this must be done without incurring a pro
hibitive level of overhead. An architectural device called the "recovery cache" 
has been designed for this purpose. Earlier publications have called this device 
the "recursive cache". Our use of the term "cache" as a hiding place for prior 
values matches the dictionary definition and is not to be confused with IBM's 
former terminology for a buffer store. The recovery cache offers certain ad
vantages over conventional checkpointing techniques. It ensures that all and on
ly values which might be required to be reinstated are preserved for the 
lifetimes of the appropriate recovery blocks. The preservation and reinstate
ment of such values is entirely automatic and therefore not susceptible to hu
man errors of omission, nor is it needlessly extravagant. 

A possible implementation of a cache mechanism has been described in an 
earlier exposition on recovery blocks [Horning et al. (1974)]. That implemen
tation, although very economic in storage requirements, displayed several un
desirable speed chaiact~ristics. For example, one would hope that acceptance 
tests be passed more frequently than failed, yet in the early implementation the 
logic of the cache was much more complicated and time-consuming for accep
tance than for rejection. We describe here an alternative implementation which 
rectifies this situation. Although slightly more extravagant in storage the com
plexity is reduced resulting in a potentially more reliable and less expensive de
slgn. 

Since recovery blocks may be nested, the recovery cache can be organised as 
a stack. At any time it has the appearance of a number of regions, each cor
responding to entry to a recovery block and containing the prior values of vari
ables whose values have been altered within that recovery block. Adjacent re
gions are separated from each other by "barriers". The inefficiency of the orig
inal recovery cache implementation stemmed partly from the fact that it hinged 
on the locality of variables. The amount of work involved in determining lo
cality depends upon the organisation of the main store of the system. For a 
stack organisation, locality is comparatively simple to determine; for other or
ganisations it could be quite complicated, possibly even to the extent of limiting 
the number of practicable storage methods available. The implementation de
scribed here exploits the locality of values, a property which is much easier to 
establish and which is independent of any particular storage organisation. 

We consider the main store to be composed of addressable words, each con
taining its own recovery level field. Apart from the barriers which demarcate 
the regions, each cache entry contains two fields of which one contains the ad-
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begin declare a, b; - - - - - - - - - - - ex 
a:= I; b:= 2; ---------- P 
ensure b > prior b - - - - - - - 7t 

by -------------- Y 

end 
else by 

else error 
end 

In Figs. 2-9, 

begin declare c; - - - - - (j 

c:=3; 
a:=4· ------- e 
ensure ... 

bya:= 5; 
b:=6; 
c := 7 C; 

else by 0 

else error; 
------ -- --- '7 

main store entry: - value, recovery level. 

Fig. 1. Recovery block structure 

cache entry: - main store address, value, recovery level 

Main Store 

b r--=---r---rl 
a~ 

Fig. 2. 

Recovery Level (RL)=O 
a: storage allocation 

Cache 

dress of a word in main store and the other preserves a copy of the prior con
tents of that word which may subsequently require to be reinstated. A special 
machine register is required whose purpose is to record the current recovery 
level. This recovery level register is incremented and decremented by one on re
covery block entry and exit respectively, thereby indicating the current depth of 
dynamic nesting of recovery blocks. When a program is loaded the recovery 
level is initialised to zero. 
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Main Store Cache 

btEB] 
a I 0 

RL=O 
Fig. 3. f3: assignment (local) 

btEB] 
a I 0 t barrier 

RL=1 
Fig. 4. y: recovery block entry 

c - I 

b 2 0 

a I 0 barrier 

RL=1 
Fig. 5. 0: storage allocation 

c 3 I 

b 2 0 a I I o 

a 4 I barrier 

RL=1 
Fig. 6. e: assignment (local and non-local) 

c 3 I 

b 2 0 

a 4 I 

c 7 2 barrier 

b 6 2 a I 0 

a 5 2 barrier 

RL=2 
Fig. 7. ~: assignment (non-local) 
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Main Store 

c 7 1 

b 6 1 

a 5 1 

Fig.S. 

c 3 1 

b 2 0 

a 4 1 

Fig. 9. 

RL=l 
7/: acceptance 

RL=2 
B: rejection 

Cache 

b 

a 

a I 

2 0 

1 0 

barrier 

barrier 

1 I 0 

barrier 

The detailed operation of the implementation is now described in terms of 
the various events in which the cache is involved or implicated. By way of il
lustration, Fig. I presents an ALGOL-like program in which significant points 
during its execution have been labelled by Greek letters. Figures 2 to 9 are 
snapshots displaying the state of the main store and cache for each of these 
points. A stack organisation for the main store has been chosen but, as ex
plained earlier, this nas no great significance. 

(i) Storage allocation (rx, 6) 

When a main store word is allocated, its recovery level field is initialised to the 
current recovery level. 

(ii) Recovery block entry (y) 

The recovery level register is incremented by one and a new barrier is placed on 
the cache. The main store is unaffected. 

(iii) Assignment (P, e, ~) 

The recovery level of the word to which a: new value is to be assigned is exam
ined. If this equals the current value of the recovery level register, the new value 
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is assigned directly to the value field of the word and no encachement is per
formed. The recovery level field of the word is unaffected. If the recovery level 
of the word differs from the current value of the recovery level register, a new 
entry is placed on the cache. This entry contains a copy of the entire contents of 
the word (i.e. value and recovery level fields) together with the main store ad
dress of the word. The recovery level of the word in main store is now set equal 
to the current recovery level and, finally, the new value is assigned. 

In a sense, the recovery level field of a word indicates the locality of the 
word's current value relative to the recovery block nest. It reveals at which re
covery level the word acquired its value. There are two situations in which the 
recovery level field can equal the current recovery level. The first is when the 
word involved has already been the subject of assignment at the current recov
ery level. The second is when the word has been allocated at the current level 
but has not yet been assigned to. This can be viewed as equivalent to having 
had a value "undefined" assigned at the current level. In either case, encache
ment is not appropriate. If the word's recovery level does not equal the current 
recovery level, the word is neither local to this recovery block nor has it already 
been assigned to within it and therefore encachement of the word prior to as
signment is necessary. 

(iv) Failure of an Acceptance Test (0) 

The failure of an acceptance test means that the most recently executed alter
nate has not functioned satisfactorily. Before another alternate can be entered, 
the main store must be returned to the state it was in on entry to the current 
recovery block. This is possible since preserved in the top region of the cache 
are the prior values of all main store words to which assignments have been 
made by the faulty alternate. For each cache entry in the top region, the value 
and recovery level fields are copied back to the main store locations designated 
by the main store address. As each entry is copied it is discarded from the 
cache. The value in the recovery level register remains unaltered since an at
tempt will now be made to invoke another alternate of the same recovery block. 

(v) Passing of an Acceptance Test (,,) 

The recovery level register is decremented by one and now indicates the recov
ery level to which we are about to return. The entries in the top region of the 
cache are then processed one by one in the following way. The recovery level of 
the corresponding main store word is set equal to the value in the recovery level 
register, thus recording that the net effect of assignments to that word at the re
covery level we are leaving is equivalent to an assignment at the level to which 
we are returning. If the recovery level of the cache entry equals the value in the 
recovery level register, this indicates that the main store word involved is either 
local to the recovery block to which we are returning or has already been as-
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signed to in that recovery block (in which latter case a prior value has already 
been preserved in the cache region for that recovery block). The cache entry is 
therefore discarded. If the recovery level field of the cache entry is not equal to 
the value in the recovery level register, this means that, in effect, a non-local 
assignment to the word involved has now been made for the first time in the 
recovery block to which we are returning and therefore, in order to preserve the 
prior value, the cache entry is moved down into the cache region for that recov
ery block. The movement of entries from the top cache region to the next is 
achieved easily if the processing of the top cache region is performed from bot
tom to top. 

(vi) Access to Prior Values (n) 

The main store address of the variable involved is used as the key in a search of 
the top region of the cache. If a find is made, the value preserved in that cache 
entry is returned, otherwise the result is taken from the value field of the main 
store location. In the case of variables which have not been cached, an optimi
sation could be achieved by first comparing the recovery level field of the main 
store word with the current recovery level. If the values are not equal the result 
can be taken directly from the main store location. 

The only respect in which the recovery cache implementation described 
here is inferior to the one presented in the earlier paper [Horning et al. (1974)] 
is that the state of encachement of each word is represented by its recovery level 
field instead of by a single bit. The size of this field increases the storage over
head and limits the number of levels of recovery possible. However, we believe 
that, in practice, a modest number of bits ( ;;2 5) would suffice and be an ac
ceptable trade-off for the considerable simplification in the cache logic. 

For the sake of clarity, we have used an example expressed in a high level 
language and have illustrated the mechanics of the recovery cache in terms of 
identified variables. There is a tendency to associate assignment with variables 
identified explicitly in the source program. However, erroneous assignments 
may involve storage locations which are not explicitly named at source level 
and which may be reserved for some other purpose, for example static links. 
Since the process of encachement is bound to the storage location involved and 
not to any particular operation which may alter its value, prior values of that 
location are preserved, regardless of the cause of assignment or of the purpose 
which that location serves. 

A Computer Architecture to Aid Error Detection 

The section on the recovery block scheme explained that all errors are handled 
in precisely the same fashion, be they failures of acceptance tests or any other 
kind of error condition. However, to explore the topic of error detection we 
must distinguish the class of errors which are not purely algorithmic but which 
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violate, in some way, the machine specification and cause many conventional 
systems to abandon the computation. We call such an error an "internal error". 

The detection of internal errors is clearly important. Since it would be naive 
to believe that acceptance tests can always be measures of absolute correctness, 
there is a danger that internal error conditions could, if ignored, nevertheless 
produce plausible and therefore acceptable results. There is also the danger that 
undetected or unsignalled internal errors could damage the information struc
tures upon which the recovery mechanisms depend. We have therefore pos
tulated a machine architecture in which the checking of data consistency and 
control structure integrity figures prominently. This architecture is largely due 
to R. M. Simpson (1974). 

The design is based on the kind of error detection afforded by the better 
high level languages. Such languages demand of the programmer a certain de
gree of so-called redundant information by which the self-consistency of his 
program can be checked. Disciplines are imposed by which arbitrary and error
prone control structures are disallowed. Of course, the user of lower level pro
gramming systems denies himself these benefits. Moreover, if we examine the 
object code emitted by typical compilers we see that the redundancy has been 
compiled out and that certain of the dis favoured control structures have been 
compiled back in. The object program therefore lacks the ability to detect 
errors which may have arisen through faulty compilation or malfunction of the 
machine. It is our belief that the safest time to check an operation is imme
diately before it is performed and we have therefore incorporated into our ma
chine design many of the checks normally performed at source level. Since our 
experimentation with the hypothetical architecture has been by software emu
lation, we have probably been more extravagant with our provisions for error 
checking than we could otherwise have afforded. We do not know how much 
redundant redundancy we have incorporated. 

The major parts of the storage occupied by a program can be regarded as 
a data segment and a program segment. The bases of these segments are ad
dressed by separate machine registers. Any memory reference is relocated by 
the code or data base register determined by the context of the reference. There 
is no way in which a data location can be specified instead of a code location, 
and vice versa. 

(i) Code Segment Structure 

The layout of the code segment is such that it retains the control structure of the 
source program. There is thus a very high probability that erroneous behaviour 
or corruption resulting in arbitrary branching will be detected. Individual 
operations are either simple or composite and sequences of these form code 
fragments. A simple operation is one which is executed directly. A composite 
operation is one which transfers control to a new fragment. Typically, code 
fragments represent the bodies of control structures such as cycles, case alterna
tives, etc., and the composite instructions invoke these fragments in a controlled 
fashion. There is no facility for undisciplined branching. A valid program thus 
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begin declare (I to I 0000) (a, b c); 
a := 632; b:= 249; c:= 0; 
cycle upto a times; , 

end 
end 

exit when a < b; 
a:= a - b; 
c :=c+ I 

Fig. 10. Source language program for integer division 

0:: start alternative; end alternative; 

p: tart alternative' exit (I)' end alternative; 

y: tart cycle; load (a); load (b); less; case(a,p); load (a); load (b); ubtract; 
tore (a); load (c); load literal (I); add' store (c); end cycle' 

start program; block begin; declare (a b c), load literal (632); tore (a); 
load literal (249); store (b); load literal (0); store (c); load (a); cycle (y); 
block end; 
end program; 

Fig. 11. Symbolic form of emulated machine language 

has a tree structure in which the nodes are instructions, The leaf nodes are 
simple operations and the composite operations are the roots of the sub-trees. 
Figure 11 shows symbolically the code structure for a trivial source program 
(Fig. 10). 

The execution of a fragment is under the control of a program point regis
ter. In addition to addressing the current point of execution, the program point 
register records the type and length of the fragment and, in the case of iter
ations, certain information relating to the number of repetitions. A program 
point register is loaded with this information when a composite operation is ex
ecuted, causing the appropriate fragment to be entered. The fragment body is 
bracketed by start and end fragment instructions which check consistency with 
the fragment type in the program point register. The fragment length ensures 
that, in the event of corruption of the control structure, an error will be sig
nalled if execution proceeds beyond the end of a fragment. 

The control sequencing is administered by a control stack which is a stack of 
program point registers. The top entry on the control stack is the one currently 
active and through which the machine receives its instructions for interpreta
tion. The execution of a composite operation causes a new program point regis
ter to be loaded and pushed on to the control stack. When the code fragment for 
a noniterative composite instruction, e.g. case alternative, is being executed, the 
occurrence of an end fragment instruction causes the top entry of the control 
stack to be discarded. Execution thus resumes under control of the program 
point register now at the top of the control stack. The control stack contains the 
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same kind of information as the dynamic link and return information in typical 
ALGOL implementations, but for a much finer degree of control structure. 

(ii) Data Segment Structure 

The data segment is organised as a typical ALGOL stack. There are no special 
working registers. Instead, all expression evaluation is performed on the top of 
the data stack. All data stack cells are tagged such that entries of different kinds 
can be disinguished and checked for consistency with the operations in which 
they are involved. Unallocated data stack cells have the tag "unused", ensuring 
that certain classes of invalid data stack references can be recognised. 

At any moment, the data stack is composed of a number of activation rec
ords. These are linked together appropriately by special stack entries tagged 
"static link" and "dynamic link" All other stack entries are concerned with the 
storage or description of data. The various kinds of data entry, each with its 
identifying tag, are: integer, logical, character, index, control variable, pointer, 
array descriptor, record descriptor. The tag "control variable" is one which is 
temporarily given to a variable used for counting the iterations of a loop and 
prohibits the overwriting of that variable by the program. 

In addition to their tag and value fields, all data entries possess two extra 
fields, viz. a null-bit and a type field. The null-bit is used to distinguish allocat
ed but uninitialised data entries from initialised entries and thereby to prevent 
computations involving uninitialised data. The type field contains an index into 
a run-time type table. The entries in the type table provide a more detailed de
scription of the various data entries than is provided by the tag fields. For 
simple variables, the type table entries describe the range of values the vari
ables may acquire. The type table entry for an array descriptor describes the 
array bounds and provides the index of the type table entry describing the array 
elements. The record descriptor entry similarly supplies the type table index for 
each of the fields. While the tags are used to check that only permitted opera
tions are performed on the data specified, e.g. arithmetic on numeric items, in
dexing on arrays, etc., the type descriptions ensure that operands and results 
have magnitudes within expected ranges. 

All data stack cells are provided with a recovery level field whose purpose 
has been described in the section on the recovery cache implementation. Any 
form of assignment into the data stack, be it to a variable, descriptor, static link 
or to a value field, tag field, etc., is preceded by an activation of the cache 
mechanism which may result in the encachement of the data stack cell in
volved. Thus a data stack assignment involving an erroneous address is always 
retri eva b 1 e. 

(iii) Instruction Types 

The nature of the instructions reflects the stack organisation of the data seg
ment and the desire to retain control structure at run-time. Data can be moved 
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...... -----display couple 

j ~.-----fragment couple 

---do--( ),() 

===~======== 
- -start do - - - - - - - -end do- - --

Fig. 12. "do" - a typical composite operation 

to and from the top of the stack by "load" and "store" instructions in which 
checks are performed to detect uninitialised variables,~ tag and type in
compatibilities, etc. Access to variables is achieved by maintaining a conven
tional ALGOL display vector which serves to translate display couples into 
data stack addresses. Computations are performed by zero-address instructions 
such as "add", which expect their operands in the top cells of the data stack. 
Checks are performed on admissability of tags, overflow, etc. 

The use of high level instructions enables us to retain the control structure at 
run-time. These high level instructions are in fact the composite operations 
which enable the control of execution to be transferred from the main stream to 
another code fragment in order to perform a subsidiary computation. A typical 
composite operation is "do" which is used to perform an iteration a pre
determined number of times. The parameters of the instruction are a display 
couple identifying a variable to be used as control variable and a fragment 
couple specifying the code fragment containing the body of the loop. Figure 12 
illustrates. 

The "do" statement requires the initial and final control variable values to 
be on the top of the stack. During the execution of the "do", the control vari
able is given a temporary tag which causes an error if any attempt is made 
within the "do" fragment to alter the value of the variable. The occurrence of 
the "do" instruction causes a new program point register to be loaded on to the 
control stack and the execution of the "do" fragment proceeds under its control. 
The "start do" and "end do" instructions bracket the "do" fragment and each 
checks that the top entry in the control stack is indeed a "do". In addition, "end 
do" checks the termination condition and, if it has been attained, terminates the 
iteration by popping the control stack and restoring the control variable's orig
inal tag. 

Similar to the "do" instruction is the "cycle" which is intended for iterating 
an unspecified number of times. It has no control variable but in order to pre
vent infinite loops an upper limit on the number of iterations must be specified. 
If this limit is exceeded an error condition is raised. Only an "exit" instruction 
can return control successfully from a "cycle". Exit from nested cycles is catered 
for by a parameter. The "exit" instruction pops the control stack until the speci
fied number of "cycle" entries has been removed. Only certain of the other con-
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trol constructs may be popped on the way. For instance, an "exit" is not allowed 
to return control from within a "do" fragment or a recovery block. 

A further composite operation is the "case" instruction. This takes a vari
able-length parameter list consisting of fragment couples, each designating one 
of the case alternatives. The case instruction expects to find the case selector 
loaded on the top of the stack. We are not entirely satisfied with our implemen
tation of the case instruction because of its variable-length parameter list. 

Block entry and exit are handled by "block begin" and "block end" in
structions. These are responsible for creating and deleting activation records 
and for managing the display. Variables are allocated dynamically by the "de
clare" instruction which reserves data stack cells, setting the tag, type and null
bit fields. There was a very early decision not to make "block begin" a com
posite operation. This has proved to be a bad decision which has caused slight 
complications in several situations including recovery from 'errors occurring in 
blocks within recovery blocks. 

Recovery blocks are catered for by "recovery", "start recovery block", "re
covery case" and "end recovery block" instructions. In certain respects, the 
structure of a recovery block resembles a cycle whose body consists of a case 
instruction which selects the appropriate alternate followed by the evaluation of 
the acceptance test. The operation of the recovery block instructions reflects 
this. The role of the "end recovery block" instruction is to examine the truth 
value resulting from the evaluation of the acceptance predicate. If the value is 
true, the control stack is popped, otherwise an error condition is raised. The de
tection of an error condition initiates the recovery actions. The relevant recov
ery block structure is reflected by the recovery block entries in the control stack 
and these are used to direct the reinstatement of data values and program con
trol. 

Additional load and store instructions are provided for accessing array el
ements and record fields but are not described in detail here. For each type of 
load instruction there is a "load prior" counterpart for accessing prior values. 
There are no store prior instructions! 

The Prototype System 

The preceding sections of this paper have described the basic recovery block 
scheme, a high level machine architecture which includes this recovery tech
nique, and a new design of the recovery cache mechanism. Advantages of speed 
and simplicity are claimed for the new design of the cache. 

An initial implementation of these facilities has been constructed. Programs 
containing recovery blocks can be written and then tested on this prototype sys
tem and, it is hoped, can provide evidence in support of the claims made for the 
recovery block approach. Further motivation for the implementation stems 
from a need to measure the costs imposed by various aspects of the design 
(such as the recovery cache and the redundant information maintained by the 
machine architecture), and to try to estimate the utility of these aspects. Exten
sions to the basic recovery scheme are being investigated and the existence of 
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the prototype permits this to be done from a firmer base than would otherwise 
be possible. It has been recognised that the design and organisation of the ac
ceptance tests in a program is of major significance if recovery blocks are to be 
used effectively. The ability to execute programs containing recovery blocks 
should assist in studies of how acceptance tests should be constructed. Finally, 
it was expected that the detailed design decisions needed to construct an im
plementation could have some impact on the overall abstract design - and this 
proved to be the case. 

The hardware configuration available to the reliability group at Newcastle 
comprises two DEC PDP-l 1145 processors with a total of 128 K bytes of main 
memory. Peripherals include consoles, a line printer and disk storage. There is 
also a synchronous link to the University's main computer, an IBM 3701168. 

A program has been written which runs on one of the PDP-11l45s and emu
lates the high level architecture described in the previous section. Basic support 
for the emulator is provided either by a stand alone monitor or via the DOS-II 
operating system. The emulator operates by first reading in a prepared memory 
image and then interpreting the code segment of the image. Interpretation can 
be at full speed or in one of a number of debugging modes. Facilities are avail
able for conveniently modifying the code segment being interpreted, usually for 
the purpose of deliberately corrupting the code so as to induce errors. The ma
chine language interpreted by the emulator is simply referred to as EML (from 
emulator machine language). 

Programs to be executed on the high level machine architecture are first en
coded in a variant of a subset of the system implementation language devel
oped by the Sue project at Toronto University [Clark and Ham (1974)]. At pres
ent the subset of the Sue system language available remains fairly restricted, 
but some extensions to this may be made. The current language can be sum
marised as providing: scoped declarations, integer subrange variables, arrays, 
integer and logical expressions, assignment, selection, repetition, simple input 
and output, and recovery blocks. This language is referred to as SUE.EML, 
which is also the name given to the compiler which translates the language into 
EML code. The SUE.EML compiler is a cross-compiler which runs on the IBM 
370/168. It was constructed by modifying the code generation routines of the 
SUE.360 compiler distributed by Toronto Computer Systems Research Group. 
An EML code segment together with a run-time type table produced by the 
SUE.EML compiler is inserted into a memory image for the emulator and the 
image is sent over the link to one of the PDP-11l45s. 

Extensive use has been made of Sue compilers from Toronto. The emulator 
and the program which prepares memory images are both written in the Sue 
language, and are compiled using the SUE. 1 1 and SUE.360 compilers respec
tively. 

Recoverability of the Prototype System 

The prototype system makes available to a programmer the opportunity to in
clude recovery blocks in his programs. To determine whether such a system 
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does indeed enable significantly more reliable programs to be produced would 
require very extensive (and expensive) experimentation. The investment of ef
fort involved is considered inappropriate for a system still under development. 
Even the performance of a carefully designed set of trials will probably be post
poned until a more complete system has been constructed, incorporating modi
fications suggested from consideration of the present system and extensions de
riving from current research into, for example, recoverable type structures. 
What can be done is to observe, at least qualitatively, the extent to which the 
prototype system meets its basic design aim of providing a high level of re
coverability. Our experiments to date have consisted of running on the emu
lator programs which were believed to be correct, programs which were known 
to contain source errors and programs whose object code had been corrupted 
deliberately. 

This section merely attempts to summarise our initial experiences in using 
the prototype system, and to report any conclusions that can be drawn. It is 
stressed that these experiences are mainly drawn from the (fairly haphazard) 
testing and experimentation the system has undergone during its development, 
and are in no sense part of any controlled experiments on the system. 

When an EML program is interpreted by the emulator, one possible out
come is that the program executes satisfactorily without any erroneous situ
ations being detected, and hence without making any use of recovery facilities. 
That this did happen on a number of occasions is perhaps more a consequence 
of the elementary nature of various test programs than of any programming 
skill possessed by the authors. 

A second possibility is that the program executes unsatisfactorily in that the 
results generated by the program are unacceptable to the writer of the program. 
One explanation for such an outcome is that the program is itself defective in 
one of the following ways: 

in certain recovery blocks, no alternate computes acceptable results, 
acceptance tests are too weak enabling results generated by faulty alternates 
to be accepted. 

If the fault does not lie in the program then the presence of a bug in the 
emulator has been detected. For instance, if the system collapses with a forced 
return to its basic support system, the unsatisfactory behaviour can be blamed 
on the emulator. 

Not surprisingly, in view of the circumstances, many of the test programs 
initially executed unsatisfactorily. Any extension of the emulator and 
SUE.EML compiler carried the risk of introducing new errors into the system, 
some of which could be revealed in subsequent testing. Only rarely could un
satisfactory behaviour be attributed to the program, and on those occasions 
when it could the fault clearly lay with the programmer rather than with the 
recovery block approach. 

Of much more interest is the third possibility, namely that the program ex
ecutes satisfactorily despite the detection of one or more erroneous situations. 
Detection can either be due to the extensive basic error checking provided by 
the system, or to an acceptance test included by the programmer not being 
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satisfied. A more useful categorisation is obtained by considering the error to 
have one of three possible sources. 
(i) A planned inadequacy in the program. 
(ii) An unanticipated inadequacy in the program. 
(iii) An inadequacy of the system. 
These are examined in turn, with examples drawn from the three programs 
outlined in figures 13 to 15. 

do n : = 0 to 99; 
ensure i2 ::;; nand (i + 1)2> nand n = prior n 

by try previous value of i 
else by calculate a value for i using Newton' method 
else by tep i upward from zero until (i + 1)2> n 

else error; 
write n i 

end 

Fig.B. The program SQRT 

n:= read; 
do i:= 1 to n; 

A(i) := read 
end; 
ensure A U + I) ~ A U) for j = 1, ... , n - I 

n 

and L (AU) - prior AU» = 0 
j - I 

by order the values in A using Shell's sorting method 
else by order the values in A using linear selection 

else error; 
do i:= 1 to n; 

write A (i) 
end 

Fig. 14. The program SQRT 

ensure A (i) = prior A U) and AU) = prior A (i) 
by A(i):= A(i) - AU); AU):= A(i) + A(j); 

A(i):= A(j) - A(i) 
else by w := A (i); A (i) := A U); A (j) := w 

else error 

Fig. 15. The recovery block EXCHANGE 
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(i) Planned Program Inadequacy 

In an attempt to model the situation which occurs when a program contains a 
genuine bug, programs containing deliberate mistakes were executed on the 
emulator. 

Figure 13 shows the program SQRT which has been used extensively to test 
the emulator. This program is intended to print out a table of integer approxi
mations to the square roots of the numbers 0 to 99. Each alternate of the recov
ery block attempts to place the correct value in the variable i. The acceptance 
test checks explicitly that i contains the largest integer not greater than vn. and 
that the value of n has not been changed. 

The primary alternate in SQRT is based on the principle that the largest in
teger not greater than vn might well be equal to the largest integer not greater 
than vn=t, and so does nothing at all. Unfortunately, whenever the value of n is 
a perfect square this does not succeed, and in these cases the acceptance test re
jects the erroneous value left in i. Furthermore, when n is zero at the first ex
ecution of the recovery block, the variable i has never been. used and has no 
previous value. In this case an error condition is raised during the evaluation of 
the acceptance test since the emulator rejects any attempts to use the value of an 
uninitialised variable. This rather frivolous primary alternate was added to an 
earlier version of the SQRT program in order to exercise the recovery mecha
nisms of the emulator. Although clearly defective in general, on those many oc
casions when it is successful the primary alternate is exceedingly efficient. 
There may be some justification, in particular contexts, for employing a pri
mary alternate for which it is known that there exist circumstances in which it 
will fail, if for most cases the alternate has the virtues of simplicity and ef
ficiency. Reliability may still be enhanced as a result of the alternate's simplici
ty and independence from the other alternates. 

The second alternate in SQRT employs a conventional root finding algor
ithm, modified to use integer arithmetic. It was known that the encoding of the 
algorithm is such that when n equals zero the value computed is incorrect, and 
should therefore be rejected by the acceptance test. Unlike the faulty primary 
alternate, this error did in fact arise from a genuine programming mistake and 
so may be regarded as a little more authentic. 

The third alternate is programmed very simply with the aim of increasing 
dependability at the expense of efficiency and is expected always to be able to 
satisfy the acceptance test. 

Next, consider the second example program, SORT, given in Fig. 14. This 
program is intended to read in a value for n, then read in n integers, sort them 
into ascending order in the array A, and then print them out in order. The alter
nates of the recovery block implement different well-known sorting algorithms, 
and both make use of the recovery block EXCHANGE shown in Fig. 15. The 
acceptance test confirms that the entries in the array are in ascending order and 
attempts to verify, by means of a sum check, that no values have been changed. 

The primary alternate in SORT is an encoding of Shell's sorting method. 
The encoding was obtained by very casually translating an ALGOL 60 version 
(taken from a programming manual) into SUE.EML in the hope and expecta-
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tion of introducing an error. In fact two errors were made. The first of these had 
the effect of assigning the value zero to a variable declared to be always posi
tive. Detection of this by the emulator led to the second alternate being in
voked. After correcting this error, a second bug was uncovered (the step com
ponent of afor statement had been omitted) which has the effect ofleaving the 
array only partially sorted. Unless the integers are almost in order initially they 
are left out of order - which is detected by the acceptance test. 

The second alternate is a straightforward encoding of linear selection and is 
thought to contain no errors. 

The SORT program contains a nested recovery block, EXCHANGE, used 
by both alternates to interchange the values of A (i) and A (j). The acceptance 
test checks explicitly that the values have been interchanged. The second alter
nate is just the usual cyclic exchange using an auxiliary work variable, but the 
primary alternate exchanges the values without using the additional variable. In 
addition to its drawbacks of slowness and obscurity, the primary alternate is in
teresting in that it may fail because of overflow (very easily in fact since the ar
ray elements are declared to hold values from a fixed integer subrange) and this 
is why it was chosen. 

Both of these programs, SQRT and SORT, are executed correctly by the 
emulator; despite their deficiencies they produce the desired results. 

Another approach to modelling the effects of genuine programmer errors is 
to corrupt the code segment of an otherwise satisfactory program and the emu
lator is equipped accordingly with a special mechanism for injecting errors. 
Given that the program contains provision for error recovery, there is some 
prospect that the program will continue to give service. With more stringent 
provisos much more can be claimed. Consider again the SQRT program, which 
has been subjected to considerable corruption in this way. The recovery block 
in SQRT has the property that its final alternate is designed in such a way that 
the programmer has a very high degree of confidence that it will always pass 
the acceptance test, and also has the property that the acceptance test is com
plete in the sense that passing the test in itself guarantees satisfactory results 
(this last is not usually attainable except at prohibitive cost, c.f. the sum check 
in SORT). So, for the SQRT program, the stringency of the test and confidence 
in the final alternate lead to the claim that no matter what is encoded in the 
earlier alternates the program will still run satisfactorily. As a corollary to this 
claim, arbitrary corruption of the code fragments corresponding to the primary 
and second alternates of SQRT should not prevent the program from complet
ing its execution successfully. 

Project members and visitors to the department have risen to the implicit 
challenge and with ingenious penetration techniques attempted to refute this 
claim. Although it has to be conceded that their efforts have on rare occasions 
met with some limited successes, a considerable time has elapsed since the pro
gram last failed to produce its now rather tedious table of square roots. About 
100 bytes of EML code are available for modification. Random changes are al
most always detected immediately by virtue of the redundancy retained in the 
EML code. More sophisticated and structured attacks, probing for weaknesses 
in the emulator's implementation, are usually employed. Even so, in the vast 
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majority of cases, the recovery mechanisms have successfully detected and re
covered from any damage done to the system, often to the amazement (initial
ly) of the authors. The damage was often much more extensive than was anti
cipated, largely because of the difficulty in appreciating beforehand all of the 
implications which a change made at the EML level could have, particularly 
when the change impinged directly on the recovery mechanisms. When a suc
cessful penetration has been made this has been, with one exception, attri
butable to an implementation error which was then rectified. Errors detected in 
this way have usually been rather obscure. The exception involved exploitation 
of a weak acceptance test in an earlier version of SQRT written before prior was 
available. 

The technique of modifying the EML code to introduce errors into a pro
gram has been considered as a form of planned program inadequacy, which it 
certainly is. However, as has been mentioned, the errors so introduced are rare
ly as well understood as those built into the source version of a program. Conse
quently the detection and recovery mechanisms are tested against situations 
which are not fully anticipated; since the erroneous situations which arise as a 
result of authentic programming errors cannot be studied in advance, the suc
cess of the recovery techniques during these experiments is encouraging. 

(ii) Unanticipated Program Inadequacy 

A principle aim of the techniques provided by the prototype system is to help 
programmers construct defences against the residual programming errors 
known to remain in complex software systems. Some doubt must attach to con
clusions drawn from observing the success of the recovery techniques in han
dling more or less contrived errors in small test programs, but this is unavoidable 
until experimentation on a larger scale can be contemplated. 

It is therefore pleasant to record one example of a completely unplanned 
programming error which was handled successfully by the system. It was not 
realised that the primary alternate of the EXCHANGE recovery block is com
pletely defective for the special case i = j, when the two variables to be 
exchanged are in fact the same variable. In this situation the effect of the pri
mary alternate is to set the variable A (i) to zero. The acceptance test detects 
this to be erroneous (unless prior A (i) = 0), the value of A (i) is restored and the 
second alternate correctly exchanges A (i) with itself. 

Whether this authentic example of a programming error is in any real sense 
a better test of the recovery techniques than the more contrived examples pre
sented earlier is highly dubious, but it was certainly rewarding to observe (after 
the event) that the prototype system had functioned as intended and recovered 
from a totally unexpected error. The error itself is typical of most programming 
mistakes - a special case or unusual combination of circumstances is so often 
overlooked. 
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(iii) System Inadequacy 

Because the emulator program is itself a substantial piece of software, the pres
ence of errors in the system is not surprising, particularly in view of the numer
ous extensions and modifications which have been made in the course of its 
construction. It has already been stated that errors in the emulator often led to 
unsatisfactory behaviour of a program being interpreted. Of much greater in
terest were a number of occasions on which an error in the emulator resulted in 
considerable corruption of the state of a program being interpreted but which 
was then detected as being erroneous and successfully recovered from. In fact, if 
the faulty emulator continued to observe the constraints imposed by its own 
basic support system (otherwise the emulator collapsed) then satisfactory pro
gram behaviour was usually achieved. Data corruption due to faulty emulator 
behaviour must be confined to data defining the state of the interpreted pro
gram, and that program must contain adequate recovery provision if it is to ex
ecute satisfactorily. In these circumstances the emulator is able to recover from 
its own deficiencies because of its ability to permit the program being interpret
ed to recover. 

Two typical examples are recounted which occurred during penetration at
tempts on the program SQRT. 

It was discovered that the emulator did not ensure that expression evalua
tion was confined to temporary locations at the head of the data stack. By 
modifying the EML code of SQRT so as to set up a series of "add" instructions 
(which decrement the data stack pointer) it was possible to delete from the data 
variables declared in the current block. When an attempt to access a deleted 
variable raised an error condition, the variables were restored from the recov
ery cache which, of course, records all relevant changes made to the data stack, 
irrespective of the reason for the change. 

The second example was a consequence of the emulator not checking for 
overflow of the control stack. A control transfer was altered to transfer control 
to a code fragment containing the transfer, thus creating a recursive loop (with 
some difficulty because of the need to match transfer and fragment). Each pass 
around the loop placed additional entries on the control stack, which eventually 
overflowed, overwriting the data stack display. When the display was next used 
an error was raised, followed by the restoration of data stack and display, and 
by the retraction of the control stack. 

In summary, we have been very gratified by the extent to which the proto
type system has achieved its basic design aims. Program recovery from both ar
tificially contrived and accidental programming errors, and from faulty behav
iour due to errors in the emulator (on one occasion the fault in the emulator 
was due to an error in the SUE. I I compiler) has been impressive. The most im
portant feature of the facilities supported by the system seems to be that they 
can be used to implement recovery capability which is not designed to meet 
specific error situations, and as a result is able to deal with the unexpected situ
ations caused by errors. 

The detailed design decisions entailed in implementing a system which pro
vides error recovery have led to a better understanding of the proposed error 
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detection and recovery facilities. Two points can be made here. It now seems 
preferable to regard the failure of an acceptance test as a run-time error rather 
than to consider a run-time error as equivalent to the premature failure of an 
acceptance test. The former view leads to a cleaner and more secure implemen
tation, and has been adopted throughout this paper and in the prototype sys
tem. Secondly, we now see that a complete separation could be made between 
the recovery structures and the other structures (for data and control) defining 
the state of a program. If this were done, recovery could be made more com
prehensive and more uniform than is the case with the present system. 

A limitation of the basic recovery scheme implemented by the prototype 
system is that it provides recoverability for a single sequential process in iso
lation from any other processes with which it interacts. Some progress has been 
made in removing this restriction [Randell (1974)] and research is continuing 
with the aim of extending the recovery techniques to a set of mutually de
pendent processes. However, the present implementation is not likely to be ex
tended in this direction. Rather we would wish to draw on the experience 
gained from building and using the prototype system in any future, more gen
eral, implementation. 
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Sequential Pascal with Recovery Blocks 

S. K. SHRIVASTAVA 

Summary. The programming language Sequential Pascal has been extended to include recov
ery blocks. This paper describes the modifications made to the kernel and interpreter of 
Brinch Hansen's Pascal system to support recovery blocks and the associated recovery caches 
needed for state restoration. 

Key Words: Sequential Pascal Recovery blocks Recovery cache Fault-tolerant software 

Introduction 

A program structure called recovery block has been proposed in the literature as 
a means of constructing fault-tolerant software [1, 2] (defined to be software 
that produces acceptable results despite faults in the hardware and software). 
This paper describes an implementation of recovery blocks using Sequential 
Pascal [3] as the host language. The objectives of this paper are twofold: firstly, 
the implementation details are believed to be sufficiently interesting in their 
own right and, secondly, recovery blocks have attracted wide attention (for 
example, they are actively being evaluated for aerospace applications [4]); thus, 
an account of a method of inclusion in Sequential Pascal, a language that is 
widely used for research in programming methodology, should prove interest
ing to workers in the field of fault-tolerant programming. The paper also dem
onstrates that the inclusion of recovery blocks into existing programming sys
tems can be a practical proposition. 

Recovery blocks were first implemented by my colleagues [5], one of the 
aims of their work was to investigate a suitable computer architecture for di
rectly supporting recovery blocks. The resulting system could however support 
only relatively simple sequential programs. A second experiment was therefore 
started with the aim of developing a system capable of supporting realistic 
sequential and concurrent programs incorporating recovery blocks. This paper 
describes the first phase of this experiment - the development of a system that 
is capable of supporting realistic sequential programs with recovery blocks. 
Work is underway to extend this system to support the features necessary for 
fault-tolerant concurrent programming [6]. While recovery blocks are described 
briefly in the next section, a familiarity with the concepts presented elsewhere 
[1,2] would be helpful to the reader. 

Recovery Blocks 

The syntax as incorporated in Sequential Pascal is as shown. The acceptance 
test (a Boolean expression) is evaluated after the execution of the primary. 
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ENSURE (acceptance test) BY 
(statement) "primary" 

ELSE-BY (statement) "first alternative" 

ELSE-BY (statement) "nth alternative" 
ELSE-ERROR; 

If the result is true, the statement following the recovery block is executed. 
However, if the result is false, the state of the computation is restored to 
that at entry to the recovery block and the first alternative is tried and so on. 
If all the alternatives fail to produce acceptable results, then this is regarded as 
a failure of the entire recovery block - any recovery actions must be under
taken by the enclosing recovery block, if any (recovery blocks may be nested). 
A 'recovery cache' is used for recording the state of the computation and restor
ing it when the primary or the current alternative fails. The recovery cache is 
organized as a stack and contains recovery data for the recovery blocks entered 
but not yet exited. The recovery data consist of the addresses and the prior val
ues of the global variables updated inside a given recovery block, so that the act 
of state restoration merely consists of copying the prior values into the vari
ables. When an acceptance test is passed, some of the recovery data of this re
covery block may have to be merged with the recovery data of the enclosing 
recovery block (if any). Precise details of this merging and other related aspects 
of recovery cache are discussed elsewhere [1, 5]. 

The Pascal System 

The Pascal System, as developed by Brinch Hansen's group [11], is capable of 
supporting a number of concurrent processes programmed in Concurrent Pascal 
[7]. A process is capable of executing sequential programs written in Sequential 
Pascal (this language is closely similar to Pascal [8], from which it has been 
derived). 

A process can make available some of its procedures to the sequential pro
gram it is running - this forms the basis of the interface between user programs 
(written in Sequential Pascal) and the operating system (written in Concurrent 
Pascal). Such procedures have been called prefix procedures (as a consequence 
of prefix procedures, no input-output has been defined for Sequential Pascal; 
rather, a system designer can program appropriate input-output procedures in 
Concurrent Pascal as prefix procedures). Both the concurrent program and 
sequential programs are executed interpretively by a simple stack machine pro
grammed to run on the host hardware (PDP 11145). Certain details of this in
terpreter and related programs are of interest within the context of this paper. 

The Kernel and Interpreter 

The kernel is the initial piece of software written to run on the base machine 
and it implements processes, synchronizing primitives, queues, basic input and 
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INTERPRETER 

CURRENT 
PROCESS HEAD 
INTERPRETER 

TABLE Fig. 1. Address space of a process 

output and other features as required by Concurrent Pascal. It also implements 
a virtual storage system. The virtual address space of a process is shown in 
Fig. I. The space is divided into two regions. The common segment is common 
to all the processes in the system. The virtual code is the code produced by the 
Concurrent Pascal compiler and is executed by the interpreter. The interpreter 
table contains, for all the virtual instructions, pointers to the interpreter areas 
where the appropriate interpretive procedures are stored. The stack and heap in 
the private segment are maintained and used by the interpreter (the heap is 
needed for the implementation of dynamic store allocation features of Sequen
tial Pascal). The private data in the private segment can contain any virtual 
code produced by the Sequential Pascal compiler; it is also executed by the 
same interpreter. The kernel maintains a process head for every process in the 
system. The process head contains such details as the processor time used by 
the process, priority, an area for saving the contents of the processor registers 
etc. When the kernel selects a particular process for running, it copies its pro
cess head into the current process head area of the common segment and hands 
over control to the interpreter. The current process head acts as an interface be
tween the interpreter and the kernel. Finally, the common data in the common 
segment contain the data (monitor variables) needed for interprocess co-ordi
nation. 

104 



Exception Handling by the Interpreter 

The execution of a program is terminated either because it terminates properly 
or because some predefined error condition is detected by the interpreter (such 
conditions include range error, stack limit, heap limit etc.). In either case, the 
interpreter executes an exception program; the essential features of this program 
are as shown. An entry in the current process head, 'result', is used to record the 
cause of the termination (result = 0 means 'proper termination', result = 1 
means 'overflow error' etc.). 

exception: if program = concurrent & result =1= proper then 
begin 

print ('system error'); 
stop "failure in the concurrent program (i.e. operating 

system), so stop further processing" 
end else 
begin 

restore stack; 
return 

end; 

Recovery Block Implementation 

A number of changes were made to the kernel and interpreter to support recov
ery blocks and associated recovery caches. Despite the fact that the kernel and 
interpreter have been programmed in the assembly language of PDP 11145 
(MACRO assembler on DOS operating system), no particular difficulty was en
countered in these modifications. This is because the Pascal system was found 
to be an outstandingly well-engineered product. 

The Sequential Pascal compiler was modified to accept the recovery block 
construct shown previously and to generate the following code, where only the 
recovery block virtual instructions are shown explicitly. The particular control 
structure was selected after studying the code generation characteristics of the 
compiler. 

ENTER RECOVERY (NUMBER); "enter recovery block" 
goto 12; 

11: evaluate acceptance test; 
if true then go to 13; 
ATF AIL; "acceptance test failed, the control goes to the exception 

handler" 
12: case next of 

0: (primary); go to 11; 

n: (nth alternative); go to 11; "n = NUMBER-I" 
end; 

13: ATPASS; "acceptance test passed" 
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'N umber-l' equals the number of alternatives and 'next' indicates the statement 
to be executed. 

The heaps in the private segments of processes (Fig. 1) were replaced by 
caches. Two reasons are given for this decision: (i) there does not appear to be 
any straightforward method of arranging the recovery of heap variables (since 
they do not allow the normal block structured rules), hence it was decided not 
to incorporate them in this modified version of Sequential Pascal; (ii) it is 
necessary to associate a cache with each process in the system; the most suitable 
place for its incorporation is the private segment of each process. Figure 2 
shows the structure and organization of the recovery cache of a process; the 
starred entries in the current process head show the additions made to the pro
cess head of every process to support the corresponding recovery cache (in the 
actual implemented version, a few more entries have been included in the pro
cess heads and the caches, with a view to future use for recovery for concurrent 
programs; for simplicity these have been ignored in this discussion). The details 
of the various virtual instructions and related programs will now be described. 

Enter Recovery Block 

The algorithm of the virtual instruction ENTER RECOVERY (NUMBER) is 
as shown. The data for recovery blocks that have been entered but not yet exit
ed are separated by barriers as shown in Fig. 2 (which shows the data for two 
recovery blocks). The cachbr entry points to the barrier of the current recovery 
block; the barriers are linked as shown. The interpreter uses four processor 
registers for pointing to the stack top (S), local variables (B), global variables 
(G) and the next virtual instruction to be executed (Q). These registers are 
saved as shown. 
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procedure enter recovery (number: integer); 
begin 

if heaptop ~ (S "stack top" + 14 "bytes") then 
begin 

result := 'heap limit'; "ie, cache.1imit" 
go to exception 

end else 
begin 

Using heaptop, store current 
S, B, G and Q in the cache (= heap); 
store number; next := 0; 
push this value of next on the stack; 
"to be used by the 'case' instruction of the 
recovery block virtual code" 
create a barrier and link it to the previous one; 
cachbr:= location of the new barrier 
nest := nest + 1; "counts the nesting of recovery blocks" 

end 
end; 
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Whenever a sequential program performs an assignment, it is necessary to 
check the following: (i) is it being performed from within a recovery block? (ii) 
if so, is the variable global? (iii) if so, does the current recovery data in the 
cache include the value-address pair(s) for this variable? If the answers to the 
first two questions are yes, and no to the third, the value and the address of the 
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variable are recorded in the cache (before the assignment is performed). This 
recording is done on a word basis, so if the length of the variable is more than a 
word, the appropriate number of entries are made. 

In step (iii), the search of the current cache region each time an assignment 
is performed is likely to be the major contributing factor to the execution time 
overheads 1. However, as it is generally accepted that well-structured programs 
should contain a minimal number of assignments to globals, the search time 
should not prove prohibitive for such programs. All the interpreter instructions 
that performed assignments (e.g. COPYWORD, COPYSET etc.) were modified 
to perform the above 'cacheing'. 

Acceptance Test Fail and Pass 

The algorithms for the virtual instructions ATFAIL and ATPASS are shown 
below. 

procedure acceptance test fail; 
begin 

result := 'acceptance test fail'; 
goto exception 

end; 

procedure acceptance test pass; 
begin 

nest := nest-I; 
if nest> 0 then merge else discard 

end; 

The procedure 'merge' merges the appropriate recovery data of the recovery 
block just completed with the recovery data of the enclosing recovery block [1]. 
When the recovery block just completed is the outermost one (nest = 0), 'dis
card' is called to throwaway all the recovery data generated for the program in 
execution. 

Exception Handling 

From the algorithm given previously for exception handling, we see that the ex
ecution of a sequential program is terminated as soon as an abnormal condition 
is detected. This is no longer the case with recovery blocks: if an abnormal con
dition is detected while executing a recovery block, it is merely regarded as a 
failure of the primary or the alternative, as the case may be, and the same re-

1 When recovery caches are hardware implemented, extra bits can be added to the store 
words [1, 5] and utilized such that no search overheads are involved. 
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0001 
~002 
0003 
0004 
0005 
000& 
0007 
0008 
000q 
0010 
0011 
0012 
0013 
~014 
0elS 
001& 
0017 
[11018 
00t9 
0020 
0021 
0027. 
0023 

PROGRAM TOV, 
TYPE M = 1,,10, 
VAR N I AR~AV(tM.) OF INTEGER, 

I,J I INTEGER, 
BEGIN 

END, 

~NSURE (1 • 2) & (J = 2) BY 
BEGIN 

ENSURE J=10 BY 
BEGIN 

J11:0, 
N(,J.):=0 

END ELSE ... BY 
J:=9 

ELSE ... ERROR, 
1:=2 

END ELSE ... BY 
BEGIN 

1&=3, J:=45 
END ELSE ... BY 
BEGIN 

1:=2, Ja=2 
END U,SE ... ERROR 

(a) 

Fig.3. (a) A toy program; (b) error messages 

USER LINE 11 RANGE ERROR 

USER LItlE 9 A. T. FAIL 

USER LINE 9 R BLOCK FAIL 

lISH LINE .( A. T. FAIL 

(b) 

covery actions are invoked as in the case of acceptance test failure. When the 
current program terminates properly, nest = 0 will also hold; from the new ex
ception handling algorithm we see that the stack will be restored and a return 
made to the appropriate point in the executing process. If result '* proper, then 
nest> 0 implies that recovery capability exists. From the algorithm, we see 
that S, B, G and Q are restored and procedure 'restore' is called. This procedure 
restores the prior values of the cached variables. If an alternative exists 
(next < number) then this alternative will be executed when an exit is made 
from the exception handler. Otherwise, state restoration is carried out for the 
enclosing recovery block (if any), and so on. A number of error reporting mes
sages have also been included in the handler. For example, when result '* prop
er and nest = 0 then this implies that no recovery is available, so a message 're
covery exhausted' is printed. Figure 3 shows a toy program with recovery 
blocks and the error messages produced. 

Concluding Remarks 

In the modifications described here, care has been taken to see that programs 
that do not use recovery blocks are not affected. Thus, the SOLO operating sys
tem [9] and all the application programs available on it run on the modified 
kernel and interpreter. The SOLO system can be used to develop Sequential 
Pascal programs with recovery blocks. 

Only a few modifications to the kernel were needed - those concerned with 
the changes in process heads and error reporting facilities. The majority of the 
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exception: var recovery: boolean; 
recovery:= false; 

ifresult =1= proper the~ print (result type); 
if nest:> 0 then 
begin 

end; 

while nest> 0 & '" recovery do 
begin . 

end 

using cachbr, copy back S, B, G and Q; 
restore; next:= next + 1; if next < number then 

begin 
push the value of next 
on the stack; 
recovery := true 

end else 
begin print ('recovery block fail'); 

nest := nest-I; 
cachbr:= location of the previous barrier 

end 

if '" recovery then 
begin 

if result =1= proper & nest = 0 then 
begin print (,recovery exhausted'); 

if program = concurrent then 
begin print ('system stop'); 

stop 
end 

end; restore stack; 
return 

end; 

The modified exception handler 

modifications were confined to the interpreter. The size of the original in
terpreter was about 1 K words, the new size is 1 . 8 K words. 

Since it is possible now to develop realistic programs with recovery blocks, 
several interesting questions arise regarding the design and performance of 
such programs (e.g. how should a unit of recovery be chosen? what is the time 
needed for state restoration? etc.). An attempt has been made to answer some of 
these questions elsewhere [10]. However, two results should be of interest to the 
readers of this paper. Firstly, timing measurements taken for a few programs 
without recovery blocks and with recovery blocks (containing from about 5 to 
50 global assignments) indicated that the time overhead for collecting and 
maintaining recovery data for a recovery block ranged from about 1 to 7 per 
cent. Secondly, state restoration time for these programs ranged from 10 to 30 
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per cent of the execution time of the primaries. It is thus seen that, while a 
hardware implementation of caches is the best method, even the simple method 
of implementing caches by software as described here can be quite practical for 
many applications. 
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Fault-Tolerant Sequential Programming 
Using Recovery Blocks 

S. K. SHRIVASTAVA and A. A. AKINPELU 

1. Programming Using Recovery Blocks 

When using recovery blocks [I], it is desirable to structure a program such that 
no unrecoverable operations (e.g. 110) appear within a recovery block - thus 
ensuring that a recovery action will generate a consistent prior state. The figure 
below shows one case where only assignments are recoverable and a large file is 
to be processed (the merge sort example of the next section illustrates this ap
proach): 

copy parts of 
files into --+ process 
program data data 
area 

--+ update 
files 

unrecoverable recoverable unrecoverable 
action action action 

There can be two ways of designing the different algorithms for the primary 
and the alternatives of a recovery block: algorithms that are different but pro
duce identical results (see the median example below) or algorithms for 
alternatives that are designed to provide a degraded service (producing dif
ferent but nevertheless acceptable results, see the stable marriage example). In 
the latter situation the acceptance test can only be as strong as the test needed to 
check the adequacy of the 'weakest' alternative. Sometimes, this may prove 
unacceptable where a stronger test is needed for the primary (or even some of 
the alternatives). The following figure suggests a simple way of including both 
of these tests. 'I' represents the acceptance test and 'Q' represents a stronger test 
for the primary. It is assumed that if 'Q' is false, the primary will fail. 

ensure I by begin . . ; assert Q end else by ... 

2. Experimental Work 

For experimental purposes, the programming language Sequential Pascal was 
extended to include recovery blocks [2]. The code produced by the compiler is 
executed by an interpreter programmed to run on the host hardware (PDPllI 
45). This interpreter was modified to support recovery caches and their as
sociated operations. Thus the relative timing figures to be given later should be 
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No. T1 T2 T3 TL. %TCM %TRC NG NR %C 
0.6 0.62 0.64 1.31 3.33 9.33 30 26.7 

3.8 4.1 9.3 5.3 30.5 138 54 39.1 

0.36 0.4 1.2 1.68 11.1 21.9 58 13.8 
2 

1.8 1.9 5.8 8.3 7.8 31 234 32 13.7 

4.7 4.74 14.3 20.4 1.28 28.3 227 3.5 
3 

39 39.6 118.8 170 1.5 30 482 20 

3* - 4.6 10.5 1.2 25 

37.7 87.7 31.4 

2.05 0.18 2.3 0.7 257 40 15.6 
[, 

16 16.2 2.6 19 307 72 22 

Note: Execution times are given in seconds; TJ - time without any recovery facilities; 
T2 - time for a primary; T3 - time for an alternative; T4 - time with primary failing the ac
ceptance test; %TCM = (T2 - TJ) xIOO/TJ, time to collect and maintain recovery data ex
pressed as a % of Tl; %TRC = (T4 - (T2 + T3))x IOO/TJ, time to restore system state ex
pressed as a % of Tl; NG - number of global variable 'words'; NR - number of words re
corded in the cache; %C = (NRxIOO)/NG. 

taken as indicative of the performance of hardware implemented recovery 
caches. A few programs were written and their performance was evaluated: 

(1) To find the median of n items - The primary algorithm was the 'parti
tion' method, the alternative was a simple scanning method. The acceptance 
test checked that the number of items smaller than or equal to (greater than or 
equal to) the median was at least (n - 1)/2 (see entry 1 in the table; the bottom 
entries are for a larger input data). 

(2) Internal sort - To sort lines of text into alphabetical order. The primary 
algorithm utilised the 'Quicksort' method; the alternative adopted the 'Shell
sort' method. The acceptance test ensured that the lines of text were in ascend
ing order (see entry 2). 

(3) Merge sort - To sort lines of text residing in secondary storage. Parts of 
the file were sorted using internal sort developed earlier, and stored on tem
porary files. These files were then merged to produce a single sorted file. The 
merging algorithm used 'Heapsort' for the primary and 'Quicksort' for the 
alternative (entry 3 shows the performance with the primary of internal sort 
failing while entry 3 * shows the case with the primary of merge failing). 

(4) The stable marriage problem - The primary was chosen to be the optimal 
solution satisfying a certain constraint while the secondary was an algorithm 
that produced the first possible solution. The acceptance test checked that there 
was no 'polygamy' (see entry 4). 

The number of words actually recorded in the recovery cache for the prima
ries was calculated (for every word occupied by a variable, there will be two 
words - address and value - in the cache) and compared with the case of com
plete checkpointing (where the state of all global words will be recorded; note 
that only values need be recorded). The time to evaluate acceptance tests were 
also measured; they turned out to be negligibly small. From the data presented, 
the following conclusions can be drawn: 

113 



(1) Assuming failure to be a rare event, it is important to know the over
heads for recovery data collection and maintenance when no errors are detect
ed. The table shows that % TCM ranged between 1 to about 11 % of n. 

(2) When a primary does fail, it is of interest to know the time taken to re
store system state. For the sample programs, %TRC was up to about 30% ofTl. 

(3) A comparison with complete checkpointing shows that a substantial sav
ing in space was made by the recovery cache. This experiment thus shows that 
recovery caches could provide acceptable recovery performance for many ap
plications. 
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A Recovery Cache for the PDP-11 

P. A. LEE, N. GHANI, and K. HERON 

Abstract - Backward error recovery is an integral part of the recovery block scheme that has 
been advanced as a method for providing tolerance against faults in software; the recovery 
cache has been proposed as a mechanism for providing this error recovery capability. This 
paper describes a recovery cache that has been built for the PDP-II family of machines. 
This recovery cache has been designed to be an "add-on" unit which requires no hard
ware alterations to the host CPU but which intersects the bus between the CPU and the 
memory modules. Specially designed hardware enables concurrent operation of the recovery 
cache and the host system, and aims to minimize the overheads imposed on the host. 

Index Terms - Backward error recovery, fault-tolerant software, recovery blocks. 

Introduction 

While fault tolerance at the hardware level is common in computing systems, 
fault tolerant software, that is, software that can produce acceptable results de
spite design faults in that software, is rare. The recovery block scheme has been 
proposed as a method of introducing redundancy at the software levels in a 
computing system in order to provide tolerance against such design faults. (It is 
beyond the scope of this paper to discuss the details of recovery blocks, 
although a knowledge of the scheme is assumed for this paper. The interested 
reader is referred to [1], [4], [5], [7].) 

Design faults in a program will lead to the generation of erroneous states 
(errors) in the variables of that program. One of the features of recovery blocks 
is that if an error is detected within a recovery block then backward error recov
ery occurs in that the states of the variables of that program are reset to the 
states that existed just prior to entry of that block. By this means, the errors 
generated by the failing algorithm are recovered from and not allowed to 
propagate. In order to support this state restoration, a mechanism termed the 
recovery cache has been proposed for providing the necessary recovery capa
bility in an efficient (and reliable) manner; in its simplest form the recovery 
cache can provide, by hardware, recovery for those variables that reside in the 
main store of the computer. This paper discusses the design of a recovery 
cache which can be incorporated into existing computer systems, and describes 
an experimental version which has been built at the Computing Laboratory of 
the University of Newcastle upon Tyne for the PDP-II family of machines. 

Overview of the Recovery Cache 

The main purpose of the recovery cache is to record recovery data so that back
ward error recovery can be provided for the variables of a program containing 
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device peripherals 

Fig. 1. PDP-II system with recovery cache 

recovery blocks. The basic functioning of the recovery cache is as follows: when 
a recovery block has been entered and an object is about to be written to (for 
the first time), the original value of that object is retrieved and stored away (to
gether with its address) by the recovery cache, before the object is actually up
dated. By this means the recovery cache maintains a minimum of recovery 
data, and backward error recovery simply involves restoring those changed ob
ects using the values and addresses retained in the recovery cache. (Several 
methods have been devised for the implementation of the recovery cache algo
rithms - two examples are presented by Homing et al. [4] and by Anderson and 
Kerr [1].) 

Ideally, the recovery cache would be designed as an integral part of the 
computer's architecture and incorporated in the CPU and memory hardware. 
However, it is also desirable to have a recovery cache that could be added to 
existing computer systems to enable recovery blocks to be used realistically on 
those systems. 

This paper presents the design of an "add-on" recovery cache that 
can be incorporated into an existing system with no changes to the CPU, 
memory or other peripheral device, and will not affect the existing software 
running on that system. Many of the aspects of the design are independent from 
the host system to which it is to be attached. However, for our initial exper
iments the host system is a PDP-II, and this will be assumed in the rest of this 
document. The host-dependent features are discussed elsewhere [6]. 

The way in which the recovery cache is added to a PDP-II system is depict
ed in Fig. 1. The recovery cache intersects the Unibus between the CPU and the 
memory. In this position the recovery cache can monitor all of the CPU activity 
on the Unibus, although it is not able to monitor activity between the memory 
and any other peripheral device (i.e., those to the right of the memories in 
Fig. 1). This would only cause trouble with DMA devices which can 
autonomously overwrite memory. While 110 devices appear as memory lo
cations to the PDP-II CPU and accesses to them could therefore be monitored, 
the state restoration provided by the recovery cache is usually not appropriate 
for achieving recovery from these accesses, for instance, if the access resulted in 
a character being printed on a terminal. A further point to note is that the re
covery cache is not able to directly access the registers which are internal to the 
CPU, namely the program counter, the stack pointer, the program status word, 
and the other six general purpose registers. Direct access to these quantities 
would require alterations to the CPU itself, which was not considered desirable. 
Nevertheless, this is the simplest method of adding the recovery cache to a sys-
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tem and it has been designed to be flexible enough that these problems can be 
circumvented by software extensions to the basic recovery cache mechanism. 

It may also be noted that in this position the recovery cache has to work in 
terms of real addresses. Thus, application programs which made use of overlays 
would be difficult to handle. Similarly, concurrent use of the recovery cache by 
multiple parallel processes would produce extra difficulties. Therefore, for the 
experimental version of the recovery cache, recovery is provided only for a 
single core-resident program, and the recovery cache contains base-limit ad
dress registers to define the (real) addressing range for which recovery is pro
vided. Extensions to the recovery cache mechanism to deal with some of the 
problems mentioned above have been discussed in other papers [2], [3], [7], [8]. 
The incorporation of these extensions with the hardware recovery cache de
scribed here will be investigated in a later phase. 

Host Software Organization 

The software running on the host is divided into two parts: 1) the application 
program which contains the recovery blocks; and 2) a small kernel providing 
some minimal set of operating system-like functions for the application pro
gram. The kernel contains the routines to interface with the recovery cache and 
provides recovery actions for the objects for which the recovery cache cannot 
provide recovery (e.g., saving and restoring the internal registers). Thus, the ap
plication programs do not need to be concerned with the provision of recovery 
nor with some of the finer details of controlling the recovery cache. The kernel 
also generates the error log which indicates the progress of the program, using 
one of the peripheral devices on the host system. 

Figure 2 (a) depicts a high-level language form of a recovery block as it 
might appear in an application program. The execution of this recovery block 
would be as follows: when the recovery block is entered, the primary alternate 
(alt 1) is executed. At the end of the alternate the acceptance test (a Boolean 
expression) is evaluated. If the acceptance test is "true" then the recovery block 
is exited. However, if the acceptance test is "false" then recovery occurs to re
store the state of the program and the second alternate (alt 2) is entered. This 
sequence is repeated until either the acceptance test is "true" or the set of alter
nates has been exhausted. The way in which this recovery block will be repre
sented on the host system is depicted in Fig. 2 (b), where the upper case names 
refer to recovery cache instructions. The semantics of these instructions are dis
cussed below. 

Recovery Cache Instructions 

The recovery cache has been designed to be as automatic as possible and to re
quire a minimum of control from the program that is utilizing its features. For 
example, all of the CPU-memory activity on the Unibus will be automatically 
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ensure acceptance test 

by primary alternate (alt I) 
elseby econd alternate (a lt 2) 

elseby nth alternate (alt n) 
else error; 

(a) 

INITENV(lowaddr, highaddr) 

ENTERRB(n, addr of a lt 1, ... 
addr of alt n); 

alt I: primary alternate; goto at; 
alt 2: econd alternate ; goto at· 

alt n: nth alternate ; go to at· 
at: acceptance test; 

if true then ATPASS 
else RAISEERROR 

E DE V 

(b) 

Fig. 2. Recovery blocks in a program. (a) High-level language format. (b) Low-level language 
format 

intercepted by the recovery cache and will not require nor be dependent upon 
explicit actions by the program. 

To make use of the recovery cache some new "instructions" have to be 
added to the instruction set of the cpu. As alterations to the cpu are to be 
avoided, these new "instructions" are most easily obtained by making the re
covery cache look like a normal Unibus peripheral device which is controlled 
by writing to its status registers. Similarly, parameters to "instructions" are 
passed through device registers. 

In general, operation of the CPU should be held up once an "instruction" 
has been sent to the recovery cache, in order that it has time to complete its ac
tions before the CPU continues. This is not easy to achieve in the present de
sign, and a simple solution involving a "done" bit in the status register has been 
adopted. 

The instructions for the recovery cache reflect the control structure required 
for recovery blocks. The recovery cache cannot easily directly access the pro
gram counter of the CPU; hence most of the desired control structure has to be 
present in the program containing recovery blocks. The proposed instructions 
aim to provide as much assistance as possible from the recovery cache. 

INIT 
This instruction causes the recovery cache to assume an initialized inactive 

state. This effect is also achieved when the "START" key on the host system is 
pressed. 
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INITENV (lowaddr, highaddr) 
For this paper, "recovery environment" refers to that set of memory 

words for which backward error recovery is to be provided when a recovery 
block is entered. This instruction marks the start of a new recovery environ
ment, and causes the recovery cache to store the state of the environment 
it is currently monitoring (e.g., addressing range), and sets the (real) address 
range which is to be monitored when activated by the ENTERRB instruction. 

ENDENV 
This instruction indicates the end of a recovery environment and causes the 

recovery cache to restore its state and restart monitoring the previous en
vironment. 

ENTERRB (number of alts, address of altl, address of alt 2 ... ) 
This instruction indicates the start of a new recovery block. The parameters 

indicate the number of alternates together with their starting address. 

ATPASS 
This instruction, indicating the successful termination of a recovery block 

by the passing of the acceptance test, causes the recovery cache to process and 
discard as necessary the recovery data that it had recorded for the current re
covery block. 

RECOVER 
This instruction causes the recovery actions provided by the recovery cache 

to be invoked. It also causes the address of the next alternate to be made avail
able (see below), or indicates an error if all of the alternates have been attempt
ed. 

RAISEERROR 
This instruction is used to raise an error indication for the currently execut

ing program, and has the effect of initiating the ERRORINT interrupt discussed 
below. 

PRIOR (address) 
This instruction causes the prior value of the variable whose address is 

specified to be made available by the recovery cache. 

Recovery Cache Provided Information 

The following (read-only) information is provided by the recovery cache via its 
registers: 

REC.LEVEL 
The current depth of nesting of recovery blocks. Zero indicates that no re

covery is available. 
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ALT. NUMBER 
The number of the next alternate to be obeyed. 

NEXTADDR 
The address of the next alternate to be entered. 

CACHEDONE 
When set this bit indicates that the recovery cache has completed its actions 

and is ready to receive further instructions. 

Note that these quanties are maintained automatically by the recovery 
cache. Other status and monitoring information will also be provided to enable 
the performance of the recovery cache to be monitored. 

Recovery Cache Generated Intermpts 

Each recovery cache instruction causes an interrupt to be immediately generat
ed in the host system. Thus routines in the kernel of the host can be provided 
and automatically invoked to ensure that the program using recovery blocks is 
properly synchronized with the actions of the recovery cache and, for instance, 
is not resumed until the recovery cache has completed its actions. These in
terrupts also provide the means through which the recovery actions provided in 
the kernel can be invoked to supplement the recovery provided by the recovery 
cache. Some examples of such actions are given below. 

ENTERRBINTERRUPT 
This interrupt is generated from the ENTERRB instruction, and allows for 

kernel-provided recovery data recording to be initiated. For example, the ker
nel can record recovery data to preserve the states of the internal registers. 

ATPASS INTERRUPT 
This interrupt, generated from the ATPASS instruction, can be used to in

voke any processing of kernel-provided recovery actions. For example, the ker
nel can discard the recovery data it had recorded for restoring the internal 
registers. 

ERRORINT INTERRUPT 
This interrupt is generated by the recovery cache to indicate that it had de

tected (or had been informed) that an error condition existed. The interrupt is 
used to force the CPU to initiate recovery actions and enter the next alternate, 
as well as allowing for the initiation of any kernel-provided recovery actions 
(e.g., the restoration of the internal registers). 

The code sequence in the CPU to handle the ERRORINT is of the form as in
dicated in the following (where upper case names refer to the recovery cache 
instructions and information). 
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if REC.LEVEL ~ 0 
then terminate program 
else begin 

perform error logging; 
perform any kernel-provided recovery; 
RECOVER; 
wait for CACHEDONE; 
if REC.LEVEL = 0 
then terminate program 
else begin 

end; 

record recovery data for any 
kernel-provided recovery actions; 
return from interrupt but use 
address specified in NEXTADDR; 
end; 

Recovery Cache Hardware 

The experimental version of the recovery cache is based on an LSI-II micro
computer with a number of special purpose peripherals (see Fig. 3). This re
sults in simple low-cost hardware with many of the functions carried out by 
microprocessor software, and provides a flexible research vehicle which will al
low further studies to be made in optimization of the recovery cache algorithms 
and in extensions of the techniques to more sophisticated environments. 

While there will of necessity be some overheads associated with the recov
ery cache (discussed later on), it is anticipated that the overheads' imposed on 
the host system will be minimal, particularly as use is made of specially de-

I host I 
memory 

-----I 
I r I 

I I 
I I 

: I 
I I 
L __ , _________________________ J 

.......-;:----------- 'I 
/' -----host unibus ____ /'---- bus, --- ---. _ unibus 

processor --- 1 monitor 1 ------- , -(PDP-11) /'---- unit 
/' 

____ /' cache 
cache-host ____ cache-host 

decision 
---- intercommunica tions 

---- unit memory 
-------- unit access unit 

\ I I cache 
processor I Recovery 
Cache recovery cache I 
Device memory 

Fig. 3. Hardware organization of the add-on recovery cache 
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signed hardware to enable concurrent operation of the recovery cache and the 
host system. Moreover, the design of the recovery cache is such that the transfer 
of functions from microcomputer software into hardware could be easily 
achieved in order to reduce further any overheads that the experimental system 
demonstrates. For example, it is envisaged that the LSI-ll could be simply re
placed by a special purpose processor capable of executing the recovery cache 
algorithms at high speed. 

The peripherals shown in Fig. 3 have the following functions. 
1) The CHID (Cache Host Intercommunication Unit) appears to the host 

PDP-II as a peripheral device and provides the interface to the host software as 
described above. It allows the recovery kernel in the host and the recovery 
cache to interact explicitly. 

2) The CHMAU (Cache Host Memory Access Unit) allows the recovery 
cache to access the host memory directly through the normal Unibus mecha
nism. It is used mainly for restoring old values to the memory when recovery is 
invoked. 

3) The BMU (Bus Monitor Unit) performs hardware monitoring of all data 
transfers between the host processor and its memory. It is able to prevent the 
host from writing into a memory location until the old value from that location 
has been saved, as necessary, by the recovery cache. The BMU is transparent to 
the host, and appears to the recovery cache processor as a device which pro
vides a stream of address-value pairs. 

4) The CDU (Cache Decision Unit) is a hardware unit which executes the 
decision process necessary to establish whether an address-value pair should 
be saved in the recovery cache and transfers the data into the appropriate place 
in the recovery cache memory, as necessary. The decision is based on informa
tion contained in 4-bit fields which reside within the CDU, with one field for 
each memory location of the host machine. Currently, the CDU implements 
two different algorithms which interrogate these fields. The algorithm presently 
being investigated uses these fields in a unary-coded fashion, bit n (n = 0, I, 2, 
3) being set if the associated word has already been written to (and cached) at 
recovery level n + 1. This algorithm allows for a maximum nesting of four re
covery blocks. The other algorithm available is that described by Anderson and 
Kerr [l] which uses a binary representation in the fields, thereby allowing up to 
31 levels of nesting of recovery blocks. 

Recovery Cache Operation 

The BMU contains base-limit address registers which are initialized in response 
to an INITENV instruction. When enabled by an ENTERRB instruction, the BMU 
begins monitoring the address and control lines of the host bus. Transfers on 
this bus involving addresses outside the limits are allowed to proceed without 
interference. Otherwise only straightforward read transfers are allowed to pro
ceed and write transfers are intercepted. A write transfer mayor may not re
quire the original value of an object to be saved by the recovery cache (for in-
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stance, an address-value pair may only need recording the first time an object 
is updated; subsequent updates of that object can then be ignored by the recov
ery cache). While this decision process is relatively simple, the time taken for 
its execution may be comparable with the cycle time of the host memory. 
Therefore, in the proposed design this decision process is executed concurrently 
with the read of the original value from the host memory. If an address-value 
pair is to be saved in the recovery cache then the CDU initiates the necessary 
direct memory transfers to store this recovery data in the memory of the recov
ery cache; during this time the write transfer from the host system can be al
lowed to proceed. 

On the Unibus there are in fact two types of write transfer: read -modi
fy-write transfers and simple write transfers. The read-modify-write transfer 
automatically generates the information required by the recovery cache - when 
the memory location is read, the value can be captured by the BMU; the follow
ing write part of the transfer can then be ignored by the BMU. Conceptually, 
simple write transfers have to be delayed by the BMU until the original value 
has been read from memory. In practice, the write transfer is converted to a 
read-modify-write transfer by the BMU to achieve the desired effect. 

Performance Considerations 

The recovery cache slows down the host system in two main ways. Firstly, there 
is the time needed to interpret the recovery cache instructions such as ENTERRB, 

as the application program cannot be allowed to proceed until such instructions 
have been completed. Such instructions are expected to form only a small per
centage of the executed instructions of the application program. Hence, the 
delay caused by their execution should not be significant, although it should be 
noted that the time to interpret the ATPASS and RECOVER instructions will in gen
eral depend on the behavior of the application program. 

The second source of delays are those introduced through the interference 
of the BMU with memory transfer cycles of the host system. These delays are 
more significant as every memory cycle is delayed to some extent. The mini
mum level of degradation is defined by the delays introduced by the address 
and control line checking. In the experimental (nonoptimized) system this delay 
is approximately 100 ns per transfer. 

The BMU performs its saving operations on both read-modify-write and 
pure write cycles that are within the address range defined by the INITENV in
struction; normally only write cycles need to be extended, as explained above, 
resulting in an extra delay of 600 ns on the current host system which contains 
core storage with a cycle time of 900 ns. Monitoring the activity on a PDP-II 
Unibus has indicated that in general approximately 8 percent of transfers are 
write transfers and 2 percent are read-modify-write transfers, figures which 
agree with those published elsewhere [9]. These figures suggest that the extra 
overhead on the host system would be of the order of 8 percent, caused by the 
need to precede each write by a read. If memory with destructive readout is 
used, the fact that a write cycle is converted into a read-modify-write cycle 
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means that the additional delay is less than that incurred by forcing a separate 
read cycle. In this case the extra overhead would be expected to be of the order 
of 4 percent. Of course, these overheads will depend critically on the behavior 
of the application program and these percentage figures only provide a general 
indication of the overheads which it is hoped will occur in practice. 

The above figures assume that the time required to execute the cacheing de
cision and to record the address-value pair is comparable with the time be
tween write transfers on the host system. The monitoring figures discussed 
above indicate that, on average, the time available is equivalent to the time for 
9 memory reads by the host CPU. The CDU has been designed to satisfy this 
criterion. Clearly, if successive write transfers occur on the Unibus then some 
extra delay is inevitable. In practice, most write transfers are followed by at 
least one read transfer (the instruction fetch), and it is therefore anticipated that 
this extra delay will only occur on rare occasions. Further "smoothing out" of 
successive write transfers is achieved by a first-in first-out buffer in the BMU. 

Other performance issues would arise if the host system included a "high
speed" cache - that is, a high-speed look aside buffer. In this case the system 
configuration would be CPU ..... high-speed cache ..... recovery cache ..... 
memory, and the recovery cache would not degrade accesses to the high-speed 
cache. If the high-speed cache was write-through, then these memory writes 
would be caught (and delayed) as described above. If it was not write-through, 
then it is likely that the system degradation caused by the recovery cache would 
be less since a number of writes to the same object would only result (eventu
ally) in a single write to memory. (The host kernel would also require slight 
alteration to ensure that the high-speed cache was flushed out at appropriate 
times, for instance, when a recovery point is established.) 

The high-speed cache and the recovery cache can be regarded as perform
ing related tasks, and could therefore be incorporated into a single device pro
viding both speed-up and recovery [5], [10]. This has not yet been investigated 
in the current design. 

Summary 

This paper has presented the design of an add-on recovery cache and has dis
cussed an experimental version that has been built for a PDP-II host system. 
While the overheads imposed on the host by the recovery cache will depend 
on the behavior of the application program, the paper has shown how the 
delays can be minimized. Measurements of the experimental system will 
indicate where optimizations should be applied, and this will be reported in a 
later paper. 
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Recovery and Crash Resistance in a Filing System 

J. S. M. VERHOFSTAD 

Abstract. This paper describes mechanisms that provide the user of a filing system the dyna
mic facility for defining a scope within which backing out can be done on request. 

Check points (defining the beginning of a new scope) can dynamically be established and 
procedures for 'acceptance' (at the end of the scope) or 'undoing' (within or at the end of the 
scope) can be invoked. These scopes can be nested. 

It is also shown that these mechanisms can be used to provide crash resistance. After a 
crash the system will be left in the state it was in before it entered the current scope (or outer
most scope if scopes are nested). 

Keywords and Phrases: audit trial, backing out, consistency, crash resistance, error recovery, 
fault tolerance, filing system, recovery block, recovery cache (= recursive cache). 

1. Introduction 

This paper presents mechanisms extending earlier work on recovery blocks 
[Randell 75] to include recovery for a filing system. These mechanisms provide 
the user of the filing system the dynamic facility for defining a scope within 
which backing out can be done on request or will be done automatically in case 
an error occurs. 

These same mechanisms can be used to provide crash resistance. 
Earlier research on recovery blocks has concentrated on mechanisms that 

provide recoverability for simple variables, for example integers, reals and 
booleans [Horning et al. 74] [Anderson, Kerr 76]. 

The mechanisms presented here are the result of work that has been done in 
trying to find mechanisms for the implementation of the recovery block scheme 
for more complex data types and for filing systems in particular. A full report 
on the problems encountered and possible alternative solutions has been pub
lished elsewhere [Verhofstad 76]. 

The notion of a recoverable file (or filing system) and recoverability provided 
for a file (or filing system) will be used to mean that the state of that file (or 
filing system) can be restored to the state it was in at the most recent checkpoint 
made at the time of entering the current recovery block, at user request. This 
restoring will be done automatically if an error occurs during the execution of 
the recovery block. Recovery blocks can be nested. 

In order to implement the described recoverable filing system, the filing sys
tem of OS6 [Stoy, Strachey 72 a, b, c, d] has been redesigned. The user interface 
has been kept unchanged. The Computing Laboratory at the University of 
Newcastle upon Tyne possesses a version of OS6, which is running on a B 1700 
computer [Snow 76]. 

Section two gives definitions for the most important notions used in this 
paper. 
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Section three describes those circumstances in which the scheme will be use
ful and illustrates this with a brief example. 

Section four describes the basic strategy used for providing a recoverable 
filing system. 

Section five describes a specific implementation of a recoverable filing sys
tem. This example is used to illustrate the principles. 

Section six describes the recovery mechanisms. The implemented filing sys
tem described in section five is used to illustrate these mechanisms. 

Section seven describes the role of redundancy in systems in which recovery 
as described in this paper is to be provided. 

Section eight describes how the recovery mechanisms can also be used to 
maintain consistency and provide crash resistance. 

Section nine gives the main conclusions. 

2. Definitions 

A recovery block is a program structure consisting of an acceptance test and sev
eral alternative pieces of program. The alternatives are algorithms which are 
implementations of the same abstract specifications. The state of the system at 
entering a recovery block is the state to which the system will be "rolled back" 
in case an error occurs inside the scope of the recovery block or if the cor
responding acceptance test fails. The first alternative will be executed when the 
recovery block is entered. If the execution of this alternative ends normally then 
the acceptance test will be performed. After an acceptance test has been per
formed successfully the state of the system at the time the recovery block was 
entered is forgotten and the recovery block is exited. If the acceptance test fails 
or an error occurs during the execution of a given alternative then all the opera
tions done in the latest or current alternative will be undone (i.e. the alternative 
is backed out) and the next alternative will be invoked. If there are no remain
ing alternatives then an error occurs. 

Recovery blocks can be nested so commitment of the operations only takes 
place when the outermost recovery block is exited. If an inner recovery block 
exhausts its alternatives then the current alternative of the recovery block in 
which this will generate an error, will be backed out and the next alternative of 
that recovery block will be invoked. 

The acceptance test has no side-effects and is specified by the writer of the 
program. The acceptance test may test whether the abstract specifications were 
met by the alternative just executed. The acceptance test does not have to be 
complete (i.e. test all the effects of the alternative). 

The use of a recovery block ensures the programmer that if the current 
alternative is not executed successfully either because the acceptance test fails 
or because a hardware or software error occurs before the execution of the cur
rent recovery block alternative is finished, then all the effects of the current re
covery block will be undone. An acceptance test fails if the recovery block 
alternative did not perform as intended. 
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A full description of an interpreter providing the recovery block control 
structure (a fault tolerant interpreter) has been published elsewhere [Randell 
75]. 

The term cache will be used to include the storing of any data to aid later 
recovery. Cacheing in the fault tolerant interpreter developed in Newcastle upon 
Tyne is simply done by storing the value of a variable (as it was at the check
point, i.e. the time of entering the recovery block) before it is updated. This on
ly needs to be done the first time a variable is updated within a recovery block 
alternative [Homing et al. 74]. The data structure in which cached information 
is kept is called the recovery cache (or recursive cache). 

The term 'recovery block' will be used in this paper to define the scope 
within which the user can require the undoing of the filing system operation 
performed so far inside that recovery block. The mechanisms described are 
general and not necessarily implemented in terms of recovery blocks. 

3. The Advantages and Applicability of the Recovery 
Mechanisms 

This section describes those circumstances in which the described mechanisms 
can be used and illustrates their applicability and usefulness in an example. 

The recovery scheme described has been implemented in a system support
ing a single user at a time. The implementation of the scheme in systems with 
multiple concurrent updates by simultaneously executing processes is outside 
the scope of this paper. Randell [Randell 75] has shown that recovery in those 
cases in general may lead to the so-called 'domino'-effect; this is the backing 
out of all the processes involved plus all the processes that share data with these 
processes and so on. A locking scheme possibly providing degrees of consis
tency, as for example is used in System R [Gray et al. 76], could be used to solve 
or avoid these problems. 

The scheme described in this paper provides the general recovery block fa
cilities to users of the filing system. The advantages, use of and applicability of 
recovery blocks, in general, have been described elsewhere [Homing et al. 74] 
[Randell 75]. 

Acceptance tests could for example be used to test the continued validity of 
invariants or predicates after relevant objects have been operated upon (see for 
example the invariants and predicates as used in ALPHARD [Wulf et al. 77] 
and SEQUEL [Astrahan et al. 75]). In systems manipulating complex data types 
several type mappings are generally defined. This may mean that procedures 
implementing operations on the most abstract types involve procedures on less 
abstract types and so on. Each of these procedures may contain recovery blocks 
thus checking consistency at all levels of abstraction. 

For example, in a relational data base system an invariant for a relation 
may have been specified. Operations on this relation may be performed inside 
recovery blocks which check the continued validity of the invariant. However, 
unknown to the user, the system may maintain and use several inversions (these 
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are auxiliary diectories, see for example the use of inversions in the PRTV re
lational data base system [Verhofstad 76a]). An update of the relation will cause 
the inversion to be updated. The procedure implementing the update of the re
lation may invoke another procedure which updates the possibly existing inver
sions. Both procedures may contain recovery blocks, causing the nesting of re
covery blocks. If an update of the inversions goes wrong then the effects of that 
operation will be undone and an alternative will be tried. If none of the alterna
tives is successful, for whatever reason, then all of the effects of the update of 
the relation so far, will be undone and an alternative to this operation will be 
tried. The second alternative of the operation that updates the relation could 
for example, first destroy all the inversions; this would not affect the abstract 
view provided. 

4. The Basic Strategy 

The updates for the filing system are made in such a way that the state of the 
filing system can be restored to what it was at a certain programmer deter
mined point (i.e. at the point of entering the current recovery block). The way 
in which this has been implemented is as follows: 

A file consists of a collection of data pages in which the contents of the file 
are stored. 

Whenever a file is updated, the pages to be updated are copied into newly 
allocated pages and the updates are made there. In this way two versions of the 
file are kept, whose pages can be shared where possible. (This scheme could be 
regarded as a variation of the scheme using differential files as described by 
Severance and Lohman [Severance, Lohman 76].) If the operations pass an ac
ceptance test (i.e. the acceptance procedure is invoked) then the original copies 
(i.e. pages which are not shared with the new versions) can be destroyed. lethe 
operations fail the acceptance test (i.e. the undoing procedure is invoked) then 
the same will be done for the new versions and the files will be restored to what 
they were when entering the recovery block. 

Obviously more than two copies can be maintained in case several recovery 
blocks are nested. 

The general principles upon which the filing system and mechanisms are 
based are: 
1) A minimum of information is to be kept in order to restore the state of the 

filing system (as seen by the user) to the state it was in at recovery block en
try. 
The information must be sufficient to restore the state no matter which 
operations have been performed in the meantime. 
Consequently an audit trail scheme or "reverse audit trail" scheme, which 
keeps track of the operations performed and executes the reverse operations 
in the reversed order in which the original operations were performed, are 
unsuitable. Recovery is to be linked with data structures and values rather 
than with operations. 
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2) Cacheing is to be done at the appropriate level. For example for file bodies, 
disk blocks are cached rather than disk words. 

3) The original cache scheme updates all objects "in place" and old values of 
those objects are cached [Horning et al. 74]. While appropriate for simple 
data types (e.g. integers), the following strategies are so.metimes more ap
propriate for complex data types: 

a) Leave the original values' in the original objects and copy the new val
ues into new objects the first time these objects are assigned to inside a re
covery block. 

b) Cache the name (i.e. a pointer) of the copy. 
c) Do not cache the objects but retain enough information in the cache to 

retrieve the original values of the objects at recovery block entry. 
4) An alternative scheme which provides crash resistance does not cache the 

old values of objects (or names or pointers) when it is first altered, but 
caches the new value instead, leaving the originals unchanged. Subsequent 
assignments are redirected to affect the cached values rather than the orig
inal values. Unlike the original scheme (3), reads, as well as writes trigger a 
search through the cache. 

5. The Structure of the Recoverable Filing System 

Files are regarded as sequences of consecutive words which can have any pos
sible value. 

User programs running under OS6 may create files and destroy files. Files 
can also be freely assigned to variables, and be passed as parameters or be the 
result of a function call within a single program. 

A bottom-up description of a file is given below (see also Fig. 1): 

- The file body. 
A file body consists of a hierarchical structure of data pages and one or more 
directory pages. A directory page is used to point to data pages or lower level 
directory pages. Both a directory page and a data page occupy one disk block 
each. 

- The header. 
For each file there is a unique header which contains general information 
about the file, such as: address top directory, date last accessed and owner. 
These headers have a variable length and are kept in a special file: the header 
file. 

- The file index. 
Each file is associated with a unique index in a table which contains the ad
dresses of the headers for all files in the system (an address is a tuple: page in 
header file, offset). This table is c-alled the Master File List and is kept in a 
special file: the MFLfile. 
The disk address of the first page of the MFL file is known by the filing sys
tem (a constant which is initialised when the system is set up and is built in 
the code). 
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:- MFL-file Header-file 
*address first 
page MFL. "'''-'U 

lJ 
i user-
codes 

* system lJ index ® 
CD 

"usercodes" 

Index File System Index 

® i usercodes 
"USER CODES" 

file name index file 

USER NAME 

CD 

~----------------~----------~® 
The two variables marked by a '.' are known to the system and set during system initialisation. 
The value 'current index' is set when the user logs on, so after that the search for a user file 
starts in MPL from 'current index'. 
Accesses 1 - 6 are made when a user logs on in order to set up the current index. 
Accesses 7 - 11 are made when the current user wishes to access one of his files. 

Fig. 1. The structure of the prototype filing system 

- A file name. 
In order to be able to use a file in other programs index files are used to as
sociate names with file indexes. The System Index is the index file which 
contains all the entries for all system files. The file index of this file (the sys
tem index) is known to the filing system (a constant initialised when the sys
tem is set up and is built in the code). 

6. The Recovery Mechanisms 

In order to provide recoverability for files the following two aspects are re
quired: 
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i) The file operations must be such that their effects can be undone, in case 
they are performed inside a recovery block. In other words cacheing of 
operations must be done. 

ii) Acceptance and undoing mechanisms must be provided in order to process 
the cached information when an acceptance test has been successful or has 
failed respectively. 
These two aspects are described below: 

6.1 Updating and Cacheing 

Updating and cacheing of files is done using a technique which is similar to the 
"careful replacement" technique which is used in several systems [Newell 72] 
[Gamble 73] [Giordane, Schwartz 76] to minimise the chance of being left with 
an inconsistent filing system in the event of anything going wrong. 

As mentioned above, two versions of a file are kept when it is operated 
upon inside a recovery block. The versions overlap in sharing unchanged pages. 
A table is kept by the system to keep track of which pages belong to the new 
version only, and which pages they replace in the original version (if any, see 
below). This table is called the page cache. 

For reasons described below the MFL-file and header file are treated dif
ferently. Whenever a file is created, destroyed or updated an entry is placed in 
the MFL-cache. Similarly a header-cache is used to store entries when headers 
are created, destroyed or updated. 

The pages of the original versions of files which are not shared with new 
versions plus the three caches form all the cached information in the filing sys
tem. 

A description of the way in which updating and cacheing, inside a recovery 
block, is done in the filing system is given below: 

After a recovery block has been entered each first operation ona file body 
data page is done as follows: 
i) The data page is copied into a new disk page and the change will be made 

in this new page. 
(This is for the case when a data page is updated; the file can also be ex
tended by a data page in which case that new page is the newly created one. 
When a data page is deleted from a file, that data page will remain un
altered and not be copied into a new page). 

ii) The same is done for the directory page pointing to the original data page 
(or for the directory in which a pointer is to be added or deleted in case a 
data page has been newly created or deleted respectively). 
Higher level directories are treated the same way. 

iii) For each replaced page the tuple (old page i, new page j) is put in the 
page cache. If the old page is to be deleted or the new psge has been newly 
allocated then new page j will have the value "deleted" and old page i will 
have value "new" respectively. 

iv) a change in a file within a recovery block causes its top directory to be 
changed. Consequently the header of the file has to be changed. If the head-
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er file is to be treated as an ordinary file then this means that the disk page 
in which the header is stored (in the header file) is to be updated by re
placement. As a result of this the addresses of other headers in that replaced 
disk page of the header file change. The header of the header file also 
changes as a result of this and consequently several other headers may get a 
new begin address. This means that for all these headers the MFL entries 
will have to be changed. If the MFL file is treated .as an ordinary file then 
this implies that all pages in MFL in which an entry is to be changed, have 
to be replaced. Obviously the header of the MFL-file also has to be chang
ed and again the header file must be changed. 
Thus each first change on the filing system within a recovery block may 
cause a large part of the filing system to be replaced. 
In order to avoid this the MFL-file and header file are treated differently. 
The header of the changed file is copied into a header-cache, and the new 
value of the address of the new top directory is placed in that header in the 
cache. 
Similarly the MFL-cache is used to contain tuples (file index, tag), where 
"tag" has value "changed", new or "deleted". 
The following notes on this scheme can be made: 

- The original files are unaltered on disk. The new versions are defined by the 
new headers kept in the header cache. Consequently the access path defi
nition as shown in Fig. I is changed to include a search for a header in the 
cache before trying to read it from disk. 

- A minimum of information is kept in caches as outlined in section 4. If a 
page i has been updated within a recovery block and therefore been replaced 
by page j, then every subsequent change to page j (within the same recovery 
block) can be done straightaway because it already belongs to the new ver
sion. Similarly if a file is created and subsequently destroyed within the same 
recovery block then no cached information about the file will remain in the 
cache. 

- Under certain circumstances (i.e. if on average only a few words per page are 
updated) file words could be cached rather than file pages. It could also be 
feasible to cache directory entries like headers, instead of replacing complete 
directory pages. At present this is not done, but suggests two points which re
late to the level of cacheing. These points are: 

1) A methodological one, namely: it appears that from some level onwards 
in a multi-level data structure, recoverability must be provided per type 
rather than per physical object used [Verhofstad 76]. 

2) An efficiency issue, namely: It may be useful to allow the cacheing strat
egy to vary, depending upon the circumstances in which objects of the multi
level data type are used. 

6.2 Acceptance and Undoing Mechanisms 

The processing of the caches and the files at the end of a recovery block is de
scribed below. 
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This assumes that no cacheing occurs between the execution of the inner test and outer test. 

Fig. 2. Page cache processing: an example 

One little note has to be made first, namely that a barrier is placed in the 
caches each time a new recovery block is entered. Thus at the end of the recov
ery block the information in the caches subsequent to the latest barrier will be 
processed. 

I The page cache 
The page cache is used to free pages (and update the file containing the list of 
free pages). It is important to note that changes to the file containing the list of 
free pages are not cached. The page cache is processed, at the end of a recovery 
block, as follows (see also Fig. 2). 
i) In case the acceptance test failed (backing out is wanted and the undoing 

procedure is invoked): 
All the "new pages" in the tuples <old page, new page> up to the latest bar
rier in the cache are freed. 
The cache is cleared up to the barrier. 

ii) In case the acceptance test was successful (the acceptance procedure is in
voked). 
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a) In case the outermost recovery block is exited (recovery blocks can be 
nested): 
All the "old pages" in the tuples (old page, new page) in the cache are freed. 
The whole cache is emptied. 

b) In case an inner recovery block is exited: 
The latest barrier is removed and all the tuples are moved up. Pairs of tuples 
up to the next barrier are combined as follows: 
Tl) (page 1, page 2) & (page 2, page 3) = (page 1, page 3) 

page 2 is freed. 
T2) ("new", page I) & (page 1, page 2) = ("new", page 2) 

page 1 is freed. 
T3) (page 1, page 2) & (page 2, "deleted") = (page 1, "deleted") 

page 2 is freed. 
T4) ("new", page 1) & (page 1, "deleted") = page 1 is freed. 

II The header cache 
If the acceptance test failed then the cache is emptied upto and including the 
barrier. 

If the acceptance test was successful and the outermost recovery block is 
exited then the header file is updated to contain the new values of the headers 
cached. 

If the acceptance" test was successful and an inner recovery block is exited, 
then the latest barrier in the header cache is removed and headers just move up. 
If the same header appears both before and after the barrier, but after the next 
latest barrier, the earlier header in the cache is replaced by the most recent one. 

III The MFL-cache 
The MFL-cache is processed like the header cache. The MFL-file is updated if 
the acceptance test of the outermost recovery block has been successful. The 
cache is emptied upto and including the next barrier if the acceptance test was 
unsuccessful. If an inner recovery block is exited and the acceptance test was 
successful then the cached entries are moved up like headers in the header 
cache. Cache entries are combined as follows: 
T5) (i, "new") & (i, "changed") = (i, "new"). 
T6) (i, "new") & (i, "deleted") = nothing. 
T7) (i, "changed") & (i, "changed") = (i, "changed"). 
TS) (i, "changed") & (i, "deleted") = (i, "deleted"). 

Final remarks 
- The given design and definition of files is rather neat in the sense that many 

versions of a file can be kept without any unnecessary duplication of infor
mation or messy definition of files. Each version has the same structure and 
is defined by its index and header. 
The mechanisms described provide the recoverability as required. 

- Files are regarded as globals for each program, even if they are created inside 
an inner block. So only when the outermost recovery block acceptance test 
has been successful is the file system on disk updated. This is because files 
are components of a filing system, which is global. 
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7. The Role of Redundancy 

It appears to be important to make sure that redundant information is always 
used as 'hints' [Lampson 75]. Hints are redundant data items which are always 
checked against some 'absolutes' and are used to optimise the efficiency of 
operations on data structures. In other words the correct working of programs 
will never depend on the correctness of hints. Hints are solely used to improve 
the efficiency of the implementation. For example pointers in data pages could 
be used to link the pages in order to make a linear search more efficient. If 
these links would always have to be correct (i.e. not used as hints) then this 
would mean that if a given page is replaced because of an update inside a re
covery block, then the page pointing to the given page has to be updated too. 
Consequently this page has to be replaced and therefore the page pointing to it 
requires updating, and so on. So a whole chain of pages would have to be up
dated, which is of course unacceptable. Again alink-cache could be maintained 
to contain the changed links, however this would make the definition of files 
very messy. So far no mechanisms are known to implement these kinds of 
schemes neatly. 

8. Maintaining Consistency and Providing Crash Resistance 

8.1 Crash Resistance 

The consistency this paper is dealing with simply requires that user operations 
must completely and correctly be performed or not be performed at all, no mat
ter when a system crash occurs. 

The kind of consistency this paper is dealing with is explained by the fol
lowing example: 

If a header is partially in disk page x and partially in disk page y, the situ
ation whereby x has been updated and y has not been updated yet and a sub
sequent crash occurs leaving the header in neither its original nor in the new 
state, must be impossible. 

Crashes are classified in either one of the following three classes: 

1) No disk page is corrupted. For example if the system crashes while no disk 
write is in progress. 

2) One disk page is corrupted. For example if a disk write is interrupted or is 
unsuccessful. 

3) More than one disk page are corrupted. For example because of a head 
crash or the disk head does not position itself correctly or the operating sys
tem gets tied up and goes on writing to disk for a while. 
The only way in which recovery from crashes of class 3 is possible is by 

keeping back-up versions of files. Good descriptions of a widely used method 
for filing systems and data bases, i. e. incremental dumping and audit trail 
schemes, are given elsewhere [Daley, Neumann 65] [Fraser 69] [Bjork, Davies 
72] [Bjork 74], see also the annotated bibliography in [Tonik 75]. 
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If a system can cope with crashes of class I and 2 then it is called crash resis
tant. 

8.2 The Critical Updates 

If the filing system, as described above, is updated inside a recovery block then 
only some free pages will be used to contain new values of data and directory 
pages, but the filing system will remain unchanged, because the MFL-file and 
header file remain unchanged. Consequently if a crash of class I or 2 will occur 
inside a recovery block then the filing system will remain unchanged and left 
behind in the state it was in before the outermost recovery block was entered. 
The filing system is only updated when the acceptance procedure of the outer
most recovery block is executed. The header and MFL-entries are updated "in 
place". This updating is called the critical update. If this update goes wrong or 
is interrupted then the filing system can be left in an inconsistant state. 

Several approaches to this problem are possible, some of these are discussed 
below: 
a) The principle of majority voting could be used for the MFL-file and header 

file (see [Sklaroff 76] for a good application of this principle). 
b) By using extra levels of indirection the amount of information to be updated 

"in place" can always be reduced to one object (see also [Newell 72]). This 
object in the described filing system would be "first page MFL-file", which 
would thus become a variable rather than a constant which could be built in 
the code. This one object has to be updated "in place" and this could be 
done in several ways, for example: 

i) Use majority voting. 
ii) Show probabilistically that the system can afford to take the risk to up

date it "in plane". 
iii) Use an external device or type the new value on the console before up

dating the constant. 
c) The probability of a crash occuring during the critical update may be so 

small that we can afford to do this critical update "in place". If a crash does 
occur during this critical update then it will be treated as a class 3 crash. 
(Strategy c) has been chosen in the implemented filing system described 

above. 

9. Conclusions 

Cacheing and updating mechanisms that provide the user with the facility to 
define scopes within which the filing system can be backed out on request (i.e. 
if an acceptance test fails) have been presented, and have been implemented 
successfully as described in this paper. 

The kind of information cached and the way in which updates are made ap
peared to be of extreme importance if recoverability is to be provided in a 
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reasonably efficient way, and if consistency of the data structures after a crash 
are to be guaranteed. 

The system on disk is always kept in a consistent and coherent structure. 
Only during the critical update the structure may be in an inconsistent state. 
Several possible solutions to this problem have been discussed. 

It appeared that from a certain level onwards in a multi-level data structure, 
cacheing has to be done "per type" rather than "per physical object" used for 
the implementation of the multilevel data structure. 

Crash resistance is provided by never updating original versions of files. In
stead the file bodies are copied and the new copies are updated. The versions of 
file bodies thus created overlap in identical data and directory pages. A new file 
header for the file, pointing to the most recent version of the file body, is kept 
in a cache. 
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Chapter 3 
Exception Handling 

Introduction 

The recovery block approach discussed earlier is a means of coping with residual 
software faults in a system. Manifestation of such a fault can cause the program 
module under execution to produce an unexpected and undesired response. The 
possible responses obtainable from a module can be classified as: (i) expected 
and desired; (ii) expected and undesired; and (iii) unexpected and undesired. 

To investigate this topic further, assume that the software system under con
sideration is structured as a hierarchy of modules with well-defined interfaces. 
When a module calls a procedure exported by a lower-level module, then either 
that call terminates normally (the expected desired response is obtained) or an 
exceptional return is obtained (which could be either expected and undesired or 
unexpected and undesired). A module should in general contain exceptional al
gorithms to cope with such undesirable events. During the design of a module 
we should carefully analyse the cases that could prevent the module from pro
viding the normal desired services. Specific exception handlers can then be pro
vided to deal with these exceptions. 

There can be two situations under which control can pass to the exceptional 
part of a module: (i) the aforementioned case, when an exceptional return is ob
tained from a module called by this module; and (ii) a Boolean expression in 
the normal part of the module - inserted specifically for detecting an exception 
- evaluates to true. If despite the occurrence of such exceptions the module 
provides a normal service to its caller, then we say that the exceptions have 
been masked. On the other hand, if an exception cannot be masked then a spe
cific exceptional return is made to the caller of the module. 

It is certainly possible to write specific exception handlers for coping with 
expected undesired events, but what strategy should be adopted for dealing 
with events that were not expected? A sensible approach is to provide a default 
exception handler that undoes any side-effects produced by the program and 
then either signals a fail exception to the caller of the module or invoke~ an 
alternative program in an attempt to mask the exception. The similarity with 
the recovery block approach is not accidental. Indeed it is possible to define the 
semantics of recovery blocks in terms of the exception handling framework pre
sented here. (The recovery block notation is in fact really just a convenient 
means of expressing the implied default exception handling.) 

In the first paper of this chapter, Melliar-Smith and Randell explore this re
lationship between exception handling and recovery blocks and present a 
simple example to illustrate the complementary roles of programmed exception 
handling and recovery blocks. In the second paper Cristian presents a rigorous 
treatment of this subject. In particular he defines the standard domain, SD, of a 
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program such that execution of the program beginning in a state in SD, termi
nates with the intended standard result. If the program is executed with the 
initial state not in SD, then obviously the standard service may not be obtained 
(an exception will occur during its execution); the set of such input states is 
termed the exceptional domain, ED. The designer's task is to ensure that even if 
a program is invoked with its initial state in ED, it still provides a specified ex
ceptional service. The exceptional domain ED can be subdivided into the an
ticipated exceptional domain, AED, and the unanticipated exceptional domain, 
UED (see the figure). If a program is invoked with its initial state in AED 

AED 
SD 

UED 

(UED) then an expected exception (unexpected exception) will occur. In the 
third paper of this chapter, also by Cristian, these ideas are applied to the de
sign of abstract data types such that the operations provided by a data type are 
total (i.e. so that invocation of a given operation always terminates with either a 
standard or an exceptional service return). Proof techniques are presented for 
proving the correctness of programs constructed from such 'robust' data types. 

An important problem encountered during the design of a program is that 
of how to determine where to insert checks for the detection of exceptions. Sup
pose the set ED for the program in question is known. Then in principle it is 
possible to insert a test at the beginning of the program to determine whether 
the program has been invoked with its state in ED. However, such a test may be 
as complex as the program itself. Hence it is desirable to design simple tests 
that are inserted at appropriate places within a program. In the fourth paper of 
this chapter, Best and Cristian discuss, for a given program and its specifi
cation, how the sets SD and ED can be determined and where to insert tests for 
the detection of exceptions. A runtime test should also be precise: it should be 
true iff the program has been invoked with its state in ED. The authors develop 
a mathematical framework based on the 'relational semantics' of programs and 
present a simple but practical example to illustrate their approach. 

The last paper, by Anderson and Witty, is also concerned with the design of 
programs that terminate as specified. They propose the following methodology: 
when a program is designed and constructed in an attempt to meet its specifi
cation P, its designer should at least establish rigorously the 'safeness' of that 
program to meet a weaker specification Q expressed as 'P or error ( )' where 'er
ror ( )' indicates an exceptional response. Experience gained from practical ap
plications of safe programming lead authors to conclude that "safeness-directed 
program design and construction really works". 
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Software Reliability: 
The Role of Programmed Exception Handling 

P. M. MELLIAR-SMITH and B. RANDELL 

The paper discusses the basic concepts underlying the issue of software reliability, and argues 
that programmed exception handling is inappropriate for dealing with suspected software er
rors. Instead it is shown, using an example program, how exception handling can be combined 
with the recovery block structure. The result is to improve the effectiveness with which prob
lems due to anticipated faulty input data, hardware components, etc., are dealt with, while 
continuing to provide means for recovering from unanticipated faults, including ones due to 
residual software design errors. 

1. Introduction 

Discussions of software reliability are frequently marred by misunderstandings 
arising from incompatible preconceptions and terminology - for example some 
people have equated the terms 'software reliability' and 'program correctness' 
while others have assumed that 'software reliability' encompasses such concerns 
as the design of appropriate forms of system response to invalid input data. 

The purpose of the present paper is twofold - to propose a set of terms and 
their definitions which might obviate further misunderstandings, and to discuss 
the relevance of programmed 'exception handling' to the problem of coping 
with residual design errors (or 'bugs') in programs. 

Our informal, but hopefully precise, definitions are based closely on those 
given in [5]. To avoid needless specialisation the terminology is defined in gen
eral terms, and is not specific to computer programs. Rather it is relevant to all 
types of system, hardware as well as software. The terminology we use is in
tended to correspond broadly to conventional usage, but the definitions of some 
of the terms differ from previous practice, which typically has paid little at
tention to design inadequacies as a potential source of unreliability. 

2. Systems and Their Failures 

We define a system as a set of components together with their interrelation
ships, which system has been designed to provide a specified service. The com
ponents of the system are themselves systems, and we term their interrelation
ships the algorithm of the system. There is no requirement that a component 
provide service to a single system; it may be a component of several distinct sys
tems. The algorithm of the system is however specific to each system individu
ally. 

This definition of 'system' with its insistence that the service provided must 
be specified (but not necessarily prespecified), is intended to exclude systems 
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which are "intelligent" in the sense of being capable of determining their own 
goals and algorithms. At present intelligent systems are not understood suf
ficiently to permit consideration of their reliability. 

The internal state of a system is the aggregation of the external states of all 
its components. The external state of a system is the result of a conceptual ab
straction function applied to its internal state. During a transition from one ex
ternal state to another external state, the system may pass through a number of 
internal states for which the abstraction function, and hence the external state, 
are not defined. The specification defines only the external states of the system, 
the operations that can be applied to the system, the results of these operations, 
and the transitions between external states caused by these operations, the in
ternal states being inaccessible from outside the system. 

The service provided by a system is regarded as being provided to one or 
more environments. Within a particular system, the environment of a given 
component consists of those other components with which it is directly inter
related. 

Afailure of a system occurs when that system does not perform its service in 
the manner specified, whether because it is unable to perform the service at all, 
or because the results and the external state are not in accordance with the 
specifications. A failure is thus an event. There is however no implication that 
the event is actually recognised as having occurred. For example, if an en
vironment does not make full use of the specifications of a system (i.e. if what 
Parnas [6] terms the environment's 'assumptions' are a proper subset of the 
specifications) certain types offailures will have no effect. 

3. Errors and Faults 

In contrast to the simple, albeit very broad, definition of 'failure' given above, 
the definitions we now present of 'error' and 'fault' are not so straightforward. 
This is because they aim to capture the element of subjective judgement which 
we believe is a necessary aspect of these concepts, particularly when they relate 
to problems which could have been caused by design inadequacies in the algo
rithm of a system. 

We term an internal state of a system an erroneous state when that state is 
such that there exist circumstances (within the specification of the use of the 
system) in which further processing, by the normal algorithms of the system, 
will lead to a failure which we do not attribute to a subsequent fault. (The sub
jective judgement that we wish to associate with the classification of a state as 
being an erroneous one derives from the use of the phrases "normal algo
rithms" and "which we do not attribute" in this definition - however further 
definitions are required before these matters can be discussed properly.) 

The term error is used to designate that part of the state which is "incor
rect". An error is thus an item of information, and the terms error, error de
tection and error recovery are used as casual equivalents for erroneous state, 
erroneous state detection and erroneous state recovery. 
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Afault is the mechanical or algorithmic cause of an error, while a potential 
fault is a mechanical or algorithmic construction within a system such that (un
der some circumstances within the specification of the use of the system) that 
construction will cause the system to assume an erroneous state. It is evident 
that the failure of a component of a system is (or rather, may be) a mechanical 
fault from the point of view of the system as a whole. 

Hopefully it will now be clear that the generality of our definitions of fail
ure and fault has the intended effect that the notion of fault encompasses such 
design inadequacies as a mistaken choice of component, a misunderstood or in
adequate specification (of either the component, or the service required from 
the system) or an incorrect interrelationship amongst components (such as a 
wrong or missil)g interconnection, in the use of hardware systems, or a program 
bug in software systems), as well as, say, hardware component failure due to 
agemg. 

Note that the definition of an erroneous state depends on the subdivision of 
the algorithm of the system into normal algorithms and abnormal algorithms. 
These abnormal algorithms will typically be the error recovery algorithms. 
There are many systems in which that subdivision, and hence the designation of 
states as erroneous, is a matter of judgement. 

For example, in a storage system utilising a Hamming Code, one may re
gard the correction circuits as error recovery mechanisms and a single incorrect 
bit as an error. Alternatively (particularly with semiconductor storage) the cor
rection circuits may be regarded as normal mechanism, and thus a single in
correct bit would not be regarded as an error, though two incorrect bits would 
be. 

Note also that a demonstration that further processing can lead to a failure 
of the system indicates the presence of an error, but does not suffice to locate a 
specific item of information as the error. Consider a system affected by an al
gorithmic fault. The sequence of internal states adopted by this system will di
verge from that of the "correct" system at some point, the algorithmic fault be
ing the cause of this transition into an erroneous state. But there can be no 
unique correct algorithm. It may be that anyone of several changes to the al
gorithms of the system could have precluded the failure. A subjective judge
ment as to which of these algorithms is the intended algorithm determines the 
fault, the items of information in error, and the moment at which the state be
comes erroneous. Some such judgements may of course be more useful than 
others. 

The significance of the distinction between faults and errors may be seen by 
considering the repair of a data base system. Repair of a fault may consist of 
the replacement of a failing program (or hardware) component by a correctly 
functioning one. Repair of an error requires that the information in the data 
base be changed from its currently erroneous state to a state which will permit 
the correct operation of the system. In most systems, recovery from errors is re
quired, but repair of the faults which cause these errors although very desirable 
is not necessarily essential for continued operation. 
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4. Fault-Tolerant Computing Systems 

A system can be designed to be fault-tolerant by incorporating into it abnormal 
algorithms which attempt to ensure that occurrences of erroneous states do not 
result in later system failures. The degree of fault-tolerance will depend on the 
success with which erroneous states corresponding to likely faults are identified 
and detected, and with which such states are repaired. 

The software of a computing system serves to structure that system by ex
pressing how some of the storage locations are to be set up with information 
which represents programs. These will then control some of the interrelation
ships amongst hardware components, for example, that the potential communi
cation path between two 110 devices via working store is actually usable. Such 
software can of course be designed so that the computing system as a whole is 
tolerant of faults due to certain types of hardware failures. 

However the software can itself be viewed as a system, and its components 
and their interrelationships discussed in terms of the programming language 
that was used to construct it. Thus in a block-structured language each block 
can be regarded as a component, which is itself composed out of, and expresses 
the interrelationships amongst, smaller components such as declarations and 
statements (including blocks). 

The only faults that can be present in a nonphysical system such as a soft
ware system are algorithmic faults. However from the earlier discussion of such 
faults, it will be seen that the term covers much more than 'conventional' pro
gram bugs. 

Algorithmic faults arise from unmastered design complexity, and can of 
course exist in the hardware as well as the software of a computing system. 
However due to such matters as the differing relative costs of modifications to 
hardware and to software, it is traditional for very complex design issues to be 
relegated to the software area, where they all too often give rise to algorithmic 
faults. 

The idea of attempting to design computing systems which can tolerate al
gorithmic as well as mechanical faults is fairly novel. There is a tendency to as
sume that delivered hardware is free from algorithmic faults, and that what is 
needed is a means of ensuring that the software is also free from such faults -
research to this end includes that on formal specification and validation of pro
grams, and on methodologies for program testing and debugging. (Incidentally, 
the general assumption that hardware designs are correct may well not survive 
for much longer, given the ever increasing complexity of function that is being 
incorporated into a single LSI chip!) 

In our research at the University of Newcastle upon Tyne on system re
liability [1, 4, 5, 8] we have adopted as a basic premise that all large scale com
puting systems at all times contain multiple potential faults, and that these will 
include algorithmic as well as mechanical ones. There will be faults in the hard
ware, in the peripherals and in the operating system, in the logic design and in 
the hardware components, in the basic systems design, in the application pro
grams and in the information stored; in the actions of the operations staff and 
the maintenance engineers; and in the environment of the computer system. 
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These faults may be due to the wearing out of a component, to a design inad
equacy, to a statistical uncertainty (noise), to human frailty, or to an evolution 
of the requirements on the system as yet unmatched in the implementation. 

We have been investigating the practicability of incorporating abnormal al
gorithms into such computing systems in order that all such types of fault can 
be tolerated, so that a system can provide continuous and trustworthy service to 
its environment without the need for any human intervention. Some of these 
types of fault are susceptible to existing techniques for error detection and re
covery; others are not, particularly those faults of design inadequacy. Many ap
proaches to reliable operation depend on the correct design of the system, to
gether with complete knowledge of the possible failure modes of the com
ponents of the system. In contrast, we have chosen to investigate techniques 
which do not assume the absolute correctness of the algorithms. Moreover, since 
the number of possible failure modes of a component increases very rapidly as 
the component becomes more complex, much more rapidly than the number of 
correct modes of operation, we have felt it impracticable to rely on enumerating 
the possible failure modes of components, let alone design algorithms to detect 
or accommodate each possible component failure mode individually. 

Thus the techniques of fault-tolerant system design that we have been de
veloping, such as recovery blocks and conversations [8], do not assume correct 
algorithms or make any assumptions about the nature of faults. They aim to 
provide error detection and recovery strategies which should be applicable 
whenever a system fails to provide its specified service, for whatever reason. 

These techniques do not attempt to diagnose the fault responsible for the er
rors which are detected, or to repair such faults. The error symptoms of a re
sidual fault may be obscure and misleading, while the correct diagnosis and re
pair is not necessarily unique. Consequently we regard diagnosis and repair as 
operations to be performed off-line, and requiring human intelligence. 

We do however assume that the faults to be recovered from are those r~
sidual faults remaining after reasonable efforts to obtain a reliable system. In 
particular we assume that the software has been designed as well as possible, 
using well-chosen design methodologies, together with validation techniques 
such as formal proofs of correctness and systematic testing. It can of course be 
argued that such validation techniques, which using Azivienis' terminology [2] 
could be described as the method of "software fault intolerance", are more 
productive of software reliability than attempts such as ours at software fault 
tolerance. Our view is that each has its place. 

The argument for this viewpoint is not solely that of disbelief in the com
pleteness with which a complex software system can be validated. Rather, it al
so concerns the significance that can be attributed to the experience one obtains 
from using such a system. Extensive usage of a hardware system whose failures 
are caused by faults arising from component ageing and the like provides sta
tistics which can be a useful predictor of the likely frequency and seriousness of 
further failures. In contrast, the statistics gathered of failures of a software sys
tem relate merely to the history of its modification and usage (i.e. the particular 
sets of input data, the relative timings of input activities, etc.). Over the life of a 
system of any complexity whatsoever (eg. a 64-bit multiplier), only an infini-
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tesimal proportion of the possible uses can actually occur. Thus, other than to 
the extent that future use will exactly match past use, failure statistics from a 
complex software system are not a useful predictor of the frequency of further 
failures. More importantly, particularly if the designer has relied totally on soft
ware fault intolerance, these statistics will not even predict the possible 
seriousness of further failures. 

5. Exceptions 

Just as we do not regard our techniques for tolerating algorithmic faults as a 
substitute for efforts to reduce the incidence of such faults in a system, so also 
do we not regard them as a complete substitute for explicit recovery from errors 
caused by anticipated faults. In a software system the sections of the program 
text that relate to such explicit recovery actions are sometimes termed "excep
tion handlers". However the concept of an "exception" (as for example, de
scribed by Goodenough [3]) is by no means necessarily limited to such use, and 
is indeed quite separate from our concepts of error, fault and failures as the fol
lowing discussion and definitio,ns attempt to make clear. 

The specified service that a component of a 'system is designed to provide 
might include activities of widely differing value to its environments. No mat
ter how undesirable, none that fall within the specifications will be termed fail
ures. However the specification can be structured so as to differentiate between 
a standard service, and zero or more exceptional services. For example, the stan
dard service to be provided by an adder would be to return the sum of its in
puts, exceptional services to indicate that an arithmetic overflow has occurred, 
or that an input had incorrect parity. 

Within a system, a particular exception is said to have occurred When a 
component explicitly provides the corresponding exceptional service. The al
gorithm of the system can be made to reflect these potential occurrences by in
corporating exception handlers for each exception. 

These definitions match the intent, but not the form of the definitions given 
by Goodenough, who states: 

"Of the conditions detected while attempting to perform some operation, 
exception conditions are those brought to the attention of the operation's in
voker ... In essence, exceptions permit the user of an operation to extend an 
operation's domain (the set of inputs for which effects are defined) or its range 
(the effects obtained when certain inputs are processed)." 

However, in contrast to Goodenough, we have taken care to avoid the use of 
the word 'failure' in discussing exceptions. This is not mere pendantry. Rather 
it is a consequence of the very basic view we take of failures, namely as oeeur
ing when and only when a system or component does not perform as specified. 
Although a system designer might choose to treat certain exceptions as com
ponent failures (which he might or might not provide abnormal algorithms to 
deal with), we regard the various schemes for exception handling (e.g. Parnas 
[7], Goodenough [3] and Wasserman [9]) and our technique of recovery blocks 
as complementary rather than competitive. 
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A basic feature of the recovery block scheme is that, because no attempt is 
made to diagnose the particular fault that caused an error, or to assess the ex
tent of any other damage the fault may have caused, recovery actions have to 
start by returning the system to a prior state, which it is hoped precedes the in
troduction of the error, before calling an alternate block. Should this prior state 
not precede the introduction of the error, more global error detection, and more 
drastic error recovery, is likely to occur later. (The associated 'recovery cache' 
mechanisms [1, 4] automate the state saving required for this scheme.) 

When exceptions are treated as component failures in a software system that 
uses recovery blocks, they will lead to the system being backed up to a prior 
state and an alternate block being called. This will be appropriate when the ex
ception is undesirable, and the system designer does not wish to provide an in
dividual means of dealing with it. 

Putting this the other way, exceptions can be introduced into the structure 
of a system which uses recovery blocks, in order to cause some of what would 
otherwise be regarded as component failures (leading to automatic back-up) to 
be treated as part of the normal algorithm of the system, by whatever explicit 
mechanisms the designer wishes to introduce for this purpose. Failures might 
of course still occur, in either the main part of the algorithm, or in any of the 
exception handlers, and if they do they will lead to automatic back-up. Such 
introduction of exception can therefore be thought of as a way of dealing with 
special or frequently occurring types of failure, in the knowledge that the recov
ery block structure remains available as a "back-stop". 

However we would argue strongly against relying on exception handling as 
a means of dealing with algorithmic faults. Programmed exception handling in
volves predicting faults and their consequences, and providing pre-designed 
means of on-line fault diagnosis. Thus although it can be of value in dealing 
with foreseen undesirable behaviour by hardware components, users, opera
tions staff, etc., it is surely not appropriate for dealing with software faults -
predictable software faults should be removed rather than tolerated. Indeed the in
corporation of programmed exception handlers to deal with likely software 
faults would in all probability, because of the extra complexity it would add to 
the software, be the cause of introducing further faults, rather than a means of 
coping with those that already exist. On the other hand when used appropriate
ly for anticipated faults of other types they can provide a useful means of sim
plifying the overall structure of the software, and hence contribute to reducing 
the incidence of residual design faults. 

As described in [8], the recovery block scheme can be applied to any pro
gramming language in which a program which is structured into blocks evokes 
a process which can be regarded as structured into operations, where the acts of 
entering and leaving each operation are expl.icit, and are properly nested in 
time. The scheme does not depend on the particular form of block structuring 
that is used, or the rules governing the scopes of variables, methods of parame
ter passing, etc. Thus there is no particular difficulty in combining the scheme 
with programming language facilities for exceptions and exception handlers. By 
way of illustration, an example program which uses recovery blocks and pro
cedure-oriented exception handling [9] is given in the Appendix. 
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6. Conclusions 

Exception handling is one of many programming language design issues which 
is the subject of current debate, in this case a debate which has not been helped 
by a lack of agreement on a terminology for discussing the various basic issues 
concerning system and software reliability. The aim of this paper has been to 
clarify these issues, and to argue that despite the views that have been argued to 
the contrary elsewhere (eg. Parnas [7] and Wasserman [9]), explicit exception 
handling is not an appropriate means for providing software fault tolerance. In
stead we view it as a potentially valuable adjunct to any viable scheme for de
tecting and recovering from software errors, which could improve the effective
ness with which anticipated faults due to input data, operators, hardware com
ponents, and the like were dealt with. 
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Appendix 

Figure 1 shows a section of program text which incorporates programmed ex
ception handling within a recovery block structure. The example, and the form 
of exception handling shown, are based on that given by Wasserman [9]. 
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1 
2 ensure consi tent_inventory by 
3 process- updates: begin integer num; 
4 exception goof = overflow or underflow or con-

5 
6 
7 
8 
9 

10 
II 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 I else by 

ver ion" 
procedure checknum (integer j); 

global integer count = 0" 
procedure message; 

begin count := count + I" 
write (" plea e try again"); 
if count ~ 3 then 

begin write (" three trikes 
you're out); 

ignal error 
end 
else retry; 

end mes age; 
begin/* body ofchecknum */ 

read U) [goof: message, ioerr: error] 
end checknum; 

begin/* tart of main body */ 

while updates_remain do 
begin update_no := update_ no + 1; 

end 

end main body 
end proce _ updates 

checknum(num); 

32 refu e_updates: begin write (" orry - last update accepted wa number") ; 
33 write (update_ no) 
34 
35 
36 

end 
else error; 

Fig. 1. An example of a program which incorporates programmed exception handling within 
a recovery block structure 
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The basic form of the example is 

ensure consistenLinventory 
by process-updates 
else by refuse_updates 
else error 

The implicit assumption is that the program is maintaining an inventory file 
whose consistency is to be checked after each related sequence of updates, to 
determine whether this sequence can be incorporated. The updating process 
uses the procedure 'checknum' to read and check the updates. This procedure 
provides an exception handler for some of the exceptions that can be raised by 
the 'read' routine, so that the person providing the inputs can have two chances 
of correcting each input. 

The procedure 'checknum' is taken directly from Wasserman [9], but has 
been simplified to take account for error recovery facilities provided by the re
covery block structure in which it is used. More detailed notes on the example 
follow. 

Line 2 The Boolean expression 'consistenLinventory' will be evaluated if and 
when 'process-updates' reaches its final 'end'. If the expression is true, the alter
nate block 'refuse_updates' will be ignored and the information stored by the 
underlying recovery cache mechanism, in case the effects of 'process-updates' 
had to be undone, will be discarded. Otherwise this information will be used to 
nullify these effects, before 'refuse_updates' is called, after which the Boolean 
expression 'consistenLinventory' is checked again. 

Line 4 In Wasserman's scheme a group of separate exceptions can be gathered 
together, as here to define the exception 'goof, using the exceptions 'overflow', 
'underflow' or 'conversion'. It is assumed that all three can be signalled by the 
routine 'read' - the first two perhaps being built-in exceptions that the hard
ware signals, the third being implemented by the routine 'read' itself. 

Line 7 The procedure 'message' is an exception handler defined within 
'checknum'. The first two occasions on which it is called it used Wasserman's 
scheme for retrying the procedure which raised the exception (see line 14), but 
on the next occasion it signals error. (In Wasserman's version of this routine, 
'message' raised the special exception called 'fail' which caused the whole pro
gram to be aborted. Here we assume that error just causes the current alternate 
block to be abandoned.) 

Line 18 Here 'checknum' calls 'read' and arranges that the exception 'goof 
(i.e. the exceptions 'overflow', 'underflow' or 'conversion') will be handled by 
the procedure 'message', but that if 'read' signals 'ioerror' this will cause 'pro
cess-updates' to be abandoned. In the original version of the example a further 
exception handler was provided, for use when 'ioerror' was signalle~. This ex-

152 



ception handler indicated that, but did not explain how, "any required 
cleanup" was to be done. 

Line 20 All that is illustrated of the main body of 'process-updates' is that it 
counts the number of updates, which it reads and checks using the routine 
'checknum'. 

Line 32 The second alternate block 'refuse_updates' is called if the first alter
nate block 'process-updates' abandons its task, or fails to pass the acceptance 
test, for any reason (including of course, any residual design error within its 
code). If this happens, all changes that 'process-update' has made to the in
ventory will be undone, and the integer 'updateJIo' will be reset. This integer is 
then used for an apologetic message to the user. 

Copyright © 1977, Association for Computing Machinary Inc., reprinted by permission from 
the SIGPLAN Notices, Vol. 12, No.3, pp. 95-100, March 1977. 
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Exception Handling and Software Fault Tolerance 

F. CRISTIAN 

Abstract - Some basic concepts underlying the issue of fault-tolerant software design are in
vestigated. Relying on these concepts, a unified point of view on programmed exception 
handling and default exception handling based on automatic backward recovery is construct
ed. The cause-effect relationship between software design faults and failure occurrences is ex
plored and a class of faults for which default exception handling can provide effective fault 
tolerance is characterized. It is also shown that there exists a second class of design faults 
which cannot be tolerated by using default exception handling. The role that software verifi
cation methods can play in avoiding the production of such faults is discussed. 

Index Terms - Exception, exception handling, failure, fault, fault avoidance, fault tolerance, 
hierarchical structure, module, procedure, recovery. 

I. Introduction 

Current research in programming aims at providing methods and tools for the 
construction of correct and robust software. Much effort is devoted to the de
sign of programming languages (e.g., [12], [14], [24]), which encourage software 
designers to structure a system in terms of modules [18] implementing data ab
stractions [10]. For each data abstraction, exceptions have to be specified as a 
response to run-time attempts to violate its inherent invariant properties [6], 
[14], [16], [18]. Language mechanisms for exception handling [4], [12], [14] have 
been devised to help designers to program the specified exceptional responses 
correctly [6], [7], [16]. 

However, beyond a certain complexity level, it is likely that a system will 
contain algorithmic faults. These software design faults can (and almost cer
tainly will) cause system failures. In order to cope with such faults, a default 
exception handling technique based on the use of automatic backward recovery 
has been proposed [11], [21]. The programming language construct devised for 
the systematic application of this technique is called a recovery block. (The in
clusion of recovery blocks within a more general class of default exception 
handling mechanisms will be justified later.) 

It has been argued that programmed exception handling and recovery 
blocks are complementary rather than competitive techniques, and that in order 
to obtain highly reliable software, both should be used in combination [17]. 
However, as these two exception handling techniques were devised and devel
oped independently, a unified understanding of both is needed in order to 
achieve such an integration. The aim of this paper is twofold: to present rigor
ous definitions for the basic concepts which underly both approaches (and thus 
to highlight the unity which exists between them), and to discuss the relevance 
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of default exception handling to the problem of coping with residual design 
faults in programs. Most of the definitions to be given are informal accounts of 
formal developments reported in [6] and [7]. 

Attention will be focused on a specific class of faults: design faults in the 
sequential algorithms of a software system. This topic is sufficiently complex to 
deserve consideration separate from other interesting areas like tolerance to 
hardware or synchronization faults, or tolerance to design faults in the basic 
support software (e.g., compiler, link-editor). Default exception handling can 
cope occasionally [1] with such faults, but the result of using it as the only pro
tection against them is difficult to predict. For example, it is difficult to predict 
the behavior of a recovery block if the hardware instruction decoding machin
ery is faulty. Our opinion is that responsibility for coping with faults specific to 
each interpretation level must fall on the designers of the level concerned. In 
what follows, it is assumed that the basic data types and operations, specified 
for the (deterministic [8]) language used to program a system, are correctly 
implemented by the compiler and that the hardware is able to detect and signal 
its own internal physical faults. Recent developments show that such as
sumptions are not as unrealistic as they appeared to be 10 years ago [19], [20]. 

II. Software Structure 

The use of data abstraction in program development [6], [10], [14], [24] leads to 
programs which are structured into a hierarchy of modules [18]. Visually, such a 
hierarchy may be represented by an acyclic graph as in Fig. 1. Modules are rep
resented by nodes and an arrow from a node N to a node M means that N is a 
user of M, that is, the successful completion of (at least) an operation N.R ex
ported [12] by N depends on the successful completion of some operation M.P 
exported by M. 

When observed from a user's point of view (e.g., N), a module M is per
ceived as being an (abstract) variable of some abstract data type. In order to 
make use of a module M, it is only necessary to know the set of abstract states 
which may be assumed by M and the set of abstract state transitions which are 
produced when the operations exported by M are invoked. The internal struc
ture of a module is not visible to a user. When seen from inside, a module Mis 

N 

I!\ 
M 

I!\ 
L Fig. 1. 
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a set of state variables and a set of procedures [18]. A state variable may be 
either of a predefined type (e.g., integer, array) directly provided by the pro
gramming language being used, or may be of some programmer defined ab
stract type, in which case it is implemented by some lower level module (e.g., 
L). 

The internal state of a module M is the aggregation of the abstract states of 
its state-variables. The abstract state of M is the result of applying an ab
straction function A to its internal state [6], [10], [17], [24]. In general, A is a par
tial function, defined only over the set of those internal states which satisfy an 
invariant predicate I. Such states are said to be consistent with the abstraction 
that the module is intended to implement. During a procedure execution a 
module may pass through a set of intermediate internal states which do not 
satify I, and for which A, and hence the abstract state, are not defined. 

A procedure P exported by a module M is designed to accomplish a service: 
some internal, and hence abstract, state transition. This intended service can be 
specified by a (binary) relation post over states: a pair of states (s', s) is in post if 
the final internal state s is an intended outcome of invoking P in the initial in
ternal state s'. We require this specification to be strong enough to exclude an 
inconsistent state being an intended outcome when P is invoked in a consistent 
state (remember that we are interested in algorithmic, not specification faults). 
Usually, the intended service of P is not defined by enumerating all the com
ponent pairs of post, but by giving its characteristic predicate, to be called (for 
reasons to become clear later) the standard postcondition of P. On the other 
hand, P itself is a sequence of operations on the state variables of M, and as 
such has an actual meaning which is imposed by the semantics of these opera
tions. This actual meaning can be understood as being another state transition 
relation which contains all the pairs (s', s) such that, if P is invoked in s', then 
its execution terminates (normally) in s [2], [3], [6]. 

The set of states s', for which the execution of P terminates (normally) in 
states s such that post(s', s), will be called the standard domain SD of P with re
spect to the specification post. The characteristic predicate of SD can be cal
culated as being the weakest precondition associated with P and post [2], [3], [6], 
[8]. The notion of a standard domain of an operation P is an important one 
since it characterizes all the states for which the execution of P can provide the 
specified standard service. If an execution of P starts outside this domain, then 
the standard service specified by post cannot be provided. 

ill. Exception Occurrences 

An exception occurs when an operation P is invoked in a state outside its stan
dard domain SD. The set of states which do not belong to SD will be termed 
the exceptional domain ED of P. A pictorial representation of the partitioning 
determined by the ED and SD domains over the set of states which may exist 
when an operation P is invoked is given in Fig. 2. 

As an example, consider that among the state variables of a module M there 
are two variables i,j of type positive integer and that the standard service speci-
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ED 
Fig. 2. 

fied for a procedure P of M is post == i = i' + j' (primed symbols denote initial 
variable states and unprimed symbols final states). Suppose that the body of P 
IS 

i:= i + j 

and let PI denote the set of machine representable positive integers. If i' + 
j' E PI, then an i E PI satisfying post exists and the standard service specified 
for P can be provided. Otherwise, if i' + j' rt PI, no i E PI satisfying post exists, 
i.e., an arithmetic overflow exception occurs. The characteristic predicates of 
the standard and exceptional domains are 

SD=i'+j'EPI ED=i'+j' rt PI. 

Now suppose that the designer of P mistakenly types a "*" instead of a "+" in 
the body of P 

(c1')i:=i*j. 

The characteristic predicates of the standard and exceptional domains (with re
spect of post) will be 

SD = (i' = j') & (i' = 0 v i' = 2) ED =,SD. 

Whenever P is invoked in a state within the exceptional domain ED a result 
which fails [17] to satisfy the specification of P is produced. 

It is believed that the definition proposed above for the notion of an ex
ception occurrence corresponds to the intuitive meanings associated with this 
term is [12], [14], [16], [17], and [21], with the term run-time error occurrence in 
[1], [11], and [18] and with the term failure occurrence in [17] and [21] (the rela
tionship which exists between exception and failure occurrences is investigated 
in Sect. VI). 

Other authors have different points of view about the notion of an ex
ception. For example, in [9] operations which on every invocation signal an "ex
ception occurrence" are considered. That is, the intended result of an operation 
invocation is no longer seen as being its normal termination with some post
condition, but rather as being an "exception" notification. Such (somewhat sys
tematic) "exceptions" are called in [9] "monitoring type exceptions." The 
example given in order top illustrate their use (in connection with the pro
gramming practice referred to as "monitoring") is that of a SCAN procedure, 
which scans an array of positive integers and notifies than an "exception oc-
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curs" every time a positive array entry is encountered. Inherent in the nature of 
such "monitoring type exceptions" is the need for resuming the execution of a 
procedure after an "exception detection." While acknowledging the pioneering 
work described in [9], we would strongly argue against using exceptions for 
"monitoring" purposes. Other control structures (e.g., coroutines, iterators [14], 
[24]) offer exactly the facilities required for the implementation of monitoring, 
and we consider that the complexity of the exception mechanism proposed in 
[9] is a drawback directly attributable to a confusion between "monitoring" and 
exception handling. Therefore, we deliberately do not consider the "monitoring 
type exceptions" of [9] as being exceptions. 

IV. Anticipated Exception Occurrences 

The designer of a procedure P exported by a module M may anticipate the pos
sibility of P being invoked in its exceptional domain. He may take measures for 
detecting this, for example, by inserting run-time checks in P (Boolean expres
sions which should evaluate to true whenever P is invoked in its ED [2]). How
ever, there exist situations in which one relies on run-time checks integrated 
into lower level operations used by a procedure P in order to detect whether P 
is invoked in its ED. For example, suppose that among the state variables of M 
there are three variables i, j, k of type positive integer and that the hardware 
interpreter checks for each integer addition if an overflow occurs. Suppose also 
that the standard specification of P is post == i = i' + j' + k' and that the body of 
P is the sequential composition of the operations 

(c1) i:= i + j; 
(c2) i:= i + k. 

If the invariant I of M is not strong enough to imply that i' + j' E PI, an invo
cation of cl may lead to an overflow. To insert a run-time check before cl (for 
detecting whether i' + j' ¢ PI is true) would be redundant with the overflow 
check which is anyhow (efficiently) performed by the hardware. Now suppose 
that an overflow is detected when cl is invoked. In such a case it does not make 
any sense to take the normal continuation of cl (invoke the c2 operation follow
ing the ";" after cl), since this overflow reveals the impossibility of achieving 
post (if i' + j' ¢ PI, then there exists no i E PI satisfying post). 

This example illustrates something very characteristic about exception oc
currences, namely that once such an event is actually detected as having oc
curred, it is no longer sensible to continue the standard execution of a program. 
Thus, in order to handle such events, it is necessary to allow for an occasional 
(i.e., exceptional) alteration of the usual (i.e., standard) sequential composition 
rule for operation invocations. An exception mechanism is a language control 
structure allowing one to express that the standard continuation of an operation 
is to be replaced by an exceptional continuation when an exception is detected. 
In what follows we (briefly) sketch the exception mechanism proposed in [4] 
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(similar to some extent to those of [12] and [14]). A detailed syntactic and 
formal semantic description of this mechanism is presented in [7]. 

Exceptional continuations for detected exception occurrences can be defined 
by using exception labels. For example, the designer of an operation P can de
clare that an exception label E is signaled (if P is invoked outside its SD) by 
writing 

proc P signals E. 

Such a declaration warns a user that P has two exit points: a standard one, 
which can be thought of as being the semicolon following a P invocation, and 
an exceptional one, which will be represented by an H[E -+ " symbol following 
a P invocation. The user of P can define the exceptional continuation (if E is 
signaled) to be some operation K by writing 

P [E -+ K]. 

In order to detect and handle the occurrence of E, the designer of P may ex
plicitly insert in the body of P the following syntactic constructs: 

(a) [B -+H]; 
(b) 0 [D -+ H]. 

In the first, B stands for a Boolean expression (run-time check). In the second, 
o stands for some (lower level) operation invoked from P, and D stands for an 
exception label which may be signaled by o. The handler H may be a (possibly 
empty) sequence of operations and may end up with a signal E exceptional se
quencer. The meaning of an (a) or (b) construct inserted in the body of P may 
be explained informally as follows. If B evaluates to true or 0 signals D, then H 
is invoked. If H terminates with a signal E, then the standard continuation of 
the (a) or (b) construct (what follows after the H;" standard sequencer) is aban
doned in favor of an exceptional continuation (e.g., K) associated with the 
H[ E -+" exit point of P. In the remaining cases, i.e., if B evaluates to false or 0 
terminates normally or the execution of H does not terminate with a signal E, 
the standard continuation of the (a) or (b) construct is taken [4], [7]. 

As an example, consider the use of this mechanism to program the addition 
procedure mentioned at the beginning of this section. Assume that an overflow 
exception label 0 V is signaled if the c1, c2 operations are invoked outside their 
standard domains. Both operations will thus have two exit points: H;" and 
H[OV -+ ." The addition procedure P can be programmed as shown in Fig. 3. 

If P is invoked in a state i' + j' + k' E PI of its standard domain, then the 
termination of P is standard in a state satisfying post. If P is invoked in a state 
i' + j' + k' ¢ PI outside the standard domain, then there exist two possibilities: 
either i' + j' ¢ PI, in which case the first statement of P will terminate excep
tionally, or i' + j' E PI and i' + j' + k' ¢ PI, in which case the first statement 
terminates normally, but the second statement terminates exceptionally. If the 
semantic definition of the assignment operator H:=" specifies that whenever the 
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proc P signals OW' 
begin i:= i + j [OV -+ signal OW]; 

i := i + k [OV -+ i := i - j ; signal OW]; 
end; 

Fig. 3. 

evaluation of the right-hand side expression terminates exceptionally, no new 
value is assigned to the left-hand side variable [7], then in both cases P will ter
minate exceptionally by signaling an 0 W exception label in a final state satisfy
ing post( 0 UI) == (i = i') & U = j') & (k = k'). The exceptional postcondition 
post( 0 UI) specifies the (exceptional) service that P provides whenever the stan
dard service post == i = i' + j' + k' cannot be provided. 

If for any possible initial state on operation P provides either its specified 
standard service or a specified exceptional service, then P is a total operation. 
For example, the procedure of Fig. 3 is total since (i' +j' + k' E PI) (i' + j' + 
k' ¢ PI) = true, that is, any possible initial state is either in SD or in the (anti
cipated) exceptional domain ED. Total operations for which the exceptional 
postconditions are of the form A(s') = A(s), where A is some abstraction func
tion, will be called atomic (in the sense that for an external observer, their invo
cation has an "all or nothing" effect: either the standard state transition is pro
duced or the visible (abstract) state remains unchanged). For example, the pro
cedure of Fig. 3 is atomic. 

Remark: The adjective "atomic" is also used in a mUltiprocessing context to 
qualify the interference-free execution of operations [15]. In parallel programs, 
in which exception detections may signal attemps to violate invariants main
tained by communicating processes, atomicity with respect to exceptions and 
atomicity with respect to synchronization become interrelated concepts [15], 
[21 ]. 

v. Programmed Exception Handling 

Assume that the designer of a procedure P exported by a module M declares 
that P may signal an exception E, and that the intended state transition to be 
produced in such circumstances is specified by an exceptional postcondition 
post (E). 

As discussed in Sect. IV, an occurrence of E may be detected: a) either by a 
run-time check, or b) because a lower level exception D is propagated in P. In 
the latter case (illustrated by the example of Fig. 3), the detection of E coincides 
with the propagation of D in P, that is, with the invocation of a handler H of E. 
Although this handler is syntactically associated with a lower level propagated 
exception D by using a (b) construct, it is essential to understand that its seman
tics (the exceptional state transition it has to accomplish) is determined by the 
exceptional specification post(E) of P. Thus, the phrase "handler associated 
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with" reflects a syntactic fact, while the phrase ."handler of' reflects a semantic 
knowledge [6]. 

When an exception occurrence is detected, an intermediate inconsistent state 
(i.e., not satisfying the invariant I of M) may exist. In [6] it is shown that further 
invocations of a module left in such a state (by some exception occurrence not 
appropriately handled) can lead to unpredictable (i.e., unspecified) results and 
to subsequent unanticipated exception propagations. In order to avoid such 
consequences, it is essential that measures for the recovery of a consistent state 
are taken. 

Let s' be the consistent state prior to the invocation of P and let i be the in
consistent state when the occurrence of E is detected. A set of state variables of 
M is called a recovery set RS if by modifying the state that these variables have 
in i, a final state s such that I(s) & post(E) (s', s) can be reached. In general, 
there exist several recovery sets for an exception detection [6]. From a perform
ance point of view, the most interesting are those with the fewest elements. An 
inconsistency set IS is a recovery set such that for any other recovery set RS: 
IISI ~ IRSI (I I denotes set cardinality). Because of this minimality property, 
an IS can be regarded as characterizing that part of the state which is "really" 
inconsistent when the occurrence of E is detected. Thus, an inconsistency set 
corresponds to what in [17] and [21] is called an error. The terms "exception," 
"inconsistent state," and "inconsistency set" are used here in preference to 
"run- time error," "erroneous state," and "error" in order to avoid the negative 
psychological connotation usually associated with the term "error." After all, 
the aim of studying the behavior of operations outside their standard domains 
is to render these "errors" as controllable and subject to rigorous study as is 
now the standard behavior of operations. For nontrivial examples of inconsis
tency and recovery sets the interested reader is referred to [6]. 

If the decision is taken that module operations should behave atomically 
when exceptions occur, then two other kinds of recovery sets may be of interest. 
Let us define the inconsistency closure IC associated with the intermediate state 
i (which exists when E is detected) to be the set of all state variables modified 
between the entry in P and the detection of E [5]. An IC is a recovery set (for 
any abstraction function A and any invariant I), since by resetting all the modi
fied variables to their initial (abstract) states, a final internal state s identical to 
the initial state s' is obtained, and the specification I(s) & (A(s') = A(s» is trivi
ally satisfied. The second kind of recovery set we want to mention is the crudest 
approximation one can imagine for an IS (an inconsistency closure is a better 
one). This approximation is obtained by taking the whole set of state variables 
of M (with their state in s') to form a complete checkpoint CP of the initial state 
ofM. 

After the above discussion on recovery sets, we can now describe the task of 
a handler H of E as being to recover some RS before signaling E: Of course, if 
the state s in which E is detected already satisfies the I(s) & post(E) (s', s) predi
cate then no recovery action is necessary, that is, the IS associated with such an 
exception detection is empty. 

If the exceptional postcondition post(E) is not A(s') = A(s), i.e., P is not in
tended to behave atomically, thenforward recovery has to be used [21]. From an 
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internal point of view, the recovery of an RS is "forward" if the final state of at 
least one variable in RS is different from its initial state. A forward recovery 
action is based on knowledge about the semantics of P [captured by I, A, 
post(E)] and has to be explicitly programmed by the designer, of P. However, if 
P is intended to have an atomic behavior, then the determination of the IC or 
CP recovery sets (which are independent of I, A) can be done automatically. 
Checkpointing techniques have long been used for recovering consistent system 
states. More recently, it has been proposed [11] to leave the task of computing 
the inconsistency closures, associated with the intermediate inconsistent states i 
through which a system may pass, to a special device called a recovery cache 
[1], [5], [11], [13], [23]. The (automatic) recovery of inconsistency closures or 
checkpoints has been called backward recovery in [21]. More generally, one can 
view the recovery of some RS as being "backward" if all the variables in RS 
recover their prior states (e.g., the recovery action "i := i - j" in the example of 
Fig. 3 can be seen as being "backward"). In order to avoid confusion between 
explicitly programmed "backward" recovery and that performed by a recovery 
cache or a checkpointing mechanism, we will call the latter automatic backward 
recovery. 

To conclude this discussion on the detection and recovery issues raised by 
the handling of an exception E in a procedure P, let us denote by "[DET--+" 
the "[B --+" or "0 [D --+" syntactic component used to detect an occurrence of E. 
If in P there is only one detection point for E (the case when several detection 
points exist is discussed in [2] and [7]), then the handling of E may be summa
rized as shown in Fig. 4. 

Let us now investigate the consequences that a propagation of E by M.P 
may have for the invoking procedure N.R (Fig. 1). In some cases, the propa
gation of a lower level exception E in a procedure R is a consequence of invok
ing R within its own exceptional domain. Such a situation was illustrated by the 
example of Fig. 3. However, there exist cases in which a lower level exception 
may be propagated in a procedure even though that procedure was invoked 
within its standard domain (the rules for determining the standard domains of 
programs which contain the (a, b) syntactic constructs introduced in Sect. IV do 
not exclude this possibility [7]). As an example, suppose that N is a file manage
ment module which exports a procedure "CREATE a file containing Z blocks," 
where Z is of type positive integer. Assume that the files are stored either on a 
disk d1 or on a disk d2 and that M 1 , M2 are the modules which manage the free 

proc P signals E; 
begin 

[DET -t recover RS; signal E]; 

end; 

Fig. 4. 
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proc CREATE (Z: positive_integer) signals NS; 
begin 

MI' AL(Z) [DO ..... M2 ' AL(Z) [DO - recover RS; signal NSll 

cnd; 

Fig. 5. 

blocks left on d1 and d2 , respectively. An initial state in which at least one disk 
has more than Z free blocks will be in the standard domain of CREATE and a 
state in which both disk have less than Z free blocks will be in the exceptional 
domain. Suppose that the space allocation within CREATE is programmed as 
shown in Fig. 5. 

If CREATE is invoked in a state in which d1 has less than Z free blocks, then 
the handler associated with the "[DO ~" (Disk Overflow) exit point of the 
space allocation procedure Ml.AL will be invoked. Now there remain two pos
sibilities. If the initial state was in the standard domain, that is, d2 has at least Z 
free blocks, then M2.AL terminates normally and the continuation is standard 
(i.e., the handler associated with the "[DO~" exit point of M 2 .AL, and hence 
the signal NS exceptional sequencer are not invoked). Otherwise, if the initial 
state was in the exceptional domain of CREATE, the disk overflow exception 
which will be propagated by M2.AL will coincide with the detection of the NS 
(No Space) exception specified for CREATE. The handler of NS (the sequence 
"recover RS; Signal NS" recovers a consistent state before propagating NS 
higher up in the hierarchy. 

This example illustrates two things. First, the "[DET ~" symbol used pre
viously in Fig. 4 may sometimes be a sequence of "[B -,+" and "O[D ~" sym
bols (this is frequently the case when dealing with exceptions due to transient 
input/output faults [4]). Second, lower level exception propagations can be 
stopped by higher lever procedures. 

If a procedure R can provide its standard service in spite of a lower level 
exception E which is propagated in R, we say that the propagation of E is 
masked by R. 

VI. Failure Exceptions 

In [6] and [7] a set of proof rules for verifying the total correctness of programs 
with exceptions are developed. Such rules allow one to prove, for example, that 
the operations exported by a module are total (that is, the module is robust [6], 
in the sense that it will behave as specified in spite of possible exception oc
currences). The design of total operations is, however, not a very easy task, and 
it is known that program verification methods are difficult to apply in practice. 
At present, software designers rely upon their intuition and experience in order 

163 



AED 
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Fig. 6. 

to deal with possible exception occurrences, and therefore the identification of 
the exceptional situations which may occur is often just as (un)reliable as hu
man intuition is. 

Assume that after having designed a procedure P which is exported by a 
module M, the reality is as follows. P terminates as its standard exit point in a 
state satisfying post when invoked in its standard domain SD. (This '~real" stan
dard domain may be different from that which exists in the designer's mind.) P 
terminates at a specified exceptional exit point "[E -+" in a state satisfying 
post(E) when invoked in an anticipated exceptional domain AED c ED (this in
clusion is a consequence of the fact that within AED, P does not terminate at its 
standard exit point). There exist possible initial states which are neither in SD 
nor in AED, i.e., are in ED-AED. Let us call UED = ED-AED the unanticipat
ed exceptional domain of P. A representation of the partitioning determined by 
the SD, AED, UED domains over the set of states which may exist when P is 
invoked is given in Fig. 6. 

As an example, suppose that M has the i, j state variables of the type posi
tive integer and that the specification of P is post == i = i' + j', post( 0 W) 
== (i = i') & U = n· If the designer of P makes the mistake of typing a "*" in
stead of a "+" in the body of P 

proc P signals 0 W; 
i:= i * j[OV -+ signal OW] 

then the actual partitioning determined over the set of states which may exist 
when P is invoked is 

SD = (i' = n & (i' = 0 V i' = 2) ED = , SD 
AED = , SD & (i' * j' rt PI) 
UED =,SD & (i' * j' E PI). 

In general, if a procedure P is invoked within its unanticipated exceptional 
domain, the following outcomes are possible: 

1) the execution of P does not terminate (an infinite loop is entered), 
2) a lower level exception U (whose possible propagation was not antici

pated by the designer of P) is detected and there exists no handler explicitly as
sociated with U in P, 

3) the execution of P terminates normally (i.e., at the standard exit point of 
P) in a final state which does not satisfy the standard specification post, 
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4) the execution of P terminates with the exception label E being signaled 
(i.e., at the "[E --+" exit point of P) in a final state which does not satisfy the 
exceptional specification post(£). 

If one considers that the termination of P within a finite amount of time at 
some declared (standard or exceptional) exit point is part of the specification of 
P, then all the above outcomes are violations of the specification of P. Accord
ing to terminology proposed in [17] and [21], we will call an invocation of an 
operation outside its standard or anticipated exceptional domains a failure oc
currence. Thus, a failure occurrence when some operation P is invoked, is a 
particular kind of exception occurrence, namely one which was not anticipated 
by the designer of P. This definition does not imply that failure occurrences are 
actually recognized. For example, it is possible that the above violations remain 
unrecognized for some time (until a human user discovers that there is a dis
crepancy between the specified and the actual behavior of the system which 
contains P). 

Let us assume for the moment that the occurrence of a failure when some 
procedure M.P is invoked from a higher level procedure NR (Fig. 1) is detect
able because an unanticipated exception U is propagated by a lower level pro
cedure L. a. in M.P. (In particular, U may be a TIME-OUT exception if L is a 
timer module armed at the entry in P [11 D. The case when a failure occurrence 
remains undetected will be discussed in Sect. IX. 

Now, what is a sensible reaction to such a situation? For example, what ex
ceptional continuation should be associated with the exception propagated 
from a lower level? One possible solution (adopted in ADA [12D is to continue 
the propagation of U in the higher level module N Such free exception propa
gations across module boundaries may have dangerous consequences. First, ac
cording to· the "information hiding principle" of modular programming [18], 
the designer of N is not supposed to know anything about th.e modules L used 
by M. Thus, an exception label U, declared for an operation a of a lower level 
module L is likely to be meaningless to the designer of N and it is probable that 
there will be no handler explicitly associated with U in NR. Second, propagat
ing U from L.a directly into NR violates the basic principle that after any pro
cedure invocation control should return back to the invoking procedure. In
deed, any L. a invocation which results in a propagation of U is a definitive exit 
from M.P (through an exit point which has not been declared for M.P!). Third, 
and this is perhaps the most serious consequence, if the lower level procedure 
L. a was invoked when M was in an interinediate inconsistent state, then the 
propagation of U ind NR leaves M in that inconsistent state. Thus, there is a 
danger that later invocations of M will lead to unpredictable results and to ad
ditional unanticipated exception propagations. 

A different approach to the problem of handling detectable failure oc
currences is discussed in [4], [11], and [14]. The basic idea is quite simple: with 
any lower level (unanticipated) exception U propagated in a procedure P ex
ported by a module M associate automatically some default handler DR, im
plicitly provided by the compiler (Fig. 7). 

The" " before the "--+" symbol stands for any exception label which can 
be propagated in P and which has no explicitly associated handler in P. The 
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proc P signals E' 
begin 

end [ --> DHl Fig. 7. 

exceptional service that such a handler will attempt to provide can be identified 
by some language defined exception label FAILURE [4], [14] or ERROR [II]. 
The systematic addition of default handlers to all the procedures which are ex
ported by the modules of a system has the following consequences. For any 
lower level exception which may be propagated in a procedure M.P there exists 
an exceptional continuation in M.P (either one explicitly defined or the default 
continuation DH). A FAILURE (or ERROR) exit point is implicitly added to 
any procedure. 

VIT. Default Exception Handling 

Default exception handlers can be designed to solve the same problems as those 
mentioned in Sect. V for programmed exception handlers. These are: I) mask
ing, 2) consistent state recovery, and 3) signaling. But while the programmer of a 
handler H, explicitly inserted in a procedure M.P, knows what the intended 
semantics [captured by I, A, post, post(E)] of M.P is, and therefore can provide 
a specific masking algorithm or determine an inconsistency set to be recovered, 
this knowledge is not available to the programming language designer who de
cides on a general default exception handling strategy. 

The default exception handling strategy embodied in the CLU program
ming language developed at MIT [14] is oriented towards solving problem 3), 
related to the (proper) propagation of FAILURE exceptions across module 
boundaries, i.e., each default handler is of the form DH == signal FAILURE. In 
CLU, a suitable error message may be passed as a parameter to a signal FAIL
URE sequencer in order to help in fixing the cause of a failure detection. How
ever, according to terminology introduced in [17] and [21], tolerance to FAIL
URE detections implies at least the resolution of problems 2) and 3). Thus, one 
can regard the default exception handling strategy of CLU as being more 
oriented towards debugging rather than towards the provision of software fault 
tolerance. 

The default exception handling strategy proposed for the SESAME pro
gramming language developed at the University of Grenoble [4] was oriented 
towards solving the consistent state recovery 2) and propagation 3) problems. 
(The masking problem 1) can also be solved by using our mechanism, as will be 
shown later, but we hav~ not dealt with this issue in [4].) The solution proposed 
to problem 2) is based on the fact that for any exception which can be detected 
in a procedure M.P there exists a recovery set, i.e., the inconsistency closure, 
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which can be determined at run-time without having any knowledge about the 
semantics of M.P. A recovery cache mechanism (more simple than that of[ll] 
because of the modular visibility rules of SESAME) could be designed for the 
automatic update of the inconsistency closures associated with all the inter
mediate states through which a system may pass. A detailed description of this 
mechanism has already been published [5], so we will not repeat it here. In or
der to enable the automatic recovery of inconsistency closures, a reset primitive 
was made available in the language (as a compilation option). When invoked, 
reset recovers the "current" Ie and returns normally. This primitive is mainly 
used in default handlers, but is also available to a programmer. (If the excep
tional state transition post(£) specified for some anticipated exception E is 
A(s') = A(s), then by inserting a reset primitive in the handler of E, the pro
grammer is relieved from the burden of explicitly identifying some recovery 
set.) Problem 3) is solved by requiring the propagation of FAILURE exceptions 
to obey the same rules as the propagation of anticipated exceptions [4]. Thus, a 
DH handler (Fig. 7) is defined as DH == reset; signal FAILURE. Default han
dlers can be inserted only by the complier, i.e., FAILURE exceptions cannot be 
explicitly handled. 

The recovery block mechanism, devised at the University of Newcastle 
upon Tyne [11], was designed to solve all the problems 1) - 3) mentioned above. 
Unlike the mechanisms described in [4] and [14] which support both explicit 
and default exception handling, the recovery block mechanism is a pure default 
exception handling mechanism based on automatic backward recovery. In or
der to deal with a possible FAILURE (the label ERROR is used in [1], [11], 
[13], [17], [21] and [23]) detection in a procedure P designed to provide some 
specified standard service post, a programmer can define P to be the primary 
block Po of a recovery block with zero or more alternate blocks Pi' pz,···, Pk • 

Assume (for simplicity reasons) that a single alternate Pi is provided. The syn
tax of a recovery block construct RB in this case is 

RB == ensure post by Po else by P 1 else FAILURE. 

Let us use the notation we have established to exhibit what is hidden behind 
the syntax above: 

RB == P~ [ -+ reset; P; [ -+ reset; signal FAILURE)) 

where 

Pi == begin Pi; [ -. post -+ signal FAILURE] end, i = 0,1. 

If a FAILURE exception is detected during the execution of Po = P procedure 
(because some lower level exception is propagated in Po or because the accept
ance test post evaluates to false when Po terminates), then the inconsistency clo
sure associated with this FAILURE detection is retored by a recovery cache de
vice and the alternate Pi is invoked. The aim of the alternate is to mask the fail
ure detected in P~ by achieving the specified state transition post in a different 
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way. Since no attempt is made at elucidating the reason why Po could not 
achieve post, the construction of an alternate P l is based on the single as
sumption that, when invoked, Pl starts in the same state as the primary Po. If 
the invocation of P l leads to another FAILURE exception detection, then the 
masking problem I) cannot be successfully solved at the level of RB. Problem 
2) is solved by invoking again the recovery cache to restore the inconsistency 
closure associated with the FAILURE exception detected in P~. Problem 3) is 
dealt with by propagating a FAILURE signal to the user of RB. The termina
tion of an RB is standard if no FAILURE is detected during the execution of P~ 
or if a FAILURE detection in P~ can be masked by the termination of Pl with 
post. 

The view about recovery blocks presented above is somewhat idealistic 
however. For example, we have assumed that a precise [2] monolithic run-time 
chek ,post can be programmed for the exceptional domains of the Po, P l com
ponents. In practice, postconditions may contain logical quantifiers and other 
expressions not directly interpretable on a machine. Thus, to program a 
Boolean (executable) expression with the same truth value as post may turn out 
to be a very difficult task. (In [2] the idea of splitting the monolithic acceptance 
check into a set of simpler assertions, without quantifiers, spread among the in
termediate operations which compose Po, Pl is investigated; but pursuing such 
a verification-oriented approach leads naturally to a programmed, rather than 
default, exception handling style.) What is likely to happen in practice is that 
an acceptance test is an approximation of post: some, but not all, invocations of 
Po, Pl outside their standard domains will be detected, that is, the probpbility 
of the unwanted 3) outcome discussed in Sect. VI will be nonzero. . 

VIII. Programmed and Default Exception Handling 
in Hierarchies of Data Abstractions 

Consider a software system structured into a hierarchy of data abstractions 
(Fig. 1). Let {Ti} be the set of operations defined on those component data ab
stractions which are visible to a user of the system. (These data abstractions, 
storing information which is significant to the users, are generally implemented 
by high-level modules.) Let us distinguish a Ti operation from other (lower 
level) hidden operations by calling Ti a system transaction. The purpose of 
(both programmed and default) exception handling is to ensure that transaction 
executions will preserve the invariant properties inherent to the data ab
stractions which compose a system in spite of possible exception occurrences. 

Suppose that the invocation of a system transaction Ti leads to the oc
currence of an (anticipated or unanticipated) exception D when some lower 
level operation L. 0 is invoked. The operation L. 0 will be said to be weakly 
tolerant to the occurrence of D if D is detected and the (programmed or de
fault) handler of D recovers a consistent state for L before propagating D to the 
invoking procedure M.P. If this procedure can mask the propagation of D, then 
M.P is said to be strongly tolerant to the occurrence of D. Otherwise, if the 
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propagation of D coincides with the detection of a higher level exception E in 
M.P, then M.P in its turn must be weakly tolerant to E. In general, if an ex
ception propagation D, E, F. ... takes place across modules L, M, N, ... , and 
none of the traversed modules can perform a successful masking, then each 
module must be weakly tolerant with respect to that propagation (Le., each 
must contain a programmed or default handler able to recover a consistent 
module state and continue the propagation). 

Default exception handling based on automatic backward recovery can be 
used to render the transactions of a system weakly or strongly tolerant to detect
ed unanticipated exception occurrences. After a transaction execution is termi
nated, the recovery data maintained by the recovery cache have to be discarded 
in order to allow the cache to keep track of the inconsistency closures associated 
will potential exception detections during the next transaction execution. The 
operation of discarding the information accumulated in the cache when a trans
action is terminated is the commitment of that transaction [21]. 

IX. Tolerance of Design Faults 

If the unanticipated exceptional domain UED of a procedure P is not empty, 
we will say that P contains a design fault (or algorithmic fault). A failure oc
currence when P is invoked (in some state within its UED) will be called a 
manifestation of the fault. Between a manifestation and a detection of the conse
quences of this manifestation (either by a run-time check or by a human user 
who observes a discrepancy between the actual and the specified behavior of 
the system which contains P) a design fault will be called latent. 

If the transactions implemented by a system are weakly or strongly tolerant 
to failure occurrences caused by design faults, then the system can be termed 
design fault tolerant. As discussed in Sect. VII and VIII, default exception hand
ling based on automatic backward recovery can be used to provide design fault 
tolerance, but the question is: to what extent can one rely on this technique to 
make tolerable the consequences of human mistakes made during the design 
(or debugging) of a system? 

Let us call the time interval between the beginning and the end of a trans
action execution a commitment interval and let us call the time elapsed between 
·a manifestation of a design fault and a detection of the consequences of this 
manifestation a latency interval. Suppose that when a transaction Ti is started, 
the internal states of the system modules are consistent, and that during the ex
ecution of Ti a design fault manifests itself. If this manifestation leads to a 
FAILURE exception detection before the termination of Ti , then by invoking 
automatic backward recovery it is possible to restore, for all the system mod
ules invoked since the beginning of Ti , internal states which are equivalent to 
those which existed at the beginning of Ti . These recovered internal states are 
then consistent, and the danger of later additional unanticipated exception de
tections is avoided. 

However, it is possible that the manifestation of a design fault does not 
cause some explicitly checked invariant property to be violated, so that not 
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FAIL URE exception is detected during the execution of the T; transaction. 
Thus, at the commitment of T; (when the recovery information enabling a re
turn to the consistent system state which existed at the beginning of T; is dis
carded) some of the component modules of the system will be in an inconsistent 
state. It is then possible that a FAILURE exception caused by the design fault 
which has manifested itself during T; is detected during some later transaction 
execution ~. The invocation of automatic backward recovery will then restore, 
for the system modules, internal states which are equivalent to those which ex
isted at the beginning of ~. But since these states were already inconsistent, the 
recovered system state will be inconsistent and the danger of further unpredict
able behavior and additional unanticipated exception detections persists. 

Thus, while default exception handling based on automatic backward re
covery can provide effective fault tolerance for design faults with latency in
tervals contained within the commitment intervals associated with transaction 
executions, it is not adequate for coping with design faults having latency in
tervals which stretch over successive transaction executions. 

One of the key problems to be solved by software designers in order to 
avoid the production of design faults with long latency intervals is the system
atic identification of the exceptional domains associated with operations and 
the design of precise run-time checks for detecting any invocation within these 
domains. Mathematically, the ED of an operation can be calculated as being a 
solution of a fixed point semantic equation associated with that operation [3]. It 
is known that this solution exists and it is also known that it can be calculated 
by successive approximations. The trouble is that such a solution is obtained as 
a limit of an infinite approximation sequence and that machines (and human 
beings as well for nontrivial cases) are unable to guess suitable induction hy
potheses which can be used to prove the convergence of such iterations. Thus, 
an automatic determination of the exceptional domains associated with opera
tions and their specified postconditions does not seem to be practically feasible 
within the current state of the art in machine aided programming. 

A more pragmetic approach to the problem of identifying and detecting ex
ception occurrences is investigated in [2], [6], and [7]. A designer is left to identi
fy what he believes to be the standard and exceptional domains of an operation. 
In doing so, some guidelines (discussed in [2] and [6]) can be of help, but the 
identification of these domains is regarded as being a craft. The goal of the 
work reported in [2], [6], and [7] is to provide systematic verification procedures 
which allow one to check whether, within the identified standard and excep
tional domains, an operation will indeed behave as specified. The design of sys
tems which can help to carry out such verifications seems to be feasible within 
the current state of the art in machine aided program verification. Now, if after 
having checked the behavior of an operation within the identified exceptional 
and standard domains one can prove that the disjunction of their characteristic 
predicates is true (i.e., that the operation is total, or equivalently, that its UED 
is empty), it follows that there should be no surprises when that operation is 
invoked. 
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x. Conclusion 

During a recent conference on Reliable Computing and Fault Tolerance [20], a 
general consensus was reached: "that it is quite unclear how to balance fault 
avoidance and fault tolerance in the case of design faults." It was decided there 
that "the proper treatment (of this problem) is of urgent and increasing impor
tance for the 1980's." 

The subject discussed in this paper is at the boundary between fault avoid
ance and fault tolerance. Fault avoidance concepts (e.g., invariants, weakest 
preconditions) have been used to investigate some basic issues underlying the 
design of fault-tolerant software systems (e.g., the use of the exceptions to struc
ture the design of such systems, exception handling, etc). A unified point of 
view on programmed exception handling (a fault avoidance technique) and de
fault exception handling based on automatic backward recovery (a fault toler
ance technique) has been proposed. 

The purpose of (programmed and default) exception handling is to ensure 
that system transaction executions will preserve the invariant properties in
herent to the component system modules in spite of possible exception oc
currences (anticipated as well as unanticipated). It has been shown that the 
problem to be solved by programmed or default exception handlers are basi
cally the same (i.e., masking, consistent state recovery, and signaling) and that 
the handling of exceptions by default (for fault tolerance purposes) is based on 
the fact that automatic backward recovery can be used to recover consistent sys
tem states in a manner which is independent of the semantics of the operations 
implemented by that system. The cause-effect relationship between software 
design faults and failure occurrences has been investigated and it has been 
shown that default exception handling based on automatic backward recovery 
can provide effective fault tolerance only for those design faults which have 
latency intervals contained with the commitment intervals associated with 
system transaction executions. 

Among the problems to be solved in order to avoid the production of design 
faults with long latency intervals, the systematic identification and detection of 
exceptions associated with system operations plays a key role. It has been sug
gested that progress in solving this problem may be achieved by concentrating 
research efforts towards the construction of interactive support systems, which 
can help software designers to check that the detection of exception occurrences 
is performed reliably. 
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Robust Data Types 

F. CRISTIAN 

Summary. Data types with total operations and exceptions are proposed as basic building 
blocks for the construction of modular robust software. A notation for specifying such data 
types is presented and the issues underlying their correct implementation in a programming 
language supporting data abstraction and exception handling are discussed and illustrated by 
examples. New light is shed on some important aspects of exception handling such as the iden
tification and specification of exceptions, the precise detection of exception occurrences, re
covery of consistent states after exception detections and verification of the correct implemen
tation of specified exceptional effects for operations. 

1. Introduction 

It is customary in current approaches to data abstraction to leave the result of 
an operation invocation unspecified if certain preconditions do not hold [13,21, 
3, 16, 12]. For example, the result of invoking the top operation on a stack may 
be specified to be the top element of the stack if the stack is not empty. Trou
bles arise when the stack is empty, since then there does not exist a top-element. 
This situation is commonly referred to as an exception occurrence [5, 15, 17, 
18]. 

The need for taking into account exceptions is not even explicitly recognised 
in certain academic spheres. Software engineers, on the other hand, know that 
substantial parts of the programs they usually write are devoted to detecting 
and handling exceptions. The argument most often advanced for not specifying 
what happens if exceptions occur is that static verification methods can be used 
to guarantee that such situations never arise, provided the environments in 
which the programs run satisfy certain hypotheses. In reality, strong as
sumptions about the behaviour of these environments can rarely be made, es
pecially if their correctness is not verified or verifiable (e.g., human users). It is 
then essential to specify what should happen if exceptions occur. 

One possibility is to specify that an exception occurrence leads to program 
abortion. This (somewhat radical) solution is simple and has been modelled 
mathematically by several authors (e.g. [8, 10D. While it may be satisfactory for 
certain kinds of programs (e.g. student programs) it is certainly not satisfactory 
for other kinds of programs (e.g. operating systems, data base systems, process 
control systems). 

In this paper we show how exceptions may be used to structure the specifi
cation, implementation and verification of programs which are robust, i.e. can 
continue to behave as specified in spite of exception occurrences. The goal is to 
demonstrate that the construction of robust programs can be made subject to 
rigorous design methods similar to those (e.g. [13, 8, 21, 3, 16D proposed for the 
development of programs without any provision for exception handling. 
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As we consider the notion of a data type to be one of the most important 
software structuring tools, the focus will be on the design of robust data types. 
These may be used as building blocks for larger robust systems. Exceptions are 
rigorously defined, a notation for specifying data types with total operations 
and exceptions is proposed, and it is shown how such data types may be imple
mented in a programming language supporting encapsulation and exception 
mechanisms. The elaboration of these issues sheds new light on some basic as
pects of exception handling, such as the identification and specification of ex
ceptions for operations, the precise detection of exception occurrences, the re
covery of consistent states after exception detections and the propagation of ex
ceptions. A method for proving the correctness of implementations with respect 
to specifications is also proposed. By this method the verification of a program 
which may signal k ~ 0 exceptions is factored into k + 1 independent proofs: 
one (classical) proof of correct standard behaviour and k proofs of correct ex
ceptional behaviour. This separation of concerns can be taken as an indication 
that the effort required for producing robust programs is not much greater than 
that required for producing programs which deliver their specified result only 
if they do not have some other unpredictable behaviour. 

The paper is composed of two main parts. In the first, we introduce the no
tion of a robust data type together with a simple example and sketch criteria for 
verifying the total correctness of data type implementations with specifications. 
By total correctness it is meant that the implemented operations terminate 
cleanly (without unanticipated exception detections). In the second part, we use 
the simple example to construct a more elaborate hierarchically structured 
example. This allows a natural generalisation of the earlier correctness criteria 
and presents some important aspects of exception handling in hierarchies of 
data abstractions. 

2. Robust Data Types 

For a definition of a data type with exceptions to be precise, it is first necessary 
to have a clear idea of what is meant by a data type with partial operations. 
Thus, although the main interest is in data types with total operations and ex
ceptions, the Sects. 2.1,2.2, 2.3 of this first part of the paper are devoted to dis
cuss issues related to the specification, implementation and total correctness of 
data types with partial operations. Section 2.4 defines what we mean by an ex
ception occurrence and Sect. 2.5 describes briefly the exception mechanism we 
use. The last three sections take up the issues discussed in the first three sections 
(i.e. specification, implementation, total correctness) for data types with total 
operations and exceptions. 

2.1. Data Types with Partial Operations 

Data abstraction has emerged from recent research in programming as a means 
of extending the data definition and manipulation facilities of a programming 
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language with new (abstract) data types. In an imperative programming lan
guage, like that considered in this paper, one can view a data type as being a (fi
nite) set of values plus a (finite) set of operations [21]. These values and opera
tions are usually specified in terms of some underlying data space. By a data 
space we mean a mathematical structure consisting of several sorts of sets and 
operators among those sets [11]. The semantics of the operations of a data type 
is expressed by formulae in the language of this structure, and a distinguished 
'sort of interest' can be used to specify the set of values of the type [12, 9]. 

The data spaces which underly the data types of an imperative language 
may either be defined implicitly by axioms [11, 22, 12,9,4] or may be construct
ed explicitly from a fixed repertoire of well-known basic data spaces like in
tegers, sequences, sets of integers and so on [13,21,3, 16, 1]. The second defi
nition method (to be used in this paper) leads to shorter presentations since it 
relies on the reader's familiarity with the concepts used when describing new 
data spaces. However, as our solution to exception handling is entirely at an im
perative programming language level, it can accommodate with any particular 
data space definition method. 

We assume that an instance of a data type T is declared in a program as be
ing a variable of type T. A mapping from program variables to val ues (of their 
type) is a program state. When we speak about the state (or value) of a variable 
we mean the result of applying a state function to it. Only programs with a fi
nite number of variables which may take a finite number of distinct values are 
considered, so the set S of distinct states of any program is finite. 

Let 0 P be an operation specified for a data type T The purpose of invoking 
OP on a variable of type T is to produce a state transition. Thus, the semantics 
of an operation 0 P is generally taken to be a state transition relation [13, 21, 3, 
16, 9]. A pair states (s', s) E S X S is in this relation if the final state s E S is an 
intended outcome of invoking OP in the initial state s' E S. (As in [21, 9], states 
prior to operation invocations are primed.) In practice, such a relation is not de
fined by enumerating all its component pairs, but by giving its characteristic 
(binary) predicate: 

post E S x S~ {true,false} 

called (for reasons to become clear later) the abstract standard postcondition of 
o P. In general post is a partial relation: there exist initial states which do not 
have successors in post. A total unary predicate, the abstract standard preconditi
on ofOP: 

pre E S --+ {true, false} 

will be used in what follows to characterise the domain of post, that is, the set of 
those initial states which have successors in post: 

pre(s') = true === s' E dom(post) 

where 

dom(post) ==={s' E SI3 s E S:post(s', s) = true}. 
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An operation is called partial if its semantics is a partial state transition re
lation. We wait unit Sect. 2.6 to see how exceptions can be used to build total 
operations. 

In order to illustrate the notions discussed so far we specify a simple data 
type RESOURCES, often used in operating systems to manage a finite number 
n > 0 of resources. The positive (machine representable) integer n is a generic 
parameter of the t¥pe. The resources are identified by the set of integer con
stants {I , 2, ... , n f denoted [n]. The mathematical data space underlying the 
RESOURCES data type contains three sorts of sets (booleans, machine rep
resentable integers and the set of subsets of [n] denoted P[n]) together with a 
collection of operators among these sets. Some of the operators are total and 
others partial. Among the former we mention: "E" (membership), "u" (set 
union), "-,, (set difference), "II" (cardinality), etc. Among the latter there is the 
partial (nondeterministic) choice operator "oneof" which for a subset r of [n] 
yields an element of r if r is not empty, i.e. Y r EP[n]: Irl > 0 => oneof (r) E r. 
With partial operators we associate total predicates "det' indicating whether 
they are applied to elements of their domain or not (e.g. def( oneof(r») == I r I > 0). 
For the finite data spaces needed to specify finite (machine representable) data 
types such total predicates always exist. When proving correctness properties 
about programs which use the RESOURCES data type, we assume the mathe
matical properties of its underlying data space to be well-known. For example 
properties like I r I < n => r u {oneof([ n]- r)} E P [n], I r I < n => I r u {oneof([ n] 
- r)} I = I r I + 1, etc. will be taken to be true without any further explanation of 
why they are true. 

A notation close to that of[21] is used in Fig. I to specify the RESOURCES 
type. In order to avoid explicit mention of state functions, we write variable 
identifiers in capital letters and variable values in lower case letters (e.g. if V is 
a program variable v stands for a value of V). Also, if an operation does not 
change the state of a variable we omit explicit mention of this fact (e.g. the term 
i = I indicating that the RELEASE operation does not alter the value parame
ter I is omitted in line 10 and in line 9 we have written i E r' instead of i' E r'). 

Line 2 defines a value of an arbitrary variable R of type RESOURCES(N) 
to be a subset of [n]. The predicate in line 3 specifies the initial value assumed 
by such a variable after its declaration to be the empty subset. The intention is 

I pecification of type RESOURCES (generic : I T G R > 0) 
2 values rEP [n] 
3 initial value r = { } 

4 operations 
5 procedure GET returns I: I TEGER 
6 pre I r/ l < n 
7 po t i = oneof ([n] - r') & r = r' u {i} 
8 procedure RELEASE (1: INTEG R) 
9 pre i E r' 

10 po ti E r/&r=r'-{i} 

Fig. 1. Specification of a data type with partial operations 
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to make the value of R be the subset of those resources which are allocated 
Lines 5 and 8 define the syntax for invoking the operations GET and RE
LEASE. Following [13] this syntax will be 1:= R.GET and R.RELEASE(I). 
Line 7 states that the standard result of GET is to return an integer value i iden
tifying a resource which was previously free, i.e. i = oneof([n] - r'), and which 
after the invocation becomes allocated, i.e. r = r' U {i}. The standard result 
of invoking RELEASE with a parameter I (line 10) is tO,deallocate the resource 
i, i.e. r = r' - {i}, if it was previously allocated, i.e. i E r'. The preconditions in 
lines 6, 9 characterise the domains of the postconditions in lines 7, 10. As these 
abstract standard domains are strictly included in the set of (abstract) states 
which can exist for the pair of variables R, I, the operations GET and RE
LEASE are partial. 

2.2. Implementation 

We assume a PASCAL-like (deterministic) programming language providing a 
SIMULA class like construct [13] for the implementation of abstract data types. 
An implementation of a data type T defines a concrete internal representation 
for the set of values specified for T, the bodies R( OP) of the procedures imple
menting the specified operations OP and an internal state initialisation algo
rithm INIT. We assume that the internal state of an instance of T cannot be ac
cessed otherwise than through the operations defined for T and that INIT is 
automatically invoked at, instance creation. 

Let C be the set of internal states associated with the variables of an im
plementation. The intended semantics of a procedure R(OP) can be specified 
by a concrete standard postcondition 

cpost E C x C ~ {true, false}. 

A pair of states (c', c) is in cpost if c is an intended outcome of invoking R(OP) 
in the initial state c'. On the other hand, each procedure is a sequence of com
mands available in the programming language being used, and as such has an 
actual meaning which is imposed by the semantic definition of this language. 

The actual standard semantics of R(OP) can be defined to be another (par
tial) relation 

reachable (R(OP» E ex c ~ {true,false} 

with the understanding that a pair (c', c) is in this relation if when invoked in 
the state c' R(OP) terminates cleanly in c [2]. However for program proofs, one 
is interested in knowing not only if a program terminates, but if it terminates in 
a state satisfying a given postcondition [8]. For this purpose, the use of the 
backward predicate transformer semantics given in [2] is more suitable. This 
semantics is similiar to that of [8]. One difference is that the predicates we 
consider are binary, i.e. primed states may occur in them. A more important 
difference is that in predicates we use noncommutative logical con-
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nectives & (conditional and) and V (conditional or) and that we take special 
care in dealing with data types (e.g. bounded integers, finite arrays) with partial 
operations. For example, let T be a language defined type with a partial unary 
operator f in its underlying data space. If the standard effect of invoking an 
operation 0 P on a variable V of type T is the assignment of a new value f(v) to 
V, then the standard semantics of OP is given in [2] as 

wp("V.OP", Q) == def(f(v)) & Q[f(v)lv] 

where Q is an arbitrary predicate and Q[f(v )Iv] stands for the result of sub
stituting all free occurrences of v in Q by f( v), after all the usual precautionary 
measures for avoiding name clashes. The guard def(f(v)) at the left of the non
commutative "&" is essential for ensuring that the termf(v) to be substituted is 
well defined, i.e. is obtained by applying f to an element of its domain. A de
tailed discussion of the technical issues related to the use of such a non
commutative logic is beyond the scope of this paper. We limit ourselves to state 
that its use seems to be necessary whenever one wishes to avoid the occurrence 
of undefined terms in the verification conditions generated during program 
proofs. 

Returning now to our discussion about the actual ~~andard semantics of a 
procedure, we define it to be its backward predicate transformer (derivable as 
the composition of the predicate transformers associated with its component 
commands). In particular, we define the concrete standard precondition cpre of a 
procedure to be the weakest precondition associated with its body and its con
crete standard postcondition: 

where 

cpre == wp("B(OP)", cpost) 

wp("B(OP)", cpost)(c') == :3 c E C: reachable(B(OP))(c', c) & 
cpost(c', c). 

Thus, cpre characterises the set of initial states c' for which B( 0 P) terminates 
cleanly in a final state c satisfying cpost(c', c). 

An implementation of the RESOURCES data type is given in Fig. 2. 
We assume that the positivity of the generic parameter N is checked by the 

compiler. The AND, OR operations of the BOOLEAN language defined data 
type are noncommutative as their corresponding logical connectives & and v 
(e.g. if the loop guard in line 9 is evaluated in a state j = n + 1 then the well 
defined result false is obtained even though ---, def(t(n + I) = used)). The con
crete standard postconditions stated as comments (between % symbols) in lines 
12, 16 specify the intended semantics of the GET and RELEASE procedures. 
The concrete standard preconditions in lines 7, 14 have been derived using the 
programming language semantics given in [2]. 
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I type RESOURCES = 
2 class (generic N: INTEGER> 0); 
3 typeRESO R E-STAT = (FREE USED); 

varT: ARRAY (I ... N) of RESOURCE-STATE; 
procedure GET returns I: INTEGER 

4 
5 
6 var J: INTEGER' 
7 begin % cpre = 3j: I ~j ~ n & t' U) = free % 
8 J:= I' 
9 while (J ~ N) AND (T (J) = USED) do J:= J + I; 
lOT (J) := USED' 
II 1:= J; 
12 end; % cpost == I ~ i ~ n & t' (i) = free & t (i) = u ed % 
13 procedure RELEASE (1: INTEGER); 
14 begin % cpre = I ~ i ~ n & t' (i) = used % 
15 T(l):= FR E; 
16 end; % cpo t == 1 ~ i ~ n & t' (i) = u ed & t (i) = free % 
17 begin for I := I to N do T (I) := FREE % INIT % 
18 end RESOURCES 

Fig. 2. Implementation of a data type with partial operations 

2.3. Correctness 

In order to prove the correctness of a data type implementation with respect to 
a specification, one has to establish a correspondence between internal and ab
stract states. Following [13] this correspondence will be defined· by an ab
straction function denoted A. 

In our example, the A function is defined 1 on any value t that the state vari
able T declared in Fig. 2 may reach: 

A(t) == {j 1(1 ~j ~ n) & tU) = used} 

Clearly, for every reachable t, A(t) E P[n] holds. 
Criteria for establishing the consistency of a data type implementation with 

a specification (within a partial correctness semantic framework) have been 
proposed in [13]. Such a proof of correctness guarantees that whenever an 
operation is invoked in an initial state satisfying its precondition, either it ter
minates in a state satisfying the postcondition or it does not terminate properly, 
i.e. loops indefinitely or leads to an (unanticipated) exception detection. Our 
interest is in clean termination, so we need to strengthen the criteria given in 
[13] as follows. 

I As all the procedures of this paper have parameters or return values of language defined 
types and the abstraction functions for them are identify functions we omit their explicit 
mention 
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Let C be the set of internal states reachable by an instance of a data type T, 
INIT be the initialisation algorithm, and A be the abstraction function. First, A 
is necessary to verify that the constraints on the generic parameters of T guaran
tee that IN IT yields a state c for which A(c) satisfies the 'initial value' predicate 
ofT: 

(VCO) constraints on generic parameters ~ wp("INIT", initial-value(A(c))). 

Furthermore, for each operation OP of T it is necessary to show that its con
crete semantics is consistent with its abstract semantics. Let post be the abstract 
standard postcondition of OP and pre characterise the domain of post. At the 
implementation level, let cpost be the concrete standard postcondition of B(OP) 
and cpre = wp("B(OP)", cpost) characterise the initial states c' for which B(OP) 
yields final states c such that cpost(c', c). The first verification condition ensures 
that whenever OP is invoked in a state c' for which A(c') has a successor in post, 
then for c' there exists a reachable successor in cpost: 

(VC 1) pre(A(c')) ~ cpre(c'). 

The second verification condition ensures that the successor c reached after the 
(clean) termination of B( 0 P) corresponds through A to a specified abstract suc
cessor of A(c'): 

(VC 2) cpost(c', c) ~ post(A(c'), A(c)). 

As an example, we state below (without proof) the verification conditions 
which ensure that the implementation of Fig. 2 is totally correct with respect to 
the specification of Fig. I. 

I) Correct initialisation 

(I) n > 0 ~ wp("INIT",A(t) = { }). 

2) Correctness of the standard effect of GET 

(Gl) IA(t') I < n ~ cpre(GET)(t') 
(G2) cpost(GET)(t', t) ~ i = oneof([n]-A(t')) &A(t) = A(t') U {i}. 

3) Correctness of the standard effect of RELEASE: 

(Rl) i E A(t') ~ cpre(RELEASE)(t') 
(R2) cpost(RELEASE)(t', t) ~ i E A(t') & A(t) = A(t') - {i}. 

In deriving the above verification conditions we have used the predicate 
transformer semantics [2] of a language supporting predefined data types such 
as BOOLEAN, INTEGER, ARRA Y. Now that we have extended this language 
with the RESOURCES data type, it would be interesting to express the seman
tics of its operations in terms of predicate transformers also. That would allow 
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programs using RESOURCES to be verified in the same manner as if only pre
defined types were used (a main idea in data abstraction is to place abstract 
and predefined data types on an equal footing). The last part of this section in
vestigates this point briefly. 

We assume in what follows that whenever an operation OP of a data type T 
is invoked on a variable V in a state outside the standard domain, i.e. --, pre(v') 
then OP does not terminate normally (a systematic method for enforcing this 
behaviour is given later). Our second assumption is that the abstract post
condition of OP describes explicitly how the new state v is obtained by apply
ing a (generally partial) operator f of the underlying data space to v', i.e. 
post == v = f(v') where pre(v') => def(f(v)) 2. Under the above assumptions, 
the truth of the (VCO, VC1, VC2) verification conditions ensures that pre(v') is 
the necessary and sufficient condition for the standard termination of V. 0 P in a 
state satisfying v = f(v'). Another way of saying this is the following: the neces
sary and sufficient condition for the standard termination of V.OP in a state 
satisfying an arbitrary predicate Q is the truth of pre(v) & Q[f(v)lv] before the 
invocation of V.OP: 

wp("V.OP", Q) == pre(v) & Q[f(v)lv]. 

Thus, under the assumption that the operations specified for RESOURCES 
do not terminate normally outside their standard domains, their predicate 
transformer semantics can be given as follows: 

(1) wp("I:= R.GET", Q) == Irl < n & Q[xli, r u {x }Ir] 
where x = oneof([n]-r), 

(2) wp("R.RELEASE(I)", Q) == i E r& Q[r-{i}lr]. 

The expression Q[alb, cld] stands for the result of simultaneously substituting 
in Q all free occurrences of b by a and all free occurrences of d by c. 

As an example, let us use (1) to derive the necessary and sufficient condition 
for the program 

C1 I:=R.GET; 
C2 J:=R.GET; 

to terminate normally. This is: 

wp("C 1", wp("C 2", true)) (by 1 with Q = true) 
= wp("C 1", Irl < n) (by 1 with Q = Irl < n) 
= Irl < n & Ir U {oneof([n]-r)} I < n (properties of underlying 
= Irl ~ n-2. data space) 

Thus, C 1; C2 terminates normally iff initially they are at least two free re
sources. 

2 The case when OP has parameters or returns some value can be dealt with similarly 
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2.4. Exceptions 

Let D be an integer array with domain I ... N and I, R be variables of type 
INTEGER and RESOURCES(N) respectively. Suppose that in order to 
achieve some desired state transition one composes the following two com
mands into a program: 

C 1 1:= R.GET; 
C2 D(l):=l; 

Such sequential compositions are based on the (most often implicitly made) 
assumption that when the 'next' command C 2 is invoked, the standard state 
transition specified for the 'preceding' command C 2 has been accomplished. 
Here the invocation of C 2 makes sense only if the state s2 after C 1 is such that 
s2(l) = i is a newly allocated resource name and hence is a valid index for ac
cessing D. If the state sl prior to the invocation of C 1 was such that sl(R) = [n], 
then a state s2 such that post(GE1) (sl, s2) cannot be reached (because such a 
state does not exist!). In such circumstances, the initial assumption that the ex
ecution of C 1 should be followed by that of the 'next' command C 2 has to be 
revised. Problems arise not only in programs which use data types, but also in 
those which implement them. For example, if the GET procedure of Fig. 2 is 
invoked in an initial state in which all the entries of the array T are used, the 
loop in line 9 terminates with j = n + I and the invocation of the 'next' com
mand in line 10 results in an array bounds violation. 

A possible solution to the above difficulties is to abort a program whenever 
one of its component operations is invoked outside its standard domain. Con
ceptually that can be modelled by specifying that such an invocation does not 
produce a successor state (the operation "fails to terminate" [8]) or that some 
error value - and hence error state - is produced and the program remains for 
ever in it (the following operations produce error values from error values [10]). 
This paper is devoted to the discussion of another possible solution. 

Let us define an invocation of an operation outside its standard domain to 
be an exception occurrence. By the definition of this domain it follows that once 
the goal of an operation invocation is specified to be some (partial) state transi
tion relation post, the set of initial states which lead to exception occurrences 
(the exceptional domain of the operation) is uniquely determined as the com
plement of the standard domain dom(post). 

The solution to exception handling we want to explore is based on the fol
lowing idea: an exception occurrence should cause an (exceptional) alteration 
of the (standard) sequential composition rule for operation invocations. A pro
gramming language control structure which allows to express that the standard 
continuation of an operation invocation is to be replaced by an exceptional con
tinuation when an exception occurrence is detected will be referred to as an ex
ception mechanism. In what follows we assume that the exception mechanism 
introduced in [5] (similar to some extent to those of[17, 15]) is available in our 
programming language. Because of space limitations, we present here only 
those features of the mechanism which are needed for understanding this 
paper. 
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2.S. Exception Mechanism 

Exceptional continuations for exception occurrences can be defined by using 
exception labels. The designer of a procedure OP can declare that whenever OP 
is invoked in its exceptional domain an exceptional label E is signalled: 

procedure 0 P signals E 

and an invoker of OP can define the exceptional continuation, if E is signalled, 
to be some exception handler K by writing: 

OP[E; K]. 

In order to detect and handle the occurrence of the (by now labelled) E ex
ception, the implementor of 0 P can insert in B( 0 P) one of the following syn
tactic constructs: 

(b) [B; H] 
(c) C[F; H]. 

In (b), B stands for a boolean expression without side effects. In (c), F stands for 
an exception label which may be signalled by the command C. H stands for an 
exception handler. All the handlers to be used in this paper follow the syntax: 

H = H 1; signal E 

where H 1 is a (possibly empty) sequence of commands 3. Exceptional continu
ations can be associated with operation invocations and exception labels only 
by using (c) constructs (e.g. OP[E; K] is an instance of such a construct). 

The concept of a continuation function used in denotational semantics [20] 
can be used to express formally the meaning of the signal sequencer used in (b, 
c) constructs. However, in what follows we choose (for simplicity reasons) to re
main within the traditional data abstraction approach to programming in 
which to abstract from such 'control' issues (in order to better concentrate on 
data representation issues) is an integral part of the 'divide and conquer' 
underlying philosophy. We therefore limit ourselves to giving a 'local' predicate 
transformer semantic characterisation of the (b, c) constructs. This characteri
sation captures that part of their semantics which can be described in terms of 
program states, and is sufficient for proving the correctness of programs which 
implement data types with exceptions, provided certain context-sensitive syn
tactic constraints (to be described below) are satisfied by these programs. 

3 Issues related to standard handler terminations (corresponding to exception propagations 
being stopped - or masked) are discussed in [5, 7] and will not be considered in this presen
tation 
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Let us first present informally that part of the (b, c) constructs which will 
not be described in terms of predicate transformers: the signal E sequencer. 
Two context-sensitive syntactic rules have to be obeyed when using it in a pro
~edure: it can occur only in an exceptional construct surrounded by square 
brackets and the signalled label E must be declared in the header of the pro
~edure (so that invokers may define exceptional continuations for occurrences 
of E). These constraints can be checked by a compiler without difficulty. Let us 
denote by 

C[P; H] 

either a (b) or a (c) construct (if C is empty then "P stands for a boolean expres
sion B and otherwise it stands for a label F which may be signalled by C). We 
assume in this paper that signal E sequencers are used in procedure bodies only 
according to the syntactic pattern (u) given below: 

procedure 0 P signals E; 
begin C 1; 

(u) C[P; HI; signal E]; 
C2; 

end; 

where C 1 and C 2 are (possibly empty) sequences of commands. The effect of 
executing the signal E sequencer is the following: the standard continuation of 
the C[P; H] construct (the 'next' C 2) is ignored and OP terminates exception
ally with E being signalled, i.e. an exception handler K associated (by using a 
(c) syntactic construct) with E in the invocation context of OP is activated. 
Thus, a signal E inside a procedure OP is a (restricted kind) offorward jump to 
a handler (statically) associated with E in the invocation context of OP [5, 17]. 
We assume that if OP is a value returning procedure used in an assignment 
V:= OP, no new value is assigned to V if OP terminates by signalling E. An 
exception mechanism must be designed so as to guarantee that exceptional con
tinuations for command invocations always exist and are uniquely defined. For 
a detailed discussion of these exception mechanism design issues the interested 
reader is referred to [5, 17]. 

We now come to those aspects of the (b, c) constructs which can be de
scribed in terms of predicate transformers (under the assumption that the 
above constraints relative to signal commands and exceptional con~inuations 
are enforced). Consider a (b) construct inserted in a procedure according to the 
(u) pattern and suppose that B always has a well-defined value. The local effect 
of inserting the construct in B( 0 P) can be described as follows. If the preceding 
command (C 1) terminates normally in a state s in which the value b = s(B) of 
B is false, then the following command (C 2) is invoked in the same state s (in
dependently of what the meaning of HI might be): 

(bs) wp("[B; Hr, Q) == --, b & Q. 
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Otherwise, i.e. if the preceding command (C 1) terminates in a state e in which 
e(B) = b is true, the exception handler following the "[B" syntactic fragment is 
invoked in the (same) state e: 

(be) wp("[B", Q) == b & Q. 

Thus, a (b) construct acts as a switching point. By using it one can write in a 
linear notation two sequentially composed programs which share their entry 
points but have distinct exit points and perform different state transitions: C 1; 
[B; H]; C 2 behaves like C 1; C 2 in the standard case (b s) and like C 1; H in the 
exceptional case (b e). One could remark that the program C 1; if B then Heise 
C2 can do the same job. We prefer the (b) syntax for several' reasons. First, it 
leads to a clear separation between what is standard and what is exceptional in 
programs. Second, it provides a means for forbidding signal sequencers to oc
cur 'hidden' within standard programming constructs (like the previous "if B 
then Heise C 2"). If the signal sequencer could occur within them, then the 
semantic definition of every standard construct would have to be modified to 
reflect this possibility. Our opinion is that the need to define an exceptional 
semantics for programming constructs should not interfere with, but rather be a 
completion of, their standard semantics, which should remain unchanged. This 
point is further elaborated when the predicate transformer characterisation of 
the (c) construct is given. We also show that the restriction to use signals only in 
exception programming constructs surrounded by square brackets enables one 
to prove separately properties relative to the standard and exceptional behav
iour of programs. 

As a first example of such a proof, let us use the (b s, b e) clauses to derive 
the conditions for standard and exceptional termination of a (slightly modified) 
version of the GET procedure of Fig. 2 in which the exceptional construct 

[I > N; signal 0 V1 

is inserted as shown in Fig. 4 of Sect. 2.7. Let C 1 and C 2 be the sequential 
compositions of the commands preceding (lines 7, 9) and following (lines 10, 
11) this exceptional construct: 

C 1 == I:= 1; while (I ~ N) AND(T(J) = USED) do I:= I + 1 

C 2 == T(I) := USED; I := I. 

The modified GET procedure terminates in a state t = t' by signalling the 0 V 
(erflow) exception label iff the following precondition holds: 

wp("C 1; [I > N", t = t') = (by the b e clause) 
= wp("C 1", (j> n) & (t = t')) 
= Vj: (1 ~j ~ n) = (t'U) = used). 
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The condition for standard termination with the internal state being changed as 
specified by cpost (GET) is 

wp("C 1; [J > N; signal OV]; C2", cpost(GET)) = 
= wp("C 1; [J > N; signal OV]", 

(I ;2j;2 n) & (t'U) = free)) (by the b s clause) 
= wp("C 1", (I ;2j;2 n) & (t'U) = free)) 
= :Jj: (1 ;2j;2 n) & (t'U) = free). 

Thus, the insertion of the exceptional construct of 0 V in GET does not alter the 
standard properties of this procedure. However, if the procedure is now in
voked in an initial state for which cpre(GET) does not hold, the invocation of 
C 2 is replaced by that of the handler of the 0 V exception, in this example a 
simple signal OV sequencer. This causes the exceptional termination of GET 
and the invocation of a handler K associated with the label 0 V in the invo
cation context of GET: 

1:= R.GE1l0V; K]. 

K may in its turn handle the occurrence of another exception specified for the 
program which invoked GET. We postpone a discussion of the issues related to 
exception propagations until Sect. 3.5 and content ourselves for the moment to 
emphasise that the phrases 'handler of E' and 'handler associated with E' are 
used to designate distinct handlers. 

Predicate transformer characterisations similar to (b s, b e) can be given also 
for (c) constructs. Assume that such a construct is used in a procedure accord
ing to the (u) pattern and that F is signalled by C iff C is invoked outside its 
standard domain. The necessary and sufficient condition for the command (C 2) 
following the C[F; H] construct to be invoked in a state satisfying a predicate Q 
is the standard termination of C in such a state (independently of what the 
meaning of HI might be): 

(cs) wp("C[F; H]", Q) == wp("C", Q). 

Thus, by adjoining in a program an [F; H] exceptional construct to a command 
C, one does not change the standard behaviour of that program. For example 
the standard semantics of 1:= R.GET[OV; K] is the same as that of 1:= R.GET: 

(1') wp("I:= R.GET[OV; K]", Q) 
== Irl < n & Q[xli, r u {x}/r] where x = oneof([n]-r). 

If an invocation of C is an F exception occurrence, the presence of [F; H] trig
gers· the invocation of H. Assume that the (exceptional) s(ate transition pro
duced by C in such circumstances is specified to be the identity relation over 
states. Then the necessary and sufficient condition for H to be invoked in a state 
satisfying some predicate Q is the exceptional termination of C when invoked 
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in such a state: 

(c e) wp("C[F", Q) == -, wp("C", true) & Q. 

For example, we want an OV exception occurrence to leave the state of the pro
gram variables unchanged and just trigger the invocation of a handler associat
ed with the 0 V label: 

(l e) wp("I:= R.GET[OV", Q) == Irl = n & Q. 

The next sections will discuss how such operations can be specified and cor
rectly implemented. 

2.6. Data Types with Total Operations and Exceptions 

A specification method should allow the description of not just the standard ef
fect of operations, but also of possible exceptional effects. The specification of 
exceptional effects should state when exceptions should be signalled and what 
state transitions should occur in such cases. 

Let S be a set of abstract states for some data type T and let OP be an 
operation of T with abstract standard postcondition post and standard domain 
pre. Let E be an exception label to be signalled if OP is invoked in the excep
tional domain pre(E) == -, pre and let post(E) be a (possibly partial) state tran
sition relation such that every initial state satisfying pre(E) is in the domain of 
post(E). The construct 

E: pre(E) ~ post(E), pre ~ post 

will be used to specify the meaning of the operation 0 P as a pair of (exception
al and standard) state transition relations. If at the invocation of OP the initial 
state s' E S satisfies pre (E) , the exceptional state transition labelled by E occurs: 
the relation between s'· and the successor state s E S is post(E) and the continu
ation in the invocation context of OP is exceptional, i.e. a handler associated 
with E is invoked instead of the 'next' statement in that context. If at the invo
cation of OP the initial state s' satisfies pre, the standard state transition occurs: 
the relation between s' and s is post and the continuation in the invocation con
text is standard. 

Because by definition pre(E) V pre = true, it follows that an operation speci
fied as indicated above is total (every possible initial state has a successor either 
in post(E) or in post). 

If all the operations specified for a data type are total then the data type will 
be termed robust (its operations have a well defined behaviour for any possible 
initial state and exception occurrences do not cause program abortion [8] or a 
subsequent cascade of error notifications [10]). 

Total operations for which the abstract exceptional postconditions are 
identity state transition relations, i.e. post(E) == (s = s'), will be called atomic (in 
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I specification of type RESOURCES (generic N: INTEGER> 0) 
2 values r E P[n] 
3 initial value r = { } 

4 operations 
5 procedure GET returns I: INTEGER ignals OV 
6 OV: r' l = n 
7 i =oneof([n]-r')&r=r'u {i} 
8 procedure RELEAS (I: INT GER) signals ILL 
9 ILL: i rt r', 

I a i E r' & r = r' - {i} 

Fig. 3. Specification of a data type with atomic operations 

the sense that their invocation has for an external observer an 'all or nothing' 
effect: either the standard state transition takes place or the state remains un
changed). 

As far as the robustness of programs is concerned, the fundamental concept 
is that of a total operation. However, in what follows we choose (for simplicity 
reasons) to give only examples of atomic operations. When specifying such 
operations we omit to write their exceptional postconditions and their standard 
preconditions (which can be immediately retrieved by negating the written ex
ceptional preconditions). 

Figure 3 presents a robust version of the RESOURCES data type. The two 
operations GET and RELEASE are now total (when invoked outside their stan
dard domains the exceptions 0 V (erflow) and ILL (illegal) are signalled). The 
data space in terms of which this specification is given is the same as that pre
sented in Sect. 2.1. In order to define a data type with total operations and ex
ceptions one can use an underlying data space with partial operators. In our 
example the partiality of the "oneof" operator does not create any incon
venience: this operator cannot be invoked directly by a user of the RE
SOURCES data type, so it need not be made total. The "oneo!" operator can 
be applied to elements of P[n] in program proofs, but the non-commutative 
"&" of (1, 1') ensures that it will never be applied to { }, that is, the 'error 
terms' studied in [10], will never be generated. 

2.7. Implementation 

Suppose that in order to implement an operation OP, which may signal an ex
ception E, an exceptional construct is inserted in B( 0 P) according to the (u) 
syntactic pattern. This has the effect of adding to the standard meaning 
wp("B(OP)", Q) of OP an exceptional meaning wp("C 1; C[P; HI", Q) where 
Q stands for an arbitrary predicate. Thus, the actual semantics of B( OP) be
comes a pair of (standard and exceptional) predicate transformers. If cpost is 
the concrete standard postcondition specified for B(OP), then the concrete stan-
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dard precondition cpre is defined (as in Sect. 2.3) to be 

cpre == wp("B(OP)", cpost). 

The cpre predicate can be derived by using the (b s, c s) semantic clauses given 
in Sect. 2.5. A concrete exceptional postcondition cpost(E) can be used to specify 
the internal state transition intended to be produced when E occurs. Under the 
assumption (u) that in B(OP) there exists one occurrence of the signal E se
quencer, the concrete exceptional precondition is defined to be 

cpre(E) == wp("C 1; C[P; H J", cpost(E)). 

The cpre(E) precondition can be derived by using the (b e, c e) semantic 
clauses. While cpre still characterises the initial states for which the termination 
of B(OP) in a state satisfying cpost is standard, cpre(E) becomes the character
istic predicate of the initial states for which B(OP) terminates exceptionally by 
signalling E in a state satisfying cpost(E). In both cases the termination will be 
called clean, since infinite looping or unanticipated (i.e. unspecified) exception 
detections are excluded. 

An implementation of the robust version of RESOURCES specified in 
Fig. 3 is given in Fig. 4. The only additions made to the implementation given 
in Fig. 2 are the exception label declarations in lines 5, 13 and the exceptional 
constructs in lines 9, 14. The standard algorithms, obtainable by removing the 
next between square brackets, are the same. 

I type RE OURCES = 
2 class (generic N: INTEGER> 0); 
3 type RESOUR E-STATE = (FREE, USED); 
4 var T: ARRAY (I ... N) of RESOURCE-STATE; 
5 procedure GET returns I: INTEGER signals OV· 
6 var J: J TEGER· 
7 begin J:= I-
8 while (J ~ N) AND (T (1) = USED) do J := J + 1; 
9 [J> N; signal OV]; 
lOT (J) := USED-
11 1:= J 
12 
13 
14 
15 
16 
17 
18 

end; 
procedure RELEASE (I: INTEGER) signals ILL-
begin [(I < I) OR (I> N) OR (R (I) = FREE)- signallLLl 

T (1):= REE 
end; 

begin for 1:= 1 to N do T (J) := FREE 
endRESOUR S 

Fig. 4. Implementation of a data type with atomic operations 
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Each of the exceptional constructs of Fig. 4 contains a boolean expression (a 
run-time check) and a corresponding signal sequencer. We want such checks to 
be precise in the sense that they become true whenever the initial state is in the 
exceptional domain and they remain false if the initial state is in the standard 
domain. A second property should be efficiency. The place for inserting checks 
should be chosen so as to minimise their evaluation cost. For example the in
sertion of a check for 0 V at the entry of GET (by using a loop similar to that of 
line 8) would not be optimal since its evaluation would be redundant with the 
following search for a free entry in T. The placement of the check after the loop 
is better. Intuitively one might say that if there is a choice between testing a 
predicate with quantifiers and a predicate without quantifiers, the latter is to be 
preferred. Issues related to the derivation and placement of precise checks in 
programs which are written in a language having both backward and forward 
predicate transformer semantics are discussed in [2]. 

2.8. Correctness Criteria 

In order to prove that a data type T with total operations and exceptions is cor
rectly implemented, two new verification conditions (for correct exceptional be
haviour) have to be added to those of Sect. 2.3. 

The first verification condition concerning the correct internal state initiali
sation is the same as that given in Sect. 2.3.: 

(VCO) constraints on generic parameters => wp("INIT", initial-value(A(c))). 

Let now OP be an arbitrary total operation of Tspecified by 

E: pre(E) -+ post(E) , pre -+ post 

where pre = dom(post) = I pre(E). Assume that the implementor of OP has 
decided that the best place for inserting an exceptional construct in the body of 
OP is as shown below: 

B(OP) = C 1; [B; H]; C2 

where B is the check for, and H = HI; signal E is the handler of, E. HI may be 
empty as in the examples of Fig. 4. Also C 1 or C 2 may be empty; a check may 
be placed at the entry or at the exit of a procedure. Let cpost be the standard 
concrete postcondition of OP and cpost(E) be the concrete exceptional post
condition to hold just before E is signalled. Let furthermore cpre, cpre(E) be the 
concrete standard and exceptional preconditions as defined in Sect. 2.7. The 
verification conditions for correct standard behaviour are the same as those of 
Sect. 2.3: 

(VCI) 
(VC2) 
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The verification conditions for correct exceptional behaviour ensure that when
ever OP is invoked outside its abstract standard domain, the occurrence of the 
specified E exception is detected and the resulting exceptional concrete state 
transition is consistent with that specific: 

(VCE 1) pre(E)(A(c')) = cpre(E)(c') 
(VCE 2) cpost(E)(c', c) = post(E)(A(c'), A(c)). 

The derivation of cpre and cpre(E), as well as the proofs of the above verifi
cation conditions can be carried out completely separately. If OP has been speci
fied to be atomic, then the proof of (VCE 2) is often trivial. This is the case in 
our RESOURCES example. 

The verification conditions (VC 1) and (VCE 1) ensure in particular that B 
is a precise run-time check for the occurrence of E: (VCEI) states that the 
handler H of E is activated if the initial state is exceptional and (VC 1) states 
that H is not activated if the initial state is in the standard domain. In fact, 
whenever these two verification conditions hold, cpre and cpre(E) determine a 
(strict) partition over the set of initial internal states which may exist when the 
procedure 0 P is invoked. Indeed, from pre(E) V pre = true, (VC 1) and 
(VCE 1) it follows that cpre(E) V cpre = true, and from cpre(E) = wp("C 1", b) 
and cpre= wp("CI",-,b) it follows that cpre(E) & cpre = wp("Cl",b&-,b) 
= false, i.e. cpre(E) & cpre =false. 

Conversely, assume that classical proof methods have been used to show 
that the standard algorithm C 1; C 2 of 0 P is totally correct with respect to cpre, 
cpost. If the preciseness of the check B is established by 

-, cpre = wp("C 1; [B", true) 

then by the (b s, b e) clauses it follows that the robust algorithm B(OP) has the 
same standard behaviour as C 1; C 2. Thus, the proof of correct standard behav
iour can be retained for the extended B( 0 P) unchanged. This is a significant 
point since it shows that exceptional constructs can be inserted for robustness 
purposes in non-robust programs without altering the correctness of their stan
dard behaviour. 

Returning now to the implementation of Fig. 4, we can apply the semantic 
clause (b e) to show that the run-time check for ILL is precise: 

-, cpre (RELEASE) = wp("[(I < I)OR(I > N)OR(T(I) = FREE)", 
t = t'). 

The preciseness of the check for OVhas already been discussed in Sect. 2.5. It is 
not difficult to check that the verification conditions (VCE 1, VCE 2) hold for 
GET and RELEASE: 

(GEl) 
(GE2) 
(REI) 
(RE2) 

IA(t')1 = n = -, cpre(GE1)(t') 
t = t' = A(t) = A(t') 
i ~ A(t') = J cpre(RELEASE) (t') 
t = t' = A(t) = A(t'). 
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The above conditions together with the conditions (/, G 1, G 2, R 1, R 2) of 
Sect. 2.3 establish the total correctness of the implementation of Fig. 4 with re
spect to the specification of Fig. 3. In particular the conditions (GE 1, RE 1) for 
the GET and RELEASE operations ensure that the assumption of Sect. 2.3 con
cerning their exceptional termination holds. Thus, the standard predicate trans
former semantics of the operations of Fig. 3 is that given by the formulae (1, 2) 
of Sect. 2.3. Their exceptional semantics is: 

(1 e) wp("I:= R.GET[OV", Q) == Id = n & Q 
(2 e) wp("R.RELEASE(I)[ILL", Q) == i ¢ r & Q. 

Before ending this introduction to robust data types we would like to discuss 
on their use in the design of robust algorithms. More specifically, we will show 
on a simple example how the semantic clauses of Sect. 2.5 may be used to de
rive conditions for the exceptional termination of such algorithms. Aspects re
lated to exception occurrences in loops will also be briefly discussed. 

Assume we want to design a robust version of the two-resources allocation 
program given in Sect. 2.3: 

C 1 1:= R.GET[OV; H]; 
C2 J:= R.GET[OV; K]. 

We are interested knowing under which condition the above program termi
nates exceptionally. The condition for 0 V to be signalled by C 1 is: 

wp("I:= R.GET[OV", true) = Irl = n. (by 1 e) 

The condition for 0 V to be signalled by C 2 is: 

wp("C 1; J:= R.GET[OV", true) (by 1 e) 
= wp("C 1", Irl = n) (by 1') 
= Irl < n & Ir U {oneof([ n] - r) } I = n (properties of underlying data 

space) 
= Irl = n-l. 

It follows that C 1; C 2 terminates exceptionally whenever initially there exists at 
most one free resource. 

In general, if a command C which may signal an exception E has to be itera
tively invoked, the syntactic construct 

(L) while B do C[E; H] 

can be used [5] to define the scope of the association of H with E to be the 
whole loop, i.e. if E is detected during some iteration the exceptional continu
ation is H. The insertion of [E; H] does not change the standard behaviour of 
the loop: the condition for standard termination in a state satisfying some 
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predicate Q (if B is always well-defined) is that defined in [8] 

(Ls) wp("while B do C[E; H]", Q) 
== wp("while B do C", Q) = :3 i ~ 0: Si 
So =, b & Q, Si+ 1= b & wp("C", SD 

where Si is the condition for standard termination after exactly i iterations. The 
necessary and sufficient condition for exceptional termination can be defined 
similarly: 

(L e) wp("while B do C[E", Q) == :3j ~ 1: Ej 

E1 = b & wp("C[E", Q), Ej + 1= b & wp("C", E) 

where Ej is the condition for exceptional termination with E being signalled 
during the jth iteration. If for every integer n, both Sn and En are false, then the 
loop will never terminate. 

Using the (Le, 1, 1 e) clauses one can show for example that the loop 

while TRUE do 1:= R.GET[OV; H] 

always terminates exceptionally, since 

wp("while TRUE do 1:= R.GET[OV", true) =:3 k ~ 0: Irl + k = n 

holds for any initial state r E P[ n]. The two-resources example can be similarly 
generalised to the case when k ~ 1 resources need to be allocated and recorded 
in some integer array D with index domain 1 ... P, k ~ p: 

wp("for 1:= I to K do D(I):= R.GET[OV; H]", true) = IrI + k ~ n 
wp("for 1:= 1 to K do D(I) := R.GET[OV", true) = Irl + k > n. 

These examples will (it is hoped) convince the reader that the derivation of 
conditions for the exceptional termination of programs bears a great similarity 
to, and is not more complicated than, the derivation of conditions for standard 
termination [8]. Other examples are to be found in [6]. 

3. Exception Handling in Hierarchies of Data Abstractions 

Programming with abstract data types leads to hierarchically structured pro
grams. Rather than give an abstract general presentation of the problems en
countered when handling exceptions in such programs, we prefer to introduce 
them through an example. We therefore devote the first sections of this second 
part of the paper to present a top-down hierarchically constructed program 
which implements the abstraction of a pool of SEGMENTS in terms of the RE
SOURCES data type and some other language provided data types such as AR-
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RAY, RECORD, etc. This example allows to introduce in Sect. 3.5 general total 
correctness criteria for the implementation of robust data types with parti
tioned exceptional domains and representation invariants. The example is 
further used in the remaining sections to discuss some important aspects of ex
ception handling in hierarchies of data abstractions, such as exception propa
gation and recovery of consistent states after exception occurrences. 

3.1. An Example 

The data space underlying the SEGMENTS data type contains all the sorts of 
mathematical objects mentioned in Sect. 2.1, as well as a new sort of objects: 
functions. It also contains all the operators mentioned in Sect. 2.1 together with 
some new operators on functions. The notation which will be used to denote 
this new objects and operators is briefly introduced in what follows. 

Let A, B be finite sets. A partial function J from A to B is a subset J £::: A x B 
such that if (a, bI ) E J and (a, b2 ) E J then bI = b2 • f(a) stands for the unique b 
which corresponds to a. The domain ofJis dom(f) = {a E AI::3 b E B:J(a) = b} 
and its range is ran(f) = {I(a) la E dom(f) }. If dom(f) = A then J is total. If 
Idom (1)1 = Iran(l) I thenJ is injective. The set of partial functions from A to B is 
denoted A ~ B, the set of total functions from A to B is denoted A ---t B and the 
set of total and injective functions from A to B is denoted A ~ B. If J E A ~ B 
then we write J = oneoJ(A ~ B). B can itself be a set of functions B = C ~ D. 
In such a case, if x E dom(f) thenJ(x) is a function. If y E dom(f(x)) then 
J(x)(y) denotes the application of/ex) to y and rran( J) denotes the union of the 
ranges of the J(x) functions: 

rran(f) == U ran(f(x)). 
x E domif) 

Two operators (function extension "u" and function restriction" \") will be 
used to construct new functions from old functions. If x ¢ dom(j) and y E B 
then J u x, y is the extension of J to the domain dom(f) u {x} defined by 
(fu x, y)(a) = if a E dom(f) thenJ(a) else if a = x then y. If x E domcn then 
J\x is the restriction ofJto the domain dom(f) - {x} defined by (f\x)(a) = if 
a E dom(f)- )x} thenf(a). 

The SEGMENTS data type is often used in operating systems to create con
tiguous (virtual) memory spaces composed of pages from a set of available 
(real) memory blocks. In its specification (Fig. 5) we consider three generic pa
rameters that may vary from one system to another: x s - the maximum num
ber of segments, x p - the maximum number of pages that a segment can have, 
and x b- the maximum number of available memory blocks. 

If 0 :::;;; z :::;;; x p is a segment size, then a segment of this size is a function 
J E [z] ~ [x b] (recall [n] is used to denote {I, 2, ... , n}). The set of pages ofJis 
dom(f) = [z] and its blocks are ran(f) E P[x b]. If a segment has a domain [0] 
then it is empty. Consider now the set of all non-empty segments: 

nes = U [z] ~ [x b]. 
Z E [xpj 
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I specification of type EGME TS (generic XS XP, XB: INTEGER> 0) 
2 values e [xs] U [z] +-t [x b] 

~"(xpl 

3 initial value dom ( ) = { 

4 operation 
5 procedure EW (Z: I T GER) return N: INTEGER signals OV, 

BSZ, BOY 
6 NOY: dom ( ') I = xs 
7 BSZ: z ~ [xp], 
8 BOY: rran (') + z > x b 
9 n = oneof ([x] - dom ( ')) & = ' l..J n. oneof ([z) +-t ([x b) - rran (s'))) 

10 procedure D ESTROY ( : r TEG R) signals BN 
II BN: n ~ dom ( ') 
12 nedom(')& = '\n 
13 procedure READ (N P: TEG R) returns B: INTEGER ignals BN BP 
14 B: n ~ dom ( '). 
15 BP: n e dom ( ') & p ~ dom ( , (n» 
16 b= (n)(p) 

Fig. 5. The specification of SEGMENTS 

We want the SEGMENTS data type to maintain a correspondence between 
segment names in [x s] and non-empty segments in nes, so that these can be re
trieved if their name is known. Thus an abstract value of this type is defined 
(line 2) to be an element s of [x s] ~ nes. 

3.2. Partitioned Exceptional Domains 

As for the RESOURCES example of Fig. 3, the NEW, DESTROY and READ 
operations specified for SEGMENTS are atomic. What is new is that two of 
them (NEW and READ) can signal more than one exception. Let us look at 
NEW. Its standard effect (Fig. 5, line 9) is to extend to previous state s' with a 
new segment name and a new segment of the required z size. The returned re
sult is the new segment name. The standard domain is 

pre(NEW) = --, pre(NOV) & --, pre(BSZ) & --, pre(BOV). 

Indeed, . a successor state satisfying the abstract postcondition of NEW exists if 
the following conditions are satisfied. First, --, pre(NOV) = I dom(s') I < x s 
should hold, so that a new segment name from [x s]-dom(s') can be chosen. 
Otherwise, the exception names overflow (NOV) may be signalled. Second, 
---, pre(BSZ) = z e [x p] should hold, so that the required size is a legal one. 
Otherwise the exception bad size (BSZ) is signalled. Third, --, pre(BOV) = 
I rran(s') I + z ~ x b should also hold, so that a segment in [z] +-t ([x b] - rran(s'» 
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with z distinct new blocks can be chosen. Otherwise we have the exception 
blocks overflow (BO V). 

Such partitionings of the exceptional domains are frequently encountered in 
practice, whenever the intention is to convey (through distinct exception labels) 
more information about the particular circumstances of an exception oc
currence. This can be useful for diagnostic purposes, or for allowing the associ
ation of distinct handlers with different exception labels so that different recov
ery actions may be taken [5, 17, 15,2]. 

Often, the different exception preconoitions do not· determine a strict par
tition of the exceptional domain (e.g. NEW can be invoked with a bad size in a 
state dom(s') = [x sD. To impose at the specification level some a priori order 
on the actual evaluation of the concrete exception preconditions would restrain 
the freedom of an implementor to choose the best places for inserting excep
tional constructs. Thus, a specification should allow for some non-determinism 
on the order in which exception preconditions are evaluated, similar to that of 
the guarded commands [8]. 

We define the meaning of a total operation specification 

E1: pre(E1) -+ poSt(E1)' ... ,Ek: pre(Ek) -+ post(Ek), pre -+ post 

where ---, pre(E1) & ... & ---, pre(Ek) = pre = dom(post) as follows. If the opera
tion is invoked in an initial state s' outside the standard domain pre, then some 
exception Et, for which pre(Ei)(s') was true initially, is signalled, and the re
lation between s' and the successor state s is post(Ei). Otherwise the standard 
service specified by post is provided. For example if NEW is invoked in some 
initial state satisfying pre(NOV) & pre(BSZ), then according to the specifi
cation of Fig. 5 either the NOVor BSZ exceptions may be signalled. 

3.3. Implementation 

Let us focus now on providing an implementation for SEGMENTS. First, we 
need to decide on some internal state representation. The abstract integer in
tervals [x s], [x p], [x b] can be represented by using language provided scalar 
types. 

type S-NAME = I ... XS; P-NAME = I ... XP; B-NAME = I ... XB; 

and the set of functions [x p] ~ [x b] can be represented by an array 

type FUNC = ARRAY(P-NAME) of B-NAME; 

A segment is a restriction of such a function to an interval [s z] where s z is a 
value of type SIZE = 0 ... XP. Such a restriction can be described by its do
main and the corresponding 'pages:"" blocks' mapping, i.e. by an element of the 
Cartesian product 'sizes' x 'mappings'. Abstract Cartesian products can be con
veniently represented by records 

type S-DESCRIPTOR = RECORD SZ:SIZE; B:FUNC end; 
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The set of allocated segment names dom(s) is a subset of [x s]. Thus we have 
a good opportunity to use our RESOURCES data type to represent 
dom(s) E P[x s] as a possible state of 

var NAMES: RESOURCES(XS); 

We can represent the set of allocated blocks rran(s) E P[x b] in a similar manner 
by using another state variable of type RESOURCES 

var BLOCKS: RESOURCES(XB); 

Finally, by using another array, we can represent an arbitrary function from 
segment names to segments as a possible state of 

var SG: ARRAY(S-NAME) of S,-DESCRIPTOR; 

A complete implementation of SEGMENTS in terms of the above internal 
state representation is given in Fig. 6. 

Concretely, the procedures work as follows. When a segment of size z has to 
be created, NEW requests a new segment name m (Fig. 6, line 11), allocates z 
unused blocks, updates the descriptor SG(m) (lines 12, 13) and returns m 
(line 14). DESTRO Y first checks that the name n of the segment to be deleted 
corresponds to some previously created segment. If so, the blocks of that seg
ment are released (line 18), the size of the corresponding segment descriptor is 
set to 0 and n is also released. Otherwise the exception bad name BN is sig
nalled. READ just returns the pth block of the segment with name n if possible, 
otherwise signals BN or BP (bad page). 

3.4. Representation Invariant 

The data definition facilities of the PASCAL like language (extended with the 
RESOURCES types) used to represent the internal states of SEGMENTS do 
not allow for a direct expression of all our intentions: the set C of states which 
may be assumed by the state variables NAMES, BLOCKS and SG is much big
ger than the set of internal states we really want. When chosing the internal 
state representation for SEGMENTS the intention has been to make every 
reachable internal state satisfy the following properties: 

1) Only the segments whose names are recorded in the NAMES state variable 
are non-empty: 

Isn = V n E [x s]: n E names <=> s g(n).s z > O. 

2) Every non-empty segment n is a total function from its set of pages [sg(n).sz] 
to the set of allocated blocks: 

1st = V n E names: B(n) ~ blocks 
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I type SEGMENTS = 
2 class (generic XS, XP XB: INTEGER> 0)· 
3 type S-NAME = I ... XS; P-NAME = I ... XP; B- AME = I ... XB; 

SIZE = 0 .. . XP; 
4 FUNC = ARRAY (P-NAME) of B-NAME; 
5 S-DESCRIPTOR = RECORD SZ: SIZE; B: FU C end; 
6 var AMES: RESOURCES (XS); BLOCKS: RESOUR ES (XB)· 
7 SG: ARRAY (S-NAME) ofS-DESCRIPTOR; 

9 
10 
II 
12 
13 
14 

procedure EW (Z: INTEGER) returns N: INTEGER signals OY, 
BSZ, BOY· 

var M: INTEG R; 
begin [(Z < I) OR (Z> XP); signal BSZ]; 

M := NAMES. GET [OV signal OV]; 
SG (M). SZ := Z; 
for I := I to Z do SG (M). B (I) := BLOCKS. GET rOY; HBOV]; 
N:=M 

15 end; 
16 procedure DESTROY ( : INTEGER) signals BN· 
17 begin[( <I)OR(N)X )OR(SG(N).SZ=O); signaIBN]; 
I for I := I to SG (N). SZ do BLOCKS. RELEASE (SG (N). B (l». 
19 SG ).SZ:= o· 
20 NAMES. RELEASE (N) 
21 end; 
22 procedure READ ( ,P: INTEGER) returns B: INTEGER signals BN, BP; 
23 begin [(N < I) OR (N > XS) OR (SG (N).SZ= 0); signal BN]; 
24 [(P < I) OR (P > SG ( ).SZ); signal BPJ" 
25 B:= SG (N). B (P) 
26 end; 
27 begin %NAMES and BLOCKS do not need to be explicitly initialised % 
28 for I := I to XS do SG (I). SZ:= 0 
29 end EG MENTS 

Fig. 6. An implementation of SEGMENTS 

where 

B(n) = {s g(n).b(p)ll ~p ~ s g(n).s z} 

denotes the set of blocks of the segment with name n. 
3) Every non empty segment is injective: 

lsi = V n E names: IB(n)1 = s g(n).s z. 

4) Only those physical blocks which are actually allocated to non-empty seg
ments are recorded in the BLOCKS state variable: 

ha = blocks c:;:; U B(n). 
n E names 
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5) Two distinct segments have disjoint sets of blocks: 

Isd = V n, mE names: n * m -=B(n) n B(m) = { }. 

Let Ie be the conjunction of all the above constraints: 

A proof that the initial internal state of SEGMENTS satisfies Ie and that any 
invocation of the NEW, DESTROY and READ operations preserves Ie is given 
in [6]. It follows by induction on the length of invocation sequences that Ie is a 
concrete (or representation) invariant [21] of the implementation of Fig. 6. The 
abstraction function A for SEGMENTS will be defined only on those internal 
states c E C which satisfy Ie (this partiality of A is not inconvenient since all the 
reachable internal states §atisfy Ie). Let c be such a reachable internal state. The 
truth of Ie(c) implies that for every n E names the relation 

fin) c [s g(n).s z] x {s g(n).b(p)Jl ;&. p ;&. s g(n).s z} 

defined by 

V P E [s g(n).s z]: (p, s g(n).b(p» Ef(n) 

is a total and injective functionf(n) E nes. We therefore can define the result 
of applying A to c to be that element of [x s] ~ nes which has the domain 
c(NAMES) = names and maps every n E names tof(n): 

VeE C: Ie(c) => dom(A(c» = names & 
V n E names: dom(A(c)(n» == [s g(n).s z] & 

V P E dom(A(c)(n»:A(c)(n)(p) == s g(n).b(p). 

Thus, all the internal states satisfying Ie correspond through A to possible ab
stract states of SEGMENTS: 

VeE C: Ie(c) -= A(c) E [x s] ~ nes. 

We call such internal states consistent (with the abstraction we want them to 
represent). 

3.5. General Correctness Criteria 

In order to prove that the implementation of Fig. 6 is consistent with the speci
fication of Fig. 5, we cannot directly apply the criteria given in Sect. 2.8, since 
at that stage we did not take into account the possible existence of represen
tation invariants or partitioned exceptional domains. The verification con
ditions given there will now be" generalised to cover also this case. 
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Let S be the set of abstract states specified for some data type T and C be 
the set of internal states of an implementation of T. If A is the abstraction func
tion, then it is first necessary to ensure that every state satisfying the concrete 
invariant leis a valid [21] representation of some possible abstract state: 

VeE C: Ie(e) ~ A(e) E S. 

After initialisation, the internal state must be consistent with that specified: 

(VC 0) constraints on generic parameters 
~ wp("INIT", Ie(e) & initial-value(A(e))). 

Let 0 P be an arbitrary operation of T specified by 

where dom(post) = pre = --, pre(El) & ... & --, pre(Ek). Let B( OP) be the body 
of the procedure implementing OP, epost be its concrete standard postcondition 
and epre = wp("B( OP)", epost) be the standard concrete precondition of OP. 
The verification conditions for correct standard behaviour ensure that when
ever OP is invoked in its standard domain a concrete state transition consistent 
with that specified takes place: 

(VC1) 
(VC2) 

Ie(e') & pre(A(e'» ~ epre(e') 
Ie(e') & post(e', c) ~ Ie(e) & post(A(e'), A(e». 

Assume that for each specified.exception Ei an exceptional construct is inserted 
in B(OP) according to the (u) pattern of Sect. 2.5: 

B(OP) = C 1; C[P; Hi; signal Ei]; C2 

Let epost(Ei) be the concrete postcondition intended to hold before Ei is sig
nalled and 

epre(Ei) = wp("C 1; C[P; H/" epost(Ei» 

be the corresponding concrete exceptional precondition. By the definition of 
epre(Ei) it follows that any invocation of OP in an internal state e' satisfying 
epre(Ei) leads to the exceptional termination of OP in a state satisfying 
epost(Ei). In order to prove the correct implementation of the exceptional ef
fects specified for OP, it is necessary to ensure that whenever OP is invoked 
outside its abstract standard domain some specified exception is detected: 

(VCE 1) Ie(e') &--,pre(A(e'» ~ (epre(E,) v ... V pre (Ek»(e'). 

One has also to make sure that only an exception whose abstract precondition 
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was true at the invocation of OP can be signalled: 

(VCE 1') Ie(e') & epre(Ei)(e') ~ pre(Ei)(A(e')). 

(Remark: when the exceptional domain is not partitioned this condition is al
ways satisfied.) Finally, it is necessary to ensure that the internal (exceptional) 
state transition produced when Ei is signalled is consistent with that specified: 

(VCE2) Ie(e') & epost(Ei)(e', c) ~ Ie(e) & post(Ei) (A (e'), A(e)). 

A proof that the implementation of SEGMENTS (Figs. 6, 7) is consistent 
with the specification of Fig. 5 is given in [6]. 

The above verification conditions ensure in particular that any reachable in
ternal state is consistent: (VC 0) ensures that the initial state is consistent, (VC 1, 
VCE 1) ensure that whenever an operation is invoked in a consistent state then 
the only possible state transitions are those specified by epost or epost(Ei) and 
(VC 2, VCE 2) ensure that all these state transitions preserve Ie. 

The invariance of Ie over any sequence of operation invocations - even if 
some are exception occurrences - is essential for a data type implementation to 
behave in a predictable manner (an example in the next section shows that if an 
inconsistent state is reached after an exception occurrence not appropriately 
handled, then unpredictable behaviour, usually revealed by later exception de
tections, follows). Thus, a correct implementation of a data type T with total 
operations and exceptions is robust because its internal state consistency no 
longer depends on the assumption that the users will always invoke the opera
tions of T within their standard domains, as was the case in most previous ap
proaches to data abstraction in imperative languages [13, 21, 3,12,16,9]. 

In order to achieve robustness, however, it is not required that exceptional 
constructs be inserted in programs wherever possible. The existence of invariant 
properties can be used to avoid unnecessary insertions. For example, in Fig. 6 
we have not associated any handlers with the ILL exception of RELEASE since 
the truth of Ie whenever DESTROY is invoked guarantees that this exception 
cannot occur (for more details see [6]). If the RELEASE operation of the 
NAMES and BLOCKS variables cannot be invoked from other programs than 
that of Fig. 6, then one can also remove the exceptional construct for ILL from 
the body of the RELEASE procedure of these instances. The approach to ex
ception handling presented here is of use when the known invariants are too 
weak to rule out possible exception occurrences. We therefore consider it to be 
complementary to those oriented towards proving the absence of exception oc
currences. 

3.6. Exception Detection 

For an exception occurrence to be detected, it is necessary in principle that some 
(precise) run-time check evaluates to true. For example, an occurrence of the 
BSZ exception (Fig. 6) is detected if the boolean expression in line 10 evaluates 
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to true. The value of this expression depends only on the state of the Z parame
ter and this state can be directly accessed in the context of the NEW procedure. 
The use of an encapsulation mechanism for data abstraction purposes may 
sometimes forbid direct access to the state of a variable belonging to an abstract 
type. For example the evaluation of the concrete precondition inames'i = x s of 
NOV cannot be performed in the context of NEW since direct access to the in
ternal state of NAMES is prohibited in accordance with the 'information hiding 
principle'. However, by the semantic definition of GET we have 

wp("M:= NAMES. GET.[O V", true) = inames'i = x s. 

Thus, at the level of SEGMENTS, an occurrence of NOVis actually detected if 
the lower level exception OV is propagated by the statement M:= NAMES. 
GET in the NEW procedure, that is, if the handler of NOV in line 11 is in
voked. Similarly, the loop in line 13 can signal an exception OVifthe concrete 
precondition iblocks'i + z > x b corresponding to pre(BOV) was true at the 
invocation of NEW. Thus an occurrence of BOV is also detected as a result of 
the propagation of a lower level exception. A proof that the detection of the 
BSZ, NOVand BOVexceptions by the above means is precise is given in [6]. 

Exception propagation is a general technique which can be used to detect 
the occurrence of (higher level) exceptions in hierarchically structured systems. 
The general pattern is as follows: 

procedure 0 P 1 signals E 1 
begin 

OP[E; HE1] 

end 

An invocation of a (higher level) operation OP 1 in its exceptional domain 
pre(E 1) causes a lower level operation OP to be invoked in its exceptional do
main pre(E). Thus, the propagation of E in OP 1 coincides with the detection of 
the higher level exception E 1 in OP 1. Although the handler HE 1 of E 1 is syn
tactically associated with the E exception label by using a (c) construct, it is es
sential to understand that its semantics (the exceptional state transition it per
forms) is determined by the specification of the E 1 exceptional effect of OP 1. 
Thus the phrase 'handler associated with' reflects a syntactic fact while the 
phrase 'handler of' reflects a semantic knowledge. 

When an exception occurrence is detected (either by the evaluation of a 
run-time check or as a result of a lower level exception propagation) an inter
mediate internal state, not satisfying a representation invariant, may exist. For 
example when the occurrence of the BOV exception is detected by the excep
tional termination of the "for" loop in line 13 Fig. 6, the internal state is 
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s g(m).b(1) E blocks 

s g(m).b(i-I) E blocks 
s g(m).b(i) =? 

s g(m).b(z) = ? 

where i = x b -ibiocks'l is the value of the loop counter when the handler 
HBOV of BOV is invoked (for more details see [6]). Clearly, such an internal 
state does not satisfy the 1st invariant defined in Sect. 3.4 and hence is inconsist
ent. 

If an instance of a data type is left in an inconsistent internal state (because 
an exception occurrence is not appropriately handled), then further operation 
invocations can lead to unpredictable (i.e. unspecified) results and to later 
unanticipated exception detections. For example, if an instance of SEGMENTS 
were left in the above state, then during a next invocation of READ or DE
STRO Y with an actual parameter m, there would be a possibility of detecting 
either a language defined exception UNINITIALISED (when some variable 
SG(m).BU), i ~j ~ z, is accessed) or an ILL exception (if the RELEASE 
operation on BLOCKS is invoked with such a parameter). Another possible 
outcome is that no exception is immediately detected, and incorrect state transi
tions continue to take place until the state of the system using SEGMENTS be
comes seriously corrupted. 

In order tQ avoid the occurrence of such dangerous situations, it is essential 
for the designer of a handler to know if an inconsistent state may exist when the 
handler is invoked. If that is the case, he should provide for the recovery of a 
consistent state (so that the VCE 2 condition is satisfied). The need for such re
covery actions is recognised in recent exception mechanism proposals: in [17] 
such actions are called "clean-up" actions and in [IS] these are said to be 
"the last wishes of a procedure before disappearing". However, no precise 
guidelines for programming them are given. The next section is an attempt at 
clarifying this issue. 

3.7. Recovery ofInternal Consistent States 

Assume that an operation OP specified for a data type T may signal an ex
ception E and that a handler of E is inserted in the body of OP according to the 
(u) pattern of Sect. 2.5: 

B(OP) = C 1; C[P; H 1; signal E]; C2. 

Assume also that, when OP is invoked, the internal state c' is consistent and 
when the occurrence of E is detected (i.e. H 1 is invoked) the intermediate state 
i is inconsistent. The task of H 1 is to change i into a consistent state c. The unit 
of internal state change will be considered to be the change of a simple vari
able, i.e. a variable whose type is not an ARRAY or RECORD structured type. 
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Variables belonging to such types will be considered to be aggregates of simple 
variables accessible through the selector functions specified for these types. 

A set of simple state variables RS will be called a recovery set for the incon~ 
sistent state i which exists when E is detected, if by modifying the values that 
these variables have in i, a final state c such that Ie(c) & post(E) (A(c'), A(c)) can 
be reached. In general there exist several RS for an exception detection. For 
example, the set of simple state variables {NAMES, BLOCKS, SG(m).SZ, 
SG(m).B(l), ... , SG(m).B(x p)} is a recovery set for a BOV exception de
tection, since if the values {names', blocks', 0, 0, ... , o} are assigned to them, a 
state c such that Ie(c) & (A(c) = A(c')) can be reached. This is possible because 
the values of the Ie and A functions defined in Sect. 3.4 do not depend on the 
values of SG(m).B(j), ~j ~ x p, when s g(m).s z = 0. However, a decision that 
the handler HBOV of BOV (Fig. 6, line 13) should recover this RS would not 
be the best, since too much work would be done. From a performance point of 
view, the most interesting recovery sets are those with the fewest elements. 

A recovery set IS such that for any other recovery set RS: IISI ~ IRSI will be 
called an inconsistency set. Because of this minimality property, one can think 
of an inconsistency set as containing only those simple state variables which are 
'really' inconsistent with respect to the Ie and A functions of T (inconsistency 
sets have been called "errors" in [19]). For a BOV exception detection there is a 
unique inconsistency set IS = {NAMES, BLOCKS, SG(m).SZ}. The handler 
HBOV of BOV given in Fig. 7 recovers for the variables of this IS the values 
{names', blocks', o} before signalling the occurrence of BO V. 

A proof that the final state c reached after the execution of H BO V satisfies 
Ie & (A(c) = A(c')) is given in [6]. 

If the decision is taken by the system designers that all the data types used 
to structure a system should have atomic operations, then two other kinds of 
recovery sets may be of interest. Let us define the inconsistency closure IC as
sociated with the intermediate state i which exists when E is detected, to be the 
set of all simple state variables modified between the entry in OP and the de
tection of E. For a BOV exception detection, the inconsistency closure is 
IC = {NAMES, BLOCKS, SG(m).SZ, SG(m).B(l), ... , SG(m).B(i-l)}. As 
the NEW operation has been specified to be atomic, clearly IC is a recovery set, 
since if all the modified variables recover their previous values a state c identi
cal to the initial c' is obtained and the Ie(c) & (A(c) = A(c')) property is trivially 
satisfied. The second kind of recovery setwe want to mention is the crudest ap
proximation one can imagine for an IS (an inconsistency closure is a better 
one). This approximation is obtained by taking the whole set of state variables 
with their respective previous values to form a check-point CP of the internal 
state c' which existed when OP was invoked. 

13.1 %HBOV == %for J:= 1 to 1-1 do BLOCKS. RELEASE (SO (M). B (J»; 
13.2 SG (M). SZ := 0; NAMES. RELEASE (M); 
13.3 signal BOV 

Fig. 7. The handler of the BOY exception 
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After the above discussion on recovery sets, we can now describe the task of 
a handler HE of an exception E as being to recover some RS before signalling 
E. Of course, if the state c in which the occurrence of E is detected already 
satisfies the Ie(c) & post(E) (c', c) predicate, no recovery action is necessary, that 
is, the IS associated with such an exception detection is empty. 

If post(E) is not the identity state transition relation (OP is not atomic) then 
forward recovery [19] has to be used. The recovery of some RS is 'forward' if, 
after recovery, the final value v of at least some V E RS is different from its in
itial value v'. The determination of an RS (preferably an IS) for forward recov
ery requires knowledge of post(E) , Ie, A. Thus, handlers for forward recovery 
have to be explicitly inserted by humans. However, if the operations are intend
ed to have an atomic behaviour, then the determination of either the IC or CP 
recovery sets can be performed independently of such knowledge and can be 
automatised. Check-pointing techniques have long been used for that. More re
cently, the idea of leaving the task of continuously updating the inconsistency 
closures associated with all potential exception detections to a recovery cache 
device has been proposed [14]. Automatic recovery of inconsistency closures or 
check-points is known as backward recovery [19]. More generally, a recovery ac
tion can be termed 'backward' if every variable V of the recovered RS is re
stored to its previous value v'. For example, the recovery action performed by 
HBOV is backward. Automatic backward recovery does more work than strict
ly necessary since in generallISI < IIq < ICPI) but this seems to be the price to 
be paid if the intention is to provide default exception handling for fault toler
ance purposes [7]. 

Default exception handling attempts at providing a solution to the following 
problem: if the exceptional domain of some operation OP is not accurately 
identified by its designer, or the checks for detecting exception occurrences are 
not precise, then for some exception occurrences (if they are detected because 
of lower level propagated exceptions) there will be no explicitly provided ex
ception handlers. The idea is then to force the invocation of a default handler 
able to recover an inconsistency closure or checkpoint. If subsequent masking 
attempts (e.g. invocation of alternate algorithms [14]) are not successful, then 
the 'unanticipated' acceptional state transition which occurs is identified for the 
invoker of OP by some FAILURE or ERROR predefined exception label. The 
aim of introducing such a label in a programming language is, on one hand, to 
guarantee the existence of a (default) exceptional continuation for every pos
sible exception detection [5], and, on the other hand, to try and make non-total 
operations 'total' in the following sense: 

... , E j : pre(Ei) --+ post(Ei), . .. ,FAILURE: 

--, (V pre(Ej) V pre) --+ s = s', pre --+ post. 
1= I 

A general model for explicit [17, 15] and default [14] exception handling in 
hierarchies of data abstractions is presented in [7]. The definitions introduced 
in this paper are used there to show the unity exists between these complemen
tary exception handling techniques, developed independently for the same pur-
pose: the production of robust software systems. . 
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4. Conclusion 

This paper has investigated the problems of specifying and handling the ex
ceptions inherent in the data types which exist in, or may be added to, impera
tive languages supporting data abstraction and exception handling [5, 17, 15]. 
Our goal was to define data type operations in such a way as to ensure that the 
following conditions are satisfied. First, exception occurrences should not mean 
program abortion. Second, the semantics of the operations of a data type 
should be well-defined when exceptions occur. Third, this semantics should be 
defined so as to ensure that, in the verification conditions obtainable in pro
gram proofs, the operators of the specification language are always applied to 
elements of their domains (i.e. the "error terms" studied in [10] are never 
generated). Another goal has been the achievement of a proper separation be
tween standard and exceptional aspects of program behaviour. In that sense, we 
consider the concept of an exception to be a useful software structuring tool, 
which should take its place alongside such established structuring concepts like 
procedures, parameters, processes, etc. 

An approach similar to that presented in this paper, but using a partial cor
rectness semantic framework is presented in [18]. The use of such a framework 
ensures that, if an operation invocation does not lead to an infinite loop or to an 
unanticipated exception detection, the specified standard and exceptional ef
fects are correctly provided. Our interest was in robustness properties. We 
therefore have used the stronger predicate transformt;r semantic framework in
troduced in [2]. Present verification systems use partial correctness program
ming logics, and the ability to use them in proving the partial correctness of the 
standard and exceptional algorithms of operations may well counterbalance the 
fact that such verification tools do not provide any guarantee of robustness. The 
question of how to construct verification systems able to guarantee the robust
ness of the verified programs is a matter of future research. The ever increasing 
needs for highly available and reliable computer systems may well make the 
availability of such tools a necessity. 
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Systematic Detection of Exception Occurrences 

E. BEST and F. CRISTIAN 

1. Introduction 

In proving the correctness of a program, a common strategem is to consider 
only initial states in which certain properties are satisfied. For example, in the 
knowledge that a given array contains at least one positive element, one might 
prove a program for finding, say, the first positive element in that array, even 
though the program may otherwise (i.e. if the array does not contain any 
positive elements) lead to unpredictable results. 

In practice there is however a strong demand for 'robust' software, having a 
well-defined behaviour even in circumstances in which certain initial assump
tions are no longer true. Such 'exceptional' circumstances can occur whenever 
the inputs of the program cannot be guaranteed to have the properties they 
may be expected to have. 

An example of this is a compiler where a syntactically well-formed 
program is expected as standard input, but where it cannot be guaranteed that 
all input programs are indeed well-formed. Another example would be a 
program requesting the exclusive use of a resource, expecting that at least one 
resource is free. In both cases provisions are needed for the treatment of 
unexpected (or exceptional) input. The need for a theory which can provide a 
basis for the systematic identification, detection and handling of exceptions 
has been expressed several times in the literature [7, 14]. This paper explores 
ways of adapting previously developed semantic and correctness theories of 
programs [3, 4,6,9, 12] for the design of robust programs. 

We focus specifically on two questions. Firstly, given a program and its 
specification, how can one characterise its standard and exceptional input 
domains? Secondly, how can one design appropriate run-time checks for the 
detection of any possible exception occurrence? We shall not deal with the 
question of actually handling an exception once it has been detected; for such a 
discussion the reader is referred to [2] and [11]. 

Once the exceptional domain of a program is found, nothing would be 
easier in principle than to test at the beginning of the program whether or not 
the initial state falls into the exceptional domain, thus making the program 
robust. However frequently such a test would of necessity duplicate some of 
the work performed by the program itself, and it may therefore be much more 
natural and economical to insert tests within, or even at the end of the pro
gram. 
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For instance, in order to test whether or not two given input values violate 
a bound restriction when added, one has to actually add them together. 
Similarly, it is the duty of a substantial part of a compiler to check whether or 
not an input program is well-formed, and it would be ridiculous to separate 
this checking entirely from the other tasks of the compiler. In this paper we 
derive verification conditions for robustness checks to be inserted anywht!re in 
the program, as well as heuristic guidelines for choosing the place where to put 
such tests. 

The paper is organised as follows. A mathematical framework integrating 
and generalising relational semantics, predicate transformer semantics and 
program correctness criteria is described in Sect. 2, where our first question 
concerning exceptional input domains is also discussed. In Sect. 3 we turn to 
our second question concerning the design of appropriate run-time checks for 
the detection of exception occurrences. 

Sections 2.1 and 2.2 contain brief descriptions, respectively, of our pro
gramming language and our specification language. In Sects. 2.3 - 2.5 three 
equivalent types of semantics are defined, all of which are useful in deriving 
robustness tests. In Sect. 3.1 we consider the sequential composition of two 
programs and the tests that can be inserted between them. In Sect. 3.2 we 
discuss the circumstances in which such tests would have to involve the initial 
values of variables, and in Sect. 3.3 we go on to consider checks in conditionals 
and iterative statements. Finally, in Sect. 3.4 we apply all of this to the 
simplified but still practical example of a bracket matching program. 

2. Intended and Actual Meanings of Programs 

2.1. Programming Language 

We use a modified version of guarded commands [4]. Our programs have the 
following general form: 

(program) :: = (variable declarations); (command). 

We assume that to every variable there is associated a specific set of values 
which it may take. We define the state of a program to be a mapping from the 
variables used in the program to their values. The set of all possible states is 
denoted by S. 

We use the following (hopefully self-explanatory) syntax for commands: 

(command):: = skip I abort I (assign) I (if)j (do) I 
(command); (command) 

(assign):: = (var):= (expr) 
(if):: = if (bool,) -+ (command) 0 ... 0 (booln) -+ (command) fi 
(do):: = do (bool) -+ (command) od. 
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We consider only deterministic programs (i.e. in (if), (bool,), ... , (booln> are 
mutually exclusive) but some of the formulae that follow remain valid in the 
non-deterministic case. 

As we are interested in exceptional effects, we specifically allow expres
sions to be partial rather than total functions of variables. For instance, 

x:= x + I 

may be undefined if x = MAXINT initially. For any state s, variable x 
and expression E we therefore introduce a predicate 

defined (x, E, s) 

to denote the fact that in state s, the evaluation of E will lead to a value that 
lies within the value domain of x. This predicate will be used in the semantic 
definition of our language in Appendix A2. 

2.2. Specifications 

We define the specification G (for 'goal') of a program as a relation 

Gr;;;. SxS (1) 

over the state space S. G describes the intended effect of the program, the 
understanding being that for an initial state s' E S, (s', s) E G if s could be a 
corresponding final state. 

A specification may be non-deterministic in that several final states may 
correspond to a single initial state. We call G 'undefined' for initial states to 
which no final state corresponds, and we define the domain of G as the set of 
initial states for which G is defined (for notation see Appendix AI): 

dom(G) = {s' E Sis' G =1= 0}. (2) 

In practice a specification is not usually given by enumerating its member 
pairs, but rather by its characteristic binary predicate which for reasons of 
simplicity we also denoted by G: 

G : S x S ---+ {true, false}, 
G (s', s) = true <=> (s', s) E G. 

A specification can make reference to the value of a program variable, say x, 
in the initial state s' and in the final state s. In order to simplify the notation, 
throughout the paper we adopt the convention of writing x' instead of s' (x) to 
denote the initial value of x, and x instead of s (x) to refer to the final value of x. 

We use binary predicates involving both primed and unprimed variables in 
an analogous way in which unary predicates are used in [9] and [4]. The 
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difference is that the former represent relations over the state space while the 
latter represent subsets of the state space. A unary predicate can be seen as a 
special case of a binary predicate, involving either only primed variables (,pre
condition') or only unprimed variables ('postcondition'). 

As an example, assume that a program for the management of N resources 
(e.g. disk blocks) has to be written, where N z I. The two services the program 
is to provide are: ALLOCATE some free resource and RELEASE a pre
viously allocated resource. Suppose the variables are 

var I: integer; 
A:array(O ... N-I)ofO ... I, 

and that for 0 -:::;,j -:::;, N - I, thejth resource is free iff AU] = O. 
If the intended, effect of the ALLOCATE command is to assign to the vari

able I the name of a previously free resource then the (non-deterministic!) speci
fication of ALLOCATE can be described by the following binary predicate: 

G (ALLOCATE) == (0 -:::;, 1-:::;, N - I) & (A' [I] = 0) & (A [I] = I). (3) 

All initial states satisfying 

3j: 0 -:::;,j -:::;, N - I & A' U] = 0 (4) 

have at least one corresponding final state making (3) true; and conversely, if 
(4) does not hold initially, then (3) cannot be made true. In other words, (4) is 
(the characteristic unary predicate of) the domain of G(ALLOCATE). Input 
states violating (4) (i.e. states in which no resource is free) require excep
tional treatment by the ALLOCATE procedure. 

2.3. Relational Semantics 

Once the goal of a program has been stated as its specification, one has to 
compose it from the available primitives and hope - or prove - that it realises 
that goal. We define the actual meaning of a program c again as a relation 

R(c) ~ SxS (5) 

over the state space. R (c) can be defined by induction on the syntactic struc
ture of c using the semantic clauses given in Appendix A.2. 

Our interpretation of R (c) is that c, started in an initial state s', must 
terminate in some S E s'R (c). If it may fail to terminate when started in s', 
then s'R (c) = 0 [13]. Perhaps this understanding appears unbecoming in that 
possible non-termination, infinite looping and aborting are all put into the 
same 'bag's' R (c) = 0. However, as we shall see it is perfectly possible to base 
our formalism on this understanding which is related to the w p formalism of 
[4], as shown below in Sect. 2.4. 
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As already mentioned, we consider only deterministic programs. That is, 
we impose on R (c) the condition 

R- 1 (c) 0 R (c) s; Id (6) 

(see Appendix A.I). Thus, for deterministic c, s' R (c) s if and only if c, when 
started in s', terminates in s. 

As an example, consider the program 

A LLO ATE 1 == I := 0; 

Fig. 1 

do (I 0;; N - 1) & (A [I] = 1) -+ I := I + 1 od; 
A[l] := 1, 

which is supposed to implement the specification (3) above. In order to show 
this, one has to relate the concrete meaning R (ALLOCATE 1) to the intended 
meaning G (ALLOCATE). One has to show that whenever the intended goal 
can be achieved a priori (i.e. (4) holds initially) then R (ALLOCATE I) 
actually yields a final state satisfying (3). 

In general a command c will be said to implement a specification G iff 

v s' E dom (G): 0 c s'R (c) s; s' G. (7) 

That is, for all inputs s' in the domain of G the program terminates 
(0 c s'R (c» and produces a final state satisfying G (s' R (c) s; s' G). (7) cor
responds to what is known as 'total correctness' [12]. 

The definition (7) is weak in the sense that it allows a deterministic 
program such as ALLOCATE I to implement a non-deterministic specification 
such as G (ALLOCATE). It is also weak in the sense that nothing is required 
of the behaviour of c outside the domain of G. We show in the next section 
how to prove that ALLOCATE I implements the specification (3). 

The next two sections introduce backward and forward semantics (the 
latter being a generalisation of the relational semantics just defined). We need 
both of these semantics in the determination of the run-time tests to be 
inserted in a program. 

2.4. Backward Specification-Transformer Semantics 

The well-known process of "backsubstituting a postcondition through the text 
of a program" [4] in order to derive properties of the program can readily be 
generalised for specifications as defined in Sect. 2.2. The idea is to use 
relations over the state space not only as a means of globally describing a 
program c, but also as a means of describing the effect that components of c 
must have in order to ensure that c will indeed accomplish the overall goal. 
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G intermediate state t 

S final state Fig. 2 

For instance, if c is sequentially composed of c] and C2 (see Fig. 2), one is 
interested in the intermediate specification of c] needed to ensure that C2 will 
accomplish the goal G. In this situation we define the 'weakest' specification 
for c] which guarantees that G is implemented by c = c] ; C2 is a relation 
ws (C2' G) s; S x S satisfying 

Sf WS (C2' G) t <=> 0 c t R (C2) s; Sf G. (8) 

An initial state Sf and an intermediate state t thus stand in relation ws (C2' G) 
iff C2, when started in t, terminates in some final state s satisfying the global 
goal Sf G. 

To see that ws (c, G) as defined in (8) generalises the wp (weakest 
precondition) semantics of [4], let X s; S be a subset of the state space and 
define 

wp (c, X) = {s E S 10 c s R (c) s; X} (9) 

(compare also [13]). Our interpretation of R (c) implies that wp (c, X) contains 
all initial states guaranteeing the termination of c in a state in X, which is 
precisely the interpretation of the wp operator in [4]. The connection between 
ws and wp can then be expressed as 

wp(c, cod(G» = cod (ws(c, G». 

What is different is that in our definition (8) both the second argument of ws 
and ws itself are considered binary rather than unary predicates. 

The operator ws has properties similar to those of wp. From (8) one 
derives 

ws(c, 0) = 0, (lOa) 

(lOb) 
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and for deterministic programs satisfying (6) one also has 

(lOc) 

The ws semantics of our programming language is given in Appendix A2. 
As an example of its use we prove the correctness of the program 

ALLOCATE 1 (Fig. 1) with respect to its specification G(ALLOCATE) 
(formula (3) in Sect. 2.2). This can be done by writing G (ALLOCATE) at the 
end of the program and 'mechanically' backsubstituting it through the 
program using the rules of Appendix A2 (see Fig. 3). 

o 
1 
2 
3 
4 
5 
6 

Fig. 3 

(~3L ~~ ~j ~ N - 1) & (A'[j] = 0) & (A[j) = O)} 

(
{3 j : (I ~j ~ N -1) & (A'[j) = 0) & (A[j] = O)} 
do (I ~ N - 1) & (A [1] = 1) -+ [ := [ + 1 od; 
{(O:;;;[ ~N -1) & (A '[I] = a)} 

(A[I]:=l 
{(O ~ [~N -1) & (A'[I] = 0) & (A [I] = I)} = G(ALLOCAT ) 

In each step of this backsubstitution one obtains from a given binary predicate 
a new binary predicate, again containing a mixture of primed and unprimed 
quantities; in fact, if c denotes the statement in line k in Fig. 3 and G denotes 
the specification in line k + I, then the specification in line k - I equals 
ws(c, G). 

When the backsubstitution has come to an end (i.e. in line 0) one can 
identify initial and 'current' states, simply by 'priming' all unprimed variables. 
By this identification one obtains a unary predicate, namely the characteristic 
predicate of the set 

sLdom (c, G) == {S' E S I S' ws (c, G) S/} (11 a) 

containing precisely those initial states for which c is guaranteed to terminate 
in a final state satisfying G. 

The set (11 a) is by definition (8) a subset of dom (G). All initial states S' 

outside sLdom (c, G), i.e. in 

eJLdom(c, G) == S\sLdom(c, G) (11 b) 

must be treated as exceptional w.r.t. the given specification G and program c. 
We therefore call sLdom (c, G) the 'standard domain' or the 'implementation 
domain' of c with respect to G, and its complement, i.e. eJLdom (c, G), is 
called the 'exceptional domain'. 
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The set sLdom (c, G) equals the domain of G iff c implements G as 
defined in formula (7); formally, 

c implements G ~ dom(G) = sLdom(c, G) (12) 

which can easily be proved from the definitions. In our example (Fig. 3), if 
'priming' is actually applied to the specification in line 0, we obtain the 
characteristic predicate (4) of the domain of G; which, by (12), proves the 
correctness of ALLOCATE 1. 

2.5. Forward Specification-Transformer Semantics 

Instead of asking for the weakest specification for c, which guarantees that 
c = c, ; Cz implements some specification G, one could also ask for the strongest 
transition (abbreviated 's1') relation which can be derived for c by knowing 
that the component command c, implements a specification G, (see Fig. 4): 

I.e., 

(13) 

The strongest 'post' -specification of G, is thus simply the relational composi
tion of G, and R (cz). 

Using (13), the correctness of c with respect to G can be established by 
proving that 

Y s' E dom (G): (0 c s' st (c, Id) ~ s' G . (14) 

For example, by using the rules for st (see Appendix A.2), the fact that 
ALLOCATE 1 implements G (ALLOCATE) can be established by 'pushing' 

initial state 

st intermediate state 

C2 

s final state Fig. 4 
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o 
1 
2 
3 
4 

(
{Id} 

[/: g; 
( do (l ~ N - 1) & (A [I] = 1) -+ I :== I + 1 od; 
{(I == N or (0 ~ I ~ N - 1 & ATI] == 0 & A[l] = 0)) & 

( 
(\tj: O ~ j < I==> (A'[j] == 1 & A[j] == I)} 

5 A[I] :== 1 
6 {(O ~ I ~ N -1) & (ATI] == 0) & (A[l] = 1) & 

(\tj: 0 ~ j < I==> (A,[j] = 1 & A[j] = I))} Fig. 5 

the relation Id forward through the program as shown in Fig. 5. As the last 
relation is non-empty and implies G (ALLOCATE), we have established again 
that the command ALLOCATE 1 correctly implements its specification. We 
shall in the next section use a similar method to derive exceptional tests. 

3. Run-Time Checks for the Detection 
of Exception Occurrences 

3.1. Preciseness of Run-Time Tests 

Consider a specification G and a program c. We have seen that (whether or 
not c implements G) the set of input states S can be partitioned into the set of 
'standard inputs' sLdom (c, G) on the one hand and its complementary 
'exceptional domain' ex-dom (c, G) on the other hand (cf. formulae (11 a) and 
(11 b) in Sect. 2.4). For inputs in the standard domain (which may be empty), 
c does implement G whereas for inputs in the exceptional domain (which may 
of course also be empty), c may either not terminate properly or end up in a 
final state not satisfying G. Moreover, if (and only if) the standard domain 
equals the entire domain of G then c does correctly implement G, as defined in 
formula (7) in Sect. 2.3. 

Exception handling aims at extending a program c in such a way that 
whenever c is started in an initial state outside the standard domain, then 
during its execution a specially designed piece of program (an 'exception 
handler') becomes activated. We call such extended programs 'robust' or 
'tolerant to exception occurrences' [1]. The main purpose of exception handling 
is thus to make programs 'total', or well-defined for all inputs. 

In order to find out whether or not the input state is exceptional, there has 
to be a test somewhere during the execution of the program. This test does not 
necessarily have to take place at the beginning. For instance, in the program 
ALLOCATE I (see Fig. I), rather than to test the exceptional condition 

Vj: 0 ~j ~ N -1 ~ A' U] = I (15) 
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at the beginning of the program, it is more economical, as well as more 
natural, to place the test after the loop as follows: 

1 
2 
3 
4 

1:= 0; 
do (l ,,;;;; N - 1) & (A [I] = 1) -+ I := 1+ 1 od; 
[I > N - 1 -+ 'exception handler') 
A[I]:= 1 Fig. 6 

The meaning of the exceptional clause in line 3 it that the Boolean 
expression I> N - I is evaluated and if found false, execution continues with 
the next statement; if found true, control is given to the exception handler 
whose exact working does not concern us here. We do not worry either about 
what precisely "economical" means in the context of tests; intuitively, one 
might say that predicates not involving quantifiers (such as I> N - I in 
Fig. 6) should normally be considered as more economical than predicates 
which do involve quantifiers (such as (15». 

We can easily convince ourselves that in line 3 in Fig. 6, the test 
"I> N - 1" evaluates to 'true' if and only if the initial state lies in the 
exceptional domain (15). For this reason we call it a 'precise run-time test': it 
activates the exception handler when, and only when, an exception occurs. 

In this section we characterise the precise tests that can be inserted in a 
program. It is important that such tests be precise because if they are too 
strong then it is possible that no exception handler is activated even though the 
input is exceptional, and if they are too weak then certain acceptable input 
states may find themselves being treated as cases offailure. 

Before defining precise tests formally, we make a few observations. The 
first is that the requirement for a test to be precise may not uniquely 
determine that test. For instance, the line 

[I = N -> 'exception handler'], 

if inserted instead of line 3 in Fig. 6, would also 'catch' precisely all 
exceptional inputs. This is due to the fact that the relation 1< N + 1 is part of 
the strongest postcondition after the loop (see Fig. 5). 

Our next observation is that not all locations in a program are equally 
appropriate in supporting exception detection. For instance, there is no way of 
catching an exception after the least assignment A [I] := I in Fig. 6, because the 
exception will by this time already have led to an array bound violation when 
the expression A [I] is evaluated in line 4 with 1= N. 

Our third (and last) observation is that if one allows tests to refer also to 
the initial state rather than just to the current state then in some cases 
exceptional tests could be inserted where otherwise they could not. As an 
example, we consider the following alternative implementation of G (ALLO
CATE) which differs from ALLOCATE 1 in the loop condition: 
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ALLOCAT 2=1:= 0; 
do (I<N-1) & (A[/] = 1) -+1:= 1 + 1 od; 
[A[I] = 1 -+ 'exception handler'] 
A[I] := 1 Fig. 7 

Again, A [I] = I can be shown to be a precise exceptional test. By allowing 
the test to make reference to initial values (by using primes) one can in 
ALLOCATE2 (in contrast to the previous program) insert a precise test at the 
end of the program: 

[:= 0; 
do (I < N - 1) & (A[I] = 1) -+ [ := [ + 1 od; 
A[I]:= 1; 
[A,[!] = 1-+ 'exception handler'] Fig. 8 

Although in this example there is little point in doing so, for generality and 
uniformity we allow tests to refer to the initial states, as advocated, for 
example, in [10]. Thus, we define a test Tformally as a binary predicate 

T: S x S --+ {true, false} (16) 

where the first S refers to the initial state and the second S to the current state. 
We return to the question of binary versus unary tests in the next section. 

Consider now a general sequential decomposition of a program c: 

We wish to determine, 

(a) whether a precise exceptional test can be inserted between c] and C2, and 
(b) if so, to characterise the set of all such tests. 

Question (a) is easy to answer. It has to be ensured that for every 
exceptional initial state, control actually reaches the point between c] and C2 

(unless there are different kinds of exceptions, a case which will be discussed 
below); in other words the following relation must hold: 

eLdom (c, G) ~ wp (c], S) (17) 

(where wp is as defined in (9». 
As to question (b), let T denote the test to be inserted between c] and C2' 

We call T a 'precise exceptional test' iff the following holds: 

V (s', t) E R (c]) : s' T t <=> not s' ws (C2' G) t. (18) 
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Relation (18) expresses formally our intuitive understanding that the test T 
should evaluate to 'true' if and only if the pair of states (s', t) under 
consideration cannot be guaranteed to lead to a final state satisfying G. 

With the two definitions 

Ts ==R(cl)&notws(c2,G), 

Tw == notR(cd V notws(c2, G) 

formula (18) can be rewritten as the equation 

R(cd & T= Ts 

(19a) 

(19b) 

(20) 

and (20) can further be equivalently reformulated as a set of two implications 

(21 a) 

(21 b) 

(21 a) and (21 b) imply that the set of precise tests equals the sublattice 
between Ts and Tw of the lattice of binary predicates, so that one is justified in 
calling Ts the 'strongest precise test' and Tw the 'weakest precise test'. Fig. 9 is 
a representation of the relationship between Ts and Tw. 

The formulae (21) can be interpreted as follows. Formula (21 a) means that 
all pairs of (initial state, current state) such that C2 is not guaranteed to 
establish G must imply the truth of T; thus T must be weak enough actually to 
activate an exception handler in case of an exception occurrence. Ts itself may 
be too strong in the sense that too much is tested (an example of this will 
follow). Formula (21 b), on the other hand, means that the truth of T must 
ioply either something impossible (not R (CI)) or that C2 cannot be guaranteed 
to establish G; thus T must be strong enough not to treat any acceptable state 
as an exception. Tw itself may be too weak in the sense that it may 'catch' a lot 
of exceptional situations which never occur (again, an example follows). 

Because st (c, Id) = R (c) for all programs c (see formula (13) in Sect. 2.5), a 
general method of deriving precise tests T is to backsubstitute (as exemplified 

---------~ 

~----------~--- Tw ---~ 

Fig. 9 
SxS 
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in Sect. 2.4) the specification G through C2 up to the point where T is to be 
inserted and simultaneously to push (as exemplified in Sect. 2.5) the relation 
Id forward through c, up to the same point. Where the two meet we can form 
their difference (l9a) to derive the strongest test T., or the union (19b) to 
derive the weakest test Tw , and we can use (20) as a verification condition for 
an arbitrary test Tto be precise. 

We illustrate this method on our example. Let us choose the following 
partitioning of ALLOCATE 1: 

CI =f:= 0; 
do (I "" N - 1) & (A[I] = l) .. d := 1+1 od; 
(*) 

c2= A[I]:= 1 

and assume a test is to be inserted at point (*). 

Fig. 10 

We first note that (17) is satisfied because c, always terminates. We then 
derive (compare Fig. 3, line 4 and Fig. 5, line 4): 

R (c,) = st(c" Id) 
= (I = N or (0 ~ I ~ N - 1 & A' [I] = 0 & A [I] = 0)) & 
(Yj:O~j<I~ (A' U]=I&AU]=I)) (22 a) 

WS(C2' G (ALLOCATE)) = (0 ~ I ~ N - 1) & (A' [I] = 0). (22b) 

States satisfying (22 a) but not (22 b) are described by 

Ts == (I = N) & (Y j: 0 50 j 50 N - 1 ~ (A' [j] = 1 & A U] = 1)) (23 a) 

and states violating either (22a) or (22b) by 

Tw == (I < 0) V (I> N - 1) V (A' [I] = 1) V (A [I] = 1) V 

(:::Ij: 0 ~j ~ I & A' Ul = 0 & AU] = 0) . (23b) 

Examining (23) we see that both in Ts and in Tw some terms are redundant. 
The second term in Ts , for instance, is implied by the first term "I = N" in 
combination with (22a). Similarly, (22a) implies that the first term in Tw can 
never be true. All in all, we have thus shown that 1= N and I> N - 1 are 
precise tests, and that 1= N is the strongest non-redundant precise test that can 
be inserted at point (*) in Fig. 10. 

We also mention the following theorem whose proof is omitted for reasons 
of brevity. For deterministic programs, 

Ts=st(c"Id&notws(c, G)). (24) 

This means that instead of simultaneously backsubstituting G and pushing Id 
forward until they meet between c, and C2, one can also backsubstitute G to 
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the beginning of the whole program, negate the resulting predicate, identify 
'initial state' and 'current state' (Id & ... ), and push the result forward through 
CI . This may sometimes be simpler than the other method. 

We end this section with two remarks. Firstly we note that the condition 
(17) gives an indication about the location to choose for T. Since sL(c, G) 
£; wp (CI' S) by definition, (17) means nothing less than that CI is required to 
terminate for all inputs. Thus the tests must not be inserted 'too late' in the 
program. Note that there always exists at least one decomposition of C in 
which CI terminates, namely the trivial C = skip; c. The reader is invited to 
derivethe special cases of formulae (17) - (21) for C = skip; C = c; skip. 

The second remark is that it is often natural for the exceptional domain 
ex-dom (c, G) to be partitioned into further subsets E I , E2 , ••• etc. If these 
subsets are mutually disjoint then our formulae can easily be generalised. All 
that needs to be done is to refine the definition of 'precise test' to that of a test 
T being 'precise for exceptions in E;' and to change (17) - (21) appropriately. 
This question will be discussed further in Sect. 3.4. 

3.2. Unary Versus Binary Checks 

In this section we discuss under which circumstances a binary rather than a 
unary exceptional test is required. It is desirable that the test be unary rather 
than binary because otherwise the initial values of variables would in some 
way have to be kept saved in store. 

Let us reconsider the program ALLOCATE 2 of Figs. 7 and 8: 

1:= 0; 
do(1<N - 1)&(A[I] = l)-d +lod ; 
A[I]:= 1 
(*) Fig. 11 

A precise test A' [/] = 1 involving the initial value of A can be inserted at (*). 
However no precise test involving just the current state of A (which in this case 
is also the final state) can be inserted there. 

The reason that no unary test can be inserted at (*) is the existence of two 
different initial states s', s" leading to the same final state t at (*), such that the 
pair (s' t) satisfies the goal but (s", t) does not. To see this, define s' such that 
s' (A [N - ID = 0 and s' (A UD = 1 for all 0 ~j < N - 1 (in which case (s', t) 
happens to satisfy the goal G (ALLOCATE)), as compared to s" such that 
s" (A UD = 1 for all 0 ~j ~ N - 1 (in which case the state at (*) is the same t 
as before, but (s", t) does not satisfy G (ALLOCATE)). 

Generally, we define for c = CI ; C2 the following condition: 

There are no two initial states s', s" and current state t s.t. 

(s', t) E R (CI), (s", t) E R (CI), tR (C2) £; s' G and tR (C2) 51; s" G. (25) 
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It is possible to show that if, and only if, (25) holds then the test between c] 

and C2 can be unary rather than binary. This gives a second indication of where 
to put the test: namely, the partitioning c] ; C2 should be chosen such that (25) 
holds. We are not considering the question further whether the rather cumber
some property (25) can be made equivalent to, or at least a consequence of, a 
'nicer' property. 

3.3. Checks in Conditionals and in Loops 

In this section we derive analogues of the verification conditions (17)-(21) for 
precise tests in conditionals and in loops. For conditionals there is little to 
define. One has to ensure that the 'if clause' 

cannot abort due to the non-existence of a true Bi , and that every chosen alter
native accomplishes the overall goal. Hence with 

T = not B] & ... & not Bn 

and 

Ti = not ws (Ci, G), 

the modified program 

[T -+ 'exception handler'] 
if B] -+ [T] -+ 'exception handler'] 

o 

o Bn -+ [Tn -+ 'exception handler'] 

fi 

is a robust version of the above 'if clause'. 
On the other hand, we consider a loop 

C = do B -+ c' od (26) 

in which a test T is to be inserted such that the modified program 

do B -+ [T -+ 'exception handler"] 
C' 

od 

is a robust version of C with respect to a global goal G. Again it has to be 
ensured 
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(a) that control actually enters the body of the loop and 
(b) that T becomes true in some iteration iff the input was exceptional. 

Property (a) can be ensured by postulating that B is true for every state in 
the exceptional domain, or in set notation that: 

ex-dom(c, G) f; B. (27) 

(27) is an analogue of (17) for loops. 
Property (b) can be analysed as follows. We 'cut' the loop (26) between B 

and c', i.e. at the point at which the test T is to be inserted. Let us define the 
states at this point to be the 'intermediate' states. The transition relation giving 
the set of intermediate states reachable from a given intermediate state by an 
unspecified number of repetitions of the loop can be described in general by 
(for notation see Appendix A.2): 

Ro = (R (c') 0 R (B))*. (28 a) 

On the other hand, the relation between initial states and intermediate states 
and the relation between intermediate states and final states can be described, 
respectively, by the following two relations R] and R2 : 

R] =R (B) 0 Ro, 

R2 = Ro 0 R (c') 0 R (Dot B). 

(28b) 

(28 c) 

Pictorially, we may represent the relationship between these relations as shown 
in Fig. 12. 

Property (b) can be ensured iff for all intermediate states t for which R2 is 
not guaranteed to satisfy the overall goal G, another intermediate state, say x, 
is reachable from t such that the test T will hold in x. This underlies the 
following definition. We call a (binary) test T 'precise' for (26) iff 

Y (s', t) E R]: Dots' Ws(R2' G) t <=> 3 x: tRo x & s' Tx (29) 
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where ws (R, G) for two relations Rand G is the obvious extension of formula 
(8) in Sect. 2.4: 

s' ws (R, G) t ~ 0 c t R c;; s' G. 

Formula (29) is the analogue of (18) for loops. Using relational algebra, 
(29) can be rewritten as the equation 

(30) 

Formula (30) is the analogue of (20) for loops. Since, by our overall 
assumption (6), Ro is deterministic, Ro' is injective (see Appendix AI). Using 
this fact it may be proved that if two tests T, and. T2 satisfy (30), then so do 
T, & T2 and T, V T2. Hence the set of tests satisfying (30) is again a sublattice 
of the lattice of binary predicates. 

As an example we prove that the test 1= N - 1 in the following alternative 
implementation of G (ALLOCATE) is again a precise test: 

ALLO ATE3 "'" J := 0; 
do A[I] = 1 ~ [J = N - 1 ~ 'exception handler'] 

1 := 1 + 1 
od; 
A[I] := 1 Fig. 13 

(27) is fulfilled because, taking into account the initial assignment of 0 to I, the 
truth of the exceptional condition 

Vj: O:::;,j:::;, N - 1 =>A' U] = 1 (15) 

implies in particular that A [I] = 1 on loop entry. 
To prove (29), we consider an initial state s' and an intermediate state t. 

We denote by I' = t (I) the value of I in state t. (s', t) E R, implies that 

I' E {O, ... , N - I} & Vj: o:::;,j:::;' I' => AU] = 1. (31 a) 

On the other hand, not s' ws (R2 , G) t means that 

Vj: I' <j:::;, N - 1 => AU] = I. (31 b) 

For another intermediate state x, s' T x means that the value I in stat~ x equals 
N - 1, and t Ro x then means that 

Vj: I' <j:::;, N - I => j E{O~ ... , N - I} & AU] = 1. (31 c) 

This proves (29) because under the assumption that the first clause in (31 a) 
holds, (31 b) and (31 c) are equivalent. 
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We end this section with two remarks. It might be objected that the 
procedure outlined in the last paragraphs breaks down if, say, the search of the 
array A is begun with the index I rather than 0, because in this case the initial 
state in which the very first, but no other, resource is free (A [0] = 0 and 
AU] = 1 for 1 sj s N - 1) will give rise to an exception. However a program in 
which the search begins with 1 does not itself implement the specification 
G (ALLOCATE), as defined in Sect. 2.2 and 2.3. The initial state just 
mentioned would therefore belong to the exeptional domain rather than to the 
standard domain, which justifies the detection of an exception. 

Our second remark concerns the design of the last version of the allocation 
algorithm. In contrast to the previous two versions, in ALLOCATE 3, the tests 
on A and on I are separated out in such a way that all testing on I occurs just 
immediately before I is actually changed. This seems indeed the most natural 
location for the test to be placed, because the inside of the loop can now be 
regarded as an 'action on I' by itself, indicating proper program structure. This 
leads no only to a (however slight) gain in the average amount of testing done, 
but also to the desirable property that I never actually assumes any values 
outside its 'natural' domain between 0 and N - 1. 

It may well be possible that this line of reasoning can be generalised to 
derive a third, albeit more heuristic, indication of where to put tests in a 
program; namely, to try and separate them out in such away that the test of an 
exceptional precondition coincides with testing one of the variables of the 
program for transgression of its 'natural' value domain. We shall return to this 
point in the next section. 

3.4. An Example: Bracket Matching 

The purpose of this section is to illustrate an application of our formalism to a 
non-trivial example. We have chosen the example because it occurred in the 
programming experience of one of the authors and because it is one of those 
fairly typical examples in which a whole variety of exception testing occurs 
spread all over the text of a program. After describing the problem informally 
and formally in Sect. 3.4.1, we present the design of an implementation in 
Sect. 3.4.2. Sect. 3.4.3 contains the design of a robust version of the implemen
tation and Sect. 3.4.4 outlines a proof that the tests inserted in the robust 
version are indeed precise. 

3.4.1. Specification of the Problem 

Assume a stream W of characters is given as input to a bracket matching (BM) 
program. Some of the characters are 'B' (for 'begin') and some of them are 'E' 
(for 'end'). The string W may, for example, represent the internal encoding of 
an Algol program. The program BM is then required to analyse the block 
structure of that program by finding all matching 'begin'-'end' pairs. 
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N 

----------
~~ ~ 

W' IBI/B6EIBI1;P§'I'~'1 Fig. 14 
N 

In this situation the following is assumed (see Fig. 14). The first character 
of W is a 'B' and the last character in W is its matching 'E'. Furthermore, after 
every 'B' a 'space' is provided in W for the index of its matching 'E' to be 
inserted. We further assume that the depth of nesting of'B'-'E' pairs must not 
exceed a positive constant C> 0 (reflecting, for example, dynamic memory 
allocation constraints imposed by a host operating system). 

Let the input stream W be represented by an array W containing integer 
encodings for characters 'B', 'E', etc., with bounds 1 and N > 0: 

var W: array (1 ... N) of integer. 

We assume 0 to be the encoding for the 'space'. 
In order to state the specification of BM formally, we first have to define 

what it means for a 'B'-'E' pair to 'match'. Because 'to match' is a symmetric 
property, we shall take care in this definition to proceed as symmetrically as 
possible. A necessary condition for a 'B' and a succeeding 'E' to match is that 
between the two there is an equal number of other 'B's and 'E's. They must 
furthermore be close enough together so as not to encompass two or more 
blocks. 

This yields the following definitions, in which we always assume 
I :s; i :s; j :s; N. Let nb (K, i, j) be the number of occurrences of an arbitrary integer 
constant K between two indices i andj (inclusively) of W: 

nb (K, i,j) == card {II i :s; I :S;j & W' [I] = K} . 

Then 

DU,j) == nb('B', i,j) - nb('E', i,j) 

denotes the difference between the number of 'B's and the number of 'E's 
between i and j. We can now define the matching of 'B' and 'E' as a predicate 

Match (i,j) == W' [i) = 'B' & W' [j] = 'E' & D (i,j) = 0 & 
(, ::3k: i < k <j & W' [k] = 'E' & D (i, k) = 0) . (32) 
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The last term in (32) expresses the requirement that the 'B' and 'E' in 
question must be near enough together. It could have been replaced by its 
symmetric counterpart involving 'B' rather than 'E'. There is in principle no 
reason why the one definition should be preferred rather than the other. 
However we are already envisaging a sequential scan of W from 1 to N, in 
which case it is natural to search for the first 'E' which matches a given 'B'. 
This is why we 'cheat' and prefer (32). 

The formal specification of the BM program as a relation between initial 
and final states can be stated as a conjunction of four simpler constraints: 

G(BM)=PI &P2&P3&P4 (33) 

where 

PI == Match (1, N) 
requires that the first and the last character in Ware a matching 
'B'-'E' pair; 

P 2 == Vi: (1 < is N) & (W' [i - 1] = 'B') = 
(W' [i]=0)&Match(i-1, W[i]) 

requires that matching indices have to be inserted after each 'B' in 
place of the 'space' reserved for this purpose; 

P3==Vi:(1 sisN) = D(1,i)sD 
limits the depth of possible nesting of 'B'-'E' pairs; 

P4 == Vi: (1 < is N) & (W' [i] =1= W[i]) = (W' [i - 1] = 'B') 
represents the requirement that all entries other than 'spaces' must 
remain untouched. 

Both PI and P 3 impose a direct constraint on W'. This remark, together with 
a part of P 2 (the constraint that each 'B' has to be followed in W' by a 0) leads 
us to advance 

DBM == Match{l,N) & 
(Vi: (1 < i ~ N) & (W' [i - 1] = 'B') = W' [i] = 0) & 
(Vi: (1 sis N) = D(l, i) s D) (34) 

as a necessary condition for the existence of a final state W satisfying G (BM). 
The condition is also sufficient. Indeed, if D (1, N) = 0 (which is implied 

by Match (1, N)) then one can prove that for every index i such that 1 s i < N 
and W' [i] = 'B' there exists a j with Match (i, j), and it is therefore possible to 
define a W with the 'spaces' following the 'B's replaced by their appropriate 
matching indices and all the other entries unmodified. Therefore (34) is the 
characteristic predicate of dom (G (BM)). 
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3.4.2. Design of BM Standard Implementation 

In order to implement G (BM) our only obligation is to establish the second 
part of P2 by filling the 'spaces' after all 'B's. We envisage a sequential scan of 
Wand use the well-known methods of varying a constant [5] and weakening a 
predicate [8] in order to turn a specification into an invariant. Thus we replace 
the constant N in P2 by a variable I, omit the precondition W' [i] = 0 and add 
another term R: 

Vi: I < is 1& W'[i-I]='B' => (R V Match(i-I, W[i])). 

Our objective is to choose R such that it is true for I = I or 1= 2 and false for 
1= N, thus establishing P2 on termination of the envisaged program. For a 
given i with W' [i - I] = 'B', the "space" at i can be filled as soon as the index 
of the matching 'E' is contained in I. This happens (supposing a sequential 
scan) as soon as the quantity D (i - I, I) ceases to be positive. "D (i - I, I) > 0" 
is therefore the natural choice for R: 

V i: I < is I & W' [i - I] = 'B' => (D (i - I, I) > 0 V Match (i - I, W[i])). (35) 

The most convenient way in which the 'space' indices can be kept in 
memory so as to be accessible when their matching 'E's become known is of 
course by using ·a stack (which we call ST with pointer P). Because the stack is 
'pushed'on encountering a 'B' and is 'popped' on encountering an 'E', its 
pointer P can be taken to satisfy the equation P = D (1, I). As the quantity 
D (1, I) may vary from 0 to D and becomes zero iff the 'E' matching the very 
first 'B' has been found, it is natural to let P range from 0 to D and take "P=O" 
as the termination condition. Thus we have the further invariant: 

Os P = D (I, I) s N. (36) 

Our implementation is shown in full in Fig. 15. 
In order to prove that the BM program implements G (BM), one has to 

establish that 

DBM S; sLdom (BM, G (BM)) . (37) 

This proof can be conducted by showing that under the assumption DBM, 
both (35) and (36) are indeed loop invariants and imply P 2 on termination. It 
is left to the reader to convince himself of this fact. 

3.4.3. Design of a Robust Version 

Once the correct behaviour of the program within the domain of its 
specification has been established, one can concentrate on its behaviour 
outside this domain. In our example, having established the correctness 
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10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

var I: l..N; 
P:O .. D; 
ST: array 1..D of l..N; 

1:== 2; 
P :== 1; 
STEP] :== I; 
do P '" 0 -+ I :== [ + 1 ; 

od 

if WEI] = B' -+ I :== 1+ 1; 
P:== P + 1; 
ST[P]:== I 

o WEI] == E' -+ W[ST[P]] := I; 
P:= P - l 

o else-+ kip 
fi Fig. 15. 

BM standard algorithm 

property (37) and hence the equality OBM = sLdom (BM, G (BM», we may 
obtain the exceptional domain of BM with respect to G (BM) by negating (34): 

elLdom (BM, G (BM)) == E, V E2 V E3 (38) 

where 

E, == .....,Match(1, N) 
corresponds to the nonexistence of a matching 'B'-'E' pair in the 
first and last entries of W; 

E2 == ::li: (1< i:::; N) & (W' [i - 1] = 'B') & (W' [i] =f= 0) 
corresponds to the case where a 'B' is not immediately followed by a 
'space' as required. 

E3 == ::li: (1 :::; i:::; N) & (D (1, i) > D) 
corresponds to the level of nesting exceeding the limit D. 

Our objective is to insert a set of tests in BM such that altogether these tests 
can detect all possible exceptions in (38), i.e. are precise of (38). Following the 
heuristics set out at the end of Sect. 3.3, we attempt to match the variables 
used in the program with the terms in (38), so that the various tests in the 
program can correspond in some meaningful way to all terms in (38) and thus 
'cover' the exceptional domain. 

For example, because of the construction of the two local variables I and P 
in Sect. 3.4.2, these two variables cannot be allowed to transgress their respec
tive value domains. More concretely, P is only to be increased under the 
condition P < D. We need to know in what way such tests correspond to terms 
in (38), in order to find out whether or not (38) is indeed covered. Because via 
(37), (34) and (33) the expression (38) relates to the specification G (BM), such 
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[W[l] ~ 'B' -+ HEJ J] 
4 [N=1-+HEI3] 
7 [W[2] ~ 0-+ HEl ] 

10 1:= 2; 
20 p:= 1; 
30 STep] := I; 
40a do P ~ 0 -+ [I = N -+ HE 13] 
40b I:= 1+1; 
SOa if W[I]= B'-+[I=N-+HE 13] 

SOb I := 1+1; 
54 [W[I];t: 0 -+ HE2] 

57 [P=D-+ HE3J 
60 p:= P+1; 
70 ST[P]:= I 
80a 0 WeI] = E' -+ {1 < ST[P]:S:;: N & W[ST[P]] = 0 & 

W[ST[P] -1] = 'B' & Match(ST[P] - l, In 
80b W[ST[P]] := I; 
90 p:= P - l 

100 0 else -+ skip 
110 fi 
120 od; 
130 {P = 0 & Match(1, I)} 
140 [/<N-+HE,4] 

Fig. 16. Robust BM program 

correspondences can be expected to be the closer, the clearer the program 
specification is reflected in the program variables. 

Figure 16 gives our solution in full. We will continue with the justification 
for each one of the test it contains. 

The shorthand 'HE;' is used for 'handler of the exception E/. In what way 
these handlers correspond to the exceptions is discussed informally in this 
section and formally in the next section. 

In our justification for the tests inserted in Fig. 16 we start with E3 (38). We 
see that D (1, i) already corresponds to P via (36). Therefore, whenever P may 
exceed its limit, i.e. just before line 60, an occurrence of E3 can be detected. 
This shows that the test in line 57 corresponds to E3 • This is one of the cases in 
which the single testing of a program variable precisely covers a term in the 
expression of the exceptional domain (this will be made more formal in 
Sect. 3.4.4). Underflow of P (line 90) cannot occur because of the guard of the 
loop. 

E2 mentions the values of Wand can therefore be taken care of by testing 
W itself. We can make use of the fact that a test for WeI] = 'B' already exists 
in line 50. Thus it is most natural to insert a test on W [I] = 0 after the ensuing 
incrementation of I, i.e. after line 50; this leads to line 54. Because every 'B' 
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(except the first one) is screened by line 50, line 54 takes care of every 'space' 
except the very first one which is conveniently tested at the beginning (line 7). 

EI is the only part of (38) not immediately expressible in terms of program 
variables. We reconsider the definition (32) of Match (i,j) and split EI into 
four smaller terms: 

EI = Ell V EI2 V El3 V E14 , 

Ell == W' [1] * 'B' , 

EI2 == W' [N] * 'E', 

El3==D(I,N)*O 

EI4 == ::Jk: 1 < k < N & W' [k] = 'E' & D (1, k) = O. 

(39) 

El3 corresponds to an unbalanced number of 'B's and 'E's in W, while EI4 
corresponds to the case that the 'E' matching the first 'B' is situated before the 
end of W. . 

Ell can easily be tested at the beginning (line 1): EI2 could be tested on 
termination, but this is unnecessary since the loop can only be left via lines 
80-90, which ensures that W[/] = 'E' on termination (see also line 130). In 
fact something curious happens to E12 : it does not have a handler. This can 
be attributed to the fact that EI2 can entirely be covered by other exceptions: 

EI2 => (El3 V E14 ) . 

Of course, is we were interested in having a special treatment for E12 , a special 
exception clause could be inserted to detect it (say at the beginning). 

El3 contains the term D (1, N) which corresponds to P via (36). The 
condition D (1, N) * 0 can be detected as soon as / reaches N. This, in turn, 
can only arise at the very beginning (line 4) or if the variable / exceeds its 
limit during the execution of the loop (lines 40a and 50a). 

Finally, the term D(1,k) again appears in E14 . The matter of interest is 
here that this quantity equals 0 before N has been reached. It follows that a test 
whether / < N at the end of the loop (i.e .. when P = 0) will detect this 
condition (line 140). This concludes our informal derivation of the tests to be 
inserted. . 

In conclusion, the design of these tests can perhaps best be described as an 
attempt to cover the exceptional domain term by term. If the variables of the 
program already correspond in a clean way to these terms (which they do in 
our case) then there is also likely to be a close correspondence between these 
terms and the tests whether those variables exceed their natural domains. 
Some tests, such as the one in line 54, cannot be motivated in terms of local 
variables. However, there again the placement of such tests can be influenced 
by the way the standard algorithms work (in this case the test on 'B' in line 50). 

In all cases the wish could be discerned to place the test for an exceptional 
subdomain such that the corresponding exceptional condition is detected as 
soon as it 'arises' in terms of the program at hand. This is perhaps the most 
general heuristic statement about the placement of tests that can be extracted 
from our considerations. 
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3.4.4. Proof of Preciseness 

Our aim in this section is to show that the total set oftests in lines 1,4, 7, 40a, 
50a, 54, 57 and 140 of Fig. 16 is precise for the exceptional domain (38), 
satisfying: 

(i) whenever a test is true then an exceptional input state has been detected; 
(ii) conversely, every exceptional input state leads to an intermediate state in 

which some test is true. 

In proving this we encounter the following complication. It would be nice 
to show, using say (29), that for each individual exceptional domain E;, the 
corresponding exception handler HE; becomes activated if and only if the 
input state was in E;. However, as remarked at the end of Sect. 3.1, such a 
strategy is possible only for disjoint subdomains. 

In our situation we have six non-disjoint exceptional sub-domains in (38) 
and (39). As a result, if an input state is in two or more of those domains, it 
cannot a priori be determined which exception will be detected first (if at all). 
F or example, if the input of the BM program shown in Fig. 16 satisfies both E2 
and E3, either E2 or E3 can be detected first, depending on the particular shape 
of W'. 

However, for every individual exceptional sub-domain we can prove a 
slightly weaker property than full preciseness, namely: 

(i) if an exception handler HE; is activated then the input state was in E;; 
(ii') for every input state in E;, either the corresponding handler HE; eventu

ally becomes activated, or another exception Ej is detected prior to that 
(indicating that the input state lies in the intersection E; & Ej ). 

If (i) and (ii') can be proved for all (overlapping) exceptional sub-domains 
then the truth of (i) and (ii) follows directly for the union of these sub
domains; i.e. in combination the tests are precise for the full exceptional 
domain. 

In the sequel we prove (i) and (ii') for the expection E3 of our example. 
For E1 - E2 , the demonstration is analogous. The proof which follows is not 
entirely formal but, we hope, precise enough to avoid any misunderstanding. 

(i) Assume that during the execution of the loop, an intermediate state has 
been reached such that the test P = D of line 57 evaluates to true. From the 
loop invariant P = D (1, I), which was true at the end of the previous iteration, 
and from the fact that the two most recently visited array elements contain 'B' 
and 0, respectively, (lines 50- 54), we can infer that D (1, I) = D + 1 holds for 
the actual value of I. It follows that E3 was true initially. 

(ii') Conversely, assume E3 is true initially. Define 

io = min {i I (1 :::;; i :::;; N & D (1, i) > D} . 

By this definition, io always 'points' to a 'B', i.e. W' [io] = 'B' (otherwise the 
minimality of io would be contradicted). As I is only incremented by I in 
BM, we have to consider the following two cases: 
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(a) During the execution of the loop, I reaches the value io. This can only 
be a consequence of executing the statements in line 40b (sub-case a 1) or in 
line 50 b (sub-case a 2). 

(a 1) If io = N the guard of HE13 in line 50 a leads to the detection of E 13 . If 
io < N and W' [io + 1] =1= 0 the guard of HE2 leads to the detection of E2 • If 
io < N and W' [io + 1] = 0 the exception E3 is detected in line 57. No other pos
sibilities remain. 

(a2) Since W [io] = 'B' the guard of HE2 in line 54 is true and the exception 
E3 is detected. 

(b) I never reaches the value io during the normal execution of the BM 
program. Two sub-cases have to be considered. 

(b 1) The loop is not entered. As the execution of the statements in lines 10, 
20, 30 cannot lead to the occurrence of a language defined exception, it follows 
that one of the guards of the lines 1, 4, 7 was true and an exception Ell, E13 or 
E2 has been detected. 

(b 2) The loop is entered. Two outcomes are possible. 
(b 21) The loop terminates normally. If I < N, then E14 is detected in 

line 140. 1= N implies io < 2 which together with D > 0 contradicts the defini
tion of io. 

(b 22) The loop terminates abnormally. As a result of their design, the tests 
in the exceptional clauses in Fig. 16 provide a set of 'local' arguments that none 
of the expressions and statements in the standard algorithm can lead to the 
occurrence of language defined exceptions. For instance, incrementing P in 
line 60 cannot lead outside the domain 0 ... D of P because of the immediately 
preceding test. Similarly, the well-definedness of the statement in line SOb can 
be inferred from the immediately preceding assertion; etc. It follows that the 
abnormal termination of the loop must be due to a guard for HE13 , HE2 or 
HE3 being true in some intermediate state. 

Thus (i) and (ii') are established for E3 • Proving (i) and (ii') for all of 
E1 - E3 establishes the preciseness of the total set of tests for the exceptional 
domain (38). 

We point out that for the argument in case (b) above to be 'easy', it has 
been important that every individual component statement in the program 
could easily (,locally') be examined to discover whether or not it would lead to 
the occurrence of a language defined exception. This in turn has been a con
sequence of our design decisions to let the tests correspond to individual 
program variables. 

Because of the 'vagueness' of this kind of heuristics, however, we consider 
the proof just given to be less than satisfactory. However as experience with 
similar 'preciseness' proofs can be expected to increase, we are confident that a 
stricter framework for the insertion an verification of exceptional clauses in a 
program will evolve. We hope that the considerations of this paper can be seen 
as providing first steps in this direction. 
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4. Conclusion 

Although the identification and detection of possible exception occurrences are 
important problems in the design of robust software [7], we scarcely know of 
any other attempt of establishing a framework both rigorous and practical for 
solving them. In practice, programmers rely upon their intuition and ex
perience in dealing with them, and therefore the identification and detection 
of possible exceptional conditions is often just as (un)reliable as human 
intuition is. 

The paper proposes a systematic approach for solving the above mentioned 
problems. It is a part of an on-going effort aiming at providing a rigorous 
framework for the design of correct and robust software. In this paper we have 
concentrated on the exceptional preconditions of an exception handler, at the 
expense of the programming of such a handler itself. This latter issue is 
investigated in [1, 2]. We have also illustrated our approach on two examples, 
both being of a kind likely to arise in practice. 

Except in very simple cases, we do not propose to use our method as an 
automatic means of deriving exceptional preconditions. As is well known, the 
determination of forward and backward predicate transformers for loops (in 
terms of which the precise run-time checks were expressed) is usually a hard 
problem, requiring the use of inductive reasoning. The preciseness formulae 
given in this paper are not a substitute for experience in, and heuristics for, the 
appropriate placement of tests in a program, just as correctness formulae are 
not a substitute for the design of correct programs. Rather, our formulae 
should be taken as verification conditions for precise tests. We have however 
also exhibited a number of statements which are candidates for heuristics in 
the placement of exceptional tests, and we are confident that a more com
prehensive heuristic framework for this purpose will evolve. 

This paper should not be mistaken as a case for inserting run-time checks 
in a program whenever possible. Of course, run-time checks are superfluous 
when the constant falsehood of an exception precondition can be proved, and 
the overhead of checking for things that cannot happen should be avoided. 
The approach presented here is of use in the other case in which the assump
tions about the environment in which a program will run do not rule out 
possible exception occurrences. We therefore consider our approach to be 
complementary to those oriented towards proving the absence of exception 
occurrences. 

We have used binary predicates (relations) rather than unary predicates 
(subsets) for describing the intended meaning of programs. Another possible 
approach would be to duplicate the state space with 'auxiliary' or 'logical' 
variables which store the initial values of the 'real' variables, and allow 
predicates to involve both 'real' and 'logical' variables, while the commands 
would be allowed to modify only the 'real' variables. The two approaches seem 
to be in principle equivalent, since a specification (relation) in our approach 
would correspond to a unary predicate (subset) over the duplicated state space 
(i.e. the cartesian product) of the other approach. We consider our approach 
to be conceptually at least as clean. 
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The expression of the exact run-time checks were given under the 
simplifying assumption that the exceptional input domain is not partitioned. In 
practice however (as the Bracket Matching program or examples in [2] show) 
the exceptional domain can often naturally be partitioned into several excep
tional sub-domains. If these sub-domains are disjoint then the formulae given 
in this paper can immediately be generalised. The other case, i.e. when the 
exceptional domains overlap, requires a modification of the proof method, 
whereby the formulae given have to be slightly weakened for the sub-domains 
themselves. Such a modification presents little difficulty; we have illustrated it 
on the Bracket Matching example and refer the reader to [2] for a more formal 
treatment. 

A. Appendices 

A.I. Relation Algebra 

Throughout the paper, the connectives & and V are not commutative; we 
define 

a & b == if a then b, 
a V b == if a then true else b. 

However the & and V connectives inherit associativity and most other proper
ties of the classical logical connectives. 

Let S be a set, x, YES and G, H binary relations over S. The basic 
operations over binary relations are: 

(binary) x Go H Y == ::3z: x G z & z H Y 
xGuHy==xGyVxHy 
xGnHy==xGy&xHy 
x G\H y == x G y & not x H y 

(unary) xG-1y==yGx 
xGy == notxGy 
x G* y == ::3n ~ 0: x Gn y 

where Gn is defined inductively: 
GO = Id, Gn = G 0 Gn-l 

(nullary) Id: x Id y == x = y 
o 

Operations from relations into the set S: 

dom(G) = {x E SI::3y:xGy} 
cod (G) = {y E S I ::3x: x G y} 
xG= {y E SlxGy} 
Gy= {x E SlxGy} 

(composition) 
(union) 

(intersection) 
(difference) 

(inverse) 
(complement) 

(star) 

(identity) 
(empty relation) 

(domain) 
(codomain) 
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Special classes of relations: 

G is deterministic 
injective 
surjective 
total 

if G- I 0 G s; Id 
ifG 0 G- I s; Id 
ifcod(G) = S 
if dom(G) = S 

A.2. Semantics of the Programming Language 

Relational semantics (see Sect. 2.3) 

R (skip) == Id 
R (abort) == 0 
R (x:= E) == {(s', s) I defined (x, E, s') & s (x) = value of E in s' & 

Vy =1= x: s (y) = s' (y)} 
R (if BI -+ CI 0 ... 0 Bn -+ Cn fl) 

== R (B I) 0 R (CI) U ... U R (Bn) 0 R (cn) 
where R (B) = {(s, s) I defined (B, s) & B (s) = true} 
R (do B -+ cod) == (R (B) 0 R (c»* 0 R (not B) 
R (CI; C2) == R (CI) 0 R (C2) 

(the last three formulae hold only for deterministic commands). 

Weakest specification-transformer semantics (Sect. 2.4) 

ws (skip, G) = G 
ws(abort, G) = 0 
ws(x:= E, G) = Def(x, E) & G [E/x] 
where Def(x, E) = {(s, s) I defined (x, E, s)} 

and G [E/x] stands for the specification obtained from G 
by substituting all free occurrences of x by E. 

ws (if BI -+ CI 0 ... 0 Bn -+ Cn fl, G) 
== ::3jE {1, ... ,n}:Bj&VjE {1, ... ,n}:Bj => wS(Cj,G) 

ws(do B -+ cod, G) == ::3Gi 

where Go == not R (B) & G, 
Gi+ 1 == R(B) &ws(c, Gi ) 

WS(CI; C2, G) = WS(CI' WS(C2' G» 

Strongest specification-transformer semantics (Sect. 2.5) 

st (skip, G) == G 
st(abort, G) == 0 
st(x:= E, G) == Go R (x:= E) as above 
St(CI; C2, G) == St(C2, St(Ch G» 
st(if BI -+ CI 0 ... 0 Bn -+ cn-fl) 

== Go (R (B I) 0 St(CI, Id) U ... u R (Bn) 0 st(cn, Id» 
st(doB -+ C od, G) == notR(B) & (::3Gi ) 

where Go = G, Gi+ I = st (c, R (B) & Gi ) • 

Again, the last three formulae hold only for deterministic commands. 
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Connections Between These Semantics 

Given R (c), then SI (C. G) can be oblained from formula ( 13) in Sect. 2.5, 
whil e ws(c, G) can be obta ined from formula (8) in Sec!. 2.4. 

Conversely, fo r determini stic commands, R (c) can be retrieved from 
ws(c, G) by 

s' R (c) t = s' ws(c, {(s', t))) s', 

and from sl (c, G) by 

R (c) = SI (c, Id). 
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Safe Programming 

T. ANDERSON and R. W. WITTY 

Abstract. Safe specifications and programs are advocated as a simple way of enhancing the 
reliability of software. The behaviour of a safe program can be more easily certified as being 
correct with respect to its safe specification, which implies guaranteed termination. This 
paper describes the theory of safe programming, demonstrates the building of a safe program 
and summarises the experience gained from practical applications of safe programming. 

Key Words. Bounded repetition, Correctness, Reliability, Termination. 

Introduction 

The provision of a certification of the correctness of a program is intended to 
increase confidence that the behaviour of the executed program will conform 
to what is required of the program. Such a certification should consist of: 

(a) a specification of the intended behaviour of the program, and 
(b) an argument to show that, when executed, the program will always meet 

this specification. 

The argument often breaks down into two parts; one part to show that all 
executions of the program terminate and the other to show that on termination 
the required results have been obtained. To be convinced that the program is 
indeed correct it is necessary to be satisfied that the specification is 
appropriate and that the argument (usually called a proof) is valid. Unfortu
nately, current experience indicates that correctness pr.oofs constructed for 
even quite short programs can be lengthy, complex and (as demonstrated by 
Gerhard and Yelowitz [5] and Anderson [ID invalid. For a proof to be of real 
value it should be clearer and simpler than the associated program. 

To illustrate the above remarks a conventional proof of correctness will be 
presented for a small program. Then, in contrast, the specification will be 
altered· to what is termed a safe specification, a safe program constructed, and 
a short, clear proof of safeness given. The practical application of safe pro
gramming is the discussed. 

A Correct Program 

Consider the following specification: 
Using only integer arithmetic, find the largest integer i less than or equal to 

the square root of a given non-negative integer constant n (find i = [01]). That 
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is, given n ~ 0 find i such that 

The following solution is based on the Newton-Raphson root finding method. 

SOLUTION 1: 
begin 
i:= [en + 1)/2] {initial value}; 
while i 2 > n do 

begin 
i := [en + i2)/(2 i)] {next estimate}; 
end; 

end SOLUTION I ; 

A proof of correctness can be given as: 

Proof of Termination. On entry to the loop body i 2 > n which together with 
i> 0 implies that i> [en + i 2)/2 i]. The assignment i:= [en + i2)/2 i] at each 
iteration ensures that the value of i must strictly decrease, and as it is always 
non-negative, only a bounded number of iterations can therefore occur. 

Proof of Correct Behaviour. 

1. After initialisation, (i + 1)2> n since ([(n + 1)/2] + 1)2> n. 
2. For any positive i, ([(n + i 2)/2 i] + 1)2> n and so (i + 1)2> n after each as

signment in the body of the loop. 
3. Thus (i + 1)2> n always, and after termination i2 ;§: n also (from the while 

test). 

The above proof is very informal, and some simple lemmas on integers 
have been omitted. However, it fails to inspire a great deal of confidence. If a 
proof is to be of real value it should be clearer and easier to understand than 
the associated program. For just as a simple program is more likely to be 
correct than a complex program, so a simple proof is more likely to be valid 
than a complex proof. 

Adequate Programs 

Proof guided program design methodologies, as advocated by Dijkstra [3, 4], 
help to create simpler proofs. A variation of these techniques is possible; 
instead of attempting to prove the correctness of a program with respect to its 
original specification, some weaker criterion of acceptable behaviour is 
selected. That is, if the original specification is denoted by P then a 
specification Q is chosen such that: 
(a) any program which conforms to P will also conform to Q, and 
(b) Q prescribes an acceptable behaviour of the program. 
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The program is the designed and constructed in an attempt to conform to 
P, but so as to facilitate the provision of a much simpler proof of correctness 
with respect to Q than would be possible using P. Such a proof will be termed 
a proof that the program is adequate. 

Safe Programs 

In the context of software reliability a special case of adequacy, termed 
safeness, is relevant. As a weaker specification for a program intended to 
satisfy P, take Q to be P v "error", meaning that the program should either 
behave as was originally intended or should terminate with an explicit 
indication of the reason for failure. A proof of adequacy for this particular 
form of Q will be termed a proof that the program is safe. 

Ideally, a program should be designed so that its proof of safeness can be 
substantially simpler than a corresponding correctness proof. One way of 
achieving this objective is shown in the following solution to the largest square 
root problem introduced above. 

Safe specification: 

Given n ;;;; 0 find i such that 
«i2 ~ n) 1\ «i + 1)2> n)) V "error" 
Program: 

SOLUTION 2: 
begin 
i:= [(n + 1)/2] {initial value}; 
iteratiolLcounter:= 0; 
while (i2 > n) and iteratiolLcounter < iteratiolLlimit do 

begin 
i:= [(n + i2)/(2 0] {next estimate}; 
iteratiolLcounter := iteratiolLcounter + 1; 

end; 
{safety check I} 
if iteratiolLcounter > iteratioILiimit then error ("loop limit"); 
{safety check 2} 
if not (i2 ~ n) and «i + 1)2 > n)) then error ("wrong answer"); 
end SOLUTION 2; 

Proof of Safeness. Termination: Guaranteed by testing of iteratiolLcounter. 
Adequacy: After termination either an error will have been detected or a 

correct answer will have been calculated since an explicit test of correctness is 
included. 

The simple nature of this proof leaves little opportunity for error which 
justifies a high level of confidence in the safeness of the program. 
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Note that the proof does not depend on the particular expressions used as 
"initial value" and "next estimate", or on the value of the iteratioILlimit (as 
yet unspecified). However, the requirement that the program be designed to 
also conform to the original specification demands that appropriate expres
sions are chosen (the proof of termination for SOLUTION 1 suggests 
[en + 1)/2] as the iteratioILlimit). Except for this requirement, the program 
below would be an acceptable solution since it is safe for all specifications P. 

begin error ("wrong answer"); end; 

An argument for safeness can be made independent of any assumptions about 
the input to a program, since any necessary assumptions can be checked at run 
time. Hence, safe behaviour can be guaranteed even with invalid input data, 
whereas correctness proofs conventionally assume valid input. 

More generally, the adoption of a safe programming specification enables a 
programmer to introduce redundancy into a program specifically as a means of 
simplifying the proof of the program with respect to that specification. 
Redundancy included in a program for this purpose will often be in the form 
of assert statements (eg Algol-W[9]); a proof of safeness can rely on all such 
assertions holding when the program is executed since otherwise a failure 
indication would be generated. 

It should be noted that an over stringent or otherwise ill-chosen assertion 
may generate a failure indication when the same program without the 
assertion would have executed correctly. Such an occurrence is indicative of a 
lack of understanding on the part of the programmer and, in practice, 
rectification of such an occurrence always leads to a deeper understanding of 
the program's specification and a more reliable program. The consequences of 
an over stringent assertion may be contrasted favourably with those resulting 
from the failure of a weak (or non-existent) assertion to detect an erroneous 
execution of the program. 

By augmenting a safe program with routines which take corrective action 
in the even of an erroneous situation being detected, a significant enhancement 
of the reliability of the program can be obtained. The recovery block notation 
described by Randell [8] can be used to achieve this augmentation without 
increasing the complexity of the program. Anderson [1] has elaborated on 
these points. 

Bounded Repetition 

The above program is atypical in that the explicit testing of the results of a 
program is rarely feasible in practice. However, it seems perfectly feasible to 
eliminate the need for a proof of termination simply by programming in 
languages which ensure that all programs must halt, thereby greatly simplify
ing the overall proof. 

Such languages do not provide explicit control transfer and impose con
straints on all iterative and recursive facilities. Consequently they cannot be 
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use to program all of the recursive (computable) functions, and are known as 
sub-recursive languages. The work of Constable and Borodin [2] indicates that 
such languages can provide all of the functions actually used in computing and 
this seems to be borne out in practice (see below). Indeed, these restrictions 
are an advantage of the subrecursive languages. 

An iterative facility provided by many languages can be denoted by: 

repeat S possibly forever 

where S denotes a statement list which mayor may not include conditional 
exits. S is repeatedly executed until an exit is taken whereupon the construct is 
terminated. The while loop is a typical example of this type of iteration. 

Consider two special cases of the construct. 

repeat S forever 

S contains no exits and is repeated infinitely. This special case IS rarely 
needed, and would deserve careful consideration ifit were. 

repeat S exactly n times 

Here n denotes a non-negative integer value; S contains no exits and is 
executed precisely n times. This special case is frequently needed. Its 
termination is guaranteed. 

The main criticism of the more powerful possibly forever construct is that it 
permits infinite repetition when in all probability the programmer did not 
intend this to occur. By analogy with the two special cases above an alternative 
version is suggested which prevents infinite repetition. 

repeat S upto n times 

S contains one or more conditional exits and is executed at most n times, the 
construct being terminated earlier if an exit is taken. 

A sub-recursive language only provides bounded iteration constructs. 

repeat S upto n times (S contains one or more exits) 
repeat S exactly n times (S contains no exits) 

If potentially infinite iteration is to be included in a programming language 
then a separate construct should be specially provided. 

Recursive constructs may be constrained in a similar manner to the 
iterative constructs discussed above. 

Luckham and Suzuki have reported [6] on work related to the proposals of 
this section. They advocate the use of repetition counters as a means of 
formally establishing termination within a weak logic of programs. 
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Experience with Adequate Programs 

An attempt has been made to demonstrate the possibility of writing a practical 
piece of software so as to obtain a simple proof of adequacy, by a postgraduate 
student at Newcastle University (M. S. Reynolds). A file system was imple
mented with specification P: "All user commands to the file system are 
correctly processed". A proof of adequacy was provided for the specification 
Q: "All user commands to the file system are either correctly processed, or if 
not, the user is sent a warning message and the integrity of all previously filed 
data is maintained". By means of isolating those routines which actually 
modified the file structures, and incorporating run time checks to verify their 
actions, a reasonably simple proof of Q was obtained. A large portion of the 
software could be ignored completely when establishing adequacy, a con
siderable benefit. Another encouraging feature of this experiment was that 
throughout the debugging phase, when the program was patently not correct, 
its behaviour was, however, always adequate. 

Experience with Safe Programs 

The Rutherford Laboratory has a small, prImItIve mInI-Computer (used to 
control a graphics system) whose only software tools are an assembler, a loader 
and a debugging tool which allows the examination and alteration of the 
contents of absolute memory addresses. The machine has no supervisor 
program, no memory partitioning or protection hardware and no printer. A 
major difficulty in programming this machine is that erroneous programs 
generally overwrite themselves, thereby making debugging extremely difficult. 
It was therefore decided to construct all new software according to the 
principles of safe programming. 

Several programs have been constructed including a multi-tasking system. 
The first program was built from 8000 lines of hand coded assembler 
statements and has never failed. It has been in constant use since September 
1975 logging details about the resources consumed by the users of the graphics 
system. The multi-tasking program to actually control the graphics system was 
built by cross-compiling over 20,000 lines of a simple systems implementation 
language which included multiple exit loops based on Zahn's construct [10]. 
These proved a success as they eliminated the need to follow each loop by 
additional, redundant tests to determine which of the possible exit conditions 
actually terminated the loop (see below). 

None of the safe programs written so far has overwritten itself or failed to 
terminate, even during development when bugs were obviously present. The 
need to place a bound on each loop proved beneficial rather than restrictive. 
The very act of determining the loop limit caught errors at the design stage. It 
was surprising how small most of the loop bounds were in practice, and how 
most loops had natural bound anyway. For example, in the multi-tasking 
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program there is a routine which reads characters from a terminal until a 
carriage return character is encountered. This could have been coded as: 

1:= 0; 
loop 

1:= 1 + 1; 
BUFFER (I) := readnextchar (teletype); 

repeat unless 
BUFFER (I) eq Carriage Return; 

endloop; 

Simple, elegant, efficient and lethal because the inputting of too many 
characters before the carriage return could have caused overwriting of the 
memory area after the end of the buffer. The natural loop limit here was the 
number of characters making up a line on the terminal, 72 on an ordinary 
teletype, which led to an easy proof of safeness. This gave rise to the version: 

1:=0; 
loop 

1:= 1 + 1; 
BUFFER (I) := readnextchar(teletype); 
terminate gotline if BUFFER (I) eq Carriage Return; 
terminate snag if done 72 times; 

repeat 
situation gotline causes OK; 
situation snag causes error ("line too long"); 

endloop; 

which utilises the form of Zahn loop contained in the systems implementation 
language mentioned above. The run time overheads associated with bounded 
repetition proved negligible as the "if done <limit> times" construct allowed 
very compact and efficient code to be generated. An extra add and test instruc
tion per loop was a small price to pay for the increased reliability. 

Meissner [7] has reported favourably on bounded loops and has suggested a 
template from which bounded loops may be constructed in FORTRAN. 

Using Meissner's template, the above example would lead to the following 
FORTRAN solution: 
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1=0 
DO 7 J = 1,72 
1=1+1 
BUFFER (I) = READCH (TTY) 
IF (BUFFER(/).EQ.CRET) GOTO 8 

7 CONTINUE 
CALL ERROR ("LINE TOO LONG") 

8 CONTINUE 



The knowledge that a program will terminate safely whatever its input has 
greatly increased confidence in the programs; it has saved hours of debugging 
time and has increased enormously the programmers' peace of mind. 

Conclusion 

Safeness directed program design and construction really works. 
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Chapter 4 

Concurrent Systems 

Introduction 

Atomic actions are now regarded as an important structuring concept for con
current systems. Given a system of interacting processes (e.g. processes that 
share data), we would like execution of a program by a process to be 'free of 
interference' from (,indivisible' with respect to) other such executions. The so
called serializability property of atomic actions guarantees just that. Atomic ac
tions can also be embellished with the 'failure atomicity' property: they can be 
provided with backward recovery capability such that an action in execution 
can be terminated without producing any side effects. The Newcastle papers 
collected in this chapter are concerned with the development of atomic action 
concept and discuss programming language features and recovery facilities for 
the construction reliable concurrent systems. 

The first paper is the one in which Lomet introduced the concept of atomic 
actions by giving three 'equivalent' definitions. These definitions capture intui
tively what we mean when we say that a process (within an atomic action) does 
not 'interact' with other processes (outside the atomic action). By imposing a 
restriction that any results produced by an action become visible to other ac
tions only after the action terminates, it is possible to make the backward recov
ery of atomic actions independent from each other. Lomet describes how 
atomic actions can be made a unit of backward recovery. The paper by Best 
and Randell presents a precise characterization of atomicity. Occurrence graphs 
are used to model computations. A given computation - represented by a sub
graph - can then be regarded as atomic if and only if it can be 'collapsed' into a· 
single event without introducing a cycle in the graph. The idea of replacing a 
subgraph by a single event naturally leads to the concept of nested atomic ac
tions, whose structure can be represented by extending occurrence graphs to 
structured occurrence graphs. Best and Randell then introduce the notion of in
herently atomic occurrences (contractions) and show that the 'two phase' locking 
technique as employed in many data base systems to ensure atomicity of user 
programs is in fact a means of ensuring that these programs are contractions. 
Finally, structured occurrence graphs are used to model recovery in distributed 
systems. 

As mentioned earlier, it is possible to make the recovery actions of processes 
independent from each other. Papers three to five are concerned with the de
sign and implementation of a programming system for constructing a system of 
such independently recoverable concurrent processes. We have seen that (Ran
dell, Chapter I) backward recovery of a process that has interacted with other 
processes can start a cascade of recovery actions. In the third paper Shrivastava 
and Banatre argue that a simple technique of performing recovery exists even if 
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there are interactions between processes, provided these interactions are con
fined to those necessary for harmonious sharing of resources (i.e. when pro
cesses are competing for resources). So, while at a lower level of abstraction 
these processes do interact, at a higher level they appear to be logically in
dependent. 

The recovery actions of such competing processes are discussed in detail in 
the third paper .. A data type port is developed for specifying resource acqui
sition, use of the resource, 'unuse' of the resource in case recovery is required 
and release of the resource. Papers four and five describe how these ideas have 
been incorporated in the programming language Concurrent Pascal. Both Con
current and Sequential Pascal were extended with recovery blocks and further, 
ports were included in Concurrent Pascal. A number of working examples are 
presented in the fourth paper to illustrate how seemingly complex recovery ac
tions can be performed with some ease. The details of the recovery system that 
supports the recovery features of ports are presented in the fifth paper. 

In the last paper of this chapter, Anderson and Knight develop a method
ology for introducing software fault tolerance in real-time systems. They ob
serve that a large class of real-time systems possess a similar iterative structure 
consisting of a group of cyclic communicating processes with well defined 
synchronization points. Thus, the group of processes between two synchroni
zation points can be made recoverable by enclosing their activities inside a con
versation-like recovery structure (see Randell, Chapter 1, where conversations 
are introduced; note also that a conversation is an atomic action). For real-time 
systems the authors have developed a restricted version of the conversation con
cept, termed an exchange. The four aspects of fault tolerance - error detection, 
damage assessment, recovery and provision of continued service - are then dis
cussed with special reference to real-time systems. 
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Process Structuring, Synchronization, 
and Recovery Using Atomic Actions 

D. B. LOMET 

This paper explores the notion of an atomic action as a method of process structuring. This 
notion, first introduced explicitly by Eswaren et al. [6) in the context of data base systems, re
duces the problem of coping with many processes to that of coping with a single process within 
the atomic action. A form of process synchronization, the await statement, is adapted to work 
naturally with atomic actions. System recovery is also considered and we show how atomic ac
tions can be used to isolate recovery action to a single process. Explicit control of recovery is 
provided by a reset procedure that permits information from rejected control paths to be 
passed to subsequent alternative paths. 

Key Words and Phrases. Multiprocessing, synchronization, recovery, mutual exclusion 

1. Atomic Actions 

Introduction 

It has long been realized that some way of restricting process interaction is re
quired if programs involving multiple processes are to be correctly implement
ed. Ideas similar to atomic actions have been suggested for this purpose as far 
back as Dijkstra's famous paper [5]. Thus Dijkstra postulates that certain primi
tive operations "are to be regarded as indivisible, non-interfering actions ... ". 
Brinch Hansen states [1], even more emphatically that "It is impossible to make 
meaningful statements about the effects of concurrent computations unless 
operations on common variables exclude one another in time. So, in the end, 
our understanding of concurrent processes is based on our ability to execute 
their interactions strictly sequentially." An atomic action, as we use the term, is 
merely a device for permitting the writer of a procedure to secure the same ben
efits of atomicity, i.e. indivisibility, non-interference, strict sequencing, as is en
joyed by the primitive operations. 

The important properties of atomic actions can be expressed in a number of 
equivalent ways. We illustrate three. 
1. An action is atomic if the process performing it is not aware of the existence 

of any other active process (can detect no spontaneous state change) and no 
other process is aware of the activity of this process (its state changes are con
cealed) during the time the process is performing the action. 

2. An action is atomic if the process performing it does not communicate with 
other processes while it is executing the action. 

3. Actions are atomic if they can be considered, so far as other processes are 
concerned, to be indivisible and instantaneous, such that the effects on the 
system are as if they were interleaved as opposed to concurrent. 
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Background 

The current widely known process structuring mechanisms do not provide the 
programmer with the ability to specify atomic actions. We review some of these 
below. 

Dijkstra [5] proposed semaphores as a mechanism by which a programmer 
could assure that a sequence of actions could be regarded as indivisible. The 
idea is to use semaphores to assure that code intended to be indivisible is ex
ecuted by only a single process at a time. A semaphore is used to guard the 
code. So long as process interactions can only occur in the "critical section" 
guarded by the semaphore, the code will functiori as an atomic (indivisible) ac
tion. 

When processes can interact by means of several common variables ·and 
while executing several different sections of code, mutual exclusion by means of 
a semaphore guarding a critical section no longer can assure atomicity. Consid
er first the case of a single common or shared variable v that is accessed by sev
eral sections of code executed by different processes. One now needs a con
vention by which a semaphore can be associated with a shared variable so that 
all code accessing the variable is required to test the same semaphore. Such a 
semaphore has been called a lock [4]. Locks provide a way of assuring that only 
one process has access to a shared variable at a time. 

Brinch Hansen [1] introduced the idea of a critical region as a means of 
structuring the seizing and releasing of lock semaphores. Thus, to access a com
mon (shared) variable "v", one specifies a critical region 

1.(1) region v do S 

where only code in S is permitted access to "v". Further, if one process is in a 
critical region associated with shared variable "v", all other processes are ex
cluded from regions associated with "v". 

Problems arise for critical regions as soon as one is interested in accessing 
more than one variable. Not only is deadlock a potential problem but one may 
have difficulty assuring that the critical regions are atomic. Consider the code 
fragment below: 

1.(2) region v do 
region w do Sl; 

t . 

region w do S2; 
end; 

The outer critical region (i.e. for "v") is no longer atomic. A second process can 
examine "w" at (t) and change "w" so that S2 se.es the change, thus com
municating with the process in "region v". and destroying the atomic nature of 
the region. 
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Such code sequences can ·be transformed, of course, into ones in which the 
variables are held for the duration of the outer region and these will be atomic_ 
However, subtle cases can arise that require much more knowledge and care if 
atomicity is to be preserved. Consider the skeletal program of 1.(3). 

1.(3) b:. procedure; 
region w do 

begin; 
a; 

t 

a· , 
end; 

endb; 

a: procedure; 
region v do 

S· , 
end a; 

Unless the writer of procedure "b" is fully aware of the code in procedure 
"a" (an unfortunate requirement, to say the least) and seizes "v" as well as "w", 
then, as shown in 1.(3), the procedure "b" will not be atomic since communi
cation can occur at (t). 

A way of assuring that some actions can be guaranteed to be atomic is to 
make use of monitors as expounded by Brinch Hansen [1] and Hoare [8]. A 
monitor is similar to an instance of a SIMULA class [3], i.e. it is a data object 
that possesses not only variable components but also procedure components. 
Then additional constraints are placed on the use of these components in a mul
tiprocessing environment. These are, quoting [8] 
1. "only one program [process] at a time [can] succeed in entering a monitor 

procedure ... " 
2. "procedures local to a monitor should not access any non-Ioaal variables 

other than those local to the same monitor." 
3. "these [local] variables of the monitor should be inaccessible from outside 

the monitor". 
These constraints assure that the monitor procedures are atomic. 

There are two problems with monitors. One, atomic actions involving more 
than one monitor must be implemented in an indirect way, perhaps by using 
monitors to realize semaphores. Two, the first constraint on monitors, i.e. that 
only one process can be executing any of the collection of monitor procedures, 
is more restrictive than necessary. What is required, simply and directly, is that 
monitor procedures be atomic. 

Data base systems present many of the same problems as operating systems. 
In some respects, however, the problems are even more severe. In particular, the 
set of records (shared variables) that are to be accessed during a "transaction" 
may be very hard to determine ahead of time. Nonetheless, users desire to be 
presented with a consistent view of the data, i.e. one in which each of them ap
pears to be the sole user of the system. It is for this reason that transactions 
possessing the attribute of being atomic were introduced by Eswaren et al. [6]. 
A number of interesting properties of such transactions were established in [6] 
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but the terminology used is data base oriented and no concrete notation is sug
gested. The next section presents and motivates a notation, which will sub
sequently be augmented by a notation for process synchronization and re
covery. 

Action Procedures 

What is needed is a facility by which the writer of a procedure can directly state 
his intention that a procedure be atomic. We regard the procedure mechanism 
as the extension mechanism for operations. Therefore, any property that is pos
sessed by a primitive operation should be expressible when a user provides a 
procedure. In particular, it should be possible for a user to write a procedure 
that exactly reproduces the effect of any given operation. For this reason, it is 
essential that a mechanism be provided that permits the writing of atomic pro
cedures. It is this line of reasoning, along with considerations of system recov
ery, that led us, independently of [6], to the notion of atomic actions and action 
procedures. 

We suggest the following notation for action procedures. 

1.( 4) <identifier): action «parameter-list»); 
< statement-list) 
end; 

The semantics of actions are the same as those of procedures except that actions 
are to be performed as atomic actions, i.e. they are to be indivisible, etc. It 
should be clear that the difficulties of 1.(3) can then be avoided by writing: 

1.(5) b: action; 
a; 

a' , 
end; 

a: action; 
S· , 
end; 

That "b" is an action assures that it is atomic regardless of the procedures or 
actions it may call. The effect of this is to shift the responsibility for resource 
acquisition and release to the implementor of actions rather than being the re
sponsibility of the programmer using actions. 

The shift of resource acquisition and release from user to implementation is 
simultaneously a great responsibility and a great opportunity. The implemen
tation must now assure that deadlock does not occur (or can be overcome) 
while maximizing the amount of concurrency. The opportunity arises because 
the implementation is no longer constrained by explicit directions from the us
er. The user benefits enormously by having this entire messy area removed 
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from his concern, thus enabling him to concentrate on the remaining program 
logic. 

It should be clear that resources that can only be referenced by a single pro
cess require no special protection in order to assure that actions are atomic. 
This observation suggests that we syntactically distinguish shared and private 
resources. Doing this greatly eases the implementation burden by identifying 
those variables for which there is contention, i.e. the shared variables. Brinch 
Hansen [I] has previously made this suggestion though coupled with critical re
gions. By declaring variables as shared or private, the implementation problems 
for atomic actions should be comparable to those for critical regions. 

The shared (or private) attribute applies to an object as a whole and not to 
its separate components. Local variables of a procedure are, of course, always 
private. To enforce that private objects not be accessible to other processes, we 
must insist that references to private objects not be assigned to shared objects. 
Of course, references to shared objects can be assigned to private objects. They 
would not otherwise be accessible. 

The shared/private attribute is useful in other ways as well. First, it serves as 
valuable documentation, identifying the variables that are potential communi
cation links between processes. Second, it is useful in memory management. 
One can garbage collect private resources that are no longer accessible by their 
associated process. One need not examine all processes in the system looking 
for additional references since none can exist. Further, when a process termi
nates, all its private resources can be reclaimed. 

Implementation Issues 

There are a number of ways that atomic actions might be realized. A par
ticularly simple one in a multiprogramming system is to execute an action with 
interrupts disabled. That is, no interrupts are taken and the action retains con
trol of the system until it completes. In effect, it seizes all system resources dur
ing its execution. This strategem exploits the property that actions can be in
terleaved, i.e. concurrent processing in which several processes execute simul
taneously is not required in order for an action to complete. 

In a multiprocessor system, if we wish to exploit resources efficiently, then it 
is important to attempt to maximize concurrency. This requires that only re
sources actually needed by an action during its excution be acquired. Other 
processes wishing to use these resources must wait for them to be released. 

Eswaren et al. [6] has identified the pattern of resource acquisition and re
lease required to support atomic actions. Such a pattern is called two phased. It 
arises as follows. As a process executing an atomic action proceeds, it acquires 
the shared resources it needs. This is called the "growing phase". The set of re
sources held is constantly increasing since a process must not release any re
sources so long as there may be additional resources that it will need. [See 1.(3)] 
Once any resource is released, no others may be acquired and the set of held 
resources is constantly decreasing. This is called the "shrinking phase". The 
conceptual "instant of time" ta at which the action occurs can be regarded as 
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Fig. 1. Resource acquisition and release as a function of time for atomic actions 

the time at which the first resource is released. It is established in [6] that this 
discipline of resource acquisition and release guarantees that actions have a 
serial schedule, i.e. their effects are as if they are interleaved. Figure 1 il
lustrates this strategem. 

It is possible to refine this strategy. Observe that resources that are merely 
examined by an action need not be concealed from other processes. It is suf
ficient if other processes are prevented from changing these resources. Acqui
sition of resources such that other processes can examine but not change them 
is called "locking in the shared mode" [7]. Resources that are updated by an 
action must, of course, have these updates concealed from other processes. 
Thus, when these resources are acquired, no other process must be permitted to 
examine them. Such resource acquisition is called "locking in the exclusive 
mode" [7]. Both forms of locking must be two phased with the same ta [6, 7]. 

The resource acquisition and release strategy described above does not con
stitute a resource management algorithm. A user cannot determine whether he 
executes alone or concurrently. How resource' contention is handled if con
current execution is to be achieved is not stated. Nor have we described a 
method for coping with deadlock or indefinite postponement. The analysis 
above has merely provided the framework in which a resource management al
gorithm must operate. 

2. Process Synchronization 

Synchronization using Actions 

The sufficiency of atomic actions to provide synchronization can be demon
strated by presenting an implementation of semaphores in terms of atomic ac
tions. Since semaphores are capable of realizing critical regions, conditional 
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critical regions, and monitors, there can be no doubts about the functional ad
equacy of atomic actions for providing synchronization. 

We provide semaphores by means of a SIMULA like class [3], the com
ponent procedures of which either are or contain action procedures. The sema
phore class is defined in 2.(1). 

The code for "V" needs no particular explanation. It is an action procedure 
and hence performs its effects as an atomic operation. The code for "P" is 
somewhat more complicated. First, "P" is not itself an atomic action. Rather it 
loops continuously, the body of the loop being atomic but each cycle of the 
loop providing an opportunity for changes to be made to "sem". Within the ac
tion body, "sem" is tested. If found to be greater than zero, the continuously 
testing loop is terminated with "sem" decremented by one. The loop termina
tion is accomplished by calling the escape procedure "proceed". This construct 
is a variation of the "label" procedures of Landin [9] and Clint and Hoare [2]. 
When an escape procedure terminates, it returns control to the caller of its lexi
cally enclosing procedure. Thus, when "proceed" terminates, control returns to 
the caller of"P". 

There are two difficulties with this semaphore class definition, in particular 
with the body of P. 
1. The repeated testing of "sem" constitutes busy waiting, consuming real pro

cessor time. 

2.(1) semaphore: class; 
sem: integer initial (0) 
V: action; 

sem:= sem + I; 
return; 
end; 

P: proce-dure; 
proceed: escape;t 

return; 
end proceed; 

repeat ( 
action; t 

if sem :2: 0 then 

endP; 

begin; 
sem:= sem -I; 
proceed; 
end; 

end;) 

end semaphore; 

t An unnamed action procedure is written here where it is to be executed, in the same way 
as a begin block. 

:j: An escape procedure named "proceed", not an "escape" statement. See the text. 
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2. If several processes are testing the same semaphore, a race exists and there is 
no guarantee that some processes will not be subjected to indefinite delay. 
This is so because no scheduling policy is provided. 
Busy waiting has yet a third difficulty if we wish to provide synchronization 

within an atomic action. Notice that the busy waiting in P involves time slots in 
which "sem" is accessible to other processes because the "wait" loop consists of 
a succession of atomic actions rather than being embedded in one large action. 
In a single atomic action the variables within the action, once examined, cannot 
be changed by other processes. Thus, busy waiting within a single action would 
be in vain. 

It might be argued that, as with the procedure P, one can always provide for 
the busy waiting to involve many atomic actions, with other processes thus 
capable of changing the tested variables. This is extremely difficult to arrange, 
however. Let us suppose that "A" is an action procedure, that "B" is an an ordi
nary procedure, and that "B" uses semaphores. So far as "B" is concerned, such 
use of semaphores should result in a workable program. If, however, "B" is 
called from "A", it becomes part of an atomic action, and hence, so does the 
busy waiting in "B". Now, however, the busy waiting will never detect changes 
in "sem" and the program will loop forever. If "sem" is permitted to change, 
then a communication link has been established between the process executing 
A and B and the process changing "sem", thus destroying the atomic nature of 
action procedures. 

The Await Statement 

The problem with permitting "sem" to change is the fear that communication 
will be established with a process inside an action procedure. But if such a pro
cess does not remember that it has seen previous values for "sem", i.e. if there 
is no way for it to subsequently determine whether the test was satisfied the 
first time or only after many repetitions, then we can take a different view. This 
view is that an action procedure "A" did not commence its execution until after 
"sem" had changed. 

What we need in order to realize this view in which the entire action is de
layed until the test can be satisfied on its first execution, is a mechanism that 
informs the system that this is our intent and permits the system to enforce the 
required constraints. For this purpose, the await statement is introduced. The 
intent of await is similar to that suggested for it in [1, 8], but the description of it 
is different in order to maintain the integrity of atomic actions. 

The await statement has the following syntax: 

2.(2) await (boolean expr») then (procedure) 

Following our view that all executable constructs should be describable as some 
form of procedure, we produce 2.(3) as the semantics of the await statement. 
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2.(3) await: action (test: boolean function, body: procedure); * delay (atomic action until prescience 
tells us that "test" is true, or that 
it escapes, then immediately execute 
the following) 
if test then 

begin; 
body; 
return; 
end; 

else error; t 
end await; 

t "error" might be, for example, an escape procedure. 

It is, of course, true that such a procedure could not be written which is why 
await must be primitive. The "delay" at (*) represents a bit of magic that can
not be expressed otherwise. It must be guaranteed that no subsequent testing on 
the part of a process can determine how many times the "test" expression is ex
ecuted. In order to assure this, it is required that "test" have no side effects. 
This prevents the retention of any state change other than the result of the ex
pression, which will be true when control finally passes to the then clause. No
tice that "test" is evaluated in the action procedure with "body". This assures 
that there is no possibility of the variables in "test" changing between the 
evaluation of "test" and the execution of "body" and hence guarantees that 
"test" remains true until (or unless) "body" changes those variables. When 
await is itself executed within an action procedure, the evaluation of "test" en
sures that the variables upon which "test" depends can no longer be changed, 
except by the process executing this action. Two awaits, one with "test" and the 
other with "test" as below: 

2.(4) action; 

await test then S I; 

t await -, test then S2; 

end; 

in which both are within the same action, will result in the process executing 
this action being indefinitely delayed at (t), provided the process itself did not 
change the variables of "test". Of course, if the variables of "test" cannot be 
changed by some other process, then the process executing 2.(4) cannot com
plete. Such situations can never be completely eliminated without drastically 
reducing the power of the language. This is true whether or not await is provid
ed. One can, in fact regard endless looping or recursion as instances of the same 
problem. 
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Implementation Issues 

The preceding section introduced await statements without placing any con
straints on the form of the boolean expression that was used for synchroni
zation. To reduce impleinentation problems, it may be desirable to restrict the 
boolean expression. 

Whenever an await expression is not satisfied immediately, it is necessary to 
suspend the executing process and place it on a queue of waiting processes. 
Many strategies for this are available, particularly if we are not concerned with 
whether our waiting processes resume as quickly as possible. However, it seems 
desirable for the implementation to attempt re-execution of an await expression 
whenever one of its variables changes. One would like, therefore, to identify 
those variables that might cause the resumption of some waiting process. 

One could interpretively test some indicator associated with every shared 
variable to determine whether a process waits on this variable. However, one 
can greatly reduce such interpretation while enhancing program readability if 
variables used for synchronization are explicitly designated. Thus, we suggest 
that at least one of the. variables in an await expression be designated as a syn
chronizing variable, i.e. be declared with the synchronizing attribute. Our im
plementation problem is then confined to synchronizing variables. Only syn
chronizing variables need be permitted to change during the repeated evalua
tions of the await expression, and only the updating of synchronizing variables 
need result in interpretation to discover whether waiting processes should be re
sumed. With respect to acquiring and releasing resources, only synchronizing 
variables might ever be acquired and released several times by an atomic ac
tion, and then only during the repeated evaluations of the first await expression 
in which they occur. 

Additional restrictions might be required in terms of the number of vari
ables and the operations permitted upon them in order to reduce implemen
tation cost and improve efficiency. The most restrictive requirement would be 
for each await expression to consist solely of a single synchronizing boolean 
variable. Less severe restrictions should also be feasible. 

One important feature of the await statement in conjunction with action 
procedures is that, unlike the case for monitors and conditional critical regions, 
the concepts do not require the exposure of an underlying implementation in 
order for them to be understood. Thus, no explicit mention (at the conceptual 
level) of process queues is required, though obviously, an implementation will 
exploit queues and will require a scheduling strategy. Further, one need not be 
concerned with maintaining invariants at the point where an await statement 
occurs. Those parts that have become temporarily invalid because of updates 
preceding an await are exactly those parts of the system state that are not ac
cessible to other processes. The components available to other processes, since 
they are unchanged, still satisfy their required invariants. 
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An Example: Buffers 

Buffering is a common technique for optimizing the performance of parallel 
processes of the producer-consumer variety. While a consumer cannot consume 
what a producer has not yet produced, a buffer permits a producer to "nice 
ahead" of the consumer, producing results that are retained in the buffer for 
subsequent consumption. Thus, in addition, buffers reduce the possibility that a 
consumer will be delayed by waiting for a result from a producer. 

We wish to provide buffers by means of actions and await statements. Our 
first attempt will be to modify slightly previous solutions in terms of con
ditional critical regions or monitors. This is shown in 2.(5). 

2.(5) buffer: class shared; 
frame: array (0: N - I) of T; 
count: integer initial (0) synchronizing; 
head: integer initial (0); 
send: action (x: T); 

await (count :S: N - 1) then 
begin; 

frame (head 0 count) := x; t 
count := count + 1; 
end; 

end send; 
receive: action (y: T); 

await (count> 0) then 
begin; 

y := frame (head); 
head:= head 0 1; t 
count: = count - 1; 
end; 

end receive; 
end buffer; 

t 0 is addition modulo N. 

This solution is adequate when the use of the buffers occurs outside of all 
atomic actions. Unfortunately, a problem arises when "send" or "receive" are 
used within atomic actions. Consider "receive". When a"process P executes "re
ceive" in an atomic action, the changes it makes to "head" and "count" cannot 
be seen by other processes. Hence, these processes cannot execute "send" (or 
"receive"), and in particular, cannot refill the buffer, until Pcompletes its 
atomic action. . 

Thus, only as many messages can be received in an atomic action as are in 
the buffer at the time that the first "receive" executed. This is highly unfortu
nate as it introduces a large measure of time dependence, and hence, un
certainty. One would like to exploit the full potential of the buffer, i.e. all its 
frames, whether the buffer is used outside of or within an atomic action. 
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Another pitfall must be avoided. In an atomic action, it should not be pos
sible to receive more messages than can be contained at one time in the buffer. 
Otherwise, we will have established communication into the atomic action. The 
desired solution allows the maximum flexibility in sending and receiving mes
sages consistent with the constraints imposed by the atomicity of actions of the 
communicating processes. The class defined in 2.(6) provides precisely that. 

2.(6) buffer: class shared; 
frame: array (0: N - 1) of T; 
empty: array (0: N - 1) of boolean 

initial (true) synchronizing; 
head: integer initial (0); 
tail: integer initial (0); 
send: action (x: T); 

await (empty (tail» then 
begin; 

frame (tail) := x; 
empty (tail) := false; 
tail:= tail 0 I; t 
end; 

end send; 
receive: action (y: T); 

await (--, empty (head» then 
begin; 

y := frame (head); 
empty (head) := true; 
head:= head 01; t 
end; 

end receive; 
end buffer; 

t 0 is addition modulo N. 

Each buffer frame is only accessed if it is actually needed and the control 
information governing the buffer is distributed as separate information for each 
frame. Further, importantly, the pointers "head" and "tail" are distributed to 
consumer ("receive") and producer ("send"), respectively. This distribution of 
control information can be readily seen by examining Fig. 2 below which il
lustrates the relations between the various components of the buffer as imple
mented in 2.(6). 

Note that once a frame has been accessed, it cannot be reused until the ac-. 
tion is complete (except by the action itself). The "send" and "receive" pro
cedures are almost completely symmetric, and hence, the flexibility provided to 
receivers is also provided to senders. Thus, merely because a buffer is full (or 
almost so) when the first send is issued within an action does not prevent it 
from ultimately sending as many messages as there are buffer frames. Other 
processes can continue to read messages deposited in the buffer by prior ac
tions, making those frames ultimately available to the sending action. 
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empty frame 

false 
tail=2 ~ true 

true 
true 

true 
head=6 ~ false 

false 
false 

Fig. 2. The bounded (circular) buffer described by the program of 2.(6). The shaded elements 
of "frame" contain data 

3. System Recovery 

A Unit of Recovery 

By system recovery we mean the undoing of errors as opposed to their cor
rection. This is usually thought of as consisting of two phases: 
1. the rolling back of the system to a previous state, assumed to be valid, by 

undoing some set of actions, presumably including the erroneous ones. 
2. the re-performance of the actions undone in 1. that were not (known to be) 

erroneous. 
An error is usually associated with or detected in some process while recovery 
to a "checkpointed" state may involve many other processes. Thus, step 2. is 
needed so that correct actions are not lost. It should be clear that with a suf
ficiently comprehensive system log, such system recovery is always possible, 
though at rather great expense, so long as errors have not escaped to the "out
side world". 

One need not back up the entire system to provide a method of undoing er
rors. In an appropriately structured system, in which a programmer identifies 
the units of recovery, it becomes possible to restrict the undoing of errors to the 
process (or unit) in which they occurred. A mechanism for so structuring sys
tems has been introduced by Randell [10] who calls this unit a recovery block. 

The idea of a recovery block, in so far as undoing errors is concerned, is to 
isolate the process executing it from other processes. Randell states [10] that 
"communication, whether it involves explicit message passing or merely refer
ence to common variables, would destroy the value of the ... recovery block, 
and hence must be prohibited." This restriction assures that recovery blocks 
are, in fact, atomic. 

By preventing other processes from becoming dependent upon the effects of 
an atomic action until the action is complete, only the process executing the ac
tion is affected by errors in the action. Hence, only this process needs to be re
stored to a previous state. And restoring this process involves restoring to a pre
vious state only that part of the system that is modified by this process during 
the execution of the atomic action. It is unnecessary to re-perform actions of 
other processes since none of these were undone. 
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Gray et al. [7] point out that a somewhat less restrictive form of "transac
tion" than atomic transactions also possesses this attribute of being in
dependently recoverable. These "transactions", called "degree 2 transactions" 
(atomic "transactions" are degree 3) only conceal all changes until completion. 
Atomic actions not only prevent this communication out of an action but also 
prevent communication from other actions into an atomic action. Being subject 
to this weaker restriction, degree 2 transactions do not necessarily, as a result, 
possess a serial schedule nor are their effects reproducible if they are re-ex
ecuted. 

Recovery Bookkeeping 

In order to permit atomic actions to be recoverable, their implementation must 
be such that 
1. updated resources, i.e. those locked in the exclusive mode, are not released 

until the action is completed. Once a modified resource is released, in
dependent recovery can no longer be assured as another process may exam
ine the resource and hence become dependent upon it. 

2. the initial states of all resources modified by the action can be reconstructed. 
This usually involves maintaining a time ordered log of update operations on 
which overwritten information is recorded together with its location. 
In [10], recovery is realized by means of a mechanism called a "recursive 

cache". Rather than recording all modifications and then undoing them in re
verse time order, only the first change in any location is recorded. All modifi
cations to the system state must first be checked, interpretively at run time, to 
determine if a previous change has already been recorded. This means, of 
course, that only the starting state of a recovery block can be restored, and not 
intermediate ones, but this is all that is required. 

A "recursive cache" is but one of a number of methods for providing recov
ery. A compiler could, in a large number of cases, identify updates that do not 
represent initial changes in a recoverable atomic action and permit these up
dates to run without additional interpretive overhead. Updates that might rep
resent initial changes in an atomic action could be logged. One might, as with 
the "recursive cache", try to eliminate from the log all changes after the first 
one, but there is no need to do so. Further, strategies that are only partially suc
cessful in eliminating redundant log entries are also possible. One might em
ploy, for example, a small associative store with recently logged items and elim
inate additional potential log entries already in this associative memory. This is 
quite similar to dynamic address translation is a virtual memory. These recov
ery strategies all need to be evaluated carefully. 

Reset Procedures 

Recovery facilities are, in effect, means of providing backtracking. Such back
tracking is usually presented at the programming language interface in a more 
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or less implicit guise, e.g. recovery blocks, backtrack programming, etc. There 
are important advantages to explicit invocation of recovery facilities, par
ticularly if the ability to communicate information from the "failed" program 
path to alternative ones is desired. What we introduce is just such a feature, 
called a reset procedure. 

A reset procedure derives its effect from its lexical context in much ~he same 
way as an escape procedure, previously used in 2.(1) and described in [2, 9]. In 
addition to the effects of an escape, a reset procedure also undoes all changes 
produced by code executed since its enclosing procedure was invoked. We re
quire that this enclosing procedure be an action procedure so as to isolate the 
recovery of the process executing it from other processes. An action procedure 
then becomes the unit of recovery. Consider the skeletal program of 3.(1). 

3.(1) x: action 
y: reset (a); 

endy; 
z: procedure; 

b: local variable; 

t y (b); 
endz; 

:I: z; 

end x; 

We assume that the call (n to procedure "z" is executed in action "x". Both 
"x" and "z" modify the process state by means of, e.g. updating variables global 
to "x". However, "z" encounters some difficulty it cannot cope with and re
alizes that some of the changes made have been erroneous. It, therefore, calls 
"y" at (t), passing some information via argument "b". When "y" is called, all 
changes to variables global to "x" are erased and the local variables of "x" are 
re-initialized. Only those changes produced by "y" will be detectable sub
sequently. When "y" terminates, it returns control to the caller of "x", exactly as 
if "y" had been an escape procedure. 

We should offer a word of caution concerning the argument(s) to a reset 
procedure. If an argument is a variable passed by reference, the reset procedure 
will not see its value at the moment of call but rather its value after recovery, 
i.e. the value the variable had when the enclosing action was entered. Passing 
arguments by value does not, of course, have this potential confusion. 
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An Example: Recovery Blocks 

We illustrate the use of reset procedures by programming an implicit recovery 
mechanism, i.e. Randell's recovery blocks (10]. Basically, a recovery block is a 
control structure that consists of two main components. 
I. an "acceptance test" that must be satisfied on exit from the recovery block, 

i.e. it is a boolean expression that must evaluate to true. 
2. a set of alternative bodies that are executed to produce the desired effects. 

The first alternative body is executed and the acceptance test evaluated. If 
true, the recovery block is complete. If false, recovery takes place, returning 
the block to its initial state after which the next alternative body is executed, 
etc. 

A syntax for recovery blocks is: 

3.(2) ensure (boolean expr) 
by (procedure) 
{else by (procedure)} * 
else error; 
end; 

The procedure of 3.(3) provides the recovery semantics required of a recov
ery block. The resetting in !'ensure" prior to the execution of the first alterna
tive can be avoided if the invocation of "recover(l)" is replaced by most of the 
body of "recover". This results in duplicate code. Since there are no effects to 
be undone at "recover(l)", little if any cost is involved in this initial resetting. 

Many other applications should exist for reset procedure, including some in 
which information of a more essential nature than illustrated for recovery 
blocks is passed from the rejected control path to its alternative. Sussman and 
McDermott (11] present a cogent argument for this, though advocating a very 
different mechanism for accomplishing it. 

3.(3) ensure: action (accept: boolean function, 
alternative: array of procedure); 
recover: reset (j: integer); 

alternative (j); 
if accept then return;' 
else 

ifj < highbound (alternative) t then 
recover (j + 1); 

else error; t 
end recover; 

recover (1); 
end ensure; 

t highbound is a function that returns the upper bound of a vector, i.e. its maximum index. 
:I: error might designate an escape or a reset procedure. 
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4. Summary 

Atomic actions have been explored as a means of structuring multiple process 
programs. Action procedures were suggested as a way of introducing atomic ac
tions into a programming interface. Synchronization was achieved by means of 
the await statement, without exposing any underlying queueing or making ex
plicit the acquisition and release of resources. Together, action procedures and 
the await statement make multiple process programming very little more dif
ficult than sequential programming. 

Because atomic actions isolate a process from the rest of the system, recov
ery involving restoring a process to the initial state of an uncompleted atomic 
action is particularly simple. Reset procedures were introduced to provide the 
user with explicit control over recovery and to permit the passing of some infor
mation from a rejected control sequence to its explicitly requested alternative. 
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A Formal Model of Atomicity 
in Asynchronous Systems 

E. BEST and B. RANDELL 

Summary. We propose a generalisation of occurrence graphs as a formal model of computa
tional structure. The model is used to define the "atomic occurrence" of a program, to 
characterise "interference freeness" between programs, and to model error recovery in a 
decentralised system. 

1. Introduction 

Atomic actions have long been recognised as an important programming 
concept. The ideas behind atomic actions can be traced back at least to Floyd's 
seminal paper [5] in which he proposed to characterise programs by their 
input/output relations. Our own interest in atomic actions stems from the 
awareness [18] that they could help in generalising the concept of a recovery 
block [17] for concurrent programs. We use the term in the same way as in [II]: 
by intuitive definition, an atomic action is a piece of program that enjoys the 
status of a simple "primitive" with regard to its environment, while it may 
however possess a "complicated" internal structure. 

The concept of an atomic action is related to the so-called inductive 
assertion method for proving properties of programs (see for example [12]). In 
this technique an assertion can be proved invariant by showing that it holds 
initially and that its validity is preserved over successive portions of a 
program. This technique, which has been well-established for sequential 
programs, can be generalised to concurrent programs using atomic actions: to 
establish the invariance of an assertion one has to prove that it holds initially 
and that its truth is preserved by every action. Examples of correctness proofs 
for concurrent programs using this method include [1, 2] and [3]. 

Another area of application is that of shared database systems where 
atomic actions are usually called "transactions" [4, 7, 19]. The invariant 
property to be preserved in a database is usually called its "consistency". 
Transactions typically are short sequential user programs which individually 
preserve database consistency; one of the tasks of a database manager is to 
ensure that they occur atomically so that the consistency of the database is 
maintained at all relevant times. 

In this paper we base our discussions on the use of a simple programming 
language consisting of the usual constructs (assignment, etc.) augmented by the 
parallel operator II and the angular bracket facility to express atomic actions 
[3]. The semantics of the parallel operator partly depends on the semantics of 
the atomic actions used in connection with it, but could intuitively be 
expressed as "execute as much as possible in parallel". For example, the 
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program 

(S := S + I) II (s := s + I) 

is taken to indicate the (possibly partly parallel) execution of two "primitive" 
incrementations of s, so that its net effect should be to increase s by 2 rather 
than by any other value (i.e. the result should be s = So + 2 where So is the 
initial value of s). 

We consider atomic actions in the first place as a programming tool rather 
than "a hardware feature" or "a synchronisation method". As such, atomic 
actions serve to build new "primitives" out of given "primitives". It therefore 
stands to reason that atomic actions be allowed to be the sub-actions of larger 
atomic actions [18], although such nesting of atomic actions has sometimes 
been forbidden [3]. 

For instance, the program 

(s := s + I) I (s := s + 1) II (s := 2* s) 

differs from the program 

«s:= s + 1) II (s:= s + 1))11 (s:= 2* s) 

in that the set of possible results is {s = 2* So + 2, s = 2* So + 4} for the former 
and {s = 2* So + 2, s = 2* So + 3, s = 2* So + 4} for the latter. Thus as opposed to, 
say, [4] where the atomicity of straight sequences of primitives is considered at 
only one leve of nesting, we shall in the sequel not put any restrictions on 
either the depth of nesting of atomic actions or the degree of their internal 
concurrency. It will be shown that this generality introduces non-negligible 
complications. 

The salient properties of atomic actions have frequently been characterised 
by what is known as the "serialisability" property [4], expressed in [II] as 
follows: "Actions are atomic if they can be considered, as far as their environ
ment is concerned, to be indivisible and instantaneous, such that the effect on 
the system is as if they were interleaved as opposed to concurrent". In [3] we 
find: "We require all accesses to shared variables to be part of an atomic 
action and postulate that the net effect of our concurrently operating processes 
is as if atomic actions are mutually exclusive, i.e. the execution periods of 
atomic actions don't overlap." And in [2] we read: "Atomic actions ... can be 
implemented by ensuring between their executions mutual exclusion in time." 

These characterisations raise a number of questions. Firstly, atomicity 
which on the face of it is a "local" property of a single action is being 
expressed by serialisability which is a "global" property of a set. of actions. In 
this paper we shall deal with this question by defining and comparing a 
variety of "local" and "global" atomicity criteria. Secondly, mutual exclusion 
seems but one, in general unnecessarily restrictive, way of implementing 
atomicity; in a shared data base, for instance, the proposition that all transac
tions be mutually excluded is unacceptable [7]. We shall in this paper regard 
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any method which ensures the truth of our atomIcIty criteria as a valid 
implementation of atomicity. Thirdly, the "as if' clause in two of the above 
characterisations tends to blur the distinction as to whether atomicity is a static 
or a dynamic property. In this paper, by taking executiQns of atomic actions as 
our basic formal objects, we shall give purely dynamic atomicity criteria. 

The formal model of computation we are using is that of occurrence graphs 
[8]. The present paper is in fact a direct successor of [14] where the use of oc
currence graphs for the purpose of characterising atomicity has first been sug
gested. An occurrence graph serves to model a single computation as a set of 
interdependent events. Event dependencies may arise through usage of data 
(as in all of our examples), but other types of dependencies such as producer
consumer relationships can be modelled as well. Atomicity is represented by 
"collapsing" parts of an occurrence graph, i.e. by reducing a subgraph to a 
single event. In order to accommodate graph collapsing we generalise the oc
currence graph model to that of "structured occurrence graphs". 

The first part of the paper, comprising Sect. 2 and 3, is organised as 
follows. The occurrence graph model is introduced in Sect. 2.1 and Sect. 2.2 
shows how atomicity can be represented by graph collapsing. This leads to 
"structured occurrence graphs", defined in Sect. 2.3. Using structured occur
rence graphs we derive a "global" atomicity criterion (in essence a generali
sation of serialisability, Sect. 3.1), a "local" atomicity criterion (interference
freeness, Sect. 3.2) and a "context-independent" atomicity criterion (Sect. 3.3) 
which we consider to generalise the notion of "two-phase executions" [4] 
(Sect. 3.4). A series of propositions establishes the precise relationship between 
these atomicity criteria. 

In the second part of this paper (Sect. 4) we examine the topic of error 
recovery in a decentralised system, such as, for example, a multi-process 
message passing system. Our starting point is the assumption that during the 
activity of such a system recovery points have been established which may 
function as local fall-back points, so enabling the system to revert to an earlier 
valid state. We deal with two questions arising in this situation: (a) in the 
event of the detection of an error, which are the relevant "recovery lines", i.e. 
sets of recovery points to which the system can revert; and (b) following the 
detection of an error, which parts of the surrounding activity must be treated 
as suspect, in the sense of possibly being prey to the same error. 

We shall show that the structured occurrence graph model can be adapted 
to deal with these questions. In Sect. 4.1 we extend the occurrence graph model 
to that of "recovery graphs" providing for the representation of recovery 
points. In Sect. 4.2 we define the "units of recovery" as those events which de
scribe the activity "find the appropriate recovery line" atomically, and we show 
that this defines a structured occurrence graph. In Sect. 4.3 we examine in 
particular the question of whether or not a recovery point can be invalidated 
as a consequence of an error detected in a different part of the system, which 
leads to a classification of different types of recovery points. . 

We conclude this paper by putting our atomicity criteria inot perspective 
(Sect. 5). In particular, we discuss the connection between what we have called 
"interference" in Sect. 3.2 and other related properties, such as data depen-
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dency and information flow. We also outline different possible implementation 
strategies for atomic actions. 

2. A Model of Computational Structure 

2.1. Occurrence Graphs 

We define an occurrence graph as a pair G = (E, B), where E is a non-empty 
set and B ~ Ex E is a (possibly empty) relation over E. We use occurrence 
graphs to describe computations, whereby the elements e E E are interpreted 
as the events of the computation and the elements b E B are interpreted as 
"conditions" holding between events and indicating an ordering of events as 
described below. Pictorially, events are represented as squares and conditions 
are represented as arrows between squares, as for example in . 

We define e=tail(b) and e' = head (b) iff b=(e,e'). We call a sequence 
(eo, ... , en), n ~ 1, of events a (directed) path from eo to en iff eiBei+1 for 
o ~ i < n. A path is called a cycle iff eo = en. A path is called "simple" iff its 
constituent events, except possibly the two endpoints eo and en, are distinct. 
We write e < e' ("e before e"') iff e B+ e', i.e. iff there is a path from e to e'. 
We write e ~ e' iff e < e' or e = e', and e and e' are said to be "concurrent" iff 
neither e < e' nor e' < e. In Fig. 1, for example, el < el, e2 < e3 but e3 and e4 
are concurrent. 

Fig. 1 

We call an occurrence graph acyclic iff for no e E E, e < e; i.e. iff it does 
not contain any cycles I. The structure (E, <) derived from an acyclic occur-

There is a close connection between the occurrence graph model and the occurrence net 
model as defined in [6]. Occurrence nets are triples (B, E, F) where Band E are disjoint 
non-empty sets (with the same interpretation as above) and F ~ Ex B u Ex B is a relation, 
such that 

YbEB: IF(b)l~ I and IF-I(b)l~ 1, and 
F+ is irreflexive. 

(I) 

(2) 
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renee graph is a partial ordering of events. In contradistinction to [8] we allow 
(for the moment) occurrence graphs to be cyclic because we wish to attach a 
particular significance to cycles. 

We next define the notion of an "immediate predecessor". Care must be 
taken in this definition because our graphs may be cyclic. Usually [15] an event 
e is called an "immediate predecessor" of another event e' if e < e' but for 
no e", e < e" < e'. By this definition, in Fig. 1 el is not an immediate prede
cessor of e3, nor is e2 an immediate predecessor of e4' This is contrary to our 
subsequent intentions; we therefore define immediate predecessors slightly 
differently. 

We call a path from an event e to an event e' a "(proper) extension" of 
another path from e to e' iff the former contains the same events in the same 
order as the latter, and besides also at least one other event. In Fig. I, for 
example, (el' e2, el , e3) is a proper extension of (el' e3)' We call a path "max
imal" iff it cannot be properly extended. In Fig. 1, for example, both 
(el' e2, el, e3) and (e2' el, e2, e4) are maximal paths .. 

We require all occurrence graphs under consideration to satisfy the proper
ty that every path can be extended to a maximal path. This is a discreteness 
property which we subsequently refer to as the "maximality axiom". It is 
always satisfied for finite graphs. 

We finally define e E E to be an "immediate predecessor" of e' E E (or e' 
an "immediate successor" of e), and write e <: e', iff there exists a maximal 
path (eo, ... , en) in which e and e' are neighbours, i.e. e = ei and e' = ei+l for 
some i E {O, ... , n - 1 F Note that by this definition, el is an immediate 
predecessor of e3 in Fig. 1 because they are neighbours in the maximal path 
(el' e2, el, e3); similarly, e2 is an immediate predecessor of e4. 

As an example of the use of occurrence graphs to describe computations, 
we consider a simple program operating on a doubly linked list. Let the list 

Every acyclic occurrence graph (E, B) in which B '* 0 can be considered an occurrence net 

(B, E, lee, b), (b, e')lbE Band e= head (b) and e'= tail(b)}) 

satisfying the somewhat stronger property 

(I') 

Conversely, every occurrence net satisfying (I') can be considered an acyclic occurrence 
graph 

(E,{(e,e')le,e'EE and eP2 e,}). 

We use occurrence graphs rather than occurrence nets because the permit the collapsing 
operation to be described more easily 

2 The following lemma shows that this definition agrees, for acyclic graphs, with the usual 
one referred to above. 

Lemma 1. (i) e < e' and ---, ::Je": e < e" < e' implies e <: e'. 
(ii) Por acyclic graphs, the converse of (i) also holds 
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consist of a "start" pointer, an "end"pointer and two proper elements "x" and 
"y" in the following current state: 

next 

start 

before 

Fig. 2 

next 

before 

next 

~ end 

before 

The algorithm for removing a list element pointed to by a pointer P can 
make use of concurrency in the following way: 

rem (p): PI := p. before II pz := p. next; 
PI· next := Pzll Pz· before := PI , 

where PI and P2 are local pointer variables. 
Every execution of rem thus consists of executions of its four constituent 

assignments in some valid order, the validity of the order being determined by 
the semantics of the semicolon and the II operator. With the abbreviations 

el = execution of "PI := p.before", 
e2 = execution of"P2:= p.next", 
e3 = execution of "PI. next :=Pz", 
e4 = execution of "P2.before:= pt, 

the following two occurrence graphs describe two possible (valid) executions 
of rem: 

Fig. 3 

The two executions differ in that in the first one, the pairs of events (el' e2) 
and (e3, e4) both occur concurrently whereas in the second one, eJ, ... , e4 occur 
in linear order. The first execution, in fact, is maximally concurrent in the 
sense that any more concurrent execution would no longer be a valid execution 
of the program. 

2.2. Collapsing of Sub graphs 

We represent programmer-defined atomic actions by "collapsing" the sub
graphs corresponding to their executions into single events, thus giving them 
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an "instantaneous" appearance. Through the collapsing operation we obtain 
from a given occurrence graph a new one which describes the same compu
tation on a different level of abstraction. Before defining the collapsing oper
ation formally, we give an example of its use. 

Let us consider two simultaneous executions of rem, 

rem(x) II rem(y) 

of the two elements x and y of the list as shown in Fig. 2, where at first, rem is 
not specified as atomic. As in the previous section, let et, ... , e~ and ef, ... , e~ 
denote the executions, respectively, of the four assignments in rem (x) and 
rem (y). The following Figure shows three possible executions of the simul
taneous removal, all of which can be shown to be maximally concurrent: 

b 

eY 
4 Fig. 4 

As in these three executions the e1 and e{ OCcur in different order, they 
may denote different actual assignments (for instance, d denotes the setting of 
"y.before" to "start" in the first execution, while it denotes the setting of 
"end. before" to "start" in the second execution). Nevertheless, as can easily be 
verified, the first two executions both have the same overall effect of 
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producing the empty list whereas, by contrast, the third execution leaves the 
list in the following state: 

Let us now consider the parallel program 

at-rem (x) II at-rem (y). 

with the "remove" operation specified as an atomic action: 

at-rem(p): (PI := p.before II P2:= p.next; 

PI. next := P211 P2· before := PI). 

This means that the simultaneous removal is to have the effect of two proper 
individual removals, so that of the possible orderings of events shown in Fig. 4, 
only the first two are to be allowed. 

We represent the programmer's actomicity specifications in the following 
manner: 

D at-~ 
Fig. 6 

When this collapsing is applied to the occurrence graphs shown in Fig. 4, the 
following can respectively be obtained: 

b 
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A 

Figure 7 shows how the invocations of at-rem (x) and at-rem (y) are related 
to each other when they are seen as atomic events. In the first two executions, 
these events occur in strict order, although some of their constituent events 
occur concurrently (cf. Fig. 4). By contrast, the invocations "interfere" with 
each other in the third execution, this interference being indicated by the cycle 
in Fig. 7 c. The difference between valid and invalid executions thus manifests 
itself by the absence or presence, respectively, of a cycle in the collapsed 
graphs. 

We now define the collapsing operation formally. Let an occurrence graph 
G = (E, B) and a non-empty subset E' 5; E be given. We define the subgraph A 
generated by E' as the set E' together with all arrows that have both endpoints 
in E'. Formally, 

A=(E',B') where B'={bEBltail(b)EE'l\head(b)EE'}. 

We also denote the set of events E' generating the subgraph A by A. 
As A is again an occurrence graph, all the definitions relating to occurrence 

graphs can be transferred to subgraphs; in particular, a "before" relationship 
<A = B'+ can be defined for A which may not coincide with < = B+ on A. Note 
also that A may be disconnected and/or that B' may be empty. We usually 

enclose the set E' of events in question in a rectangle. For example, in Fig. 8 
A is disconnected, B' is empty and el < e2 in G but not el <A e2 in A. 

We define the "collapsing" of A as the construction of a new 'graph G [A] 
from G such that A is replaced by a single new event and all arrows leading 
into and out of A are replaced by arrows ending and starting, respectively, with 
the new event. We assume the new event to be uniquely named and call it "A" 
for the purpose of this definition. Formally, G [A] = (E [A], B [AD where 

E [A] = (E\A) u {A} 
B [A] = {(e, e') E B I e ~ A 1\ e' ~ A} u 

{ (e, A) I e ~ A 1\ :3 a E A: (e, a) E B} u 
{(A, e) Ie ~ A l\:3a E A: (a, e) E B}. 

In the remainder of this section we present two simple facts about the col
lapsing operation. The first one indicates that collapsing does not tear the 
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graph apart, in the sense that paths leading into and out of a subgraph A in G 
change into paths ending and starting with A, respectively. 

Lemma 2. 3a E A : e < a in G ~ e < A in G [A] 
3aEA:a<e in G~A<e in G[A]. 

The proof of Lemma 2 follows immediately from the definition of the collaps
ing operation. 

Our next lemma shows that the order of collapsing two disjoint subgraphs 
is immaterial. We call two subgraphs A and A' of G disjoint iff AnA' = 0. 

Lemma 3. If A and A' are disjoint subgraphs of G then A' is a subgraph of G [A], 
A is a subgraph ofG [A'], and G [A] [A'] = G [A'] [A]. 

An example is furnished by Figs. 4 and 7 above. 

2.3. Structured Occurrence Graphs 

IIi the previous section, we have shown how the dynamic structure ansmg 
from programmer-defined atomic actions can be represented by collapsing the 
subgraphs corresponding to their executions. Generalising this in the present 
section, we use "structured occurrence graphs" to model the (dynamic) nesting 
of atomic actions to arbitrary depth. We define structured occurrence graphs 
to consist of a "basic occurrence graph" on which a "nested structure" is 
imposed. 

The basic occurrence graph describes the computation to such a degree of 
detail that its events can be decreed basic without further justification; it may 
be helpful to think of them as being "system-defined". As we shall take cycle
freeness as our "basicness" criterion, we postulate that the basic graph be 
acyclic; any cycle in the basic graph would indicate an event being its own 
cause. 

The nested structure imposed on the basic graph captures the dynamic 
structure arising from the programmer's atomicity specifications. At the most 
basic level, the computation is seen to consist of "small" basic events, intercon
nected as described by the basic graph. At the most abstract level, it can be 
viewed as a single event comprising all of its constituent activities (as if the 
entire user program was enclosed by outermost atomicity brackets). Depend
ing on the depth of nesting, there may be a variety of intermediate levels of 
abstraction. In keeping with [18] we consider the (dynamic) overlapping of 
atomic action as contrary to their nature, so that we are considering "tree 
structures" only. 

Formally, let an acyclic occurrence graph G = (E, B) given which we refer 
to as the "basic graph", E being the set of "basic events". We define a "tree 
structure over G" to be a finite collection T of sets of events such that 

(T I) E E T and {e} E T for all e E E 
(T2) V E], E2 E T: E] n E2 = 0 V E] c;; E2 V E2 c;; E]. 

275 



The sets in T, which we call "(atomic) activities", model the executions of 
atomic actions. (T 1) is motivated by the above remarks concerning the most 
abstract and the most basic level, while (T 2) ensures the absence of overlap
ping. 

For instance, with E) = {ef, ... , en, E2 = {e-l', ... , en and E = E) U E2, 

T= {{en, ... , {e~}, E), E2, E} 

is a tree structure over the occurrence graph shown in Fig. 4c. We represent T 
pictorially by enclosing its constituent sets in rectangles: 

E 

Fig. 9 

This structuring represents the programmer's specification of rem as an atomic 
action and an implicit outermost atomic action. 

We call a pair (G, T) where G is an acyclic occurrence graph and T is a tree 
structure over G, a "structured occurrence graph", and we define its structure 
tree as follows. The nodes of the tree are the activities in T, and a node E' is 
called a 'fparent" of another node E" iff E' is the smallest superset of E" in T. 
As a consequence of (T 1) and (T2), there is a unique smallest superset for all 
sets in T except E, and the "parent" relationship therefore defines a tree with 
root E and leaves {e}, e E E. For E' E T we define the set of "sub-activities" of 
E', 

E' = {E" E TI E' is parent of E"}. 

Our next aim is to capture the notion of a structured occurrence graph 
describing a computation at different levels of abstraction. To this end we de
fine levels of abstraction formally and then associate an occurrence graph with 
each level. Such a graph describes how the events of this level are related to 
each other, generalising the remarks made following Fig. 7 in the previous 
section. 
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For a given structured occurrence graph (G, T), we call a subset L S; T a 
"level (of abstraction)" iff 

(Ll) E=U{E'IE'EL} 

(L 1) requires that all basic events are considered and (L2) requires that none 
of them is considered more than once. Levels can be visualised as "cuts" 
through the structure tree. For our example shown in Fig. 9 we derive the 
following structure tree and five levels of abstraction Lo, ... , L4 (where for 
simplicity the leaves of the tree are labelled with the names of the basic events 
they represent): 

E L =L __________________ ~ __ ~E __ _ 

- ------------~---

x e1 

Fig. 10 

We further define: 
the "basic level" Lo = {{e} Ie E E}, 
the "most abstract level" L top = {E}, and, 
for any E' E Tthe level L E, = {E'} u {{e} leE E\E'} 
containing E' and all basic events outside E'. 
We define L' C!:: L for two levels L' and L iff 

L'=(L\{E'})uE' forsome E'ET, 

L ______ 1 ___ _ 

i.e. iff L' arises from L by substituting the sub-activities of E' for E'. We also 
write L' = [E'] L in this case; for instance, L1 = [E2] L3 in Fig. 10. We call L 
"more abstract" than L' iff L' c L, where c is the transitive closure of C!::. The 
c relationship turns set of levels into a lattice with Lo as the minimal element 
and Ltop as the maximal element. For our example we have the following 
lattice: 
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Fig. 11 

Finally we define the occurrence graph associated with a level L by 
induction over the lattice of levels as follows. 

(0 I) The graph associated with Lo is the basic graph. 
(02) Whenever L' = [E'] L, G' is the graph associated with L' and A is the 
subgraph of G' generated by E', then the graph associated with L is G' [A]. We 
give the new event of G [A'] the name "E"', so as to make step (02) repeatedly 
applicable; the events of the graph associated with L are thus just the activities 
in L. 

As a consequence of Lemma 3 which shows that the order of collapsing dis
joint subgraphs is immaterial and the requirement that all activities be non
overlapping, (0 I) and (02) properly define an occurrence graph for each 
level. For our example we obtain the following five level graphs: 

LO: 
x eY e1 2 

x eY e3 4 

eY 
L1: 2 L2: x 

E1 
e1 

E2 

A1 x A2 
eY e3 
4 

L3: E1 cr=tJE2 L4 : 
DE 

A1 A2 

Fig. 12 
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Due to the aSSocIatIOn of an occurrence graph with every level, all 
concepts defined for occurrence graphs (the < relationship, for example) now 
become level-dependent. In the sequel we use the phrase "at level L" in order 
to avoid confusion about which level is meant. 

If the convention of regarding basic events as trivial subgraphs is 
introduced, a one-to-one relationship between activities E' E T and subgraphs 
(generated by E' if E' is non-basic) can be established. We therefore use the 
term "activity" for subgraphs AI, A2 , ••• as well and extend all definitions 
accordingly. In particular, L' = [A] L means that A is a sub graph at L' which is 
collapsed at L; LA denotes the level containing A and all basic events outside A; 
and an activity A is said to "contain" another activity A' itf A' is a descendant 
of A in the structure tree. 

We use structured occurrence graphs in Sect. 3 for the purpose of 
characterising atomic occurrences and in Sect. 4 for the purpose of describing 
the units of recovery in a decentralised system. 

3. Atomicity of Activities 

3.1. Cycle-Freeness and Serialisability 

As exemplified in the previous section, we characterise atomicity dynamically 
by the absence of interference. Naturally, interference pertains not to activities 
in isolation but to the way in which they are related to each other. 
Consequently in our characterisation, which can be found in Sects. 3.1 and 3.2, 
we take into account the computation as a whole. 

We take the characteristic (dynamic) property of atomicity to be that 
events are partially ordered on all levels of abstraction induced by atomicity 
specifications (not just the basic level). Thus we define a structured occurrence 
graph and the computation it describes to "satisfy atomicity" iff all of its level 
graphs are acyclic. 

This definition generalises the "serialisability" criterion [4]. Under some 
very weak conditions [10] which are assumed to hold, every partial order can 
be "serialised" (i.e. extended to a linear order). Therefore for each acyclic oc
currence graph G = (E, B) a graph Glin = (E, Blin ) can be found such that 
B+ ~ Bltn and E is linearly ordered under Bltn. More generally we have: 

Proposition 1. A structured occurrence graph (G, T) satisfies atomicity if and 
only if the basic graph G can be serialised such that the resulting structured oc
currence graph (Glin , T) describes a linear order on all levels. 

Proof Assuming that (G, T) satisfies atomicity, we may serialise the basic 
events by processing the structure tree in the following way. Starting with the 
root of the tree we arrange all subactivities of non-basic activities in linear 
order, which is possible by assumption. This process stops when all basic 
events have been reached. Eventually all level graphs describe a linear order. 
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Conversely, assume that (G, T) does not satisfy atomicity. Then there exists 
a cycle at some level, the events of which cannot be serialised. 

The term "serialisation" is perhaps misleading in that it may suggest that 
atomicity can only be implemented by actual strict sequencing (i.e. mutual ex
clusion in time) of the atomic actions of a program. This is not true according 
to our criterion which allows for the parallel execution of independent atomic 
actions. Even if atomic actions fail to be independent a partly concurrent 
execution does not necessarily violate atomicity, as demonstrated previously. 

On the other hand, it may be suggested that strict sequencing always 
implements atomicity. However, programs such as the following cannot be 
serialised, i.e. are not implementable: 

(x, y) := (0, 0); 
<x:= 1; do y = 0 -+ skip od) II <y:= 1; do x = 0 -+ skip od). 

Typically, in such programs the successful termination of one atomic action 
depends on the progress of others in a cyclic manner. To prohibit this, it seems 
reasonable to postulate that atomic actions always terminate (this is indeed 
one of the key axioms in [16]). 

3.2. Interference-Freeness and Atomic Occurrences 

In this section we take a closer look at "interference". We define an event e to 
interfere with an activity A if it occurs strictly after part of A and strictly before 
another part of A. We define A to "occur atomically" if it is not interfered with 
in this fashion. 

For example, in Fig. 13 we have e1 <A2 < e~ at L 2, which means that the 
event A2 interferes with Al (though none of the constituent basic events of A2 
does!): 

eY 
L1 : 

2 
L2 : 

x 
e1 

A1 A2 

eY x 
4 e3 

Fig. 13 
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This can also be characterised by the fact that at L3 , Al and A2 stand in a cyclic 
relationship which disappears when Al is opened, i.e. at L2 ; we take this as the 
basis for our formal definition below. We first remark that an activity may be 
in a cycle even though (intuitively) it is an atomic occurrence, and illustrate 
this point with an example. 

We consider the program 

(s := s + 1) II (s := s + 1), 

assuming each assignment to consist of an event "r" of reading the value of s 
followed by an event "w" of overwriting s with the value of s + 1. Consider the 
following atomicity-violating (and hence invalid) execution: 

Fig. 14 

giving rise to the following four level graphs: 

Fig. IS 

Intuition suggests that AI, though contained in a cycle at L 3 , occurs atomically 
because it is not interfered with by other activity. 

Generalising these examples, we define inductively that for a given struc
tured occurrence graph (G, T), 

(A 1) Basic events occur atomically. 
(A2) An activity A occurs atomically iff 

(a) Va E A: a occurs atomically, and 
(b) for all levels L, whenever e < A < e at L then 3a E A: e < a < e at 

[A] L. 
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This definition signifies that if (A2 b) is violated for some level L and event e 
then e is one of the outside activities that interfere with A, making it non
atomic. 

(Al)-(A2) define the atomic occurrence of a single activity and can there
fore be called a "local" atomicity criterion, in contrast to the "global" cycle
freeness criterion defined in the preceding section. These two criteria are inter
related as follows: 

Proposition 2. (i) If for no level either A or one of the activities it contains is 
involved in a cycle then A occurs atomically. 

(ii) Let e < e at L; then .3A: e;§; A;§; e at L and A does not occur atomically. 

Proposition 2 (ii) is a weak converse of (i); as the example shown in 
Figs. 14/15 demonstrates, the immediate converse of (i) does not necessarily 
hold true. We also have the following immediate consequence of proposition 2: 

Corollary. A structured occurrence graph satisfies atomicity if and only if all of 
its activities occur atomically. 

Proof (i) If neither A nor any of the activities contained in it is involved in a 
cycle then (A2 b) cannot be violated for A. 

(ii) Let e < e at L. 
Because of the maximality axiom, there exists a maximal simple cycle 

(e =Ao, ... ,An = e) at L. 
Suppose that all of the Ai occur atomically. 
This means that there exist ai E Ai such that ao < ... < an and ao = an at 

[Ao] ... [An- d L. 
Again we choose a maximal simple cycle (ao, ... , an) which must consist of 

sub-activities of the Ai only (otherwise (Ao, ... , An) would not itself be max
imal). 

This argument is thus repeatable and leads to a contradiction because of 
the cycle-freeness of the basic graph. 

Hence for some i, Ai does not occur atomically, q.e.d. 

We finally show that our definition remains intuitively valid also in a more 
complicated example than considered so far. 

In this example, Al occurs atomically according to our definition (A 1) - (A2) 
even though it is contained in four cycles at L 3 , one of which (namely the one 
not including el or e2) disappears when Al is opened, i.e. at L 2. It is however 
perfectly in line with intuition that Al should be defined to occur atomically, 
while A2 is clearly a non-atomic occurrence, being interfered with by Al and 
even by all basic events in A I. 

3.3. Context-Independence and Inherently Atomic Occurrences 

As characterised in the preceding sections, the atomic occurrence or otherwise 
of an activity depends not only on its internal structure but also on its en
vironment at large. We now show that there is a sense in which an activity can 
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Fig. 16 

LO: e 1 L3: e 1 

Ai A2 

e 2 

e 2 

e 1 

L1 : e1 L2: 

A2 

e2 

Fig. 17 
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be called "atomic" by virtue of its internal structure only (i.e. without regard 
to the entire computation). We call activities with this property "inherently 
atomic occurrences" or, for short, "contractions". 

We consider the contraction property to generalise the notion of a "two
phase" execution [4]. A two-phase execution consists of a "growing phase" 
followed by a "shrinking phase", whereby the conceptual moment of occur
rence of the activity lies between the two phases [11]. Our claim will be sub
stantiated in the next section where it will be shown that an activity is a con
traction iff it contains an "internal state" which can be thought of as the 
moment of its occurrence. In this section we define contractions and exhibit 
their relation to atomic occurrences. 

Our definition can be motivated as follows. Every (maximal) cycle through 
A must also pass through an immediate predecessor of A and an immediate 
successor of A. If A is so structured that from every immediate predecessor of· 
A a path leads through A to every immediate successor of A then the opening 
of A can never break that cycle. Accordingly, we define that in a structured 
occurrence graph (G, T), 

(C 1) Basic events are contractions. 
(C2) An activity A is a contraction iff 

(a) Va E A: a is a contraction, and 
(b) whenever el <: A <: e2 at LA 

then ::3a E A: el < a < e2 at [A] LA. 

In (C2b) we consider only the level LA as defined in Sect. 2.3. However in the 
proof of Proposition 3 below it will become apparent that if (C2b) holds for 
LA then it holds for all other levels as well. 

As an example, consider Al in Fig. 18: 

Fig. IS 

At LI = LA! we have '2 <: Al <: W2 and at Lo = [Ad L I , '2 < WI < W2: Hence Al is 
a contraction. Its collapsing can be thought of as "contracting" it into WI -
hence the name. By contrast, WI <: A2 <: WI at L2 but WI 4:: WI at Lo; hence A2 is 
not a contraction. 

With the definition (C I)-(C2) we have the following: 
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Proposition 3. (i) Contractions occur atomically. 
(ii) If A is not a contraction then a structure T' can be defined containing the 

same subtree rooted at A as is contained in T, such that A does not occur atomi
cally in (G, T'). 

Proposition 3 (ii) is again a weak converse of (i), signifying not that non
contraction occur non-atomically, but that based just on the internal structure 
of a non-contraction, nothing can be inferred about its atomic occurrence. 

Proof (i) Let e < A < e at L. 
Because of the maximality axiom, there exists a simple cycle (e, ... , AI, A, 

A2, ... , e) such that Al <:: A and A <:: A2 at L. 
Because Al < A at L, by repeated applications of Lemma 2 one sees that Al 

must contain a basic event d l such that d l < A at LA. 
Again because of the maximality axiom, there exists a basic event el with 

dl ~ el <:;: A, which is also contained in Al (otherwise Al would not immediately 
precede A at L). 

Similarly, A2 contains a basic event e2 such that A <:: e2 at LA. 
Property (C2 b) for A requires the existence of an a E A such that el < a < e2 

at [A] LA. 
For this a we also have, again by Lemma 2: e ~ Al < a < A2 ~ e at [A] LA. 

(ii) Since A is not a contraction there exist basic events el, e2 outside A such 
that for no a E A, el < a < e2 at [A] LA. 

We define T' as containing {e} for all e E E, E, the entire subtree rooted at 
A and the set {el, e2}. 

T' is a tree structure and A does not occur atomically in (G, T'). 

In practical terms, Proposition 3 signifies the following. Suppose that a 
programmer wishes to use a set of system synchronisation primitives to ensure 
the atomic occurrence of his program, but cannot rely on any system-provided 
implementation of atomicity. Then he must ensure the contraction property 
(for example by employing the simple two-phase protocol [4], or by using 
more knowledge about the system to derive more complicated and efficient 
protocols [20)), in order to prevent unwanted interference which may arise due 
to the lack of system-provided safeguards. In this way, Proposition 3 can be 
seen as a generalisation of the result contained in [4]. 

3.4. Two-Phase Occurrences 

We have seen that in the structured occurrence graph shown in Fig. 18, Al is a 
contraction and the event WI can be thought of as the conceptual moment of 
the occurrence of AI. We now show that it is characteristic for a contraction to 
contain a "state" which can be thought of as the moment of its occurrence. The 
following example serves to illustrate this point: 

In this example, Al is a contraction while A2 is not. The broken line through 
Al represents a "cut" with the property that from every immediate predecessor 
of Al (el or e2) to every immediate successor of Al (e3 or e4) there is a path 
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Fig. 19 

which crosses this cut. No cut with this property can be found for A2 • 

Following [6] we interpret cuts as "states" of an activity and we go on to show 
that an activity A is a contraction iff it contains a cut with the property just 
mentioned. 

To define states formally, let an occurrence graph G = (E, B) and a 
subgraph A = (E', B') of G be given. We first define 

B>:= {b E B I tail (b) ¢ A !\ head (b) E A} 
(the set of arrows leading into A), and 

<B := {b E B I tail (b) E A !\ head (b) ¢ A} 
(the set of arrows leading out of A). 

B> and <B can be considered the interface between A and its environment. The 
relation <~ = B'+ (see Sect. 2.2) can be extended in a natural way to elements 
of the set 

X=AuB'uB>u<B: 

if x, x' E X, define x <A x' iff a directed path inside A leads from x to x'. Two 
elements x, x' E X are said to be "A-concurrent" iff neither x <A x' nor x' <A x. 
We call a subset C ~ X an "A-state" iff its elements are pairwise A-concurrent 
and it is a maximal set with this property (for instance, the AI-state shown in 
Fig. 19 is C = {b3 , b4 , bs, a2}). 

We are now ready to state: 

Proposition 4. Condition (C2b) in the definition of a contraction (Sect. 3.3) can 
be equivalently replaced by: 

(C2 b') There exists an A-state C at [A] LA such that whenever el <! A <! e2 at 
LA then ::3c E C:el < c < e2 at [A] LA. 
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Proof (C2b') implies (C2b): 
Let an A-state C be given and let el <: A <: e2 at LA and el < c < e2 at [A] LA 

with c E C. 
Because C is a subset of X and hence contains only elements in A or 

bordering on A, one of the following must hold: 

either c E A, in which case (C2b) is satisfied with 0 = c; 
or C E B and head (c) E A, in which case el < head (c) < e2; 
or C E B and tail (c) E A, in which case el < tail (c) < e2. 

Conversely, (C2 b) implies (C2b'): 
Because every path from bl E B> to b2 E B> must include tail (b2) fj; A, the 

elements of B>are pairwise A-concurrent. 
We define Co as the first A-state including B>; formally, 

Co = {x E X I Vb E B>: x is A-concurrent to b 
and I :3x' E X: x' <AX}. 

In the example shown in Fig. 19, Co = B> = {b l , b2 , b3 }. 

The elements of Co are pairwise A-concurrent by definition, and Co is max
imal because no x" E X concurrent to all elements of Co can have an A-prede
cessor x' <A x" in X. 

We show that Co satisfies the requirements of (C2b'). 
Let el <: A <: e2 at LA. 
Because A is a contraction, 

:30 E A: el < 0 < e2 at [A] LA. 

Every path from el to 0 must contain a pair of neighbours (e;, e;+I) with e; fj; A 
and e;+1 EA. 

Hence C = (e;, ei+d E Co and el < C < e2 at [A] ~A' q.e.d. 

The A-state C which exists by (C2b') can be thought of as a "moment of 
occurrence" of A. C is by no means unique; in the proof of Proposition 4, the 
set CI defined as the last A-state including <B would have done a similar 
service as Co. Co and CI are in fact the "first" and "last" A-states, respectively, 
which satisfy the property required in (C2b'). 

Thus, in general, the occurrence of a contraction A can be viewed as 
consisting of the occurrences of its immediate predecessors, Co, all interme
diate A-states, CI , and its immediate successors, in that order. In other words, 
A occurs quasi-sequentially, again illustrating the context-independence of its 
atomic occurrence. 
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4. A Model of Recoverability in Decentralised Systems 

4.1. Recovery Points and Recovery Graphs 

In this section we outline how the framework set up in Sect. 2 can be adapted 
to model error recovery in a decentralised system. We assume that in a given 
system, as· part of a strategy for providing a degree of fault tolerance, certain 
states have been checked (for correctness or a similar property) and saved, so 
that the system can fall back on these states if need be; such states are called 
"restorable states" [14] or "recovery points" [18]. As before, we represent the 
activity of the system by an occurrence graph, indicating restorable states by a 
special type of condition. 

A decentralised system may at any time contain several independent active 
components, anyone or more of which may independently discover an error 
and invoke recovery, so that in each case the problem arises as to which 
recovery points should be chosen to fall back on. This is one of the questions to 
be dealt with in the remainder of this paper. We also extend the occurrence 
graph model slightly to indicate those active states, again by introducing 
special conditions. 

We use the term "recovery graph" to denote an occurrence graph which may 
contain (besides normal conditions) also restorable conditions and active 
conditions. Pictorially, we represent restorable conditions by double arrows 
and active conditions by arrows "dangling" from an event (waiting to be 
connected to another event): 

Fig. 20 

This example represents a computation having started at el, having estab
lished the recovery points bl - bs and at present consisting of two strands of 
activity at b6 and b7 • 

By the asterisk we indicate the fact that an error has just been detected in 
the active component represented by b6 • It stands to reason that in this situa
tion all of the activity having sprung from e3 must be abandoned, because no 
proper restorable state lies between e3 and b6 • Hence the nearest fall-back line 
(or "recovery line") in this example is the set of recovery points {b l , b2 }, all 
later activity being suspect; we may represent actual recovery in the model by 
erasing the subgraph generated by e3-e7 and making bl and b2 the new active 
conditions from which further activity can spring [14]. 
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In the remainder of this section we will discuss the following two questions. 
In case an error is detected in an active component of a system described by a 
("basic") recovery graph, (a) which is the nearest recovery line, and (b) which 
portion of the graph should be treated as suspect as a consequence of the error 
detection? Question (a) is dealt with in Sect. 4.2 while question (b) is 
addressed in Sect. 4.3. 

4.2. Error Propagation and Recovery Collapsing 

Our aim is to determine the. nearest recovery line in the event of an error being 
detected (which we represent by marking the corresponding active condition 
as "invalid"). We first define the propagation of error information by 
considering the three types of conditions separately: 

(RI) e ~ 

If the active condition b is invalidated (representing, for instance, the failing of 
an acceptance test [17]) then its input event e should also be invalidated as a 
consequence. 

(R2) e D---{] e i 

Suppose e and e' are connected via a non-restorable condition. The invali
dation of e' should entail the invalidation of e ("backward error propagation") 
and the invalidation of e should entail the invalidation of e' ("forward error 
propagation" or "chasing" [14]). 

(R3) e D=~Oe' 
Here only forward error propagation is possible; the invalidation of e should 
be propagated to e' but not vice versa, because the recovery point between e 
and e' functions as a local fall-back. 

Rules (R I) - (R 3) can be thought of as giving the meaning of the different 
types of conditions introduced in Sect. 4.1 in the context of error recovery. We 
have: 

Lemma 4. In a recovery graph, an event e' becomes invalidated as a consequence 
of another event e being invalidated if and only if there is an undirected path 
between e and e' in which all restorable conditions point towards e'. 

Example: 

e e' 

Fig. 21 
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Repeated applications of (R2) and (R3) show that, indeed, the invalidation of 
e eventually spreads to e'. 

In particular, if a recovery graph contains a cycle then an invalidation of 
anyone event of the cycle entails the invalidation of all events of the cycle. 
Generalising, we define a "unit of recovery" to be a maximal set of events with 
the property that the invalidation of anyone of the events in this set is 
propagated to all of the events in the set. In our example (Fig. 20) there are 
three units of recovery, E], E2 and E3 as indicated in the next Figure: 

Fig. 22 

As we can see, the units of recovery afford a disjoint covering of the basic 
graph. This is true in general, as the next lemma shows: 

Lemma 5. For any two units of recovery E] and E2, either E] n E2 = 0 
orE] =E2 • 

Proof Suppose e E E] n E2 • 

Because both E] and E2 are units of recovery, the invalidation of e entails 
the invalidation of both E] and E2 and the maximality property implies 

EI =E2 • 

Lemma 5 implies that, in the terms of Sect. 2.3, the set containing all basic 
activities {e}, all units of recovery, and the set E, forms a tree structure over 
the basic recovery graph, in which the set of all units of recovery determines a 
level of abstraction. We call this the "recovery level". For our example we 
obtain: 

e1 

Fig. 23 
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The graph associated with the recovery level (which we call the "recovery 
collapsed graph") can be defined as in (01)-(02) of Sect. 2.3, except that 
provisions have to be made for restorable and active conditions. Because as a 
consequence of our definition, all conditions leading into or coming out of a 
unit of recovery must be either restorable or active, it is reasonable to 
introduce the rule that these properties are retained in the recovery collapsed 
graph. For our example (compare Fig. 22) we therefore obtain: 

Fig. 24 

Recovery collapsing can alternatively be described by the following two 
rules: 

(R4) Collapse all parts []-----{J 

of a recovery graph into a single event, whereby ordinary conditions have 
precedence over restorable conditions (this means that, say, 

E' 

becomes E' D---G e' 

e' 

rather than E' D==~zO e' ) 

(RS) Collapse all cycles into single events. 
We then have: 

Proposition 5. A set of events is a unit of recovery if and only if it can be reduced 
to a single event by repeated and exhaustive applications of(R4) and (RS), 

which can be proved by applying Lemma 4. Proposition S indicates that 
exhaustive application of (R4) and (RS) to the basic recovery graph will be an 
automatic way of producing the recovery collapsed graph. 

From our definitions it follows that the invalidation of an active condition 
is propagated at least throughout the unit of recovery it is attached to, i.e. its 
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input event at the recovery level, but is not propagated to the input conditions 
of that unit of recovery. Thus we can define for every active condition its 
"(nearest) recovery line" to consist of the input conditions of its input event at 
the recovery level. 

In our example, the recovery line of b6 is {b l , b2 } and the recovery line of 
b7 is {b5 }: 

Fig. 25 

The recovery collapsed graph thus helps to answer the question posed at 
the beginning of this section. The events of the recovery collapsed graph can 
also be interpreted as describing the activity "find the nearest recovery line" as 
single atomic events. Note however that upon invalidation of an active 
condition, possibly more than just the unit of recovery it is attached to have to 
be invalidated, as exemplified above (Fig. 25) where the invalidation of b6 is 
propagated not only to e3 - e6 but also to e7. We examine this situation more 
closely in the next section. 

4.3. Classification of Recovery Points 

Precisely which portion of a recovery graph becomes invalidated as a result of 
an active condition being invalidated is of course entirely determined by rules 
(RI)-(R3) of the previous section. The "chase protocols" described in [14] 
give a practical means of computing this portion of the graph. As has been 
demonstrated, this portion may in general comprise more than a single unit of 
recovery. In our example this was due to the existence of the restorable 
condition b5 which, depending on the location of the detection of an error, in 
one case (if the error is detected at b7 ) functions as a recovery line and in 
another case (if the error is detected at b6) as a useless recovery point 
(compare Fig. 26). The existence of such restorable conditions is a conse
quence of the asymmetry in rule (R3). In this section we characterise such 
conditions and derive a criterion for their absence. 

In a recovery graph we distinguish three types of restorable conditions 
(compare Fig. 26): 

- conditions which can never belong to a recovery line, such as b3 and b4 in 
our example; such conditions are called "irrelevant" [14]; 
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certain irrelevant uncertain Fig. 26 

- conditions which can never be invalidated as a consequence of rules 
(Rl)-(R3), such as b l and b2 in our example; such conditions may be called 
"certain" ; 

- all others, such as b5 in our example; these conditions may be called "un
certain". 

We can characterise these types of conditions as follows: 

Proposition 6. A restorable condition is irrelevant if and only if it is absorbed at 
the recovery level. 

A restorable condition is uncertain if and only if it is contained in the recovery 
level but would be absorbed by recovery collapsing if all active conditions were 
joined to a common output event. 

Thus, in Fig. 26, b3 and b4 are absorbed at the recovery level and b5 becomes 
absorbed at the (imaginary) recovery level if b6 and b7 were joined to an 
(imaginary) event. 

If the recovery graph does not contain any uncertain conditions then the 
units of recovery are precisely those portions of the graph that have to be 
invalidated as a result of an error detection; hence, in this case the recovery 
collapsed graph describes as a single atomic event not only the activity "detect 
the nearest recovery line" but also the activity "determine the suspect environ
ment of the error". 

The absence of uncertain conditions can be guaranteed by the simple re
quirement that at the recovery level, the output conditions of an event are 
either all active or all restorable. In order to meet this requirement, two (or 
more) components which are actively engaged in a single unit of recovery 
would have to be synchronised upon establishing a recovery point: either all 
components establish a new recovery point, or none does. Such synchronisation 
requirements are typical for fault tolerance schemes providing constraints on 
the forward propagation of errors. The scheme described in [17], for instance, 
requires a "conversation" (that is, in effect, a unit of recovery) to have a 
single well-defined point of exit. [9] and [7] describe "two-phase commit 
protocols" (not to be confused with the two-phase protocols of [4]) which serve 
a similar synchronisation purpose. 

Finally, we consider "certain" conditions. If, for any two certain conditions, 
bl < b2 , then recovery will always stop at b2 • Thus, under the assumption that 
no influence other than rule (R3) destroys b2 , bl might as well be discarded. 
This assumption, therefore, makes "chasefree" recovery conceptually quite 
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simple, albeit at a perhaps considerable performance cost due to synchronisa
tion as above. 

Things become considerably more complicated when the programmer is 
allowed the nested use of recovery regions. Amongst other things, the 
assumption mentioned in the last paragraph may not hold in this case. These 
complications are sorted out in [21] which contains the design of a protocol to 
determine recovery point "safety", which is a property much akin to what has 
been defined as recovery point "irrelevance" above. 

5. Concluding Remarks and Notes on Further Work 

In this paper we have introduced a formal model of computational structure, 
that of structured occurrence graphs (Sect. 2). We have also investigated the 
use of structured occurrence graphs; firstly, in Sect. 3, as a conceptual tool to 
characterise interference-freeness and atomic occurrences. Secondly, in Sect. 4 
we have used structured occurrence graphs as a means of modelling error re
covery in a decentralised system. Here we have concentrated on precise 
characterisations of the notions of a "unit of recovery" and a "recovery line" 
when the activity of the system is described by a recovery·graph. 

Hopefully, our model of recovery could also be used as a practical means 
for achieving a degree of fault tolerance in a decentralised system. The idea 
would be to keep an occurrence graph in store (in some form) as a record of 
the history of the system, to be processed in the way described in Sect. 4 either 
as a consequence of an error being detected, or prior to that as a precautionary 
measure. 

The "chase protocols" described in [14] can be seen as a first step towards 
making this scheme a practical one. In [13] a design is described which refines 
the "chase protocol" strategy, and a number of protocols are also given for 
discovering and deleting recovery points which are irrelevant in the sense de
scribed in Sect. 4.3. In [21] a variety of optimisation techniques are applied to 
obtain a practical implementation of recovery collapsing for a system of com
munication processes, under the complicating assumption that processes may 
be involved in nested recovery regions and may declare their commitment to 
their respective recovery points unilaterally. 

As defined in this paper, the structured occurrence graph model has been 
based on the unexplained notion of dependency between events. Some tacit 
assumptions have been made about event dependency, for example that it is a 
transitive relationship. In the remainder of this section we discuss some issues 
related to event dependency and the semantics of atomic actions which in our 
opinion need further exploration. 

We first observe that the notion of event dependency we are interested in 
does not necessarily coincide with what might be called an intuitive and 
simple notion of "information flow". This can be seen by considering a pair of 
actions which overwrite (but do not read) a common variable. In that case, due 
to the write-dependencies between the two actions, an example of an 
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atomicity-violating execution can well be constructed, even though there is no 
exchange of information between the two actions, at least not in the simple and 
intuitive sense that one action generates the value of a variable which is then 
read by the other action. 

This remark may be related to the following characterisation of atomicity 
which has been claimed in [11] to be equivalent to the serialisability property: 
"An action is atomic if the process performing it does not communicate with 
other processes while executing the action". Our arguments indicate that the 
equivalence between this characterisation and serialisability must be ques
tioned, unless "communication" is understood as referring to the same depen
dency relation as we are interested in. 

How then can "event dependency" be positively determined? We think that 
the concept of maximal concurrency can be employed. In a maximally con
current execution (such as the first one shown in Fig. 3 and the ones shown in 
Fig. 4, Sect. 2), all event dependencies are significant; otherwise a more 
concurrent execution could be found. Thus we would claim that the depen
dency relation could be characterised by the two statements that (a) in a max
imally concurrent execution all event dependencies are significant, and (b) in a 
given execution, a dependency between two events is significant if it does not 
disappear if the given execution is transformed into a maximally concurrent 
one. 

Thus we have reduced the notion of dependency to the equally unexplained 
notion of maximal concurrency. We believe that in order to determine the 
latter an analysis of the detail of the interaction between the program and its 
variables is essential. Let us, for instance, consider two 2-bit variables 
x, y E {a, 1,2, 3} and the program 

x:= 2* (y mod 2) + x mod 2. 

A detailed analysis shows that this program, in effect, reads only bit ° of y and 
writes into bit I of x (see Fig. 27). 

Let us then consider the parallel program 

(x := 2* (y mod 2) + x mod 2) II (y:= 2* (x mod 2) + Y mod 2) 

and let us assume that each program consists of two reads (of x and y, re
spectively) followed by a single write. In this case no significant cross-depen
dencies exist because of the way in which the two programs access the two 
variables x and y: 

~ 
x ~I -----..1 y 

bit bit 0 bit bi t 0 Fig. 27 
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Hence in a maximally concurrent execution all dependencies between the two 
programs would disappear. This example shows that the semantic interaction 
between the program and its variables may vary considerably from what it 
appears to be syntactically, entailing difficulties in the determination of max
imally concurrent executions. 

We believe that the exact relationship between event dependence, maximal 
concurrency and information flow needs much further exploration. In the oc
currence graphs which we use to formulate our atomicity criterion, if we do 
not assume that all dependencies are significant, then the atomicity criterion 
may be "too strong" in the sense that an execution which on the face of it 
does violate atomicity, nevertheless cannot lead to incorrect results, because 
some of the dependencies of a cycle may be insignificant. However, the other 
and more important direction of this statement always holds: if an execution 
does not violate atomicity then it can never lead to an incorrect result (unless, 
of course, one of the actions has itself been programmed incorrectly). 

Finally, we would like to reconsider our example of the doubly linked list 
and draw attention to the fact that the damage done by the atomicity-violating 
execution shown in Fig. 4c (leading to the corrupt final state of the list shown 
in Fig. 5) is not completely irreparable. If, starting with the corrupt final state, 
either rem (x) or rem (y) is first "undone" by executing it in reverse order and 
then "redone", a correct final state can be obtained. 

This suggests an alternative implementation of atomicity. Rather than 
avoiding cycles from the outset one could try to cope with cycles. An 
"exception mechanism" would be waiting for a violating of atomicity to occur 
and then take action along the lines described in the last paragraph. This 
would require the capability to undo an action, as well as (possibly) the 
"chasing" of corrupt information as described in Sect. 4.3, again highlighting a 
connection between atomicity and error recovery. 

Unfortunately there seem to be difficulties in generalising the undoing and 
redoing method suggested above. The example of the parallel addition (see the 
discussion relating to Fig. 14) cannot as easily be analysed as the linked list 
example. It might be another interesting future task to determine those proper
ties which make the doubly linked list behave so "nicely" in this situation. 
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Reliable Resource Allocation 
Between Unreliable Processes 

S. K. SHRIVASTAVA and J.-P. BANATRE 

Abstract. Basic error recovery problems between interacting processes are first discussed and 
the desirability of having separate recovery mechanisms for cooperation and competition is 
demonstrated. The paper then concentrates on recovery mechanisms for processes competing 
for the use of the shared resources of a computer system. Appropriate programming language 
features are developed based on the class and inner features of SIMULA, and on the struc
turing concepts of recovery blocks and monitors. 

Index Terms. Concurrent processes, error recovery, monitors, recovery blocks, reliable pro
grams, resource allocation, software redundancy. 

I. Introduction 

The realization that even a well-designed and tested system is likely to contain 
residual faults has increasingly led designers to consider the application of re
dundancy techniques to software construction. Recently a program structure 
called a recovery block has been developed that allows redundancy, in the form 
of standby spares, to be added systematically and efficiently to computer pro
grams to make them more reliable [1], [2]. The essence of this scheme is that it 
provides a facility for a computation to be backtracked to an earlier state, if an 
error is detected, and proceed again using a possibly different algorithm. 

In this paper we extend this idea to apply to the error recovery problems of 
concurrent processes of an operating system sharing the limited resources of a 
computer system. A very general overview of the problem we wish to tackle 
here can be obtained by considering the progress of a process in an operating 
system. Suppose that during its "forward motion," the process is generating re
sults entirely by assignments to variables in its private space. If an error is de
tected, the "reverse motion" of this process to a prior state is easily performed 
- the undoing of assignments is equivalent to the restoration of prior values. 
However, the actions of a process can be quite diverse - for instance, control of 
a peripheral. In general then, during its forward motion this process will gener
ate results by recording them in various resources, such as storage locations, in
put-output equipment. Since many of the resources involved will usually be 
shared between processes, the process under consideration will occasionally be 
interacting with other processes during its progress. If an error is detected, the 
reverse motion of this process is no longer as easy as before and it may become 
necessary to provide algorithms for undoing the effects of previously done 
operations. Just as the process interacts with other processes during its forward 
motion, it may also interact during its reverse motion. It is thus seen that when 
programming for processes that are capable of backtracking, apart from pro
gramming for their normal forward progress, we must also be prepared to pro-
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gram for their reverse progress. The important point to note is that appropriate 
programming language tools must be provided to cope with this additional 
complexity in a systematic manner, otherwise resulting programs are likely to 
be even less reliable than versions with no redundancy. We believe that the pro
gramming language features developed in this paper meet the above criterion; 
however, the reader must be the ultimate jUdge. 

The paper is structured into seven sections. Since recovery blocks play a 
prominent role in this paper, they are discussed in Section II where the role of 
exception handlers is also described. It is necessary to understand the main er
ror recovery problems between interacting processes before appropriate pro
gramming language features can be developed. For this reason, we discuss the 
recovery problems in Section III and then in Section IV, we discuss the recovery 
requirements for a class of problems for which language features are to be de
veloped. In Section V we describe how recovery blocks can be introduced into 
resource allocation algorithms implemented using monitors. A program struc
ture called a port is developed in Section VI. A port provides facilities for speci
fying how a resource should be used and what recovery actions a reversing pro
cess should undertake. Finally, in Section VII, we briefly discuss some im
plementation details and summarize the work presented. 

II. Error Recovery 

A. Recovery Blocks and the Recovery Cache 

A system can contain residual faults both in the hardware and software. There
fore, when an error is detected, quite often it is not possible to determine the 
sources of the fault; backward error recovery then is the only sensible solution. 
The recovery action consists of restoring a prior state of the computation and 
proceeding again in the hope of avoiding the fault. By using a different algo
rithm, after the restoration, a measure of fault tolerance against software faults 
can be obtained. A recovery block is a program structure embodying backward 
error recovery. 

A recovery block consists of a conventional block which is provided with a 
means of error detection (an acceptance test) and zero or more standby spares 
(alternatives). Its structure is shown in Fig. 1. 

ensure (acceptance test) by 
(primary block) 
else by 
(alterna ti ve I) 

else by 
(alternative n) 
else error; Fig. 1 
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As discussed in [1], [2], the primary and the alternatives represent different 
algorithms for producing acceptable results, the primary block representing the 
preferred algorithm. After the execution of the primary block, the acceptance 
test (a Boolean expression) is evaluated to check that the results produced are 
acceptable. If so, the statement following the recovery block is executed; other
wise the state of the computation is restored to that at entry to the recovery 
block, and the first alternative is tried, and so on. If during the execution, some 
error is detected (e.g., division by zero) then this is also regarded as the failure 
of the primary block or the current alternative, as the case may be, and the 
same recovery actions are taken as in the case of the failure of the acceptance 
test (this behavior is explained further in Section II-B). If the primary and all 
the alternatives fail then this is regarded as a failure of the current recovery 
block; further recovery may be performed by the enclosing recovery block, if 
any (recovery blocks can be nested to any degree). 

State restoration is achieved with the help of a device called the recovery 
(or recursive) cache. Since recovery blocks may be nested, the cache is orga
nized as a stack and contains entries for recovery blocks entered but not yet 
exited. Upon entry to a recovery block, recovery data are collected by treating 
global variables as follows: the value of a global variable is "cached" just be
fore the first update in that recovery block is performed. Subsequent updates to 
that variable in that recovery block need not be cached. To undo the effects of 
operations other than assignments, the designers of the recovery block scheme 
presented their initial ideas on the concept of "recoverable procedures" [I]. 
Such a procedure has a "normal" procedure body that performs a given opera
tion and a "reverse" procedure body to be executed when reversal of that 
operation is desired. These ideas are developed further in this paper. 

At this point we introduce two simple facilities (not present in the original 
proposals [I], [2]) in the recovery block scheme. The first facility will turn out to 
be of a great use when programming reverse operations. We assume that a 
Boolean flag "errorflag" is associated with each process in the system that in
dicates whether this process is going forward or backward. It will be the re
sponsibility of the recovery cache management system to update this flag prop
erly. We make this flag accessible to programs in a read only mode. Recovery 
blocks can also be used to provide a more conventional form of "check point 
and restart" facility as shown below, where "retry" means "execute again the 
previous block." 

ensure (at) by begin ... ' ... end else by retry else by ...... else error; 

This type of recovery block usage will provide fault tolerance against certain 
types of transient hardware faults only and should really be used when a pro
grammer has a complete (and hopefully justified) confidence in the adequacy 
of the design of the primary block. 

Complete details of the recovery block scheme and its cache are presented 
in [1]. Many of the theoretical ideas on structuring complex systems using re
covery blocks are given in [2] while practical details of an implementation of 
simple recovery blocks are presented in [3]. 
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B. On Faults, Errors, and Exceptions 

The recovery block approach we have just discussed is a means of coping with 
residual faults in a system (such faults can be termed "u~anticipated faults"). 
Quite often, when designing a particular algorithm, it is possible to anticipate 
the exact consequences of certain abnormal situations that might occur. There
fore a programmer, if he wishes, can take appropriate steps in his programs to 
deal with these anticipated abnormal situations. The discipline of coping with 
such situations is usually called exception handling [4], [5]. One can therefore 
say that exception handling is a technique for dealing with "anticipated faults" 
and is complementary to recovery blocks (the relationship between recovery 
blocks and exception handling is explored in [6]; note also that it is argued in [4] 
that the role of exception handling need not be just confined to the one we are 
assuming here). Throughout this paper, we will implicitly assume the use of ex
ception handlers and confine our attention to coping with unanticipated faults 
only. When we say that "an error is detected at a particular point in a program" 
we mean that "an, abnormal situation has occurred (an exception has been 
raised) for which no exception handler is available." Thus, if a division by zero 
exception is raised while executing a recovery block, this will not cause the 
failure of the primary block or the current alternative if an exception handler 
for this exception has been provided. Of course, if the action of the handler in
volves stopping the program from running by raising an "abort" exception, 
then this exception will invoke the recovery actions of the recovery block as ex
plained earlier. 

III. Error Recovery Problems Between. 
Interacting Processes 

A. General 

Concurrent processes in an operating system are said to be loosely coupled, that 
is, most of the time their activities are independent of each other but sometimes 
they exchange information. Consider now the recovery problems associated 
with process interaction. Assume that a process passes some information to 
some other process(es) (i.e., sends a message or modifies the environment com
mon to them). While this operation may be "acceptable" to the information 
generating process, in general we cannot afford to throwaway the recovery in
formation associated with this operation (i.e., the cache entries corresponding 
to this operation which we assume is inside a recovery block) until the other 
concerned processes have "accepted" the passed information. These processes 
will however react in their own time; thus the recovery information may have to 
be preserved for a long time. What should the first process do in the meantime? 
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On the one hand, if it were allowed to proceed with its computation, during 
which there may be further interactions involved, then there would be the risk 
of a domino effect [2], that is, a reversal in one process may give rise to an ava
lanche of reversals in other processes. On the other hand, if its progress were 
halted, pending acceptance of the information by the receivers, then there 
would be the risk of seriously reducing the asynchronism in the system .. One 
particular solution would be to choose a larger unit of recovery such that it en
compasses all the interactions between the concerned processes. The limitations 
of this solution are that I) it has lost the generality of the recovery block ap
proach which allows a programmer to choose an arbitrary "grain of recovery," 
and 2) quite often, the number of processes that will interact at a given time is 
not known in advance. It is thus seen that the control of processes and manage
ment of recovery information can become an extremely complex problem, and 
a general solution that allows processes to interact arbitrarily and yet provides 
recovery from unanticipated faults does not appear to be possible. What seems 
possible however, is to develop mechanisms for different classes of interactions. 
We have found the classification of interactions into interference, cooperation, 
and competition, as defined in [7], to be the most suitable. Interference includes 
those interactions that are unacceptable or unanticipated. This will happen 
when processes are simultaneously allowed to modify shared data. Mechanisms 
which allow processes to operate on shared data without interference (e.g., P 
and V operations on semaphores) are simple and implemented at a very primi
tive level; we shall assume here that they operate reliably. We shall also assume 
that programming language features are available (e.g., monitors [9]) to ensure 
that these mechanisms are used properly so that the operations on shared data 
are free from interference. Cooperation occurs when processes explicitly wish to 
exchange information with each other, while competition occurs when pro
cesses have no explicit desire to exchange information, but nevertheless they do 
so as they must share resources. These two forms of interaction are discussed 
below in some detail. 

B. Cooperation and Competition 

Consider a two-level system in which the lower level manages all the resources 
to be shared by the processes of the system (see Fig. 2). To be specific, we as
sume that the resource allocation algorithms have be~n implemented using 
monitors [9]. So the processes wishing to acquire or release these resources in
voke appropriate monitor procedure calls. In the lower level, the processes are 
competing for the shared resources. When these resources are used privately by 
processes [Fig. 2(a)] then, at the higher level, these processes appear to be logi
cally independent: the interface hides the competition. On the other hand, the 
processes of Fig. 2(b) are cooperating, as the acquired resources are explicitly 
being used for information exchange (as shown by the heavy arrows). We thus 
see that competition is a lower level activity with respect to cooperation. We 
consider first the recovery problems of cooperating processes. 
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no interaction 

~----~-----~ 

shared resources + J 
their monitors 

(a) 

competition 

..... 30 

between P1 ... Pn 

co-operation 

[
shared resources + 

their monitors 

(b) 

Fig. 2. a Private use of shared resources. b Shared use of shared resources 

In general, cooperating processes are capable of exchanging arbitrary infor
mation (in the sense that a process can update a shared file in a manner it 
thinks fit or can send any message to other processes). This implies that, in gen
eral, only the receivers can verify the sent information. For this reason, in the 
conversation mechanism of [2], when processes enter a conversation (i.e., start 
exchanging information inside a common recovery block), they are allowed to 
exit from it only when all the concerned processes pass their acceptance tests 
(implying they are satisfied with the information exchange). Obviously, this 
restriction can reduce the degree of asynchronism in the system. As an example, 
consider the simple case of error recovery between producing and consuming 
processes coupled via a bounded buffer as described in [8]. If the "production 
of a message" and its "consumption" are programmed as a conversation, then it 
is no longer possible for the producer to race ahead of the consumer. Whether 
the conversation mechanism can be complemented by other mechanisms, 
which would allow the producer to race ahead, remains to be seen and we are 
currently investigating this area. 

Considering competition [i.e., the interaction in the bottom levels of 
Fig.2(a) and (b)], we find that processes using a given monitor interact only 
through the monitor's shared data. This case is easier to deal with than cooper
ation (where the acquired resources are used for information exchange) for the 
following reason: the only information that processes exchange is that necessary 
to achieve harmonious resource sharing and this is determined by the monitor 
procedures. Thus it is no longer possible for processes to exchange arbitrary in
formation using a monitor's shared data. As a result, when a process performs 
an operation on a monitor's shared data (i.e., executes a monitor procedure 
body) it should be in a position to assert the "global acceptability" of the 
shared data. This means that this form of interaction need not be structured as 
a conversation. We have exploited this property in the design of recoverable 
monitors to be described later. 
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IV. Recovery Requirements for Competing Processes 

In this paper we are concerned with competing processes only, that is, processes 
of Fig. 2(a). One way of making the system of Fig. 2(a) reliable is by systemati
cally introducing redundancy using the recovery block approach. Reliability is 
achieved in the lower level by making resource allocation algorithms reliable -
this is done by using recoverable monitors (clearly, it is also beneficial to have 
hardware redundancy, but here we ignore this aspect and concentrate only on 
software redundancy). In the upper level, the codes of the processes will also 
contain redundancy. Since at this level these processes are logically in
dependent, their recovery actions are also independent. If a process, after ac
quiring and using a resource, wishes to backtrack to an earlier state where this 
resource was not acquired, then it is necessary 1) to release the resource, and 2) 
to undo any effects owing to the use of the resource. We study these recovery 
actions in a greater detail below. 

Figure 3 shows a recovery block where "units" is a recoverable monitor (i.e., 
a monitor whose procedure bodies are coded as recovery blocks - precise de
tails of which are to be discussed in Section V) managing a pool of units - a 
process can acquire a unit, use it, and release it. The actual use of the acquired 
unit is performed inside a forward procedure "q" which specifies how the re
source is to be used. There is also a backward procedure "undoq" that specifies 
how to undo any effects of the resource use (precise details of the program 
structure that provides facilities for defining such procedures need not concern 
us just now; they will be discussed in Section VI). We see that the execution of 
"q" is preceded by a "prelude" (concerned with resource acquisition) and fol
lowed by a corresponding "postlude" (concerned with the release of the re
source). 

Let an error occur while performing an operation. We consider recovery ac
tions, other than restoration of prior values, that might be needed. 

forward procedure q ( ... ); 
begin ... u e of one unit ... end; 

backward procedure undoq; 
begin ... undo the effects of use ... end; 

ensure (at) by "recovery block R" 
begin "primary block" 

units.acquire ( ... ). "prelude" <- (a) 
oo. <- (b) 
q (oo.); <- (c) 
oo. <- (d) 

unit .relea e ( ... ); "postlude" +- (e) 
oo. +- (f) 

end else by "first alternative" ... 
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Error at point "a": This means that the primary and all the alternatives of "ac
quire" of the recoverable monitor "units" have failed and obviously this gives 
rise to the failure of the primary block of recovery block R; the alternative 
block must now be tried - no special recovery actions are necessary (note that if 
"acquire" is successful, i.e., no error at "a," the net result is the appropriate up
date of the monitor variables ). 

Error at point "b": The problem here is how to undo the effects of "acquire." 
Clearly it is possible to restore the state of the monitor variables but this would 
mean backtracking all those processes that have performed operations on 
"units" after the process under consideration performed "acquire." This is not 
necessary since simple reasoning tells us that all that is required is to release the 
acquired unit. The justification for this reasoning is as follows: a monitor (or 
any other SIMULA-like class object) is an abstract data type providing abstract 
operations over an abstract space - monitor variables being a concrete rep
resentation of this space. It is the abstract state of the object that is of concern to 
a calling process and it is only necessary to restore the abstract state when re
versing - this does not necessarily mean restoring the concrete state. Thus, by 
releasing the unit (i.e., by calling "release") we ensure that the operation "ac
quire" can continue to provide the abstraction "a unit will be made available 
within a finite time." To summarize, the backtracking process must execute the 
postlude. 

Error at point "c": Procedure "q" specifies how the acquired resource is to be 
used. The object of this use is to produce side effects the computation desires. 
We may regard a call on "q" as performing an abstract iQdivisible operation 
such that no side effects are produced if the execution of "q" fails. The recovery 
action is the same as at "b" discussed previously. . 

Error at point "d": The backward procedure "undoq" must be executed to undo 
the effects of the use of the acquired unit. As an example, consider that the for
ward procedure is for printing a file on the acquired line printer. Then the 
backward procedure for "unprinting" might be to send a message to the oper
ator's console to ignore that printed file. This example also illustrates that re
sources needed for "undoing" may not be the same as that for "doing." After 
executing the backward procedure "undoq," further recovery actions needed 
are the same as at "b." 

Error at point "e": This error, implying that resources camiot be returned is 
much more serious than the others discussed so far. This is because if the pro
cess is allowed to backtrack, it will eventually try. to undo the prelude by 
executing the postlude (which it was unable to execute in the first place); A fail
ure in a postlude is therefore regarded as a collapse of the recovery mechanism 
and the only sensible strategy is for the process to ignore this error and contin
ue, hoping that a degraded service can still be provided. 

Error at point "r': Since the postlude has been executed, the only effect that 
needs undoing is that due to "q" - this may be done by calling "undoq." Pro-
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b: buffer; 

pool.acquirebuffer (b); 
put orne information 
in the acquired buffer' 

ensure (at) by 
begin 

pool.relea ebuffer (b); 

end else by 
begin 

pool.releasebuffer (b); 

end ... 

(a) 

b: buffer; 

pool.acquirebuffer (b); 
put some information 
in the acquired buffer' 

ensure (at) by 
begin 

end else by 
begin 

end ... 

else error; 
pool.relea ebuffer (b); 

(b) Fig. 4 

vision must be made for acquiring the necessary resources needed for undoing 
(in particular, it may be necessary to reacquire the released resource). 

Error while backtracking: Any error detected while backtracking is quite serious 
since it means that the system will be unable to return to a consistent state. 
Again, a sensible strategy is to continue operation with the hope that some form 
of service may still be given. 

We conclude this section by pointing out an important class of errors which 
can occur if proper program structuring is not used. In Fig. 4(a) a buffer is ac
quired from a shared pool of buffers and its release is done inside a recovery 
block. 

If an error occurs at the point shown by the arrow (i.e., after the release), the 
execution of the alternative is meaningful only if the released buffer is acquired 
again, however, this cannot be guaranteed. This problem is not present in 
Fig.4(b) where the acquired resource is released outside the recovery block 
concerned with its use. 

We have identified the required recovery actions for a process using the 
shared resources of a system. From this discussion it is clear that if we can syn
tactically specify "prelude," "use," "unuse," and "postlude," then it is possible 
to design an appropriate recovery strategy. It is then only necessary to extend 
the recovery cache mechanism such that the cache processing includes this 
strategy. 

In the next section, we describe how recovery blocks may be introduced in 
monitors. Such "recoverable monitors" are a means of making resource allo
cation algorithms reliable. A program structure called a port is next developed 
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which provides facilities for specifying 1) a prelude and postlude, that is, how 
the calls on recoverable monitors are to be made for acquiring and releasing re
sources, and 2) how the acquired resources are to be "used" and "unused." The 
recovery cache management necessary to support recoverable monitors and 
ports is discussed in Section VII. 

V. Recoverable Monitors 

Recoverable monitors are a means of adding redundancy to the resource allo
cation algorithms. Bearing in mind the discussion in Section III-B on compe
tition, we can say that the acceptance test of a monitor entry procedure (i.e., a 
procedure which may be called from outside the monitor) should test for the 
"global" acceptability of that operation, that is, test that not only is the result of 
that operation acceptable to the calling process, but also that it will be accept
able to subsequent calling processes. The state of a monitor after the acceptance 
test of one of its operations has been passed is called its consistent state. Briefly 
stated then, a recoverable monitor is used by processes as follows: the calling 
process will expect to find the monitor in a consistent state (say 61); after the 
execution of the appropriate procedure body, assuming it passes the acceptance 
test, it will leave the monitor in a (possibly different) consistent state (say 62), In 
case the test fails (or an error is detected during execution), 61 is restored and 
the next alternative is tried; if none exists then the process will get an error re
turn and will have to take its own appropriate recovery action. We can ensure 
that a calling process finds a monitor in a consistent state by making sure that 
I) a monitor is initialized to a consistent state, and 2) the executing process 
leaves the monitor in a consistent state before any other process is given entry. 
Some care is needed in order to observe the second condition. Fig. 5 shows an 
alternative of a monitor procedure body with a synchronizing operation such as 
a "wait" or "resume process." Assume also that sl and s2 are statements updat
ing monitor variables. 

The danger now is that, as a result of the synchronizing operation, control 
may be given to some other process before the state of the monitor has been 
validated by the acceptance test. For example, if the synchronizing operation is 
a "signal" [9], then the awakened process (if any) will immediately be allowed 
to enter the monitor. It is thus clear that such operations must not be performed 
from inside a recovery block. A recovery block used in a procedure with syn-

ensure <at) by 
... else by 
begin 1; 

wait/resume operation; 
s2 

end else by 

Fig. 5 
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entry procedure procname ( .. . ); 
begin 

(variable declarations) 
[s 1] 

['wait operation'] 
(recovery block) 
['re ume process operation'] 

end; Fig. 6 

chronizing operations must be placed, as shown in Fig. 6, where operations in
side square brackets are optional and "sl" is an operation without side effects. 

Fortunately, in a majority of cases, as the examples of [9], [10] show, a 
"wait" operation is the first operation before side effects are produced and "re
sume" operations are the last operations in a procedure, so the above structur
ing should not prove to be too restrictive. The proof guided methodology pre
sented in [9], [10] also indicates how acceptance tests may be constructed. In 
Section VII, we briefly discuss recovery cache details to support these monitors. 

VI. Ports 

A program structure called port is developed here which, as the name suggests, 
acts as a gate through which one or more ways of using a resource are made 
available to a process. In this section we shall see how the language features for 
recovery actions, discussed in Section IV, are incorporated into this program 
structure. 

A systematic method of allowing processes to use the shared resources of 
the system is to create virtual resource objects out of real resources; a process 
can then create a "local instance" of a given virtual resource object when it 
wishes to use that resource. Hoare has shown that the SIMULA language's class 
and inner concepts [11] can be elegantly used for the above purposes [12]. The 
port structure to be described in this subsection follows directly from his ideas; 
however, their application .to recoverable processes is believed to be new. 

Let us suppose that we wish to create a virtual disk; we will consider the 
write operation of this disk in more detail (a Concurrent Pascal [13] like lan
guage is assumed). Let "diskinout" be a class that defines all the control opera
tions on a disk: 
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type diskinout = class 
begin 

machine code routines to perform disk head 
movement, reading, writing etc. 

end; 



For this disk, a resource allocation algorithm is implemented which al
locates diskpages (where a diskpage is a sector on a track) to requesting pro
cesses and also controls the movement of diskheads as suggested in [9] (recovery 
blocks in the procedure bodies are now shown): 

type diskresource = recoverable monitor 
begin var pageset: set of diskpage; "pool of free pages" 

... other variables ... 
entry procedure move (p: diskpage); 

{use algorithm of [9] to queue the request 
to move heads to the track of 'p'} 

entry procedure move to write (var p: diskpage; var found: boolean); 
{ifpageset not empty then {acquire a free page and queue 
the request for head movement; found:= true} 
else found:= false} 

entry procedure releasepage (p: diskpage); 
{pageset := [pageset] + [p]} 

entry procedure releasehead; 
{use algorithm of [9] to service the next request} 

end diskresource; 

A few words are in order here regarding the procedure "move to write": this 
procedure is called when a process wishes to acquire a free page to write on it. 
We can anticipate that occasionally the disk will become full. For this reason 
we have chosen not to treat the "disk full" event (i.e., when "found" is set to 
"false") as an error condition requiring backward error recovery provided by a 
recovery block. 

A class "diskcontrol" can now be written that provides virtual operations 
through ports (entry means that instances of that type can be created outside). 
Here, "writepage" provides a "write" operation for writing on the acquired 
page; "read page" provides a "read" operation; "releasepage" is a port for re
leasing a page (this is needed, for example, when a process wishes to delete a 
file) and "update" provides a "rewrite" operation for updating a previously ac
quired page. Only the "writepage" port is programmed, the rest are similar. At 
this stage, ports may be regarded as identical to classes. 

type diskcontrol = class 
begin var inout: diskinout; 

resource: diskresource; 
entry type writepage = port 

begin var p: diskpage; found: boolean; 
entry procedure write (c: corepage; var possible: boolean; 

var pp: diskpage); 
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begin 
possible := found; iffound then begin 
use 'inout' to write from 'c' to 'p'; 
pp:= pend 

end write; 
resource. move to write (p: found); "prelude" 

inner; 
resource.releasehead; "postlude" 

end writepage; 
entry type readpage = port (p: diskpage) 

begin . .. end read page; 
entry type releasepage = port 

begin . .. end releasepage; 
entry type update = port (p: diskpage) 

begin . .. end update 
end diskcontrol; 

Assuming there is one disk unit, an instance of type "diskcontrol" will be 
declared global to all user processes: 

diskuse : diskcontrol; 

and a process wishing to perform a write operation will proceed as follows 
(where "c" has been declared as a corepage, "r' a Boolean, and "p" as a 
diskpage): 

... using diskwrite: diskuse.writepage do 
begin ... diskwrite.write(c, f, p); ... end; ... 

A local instance of port "writepage" is created and then its "write" opera
tion is called. The term using emphasizes the fact that, because of the inner 
statement, the execution of the statement following do will be enclosed by the 
prelude-postlude of the port. We thus see that a port can be regarded as the 
modus operandi of a resource, taking on the responsibility of acquiring and re
leasing that resource and providing appropriate operations for the use of the re
source. A clear separation between resource acquisition and resource use now 
allows us to introduce the kind of error recovery discussed in Section IV. 

A. Recovery Features in Ports 

The port schema with the recovery features is shown below. The following 
points should be noted: 

(entry] type (name) = port (formal parameters) 
"entry is an optional feature" 
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begin . .. local variable declarations ... 
... procedures/forward entry procedures; one such 

forward entry procedure is shown below ... 
forward entry procedure <name) (formal parameters); 

begin ... end; 
... other procedures/forward entry procedures ... 
(backward entry procedure <name); 
"this procedure is optional" 

begin . .. end;) 
S 1; inner; S2 

"Si are statements; where, 
S 1 is the prelude and S2 is the postlude" 

end "of port definition" 

1) Only a port is allowed to contain forward procedures and a backward 
procedure. The "forward" prefix dictates that only a forward going process may 
call that procedure. 

2) The backward procedure is parameterless and can only be called by a 
process while reversing. Its role is purely to undo the effects due to the calls on 
the forward procedures (the local port variables may be used to record the in
formation needed by the backward procedure, as illustrated by the "writepage" 
and "printop" examples to follow). 

3) None of the procedures of a port are allowed explicit access to monitors. 1 

Only the prelude and postlude can contain monitor calls. Whether these moni
tors are conventional or contain recovery blocks (recoverable monitors) is irrel
evant from the point of view of a port. By insisting that only the prelude and 
postlude may contain monitor calls, we guarantee that the role of resource 
handling is confined to these program parts only. 

We shall now see how to make the "writepage" port recoverable. The "use 
of the resource" is programmed as a forward entry procedure and "un use of the 
resource" is programmed as a backward entry procedure. In our example we can 
assume that "unuse" consists of clearing the written disk page (say, writing all 
zeros in it). We note also that this "unuse" requires the disk resource. The port 
"writepage" with recovery features is now shown below (to make this example 
more interesting, we have also put recovery blocks in the bodies of the pro
cedures, albeit with "retry" as the only alternative). 

entry type writepage = port 
begin var p: diskpage; found, acquired: boolean; 

forward entry procedure write 
(c: corepage; var possible: boolean; var pp: diskpage); 

A procedure can, of course, declare a local instance of some port and thus have implicit ac
cess to monitors used in that port. 
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begin possible := found; if found then 
begin pp:= p; ensure (good writing) by 

begin write from 'c' to 'p' end else by 
retry else error 

end 
end write; 

backward entry procedure unwrite; 
begin var ct: corepage; if found then 

begin initialize 'ct' with zeros; 
ensure (good writing) by 
begin write from 'ct' to 'p' end else by 
retry ehle by retry else error 

end 
end unwrite; 

if'" errorflag then begin "process is going forward" 
acquired := true; 

inner; 

resource. move to write (p, found) 
end else 

begin "process is going backward" 
iffound then begin acquired:= true; resource.move (p) 

end else "a page was not 
acquired so no resources are needed for undoing" 
acquired := false 

end "prelude" 

if found & errorflag then resource.releasepage (p); 
if acquired then resource.releasehead "postlude" 

end writepage; 

The meaning of the various new constructs is explained with the help of the 
program shown in Fig. 7 (the particular recovery structure of this figure has 
been chosen deliberately to explain the semantics of port; it is not intended to 
show a typical use of "writepage"). 

We now consider various possible execution sequences (for failures, only 
the recovery actions other than restoration of prior values are described): 

1) AT3 passed: This means that the recovery block R3 has produced accept
able results. The execution steps were the prelude of "diskwrite", then the re
covery block, followed by the postlude. As the process is going forward (i.e., er
rorflag=false), "move to write" will be called in the prelude; assuming the disk 
is not full (found=true), only the diskheads will be released in the postlude (we 
assume that a process retains the page after acquiring it). 

2) Error at point "i": The alternative of R3 must now be tried. Before that, 
the backtracking process calls the backward procedure "unwrite" of port "disk
write" to undo the effects of write. Note that a failure at "i" implies that the 
procedure "diskwrite.write" was executed satisfactorily, but nevertheless the 
process failed after that. No recovery capability is available if the primary and 
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ensure AT I by "recovery block R I " 
begin 

ensure AT2 by "recovery block R2" 
begin var c: corepage' found: boolean; p: diskpage; 

using di kwrite: disku e.writepage do 
ensure AT3 by' recovery block R3" 

begin 

diskwrite.write (c, found, p); 
· +- (i) 

end else by 
begin 

· +- U) 

diskwrite.write (c, found, p); +- (k) 
· +- (I) 

end else error; 
. +- (m) 

end else by 
begin 

using diskwrite: diskuse.writepage do 

end else error; 
. +- (n) 

end else by 
begin 

end else by 

Fig. 7 
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all the alternatives of "unwrite" fail. In this case, as discussed in Section IV, the 
process will ignore this failure and continue its operation. 

3) Error at point "j": The alternative of R2 must now be tried. Before this is 
done, the process, as it backtracks, releases the resources by executing the post
lude (as errorflag=true, if the process had acquired a page then it will be re
leased). 

4) Error at point "k": The process was unable to write properly (from the 
code of "write" we see that two attempts were made to write); the recovery ac
tion is the same as at "j." 

5) Error at point "/": Before the alternative of R2 can be tried, the back
tracking process must undo the effects of "write" and also release the resources. 
This is done by calling "unwrite" and then executing the postlude. 

6) Error at point "rn": Before the alternative of R2 is tried, "unwrite" is ex
ecuted between the prelude and postlude. The reasoning for this action is as fol
lows: clearly it is necessary to undo the effects of "write," but the required re
sources have been released. It is therefore necessary to execute the prelude and 
subsequently the postlude to acquire and release the resources. 2 The local vari
able "found" of the port is used to record whether a page was acquired by the 
forward going process. If "undoing of actions" were not our aim, we would 
have expected the port object "diskwrite" to be destroyed after the execution of 
the postlude. However, since we want to introduce the feature of programmed 
recovery actions, it is no longer possible for port objects to follow this scope 
rule (see the Appendix for the scope rule for ports). 

7) Error at point "n": Recovery actions are the same as at "m." 

B. Some Remarks on the Remaining Ports of "diskcontrol" 

Rather than programming the remaining ports of "diskcontrol" (readpage, re
leasepage, and update) we discuss here some of their interesting features and 
leave the task of programming to the interested reader. The port "readpage" 
does not need a backward procedure for undoing the effects of a diskread 
operation. This is because the recovery cache will automatically store the pre
vious contents of the "corepage" as it is updated by the diskread operation. An 
interesting problem arises while programming "update" port. If we assume that 
it has a "rewrite" procedure for overwriting the contents of a disk page, then 
clearly the previous contents of the disk page must be stored in a local port 
variable so that the effect of "rewrite" can be undone, if desired. From the 
cache storage's point of view, this may prove to be costly (especially when up
dating random access files) and a practical solution is as follows: the operation 
of "update" port is made unrecoverable (i.e., no attempt is made to save the 
previous contents of the disk page; no backward procedure is needed) and re
covery is provided at the file level rather than at the disk page level. File level 

2 If the process had not acquired a page then no resources are needed for undoing, so the varic 

able "acquired" is used to record whether a resource was acquired in the prelude. 
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recovery can be provided by ensuring that the filing system always creates a 
backup file before a user is allowed to update that file. The same arguments 
hold for the "releasepage" port. 

Two (often conflicting) factors influence the task of deciding whether to 
make operations of a port recoverable: 1) the "grain of recovery" desired, and 
2) the recovery information storage requirements. In a hierarchically structured 
system, a fine grain of recovery can be obtained by introducing recoverability 
in most of the levels of the system while a larger grain of recovery can be ob
tained by introducing recoverability in only the top few levels. The latter ap
proach is likely to demand appreciably less recovery cache storage than the for
mer one. As an example, the overheads of providing a fine grain of recovery by 
making "write" operation of "writepage" recoverable as shown here may be ac
ceptable in a situation where a time critical process acquires pages in
crementally. 

C. Another Example 

As another example, suppose that we want to make printing of files reliable 
(especially tolerant against transient printer faults). A port "printop" is pro
grammed as shown. It provides a "printpage" operation for printing a page. A 
process can acquire the printer, print the desired number of pages (by repeat
edly calling "printpage") and then release the printer. If during printing, the 
process detects an error (we assume that this activity is being done inside a re
covery block) and backtracks, the effect of the printing is "undone" by the op
erator message to ignore the number of pages printed for the user (note that the 
backward procedure of a port is called only once while recovering - see the Ap
pendix for more details). Exception handling techniques may be used in the 
procedures "newpage" and "printpage" for dealing with certain exceptional 
events from the printer, such as, "printer not online;" such exception handlers 
are not shown in the program. To deal with unanticipated faults in the printer 
(e.g., accidental switching off of the printer during printing) a timer is used in 
the "printpage" and "newpage" procedures. It will be left to the calling pro
gram to deal with the "time out" exception (when raised). 

type printer = class (number: integer) 
begin var pc: pcontrol; "a class providing primitive printer operations" 

pa: paccess; "a recoverable monitor for exclusive access 

entry type printop = port (id: name) 
begin var count: integer; acquired: boolean; 

forward entry procedure newpage; 

to the printer" 

begin set timer; use 'pc' to prepare the printer to 
start on a new page; clear timer 

end; 
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forward entry procedure printpage (c: corepage); 
begin set timer; use 'pc' to print the contents of 'c' 

on the printer; count:= count + I; clear timer 
end; 

backward entry procedure undo; 
begin using operator: console. output do 

end; 

operator. send ('ignore any current output of 
user', id, 'on printer', number, 
'consisting of', count, 'pages') 

if errorflag then acquired := false else 
begin acquired := true; count := 0; pa.acquire end; inner; 

if acquired then pa.release 
end printop 

end printer; 

Let us assume a "printerprocess" whose job is to print user files. We assume 
two printers: 

mainprinter: printer (1); auxiliary printer: printer (2); 

The printer process prints on the "mainprinter" but if unable to do so, prints on 
the "auxiliaryprinter" (a printer which is mainly for the use of the computer 
operators). The code of "printerprocess" is as shown below. It is assumed that 
the most likely cause of error is the printer, so the second printer is tried in the 
first alternative of Rl. If this fails as well, a message is sent to the operator (who 
could ask the user to try later). The above process should provide a service de
spite faults in 1) the printers, 2) disk, or 3) the program itself. Assume for 
example that the main printer becomes temporarily faulty. Then the printer 
process will I) release that printer, 2) tell the operator to ignore the partially 
printed file, and 3) start printing the file on the auxiliary printer. There will also 
be a process for printing files requested by the operators. The code of this pro
cess will be similar to that of "printerprocess" except that the auxiliary printer 
is the preferred printer. 

In the code of "printerprocess" we have chosen to regard the "time out" ex
ception raised by the timer of port "printop" as unanticipated - such an ex
ception will invoke the recovery actions of Rl. It is also possible to provide an 
exception handler in the code of "printerprocess" (and, if desired, to do away 
with the recovery block RI). The actions of such a handler might be to release 
the acquired printer and to acquire another printer for printing the file. As it 
happens, this recovery action can be obtained automatically; hence our decision 
of not providing a "time out" exception handler. 

In this example, we have assumed that both the printers have their own 
work loads and only occasionally work load sharing is done. The system has not 
been designed to work smoothly in the presence of permanent printer faults. 
Suppose a few more printers become available. Then a simple method (requir
mg minimum changes in program modules) of introducing fault-tolerance 
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against permanent printer faults is to modify the code of the monitor "paccess" 
such that 1) it now handles a pool of printers rather than just one printer, and 2) 
it provides facilities for adding and removing printers to and from the pool. 
Programs can now be developed easily that would allow an operator to remove 
a suspect printer from service or to add a printer back into the system. 

"assume an object 'r' that maintains a queue of print requests" 
filename, usemame: name; 
map: corepage; "to store file map" found: boolean; 
length: integer; "indicates file length" 

cycle r.getrequest (filename, usemame); 
... using f: filemaster.fileop (usemame) do 
f.open (filename, map, length, found); 
if found then 

ensure (good printing) by "recovery block RI" 
using pr: mainprinter.printop (usemame) do 
begin var c: corepage; i: integer; 

pr.newpage; c:= standard header; 
pr.printpage (c); 
for i := 1 to length do 
begin using dr: diskuse.readpage (map (i)) do 

dr. read (c); 
pro printpage ( c) 

end; 
c := standard tail; pr.printpage (c) 

end else by using pr: auxiliaryprinter.printop (usemame) do 
{similar code as the primary block} 

end "cycle"; 

else by using operator: console. output do 
operator. send ('unable to print file', filename, 

'of user', usemame) 
else error; 

We hope that the reader will now share our belief that ports are a systematic 
method of providing reliable, recoverable operations on the shared resources of 
a system. Programming language rules for constructing ports are stated in detail 
in the Appendix. Finally we note that, thanks to the inner mechanism, resource 
acquisition and release are performed automatically around its use - this elimi
nates the problem illustrated in Fig. 4(a) since programs are restricted to the 
structure of Fig. 4(b). 

VD. Implementation Notes and Concluding Remarks 

We will assume that each process in the system has its own recovery cache. We 
have described briefly, in Section II, the cache mechanism (i.e., how the recov-
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ery information is stored in the cache) for the case of assignments to private 
variables. The extensions needed to support recoverable monitors and ports are 
now described. 

I) Recoverable monitors: Upon entry to the recovery block of a procedure 
(see Fig. 6) of such a monitor, copies of the monitor's variables are stored in the 
cache of the calling process in the usual manner and, if the primary (current 
alternative) fails, the cache is used to restore the .state of the monitor - again in 
the usual manner. If the acceptance test is passed, these variables are popped 
off the cache - they are no longer needed. 

2) Ports: When an object of type port is created inside a recovery block by a 
process, the cache of the process should record details of its use (e.g., prelude 
executed, prelude plus a forward procedure executed, etc.). This can be done by 
reserving a block of storage in the cache (as soon as a port object is created) 
where the above-mentioned details can be recorded. Precise rules for the cach
ing of port variables and calling of the backward procedure are give'n in the Ap
pendix. When an error is detected, the port information can be processed to 
provide the necessary recovery actions (as discussed with reference to Fig. 7). 

The ideas presented in this paper are currently being implemented on our 
PDP11l45; the language chosen to incorporate these ideas is Concurrent Pascal 
[13]. In this experiment, recovery caches will be implemented as a part of the 
interpreter. The Concurrent Pascal system, as developed by Brinch Hansen's 
group, consists of a kernel (which implements processes, monitors, and the 
synchronizing primitives) and an interpreter (which acts as a simple stack ma
chine). The storage organization is shown in Fig. 8. The virtual address space of 
each process is divided into a private segment and a segment that is common to 
all the processes. The common segment contains the virtual code (to be ex
ecuted by the interpreter) and the shared variables (monitors). The task of 
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implementing the features of this paper reduces mainly to the modification of 
the interpreter. The shaded areas in Fig. 8 show the place of recovery caches. 
We hope to report our experience once the implementation exercise is over. 

To conclude: after discussing the basic error .recovery problems between in
teracting processes, we have developed recovery mechanisms to solve a subset 
of these problems - that of concurrent processes competing to use the shared 
resources of a system. Recoverable monitors were developed to make resource 
allocation algorithms reliable (i.e., to make process interaction for competition 
reliable). A program structure called port was developed that provided facili
ties for specifying 1) how a process should call on a (recoverable) monitor to 
acquire and release resources (when going forward or backward), and 2) how a 
process should "use" and "unuse" a given resource. Recoverable monitors and 
ports both impose a strict (but conceptually.simple) discipline on how a pro
grammer should think about resource allocation and recovery; this is essential 
if the recovery problems are to be kept manageable. 

Appendix 
Further Aspects of Ports 

The remaining rules for structuring ports are given here. I) Let pi; p2; ... ; pn 
be a prelude; then only pn may be a monitor call for resource acquisition. 
Operations pi; ... ; pn - I must be recoverable, that is, for pi, I :::;; i :::;; n -I, a) 
pi produces no side effects, Qr b) pi is an assignment operation, or c) pi is a call 
on a recoverable operation of some port. The postlude is compulsorily executed 
only if the prelude has been executed completely. Thus, if a process fails while 
executing pi, I :::;; i :::;; n, then the postlude will not be executed; rather, the pro
cess will backtrack undoing all pj, I :::;; j :::;; i-I; hence the requirement that pi; 
... ; pn -I be recoverable. It is a programmer's responsibility to ensure that a 
prelude's role is confined to resource acquisition and that of the corresponding 
postlude to.the release of the acquired resource. In the majority of cases, pre
ludes and postludes are simply monitor calls for acquiring and releasing. 

2) By creating a local instance of a port, a process, in effect, manipulates 
shared resources which are "permanent" objects. In principle therefore, the 
capability for undoing the effects of this manipulation should be maintained as 
long as the resource objects live. Since this is not a practical proposition, it is 
necessary to define a commitment discipline. It is suggested here that once a 
program successfully terminates, the effects produced by it (if any) should be 
regarded as committed (that is, automatic recovery capability is discarded). 

Following this suggestion, the scope rule for ports is: port objects are treated 
as if they have been created in the outermost recovery block of the program un
der consideration (it is this scope rule that enables us to call upon the services 
of the port for undoing at point "m" or "n" in Fig. 7). The following exceptions 
to this rule should be noted. 
a) If a port object is created inside a forward procedure, then it is treated as a 

local object of that procedure. This is because once such a procedure has 
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been executed, it becomes the responsibility of the backward procedure to 
undo any effects. 

b) If a port object is created inside a backward procedure, then it is also treated 
as a local object of that procedure (this is because "undoing" is never "un
done"). 

c) If a port object is created in a prelude or postlude then it ceases to exist after 
the execution of that prelude or postlude. 
3) In a port, only the bodies of procedures may contain recovery blocks. 
4) While executing the inner statement which is enveloped by the prelude 

and postlude, the local port variables are treated as global variables by the re
covery cache (i.e., on an assignment to such a variable, the previous value is 
cached, if necessary, in the current recovery region of the cache). However, 
when the execution of this statement ends, these cached entries are discarded. 
Consider the following program: 

using A: B.C do 
ensureATl by "Recovery block RI" 
begin ... 

Aopl; 
ensure AT2 by "Recovery block R2" 
begin ... 

Aop2; Aop4; 

end else by 
begin ... 

Aop3; ... 
end else error 

end else by ... 

If, say, the primary block of R2 fails AT2, then, after calling the backward 
procedure, the states of port variables will be restored like those of any other 
global variables. After exiting from Rl, the local port variables become inac
cessible to the forward going process, so all the cached entries corresponding to 
them are discarded. 

5) A backward procedure is called only once (if appropriate) while recover
ing. In the example of rule 4), if the primary block of R2 fails the acceptance 
test then despite the fact that two calls on forward procedures have been made, 
only one call on the backward procedure will be made. If R2 fails, then the re
covery action of Rl will also include a call on the backward procedure (since 
RI has also used a port operation). 
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Concurrent Pascal with Backward Error Recovery: 
Language Features and Examples 

S. K. SHRIVASTAVA 

Summary. The programming language Concurrent Pascal has been extended to include some 
language features that facilitate the writing of fault-tolerant software. As a result, it is possible 
now to (I) write operating systems witn a measure of fault-tolerance, and (2) for such an op
erating system to support fault-tolerant user programs. The paper describes these language 
features and illustrates their use with the help of a few working examples. 

Key Words. Fault-tolerant software Operating systems Concurrent Pascal 
Sequential Pascal Error recovery Recovery blocks Ports 

Introduction 

A computer system can contain faults in either the hardware or the software or 
both. As a consequence of this, when an error is detected while executing a pro
gram, it is often not possible to locate accurately the fault that caused the erro
neous situation. When writing fault-tolerant software (defined to be software 
that produces acceptable results despite faults in the hardware and software), 
one recommended practice therefore is to classify erroneous or abnormal situ
ations encountered into those that were anticipated and the rest as unanticipat
ed [1]. For example, suppose a programmer's task is to develop an input-out
put program module for a certain peripheral. He can classify a number of situ
ations as 'abnormal' - these may include 'peripheral device not connected to 
the computer', 'parity error', etc. Suppose that his tested and debugged pro
gram still contains design faults as a result of which a 'division by zero' ex
ception is detected during the program execution - such a situation will be con
sidered as an unanticipated abnormal situation if no provision for coping with 
it has been provided. It can be appreciated that special purpose routines can be 
written for coping with anticipated abnormal situations, and many program
ming languages provide facilities for writing such 'exception handlers' (e.g. ON 
units in PLl). In contrast, any technique for coping with unanticipated situ
ations has to be sufficiently general such that it can (hopefully) deal with all of 
the erroneous situations that were not foreseen by the programmer. 

The best known technique for coping with unanticipated erroneous situ
ations is the so-called backward error recovery technique which consists of 
abandoning the state of the computation in progress and 'rolling it back' to a 
prior state which is believed to be error free. After the rollback, the compu
tation is resumed again with the hope of avoiding the offending fault. Further
more, if after the rollback, a different algorithm is used for producing results, 
then a measure of tolerance against design faults can also be obtained. 
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Some work has been done at Newcastle in the area of constructing fault
tolerant software that makes use of backward error recovery [4-6]. This paper 
describes further effort in this direction: the programming languages Con
current and Sequential Pascal [2,3] have been extended to include some back
ward error recovery features. As a result it is now possible to write operating 
systems with a measure of fault tolerance and with the capability of supporting 
fault-tolerant user programs. In this paper, these language features are de
scribed and their use illustrated with the help of a few working examples. A 
companion paper [10] describes the implementation of these features. 

Language Features for Error Recovery 

Design Decisions and Objectives 

Backward error recovery involves the restoration of a prior state. A decision 
was taken that the state to which a computation should be backtracked will be 
indicated by the programmer - the term recovery point will be used to refer to 
such a state - and that the task of restoring the state will be performed auto
matically by a recovery system that is part of the system that is supporting the 
computation. In order to appreciate what is involved when state restoration is 
performed, consider the progress of a computational process supported by an 
operating system. If the actions of the process, after a recovery point has been 
specified, is to produce its results entirely by updating its private variables, then 
the act of state restoration involves undoing the updates which merely consists 
of restoring the prior values of the updated variables - the recovery system can 
be designed to perform this task easily. However, the actions of a process can 
be arbitrarily complex; suppose the process is involved in the control of some 
input-output equipment. Under such a situation it may become necessary for 
the programmer to specify what should constitute the undoing of the 
input-output control operations (e.g. if the action was unwind a tape for ac
cessing a particular file, the action needed for undoing might be to rewind the 
tape). A design decision was therefore taken that for all the actions other than 
assignments, for which recovery is desired (actions for which recovery is pro
vided will be termed recoverable actions) the programmer must specify the ap
propriate routines for undoing the effects resulting from the actions; it will be 
the responsibility of the recovery system to invoke appropriately these pro
grammer- specified recovery routines when state restoration is required. 

So far, the state restoration of a single process has been discussed. For in
teracting processes, errors can propagate from one process to other; this may 
mean that when an error is detected, it becomes necessary to restore the state of 
a group of interacting processes. Many problems arise when state restoration of 
a group of processes is required [5,6]; it is sufficient to note here that such a 
situation should be avoided as far as possible. There are, fortunately, some im
portant cases where a certain degree of interaction between processes can be al
lowed and yet the error recovery of processes can be made independent from 
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each other. Such processes are said to belong to the class of independently re
coverable processes. 

Definition: A group of processes is said to be independently recoverable if 
(a) no interaction between them takes place; or (b) they make private use of 
shared resources, that is, any interaction is solely for competition; or (c) they 
make shared use of the resources, but any information exchange that takes 
place is compensatable. 

Statements (b) and (c) above need some explanation. If processes are only 
competing and making private use of shared resources (i.e. interaction is re
stricted to that necessary for acquiring and releasing the resources) then if the 
state of a process is to be restored to that at its recovery point, it is necessary to 
undo any effects due to any resource use and to release these resources - these 
actions need not affect the rest of the processes. Assume that a process A passes 
a message to some process B (i.e. A and B make shared use of a resource - say 
a buffer) and later it is necessary to restore the state of A. Then the message 
from A to B is said to be compensatable if it is possible for A to undo any ef
fects due to that message by sending a corrective message to B; B can process 
this message as a part of its normal activity, therefore it is not necessary to re
store the state of B. 

The objective of the work to be described here was to develop and im
plement language features necessary for the recovery of independently recover
able processes. When the work began (late 1975), a program structure called re
covery block [4, 5] had already been proposed by my colleagues as means for 
error detection and backward error recovery. Hence it was decided to develop 
and implement further language features within the framework of recovery 
blocks. An abstract data type called port was later developed by 1. P. Banatre 
and myself [6]. A port provides facilities for programming recoverable actions 
of independently recoverable processes. In what follows, an understanding of 
recovery blocks and the language Concurrent Pascal will be assumed; in addi
tion, a familiarity with the ideas presented on ports [6] will be helpful to the 
reader. 

Recovery Blocks and Ports 

The Pascal system of Brinch Hansen [3] consists of the language Concurrent 
Pascal which is intended for writing operating systems supporting concurrent 
processes. Each of the processes of such an operating system is capable of 
executing a sequential program (written in either Concurrent Pascal or Sequen
tial Pascal). The task of the concurrent program - the operating system - main
ly consists of providing, to the sequential programs, appropriate 'abstract' 
operations on the resources of the system. The backward error recovery capa
bility has been provided to the sequential programs of processes in the form of 
recovery blocks. Sequential Pascal was first extended with recovery blocks [7] 
and later the similar exercise was performed for Concurrent Pascal. The no
tation for the recovery block as incorporated in these two languages is shown in 
Fig. 1. 
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E RE (acceptance) BY 
(statement) 'primary' 

ELSE- BY 
(statement) '1 st alternative' 

ELSE- ERROR; Fig. 1. Recovery block notation 
for Concurrent and Sequential Pascal 

TYPE (port name) = PORT ( .. . formal access right parameters . . . ) 
- - - port variable declarations - - -
PROCEDURE E TRY (procedure name) ( ... formal parameters ... ); 

BEGIN .- - - use of the acquired resource - - - E D; 
- - - other procedures - - -
REVERSE PROCEDURE; 

BEGI - - - undo use of the resource - - - - END; 
BEGI 

(statement) 'prelude, concerned with resource acquisition' 
I NER; 
(statement) 'postlude, concerned with the resource release' 

E D; 

Fig. 2. A port data type 

The language Concurrent Pascal was further extended with data type port, 
making it possible for a concurrent program (operating system) to provide arbi
trarily complex recoverable operations to sequential programs (e.g. recoverable 
updates on random access files). The notation for port data type as embodied in 
Concurrent Pascal is given informally in Fig. 2. 

A port is a system type (in the Concurrent Pascal report [3], data types PRO
CESS, CLASS and MONITOR are referred to as 'system type') and its proper
ties closely match those of a class. A port differs from a class in the following 
ways: 
1. In a port, recovery blocks can only be used within its procedure bodies. 
2. A port contains a nameless and parameterless routine of a kind 'reverse pro

cedure' whose body specifies undoing of actions. A reverse procedure cannot 
be accessed by any program component. Only the recovery system can access 
it (see the following subsection entitled Recovery semantics of ports). 

3. The initial statement of a port contains an inner statement that splits the in
itial statement into a 'prelude' and a 'postlude'. 

4. A port cannot be initialized by an init statement. Let PN be a variable of 
type port. Then PN can be initialized and its entry routines made use of as 
follows: 

USING PN (- - actual access rights parameters - -) DO S; where S is a 
statement that can contain calls on entry routines of PN. The above USING 
statement defines the access rights of the port (just like the init statement). 
The inner statement of PN is textually replaced by S and the body of PN is 
executed (this has now the effect of executing the sequence 'prelude; S; post
lude'). 
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TYPE E DER = PORT ( 0 : CO OLE; I: I TEGER; RES: RE OURCE) 
PR EDURE E TRY 0 TP T (L: LI E); 

BEGI CO . SEND (L, I) E D; 
REVER E PROCEDURE; 

BEGI COr. END ('IG ORE ME AGE MBER', I) E 
BEGI 

RES.ACQUIRE; 'acquire the terminal' 
I ER; 
RE .RELEA E 'release the terminal' 

E 0; 

ME SAGE: E DER; 

E URE 'acceptance test' BY 

SI TG MESSAGE (TERMINAL, j, 
BEGI 

IT) DO 

MES AGE. a TPUT(L); 

E 0; 

ELSE- BY 

Fig. 3. A port example 

It can be appreciated that a port can specify facilities for acquiring a re
source, using it, undoing the effects of the use and releasing the resource. A 
simple example should further clarify these ideas. 

Example: Assume that it is required to construct a recoverable message 
sending facility between a process and an operator. The process can send a 
numbered message to the operator; should it be necessary to restore the state of 
the process such that 'unsending' of the message is required, a compensating 
message 'ignore the message' can be sent. A port with these facilities is shown 
in Fig. 3, where two data types, a class CONSOLE (for sending a message) and 
a monitor RESOURCE (for acquiring the operator's terminal), have been as
sumed to be provided. 

Recovery Semantics of Ports 

As mentioned earlier, state restoration is carried out automatically by a recov
ery system. The actions of the recovery system are: (1) to carry out recovery ac
tions arising from the use of ports, if any, and then (2) to restore the state of 
global variables updated in the recovery block in which the error was detected. 
In this section, the recovery actions arising from the use of ports will be ex
plained with reference to Fig. 4. Let an erroneous situation be detected at one 
of the following points while executing the program of Fig. 4. 

326 



P : PRT; 'Port instance' 

E SURE -- BY 
BEGIN 

USI G P (---) DO ' l' 
BEGI 

--- '3' 

P .PROCl (- - ); 
--- 'b' 

P '.PROC2 (- -); 
--- 'c l 

E 0 ; 
--- 'd' 

USING P (---) DO ' 2' 
BEGIN 

P .PROC1(- - - ); 
E 0; 

- - - ~ e' 

E. 0 ELSE- BY 

Fig. 4. A program to illustrate recovery semantics of ports 

Error Detected at Point 'a' 
An error has been detected after the execution of the prelude of PN, that is, af
ter the acquisition of some resource. Since the state is to be restored to the point 
where this resource was not acquired, it must be released; this is done by 
executing the postlude (note that it becomes the programmer's responsibility to 
ensure that preludes and postludes are for resource acquisition and release re
spectively). 

Error Detected at Point 'b' 
The reverse procedure of PN is called and then the postlude is executed. 

Error Detected at Point 'c' 
The actions are the same as at 'b'. Note that, while recovering, a reverse pro
cedure is called as many times as the number of times the corresponding using 
statements that contains calls on the port procedures have been activated in the 
recovery block in question. 

Error Detected at Point 'd' 
Let AB(Ui) represent the state of the variables and parameters of port AB after 
the execution of the using statement Ui. Then the recovery action is: starting 
with port PN in the state PN(Ul), execute the sequence 'prelude; reverse pro
cedure; postlude'. 
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B ( - - - - - ); 

E • URE - - BY 
BEG) 

JOB (- - - ); 'execute a sequential program' 

E. D ELSE- BY 
Fig. 5. Typical Concurrent 
Pascal program 

Clearly, it is necessary to execute the reverse procedure. However, the 
necessary resources have been released (as the postlude has been executed). It is 
therefore necessary, starting with the port in the appropriate state, to re-execute 
the prelude and subsequently the postlude. 

Error Detected at Point 'e' 
Starting with port PN in state PN(U2), the sequence 'prelude; reverse pro
cedure; postlude' is executed; then starting with PN in the state PN(UI), the 
same sequence is executed. The same actions would be undertaken if the ac
ceptance test of the recovery block failed. 

Some Additional Remarks on Recovery Features 

l. If a failure occurs while restoring the state of a process, then, conceptually 
this is regarded as a collapse of the recovery system since no assurance about 
continued service can be given. 

2. The recovery blocks of a concurrent program and a Sequential Pascal pro
gram are not regarded as nested. Consider the following typical program 
(Fig. 5) in Concurrent Pascal where the concurrent program is making use of 
the PROGRAM statement to execute a sequential program (written in 
Sequential Pascal). The Sequential Pascal program can make use of recovery 
blocks, but they would not be regarded as nested within that of the con
current program. Thus, Sequential Pascal programs represent independent 
modules from the point of view of recovery. 

3. Two standard functions have been provided in Concurrent Pascal. 
(a) Boolean function ERRORFLAG. The true value indicates that the 

state of the calling process is being restored by the recovery system and the 
false value indicates that the process is normally executing its program. 

(b) An integer function RLEVEL. The value returned indicates the current 
degree of nesting of recovery blocks in the calling process. 
RLEVEL = 0 indicates that the process is not executing within a recovery 
block. 

Examples 

Three complete working examples will be used to illustrate how ports may be 
used to provide recoverable actions. The main aim of these examples is to il-

328 



lustrate the basic principles involved and as such the programs have been made 
as simple as possible. Thus, not much effort should be needed to understand 
these programs and the reader can concentrate upon their recovery aspects. 

Producer- Consumer: Recovery by Compensation 

This example illustrates what is known as recovery by compensation [8]: a pro
cess has passed some messages to other processes and later it becomes necessary 
to restore the state of the sending process to the state where these messages were 
not sent; the abstraction of 'unsending a message' can be provided by sending a 
corrective message to the receivers. If the receivers have been programmed to 
cope with corrective messages, then any recovery actions of the sender can be 
made independent. 

Assume that there is a 'producer' process that is sending integer-valued 
messages to a 'consumer' process. The function of the consumer is to output the 
total sum of values received from the producer once the last message has been 
received from the producer. The objective is to make any recovery actions of 
the producer independent from those of the consumer. For simplicity it is as
sumed that only the producer has any recovery capability. Let us assume that 
the producer has sent two messages, values + X and + Y, to the consumer. If an 
error is detected by the producer such that the state of the producer is to be re
stored to that before these two messages were sent, then if as a part of the recov
ery actions of the producer, compensating messages of values - Y and - X can 
be sent to the consumer, the consumer can still produce the correct result. Thus, 
the messages sent by the producer will have the property of recoverability. Fig
ure 6 shows the complete Concurrent Pascal program for the above processes, 
with a port SENDER that provides recoverable message sending facility to the 
producer. A monitor MANAGER is needed to synchronize the sending and re
ceiving of messages between the producer and the consumer. 

The program for the producer process (lines 66- 84) shows that the pro
ducer has access to a monitor of type MANAGER, and that a variable SEND 
of type SENDER has been declared. The program includes a recovery block 
with one alternative (lines 72 - 81), with the primary deliberately designed to 
fail the acceptance test. In the primary, the port variable SEND is used to send 
three messages (values + 1, + 2 and + 3) to the consumer. So, when the primary 
fails the acceptance test, the automatic recovery action undertaken (before the 
alternative can be executed) must include sending of compensating messages 
(values - 3, - 2 and - 1). The alternative merely sends one message (value 
+ 9). Lastly, a message of value 0, with LAST = TRUE, indicating that it is the 
last message, is sent to the consumer. 

The program for the consumer (lines 87 - 105) is simple: the consumer has 
access to a monitor from which it receives messages. When the last message is 
received, the total sum is printed on the console (for simplicity, it is assumed 
that the sum does not exceed the value 9). Finally, appropriate instances of the 
data types are created (lines 109 - 110) and processes initialized with access to 
the same monitor (line 112). Figure 7 shows the console output produced by 
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1 TYPE IOOEVICE=CTYPEOtVICE,DISKDEVICE,TAPlDlVICE,PRINTOEVICE, 
2 CAROOEVICE), 
3 
4 
5 
b 
7 
8 
q 

10 
11 
12 
13 
14 
15 
1b 
11 
18 
lq 
20 
21 
22 
23 
24 
25 
2b 
27 
28 
2q 
30 
31 
32 
33 
34 
35 
3b 
31 
38 
3q 
40 
41 
42 
43 
44 
45 
lib 
47 
48 
4q 
50 
51 
52 
53 
54 
55 
50 

TYPE IOOPERATION=CINPUT,OUTPUT,MOVE,CONTROL); 
TYPE IOARG=(WRITEEOF,REWI~O,UPSP4CE,BACKSPACE)J 
TYPE IORESULT=CCOMPlETE,INTERVENTION,TRANSMISSION,FAILURE, 

ENDFILE,ENOMEOIUM,STARTMEDIU~), 
TYPE IOPARAM=RECORO 

OPERATIONIIOOPERATION, 
STATUS II ORE SULT, 
ARGalOARG 

END, 
TYPE OUTIiCLASS, 
PROCEDURE ENTRY PRINTCCICHAR), 
VAR 

PRIIOPARAM, DVIIODEVICE, 
CH,CH4R, 
BEGIN 

PR.OPERATIONI=OUTPUT, DVI=TYPEDEVICE, 
CHIIIC, IOCCH,PR,DV) 

END, 
BEGIN END, 

TYPE MANAGER=MONITOR, 
VAR 

BUFFER,lNTEGER, 
FUI.L,BIBOOLEAN, 
SENDER,RECEIVER,QUEUE, 

PROCEDURE ENTRY SENOCItINTEGER,LASTIBOOLEAN), 
BEGIN 

IF FULL THEN DElAY(SENDER), 
BUFFER,=I, BllIlAST, FULLI=TRUE, 
CONTINUE(RECEIVER) 

END, 
PROCEDURE ENTRY RECEIVECVAR I'INTEGER, VAR LASTIBOOLEAN), 

BEGIN 
IF NOT FULL THEN DELAY(RECEIVER), 
I,.BUFFER, LA5T,.B, FUlL,cFALSE, 
CONTINUE(SENDER) 

END, 
BEGIN FULL I-FALSE END, 

TYPE SENDER=PORTCMANIMANAGER,IaINTEGER,LASTIBOOLEAN) 
VAR 

VALUEIINTEGER, COMPENSATEIBOOLEAN, 
REVlRSE PROCEDURE, 

BEGIN END, 
BEGIN 

iF ERRORFLAG THEN 
BEGIN 

CCMPENSATEI=TRUE, 
MAN,5ENO(VALUE,LA5T) 

END ELSE 
BEGIN 

VALUEla~l, COMPENSATEI.FALSE, 
MAN,SEND(X,LAST) 

END, 
Fig. 6. Recovery by compensation 
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57 
58 
5q 
be 
61 
bZ 
b3 
Ell; 
bS 
bb 
b7 
68 
bq 
70 
11 
72 
73 
14 
15 
16 
17 
'78 
1q 
80 
8t 
82 
83 
84 
85 
h 
87 
88 
eq 
q0 
q1 
qZ 
q3 
~4 
qS 
qb 
q7 
q8 
qq 

10e 
101 
102 
103 
104 
US 
106 
107 
108 
Uq 
110 
111 
112 
113 
tt4 

INNER, 
IF ERRORF~AG AND NOT COMPENSATE THEN 

MAN.SENDeVALUE,LAST) 
END, 

TYPE PRODUCERaPROCESS(M,MANAG~R' 
"RECOVERY DATA SPACE=" +1000 
VAR 

SENDISENDER, IaINTEGER, LASTIBOOLEAN, 
BEGIN 

L.ASTI=FAI.SE, 
ENSURE (lain BY 
BEGIN 
FOR IIa1 TO 3 DO 
USING SENOCM,I,LAST) 00 , 
END EL.SE.BY 
BEGIN 

11-9, 
USING SENDCM,I,I.AST) 00 , 

END 
EL.SE.ERROR, 
L.ASTI=TRUE, 
USING SEND(M,e,I.AST) 00 , 

END' 

TYPE CONSUHER-PROCESS(HIMANAGER) 
VAR 

CONSOLE,OUT,IIINTEGER,SUM,INTEGER, 
CH.CHAR, 
I.AST ,BOOL.EAN, 

BEGIN 
LASTI.FALSE, SUM.=0, IN IT CONSOLE, 

WH!LE NOT LAST DO 
BEGIN 

M,RECEIVECI,L.AST), 
IF NOT LAST THEN SUMI~SUM+J 
ELSE 
BEGIN 

If SUM> 9 THEN SUMl a 0, 
CHI.CHR(SUM+48), 
CONSOLE,PRINT(CH) 

END 
END 

END, 

VAR 
M.MANAGER, 
PRIPRODUtER, CRICON$UMER, 

BEGIN 
INIT H,PR(M),CR(M) 

END, Fig. 6 (continued) 
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5,' 5 T E i-i R E ;; V y' 

PROCESS 2 SVSTE~ LiNE 73 A. T. FAiL 

Fig. 7. Output of the example of Figure 6 

this program. As expected, the producer process (process 2) fails the acceptance 
test once, and an appropriate message is printed on the console (the run time 
system has been designed to print an indication of all run time detected errors 
[lOD. The last line of Fig. 7 shows that despite the recovery action by the pro
ducer, the consumer produces the correct result (value 9) thus indicating that 
the port data type SENDER does provide the desired abstraction of recovera
bility. 

Next, let us consider how the above-mentioned recoverability has been pro
vided by the port SENDER (lines 42 - 60). As it happens, in this example, all 
the necessary port actions can be provided in the prelude (lines 47 - 56) and the 
postlude (lines 58 - 59), as such, this port has no entry procedures and the body 
of the reverse procedure is null. So, assuming the 'SEND' is a variable of type 
SENDER, it is necessary to execute the following statement to send a message 
(see line 79): 

USING (M, I, LAST) DO 
t t 

(1) (2) 

Consider now the following three mutually exclusive situations: 
(a) No error is detected. This represents the normal case. As the executing pro

cess is 'going forward', ERRORFLAG = FALSE will hold and the prelude 
statements on lines 53 - 56 will be executed (the message will be sent) fol
lowed by the execution of the postlude which has in this situation no effect. 

(b) Error detected at point (1). This means that the error has been detected after 
the execution of the prelude by the forward going process (i.e. after the ex
ecution of statements on lines 53 - 56). The recovery action then consists of 
executing the sequence 'reverse procedure; postlude'. Since an error has 
been detected, ERRORFLAG = TRUE will hold and the net effect of the 
execution of the postlude will be to send the appropriate message for com
pensation. Note how the variable VALUE is being used to record the recov
ery information. 

(c) Error detected at point (2). This means that the error has been detected after 
the execution of the USING statement (e.g. an acceptance test has failed). 
The recovery action consists of (see the discussion on Error detected at 
point 'd' in the section Recovery semantics of ports): with the port variables 
(VALUE and COMPENSATE) in their states just after the execution of this 
USING statement, execute the sequence 'prelude; reverse procedure; post
lude'. As ERRORFLAG = TRUE will hold, statements on lines 49-52 of 
the prelude will be executed and the appropriate compensating message 
will be sent. 
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The Dining and Vomiting Philosophers 

The second example illustrates how a port may be used for providing recover
able. resource allocation and use between a set of competing processes. The 
well-known five dining philosopher's problem (due to Dijkstra [9]) has been 
modified to include recovery capability. (In what follows, it will be assumed 
that the reader is familiar with this problem and its solution.) In order to ap
preciate what recovery actions would be needed, consider the life cycle of a 
philosopher (Fig. 8). Assume that eating consists of printing a message to that 
effect on the console. Let 'x' represent the recovery point - the state to which a 
philosopher is to be restored in case an error is detected. If an error is detected 
at point (1) then recovery action consists of releasing the forks. If an error is de
tected at point (2) then the philosopher must 'uneat' (vomit!) which consists of 
printing a message to that effect on the console, and then release the forks. If an 
error is detected at point (3), then the philosopher has only to vomit - no forks 
are needed for this purpose - only the console is needed for message printing. 
We thus see that resources needed for 'doing' need not be the same as those 
needed for 'undoing'. Our task is to design a port with the appropriate prelude 
and postlude (for fork acquisition and release), an entry procedure (for eating) 
and a reverse procedure (for vomiting). 

The complete Concurrent Pascal program listing is given in Fig. 9. The data 
types of interest are: FORKS (a monitor for acquiring and releasing forks), RE
SOURCE (a monitor for the exclusive access to the console), INOUT (a class 
for inputting or outputting a line of text on the console), MANAGER (a port 
for providing recoverable resource allocation and use as discussed previously) 
and PHIL (a process). Five processes of type PHIL (PHO to PH4) are created 
and initialized with appropriate access rights. A number of recovery blocks 
have been included in the code of PHIL with some deliberate faults to illustrate 
recovery actions. These are (a) a fault that will cause a range error detection 
(line 145) in the primary of therecovery block in procedure EATS (line 137); 
(b) an acceptance test failure after the execution of the primary of the recovery 
block starting on line 155. 

A sample output produced by this program is shown in Fig. 10. In order to 
understand this output, the following two points should be borne in mind: (1) 
All the run-time error messages produced by the system include the number of 
the executing process; in this example philosopher 0 is process 2, philosopher 1 

cycle 
think; 

x +- recovery point 
acquire forks; 

+- (1) 
eat; 

+- (2) 
release forks; 

+- (3) 
end Fig. 8. Life of a philosopher 
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1 tONST~L=f<lle~)" LENG~M.121 
2 
3 
4 
5 
& 
7 
B 
q 

10 
11 
12 
13 
14 
15 
1& 
17 
18 
1«) 
20 
21 
22 
23 
24 
25 
2& 
27 
28 
2«) 
30 
31 
32 
33 
34 
35 
3& 
31 
38 
3«) 
40 
41 
42 
43 
44 
45 
4& 
41 
48 
4c) 
50 
51 
52 
53 
54 
55 

TYPf FORKSaMONITOR 
VAR AVI ARRAY (.0.,4,) OF INTEGER, 

WT, ARRAYC.0,.4,) OF QUEUE, JI INTEGER, 
PROCEDURE ENTRY GET(I, INTEGER), 

BEGIN 
IF AV(,I,) c> 2 THEN 

DEl..AY(WT(,I,», 
AVC. (1+4) MOD 5,'laAV(,CIt4) MOO 5,)-1, 

AV(.(I.l) MOO 5 ,)1= AV(,(I+l) MOO 5,).1, 

END, 

If AV(,(I+3) MOD 5,)=2 THEN 
CONTINUE(WT(,(1+3) MOD 5,')' 

PROCEDURE ENTRY GIVE(II INTEGER), 
BEGIN 

AV(, 0+0 MOD 5 ,ll: AV(, 0+1) MOD IS ,) +1, 
AV(,CI+A) MOD 5.).- AV(.(1+4) MOD 5,)+1, 

IF Ave, (1+1) MOO 5 ,) = 2 THEN 
CO~TINUE(wT(. (1+1) MOO 5 .», 

END, 
BEGIN FOR JI:0 TO 4 DO AV(,J.)1:2 END, 

TYPE FIFO-CLASSCLIMIT'XNTEGER) 
VAR HEAO,TAIL,LENGTH, INTEGER, 

FUNCTION ENTRY ARRIVAL,INTEGER, 
BEGIN 

END, 

ARRIVALI=HIL, 
TAIL'- TAIL MOD LIMIT +1, 

LENGTHI-LENGTH.1, 

FUNCTION ENTRY DEPARTURE, INTEGER, 
BEGIN 

END, 

DEPARTURE.-HEAD, 
HEAD,: HEAD MOO LIMIT +i, 
LENGTH'=LENGTHp l, 

FUNCTION ENTRY EMPTy.BOOLEAN, 
BEGIN EMPTY.=(LENGTH~0) ENO, 

BEGIN HEADI=1,TAIL.al,LENGTH,=0 END, 

TYPE RESOURCEcMONITOR 
CONST NUMB-5, 

VAR FREEIBOO~EAN, 
Q, ARRAY (.1,,5,) OF QUEUE, NEXT. FIFO, 

PROCEDURE ENTRY REQUEST, 
BEGIN 

IF FREE THEN FREE.sFALSE ELSE 
OELAY(Q(,NEXT,ARRIVAL,», 

END, 
PROCEDURE ENTRY RELEASE, 

BfGIN 
IF NEXT,EMPTY THEN FREEI=TRUE ELSf 

CONTINUE(Q(,NEXT.OfPARTURE,», 

Fig. 9. Dining and vomiting philosophers 
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50 BEGIN FREEI-TRUE,INIT NEXTeNUMB) END, 
57 
58 TYPE LINEa ARRAY e,I"LENGTH .) OF CHAR, 
5q TYPE IOOP~RATIONa(INPUT,OUTPUT,MOVE,CONTROL), 
00 
01 
b2 
b3 
b4 
&5 TYPE tOOEVICE= CTYPEDEVICE,OISK~~VICt,TAPEDEVICE 
bb ,'RINTOEVICE,tARDDEVICE), 
b7 TYPE IOARG= (WRITEEOF,REwINO,UPSPACE,BACKSPACE)J 
b8 TYPE IORESULT- (COMPLETE,INTERVENTION,TRANSMlSSION, 
bq fAILURE,ENDFILf,ENDMEDIUM,STARTMEDIUM), 
70 TYPE IOPAAAM- RECORD 
71 OPERATIONIIOOPERATION, 
72 STATUSIIORESU~T,ARGIIOARG 
73 END, 
74 
75 TYPE INOUT a C~ASSCACCESSIRESOURCE) 
7& PROCEDURE ENTRY WRITE(TEXT,LINE), 
77 VAR PR, IOPARAM, II INTEGER, C. CHAR,OVI IOOEVICE, 
76 BEGIN ACCESS.REQUEST, 
7q PR,OPERATIONlc OUTPUT, 
80 OVa= TYPEDEVICE, Iia 0, 
81 REPEAT 
82 IaaY+i,Ct=TEXTC.I.),IOeC,PR,DV), 
83 UNTIL (CaNL) OR (I.LENGTH), 
84 ACCESS,RELEASE; 
85 END, 
8b PROCEDURE ENTRY REAOeVAR TEXTa LINE), 
87 VAR PRI IOPARAM, It INTEGER, Ca CHAR, OVa IODEVICt, 
88 BEGIN ACCESS,REQUEST, 
aq PR,OPERATIONI= INPUT, 
q0 DVt- TYPEOEVICE, Ilc e, 
ql REPEAT 
q2 Ilal+l,IoeC,PR,DV),TEXTe,I,).ac, 
q3 UNTIL (CaNL) OR (IcLENGTH), 
q4 ACCESS,RELEASf, 
q5 END, 
q6 BEGIN E~O' 
q7 
qe TYPE MANAGERcPORTCCONS,INOUT,FRKSIFORKS,I.INTEGERl 
qq VAR ACQ,BOOLEAN, 

100 PROCEDURE ENTRY EAT, 
101 BEGIN 
102 CASE I OF 
103 0,CONS,WRITEC' PHl~0 EATING(,10,)'), 
104 1.CONS,WRITEC' PHILl EATIN'(1101"), 
105 2ICONS,WRITEC' PH1L2 EATING('l01)'), 
106 3aCONS,WRITEe' PHJL! EATINGC'10,)'), 
107 4,CONS,WRITEC' PH1L4 EATING(,10a)') 
108 END 
10q END, 
110 REVERSE PROCEDURE, 

Fig. 9 (continued) 
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111 BEGIN CASE' OF 
lt2 0ICONS,WRITEC' PHIL0 VOMITINGClle,)'), 
113 tiCONS,WRIT~C' PHIL! VOMITtNG(1101)~)' 
114 2ICONS.WRITEC' PMIL2 VOMITING(1101)'), 
115 3aCONS,WRITEC' PHIL3 VOMITING(1101)'), 
lib 4ICONS,WRITE(' PHIL4 VOMITING(1101)') 
117 END 
118 E.ND, 
119 BEGIN 
120 IF ERRORFLAGaFALSE THEN 
121 BEGIN ACQlaTRUE,fRKS,GETCI) END 
122 ELSE ACQ.-FALSE, 
123 INNER, 
124 IF ACQ THEN fRKS,GIVECI) 
125 END, 
12b 
127 
128 
12q 
1JEI 
131 
132 TYPE PHIL sPROCESSCFRKS,fORKS,IIINTEGER,ACCfSSIRESOURCE), 
133 "RECOVERY DATA SPACEs" +1000 
134 VAR CONSIINOUT, 
135 TEXTaLINE,XXaARRAYC.l.,2.> Of INTEGER, 
13b MANGIMANAGER, 
137 PROCEDURE EATS, 
138 BEGIN 
139 USING MANG(CONS,FRKS,I) 00 
140 BEGIN 
141 ENSURE TRUE BY 
142 BEGIN 
143 MANG,EAT, 
144 CONS,READ(TEXT), 
145 IF TEXT(,1,> C. 'F' THEN XX(.3.,.=0, 
14b END ELSE~BY 
141 MANG,EAT 
148 ELSE.ERROR 
1(jq END 
150 END, 
151 BEGIN 
152 INIT CONS(ACCESS), WHJLE TRUE 00 
153 BEGIN 
154 XXC.l,).ate, 
155 ENSURE CXXC.l,)~10 ) BY 
15b BEGIN 
157 XXC,l",=123, 
158 ENSURE (XX(,2,)al5 ) BY 
15q BEGIN 
1b0 XXC.Z,).a15,EATS 
tbl END ELSE.ERROR 
1b2 END ELSE.BY 
lb3 XX(,2.)t-10 
lb4 ELSE.ERROR 
165 END 
lbb END, 
Fig. 9 (continued) 
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lb1 VAR 
lb8 SETOFFORKSI FORKS, 
lbq PH0,PH1,PH2,PH3,PH41 PHIL, 
170 A,B,C,D,E. INTEGER, 
171 UNIT.RESOURCE, 
lYZ BEGIN 
173 INIT UNIT,SETOFfORKS, 
174 A,a0, INIT PH0(SETOFFORKS,A,UNIT), 
175 B.al, IN IT PH1(SETOFFORKS,B,UNIT), 
17b CI=2, IN!T PHZ(SETOFFORK$,C,UNIT), 
177 Dl a 3, INIT PH3(SETOFFORKS,D,UNIT), 
118 E'&4, INIT PH4(SETOFFORKS,E,UNIT), 
17f1 END, 
180 
Fig. 9 (continued) 
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Fig. 10. An output of the example of Figure 9 
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is process 3 and so on; (2) in procedure EATS, after calling the port procedure 
MANG.EAT, the executing process acquires the console to read a line of text 
from the user at the console (line 144). If the user's input does not begin with 
'F' then a range error will be detected (line 145). 

The output shows that initially philosophers 0 and 2 (i.e. processes 2 and 4 
respectively) are eating (both have called procedure MANG.EAT, line 143). 
Process 2 now has the console and is waiting for user input, process 4 obviously 
is waiting for the console to be free. When the user types 'FFF', the execution 
of EATS finishes successfully, and the recovery block starting on line 158 is 
exited successfully. However, the acceptance test of the enclosing recovery 
block (line ISS) fails and a message - - - LINE 156 A.T. FAIL is printed (in
dicating that the execution of the block beginning at line 156 has failed the ac
ceptance test). Before the alternative beginning at line 163 can be tried, the re
covery action must include vomiting - for this the process must acquire the 
console. The console, however, is in the possession of process 4 (philosopher 2) 
which is waiting for a user input. Figure 10 shows that the user typed 'YYY' 
which caused a range error message to be printed. The console now becomes 
free and is acquired by process 2 to print 'PHIL 0 VOMITING'. The reader 
should be able to trace the subsequent events that caused the. output of Fig. 10. 

This simple example also illustrates that just 'as a process can compete with 
other processes for making use of shared resources during its 'forward motion', 
it can also compete for the resources during its 'backward motion'. 

Recoverable File Updates 

The last example illustrates one way whereby ports can be used quite elegantly 
to provide recoverable operations to Sequential Pascal programs. In most mul
ti-user operating systems, a job control language is used, among other things, 
for specifying resource requirements for a job; these resources are first acquired 
before executing the job. A simplified version of such a scheme can be imple
mented using ports as follows: 

Let A, Band C represent the ports that provide the operations on resources 
that a user program requires. In this situation the following program suggests 
itself. 
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PROGRAM JOB (- - -); 

USING A (---) DO 
USING B (---) DO 
USING C (---) DO 
BEGIN 

JOB (- -); 'execute a sequential program' 

END; 



The necessary resources are automatically acquired and released around the 
execution of a sequential program. 

Let us assume that the facility of recoverable file updates is to be provided 
to Sequential Pascal programs, so that such programs may update files from 
within a recovery block. Minor changes were made to the SOLO operating sys
tem [3] for this purpose. The following simplifying assumptions were made: (i) 
make use of the existing SOLO filing system, (ii) only one file may be opened 
for recoverable updates, (iii) Sequential Pascal programs do not make use of 
nested recovery blocks and (iv) recovery is to be provided at a page level, that 
is, sequential programs are given the facility of modifying file pages. 

The changed part of the SOLO concurrent program is shown in Fig. 11 (an 
understanding of the SOLO operating system is required to appreciate this 
example). A port FILEMANAGER has been programmed that makes use of 
the DATAFILE data type for file manipulations (read, write, open and close). 
In the prelude of the port, a file called RECOVERY is first opened (this file 
will record the previous contents of updated pages) followed by the opening of 
the file whose name is supplied by the user; in the postlude, these files are 
closed. The WRITE procedure of the port records the previous contents of the 
page to be updated in file RECOVERY before performing the update. The re
verse procedure makes use of RECOVERY file for restoring the page contents. 

Figure 12 shows a simple test program with a recovery block that updates a 
file in its primary algorithm and prints a modified page on the console. After 
the termination of this program, the file should be in its original state; this was 
verified by printing the file on the line printer. 

It is hoped that these illustrative examples will have convinced the reader 
that ports provide a systematic method for designing recoverable operations 
and that the extended version of Concurrent and Sequential Pascal can be used 
for programming fault-tolerant systems. Ports in conjunction with recovery 
blocks represent only one method of introducing backward error recovery in a 
system. The reader wishing to pursue the subject of backward error recovery 
further may find the ideas presented in Ref. [11] of interest, where many of the 
fundamental aspects of recoverability are discussed. 

Lastly, a few words on the performance of this system are in order here. In 
the Concurrent Pascal system (designed by Brinch Hansen and his colleagues 
[3]) both the concurrent and sequential programs are interpreted by a simple 
stack machine programmed to run on a PDP 11145. The automatic recovery 
system was implemented as part of this interpreter which doubled its size from 
IK to 2K words. A recent performance study [12] has shown us that when no 
ports are used (i.e. only the assignments are recoverable), the time needed to 
collect and maintain recovery data is upto about 11 per cent of the execution 
time of the program with no recovery facilities. If a program uses a few ports, 
we do not expect the overheads to be significantly larger than 11 per cent. The 
design of this experimental recovery system, which is described in a companion 
paper [10], demonstrates that it is not too difficult to support automatic recov
ery features by a programmed interpreter, and the details of the interpreter 
given in that paper can be used for designing appropriate hardware for real (as 
against experimental) fault-tolerant systems. 
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857 "M •• M.M ••• M.MM ••• M. 
858 fIlENAME 
8SQ .M.M.M,M •••••• ""'" 
8&e 
8b1 TYPE FilENAM~ = CLASS 
8&2 VAR 10 • IDENTIFIER, 
8&3 PROCEDURE ENTRY SPECIFYCID1.IDE~TlfIER), 
8b4 BEGIN IO,aIOl END, 
8b5 PROCEDURE ENTRY GETNAMECVAR I01'ID[NTIFIER), 
8bb BEGIN 101 1= 10 E~D' 
8&1 BEGIN END, 
8U 
8bQ ".M ••••••••••••••••••••• 
870 FILEMANAGER PORT 
871 M •• MMMMMMMM •••••• M •••••• " 
872 
873 TYPE fILEMANAGER = 
874 PORT(DATAf1.DATAFILE,OATAfi.DATAFILE,FN.fILENAM 
815 VAR 
87b PAIARRAYC,l,.MAPLENGTH,) Of INTEGER, 
877 RLENGTHIINTEGER, 
878 10 I IDENTIFIER, 
879 fOUND I BOOLEAN, 
880 PROCEDURE ENTRY WRITE(P,lNTEGER,VAR BLOCKIPAGE), 
881 VAR 
882 TPAGECPAGE, 
883 BEGIN 
884 RLENGTHlaRLENGTMt1, 
885 PA(.RLENGTH,)caP, 
88b OATAF2,REAO(P,TPAGE), 
887 DATAF1,WRITECRLENGTH,TPAGl), 
888 OATAF2.WRITE(P,BLOCK) 
889 END, 
890 PROCEDURE ENTRY REAO(P,INTlGlR,VAR 8LOCKIPAGEl, 
891 BEGIN 
892 DATAF2.REAO(P,BLOCK) 
893 END, 
894 REVERSE PROCEDURE, 
895 VAR TPAGEIPAGE,IIINTEGER, 
8tH, BEGIN 
891 IF RLEhGTH • 0 THEN 
898 FOR 11-1 TO RLENGTH DO 
899 BEGIN 
900 DATAF1,REAOCI,TPAGE), 
901 OATAf2.WRITE(PAC,I.),TPAGE) 
902 END 
903 END, 
904 BEGIN 
905 RLENGTHla0, 
90& OATAF1,OPEN('RECOVERY ',FOUND), 
907 IF FOUND THEN 
908 BEGIN 
909 FN,GETNAME(JD), 
9,O DATAFl,OPfNCIO,FOUND), 
911 IF FOUND THEN 

Fig. 11. Recoverable file updates 
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912 
913 
914 
915 
91b 
917 
918 
919 
921!1 
921 
~i:2 
923 
914 
925 
9i!b 
927 
928 
9i9 
930 
931 
932 
933 
934 
935 
93b 
937 
938 
939 
940 
941 
942 
9113 
944 
945 
946 
947 
948 
949 
950 
951 
9$2 
953 
954 
9S5 
954t 
951 
958 
9S9 
9U 
961 
9C,2 
9U 
9U 
965 
9.,b 
9(,7 

9"8 

BEGIN 
INNER, 

OATAF2.CLOSE, 
END, 

OATAF1,CLOSE 
END 

END, 

""11111111111111111111#"11" 
II JOBPROCESS II 
UIIUU"UU#U· 

TYPE JOBPROCESS a 
PROCESS 

(TYPEUSEJ TYPERESOURCE, OISKUSEI RESOURCE, 
CATALOGS OISKCATAI"OG, INBUFfER, OUTSUFFERI PAGEBUFFER, 
INREQUEST, INRESPONSE, OUTREQUEST, OUTRESPONSEs ARG8UFFER, 
STACKI PROGSTACK), 

QPROGRAM DATA SPACE :ft+14000 

CONST MAXFILE • 2, 
TYPE FILE. 1 •• MAXFILE, 
VAR 

FILES I ARRAY(.FILE,) Of DATAFILE, 
FN I FILE~AME, 
FILEMANlfILEMANAGER, 
O~ERATORI TERMINAL, OPSTREAM, TERMINALSTREAM, 

INSTREAM, OUTSTREAMI CHARSTREAM, 

COOEI PROGfII..El, 

PROGRAM JOB(VAR PARAMI ARGLIST, STORE. PROGSTORE1), 
ENTRY READ, WRITE, OPEN, CLOSE, GET, PUT, LENGTH, 

MARK, RELEASE, IDENTIFY, ACCEPT, DISPLAY, READPAGE, 
WRITEPAGE, REAOLINE, WRITEI"INE, REAOARG, WRITEARG, 
LOOKUP, IOTRANSFER, 10MOVE, TASK, RUN, 

PROCEDURE tALLCIO' IDENTIFIER, VAR PARAMI ARGLIST, 
VAR ~lNE. INTEGER, VAR RESULT, RESULTTYPE), 

VAR STATE, PROGSTATE, ~A5TIDI IDENTIFIER, 
BEGIN 

WITH COOE, STACK 00 
BEGIN 

l.INEI. 0, 
OPEN(lO, STATE), 
IF (STAlE • REAOY) & SPACE THEN 
BEGIN 

PUSH(lO) , 
IF tD C~ '00 ' THEN 
Fig. 11 (continued) 
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9U BEGIN 
970 FN,SPECIFY(PARAM(,Z.),ARG), 
9Tl USING FILEMAN(FILES(.1.),FI~lS(.2,),F~) DO 
972 JOB(PARAM,STORE) 
973 END ELSE JOB(PA~AM,STORE), 
974 POPCLtNE, RESULT), 
975 END E!.SE 
976 IF STATE. TOOBIG THEN RESULT:: COOEI.IMIT 
977 ELSE RESULT.s CALlERROR, 
978 IF ANY T~EN 
979 BEGIN GET(LASTIO), OPENC!.ASTIO, STATE) E~D, 
980 END, 
981 ~ND, 
982 
983 
984 PROCEDURE ENTRY READ(VAR CI C~AR), 
985 BEGIN INSTREAM.REAO(C) E~O, 

Fig. 11 (continued) 

131 "PREFIX PROCEDURES NOT SHOWN" 
132 " •••••••••••••••• , •••••••••• " 
133 
134 PROGRAM FILEUPOlTE(VlR PARlM,ARGLIST), 
135 VAR 
136 I,JIINTEGER, BLOCK,PAGE, 
137 BEGIN 
138 ENSURE (J=3) BY 
139 BEGIN 
140 J,.1, GET(J,BLOCK), 
141 FOR It-a00 TO PAGELENGTH 00 
142 BLOCK(tI,l,.'X', 
143 PUT(J,BI.OCK), 
144 J'D2, GET(J,BLOCK), 
145 FOR 1 •• 301 TO PAGELENGTH DO 
146 BLOCKC,I,).:'V'. 
147 PUTCJ,BLOCK), 
14e FOR 1,.1 TO PAGELENGTH DC 
149 DISPLAYCBLOCK(,I.» 
150 END ELSE.BY 
151 Jt. 9 DIV 3 
152 ELS~ERROR 
153 END. 
Fig. 12. A Sequential Pascal test program for the example of Figure II 

Acknowledgements. This work was supported by the Science Research Council (UK) and was 
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Appendix 

Implementation Restrictions 

The following restrictions (in addition to those given elsewhere [3]) in the 
implemented version of Concurrent and Sequential Pascal with recovery [7, 10] 
should be noted: . 
1. Real and pointer variables are not supported. 
2. For a given port, its prelude, postlude and procedures represent the smallest 

unit of recovery such that no recovery is possible should an error be detected 
while executing anyone of them. As a result of this restriction, it is not mean
ingful to use recovery blocks in the bodies of port procedures. 

3. The variables of the initial process of a concurrent program are unrecover
able. 

4. The body of the initial process of a concurrent program can not contain re
covery blocks. 
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Concurrent Pascal with Backward Error Recovery: 
Implementation 

S. K. SHRIVASTAVA 

Summary. The implementation of backward error recovery features requires the support of a 
run time subsystem (called the recovery system) that is responsible for performing the task of 
state restoration. The recovery system implemented to support the recovery features of Con
current Pascal includes, for each process, a recovery cache for recording appropriate recovery 
data. This paper describes the details of the recovery system that was implemented as a part of 
the interpreter of Brinch Hansen's Concurrent Pascal system. 

Key Words. Recovery blocks Recovery cache Concurrent and Sequential Pascal Error 
recovery Ports 

Introduction 

As has been discussed in a companion paper [1], the backward error recovery 
capability, in the form of recovery' blocks, has been made available to the 
sequential programs of concurrent processes that are programmed in Con
current Pascal. The environment of a sequential program includes the 'abstract' 
objects that have been made available by the corresponding process. Those ob
jects that are intended to be operated on from within a recovery block must be 
made recoverable such that if recovery is invoked, their states are automatically 
restored. This state restoration is carried out by a recovery system that is part of 
the run time system that supports the processes. If an operation on an abstract 
object in effect amounts to the updating of store locations within the private ad
dress space of a process, then the recoverability of such an operation is easily 
obtainable: all that is necessary is for the recovery system to record, in some 
data structure, the addresses of the locations and the prior values in those lo
cations; the recovery is carried out by appropriately restoring these values. This 
is how the originally proposed recovery cache (the data structure to record the 
addresses and values) is intended to work in conjunction with recovery blocks 
[2]. However, if an operation on an abstract object amounts in effect to opera
tions other than update of private store locations then, in general, recovery of 
such an operation can be difficult to automate. The solution adopted in the ex
tended version of Concurrent Pascal is to program such operations by making 
use of the abstract data type port; a port contains a reverse procedure for speci
fying the 'undoing' of operations. The recovery cache can be extended such that 
it can be made to contain enough information about ports used within 'a recov
ery block so that if recovery is invoked, this information can be made use of for 
automatically executing reverse procedures and related programs. The exten-
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sions that were made to recovery cache and their associated processing algo
rithms to support recovery as required by port objects is the main subject of 
this paper. 

The recovery system which maintains a recovery cache for each process has 
been implemented as a part of the interpreter of Brinch Hansen's Concurrent 
Pascal system [3] available on a PDP 11145. The implementation exercise was 
carried out in two parts. In the first part, the language Sequential Pascal was 
extended with recovery blocks and the interpreter was modified so as to make 
assignments recoverable [4]. In the second part, Concurrent Pascal was extended 
with recovery blocks and ports and the interpreter was further modified in a 
manner to be described below. In the description that follows, I shall assume 
that the reader is familiar with recovery cache details described elsewhere [2] 
and the way caches were implemented for Sequential Pascal with recovery 
blocks [4]. 

Preliminary Details 

To set the scene, the Concurrent Pascal system, as developed by Brinch Han
sen's group, together with the initial modifications that were made to it for 
maintaining recovery caches supporting recoverable assignments as required by 
Sequential Pascal programs with recovery blocks, will be briefly described. 

The system consists of a kernel and an interpreter that, executes both 
sequential and concurrent programs. The kernel implements processes, syn
chronizing primitives, basic input and output and a virtual storage system. The 
overall run time system is depicted in Fig. 1. The virtual address space of a pro
cess is divided into a private segment and a segment that is common to all the 
processes. This common segment contains the data necessary for resource shar
ing (monitor variables), virtual code (the code produced by the Concurrent 
Pascal compiler), the interpreter code, the current process head (containing the 
state vector of the current process) and the interpreter table (that has, for all the 
interpreter instructions, appropriate pointers to the interpreter code). 

When the kernel selects a process for running, its state vector is copied into 
the current process head and the control is handed over to the interpreter. The 
current process head also acts as the interface between the kernel and in
terpreter. The interpreter implements a simple stack machine; the stack is 
maintained by the interpreter in' tht: private segment of the selected process (see 
Fig. I). The interpreter can also execute the virtual code produced for a 
Sequential Pascal program - such a code is stored as 'private data' of the pro
cess. 

It was a relatively straightforward task to modify the interpreter so as to 
support a recovery cache for each of the processes in the system; Figure I shows 
how recovery caches were placed in the private segments. The interpreter was 
extended with virtual instructions 'enter recovery block', 'acceptance test pass' 
and 'acceptance test fail', and the virtual instructions that performed as
signments (e.g. copyword) were modified to record in the cache, if necessary, 
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private 
segmen t 

Process i 

private 
data 

stack 

+ 

Process k 

private 
data 

stack 

+ - - ---

+ 
cache 

common 
segment 

Fig. 1. The Concurrent Pascal system 

+ 
cache 

- t- common data 

-I- virtual code 

- I- interpreter code 

- "- current process head 

- f- interpreter table 

address space of process i = private + 
common segment 

prior values. The interpreter incorporates a number of consistency checks for 
detecting abnormal situations (e.g. range error, stack limit); when such a situ
ation is detected by the interpreter, a jump is made to an 'exception handler' 
which copes with the situation. The original system had no fault tolerance capa
bility, hence the action of the exception handler was: if the program being in
terpreted is a Sequential Pascal program then abort the execution of that pro
gram; however, if the program is the Concurrent Pascal program then stop the 
system. The logic of the exception handler was modified to include cache pro
cessing for state restoration of a Sequential Pascal program (see Fig. 2, which 
presents a simplified picture of the. exception handler described more fully else
where [4]). 

The variable 'nest' counts the nesting of recovery blocks for the process 
(nest, together with a few other recovery block book-keeping variables are 
maintained by the interpreter as a part of the state vector of each process). If 
'nest> 0' is true then recovery capability exists and state restoration is carried 
out by the procedure 'restore'. The action of 'restore' is simply to appropriately 
copy back the values recorded in the current region of the recovery cache. 
When ports were added to Concurrent Pascal, it was necessary to modify the 
procedure 'restore' to include the execution of reverse procedures and other re
lated programs. It was also necessary to modify the organization of the recovery 
cache, as described next. 

346 



exception: var recovery: boolean; 
recovery: = false; 

while nest> 0& - recovery do 
begin 

with the recovery data of the current recovery block do 
begin 

restore; 
if an alternative exits then 

begin 
interpreter instruction counter: = tart 
of the code of the alternative; 
recovery: = true 

end else 
begin 

nest: = nest - 1; prepare recovery cache 
for the processing of the recovery data of 
the enclosing recovery block 

end 
end 

end; 
if - recovery then 

begin 
if abnormal termination & program = concurrent then 

stop; 
restore stack; return 

end; 

Fig. 2. Exception handling by the interpreter 

The Recovery Cache Structure 

In order to appreciate what recovery information should be recorded in the re
covery cache of a process, assume that the primary of recovery block R2 (see 
Fig. 3) fails the acceptance test. Then, (i) the reverse procedure of A must be 
executed, (ii) starting with B in state B(U2), the sequence 'prelude; reverse pro
cedure; postlude' must be executed (B(U2) stands for the state of the variables 
and parameters of port B after the executi<;m of the using statement U2) and 
(iii) the state of updated global variables must be' restored. Thus the cache must 
record for each recovery block that has been entered but not yet exited: (a) ad
dresses of any reverse procedures to be executed, (b) sufficient information 
about ports that have been used so that actions of type (ii) above can be per
formed, and finally, (c) the usual address-value pairs for restoring updated 
'words' (all the variables are mapped by the interpreter onto store words, so re
storing a variable is equivalent to restoring the appropriate words). 

With the above requirements in mind, the cache structure which was used 
originally [4] was modified to that depicted in Fig. 4(a). As before, for all the 
recovery blocks entered but not yet exited, there are 'barriers' in the cache with 
which the appropriate recovery data can be associated; all of the barriers are 
linked together and the 'cachbr' entry in the process head points to the topmost 
barrier (corresponding to the innermost recovery block). The variables 'next' 
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E SURE .. BY'R1' 
BEGI 

... - (1) 
USING A ( ... ) DO' l' 
BEGI . 

. . . -{2) 
E SURE ... BY 'R2' 
BEGI 

... - (3} 
USING B( ... } DO' 2' 
BEGI 

... - (4) 
H ['ROC ( ... ); 

eND: 
... - (5) 

A. Proc ( . .. ); 
. .. -(6} 

E '0 ELSE.....BY 

ELSLERROR; 'END OF R2' 
. .. -(7) 

END; 
... - (8) 

E DEL E.....BY Fig. 3. A skeleton program 
with recovery blocks and ports 

and 'number' indicate the alternative to be executed and the number of alterna
tives in that recovery block. The variables q, g, band s are pointers used by the 
interpreter (next instruction, global variables, local variables and stack top re
spectively), these values are stored when a recovery block is entered. The vari
able 'type' records. the type of the recovery block (see below). A linked list of 
'port recovery data' is maintained and the variable 'ports' points to the first en
try. For every 'using' statement executed in the recovery block, there will be a 
corresponding 'port recovery data' recorded in the cache; the contents of this 
data will be discussed shortly. Finally the variables 'revel' to 'reve4' are pointers 
to any reverse procedures that need executing, as mentioned at the beginning of 
this section (a fixed number of entries was chosen for efficient lookup during 
cache processing; for all practical purposes, these four entries should be suf
ficient). The following two points about this organization should be noted: 
1. When a recovery block is entered, 'barrier' to 'reve4' entries are put in the 

recovery cache with type = 0, ports = 0, and revel to 4 = ° (a '0' for ports and 
revei is taken to mean a null value). 

2. The value-address pairs and port recovery data are recorded incrementally -
as assignments are performed and 'using' statements are executed. 
The state vector (process head) of each process was extended to contain a 

few book-keeping variables necessary for the maintenance of recovery blocks. 
The starred entries in the current process head of Fig. 4 show these variables. 
As already stated, 'cachbr' points to the topmost barrier. The other variables 
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L ADDRESS 
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I 
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NEXT 
NUMBER 

Q 

G 
B 
S 

NOT USED 
TYPE=O 

NOT USED 
PORTS 

t REVE 1 
REVE 2 I 

I REVE 3 
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I 
I 
I 

RESULT 
I 

T COMMON 
SEGMENT 

CURRENT 
PROCESS 

HEAD 

I 

HEAPTOP 
I 
I 

CRITIC * I 
I 

NEST * CACHBR * 
DIRECTION * 

I 
I 

(a) 

-1 
PORT 

RECOVERY 
DATA 

I 

C 

_I 
L 

t 
VALUE 

ADDRESS 
V/////// ~ 

PARAMETERS 
+ 

VARIABLES 

POSTLUDE 
REVERSE 
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CODE 
'//////// f--

r/ BARRIER / rr NEXT 
NUMBER=1 

I 
I 

TYPE=1 
I 

(b) 

TYPE = 0 : Normal recovery block 
= 1 Using recovery block 

Fig. 4. Recovery cache organization: a recovery data for a normal recovery block; b recovery 
data for a using recovery block 
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are used as follows: 'critic' equal to zero means that port operations are to be 
recoverable (this will be explained in the next section); 'nest' indicates the nest
ing of recovery blocks and 'direction> 0 means the process is in the recovery 
mode, that is, 'going backwards'. 

The 'Using' Recovery Block 

The method by which the port recovery data is recorded will now be described. 
For a given 'using' statement, it was thought better to record any recovery data 
about it at one place rather than it being scattered over the enclosing recovery 
block and in the recovery blocks (if any) in the using statement. After many 
trials, a satisfactory way to record the data was found to be the technique that 
treated a using statement as a special recovery block with no alternatives. 

The structure of the recovery data for a using recovery block is shown in 
Fig.4(b). The portion below the barrier is exactly like the 'normal' recovery 
block except that type = I, indicating that it is a 'using' recovery block. On top 
of the barrier, the actual port recovery data is maintained as shown, where 
'postlude', 'reverse' and 'prelude' record the addresses of the appropriate code 
fragments and 'code' has the following meaning when processing this recovery 
data for state restoration: 
code = 0: take no action on the port recovery data 

= I: execute the postulate (as the forward going process had executed 
only the prelude) 

= 2: execute the reverse procedure and postlude (as the forward going 
process had executed prelude plus the port procedures) 

= 3: execute the reverse procedure only (the process failed while execut
ing the postlude - this implies a 'collapse' of the recovery mech
anism, [5], as resources cannot be returned - so provide a degraded 
service by merely executing the reverse procedure). 

Two actions are undertaken when the execution of a using statement 
finishes (e.g. the postlude has been executed): (1) the variables and parameters 
of the port are copied in the recovery data and (2) it is also taken to mean the 
exit from the using recovery block and the recovery data of this 'recovery block' 
are merged with that of the enclosing recovery block. In particular, the port re
covery data is chained to enclosing recovery block's chain as indicated in 
Fig.4(a). 

The Dynamics of Recovery Cache Management 

In order that the reader can get on overall view of how the recovery cache of a 
process is dynamically managed, a number of snapshots of a recovery cache are 
presented in Fig. 5 for the execution of the program of Fig. 3. Figure 5(1) to 
Fig. 5(4) show how barriers are placed and recovery data maintained for state
ments RI, UI, R2 and U2. From the recovery cache's viewpoint, RI and R2 
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correspond to type 0 recovery block and UI and U2 correspond to type I recov
ery block. At point 5 in Fig. 3, U2 has been successfully executed, so the cor
responding cache diagram, Fig. 5(5), shows that U2 recovery data has been 
merged to the recovery data of R2; in particular, 'ports' cell of R2 now points to 
U2 recovery data. At point 6 in Fig. 3 a procedure of Ul has been called, so the 
cache [Fig. 5(6)] shows that the 'revel' entry contains a pointer to the barrier of 
UI recovery data. Thus, should an error be detected at point 6 of Fig. 3 (or R2 
primary fails the acceptance test), there is enough information recorded in the 
cache about R2 to help reconstruct the prior abstract state. Figures 5(7) and 
5(8) show further how recovery data is merged. The details of the merging al
gorithm are presented in the next section. 

Interpreter Virtual Instructions 
and Cache Processing Algorithms 

The details of recovery block virtual instructions added to the interpreter and 
the virtual code produced by the Sequential Pascal compiler for a recovery 
block have been described elsewhere [4]. The Concurrent Pascal compiler was 
modified to generate the similar virtual code for recovery blocks. Since the 
structure of a recovery cache has been changed from that used before [4], it was 
necessary to change appropriately the code of recovery block virtual in
structions. These changes will not be described here. 

As the port data type closely resembles the class data type, all of the port 
virtual instructions provided by the interpreter have been based upon those 
provided for classes. Before presenting the details of these port virtual in
structions, the following three points should be noted: 
1. The code of an instruction can be divided into two parts: (a) the first part 

concerned with the manipulation of the stack of the process in question (e.g. 
store return link before a procedure call) and (b) the second part concerned 
with the manipulation of the recovery cache of the process. Only the details 
of the second part will be described here since it is this second part that 
makes this interpreter somewhat novel. 

2. To keep this experimental implementation of the interpreter as simple as 
possible, an implementation restriction on ports was imposed [1]: the prel
ude, postulate and procedures of a port represent the smallest unit of recov
ery, in that recovery may not be possible should an error be detected while 
executing anyone of them. Thus, no recovery data is generated for ports used 
in these program parts. This considerably simplifies the management of re
covery data (at the expense of providing a coarser 'grain of recovery'). A 
variable 'critic' is maintained in each of the process heads of processes with 
the following meaning: 'critic> 0' implies generate no recovery data for a 
port and 'critic = 0' implies the opposite. 

3. For the same reason as above, variables of the initial process were treated as 
unrecoverable, in that no recovery data is generated for them. 
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PURTNAME = PORT (. .. parameters ... ); 
. .. variables ... 

PROCEDURE E TRY PROC ( ... parameters ... ); 
I enterport (stack length , pop length, 
< bOdY( line, varlength) 

'------------exitport 'return' 

REVERSE PROCEDURE; 
Jenterreverse (stack length , poplength. 

<.'bOdYL..' >___________ line, varlength) 

exitreverse 'return' 

I r -------------beginprelude (stacklength. pop length 
line, varlength, 

< preludel > revprocaddr, postludeaddr) 
I ER· 

I' 
'-----------endprelude'return' 

rl -------------beginpostlude (stacklength, poplength. 

< POStlUdeL..(_________ line, varJength) 

endpostlude 'return' 
E D; 'of port type' 

P : PORT AME;--------'allocate space on the stack' 

USI G PN ( ... )DO-------- initport (paramlength, varlength, 
distance) 'has the effect of jumping 
to beginprelude' 

BEG I 
PN. PROC ( ... );-----call (distance) 'jump to enterport ' 

END;-------- - ----call (distance) 'jump to beginpostlude' 

Fig. 6. Port virtual instructions 

Figure 6 shows the port virtual instructions and how they are planted by the 
Concurrent Pascal compiler around appropriate program bodies. For the sake 
of completeness, all the parameters of the instructions have been shown; how
ever, only the underlined parameters are used explicitly for cache management, 
the rest are for stack management (stacklength indicates storage to be reserved 
on the stack, poplength indicates the storage to be reclaimed and so on). 

The execution of a 'using' statement is started by the interpreter executing 
the 'initport' instruction. The recovery cache manipulation part of this in
struction is shown below. 
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procedure initport (paramlength, varlength, distance); 
begin 

if critic = 0 then 
{create on the cache, recovery data 
for type 1 recovery block; code: = 0; nest: = nest + I} 

end; 

The next instruction to be executed after this is the 'beginprelude' instruction 
(note that 'revprocaddr' means the address where 'enterreverse' instruction is 
stored, a similar meaning is attached to 'preludeaddr', postludeaddr'): 

procedure beginprelude (-, -, -, -, revprocaddr, postludeaddr); 
begin . 

if critic = 0 then 
{store prelude address, reverse procedure 
address and postlude address in the port 
recovery data; critic: = critic + I} 

end; 

The last instruction of the prelude is the 'endprelude' instruction: 

procedure endprelude; 
begin 

critic: = critic - 1; 
if critic = 0 then code: = 1 

end; 

Calling a port procedure has the effect of executing 'enterport' followed by the 
code for the procedure body followed by 'exitport' which returns the control 
back to the caller: 
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procedure enterport (-, -, -, - ); 
begin 

critic: = critic + I 
end; 

procedure exitport; 
begin 

end; 

critic: = critic -1; 
if critic = 0 then 
{ifthe current recovery data is 
of type 1 and refers to the port whose procedure has been called then 
code: = 2 

else {select an empty reve i cell 
and put in it a pointer to the barrier of appropriate type 1 
recovery data; make 'code' of this type I recovery data = 2}} 



The algorithms for the instructions 'enterreverse' and 'exitreverse' are the same 
as those of 'enterport' and 'exitport' respectively. Finally, the algorithms for 
the instructions 'beginpostlude' and 'endpostlude' are given: 

procedure beginpostlude; 
begin 

if critic = 0 then 
{code: = 3; critic: = critic + I} 

end; 

procedure endpostlude; 
begin 

end; 

critic: = critic - 1; 
if critic = 0 then 
{copy from the stack, the actual port 
parameters and variables to the port 
data area iIi the cache; code: = 4; 
if nest > 0 then merge else discard} 

As noted earlier, successful execution of a using statement is treated as the 
using recovery block passing its 'acceptance test'. Hence in the instruction 'end
postlude', a call is made either to procedure merge (for merging recovery data 
to the enclosing recovery block's recovery data) or to procedure discard for 
throwing away the recovery data. The algorithm for 'merge' is given below: 

procedure merge; 
begin 

with all reve i of the recovery data of the just executed recovery block do 
{ifthe enclosing recovery block's recovery data has no reve j with 
the same value as revei and revei is not pointing to the barrier 
of the enclosing recovery block's recovery data then copy reve i to 
any unused reve j}; 

with all the entries of the just executed recovery block's recovery data do 
{if the entry is a port recovery data then add it and link it 
to the port recovery data of the enclosing recovery block's 
recovery data; 
if the entry is a value-address pair and the variable is 
global and there is no entry for it in the recovery data of 
the enclosing recovery block then add it to the recovery data 
else throw it away;} 
update heaptop and cachbr; 

end; 

The last algorithm to be described here is that of procedure 'restore' which 
performs the task of state restoration. This procedure is called from within the 
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exception handler of the interpreter (see Fig. 2). The procedure processes the 
current recovery data as follows: 

procedure restore; 
begin 

critic: = critic + I; 
while any port data left do 
{select the first unprocessed port data; copy the 
parameters and variables on the stack; execute 
the sequence 'prelude; reverse procedure; postlude'; 
mark this port data as 'processed'; restore stack}; 
with all reve i entries do 
{if reve i *- null then extract the reverse procedure 
address and execute the procedure}; 
if the recovery data is of type I then 

case code of 
0:; 
I: execute the postlude; 
2: execute 'reverse procedure; postlude'; 
3: execute reverse procedure; 

end 'case'; 
appropriately select 'address-value' pairs and 
restore the prior values; restore the interpreter 
registers S, B, G and Q; 
critic: = critic - 1 

end; 

A few remarks on this algorithm are in order. 
I. By incrementing 'critic' at the beginning, it is made certain that no recovery 

data will be generated while executing any programs. 
2. The order in which the various 'undo effects' programs are executed is not 

necessarily the reverse of the order in which the 'produce effects' programs 
were executed (this may tum out to be a weakness of this implementation 
and a revision of the method of recording recovery data will be needed to 
introduce the necessary changes). 
A few changes were made to the error reporting routines of the kernel such 

that the identity of a process is appended at the beginning when an error mes
sage from the interpreter is printed on the console. Examples of such messages 
appear in a companion paper [1]. 

Conclusion 

It can be seen that the structure of a recovery cache and its processing algo
rithms have become much more complicated than the scheme presented earlier 
[2]. This must be judged against the fact that it is now relatively straightforward 
for a concurrent program - an operating system - to offer abstract recoverable 

356 



operations on arbitrary resources to user programs. In the absence of such a fa
cility, ad hoc measures will have to be incorporated in concurrent and user pro
grams. The resulting increase in complexity is likely to adversely affect the re
liability of the system. 

The size of the original interpreter was about I K words. The size of the 
modified interpreter is about 2K words. This modest increase in the size of the 
interpreter was made possible by (a) making maximum use of the already exist
ing 'class' virtual instruction codes for port virtual instructions, and (b) relying 
more on the use of subroutines as against macros. The modifications to the in
terpreter have been performed in such a manner that programs that do not use 
recovery blocks and ports are not affected; in particular, the SOLO operating 
system [3] and the supporting programs can be used for developing concurrent 
and sequential programs with recovery. The system that has been described 
here must be regarded as experimental since, for example, any realistic fault
tolerant system will include a high degree of hardware redundancy (this system 
has none). Nevertheless, this experimental system can be used as a basis for the 
design of more appropriate hardware; in particular, there is no reason why the 
interpreter described here could not be implemented by microprogramming. 
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A Framework for Software Fault Tolerance 
in Real-Time Systems 

T. ANDERSON and 1. C. KNIGHT 

Abstract. Real-time systems often have very high reliability requirements and are therefore 
prime candidates for the inclusion of fault tolerance techniques. In order to provide tolerance 
to software faults, some form of state restoration is usually advocated as a means of recovery. 
State restoration can be expensive and the cost is exacerbated for systems which utilize concur
rent processes. The concurrency present in most real-time systems and the further difficulties 
introduced by timing constraints suggest that providing tolerance for software faults may be 
inordinately expensive or complex. We believe that this need not be case, and propose a 
straightforward pragmatic approach to software fault tolerance which is believed to be appli
cable to many real-time systems. The approach takes advantage of the structure of real-time 
systems to simplify error recovery, and a classification scheme for errors is introduced. Re
sponses tq each type of error are proposed which allow service to be maintained. 

Index Terms. Concurrency, error classification, real-time systems, software fault tolerance, 
software reliability. 

I. Introduction 

A great deal of research is currently being performed on techniques for the pro
duction of better quality software. This research is particularly important for 
systems where the consequences of any noncompliance of software with its re
quirements may be disastrous. The failure of an unmanned space mission could 
cause the loss of extremely expensive equipment before the successful comple
tion of mission objectives. Of even greater concern is the possibility that human 
lives could be endangered, for example, by the failure of a digital avionics sys
tem for a commercial air transport. 

Many critical systems operate in real time. This means that inputs may be 
expected and/or outputs must be generated according to some real-time sched
ule. For example, an avionics systems may send commands to control surfaces 
every tenth of a second of real time. Of course, the traditional problems as
sociated with software arise in real-time systems; the necessary outputs may be 
produced when they are needed, but they may be incorrect. However, the re
quirement for operation in real time presents difficulties over and above those 
normally encountered. For example, execution of a real-time program may suc
cessfully produce the output demanded by the program's specification but fail 
to do so within the imposed real-time deadline. 

For some embedded real-time systems, belated (or even erroneous) outputs 
may not constitute an immediate problem. The inertial characteristics of at
tached physical equipment may absorb temporary aberrations so long as sub
sequent outputs are valid and generated on time. Nevertheless, a missed dead-
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line can be taken as strong evidence that problems may exist in the operation of 
a system, and that much more serious consequences could ensue. In critical sys
tems such anomalies should not be ignored. Of course, if a system is designed 
specifically to permit occasional delayed outputs, a missed deadline need not 
be considered anomalous. However, when a deadline is missed in such a system 
it will be very difficult to determine whether the delay results from the design 
or is in fact a harbinger of system failure. Such uncertainty is not acceptable for 
critical syst~ms. 

There are two approaches to the construction of software which must 
exhibit behavior that is highly reliable (that is, complying with its specification 
most of the time). Avizienis [2] called these approaches fault intolerance and 
fault tolerance. Fault intolerance, better referred to as fault elimination or fault 
prevention, embtaces all the various techniques which try to ensure that soft
ware contains no faults. For example, requirements definitions, precise specifi
cations, design and programming methodologies, proving, and testing cim all 
contribute to an attempt to eliminate the presence of faults from software. Ex
perience has shown that although the adoption of these techniques can be ben
eficial, a reduction in the incidence of faults and certainly not their complete 
elimination is all that can be expected. Fault tolerant software incorporates 
techniques which attempt to ensure that acceptable service is maintained by 
coping with the faults which remain despite the use of fault prevention 
measures. Elements are introduced into a system which, in the absence of faults, 
could be omitted without affecting the behavior of the system. 

This paper discusses the application of fault tolerance techniques to real
time software. Real-time systems are modeled as a set of cooperating sequential 
processes with constraints on their execution time. Each process corresponds to 
the execution of a program which is part of the system, and provides some sub
set of the necessary system outputs. Programs are usually executed periodically 
and, for a given program, the intervals between initiations are almost always 
the same length of time. An executive ensures that processes of the system are 
dispatched at the appropriate time and monitors whether each process com
pletes exec;ution within its allotted time. 

The approach to fault tolerance presented here can be applied to any practi
cal real-time system for which the previous model is appropriate, and does not 
demand special-purpose hardware facilities for its implementation. It is not de
signed for or limited to any specific project but suggests techniques which can 
be tailored for any particular cyclic real-time application. Using this approach, 
systems can be constructed which will continue to provide adequate responses 
in real time under circumstances where faults in the software would normally 
cause a loss of service. It will be necessary to construct software above and 
beyond that which has been traditionally considered sufficient. The additional 
costs may be substantial but must be regarded as unavoidable, as are the costs 
incurred from the redundancy necessary to provide hardware fault tolerance. 
Software which does not include every facility to enhance reliability is unac
ceptable in the critical applications being considered here. 

None of the techniques proposed here are intended to cope with hardware 
faults (although tolerance to some hardware faults may be obtained neverthe-
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less). Hence, it is assumed that the software is executed on hardware of suf
ficiently high reliability. furthermore, to assist in achieving reliable operation, 
the hardware should include facilities such as high resolution clocks and 
memory protection. 

The work reported here was motivated by the need for reliability in flight 
software but the techniques have relevance in other real-time applications 
where the cost of failure is high; for ex'ample, the operation of a nuclear power 
plant or the monitoring of hospital patients. 

Previous work in the area of fault tolerant real-time software has been re
ported by Campbell et al. [3], Hecht [9], and Kopetz [12]. It is likely that certain 
military real-time systems have made some use of software fault tolerance, but 
in most cases such systems have not been described in the open literature. One 
exception is SAFEGUARD [19]. 

Campbell et al. considered a system of independent primary processes 
which individually must provide their respective service within their own time 
limits. To guard against a primary process not completing in the required time 
it was suggested that an alternate process be available for each primary process, 
which would be able to provide a degraded service in substantially less time 
than is .required by the primary process. The deadline imposed on the primary 
is such that 'there is always sufficient time to execute the alternate should this 
prove necessary. 

Hecht has made various specific suggestions for incorporating fault toler
ance in the software of practical flight control systems. In particular, he ad
vocateq the' use of recovery blocks [16] augmented by error detection using an 
interval timer, and the provision of a back-up scheduler which would maintain 
only critic:al system functions. 

Kopetz presented an abstract model of computation and used it do develop 
probability models of reliability. Real-time systems were handled as a special 
case and it was shown that various forms of redundancy in such systems lead to 
substantial increases in reliability. 

Substantial hardware fault tolerance was built into the SAFEGUARD sys
tem together with limited software fault tolerance. Software error detection 
took many forms including range and plausibility checks on data. Once detect
ed, software errors were usually handled by suspending the erroneous process if 
possible, by operator intervention, or by resetting the entire system. Some criti
cal programs were equipped with specialized error recovery code. The tech
niques used in SAFEGUARD were rather specific to the needs of that partic
ular project. 

ll. Characteristics and a Model of Real-Time Systems 

Consider a set of programs with names PI, ... , Pn and a set of distinct times 
TI, ... , Tm which represent timing constraints (on some appropriate scale). 
Let G be a finite, acyclic, directed graph with exactly one node with in-degree 
zero called the frame beginning node and exactly one node with out-degree 
zero called the frame ending node. Each node of G is labeled with either a pro-
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gram name or a timing constraint, and more than one node may be labeled with 
the same program name. No two nodes are labeled with the same timing con
straint. An arc of G can only connect two nodes with different types of label. 
Thus, G is a bipartite graph. The frame beginning and frame ending nodes are 
both labeled with timing constraints. If there is a path in G from a node labeled 
Ti to a node labeled Tj, then Ti must be less than Tj. Nodes labeled with pro
gram names have in-degree and out-degree one. G is referred to as a synchroni
zation graph. Clearly, such graphs are connected. 

The need to respond promptly to changes in the external environment dic
tates that real-time systems have an iterative nature. This repetitive attribute 
may be implicit if the systems is interrupt driven (as are many sequence control 
systems), but otherwise is usually exhibited explicitly in the form of cyclic sys
tem operation. A synchronization graph can be used to represent the process 
structure of cyclic real-time systems. 

A synchronization graph represents the process structure of a real-time sys
tem. It shows which programs must be executed, and when each must start and 
finish. A node labeled with a program name indicates the execution of that pro
gram and therefore represents a process. Where no ambiguity arises, the phrase 
"process P" will sometimes be used in the remainder of this paper in place of 
the phrase "execution of the program named P." A node labeled with a timing 
constraint is a point of process synchronization (with other processes and/or the 
outside world) and the node label specifies the elapsed time by which this 
synchronization must occur. A node labeled with a program name P is connect
ed to two nodes labeled with timing constraints. The graph indicates that the 
program named P must begin execution at the time specified at the node with 
an arc to the node labeled P, and must complete execution at or before the time 
specified at the node with an arc from the node labeled P. 

Arbitrarily complex real-time systems can be modeled using such graphs 
but the resulting graphs may be inordinately large. However, we have found 
that the simple repetitive structure of many practical real-time systems allows 
their operation to be modeled as cyclic traversals of acceptably sized graphs, 
beginning each cycle with the unique node labeled by the earliest timing con
straint (the frame beginning node) and ending with the unique node labeled by 
the latest timing constraint (the frame ending node). More complex systems of
ten exhibit a natural modularity which can be represented using nested syn
chronization graphs. A part of the system can be represented as a separate syn
chronization graph and this used as a node in a graph representing the entire 
system. 

The time period corresponding to a single iteration of the synchronization 
graph for a system is referred to as a frame. The length of a frame in real time 
(the frame time) is usually quite short (normally less than one second) since fre
quent outputs from the system are required for smooth operation. This means 
that any given process will only exist for a short time (at most a frame) which 
may be contrasted with the characteristics of a general-purpose operating sys
tem. Many real-time systems operate with some programs being executed more 
frequently than others. Such systems are said to operate with multiple frame 
rates or multiple iteration rates. This can be modeled either by nested syn-
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Fig. 1. An example of a synchronization graph 

chronization graphs or by labeling several nodes with the same program name 
and using a series of timing constraints to show limits on sequential executions. 

An example of a synchronization graph is shown in Fig. 1. The program 
names are PI, P2, ... , P8 and the timing constraints are Tl, n, ... , n. It is 
convenient to depict the time labeled nodes of the graph in a linear sequence in 
order to show the relationship of the timing constraints. Programs PI, P2, P3, 
and P4 begin to execute concurrently at time Tl and P4 must complete by time 
n. Program P5 begins at n and both it and P3 must complete by n. At n, 
programs P6, P7, and P8 begin, and they, together with P2, must complete by 
T4. All programs except PI then repeat this execution sequence with new tim
ing constraints T5, T6, and n. Thus, this example includes multiple rates of 
iteration. Time n is the final constraint and programs P6, P7, and P8 must 
complete at this time, as must PI and P2. The entire execution sequence is then 
repeated an arbitrary number of times. All timing constraints are incremented 
by n - Tl at the end of each iteration. Tl is the frame beginning node, n the 
frame ending node, and n - Tl the frame time. 

Although Fig. I is a simple example, observations of practical systems sug
gests that they can be modeled adequately with extremely simple graphs. Fig. 2 
is the synchronization graph of a slightly modified form of the software for the 
Annular Suspension Pointing System (ASPS) [23]. (The ASPS is a computer 
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Fig. 2. Synchronization graph of the ASPS system 

controlled pointing system which provides extremely accurate pointing of ex
periments to be carried on the Space Shuttle.) 

The concurrency exhibited in practical real-time systems, such as ASPS, is 
usually limited and predefined. Parallel execution of processes is not un
common, but the degree of parallelism is restricted and takes the same form 
during each frame. In principle, processes are being created as required but in a 
rigid predefined manner. There are none of the complex resource management 
problems which arise in systems where processes may be created arbitrarily. In
terprocess communication is fairly simple and often identical in every frame. 

Ill. Principles of Fault Tolerance 

Detailed discussions of the general principles of software fault tolerance may be 
found elsewhere [1], [17]. Only an overview is given here. 

In what follows, definitions derived from those given by Melliar-Smith and 
Randell [15] for fault, error, and failure are adopted. Specifically: 

1) a FAILURE occurs whenever the external behavior of a system does not 
conform to that prescribed by the system specification, 
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2) an ERROR (more accurately known as an erroneous state) is a state of 
the system which, in the absence of any corrective action by the system, could 
lead to a failure which would not be attributed to any event subsequent to the 
error, 

3) a FAULT is the adjudged cause of an error. 
The term "fault" will be used to refer to any defect within a system which 

causes the system to enter an erroneous state. For example, a hardware com
ponent may malfunction either because of physical degradation or because it 
was badly designed. Software faults are usually called "bugs" and are due to 
mistakes in the design or construction of the software. 

Fault tolerance techniques can be discussed with respect to the four phases 
summarized below. There can be considerable interplay between these phases, 
and the order in which they are applied can vary, but taken together they pro
vide a capability for preventing faults from leading to failures. The four phases 
are as follows. 

1) ERROR DETECTION: To tolerate a fault its effects must be detected. 
Clearly, this can only be achieved by performing checks to determine whether 
any erroneous situation has arisen. 

2) DAMAGE ASSESSMENT: Having detected that the system is in error, it 
will usually be necessary to identify how much of the state of the system has 
been corrupted. The assessment may be derived from constraints on the flow of 
information in the system, or based on the outcome of further exploratory error 
checking. 

3) ERROR RECOVERY: Probably the most important aspect of fault toler
ance is the provision of an effective means of transforming an erroneous state of 
the system into a well defined and error free state. Methods for achieving this 
transformation can sometimes make good use of the information retained in the 
erroneous state, but it can be more secure to simply discard the erroneous state 
and reset the system either to some prior state (a recovery point) or other pre
designated state. 

4) CONTINUED SERVICE: In order to enable the system to continue to 
provide the service required by its specification, further action may be needed 
to ensure that the fault whose effects have been obviated does not immediately 
recur and thus ruin the whole approach. Unless the fault was transient and will 
not recur in any case, it must either be rectified or circumvented. These actions 
are usually referred to as repair and reconfiguration, respectively. 

Fault tolerance techniques have received widespread application in hard
ware [4], but are relatively little used in software. This is largely because the 
techniques adopted in hardware systems are intended to cope with anticipated 
faults resulting from physical degradation, and as such are inappropriate for 
software faults. Faults in software are present from the outset; their character
istics are those of design faults and as such their consequences are difficult to 
assess in advance. Techniques suitable for providing tolerance to software faults 
have not been proposed until comparatively recently [5], [10]. In order to cope 
with unpredictable damage to the state of the system, the strategies adopted for 
the four phases of fault tolerance described above must operate as generally as 
possible. 

364 



Thus, it is advocated that error detection should be achieved by checking 
that the system is functioning acceptably. It is not suggested that the more con
ventional approach of checking for specific malfunctions should be discarded, 
but that negative checks of this type should be supplemented by positive ac
ceptability checks. 

An automated exploratory approach to damage assessment would be dif
ficult in an unanticipated error situation. Decisions about the extent of damage 
are more appropriately based on assumptions of how the system is structured 
and the apparent severity of the error. 

A similar approach to error recovery entails mistrusting any of the state in
formation considered to be damaged and avoiding the use of recovery tech
niques which rely on such information. In order to recover from the unpredict
able situations which can ensue from design faults, it is necessary to adopt the 
more drastic alternative of replacing all suspected parts of the system state to
gether with any other parts which must be replaced for consistency. This may 
involve substantial processing and consequent delay. To minimize this penalty, 
hardware implemented state restoration mechanisms have been proposed [14]. 

Finally, in order to achieve continued service after recovery has taken place, 
some means of preventing a repetition of the original fault must be found. An 
estimate of the location of a software fault will be needed so that the module 
containing the fault can be replaced by a stand-by spare. Given the nature of 
software faults, it is clear that the spare module must be of independent design. 

The technique of recovery blocks [16] is based directly on the above prin
ciples whereas N-version programming [5] uses an NMR voting check for error 
detection and replicated states to obviate the need for explicit error recovery; 
neither technique is directly applicable to other than a single sequential pro
cess. 

IV. Fault Tolerance in Concurrent Systems 

While considerable success has been achieved in devising mechanisms to pro
vide fault tolerance in the software of sequential systems, difficulties arise when 
systems of communicating concurrent processes are considered, particularly if 
real-time constraints are imposed. Suggestions in this more difficult area have 
involved major assumptions about the nature of the concurrency in the system. 
Randell [16] assumed that processes could be synchronized with respect to the 
discarding of recovery points, and suggested a technique of "conversations" be
tween processes. Shrivastava [20], [22] considered processes which communicate 
solely in order to share scarce resources, and Russell [18] examined producer/ 
consumer systems. In a slightly more general but much more complex ap
proach, Kim [11] assumed that interprocess communication takes place through 
monitors and that inputs to a process are considered to be valid by the receiving 
process. 

The basic problem is that if processes can communicate at will then when
ever one process establishes a recovery point (for state restoration purposes) it 
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is advisable for all other processes to do the same. If this is not done, system
wide consistent state restoration may only be possible by rolling back the ac
tivity of the system to an arbitrarily earlier point in time. This is the domino 
effect [16] and an example is shown in Fig. 3. Both processes must rollback to 
point A in order to recover because of the communication which takes place 
and the way in which recovery points are established. All of the above ap
proaches are aimed at avoiding the heavy overhead incurred with large num
bers of recovery points or extensive rollback. 

As was discussed earlier, the process structure of real-time systems contains 
many synchronization points which are usually associated with timing con
straints. Synchronization points occur within the process structure where a sub
set of the processes are synchronized, and at frame boundaries where all of the 
processes are synchronized. In fact, much of the synchronization of processes in 
a real-time system stems from the need to synchronize with the external en
vironment, rather than from any inherent needs of the processes themselves. 
Thus, much more synchronization occurs than would be found in concurrent 
systems that do not operate in real time. This means that although real- time 
systems are concurrent, they have a characteristic which is highly desirable if 
recovery points are to be provided without excessive overhead. The provision 
of fault tolerance need not involve any changes to the process structure. Such 
systems are particularly amenable to the application of a modified form of the 
conversation technique mentioned above. 

A set of processes which participate in a conversation may communicate 
freely among themselves, but with no other processes. Processes may enter the 
conversation at different times but, on entry, each must establish a recovery 
point (see Fig. 4). All processes must leave the conversation at the same time 
since if an error is detected in any participant, every process in the conversation 
must restore its recovery point and try again. If the conversation structure is 
used to provide recoverability in a general concurrent system, the necessary 
state restoration can be automated using a recovery cache [10], which is a form 
of mechanized incremental checkpoint. It can be used for both sequential and 
concurrent software. The recovery cache frees the software designer from the 
need to specify what has to be recorded, saves only a minimum of recovery 
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data, and maintains the illusion that a complete checkpoint has been taken. 
Although this is conceptually straightforward, if a recovery cache is not sup
ported in the underlying machine then extensive processing will be necessary to 
simulate its operation. Presently available computers do not provide a hard
ware recovery cache although an experimental version has been built for a 
PDP-II [14]. Except in particularly simple cases, the overhead of a software re
covery cache is likely to be prohibitive. 

The successful implementation of software fault tolerance in a real-time sys
tem is greatly facilitated by imposing the following restriction on communi
cation between processes of the system. Let timing constraints Ti, Tj, Tm, and 
Tn and program names P and Q label nodes of a synchronization graph with 
arcs defined by the ordered pairs (Ti, P), (P, Tj), (Tm, Q), and (Q, Tn). Neces
sarily, Ti is less than Tj and Tm is less than Tn. Communication is only permit
ted under the following mutually exclusive conditions: 

1) from P to Q if Tj ;;::;: Tm, [see Fig. 5(a)] 
2) from Q to P if Tn ;;::;: Ti, [see Fig. 5(b)] 
3) between P and Q if Tj = Tn [see Fig. 5(c)]. 

Note that condition 3 impliesj = n also. Since timing constraints are distinct, if 
Tj = Tn they are the same node of the graph. 
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The processes P and Q are said to execute sequentially under conditions I 
and 2, and otherwise are said to execute concurrently, in which case Tj > Tm 
and Tn > Ti. Condition 3 (where Tj = Tn) is a special case of concurrent ex
ecution. Informally stated, two processes execute concurrently if their ex
ecutions overlap, whereas they execute sequentially if one terminates before the 
other begins. 

Let the timing constraint T and program names PI, .. , , Pk label distinct 
nodes of a synchronization graph with arcs defined by the ordered pairs 
(PI, T), ... , (Pk, T). Processes PI, ... ,Pk execute concurrently but are allow
ed to communicate because condition 3 is satisfied. If a recovery point is es
tablished for each of the processes when they are initiated then the set of pro
cesses PI, ... , Pk are said to be engaged in an exchange. The exchange termi
nates when all of the processes have terminated (at or before time T) where
upon all the recovery points can be discarded. Processes in an exchange can be 
regarded as a single (atomic) process for recovery purposes if all processes in 
the exchange are restored to their initial state whenever recovery is needed for 
one process. 

An exchange is a very restricted form of conversation. Specifically, it is a 
conversation which processes enter as soon as they are initiated and exit only 
when they all terminate. Although conversations can be nested, the definition of 
an exchange requires two different exchanges to be completely disjoint. These 
restrictions are imposed deliberately to take advantage of the natural syn
chronization inherent in real-time systems. By stipulating that communication 
between concurrent processes can only occur when the processes are members 
of the same exchange, a straightforward implementation of recovery for a real
time system can be constructed. 

The unrestricted framework of conversations could be used as a basis for re
covery in real-time systems, but exchanges are proposed here as a simpler 
alternative imposing stricter control on interprocess communication. Observa
tion of typical cyclic real-time systems suggests that these restrictions are easily 
satisfied and are acceptable in order to facilitate the provision of recovery. 
Conversations provide more flexibility, but to take advantage of this involves 
imposing additional synchronization points on processes and necessitates the 
implementation of a more complex recovery mechanism. 

Cyclic real-time systems often have characteristics which enable recovery 
for exchanges to be efficiently implemented in software, without the assistance 
of any special-purpose hardware. Because of the iterative nature of these sys
tems, the initial state of a process at a specific synchronization point can be ex
pected to be very similar for each frame. In the simplest case, the initial state of 
a process will always be the same. All that is required to restore the initial state 
if recovery is invoked is a simple reset. By storing constants to set up the initial 
state in read-only memory, the reset can be easily, and efficiently, achieved by 
means of software. Even if the initial state contains frame dependent values, 
state restoration by software will still be viable so long as the quantity of data 
involved is limited, and the relevant variables are known a priori. By preserving 
the initial values of the frame dependent variables at each iteration, recovery 
can be implemented by a fixed reset followed by a selective update using the 
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preserved values. Thus, for many practical real-time systems, error recovery 
hardware will not be necessary. 

One potential limitation of state restoration as a recovery technique con
cerns interaction between a system and its environment. Restoring the internal 
state of a process does not suffice to undo the effects of outputs from the pro
cess which have been acted upon externally to the system, or to regenerate in
puts from the environment which the process has consumed. Although error re
covery can simulate the reversal of time within the system, such abstractions are 
not available in the "real" world of the external environment. 

Inputs to a process are not likely to pose a major problem. In many systems, 
input values will be sensor readings, in which case the values available after re
covery may well be preferred to the original values (and since they may differ 
slightly, a recurrence of the error may be avoided). If necessary, however, input 
values can easily be recorded and retained for use in the event of recovery. 

Outputs to the external environment are a much more serious problem. In 
some situations an erroneous output can be compensated by subsequent out
puts, for example, when adjusting an aircraft's control surfaces. But in other 
situations, compensation may be impossible, for example, if an aircraft's fuel 
has been jettisoned inadvertently. The difficulties here are, in principle, insolu
able. Once a system has generated erroneous outputs it has failed, and while 
fault tolerance techniques may be able to prevent a recurrence of the failure, 
nothing can be done to prevent a failure once it has occurred! (Remedial action 
may be undertaken but can only mitigate the consequences of the failure.) This 
suggests that a process should not release an output to the environment until all 
internal checks have been completed [21], that is, not until the process in com
mitted in the sense that recovery will not be invoked for that process. A par
ticularly simple strategy is to defer the transmission of outputs to the en
vironment until the end of each frame. 

v. Error Classification 

For the purpose of discussing the recovery mechanisms, errors will be classified 
according to a set of definitions. This classification is based on the apparent 
seriousness of the situation arising from a fault. It is not appropriate to classify 
faults in this way since similar faults occurring at different points in a system 
can generate erroneous states with different degrees of severity. The definitions 
are as follows. 
1) INTERNAL Error: An error that can be adequately handled by the process 

in which the error is detected. 
2) EXTERNAL Error: An error that cannot be adequately handled by the pro

cess in which it is detected, but whose effects are limited to that process. 
3) PERVASIVE Error: An error that cannot be adequately handled by the pro

cess in which it is detected and which results in errors in other processes. 
The incidence of errors will be classified according to the following defi

nitions. 
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I) PERSISTENT: An error is persistent if the frequency of occurrence of the 
associated fault exceeds some predetermined threshold. 

2) TRANSIENT: An error is transient if it is not persistent. 
As an example, suppose process P performs a division by zero, and has pro

vision for recovery from this error. If this recovery is successful, then the error 
is considered to be internal. Such an error has no impact on the rest of the sys
tem. Internal errors may be transient or persistent, but this is of no immediate 
consequence to the rest of the system. However, a persistent internal error may 
eventually lead to an external or pervasive error. 

If division by zero occurs within P but no error handler is provided, the ser
vice provided by P can only be maintained with the assistance of software 
which is not part of P. The error is then external, provided that no erroneous 
information has been propagated from P to other processes. Such an error is 
persistent if it recurs frequently, and it is likely that more extensive recovery 
will be required for persistent external errors than for transient ones. 

Finally, suppose process P enters an erroneous state by, for example, setting 
to zero a variable which should always be positive. If, before this situation is 
detected, process P uses this variable in communication with other processes 
and they enter erroneous states as a result, then the error is pervasive. 

Given this classification scheme for errors, it is necessary to be able to de
termine which class an error falls into once it has been detected. This enables 
appropriate recovery techniques to be invoked reflecting the extent of the dam
age incurred by the system. In practice, classifying an error can only beattempt
ed since it will be impossible to classify all errors correctly. For example, the 
first occurrence of a persistent error is likely to be classified as transient. Simi
larly, an error could occur which was in fact pervasive, but if the consequent 
damage to the other processes was not detected, the this pervasive error would 
be indistinguishable from an external error. There is nothing that can be done 
about this problem other than to try to minimize its impact. Some form of re
covery will be invoked even when an error is wrongly classified and this may 
still be sufficient to ensure continued service from the system. 

VI. Error Detection and Damage Assessment 

When software is being executed on a hardware implemented interface, the 
various checks built into the hardware may be supplemented by assertions in 
the software. These assertions may be in the processes themselves or in the 
executive software. 

A check which is performed in hardware may reveal an error by detecting 
an invalid usage of the interface; for example, division by zero, a protection vi
olation, or an attempt to execute an invalid operation code. A software as
sertion may reveal an error by detecting an illegal use of program data; for 
example, range checking, array bound checking, or checks on invariant rela
tionships between variables. Timing errors are detected when a timing con
straint specified in the software is violated. They form an important class of er
rors detected by supplementary software checking. 
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If error detection is to be followed by recovery and continued service, there 
must be time available after detection and before the outputs are actually re
quired. In the particular case of signaling timing errors this means that dead
lines must be imposed on the primary process which allow time for recovery 
and the execution of at least one alternate [3]. This is an important point for sys
tem designers to keep in mind. 

It is assumed in the following discussion that whenever an error is detected, 
either by hardware or software checking, an interrupt is raised and control 
passes to a system error handler. On being invoked in response to the detection 
of an error, the error handler must make a determination of the extent of the 
damage to the system state, and then initiate appropriate error recovery 
measures. In the approach proposed in this paper, damage to the system is im
plicitly assessed by the error handler classifying each error as being internal, ex
ternal, or pervasive. For external and pervasive errors, the recovery technique 
applied is also dependent on whether the error is deemed to be transient or per
sistent. 

In order to classify errors with reasonable accuracy, it will be necessary for 
the error handler to retain information concerning the error history of processes 
in the system. No information need be maintained by the system for internal 
errors since such errors are considered to be completely localized difficulties for 
which the recovery applied by the process involved is adequate (this does not 
preclude an individual process from maintaining a private error history, for 
example, to identify persistent internal errors). 

Whether an error in a process can be considered an internal error or not will 
be very system dependent. The error handler makes this determination on the 
basis of two questions. 

I) Is the particular error one for which processes are permitted to attempt local 
recovery? 

2) Does the process in which the error occurred have the means of attempting 
local recovery for this particular error? For example, did the designer in
clude a suitable exception handler? 

If local recovery is permitted and available, then the error handler allows 
the process to initiate its own recovery capability (such as exception handling 
or recovery blocks). Only if this recovery apparently succeeds is the error finally 
classed as internal. Otherwise, the error will be dealt with as an external or per
vasive error. 

An error can be suspected to be pervasive if multiple non-internal errors oc
cur in a single frame. A persistent external error is suggested if an external error 
recurs frequently in a particular process. Frequent recurrence of pervasive er
rors indicates a persistent pervasive error. Quantification of "multiple" and 
"frequent" in the above yields a well-defined classification algorithm for use by 
the error handler. 

It is suggested here that if an external error has occurred in a frame, then 
any further occurrence of a noninternal error in that frame should be classified 
as a pervasive error. It is preferrable for the error handler to err, if at all, on the 
side of caution. 

371 



4 

Process 3 

Number 2 

1 

13 

13 

13 

13 

13 

1 

13 

f/J 

13 

1 

13 

Il 

13 

1 

13 

13 

Frames 

13 

13 

f/J 

f/J 

Fig. 6. Error matrix example 

The simple iterative structure of many existing real-time systems suggests 
that a less rigid approach can be adopted toward determining the persistence of 
an external error. A straightforward frequency test seems appropriate, for 
example, an external error in process P could be considered persistent if an ex
ternal error in P had occurred either in each of the n previous frames, or in p of 
the q previous frames (where n, p, and q are integers selected by the system de
signer). A stricter version of the same test might be considered necessary to de
tect recurring pervasive errors. 

The information needed by the error handler in order to classify errors is 
most simply maintained by recording the recent error history of the processes in 
a bit matrix E, called the process error matrix, whose row index ranges over the 
processes of the system and whose column index runs from zero to q, where q is 
the value employed in the frequency test above. At the beginning of a frame, all 
the elements in column zero of E are set to zero. If a noninternal error occurs in 
process Pi, then the column zero, row i element of E is set to one. At the end of 
each frame, a one place logical right shift is applied to each row of the matrix. 
Thus, a value of one in position Eij indicates the occurrence of a noninternal 
error in process Pi in the jth preceding frame to that which is current. Fig. 6 
shows an example of a process error matrix as it might appear at the beginning 
of a frame for a system of four processes in which process 3 has experienced 
errors in each of the last three frames. It may be convenient to record the inci
dence of pervasive errors in a supplementary bit vector which records, for each 
of the last q frames, whether a noninternal error occurred in two or more pro
cesses. 

VU. Recovery and Continued Service 

A. Internal Errors 

Recovery from internal errors is only attempted for those errors for which ex
plicit provision has been made in the system design. Techniques for internal re
covery by a process include ad hoc repair as a part of a local exception handler 
[8] such as a PUI "ON" unit, or a more general approach such as the system
atic state restoration employed by recovery blocks. Continued service is provid-
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ed in an arbitrary fashion following recovery in an exception handler and more 
systematically by the alternates in a recovery block under the constraint of hav
ing to satisfy the acceptance test. It is inappropriate to discuss the response to 
internal errors in greater detail because in any given set of circumstances, recov
ery is highly dependent on the structure of the individual processes involved. 

It is important to be aware that the processing of internal errors may be un
successful and provision must be made to detect this situation and signal an ex
ternal error. Detection is trivial when using recovery blocks since it corresponds 
to exhausting the set of alternates. It is more difficult with exception handling 
because consistency checks of the recovery must be programmed explicitly. 
Signaling the external error may take any form which is appropriate for the sys
tem involved. 

B. External Errors 

The recovery used for external errors will depend upon whether or not the pro
cess is engaged in an exchange. For a process which is not, a suitable state can 
be restored by a simple reset mechanism as discussed in Section IV. Under soft
ware control, values of input data for the process can be established in prep
aration for execution of a suitable alternate. 

For a process engaged in an exchange, the recovery can be similar but must 
involve all the processes in the exchange. A suitable initial state must be es
tablished for each so that alternates can be executed for each. 

It has been suggested [9] that in most real-time systems there are certain 
processes in which any error leads to a system failure which is critical. Such 
processes are called critical processes. Other processes are not critical in that if 
they are in error, the resulting system failure is not critical. An example of the 
former might be a process responsible for engine throttle settings, while an 
example of the latter might be a process which provides noncritical information 
for display. Classification of processes in this way is the responsibility of the 
system designer but it must be borne in mind that a process may be regarded as 
noncritical in the presence of transient external errors but may have to be re
garded as critical in the presence of persistent external errors. For example, an 
external error occurring in a process providing information such as fuel level or 
engine temperature for display, may cause the display to blink or present erro
neous information for an instant if the error is transient. This is probably of no 
concern. However, a persistent error in that process could lead to a complete 
loss of the information and may require termination of whatever mission is in 
progress. 

Three general approaches to recovery and continued service are possible 
following the detection of an external error. They are as follows. 
1) No special processing. The error is ignored and the system continues trying 

to provide service. 
2) Provision of behavior that is acceptable in the short term but is inferior to 

that intended from the process in which the error is deemed to have oc
curred. 
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3) Provision of behavior equivalent to the intended behavior of the process in 
which the error is deemed to have occurred. 
Approach I could be considered for processes which are classified as non

critical but for no others. It is not recommended even under these circumstances 
since there is always the danger that an untreated error could have unanticipat
ed side effects. 

Approach 2 corresponds to the use of recovery blocks as proposed by Hecht 
[9]. Although it was suggested in the context of timing errors, this approach is 
equally applicable to other external errors. The occurrence or a fault in a pri
mary process is handled by the execution or an alternate providing degraded 
service. It is interesting to note that several simple alternates are possible. In 
particular, in real-time systems with short frame times it is often acceptable to 
reuse the outputs of the previous frame as the outputs for the frame in which 
the error occurred. This is known as the "skip-frame" strategy. Another possi
bility is some form of extrapolation based on data from several previous 
frames. For example, an acceptable output might be generated by adding the 
difference between the outputs of the two previous frames to the output of the 
previous frame. 

Such simple strategies are attractive but great care must be exercised in 
their use if interprocess communication is taking place. If the communication is 
between processes which execute sequentially, outputs which are satisfactory 
for receiving processes must be generated by the alternate. If the communi
cation is between processes which execute concurrently, the process which is in 
error will have been involved in an exchange and so it is necessary to perform 
state restoration for all processes in the exchange. For example, suppose a set of 
processes are designed to produce commands to control surfaces of an aircraft 
and they communicate in an exchange while performing their calculations. If 
one of them is in error, the outputs of all of them will have to be mistrusted. 
Alternates for all of the processes in the exchange will have to be used in such 
cases. Although the skip-frame strategy seems simple, in practice it may not be 
because much more processing is needed than simply the preparation of a suit
able output for a single process. 

Approach 3 is similar to approach 2 but assumes that nondegraded outputs 
must be generated on every frame regardless of the occurrence of faults. In 
practice this approach will be required only rarely in the treatment of transient 
external errors. Most real-time systems seem able to operate acceptably despite 
momentary degradation of service and, if an external error is truly transient, ap
proach 2 will often be appropriate. If an external error is persistent, repeated 
use of approach 2 is very likely to result in system failure eventually. For 
example, repeated use of the skip-frame strategy amounts to the system repeat
edly ignoring changes in the external environment. The primary intent of most 
real-time systems is prompt response to changes in the external environment. 

Hecht [9] has proposed the design of a real-time executive which will re
move a defective process from the system and replace it by a new version. Us
ing the model and error classification scheme proposed here, this amounts to 
responding to a persistent external error by replacing the relevant process with 
a substitute. This substitute should be completely equivalent in its interfaces to 
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the rest of the system but constructed differently so that, hopefully, it will not 
become erroneous under the circumstances which caused the original process to 
become erroneous. It is worth noting that even when a defective process has 
been removed, it can still serve as a stand-by spare in case the substituted pro
cess is found to be defective under different circumstances at a later time. 

Thus, provision of continued service depends on whether the external error 
is transient or persistent. Both types can occur and so provision must be made 
for both. This suggests that every primary program should be supplemented by 
at least one alternate program capable of providing degraded service to cope 
with transient external errors and another version of the primary program to 
cope with persistent external errors. 

C. Pervasive Errors 

Pervasive errors are the most serious of the error classes. The notion of critical 
and noncritical processes does not apply in the presence of a pervasive error. 
The fact that the error is pervasive means that, in the absence of fault tolerance, 
failure of critical processes is very likely even if the process error matrix E only 
indicates the occurrence of errors in supposedly noncritical processes. So much 
damage has probably been done that critical processes will almost certainly en
ter erroneous states. 

Strategies are limited by the gravity of the situation. The error will be classi
fied initially as transient and the only practical approach to continued service is 
to use the simple skip-frame strategy discussed above. The time required to at
tempt the execution of more elaborate alternates for many processes is almost 
certainly unacceptable. If the error is indeed transient then the skip-frame strat
egy is probably adequate anyway. 

If the error turns out to be persistent and pervasive then it is extremely un
likely that the system will be able to provide any acceptable service. Treatment 
of the error during its initial transient classification will have attempted to en
sure that acceptable service was maintained but such treatment cannot contin
ue. The only viable automatic treatment for persistent pervasive errors is com
plete replacement of the software. If provisions for recovery and continued ser
vice have been made for external errors, there will be a second version of each 
process available and the replacement of each process by the second version 
amounts to total software replacement. Once again, recovery can be handled by 
a simple reset. 

VID. Conclusion 

A classification scheme for errors and a technique for the provision of software 
fault tolerance in cyclic real-time systems have been presented. The technique 
is considered to be evidently practicable because of its relatively simple ap
proach. It has been argued that many real-time systems have characteristics 
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which make them particularly amenable to the inclusion of fault tolerance us
ing this technique. 

In summary, the technique requires that the process structure of a system be 
represented by a synchronization graph which is used by an executive as a 
specification of the relative times at which programs are to be executed and the 
way in which they will communicate during execution. Communication be
tween concurrent processes is severely limited and may only take place between 
processes engaged in an exchange. A history of error occurrences is maintained 
by an error handler. When an error is detected, the error handler classifies it 
using the error history information and then initiates appropriate recovery ac
tion. 

There are costs associated with the provision of fault tolerance; both in the 
implementation and operation of a system. Operational overhead is less impor
tant because it can be traded for an increase in hardware resources. However, 
the additional costs in design and construction of the software may be sub
stantial. If two versions of a primary process are to be provided they must both 
receive equal care and attention in their preparation. It might be expected that 
this would more than double the total cost of the software but Gilb [6], [7] has 
argued that producing two versions of a software module should only cost 
about 10 percent more than a single version. 

It must be remembered that in such critical systems as commercial air trans
ports, the software cost is not a substantial portion of the total development 
cost. Copies of the software for additional aircraft cost nothing and so, for an 
entire fleet, the cost of producing high quality fault tolerant software may be 
insignificant compared to the total cost of producing the aircraft. Irrespective of 
the cost, in many cases the need for the utmost reliability dictates the need for 
fault tolerant systems. 
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Chapter 5 
Multilevel Systems 

Introduction 

A well known principle advocated for the construction of complex software sys
tems is to structure the system into a hierarchy of interfaces (levels of ab
straction). An interface may be characterized by the objects made available on 
that interface together with operations for manipulating them. In the literature, 
one frequently encounters diagrams such as that depicted in Fig. 1 (a), which is 
intended to indicate that a program such as Pj makes use of objects provided by 
the underlying interface Li . The function of Pj is to maintain the interface 
Lj ; that is, the (abstract) objects available on Lj have their concrete implemen
tations in Pj . Since we are concerned with the provision of fault tolerance in 
computer systems, it is instructive at this point to re-examine the recovery block 
scheme of Chap. 2 as a two level system (see Fig. I b). The program Po im
plements the recovery cache scheme, thereby providing recoverable store words 
on interface Lo. An 'update a word' operation available on interface Lo has its 
concrete implementation in program Po, and essentially involves Po recording 
(if necessary) the prior value of the word in the cache before performing the 
update. Similarly, the operation 'recover' available on Lo is implemented by Po 
by restoring the prior values of the relevant words. Thus the abstraction of 
backward recovery available to programs running over Lo is supported by nor
mal 'forward' actions of program. Po. We can take this idea further, and con
struct another interface Ll that provides new sets of recoverable objects - this 
naturally leads us to the concept of multilevel recovery systems. 

The three papers of this chapter explore fundamental ideas on the provision 
of recovery in multilevel systems. The work reported here owes its origin to the 
paper by Randell (see the second paper in Chap. 1) and the doctoral research 
work of Verhofstad [1]. In the first paper, Anderson, Lee and Shrivastava exam
ine the nature of multilevel systems and propose a classification consisting of (i) 
interpretive, and (ii) extended interpretive multilevel systems and then go on to 
examine various issues concerned with the provision of recoverability in such 
systems. An example of an interpretive system with two levels is the machine 

------Lk ---------L1 

P1 
------Lj 

---------------Lo 

------Lj '-~_:_~o_h~_e_ry_' EJ (b;" 
Fig. 1 a and b. Multilevel systems (a) 
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Fig. 2. Extended interpreter multilevel system 

interface (Lo) supported by a microprogram (the interpreter for Lo) and a Pas
cal interpreter written over Lo' that maintains a new interface Ll for executing 
Pascal programs. In an extended interpretive system, an interface Lj has many 
behavioural properties in common with Lj - 1• As an example, consider a ma
chine interface Lo over which an operating system kernel has been implemented 
giving a new interface Ll . It is more appropriate to regard Ll as an extension of 
Lo' since Ll provides most of the 'machine instructions' of Lo' and in addition 
provides certain new objects (such as processes and semaphores). Anderson et -
al. reserve the diagramatic notation employed in figure 1 for interpretive sys
tems and use a different notation to depict an extended interpretive system (see 
Fig. 2). In Fig. 2, interface Lo is supported by the interpreter 10 and interface Ll 
is an extension of Lo and is maintained by the extension program E1 and the 
interface Lo. Turning our attention to the provision of backward recovery on a 
given interface, Anderson et al. propose two types of recovery schemes, namely, 
diSjoint and inclusive. The former recovery scheme is applicable to both types of 
multilevel systems while the latter scheme can only be applied to extended in
terpreter multilevel systems. The paper then goes on to discuss the strengths 
and weaknesses of the two recovery schemes. In the second paper, Anderson 
and Lee illustrate various aspects of the two recovery schemes by considering 
the design of a simple file system structured into three levels. 

The last paper of this chapter, by Shrivastava, applies the concepts of mul
tilevel recovery to distributed systems. The provision of backward recovery is 
of particular interest in distributed systems where failures such as lost messages 
and node crashes can introduce inconsistencies in stored data. Shrivastava con
siders the design of robust object managers that have recoverability and crash 
resistance properties. It is assumed that a program can invoke operations ex
ported by a remote object by making use of remote procedure calls. Programs 
are taken to be atomic actions (see Chap. 4), and since a multilevel system 
structure is assumed, a user program (the 'outer most' 'atomic action) turns out· 
to be composed from 'inner' atomic actions, giving rise to a nested atomic ac
tion computation. The concept of multilevel recovery and in particular its ap
plication to distributed systems forms the basis of some of the experimental 
work reported in the sixth chapter of this book, where design and implemen
tation of a remote procedure call mechanism and a recoverable file system are 
presented. 

Reference 

I. J. S. M. Verhofstad, "The construction of recoverable multilevel systems", Ph. D. thesis, 
The University of Newcastle upon Tyne, 1977. 
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A Model of Recoverability in Multilevel Systems 

T. ANDERSON, P. A. LEE, and S. K. SHRIVASTAVA 

Abstract. Backward error recovery (that is, resetting an erroneous state of a system to a pre
vious error-free state) is an important general technique for recovery from errors in a system, 
especially those errors which were not foreseen. However, the provision of backward error re
covery can be complex, particularly if the implementation of the system is "multilevel" and 
recovery is to be provided at a number of these levels. This paper discusses two distinct 
categories of multilevel system, and then examines in detail the issues involved in providing 
backward error recovery in both types of system. 

Index Terms. Error recovery, interpreters, multilevel systems. 

Introduction 

The demand for ever more powerful, flexible, and convenient interfaces to 
computational systems has led to the construction of increasingly complex 
hardware and software intended to support such interfaces. Unfortunately, the 
complexity inherent in the design and construction of these systems has been, 
and is, a major source of unreliability in their operation. Thus, attempts have 
been made to limit and master complexity by means of various design and im
plementation methodologies. In particular, approaches involving structuring a 
system into a hierarchy of interfaces (or levels of abstraction) are often advocat
ed, and have been adopted in the construction of some systems; for example, 
the THE multiprogramming system [5] and the VENUS operating system [8]. 
While such "multilevel" approaches are certainly laudable, it is widely recog
nized that complex systems will, in general, always contain residual design 
faults; for some systems, specifically those with a high reliability requirement, 
there is a need for tolerance of such faults. Residual design faults are by their 
nature unanticipated and unanticipatable and, in consequence, are particularly 
difficult to deal with. However, backward error recovery is an important gen
eral technique for recovery from the errors caused by such faults, and involves 
resetting the state of the system to a previous (and hopefully error-free) state. 
Given this recovery capability, it may be possible to enhance the reliability of 
the system by invoking recovery when erroneous situations are detected. 

This paper is concerned with the issues involved in the provision of back
ward error recovery to independent sequential processes in multilevel systems. 
After identifying two distinct categories of interface support for multilevel sys
tems, a model of the implementation of backward error recovery for each 
category is developed and examined in depth. Techniques for error detection 
and fault treatment are not covered: Randell et al. [11] discuss these topics and 
both backward and forward error recovery in some detail. 
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Multilevel Systems 

Many systems can be described as multilevel in that a hierarchy of abstract in
terfaces (or levels) can be discerned in their implementation. An abstract in
terface may be conveniently thought of as being characterized by a language 
providing objects and operations to manipulate those objects. A useful notion is 
that of the state of an interface, which may be regarded as the set of the current 
states of the objects provided by that interface. 

Computational systems are usually sufficiently complex that numerous in
terfaces could be delineated within the implementation of such a system. How
ever, examination of the implementation will usually enable certain significant 
interfaces to be identified. The most significant interfaces arising in the im
plementation of a system are those interfaces supported by interpretation, as 
described below. 

In Fig. 1, each interface Li is implemented by means of a program Ii which 
is executed on the interface Li - 1. Every interaction with the interface Li (cor
responding to the execution of an operation in the program Ii + 1) is, in fact, 
directly supported by means of the program Ii. Any "abstract" object available 
in Li has a "concrete" representation as a set of objects in Li - 1 which are 
managed by Ii and held in a data area maintained for this purpose by Ii. The 
program Ii is referred to as an interpreter for Li. 

Example: An APL interpreter is a program which, after loading, is executed on 
an interface characterized by a machine language and supports an interface 
characterized by (the internal representation of) APL source code. 

L3 

program 

13 e 
L2 

program 

12 e ---

L1 

program 

11 8 
LO 

Fig. 1. Interpretive multilevel system 
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Fig. 2. Extended interpreter multilevel system 

A further category of interfaces is important in the implementation of mul
tilevel systems and usually occurs in the following circumstances. If the im
plementer of a system is presented with an interface Li - I and wishes to pro
vide an interface Li such that Li and Li - 1 have many behavioral properties in 
common, then it may not be necessary to support Li by means of another level 
of interpretation. If Li - I makes available sufficiently powerful extension fa
cilities, it will be possible to provide Li by generating an extension of Li - 1. 
Run time subroutine or procedure mechanisms can be regarded as a commonly 
available, though limited, interpreter extension facility, whereby new operators 
can be built up as programmed sequences of those originally provided. More 
powerful mechanisms could allow the addition of new types and even notations, 
as well as permitting the removal of features of the original interface. Ideally, 
the extension facilities would still be available in Li so that further extensions 
could be made if required. 

Note that the above discussion refers to extending an interface at run time; 
indeed, all of the interfaces considered in this paper should be regarded as ex
isting at run time, and not merely present in a source program before perhaps 
being thrown away during·compilation. 

In Fig. 2 the interface LO is supported by an interpreter 10 which provides 
extension facilities. Each interface Li (i = 1, 2, 3) is constructed as an extension 
of the interface Li - 1, the extension being implemented by means of a pro
gram Ei, which is executed on the interface Li - 1. The program Ei is referred 
to here as an interpreter extension. Every interaction with the interface Li is 
first examined by the underlying interpreter 10, which determines whether that 
interaction is directly supported by 10 itself or, if not, which of the available in
terpreter extensions (Ej, j ~ i) does support that interaction. Thus the in
teractions of a program may be supported by any lower extensions or by the 
underlying interpreter. Any "abstract" object available in Li, other than those 
directly supported by 10, has a "concrete" representation as a set of objects in 
one of the interfaces Lj (j < i). This set of objects is managed by Ej + 1 in a 
data area maintained for this purpose by Ej + 1. 

The extended interpreter multilevel system of Fig. 2 is portrayed differently 
to the interpretive system of Fig. 1 with the int~ntion of: 

383 



1) Indicating diagramatically the anticipated overlap of behavioral proper
ties between an interface Li and those beneath it (LO, ... , Li - 1) in an extend
ed interpreter system, and 

2) Emphasizing t~e differing mechanisms used to implement the interfaces 
of the two systems. In Fig. 2 the interpreter 10 has responsibility for programs 
executed on all interfaces Li (with assistance from the extensions as required), 
whereas in Fig. 1 each interpreter only has responsibility for the interface di
rectlyabove. 

Example: The nucleus of most operating systems can be regarded as an in
terpreter extension which provides a user interface from the underlying hard
ware interface by removing certain privileged instructions and adding a set of 
"operating-system" call instructions. A collection of system procedures often 
provides a further extension. Specifically, the programming language Con
current Pascal [3] provides a facility whereby an operating system (written in 
Concurrent Pascal) can make available procedures that can be invoked by user 
programs (written in Sequential Pascal). TheConcurrent and Sequential Pascal 
programs are both executed by the same underlying ihterpreter, and the pro
cedures which are made available to the user programs can be regarded as in
terpreter extensions. 

The potential advantage to be gained from using an interpreter extension to 
implement a new interface (when this is possible) in preference to a further 
level of interpretation is in avoiding the overhead that the latter entails. When
ever an interaction on the new interface could be directly supported by the 
underlying interpreter, an interpreter extension implementation will ensure that 
this direct support is available. Both techniques can, of course, be used in the 
same multilevel system; for example, in Fig. 1 an interpreter Ii could be imple
mented by first extending Li - 1 to a more convenient interface before con
structing an interpreter for Li. However, it should be noted that to a program 
being executed on an interface it is completely immaterial whether that in
terface is implemented by an interpreter extension or not - this difference can 
only be determined from an examination of the details of the implementation 
of an interface, and not merely from the properties of the interface itself. 

Recovery on an Interface 

Before the problems of recovery in multilevel systems can be considered, it is 
necessary to introduce terminology and discuss the recovery of a program at 
one level in a system. . 

In this paper, recoverability is taken to mean the ability to recover an earlier 
state of an interface, thereby undoing the effects of operations that were per
formed on the interface. This ability is referred to as backward error recovery; 
backward error recovery necessitates the recording of recovery data, which can 
be used to restore an earlier state of the interface. 

To be more specific, this paper considers recovery mechanisms which make 
the following features available to programs executed on an interface. 
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1) The interface supports both recoverable and unrecoverable objects. 
2) Recovery points can be established which ensure that the current state of the 

recoverable objects of the interface is (at least conceptually) recorded so that 
it can be restored if necessary. 

3) Recovery points can be discarded with the effect that information main
tained for recovery to those recovery points is discarded. 
Clearly, a recoverable object is one for which recovery is provided. In con

trast, unrecoverable objects are objects for which state restoration is not avail
able or appropriate for recovery. As such, unrecoverable objects can also be 
used to model the effects of the external environment - for example, an ex
ternal clock. Verhofstad [14] has discussed the provision and uses of both re
coverable and unrecoverable objects. For simplicity, this paper will regard 
communication between processes· as being unrecoverable. Techniques by 
which a measure of recoverability can be provided for process interactions in a 
single-level system have been discussed by Davies [4], Randell [10], and Russell 
[12]. 

A recovery point is said to be active from when it is established until it is 
discarded. The term recovery region will be used to refer to the period for 
which a recovery point is active (this will usually correspond to a section of the 
text of a program). A further useful notion is that of the recovery environment 
associated with a recovery point. The recovery environment is that set of re
coverable objects which are available on the interface at the time a recovery 
point is established. In a program, the recovery environment would consist of 
the set of recoverable variables that were in existence at the time the recovery 
point was established, but would exclude those created subsequently. 

It is assumed that in a general recoverable system a program can have more 
than one recovery point active. When an active recovery point is discarded, 
some commitment occurs, to the extent that recovery to that recovery point is 
no longer available. Various different strategies can be adopted for determining 
the order in which active recovery points should be discarded and, in conse
quence, the recovery regions of a program may partially or totally overlap. 
Fig. 3(a) illustrates a program with partially overlapping recovery regions; 
Fig. 3(b) illustrates a program with totally overlapped regions. 

Example: A programming language construct called the recovery block has 
been introduced by Horning et al. [7]. This construct enables a program to es
tablish recovery points, while constraining recovery regions to be properly nest
ed. Russell [12] has discussed an example in which recovery regions are not 
nested. 

The model of recovery presented in this paper makes no assumptions about 
the extent to which recovery regions overlap. However, it is worth noting that 
discarding one out of a number of active recovery points may involve much 
more than merely discarding the associated recovery data, since otherwise re
covery to the remaining recovery points may be compromised. 

It is possible that although two recovery points are simultaneously active, 
their respective recovery environments may have no objects in common with 
each other. Such recovery environments are said to be disjoint. The notion of 
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disjoint recovery environments has little significance when recovery of a pro
gram on a single interface is considered, but will be returned to when recovery 
in multilevel systems is described. 

The previous discussion has been concerned with the recoverable objects of 
a program. The question remains as to what happens to any unrecoverable ob
jects used by a program within a recovery region. Clearly, the answer is that no 
recovery data will be generated for such objects; consequently, if recovery is in
voked, the current state of the unrecoverable objects will prevail. If in these cir
cumstances some form of restoration of the unrecoverable objects is required, 
then the program would have to perform this restoration itself. It would, there
fore, have to record some information specifically for this purpose. The termin
ology introduced by Verhofstad [14] refers to the data structure used to hold 
this information as the log. Since the log contains information to be used by the 
program for recovery, this information must not be lost when recovery is in
voked. 

Having discussed recovery on a single interface, and distinguished between 
interpreters and interpreter extensions as techniques for supporting the in
terfaces of a multilevel system, it is now possible to consider the problems of 
providing recoverability to such interfaces. 

Recovery in Interpretive Multilevel Systems 

The first problem to be considered is that of providing recoverability to an in
terface completely supported by an interpreter (such as Li and Ii in Fig. 1). If 
the recovery features previously identified are to be supported, then the in
terpreter must include programs and their data structures such that all informa
tion necessary for the recoverability of that interface is maintained. (Clearly, 
this is true for any of the features supported by the interpreter.) Those pro
grams which are concerned with providing recoverability will be termed recov
ery programs. 
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There will, in general, be three distinct recovery program parts concerned 
with the following actions: 
1) recording recovery data; 
2) performing recovery; 
3) performing commitment. 

There are several strategies that could be adopted for the recording of re
covery data. The simplest method is that of recording a complete checkpoint, in 
which the state of all of the objects within the current recovery environment is 
recorded when a recovery point is established. Although this is the simplest ap
proach, it has the disadvantage that the state of all of the objects in the current 
recovery environment has to be recorded, despite the possibility that many of 
those objects might not be changed. This disadvantage is often mitigated in 
practical systems by only recording recovery data for those objects that are up
dated; for example, the COPRA system [9] attempts to assess in advance which 
objects fall into this category. Alternatively, recovery data can be recorded dy
namically (that is, the state of an object is saved just before that object is updat
ed) in what may be termed an incremental checkpoint. 

Example: A highly optimized technique for recording recovery data (in con
junction with recovery blocks) was proposed by Horning et al. [7]. This tech
nique, called the recursive/recovery cache, consisted of recording incremental 
checkpoints in such a way that a minimum of recovery data were maintained. 

Audit trails [2] are a further strategy for providing recoverability, where the 
recovery data essentially provide a log [6] of the operations that were per
formed on the objects. 

Whatever technique is employed for recording recovery data, it must only 
ensure that recovery and commitment can be performed as required. The con
cepts discussed in this paper are independent of the strategy adopted for re
cording and committing recovery data. 

In Fig. 4, Ll is a recoverable interface supported by an interpreter II which 
contains recovery programs and their data structures. The mapping of the data 
space of 12 to its concrete representation in that of II is also indicated. 

Changes to the objects in the data space of 12 are implemented (by II) as 
changes to their concrete representations in the data space of II. It is the re
sponsibility of the recovery program of II to ensure that appropriate informa
tion is recorded as recovery data. Should it be necessary to restore the objects of 
12, the recovery program of II uses these recovery data to update the concrete 
representations such that the objects of 12 have the appearance of having been 
restored. It may also be observed that backward error recovery is provided to 12 
by means of normal (forward) computation of the recovery program part of II, 
as noted by Randell [10]. 

It is important to observe that any recovery environment on Ll is disjoint 
from those on LO. Thus an active recovery point at one level is completely in
dependent of those in other levels. (This point will be returned to subsequently 
when recovery in extended interpreter systems is discussed.) It should be clear 
that the provision of recoverability in Ll does not imply that higher interfaces 
are also recoverable. For L2 to be recoverable, 12 would have to include recov-
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ery program and data to support that recoverability, just as II does to support 
the recoverability of L l. Use that 12 makes of the recovery features of Ll in or
der to provide a more reliable mode of support to L2 is completely independent 
of whether or not 12 itself provides recovery features in L2. (It may be possible 
for an interpreter to use the recovery facilities provided to it to achieve a more 
direct implementation of recoverability for the interface it supports. However, 
the implications and implementation of such a scheme are not at all straight
forward.) 

For II to provide unrecoverable objects in Ll is very simple. For these ob
jects II records no recovery data. The only impact that the presence of un
recoverable objects in Ll has on 12 is that, if such objects are used within recov
ery regions by 12, then obviously their prior values could not be restored in the 
event of recovery actually being invoked. Consequently, 12 will have to log its 
own data for recovery, as discussed in the previous section. 

Example: The EML system described by Anderson and Kerr [I] has exactly the 
structure shown in Fig. 4. In this system, the underlying interface LO was that 
provided by (PDP-II) hardware, while the interface Ll was supported by an 
interpreter which emulated a high-level abstract machine architecture. The in
terpreter implemented a recovery cache mechanism, enabling programs execut
ing on L I to make use of recovery blocks. 

In summary, the recoverability of a hierarchy of interfaces in an interpretive 
system is straightforward in concept. 

Recovery in Extended Interpreter 
Multilevel Systems 

This section considers the problems of recovery in a multilevel system imple
mented by a sequence of interpreter extensions. It is assumed that the underly
ing interface presented to the interpreter extensions (for example, LO in Fig. 5) 
supports both recoverable and unrecoverable objects, and permits recovery 
points to be established and discarded. 
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The principal objective of an interpreter extension is, as its name .suggests, 
to extend an interface with new kinds of abstract object. Clearly, it is desirable 
for an extension to also provide recovery features for these abstract objects; it 
should extend the recovery features of the existing interface to include these ob
jects. Issues concerning the provision of recoverability for the new objects re
quire closer examination, since two distinct forms of organization for their re
covery can be identified. These two organizations are termed the disjoint recov
ery scheme and the inclusive recovery scheme. The difference between the 
schemes stems from the two ways in which an extension is regarded as fitting 
into a multilevel system; namely, where the extension is a) considered to be a 
part of the underlying interpreter (disjoint from any calling program), or b) 
considered to be an inclusive component of the calling program. The main 
consequence of this distinction is in the treatment of the recoverable objects 
used by an extension; specifically, whether or not they are regarded as being 
within a recovery environment of a calling program. These issues are examined 
in depth in the rest of this section. 

Consider the situation depicted in Fig. 5, which will be used as an example 
in the following discussions. This system has an interpreter extension El which 
is (indirectly) invoked by a program E2. Both of these programs are interpreted 
by 10, the underlying interpreter. The calling program has established a recov
ery point, and subsequently invoked an operation supported by E1. To E2, this 
operation appears to be indivisible, as do any of the operations interpreted di
rectly by 10. (Indeed, E2 should not be able to distinguish between an operation 
supported by 10 and one supported by E1.) 

In this example, it is assumed that all objects in the abstract data space of E2 
are recoverable, and that some of these are maintained by the extension El, 
while the rest are maintained by the interpreter 10. This is indicated in Fig. 6 by 
dividing A2, the abstract data space of E2, into two parts; these two parts have 
concrete representations Al (in El) and C2 (in 10), respectively. In fact, Al is in 
the abstract data space of El and has its own separate concrete representation 
CI, which, in this example, is maintained solely by 10. 

At some time following the return from the extension program El, an error 
has been detected in E2 (Fig. 5); consequently, E2 has to be backed up to the 
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recovery point it had previously established. In order to achieve this backup, 
the recoverable objects used by E2 must be restored to their previous (abstract) 
state. 

Certainly, 10 can restore those objects it is directly maintaining on behalf of 
E2 (i.e., those whose concrete representation is C2 in Fig. 6). The question 
arises as to how the abstraction of recoverability is provided for the objects 
used by E2 which are supported by the extension El. . 

Consider first the situation in which this support is achieved through the 
use of unrecoverable objects (i.e., Al in Fig. 6 contains unrecoverable objects 
only). In this situation it will be necessary for the extension to provide both re
covery programs and data (as shown in Fig. 7) so that it can restore the abstract 
state of the relevant E2 objects. These recovery programs will need to be auto
matically invoked (by 10) as required. For example, in a complete checkpoint
ing scheme, when the calling program establishes a recovery point, 10 would 
record a checkpoint and then invoke the recovery program of the extension so 
that it could also record a checkpoint of those objects it was maintaining for the 
program. 

In a more general situation, an extension may well make use of both un
recoverable and recoverable objects for its implementation of new recoverable 
objects. A second question therefore follows; namely, should the recoverable 
objects used by the extension be regarded as being within a recovery en
vironment of the calling program, and, in consequence, should they be included 
in the recovery data recorded by the underlying interpreter for the calling pro
gram? By analogy with the interpretive multilevel system discussed in the pre
vious section, the answer would be no - in an interpretive system the recovery 
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environment of one level is completely independent of that of the level above. If 
this view is adopted for extended interpreter systems, the recoverable objects 
used by an extension should not be regarded as being within a recovery en
vironment of the calling program. An extension would therefore be completely 
responsible for all of the recovery of the objects it was maintaining. Indeed, this 
would be the behavior expected if the underlying interpreter itself provided the 
features of the extension. To obtain this behavior in an extended interpreter 
system, it is only necessary to stipulate that the recovery environments of a pro
gram be disjoint from those of any supporting extensions. The scheme of recov
ery which exhibits this property in an extended interpreter system is referred to 
as the disjoint recovery scheme. When a program establishes a recovery point, 
the disjoint recovery scheme must ensure that the recovery environment of that 
recovery point only encompasses the abstract objects available on the interface, 
and not any of the objects used to implement those abstract objects. Thus, for 
example, referring to Figs. 5 and 6, when E2 establishes a recovery point, 10 
will only record recovery data for those recoverable objects represented in C2, 
and not for any of those represented in Cl. (El will, of course, be invoked to 
record recovery data for objects it is maintaining for E2.) 

However, the disjoint recovery scheme does not prevent an extension from 
establishing its own recovery points. In this situation, any recoverable objects 
used by the extension within a recovery region would behave normally. When 
the local recovery point was discarded, all of the recovery data being main
tained for the recovery point would be discarded. 

Generalizing, the recovery in a multilevel system implemented by in
terpreter extensions with the disjoint recovery scheme would be as follows. Fol
lowing the detection of an error in program Ei, the underlying interpreter 
would restore all of the recoverable objects that it was directly maintaining for 
Ei. The interpreter would then signal all of the extensions that could be called 
directly by Ei (in the set El, ... ,Ei - 1) so that they could perform recovery for 
any objects they were directly maintaining for Ei. Following the completion of 
these actions, the program Ei will have been recovered and can be restarted as 
necessary. Conceptually, the interpreter also has to signal all of the directly ac
cessible extensions in El, ... ,Ei - 1 whenever program Ei creates or discards a 
recovery point, so that the extensions can, in a manner similar to that of the 
underlying interpreter, record or commit the necessary recovery data for the 
program Ei. Optimizations of this conceptual organization are clearly possible. 

A significant chracteristic of the disjoint recovery scheme is that the be
havior of an extension with respect to both recoverable and unrecoverable ob
jects is uniform, in so far as the state restoration of the new abstract objects is 
concerned. The scheme also models the recovery behavior of the well-under
stood multilevel interpreter system. 

However, the scheme does have a disadvantage which becomes apparent if 
the recoverable objects used in an extension are reconsidered. As discussed pre
viously, one of the main aims of an interpreter extension is to extend a given 
interface without incurring the inefficiency of reimplementing all of the 
features it did not wish to change (as would happen in an interpreter system). 
However, as far as the recoverable objects used in the disjoint scheme are con-
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cerned, the extension will have to reimplement some form of recovery for these 
recoverable objects, even though that supplied by the underlying interface may 
have been exactly what was required. For example, if the interface LO in Fig. 6 
provided recoverable objects only, the extension EI would still have to reimple
ment recoverability for E2, even though restoration of Al by 10 is equivalent to 
the restoration of the corresponding objects in A2. 

It is this apparent inefficiency which leads to an alternative answer to the 
question concerning the behavior of the recoverable objects used in an exten
sion; namely, that the recoverable objects used in an extension are regarded as 
being within the recovery environment of the calling program, and are there
fore automatically restored when the calling program is backed up. This recov
ery scheme is called the inclusive recovery scheme. 

An example of the behavior of the inclusive recovery scheme can be ob
tained by reconsidering the system depicted in Figs. 5 and 6. The recoverable 
objects in Al (Fig. 6) are then regarded as being within the recovery en
vironment of the calling program E2. Consequently, when E2 establishes a re
covery point, any recovery data generated for the recoverable Al objects will be 
maintained with the recovery data associated with E2. (Of course, the extension 
still has local recovery features available to it.) When the calling program E2 is 
backed up, the extension EI can assume, when it is invoked by 10, that any re
coverable objects used by it will have been automatically restored; to maintain 
its abstractions, EI therefore needs only to change, as necessary, the unrecover
able objects used in the concrete state. As in the disjoint case, the underlying 
interpreter 10 will have to signal the extension to obtain this recovery. 

If the recoverable objects used by an extension were all objects supported 
directly by the underlying interpreter (as was the case in Fig. 6), then only this 
signal would be required. However, in general, some of the recoverable objects 
used by an extension may themselves be implemented by lower extensions (i.e., 
to the "left"), as indicated in Fig. 8. 

If E3 were backed up, then E2 would be signaled to perform any recovery 
actions \ on the unrecoverable objects it used on behalf of E3. However, E2 
would expect all of its recoverable objects to be recovered automatically, 
although some of them had been implemented by El. 

Clearly, therefore, when a program Ei is backed up, all of the lower exten
sions EI, ... , Ei - I will be required to return the abstract objects they are 
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maintaining to their prior states, and the underlying interpreter 10 must ensure 
that this occurs, signaling all of the relevant extensions until all of these resto
rations have been completed. At this point, execution of the program Ei can be 
resumed. As before, the underlying interpreter will (conceptually) have to sig
nal the extensions EI, ... , Ei - 1 whenever a program Ei establishes or discards 
a recovery point. 

Example: Suppose that (as depicted in Fig. 8) a program E3 makes use of ob
jects provided by E2 and 10, but makes no direct use of any objects provided by 
El. In this situation, a significant distinction between the two recovery schemes 
can be exemplified. In the inclusive scheme, recovery of E3 would result in the 
recovery programs of both E2 and E1 being invoked by 10, whereas in the dis
joint scheme, recovery of E3 would result in the recovery program of E2 being 
invoked but not that of E 1. 

The signaling of extensions in a "left" to "right" order (i.e., least to most ab
stract) seems to be the most natural order. Certainly, the interpreter 10 will be 
aware of this order, because each extension would have to be identified to the 
interpreter when it was created, so that it could be subsequently invoked. In 
fact, the ordering of the signaling is only significant in two somewhat improb
able cases: first, if the unrestored values of recoverable objects were of interest 
to the recovery implemetation of an extension; and second, if the extension 
wished to update a recovered object. In the disjoint recovery scheme discussed 
previously, the signaling order would have no effect, because each extension is 
responsible for all of its recovery, and does not depend on any lower extensions 
to achieve this automatically. 

The main advantage of the inclusive recovery scheme is that mentioned pre
viously; namely, that an extension can rely on the automatic recovery of any re
coverable objects that it uses an extension which only used recoverable objects 
would not therefore have to provide any programs or data for recovery pur
poses. Note that, unlike the disjoint scheme, the behavior of the extension with 
respect to its recoverable and unrecoverable objects is not uniform. 

An important disadvantage of the inclusive recovery scheme stems from the 
fact that it is difficult (although not impossible) for this scheme to model the 
behavior of the disjoint scheme; one specific situation in which it is incorrect 
for the inclusive recovery rules to apply is when the extension is executing the 
recovery program parts discussed previously. Although these program parts are 
executed by an extension on behalf of a higher level program, their recovery 
environments must be regarded as being local to the extension (that is, disjoint 
from recovery environments of the higher level program) in contrast to the nor
mal situation for the inclusive scheme. The need for this behavior can be il
lustrated by considering that part of the recovery program which records recov
ery data. If the data structures used to hold this recovery data were taken to be 
within the recovery environment of the calling program, then any backing up of 
that program would result in those data structures being automatically recov
ered, thus erasing the recovery data stored by the extension. 

The desired behavior could be achieved in two ways: first, by the extension 
(or the underlying interpreter) ensuring that the recovery program parts of an 
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extension did not make use of any recoverable objects that were within the re
covery environment of the calling program (for example, by constructing the re
covery data structures from unrecoverable objects); and second, and more 
generally, by the underlying interpreter being able to distinguish between the 
programs and recovery programs of an extension, and thus determining when to 
apply the disjoint recovery rules. Note that these problems do not arise in the 
disjoint recovery scheme since all programs (including recovery programs) 
exhibit the required behavior. 

It would appear, therefore, that an implementation of the inclusive recovery 
scheme would also be required to provide the features of the disjoint scheme, at 
least for use as previously described. Given this requirement, the availability of 
these features of the disjoint scheme could be extended to allow them to be 
used, as required, by any extension, since there may be other situations in 
which the inclusive recovery rules are not appropriate or convenient. 

Conclusions 

This paper has investigated the issues involved in the provision of recovera
bility in multilevel systems implemented both by interpreters and by interpreter 
extensions. In particular, recoverability in extended interpreter systems has 
been examined in detail, and two recovery schemes (disjoint and inclusive) de
scribed. The disjoint recovery scheme models the recovery behavior which is 
obtained in a multilevel interpretive system. As such, it shares advantages and 
disadvantages of interpretive systems. These are, respectively, conceptual sim
plicity and the inability to automatically inherit and make use of the recovera
bility of lower level objects. To avoid this disadvantage, the inclusive recovery 
scheme was suggested. However, it was shown that this scheme needs the 
features of the disjoint scheme for use in the recovery program parts of exten
SIOns. 

It seems appropriate, therefore, that an underlying interpreter should be 
able to support both of these recovery schemes for the efficient implementation 
of recovery in multilevel systems. 

It is of interest to relate the recovery schemes discussed in this paper to two 
experimental multilevel recoverable systems using interpreter extensions that 
have been implemented at the University of Newcastle upon Tyne, since these 
motivated our investigations. In one experimental system [14] a first extension 
implements a recoverable single-user filing system; subsequent extensions can 
be built on top of this filing system. This experimental system implements the 
inclusive recovery scheme, and relies on programmer discipline to ensure that 
the recovery program parts of the extensions do not generate any recovery in
formation. Disjoint recovery is not available to the implementers of extensions. 

The other recoverable system uses the disjoint recovery scheme to provide 
for recoverable resource allocation between many competing processes [13]. 
This system provides a facility whereby a program can create recoverable re
source objects (called ports); creation of such an object is equivalent to es
tablishing a new extension. The scope rules of ports ensure that the recovery en-
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vironment of a port is disjoint from that of the creating program. Inclusive re
covery is not available to the implementers of ports. 

Experimentation with these systems should shed further light on the ad
equacy of the two recovery schemes for implementing recoverable multilevel 
systems by means of interpreter extensions. However, neither system includes 
facilities for recovery from process intercommunication, and any such in
tercommunication (for example, from one user of the filing system to a sub
sequent user) is regarded as unrecoverable. Work is in progress to extend the 
model presented in this paper to encompass systems providing recovery for 
communicating processes and shared objects. Appropriate architectures for 
implementing recoverable multilevel systems are also being examined. 
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The Provision of Recoverable Interfaces 

T. ANDERSON and P. A. LEE 

Abstract. The recovery block scheme has been proposed as one method of providing fault tol
erant software, and is dependent on the availability of recoverable interfaces so that any dam
age caused by an erroneous program can be repaired by backward error recovery. However, it 
is clear that the interface provided by the hardware in any practical system will contain unre
coverable objects. This paper investigates a method of structuring a system into multiple levels 
so that a level of software can "hide" the unrecoverable features of an interface and provide a 
new interface with recoverable objects to programs needing facilities for backward error re
covery. The paper discusses this organisation of recovery in such a system. 

Introduction 

In order to attain a high level of reliability the designer of a system will attempt 
to ensure first that the system does not contain faults, and second that those 
faults which it does contain (since the first objective will not be achieved) are 
tolerated and do not cause the system to fail. An important element in any 
measures for fault tolerance is a means of error recovery, that is of transforming 
a state of the system which (due to some fault) is erroneous to a state from 
which the system can continue to provide its specified service. 

Many of the erroneous states which can occur in the operation of a system 
can be anticipated. In consequence it may well be possible to construct specific 
error recovery measures to rectify such errors. Indeed, most of the work on 
tolerance for faults in the hardware of computer systems has catered only for 
predicted error situations caused by (anticipated) component failures. Tech
niques for coping with component failure can be embodied in the hardware it
self [Avi7S], or in the software of a system in the form of exception handling 
routines [Go07S]. However, faults in the design of a system can lead to errone
ous states which are unanticipated and cannot be predicted. Of course, faults in 
software are always due to deficiencies in design and in consequence the tech
niques which have been quite effective in averting system failures due to hard
ware faults are inadequate and inappropriate as a defence against software 
faults. 

Any technique for providing recovery in an unanticipated situation must be 
of a very general nature and should not place undue reliance on an erroneous 
state caused by a design fault. One such technique is to abandon the erroneous 
state and restore the objects in the system to the values which pertained in some 
prior state. This approach has been termed "backward error recovery" [Ran78] 
since an earlier state is restored and some system activity is in consequence 
abandoned. Backward error recovery is an important technique, for if it is em
ployed in a system then recovery can be obtained from the effects of a wide 
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class of faults, including those of design. Successful restoration of a prior state 
ensures the elimination of all errors generated by any fault which occurred after 
that earlier state; thus a powerful fault tolerance capability can be provided. 

Consider, for example, the interface between the "hardware" and "soft
ware" of a computer system. The hardware machine interprets the machine 
language programs comprising the software of the system, and provides various 
abstract objects such as registers, words of memory in main storage, pages of 
data on disc, and 1/0 devices. One of the aspects of providing fault tolerance at 
the software level is to provide backward error recovery for the objects manipu
latedby the programs. (Objects for which backward error recovery is provided 
will be termed "recoverable" in this paper.) The recovery cache has been pro
posed [Hor74] as a mechanism for providing, by hardware, recovery for those 
objects that reside in the main store of the machine, and it has been demon
strated that this is a feasible and efficient technique [And76, Shr78, Lee79]. 
However, the optimised checkpointing strategy employed by the recovery cache 
is less appropriate for the provision of backward error recovery for most of the 
other objects supported by the hardware interpreter, particularly for those ob
jects which interact with the external environment of the system. 

This paper describes an approach to the construction of complex systems 
which involves structuring a system into a hierarchy of interfaces or levels such 
that a higher level can provide recoverable abstract objects which it implements 
from the (relatively) concrete objects available from a lower level. Examples of 
systems in which a hierarchical multi-level approach has been adopted have 
been described in the literature [Dij68, Lisn]; a detailed examination of a 
model of recovery in multi-level systems has also been published [And78]. This 
paper considers the way in which a multi- level recoverable system could be de
signed and illustrates the approach by means of a simple example. Some useful 
observations on the practical details of the approach are made. 

Basic Recovery Concepts 

First, consider the simple case of a program running on a given interface L. The 
term recoverability is, as indicated above, taken to mean the ability to recover 
an earlier state of the objects available on an interface, thereby undoing the ef
fects of operations that were performed on those objects. To provide such back
ward error recovery necessitates the recording of recovery data which can be 
used for this state restoration. Correspondingly, programs which manipulate 
the recovery data are referred to as recovery programs. 

In the rest of this paper it will be assumed that the following basic recovery 
features are available to programs executed on an interface: 

(i) The interface provides both recoverable and unrecoverable objects. 
(ii) A program can establish recovery points which ensure that the current 

state of the recoverable objects of the interface is (at least conceptually) record-
ed as recovery data. . 
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(iii) Recovery points can be discarded with the effect that recovery data 
maintained for recovery to those recovery points is discarded. 

A recovery point is said to be active from when it is established until it is 
discarded. The term recovery region will be used to refer to the period for which 
a recovery point is active (Fig. 1 shows two nested recovery regions). 

Multi-Level Systems 

A systematic method of designing a complex computer system is to adopt a hi
erarchical approach: starting from a given hardware interface LO, a first layer 
of software is added to obtain a more attractive interface L1; this process is re
peated to obtain L2, and so on. The resulting system is termed multi-level in that 
a number of interfaces, or levels, can be discerned in its implementation. 

The most powerful and general method of providing a new interface is to 
use interpretation techniques. For example, a new level Ll can be constructed 
from an existing hardware interface LO by providing a software-implemented 
interpreter II (which is, of course, executed on LO). This is depicted in Fig. 2. 
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The characteristic feature of this approach is that an interpreter has com
plete responsibility for the support of the new interface - every operation per
formed by a program 12 on objects available on Ll in Fig. 2 is directly support
ed by II. The design of a multi-level system can be simplified by the adoption 
of interpretation techniques because the implementation of each of the levels 
supported by interpretation is completely independent of the implementation 
of the underlying levels. For example, in Fig. 2 the recoverability of the objects 
available on LO has no direct bearing on the recoverability of objects available 
on LI. Any recovery features available on Ll have to be explicitly provided by 
II. 

The major practical disadvantage with interpretation is in the substantial 
overhead which it incurs. Indeed, if it is desired that a new interface Ll is to 
have many features in common with the underlying interface LO then interpre
tation can be a costly technique to utilise. There is an alternative to full inter
pretation: if the hardware machine makes available sufficiently powerful exten
sion facilities then it may not be necessary to support new interfaces by further 
levels of interpretation; instead, these may be provided by extending the hard
ware provided features. Figure 3 illustrates a computer system in which the hard
ware-provided interface LO (itself supported by a hardware-implemented in
terpreter 10) provides extension facilities. Each new interface Li (i = 1,2) is 
constructed as an extension of Li - 1, the extension being implemented by 
means of a program Ei which is executed on the interface Li - 1. 

Each program Ei is referred to as an interpreter extension. Every interaction 
with the interface L2 is first examined by the underlying interpreter 10, which 
determines whether that interaction is directly supported by 10 itself or, if not, 
which of the interpreter extensions (El, E2) does support that interaction. Thus, 
the interactions of a program may be supported by any lower extensions or by 
10. The layout of Fig. 3 is intended to indicate that interfaces LO, Ll and L2 
have many behavioural properties in common. 

Example: The nucleus of most operating systems can be regarded as an in
terpreter extension which provides a user interface from the underlying hard
ware interface by removing certain privileged instructions and adding a set of 
'operating system call' instructions. 

The potential advantage to be gained from using an interpreter extension to im
plement a new interface (when this is possible) in preference to a further level 

program program user program 

El --~ Ll E2 --(data) L2 P 

Lo--------~I----------~I-----------
10 

program 
dolo 

Fig. 3. Extended interpreter multilevel system 
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of interpretation is in avoiding the overhead that the latter entails. It should be 
noted that to a program being executed on an interface, it is completely imma
terial whether that interface is implemented by an interpreter extension or not. 

As discussed above, the advantages of full interpretation in the implemen
tation of multi-level systems may be diminished by the overheads incurred, and 
it is likely that many practical multi-level systems will be constructed using in
terpreter extensions. Thus the rest of this paper concentrates on the provision of 
recoverable interfaces by means of a hierarchy of interpreter extensions. In or
der to illustrate the discussion a simple example multi-level system will be pre
sented. 

A Simple File System 

The example system in which the provision of recoverable interfaces is to be 
considered is a rudimentary filing system; it supports only a single file for use 
by a single user. The implementation of the system is as depicted in Fig. 3, and 
has the following characteristics. 

LO: Among the objects available on LO are variables held in main memory, and 
disc pages held on secondary storage. The disc is accessed by means of the 
operations 'read disc' and 'writedisc'. These objects and the operations to 
manipulate them are supported by the underlying interpreter 10. 

L1: The interpreter extension El extends LO by providing operations to acquire 
and release disc pages (operations 'getdiscpage' and 'releasediscpage'), main
taining a list of the free disc pages in main memory. 

L2: The second interpreter extension E2 prevents the user program P from di
rectly accessing the disc pages. Instead, P is given access to a file; the user views 
this file as an indexed sequence of lines of text, with operations 'openfile', 
'closefile', 'readline' and 'writeline'. The concrete representation maintained by 
E2 for the file consists of a set of the unrecoverable disc pages, a copy (called 
'pagebuffer') of the most recently accessed disc page, and an array of disc page 
addresses (called 'filemap'). The objects pagebuffer and filemap are held in 
main memory. Each entry in filemap points to one of the disc pages currently 
representing the file. When P accesses the file, either to read or write a line, the 
access is actually applied (by E2) to pagebuffer. If the line in question is not 
present, because pagebuffer is empty or contains the wrong disc page, then the 
relevant disc page is copied into page buffer (if page buffer contains an updated 
disc page then this must first be copied back to the disc). 

Provision of Recovery 

If backward error recovery is to be provided to a program in a system with in
terpreter extensions then whenever the program manipulates a recoverable ob-
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ject within a recovery region, it must be ensured that the necessary recovery 
data is recorded. If the recoverable object is supported by the underlying in
terpreter then the recovery data will be maintained by the interpreter. Simi-
1arly' an interpreter extension may need to record recovery data so that it can 
provide recovery to any recoverable objects it supports. 

It will be assumed that the underlying interpreter IO of the file system 
example provides recovery for variables in main memory, but not for disc 
pages (that is, words of main memory are recoverable and disc pages are un
recoverable). Although the first extension (E1) provides no recovery features, 
the second extension (E2) is intended to provide a recoverable file; since the file 
is implemented on disc as well as in main storage, E2 will have to include re
covery programs and data, as is depicted in Fig. 4. 

In order that an extension, such as E2 in Fig. 4, can perform the necessary 
actions for recovery, the underlying interpreter must invoke the extension 
whenever a program using that extension establishes or discards a recovery 
point as well as whenever recovery is required. When recovery is required for P 
(the user of the file system) then the extension E2 must restore the prior state of 
the file and the interpreter IO must restore those variables of P which are held 
in main memory. 

The basis of one method by which E2 could provide recovery for the file is 
as follows: whenever P establishes a recovery point, E2 must ensure that the 
disc pages which represent the file are not subsequently overwritten. When 
pagebuffer is to be copied back to the disc, instead of overwritting the original 
disc page, an unused disc page is acquired and pagebuffer is written to this new 
page. Clearly, the appropriate entry in filemap must be changed to point to the 
new disc page, and in consequence the disc address of the old disc page must be 
recorded as recovery data by E2. 

An interpreter extension can itself make use of recoverable objects, either in 
conjunction with its own use of recovery points or simply for convenience in re
presenting objects maintained by the extension. 

In the file system, the objects filemap and pagebuffer used by E2 are re
coverable since they reside in main storage. The question which will now be 
considered is whether recoverable objects used by an interpreter extension 
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should be restored by the underlying interpreter when recovery is provided to a 
program which has called the extension. For example, should recovery of P 
cause the objects filemap and pagebuffer to be restored by IO? 

Disjoint and Inclusive Recovery 

The distinction between the two recovery schemes discussed below stems from 
the way in which an interpreter extension is regarded as fitting into the struc
ture of the system. As its name suggests, an interpreter extension is an extension 
of an underlying interpreter and could therefore be regarded as being a part of 
that interpreter (at least conceptually), and hence independent (or disjoint) 
from any calling program. If the extension and calling program are regarded as 
disjoint components of the system it seems legitimate that recovery for one 
should not imply that any recovery is required for the other. In consequence an 
extension would be wholly responsible for the recovery of objects it was main
taining. A scheme of recovery for multi-level systems having these character
istics in termed a disjoint recovery scheme. 

If disjoint recovery is adopted for the file system then the objects filemap 
and page buffer would not be restored to their prior states by 10 when recovery 
is provided to P. E2 must still be able to restore the prior state of the file - but 
this is easily achieved. The recovery data recorded by E2 simply needs to indi
cate which filemap entries must be restored and the disc addresses to which 
they should be reset (that is, the address of the old disc pages discussed in the 
previous section). Using this information, E2 can reset filemap to its state at the 
time the recovery point was established and can also release the new disc pages 
that had been acquired. Note that pagebuffer need not be restored. The recov
ery program of E2 merely empties pagebuffer since any subsequent access of 
the file by P will result in a disc page being copied into pagebuffer. All of these 
actions ensure that the file is restored to the abstract state which existed when P 
established the recovery point. This example also illustrates that provision of 
the abstraction of recovery for an object does not imply that an exact prior state 
of that object must be restored; there may be many concrete states which have 
the same abstract state. The disjoint recovery scheme can take advantage of 
this, as illustrated here, when providing recovery. (A more detailed elaboration 
of the file system program of E2 with disjoint recovery is supplied in the Ap
pendix.) 

There is a second way in which an extension may be regarded as fitting into 
the structure of the system. Instead of taking an extension to be disjoint from a 
calling program an alternative is to regard the calling program as being inclu
sive of the extension, the extension then being regarded as a nested component 
of the calling program. It then seems natural that recovery of the calling pro
gram should also include recovery of the extension. In consequence an exten
sion would only need to record and maintain recovery data relating to the use 
of any unrecoverable objects it manipulates on behalf of a calling program; re
covery of any recoverable objects used by the extension would be automatically 
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provided by lower extensions or by the underlying interpreter. A scheme of re
covery for multi-level systems having these characteristics is termed an inclusive 
recovery scheme. 

If inclusive recovery is adopted for the file system then when recovery is in
voked for P, the prior states of filemap and pagebuffer will be automatically 
restored by 10. As with the disjoint scheme, E2 must acquire new disc pages to 
avoid overwriting the disc pages which represented the file at the time the re
covery point was established. Automatic restoration of filemap thus ensures 
that the file is restored to its prior state, and the recovery program of E2 merely 
has to release the newly acquired disc pages, the addresses of which would have 
been recorded as recovery data (see the Appendix for a more detailed de
scription). 

One complication which arises with inclusive recovery concerns the recov
ery data maintained by the extension (such as the addresses of newly acquired 
disc pages in the file system). If this data is retained in recoverable objects (per
haps to enhance the recovery capabilities of the extension itself) then this infor
mation would be lost if the objects were restored by the underlying interpreter 
before the recovery program of the extension was executed. This difficulty can 
be avoided in a number of ways. The simplest, but least acceptable, approach is 
to stipulate that the recovery data of an extension must be maintained in un
recoverable objects; unfortunately the recovery programs of the extension are 
then unable to derive any local benefit from the recovery capability of the 
underlying interpreter. The most general solution is to allow an extension to 
specify that the provisions of disjoint recovery should be applied to the objects 
it uses to hold recovery data. The code presented in the Appendix assumes that 
this strategy is being employed. Alternatively, it may be possible to ensure that 
the recovery programs of an extension are executed before recovery is provided 
by the underlying interpreter. In a multi-level system this implies that when re
covery is required for a program, the underlying interpreter must invoke the re
covery programs of all relevant extensions in order from right to left, that is 
from "most" to "least" abstract. (The adoption of this strategy would also allow 
minor optimisations of the code presented in the Appendix to be made.) 

General Comments on The Recovery Schemes 

At a superficial level, there would appear to be only minor differences between 
the implementation of recovery in the example system utilising disjoint or in
clusive recovery. Certainly, it would be wrong to try to draw firm conclusions 
about the usefulness of either scheme based on this simple example. It is 
claimed that both schemes provide exactly the same abstraction of recovery to 
the user of the file (P) and, as expected, it is necessary to investigate the im
plementation of this abstraction in E2 to distinguish the schemes. 

As far as recovery is concerned, the implementation of the disjoint scheme 
naturally has to do more work than that of the inclusive scheme. However, in 
this example the extra work turns out to be relatively minor because, since the 
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disjoint scheme gives full control over recovery, it is possible to adopt a reason
ably efficient method of restoring a concrete state of the file in order to provide 
the abstraction of recovery. Thus, for example, pagebuffer does not need to be 
restored to the state that pertained when P established a recovery point. In con
trast, with the inclusive scheme, pagebuffer is restored automatically without 
cost (strictly, at the cost of recovery data in the lower machine). The disjoint 
scheme does incur the cost of the disc access to reset pagebuffer when the file is 
next accessed by P. It should also be noted that if the 'getdiscpage' and 're
leasediscpage' procedures of El were made recoverable by EI then there would 
be no need whatsoever for a recovery program in E2 with the inclusive recovery 
scheme. However, the recoverability provided by EI would have no impact on 
the recovery program of E2 in the disjoint scheme. 

On the other hand, the disjoint scheme has to checkpoint information main
tained in main memory about the file status when a recovery point is estab
lished. In the current example there is minimal information; a more practical 
file system which maintained other state information (time, data altered, 
owner, size, ... ) would necessitate the recording of additional information as 
recovery data of the disjoint scheme. 

The example also highlights the problems of recording recovery data in re
coverable objects with the inclusive recovery scheme. Anderson, Lee and 
Shrivastava [And78] stated that the natural order for recovery of the extensions 
is from least to most abstract. However, it has been shown that providing recov
ery in the reverse order would provide the desired effect and would simplify the 
system in that the objects used to hold recovery data would not need to be 
specially identified and dealt with. Indeed, the recording of recovery data may 
be simplified by the adoption of this strategy. 

It is likely that extensions themselves contain faults. It should be noted that 
neither recovery scheme precludes an extension from establishing its own local 
recovery points as part of its fault tolerance strategies. Indeed, this may be con
sidered necessary to provide reliable extension operation, although the simple 
example presented here contains no such strategies. 

Summary 

By discussing the details of the provision of backward error recovery in a very 
simple file system, the salient characteristics of two schemes of recovery in mul
ti-level systems have been presented. The disjoint scheme gives complete con
trol over recovery to an extension but only at the price of having to re-im
plement recovery when that provided by the underlying interpreter could have 
been adequate. The inclusive scheme enables an extension to take advantage of 
the recovery provided by the underlying interpreter in providing its own recov
ery capability, but is complicated by the need to obtain disjoint recovery for its 
recovery data. A practical solution to this problem has been discussed. The 
example system also illustrates how unrecoverable features of a low level in
terface can be eliminated by replacing them with recoverable abstract objects in 

404 



a new interface. A reasonably detailed elaboration of the file system program of 
E2 is attached as an Appendix. 
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Appendix 

The code which follows is written in a Pascal-like language. The procedures 
which are made available to the user program P (as operations) are distin
guished by the keyword entry. To make it clear to the reader which operations 
are provided by the extension El and which by the interpreter 10, invocation of 
such operations will be prefixed by "El." and "10." respectively. The es
tablishrp, discardrp and recover procedures are those which it is assumed are 
automatically invoked by 10 as noted in the paper. 

The declarations of a number of procedures have been omitted for brevity. 
The tasks performed by procedures readline, convert, put-in-cache and extract
from-cache should be clear from their names and invocations. Procedures ini
tialise-cache and tidy-up-cache are merely to allow for any necessary updating 
of the housekeepingvars of the cache. Procedure cacheing-required determines 
whether recovery data must be entered in the recovery cache, according to 
whether the disc page which would have been overwritten is one which repre
sented a part of the file at the time the recovery point was established. 

As a further simplification, recovery in the example is only considered for a 
single recovery point. The elementary modifications necessary to cope with 
multiple nested recovery regions are left as an exercise for the interested reader. 
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Code is presented for E2 with disjoint recovery, and then for E2 with inclu
sive recovery. 

Disjoint recovery in E2 

constant 
filemapaddr = ... ; "address of disc copy of filemap" 

type filemapindex = (1 ... N); 
discaddress ... , 
cache entry = record oldpage: discaddress; 

index: filemapindex 
endrecord; 

line = ... ; 

var filemap: array [filemapindex] of discaddress; 
pagebuffer: array [1 .. M] ofline; 
activepageno: (0 ... N); "filemapindex of file page in page buffer" 
writtento: boolean; 
status: (open, closed) initially closed; 
cache: record 

housekeepingvars: ... ; 
oldfilestatus: (open, closed); 
region: array [1 ... P] of cacheentry; 

endrecord; 

entry procedure openfile; 
begin if status = open then signalerror else 

begin 
IO.readdisc (filemapaddr, filemap): "read filemap" 
activepageno := false; status := open; 
end; 

end openfile; 

entry procedure closefile; 
begin if status = closed then signal error else 

begin if written to then copybackpagebuffer; 
"assume filemap has been written to" 
IO.writedisc (filemapaddr, filemap); 
status:= closed; 
end; 

end closefile; 

entry procedure writeline (lineno: integer, linecontents: line); 
var pageno: filemapindex; 

displacement: integer; 
begin if status = closed then signalerror else 

begin convert (lineno, pageno, displacement); 
getpage (pageno); 
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page buffer [displacement] := linecontents; 
writtento := true; 
end; 

end writeline; 

procedure getpage (pagenumber: filemapindex); 
begin if pagenumber = activepageno then return; 
if writtento then copybackpagebuffer; 
IO.readdisc (filemap [activepageno], pagebuffer); 
activepageno:= pagenumber; 
writtento := false; 
end getpage; 

procedure copybackpagebuffer; 
var newpage: discaddress; 
begin if cacheing-required then 

"record recovery data" 
begin newpage := El.getdiscpage; 
"cache old disc page address & its filemapindex" 
put-in-cache (filemap[index], index); 
"reset filemap to point at new page" 
filemap[index] := newpage; 
end; 

IO.writedisc (filemap[index], pagebuffer); 
end copybackpagebuffer; 

"recovery procedures - establish a recovery point, 
recover, and discard a recovery point" 

procedure establishrp; 
begin if (status = open) & writtento then 
"ensure disc copy represents current file state" 
IO.writedisc (filemap[activepageno], pagebuffer); 
initialise-cache; 
cache.oldfilestatus := status; "checkpoint status" 
end establishrp; 

procedure recovery; 
var index: filemapindex; 

oldpage: discaddress; 
begin "reset the necessary in-core variables" 
if status = closed then openfile 

else acti vepageno : = 0; 
for each entry in cache. region do 

begin extract-from-entry (oldpage, index); 
"discard new page" 
El.releasediscpage (filemap[index]); 
filemap[index] := oldpage; "reset filemap" 
end for loop; 
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if cache.oldfilestatus = closed then closefile; 
tidyup-cache; 
end recovery; 

procedure discardrp; 
var index: filemapindex; 

old page: discaddress; 
begin for each entry in cache.region do 

begin extract-from-entry (oldpage, index); 
El.releasediscpage (oldpage); "discard old page" 
end for loop; 

tidyup-cache; 
end discardrp; 

Inclusive recovery in E2 

"Type and var declarations as before except for the code" 

type cache entry = record old page: discaddress; 
newpage: discaddress; 

endrecord; 

var recoverycache cache: record 
housekeepingvar: ... ; 
region: array [1 ... P] of cacheentry; 
endrecord; 

entry procedure openfile; . . . "as before" 
entry procedure closefile; . . . "as before" 
entry procedure writeline ( ... ); ... "as before" 
entry procedure readline ( ... );... "as before" 
procedure getpage ( ... );... "as before" 

procedure copybackpagebuffer; 
var newpage: discaddress; 
begin if cacheing-required then 

"record recovery data" 
begin newpage:= El.getdiscpage; 
"cache old and new disc page addresses" 
put-in-cache (filemap[index], newpage); 
filemap [index]: = newpage; "reset filemap" 
end; 

lO.writedisc (filemap[index], pagebuffer); 
end copybackpagebuffer; 

procedure establishrp; 
begin initialise-cache; 
end establishrp; 
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procedure recovery; 
var oldpage, newpage: discaddress; 
begin for each entry in cache. region do 

begin extract-from-entry (oldpage, newpage); 
El.releasediscpage (newpage); "discard new page" 
end for loop; 

tidyup-cache; 
end recovery; 

procedure discardrp; 
var oldpage, newpage: discaddress 
begin for each entry in cache. region do 

begin extract-from-entry (oldpage, newpage); 
El.releasediscpage (oldpage); "discard old page" 
end for loop; 

tidyup-cache; 
end discardrp; 

Copyright © 1979 IEEE. Reprinted, with permission, from Digest of Papers, FTCS-9, June 
1979, Madison, pp. 87-94. 
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Structuring Distributed Systems for Recoverability 
and Crash Resistance 

S. K. SHRIVASTAVA 

Abstract. An object-oriented multilevel model of computation is used to discuss recoverability 
and crash resistance issues in distributed systems. Of particular importance are the issues that 
are raised when recoverability and crash resistance properties are desired from objects whose 
concrete representations are distributed over several nodes. The execution of a program at a 
node of the system can give rise to a hierarchy of processes executing various parts of the pro
gram at different nodes. Recoverability and crash resistance properties are needed to ensure 
that such a group of processes leave the system state consistent despite faults in the system. 

Index Terms. Atomic actions, backward error recovery, commitment, concurrency, consistency, 
crash resistance, distributed systems, exception handling, message passing, recoverability, se
cure storage. 

I. Introduction 

Consider a computing system consisting of a number of autonomous computers 
(referred to as nodes) connected by a communication system that allows the 
various nodes to exchange information with each other. Each node of such a 
system will provide one or more services (e.g., data retention, document print
ing, compiling, text editing) and a user computation running on any node can 
make use of such services by suitable use of the communication system. Such a 
system will be called a distributed system. When a user computation running on 
a given node invokes a legitimate service call to some other node, there can be 
many reasons why that service might not be available; for example, the com
munication link between the nodes is perhaps faulty or the server node has 
"crashed" and so on. For these, and many other reasons, it is quite possible for 
a user computation to arrive at such a state from where further meaningful 
progress is not possible. Such a state of affairs can be highly undesirable in a 
system where node services are constantly being shared between various 
computations, since a computation that has not terminated satisfactorily could 
leave part of the system state inconsistent. Under the assumption that, if a 
computation (that begins when the system state is consistent) terminates prop
erly, then it will leave the (possibly new) system state consistent, we require the 
following abstract property from all programs to guarantee consistency in the 
presence of faults: the computation invoked for a program either terminates or 
that invocation has no affect on the system state. The above abstraction can be 
maintained if the system can be structured to provide recoverability such that 
the current state of an unsatisfactory computation can be abandoned in favor of 
a prior state. 

In this paper we shall examine some of the fundamental issues that are in
volved when this so-called backward error recovery facility [1] is to be provided 
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in a distributed system. The contributions of this paper are that: 1) it attempts 
to describe the underlying concepts on the means of achieving recoverability in 
distributed systems using a multilevel model of system developed earlier [6]; 2) 
the relationship between recoverability and "crash resistance" is discussed and 
treatment of abnormal situations during the execution of programs is examined 
in depth; and 3) as a result, problems such as a) exploitation of recoverability 
facilities of remote nodes, b) construction of recoverable and "crash resistant" 
objects whose concrete representations are spread over several nodes, and c) 
treatment of abnormal situations during recovery can be understood and their 
various solutions can be formulated and evaluated. These ideas, it is hoped, 
will not only help the reader in critically reviewing any existing systems (e.g., 
[2], [3]), but will also provide a framework for formulating arbitrarily complex 
recovery strategies and their implementations. 

II. Preliminary Details 

Atomicity and Message Passing 

We shall view the system as consisting of a collection of abstract objects. An ab
stract object consists of abstract data and a set of abstract operations that 
manipulate the data - these operations are the only means of data manipu
lation. The term object manager will be used to refer to the provider of the cor
responding abstract object. As is well known, in any system a hierarchy of ab
stract interfaces (or levels) can be discerned. Any given level is characterized by 
the abstract objects made available on that level together with their associated 
operations for their manipulations. We say that an object is in a consistent state 
(or simply consistent) if it satisfies some specified invariant properties. An in
terface is said to be in a consistent state if all of its objects are consistent. Con
sider now a number of programs PI, P2, ... , Pn written to run on a given in
terface (level) Li. These programs are in fact providing abstract operations for 
the next interface (Li + 1) - the higher level of abstraction. In order that the 
invocations of these programs preserve the consistency of interface Li + 1, these 
programs must satisfy the following two properties. 
I) If execution of any program Pj is considered in isolation, then Pj terminates 

and Li + 1 remains consistent. 
2) If programs Pj, ... , Pm are executed concurrently, then these executions are 

interference free. 
Programs that satisfy property 2) are referred to as atomic actions [4]. These 

two properties are necessary and sufficient for the maintenance of consistency 
in a concurrent environment. We shall not prove this here, the interested reader 
is referred to [3] - [5]. From now on we shall only consider programs that are 
atomic actions (the terms "program" and "atomic action" will be used syn
onymously). If programs are manipulating objects that are shared, then it is 
necessary for them to follow some appropriate locking protocol on these objects 
[3], [5]. We shall further assume that some such protocol is being observed. 
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We shall now consider a distributed system at a sufficiently high level of ab
straction such that processes at different nodes have message sending facilities 
for interprocess communications with the following properties. A process can 
send a message to a named receiver at a given node using a "send" primitive. 
Successful execution of this primitive implies that the message has been deliv
ered to the receiver. Either a "time_out" or "process-1llissing" exception can be 
raised during the invocation of a "send." If the "time-out" interval has been set 
properly, raising of that exception can be taken to mean that most probably 
that message was not sent. The process missing exception implies that the 
named receiver no longer exists. A process can also wait for a message; a time
out exception is associated with this "wait." We assume some sequence num
bering scheme for these messages such that a "request" and its "reply" can be 
properly matched. Such a message system can be used neatly to implement a 
remote procedure call mechanism [2]: 

send-1llessage (processname, node, message) 
[for all exceptions: invoke backward recovery] 

repeat 
receive-1llessage (processname, node, result) 
[for all exceptions: invoke backward recovery] 
until sequence numbers match; 

In the above algorithm, the sent message indicates the work to be performed 
at the remote node and the received message contains the result. From now on 
it will be assumed that a procedure "remote_call" that implements the above 
algorithm exists at each node, so allowing a process to access remote objects: 

remote_call (processname, node, message) returns result 
[for all exceptions: invoke backward recovery] 

Note that the above use of backward recovery guarantees that an invocation of 
"remote_call" either produces the results or no side effects are produced. This 
necessarily requires the capability of "undoing" any work done at a remote 
node - how this can be achieved will be discussed in subsequent sections. It 
may also be noted that "remote_call" of this paper differs from that proposed 
by Lampson and Sturgis [2] in two important ways: 1) in [2], no backward 
recovery facility (other than crash recovery, see later) is available; 2) as a conse
quence of this, an exception during a send operation is dealt with by res ending 
the message. Thus, a single invocation of a remote call procedure can result in 
repeated executions at the remote node; so it is meaningful to invoke only the 
idempotent operations at remote nodes. No such restriction is necessry here. 

In order to facilitate access of remote objects, two primitive operations are 
made available to a process (where the unable exception means that most prob
ably that operation was not performed): 
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1) create_worker (workerj, Nodei) 
[unable exception: - - - - -] 

2) delete_worker (workerj, Nodei) 
[unable exception: - - - - -] 



A process can create a "worker process" at a remote node so that remote calls 
can be directed to it for accessing objects at that node. Any suitable response to 
the unable exception in the first operation is acceptable (e.g., retry, create at 
some other node); the same is not true for the second case, we shall discuss the 
reasons shortly. 

Recovery Semantics 

Using the terminology and concepts developed for an earlier paper [6], for a pro
cess to have the abstraction of backward error recovery (henceforth termed re
covery) made available at a given level of abstraction requires the following. 

1) The process can establish a recovery point, thus indicating the start of a 
new recovery region (see Fig. 1). This implies that, if necessary, the states of 
any recoverable objects modified in that region can be restored automatically 
to those at the beginning of the region. The following notation will be assumed: 

establislLrecovery _point (control) 

where "control" specifies the point where the flow of control should be after 
state restoration (e.g., for a recovery block [7], "control" could be the starting 
address of the next alternative). 

2) The process can discard a recovery point, thus indicating the end of a re
covery region. As shown in Fig. 1, a process can successively establish recovery 
points giving rise to nested recovery regions [6]. We assume that a restore(j) 
primitive is available for recovering to the Jth recovery point. In the rest of the 
paper, the term "detection of an error" will be used to mean "the detection of 
an erroneous situation (exception) that necessitates the invocation of backward 
recovery. " 

To cope with situations where the abstraction of recovery can no longer be 
maintained (this may happen, for example, as a result of a physical breakdown 
of the memory system that is storing recovery information) we assume the 
existence of a "stronger," manual recovery facility that can restore prior states 
of objects and some relevant processes. The term crash recovery is typically 
used to refer to this action of state restoration [2], [3]. For the time being we will 
consider the provision of automatic recovery only and return to the subject of 
crash recovery later, in Section IV. 

Itprocess ll 

, -r, -------. establish_ recovery_point 1 () ; 
recovery regionl I 

j 
-r---~ establish..recovery_point2(); • recovery I Time 

region2 i , 
...Li ___ ~ discard_recovery_point2; 

, 
---''--______ ¥ discard_recovery_point 1; 

, Fig. 1. Multiple recovery points 
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III. Recoverability Issues 

Multilevel Architecture to Support Recovery 

The establishment of a recovery point by a process entails notification to all 
those object managers (whose services will be used by the process) that are pro
viding the abstraction of recoverability so that the managers can commence re
cording appropriate recovery data. When an error is detected, all these man
agers must be appropriately notified so that they can use their recovery data for 
providing the abstraction of recovery. The following three notifications must be 
handled by an object manager: I) recordJecovery_data, 2) discaruecov
ery_data, and 3) recover. Note that it is being assumed that after a "record" 
notification, any number of operations on that object can be invoked - the ef
fects of all of these can be undone by a single "recover" notification. 

For recovery to be automatic, it is clear that these notifications must be per
formed automatically on behalf of the process in question. A logical organi
zation for how this may be done will now be briefly discussed (for the time be
ing only a single node accessing local objects will be considered). 

Referring to Fig. 2, it is assumed that interface LO (that is being maintained 
by a set of programs 10 known as the interpreter for LO) provides some recov
ery facilities (see below) to programs that run over it. A number of object man
agers have been programmed on LO thereby successively extending LO to Li [6]. 
Thus, a program Pj cannot only use most of the operations of LO, a number of 
additional operations - those provided by the programmed managers - have 
also been made available to it. Consider now the execution of some program, 
say Pj. Every invocation of an operation on interface Li is first examined by 10 
which determines whether that operation is directly supported by itself or if 
not, which of the managers (also referred to as extensions in [6]) does support it 
- the operation of that particular manager is then invoked by 10 ("M.op( ... )" 
in this particular case). We shall now make the assumptions that LO supports 
the abstraction of processes and that 10 maintains some data per level for the 

erp: establish~recovery_point 

drp: discard_ recovery_ point 

recover 

"Process QII 

Manager of object MI. 
erp( 1; 

L1 Li-1 

record 
recovery 

data 

erp( 1; 

"Program Pk" 

discard drp; 
recovery 

data 

Li "Program P j" 

M.OP( 

drp; 

LO~---L-----------------------L ______ __ 
Interpreter IO 

414 

Fig. 2. A hierarchy of interfaces 



purposes of recovery for each process. We shall refer to this data by process 
name.level.recovery data. Then, when a process such as Q executes an opera
tion "establislLrecovery_point," this results in 10 making an appropriate entry 
in Q.level.recovery data, thus signifying the start of a new recovery region at 
that level. Note that recovery regions of programs such as Pi and Pk are in
dependent from each other, despite the fact that they "belong" to the same pro
cess (Q in Fig. 2); this is because they are at different levels of abstractions. The 
invocation of an operation such as "M.op( ... )" results in 10 executing the fol
lowing program (for simplicity, in the following algorithms it has been assumed 
that 10, itself has no recovery capability and also that it is not providing any 
recoverable objects): 

begin 

end 

if M is recoverable then 
search the current recovery region of 
Q.level.recovery data for object name M; 
if not found then 
begin record the name M in Q.level.recovery data; 

invoke M.record_recovery _data G, level); 
end 

invoke M.op ( ... ) 

In the above figure, "i" will be the level number of Q when it executes 
M.op( ... ). Whenever 10 invokes recovery data associated operations (on behalf 
of the caller) of an object manager, the level number of the caller is also im
plicitly supplied. This number may be utilized for the management of recovery 
data by a manager in a manner similar to that done by 10. The first parameter 
of "recof(Lrecovery data" operation specifies the number of the current recov
ery region. 

The invocation of operation "discardJecovery_point" by Q results in 10 
executing the following program: 

begin 
for all object names recorded in the 
current region of Q.level.recovery data do invoke 
object name.discard_recovery _data (level) 
- - - - - delete recovery data no longer needed - ---

end 

Finally, when Q executes restore(m) primitive, this results in 10 executing 
the following program: 

begin 

end 

prepare the set of object names that appear in 
Q.level.recovery data in region m to the current region; 
for all the elements of the set do 
invoke objectname.recover (m, level); delete recovery 
regions m to the current one 
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Structure of Atomic Actions 

As stated before, programs such as recover, Pk, Pj (Fig. 2) are all atomic; in this 
subsection we will study their fine structure. To start with, it is clear that an 
atomic action should be made recoverable such that when an error is detected, 
capability for undoing all the effects produced by that action exists. Further, to 
avoid interference, all of the shared objects to be accessed must be locked ap
propriately and to prevent the domino effect [10], these locks must be held until 
the end of the action. Lastly, any worker processes created should be deleted at 
the end of the action. Bearing these in mind, the following structure for a re
coverable atomic action suggests itself (Fig. 3). 

A few remarks are in order here. 
I) A recovery point is established at the beginning of an action and is dis

carded just before objects are unlocked - any number of intermediate recovery 
points can be established and discarded within an action. 

2) Once the outermost recovery point has been discarded, all of the objects 
updated by the program become committed - their states cannot be restored. 

3) All of the operations after the final "discard" (termed the commit opera
tions) are unrecoverable and must succeed for the action to terminate properly. 
A sensible strategy for handling exceptions during this period is therefore to re
try the commit operations a few times before giving up by executing the fail 
primitive of 10 [see remark 5)]. So the unlock and delete operations must be de
signed such that repeated executions produce the same effect as a single ex
ecution. 

4) Default exception handlers are associated with the recovery regions of 
the action to invoke recovery whenever exceptions are raised for which no pro
grammer provided handlers are available (Fig. 3 illustrates the handler for the 
outermost region). Fig. 3 also shows that a "not done" exception is signaled to 
the caller if the action cannot produce the desired result (of course, the specifi
cation of this action includes "not done" as an exception that can be signaled). 

cOIIDDit 
operations 
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Note that to maintain consistency, the above exception is signaled after recov
ery [9]. If the specification of an action precludes signaling of any exceptions, 
then the statement at label X should be replaced by the "fail" primitive (see be
low). 

5) When some of the objects accessed by an action are in inconsistent states 
and (or) no recovery is available then the "fail" primitive of 10 can be executed 
to transfer control to the interpreter indicating inability to proceed further. As
suming that 10 can signal "failure exception" to the caller, the typical response 
of 10 is to signal a failure exception. When failure exceptions are raised, in
terfaces Li (Fig. 2) cannot be guaranteed to be consistent and a degraded ser
vice is likely to be available. Consistency can be restored by utilizing the crash 
recovery procedure for that node (to be discussed in Section IV). 

6) If any unrecoverable objects are used inside a recovery region then their 
states must be explicitly restored during recovery - the code for this can be 
suitably incorporated in exception handlers that invoke recovery. 

7) If remote recoverable objects are accessed from within a recovery region 
then these objects must be restored automatically (like local recoverable ob
jects) during recovery; how this may be performed will be discussed shortly. 

8) Finally, if an atomic action is not making use of any recovery facilities -
it is unrecoverable - then the handler that normally invokes "restore" should 
simply invoke "fail." 

Assuming the above structure for recoverable atomic actions, two issues 
now remain to be discussed in this section on recoverability, namely, 1) steps 
taken by an object manager to provide the abstraction of recoverability and 2) 
the treatment of remote objects. We shall consider these two issues in turn. In 
the rest of the paper, for simplicity, wherever it is necessary to show the pro
gram text of atomic actions, only the essential details will be shown. 

Disjoint and Inclusive Recovery Schemes 

The object M of Fig. 2 will be used for illustrative purposes. Let us assume that 
the concrete implementation of M is on three local objects A, B, and C and that 
A and B themselves are recoverable. The task of the object manager is thus to 
provide a recoverable object M constructed out of two recoverable and one un
recoverable objects. 

It has been shown that there can be two ways of supporting recoverability of 
objects: by either using the disjoint recovery scheme or the inclusive recovery 
scheme [6]. The interpreter 10 is said to support the disjoint recovery scheme if, 
in Fig. 2, objects A and B appear as recoverable "locally," that is, only to the 
programs of the manager of M such as Pk. This means ·that recovery regions of 
Pk are disjoint (nonnested) from those of Pj. Thus, when an error is detected in 
Pj, 10 will automatically execute the recover program of the manager of M, the 
same is not done for those of A and B. It is entirely the responsibility of the 
manager of an object to provide the abstraction of recoverability. It can be seen 
that we have been implicitly assuming the disjoint recovery scheme so far (see 
the subsection on multilevel architecture). 
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The interpreter 10 is said to support the inclusive recovery scheme if, in 
Fig. 2, objects A and B appear recoverable "globally." This is achieved by re
garding the recovery regions of Pk as included (nested) within those of Pi. 
Thus, when an error is detected in Pj, 10 will execute "recover" operations of 
the managers of M, A, and B. This means that an object manager, in order to 
provide recoverability, need only be concerned with the unrecoverable objects 
it is managing. The "recover" program of M under the two schemes can be used 
to illustrate the difference: 

recover(n) "disjoint scheme": ____ _ 
restore states of A, Band C 
using data stored in the nth 
region of "recovery data" 

recover(n) "inclusive scheme": 

restore state of C using 
data stored in the nth 
region of "recovery data" 

The above example would seem to indicate that the inclusive scheme provides 
an easier means of structuring recoverable objects than the disjoint scheme. 
However, as has been discussed elsewhere [6], inclusive scheme does need the 
features of disjoint scheme (i.e., nonglobal recovery) during the execution of 
programs with recovery features that manipulate recovery data (in the above 
example, if recovery data of M is stored on recoverable objects, then when an 
error is detected in Pi, these data must not be restored). Thus, its implemen
tation by 10 is much more complex. In a distributed system, an implementation 
of inclusive scheme is even more complex because of the following additional 
difficulty. Assume objects A and B are on remote nodes. If an error is detected 
in Pi, 10 must invoke "recover" operations of A and B: this cannot be per
formed easily since the abstraction of remote object access in certainly not 
available at the level of 10. For these reasons, the disjoint recovery scheme ap
pears as most suitable in a distributed environment. In the rest of the paper, un
less otherwise stated, we shall be assuming such a recovery scheme. To exploit 
the recoverability of existing objects however, is an important advantage of the 
inclusive scheme; we shall later present a method whereby a process can exploit 
the recoverability of remote objects in a manner that models the inclusive 
scheme. 

Treatment of Remote Objects 

Remote objects are accessed by creating workers at appropriate nodes and then 
sending messages to them for object access. We will require that 1) "create 
_worker" operation be recoverable (i.e., workers be deleted during recovery) 
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and 2) if messages are sent to access recoverable objects, then messages for res
toration be sent during recovery. We shall consider two cases to explain the 
structuring to be proposed: 1) program PJ (Fig. 2) accesses an object Z located 
at a remote node (say Ni); and 2) object M's concrete representation is also dis
tributed - A (recoverable object) on some remote node (Ns) , B (recoverable 
object) on the local node (N local), and C (unrecoverable object) on another re
mote node (NI). During the execution of PJ by Q a worker (say wi) will be 
created at Ni; when Q starts executing Pk workers wI at NI and ws at Ns will be 

Fig. 4. Process hierarchy for the execution of program Pj 

created. Workers wI and ws will be destroyed when the execution of Pk 
finishes; wi will be destroyed when the execution of PJ finishes. Fig. 4 shows the 
master-worker process hierarchy (dotted lines indicate that the life times of wI 
and ws are not the same as that of wi). 

We assume that process creation and deletion operations are provided by an 
object referred to as the "remote object handler." The remote object handler 
implements the following facilities on behalf of its users (such as process Q of 
Fig. 4): whenever a process establishes (discards) a recovery point, messages to 
that effect are sent to the relevant workers of that process; if a process recovers 
to ith recovery point, messages to that effect are sent to the relevant workers, 
and any workers that were created in the now deleted recovery regions are de
stroyed. If the worker processes respond appropriately to the above messages 
then it is clear that recoverable objects can be utilized effectively by remote 
users. An indication of how the remote object handler implements the above 
mentioned facilities will now be given. 

1) When a process establishes a recovery point, the "recordJecovery_data" 
program of the remote handler will be automatically invoked by 10; this pro
gram is designed such that messages to establish a recovery point are sent to all 
the workers. 

2) If a process executes "restoreU)," then the "recover" program of the re
mote handler will be invoked by 10; this program contains the code to send "re
store" messages to appropriate workers. 

More details of these and other operations of the remote handler are pre
sented in the Appendix. 

Next we shall study the actions of a worker. A worker acts as a command 
interpreter for its master. Logically, therefore, a worker can provide the ab
straction of recoverability to its master exactly as the interpreter 10 and other 
object managers at the master's node do, namely, by appropriately recording 
recovery data and to use these data when recovery is desired. The point to note 
is that backward recovery of a master can be supported by a worker by its nor
mal forward actions. 
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An undesirable property of this is that a worker has to implement the re
coverability of all of the objects it accesses on its master's behalf - even if these 
objects are recoverable (this is, of course, the disadvantage of the disjoint re
covery scheme). A further disadvantage - and this is more serious - is that a 
worker, in general, does not "know" the objects it will be called upon to access; 
implementing recoverability under such a condition can be very difficult. The 
question then arises as to how can a worker effectively use the recoverability 
features of its local node? One way to achieve this goal is for a worker to sup
port the recoverability of the master by invoking its - the worker's - own re
coverability: 

"actions of a worker process" 
cycle 

receive_message ( ) [time out exception: kill] 
if message is establish recovery point then 
{result:= OK; establish recovery point (resume)} 
else {execute command in the message; prepare answer} 
[for all exceptions: result := exception type; 
go to resume] 

resume: send_message (master, Nmaster, result) 
[for all exceptions: kill] 
end "cycle" 

When a worker receives an establish recovery point command, it responds 
by creating its own recovery point, with flow of control at "resume." If the re
ceived command is "restore," the worker will execute this command, thus in
voking its own recovery. As a result of this, all the recoverable objects updated 
by the worker are restored appropriately and the worker sends a message to 
master indicating that the recovery has been performed. This scheme makes the 
program of a worker simple and the existing recovery facilities are efficiently 
utilized as in the inclusive recovery scheme. Note that it is now a master's re
sponsibility to maintain, if so desired, any recovery information for those ob
jects that are unrecoverable at a worker's node. 

The worker reports all the abnormal conditions encountered to its master. 
However, if during sending or receiving of a message exceptions are raised, 
then this is taken to mean either a collapse of the worker-master communi
cation facility or the master's node. The worker's response is to destroy itself 
using the kill primitive provided by the underlying interpreter 10 which can im
plement it as follows: 

begin "kill primitive" 
construct the set of object names (if any) recorded 
in calling process.level.recovery data in 
recovery region I to the current one; 

for all these object names do 
invoke objectname.recover (1, level); 
delete all the information maintained for the calling process 

end 
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No exceptions are signaled during the execution of "kill." In particular, if 
some recover program fails (fail instruction is executed), 10 does not signal 
"failure" to the caller (since the caller is being destroyed) rather, the execution 
of "kill" is continued. So, the net effect is that the calling process is killed, with 
as much state restoration performed as possible. 

It is now perfectly straightforward for an object manager whose concrete 
representation is distributed to implement recoverability. Thus, the "re
corcLrecovery_data" operation of object M (mentioned at the beginning of this 
subsection) can be programmed as 

record_recovery _data: 

create workers at Ns and Nl; 
use "read" operations on A, Band C and 
record data in recovery data; 
destroy workers at Ns and N1; 

An alternative techriique that models the inclusive scheme is also possible 
whereby worker processes can be created to exploit the recoverability facilities 
of their nodes. Under this scheme, worker processes are created by an object 
manager at the beginning when its "record" operation is called for the first time 
by a process. All the operations of the manager use these workers which are de
stroyed in the "discard" operation when the outermost recovery region is dis
carded. Algorithms needed under this scheme should be fairly obvious to the 
reader; a sample algorithm is given below as an example: 

record_recovery _data: 

if workers not created for calling 
process then create workers at Ns and Nl; 
send message to establish recovery point to worker at Ns; 
invoke read operations on Band C 
(using worker at Nl) and record· data in recovery data; 

Note that if the local node above supports the inclusive recovery scheme, then 
there would be no need to record any recovery data for B; also note that it is 
much more difficult in this technique -, and this follows as the inclusive scheme 
is being modeled - for programs of an object manager to use recovery features 
for local recovery (this can be. appreciated if the reader considers the problems 
encountered if the above program itself wants to use recovery facilities). Such 
problems are not encountered in the previous case: the object manager can 
record recovery data on recoverable objects and use recovery features in its 
programs without any complications. Lastly, it should be noted that the frame
work proposed here is sufficiently general in that objects that store recovery 
data need not be local. 
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IV. Crash Resistance Issues 

Atomic Actions with Crash Recovery Features 

A distributed system is subject to independent failure modes of its components 
- communications equipment and computers. The communication facility be
tween a pair of nodes is said to have "crashed" if the nodes, while perhaps able 
to exchange messages with other nodes, cannot do so with each other. A node 
crash occurs if the interpreter of that node (/0) cannot maintain the interfaces 
(LO, ... , Li) in "acceptable" states, where the acceptability criterion is chosen 
by some external monitoring agency (sayan operator). We shall make the fol
lowing assumption when a node crashes: all the data stored in the system (ex
cept that stored on a secure storage, see below) are in an inconsistent state. Con
sider now our previous example of a process (Q) executing a program Pj that 
accesses a local object Mat N local and a remote object Z at Ni. Suppose dur
ing the middle of the execution of Pj, node Ni crashes. While it is certainly pos
sible to restore M to its prior state, the same cannot be said about Z whose re
covery data must be regarded as corrupt. How can Z (and other objects at Ni) 
be restored to a consistent state? A solution to this problem is to provide crash 
resistant storage (henceforth referred to as a secure storage) facilities such that 
states of objects and processes can be stored on it ("secured"). Appropriate 
crash recovery procedures can then be introduced for bringing objects and pro
cesses back to their secured states. In a distributed system it is also necessary to 
synchronize the "securing of objects" such that objects at various nodes remain 
consistent with respect to each other. 

An ingenious protocol (known as the two phase commit protocol) for 
achieving the above goal has been developed by many workers [2], [3], [12]
[14]. The protocol is to ensure that a given atomic action is allowed to terminate 
successfully only if all of the updated objects have been secured. A familiarity 
with this protocol will be assumed in the rest of this section. Just as we have 
taken the view that an object manager is responsible for providing recovera
bility, it will be assumed that it is also responsible for providing the necessary 
crash resistance features. We shall discuss some logical details of an interpreter 
that provides primitive facilities for suitably automating securing of objects. 

In the discussion on recoverability, it was assumed that any program at any 
level i (i > 0) can make use of recoverability features provided by 10. Can the 
same be said about securing of objects? For example, is it meaningful for pro
gram Pk (Fig. 2) to secure objects used by it and for program Pj not to use se
cure facility? A little reflection on the reader's part will show that it only makes 
sense for a process to use securing facilities in its programs at the highest level 
of abstraction - this will ensure a proper flow of control after a crash recovery. 
Such a program then makes use of this facility in the manner shown below. Be
fore commitment begins, a "secure" primitive of the interpreter is invoked. The 
parameters of the primitive specify the restart point and some relevant state in
formation for the process after a crash recovery. Successful execution of this 
primitive implies that the current states of all of the updated objects have be-
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secure (crash _ start, S); 
crash_start: discard _ recovery _ point; 

unlock locked objects; 

[default exception handler: kill;] 
"commit operations" 

for all the workers created do 
delete_workers (--, --); 
kill; 

Fig. 5. Using secure primitive in an atomic action 

[default exception handler: 
retry the operation;] 

come crash-proof (i.e., can be recreated if crashes occur). Once commitment 
begins, all of the operations must be completed (Fig. 5). It is possible that node 
and communication facility crashes can occur such that these actions take a 
long - possible infinite - time to complete. So, a distributed system should be 
sufficiently reliable to reduce the chances of such an event happening to a small 
probability (see the discussion on the General's Paradox in [3]). As stated be
fore, commit operations are unrecoverable, so the only recovery action to take 
in case exceptions are raised is to retry that operation. Also, any crashes during 
the execution of commit operations can imply repeated executions of some of 
these operations. These factors must be borne in mind when these operations 
(discard, unlock, delete, kill) are implemented. The last commit action of the 
executing process - the absolute master process - is to kill itself, thus signify
ing the end of the action (a generalization enabling the process to execute an
other atomic action is certainly possible). 

Multilevel Architecture to Support Crash Resistance 

As a part of the process record of each process, the interpreter 10 at a node 
maintains a variable "state" that can take on the values "unknown" (initial val
ue) "secured" or "committed." The "secure" primitive can be implemented by 
10 as 

secure (I, s): begin 
use calling process.level.recovery data 
to construct the set of all object names recorded; 
with the process record of the calling process 
do {instruction counter := I; state := secured} 
write the set of object names, sand 
process record on to the secure storage; 
for all object names in the set do 
invoke object name.securestate; 
end 

As before, the above is a simple logical organization that ignores any efficiency 
issues. It is assumed that 10 has access to some local secure storage facility which 
provides atomic read/write operations. 
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The implementation of the "discard" operation by 10 is slightly modified as 

discard _ recovery 
point: begin 

if process record. state = not 
committed then {"as before"} 
if process record. state = secured then 
{process record.state: = committed; 
update "state" on the secure storage appropriately} 

end 

Finally, a new operation "crash_restore" is provided by 10: 

crash_restore: begin 
for all the securable objects 
do invoke object name.crash_recover; 
create processes and their recovery data using data stored 
in secure storage "only processes in state = secured or 
committed are recreated" 
end 

Crash recovery of a node thus consists of invoking the above operation which 
has the effect of bringing all the objects (that are "securable," see below) of that 
node to their latest secured states. Also, processes with state "secure" or "com
mitted" are recreated. Crash restore should be a protected operation, not ac
cessible to any object managers. 

Making Objects Crash Resistant 

In order to maintain a "securable" object, an object manager needs to provide 
two additional operations - securestate and craslLrecover - that are invoked 
automatically by 10. Each object manager associates a variable "objecLstate" 
with its recovery data; this variable can take on one of the following values: un
known (initial value), secured, or committed. So far we have been assuming 
that an object manager records, in its recovery data, enough information neces
sary for the creation of specific prior states. In order to implement the secure
state operation, it is also necessary for the manager to record enough informa
tion for recreating the current state of the object. We assume that this informa
tion is recorded as a part of the recovery data (the two parts of recovery data 
are known as "undo" and "redo" parts [3], [14]). 

Just as an object can be either recoverable or unrecoverable, it is also pos
sible for it to be either "securable" or "unsecurable" (i.e., either resistant to 
crashes or not). Thus, an object can possess anyone' of the following properties: 
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Object 
Type 

I 

2 

3 

4 

ProQerties of 
the Object 

unrecoverable 
and unsecurable 

recoverable 
and unsecurable 

unrecoverable 
and securable 

recoverable 
and securable 

Comment 

object state cannot be automatically restored to 
that at a recovery point (if any); no crash resis
tance. 

object state can be automatically restored to that 
at a recovery point (if any); no crash resistance. 
object state cannot be automatically restored to 
that at a recovery point (if any); object state can 
be made crash resistant. 
object state can be automatically restored to that 
at a recovery point (if any); can be made crash 
resistant. 

Clearly, it is desirable, at least for the "higher level objects" (those that are used 
in application programs) to be of type 4. The task of an object manager is, in 
general, to construct an abstract object that is recoverable and securable out of 
objects each of which can be of any of the above four types. (Note that details 
presented in Section III show that 10 only maintains recovery data for recover
able objects, so construction of type 3 objects would not be possible unless min
or modifications are made to the algorithms of 10.) The disjoint and inclusive 
recovery schemes discussed in the previous section provide an appropriate 
framework for formulating and evaluating various possible implementations if 
these schemes are extended for securability in an obvious manner. It is interest
ing to observe that the inclusive scheme is preferable when crash resistance is 
desired. This follows from the fact that a secure operation is, by its very nature, 
"global," and that a crash recovery operation involves only a given node. How
ever, it would be awkward to have a scheme that supported disjoint recovery 
and inclusive crash recovery. As an example, consider the object manager M of 
Fig. 2 (assume as before, that the concrete representation is on objects A, B, and 
C and further that they are local objects). Under the disjoint scheme, if process 
Q executing Pj invokes "secure()" primitive, then 10 will only invoke "secure" 
operation of M (even if A and B were securable): 

securestate: 
record "redo" information in recovery 
data for objects A, Band C; 
objecLstate := secured; 
record recovery data in a secure storage; 

Note that the secure storage used by an object manager need not be a local ob
ject - it is perfectly possible for a manager to use some remote secure storage. 
The operation "craslLrecover" can be programmed under the disjoint scheme 
as 
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crash _ recover: 
update recovery data from that stored on secure storage; 
construct states of A, Band C using "redo" data; 
if objecLstate = committed then objecLstate: = unknown; 

The operation "discard_recovery _data" will include the following operations: 

discard_recovery _data: 

delete 'undo" data no longer needed; 
if objecLstate = secured then 
{objecLstate := unknown; make objecLstate = committed 
for the secured recovery data} 

One final point to note is that in the disjoint scheme, the interpreter 10 must 
invoke crash recover operations of objects in "low level to high level object" or
der. This will ensure, in the example under consideration, that the state of say, 
A, as constructed after the invocation of the crash recover operation of M, will 
not be affected even if that operation of A is also invoked by 10. 

The case when the concrete representation of an object is distributed over 
several nodes needs a few words of explanation. As before, assume that M's im
plementation is distributed as follows: B at N local, A at Ns and Cat Nl. Then 
an operation such as "securestate" would be similarly coded as above except 
that workers will need to be created at the beginning of the operation (and de
stroyed at the end). It is easy to see that if N local crashes, the crash recovery 
procedure for that node will bring A, B, and C to their consistent states. But 
what happens if a node such as Ns crashes? There are four particular cases to 
consider: 

1) Ns crashes (and remains crashed) before the invocation of an operation of 
M, 

2) Ns crashes during the execution of an operation of M, 
3) Ns crashes - but is "up" again - during the execution of an operation of M, 

and 
4) Ns crashes and is recovered in between two calls on M. 

The first three cases are easy to deal with since a time-out exception or pro
cess missing exception will be raised when an attempt is made to perform some 
operation on object A at Ns by a program such as Pk. A typical sequence of ac
tion that will take place is as follows: the default handler of Pk will execute "re
store" to invoke backward recovery; this recovery will fail (as A cannot be ac
cessed) so a failure exception will be raised during the execution of "restore;" 
the exception handler for restore (see Fig. 3) will execute fail - this has the ef
fect of signaling "failure" to the caller (Pj). Case 4) can be detected only if con
sistency checks are incorporated in the programs of M. The following structure 
then suggests itself for all except the crash recover program of an object man
ager whose concrete representation is distributed: 
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create workers at the relevant remote nodes 
perform consistency checks on the 
relevant remote objects; if'" OK then 
{crash_recover; fail} else 
- - normal operations of the program --

Note that if consistency checks detect an error then the crash recover procedure 
of that manager is explicitly invoked to restore consistency. It is clear that the 
crash recover program of the manager of M will succeed in restoring consisten
cy of M only if nodes Ns and NI are up and communication lines are working. 
Nevertheless, we would like to make the crash recover operation of interpreter 
10 at N local in no way dependent on these factors (recall that the crash restore 
program of 10 will contain a call on M.crash recover). This problem can be 
solved if the crash recover programs of object managers with distributed im
plementations follow the philosophy of "restoring as much consistency as pos
sible." Thus, this program for M can be designed as follows (assuming secure 
storage is at N local): 

crash_recover: create_worker (ws, Ns) 
[for all exceptions: goto X] 
using secure storage, restore object A at Ns; 
X: create worker (wI, NI) 
[for all exceptions: return] 
using secure storage, restore object Cat NI; 

Assuming that the rest of the programs of M follow the style indicated earlier, 
eventually M will be restored to consistency. For the sake of simplicity, it has 
been assumed here that the above programs themselves do not make use of any 
recovery facilities. Lastly, the scheme discussed towards the end of the last sec
tion (for modeling the behavior of the inclusive scheme) can also be used to ex
ploit the securability, if any, of remote objects. An evaluation of advantages 
and shortcomings of this approach is-left as an exercise to the interested reader. 

Algorithms for "secure" and "crashJecover" for the remote object handler 
are given in the Appendix. 

Crash Resistance of Worker Processes 

Finally, crash recovery aspects of a worker process will be described. The modi
fied algorithm for a worker is as shown (the function "process-state" provided 
by 10 returns the state of the calling process). Exception handling during mes
sage send and receive operations needs a few words of explanation. If a worker 
is in a secured or committed state, then it must deliver its response to the just 
executed command to its - the worker's - master. Therefore, a time-out ex
ception during a "send" results in a retransmission. A process missing exception 
during a send operation results in the worker destroying itself, unless it is in a 
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committed state: it then has little choice other than to retransmit the message. A 
similar reasoning applies to the handling of exceptions during a "receive" 
operation. The reader is encouraged, at this point, to tryout a few crash recov
ery situations to convince himself that I) if the master process executing an ap
plication program cannot "secure," then all of the processes created (and still 
alive) eventually destroy themselves undoing all of their work, and 2) if the 
master does "secure" itself, then it will be able to complete its commit actions 
(subject to the infinite delay possibility): 

"actions of a worker process" 

cycle 
wait receive_message ( ); 
[time_out exception: case process-state of 

committed: goto wait; 
secured: prepare 'ok' message; goto resume; 
unknown: kill 
end] 

if message = "establish_recovery _ point" then 
{result:= OK; establish_recovery_point (resume)} 
if message = "secure" then secure (wait, s) 
else {execute the command in the message; prepare answer;} 
[for all exceptions: result:= exception type; goto resume] 
resume: send_message (master, Nmaster, result); 

[time_out exception: if process-state = committed or 
secured then goto resume else kill 

process-missing exception: if process_state = committed 
then goto resume else kill] 

end "cycle" 

Since we admit the possibility that the execution of an application program 
can give rise to a hierarchy of processes of arbitrary depth with master-slave 
relationships (with one absolute master), the relevant algorithms of 10 con
cerned with crash recovery (secure, crasiLrestore, etc.) have been designed to 
treat all processes symmetrically. 

V. Concluding Remarks 

In this paper we have discussed, using an object-oriented multilevel model of 
computation, how the abstractions of recoverability and crash resistance can be 
provided in distributed systems. The approach consists of 1) equipping the 
underlying machine at each node with some primitive facilities for supporting 
recoverability and crash resistance, and 2) designing object managers that pro
vide appropriate operations necessary for the maintenance of the above ab
stractions; these operations are hidden from the users of the objects. The topics 
that were discussed included a) structure of atomic actions with particular 
reference to treatment of exceptional situations; b) suitability of disjoint and in-

428 



clusive recovery schemes for the construction of recoverable objects with lo
calized and distributed implementations; and c) additional issues that are 
raised when the above objects are also required to be crash resistant; in partic
ular it was shown that some care is needed for objects with distributed im
plementations. 

Some directions for future work will be discussed in the remaining part of 
this section. The crucial assumption that was made in this paper was that 
necessary to make recovery actions of processes independent from each other, 
namely, that a process does not use objects that are in uncommitted states. 
While this can be quite satisfactory for many applications, there can be situ
ations where the resulting decrease in concurrency can seriously degrade per
formance. Davies and Bjork's important work on spheres of control [15]-[17] 
points the way whereby uncommitted objects can be made accessible to other 
processes in a controlled manner. The control exercised is such that whenever 
an error is detected, the number of processes that must take recovery actions is 
known a priori. A different approach has been suggested recently [II] where no 
such control is exercised; rather, when an error is detected, the set of processes 
affected is constructed dynamically. It is not clear at present to what a degree 
these ideas, together with the necessary crash resistance features, should be in
corporated in a system. An interesting question arises as to what happens when 
recovery is desired after commitment. Any recovery actions undertaken in such 
a situation are essentially based on an examination of current system state; h'ere 
again the work of Davies and Bjork on this so-called postcommital recovery 
provides guidelines for future work. The reader wishing to pursue this subject 
further may find the review papers [1], [8] of interest. 

No mention was made here about how the recoverability and crash resis
tance features of object managers can be incorporated in programming lan
guages that support abstract data types. One effort in this direction (for a cen
tralized system) is described in [18], [19] where implementation details of a re
covery system supporting many of the features mentioned here are also de
scribed. Whether the work described there can be extended easily so as to be 
applicable to distributed systems remains to be seen. 

Appendix 

Algorithms for the Remote Object Handler of a Node 

A remote object handler itself relies on the message handling facility (men
tioned earlier) for creating and destroying worker processes. We assume that 
each node has a "creator" process to which requests for process creation or de
letion can be sent. We further assume that every remote object handler main
tains a data structure for every process (that utilizes its services) in which infor
mation regarding workers created in a given level by the calling process is re
corded. We shall refer to such a structure by "processname.IeveI. workerlist." 
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Such lists can be operated upon as follows (it is assumed that the following pro
grams themselves do not make use of any recovery facilities and further, all 
these programs have default exception handlers that execute "fail"): 

record_recovery _data: 

put a marker in calling process.1evel.workerlist signifying the start 
of a new recovery region for the program at that level; record in this region 
of calling process.level. workerlist names and nodes of any workers 
created so far in that level; for all these workers do 

remote'_call (wi, Ni, establish_recovery_point) 
returns result 

create_ worker (wi, Ni): 

remote_call (creator, Ni, create (wi)) 
returns result [for all exceptions: signal unable] 
if there is a recovery region for calling process.level. workerlist then 
remote_call (wi, Ni, establish recovery point) 
returns result; - - -
record worker name and its node in the worker list; record worker created; 

detete_ worker (wi, Ni): 

remote_call (creator, Ni, delete (wi)) 

discard_recovery _data: 

for all workers recorded in the current region of calling 
process.level.workerlist do 
remote_call (wi, Ni, discard recovery point) 
returns result 

recover U): 

for the set of workers recorded in the jth to the current region of calling 
process.level. workerlist do 

remote_call (- -, - -, restore U)) 
returns result; - - -
for the set of workers created in the jth to current region of calling 
process.1evel.workerlist do delete_worker ( ); delete j to the current 
region; -----

The remote object handler records on behalf of each process, the names of 
worker processes and their nodes that are created during the execution of a re-
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coverable atomic action at a given level. Thus for action Pj (Fig. 2), the handler 
will record, in a region specially maintained for process Q, wi, Ni. When Q 
starts executing Pk, the handler will record (in a different region) wI, NI and 
ws, Ns. If the execution of Pk ends, wI and ws will be destroyed and when the 
execution of Pj ends, wi will also be destroyed. Note how messages for es
tablishing recovery points are automatically sent to workers. Thus, if after cre
ating a worker, a "master" progressively establishes n recovery points, n mes
sages to that effect will be sent to the workers in appropriate order by the re
mote handler. For an explanation of the "fail" primitive, see the subsection 
entitled "Structure of Atomic Actions" of Section III. 

Finally, crash resistance associated operations are shown below: 

securestate: 

for all the worker names recorded in calling 
process.level. workerlist do 
remote_call (--, --, secure) 
returns result; - --
calling process.level.workerlist.state := secured; 
copy workerlist to a secure storage 

crash_recover: 

create workerlists using the data on secure storage; 
"only lists with state = secured are constructed" 

The following additional operation is needed in the logic of "discard" opera
tion presented above: 

discard_recovery _data: 
----- "as before"; 

if calling process.level. workerlist.state = secured 
then delete the workerlist; 
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Chapter 6 

Distributed Systems 

Introduction 

Distributed systems provide new possibilities for the construction of high per
formance computer systems; at the same time, however, they present reliability 
problems not normally encountered in centralised systems. The eight papers of 
this chapter report both theoretical and experimental work in the area of re
liability in distributed systems. 

The first four papers address the problem of recovery in distributed sys
tems. Recovery based on atomic actions, as discussed by Randell in the second 
paper of Chap. I ('conversations') or by Lomet (first paper of Chap. 4), may 
be regarded as a 'planned approach' since the setting and discarding of recovery 
points is coordinated by the processes involved in a given atomic action. The 
paper by Shrivastava in Chap. 5 describes how such atomic actions can be con
structed in a distributed system. Consider now a different approach to recovery 
whereby no attempt is made by interacting processes to coordinate the setting 
of recovery points. When an error is detected, it is then necessary to construct a 
consistent set of recovery points dynamically. As it turns out, the construction of 
such a set - termed a recovery line - really corresponds to the search for an as 
yet incomplete atomic action, which may be termed an 'unplanned' atomic ac
tion. In a distributed system where interactions between processes take place 
through messages, the construction of such an action is complicated because of 
the possibility of further interactions between processes during the search for a 
recovery line. Merlin and Randell discuss these aspects of recovery in a distrib
uted system in the first paper of this chapter, and present an algorithm for con
structing recovery lines. The algorithm basically involves the sending of 'fail' 
messages between nodes to prevent further interactions taking place. Consider 
now a related problem. Let there be a system of concurrent processes interact
ing through messages, in which each process is free to establish recovery points. 
When can a process safely discard a recovery point? Obviously, a recovery point 
should be discarded only when it is known that the process will never be re
covered to that point. In the second paper Wood presents algorithms for de
termining when recovery points are 'safe' in this sense and shows the surprising 
complexity of this problem. 

The third paper considers the problem of dynamically constructing 'larger' 
atomic actions (longer lasting atomic actions) out of 'smaller' atomic actions. A 
well known method of constructing an atomic action involves maintaining locks 
on all of the objects accessed by the action until the end of the action, at which 
time all the locks are released and the recovery capability of the action is also 
discarded (the action is then said to be committed). However, in the third 
paper Shrivastava presents a model in which not only can objects be released 
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before termination of an action, but also the termination is not treated as the 
commitment of the action and discusses how the resulting flexibility can be 
utilised for the construction of larger atomic actions. 

The fourth paper addresses the so called lost token problem for a ring of 
nodes. Distributed systems are often organised (either physically or logically) 
as a ring of communicating nodes with a single circulating control token which 
is utilised for synchronization purposes. If this token is lost due to some failure 
then the functioning nodes must insert a new token~ Best and Panzieri present 
an algorithm for achieving this goal. 

The remaining four papers of this chapter report on design and implemen
tation efforts. A very convenient way of arranging interactions between a 'client' 
process and a remote 'server' process is to employ a remote procedure call 
(RPC) mechanism that converts a client's call into a request message directed at 
the server and the server's results into the corresponding reply message. Despite 
the apparent simplicity of the protocol, a careful design is required to cope ef
fectively with failures (e.g. lost messages) without overly sacrificing perfor
mance. In the fifth and sixth papers, Panzieri and Shrivastava discuss various 
design issues for reliable RPCs and present a Unix-based implementation that 
embodies these ideas. This RPC mechanism formed the basis of a very interest
ing and practical distributed Unix system designed and built at Newcastle, 
which is the subject of the last but one paper of this chapter. The designers of 
this system, Brownbridge, Marshall and Randell, set out to construct a distrib
uted Unix system which is functionally identical to a single Unix system. A new 
layer of software - termed the Newcastle Connection - was constructed that 
employs RPCs to handle system calls intended for remote machines. Since then, 
the Newcastle Connection software has been ported on to a variety of machines 
and distributed to numerous organizations. The distributed Unix system has 
proved to be an ideal vehicle for experimenting with a number of interesting 
ideas on system structuring which are summarised in the last chapter of this 
book. Finally, Jegado describes a recoverable file system constructed for Unix 
machines. The architecture of the system is described, which consists of (i) a 
message passing component, present in client and server machines; (ii) a dis
tributed recoverable file manager component, present in client programs; and 
(iii) a local file manager component, present in server programs. Jegado dis
cusses how the concepts of multilevel recovery (Chap. 5) can be applied in the 
design of a practical recoverable file system. 
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State Restoration in Distributed Systems 

P. M. MERLIN and B. RANDELL 

Abstract. This paper concerns an important aspect of the problem of designing fault-tolerant 
distributed computing systems. The concepts involved in "backward error recovery", i.e. 
restoring a system, or some part of a system, to a previous state which it is hoped or believed 
preceded the occurrence of any existing errors are formalised, and generalised so as to apply to 
concurrent, e.g. distributed, systems. Since in distributed systems there may exist a great deal 
of independence between activities, the system can be restored to a state that could have 
existed rather than to a state that actually existed. 

The formalisation is based on the use of what we term "Occurrence Graphs" to represent 
the cause-effect relationships that exist between the events that occur when a system is opera
tional, and to indicate existing possibilities for state restoration. A protocol is presented which 
could be used in each of the nodes in a distributed computing system in order to provide 
system recoverability in the face even of multiple faults. 

1. Introduction 

One important form of error recovery for fault-tolerance involves restoring a 
system, or some part of a system, to a previous state which it is hoped or be
lieved preceded the occurrence of any existing errors, before attempting to con
tinue normal processing. Such backward error recovery [RAN77] is illustrated in 
Fig. 1, which shows the history of a system which has suffered from a number 
of state restorations. (Dashed lines represent abandoned activity, dotted lines 
state restoration.) However, this method of describing, and illustrating, back
ward error recovery disguises many of the problems that exist in distributed 
computing systems (or in any system involving concurrent activities) in which 
the notion of "system state" (and for that matter of "previous") is by no means 
straightforward. 

The present paper gives, in Section 2, a formal model of system behaviour 
which enables a precise definition to be given of state restoration in concurrent 
computing systems. A protocol is presented in Section 3 which could be used by 
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Fig. 1. State restoration in a sequential system 
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each of the nodes in a geographically distributed system in order to provide sys
tem recoverability in the face even of multiple faults. A proofof the correctness 
of this protocol is presented in [MER 77a], together with a study of such matters 
as the problem of state restoration in the presence of contention for shared re
sources and the problem of reducing the amount of information about past sys
tem activity that has to be maintained for the use of such protocols. 

2. Description of the Model 

In this section we introduce the Occurrence Graph model of the dynamic be
haviour of a concurrent system. Such graphs are similar to the Occurrence Nets 
(also called Causal Nets) described in [HOL68, PET76, PET77]. The main dif
ference is that Occurrence Graphs are viewed as a dynamic structure which is 
"generated", as the system that it is modelling executes. The Occurrence Graph 
also contains certain additional features related specifically to the problem of 
state restoration. 

2.1. The Occurrence Graph Model 

We introduce the model using an example. Suppose that there exist files FI and 
F2 (possibly at different locations) and a terminal T. The terminal requests that 
copies of the files be sent to a location where they will be merged into a single 
file F3, which replaces Fl. A copy of F3 is also kept at the merging location for 
possible further use. Figure 2(a) represents the initial state of the system. In this 
model a condition (indicating a state of, for example, a given data structure, 
communication line, register, etc.) is represented by a "place", such places be
ing denoted graphically by circles. Place I represents the existence of file F I, 
place 2 represents the existence of file F2 and place 3 represents the fact that 
the terminal is "ready to send" the requests. (In Fig. 2 the names FI, F2 and T 
are given only for convenience and are not part of the formal model.) The first 
event which takes place is the sending of the requests by the terminal. The re
sult of this event is that the previous condition of the terminal (e.g. "ready to 
send" does not hold any longer, and that two new conditions, representing the 
requests to FI and F2, are created. In the model, the occurrence of an event is 
denoted by a "bar". The new situation is shown in Fig. 2(b), where bar I rep
resents the event of sending the requests, the input arcs of the bar indicate 
which conditions were necessary to generate the occurrence of the event (i.e. 
"caused" the event) and the output arcs point to the conditions resulting from 
this event. Bar I and its associated arcs thus show the cause-effect relationships 
between the occurrences of conditions 3, 4 and 5. 

Assuming that, at this level of abstraction, copies of FI and F2 can be ac
quired independently, different bars as shown in Fig.2(c) will represent the 
perhaps concurrent events of copying the files. Bar 2 is generated by places I 
and 4, and this event results in the continued existence of the original file FI 
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Fig. 2. The generation of an Occurrence Graph 

(represented by place 6) and the sending of a new copy of FI (represented by 
place 7) to the location where FI and F2 will be merged. Bar 3 takes a similar 
action with respect to F2. Fig. 2( d) shows the entire Occurrence Graph model 
of the history of the cause-effect relationships between conditions and events 
for the dynamics of the given example. Bar 4 represents the merging of FI and 
F2, and bar 5 the replacement of FI by F3. The final result is F2 (condition 9), 
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F3 (condition 12) and another copy of F3 (condition 11), which may reside at 
different, indeed possibly remote locations. 

In this model, we represent each place as influencing the occurrence of no 
more than a single event. Thus we explicitly represent those conditions which 
still hold after generating events, e.g. place 6 of Fig. 2( c) represents the fact that 
although file FI (place 1) generates event 2, after the occurrence of this event 
the file is still available and able to influence further events. A similar relation
ship exists between event 3 and places 2 and 9. On the other hand, event 5 
makes file Fl (place 6) unavailable while, and after, being replaced by F3. 
Hence the only conditions which may generate new events are those represent
ed by places having no outgoing arcs. Such conditions are called active con
ditions, and are represented by Active Places; in the graphic representation these 
are, for convenience, indicated using a black triangle. (In as much as it is ap
propriate to refer to the instantaneous "global state" of a distributed system, 
this is what the set of active places represents.) 

In the Occurrence Graph, there is a directed path between two places or 
bars if and only if they are causally connected. (Notice that events or conditions 
which are not causally connected could have occurred simultaneously.) By defi
nition, when a new bar is created, it may have outgoing arcs only to new places 
representing conditions which are generated by this bar. This implies that Oc
currence Graphs are acyclic (i.e. they contain no directed loops) meaning that 
no event or condition can be, directly or indirectly, its own cause. The progress 
made by a system or algorithm is represented by the growth of the graph (in 
our figures, towards the right-hand side of the page). 

Notice that the Occurrence Graph does not represent algorithms (either 
hardware or programs) but rather the actual occurrence of events during ex
ecution and the pertinent conditions which actually influence them. The Oc
currence Graph model is generated by the progress of the algorithmic ex
ecution, and from our point of view, many algorithms may generate the same 
Occurrence Graph. Depending on the actual timing of events, and, presumably, 
on the values of input data, a given algorithm may generate a variety of Oc
currence Graphs. 

In the Occurrence Graph model, each event is atomic. All conditions that 
are directly influenced by an event are explicitly connected to it by arcs and 
each condition has at most one incoming arc and at most one outgoing arc. The 
number of places and bars in a graph is allowed to be infinite. Similarly, there 
may be bars having an infinite number of incoming and/or outgoing arcs. 
There may also exist bars without incoming or outgoing arcs, representing, re
spectively, lack of causes or effects. 

2.2. State Restoration 

If an error is detected, a previous consistent state of the system should be re
stored at which it is possible to ignore those events and conditions which orig
inally followed that state. By a "previous consistent state", we mean a state the 
system might have been in according to the cause-effect relationships between 
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events and conditions, rather than one which had actually existed before. If the 
restored state is prior to the presumed set of events and conditions (i.e. the fault 
or faults) which caused the error, then the faults and their consequences can 
thus be effectively ignored. 

State restoration is achieved by choosing the state to be restored, reactivat
ing appropriate non-active conditions, and deactivating appropriate active con
ditions. The error detection, location of presumed faults, and reactivation and 
deactivation of conditions are performed by some "external mechanism" which 
is not considered as part of the system we model; we are only concerned with 
the effects that such mechanisms may have on the behaviour of the normal sys
tem. 

Restoration of a condition can be achieved by the "external mechanisms" in 
different ways, e.g. having its original value "checkpointed", recomputing its 
value from related information provided by other conditions, etc. At the level 
of abstraction of the Occurrence Graph it only matters whether or not a condi
tion is restorable, regardless of how such restoration can be done. In the Oc
currence Graph, a restorable condition is represented by a restorable place 
which is graphically denoted by a double circle, as shown in Fig. 3. We assume 
that if at a certain point in time a condition is non-restorable it cannot become 
restorable later. (In [MER 77a] we generalise to the case in which a restorable 
condition can become temporarily non-restorable.) Therefore, we assume that a 
single-circle place cannot become a double-circle place. The opposite is clearly 
possible, and it is called a commitment [RAN77], such as occurs when a check
point is discarded. A commitment has no impact on the regular execution of the 
system; it may only influence the possible consistent states to which the system 
can be restored. 

The reactivation of a place can be performed, provided that the place is re
storable and non-active. When a place is reactivated we want to ignore previous 
effects due to the place. This is represented in the Occurrence Graph by placing 
a black triangle in the place, replacing its outgoing arc by a dashed arc, and 
marking the bar to which it is connected by that arc with an "*". Such a bar is 
called an in invalid bar - our aim is to make it appear as if the event that it 
represents had never occurred. We show later how a subgraph including these 
invalid bars, and also invalid places (to be defined below), can be ignored with
out causing any inconsistencies. 

The "external mechanisms" should be able to deactivate those conditions 
associated with activities which are to be ignored as a result of a state resto
ration. In the Occurrence Graph, the deactivation of an active place is repre
sented by removing the black triangle from the place. However, also in this 
case, since a deactivation is performed by an "external mechanism" it does not 
correspond to the normal operation of the system and, therefore the situation of 
such a place is invalid. Hence, when a deactivation is performed, the place is 
marked as invalid by an "*". 

In addition, any arbitrary sets of bars and places can be declared to be in
valid by the "external mechanism" because of errors they are presumed to have 
caused. Our main goal is to find ways by which invalid places and bars can be 
ignored without causing any inconsistent behaviour by the system. 
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A component of an Occurrence Graph is a subgraph having no outgoing arcs 
of any kind to other subgraphs, and having no ordinary incoming arcs from 
other sub graphs. Incoming dashed arcs are permitted. Suppose that a com
ponent includes neither restorable nor active places. Such a component will 
never have an active place and therefore it will never be able to generate new 
bars. Since there are no outgoing arcs, the occurrence of the events and con
ditions of the component has no effect on the state of other parts of the system. 
Furthermore, since all incoming arcs are dashed, all places which are external 
to the component and which generated bars of the component have been re
·activated afterwards. Therefore, with respect to other parts of the system, a 
component with neither restorable nor active places appears as if it never has 
occurred. Such a component is called an Ignorable Activity. Ignorable Activities 
can be freely deleted from the Occurrence Graph. 

Suppose Fig. 3(a) is the Occurrence Graph of Fig. 2(d) including the mark
ing· of a set of restorable places. Since restorable marks cannot be added we as
sume that they existed initially. Suppose that an error is detected which is pre
sumed to have been caused by the event represented by bar 5. Thus this bar is 
declared to be invalid. Hence, we have to find a way of producing an Ignorable 
Activity that includes bar 5. This can be done by deactivating places 11 and 12, 
reactivating 6, 7 and 8, and committing 11. The resulting Occurrence Graph is 
shown in Fig. 3(b), in which places 11 and 12 are invalid because they were de
activated, bar 5 is invalid by declaration and also because of the reactivation of 
6, and bar 4 is invalid because of the reactivation of 7 and 8. The bars 4, 5 and 
the places 10, 11, 12 form an Ignorable Activity that includes all the invalid el
ements, thus the system is restored to a state it could have been in; in fact this is 
the state that was shown in Fig. 2(c). The Ignorable Activity can now be deleted 
from the Occurrence Graph. 
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A Recoverable Activity of an Occurrence Graph is a subgraph having no 
outgoing arcs of any kind to other subgraphs, and which is such that each in
coming arc is either dashed, or ordinary and coming directly from a restorable 
place. This set of restorable places is called the Recovery Line of the Recover
able Activity. If all the places of a Recovery Line are restored, the arcs connect
ing the Recovery Line to the corresponding Recoverable Activity become 
dashed and the Recoverable Activity becomes a Component of the Occurrence 
Graph. Such a component can be turned into an Ignorable Activity by de
activating all active places and committing all restorable ones. Thus, a Recover
able Activity is a viable candidate for an Ignorable Activity, and in fact, only 
Recoverable Activities can be converted into Ignorable ones. Moreover all the 
bars which are invalidated by the reactivation of the Recovery Line, as well as 
the places which are invalidated by the deactivation of active places, will be in
cluded in the Ignorable Activity. 

The construction of an Ignorable Activity is as simple as described above 
only when one can assume that the reactivation of the Recovery Line, the de
activation of active places and the commitment of restorable places can all be 
done atomically, i.e. when it can be assumed that there are no other changes in 
the Occurrence Graph while these operations are performed. The more com
plex case (and more realistic in many practical situations) where such an as
sumption cannot be made is discussed in Sec. 2.3. 

We conclude this subsection by showing the two additional state resto
rations that can be performed in the system of Fig. 3(a). If the places 1,2 and 3 
are chosen as a Recovery Line and the rest of the graph is transformed into an 
Ignorable Activity, the system will be restored to the consistent state shown in 
Fig. 2(a). If the entire Occurrence Graph of Fig. 3(a) is considered a Recover
able Activity which is converted into an Ignorable Activity, then the entire 
graph will be ignored. Notice that any system can be definition be "restored" to 
such a consistent (albeit vacuous) state. 

2.3. Decentralised State Restoration 

State restoration involves the choice of a Recovery Line, the deactivation of 
each active place and the commitment of each restorable place of the cor
responding Recoverable Activity, and the reactivation of each of the places of 
the Recovery Line. In many concurrent, and in particular distributed, systems it 
is not efficient or, in practice, even possible to perform all these operations 
atomically, i.e. assuming that other parts of the graph do not change while the 
operations are being performed. In such cases, each reactivation, each com
mitment and each deactivation is performed separately, and should all be co
ordinated in such a way as to ensure that, in spite of the possible changes which 
may occur in the graph between operations, the state restoration will be prop
erly completed. 

We illustrate the type of problems which may arise while performing decen
tralised state restoration by the following example. Suppose that in the example 
of Fig. 3(a) bar 5 is declared invalid, and a state restoration such as was de-
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(a) 

(b) 

Fig. 4. Decentralised State Restoration 

scribed in the previous subsection is initiated. Assuming that each restoration, 
each reactivation, and each commitment is performed independently, a pos
sible intermediate state of the Occurrence Graph is shown in Fig.4(a). This 
corresponds to the situation after the reactivation of place 6 and the deacti
vation of place 12. In this state, places 7 and 8 form a Recovery Line. To com
plete the restoration we need to reactivate them, and to deactivate and commit 
place 11. However, if in the meantime place 8 is committed then it cannot be 
reactivated and that restoration cannot be completed. Nevertheless, it is still 
possible to restore the system, albeit to the consistent state defined by the Re
covery Line of places 1, 2 and 3. The resulting Occurrence Graph after such re
storation is shown in Fig.4(b). In this case, place 6 had to be deactivated in 
spite of the fact that it was reactivated as part of the state restoration. This 
would not be necessary if, for example, in Fig. 4(a) place 5 was restorable. In 
such circumstances it would be possible to restore the state of the system by 
choosing places 2 and 5 as a Recovery Line. 
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A Recovery Line may be lost not only by commitment of one of its members 
but also by the generation of new bars. For example, in Fig. 4(a) a new bar in
volving places 9 and 11 can be generated, as shown in Fig. 4(c), in which case 
places 7 and 8 no longer form a Recovery Line. (Such an occurrence is termed 
an "interaction commitment" in [RANn].) More subtle situations could appear 
if the reactivated places generate new bars, possibly in conjunction with places 
which are from a Recoverable Activity in the process of restoration and are 
about to be deactivated. 

Since in decentralised systems, there may be no central authority able to ob
serve the entire Occurrence Graph, such an apparently simple task as that of 
determining a Recovery Line could be impossible, because while observing one 
part of the graph other parts may change. Section 3 describes a protocol which 
guarantees consistent state restoration in such a distributed system where arbi
trarily many faults can be detected at different times in different parts of the 
system. The protocol also ensures that not only those elements which are de
clared invalid because of presumed faults, but also those elements which are in
validated by deactivation or reactivation operations, will ultimately be included 
in Ignorable Activities. The reader interested in a more formal discussion of 
Occurrence Graphs, of properties of such graphs, and of Recovery using Oc
currence Graphs is referred to [MERna]. 

3. A Decentralised Recovery Mechanism 
and the "Chase Protocols" 

In this section we demonstrate the use of the Occurrence Graph model by dis
cussing a protocol which guarantees consistent state restoration in decentralised 
systems. 

Suppose a system is composed of a finite set of nodes communicating by 
means of messages through a set of prescribed virtual links connecting them. 
Such a system could be a packet switching network, a distributed application, 
or any other system where only message communication is permitted. In such a 
case there is no central means of performing atomic state restoration, and a de
centralised recovery mechanism is required. 

A node may send messages only to the nodes to which it is directly connect
ed by a virtual link. Clearly, we abstract ourselves from the physical links, i.e. 
the virtual links could be provided by a lower level protocol. Each node can 
generate messages "spontaneously", or as a result of receiving messages. The 
dynamics of such a system can be modelled by an Occurrence Graph in which 
places represent messages and bars the generation of these messages. Copies of 
messages could be retained for recovery purposes, in which case the cor
responding places will be marked as restorable. We assume that each node "re
members" that part of the history (i.e. the Occurrence Graph) which relates to 
it, and thus that between them the nodes "remember" the structure of the whole 
history but only the content of those messages explicitly marked as restorable. 
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3.1. Description of the Protocols 

The system can freely generate new bars and places and commit restorable 
places, but the deactivation of active places and the reactivation of restorable 
non-active places are completely controlled by the recovery protocols that are 
described below. The protocol is independently performed for each bar and for 
each place. As described later, each protocol can be in either of two states, 
called the LIVE state and the DEAD state. The protocol for each bar or place 
can communicate with the protocols for those places or bars having incoming 
or outgoing arcs to it by sending and receiving a special message called FAIL. 
For simplicity of presentation, we will say that a bar or a place performs an ac
tion of its protocol (e.g. enters the DEAD state, sends a FAIL message, etc.) 
meaning by this that the mechanism that implements the protocol for that bar 
or place performs that action. We will first present the protocol informally, then 
give a formal definition. 

Recovery is initiated when a bar or place is declared invalid as a result of a 
presumed fault. Obviously, such recovery can also be started when other recov
ery activities are already in progress in other elements of the Occurrence Graph. 
Initially, when a bar or place is created it is placed in the LIVE state. As 
described below in further detail, a bar or place declared invalid will become 
DEAD, and the DEAD state will propagate in all directions through the arcs of 
the Occurrence Graph by means of FAIL messages. This propagation stops 
when all the elements of the minimal Recoverable Activity that includes the in
valid element are DEAD. The protocols guarantee that each DEAD place is 
neither active nor restorable, and that all the places which, though not included 
in the Recoverable Activity, have an ordinary outgoing arc to a bar of that Ac
tivity will be reactivated and the arc will be dashed. Thus each invalid element, 
together with all the DEAD elements caused by it, will become an Ignorable 
Activity. This guarantees recovery. 

None of the operations performed on the graph (i.e. GENERATE, COM
MIT, REACTIVATE, DEACTIVATE, INVALIDATE) can reduce the size of 
the minimal Recoverable Activity that includes a given element. In fact, the 
GENERA TE, COMMIT and REACTIVATE operations can cause the size of 
the Activity to increase. Illustrations of this were given in Sect. 2.3, where the 
size of the minimal Recoverable Activity was shown to increase because a place 
of its Recovery Line is committed, and because the generation of a new bar nul
lifies the Recovery Line. There is also the simple possibility of growth by 
adding bars and places to a Recoverable Activity without changing the Recov
ery Line. 

As mentioned above, the DEAD state is propagated by sending FAIL mes
sages. Whilst this propagation is in progress, the minimal Recoverable Activity 
can grow because of operations performed on the graph. In such a case the 
DEAD state will propagate to the new (i.e. larger) minimal Recoverable Ac
tivity. Therefore, the propagation of the DEAD state could be "chasing" the 
growth of the minimal Recoverable Activity. In order to guarantee completion, 
it has to be assumed that the propagation will catch up the growth. There are 
many ways by which this can be guaranteed, such as giving higher priorities to 
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F AIL messages than to ordinary messages, bounding the number of ordinary 
messages the system can produce, or limiting their rate of production. We con
sider these mechanisms to be outside the scope of this paper, and we simply as
sume that the "chasing" will be successfully completed. 

The propagation of the DEAD state from invalid elements having disjoint 
minimal Recoverable Activities is performed independently, and the state res
toration of one does not affect the others. If several invalid elements have the 
same minimal Recoverable Activity, there is no effect on the propagation, ex
cept that now the propagation is started concurrently at several elements. If two 
elements have overlapping minimal Recoverable Activities, at least one of the 
elements will eventually have a minimal Recoverable Activity which en
compasses the union of their minimal Recoverable Activities; ultimately state 
restoration will be consistently completed for this union. Similar comments ap
ply to the situations which can a'rise if a minimal·Recoverable Activity having 
invalid elements is enlarged (e.g. by a COMMIT or a GENERATE operation) 
with a subgraph which already includes invalid elements. 

The protocol that each bar and each place executes is the following: If a 
LIVE bar is invalidated or if it receives a FAIL message, the bar will be placed 
in the DEAD state and FAIL messages will be sent to all places having in
coming or outgoing arcs to this bar. If a LIVE place is invalidated, if such a 
place receives a FAIL message from its incoming arc (i.e. the event that caused 
it), or if it receives a FAIL message from an ordinary outgoing arc (i.e. one of 
the events that it caused) while being non-restorable, then FAIL messages will 
be sent by the place through all of its arcs independently of their direction, and 
the place will be left non-active, non-restorable and set to DEAD. If a LIFE re
storable place receives a FAIL message from an ordinary outgoing arc, the 
place will remain LIVE and will be reactivated. Invalidations of bars or places 
in. the DEAD statei as well as FAIL messages received by such bars or places 
are ignored. 

The protocols for an arbitrary bar b and place p are summarised in Fig. 5 
using a notation similar to those used in [BOC76] and [MER77b]. In this no
tation there is a finite state machine for each bar b and for each place p. Transi
tion Tl is executed atomically by a 'b' machine whenever the predicate CON
DITION! is satisfied by b, and during the transition ACTION! is performed. 
The transitions of a 'p' machine are executed in a similar way. 

We assume that every FAIL message arrives at its destination within a fi
nite, though arbitrarily long, time after it is sent. We assume also that FAIL 
messages, as well as notifications of invalidation, are received sequentially by 
the protocols (e.g. by queueing). This ensures that no more than one transition 
can be executed at each place at any given time. In [MER77a] a formal vali
dation of the protocol is given together with a discussion of several improve
ments which can be made in the protocol. 
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BAR b 

rLiVEL-~ 
~ 

T I: CONDITION I: 

ACTION I: 

T2: CONDITION 2: 

ACTIO 2: 

T 3: CONDITION 3: 

ACTION 3: 

Fig. 5. The "Chase" Protocol 

PLACE P 

~ 'let T2 '----" 
TJ 

(b is declared INVALID) OR (b RECEIVES FAIL 
message). 
SEND FAIL through all arcs of b independently 
of their direction. 
(p is declared INVALID) OR (p RECEIVES AIL 
from incoming arc) OR (p RECEIVES FAIL from 
ordinary outgoing arc AND p i not restorable). 
IF p is active THEN DEACTIVAT (p); 
IF P i restorable THEN COMMIT (p); 
SEND FAIL me sage through all arcs of p, 
independently of their direction. 
(p RECEIVES FAIL mes age from ordinary 
outgoing arc) AND (p i re torable). 
REACTIVATE (p) 

4. Concluding Remarks 

The ideas and techniques presented in this paper provide a basic model which 
can be either directly implemented or used as a reference for validation of other 
backward error recovery mechanisms for concurrent systems. However, much 
further work remains to be done. 

In practical systems one could for example, expect the design of recovery 
protocols to take into account the planned constraints on information flow be
tween entities of the system (e.g. using "conversations" [RAN75], rather than 
depend totally on such records as can be provided of the history of actual infor
mation flow. Such constraints result in a-priory knowledge of properties that 
the Occurrence Graphs of a particular system will possess, and which can be 
used to design more efficient protocols. Further study of practical constraints 
that will resl,llt in improved recovery protocols without unduly compromising 
system performance under normal conditions is clearly needed. 

In many cases backward error recovery will be infeasible or insufficient, and 
some form of forward error recovery will be needed - this would involve the 
notion of "compensation" [BJOn, DA V77], i.e. the sending of additional cor
rective information to an entity which has previously received erroneous infor
mation, instead of requiring that the entity perform state restoration. Such 
strategies will involve considerations of the semantics associated with Oc
currence Graphs, as well as their syntactic structure. 
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Recovery Control of Communicating Processes 
in a Distributed System 

W.G. WOOD 

Abstract. The backward recovery of a computation to a previously existing state is a well
known method for attaining a degree of fault tolerance in digital systems. 

In this paper a protocol is developed for the purpose of providing "unplanned" recovery 
control in a distributed system of communicating processes. The protocol has the property of 
ensuring that the whole system reverts to a consistent state in the event of one or more proces
ses initiating recovery action and it supports the determination of recovery point safety; that is 
when a recovery point cannot possibly be recovered to. It provides recovery control that is "un
planned" in the sense that the consistent state to which the system reverts after the initiation of 
recovery action is not predetermined. It is determined dynamically when recovery action is in
itiated and is based on the recorded information flow between the processes. 

The protocol is first developed for a model of computation in which each process inde
pendently implements a succession of single level, i.e. non-nested, recovery regions and where 
no restrictions are placed on inter-process message passing. The model is then extended to 
cover the case where processes may implement nested recovery regions. A development of the 
basic protocol which covers this case is presented and is shown to be significantly more com
plicated. 

Introduction 

The concept of backward recovery is now well-established as a means of pre
serving the integrity and/or consistency of fault-tolerant systems. First mooted 
in abstract terms by Bjork and Davies [1], the notion was given substance by 
Horning et al. [2] with their proposal of the recovery block scheme for con
structing systems tolerant to software design faults. The concept, at least in lim
ited forms, has also been widely adopted and put into general use in many 
transaction processing systems where data consistency is a critical requirement. 

The basic principle of any scheme for providing system recoverability is 
that at various intervals a checkpoint of the system state is recorded. If at any 
time it is detected (perhaps belatedly) that the system has entered an inconsist
ent state, then the previously saved system state may be regenerated. The inter
pretation of inconsistency varies with the application, but generally may be 
characterised as violation of some invariant property which has been asserted 
for the system. The action taken after recovery to a consistent state also varies 
with the application: from system shut-down to retrying the computation. 

In single process systems, or in multi-process systems under centralised con
trol, it is simple to arrange that a global checkpoint of the system state may be 
taken at convenient points in time. This cannot be so easily arranged, however, 
in a distributed system under decentralised control. 
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Each component process in a distributed system must be responsible for re
cording its own state and it is the function of the recovery control protocol to de
termine a set of process states which together constitute a consistent state of the 
system. In general, an arbitrary grouping of process states will not compose a 
consistent state. They will be subject to interference with each other resulting 
from inter-process communications between the times at which the respective 
process states were saved. 

Basic Definitions 

A point in time at which the state of a process is saved for possible regeneration 
in the event of recovery action is called a recovery point. A process expresses 
commitment to a recovery point when it no longer requires the capability to ini
tiate recovery action to that point. (Note that the process may still recover to 
the recovery point after commitment to it when itis requested to do so by other 
processes from which it has received information.) The period of process ac
tivity between the establishment of a recovery point and the commitment to it 
is called the recovery region associated with that point. 

System Structures 

As noted above, it is the function of the recovery control scheme to determine 
how a consistent system state may be compounded from a set of component 
process states. There are two fundamental strategies for approaching this prob
lem, depending on whether the set is established a priori or a posteriori. 

The former approach, which has been termed the pre-planned approach by 
Randell [5] and which forms the basis for the approach generally adopted in 
database management systems to ensure database consistency, relies on 
synchronisation between the processes and restrictions on inter-process com
munication. Processes which wish to exchange information agree to set up a 
conversation, on entry to which each participating process establishes a recovery 
point and within which communication with non-participating processes is pro
hibited. If any of the participating processes has cause to initiate recovery ac
tion within the conversation, then all must recover to the start of the conversa
tion. On exit from the conversation, each participant must wait until it has been 
notified of the readiness of all other participants to leave the conversation be
fore it may commit to its own recovery point and continue processing. Con
versations may be nested (although database transactions normally are not) giv
ing rise to the computation structure depicted in Fig. 1, where the boundaries 
of conversations are illustrated. 

The clean system structure of the pre-planned recovery control strategy is 
achieved at the expense of processing speed and generality of communications. 
In constrast, the unplanned approach to recovery control sacrifices ease of 
recovery for speed and generality of computation. It dispenses with the 
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restrictions of the planned approach, so that in general neither establishment of 
nor commitment to recovery points is synchronised among the processes, nor is 
any attempt made to restrict inter-process communication. Thus, during normal 
processing, no structure is imposed on the system. Only when a process has 
cause to initiate recovery action does the recovery control protocol seek, on the 
basis of observed information flow, to determine a set of recovery points to 
which the processes may be rolled back that represents a consistent state of the 
system; i.e. the system structure is imposed retroactively when required. Figure 
2 depicts a typical history of computation in such a system, where vertical bars 
denote the bounds of recovery regions and arrows denote inter-process com
munications. The dashed lines define the set of recovery points to which the 
system will be rolled back in the event of each of the processes initiating recov
eryaction. Such lines have been called recovery lines [5]. Note that not all pro
cesses need be represented on the recovery line - reflecting the situation where 
one process is not affected by recovery initiated by another. 

Each of the two basic approaches to recovery control is appropriate for dif
ferent applications (and there are several intermediate strategies). The pre
planned approach maps on to a transaction processing environment, whereas 
the unplanned approach is appropriate where the processes have a greater de
gree of functional identity and autonomy; for example in a distributed process 
control environment. 

It is the latter of these two strategies, the unplanned approach, that we study 
in this paper. We first consider the case where the processes implement non
nested recovery regions, and derive a recovery control protocol which allows 

o ~ __ ~L-__________ ~ __ -+ ______ ~ __ -J __ -=~~= 

time_ Fig. 2 
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determination of a consistent system state in the event of recovery action being 
initiated and also allows determination of when it is safe for processes to dis
card recovery points. We then extend the model to consider the case where the 
processes implement nested recovery regions and derive a recovery control pro
tocol having the same two properties in this situation. 

The Model of Computation 

The basic model of computation assumed is as outlined above. Processes im
plement a succession of non-nested recovery regions, establishing a new recov
ery point immediately on commitment to the preceding one. 

All inter-process communications take place via a message passing facility 
with the active participation of both the sending and receiving processes. All 
such communications are regarded as resulting in a flow of information from 
the sender to the receiver. 

In many cases it is convenient to be able to regard this information flow as 
unidirectional, as denoted by the arrows in Fig. 2. However, using Kim's ter
minology [3], if the processes are "supicious" so that a process may blame the 
sources of its information when it finds itself to be in an inconsistent state, then 
information flow is considered to be bidirectional. This would be represented 
in our model as two essentially simultaneous unidirectional flows. In the follow
ing, without loss of generality, we shall assume unidirectional information flow 
in all inter-process communications. It is further assumed that information flow 
within processes is total; that is, all information sent out by a process is de
pendent on all information previously received by that process. 

With this understanding, we can state that for any two processes P and P', if 
information flows from P to P' while they are inside recovery regions RR and 
RR' with associated recovery points RP and RP' respectively then recovery of P 
to RP must invoke recovery of P' to RP'. 

It is in the context of this relationship that all references to system consist
ency should be understood. A set of recovery points (where, for the purposes of 
this definition, the current state of a process may be considered as a recovery 
point) represents a consistent state of the system if and only if there is exactly 
one member of the set associated with each component process of the system 
and there is no information flow from an event succeeding the establishment of 
one recovery point in the set to a corresponding activity preceding the es
tablishment of one of the other recovery points; i.e. no information flow crosses 
the recovery line defined by the set. 

In this study, we do not consider any impact on the system caused by mal
functioning of the message passing network. We see the problems of providing 
a reliable communications medium as being orthogonal to the problems being 
investigated here. In general, we assume total reliability of the message passing 
network, but the protocol will tolerate any interruption of finite duration to a 
process's activity or a communications line. 
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Definitions 

D I) The most recently established recovery point of a process is said to be ac
tive. 

D2) For any two recovery points RP and RP' belonging to processes P and 
P' respectively, RP is a direct propagator to RP' if and only if information flows 
from P to P' while RP and RP' are the respective active recovery points of the 
two processes. 

D3) For any two recovery points RP and RP' belonging to processes P and 
P' respectively, RP is an indirect propagator to RP' if and only if: either RP is a 
direct propagator to RP' or else, recursively, there exists a recovery point RP" 
belonging to process P" such that RP is a direct propagator to RP" and RP", or 
any recovery point in P" succeeding RP", is an indirect propagator to RP'. The 
indirect propagator relationship may be considered as the transitive closure of 
the direct propagator relationship if the definition of the latter is extended to 
make a recovery point a direct propagator to its immediate successor in the 
same process. (Note that P and P' may be identical here. If so, then this is evi
dence that the "domino effect" [5] will be manifest in recovery of that process, 
since recovery to RP' is a necessary consequence of recovery to RP). 

D4) A recovery point RP is a potential recovery initiator (PRI) of a recovery 
point RP' if an only if RP is active and is an indirect propagator to RP'. 

D5) A recovery point which cannot possibly have recovery generated to it as 
a result of recovery action initiated anywhere in the system is said to be safe. 

Thus in Fig. 3, after the history of information flow shown, the following re
lationships hold between the recovery points: 

A.I is a direct propagator to D.I 
A.2 is a direct propagator to B.I 
B.I is a direct propagator to C.l 
C.2 is a direct propagator to D.2 
B.I is an indirect propagator to D.2 
A.2 is a PRI of B.I and C.l and D.2 
C.2 is a PRI of D.2 
A.I and D.I are safe. 

Kim [3] and Russell [6] have used similar relationships to determine how to 
prevent the domino effect from arising. Our use of them will be in providing 
the desired recovery control. 

A r---~--------------~-.-------------

B r---~----~------------~-+---------

c r-----4-----l-------~------_,--------

Fig. 3 
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We require the following two criteria to be satisfied by a recovery control 
protocol. 
CI) It must ensure that the system reverts to a consistent state in the event of 

one (or many) processes initiating recovery action. 
C2) It must support the determination of recovery point safety. 

The first of these requirements may be seen as the useful, "productive" side 
of the protocol. The second is the garbage collection of the recovery points no 
longer required to ensure system consistency. In addition to these basic require
ments, we seek to minimise the message passing and storage overheads as
sociated with the protocol and to strive for conceptual simplicity. 

As an aside, it is interesting to note that with respect to recovery control, a 
distributed system of communicating processes combines elements of decentra
lised and centralised control. The unit of control is the process, whereas the 
entities under control are recovery points. Processes are distributed throughout 
the system, but each maintains centralised control over all recovery points be
longing to it. Thus the recovery control protocol can be expected to exhibit 
features of both centralised and decentralised control. It can exploit the sim
plifying assumption of total intra-process information flow to make inferences 
about relationships between recovery points which otherwise would have to be 
made explicit, involving greater message passing and storage requirements. In 
this context, one aspect of the recovery control protocol may be seen as an op
timised implementation of the "chase protocols" devised by Merlin and Randell 
[4] as a scheme for providing recoverability ina totally decentralised system. 

An Outline of the Recovery Control Protocol 

It is quite clear that to satisfy the first of the criteria specified above, that of 
ensuring consistent system-wide recoverability, it is sufficient to maintain a re
cord of the direct propagator relationship between recovery points. If each pro
cess is aware of the recovery points to which each of its own recovery points is a 
direct propagator, then it knows where it should invoke recovery in the event 
that it has itself to recover. It should invoke recovery to the appropriate points 
in all those processes to which the recovery point being recovered to, and all its 
successors in the same process, are direct propagators. 

At first sight, it might appear that this relationship is sufficient also for the 
determination of recovery point safety: that a recovery point should not be de
clared safe until such time as it has been notified of the safety of each recovery 
point which is a direct propagator to it. Closer scrutiny reveals this tactic to be 
insufficient, however. 

Consider the situation depicted in Fig. 4, in which process A has just ex
pressed commitment to its recovery point A.I. This recovery point cannot be 
declared safe until A has been told by B that B.I is safe, which cannot be stated 
until B has been notified of the safety of C.l, which depends on the safety of 
D.I, which in turn is waiting for the safety of A.I to be declared. Thus, in the 
presence of cycles of dependencies, recovery point safety cannot be determined 
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solely by awareness of the direct propagator relationship, i.e. by knowledge of a 
recovery point's "neighbours". It is necessary to break cycles. This may be 
achieved by recording of the potential recovery initiator (PRI) relationship, D4 
above. Then recovery point safety may be equated with having no PRJ's. 

In principle, a recovery point is safe when it has no PRJ's. In practice, we 
desire a process to be able to declare a recovery point safe when the recovery 
control protocol leads the process to be aware of no PRJ's for that recovery 
point. In a system under decentralised control in which message passing takes a 
finite length of time this desire is not immediately attainable. The PRI relation
ship between recovery points may be recorded by propagating throughout the 
system, according to the direct propagator relationship, messages telling of new 
PRJ's resulting from some inter-process communication and messages pro
claiming the commitment of processes to old PRJ's. If this relationship is being 
recorded, then it is clear that when a recovery point does become safe, it will 
eventually receive messages which have the effect of placing the recovery point 
in a state such that it has no PRJ's and will not thereafter gain any further PRJ's. 
That is, a recovery point which becomes safe eventually will arrive in a stable 
state at which it is aware of no PRI's. We wish the relationship to hold good in 
the reverse direction also. We wish awareness of the absence of PRJ's to signify 
a recovery point's safety. This can only be achieved if some sort of discipline is 
imposed upon the message passing network. 

Consider the situation depicted in Fig. 5. Just before its commitment to B.I, 
B receives information from A, making A.I a PRI of B.I and therefore of c.l. B 
sends a message to this effect to C. It then commits to B.I and sends a message 
proclaiming this to C, so that C may record the fact that B.I is no longer a PRI 
of c.l. If the two messages sent from B to C arrive at C in a different order 
from that in which they are sent, then C.l for a short period of time will be 
aware of no PRJ's but then be notified of a new one. Under these circumstances, 
it is impossible to determine if and when C.l becomes safe. 

A I A.1 

8 1 8.1 

c let \ Fig. 5 
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However, by imposing a discipline on the message passing network so that 
all messages between each source-destination pair are always serviced in the or
der in which they are sent, it is possible to ensure that a process being aware of 
no PRI's for a recovery point implies the safety of that recovery point. This 
message serving discipline can be achieved simply by requiring that a process 
waits for each control message to be acknowledged before sending another, or 
else by associating an index with each source-destination pair. The source in
crements the index each time it sends a message to the particular destination 
and the destination only services the message which it expects next. In con
junction with some sort of time-out mechanism, this device could also serve to 
detect when messages get lost in the system. 

As outlined above, the recovery control protocol involves recording the 
direct propagator and potential recovery initiator relationships between recov
ery points and using the former as a basis for providing system recoverability 
and the latter for determining recovery point safety. We now expand on these 
basic concepts. 

Basic Operational Principles 

In order to support the recovery control protocol, each process in the system 
maintains two linked lists: a PRI-list and a Prop-list. The PRI-list serves to re
cord the identity of all potential recovery initiators of the process's recovery 
points. The Prop-list records the identity of all recovery points to which its own 
are direct propagators. Each time it establishes a new recovery point, a process 
sets up a Recovery Display for that point, comprising three pointers. These are: 
(l) Recovery Context Pointer 
(2) Prop-list Pointer 
(3) PRI-list Pointer 

The Recovery Context stores all the data necessary to enable the process to 
restore its state to that which existed at the time of the establishment of the re
covery point. Weare not concerned here about the form of the Recovery Con
text or how it is recorded. 

RECOVERY DISPLA YS PROP-LIST PRi-LiST 

§ _~ r-l 
A 1 --- _---- C.2 I I 

. _- _·~L_...J 

(SAFE) --- _.-• . -.-.-.-- .-. 

Ei-- ---/'/'-- B.3 
A.2 ---

-- ---
.--.-./'-~ 1 

A.3 §~// __ .U __ . __ . __ . 
Fig. 6 
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The Prop-list Pointer is an index into the process's Prop-list, initialised to 
point to the tail of the Prop-list at the time the recovery point is established and 
never altered thereafter. 

The PRI-list Pointer is an index into the process's PRI-list, initialised to 
point to the head of the list. 

As will be described below, new entries are added to the Prop-list at the tail 
only, whereas new entries are added to the PRI-list at the point indicated by the 
PRI-list Pointer of the appropriate recovery point. Consequently, the data 
structures for recovery control associated with each process have the form il
lustrated in Fig. 6 which represents the lists that would be recorded by process 
A in Fig. 2. 

In the following, we shall refer to the Prop-list and PRI-list of a recovery 
point, meaning that subsequence of the process's Prop-list (PRI-list) whose 
head is pointed to by the Prop-list (PRI-list) Pointer in the recovery point's Dis
play. 

There are four actions a process may perform which are significant with re
spect to the recovery control protocol. Three of these actions generate a recov
ery control message, a different message for each action. The general action 
taken on receipt of a recovery control message, whatever its type is to act upon 
the information contained in the message and then propagate it to each recov
ery point represented on the Prop-list of the recovery point to which the mes
sage was directed; i.e. to propagate the message to each recovery point to which 
the message recipient is a direct propagator. 

Without going into too much detail, the ·principle of the recovery protocol 
for non-nested recovery regions may be summarised as follows (where each of 
the four significant process actions described below must be implemented 
atomically with respect to the rest of the system): 

1) Whenever it establishes a new recovery point, a process adds that recov
ery point name at the head of its own PRI-list at the entry indicated by the PRI
list Pointer from the newly established recovery point's display. In other words, 
while it is live, a recovery point is its own PRJ. 

2) Whenever information flows from process P to process P', with respec
tive active. recovery points RP and RP', then the name P'.RP' is added at the 
tail of the Prop-list maintained by P and all of the PRJ's of P.RP (including 
P.RP itself) are added at the head of the PRI-list of P'.RP'. These new PRI 
names are then propagated to each name on the Prop-list of P'.RP'. 

3) Whenever a process P expresses commitment to a recovery point RP, it 
deletes that name from its own PRI-list and sends a message proclaiming the 
commitment to each name on the Prop-list of P.RP. On receipt of a message of 
this type, the name is deleted from the recipient's PRI-list and the message is 
propagated to each name on its own Prop-list. 

4) Whenever a process has cause to initiate recovery action to its currently 
active recovery point, it sends a message invoking recovery to all names on the 
Prop-list of its active recovery point, resurrects its previous state from the Re
covery Context, destroys the immediate PRI-list and Prop-list of the recovery 
point, re-establishes the recovery point (with a .different name so that it may ig
nore subsequent recovery requests) and continues processing. The same actions 

456 



are performed on receipt of a message invoking recovery when the Recovery 
Display and Recovery Context for each recovery point succeeding the one to 
which recovery is invoked may be discarded, as may their immediate PRI-lists 
and Prop-lists. 

Details of the protocol are presented in Appendix I. 

Observations and Optimisations 

I) The point-to-point message servicing discipline ensures that all distinct mes
sages emanating from a particular PRI will always be received at a given desti
nation in the order in which they are originally sent. (This may be verified by 
structural induction. It depends on the fact that all messages, irrespective of 
type, received by a given recovery point are propagated to the same set of re
covery points in the other processes - namely those on its Prop-list). Therefore 
receipt by a recovery point of a message proclaiming the commitment of a PRI 
is a guarantee that no further messages originating from that PRI will be re
ceived that have not already been received (over the same route as that by 
which the commitment message was propagated); i.e. it will receive no more 
new messages originating from that PRI. 

2) The general action taken on receipt of a recovery control message, what
ever its type, is to act upon it and then propagate the message. It follows that all 
information known to each recovery point is also known to all recovery points 
represented on its Prop-list. Hence, if a message is received containing informa
tion that is already known, for example two identical messages emanating from 
the same original source that have been propagated by different intermediaries, 
then that message may be ignored and it need not be propagated. The original 
message will have been propagated to all recovery points on the recovery 
point's Prop-list. As well as drastically reducing the message-passing overhead, 
this measure also ensures that messages are never propagated for ever around a 
cycle. 

For example, in Fig. 7, notice of A's commitment to A.1 may be received by 
0.1 both via B.1 and c.1. The first of these messages to be received by 0.1 will 

2 
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2 
B 

C r-------~----~~+---~----------

Dr-------~~--~~~--------------

E r---------~-L-+------------------ Fig. 7 

457 



A ~--------------'--------------r-------

B ~----r-,----+--~-,------------r------

c ~--~---+--------~~~---------+-----

D~~------+-----~----~,---~----~---

E~--------~----~------~--~-,~-+---

F~ ________ -2~-L __________ ~ __ L-____ L-_ Fig. 8 

be propagated to E.l. The second may be ignored. Note that E.I would propa
gate the message back to A.I where it would be ignored. 

3) Conceptually, the recovery control messages of the protocol are sent be
tween the recovery points of the system, because the dependency relationships 
to which they refer are defined between recovery points. In practice of course 
the messages are passed by the processes on behalf of the recovery points; but 
the significance of the centralised intelligence of processes extends beyond this. 

All control messages are initiated as a result of process actions performed 
within the process's active recovery region. That is, all messages emanate from 
active recovery points and are propagated to all recovery points for which the 
message originator is a PRI, as determined by the dependency relationships 
maintained by the processes. There may be several recovery points in a single 
process which have the same PRI. The protocol ensures that they will all re
ceive all messages emanating from that PRI; butthis is not necessary. The ear
liest recovery point in a process having a particular recovery point as PRI domi
nates all succeeding recovery points in that process having the same property, in 
that all messages sent to the earliest recovery point will be propagated to all 
names held on the Prop-list of the later ones, its Prop-list subsuming all of 
theirs. It is therefore only necessary to record one instance of each PRI name in 
each process's PRI-list - so long as it is always associated with the earliest re
covery point having the PRI in question. Then, if control messages are not 
directed to specific recovery points of processes, but rather just refer to the PRI 
from which the message has originated, the receiving process can associate the 
message with the appropriate recovery point on the basis of the PRI name. This 
may be thought of as sending a "local broadcast" message to a process and let
ting it use its intelligence as to which is the most appropriate (i.e. earliest) of its 
recovery points to which the message should pertain. 

For example, in Fig. 8, A.I is a PRI for both B.I and B.2 and both F.I and 
F.2. Notice of any action initiated by A conceptually should be sent to B.2 and 
F.2 and eventually propagated round to B.I and thence to F.I from where 
duplicate messages would be sent out to C.l, D.I and E. 1 again. But if A were 
to send a local· broadcast message to Band F which could then be directed 
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straightto B.I and F.I, the duplication of messages from B.2 and F.2 would be 
avoided. 

4) We have just seen how processes need keep only one instance of each PRI 
name for all their recovery points. It follows that no matter how many times a 
process is represented on a recovery point's Prop-list, any message pertaining to 
that recovery point need be propagated once only to each process represented 
there. 

This holds true even if messages are directed to the specific recovery points 
named on the Prop-list rather than taking advantage of the "local broadcast" 
capability, because the construction of the Prop-list ensures that all recovery 
points belonging to the same process must be held on the list in the order of 
their establishment. Therefore a message need be propagated only to the first 
representative of each process encountered on a Prop-list, this being the ear
liest, i.e. dominant, one. 

5) Discarding of unsafe recovery points is also facilitated by the structure 
outlined above. If there is pressure on the amount of recovery data that may be 
stored at anyone time, it is possible for a process unilaterally to discard any 
except its earliest unsafe recovery point: essentially by merging it with its pre
cursor. This is done simply by: 
(a) Associating the name of the recovery point being discarded with the Recov

ery Display of the preceding recovery point. 
(b) Associating the PRI-list Pointer of the recovery point before the one being 

discarded with the entry indicated from the Display of the recovery point 
being discarded. 

(c) Destroying the Recovery Context and Recovery Display of the point being 
discarded. 
This is illustrated in Fig. 9 for the discarding of recovery point RPj + \. 
The significance of this capacity of unilateral discarding all but the earliest 

of a process's unsafe recovery points will be demonstrated in the following sec
tion when the safety of recovery points in nested recovery regions will be con
sidered. 

PRI-list 

Recovery Displays 

/J ------
RP j -----

_.-.- Old value of pointer 
---New value of pointer Fig. 9 
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Thus, in summary, a decentralised recovery control protocol for com
municating processes with non-nested recovery regions can be made straight
forward and efficient. A simple discipline on point to point message servicing 
enables strong inferences to be drawn concerning the existence of potential re
covery initiators and recovery point safety. Details of the protocol are presented 
in Appendix 1. 

Recovery Control in Nested Recovery Regions 

There are several reasons why it may be thought desirable to implement nested 
recovery regions. The most obvious is that a nested structure maps naturally on
to the calling hierarchy of procedures in most programming languages. It is of
ten desirable to associate recovery regions with functional units, which normal
ly correspond to procedures and functions in most computations. So the natural 
structure of the computation leads to nested recovery regions. Other reasons for 
implementing nested recovery regions might be to enhance the fault-tolerance 
capability by providing several levels ofrecovery fall-back, or simply to sub-di
vide natural recovery regions with a view to minimising the scope of recovery 
invoked from other processes after information flow. We make no comment on 
the validity of such reasoning here. We merely endeavour to find a recovery 
control protocol which fits the requirements in the nested case. 

The model of computation to which we now direct our study is that of the 
previous section extended to allow processes to implement nested recovery re
gions. That is, a process is free to establish a new recovery point before express
ing commitment to its previously established one. The recovery point to which 
a process expresses commitment is always the most recently established one to 
which it has not yet expressed commitment. This gives rise to a pattern of 
computation as depicted in Fig. 10. Angle brackets delimit external (level 0) re
covery regions while square brackets delimit internal recovery regions. 

When a process initiates recovery action, it recovers to the most recently es
tablished recovery point to which it has not yet committed. When recovery ac
tion in one process causes the invocation of recovery action in another, follow
ing information flow, then the invoked recovery should be to the latest recovery 
point preceding the inter-process communication over which the information 

Process A 

Process C 

Process D ~( __ ~ ______ ~ __ ~*-____ ~ ____ ~ __ ~ ____ ~J-__ ~ 

time~ Fig. 10 
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transfer took place. Thus, in Fig. 11, recovery by A to A.l should invoke recov
ery in B to B.1.l.l. 

A simple scheme for the unilateral discarding of all but the earliest unsafe 
recovery points of a process by merging them with their predecessors was dem
onstrated in the preceding section. It is clear that the same scheme could equ
ally well be applied to any recovery points which are nested inside other recov-

A.1 
A ( 

[ \ B ( [ ] [ 
B.1 B.1.1 B.1.1.1 B.1.1.2 Fig. 11 

ery regions. It follows that recovery point safety is only absolutely critical for 
the earliest outermost level recovery point in any process. All others may sum
marily be discarded by falling back to a preceding recovery point. For this rea
son, we shall confine our attention to the question of the safety of the earliest 
outer level recovery point of each process. We shall call this critical recovery 
point safety. This may be contrasted with the situation in which recovery re
gions are strictly nested in a computation with the outermost level recovery 
point never being committed to, always being available as the ultimate fall
back point. We shall indicate briefly at the end of this paper how the question 
of recovery point relevance [4] in this situation, i.e. whether or not a recovery 
point lies on any recovery line, is a very similar problem to that of determining 
critical recovery point safety. 

In determining critical recovery point safety, the commitment of processes 
to internal recovery points has no significance, since no information about the 
"validity" of any information passed within that recovery region may be in
ferred from this action. Only commitment to an outer level recovery point pro
vides a guarantee that the source of some information will not initiate recovery 
action causing the invocation of recovery in a recipient of that information. It 
follows that it is only necessary to consider outer level recovery points as being 
potential recovery initiators and the commitment to internal recovery points 
need not be proclaimed to other processes. 

There is no essential difference between the recovery control measures re
quired to ensure system consistency in the nested case and those described in 
the previous section for controlling the non-nested situation. Basically, recovery 
action follows information flow according to the direct propagator relationship 
between recovery points, as previously. The only significant point to be noted is 
that two modes of recovery propagation are possible. There is direct propa
gation, as exemplified by the non-nested model, and multi-phase propagation, 
where a recovery point that previously has been committed to may be reactivat
ed. Fig. 12 illustrates the possibilities. 

If A initiates recovery action to A.Ll, then it will invoke recovery in B to 
B.1.1. Direct propagation of the recovery action by B would invoke recovery in 
C to c.l.1. But once C has rolled back to C.l.l it must continue processing. This 
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leaves room for C to initiate recovery action to C.l, requiring D to recover to 
D.l. Thus, although D.l is not directly threatened by recovery action initiated 
by A, it is threatened indirectly and should not be discarded while that threat 
exists. This requires that Al should be marked as a PRI for D.l. To generalise, 
all PRI's of internal recovery points must be treated as PRI's of the level 0 re
covery point associated with the enclosing external recovery region. 

The possibility of multi-phase propagation, however, prevents the "local 
broadcasting" to processes of control messages invoking recovery, as was used 
in the non-nested case. In the nested case, it is impossible for a process to de
termine to where recovery should be made solely from the identity of the orig
inal recovery initiator, because several intermediary recovery initiators may af
fect the issue. Figure 13 illustrates the point. 

Al is a PRI for both D.l and D.2. If A does initiate recovery to Al.l, then 
D will definitely be required to recover as far as D.2. It mayor may not have to 
recover to D.l, depending on whether C subsequently effects a second phase of 
recovery action. Thus, it has to be the responsibility of the sender of the recov
ery invocation message to name the recovery point to which recovery should be 
made by the message recipient. This is the action that was formulated for the 
non-nested case. It is just that the optimisation that was available there is not 
available in this instance. 

We are led to the following redefinition of the terms introduced in Dl- D5 
above, appropriately amended to apply in the nested case where the effects of 
multi-phase propagation must be considered. 

A recovery point which has not yet been committed to is called live. The 
most recently established live recovery point of any process is said to be active. 
On commitment to it, a liv·e recovery point becomes dormant. 
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A recovery point RP of process P is a direct propagator to a recovery point 
RP' of process P' if an only if information flows from P to P' while RP is the 
active recovery point of process P and RP' is the most recently established re
covery point of P'. 

RP is an indirect propagator to RP' if and only if either RP is a direct propa
gator to RP' or else, recursively, there exists a recovery point RP" such that: RP 
is a direct propagator to RP" and RP", or any succeeding recovery point in the 
same process as RP" or any preceding recovery point in the same external re
covery region as RP" is an indirect propagator to RP'. 

It may be verified that recovery action initiated or invoked in process P to 
recovery point RP may (indirectly) cause recovery to be effected in process P' 
to recovery point RP' if and only if RP, or a recovery point succeeding RP in P, 
or a recovery point preceding RP in the same external recovery region is an in
direct propagator to RP' or to any recovery point contained within the recovery 
region defined by RP'. If any of these conditions hold, then RP' is said to be 
dependent on RP. 

This is illustrated in Fig. 14. 
For completeness, all recovery points succeeding a recovery point in the 

same process are dependent on that recovery point and on each recovery point 
on which it is dependent. If RP' is dependent on RP, then RP is said to be an 
ancestor of RP' and RP' is a descendant of RP. 

An (outer level) recovery point RP is a potential recovery initiator (PRI) of 
another recovery point RP' if and only if RP' is dependent on RP and RP is still 
live. 

With respect to the determination of recovery point safety, the nested case is 
significantly more complicated than the non-nested case. This derives from the 
fact that it is not necessarily true that a message proclaiming commitment to an 
outer level recovery point will be sent out to exactly the same set of recovery 
points as a message emanating from the same source which invokes recovery 
action. Figure 15 illustrates the critical conditions in their simplest form. 

A.1 
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B.1 
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If A has cause to recover to Al.l, it will invoke recovery in B to B.l. There
after, A is free to continue processing; in particular it is free to commit to Al at 
which point it sends a message to C proclaiming this commitment. If C is aware 
only of the fact that Al is a PRI for C.l, then on receipt of notification of A's 
commitment to Al it will deem C.l safe and discard it, only to be requested 
subsequently by B to recover to c.l. 

Thus, in the nested mode, receipt of a message proclaiming the commitment 
of a PRI cannot guarantee the absence of invoked recovery action initiated by 
that PRI. The situation may be likened to a race condition in an asynchronous 
logic circuit - which must be avoided. 

There are two alternative approaches to dealing with this situation. It is per
haps worth pointing out that the recording of internal recovery points as PRJ's 
and proclaiming their commitment is not helpful, even although the situation 
described in Fig. 15 could be handled by this method. In general, the possible 
effects of multi-phase propagation (specifically, of multiple alternatives for 
multi-phase propagation from a single PRI) rule out any simple solution based 
on the recording of internal recovery points. 

The Pessimistic Approach 

The first approach relies on systematic preparedness for the type of critical con
ditions described above. Rather than just keeping a record of all the different 
PRJ's of each recovery point as in the non-nested case, in this approach to re
covery control in the nested case each process keeps track of all routes to its re
covery points from their PRJ's. The routes are expressed in terms of the names 
of intermediate message propagators. That is, thinking of the system as a di
rected graph with nodes as recovery points linked by the direct propagator rela
tionship, this protocol attempts to keep track of all paths through the directed 
graph from each PRI node to each of its descendants. (The descendants record 
the information). Only when a "commitment" message from a PRI has been re
ceived over all paths linking the PRI to a descendant, i.e. only when the possi
bility of recovery action initiated by the PRI reaching the descendant has been 
completely eliminated, may the dependent recovery point be declared safe from 
that PRI. As the number of paths between two nodes in a directed graph in gen
eral is related exponentially to the number of nodes in the graph, the number of 
messages that this recovery protocol generates is prohibitively expensive. 

We call this approach to a solution the "pessimistic" protocol, since it ex
pects the worst: it makes systematic provision for what is in effect the worst 
possible eventuality. In the vast majority of cases, that is those in which the 
commitment to an outer level recovery point has not been preceded by recovery 
to an internal recovery point, the messages propagated over all routes from a 
PRI will all be identical: that the descendant is not in danger from recovery ini
tiated by that PRI. In programming language terms, the pessimistic protocol is 
analogous to incorporating all exception handling facilities into the "standard 
algorithm" of a computation. In consequence, the efficiency of handling the 
standard conditions is drastically impaired. 
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The Optimistic Approach 

In contrast to the pessimistic protocol, the alternative strategy, which we call the 
"optimistic" approach, distinguishes between the standard and exceptional 
situations and treats each differently. It incorporates just enough overhead in 
the standard algorithm to enable it to detect the exceptional condition, but 
makes separate provison for handling that exceptional contingency. Thus, in es
sence, it does not have to keep track of all paths from PRI's to their descend
ants. 

The standard situation in this case is that commitment has not been preced
ed by recovery. Under these circumstances, the committing process is able to 
send out an unconditional commitment message informing its descendants that 
they are in no possible danger of being affected by some previous recovery ac
tion initiated by itself. The exceptional case is where commitment at the outer 
level has been preceded by internal recovery which has invoked further recov
ery elsewhere. When this is the case, we require of the protocol that no recovery 
point should be declared safe while there is danger that recovery action might 
be invoked to it. 

A process expressing commitment to an outer level recovery point is aware 
when it has previously generated recovery to an internal recovery point and it is 
aware of where it has invoked recovery as a result of its own recovery action. It 
must warn all of its descendants of this situation, so that they do not mistakenly 
assume safety on notification of the commitment when they are in fact possibly 
endangered by the previously generated recovery action. Thus a ,conditional 
commitment message is used to proclaim a process's commitment to a PRI but 
at the same time warn of recovery action invoked to other specified recovery 
points. A descendant of the message originator will be endangered by the lat
ter's previous recovery action if any of the recovery points specified in the con
ditional commitment message as having had recovery invoked to them is an an
cestor of that descendant. In order to be able to detect the danger, each recovery 
point must keep a record of its ancestry. This may be implemented by a simple 
extension to the protocol for the non-nested case in which each recovery point 
was aware of its PRI's. An ancestor may be defined recursively as either a cur
rent or former PRI, or else an ancestor of a current or former PRI. So, by re
cording and propagating lists of former PRI's as well as current ones when in
formation flows between processes, the PRI-list of the non-nested protocol can 
be transformed into an Ancestor List (Anc-list). This is the overhead in the 
standard algorithtn which must be assumed in order to provide the foundations 
for the detection and handling of the exceptional condition. It will be shown 
that only one instance of each ancestor name need be retained on a process's 
Anc-list, just as in the non-nested case. (It will also be shown that the "local 
broadcast" optimisation is applicable for messages informing of new ancestors 
as the result of communications on the part of an existing one as well as for 
messages proclaiming conditional or unconditional commitment to active an
cestors.) 

There are two aspects to the determination of recovery point safety: 
1) No recovery point should be marked safe which is not safe. 
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2) Every recovery point which is in fact safe should be determined as safe by 
the protocol "as soon as possible" - no recovery point should have to wait 
for ever to be declared safe. 
The actions outlined above addressed the first of these requirements. The 

second implies that whenever the recipient of a conditional commitment mes
sage heeds the accompanying warning concerning the reactivation of one if its 
ancestors, then at some time later either it will itself be caught up in recovery 
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action or else it will be informed that the danger has passed. In either case, it 
should not be left for ever awaiting one of these events. There are two situations 
in which a recovery point might conceivably be left waiting like this, which 
should therefore be avoided: 

(1) The commitment message from a reactivated ancestor is not recognised 
- a recovery point may fail to match a message warning of recovery invoked in 
an ancestor with the corresponding commitment message from the reactivated 
ancestor. 

(2) The commitment or recover message from a reactivated ancestor is not 
received, because the dependency relationship between the ancestor and de-
scendant has been severed. . 

Due to the essential asynchrony of decentralised control, it is impossible to 
ensure any ordering between two independent messages directed to the same 
destination. It is therefore quite possible that a process which has had recovery 
to an internal recovery point invoked in it by another process will express com
mitment to the (outer level) reactivated recovery point before the invoking pro
cess has warned its descendants of the reactivation. 

Descendants must expect to receive notification of the absence of danger (in 
the form of a commitment message - probably a conditional one) from an an
cestor before they are even aware of the presence of that danger. And they must 
then be able to discern that the warning message, when it does eventually ar
rive, is already superfluous. On the other hand, that warning message must be 
distinguishable from other pertinent warning messages relating to the same an
cestor and the commitment message must be distinct from messages proclaim
ing the ancestor's commitment to its normal activity. Indeed there is also the 
possibility that commitment messages will be received relating to the same an
cestor's commitment with respect to reactivation from a different recovery in
voker. 

For example, if the situation depicted in Fig. 16 arises, it is possible that at 
some later time E might receive conditional commitment messages from both A 
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and B warning of their activation of c.l. E might also receive, from both C and 
D, (distinct) messages proclaiming C's commitment to C.l with respect to its 
normal activation, to its activation by A, and to its activation by B. 

For this reason, it is necessary to associate an activator index with each re
covery action which invokes recovery in other processes. This unique index is 
generated by the process effecting recovery and is quoted in the warning passed 
as part of the conditional commitment message for the index generator. It is al-

A~-.-------4-------------.----

B~--4-----+-----.---+---~-+-

C.1 
C~----r--.~----~------------

D(D.1 Fig. 17 

so quoted in the "all clear" commitment message generated by the ancestor af
ter its reactivation and subsequent commitment. In this way it is possible for a 
process to pair all warnings and reactions, irrespective of the order in which 
they arrive or the presence of other messages relating to the same ancestor. An 
analogy with the indices used between source/destination pairs to avoid races 
in point-to~point message flow might be drawn. So with each entry in a pro
cess's Anc-list are associated two linked lists - the Activator List, containing all 
activator indices that it has been informed of pertaining to that ancestor, and 
the Commitment List, containing the activator indices with respect to which it 
has been.notified of commitment. For consistency, at the time of processes' nor
mal establishing of outer level recovery points, an activator index is generated 
and this is quoted upon normal commitment. A critical (i.e. earliest extant out
er level) recovery point will be safe when none of its ancestors in the Anc-list 
has an entry in its Activator List unmatched by a corresponding entry in its 
Commitment List. The recovery point (and its Anc-list) may then be discarded. 

The second of the points noted above' relates to the possibility of de
pendency relationships being severed by recovery action. Under normal cir
cumstances, after recovery in one process has caused recovery to be invoked in 
another process via a path over which information transfer has taken place, 
then that path ceases to exist. However, this is unacceptable for the purposes of 
determining recovery point safety under the optimistic protocol. 

Consider the situation depicted in Fig. 17 and a possible continuation of 
computation thereafter. When A commits to A.I, it may previously have re
covered to A.l.l. Therefore the commitment message from A to D will be ac
companied by a warning that A has invoked recovery of B to B.l.l.I. D's re
cords reveal that B.I is an ancestor of D.I, so it marks B.I as having been ac
tivated by A (with the activator index quoted by A). But it is quite possible that 
B has previously initiated recovery to B.l.l and therefore that the recovery ac
tion invoked by A has had no effect. D is unaware of this. All it knows is that 
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B.I is an ancestor of D.I and that A has claimed to have activated it; so it ex
pects to receive some message emanating from B relating to this activation. If 
follows that B. m.ust retain knowledge of the connection between B.l.I and C.l.1 
even after that connection conceptually has been severed. Such connections are 
called ghost connections and the associated recovery points are ghost recovery 
points. B must add the index supplied to it by A to its list of activators of B.I 
and include this index in its (conditional) commitment message, which must be 
sent out over the ghost connection to C.I.I. 

Note that in the above example it would serve no purpose for B to let it be 
known that the connection between B.l.I and C.l.1 had been severed, since D 
could not tell if this was the only path by which it was connected with B.l. To 
be able to determine this would require a recovery point to have knowledge of 
all paths by which it is connected to its ancestors, which is precisely the require
ment we seek to avoid in the optimistic protocol. 

The consideration applies not only to internal ghost recovery points. Outer 
level recovery points can also become ghosts. Consider the situation depicted in 
Fig. 18. 

When A commits to A.I, it may warn D that it has previously invoked recovery 
in B to B.I, an ancestor of D.l. Even although the recovery action of B does not 
get propagated beyond C.l.l, D must be kept informed of events. It should be 
notified that B has committed to B.I (with associated activator index as sup
plied by A.l.l), but warned of the recovery invoked to c.l.l. Thus recovery to 
an outer level recovery point must also be seen as (conditional) commitment to 
that point - and the commitment message must be propagated to all descend
ants, even although the invoked recovery action may not be propagated. 

An optimisation of this procedure with respect to ghost recovery points is 
possible. Outer level ghost recovery points can never be reactivated. They are 
dead. If the (conditional) commitment message associated with recovery to an 
outer level recovery point expresses commitment with respect to all possible ac
tivators, then all its descendants may be made aware of its death. It is not then 
necessary for the dead recovery point to promulgate a commitment message 
each time it receives an activate (invoke recovery) message. Its descendants will 
ignore any warning messages which claim that their dead ancestor has been re
activated. The dead recovery point must however continue to propagate mes
sages pertaining to its ancestors. 

This ends the discussion of (2) above. 

A~---.------------+-r------

Bf---;-------r-----'--r---

C.1 
C~----+--rI'------'--+--------3>---

o <0.1 
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A ~--~--~--~-----------------------

B ~--~-.+---~-+--~------~.--------

c ~--~~------~~----------~------- Fig. 19 

We saw in the non-nested case how it was only necessary for a process to 
record one instance of any PRI for all of its recovery points, which was done by 
associating the PRI name solely with the earliest recovery point in the process 
having it as PRI. The same is possible in the nested case with the recording of 
recovery points' ancestors. 

When a process invokes recovery in another process by sending it a "Recov
er" message, directed to a specific recovery point, the invoking process retains 
knowledge of this event to be included as a warning in its conditional com
mitment message. But "activation" of an outer level recovery point through re
covery being invoked to it or to one of its internal recovery points automatically 
implies the "activation" of all succeeding outer level recovery points in the 
same process (due to the implicit intra-process information flow). The descend
ants of these successor recovery points must be made aware of the fact of their 
activation; i.e. processes having the name of any of these recovery points on 
their Ailc-list must mark the activation on the relevant entries. 

For example, in the situation depicted in Fig. 19 the conditional com
mitment of A to A.I after having recovered to A.U will warn C of the acti
vation of B.I, but C must also be made aware of the activation of B.3. In gen
eral terms, this is not quite as straightforward as it might at first appear, since 
the recovery invoker is not aware of the identity of these successor recovery 
points and intra-process dependency is not a totally obvious relationship: due to 
the possible existence of dead recovery points. There are three possible 
methods by which the desired effect may be achieved. 

1) Intra-process information flow could be treated in an identical manner to 
inter-process information flow, so that the message proclaiming the com
mitment (or death) of the recovery point in which the recovery was directly in
voked could warn of the activation of its immediate successor in the same pro
cess as well as all other recovery points in other processes to which it is a direct 
propagator. 

2) Recipients of the conditional commitment message warning of the acti
vation of a recovery point to which recovery has been invoked could infer the 
activation of its successors. A linked list between the relevant (unique) entries 
in a process's Anc-list could describe the intra-process successor relationship, 
the links being established when new ancestors are added to the list. (All the 
intra-process ancestors of a recovery point are held on its own Anc-list and 
these may be linked at the time of establishing the recovery points. When one 
recovery point's Anc-list is added to another's as a result of an inter-process 
communication, ancestor names are not duplicated, but links to the new entries 
may be added to existing ancestors when new ancestor names are accepted). 
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3) Intra-process dependency relationships may be deduced automatically 
without the requirement for linked lists if a systematic nomenclature for recov
ery points is adopted. Successive recovery points at each level of nesting may be 
numbered incrementally from the start of the enclosing recovery region. Then, 
to name a recovery point, this number should be prefixed by the process name 
and the number of the recovery point of each enclosing region. Thus in Fig. 20 
the systematic name for the arrowed recovery point would be P.2.2.2.2. 

/1 
Process P " 

Fig. 20 t 
However, there is another dimension to the relationship between recovery 

points belonging to the same process. It is determined by the incidences of re
covery action between the time of the recovery points' respective establishment. 
This may be described by associating version numbers with recovery point 
names. Each process maintains its own version number which it increments 
each time it has cause to recover (thereby turning into ghosts perhaps several 
recovery points whose systematic names may later be reallocated when process
ing continues). The current value of the process's version number at the time a 
recovery point is established must be added to the recovery point's systematic 
name to make the name a unique identifier of that recovery point. This is de
scribed in Fig. 21 which illustrates the naming of recovery points over the dura
tion of a period of a process's activity. 

Then, the condition for an entry P.R(V) in the Anc-list of some process be
ing affected when that process is informed ofrecovery invoked to P'.R'(V') is as 
follows: 

P = P' AND «R ~ R' AND V = V') 

A (Alll.l 
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OR (R > R' AND V > V' AND NOT (P.R'(V) E Anc-list))) 

[AI5l.2.1 

Recover !Invoked) -------------- .......... 

)~ A13l.2 )~ AI31.3 
........ 

Recover !Invoked) -------- ........ " [ ~2l.1.2 

...... --Recover _________ ~ 

[~L.l.3.1 \ 

Recover 
"-
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"-[AI31.3.1 \ 

][AI5l.2.2 
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That is, if R(V) is a succeeding recovery point in the same process as R'(V') 
and there is no evidence of recovery (death) having affected R'(V'). 

Although perhaps the least obvious, the last of these alternative solutions in-
volves the least storage and message passing overhead. 

Summary of the Optimistic Protocol 

The salient features of the "Optimistic Protocol'? for providing recovery control 
in a distributed system of communicating processes asynchronously implement
ing nested recovery regions may be summarised as follows. 

1) Each process maintains a record of the ancestors of each of its recovery 
points, supported by the control messages issued as a consequence of inter-pro
cess information transfers. 

2) Only one instance of each ancestor name is retained on a process's 
records. 

3) Two types of commitment are supported: unconditional commitment, 
where commitment to an outer level recovery point has not been preceded by 
recovery to an internal one; and conditional commitment, where recovery to an 
internal recovery point prior to commitment at the outer level has caused recov
ery to be invoked in other processes. Warning of the recovery action invoked 
elsewhere is sent out with conditional commitment messages. 

4) When a process receives a conditional commitment message which 
warns of recovery invoked to an ancestor of one (or several) of that process's 
recovery points, it marks its records with the information that the ancestor has 
been reactivated. 

5) In order that all heeded warnings may be matcht;d by a corresponding 
commitment message or by recovery action, it is necessary for processes to re
cord a history of their recovery action by remembering ghost recovery points 
and their connections. Commitment messages must be propagated over ghost 
connections. 

6) In order to maintain consistency between warnings of the activation of 
ancestors and notification of their commitment after activation, a unique index 
is associated with each activation. This is quoted in warning messages and on 
commitment. Processes associate an Activator List and a Commitment List 
with each entry in their records of their recovery points' ancestors. A critical re
covery point may be declared safe when none of its ancestors has an entry in its 
Activator List unmatched by a corresponding entry on its Commitment List; i.e. 
it knows of no live ancestors. 

Details of the protocol are presented in Appendix 3 .. 
The logic of the Optimistic Protocol is fairly intricate, particularly in its 

optimisations on the conceptual model to reduce the message passing and stor
age overheads. We have attempted to present a reasoned argument in the above 
description of the protocol. There is not (yet) a formal proof of its correctness, 
but the reader is encouraged to verify (informally) that the following invariant 
features hold true for the protocol. 
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1) At any instant, each process is aware of all its recovery points' ancestors 
and of their activators, or else there is, or will be placed, a message in the sys
tem which will eventually reach it informing it of the addition of new ancestors 
or the activation of existing ones. 

2) Commitment messages reach all descendants of the message originator. 
3) All messages concerning the activation of an ancestor are matched, if not 

by recovery action, by messages proclaiming the commitment to that ancestor, 
and vice versa. 

4) Processes can only receive messages originating from live ancestors of 
their recovery points (propagated perhaps by dormant ancestors), even though 
the message recipient may not know at the time of receiving the message that 
the message originator is in fact live. 

5) When a process knows of no live ancestors for a recovery point it cannot 
receive messages originating from any ancestor of that recovery point. It follows 
that when all ancestors of a critical recovery point are known to be dormant (or 
dead), the recovery point may be declared safe. 

6) All ancestors of a safe recovery point must themselves be safe. 

Recovery Point Relevance 

As promised, we return briefly to relate the results derived above for determin
ing recovery point safety to the problem of determining recovery point irrel
evance [4] in a totally nested system. It should be noted that in the non-nested 
case, recovery point irrelevance is equivalent to recovery point safety, but our 
consideration of critical recovery point safety in the nested case did not attempt 
to determine the status of internal recovery points. 

It is not difficult, although beyond the scope of this paper, to map the pro
tocols derived above onto the search for recovery point irrelevance. The only 
difference is that all recovery points must be treated identically, so that when 
information flow between processes takes place all enclosing recovery points of 
the message sender must be marked as active ancestors (PRI's) of the message 
recipient. It becomes obvious that the effects of multi-phase propagation of re
covery make the detection of absolute irrelevance hopelessly complicated in the 
nested case. A far more practical exercise turns out to be the detection of partial 
irrelevance when multi-phase recovery propagation is discounted. This is of 
course perfectly reasonable, since recovery point relevance is not an absolutely 
critical issue. The only loss incurred as a result of incorrect determination of re
covery point irrelevance is a longer than strictly necessary roll-back. 

Conclusion 

Decentralised recovery control of communicating processes with nested recov
ery regions requires more than just a straightforward extension to the protocol 
derived for similar systems with non-nested recovery regions. We have de-
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scribed two protocols for the nested case which meet the specified criteria of 
maintaining system consistency in the presence of recovery action and support
ing determination of critical recovery point safety. The second of these pro
tocols, the "Optimistic Protocol" has significantly better performance charac
teristics (in terms of message passing and storage requirements) than the first. 
This is due to the way it separates its treatment of the normal functioning of the 
system in the absence of recovery action from its handling of the exceptional 
conditions prevailing after a process has recovered to an internal recovery 
point. 
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Appendices 
Recovery Protocol Implementation Details 

Appendix 1 
Non-Nested Case (with "local broadcast" optimisation) 

Each process maintains two linked lists: a PRI-list and a Prop-list with pointers 
into them associated with each recovery point. 

In the following, the subsequences of a process's PRI-list and Prop-list hav
ing as head the elements associated with a particular recovery point RP will 
called RP.PRI-list and RP.Prop-list respectively. The immediate PRI-list of a re
covery point denotes that initial sequence of its PRI-list which is not included 
in the PRI-list of any preceding recovery point. Similarly, the immediate Prop
list of a recovery point denotes that initial sequence of its Prop-list which does 
not form part of the Prop-list of any succeeding recovery point. This is illustrat
ed in figure Al.l. The general format of a recovery control message is as fol
lows: 

I SOURCE I DEST I SEQ.NO. I TYPE I PRI1N1T I ARG-list I 

Network Flow Control Process Recovery Control 
Information Information 

Recovery Displays PRI-lisl 

~ 
I 

RP·,B 1- 0 ___ ._._._. 

------~ 

RPi.Prop-list 

Fig. A1.1 
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The SOURCE and DEST name the transmitting and receiving processes re
spectively. 

The SEQUENCE NUMBER is the unique point-to-point index associated 
with this SOURCE/DEST pair which enforces the message servicing dis
cipline. 

The message TYPE is one of three: 

(1) Add new PRI's 
(2) Proclaim Commitment 
(3) Recover 

The use and effect of these will be explained below. 
The PRI1N1T names the recovery point from which the message originated 

(not necessarily the immediate source of this actual message, which may just 
have propagated it). This name is used by the recipient process as a key to in
dex the recovery point to which the message pertains, namely the earliest one 
having that recovery point as PRI. Depending on the number of different PRI's, 
a process might maintain a separate index of PRI names to recovery points, or 
else might just search the PRI-list for the appropriate entry each time it receives 
a message. 

The use of the ARGUMENT LIST (Arg-list) varies with the message type, 
as will be described below. 

There are four process actions which are significant with respect to the re
covery control protocol. All these actions and associated control measures must 
be performed atomically with respect to the other processes not participating in 
the action. The four significant actions are: 

1. Establish New Recovery Point 

When a process establishes a new recovery point it sets up a Recovery Display 
for that point, comprising three items: 

(1) Recovery Context Pointer 
(2) Prop-list Pointer 
(3) PRI-list Pointer 

The Recovery Context is used to contain sufficient data to allow the process 
state existing at the time of the recovery point establishment to be regenerated 
in the event of recovery to that recovery point. 

The Prop-list Pointer is an index into the process's Prop-list, initialised to 
point to the tail of that list, and never altered thereafter as new entries are 
added at the tail. 

The PRI-list Pointer is an index into the process's PRI-list, initialised to 
point to the head of the list. New entries are added to the PRI-list at the point 
indicated by the PRI-list Pointer of the appropriate recovery point. 

The other action a process takes on establishing a new recovery point is to 
add an entry to the new recovery point's PRI-list which refers to that new recov
ery point, i.e. while the point is still live, it is its own PRI. 
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2. Participate in Inter-process Information Transfer 

When two processes participate in the transfer of information between them, 
they also take the following control measures: 
(1) The destination process tells the source the name of the former's currently 

live recovery point. (This information can be included in the message ac
knowledging receipt of the source's message). 

(2) The source adds the destination process's name to the tail of its Prop-list. 
(3) The source sends an "Add New PRI's" message to the destination, indexed 

by the name of the destination process's live recovery point and with, as 
Arg-list, the source process's PRI-list. The receiver's reaction to this mes
sage will be described below. 

3. Recover 

When a process wishes to initiate recovery to its currently live recovery point, it 
sends a "Recover" message to itself, indexed by the live recovery point name. 
The action taken when recovery is self-initiated is the same as when it is in
voked from elsewhere, as will be described below. 

4. Commit 

When a process wishes to express its commitment not to initiate recovery to its 
currently live recovery point, it sends itself a "Proclaim Commitment" message 
indexed by the live recovery point name. Like recovery, the action taken by a 
process on its commitment to a recovery point is exactly the same as it takes on 
notification of someone else's commitment, as will be described below. 

The action taken by a process on receipt of each of the three message types 
is now described in turn. The notation used is a form of pidgin guarded com
mand language. Comments are enclosed by quote marks. The relationship "<" 
as defined between recovery points is used to denote "precedes in the same pro
cess". 

1. Add New PRI's 

"Received as a consequence of an inter-process information transfer. Arg-list is 
list of information sender's PRI's. PRI1NIT is name of information recipient." 

"If PRI1N1T not represented on PRI-list, then must previously have received 
notification of commitment to PRI1N1T • Must also have received this message 
prior to notification of commitment". 
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if PRI1N1T E PRI-list ~ let RPoEsT be earliest recovery point 
having PRIINIT as PRI; 

for each name RPPR1 on Arg-list do 



ifRPPRI E PRI-list -+ let RPA be earliest rec. pt. having RPPR1 as PRI; 
if RP A ::;; RPOEST -+ Remove RPPR1 from Arg-list 
D RPA> RPOEST -+ Remove RPPR1 from RPA.PRI-list; 

Add RPPR1 to RPoEsT.PRI-list 
fi 

D else -+ Add RPPR1 to RPoEsT.PRI-list 

fi 
od; 
Propagate message with possibly depleted Arg-list to each process 
represented on RPOEST .Prop-list 

D else -+ skip 

fi 

2. Proclaim Commitment 

"PRI1N1T is name of recovery point to which commitment has been expressed. 
Arg-list is empty". 

if PRI1N1T E PRI-list -+ Let RPOEST be earliest recovery point 
having PRI1NIT as PRI; 

D else -+ skip 

fi 

3. Recover 

Delete PRI1N1T from RPoEsT.PRI-list; 
Propagate message to each process represented 
on RPoEsT.Prop-list. 

"PRI1N1T is name of recovery point to which recovery has originally been 
initiated. Arg-list is empty" 

if PRIINIT E PRI-list -+ let RPDEST be earliest recovery point 
having PRI1N1T as PRI; 

D else -+ skip 

fi 

Propagate message to each process represented 
on RPOEST . Prop-list; 
Delete RPOEST . Prop-list; 
for each recovery point RPREC > RPOEST do 

Delete Recovery Context for RPREC ; 
Delete Immediate RPREC .PRI-list; 
Delete Recovery Display for RPOEC 

od; 
Resurrect Recovery Context for RPOEST ; 
Delete Immediate RPoEsT.PRI-list; 
Rename RPOEST ; 
Reinitialise Recovery Display for new RPOEST . 
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Appendix 2 
The Pessimistic Protocol 

We do not present implementation details for the pessimistic protocol for re
covery control in the nested case, since it is obviously inferior in performance to 
the optimistic protocol. We merely point out the following salient features of 
the protocol. 

(1) Each process maintains a record of all paths from PRI's to descendants 
- in terms of intermediate recovery point names as propagated in "Add New 
PRI's" messages. 

(2) Each process must receive an explicit commitment with respect to each 
path from a PRI. Multi-phase recovery propagation is possible; so that when 
internal recovery points are destroyed in recovery action, a process must send 
compensatory commitment messages with respect to each path thus severed but 
not directly caught up in the recovery action. It does this at the same time as 
proclaiming the reactivated outer level recovery point as a new PRI. 

(3) A process refrains from propagating a message when the path over 
which it already has been propagated includes the recovery point to which the 
message has been indirected, or a preceding recovery point in the same process. 

Appendix 3 
The Optimistic Protocol (with local broadcast optimisation) 

Each process maintains two linked lists, the Prop-list and the Ancestor List 
(Anc-list). Prop-list entries are full recovery point names. Anc-list entires are of 
the form: NAME, ACTIVATOR LIST, COMMITMENT LIST. 

The NAME is an outer level recovery point name. 
The ACTIVATOR LIST (Act-list) is a list of the Activator Indices of the 
actions which claim to have activated that recovery point. 
The COMMITMENT LIST (Com-list) is a list of the Activator Indices 
relating to the recovery point with respect to which notification of com
mitment has been received. Or it may contain the single entry ,*, if the re
covery point is dead. 
As in the non-nested case, processes may maintain an index to their recov

ery points keyed by ancestor names to further enhance the speed of the local 
broadcast optimisation, or they may just search through the Anc-list on receipt 
of a message to find which of their recovery points is the earliest having the 
given recovery point as ancestor. 

The format for recovery control messages is the same as in the non-nested 
case. As in the non-nested case, four process actions are significant with respect 
to the recovery control protocol. These are described below. 

1. Establish Recovery Point 

Each time a process establishes a new recovery point, it generates the appropri
ate systematic name for it (including version number) and sets up a Recovery 
Display comprising: 
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(1) Recovery Context Pointer 
(2) Level 
(3) Level 0 Pointer 
(4) Ghost Indicator 
(5) Prop-list Pointer 
(6) Anc-list Pointer 

The Level denotes the level of nesting of the recovery point. 
The Level 0 Pointer is a pointer to the recovery display for the recovery 

point associated with the outer level recovery region enclosing this point. 
The Ghost Indicator indicates whether or not the recovery point has been 

recovered beyond. It is initialised to hold the value 0, indicating that it is not a 
ghost, this value being changed to the appropriate activator index when it gets 
made a ghost, as will be described below. 

When an outer level (level 0) recovery point is established, the process 
generates a unique activator index for it and adds an entry containing the name 
and index at the head of the new recovery point's Anc-list. 

2. Participate in Inter-process Information Transfer 

When information is transferred from one process to another, the com
municants also perform the following control measures. 

(l) The receiver of the data tells the sender the name of its most recently 
established recovery point (which need not be the currently active one). 

(2) The sender adds this name to the tail of its Prop-list. 
(3) The sender sends an "Add New Ancestors" message to the receiver, in

dexed by the outer level part of the recovery point name just given to it by the 
receiver (i.e. the receiver's outer level live recovery point). The argument of this 
message is the sender's complete Anc-list, minus those recovery points which it 
knows to be dead. The receiver's reaction to this message will be described be
low. 

3. Initiate Recovery Action 

When a process initiates recovery to its currently active recovery point, it sends 
a "Recover" message to itself, naming the active recovery point and associating 
with it the activator index which was generated on normal establishment of the 
currently live outer level recovery point. The effect of this message will be de
scribed below. 

4. Commit 

When a process expresses its commitment not to initiate recovery to its cur
rently active outer level recovery point, it takes the following control measures. 
The notation is the same pidgin guarded command language as introduced in 
Appendix I. 
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Let RPCOM be the recovery point to which commitment is being made; Let 
ANCcoM be the entry in RPCOM . Anc-list relating to RPCOM ; 
Arg-list.Com-list := Nil; 
Arg-list.Wam-list:= Nil; 

if Ghost Indicator (RPCOM) =1= 0 -+ Arg-list.Com-list := '*' 

o else -+ for each index AI in ANCcoM.Act-list not matched 
by corresponding entry in ANCcoM.Com-list do 
Add AI to Arg-list.Com-list. 
od 

fi 
if RPCOM is live -+ let RPsuc be the next outer level recovery point 

to be established. 
o else -+ let RPsuc be the outer level recovery point succeeding RPCOM 
fi 

"RPCOM may not be live if commitment is being made in conjunction with 
invoked recovery to an outer level recovery point". 

for each recovery point RPINT , RPCOM :;;; RPINT < RPsuc do 
Let GI = Ghost Indicator (RPINT); 
if GI =1= 0 -+ for each entry RPINV on immediate RPINT.Prop-list do 

Add (RP1NV , GI) to Arg-list.Wam-list; 
od 

o else -+ skip 
fi 

od 

Before describing the action taken on receipt of each of the three types of 
recovery control messages, some words of explanation on one aspect of the con
trol measures associated with receipt of an "Add New Ancestors" message 
might be helpful. 

As in the non-nested case, only one instance of each ancestor name is held 
on each process's Anc-list, associated with the earliest recovery point having the 
ancestor in question. This was straightforward in the non-nested case, but is 
more complicated here because there are further attributes associated with en
tries in the Anc-list beside the ancestor's name. There is the Activator List (Act
list) and the Commitment List(Com-list). The single instance of each ancestor 
name held on the Anc-list is the "representative" of perhaps many entries relat
ing to the same ancestor which are associated with later recovery points. It is 
necessary that the sole instance assumes the "greatest lower bound" of the 
characteristics of all the entries is represents, with respect to the Act-list and 
Com-list. 

For example, if an "Add New Ancestors" message is received with an argu
ment which already is an ancestor of one (or several) of the recipient process's 
recovery points, and the message argument has different Activator and/or 
Commitment Lists to the Anc-list entry, what form should the resultant form in 
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Table A3.1 

Index in Arg-list 

COMBINE -C C ,*, 

Index -C -C -C -C 
In C -C C C 
Anc-list ,*, -C C ,*, 

the Anc-list take? As implied above, the result must be "pessimistic" - it may 
not assume any property not exhibited by both the existing entries. If either en
try (in the message Arg-list or process Anc-list) has an index in its Com-list 
which the other entry does not have, then the resultant entry must be without 
that entry in its Com-list. This is because the message which proclaimed the 
commitment to one of them may have been a conditional commitment ac
companied by a warning referring to an ancestor of the other. Table A3.l gives 
the definition of a function COMBINE which determines how the Com-list of 
the resultant entry in a recovery point's Anc-list should be formed in the above 
situation. The symbols C and - C denote the presence and absence respectively 
of a given index in the Com-list of the function's arguments, namely the entry 
in the message Arg-list and the corresponding entry in the process Anc-list. The 
result denotes whether or n9t the index in question should be included in the 
Com-list of the resultant entry. . 

With respect to the Activator List of the two entries, the above question is 
not critical: it does not matter whether a given index is included in the Act-list 
of the resultant entry when it is represented in the Act-list of one, but not the 
other of the input entries. Whichever policy is adopted must be applied consist
ently throughout the system however. 

The function COMBINE as defined in table A3.l is applied irrespective of 
where the Anc-list entry is in relation to the recovery point to which the "Add 
New Ancestors" message applies. If the Anc-list entry is associated with an ear
lier recovery point, then that entry will be altered as defined by COMBINE. If 
the Anc-list entry is associated with a later recovery point then that entry is al
tered according to COMBINE, and then removed from that position in the Anc
list and added to the Anc-list of the recovery point to which the message ap
·plies. It is the Com-list generated by COMBINE which is then propagated in 
the message Arg-list. 

We now describe the action taken by a process on receipt of a recovery con
trol message of each of the three types. 

1. Add New Ancestors 

"ANCIN1T is recipient of information whose transfer caused this message. 
Arg-list is list of ancestors of information source." 

if ANC1N1T E Anc-list ---+ let RPOEST be earlier recovery point 
having ANC1N1T as ancestor; 
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for each name ANCARG on Arg-list do 
if ANCARG E Anc-list --+ let RPA be earliest recovery point 

having ANCARG as ancestor; 
Let ANCA be entry in RPA.Anc-list relating to 
ANCARG ; 

ifRPA> RPOEST --+ ANCARG.Com-list:= 
COMBINE (ANCARG.Com-list, ANCA.Com-list); 
Delete ANCA from RPA.Anc-list; 
Add ANCARG to RPoEsT.Anc-list 

o RPA:5: RPOEST --+ TEMP:= ANCA.Com-list; 
ANCA.Com-list := 
COMBINE (AN CA. Com-list, 
ANCARG.Com-list); 

fi 

if ANCA.Com-list = TEMP --+ 

Delete ANCARG from Arg-list; 
o else --+ ski p 

fi 

o else --+ Add ANCARG to RPoEsT.Anc-list 

fi; 

Propagate message with possibly diminished Arg-list to each process repre
sented on RPoEsT.Prop-list, except for those ones which appear solely on the 
immediate Prop-list of ghost recovery points. 

od 
o else --+ ski p 

fi 

2. Proclaim Commitment 

"ANC1N1T is recovery point to which commitment has been expressed. Arg-list 
= Commit List (Com-list) of activators of ANC1NIT + (perhaps) Warning List 
(Warn-list) of pairs (RP1NV , Activator Index of previously invoked recovery)" 
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if ANC1N1T E Anc-list --+ let RPOEST be earliest recovery point 
having ANC1NIT as ancestor; 

let ANCA be entry in RPOEST .Anc-list referring to ANC1NIT ; 
for each index AI on Arg-list.Com-list do 

if AI = '*' --+ ANCA.Com-list := ,*, 

DAlE ANCA.Com-list --+ Delete AI from Arg-list.Com-list 
o else --+ Add AI to ANCA.Com-list 

fi 
od; 

for each name PINV.RPINV (VINv) on Arg-list.Warn-list do 
for each entry P.RP (V) on Anc-list (before RPoEsT.Anc-list) do 



ifPINV = P AND «RPINV :-:;; RP AND VINV = V) OR (RPINV < RP AND 
VINV < V AND NOT (P.RP (VINv) E Anc-list))) -+ 

Let AIINV be activator index paired with PINV.RPINV (VINV) 
in Arg-list.Warn-list; 
ifP.RP (V).Com-list = ,*, -+ skip 

o AIINV E P.RP (V).Act-list -+ skip 

o else -+ Add AIINv to P.RP (V). Act-list; 
Mark tuple containing AI in Arg-list.Warn-list 

fi 
o else -+ ski p 

fi 
od; 
if unmarked «PINV . RPINV (VINv), AI») -+ Delete from Arg-list. Warn-list 

o else -+ skip 

fi 
od 

o else -+ skip 

fi 

3. Recover 

"ANCINIT = not used. 
Arg-list = RPREC , name of recovery point to which recovery should be 
made, + Recovery Index RI" 

if Ghost Indicator (RPREc) -=1= 0 -+ 

if LEVEL (RPREc) = 0 -+ skip; 
"RPREC is dead. Descendants know this" 

o else -+ Let RPREcobe level 0 recovery point for region enclosing RPREC ; 
Let ANCREco be entry in RPREco.Anc-list referring to RPRECO ; 
Add RI to ANCREco.Act-list; 

if RPRECO live -+ Enact Commitment to RPRECO 
o else -+ ski p 

fi 
fi 
o else -+ Generate unique Recovery Index RINEW ; 

Propagate "Recover" message with Index RINEw to first representative of each 
process encountered on RPREc.Prop-list, discounting all those which are on the 
immediate Prop-list of ghost recovery points; 

for each recovery point RPG ~ RPREC do 
if Ghost Indicator (RPG) = 0 -+ Ghost Indicator (RPG) := RINEw 
o else -+ skip 

fi 
od; 
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for each outer level recovery point RPo ~ RPREC do 
if Ghost Indicator (RPo) = RINEw ~ let ANCo be entry in RPo.Anc-list 

referring to RPo; 

o else ~ skip 

fi; 

Add RI to ANCo.Act-list; 
Enact Commitment to RPo 

Discard immediate RPo.PRI-list 

od; 
if LEVEL (RPRECO) =1= 0 ~ let ANCRECO be the entry in RPREco.Anc-list 

referring to RPRECO ; 

o else ~ skip 

fi; 

Add RI to ANCRECO.Act-list 

for each recovery point RPa > RPREC do 
Discard Recovery Context for RPa 

od 
Discard RPDEc . Prop-list; 
Discard immediate RPREc.PRI-list; 
Increment process's version number; 
Resurrect Recovery Context for RPREC ; 
Re-establish RPREC with new version number; 

"same as establishing completely new recovery point which happens 
to have same systematic name and Recovery Context as RPREC". 

fi 
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A Dependency, Commitment and Recovery Model 
for Atomic Actions 

S. K. SHRIVASTAVA 

Abstract. Some ideas on the construction of user applications as atomic actions are developed. 
Atomic actions that last a long time pose several problems if conventional ideas on con
currency control and recovery are applied. What is required is some means of delaying com
mitment without sacrificing performance. A model is proposed in which it is possible for an 
action to release and process as yet uncommitable objects. The impact of this on recovery is 
also discussed. 

1. Introduction 

Much of the recent work in the areas of reliability and data integrity in distrib
uted systems has been concerned with the provision of atomic transactions 
(atomic actions) [1 - 6]. Such an action is characterised by the serializable prop
erty [7]: it is the unit of concurrency control such that concurrent execution of 
actions is equivalent to some serial order of execution. For reliability purposes, 
it is also convenient to make it the unit of recovery such that an ongoing action 
that would have normally produced changes in the system state, can be termi
nated without producing any state changes - the action is then said to be re
covered or aborted. By structuring user's interactions with the system as atomic 
actions with the above recovery property (henceforth termed basic actions) a 
powerful tool for maintaining the integrity of the shared data of the system is 
obtained. If during the execution of a basic action, some erroneous situation is 
detected such that further meaningful progress is not possible, then the recovery 
capability of that action is invoked for aborting the action. Refers. [2- 5] de
scribe numerous schemes for the construction of such actions in systems. For 
basic ideas on atomic actions, recovery and reliability, the reader's attention is 
drawn to the much cited paper of Randell et al. [8]. 

Given a user interface that provides the facilities for the construction of 
basic actions, the next question that naturally arises is, can user applications be 
constructed out of them with similar 'clean' properties? Unfortunately this does 
not appear to be easily possible for the following reasons: 

(i) The relatively straightforward concurrency control technique that is typi
cally used for the construction of basic actions (essentially the two phase lock
ing scheme [7] with locks held till the end of an action) is not always practicable 
for the construction of 'bigger' atomic actions - actions that last for a longer 
time than a few seconds. Consider for example an insurance claim processing 
application where a client's claim can take as long as say six months to process. 
Logically, the claim processing can be regarded as an atomic action and yet it is 
absurd to assume that parts of the insurance data base will be kept locked for 
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that long a period of time. Clearly a more sophisticated concurrency control 
technique is necessary. 

(ii) The "all or nothing" property of a basic action is often not desirable, 
and sometimes impossible to achieve. This is because during the execution of 
an application, side effects might be produced that are either difficult or ex
pensive to 'undo' or are potentially unrecoverable. 

The above discussion is intended to suggest that a new set of mechanisms is 
needed to help construct arbitrary user applications out of basic actions. The 
model to be developed here is a step in that direction. The ideas to be described 
here are a further development (with occasional recasting) of the pioneering 
work on spheres of control by C. T. Davies and L. A. Bjork [9-13]. We begin 
by reviewing the essential ideas of their work. In the rest of the paper we shall 
concentrate upon "data processing" applications - those concerned with long 
term storage and manipulation of data (e.g. banking, office information sys
tems); though the applicability of the ideas to other fields such as process con
trol is not ruled out. 

2. Basic Ideas on Commitment and Recovery 

"As is true for the trapeze artist, so must data processing have a basis for 
further action, such basis being a commitment to prior action" - C. T. Davies 
[10]. 

Any atomic action can be viewed at a lower level as constructed out of more 
primitive atomic actions - this is illustrated in the 'trace diagram' of Fig. 1 
which also introduce the diagramatic notation that will be used. 

According to Fig. 1, actions E's constituents are actions A, B, C and D; the fig
ure also shows the causal relationships between the actions. So, the execution 
sequence of actions A, B, C and D was 'A' followed by concurrent execution of 
'B' and 'C' followed by 'D'. A line joining two actions is meant to represent the 
fact that outputs of the 'left' action are used by the 'right' action. So in Fig. 1, D 
gets its input from Band C and outputs of E are being used by F. Assume that 
time has advanced upto t2 and that an error is detected during the execution of 
C. Under such a circumstance, it is logically possible to abort C without affect
ing any other ongoing action (B in this case); in other words, C can be recovered 
('backed out') unilaterally. What happens after C's recovery? The question must 

~ 
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be resolved within the scope of E - the enclosing action. This leads us to the 
now well understood notion of nested recovery which will not be elaborated 
here. 

As is well known, basic actions are equipped with the unilateral recovery 
capability with the property that this capability is discarded when a given ac
tion ends. This is a rather limited view of unilateral recovery. Assume that time 
has advanced up to t3; we note that as yet the outputs of 'E' have not been used. 
So, logically it is still possible to back out 'E' unilaterally (more precisely, since 
'E' has terminated, the state changes produced by 'E' can be undone unilater
ally). The question then arises as to when is it logically incorrect to back out an 
action? This leads us to the notion of commitment. 

In our normal conversations when we say: "I am committed to ... " or "I 
have commitments ... " we imply that "others are depending on the promises 
made by me". The same idea needs capturing when we consider commitments 
of outputs produced by atomic actions. Informally, the outputs produced by a 
terminated action get committed when they are used as inputs to other actions. 
So for example, in Fig. 1, at time tl, no commitments have been made by A, 
(and A can be backed out unilaterally); at time t2, the outputs of A are com
mitted, implying they cannot be 'with-drawn' unilaterally. Thus commitment 
guarantees 'input stability' [10]. A number of observations can now be made: 

(a) When an action terminates, the output values produced by it have the 
status 'commitable' implying that other actions can use them. By embellishing 
the notation of Fig. 1 slightly, we can illustrate the idea further: 

-time 

c 

Fig. 2. Commitable and committed objects 

Figure 2 shows that inputs to 'A' consist of objects a, band c (shown as labels 
on the arcs). Henceforth the following convention will be used: upper case let
ters will denote actions and lower case letters will denote objects. We will as
sume that the function of an action is to produce 'new versions' of its input ob
jects; so an action is a creator of new versions (for the sake of simplicity it is will 
be assumed that all objects are permanent). We shall refer to the specific ver
sion of an object by indicating its input (output) relationship to a given action: 

a > A: The version of 'a' that is input to 'A'; 
A > a: The version of 'a' that has been created by 'A'; 

Note that in Fig. 2 A > a = a > B. So, from Fig. 2 we see that at time t2, the 
version a > B has been committed while the versions b > C, c > C are still only 
commitable. 

(b) The notion of commitment is hierarchic in an obvious manner: at the 
level of abstraction of action E (Fig. 1) no commitments have been made at 
time t2; yet at a lower level, outputs of A have been committed. 
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(c) Next we illustrate the idea of dynamic control over commitment. So long 
as the criteria of serializability is observed, it is possible for an action to release 
versions of objects before the action ends (if two phase locking is used then ob
jects can be released during the shrinking phase). Needless to say, this achieves 
a greater degree of concurrency at the cost of making recovery more complex. 
The early release of an object is illustrated in Fig. 3. Looking at Fig. 3(a) first, it 
is clear that even though 'B' starts using 'a' at time t2, a > B at t2 has not com
mitted, since action A has not yet terminated. 

~time 
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A 

I 
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I b,...L---( C 
I 
I 
t 1 Fig. 3. Early release of objects 

A different situation is illustrated in Fig. 3(b) where action B ends before action 
A. Here again, B > a will become commitable only after time t3. The dotted 
lines in Fig. 3 are intended to show action A's "sphere of influence" over com
mitment - only outside of this sphere are commitments allowed. From the 
point of view of recovery, 'A' can be recovered so long as no commitments have 
been made; however, a recovery after time t2 will also include the back out of 
'B'. 

Making uncommitted objects available to other actions in a controlled man
ner for performance reasons is the central theme of this paper and is explored 
further in the subsequent sections. In the rest of the paper we will assume that 
basic actions are the lowest level actions and concentrate upon the mechanisms 
suitable for the construction of actions composed out of basic actions. 

3. Degrees of Dependencies and Commitment 

Dynamic control over commitment, as discussed in the last section, is a tech
nique that can be used to obtain a greater degree of concurrency than would 
otherwise be possible. We generalise that idea further here by introducing the 
concept of degrees of dependency. In our everyday life, it is common for us to 
make tentative decisions, inform the concerned parties of these decisions and 
later on either to cancel or to confirm those decisions (take the example of 
booking a seat on a plane). By making our tentative decisions public, we are 
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essentially speeding up the process of achieving our objective, since the con
cerned parties can also perform some tentative processing that can await final 
confirmation. So far we have assumed that the status of an object is binary -
commitable or noncommitable; by making it n-ary we can model the 'tentative' 
processing in a convenient manner. 

3.1. Creator to User Dependency 

With each version of an object we associate an abstract value that reflects the 
commitable status of that version: whether it is commitable and if not the 
chances of that version attaining the commitable status. This value is returned 
by a function 'Sc' when applied to a given version at a given time: 

Sc(A> a, t) = 

CI: the version of object 'a' as created by action 'A' will probably attain a 
commitable status at some time after 't'; 

C2: the version of object 'a' as created by action 'A' will most probably at
tain a commitable status at some time after 't'; 

Cm: the version of object 'a' as created by action 'A' is commitable. 

The intuitive meanings associated with the values are given above. Formally, a 
given version (say, A> a) is said to be commitable at time t if the following 
condition is satisfied: 

Sc(A > a, t) = Cm 

Values CI and C2 represent from minimum to maximum confidence in the fact 
that the given version of an object will eventually be commitable (it is possible 
to have many values between the interval CI to Cm, but assuming only one val
ue, C2, seems adequate). This is illustrated in Fig. 4. Assume that the version of 
'a' at to is commitable and after time tl, 'a' can be released by 'A'. Since the 
processing of 'A' has not yet finished, 'a' can only be released with a low Ci val
ue: Cl. As 'A' nears the end of its processing, the chances of it being aborted 
decrease and hence the chances of A > a attaining the commitable status in
crease, so far example, at t3, the status of 'a' can be C2, while at t4, it is Cm. 
The values Ci are useful to the user of a given object in deciding how much 
reliance it can place on that version of the object; this leads us to the com
plementary idea of user-creator dependency. 

a 

A --lime 

a 

B 
a c 

Fig. 4. Dependencies 
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3.2. User to Creator Dependency 

Let Ci be the dependency value on some version a > A. If action A releases this 
object before termination, then in order that some control can be exercised over 
the dependency value of the version A > a, we introduce the concept of user
creator dependency. With each input object an action CA' in this case) is using, 
we associate a variable 'Du' that can take on the following values (with their 
associated meanings): 

Du = UI: CI is the maximum dependency value that can be placed upon 
A> a; 

U2: C2 is the maximum dependency value that can be placed upon 
A>a; 

Urn: Cm is the maximum dependency value that can be placed upon 
A>a. 

Informally, 'Ui' values can be taken to represent the 'degree of importance' an 
action is attaching to its inputs since these values determine the commitability 
of the corresponding outputs. 

The two dependency values (Ci, Uj) are related to each other in an impor
tant way; we can appreciate this by referring to Fig. 4 and asking the question 
what should be the value returned by Sc(B > a, t3), given that the fact that 'B' 
used 'a' with a dependency value Urn? Intuition tells us that it would be wrong 
for this value to be Cm, since 'a' as supplied to 'B' has not yet attained a 
commitable status. Before the relationship between them can be described for
mally, a few underlying assumptions about our model will be stated. 

(a) Every output produced by an action is a function of all the inputs to that 
action. 

(b) An action can assign in the beginning either UI or U2 values to its in
puts; as the action progresses these values can be changed. However, Urn values 
can be assigned only at the termination time of the action. 

(c) At the termination time of an action, all of the inputs to that action must 
have Urn dependencies. That is, every action ultimately must have the capa
bility of producing commitable versions of objects. 

(d) An operation ,*, is defined on the values Ci and Uj of an object: 

CI * Ui = CI 
C2 * UI = CI 
C2 * U2 = CI 
C2 * Urn = C2 
Cm*UI =CI 
Cm * U2 = C2 
Cm * Um=Cm 

The above equations are to be interpreted as follows: if an action acquires an 
object that has a dependency value Ci and uses it with a dependency value Uj, 
(the terms on the L.H.S. of the equation) then the value Ck (the term on the 
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R.H.S.) represents the upper bound on the the creator-user dependency on the 
new version of the object when it is released (made available to other actions). 
So, referring back to Fig. 4, and remembering that 'B' has used 'a' with Urn, 
and Sc(A > a, t3) = C2, then Sc(B > a, t3) = C2. In words: action B has put 
maximum dependency on its input 'a', so the output version of 'a' as produced 
by 'B' can have as much chance of attaining a commitable status as the input 
version, namely, C2. Following this, it should be clear that Sc(B > a, t4) = Cm. 

( e) The following three status values are of interest when an object 'a' is be
ing used by an action 'A': (1) the creator-user dependency value Ci - this is the 
value associated with a > A; (ii) the user-creator dependency value Ua which is 
under the control of 'A'; and (iii) the creator-user value Cr - this is the value 
placed upon the the released version of the object (A > a). 

Let Z = {a, b, c, .. , n} be the set of input objects to action 'A' and let Ua, Ub, 
Uc, .. , Un be the dependencies placed on them by 'A' (see Fig. 5). 
At some time tj, tj < te, 'A' releases some object 'c'; then the Cr value associated 
with 'c' must satisfy the following two conditions: 

Cr = min [Sc(k > A, tj)*Uc] 
kEZ 

Cr<Cm 

(1) 

(2) 

Cr is derived from the minimum of the the input Ci values and the user de
pendency value placed on the given object (Uc in this case); further, as the ac
tion has not yet terminated, Cr must be less than Cm. 

Once an action ends, the dependency values on the versions created are 
given by: 

Cr = min [Sc(k > A, t)], where t = > te 
kEZ 

(3) 

That is, the dependency value is determined by the smallest of the immediately 
preceding dependency values. So, from Fig. 4, at t3, Sc(B > a, t3) will be, using 
(3), the same as Sc(a > B, t3) (or using the 'output' notation, Sc(A > a, t3»; this 
value itself will be either C1 or C2 as determined by action A. 

We can now see that the model allows a fine degree of control over com
mitability of objects. An action can acquire uncommitable objects and release 
them, still uncommitable, with a lower or same dependency value [as deter
mined by condition (1)]. As actions terminate, these objects attain commitable 
status [as determined by condition (3)]. 

c 

_time 

Fig. 5. An Atomic Action 
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3.3 Commitment 

It is possible now to define 'commitment' formally in terms of the model: let a 
version of object 'a' be related to two actions A and B such that A > a = a > B; 
then this version is said to be committed at time 't' if the following two con
ditions hold: 

(i) Sc(A> a, t) = em; 
(ii) Action B has terminated on or before t or 'B' has placed a dependency val

ueUi>Ul. 

We can make several observations now: 
(a) The commitment of a version of an object is only possible when that ver

sion acts as an input to some other action (subject to constraints stated above). 
(b) The serializability property of atomic actions ensures that if 'a' at time tj 

is committed, then all the versions of 'a' prior to tj will also be committeed. 
(c) A Ul dependency cannot cause a commitment. In many applications, a 

user has only a vague idea about the objects needed at the start of the appli
cation; more precise information becomes available as the application pro
gresses in time. In such a case, the user would clearly wish to commit only those 
input objects that are strictly needed. This can be achieved by first acquiring 
the objects without causing any commitments (i.e. with Ul dependencies on 
them) and later on to convert the dependencies on the required objects to high
er ones, while cancelling the remaining dependencies. It is indeed possible for 
an as yet uncommitted version of an object to be made available to a number of 
actions simultaneously - all of which have placed a Ul dependency; however, 
only one of the actions will be allowed to increase its dependency value and the 
rest of the actions must eventually cancel their dependencies (generalization for 
read locks is certainly possible). Delaying the commitment of objects as long as 
possible is a natural requirement for control over recoverability - we shall dis
cuss this topic in the next section. 

To conclude this section, a simple example will be used to illustrate the 
ideas introduced so far. 

3.4. Example: Scheduling a Meeting 

Designing a distributed calendar system represents a significantly challenging 
task [14]. We will consider the task of scheduling a meeting in the distant future 
between a group of people. Following the description given in [14], this task -
an atomic action - can be seen to have the following phases: (a) the meeting 
organizer gets an agreement - without any obligations - for some possible 
meeting times; (b) after a while the organizer selects a possible meeting time
he would now certainly want to give the assurance that a meeting will be held at 
the specified time; (c) as the meeting time nears, the organizer confirms the 
meeting. 
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We shall assume some form of a distributed data base system where each 
person has a personal calendar system for keeping track of appointments and 
free time slots. So, making an appointment for a meeting essentially involves 
finding a few time slots on the various calendars as proposed options for a 
meeting and later on to fix one such time slot. Every user occasionally checks 
his calendar for meeting proposals - if a proposal is not acceptable the user can 
reject that option. 

~ time 

Fig. 6. Scheduling a meeting 

The figure above shows how the scheduling of a meeting (in its simplest 
form) can be modelled. The organizer's activities are modelled as an action M 
(for meeting) which is composed out of - in this particular case - three basic 
actions TI, T2 and T3. The task of TI is to select a number of possible meeting 
times, a Ul dependency is placed on the appropriate objects representing the 
time slots by action M (no commitment has as yet occurred). As time pro
gresses, the meeting organizer wants to narrow down the choice to one 'most 
probable' meeting time - this is done by M trying to increase Ul dependencies 
to U2. Not all such attempts will succeed - users might have rejected some op
tions (a user can reject an option by marking that time slot as occupied - com
mitted - hence invalidating Ul dependencies). Assuming a time slot agreeable 
to everyone is found, (U2 dependencies can be placed upon them), T2 is sched
uled to run - its task is to update the calendars appropriately - to indicate the 
chosen times; at the same time any superfluous dependencies are cancelled. Af
ter the termination of T2, M can release the meeting times which will have the 
dependency values C2 (assume that inputs to Mare commitable). Finally, as 
the meeting time nears, T3 is run to confirm it. M then ends having placed Um 
dependencies on the chosen time slots and the meeting time is now released 
with status 'commitable' (dependency value Cm). Running the entire activity as 
an atomic action has the advantage that recovery requirements are known 
exactly (see the next section). In the absence of the surrounding action M, it will 
be difficult to maintain recoverability over the three basic actions. 

The simple example discussed here is intended to demonstrate that interest
ing aspects of calendar management can be modelled using the ideas on de
pendencies and commitment developed in this paper. It is also worth noting 
that the state changes on objects are performed by the basic actions - the so
called 'atomic transactions' (needing stable storage and two phase commit ter
mination algorithm) and these actions can be combined into bigger actions by 
exercising control over dependencies and commitment. 
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4. Recovery Management 

It has been assumed throughout that a given action is constructed out of basic 
actions. If a basic action aborts, it raises a failure exception which must be 
handled by the enclosing action. There can be several such reasons - we shall 
enumerate them subsequently - for the detection of exceptions (or errors) dur
ing the execution of an action. 

Following Randell [8], any recovery actions taken after the detection of an 
error can include the steps of damage confinement and damage assessment: the 
former is concerned with limiting the effects of erroneous state information 
from spreading further into the system and the latter provides guidelines on the 
selection of a particular recovery strategy. In a distributed system the lack of 
centralised control makes the task of damage confinement and assessment quite 
difficult [15, 16]. The recovery management scheme to be proposed here builds 
upon the work of Davies and Bjork [9, 10, 11, 12, 13] and Merlin and Randell 
[ 15]. We shall make a number of assumptions: 

(1) A given application is structured as an atomic action (which itself is com
posed out of basic actions); within a computer system there may be a 
number of related applications. 

(ii) Associated with an application are a number of 'audit routines' for consis
tency checking and determining - perhaps interactively with the user -
the extent of backward recovery needed (in-process or post-process, see 
later). 

(iii) The dependencies - who has used whose outputs - are being recorded 
and available for later inspection during recovery. 

Let an error be detected during the execution of action C (see Fig. 7). If the 
audit routines assess the cause of the error (fault) to be within action C then 
any recovery action undertaken is known as in-process recovery; on the other 
hand, if it is assessed that the error has been caused owing to wrong inputs be
ing supplied to C (i.e. outputs from A and B) then the recovery action under
taken is known as post-process recovery [12]. In-process recovery involves the ac
tion in which the error has been detected and possibly other actions that have 
used the outputs of this action. Post-process recovery in its simplest form, in
volves, in addition, the actions that have supplied inputs to the action in which 
the error has been detected. 

a ~\ime 

A E 
a 

a 

c-0-----0-
B I I 

I 
I I 

\, \2 \ 3 Fig. 7. Recovery 
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4.1. In-Process Recovery 

Let an error be detected in action C (Fig. 7) at time t3 (current time) and let the 
recovery required be in-process. The audit routines might indicate Tj as the 
cause (e.g. Tj should not have been scheduled in the first place) in which case 
'C' can be backed out up to Tj without affecting the dependent action E. How
ever, if a back out beyond Tj is required, then it will be necessary to 'recall side 
dependencies' which in this particular case consists of cancelling the version 
C > a (marking it as invalid). What happens to action E? There are two situ
ations under which a back out of 'E' is required: (i) 'E' has placed a dependency 
value Ui > UI on C > a; or (ii) 'E' has placed a dependency value UI on C > a 
and E> a exists. We make it the responsibility of an ongoint action to make 
sure that any of its as yet uncommitable input object versions (i.e. versions with 
Ci values less than Cm) are still valid and to take the appropriate recovery ac
tion. By its very nature, it is always possible in the case of in-process recovery to 
back out the action such as C and all its dependent actions - in-process recov
ery represents the case when no commitments have been made. 

4.2. Post-Process Recovery 

Let current time be equal to tl when an error is detected in C and further, the 
audit routines assess the output from action A as incorrect. Since A > a is as yet 
uncommitable, this versions is cancelled (or marked as invalid) and 'C' is 
backed out (as discussed before). We make it the responsibility of on going ac
tions to make sure that any uncommitable versions released by them are still 
valid. If for an action it is detected that one of its output has been marked in
valid, then this represents the detection of an error which could lead to the 
invocation of either in-process or post-process recovery (within 'A' in Fig. 7). 

Assume the same situation as before except that time has advanced up to t2 
(Fig. 7) and that A > a is still not commitable (because inputs to A have not yet 
attained a commitable status). The fact that 'A' has terminated makes no logi
cal difference to the recovery actions required: indeed a suitable mechanisation 
might involve making 'A' 'active' again - purely for the purpose of invoking in
process or post-process recovery within 'A'. 

Implicit in the discussion above was the assumption that 'C' has placed a 
dependency on A > a that is greater than U 1. 

We now consider the case whereby the 'wrong input' of 'C' enjoys the status 
'committed'. Under such a situation recovery - in addition to the back out of 
'C' - is possible if the following conditions are met: (a) 'C' is the only user of 
A > a (the case considered in Fig. 7; note that if read locks have been placed on 
A> a then there could be multiple users); and (b) all the other outputs of 'A' 
are commitable only (not yet committed). It is possible then to perform recov
ery of 'A'. 

If however the above two conditions are not met - thus implying that the 
outputs of 'A' have been committed by actions in addition to 'C' - then apart 
from backing out 'C' very little else can be achieved as far as backward recov-
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ery is concerned. Any further recovery actions are very much application de
pendent and involve running compensating actions [9]. Whether recovery by 
compensation can be modelled within the framework of this model remains to 
be seen. 

A suitable mechanization of the recovery actions outlined above (determin
ing whether conditions (a) and (b) hold) might involve 'chasing' as described 
by Bjork [9] and Merlin and Randell [15]: an attempt is made to prevent the as 
yet uncommitted outputs of 'A' from getting committed. 

We conclude this section by enumerating various exceptions that could be 
raised during the execution of an action: (i) a basic action aborts; (ii) the user 
explicitly aborts the action; (iii) a request to increase one of the UI de
pendencies fails; (iv) some of the inputs to the action become invalid; (v) some 
of the outputs produced by the action become invalid; and (vi) user supplied 
consistency checks reveal an error. 

5. Concluding Remarks 

In a recent paper [17] 1. N. Gray stressed the need for 'nested transactions' for 
modelling long running applications. It is argued here that in addition to allow
ing actions to be nested, it is also necessary to provide some means of delaying 
commitments as far as possible without reducing the degree of concurrency. A 
model was proposed in which it is possible for an action to release (as well as 
process) as yet uncommitable objects. The following is a list of suggested areas 
for further research: (a) to test the suitability of the model by ~pplying it to 
various applications (so far I have considered only simple test cases); (ii) to 
consider implementation issues - the work of Bjork [18] on 'audit trails' and 
that of Needham and Herbert on 'sequencers' [19] appears to be particularly 
helpful here in deciding how to record dependencies and schedule basic actions 
within an action; (iii) lastly, any relationship to other models - such as those 
for office systems [20] - needs to be explored. 
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Fail-Safe Extrema-Finding in a Circular Distributed 
System 

E. BEST and F. PANZIERI 

In [2] an algorithm is given and analysed for finding the highest numbered node in a circular 
decentralised arrangement of nodes. We extend this algorithm to cover also the case in which 
nodes may enter a certain well-defined failure mode. 

1. Introduction 

We consider a circular arrangement of N nodes (numbered from 1 to N) in 
which nodes can receive messages from their immediate predecessors and pass 
messages to their immediate successors. Initially, no node can be assumed to 
have any knowledge about the distribution of the other nodes on the ring. We 
are requested to write an algorithm enabling node i to determine whether it is 
the one with the highest number, i.e. whether i = N. The following is the solu
tion of [2], which is a simple and elegant improvement of an algorithm by Le 
Lann [5]: 

1.1 ! i; 
1.2 do? x; {x is a local variable} 
J.3 if x < i -+ ki P 
1.4 0 x = i -+ •• ucce " 
1.5 0 x> i -+ ! x 

fi 
od 

Fig. 1. Basic algorithm BA 

We use here a dialect of guarded commands [3] and CSP [4]. For our purposes, 
the construct do ... od denotes an infinite loop, while the constructs 

ifBI -> ... D B2 -> .. D B3 -> ... tiand 
ifBI then ... else ifB2 then ... else ifB3 then ... 

are equivalent. The input command ?x enables a node to receive a message 
from its predecessor, and the output command !x is used to pass a message to its 
successor. 

BA works as follows. Initially, all node numbers start circulating (line 1.1). 
They keep circulating (lines 1.2 and 1.5) until they are taken out of circulation 
by being dropped at nodes with a higher number (line 1.3). Only the highest 
number complete a full circle and its eventual return to the sender indicates 
success (line 1.4). The program ends with node N executing "success" and all 
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other nodes waiting for more input. In [2] it is proved that BA necessitates 
O(Nlog N) message passes in the average. 

The fact that BA works with any numbering of nodes (as long as no two 
nodes have the same number) opens up the possibility, mentioned also in [2], 
that even if a node fails than the rest of the ring may continue to work satisfac
torily. The authors had set out to investigate this possibility, with the objective 
of producing a fail-safe algorithm which matches BA in elegance and ef
ficiency. In the remainder of this paper we describe three fail-safe variants of 
BA. 

2. Failure Mode and Correctness Criteria 

We consider what Chang calls "clean failures" in [1]. To be precise, we demand 
the truth of the following: 

(FI) A failure leaves the circular nature of the network intact. 
(F2) No messages can be destroyed by a failure. 
(F3) Failed nodes do not recover. 

The postulate (FI) is satisfied in many practical cases. For example, in a 
network using the Cambridge Ring [6] hardware, the failure of a node attached 
to the Ring does not affect the Ring itself. (F2) is a rather strong postulate: vio
lations of (F2) may however lead to very tricky situations. It seems therefore, at 
first, reasonable to simplify the problem of postulating (F2). As to (F3), we be
lieve that our solutions can be modified to cope with node recovery as well. 

Let LIVE denote the set of all non-failed nodes (initially, LIVE = {I; .. ,N}). 
Our task is to find an algorithm selecting the maximal number in LIVE. This 
can be described by the following two conditions: 

(CI) If node i succeeds then i = max (LIVE). 
(C2) Eventually, either LIVE = 0 or some node succeeds. 

Every algorithm satisfying (CI) - (C2) for the failure mode (Fl) - (F3) shall 
in the sequel be called a "correct fail-safe algorithm". (Cl) and (C2) can be 
viewed as the invariant and the termination condition, respectively, of such an 
algorithm. 

We further propose that the correct algorithm should moreover match the 
basic algorithm in efficiency. We take as our efficiency criterion the average 
number of message passes (we are aware that there are other possible criteria, 
for example the time between the start and the execution of "success"; however, 
we do not consider these other criteria in this paper). Thus we require that 

(E I) If no node fails then there should be a total of O(N log N) message passes 
in the average. 

Heuristic arguments which will become clear in the next section suggest that 
in general (i.e. if nodes fail) there should be no more than O(N2) message pass
es. Thus we state 
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(E2) The fail-safe algorithm should require 0(N2) message passes in the aver
age (with any reasonable definition of "average"). 

3. Fail-Safe Algorithms 

As long as the number max (LIVE) always remains on the Ring, the basic algo
rithm BA itself is a correct fail-safe solution. This suggests, firstly that there ex
ists a correct solution similar to BA, and secondly that any solution should be 
capable of detecting the absence of max(LIVE) from the Ring and bring it back 
into circulation. Most of the design decisions to be taken in the sequel are based 
on these insights. 

A few decisions can be taken straight away, greatly simplifying the search 
for a solution. We retain as a criterion for "success" the detection by a node of 
its own number as input. Further, when a node sees a smaller input it can argue 
that as long as it stays live the smaller number is insignificant, and therefore 
"skip" it. Greater inputs should be passed on unless they give definite informa
tion about other nodes having failed. Thus, lines 1.1-1.4 of BA remain un
changed while line 1.5 requires a modification. 

We decide further that a node i should be responsible for the emission (and 
re-emission, if necessary) of its own number. Thus while other nodes may store 
the number i for their own purpose, they are not allowed to emit it other than 
passing it on immediately after receipt. This decision is taken mainly because 
failing this the complexity is greatly increased; however it may have to be re
versed at a later stage. 

Unless the node numbered N fails, BA works correctly. Our decisions imply, 
however, that when node N fails then the message N will return at least to the 
first live successor of N . This node can therefore detect the failure of Nand 
take appropriate action. It can also deduce that its own number is no longer on 
the Ring and that all other live nodes have seen the message N. 

This leads immediately to our first solution in which each node keeps track 
of the maximal number known to it and proposes itself each time it receives 
that maximal number again: 

2.0 m:=i; 
2.1 !i; 
2.2 do ?x; 
2.3 if x<i --> kip 
2.4 o x = i --> "succe s" 
2.5 ox> j --> if x<m --> kip 
2.6 ox=m --> 

,. 
.1 

2.7 ox>m --> m:=x 
fi; 
!x 

fi 
od 

Fig. 2. Basic restart algorithm BRA 
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Proof: (sketch) We have to prove (C2) since (Cl) is trivial. After the first 
round the variable m in all live nodes contains N and remains fixed. If max
(LIFE) is no longer on the Ring then the message N keeps circulating, causing 
the re-emission via 2.6 of all live node numbers. Thus, amongst others, the 
number max(LIVE) will eventually be back in circulation. Deadlock through 
overcrowding of the Ring cannot occur because whenever node i enters line 2.6, 
some other node either has failed or has taken a number off the Ring, com
pensating for the additional number to be put on the Ring by node i. 

(El) is clearly satisfied for BRA. The worst case failing behaviour is for 
nodes to fail one at a time in decreasing order, starting with node N. In this case 
BRA may require 0(N2 log N) message passes (N applications of BA), which 
strongly suggests that (E2) is satisfied for any sensibly defined "average" failing 
behaviour. 

We have carried out a simulation study with different node arrangements, 
supporting this conclusion. In our simulation, a critical node (i.e. a node k such 
that the message k-l is no longer on the Ring) was given a one-in-three chance 
of failing per cycle, which is hugely unrealistic. Even then, message passing 
averaged well less than N2. 

On the other hand, BRA is evidently inefficient in two respects. Firstly, the 
numbers of failed nodes other than N (if any) keep circulating unnecessarily. 
Secondly, line 2.6 may cause the re-emission of unnecessarily many node num
bers. In the sequel we present two variants of BRA designed to partly overcome 
these inefficiencies. 

We can attack the second inefficiency by keeping at each node a counter 
variable, storing the number of nodes known to that node as being candidates 
for selection, i.e. having a higher number. The counter should be decreased ap
propriately and re-emission should take place only if it is zero, i.e. the node in 
question is really a leading candidate. We propose the following as one possible 
solution: 

3.0 (m, c) := (i , O) ; 
3.1 Ii ; 
3.2 do? x; 
3.3 if x < i ~ ski P 
3.4 CJ x = I ~ "success" 
3.5 CJ x > i -+ if x < m -+ c:= c + I; ! x 
3.6 CJ x = m -+ if c> 0 -+ c := c - I 
3.7 CJ C = 0 -+ ! i 

fi; 
3.8 !x 
3.9 CJ x> m -+ (m,e) := (x, e+ I); 
3.10 !x 

fi 
fi 

od 

Fig. 3. Restart algorithms with counting eRA 
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In CRA the count c is decremented each time the maximal message passes 
by. More refined strategies are possible, for example by inserting a conditional 
decrement in line 3.5; this would decrement c also if non-live non-maximal 
node numbers pass by. The correctness argument for these variants closely re
sembles the one given for BRA, while the message passing efficiency is slightly 
improved. 

Finally, we present a solution in which nodes keep track of the numbers of 
all higher nodes (riot just the maximum), thus enabling the extinction of non
maximal dead numbers. Each node i keeps a history of inputs x > i in a se
quence called H which is "updated" whenever the maximal number N passes 
by. Our objective is to enable a node receiving a number already contained in 
H to deduce that this node is dead. A node should therefore be able to recog
nise whether an input x is due to the failure of node x or to the re-emission of x. 
To this end we let a node re-circulate N before re-emitting its own number. It 
then follows that the "updating of H" should consist' of removing from H all 
numbers up to and including N, and inserting N at the end of H. Because N 
thus remains in H, the condition for re-emission becomes "H={N}". The fol
lowing is our proposed solution: 

The size of the sequence H does not exactly correspond to the count c of 
CRA as more than one element may be taken out of H in line 4.12. The com
plete correctness argument for HRA will be again an extension of the one given 
above. The improvement introduced by HRA lies in line 4.15 where a non
maximal node number is not propagated further because it is known to be 
dead. 

4.0 m:= i; H:= (); {() i empty equencel 
4.1 Ii; 
4.2 do ?x' 
4.3 if x < i -+ kip 
4.4 r::J x = i -+ .. ucce " 
4.5 r::J x > i -+ {(x E H or x '* m) and (x ~ H or x .s: m)} 
4.6 if x < m and x ~ H -+ H:= H.x; 
4.7 !x 
4.8 r::J x> m and x ~ H -+ H:= H. x; 
4.9 m:= x; 
~IO !x 
4.1 1 r::J x = m and x E H -+ ! x; 
4.12 "update H"; 
4.13 ifH= {x}-+!i 

r::J H,* {x} -+ kip 
~14 fi 
4.15 r::J x < m and x E H -+ kip 

fi 
fi 

od 

Fig. 4. Restart algorithm with history HRA 
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If, in retrospect, we compare the analogous parts 2.5 - 2.8, 3.5 - 3.10 and 
4.5-4.15 of BRA, eRA and HRA, respectively, we can see the incorporation of 
message passing efficiency by making the emission of both x and i dependent 
on progressively more complicated conditions. Our simulation exercise in
dicates, however, that there is not a dramatic drop in message passing, so that 
the BRA rather than the other versions should be preferred on account of its 
simplicity, unless optimisation with respect to message passing is really crucial. 

4. Concluding Remarks 

We have described several variants of a decentralised extrema-finding algo
rithm capable of tolerating certain failures. The variants were designed so as to 
minimise message passing between nodes. Possible extensions of this work 
could include taking into account other efficiency measures, as well as 
generalising the algorithms to strongly connected networks which may not be 
cyclic (an extension of the basic algorithm in this way is described in [1]. 

We have also attempted to record the heuristic considerations that led to 
our solutions. A comparison with the well-established design methodologies for 
sequential programs may be of interest. We have applied the stepwise approach 
in the following way. The initial step from the basic algorithm to the fail-safe 
algorithm corresponds to an extension of the specifications: the new algorithm 
is fail-safe w.r.t. the original specifications if it is correct w.r.t. the extended 
specifications set out in section 2. The next step consists of finding a correct so
lution first and then transforming it into a more efficient one while retaining its 
correctness. Our specifications and correctness criteria are half-formal, but we 
would regard it as important that our arguments can (and should) be made 
completely formal for verification purposes. All of these techniques for goal
directed design, we believe, can be applied very advantageously in the design of 
distributed algorithms. 

Acknowledgements. We wish to thank Graham Wood for the useful discussions we had during 
the preparation of this paper. We acknowledge the financial support of the Science and En
gineering Research Council (U.K.) and of the Royal Signals and Radar Establishment (U.K.). 

References 
l. E. Chang, Decentralised Algorithms in Distributed Systems, TR-CSRG-103, Computer 

Systems Research Group, University of Toronto (October 1979). 
2. E. Chang and R. Roberts, An Improved Algorithms for Decentralised Extrema-Finding in 

Circular Configurations of Processes, CACM 22/5 (May 1979), 281- 283. 
3. E. W. Dijkstra, Guarded Commands, Non-Determinacy and Formal Derivation of Pro

grams, CACM 18/8 (August 1975),453-457. 
4. C. A. R. Hoare, Communicating Sequential Processes, CACM 21/8 (August 1978), 666 

-677. 
5. G. LeLann, Distributed Systems - Towards a Formal Approach, Information Processing 

77, North Holland, Amsterdam, 155-160. 
6. M. V. Wilkes and D. J. Wheeler, The Cambridge Communication Ring, Proc. of Local 

Area Network Symposium, Boston, National Bureau of Standards, (May 1979). 

Copyright © AICA. Reprinted with permission from the Annual AICA Conference, October 
1982, Padua, pp. 141-143. 

503 



The Design of a Reliable Remote Procedure Call 
Mechanism 

S. K. SHRIVASTAVA and F. PANZIERI 

Abstract. In this contribution we describe the design of a reliable Remote Procedure Call 
mechanism intended for use in local area networks. Starting from the hardware level that pro
vides primitive facilities for data transmission, we describe how such a mechanism can be con
structed. We discuss various design issues involved, including the choice of a message passing 
system over which the remote call mechanism is to be constructed and the treatment of various 
abnormal situations such as lost messages and node crashes. We also investigate what the re
liability requirements of the Remote Procedure Call mechanism should be with respect to 
both the application programs using it and the message passing system on which it itself is 
based. 

Index Terms. Atomic actions, data communication, distributed systems, fault tolerance, local 
area networks. 

I. Introduction 

In this contribution we describe the design of a reliable Remote Procedure 
Call (RPC) mechanism which we have been investigating within the context of 
programming reliable distributed applications. In the following we consider a 
distributed system as composed of a number of interacting "client" and "serv
er" processes running on possibly distinct nodes of the system; the interactions 
between a client and a server are made possible by the suitable use of the RPC 
mechanism. Essentially, in this scheme a client's remote call is transformed into 
an appropriate message to the named server who performs the requested work 
and sends the result back to the client and so terminating the call. The RPC 
mechanism is thus implemented on top of a message passing interface. Some of 
the interesting problems that need to be faced are: 1) the selection of appropri
ate semantics and reliability features of the RPC mechanism, 2) the design of 
an appropriate message passing interface over which the RPC is to be imple
mented, and 3) the treatment of abnormal situations such as node crashes. 
These problems and their solutions are discussed here. We shall concentrate 
primarily on the relevant reliability issues involved, so other directly or 
indirectly related issues such as type checking, authentication, and naming 
will not be addressed here. 

The RPC mechanism described in the following has been designed for a lo
cal area network composed of a number of PDP 11145 and LSI 11123 com
puters (nodes) interconnected by the Cambridge Ring [1]; each node runs the 
UNIX1 (V7) operating system. However, most of the ideas presented in here 
are, we believe, sufficiently general to be applicable to any other local area 
network system. 
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II. An Overview of Reliability Issues in Distributed 
Programming 

In this section we briefly review the main reliability problems in distributed 
programming and discuss which of these problems need closer attention during 
the design of an RPC mechanism. 

In this discussion we shall concentrate upon a distributed system consisting 
of a number of autonomous nodes connected by a local area network. A node in 
such a network will typically contain one or more processes providing services 
(e.g., data retention) that can be used by local or remote processes. We shall re
fer to such processes as "severs" and "clients," respectively. So an execution of 
a typical application program will give rise to a computation consisting of 
a client making various service requests to servers. These service requests 
take the form of procedure calls - if a server is remote then the calls to it will 
be remote procedure calls. In the rest of the paper we will assume the general 
and more difficult case of remote calls (note, however, that it is possible to hide 
the "remoteness" of servers by providing a uniform interface for all service 
calls). It can be seen that we have adopted a "procedure based" model of 
computation rather than a "message based" model. It has been pointed out that 
these two models appear to be duals of each other [2]. Bearing this in mind, we 
have chosen to support the first model because this allows us to directly apply 
the existing knowledge on the design and development of programs to distrib
uted systems. 

Let us ignore, for the time being, any reliability problems in the mechani
zation of a suitable RPC facility and concentrate upon the reliability problems 
at the application program level. The most vexing problems is to do with 
guaranteeing a clean termination of a program despite breakdowns (crashes) of 
nodes and communication subsystems. It is now well known that this can be 
achieved by structuring a program as an atomic action with the following "all or 
nothing" property: either all of the client's requested services are performed or 
none are [3] - [5]. Thus, a program terminates either producing the intended 
results or none at all. In a distributed system the implementation of atomic ac
tions requires the provision of a special protocol, such as the two phase commit 
protocol [3], [4] to coordinate the activities of clients and servers. In addition, 
some recovery capability is also needed at each node to "undo" any results pro
duced at that node by an ongoing atomic action that is subsequently to be ter
minated with null results. We shall not discuss here the details of how the vari
ous facilities needed for the provision of atomic actions can be constructed -
they are well documented in the already cited references - but draw the 
reader's attention to Fig. I which shows a typical hierarchy of software in
terfaces. The point to note is that the atomic action software that supports L3 
contains major reliability measures for application programs (undo capability, 
two phase commit). This has important consequences on the design of RPC -
in particular in choosing its semantics and reliability capability. 

The algortihm below, which shows the bare essentials of an RPC mecha
nism, will be used to illustrate the reliability problems. 
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Client 

send ( ... ); 

recei ve ( ... ); 

Server 
cycle 

--+ receive ( ... ); 

"work" 

~ send ( ... ); 
end 

The send and receive primitives provide a message handling facility (the pre
cise semantics of which are not relevant in the following discussion). Suppose 
that the message handling facility is such that messages occasionally get lost. 
Then a client would be well justified in resending a message when it "suspects" 
a loss. This could sometimes result in more than one execution at the server. To 
take another case, suppose that the client's node crashes immediately after the 
server starts to perform the requested work. Suppose now that the client's node 
"comes up" again and the client reissues the remote call: 

Application Program 
L3-------------------

oftware for Atomic Actions 
L2--------------------

Software for RPC 
Ll --------------------

Software for Message Passing 
LO--------------------

Hardware 

Fig. 1. Hierarchy of software interfaces 

this again gives rise to the possibility of repeated executions at the server (the 
above situation can occur even if messages never get lost). If a client is not 
aware of the fact that repeated executions have taken place, then many of a 
server's executions will be in vain, with no client to receive the sent responses. 
Such executions have been termed orphans by Lampson and many ingenious 
schemes have been deviced for detecting and· treating orphans [6], [7]. The 
above mentioned problems have led Nelson to classify the semantics of remote 
procedure calls as follows [7]. 

1) "Exactly Once" Semantics: If a client's call succeeds (i.e., the call does 
not return abnormally), then this implies that exactly one execution has taken 
place at the server; this is, of course, the meaning associated with conventional 
procedure calls. 

2) "At Least Once" Semantics: If a client's call succeeds, then this implies 
that at least one execution has taken place at the server. Further subclassifi
cation is also possible (e.g., first one or last one) indicating which execution is 
responsible for the termination of a call. 

To start with, it should be clear that out of the two, 1) has the more desir
able semantics but is also the more difficult of the two to achieve. An approach 
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that has been widely used (see, for example, [3]) is to adopt - for the sake of 
simplicity at the RPC level - the "at least once" semantics and to make all of 
the services of servers idempotent (that is, repeated executions are equivalent to 
a single execution). Thus the problems of repeated executions and orphans can 
be more or less ignored; The major shortcoming of this approach is that it is 
relatively difficult to provide servers with arbitrary services (e.g., a server can
not easily provide services that include increment operations); for this reason 
we have rejected this option in our RPC design and have chosen instead the 
"exactly once" semantics. This has been achieved by introducing sufficient 
measures at the RPC level to enable processes to reject unwanted messages aris
ing during a call. This capability is not enough to cope with orphans, however, 
since as stated before, a client's crash can result in more than one remote call 
directed at a server when only call was intended. We treat orphans at the next 
level (in the software supporting L3, see Fig. 1) by insisting that all programs 
that run over L3 be atomic actions with the "all or nothing" property. In par
ticular, this means that any executions at servers be atomic as well. This atom
icity criteria implies that repeated executions at a server are performed in a 
logically serial order with orphan actions terminating without producing any 
results. This is the basis of the work presented in [5] where the techniques need
ed for the construction of level L3, given the existence of L2, are described (a 
broadly similar approach has, we understand, been independently developed 
by Liskov's group at the Massachusetts Institute of Technology [8]). 

To sum up this section: 1) we have chosen the exactly once semantics for our 
RPC, 2) the main reliability feature needed at the RPC level is that necessary to 
discard any unwanted messages, and 3) any other reliability features necessary 
for ensuring proper executions of application programs are added not at the 
RPC level but at the next level concerned with the provision of atomic actions. 
In the design of the RPC mechanism to be presented we have followed the rule 
of keeping each level as simple as possible; this has been achieved by making 
reliability mechanisms application specific rather than general as argued in [9]. 

III. Communications Support for RPC: Datagram Versus 
Transport Service 

The implementation of RPC requires that the underlying level support some 
kind of Interprocess Communication (IPC) facility. On the one hand, this fa
cility could be quite sophisticated with features such as guaranteed, undam
aged and unduplicated delivery of a message, flow control, and end to end ac
knowledgment. An interface supporting such features is usually said to provide 
a transport service for messages. On the other hand, the IPC facility could be 
rather primitive, lacking most of the above desirable properties. An interface 
supporting such an IPC mechanism is said to provide a datagram service [10]. 

Transport services are designed in order to provide fully reliable communi
cation between processes exchanging data (messages) over unreliable media -
they are particularly suitable for wide area pocket switching networks which 
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are liable to damage, lose, or duplicate packets. The implementation of a 
"transport layer" tends to be quite expensive in terms of resources needed since 
a significant amount of state information needs to be maintained about· any 
data transfer in progress. The initialization and maintenance of this state infor
mation, is required to support the abstraction of a "connection" between pro
cesses. To establish, maintain, and terminate a connection reliably is rather 
complex and a significant number of messages are needed just for connection 
purposes [11]. 

On the other hand, a datagram service provides the facility of the trans
mission of a finite size block of data (a message known as a datagram) from an 
origin address to a destination address. In its simplest form, the datagram ser
vice does not provide any means for flow control or end to end acknowledg
ments; the datagram is simply delivered on a "best effort" basis. If any of the 
features of the transport service are required, then the user must implement 
them specifically using the datagram service. 

At a superficial level, it would seem that a good way to construct a reliable 
RPC would be to start with a reliable message service, i.e., a transport service. 
However, we reject this viewpoint and adopt the datagram service as the more 
desirable alternative. The argument for this decision is as follows. To start with, 
it must be noted that in the distributed system previously mentioned, the users 
are not given the abstraction of sending or receiving messages; rather only a 
very specific piece of software - that needed to implement RPC - is the sole 
user of messages. As such the full generality of the transport service is not need
ed. The provision of the transport service entails a considerable reduction of the 
available communication bandwidth (this is because of the overheads of con
nection management and the need for end to end acknowledgment). We may be 
able to utilize this bandwidth more effectively by reducing the need for con
nection management and acknowledgments as much as possible. This is indeed 
feasible in typical local area network since the underlying hardware - the Cam
bridge Ring in our case - provides a reliable means of data transmission. So a 
fairly reliable datagram service (whereby every datagram is delivered with a 
high probability to its destination address) can certainly be built on top of the 
hardware interface. Any additional facilities needed are then specifically imple
mented making the implementation of the RPC a bit more complex but highly 
efficient. Hence, we conclude that it is appropriate to give the software of the 
RPC mechanism the responsibility of coping with any unreliabilities of a data
gram service. In the next section we will describe the specific datagram service 
to be implemented over the Cambridge Ring hardware in order to support our 
RPC mechanism. 

IV. The Hardware and the Datagram Service 

The Cambridge Ring hardware [12] provides its users with the ability to trans
mit and receive packets of a fixed size between nodes connected to the Ring -
each transmitted packet is individually acknowledged. At the Ring level each 
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node is identified by a unique station address. The following two primitive 
operations are available. . 

1) transmit-packet (destination: ... ; pkt: ... ; var status: ... ); where the ack
nowledgement is encoded as status = (OK, unselected, busy, ignored, transmis
sion-error). 

The meaning of "status" is as follows: 
status = OK: The destination station has received the packet. 
status = unselected: The packet was not accepted by the destination station 

because that station was "listening" to some other source station. 
status = busy: The packet was not accepted by the destination station be

cause that station was "deaf' (not listening to anyone). Note that either of the 
above two status conditions implies that the destination station is most likely to 
become available shortly. 

status = ignored: The packet was not accepted because the destination sta
tion was not on-line. This indication can be taken to mean that there is little 
chance of packets being accepted by that station for a while. 

status = transmission-error: The packet got corrupted somewhere during its 
passage through the Ring. This is the only case where the response of the desti
nation station is not known. 

It is worth mentioning here that the transmit primitive does not have a time
out response associated with it. As a consequence, the execution of this primi
tive will not return if the packet is not acknowledged due to a fault in the Ring 
hardware. 

2) receive-packet (var source: ... ; var pkt: ... ). 
The receive primitive allows for the reception of packets either from any 

source station on the Ring or from a specific source (a special operation is pro
vided by the Ring for setting up a station in either of the modes). In either case, 
"source" will contain the identity of the sender with "pkt" containing the re
ceived packet. A curious aspect of the Ring is that each node has a parity error 
detection logic, but neither the sender nor the receiver of a packet get any indi
cation when a parity error is detected in a packet (this does not matter all that 
much in reality as the probability of a packet getting corrupted has been shown 
to be very low). 

We shall assume that all of the hardware components (e.g., Ring, pro
cessors, clocks) either perform exactly as specified or a component simply does 
not work (so, for example, for the Ring, a "send" or "receive" operation will 
not terminate). If this assumption were realistic, then the design to follow has 
some very nice reliability properties. However, unpredictable behavior of the 
hardware interface (i.e., a behavior that does not meet the specification) is like
ly to result in the same at the RPC/user interface to the extent that guaranteed 
behaviour cannot be promised. 

The proposed datagram service will provide its users (processes) with the 
ability of: 1) sending a block of data to a named destination process, and 2) re
ceiving a block of data from a specific or any process. We shall ignore here the 
fine details of how this may be implemented using the Ring operations de
scribed earlier; only the properties of the datagram service primitives will be 
described. 
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I) send---'11sg (destination: ... ; message: 
status = (OK, absent, not-done, unable). 

... , var status: ... ); where 

The message is broken into packets and transmitted to the home station of 
the destination process. If all these packets are accepted by the station, then 
"status = OK" will hold. Note that this only means that the message has 
reached the station, and not that it has been accepted by the destination pro
cess. If a packet is not accepted (possibly even after a few retries) by the station 
(packet level response is "unselected" or "busy"), then "status = not-done" will 
hold. A packet level response of "ignored" is translated as "status = absent" in
dicating that the destination process is just not available. The last two responses 
indicate that the message was not delivered. A time-out mechanism will be 
needed to cope with Ring malfunctions during the transmission of a message. 
The "unable" status holds either if the time out expires or if a packet level 
"transmission-error" response is obtained. The "unable" response indicates in
ability of the datagram layer to deliver a message properly (the message mayor 
may not have reached the destination station). 

2) receive---'11sg (source: ... ; var msg: ... ). 

The above primitive is to receive a message from a specified "source" pro
cess. This primitive is implemented by repeatedly making use of the receive
packet ( ... ) primitive. A time-out mechanism will be needed to detect an in
complete message transmission and Ring failures. Any corruption of the sent 
message can be detected if the sender includes a checksum in the message and 
appropriate computation is performed at the receiver; corrupted messages are 
simply discarded. So the receive----I1lsg ( ... ) primitive only delivers a "good" 
message (if any). 

The receive_msg ( ... ) primitive can also be used for receiving messages 
from any source by simply specifying "source" parameter as "any". 

The datagram service described above is based on the Basic Block Protocol 
designed at Cambridge [13]. 

v. RPC Mechanism 

A client invokes the following primitive to obtain a service from a server 
(where the "time-out" parameter specifies how long the client is willing to wait 
for a response to his request): 

remote_call (server: ... ; service: ... ; var result: 
out: ... ); 

where status = (OK, not-done, absent, unable) 

and parameters and results are passed by value. 
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The meaning of the call under various responses is given below. 
status = OK: The service specified has been performed (exactly once) by the 

server and the answers are encoded in "result." 
status = not-done: The server has not performed the service because it is cur

rently busy (so the client can certainly reissue the call in the hope of getting an 
"OK" response). 

status = absent: The server is not available (so it is pointless for the client to 
retry). 

status = unable: The parameter "result" does not contain the answers; 
whether the server performed the service is not known. The action of the client 
under this situation will depend typically on the property of the requested ser
vice. If the service required has the idempotency property, then the client can 
retry without any harm; otherwise backward recovery should be invoked to 
maintain consistency. How this is achieved is not relevant here; it is sufficient to 
observe, as noted in the section on reliability issues, that the consistency and re
covery problems could be handled within the framework of the two phase com
mit protocol and atomic actions. 

We believe that these responses are meaningful, simply understood, and 
quite adequate for robust programming. We shall show next that it is possible 
to design RPC with the above properties based on our datagram service despite 
numerous fault manifestations in the distributed system (including node 
crashes). A skeleton program showing only the essential details of the RPC im
plementation is depicted below which should be self-explanatory. The follow
ing two assumptions will be made in the ensuing discussion: 1) some means ex
ists for a receiver process to reject unwanted (i.e., spurious, duplicated) mes
sages; the next section contains a proposal for achieving this goal; 2) node 
crashes amount to that station being not on line. We now consider the treatment 
of various responses obtained during message handling. 

Client 
remote-call ( ... ) corresponds 
to the following code: 

send-Illsg ( ); 
"send service request" 

set (time-out); 
repeat 

receivLmsg ( ); 
until msg = valid; 

Server 
cycle 

repeat "get work" 
receive_msg (any, ... ); 
until msg = valid; 

"perform work" 

"send result" 
send_msg ( ); 

end; 

1) The Client Sends a Service Request: Recall that a send_msg ( ... ) can re
turn the response "OK," "absent," "not done," or "unable." If the response is 
"OK," the control goes to the "set (time-out) statement. If the response is "ab
sent," then the execution ofremote_call ( ... ) terminates with "status = absent." 
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If the response is "not-done," then the message is sent again. If after a few re
tries the same response is obtained, then the execution of remote_call ( ... ) ter
minates with "status = not-done." A few retries can also be made if the 
send_msg ( ... ) results in an "unable" response. If this response still holds after 
retries, then the execution of remote-call ( ... ) terminates with "status = un
able." Note that it is all right to send a message repeatedly. The server is in a 
position to discard any duplicates. 

2) The Client Waits for a Message: The client prepares to wait for a response 
from the server. A time-out is set to stop the client from waiting forever; the 
maximum duration of the waiting is as specified in the last parameter of the 
remote_call ( ... ). All the unwanted messages are discarded. A client may get 
such messages, for example, as a result of the actions performed by that node 
before it crashed and came up again. If a valid message is received, then the 
execution of remote_call ( ... ) terminates with "status = OK" and "result" con
taining the answer. If the time-out expires, then the execution of the remote 
_call ( ... ) terminates with 'status = unable" Note that "unable" response can 
be obtained for several reasons: server did not receive the message, server node 
crashed, or server's message not received because of a Ring fault. 

3) Server Waits for a Service Request: Any spurious, in particular duplicat
ed, messages are rejected. This guarantees that despite the possibility of repeat
ed requests being sent by a client, only one service execution will take place. 

4) Server Sends the Reply: If the execution of send_msg ( ... ) results in an 
"OK" response, then the server is ready for the next request - it goes to the be~ 
ginning of its cycle. Note that it is not guaranteed that the client will receive the 
reply, rather it implies that most probably the reply has reached the client. If 
the "send" operation gives rise to the "absent" response, then "unable" is sig
naled to the server. If the "send" operation gives rise to either a "not-done" or 
an "unable" response, then the message can be resent a few times before accept
ing defeat by signaling "unable" to the server. The reason for mapping all the 
three abnormal responses of send_msg (. .. ) onto a single "unable" response is 
based on the belief that it is of little interest to a server as to why he was not 
able to deliver the result satisfactorily (this response means that most probably 
the client did not receive the reply). As before, any recovery actions of the serv
er will be handled within the framework of atomic actions and the two phase 
commit protocol. 

We conclude that the level concerned with RPC implementation provides 
three operations: 1) remote_call ( ... ) - this is the client half of the program 
with the semantics discussed earlier; 2) geLwork ( ... ) - this corresponds to the 
repeat loop code of the server; and 3) send_result ( ... , status) - this cor
responds to the code concerned with sending of the results, with status = (OK, 
unable), where the "absent," "not-done," and "unable" responses of send-Dlsg 
( ... ) are all mapped onto "unable" response of send-result. 

It should be noted that if fault manifestations are rare and messages are de
livered with a high probability, then almost always, only two messages are re
quired for RPC. This is not possible if the transport service is used for message 
passing. 
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VI. Generation of Sequence Numbers 

In the previous section it was assumed that a receiver is always in a position to 
reject unwanted messages; this can be arranged by appropriately assigning se
quence numbers (SN's) to messages. The problem of sequence numbering of 
messages is fairly complex if tolerance to node crashes is required. For 
example, it is necessary for a process of a node that has "come up" after a crash 
to be able to distinguish those incoming messages that have originated as a re
sult of any actions performed before the crash. This typically requires main
taining relevant state information on a "crash proof' storage. This is a com
plicated and expensive process, so a scheme that has minimum crash proof stor
age requirements is to be preferred. A transport level is designed to cope with 
sequence numbering problems and users are not concerned with them; how
ever, in our case they need to be generated explicitly within the RPC level. 
There can be three approaches to the generation and assignment of SN's. 

I) SN's are unique over a given client-server interaction: this would be the 
approach implicitly taken by a transport level supported RPC. This is a fairly 
complex approach requiring the maintenance of a relatively large amount of 
state information that has to survive crashes [11]. 

2) SN's are unique over node to node interactions: rather than maintaining 
state information on a process to process basis, it is possible to maintain infor
mation on a node to node basis only. Clearly, it is less demanding than 1) 
above, in its requirements for crash proof storage. 

3) SN's are unique over the entire system: if SN's are made unique over the 
entire network, then a very simple scheme suggests itself. A server need only 
maintain "the last largest SN received" in a crash proof storage (and as we shall 
see, even this requirement can be dispensed with). Further, all the retry mes
sages are sent·by a sender with the same SN as the original message. If a server 
accepts only those messages whose SN is greater than the current value of "last 
largest SN," then it is easy to see now that we have the server property assumed 
in the previous section (that of rejecting unwanted messages). A similar ap
proach is necessary at the client's end. 

We have chosen to incorporate the third method in our design because, as 
indicated above, coping with node crashes is comparatively easier in such a 
technique. Two of the best known techniques for the generation of network 
wide unique sequence numbers are based on: 1) the circulating token method 
of Le Lann [14], and 2) the loosely synchronized clock approach of Lamport 
[15]. In the former all of the nodes are logically connected in a ring configura
tion and an integer valued "token" circulates round the ring in a fixed direc
tion. A node that wants to send a message waits for the token to arrive, then it 
copies its value, increments the value of the token, and passes it on to the next 
node. The copied value can be used for sequence numbering. In the latter 
method each node is equipped with a clock and each node is also assigned a 
unique "node number." A sequence number at any node is the current clock 
value concatenated with the node number. For "acceptable behavior" (see lat
er) it is necessary that the clock values at various nodes be approximately the 
same at any given time. This is achieved as follows. Whenever a process at say 

513 



node ni receives a message, it checks the SN of that messsge with the current SN 
of ni; if SN (received) is greater or equal to SN (ni), then the clock of ni is 
advanced by enough ticks to make SN(ni) greater than SN(received). 

Out of the above two methods, we have adopted the second in our system 
for the following two reasons: I) because of the kind of message facility we are 
using, it will not be easy for a node to find out whether its sent token has been 
received by the next node or not; as a result the detection of the lost token is not 
a straightforward process; and 2) the algorithm for the reinsertion of the token 
- which must ensure that only one token gets inserted - is rather complex. In 
comparison, as we shall see, Lamport's technique can be made to tolerate lost 
messages and node crashes in a straightforward manner. We shall next describe 
how we have incorporated Lamport's technique into our design. 

The SN at a node at any time is constructed out of the time of day and 
calendar clock of the node and the Ring station number. 

~N =Itime and datelstation number I 

The SN of a node is maintained by a monitor [16] that provides the follow
ing two procedures: 

geLSN(var Lnumber: ... ); 

this procedure returns the SN 

updatcSN(L number: ... ); 

The SN at the monitor is compared with passed sequence number and the 
clock of the node adjusted as described earlier. The SN's are used in the RPC 
algorithm as depicted below. 
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Client 

i:= geLSN ( ... ); 

send_msg ( ... ); 
"message includes i" 

set (time-out); 
repeat 

receivcmsg ( ... ); 
until msg . SN = i; 

Server 
begin 

llsn:= geLSN ( ... ); 
"llsn =: last largest seq. no." 

cycle 

repeat "get work" 
receive_msg (any, ... ) 

until msg . SN > llsn; 
llsn := msg . SN; 

"perform work" 

send_msg ( ... ); 
"msg sent with SN = llsn" 

end; 
end; 



Strictly speaking, in our system there is no logical requirement that the vari
ous clocks be "approximately the same." However, in the absence of such a 
situation, a client with a slower clock will have difficulty in obtaining services 
since his requests will stand a higher chance of rejection by servers. Hence, it is 
necessary that each node regularly receives messages from other nodes so that it 
can keep its clock value nearer to those of others. For this purpose we maintain 
two processes at each node (see below). 

Broadcaster 
cycle 

delay (t); 
i:= geLSN ( ... ); 
for all remote nodes 
do 

send_msg ( ... ); 
"send message with SN = i 
to a clock synchronizer" 

end; 

Clock Synchronizer 
cycle 

receive_msg ( ... ); 
update_SN (msg . SN); 

end; 

The "broadcaster" process of a node regularly (say once every few minutes) 
sends its sequence number to all of the remote clock-synchronizer processes. A 
few retries can be made if a send operation returns a "not-done" or an "unable" 
response. If these responses persist or an "absent" response is obtained, then no 
further attempt is made to send the message to that clock-synchronizer in that 
cycle (at this level, a crashed node in no way affects the noncrashed nodes). 

We shall now discuss how our sequence numbering scheme can be made to 
tolerate node crashes economically. We can avoid the need for any crash proof 
storage for our scheme by being careful during the start up phase of a node af
ter a crash. In a centralized system, when the computer system is started up, the 
operator inputs the time and date to the system clock. This is not desirable in 
our system since careless clock updates can introduce problems. For example, 
entering "future time and date" will eventually affect the rest of the system in 
that all clocks will become "inaccurate" in the sense that they will not represent 
physical time (logically this is irrelevant). Also, entering a "past time and date" 
can result in the acceptance of wrong messages. We simply insist that the 
"clock-synchronizer" process be the only process (with one exception, see be
low) that can update the clock. So when a node comes up, eventually (within a 
few minutes) it will be able to get an appropriate clock value. An important re
quirement is that a node, when it comes up, should have its clock initialized to 
zero. The only qrawback of the above scheme is that if all the other nodes are 
down (presumably a rare event), then our node will never get a clock value. 
This problem can be solved by giving some privileged user the authority for 
clock updates. 

We conclude this section by summarizing the net effect of our sequence 
number assignment and generation scheme on the fault-tolerant behavior of 
our RPC mechanism: 1) since none of the state information of a call is main
tained on a crash proof storage, a call does not survive a crash; 2) the clock 
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management scheme ensures that any messages belonging to a "crashed call" 
are ignored. 

VII. Concluding Remarks 

The design presented here is currently being implemented on our UNIX sys
tems. At a superficial level it would seem that to design a program that pro
vides a remote procedure call abstraction would be a straightforward exercise. 
Surprisingly, this is not so. We have found the problem of the design of the 
RPC to be rather intricate. To the best of our ability we have checked that all of 
the possible normal and abnormal situations properly map onto the responses 
of the "remote_call ( ... )," "geLwork ( ... )," and "send_result ( ... )." Clearly, a 
formal validation exercise and experience with the completed implementation 
should expose any inadequacies in our design. 

Note Added in Proof" The RPC is now operational; its implementation is de
scribed in the next paper of this chapter. 

Acknowledgement. The authors' understanding of the subject matter reported here has been 
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also benefited from informal contacts with other groups, most notably those at Cambridge, 
MIT, and Xerox. 

References 

I. M. V. Wilkes and D. J. Wheeler, "The Cambridge communication ring," in Proc. Local 
Area Network Symp., Boston, MA, Nat. Bureau of Standards, May 1979. 

2. H. C. Lauer and R. M. Needham, "On the duality of operating system structures," in Proc. 
2nd Int. Symp. on Operating Syst., IRIA, Oct. 1978; also in Oper. Syst. Rev., vol. 13, pp. 3 
-19, Apr. 1979. 

3. B. Lampson and H. Sturgis, "Atomic transactions," in Lecture Notes in Computer Science, 
Vol. 105. New York: Springer-Verlag, 1981, pp. 246-265. 

4. J. N. Gray, "Notes on data base operating systems," in Lecture Notes in Computer Sci
ence, Vol. 60. New York: Springer-Verlag, 1978, pp. 398-481. 

5. S. K. Shrivastava, "Structuring distributed systems for recoverability and crash resis
tance," IEEE Trans. Software Eng., vol. SE-7, pp. 436-447, July 1981. [Also Chap. 5] 

6. B. Lampson, "Remote procedure calls," in Lecture Notes in Computer Science, Vol. 105. 
New York: Springer-Verlag, 1981, pp. 365 - 370. 

7. B. J. Nelson, "Remote procedure call," Ph.D. dissertation, Dep. Comput. Sci., Carnegie
Mellon Univ., Pittsburgh, PA, CMU-CS-81-119, 1981. 

8. B. Liskov, "On linguistic support for distributed programs," in Proc. Symp. Reliable Dis
tributed Software and Database Syst., Pittsburgh, PA, July 1981, pp. 53-60. 

9. J. H. Saltzer, D. P. Reed, and D. D. Clark, "End to end argument in system design," in 
Proc. 2nd Int. Conf. on Distributed Syst., Paris, France, Apr. 1981, pp. 509- 512. 

10. R. W. Watson, "Hierarchy," in Lecture Notes in Computer Science, Vol. 105. New York: 
Springer-Verlag, 1981, pp. 109 - 118. 

II. C. A. Sunshine, and Y. K. Dalal, "Connection management in transport protocols," in 
Computer Networks, vol. 2. Amsterdam, The Netherlands: North-Holland, 1978, pp.454 
-473. 

516 



12. Science and Engineering Research Council (U.K.), "Cambridge data ring," Tech. Note, 
Sept. 1980. 

13. R. M. Needham, "System aspects of the Cambridge ring," in Proc. 7th Oper. Syst. Symp., 
Dec. 1979, pp. 82 - 85. 

14. G. Le Lann, "Distributed systems: Towards a formal approach," in Information Process
ing 77. Amsterdam, The Netherlands: North-Holland, 1977, pp. 155-160. 

IS. L. Lamport, "Time, clocks and the ordering of events in a distributed system," Commun. 
Ass. Com put. Mach., vol. 21, pp. 558- 565, July 1978. 

16. C. A. R. Hoare, "Monitors: An operating system structuring concept," Commun. Ass. 
Comput. Mach., vol. 17, Oct. 1974. 

Copyright © 1982 IEEE. Reprinted, with permission, from IEEE Trans. on Computers, 
Vol. C-31, No.7, pp. 692-697, July 1982. 

517 



Reliable Remote Calls for Distributed UNIX: 
An Implementation Study 

F. PANZIERI and S. K. SHRIVASTAVA 

Abstract. An implementation of a reliable remote procedure call mechanism for obtaining re
mote services is described. The reliability issues are discussed together with how they have 
been dealt with. The performance of the remote call mechanism is compared with that oflocal 
calls. The remote call mechanism is shown to be an efficient tool for distributed programming. 

Introduction 

Weare currently in the process of implementing a UNIX * based distributed 
system with the objective of investigating various reliability issues in the design 
and implementation of such systems. Our current hardware configuration con
sists of a number of PDPll computer systems (nodes) connected by the Cam
bridge Ring local area network [1]. Each node has at least 10 Mbytes of disc 
storage, runs the UNIX V7 operating system and supports a small group of 
users with broadly similar research interests. In this context, we envisage the 
distributed system as a loosely coupled system of largely autonomous nodes. 
This view has led us to assume that in such a system, users' accesses to system 
resources will be confined largely to those local to their nodes and further, any 
remote access will typically be concerned with file manipulations. It was our 
task to implement appropriate protocols for inter-process communications. 
Two design decisions were taken at the outset: (i) to provide a uniform in
terface to both local and remote objects, and (ii) to make no changes to the 
UNIX operating system. Since UNIX provides a procedure call based interface 
to all services (e.g. file open, close), it seems natural to provide access to remote 
services through a remote procedure call (RPC) mechanism. The implemen
tation of such a remote call mechanism is the subject of this paper. In view of 
the second design decision, all of the implemented RPC software in effect runs 
as a UNIX application software, hence the RPC response can never be made as 
good as that from a local system call. To get reasonable remote responses, it was 
in our interest to cut down the RPC software to the barest minimum, thus im
plying the usage of simple communication protocols: an apparently conflicting 
requirement with that of achieving reliability. As the performance figures for 
the RPC show, we have managed to get acceptable response times for remote 
file accesses (the most likely use of the RPC); however this has not been 
achieved by compromising reliability. 

* UNIX is a Trademark of Bell Laboratories 
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1. RPC Semantics and Reliability Requirements 

An implementation of a RPC mechanism essentially involves sending the cli
ent's request as a message to the appropriate server and then receiving the serv
er's response which constitutes the end of the call. Since the client and the serv
er are on different machines, any good RPC mechanism must cope effectively 
with the problems arising from a crash of one of the machines and any unrelia
bility of the underlying data communication facility. These problems and their 
solutions are discussed in [2, 3], and our particular approach to reliable RPC is 
described in [4]. Since the design of the RPC mechanism has already been de
scribed elsewhere [4], we shall not elaborate it here. However, for the sake of 
completeness, a very brief discussion on reliability problems and their solutions 
is presented here. 

Figure I depicts the message exchanges for a call between a client and a 
server. 

Client 

send (- .. ); 

receive ( ... ); 

Fig. 1. Simple RPC 

"request" 
----) 
----) 
----) 

(-- -
( ----

"result" 

Server 

receive ( ... ); 

"work" 

end (- .. ); 

We assume that invocation of the message retry mechanism (in the interest 
of fault tolerance) can result in multiple messages directed at the destination. 
This can result in more than a single execution of "work" (orphan executions [2, 
3]) at the server. A simple sequence numbering scheme can solve this problem 
since duplicate messages can now be recognised and hence rejected (reliability 
requirements RI and R2): 

RI: client's request message must include a sequence number (SN) which 
must match that of the corresponding result message (note: all retries of 
a message contain the same SN). 

R2: SN's must survive node crashes. 
We assume that recovery from a node crash involves starting up the node 

from some initial state. However, if SN's after a crash recovery of a client's 
node are the same as before the crash, then there is the possibility of a server 
confusing new requests with old ones and thus refusing to accept some of these 
requests. Worst still, there is the possibility of a client accepting a wrong result: 
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this could happen if the client's node crashes just after the 'call request' has 
been sent and, after the crash recovery, the client makes a request to the same 
server with the same SN, then the possibility of the client accepting the results 
from the previous call certainly exists. The above analysis indicates the need for 
the requirement R2. A crash of the client's node in the middle of a call can also 
result in an orphan; so requirement R3 is needed: 

R3: a server must detect an orphan and cause its abortion before accepting 
a new call. 

The above three reliability requirements must be met to ensure the 'exactly 
once' semantics of RPC (that is, a successful call implies one execution at the 
server and incomplete calls produce no interference). As discussed elsewhere [4], 
we employ a network wide unique sequence numbering scheme (based on the 
loosely synchronised clock approach [5]) to meet requirements Rl and R2 in 
the RPC level software. However we have chosen not to meet the requirement 
R3 at the RPC level; rather, such orphans are treated at a higher level: the 're
covery' level concerned with the maintenance of atomicity of user programs [6, 
7]. These design decisions have allowed us to implement RPC quite cheaply 
based on a potentially unreliable message sending facility (datagrams). The fol
lowing is the semantics of the RPC (where the 'timeout' parameter specifies 
how long the client is willing to wait for a response): 

remote_call (server: .. ; 
service: .. ; 
var result: .. ; 
var Lstat: .. ; 
timeout: .. ); 

where 'Lstat' is of type 'status': 

status = (OK, not-done, absent, unable); 

and parameters and results are passed by value. 
The meaning of the call under various responses is given below: 

- status = OK: The service specified has been performed exactly once by the 
server and the answers are encoded in 'result'. 

- status = not-done: The server has not performed the service because it is cur
rently busy (so the client can certainly re-issue the call in the hope of getting 
an 'OK' response). 

- status = absent: The server is not available (so it is pointless for the client to 
retry). 

- status = unable: The parameter 'result' does not contain the answers; whether 
the server performed the service is not known (this response can be obtained 
when the timeout expires). If the service required has the idempotency prop
erty then the client can certainly re-issue the call without any harm; other
wise the services of the 'recovery' level must be invoked to undo any side ef
fects produced before reissuing the call [7]. 
The RPC mechanism whose implementation is described in the rest of the 

paper meets the above specification provided the following conditions are met: 
(i) a node's hardware components (e.g. CPU, clock, ring interface) are working 
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according to their specifications; (ii) the ring is working according to the speci
fication; and (iii) the UNIX system of a node is also working according to the 
specification. If failure modes of these three subsystems were 'clean' (working 
or not working) then a failure of subsystem (i) or (iii) will constitute a node 
crash and has the net effect of all of the ongoing calls on that node not succeed
ing and any services provided by that node becoming unavailable; a failure of 
the Ring has the effect of all of the nodes becoming disconnected (so a node 
will be unable to obtain remote services). In practice of course, failures are 
rarely 'clean', nor are precise system specifications available. So, whenever it is 
suspected that a subsystem is not working properly, the best strategy is to con
vert that failure to a clean node or ring failure by switching off appropriate 
power supply or by stopping the operating system as the case may be. In the 
case of a crashed node, once it has been repaired, it can be inserted in the sys
tem dynamically: there is no need for either stopping the entire system to ac
comodate the new node or to specifically inform the live nodes that a new node 
has been added to the system. 

2. RPC Implementation 

This section describes the user interface supported by the RPC software and 
certain aspects of its implementation. The implementation has been performed 
in C language; however for the sake of readability, the algorithms have been 
described in a Pascal like language ('{' and '}' stand for 'begin', 'end' and com
ments are enclosed whithin quotes). But first, a few remarks of general interest 
are in order: 

(a) The message passing system employed by the RPC mechanism uses a 
naming scheme based on 'port' numbers (integer values). A message is deliv
ered to a given port at a given node; so the process that is 'attached' to that port 
becomes the recipient of the messages directed at that port. Some higher level 
'name server' will typically be required through which various servers can pub
lish their port numbers for receiving requests. The following two primitive 
operations are available: 

(i) send_msg(destination: ... ; 
message: ... ; 
var msg_status: ... ); 

where 'msg_status' is of type 'status', 'destination' is a record containing the 
node number (each node has a unique number) and the port number, and 
'message' is an array of bytes. The response 'OK' implies that the message has 
been delivered to the appropriate port; while the response 'absent' means that 
the node is not connected to the ring. The response 'not-done' indicates that the 
message was rejected - possibly because the recipient is busy (so the sender can 
certainly retry). The response 'unable' indicates a ring malfunction during the 
transmission: the message mayor may not have reached the destination. 

(ii) receive_msg (at: port~umber; 
var node: source; 
var message: ... ); 
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(- 2 bytes -) 

I I 1 
I-sequence--I 1 
1 1 1 
I--number---I PI 
1 1 1 
1-----------1 1 
1 reply port 1 1 
1------------1 -
lOP-code 1 1 
1-----------1 I 
,L ~ P2 
r parameters'" 1 

1 1 I 

'call' message 
( a) 

(- 2 bytes -) 

1 I 1 
I-seqllence--I 1 

I 1 1 
I--number---I PI 
1 I 1 
1--------------1 -
I I 

1 I 1 
Iii 
I I P2 
r;, resul ts ~ I 

1 

'return' message 
( b) Fig. 2. call and return message formats 

This procedure receives in 'message' a message directed at port 'at' from the 
specified source 'node'. If source = 'any' then messages from any node directed 
at 'at' are accepted (in any case, 'node' will contain the node number of the 
sender). 

(b) The sequence number (SN) used in a message is derived by concatenat
ing the current value of the local clock of the node and the node number 
( < clock value, node number) ); a function geLsn ( ... ) has been implemented 
that returns a sequence number. 

(c) The formate of call and return messages are shown in Fig. 2. 
The caller supplied information includes the port number for receiving the 

reply, server operation and the necessary parameters. The maximum length of a 
message has been fixed to that necessary to return a page of data as a result. 

2.1. User Interface 

In addition to the 'remote_call ( ... )' operation available to clients, two opera
tions - to be employed by the servers - are also provided by the RPC interface: 
(i) the operation 'geLwork ( ... )' is used by a server to receive a call request, 
and (ii) the operation 'send_result ( ... )' is used by a server to send the results of 
the executed call. 

The 'remote_call ( ... )' operation transfers an array of bytes (parameter 'ser
vice') to the named server (i.e. to the appropriate port) and returns an array of 
bytes (parameter 'result'). It is left to servers and clients to view these byte ar
rays as structured objects. A client's view of the 'call' message is the portion P2 
of Fig. 2(a); the remote_call software constructs the portion PI of the message, 
thus hiding unnecessary details of sequence numbering and reply port from the 
client. Similarly, a client only sees the portion P2 of the returned message 
(Fig.2(b)). A number of 'pack' procedures have been provided for packing 
simple typed variables (integers, strings, etc.) onto an array of bytes; a com-
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plementary set of 'unpack' procedures are also available for constructing typed 
variables from an array of bytes. Here is a rather simplified description of how 
a client can perform a remote file read operation (assume that the client knows 
the node number and the port number of the file server). 

In UNIX, a file read operation must specify the file descriptor (an integer 
value), the address of buffer for storing the data and the number of bytes to be 
read. The client needs the following variables: 

var 
where 
fd 
buff 

: "server address" 
: integer; 
: array [ . . . ] of char; 

index : integer; 
nbytes : integer; 
service: array [ . . . ] of char; 
r _stat : status; 

where the variable 'fd' should contain the file descriptor of the remote file 
(as a result of a remote open file operation performed by the client). 

"remote_read implementation" 

packint (0, service, index); 
"opcode 0: file read" 

packint (fd, service, index); 
packint (nbytes, service, index); 
remote_call (where, service, buff, r _stat, timeout); 
if r_stat = OK then 

begin 
"buff contains the result" 

end 
else 

Thus a 'remote_read' operation can be provided which is as easy to use as a 
local read. On the server's side, the server uses the 'geL work ( ... )' operation to 
receive an array of bytes; this array is suitably unpacked and then the request
ed operation is performed. The server then packs the results into an array of 
bytes which is then sent to the Client's port using 'send_result ( ... )' operation. 

2.2. Some ImplemeDtation Details 

The program below shows those details of the 'remote_call ( ... )' that are to 
do with the provision of fault tolerance and mapping of message responses 
onto the status return of the call: . 

begin "remote_call ( ... ) implementation" 

sn:= geLsn (00 .); 
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at:= geL port ( ... ); "get port number" 
construct the message of figure 2 (a); 
retry:= 0; . 
done := false; 
repeat "call request to server" 
{ send_msg (server, msg, msg_status); 

case msg_status of 
ok: { done := true} 
absent: { Lstat := absent; return} 
noLdone: {retry:= retry + I; 

ifretry = MAXTR Y then 
{ r _stat:= nOLdone; return} 

} 
unable: { retry:= retry + I; 

} 

if retry = MAXTR Y then 
{ Lstat := unable; return} 

end "case" 
} until done; 
within time_out do . 
{ repeat 

receive_msg (at, server_node, result); 
until result.sn = sn 

} <EXPIRED? (Lstat:= unable; return) 
r_stat:= OK 

end; 

In the current implementation, MAXTRY has been set to 10. A typical time
out period for a file read operation should be set by the user to a value ranging 
between I and 2 seconds, depending on the system load. 

A server has to maintain certain global data which is initialised at the node 
start-up time. This data is the last largest sequence number (11sn) received 
from a given node, and is initialised to the current clock value of the server's 
node: 

var 11 sn: array [ ... ] of sn; 
for i = I to maxnode do 

llsn (i) := geLsn ( ... ); 

Thereafter, the above data structure is utilised by the geL work ( ... ) proce
dure to accept a valid request. The send_result ( ... ) operation uses a similar 
technique to that of remote call ( ... ) for transmitting the result. 
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procedure geL work ( ... ); 

begin 
repeat 

src:= any; 



receive_msg (port, src, msg); 
sn := seq. no. in msg; 

until sn > Ilsn (src); 
Ilsn (src) := sn; 

end; 

3. Clock Management 

As stated before, a sequence number at a given node is constructed out of the 
current clock value and the unique node number. All the clocks of the system 
are kept loosely synchronised with each other so that they represent roughly the 
same physical time [5]. A simple way to achieve this objective was described in 
[4]. All that is necessary is for each node to maintain two processes: (i) a broad
caster process that regularly (say once every few minutes) sends its current time 
to the rest of the nodes; and (ii) a synchroniser process whose task is to receive 
the time sent by others and to advance its clock if it is behind that of a given 
sender. 

Three practical problems were faced in the implementation of the above 
scheme. 

(i) A client with a slow clock can experience difficulty in obtaining services 
from a server if the server relies on its own clock for deciding whether to accept 
or reject a request. 

(ii) For the sake of efficiency, we would like that a broadcaster need only 
send its time to those nodes that are currently 'up'. The Cambridge Ring can 
accomodate up to 255 nodes, though our ring is currently rather sparsely popu
lated. This suggests the need for a dynamically maintained 'up' list at every 
node such that if a new node is inserted in the ring, the broadcasters of the 
other nodes eventually discover this fact (and thus can start sending their times 
to the new node) and similarly if a node is removed from the ring, this fact is 
also discovered by the rest of the 'up' nodes. 

(iii) The fact that clocks are always advanced implies that 'fast' clock errors 
will accumulate and in particular a runaway clock can advance the network 
time far ahead of the physical time. This suggests that a facility for setting 
clocks back is needed. Of course, this must be performed without compromis
ing the security offered by the sequence numbering scheme. 

The only way of avoiding problem (i) was to maintain the clock values of 
the other nodes at the server's node (the 'llsn' array mentioned in the last sec
tion). The solutions adopted to solve the remaining two problems will now be 
described. The solution adopted for setting back the clocks is quite practical if 
this operation were not invoked frequently (certainly true in our case as only a 
few adjustments are needed every month). When the clocks are being set back, 
users are likely to encounter some difficulty in obtaining remote services; how
ever the system quickly stabilises (within a few minutes). The authority for set
ting clocks back is vested in the broadcaster of one node only - this special 
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broadcaster will be referred to as the Time Lord. The Time Lord can send three 
types of messages: 

synch: this is the normal message containing the current time; 
goback: this message is a 'get prepared to set time backwards' message. 
set: this message contains the new time. 

All the other broadcasters can only send the 'synch' messages. The algo
rithms for a broadcaster (not a Time Lord) and a synchroniser of a node are as 
shown. Two shared variables 'dir' and 'uplist' are maintained and protected by 
a mutex semaphore. 
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"shared variables" 
var 

dir: (forward, backward); 
uplist: array [1 ... maxnode] of (UP, DOWN); 
mutex: semaphore; "initially 1" 

"BROADCASTER ALGORITHM" 
var retry: integer; done: boolean; 
begin 

P (mutex); 
dir := forward; 
V (mutex); 
seLclock (0); "initialise clock" 
for i:= to max_node do 
begin 

retry := 0; done := false; 
repeat "send 'I am alive' synch message" 

send_msg ( ... , 0, msg_status); 
P (mutex); 
case msg_status of 

ok: {uplist (i) := UP; done:= true} 
absent: {uplist (i) := DOWN; done := true} 
unable, notdone: {retry:= retry + 1; 

if retry = max then 
uplist (i) := DOWN} 

end "end case" 
V (mutex); 

until retry = max or done 
end "end of broadcaster initialisation program" 
cycle 

delay (t); "wait for a minute" 
P (mutex); 
if dir = forward then 
{geLsn ( ... ); 
send the sequence number as synch messages to ~ll 'UP' nodes} 
V (mutex) 



end "end cycle" 
end; "end broadcaster" 

cycle 

"SYNCHRONISER ALGORITHM" 
-- - local variables - --

receive_msg (prt, src, message); 
P (mutex); 
case message_type of 

goback: dir:= backward; 
synch: {if dir = forward then 

set: 
} 

{ad vance clock if necessary; 
ifuplist (src) = DOWN then 

uplist (src) := UP} 

{if dir = backward then 
{seLclock (message. time + I tick); 
dir := forward} 

end "end case" 
V (mutex) 

end; "cycle" 

When a node comes 'up', the broadcaster of that node sends 'I am alive' 
messages to all the possible nodes in the system. The responses received from 
the send message operations are used for the construction of the 'uplist'. We 
have assumed that all the synchronisers have got the same port number, so a 
broadcaster's messages always go to synchronisers. Also, note that the synch 
message with time 0 will not affect local time at any node. A broadcaster only 
broadcasts its time if it is going forwards. 

The synchroniser's task is to analyse the messages directed to it and act ac
cordingly. The algorithm for the Time Lord is given below (the synchroniser at 
the Time Lord's node is identical to other synchronisers). The user at the Time 
Lord's node has to supply a GO BACK command which is caught by the Time 
Lord who then sends 'goback' messages to all the 'up' nodes. This has the net 
effect of stopping all the broadcasters. When the Time Lord gets the user sup
plied new time, it broadcasts it which has the net effect of initialising all the 
clocks. Note that no special action is needed for a node to set up its clock when 
it comes up - its synchroniser will get a clock value that will result in the up
date of the clock. 

"TIME LORD ALGORITHM" 
-- - "initialisation part, same as a BROADCASTER" - -

cycle 
if GOBACK command from the user then 
{ send' goback' messages to all 'up' nodes, including own synchroniser; 

get a new clock value from the user; 

end; 

send 'set' messages to all the 'up' nodes, including own synchroniser 
else {same as a BROADCASTER} 
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Finally, all the servers must also discover the fact that clocks have been set 
back - so that they can adjust their llsn arrays (mentioned in Sect. 2.2); other
wise requests will continue to be rejected until such time as the 'new' time 
catches up. A simple means of performing this task is shown below - a slight 
modification to the geLwork( ... ) procedure is needed. A 'reject' count is main
tained and whenever this count exceeds a given value, (say 5), it is suspected 
that clocks have been put back, so the llsn array is initialised. 

"modified geL work ( ) algorithm" 

procedure geL work ( ... ); 
begin 

reject:= 0; 
repeat 

src:= any; 
receive_msg (port, src, msg); 
sn := seq. number in msg; 
if sn <= Ilsn (src) then 

reject := reject + 1; 
until sn > Ilsn (src) or reject = MAX; 
if reject = MAX then 
{ sn:= geLsn ( ... ); 

for i := 1 to maxnode do 
Ilsn (i) := sn} 

else 
{llsn (src) := sn; reject := O} 

end; 

A few remarks regarding the actual UNIX implementation are perhaps in 
order. In UNIX only files can be shared between unrelated processes; so the 
shared variables of our algorithms are kept in a file. This has not caused any 
performance problems since both the broadcaster and the synchroniser have 
very little active processing to perform. The maintenance of up lists and the fa
cility of putting clocks back certainly add complications. Nevertheless the re
sulting algorithms are still fairly simple with very little message and compu
tation overheads. 

We conclude this section by pointing out two aspects of the clock manage
ment scheme: (i) let 'd' be the maximum clock drift, then the minimum crash 
recovery time of any crashed node must be greater than 'd' to guarantee that the 
SN's after a crash are greater than SN's before the crash; (ii) a crash of the 
Time Lord's node can not be tolerated when clocks are being put back. If crash 
recovery time is known, then the observation (i) indicates how much drift be
tween clocks is tolerable, which in turn can be used to calculate how often 
clocks need be synchronised. Although we have not made a detailed study of 
clock drift, sending synchronising messages once every few minutes (say 2 min) 
results in only a small drift (2 - 3 sec per week) which appears acceptable. 
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4. Performance Measurements 

This section presents some of the results obtained from initial tests carried out 
to assess the performance of the RPC mechanism. Our aim was to compare the 
data transfer rates as seen by the user for local and remote operations. The 
measurements were carried out between two PDP 11145 computers and in
volved (for the distributed case) a program on one cpu to read 50 Kbytes of 
data from an already opened file on the other cpu. Various block sizes for the 
transfer were utilised: from 16 bytes to 512 bytes (one page). The standard 
'time' facility of UNIX was used for obtaining the times which are accurate to a 
millisecond. The graph of Fig. 3 shows the results obtained, where 'local' fig
ures refer to the results obtained when only one cpu was utilised. 

From this graph it is seen that when the unit of transfer is a page of data, 
the inter machine transfer rate is about 40% slower than the local transfer rate. 
This degradation is tolerable since initial user experience indicates that most 
users have been unable to differentiate between a local file operation and a re
mote one. Some additional performance data are presented in table 1 (a block 
size of 512 bytes was used and the same file was used for the first test). 

As a matter of interest, the data transfer rate obtained by utilising a high 
level virtual circuit based protocol (Byte Stream Protocol) was also measured: 
the result obtained - 1.46 KB/s as against 5.36 KB/s - confirms the opinion 
expressed in [3] that sophisticated protocols are often undesirable. The process 
to process data transfer rate (involving no disc accesses) for the distributed case 
appears to be rather small if one takes in account the fact that the Ring band
width is 1.25 Mbytes/sec! The reason for this is that the Ring itself transmits 
two bytes of data at a time and our Ring interfaces are interrupt driven. So 
transmission of a block of data involves considerable interrupt handling over-
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Table 1. Additional performance data 

Test 

Open; read; close 
Process to process 

(Unix pipe) 
Open or close file 

Local 

9.12 KB/s 
41 KB/s 

18 msec 

RemoteRPC 

5.36 KB/s 
7.4 KB/s 

60 msec 

Remote BSP 

1.46 KB/s 

heads (the maximum raw data transfer rate of the message passing system is 
about 8 Kbytes/sec). We are in the process of upgrading the interface hardware 
to provide the DMA (Direct Memory Access) access to cpu memory - this will 
considerably enhance the performance of the RPC mechanism. 

The only part of the RPC mechanism that appears a bit complex is the clock 
management scheme needed to meet the reliability requirement R2 (see Sect. 
1). However, as the clocks are only loosely synchronised (a node sends its time 
to the other 'up' nodes once every few minutes), processing overheads for keep
ing clocks approximately the same are not appreciable. Thus the cost of attain
ing reliability has been kept low. 

5. Concluding Remarks 

The RPC mechanism is operational and available to our colleagues for pro
gramming basic facilities of a distributed system (e.g. a file server at each 
node). As stated earlier, the RPC software does not prevent all the cases that 
can generate orphans. Our next task is to design a layer that supports the 
abstraction of atomic actions. This level will include the mechanisms for 
concurrency control, recovery and two phase commit [8] and as a result will de
al effectively with any outstanding orphans. 
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The Newcastle Connection or 
UNIXes of the World Unite! 

D. R. BROWNBRIDGE, L. F. MARSHALL and B. RANDELL 

Summary. In this paper we describe a software subsystem that can be added to each of a set of 
physically interconnected UNIX or UNIX look-alike systems, so as to construct a distributed 
system which is functionally indistinguishable at both the user and the program level from a 
conventional single-processor UNIX system. The techniques used are applicable to a variety 
and multiplicity of both local and wide area networks, and enable all issues of inter-processor 
communication, network protocols, etc., to be hidden. A brief account is given of experience 
with such a distributed system, which is currently operational on a set of PDPlls connected by 
a Cambridge Ring. The final sections compare our scheme to various precursor schemes and 
discuss its potential relevance to other operating systems. 

1. Introduction 

The Newcastle Connection is the name that we could not resist giving to a soft
ware subsystem that we have added to a set of standard UNIXl systems in order 
to connect them together, initially using just a single Cambridge Ring. The 
resulting distributed system (which in fact can use a variety and multiplicity of 
both local and wide area networks) is functionally indistinguishable, at both 
'shell' command language level and at system call level, from a conventional 
centralized UNIX system [1]. Thus all issues concerning network protocols and 
inter-processor communications are completely hidden. Instead, all the stan
dard UNIX conventions, e.g. for protecting, naming and accessing files and de
vices, for inter-process communications, for input/output redirection, etc., are 
made applicable, without apparent change, to the distributed system as a 
whole. 

This is done, without any modification to any existing source code, of either 
the UNIX operating system, or any user programs. The technique is therefore 
not specific to any particular implementation of UNIX, but instead is appli
cable to any UNIX look-alike system that claims, and achieves, compatibility 
with the original at the system call level. 

In subsequent sections we discuss the structure of this distributed system, 
(which for the purposes of this paper we will term UNIX United), the internal 
design of the Newcastle Connection, the networking and inter-networking is
sues involved, some interesting extensions to the basic scheme, our operational 
experience with it to date, its relationship to prior work and its potential rel
evance to other operating systems. 

I UNIX is a trademark of Bell Laboratories 
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2. UNIX United 

A UNIX United system is composed out of a (possibly large) set of inter-linked 
standard UNIX systems, each with its own storage and peripheral devices, 
accredited set of users, system administrator, etc. The naming structures (for 
files, devices, commands and directories) of each component UNIX system are 
joined together in UNIX United into a single naming structure, in which each 
UNIX system is to all intents and purposes just a directory. Ignoring for the mo
ment questions of accreditation and access control, the result is that each user, 
on each UNIX system, can read or write any file, use any device, execute any 
command, or inspect any directory, regardless of which system it belongs to. 
The simplest possible case of such a structure, incorporating just two UNIX sys
tems, is shown in Fig. 1. 

With the root directory (I) as shown, one could copy the file a into the cor
responding directory on the other machine with the shell command 

cp luserlbrianla I . .!unix 21userlbrianla 

(For those unfamiliar with UNIX, the initial 'I' symbol indicates that a path 
name starts at the root directory, and the ' . .' symbol is used to indicate the 
parent directory.) 

Making use of the current working directory ('.') as shown, this command 
could be abbreviated to 

cp a I . .!unix2luserlbrianla 

If the user has set up the shell variable U2 as follows 

U2 = I. '!unix2luserlbrian 

it could be called forth, using the $ convention, so as to permit the further ab
breviation 

cp a$U2la 

a h quicksort h Fig. 1 
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All the above commands are in fact conventional uses of the standard 'shell' 
command interpreter, and would have exactly the same effect if the naming 
structure shown had been set up on a single machine, with unixl and unix2 
actually being conventional directories. 

All the various standard UNIX facilities (whether invoked via shell com
mands, or by system calls within user programs) concerned with the naming 
structure carryover unchanged in form and meaning to UNIX United, causing 
inter-machine communication to take place as necessary. It is therefore pos
sible, for example, for a user to specify a directory on a remote machine as be
ing his current working directory, to request execution of a program held in a 
file on a remote machine, to redirect input and/or output, to use files and pe
ripheral devices on a remote machine, etc. Thus, using the same naming struc
ture as before, the further commands 

cd / . .lunix2/user/brian 
quicksort a> / . .lunixlluser/brian/b 

have the effect of applying the quicksort program on unix2 to the file a which 
had been copied across to it, and of sending the resulting sorted file back to file 
b on unix 1. (The command line 

/ .. / unix2/ user / brian/ quicksort/ . .I unix2/ user / brian/ a > b 

would have had the same effect, without changing the current working direc
tory.) 

It is worth reiterating that these facilities are completely standard UNIX fa
cilities, and so can be used without conscious concern for the fact that several 
machines are involved, or any knowledge of what data flows when or between 
which machines, and of which processor actually executes any particular pro
grams. (In fact, in our existing implementation, programs are executed by the 
processor in whose file store the program is held, and data is transferred be
tween machines in response to normal UNIX read and write commands.) 

2.1. User Accreditation and Access Control 

UNIX United allows each constituent UNIX system to have its own named set 
of users, user groups and user password file, its own system administrator 
(super-user), etc. Each constituent system has the responsibility for authenticat
ing (by user identifier and password) any user who attempts to log into that sys
tem. 

It is possible to unite UNIX systems in which the same user identifier has 
already been allocated (possibly to different people). Therefore when a request, 
say for file access, is made from system 'A', of system 'B', on behalf of user 'u" 
the request arrives at 'B' as being from, in effect user 'A/u' - a user identifier 
which would not be confused with a local user identifier 'u'. It will be, in effect, 
this user identifier 'A/u' which governs the uses by 'u' of files, commands, etc., 
on machine 'B'. 
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Just as the system administrator for each machine has responsibility for al
locating ordinary user identifiers, so he also has responsibility for maintaining a 
table of recognized remote user identifiers, such as 'A/u'. If the system ad
ministrator so wishes, rather than refuse all access, he can allow default au
thentication for unrecognized remote users, who might for example be given 
'guest' status - i.e. treated as if they had logged in as 'guest', presumably a user 
with very limited access privileges. 

Ul U2 U3 Ul U2 Fig. 2 

From an individual user's point of view therefore, though he might have 
needed to negotiate not just with one but with several system administrators for 
usage rights beforehand, access to the whole UNIX United system is via a 
single conventional log in. Subject to the rights given to him by the various sys
tem administrators, he will then be governed by, and able to make normal use 
of, the standard UNIX file protection control mechanisms in his accessing of 
the entire distributed file system. In particular there is no need for him to log 
in, or provide passwords, to any of the remote systems that his commands or 
programs happen to use. This approach therefore preserves the appearance of a 
totally unified system, without abrogating the rights and responsibilities of in
dividual system administrators. 

2.2. The Structure Tree 

The naming structure of the UNIX United system represents the way in which 
the component UNIX system are inter-related, as regards naming issues. When 
a large number of systems are united, it will often be convenient to set up the 
overall naming tree so as to reflect relevant aspects of the environment in which 
the UNIX systems exist. For example, a UNIX United system set up within a 
university might have a naming structure which matches the departmental 
structure. With the naming structure as shown in Fig. 2, files in the system 
UI in the Computing Science Department could be named using the prefix 
/ . ./ . ./CS/ Ul from within the Electrical Engineering Department's UNIX sys
tems. 

Such a naming structure has to be one that can be agreed to by all the sys
tem administrators, and which does not require frequent major modification -
such modification of the UNIX United naming structure can be as disruptive as 
a major modification of the structure inside a single UNIX system would be, 
owing to the fact that stored path names (e.g. incorporated in files and pro
grams) could be invalidated. 
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The naming structure could, but does not necessarily, reflect the topology of 
the underlying communications network. It certainly is not intended to be 
changed in response to temporary breaks in communication paths, or of service 
from particular UNIX systems. (An analogy is to the international telephone 
directory - the U.K. country code (44) continues to exist whether or not the 
transatlantic telephone service is operational.) This issue is pursued further in 
Sect. 4 below. 

One final point: UNIX systems can appear in the naming structure in posi
tions subservient to other UNIX systems. For example, in the previous figure, 
CS might denote a UNIX system, not just an ordinary directory. This has obvi
ous implications with respect to the respective responsibilities and authority of 
the various system administrators. If the structure reflects the structure of com
munication paths, it indicates that all traffic to and from the CS department 
flows via this particular UNIX system, which is in effect therefore fulfilling a 
gateway role. 

3. The Newcastle Connection 

The UNIX United scheme whose external characteristics were described above 
is provided by means of communication links, and the incorporation of an ad
ditionallayer of software - the Newcastle Connection - in each of the com
ponent UNIX systems. This layer of software sits on top of the resident UNIX 
kernel, i.e. between the UNIX kernel and the rest of the operating system (e.g. 
shell and the various command programs) and the user programs. From above, 
the layer is functionally indistinguishable from the kernel. From below, it ap
pears to be a normal user process. Its role is to filter out system calls that have 
to be re-directed to another UNIX system, and to accept system calls that have 
been directed to it from other systems. Communication between the Con
nection layers on the various systems is based on the use of a remote procedure 
call (RPC) protocol, [2] and is shown schematically in Fig. 3. 

In fact a slightly more detailed picture of the structure of the system would 
of course reveal that communications actually occur at hardware level, and that 
the kernel includes means for handling low level communications protocols. 

The Connection layer has to disguise from the processes above it the fact 
that some of their system calls are handled remotely (e.g. those concerned with 
accessing remote files). It similarly has to disguise from the kernel below it that 

User programs, User programs, 
non-resident non-resident 
UNIX software UNIX software 

remote procedure 
Newcastle Connection -'" Newcastle Connection ..... , 

ca11s 
UNIX Kernel UNIX Kernel 

UNIXl UNIX2 Fig. 3 
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the requests for the kernel's services, and the responses it provides, can be com
ing from and going to, remote processes. This has to be done without in any 
way changing the means by which system calls (apparently direct to the UNIX 
kernel) identify any real or abstract objects that are involved. 

The kernel in fact uses various different means of identification for the vari
ous different types of object. For example, open files (and devices) are identi
fied by an integer (usually in the range 0 to 19), logged on users by what is ef
fectively an index into the password file, etc. Such name spaces are of course 
inherently local. The Connection layer therefore has to accept such an appar
ently local name and use mapping tables to determine whether the object really 
is local, or instead belongs to some other system (where it may well be known 
by some quite different local name). The various mapping tables will have been 
set up previously - for example when a file is opened - and for non-local ob
jects will indicate how to communicate with the machine on which the object is 
located. The selection of actual communication paths, the management of 
alternative routing strategies, etc., are thus all performed by the Connection 
layer, and completely hidden from the user and his programs. 

Such mapping does not however apply to the single most visible name space 
used by UNIX, i.e. the naming structure used at shell level, and at the program 
level in the open and exec system calls, for identifying files and commands, re
spectively. Rather, the Connection layer can be viewed as performing the role 
of glueing together the parts of this naming structure that are stored on dif
ferent UNIX machines, to form what appears to be a single structure. A given 
UNIX system will itself store only a part of the overall structure. Taking the 
example given above in Fig. 1, unix! will store all of the overall structure ex
cept those elements that are below unix2, and vice versa. Thus, copies of some 
parts of the structure will be held on several systems, and must of course remain 
consistent - a problem which would become severe if changes to these parts of 
the structure were a frequent occurrence. 

It is essential for the mapping layer to be able to distinguish local and re
mote file accesses. The Newcastle Connection layer intercepts all system calls 
that use files and determines whether the access is local or remote. Local calls 
are passed unaltered to the underlying local kernel for service; remote calls are 
packaged with some extra information, such as the current user-id, and passed 
to a remote machine for service. The Connection uses its own local fragment of 
the UNIX United naming tree to resolve file names. Names are interpreted as a 
route through the tree, each element specifying the next branch to be taken. If 
the name can be fully interpreted locally, only a local access in involved. If a 
leaf corresponding to a remote system is reached, then execution must be con
tinued remotely by making a remote procedure call to the appropriate system. 
Such leaves are specially marked with the address of the appropriate remote 
station. This address is given to the RPC as routing information. In some cases 
(examined in more detail in the next section) a request may be passed on 
through a number of Connections before being satisfied. 

As well as accessing files using a name, a UNIX program can open a file and 
access it using the file descriptor returned from the open system call. When a 
file is opened the Connection makes an entry in a per-process table indicating 
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whether or not the file descriptor refers to a local or a remote file. The table 
also holds remote station addresses for remote file descriptors. Subsequent ac
cesses using the descriptor refer to this table using the information there to 
route remote accesses without further delay. 

The actual remote file access is carried out for the user by a file server pro
cess that runs in the remote machine. Each user has their own file server, and 
the initial allocation of these is carried out by a 'spawner' process that runs con
tinuously. This latter process is callable (using a standard name) by any ex
ternal user and, upon request, will spawn a file server (after carrying out some 
user/group mapping), returning its external name to the user that initiated the 
request. The user then communicates directly with this file server, which is cap
able of carrying out the full range of UNIX file operations. The user/group 
mapping is carried out to ensure that the access rights of the file server are in 
accord with those allowed to the external user by the local system manager, and 
consists of converting external names into valid local names. Nevertheless, a file 
server is still an extension of the environment of a user on a remote machine, 
and any relevant changes in the environment seen by a user must be mirrored 
by it. The most important of these is that when a user process 'forks' (that is, 
creates a duplicate of itself), all the remote file servers that it is connected with 
must also fork. This greatly simplifies the implementation of remote execution 
and signalling, as each user process only ever has to deal with a single remote 
file server. 

Communication with the 'spawner' and the file servers always takes the 
form of a remote procedure call, the first parameter of all calls being a se
quence number. This is used by the servers to detect retry attempts - if the re
ceived sequence number is the same as that of the last call, then it is a retry (the 
RPC scheme precludes calls being lost, so there is no need to check for conti
nuity in the sequence). 

4. Networking and Inter-Networking Issues 

The various kernels provide mappings between the user-visible name spaces 
and the hardware name spaces - in particular between the names of what ap
pear to be directories, and the hardware names of distant UNIX systems. It is 
important that this latter mapping be such that: 

(i) The file naming hierarchy need bear no relationship to the inter-system 
communications topology 

(ii) Modifications to the communications topology should be easy, as well as 
having no effect on the way in which any user or user program accesses 
anything. 

File naming does, however, have some implications concerning protection 
and authentication - thus when a path is specified in an open command, checks 
are made against the permissions associated with each directory or file entry 
named explicitly or implicitly in the path, an activity that can require access to 
one or more distant UNIX systems. However it may not be necessary to repeat 
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the same inter-system route when a file has been successfully opened, if some 
shorter route is available. For example, opening the file identified by the path 

I. .I Unixl/ al Unix 1.31 b 

would involve accessing both Unixl and Unixl.3, though subsequent reads and 
writes might not involve accessing Unixl, depending on the underlying com
munications topology. 

Our approach to providing these facilities takes advantage of the fact that 
the UNIX and hence the UNIX United file (and device, etc.) naming hierarchy 
constitutes a set of stable system-wide distinct identifiers. Only one such set is 
needed, so given that we already have this set available at user level, we are not 
using the Xerox Ethernet approach, which we understand requires the different 
stations on a set of interconnected Ethernets to have built-in uniquely assigned 
identification numbers. Rather, when a UNIX system is introduced into, or 
physically moved within, a UNIX United system, it will have to be identified 
to the system using an identifier such as 

UK/NEWCASTLE/DA YSH/RELlU5 

This identification will remain valid no matter the geographical location of the 
machine. 

Our approach also involves arranging that hardware names related to one 
machine do not permeate to other machines in the system. At the hardware 
level, each machine identifies the machines it is directly connected to simply by 
identifying the means of connection, i.e. by 1/0 device number, and has no 
means of identifying any other machines. The I/O device numbers remain pri
vate to each machine, though presumably all machines on a given network will 
use the same ring port or modem numbers for a given machine. 

In Fig. 4, the kernel on machine UI will make use of hardware addresses for 
accessing PI (identifying the hardwired connection to be used) and U2, UJ, U4, 
U5 and CRS (identifying the ring and the port number to be used). It will not 
have knowledge of any hardware addresses relevant to P2 or N. Similarly, if it 
is U2 that gets connected to a wide area network, say, then only this machine, of 
the ones shown, will contain any wide area network telephone numbers for 
other UNIX systems. (Questions of routing through the wide area network will 
of course not concern the kernel, which only has to deal with routing between 
UNIX systems, not network nodes.) 

Each kernel therefore routes accesses to distant machines to an appropriate 
one of its adjacent neighbouring machines, which can then pass the request on 
further, through another wide or local area network, or a direct hard-wired con
nection, if necessary. (The routing information used is that held in the various 
special files which of course are accessed by means of the paths or the file de
scriptors specified by users and user programs.) 

Means must be provided for modifying this routing information appropri
ately when a system is unplugged from one place in the overall network, and 
replugged into another - or indeed when any changes are made to the com-
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munications topology visible at the Newcastle Connection level. (Changes 
within any of the networks are of no concern, rather the Newcastle Connection 
has to deal just with changes concerning hardwired machine links and inter-net
working.) 

We choose to separate the question of updating topological information 
from that of performance-oriented dynamic routing, and plan to ignore the lat
ter issue (which in any case seems more suitable for networking than inter-net
working). In fact some dynamic routing schemes do, almost as a by-product, 
cope with topological changes, but typically respond rather slowly to such 
changes [3]. A scheme such as that described by Chu [4], which arranges the im
mediate broadcasting of updates to routing tables when a topological change is 
notified (or perhaps discovered) seems much more appropriate to our needs, 
and is to be investigated. (Such a distributed approach can be contrasted, for 
example, with Cambridge's scheme of using a special machine on a ring as a 
name server, which has to be interrogated whenever an actual ring port number 
is needed, but thereby simplifies the table updating required when moving a 
machine from one port to another.) 

As a message is passed from one machine to the next, the addressing infor
mation it contains (which will be described in terms of paths) will sometimes 
have to be adjusted, to allow for the fact that movement around the physical 
structure causes movement around the naming structure. Thus in Fig. 4, a mes
sage emanating from PI, intended for P2, will not have its addressing informa
tion changed as it travels through VI and V2, since from both systems, as from 
PI, P2 would in effect be identified by the path I. .I P2. In contrast a message 
from V4 to N would have its addressing information in effect changed from 
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I . .I. .IN tol . .IN as it passed through CRS. If system N had been made sub
servient to directory REL instead of DA YSH then U4, having a common parent 
directory with N, would in effect use the path I . .INto send a message to it. En 
route through CRS, this message would need this path to be changed to I . .I 
RELI N, because CRS though physically closer to N is in fact more distant 
from it in naming terms. (In practice, file descriptors rather than paths would 
be used as addressing information - though the principle of changing the ad
dressing information en route still applies.) 

5. Extensions to the Basic UNIX United Scheme 

We have found that the conceptual simplifications to the task of implementing 
a UNIX-based distributed computing system that the Newcastle Connection 
approach has provided have spurred us to produce a variety of extensions of, or 
variations on, the basic theme, some of which we have already started to im
plement. 

The Connection layer can be regarded as isolating and solving the problems 
associated just with distribution - and, in turns out, is applicable to the case of 
distributed systems made from components other than complete UNIX sys
tems. For example, one could connect together some systems which have little 
or no file storage with other systems that have a great deal - i.e. construct a 
UNIX United system out of workstations and file servers. Almost all that is 
necessary is to set up the naming tree properly. 

Moreover since the Connection layer is independent of the internals of the 
UNIX kernel, it is not even necessary for the Connection layer to have a com
plete kernel underneath it - all that is needed is a kernel that can respond prop
erly (even if only with exception messages) to the various sorts of system call 
that will penetrate down through, or are needed to support, the Connection 
layer. In fact the Connection layer itself can be economized on, if for example it 
is mounted on a workstation that serves as little more than a screen editor, say, 
and so has only a very limited variety of interactions with the rest of the UNIX 
United system. All that is necessary is adherence to the general format of the 
inter-machine system call protocol used by the Newcastle Connection, even if 
most types of call are responded to only by exception reports. 

Thus the syntax and semantics of this protocol assume a considerable sig
nificance, since it can be used as the unifying factor in a very general yet ex
tremely simple scheme for putting together sophisticated distributed systems 
out of a variety of size and type of component - an analogy we like to make is 
that the protocol operates like the scheme of standard-size dimples that allow a 
variety of shapes of LEGO children's building blocks to be connected together 
into a coherent whole. 

In addition to the problem of distribution, we also have taken what are, we 
believe, several other equally separable problems, in particular those of (i) pro
viding error recovery (for example in response to input errors or unmaskable 
hardware faults), (ii) using redundant hardware provided in the hope of mask
ing hardware faults, (iii) the enforcement of multi-level security policies and 
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(iv) load balancing between the component systems, and plan to embody their 
solutions in other separate layers of software. Indeed, two significant extensions 
of UNIX United are already operational, albeit in prototype form. The first of 
these provides multi-level security, using encryption to enforce security barriers 
and to control permissible security reclassifications. The second uses file and 
process replication and majority voting to mask hardware faults - application 
programs are unchanged, though in fact running in synchronization on several 
machines with hidden voting. Further details of these and other extensions of 
the UNIX United scheme are the subject of separate papers. 

6. Operational Experience 

At the time of writing (July 1982) the basic UNIX United system is in regular 
use at Newcastle on a set of three PDP11l23s and two PDP11l45s, connected by 
a Cambridge Ring. The most heavily used facilities have been those concerned 
with file transfer and 110 redirection, for example in order to make use of the 
line printer and magnetic tape unit that are attached to one machine. The sys
tem is now also relied on for network mail, and for solving the problems of 
overnight file-dumping (of all machines, onto the one tape unit) and of soft
ware maintenance and distribution. As mentioned earlier, two prototype exten
sions of the system, concerned with security and hardware fault tolerance, re
spectively, are already operational, and work is under way on facilities for rep
licated files and on a distributed version of MASCOT [5]. 

A pre-release version of the Newcastle Connection has been provided to the 
University of Kent, where work has started on the (it is believed comparatively 
simple) modifications needed in order to use it to unite several VAX com
puters, running Berkeley UNIX, also over a Cambridge Ring. The incorpor
ation of X25 network links, and the actual implementation of the mechanisms 
we have designed for inter-networking, have been delayed by problems beyond 
our control concerned with the provision of network connections, which it is 
hoped will be resolved soon. 

A first analysis of the performance of the remote procedure call protocol [6] 
used by the Connection layer indicates that, subjectively, terminal users of the 
Newcastle system in general notice little performance difference between local 
and remote accesses and execution. This is despite the fact that the Cambridge 
Ring stations used are quite slow, being interrupt-driven devices, and perhaps 
indicates that such stations are reasonably well matched to the rather modest 
performance that UNIX itself can achieve on a small PDPll123 used as a per
sonal workstation, or on a PDPl1l45 that is usually being used by a number of 
demanding terminal jobs. However a further and more extensive programme of 
performance monitoring and evaluation is planned, which would also include 
experiments with the DMA ring stations that we have recently obtained and, it 
is hoped, with more powerful computers than our current set of PDPlls. 

The modest size of the Newcastle Connection reflects the need we had to 
make the system work on our small PDPII123s, which provided a strong in
centive to find simple well-structured solutions to the various implementation 
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problems. (In our view an overabundance of program storage space can have 
almost as bad an effect on the quality of a software system as does inadequate 
space - it is surely no coincidence that UNIX was first designed for quite mod
estly sized machines.) A program that made use of every facility provided by 
the Newcastle Connection would be increased in size by slightly more than 7K; 
however, it is very unlikely that this would ever be the case and a more usual 
figure would be an increase of 4 . 5K, the absolute minimum being 3K (includ
ing the code for the RPC interface). 

7. Related Earlier Work 

The Newcastle Connection, and the UNIX United scheme that it makes pos
sible, have many precursors, and not just within the UNIX world. 

The idea of providing a layer of software which aims to shield users of a set 
of interconnected computers from the need to concern themselves with net
working protocols, or even the fact of there being several computers involved, is 
well-established. It is for example, what the IBM CICS System [7] does for users 
of various transaction processing programs, and what the National Software 
Works project [8] aimed to do for the users of various software development 
tools, running on a variety of different operating systems. Such layers of soft
ware are intended for somewhat specialized use, and run on top of specific sets 
of application programs. At the other end of the spectrum, such location- or 
network-transparency is also one of the aims of the Accent kernel, [9] on which 
operating systems can be constructed which use its 'port' concept as a means of 
unifying inter-process communication, inter-computer message passing, and 
operating system calls. 

The dawning realization that the 'shell' job control language and the pro
gram-level facilities (i.e. system calls) of the UNIX multiprogramming system 
could suffice, and indeed would be highly appropriate, to control a distributed 
computing system can be traced in a whole series of distributed UNIX projects. 
The global file naming technique used in the early 'uucp' facilities [10] for in
terconnecting UNIX systems via standard telephone circuits can be seen as a 
special, but rather ad hoc, extension of the individual file system naming hierar
chies, and had been copied by us in our Distributed Recoverable File System. 
[11] (The technique provides what is in effect a set of named hierarchies, rather 
than a single enlarged hierarchy.) 

Rather better integrated with the standard UNIX file naming hierarchy are 
the facilities provided in the Network UNIX System. [12] This modification of 
standard UNIX provides a series of Arpanet protocols, which are invoked by 
means of some additional system commands, using what appear to be ordinary 
file names as the means of identifying which Arpanet host is to. be communicat
ed with. (The paper describing this system also speculates on the possibility of 
redesigning the shell interpreter so as to provide network transparency for com
mands and files at the shell command language level.) The Purdue Engineering 
Computer Network [13] is conceptually similar to the Network UNIX System, 
though based on hard-wired high speed duplex connections. It provides ad-
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ditional commands which invoke the services of special protocols for virtual 
terminal access and remote execution at the shell level, and also a means of load 
balancing through a scheduling program which takes responsibility for decid
ing which processor should execute certain selected commands. 

The distributed system of interconnected S-UNIX personal workstations 
and F-UNIX file servers [14] goes further by providing each workstation user 
with an ordinary UNIX interface, without any additional non-standard com
mands, yet incorporating a distributed version of the UNIX hierarchial file 
store containing just his own local files plus all the files held on the file servers. 
This system is one of several built at Bell Labs using the Datakit virtual circuit 
switch - others are RIDE [15] and D/UNIX. [16] The RIDE system provides 
complete remote file access and remote program execution, but is based on a 
'uucp' -like, rather than standard, UNIX naming hierarchy - it is however 
implemented merely by adding a software layer on top of the UNIX kernel, an 
approach which is highly similar to that we have since used with our Newcastle 
Connection technique. D/UNIX is a distributed system based on modified ver
sions of UNIX which provide virtual circuits between processes, and a trans
parent file sharing scheme covering all the files on all the component systems. 

A fully symmetrical means of linking computer systems together so as to 
give the appearance of a single UNIX-like hierarchical file store, and the stan
dard shell command language, is also provided by the LOCUS system - the 
paper [17] describing this system also discusses its intended extension to pro
vide remote program execution as well as remote file access. However, for all 
its external similarity to UNIX, the LOCUS system involves a completely re
designed operating system rather than a modification of an existing UNIX sys
tem, albeit an operating system which is also designed to have extensive fault 
tolerance facilities. 

The penultimate stage in the evolution can be seen in the COCANET local 
network operating system, [18] a system which has been built using the standard 
UNIX system, and which comes very close indeed to our aim of combining a 
set of standard UNIX systems into a single unified system, and which certainly 
supports network-transparent remote execution as well as file access. However 
the COCANET designers have allowed themselves to make a number of chang
es to the UNIX kernel and would appear, from the description they give, not to 
have coped fully with user-id mapping. It would also appear that COCANET is 
designed specifically around the idea of having a relatively small number of 
machines linked by a single high-speed ring, and hence has a rather restrictive 
structure tree, which is viewed slightly differently from each machine. However 
many of the mechanisms incorporated in UNIX United are very similar to 
those used in COCANET. 

It is thus but a comparatively small step from COCANET to UNIX United, 
and to the idea of the Connection layer resting on top of an unchanged UNIX 
kernel, replicating all its facilities exactly in a network-transparent fashion, and 
capable of making a distributed system involving large numbers of computers, 
connected by a variety of local and wide area networks. Incidentally, one can 
draw an interesting parallel between the Connection layer and what is some
times called a 'hypervisor', the best-known example of which is VM/370 [19]. 
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Each is a self-contained layer of software, which makes no changes to the func
tional appearance of the system beneath it (the IBM/370 architecture in the 
case of VM/370, which fits under rather than on top of the operating system 
kernel). However, whereas a hypervisor's function is to make a single system 
act as a set of separate systems, the Newcastle Connection (a 'hypovisor'?) 
makes a set of separate (though of course linked) systems act like a single sys
tem! 

However, to our embarrassment, we have to admit that the idea of the Con
nection layer, of the basic UNIX United scheme, and of most of the extensions 
of the scheme, did not arise from careful study and analysis of these precursors. 
(Indeed it is clear that what was presented above as a more-or-Iess orderly evo
lutionary development path often involved parallel activity by several groups, 
and much accidental reinvention.) In fact we were not consciously aware of any 
of these systems (other than 'uucp' and of course DRFS) while the work that 
led to the Newcastle Connection was in progress. Indeed, by the time we learnt 
of LOCUS and COCANET, all the basic ideas and strategies to be incorpo
rated in the Newcastle Connection had been worked out, though not all in full 
detail, and much of the system was already operational and in daily use. Rather 
we can trace the origins of our scheme to the existence of the plans for our re
mote procedure call protocol, and the idea, which we now know has occurred to 
many groups independently, of extending the UNIX 'mount' facility from that 
of mounting replaceable disk packs to that of mounting one UNIX system on 
another. 

This idea arose at Newcastle in early December 1981 - within a week or so 
much of the UNIX United concept had been thought up and even roughly 
documented. A hesitant start at what was initially intended as just an exper
imental and partial implementation was made after Christmas, but within a 
month facilities related to accessing and operating on files remotely over the 
Cambridge Ring were in active use. Work proceeded rapidly, both on extend
ing the range of UNIX kernel features that the Newcastle Connection mapped 
correctly, and on discovering, mainly via experimentation, some of the more ar
cane features of the kernel interface as implemented and used in V7 UNIX. At 
about this stage we found out about first the S-UNIX/F-UNIX and LOCUS 
systems, and shortly afterwards the COCANET and then the RIDE systems. 
These various papers were a considerable encouragement to us to continue our 
efforts, and also provided us with a useful perspective on our approach. In par
ticular they strengthened our growing belief in the viability of an alternative. 
UNIX-based, approach to distributed computing to that based on the use of a 
variety of explicit servers, each with its own specialized service protocol. 
[20,21] 

Returning to the layered ('level of abstraction') aspect of UNIX United and 
its various extensions, this of course can be seen as being directly in the tra
dition pioneered by Dijkstra's seminal THE operating system [22] - a system 
which it now seems to be as unfashionable to reference as it was once fashion
able. However, if only through our extensive work on multi-level structuring for 
purposes of fault tolerance, [23] we remain convinced that this approach to de
signing (and describing) systems is of great merit. It leads to designs which 
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work well and which seem to us to be much easier to comprehend, and there
fore have faith in, than those where little explicit thought has apparently been 
given to achieving any sort of separation of logical concerns, such as those of 
naming, communications routing, load balancing, recoverability, etc. 

8. Why Just UNIX? 

It is interesting to analyse just what it is about UNIX, and the linguistic in
terfaces it provides at shell and system call level, that make it so suitable for use 
as the model and basis for a network operating system. There seem to be six 
principle factors involved. 

First, there is the hierarchical file (and device and command) naming sys
tem. This makes it easy to combine systems, because the various hierarchical 
name spaces just become component name spaces in a larger hierarchy, without 
any problems due to name clashes. The standard UNIX mechanisms for file 
protection and controlled sharing of files then carryover directly, once the 
problem of possible clashes of user identifiers is handled properly. 

Second, there are the UNIX facilities for dynamically selecting the current 
working directory and root directory. In particular the ability to select the root 
directory - normally thought of as one of the more exotic and little needed of 
the UNIX system commands - seems to have been designed especially for 
UNIX United, since it provides a perfect way of hiding the extra levels of the 
directory tree that have to be introduced. 

Third, and obviously vital, is the fact that UNIX allows its users, and their 
programs, to initiate asynchronous processes. This is used inside the Newcastle 
Connection, and also provides the means whereby even a single user can make 
use via the Newcastle Connection of several or indeed all of the computers that 
are involved in the UNIX United system. It also provides the means whereby 
slow file transfers (via low bandwidth wide area networks) can be relegated to 
background processing, and so still be organized using remote procedure calls. 

Fourth, there is the fact that the UNIX system call interface is (relatively) 
clean and simple, and can easily be regarded as providing a small number of 
reasonably well defined abstract types. The task of virtualizing these types, so 
as to give network transparency, therefore remains manageable. 

Fifth, there is the fact, even in this day and age still regrettably worthy of 
mention, that the original UNIX system, and all of its derivatives known to us, 
are written in a reasonably satisfactory high level language. Our method of in
corporating the Newcastle Connection layer therefore merely involved re
compiling relevant parts of the system, using a different subroutine library. 

Finally, there is the well-established set of exception reporting conventions 
that are used in UNIX, for example, to indicate the reasons why particular sys
tem call requests cannot be honoured. When such a call has, via the Newcastle 
Connection, involved attempted communication with another UNIX system 
there are various other (quite likely) reasons, but they can be mapped onto the 
exceptions that the caller is already supposed to be able to deal with. 
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· However it is unlikely that the idea could not be carried across to at least 
some other systems. Indeed a report by Goldstein et al. [24] implies that some
thing similar is being bravely contemplated for IBM's MVS operating system, 
and some aspects of the idea are we understand commercially available as ad
ditions to the RSXIlI operating system - no doubt other examples exist. The 
one other system whose suitability for the Newcastle Connection approach has 
been considered at all seriously by us is DEC's VAX/VMS system. It would ap
pear that it has many of the necessary characteristics though there could be 
problems with the way that devices are involved with its system of file naming. 

This section would not be complete without any mention of what we regard 
as some shortcomings of the UNIX V7 specifications (at system call level): 
Firstly, the system of signals for asynchronous communication between pro
cesses could be improved. Allied to this, a general synchronous inter-process 
communication mechanism would be useful, allowing communication between 
numbers of unrelated processes. Some awkward features in the file protection 
scheme were encountered when constructing the file server. These were as
sociated with the notions of super-user and effective user-id. Lastly, we found 
that the ability to have many directory entries (links), each naming the same 
physical file, was elegant in concept but severely limited in generality by the ac
tual UNIX V7 implementation. 

With respect to the programs that are provided with the UNIX system, very 
few difficulties were encountered in connecting them, except, that is, for the 
Shell. This program makes use of system facilities in non-standard ways, and its 
internal design is obscure to say the least. However, it has proved to be an ex
cellent testbed for the system - if the Shell works you can be pretty sure that 
most other programs will! 

9. Conclusions 

The first of our internal memoranda on what we later came to call the New
castle Connection described the idea as 'so simple and obvious that it surely 
cannot be novel'. And, as described above, it did turn out to have a number of 
precursors - in fact probably many more than we yet realize. However we take 
this as confirmation of the merits of the twin ideas of network transparency and 
of its provision by a single separate mapping layer, an approach whose ramifi
cations we feel we have barely begun to explore. Certainly our present plan is to 
continue our programme of experimental implementations and applications, 
and to determine how well the Newcastle Connection (and UNIX) can with
stand the weight of additional software layers containing the various reliability 
and security-related mechanisms that we have developed, hitherto in a rather 
fragmented fashion for various systems and languages. 

One other point is worth stressing. It has for some years been well accepted 
that the structure and mechanisms of a multiprocessing operating system are 
very similar to those of a (good) multiprogramming system. What has now be
come clear to us, as a result of our work on UNIX United, is that this similarity 
can usefully extend also to distributed systems. The additional problems and 
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opportunities that face the designer of a homogeneous distributed system 
should not be allowed to obscure the continued relevance of much established 
practice regarding the design of multi programming systems. 
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Recoverability Aspects of a Distributed File System 

M. JEGADO 

Summary. The paper presents the recoverability features of a distributed file system which has 
been built as an extension of the UNIX' file system. The algorithm to achieve recoverability 
for the distributed files is discussed. The techniques implemented include: backward and for
ward error recovery, global and incremental recovery data recording. The paper outlines how 
these techniques can coexist to provide the abstraction of recoverability to a user of the distri
buted file system. 

1. Introduction 

The aim of the distributed file system described in this paper is to incorporate 
in the design of a real system some of the ideas on reliability and fault tolerance 
developed by a research project at the University of Newcastle upon Tyne, 
U.K. which is investigating the reliability and integrity of distributed comput
ing systems [1- 5]. Recent work documented in Ref. 5 and the availability of a 
Unix local network form the basis for an experiment in distributed systems. 

Schemes for dealing with the damage that has been assessed as existing 
when an error is detected are usually classified into backward and forward re
covery techniques. Backward error recovery depends on the provision of recov
ery points, [4] i.e. a means by which the state of a process can be recorded and 
later reinstated if required. The notion of a recoverable file system is used to 
mean that the state transformations performed on files can be recovered from 
by invoking the backward recovery capability of the system, providing the ab
straction of recoverability to a user of the file system. 

Although mechanisms to provide recoverability for local objects are well 
understood [6-9], mechanisms to provide recoverability in a distributed en
vironment are more complex. In data bases the unit of recovery considered is 
referred to as a transaction [10]. However, the recovery capability of a distrib
uted data base management system is generally not provided to support fault 
tolerance but rather to recover a transaction when an access conflict is detected, 
or when system crashes occur for example. 

In contrast, the distributed recoverable file system (DRFS) described here 
can be used to support software fault tolerance, for instance, for use with the 
recovery block scheme [6]. The DRFS provides its users with the ability to es
tablish recovery points. The grain of recovery is arbitrary and fixed by the user. 

The DRFS provides some protection against crashes. A crash is an unde
sired event which causes the state of volatile storage in one machine to be reset 

I UNIX is a trademark of Bell Laboratories. 
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to some standard value [11]. The measure of crash resistance incorporated in 
the DRFS is discussed. 

The paper is arranged as follows: in the next section we describe briefly the 
standard Unix file system and state our objectives. 'The third section presents 
the specifications of the DRFS. It introduces some preliminary definitions and 
explains the concurrency control mechanism. The global architecture of the sys
tem is described in Sect. 4 and we examine in turn the detailed implementation 
of the system components with particular emphasis on the implementation of 
recoverability. The last section addresses some aspects regarding exception 
handling and crash resistance. 

2. Objectives 

Before stating our objectives, we give an overview of some of the operations 
supported by the standard Unix file manager [12]. In response to an operation: 
open (filename, mode) the Unix file manager (UFM) returns a file descriptor 
which has associated with it a read/write pointer. The role of the file descriptor 
is to identify the file in subsequent operations such as read, write and close. The 
UFM simply considers a file to be a contiguous array of bytes. The read/write 
pointer defines the position from which a read or write operation begins in the 
array. 

Our objective is to build an extension [1] of the UFM such that (i) it handles 
the distributed nature of the files, and (ii) it provides the abstraction of re
coverability for the distributed files to the user processes. 

The DRFS interface is designed to be as similar as possible to the UFM in
terface. A DRFS user accesses distributed files located on different sites (re
mote or local) in the -same manner as local files can be accessed through the 
UFM. However, the geographical distribution of the files is visible to the user. 
A user has to specify when a particular named file is in fact resident on a re
mote machine. In Figure 1 we consider only a subset of the filing operations 
implemented since they are the most meaningful regarding recoverability. 

dopen (machinename! Ifname, mode) returns fd: int 
where mode = (Read, Write, R/W) 

dclose (fd) 
dwrite (fd, buffer, nbytes) returns nwritten: int 
dread (fd, buffer, nbytes) returns nread: int 

Fig. 1. Distributed recoverable file manager interface 

The operations listed in Fig. 1 are prefixed by d (distributed). The ex
ceptions that may be returned are not considered. The notation fd is a short
hand for file descriptor and lfname stands for local filename. Those operations, 
constituting the DRFS interface, are supported by a file manager which is 
called the distributed recoverable file manager (DRFM). A file can be opened 
several times in possibly different modes by the same user. However, for the 

551 



sake of simplicity of this presentation, we assume that a file can be opened only 
once within a transaction (Sect. 3). 

All the operations provided on the DRFM interface are atomic in the sense 
that their invocation has an 'all or nothing' effect: either the standard state tran
sition takes place or the state remains unchanged [3]. This is examined in 
further detail in the last section. 

3. Specifications 

3.1. Recovery Structure 

The terms establish recovery point (erp), discard recovery point (drp), and recov
ery region have the same meaning as in Ref. 1. Recovery points can be nested 
and lead to nested recovery regions. 

We define a transaction as a user program delimited by 'begin transaction' 
and 'end transaction' operations. A transaction consists of an arbitrary number 
of possible nested recovery regions. A particular case occurs when within a 
transaction no recovery point is established. This could correspond to a situ
ation in which a user does not want to make use of recoverability, for example, 
for cost reasons. Another situation very likely in practice occurs when a recov
ery point is established at the beginning of the transaction and discarded at the 
end as illustrated in Fig. 2. Such transactions are termed recoverable trans
actions. [10] 

begintr (username) 
erp ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

erp ( ) --
recovery region (n) recovery region (0) 

drp () --

drp() ------------------------------

Fig. 2. Recovery structure in a user program 

The erp operation returns a recovery point number (rpn) which permits 
identification of the recovery point. A user can invoke recovery to any active 
recovery point by the restore(rpn) operation. The recovery point rpn remains 
active after the restore(rpn) operation has been performed. The effect of the 
restore(rpn) operation is to recover from state transformations performed on 
files within the rpn recovery region. Note that files manipulated by the DRFS 
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are the only recoverable objects provided. The user has to restore explicitly the 
state of any other objects used within the recovery regions in order to undo the 
whole effect produced within that recovery region [I, 5]. The drp operation dis
cards the most recently established recovery point. We define commitment as 
taking place when an outermost recovery point is discarded, since after that 
time the state transformations performed on files cannot be recovered from by 
invoking the backward recovery capability of the system. 

It is worth noting that the recovery discipline adopted does not enforce any 
particular structure with respect to the filing operations (Fig. I). Constraints 
such as 'a file must be closed within the recovery region in which it was opened' 
are not imposed. A user can perform filing operations independently from the 
recovery structure. 

In the rest of this paper, we assume for simplicity that transactions are re
coverable transactions, that is compiled of a single outermost recovery region. 
Recoverable transactions have the property that their effects on the state of the 
distributed files can be undone by restoring the first recovery point. 

3.2. Concnrrency Control 

In order to guarantee consistency in a concurrent environment, transactions are 
designed as atomic actions [4] which are implemented by an appropriate lock
ing mechanism of the public (shared) files. The actual system does not provide 
a protection mode for the files such as the UFM and simply considers that all 
files are public. The locks granted within a transaction are held until com
mitment. This strategy enables the DRFS to construct planned atomic activities 
[4] and refer to the occurrence of the so-called 'domino-effect' by making recov
ery actions of transactions independent from each other. All locks are exclusive 
and the granularity of lock is the entire file. Note that transactions are well 
formed and respect two-phase locking [10]. 

The locking mechanism is decentralized so that the lock of a file is main
tained at the site on which the file resides. The locking operations are not made 
visible to the user. The DRFS implements the locks internally. When a user 
performs a dopen operation on a file, the DRFS tries to grant the lock. If the 
lock cannot be granted an exception code: 'lock not granted' is returned. In this 
case, the user can wait and retry, or invoke recovery explicitly. Since the locking 
operations are themselves recoverable, a deadlock situation can be solved by re
covery. However, no automatic provision for deadlock has been incorporated in 
the implemented system. 

The locking strategy presented operates at a crude level, the main advantage 
being its simplicity. Alternative schemes are possible based for i!1stance on 
unplanned recovery control [13]. The reader interested in the influence of dif
ferent locking strategies on the degree of concurrency can refer to Ref. 4. Note 
that the scheme presented enables a transaction to begin by opening all the files 
which might be required, thereby obtaining all the locks which might be need
ed during the execution of the transaction. Therefore a user can either follow 
this policy or choose to acquire the locks during the execution as needed. 
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3.3. Crash Resistance 

The DRFS incorporates some protection against crashes. When a machine 
crashes, the effects of the transactions which have not entered the commitment 
phase are undone. In other words the first recovery point established is made 
crash resistant. The specific problems regarding crash recovery during the com
mitment operation itself are not taken into account. Therefore the atomicity 
property of a transaction [5, 10, 11, 15] which has started commitment is not 
provided. 

The crash resistance feature of the DRFS is achieved by keeping all the 
state modifications performed on file before commitment in volatile storage. 
Memory and temporary files are examples of such volatile storage, temporary 
files being deleted at system restart. 

A user may decide to terminate a transaction before it is completed. For this 
purpose, we provide an additional operation: 'abort'. When a transaction is 
aborted no effect on the state of the files will take place. 

4. Implementation 

The implementation of the DRFS is distributed. On each machine a unique 
local file server process serves the requests related to the files residing on that 
machine. This process is implemented in the form of a local file manager 
(LFM) which is built on top of the UFM. The interface provided by the LFM is 

User process 

Local file 
server (Unix-i) 

Machine Unix-i 

DRFM 

UFM: Unix File Manager 
LFM: Local File Manager 

User process 

DRFM: Distributed Recoverable File Manager 

Fig.3. Distributed Recoverable File System architecture 
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detailed further below. The set of active entities or processes present in the dis
tributed system comprises the local file servers and the user processes. Note 
that a local file server process has an infinite life. The relationship between the 
components of the DRFS is depicted in Fig. 3. 

The DRFM and the LFM communicate via a message passing system. 
However we can regard this communication as equivalent to distributed pro
cedure calls which are meant to encompass both local and remote calls. The 
DRFM calls the procedures provided by the LFM at various sites. An extension 
of the system using a remote procedure call mechanism [16] has been imple
mented. 

Accessing local files by the same mechanism as remote files has facilitated 
system testing. Most of the tests have been performed on a single machine, fol
lowing which the decentralization to a physically distributed environment has 
not caused particular difficulties. 

In order to limit communication overhead between the DRFM and the 
LFM, a paging mechanism is implemented. With each file descriptor allocated 
to a user, the corresponding current page is maintained at the DRFM level 
while the LFM performs block transfers. A subset of the filing operations pro
vided by the LFM is given in Fig. 4. 

The interface shown in Fig. 4 forms an internal interface between the 
DRFM and the LFM and is not visible to the user. The operations are prefixed 
by I which stands for local. The file descriptor ifd) returned in response to the 
'lop en' operation 

lopen(lfname, mode) returns fd: int 
Iclose(fd) 
Iwriteblock(fd, buffer, blockno) 
Ireadblock(fd, * buffer, blockno) 
Icreat(lfname, protection) returns fd: in! 
lunl ink(lfname) Fig. 4. Local File Manager interface. 

is not thefd returned to the user. The DRFS performs successive file descriptor 
mappings which are not considered in this paper. 

The basic interactions that occur between the components of the DRFS are 
better illustrated by the following example. When a 'dopen(dfname, mode)' 
operation is invoked within a transaction the DRFM isolates the machine name 
and the local file name from the distributed file name provided and invokes the 
'lopen(lfname, mode)' operation of the LFM. The LFM serves this request by 
using the service of the UFM. 

We now examine in turn the fine structure of the DRFM and the LFM with 
particular emphasis on the implementation of recoverability. 

4.1. Structure of the Distributed Recoverable File Manager 

The DRFM is the 'controller' of a transaction. It co-ordinates the LFMs whose 
services are requested during the execution of a transaction. The question 

555 



which arises regarding recoverability is: How can recoverability be achieved for 
the distributed files? The scheme presented by Shrivastava [5] gives a solution 
to this problem by using the recoverability capabilities of the remote objects 
managers in a manner that models the inclusive recovery scheme [1]. 

The DRFS follows this strategy. When a user establishes a recovery point, 
the DRFM broadcasts an 'establish recovery point' message to the LFMs which 
have taken part so far in the execution of the transaction. On reception of such 
a message, the LFM establishes its own recovery point, thereby using its own 
recovery capabilities. Similarly when a user performs a restore or drp operation 
a corresponding restore, drp message is broadcast. 

As all the operations provided on the LFM interface are made recoverable, 
the DRFM does not have to maintain recovery information for the objects ac
cessed through that interface. This greatly simplifies the implementation of re
coverability in the DRFM since only the recovery information related to the 
objects maintained at the DRFM level has to be recorded. 

We define a session as being the logical channel which links a DRFM to the 
LFM of a machine. A session is opened with an LFM when the machine name 
is referenced in the user program (Fig. 1). Only the first reference generates the 
opening of a session. The sessions are closed when the 'end transaction' opera
tion is executed. When a session is opened, the DRFM sends for each active re
covery point of the user, a corresponding 'erp' message to the LFM. The 
DRFM records incrementally the history of the sessions in a recovery cache type 
structure termed the session cache. 

The DRFM also maintains some information related to each file descriptor 
allocated to the user (current page, read/write pointer, local file server 
name ... ). This information represents a small amount of data and is recorded 
globally when a recovery point is established in a recovery cache type structure 
termed the file descriptor cache. However, the contents of the current pages are 
not recorded. When a recovery point is established the current pages which 
have been written are flushed onto the disk storage by calling the lwriteblock 
procedure of the LFM. When recovery is invoked, the status of the current 
pages in the DRFM are set to: 'toread', meaning that the pages will have to be 
read by calling the lreadblock procedure of the LFM. It is worth noting that 
although the concrete state thus restored differs from the prior concrete state it 
satisfies the same abstraction [1, 3]. 

When the recovery data are recorded incrementally, the standard algorithms 
of an object manager have to handle the recovery data during their execution. 
However this technique may be necessary to limit the amount of recovery data 
stored. The advantage of recording the recovery data globally versus in
crementally resides in that the former technique enables a clear distinction be
tween the standard algorithms of an object manager and the recovery algo
rithms (erp, drp, restore). 

In fact these techniques can coexist to make the recovery implementation 
more efficient. The DRFS is an example of such a use of a combination of tech
niques. The LFM provides the abstraction of recoverability mainly by record
ing the recovery data incrementally as explained in the following. 
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4.2. Structure of the Local File Manager 

A local file server process executes the recovery and filing operations supported 
by the LFM on request from the DRFMs. The LFM maintains an execution 
context for each session opened with a DRFM consisting of two instances of a 
recovery cache type structure respectively the undo cache and the commit cache. 
The undo cache records the operations to be undone when a user invokes recov
ery. The commit cache records the identification of the files which are not in a 
committed state. The commit cache does not contain redundant data. 

We now examine how recoverability is achieved for some of the filing 
operations supported by the LFM. The creation and deletion of files by the 
operation lcreat and lunlink are mentioned for the sake of illustration and not 
considered in further detail. 

(i) lwriteblock. When this operation is performed, the original file is copied 
into a temporary file if no copy has been made previously. This copy is made in 
order to provide crash resistance (Sect. 3) and is maintained as the up-to-date 
version of the file, that is, all updates are performed on this copy. (Recall that 
temporary files use volatile storage and are deleted at system restart after a 
crash). When the copy is performed the file identification is recorded in the 
commit cache and the code (copy) in the undo cache. 

The copy made would be sufficient for recovery purposes if recovery re
gions were not nested. As recovery regions can be nested, the LFM, to update a 
block, proceeds by: (a) reading the contents of the block from the copy; (b) 
cacheing it in the undo cache of the session's execution context; (c) updating the 
block in place on the copy. To avoid redundancy of recovery data, a block is not 
cached if it has already been cached within the current recovery region. In or
der to limit the amount of recovery data held in the undo cache, the prior con
tents of the block are not recorded directly in the undo cache but in a tem
porary file of the LFM called block-pool; the undo cache retains only the code 
(lwriteblock). The parameters associated with this code are:fd, blockno written, 
blockno allocated from the block-pool. The block-pool file is a shared data 
structure maintained by a monitor. Files which are lengthened are not con
sidered for simplicity of this presentation. 

(ii) lopeno This operation consists of two primitives operations which are (a) 
locking the file; (b) executing the open operation of the UFM. Hence the codes 
(lock, open) with appropriate parameters are recorded in the undo cache. If re
covery is invoked, the file is closed and unlocked. 

(iii) Iclose. This operation consists of (a) executing the close operation of the 
UFM; (b) unlocking the file. Since the unlock operation must be delayed until 
commitment, the unlocking is not performed but the file identification is re
corded in the commit cache while the code (close) is recorded in the undo 
cache. If recovery is invoked the file is reopened. Note that the execution of the 
open and close operations of the UFM are performed on the copy of the file if a 
copy has been made. 

Maintaining a copy of a file to provide crash resistance may appear an inef
ficient solution. An alternative scheme would have been to maintain only a 
copy of the blocks which have been written. A file block mapping [7] could then 
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associate to a blockno, either the original block if the block has not been modi
fied, or the copy of that block if an update has been performed. However, apart 
from the simplicity of implementation, the first solution has the following ad
vantages: 
(a) It optimizes the normal execution of the lreadblock operation. No file block 

mapping has to be performed since the copy contains the up-to-date ver
sion of the file. 

(b) It enables us to adopt the same solution for the !creat and lunlink opera
tions. The basic idea is to work on temporary files and not to perform state 
modifications in non-volatile storage before commitment. For instance, an 
lcreat operation results in a copy being created. 

Indeed, although the solution retained is more simple, it may become inef
ficient both in terms of auxiliary storage required and with respect to perfor
mance issues when handling large files. 

To summarize, the commit cache contains the identification of the files 
which are not in a committed state, whereas the undo cache contains the opera
tion codes (locks, open, close, copy, writeblock) as necessary. A recovery cache 
is organized as a stack, which is subdivided into regions separated by barriers 
[6]. The algorithm executed by the LFM when recovery is involved by a user 
process is given in Fig. 5. 

Irecover(rpn) = 

i I) Remove the barriers from the current recovery region to region rpn 
in the commit cache and the undo cache re pectively. 

i2) Proce the undo cache as follows: 
while (pop(operation) != barrier) 

switch (operation) { 
case lock: unlock; 
case open: clo e' 
case close: open" 
case copy: delete copy; 
case wblock: write the prior value of the block; 

free (blockno allocated from block-pool); 

i3) Proce the commit cache by removing the entrie until the barrier i 
encountered . 

i4) Set current recovery region of rpn. 

Fig. 5. Recovery algorithm of the local file manager 

At commitment time, the entries in the undo cache are discarded and the 
commit cache is processed as follows. For each file identification recorded in 
the commit cache, the LFM determines what the state of the file after com
mitment should be. It then performs the necessary commit operations to effect 
the state transition from the actual state of the file to the post commitment state 
in non-volatile storage. For instance, the commit operations related to a file 
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which has been successively opened, updated and closed are: rename the copy 
to be the original file name, delete the original file, free the blocks allocated 
from block-pool, and unlock the file. 

The implementation of the LFM has shown how unrecoverable features of 
the lower level interface of the UFM can be concealed in an extension to pro
vide new recoverable abstract files. In retrospect of this exercise it appears that 
the amounts of work vary a lot between the operations depending upon the fa
cilities provided by the non-recoverable interface, and it is not clear, at this 
stage whether one could establish some properties of an 'ideal' non-recoverable 
interface such that the recoverable extension be built in the most efficient man
ner. 

5. Exception Handling - Crash Resistance 

In this section we examine in turn exception handling and crash resistance is
sues. As is emphasized in Ref. [2] exception handling forms the basic frame
work for fault tolerance strategies. Although neither our programming lan
guage nor the Unix operating system support an 'exception mechanism', we be
lieve that some of the principles presented elsewhere [2, 3] can be used suc
cessfully when programming with more conventional tools. 

In response to a request, a component may provide its normal service or sig
nal an exception. Two reasons can lead a component to signal an exception: (i) 
an illegal request for service is made - an interface exception [2] - or (ii) the 
component fails to provide the standard service - 'not done' exception [5]. Be
fore signalling an exception a component must revert to the external state it had 
prior to the request in order to enforce the atomicity of the operation invoked. 
As advocated in Ref. [2] a simple method of meeting this requirement is for a 
component to establish a recovery point when the request for service is received 
and then either discard or restore that recovery point as necessary. When an ex
ception is signalled, the handler associated with the exception at the point of 
invocation of the request is activated. The handler can either attempt to mask 
the occurrence of the exception and proceed with execution or if nothing is suc
cessful, signal an exception to a higher level of abstraction. 

The Unix operating system does not support backward error recovery as a 
basic mechanism, therefore consistency of the components of the DRFS is re
stored by forward error recovery. Indeed, the DRFM could establish a recovery 
point when an operation of its interface is involved, thereby using the backward 
recovery capability of the LFM which provides recoverable operations. How
ever, this facility has not been used for the following reasons. Firstly the need to 
deal with recovery points established at several levels of abstraction has been 
avoided - the reader interested by this issue can refer to Ref. [1]. Secondly, the 
operations provided on the LFM interface being atomic, it was simple and 
more efficient to restore the consistency of the DRFM if necessary by forward 
error recovery. 

If consistency cannot be restored successfully a 'failure' exception can be 
signalled, the task of restoration relying then at a higher level of abstraction. 
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However, the DRFS avoids to propagate 'failure' exceptions since on one hand 
it is desirable for the user not to have to provide two exception handlers to 
handle separately 'failure' and 'not done' exceptions. On the other hand, the re
covery data which are recorded incrementally by a recoverable component can 
be inconsistent when a 'failure' exception is signalled. If the recovery data is in
consistent, backward error recovery situated at a higher level will fail therefore 
achieving no progress in restoring consistency. 

Restoration of consistency by forward recovery within the LFM relies upon 
the assumptions made upon the atomicity property of the operations provided 
on the UFM interface. In the actual system, the UFM operations have been as
sumed to be atomic. However, the write operation should be considered as sig
nalling 'failure' exception. The handler associated with this anticipated failure 
occurrence could then for instance attempt to mask it by relocating the whole 
file. We do not specifically consider communications failures. These failures re
sult in 'not done' or 'failure' exceptions being signalled by the lower level mes
sage passing systems. When a 'not done' exception is signalled, an attempt to 
restore consistency is made and a 'not done' exception propagated, whereas if a 
'failure' exception is signalled, it is assumed that consistency cannot be restored. 

When consistency cannot be restored within the LFM or DRFM, the stan
dard algorithms for maintaining the abstraction of recoverability are deemed to 
have failed. In order to guarantee consistency despite such failures, some re
dundancy is required and provided by the crash resistance features. Therefore, 
in such a situation the DRFS simulates a crash event by aborting the trans
action. 

In the following, we present some characteristics of the crash recovery pro
tocol. When the LFM aborts a transaction, it cleans the session's execution con
text and returns an 'abort' answer to the DRFM. On reception of such a mes
sage the DRFM triggers the abort procedure which consists of cleaning up the 
transaction locally and broadcasting an 'abort' message to the other local file 
servers recorded in the session cache. On reception of an 'abort' message the 
LFM executes the abort procedure if the session is not already aborted. Should 
a local file server crash and a 'failure' exception being signalled by the message 
passing system within the DRFM, the abort procedure is triggered. Should a 
DRFM crash, a time-out mechanism set on each session at the LFM level enab
les to abort the session locally. As a simplification, the time-out mechanism is 
not implemented. Rather the session's context remains pending until the user 
launches a new transaction which requests services of this LFM. The opening of 
a new session then causes the abortion of the previous pending one. The pro
tocol implemented is fairly simple and no 'crash-recovery' procedures are 
implemented. However it does not cope with exceptions being raised during 
commitment nor with crashes occurring at that time. An extension of the system 
to deal with these situations is under investigation. 
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6. Conclusion 

In this paper we have discussed the recovery features of a distributed file sys
tem, detailing successively the structure of the system components. It has been 
shown that a combination of techniques such as global and incremental recov
ery data recording can make the implementation of recoverability more ef
ficient. The fact that the system is geographically distributed has not complicat
ed the design since local files are accessed in the same manner as remote files. 
The access is made through the message passing system interface which 'hides' 
the inter-machine dependencies. The system has been written in the high level 
language 'C' and is currently running on a local area network comprised of PDP 
11145 and LSI 11123 machines connected through the Cambridge ring. The 
overall structure of the system is simple and in this respect sticks to the ob
jectives of development of the first version. 

A number of extensions are possible: (i) to investigate other concurrency 
control mechanisms; (ii) to improve the basic set of facilities provided in order 
to give to a user the same facilities as the Unix file system and to measur.e the 
actual overheads incurred. 
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Chapter 7 

Fault Tolerance and System Structuring 

B. RANDELL 

Abstract. We discuss a general approach to the design of fault-tolerant computing systems, 
concentrating on issues of system structuring rather than on the design of particular algo
rithms. Three forms of structuring are described. The first is based on the use of what we term 
"idealized fault-tolerant components". Such components provide a means of system structur
ing which makes it easy to identify what parts of a system have what responsibilities for trying 
to cope with what sorts of faults. The second is a "recursive structuring" scheme. It involves 
using complete computers as the basic idealized fault-tolerant components of a distributed 
computing system whose functionality matches that of its component computers. Finally we 
discuss a generalization of the usual concept of an "atomic action", which provides a means of 
structuring both forward and backward error recovery in distributed systems. These discus
sions are given in general terms, and also illustrated by brief accounts of recent and current 
work at Newcastle on the construction of UNIX-based fault-tolerant and distributed systems. 

1. Introduction 

The most straightforward way of constructing reliable computing systems 
would be to use only reliable components, and to put them together only in ac
cordance with correct designs. In practice one often has to try to achieve re
liability despite the unreliability of the hardware and software components 
used. Moreover (though this is less often admitted) one may well not be able to 
guarantee that the overall system design is absolutely faultless. Thus strategies 
aimed at fault avoidance or removal (prior to use of a system) must usually be 
complemented by strategies aimed at tolerating the presence of faults. 

In this paper we will discuss a general approach to the design of fault-toler
ant systems. Our approach concentrates on issues of system structuring rather 
than on the design of particular algorithms. This is because, with computing 
systems that have to meet complex and demanding specifications, the overall 
reliability levels achieved will depend crucially on the extent to which the sys
tem design can be kept simple. Thus, in our view, careful structuring is at least 
as important as are clever algorithms to the achievement of successful fault
tolerant system design. 

This viewpoint has motivated research over the years at Newcastle, and has 
led us to a style of system design which is based on what we term "idealized 
fault-tolerant components". Such components provide a means of system struc
turing which makes it easy to identify what parts of a system have what re
sponsibilities for trying to cope with which sorts of fault. Moreover, by taking 
complete computers as the basic idealized fault-tolerant components, one can 
make use of a "recursive structuring" scheme which simplifies many design is
sues. However these schemes of structuring the software and hardware compris
ing a system need to be used in such a way as to achieve an appropriate struc
turing of the complex asynchronous activities to which the system can give rise, 
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in particular those related to fault-tolerance. In common with other groups, we 
have been investigating the use of so-called "atomic actions" for this purpose. 

These three forms of structuring are described in Sect. 2, 3 and 4 below. The 
discussion is given in general terms, and is illustrated by brief accounts of re
cent and current work at Newcastle on the construction of UNIX-based fault
tolerant and distributed systems. 

2. Idealized Fault Tolerant Components 

Systems, and their components, can be regarded as performing operations in or
der to provide responses to requests. Within a system in which it is acknowl
edged that faults might exist these faults can, from the viewpoint of a given 
component, be grouped into three categories: 

(i) faults within the component itself, 
(ii) faults in the SUb-components or co-existing components that a component 

makes use of, and 
(iii) faulty requests made of the component by its environment, i.e. the enclos

ing component or the co-existing components with which it is interacting. 

Potentially therefore, in a system which is intended to be fault-tolerant, each 
component should be designed to deal appropriately with each of these three 
very different situations. Ideally a component should seek to mask its own 
faults, and any unmasked faults in the components that it makes use of, so that 
it can appear fully reliable to its environment. In general, however, this will not 
always be possible. Thus each component should have pre-defined means of re
porting to its environment that a fault has occurred, if it has been unable (or 
has not been designed) to mask the fault. 

On the other hand a component cannot be expected to mask the faults (in its 
environment) that cause the component to be requested to perform an opera
tion which is outside its specification. (A component which is designed, say, to 
calculate the square root of its input cannot be expected to produce a real result 
from a negative input.) However we would again argue that the component 
should have a defined means of reporting the problem back to its environment, 
where attempts to mask the fault would be appropriate. 

Our notion of an "idealized fault-tolerant component" is concerned with 
these issues of fault reporting, and of the assignment of responsibility for at
tempts at fault masking. In this section we deal just with a single component 
and its interactions with its environment, deferring until Section 4 consideration 
of the structuring of systems constructed out of multiple components, and so 
capable of asynchronous behaviour. 

What is significant about an idealized fault-tolerant component is that it 
implies a scheme for structuring systems which incorporate various means of 
tolerating various sorts of faults. The structuring scheme makes minimal as
sumptions about what sorts of fault cannot occur, and what sorts of fault mask
ing will be achieved - the one requirement is, naturally, that faults do not in
validate the planned structure of components and their inter-relationships. 

564 



The scheme requires that, in general, each component should have identifi
able, and in principle separate, means for dealing with the above three catego
ries of fault. In hardware terms, we are in part arguing for a design based on 
self-testing components [1], since it is each component's responsibility to alert 
its environment when it cannot carry out a requested operation. In program
ming terms, our scheme is in fact a suggested discipline for exception handling. 
It is illustrated in Figure 1, in which local exceptions, failure exceptions and in
terface exceptions are the respective means by which the three categories of 
fault listed above are reported. 

If a component either receives an abnormal response from an invocation of 
another component or detects an error or abnormal condition during normal ac
tivity, it should raise an exception and invoke appropriate fault tolerance 
measures. Recovery is an abnormal activity of the component and is continued 
until the component either returns to is normal activities or signals an ex
ception. The relationship between the normal and abnormal activity of a com
ponent and the raising and signalling of exceptions is shown in Fig. 1. Note that 
an exception is raised within the component, but signalled between com
ponents. The flow of control of a computation within a component should 
change as the result of a raised exception. Such a modified or exceptional flow 
of control is distinguished from the normal flow of control. Within a program, 
exceptional flow of control is associated with code fragments that are called ex
ception handlers. 

Exceptions, software components, and exception handlers are associated by 
a handling context. If the fault tolerance measures provided by a handler are 
successful, the handler will provide a normal return, from the component which 
raised the exception, to the component which invoked that component. If the 
fault tolerance measures are unsuccessful or inadequate, a handler should sig
nal a failure exception. Abnormal control flow continues in an exception han
dler of the invoking component. 

An exception handler is a component and may have its own context, ex
ceptions, and exception handlers. This permits the nesting of exception han
dling facilities. If an exception is raised within a component (or an exception 
handler) that does not have a context defining an appropriate handler, the com
ponent fails and a failure exception is signalled. 

The scheme is based on the so-called "termination model" of exception 
handling [2]. In other words, we require that the operation that a component 
undertakes for a particular service request be terminated by the provision of a 
normal or abnormal response to the environment. Thus an operation cannot be 
resumed after the environment has dealt with an interface or failure exception -
- the component can only be asked to start another operation. 

With such a structuring scheme it is possible, and indeed desirable, to 
specify the interface between each component and its environment completely. 
This enables the design of the component to be based on just the interface 
specification, and so to be undertaken independently of that of its environment, 
even with respect to issues of fault tolerance. This is a very important ad
vantage. When fault tolerance provisions have not been carefully structured 
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their design can be very complex, to the point where the design itself is a source 
of unreliability. 

One of the important tasks of a system designer using this structuring 
scheme will be to decide what sort of faults can and cannot occur, and what 
sorts of fault masking can be presumed to be successful. This is so as to de
termine what exceptions must be defined and what exception handlers must be 
provided. For example, a component using triple modular redundancy tech
niques to mask sub-component faults should in principle still have a way of re
porting a failure exception to its environment for use if, say, no two of the 
triplicated components are in agreement. However in some circumstances it 
might well be decided that it is safe to disregard such a possibility, and hence to 
omit the provision of such an exception, i.e. to modify the specification of the 
interface between the component and its environment. 

2.1. A Remote Procedure Call Protocol 

The approach that we, and several other groups, have taken recently to the 
structuring of local area networking software can usefully be described in terms 
of idealized fault-tolerant components. Oversimplifying somewhat, the soft
ware can be regarded as being structured into two levels of component, with a 
third underlying level of component in the form of the network hardware. The 
lower level software component uses the hardware to provide message-passing 
facilities, which the upper level software uses to provide a remote procedure 
call facility. 
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It would have been possible to provide message passing over the local area 
network by a component which used a sophisticated protocol involving mecha
nisms for flow control, error correction and acknowledgements, etc., to give 
"guaranteed" delivery of undamaged and unduplicated messages. In such cir
cumstances the temptation would have been to treat the message passing as be
ing fully reliable, and to omit any provisions for signalling a communications 
failure exception to the upper level component. 

In fact such a protocol would consume considerable processing and storage 
resources, since a significant amount of state information would have to be 
maintained about any data transfer in progress, in order to support the ab
straction of a "connection" between processes. To establish, maintain and ter
minate a connection reliably is rather complex, and a significant number of 
messages would be needed just for connection purposes [3]. 

This would be quite appropriate for wide area packet-switching networks 
which are liable to damage, lose or duplicate packets. However it is not so ap
propriate for a local area network, such as the Cambridge Ring, because of the 
much greater (though still of course less than total) reliability of the underlying 
hardware. We therefore chose to provide message passing by direct use of the 
underlying hardware communications facilities, without trying to mask any of 
their faults. Instead the message-passing component merely signals an ap
propriate exception to the enclosing remote procedure call protocol software 
when necessary. (In fact, once an appropriate interface, with adequate exception 
signalling, has been defined it is practicable to support it by a variety of com
munications hardware and message-passing protocols. Thus we plan to support 
exactly the same message-passing interface when we use, instead of a Cam
bridge Ring, a wide area packet-switching network together with a connection
oriented protocol [4].) 

The upper-level component therefore contains handlers for exception sig
nals indicating that there has been a communications fault which the message
passing component has not masked, perhaps because it did not attempt to do 
so. This upper level of software, which provides the rest of the system with a 
remote procedure call facility, in any case has to deal with problems arising 
from computers crashing, and hence being temporarily unable to respond at all 
to messages. 

The remote procedure call software in fact has responsibility for trying to 
ensure that remote procedure calls obey an "exactly once" semantics [5], i.e. 
that computer crashes and consequent re-sending of messages do not cause 
unintended repeated execution of a procedure. Being able to do this, it can also 
readily cope with failure exceptions from the message-passing component. This 
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choice of structure (which is based on the so-called "end-to-end argument" [6]), 
has proved very satisfactory, since our "light-weight" remote procedure call 
protocol has proved to be as reliable as, and considerably more efficient than, 
an existing connection-oriented protocol for the Cambridge Ring [7]. 

3. Recursively Structured Systems 

The notion of an idealized fault-tolerant component can be applied to many 
different aspects and levels of computing system design. An allied structuring 
technique that we have been investigating is aimed at the situation where one is 
taking complete computers as basic system components, and using them to con
struct a distributed computing system. This "recursive structuring" technique is 
expressed in the design rule: 

A distributed system should be functionally equivalent to the individual 
systems of which it is composed. 

In other words, one arranges to use, as the principal idealized fault-tolerant 
components of a computing system, computers whose external interface exactly 
matches that required of the system as a whole. Thus, if the distributed system 
is to provide facilities for parallel processing, the component computers must 
also provide (at least the appearance of) parallel processing. More importantly, 
each component computer's naming facilities (i.e. the means it provides to 
users for identifying its various constituent objects, such as devices, files, pro
grams, etc.) must be independent of whether the computer is in fact an isolated 
(i.e. complete) system, or merely a component of some larger system. This 
characteristic is not common in the world of computing systems, despite the 
fact that it is well known elsewhere, for example in telephone systems. (The 
telephone numbers used in a company's internal telephone system need not be 
affected if the system becomes part of a national telephone system. National 
telephone numbers need not be changed if the country becomes part of the in
ternational telephone system, etc.) 

Specifically, the component computer systems need to support a general' 
"contextual naming" scheme for their various objects. In order for a system to 
be extensible, it should have means for introducing and entering (and leaving) 
new naming contexts. Such facilities are reasonably common. What is not so 
common is a system in which all names are context-relative. However this is es
sential, because of the requirement that a computer be usable in the same way 
when it is isolated as when it is within a larger system. 

The mechanisms that one uses in order to build the overall distributed sys
tem out of the component computers must not affect the functionality of the 
system - they must, in other words, be transparent to the user of the system. 
These user-transparent mechanisms can however be designed to have beneficial 
effects on such aspects of the overall system as its capacity, reliability and se
curity - qualities that we term abilities, so as to distinguish them from the logi
cal functionality of the system. 
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The most important such mechanism is the one that enables a number of 
component computers to be linked together. The mechanism in fact provides 
what is often termed "network transparency", since the users of the distributed 
system will, in view of the design rule that has been followed, be shielded from 
all issues of inter-computer communication, networking protocols, etc. Note 
that this is a rather special form of network transparency since one must be able 
to repeat the construction process, and build a further larger distributed system 
using several first-level distributed systems as though they were basic com
ponent computers. A distributed system which is recursively structured in this 
way is - by definition - indefinitely extensible, at least in theory. 

One can contrast this scheme of making a set of computers look like a single 
computer with the better known technique of using a virtual machine monitor, 
or "hypervisor", to make a single computer look like a set of computers. (With 
a so-called "recursive virtual machine monitor" [8], the subdivision can be per
formed repeatedly, in close analogy to the idea of repeated construction de
scribed above.) Both schemes can in fact be regarded as forms of virtual is at ion, 
as can user-transparent mechanisms for providing other so-called abilities, in 
particular reliability. 

In a recursively structured computer system,· the possible exceptions sig
nalled by the overall system must be the same as the exceptions signalled by the 
component computers. However, by the use of redundant component com
puters, one can largely mask their faults, and hence greatly reduce the frequen
cy with which the overall system has to signal failure exceptions. Thus al
though no change has been made with respect to functionality, the user-per
ceived reliability of the overall system can be significantly enhanced. This in
volves construction of a further virtualisation mechanism (e.g. to perform the 
synchronization and voting needed for triple modular redundancy) but this 
mechanism can be designed and constructed independently of the virtualisation 
mechanism that provides network transparency. 

In fact one can envisage enhancing the ability of the overall system by 
means of a whole set of independently designed virtualisation mechanisms. 
This clear separation of logical concerns greatly reduces overall system com
plexity. Indeed the important point about a virtualisation mechanism is that its 
presence is, in a sense, always optional. Thus one can in principle use any selec
tion of virtualisation mechanisms together, in order to obtain a system with the 
desired abilities. 

3.1. UNIX United 

The technique of recursive structuring underlies recent work at Newcastle 
which has resulted in the implementation of yet another distributed system 
based on UNIX. The system, which for purposes of description we will call 
"UNIX United", is a distributed system which is functionally equivalent to a 
conventional UNIX system running on a single processor. All the standard 
UNIX facilities, e.g. for protecting, naming and accessing files and devices, for 
input/output re-direction, for inter-process communication, etc., are applicable 
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without apparent change to the system as a whole. UNIX is a particularly suit
ed to the use of the recursive structuring scheme, because of its very simple yet 
general scheme for naming files, devices and commands, in which directories 
serve as the required contexts. 

Figure 3 shows part of a typical UNIX naming hierarchy. Files, directories, 
etc., can only be named relative to some known "location" in the tree. It so hap
pens that UNIX provides two such locations, namely the directory which is des
ignated as being the "current working directory" and that which is designated 
as the "root directory". Thus in the figure "Iuser/brian/dirl/a" and "dirl/a" 
identify the same file, the convention being that a name starting with "/" is 
relative to the root directory. Objects outside a context can be named relative to 
that context using the convention that " .. " indicates the parent directory. (Note 
that this avoids having to know the name by which the context is known in its 
surrounding context.) The names "Iuserlfred/b" and " . .Ifred/b" therefore 
identify the same file, the second form being a name given relative to the cur
rent working directory rather than the root directory. 

The root directory is normally positioned at the base of the tree, as shown in 
the figure, but this does not have to be the case. Rather, like the current work
ing directory, it can also be re-positioned at some other node in the naming 
tree, but this position must be specified by a context-relative name. Thus all nam
ing is completely context-relative - there is no means of specifying an absolute 
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name, relative to the base of the tree, say. (The base directory can itself be rec
ognized only by the convention that it is its own parent.) Moreover all other 
means provided for identifying any of the various kinds of objects that UNIX 
deals with, e.g. users, processes, open files, etc., can be related back to its hier
archical naming scheme. It is for these reasons that UNIX, in contrast to most 
operating systems, can be said to support a contextual naming scheme. 

This simple and elegant scheme of context-relative naming has been taken 
advantage of in UNIX United by identifying individual component UNIX sys
tems with directories in a larger name space, covering the UNIX United system 
as a whole. In Fig. 4 we show how a UNIX United system spanning an entire 
university might be created from the machines in various university de
partments, using a naming structure which matches the departmental structure. 
(This naming structure need bear ·no relationship to the actual topology of the 
underlying communications networks. Indeed this exact naming structure could 
be set up on a single conventional UNIX system.) 

The figure implies that from within the Computing Science Department's 
UI machine, files on its U2 machine will normally have names starting 
"I. ./U2" and files on the machine that the Electrical Engineering Department 
has also chosen to call "U2" will need to be identified with names starting 
"I . ./. ./ EE/U2". Indeed U2 and the directory structure beneath it might not be 
associated with a single machine. Rather it might be a UNIX United system, 
itself containing an arbitrary number of other UNIX United systems, unknown 
to UI in CS. 

The network transparency that UNIX United provides has been implement
ed merely by inserting a software layer, which we call the "Newcastle Con
nection", into an otherwise unchanged UNIX system. The positioning of the 
Connection layer is governed by the structure of UNIX itself. In UNIX all user 
processes and many operating system facilities (such as the 'shell' command 
language interpreter) are run as separate timeshared processes. These are able 
to interact with each other, and the outside world, only by means of 'system 
calls' - effectively procedure calls on the resident nucleus of the operating sys
tem, the UNIX kernel. The Connection is a transparent layer that is inserted be
tween the kernel and the processes. It is transparent in the sense that from 
above it is functionally indistinguishable from the kernel and from below it ap
pears to be a set of normal user processes. It filters out system calls that have to 
be re-directed to another UNIX system (for example, because they concern files 
or devices on that system), and accepts calls that have been re-directed to it 
from other systems. Thus processes on different UNIX machines can interact in 
exactly the same way as do processes on a single machine. 

Since system calls act like procedure calls, communication between the Con
nection layers on the various machines uses a remote procedure call protocol 
(which is based on that discussed in Sect. 2.1 above), as portrayed in Fig. 5. 

Various additional UNIX virtualisation mechanisms are being investigated. 
One that has already been implemented in prototype form makes use of triple 
modular redundancy techniques in order to mask hardware faults. This is de
signed as an additional transparent software subsystem (the Triple Modular 
Redundancy layer) in each of a number of UNIX machines on top of their Con-
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nection layers, as shown in Fig. 6. The TMR layer goes on top of the Con
nection layer because it can then rely on the latter to handle all problems relat
ing to the physical distribution of processes, files, etc. Copies of a conventional 
application program and its files can then be loaded onto each of three ma
chines and run so that file accesses are synchronized and voted upon. Any mal
functioning computer so identified by the voting is automatically switched out 
and in due course another switched in to replace it. (Being independent of the 
Connection layer, the TMR layer could, in principle, be used in a single conven
tional UNIX system. This would give a sort of "temporal triple modular re
dundancy", with three identical processes running in interleaved fashion on a 
single processor.) 

4. Atomic Actions 

The structuring techniques discussed so far have been concerned with the use of 
systems as components of larger systems, and in particular with the static struc
ture of the software and/or hardware making up a computer system. We now 
tum our attention to the closely related topic of the dynamic structure of a sys
tem. By this we mean the structure of the perhaps complex activities that the 
components of the system give rise to when the system is operational. By so do
ing, we can deal with the issues raised by systems in which components can 
share subcomponents, so that there can be complex asynchronous behaviour, 
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and in which the number of components can change. As always, our aim is to 
cope with complexity by finding means of treating various aspects of the system 
design independently of each other, even (or rather, especially) with regard to 
the problems of achieving fault tolerance. In this regard we now concentrate on 
error recovery techniques, i.e. the design of the exception handling mechanisms 
in a system built using idealized fault-tolerant components. 

Error recovery techniques are aimed at allowing a system to continue opera
tion and to resume normal computation. However other errors may well have 
been generated in the interval between the manifestation of a fault, and the mo
ment of error detection. Successful fault tolerance must enable the system to 
continue to function despite error propagation during the time interval, which 
may be lengthy, between the first manifestation of a fault and the eventual de
tection of an error. 

So-called "forward error recovery" aims to remove or isolate specific errors 
so that normal computation can be resumed [9]. It is accomplished by making 
selective corrections to a system state. Because recovery is applied to a state that 
contains errors, forward error recovery techniques require accurate damage as
sessment (or estimation) [10] of the likely extent of the errors introduced by the 
fault. 

In contrast, "backward error recovery" aims to restore the system to a state 
which occurred prior to the manifestation of the fault. Using this earlier state of 
the computation, the function of the system is then provided by an alternate al
gorithm until normal computation can be resumed [11]. (In practice, the most 
recent restorable system state which is free from the effects of the fault may be 
difficult to determine. In order to find an appropriate system state, a search 
technique may be used involving iteratively attempting recovery from succes
sively earlier restorable states until recovery is successful.) Because backward 
error recovery restores a valid prior system state, recovery is possible from er
rors of largely unknown origin and propagation characteristics. (All that is re
quired is that the errors have not affected the state restoration mechanism.) 

Forward and backward error recovery techniques complement one another, 
forward error recovery allowing efficient handling of expected conditions and 
backward error recovery providing a general strategy which will cope with 
faults a designer did not - or chose not to - anticipate. As a special case, a for
ward error recovery mechanism can support the implementation of backward 
error recovery [12]. 

If a system has but a single component, and the operations performed (for 
the environment surrounding the system) by this component can be regarded as 
having an instantaneous or indivisible effect on the state of the system, the sys
tem is said to be sequential. As long as the component, and all of its sub
components, are not also part of any other system, then the system is isolated. 
The provision of forward or backward error recovery in such isolated sequen
tial systems can be reasonably easy. 

If on the other hand a system has a number of components, of which one or 
more subcomponents are shared, it will be possible for the system to give rise to 
perhaps very complex asynchronous and interacting activities. The provision of 
error recovery will be a much more difficult problem in such circumstances. 
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Nevertheless it is possible to limit this complexity, and hence facilitate the pro
vision of error recovery, if one can arrange that the overall activity of the sys
tem is appropriately structured. 

If an operation provided by a system is carried out by the system's com
ponents in such a way that there are no interactions between the set of com
ponents and the components of any other system, then we can say the operation 
has given rise to an atomic activity. (A more rigorous definition can be found in 
[13].) If a particular operation is always performed atomically, then we term it 
an atomic operation or, more commonly, an atomic action - a notion which has 
much in common with that of a "sphere of control" [14]. 

There are great advantages to structuring systems out of hierarchies of 
atomic activities. The temporary creation and then destruction of additional 
components within an atomic action can be dealt with reasonably easily. If a 
fault, resulting error propagation, and subsequent successful error recovery all 
occur within a single atomic action it is possible to ensure that they will not af
fect other system activities. Furthermore, if the activity of a system can be or
ganized into atomic actions, fault tolerance measures can be constructed for 
each of the atomic actions independently. Thus, atomic actions provide a 
framework for encapsulating fault tolerance techniques within modular com
ponents. If all the operations on a system are atomic, then that system is an 
atomic system. Such systems may be used as components in the design and con
struction of other, more complex, systems as if their activities were primitive 
atomic actions. Systems that are designed explicitly so as to synchronize the ac
tivities of their components in order to form atomic actions have planned 
atomic actions. Systems may also give rise to spontaneous atomic activities, i.e. 
ones that arise fortuitously from the dynamic sequences of events occurring in a 
system. For the purposes of structuring fault tolerance measures, spontaneous 
atomic activities are of little value even if they can be easily identified as such. 

Planned and spontaneous atomic activities represent the two opposite ends 
of a spectrum of error recovery techniques, depending on the extent to which 
explicit constraints are imposed upon inter-process communication. The con
versation [IS] is an example of a planned atomic activity with which backward 
error recovery is associated. The chase protocol scheme [16] associates back
wards error recovery with a more spontaneous form of atomic activity dynami
cally determined by the protocol from past patterns of interprocess communi
cation and available fault-tolerance provisions. Other error recovery techniques 
based on atomic activities that are more spontaneous than those of the con
versation but less spontaneous than those of the chase protocol exist. For 
example, the two phase commit protocol [17] explicitly co-ordinates the activi
ties of components leaving a "transaction" but does not require that the com
ponents be identifiable beforehand. 

However the conversation, chase protocol and two-phase commit tech
niques concern themselves just with the use of backward error recovery in asyn
chronous systems. What is needed is a more general scheme for trying to ensure 
that a system behaves reliably in the presence of faults. The notion of reliability 
requires that a system have a specification against which the actual results of 
invoking its operations can be assessed. When an atomic action is executed, a 
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well-defined state exists at the beginning and· termination of its actIvIty 
(although these states may not necessarily be instantaneously observable). The 
intended relationship between these states constitutes a specification for the 
atomic action which is independent of any asynchronous activity inside or out
side the atomic action. 

Such a specification is needed if general exception handlers are to be de
signed. (No such specification can be available for spontaneous atomic activi
ties, which therefore can at most be used as a basis for backward error recov
ery.) Thus atomic actions provide a basis for structuring both forward and 
backward error recovery in asynchronous systems, provided appropriate ex
ception handling rules can be devised. The following paragraphs describe our 
attempts to do this. 

The raising of an exception within a fault-tolerant atomic action requires 
the application of abnormal computation and mechanisms to implement the 
fault tolerance measures. If the recovery measures succeed, the atomic action 
should produce the results that are normally expected from its activation. 
Atomic actions that explicitly return an abnormal result do so only due to the 
agreement of all their components. Thus we associate exception handling con
texts with atomic actions. 

An atomic action may contain internal atomic actions. If an exception is 
raised within an internal atomic action, then the fault tolerance measures of 
that internal atomic action should be applied. However, an internal atomic ac
tion may signal an exception. This exception is raised in the containing atomic 
action. 

Whether one or several of the components carrying out an atomic action 
raise an exception, we would argue that the fault tolerance measures necessarily 
involve all of the components involved in that atomic action. (The fact that an ex
ception has been detected invalidates the assumptions that the components can 
terminate normally and collectively provide the appropriate results. If some of 
the components are not required to change their flow of control to execute fault 
tolerance measures, they do not interact with the other components and hence 
should participate in a separate atomic action.) 

Depictions of an atomic action in which a component raises an exception 
and each component of the atomic action changes its flow of control are shown 
in Figs. 7 and 8. (Comparing these figures to that given earlier of an idealized 
fault-tolerant component, the pair of arrows entering the atomic action cor
responds to a service request being made of the system, the system being 
viewed as a fault-tolerant component containing two sub-components. Simi
larly, the pair of arrows leaving the atomic action corresponds to the provision 
of either the normal response, or an exception signal, by the system.) Although 
it is so implied by the diagrams, the activities involved in the start and the fin
ish of the atomic action need not be closely synchronized - more sophisticated 
implementations are possible, though at the cost of increased complexity of er
ror recovery. 

Every component involved in the atomic action responds to the raised ex
ception by changing to an abnormal activity. Each component changes to an ex
ceptional control flow so as to execute a handler for that exception. This han-
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dler either returns the component to normal activity or signals a further ex
ception. (The change in control flow of a component that occurs as a result of a 
raised exception in a sequential system is a special case of the changes in con
trol flow that should occur in an asynchronous system.) In Fig. 7, the recovery 
measures implemented by the exception handlers succeed and the normal con
trol flow of the components is resumed. Figure 8 shows the control flow of the 
components involved in an atomic action when the exception handlers for the 
components cannot recover. 

It is convenient to restrict signalled exceptions so that each component (or 
exception handler) involved in an atomic action returns the same exception. The 
signalling of the same exception ensures that the components agree on the ab
normal result that should be returned to indicate the failure of the atomic ac
tion. (Note that an exception should be raised if two or more components try to 
signal different exceptions. The exception handlers for this exception should 
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signal a failure exception.) An exception is raised in an atomic action if one of 
its internal atomic actions signals an exception. Signalling a single exception 
from an internal atomic action simplifies the selection of the appropriate ex
ception handlers and recovery measures. 

If any of the components of an atomic action do not have a handler for a raised 
exception then all of the components should signal an atomic actionfailure. How
ever one will commonly arrange that an implicit handler, providing backward 
error recovery, is invoked by default, if no explicit handler is given. 

Our scheme for using atomic actions to structure both forward and back
ward error recovery in asynchronous systems is described in greater detail in 
[18]. This deals with such further issues as the simultaneous raising of different 
exceptions by different components within an atomic action, and the problems 
of aborting an atomic action, for example in an attempt to avoid missing an im
minent deadline. 

4.1. Atomic Actions in UNIX United 

Our initial experiments concerning the addition of atomic actions to UNIX 
United mainly address questions of overall system structuring, rather than the 
problems of implementing the full generality of the atomic action concept and 
of exception handling as described above. Thus we are concerning ourselves, at 
least in the first instance, solely with backward error recovery, in fact just at the 
level of file usage. It will be possible to nest atomic actions, and asynchronous 
activity will be supported, but only internal to an atomic action. 

The fact that atomic actions are of equal relevance to users of a mul
tiprogramming system, such as UNIX, as to users of a distributed system, 
prompts their provision in UNIX United by two separate, albeit related, mech
anisms. The first of these effectively adds atomic actions to UNIX itself, in the 
form of three extra system calls: 
(i) Establish Recovery Point (i.e. start state-saving, and locking files), 
(ii) Discard Recovery Point (i.e. discard saved state, and unlock relevant files), 
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1 Atomic Action support I 
r----------I 
I UNIX kernel I 

Fig. 9. Provision of Atomic Actions 
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(iii) Restore Recovery Point (i.e. go back to latest uncommitted recovery 
point). 

This additional software is being implemented in the first instance as a 
separate layer, which will be interposed between the Connection layer and the 
kernel, as shown in Fig. 9 below. 

The second mechanism provides network transparency for these additional 
calls. It is to be implemented by a modest augmentation of the Connection 
layer. (In the case of the Discard Recovery Point call, it might well be thought 
necessary to incorporate a simplified form of two-phase commit protocol, 
which would involve the provision of another system call "Prepare to Discard 
Recovery Point" by the Atomic Action layer. This should minimize the risk of 
having some but not all the component UNIX systems complete their Discard 
Recovery Point calls. In fact virtually all the facilities required within the Con
nection layer for two-phase commit already exist, being needed to support 
some existing UNIX system calls.) 

5. Conclusions 

The three forms of structuring that we have attempted to describe and justify 
here are just a modest generalisation and extension of various current ap
proaches to the design and implementation of distributed and/or fault-tolerant 
computing systems. Nevertheless, we believe that they provide a surprisingly 
effective and constructive methodology for the design of such systems. 

Certainly our experience with UNIX United provides what we regard as 
strong evidence for the merits of the first two structuring schemes. As reported 
in [19], a very useful distributed system, enabling full remote file and device ac
cess, was constructed within about a month of starting implementation of the 
Connection layer. Needless to say, the fact that - due to the transparency of the 
Newcastle Connection - it was not necessary to modify or in most cases even 
understand any existing operating system or user program source code was a 
great help! In only a few months this system had been extended to cover remote 
execution, multiple sets of users, etc. Distributed UNIX systems based on the 
Connection, using PDPll, VAX, M68000 or ICL PERQ computers, linked 
either by Ethernet or Cambridge Ring, are now operational at various sites. 
Moreover two prototype extensions of the system, for multi-level security and 
hardware fault tolerance, have been successfully demonstrated, and the design 
of others commenced. 

The third structuring scheme described here, an attempt at extending the 
concentional concept of an atomic action to cover forward as well as backward 
recovery, and asynchronous systems, is as yet rather more speculative. A full 
implementation of the scheme, in all its generality, requires resolution of a 
number of design issues. In particular, practical systems can only be constructed 
if suitable notations are developed to express the concept of an atomic action. 
However we believe that the scheme provides a suitable framework for discuss
ing general error recovery in asynchronous systems, and that it will be useful as 
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a guide to the design and implementation of a variety of more specialised and/ 
or limited error recovery schemes. 
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