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Foreword

Shape is fundamental to man and to mathematics. From the delineation of early Egyp-
tian fields to Euclid and Pythagoras to current geometers and geographers, the notion of
shape is fundamental. And as mathematicians, we prefer regular shapes; triangles, rect-
angles, and other convex polygons; circles, parabolas, and other conic sections, because
we can compactly describe them in functional notation and reason about them.

But many shapes that are of practical importance to us are not regular. The topogra-
phy of the earth is one. How do we describe the shape of the earth’s surface? Abstractly
we can say it is round or, more accurately, ovate. But that description is of little prac-
tical use to those of us living on the surface. Indeed for much of history, the global
structure was regarded as flat, with no practical consequences to the lives of men. But,
the presence of hills, ridges, and rivers is of great importance. The most common way
to describe these, and other spatial phenomena, is with a map.

Ancient cartographers commonly described mountain ranges with inverted V’s.
These denoted the presence of mountains but did little to describe their shape. The
use of contours as a descriptive tool did not emerge until the last 100 years or so. Yet
even these are difficult to reason because they too are irregular shapes, but of one
lower dimension.

Use of computer visualisation to describe the shape of surface terrain has made
enormous strides in the last three decades. We can project triangulated surfaces; we
can rotate them and zoom in for different perspectives. But in spite of the extraordinary
intuitive comprehension that such visual descriptions provide, we still cannot reason
about them.

Of course, we can create a dense array of elevation data. Now we can make assertions
regarding minimal and maximal values. By assuming an interpolated, smooth, and
differential surface, we can also define local properties such as slope and curvature.
But neither of these seems to adequately describe spatial shape that tends to be global
in nature.

The introduction of surface networks and Reeb graphs represents a more recent
effort to describe the shape of a surface in a way that relates surface elements that
may be rather distant. These structures are discrete, compact descriptions, and thus
more amenable to logical analysis. Much of this will become evident as you peruse
the following chapters. By collecting together in one place selections from the leading
researchers in this exciting field, the editor, Sanjay Rana, has provided a significant
service to all practitioners, not just geographers, who deal with spatial shape. Read
carefully and you may find yourself seeing our familiar concepts of topological shape
in a very different light.



x Foreword

This field probably began in 1870 with James Clark Maxwell’s musing about Hills
and Dales. But his approach was largely intuitive. The real formalisation was initiated
by Marston Morse in a series of articles beginning in 1925 with the publication of
Relations Between the Critical Points of a Real Function of n Independent Variables. If
you become intrigued with the fascinating applications of Morse theory presented in
this book, I urge you to read either this seminal paper or one of the more accessible
books by Milnor, Morse Theory (1963) or Morse and Cairns (1969). Both indicate how
mathematically rich this approach can be, particularly as we seek to describe shape in
higher dimensions.

Morse theory was taken up by researchers in various fields in the 1970s. I believe
that I, a computer scientist, coined the term surface network. But the concepts appeared
in other disciplines as well. For example, C. K. Johnson (1977) wrote of Peaks, Passes,
Pales, and Pits in crystallographic density maps. However, it was the quantitative geog-
raphers who really embraced these concepts. Already by the 1960s, William Warntz
had introduced the essential ideas on the basis of Maxwell’s and Cayley’s papers.
Warntz was modelling the Topology of Socio-Economic Terrain and Spatial Flows
(1966). And the application of surface networks geographic terrain was a natural. I
still recall the wonderful discussions at various conferences with early workers such as
David Mark, Michael Woldenberg, Tom Peucker, Carrol Johnson, Waldo Tobler, and
of course, Warntz himself regarding effective ways of modelling terrain. Not all felt
surface networks were the answer; but all were conversant with its principles.

While we naturally associate two-dimensional surfaces with the surface topography
around us because of its intimate involvement with our everyday life, it is better to
approach the topic thinking in terms of general functions f (x1, . . . , xn) of n variables.
After all, you will encounter applications in this book as different as the surface shape of
a grinding wheel to the shape of three-dimensional volumes comprising body cavities.
Neither has the shape characteristics of a water-eroded topography.

To ensure reasonable shape properties, most, but not all, of the following authors
will require that the abstract surface f (x1, . . . , xn) be twice differentiable and that the
Hessian matrix of partial derivatives be everywhere non-singular. Wow! These appear
to be powerful constraints. But we find that in many applications, such conditions
accurately reflect the true surface, or a close approximation of it. Thus, we ensure
mathematical tractability. But as powerful as the calculus of partial differentiation is at
capturing local behaviour, it is notoriously weak at capturing global behaviours. The
identification of minima and maxima seem only to tell part of the story.

The genius, I think, of Maxwell and Morse was to focus on saddle points (or passes,
or critical points, or points of equilibrium) where the gradient is also zero, rather than
on just the extrema. These saddle points seem to be the key to describing topological
shape in the large. Think of the role of passes in planning a transcontinental railroad.
As you read on, you will see the pivotal role that saddle points, or whatever name the
author uses, play in surface networks and Reeb graphs.

Surface networks and Reeb graphs provide a language for describing spatial shape.
As with any descriptive tool or language, there are several universal themes that must
be considered. First, what kinds of assertions can be made using the structures of
the descriptive system? Do they help us to understand or manipulate the underlying
phenomena? Second, how much compression does the descriptive system provide? Are
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the important features of the underlying phenomena efficiently conveyed? Third, can
we abstract within the system? That is, can we discern, within the system alone, more
important features and create faithful descriptions that eliminate less important details?
Clearly, this is related to the second theme, yet is still quite different. Finally, does the
system support a description of phenomena change? Few systems, or languages, do.
Almost all our formal systems of expression and thinking are concerned only with a
description of state. They presume a static phenomenon. Perhaps only the calculus is
really concerned with describing change.

As you read the individual contributions in this book, you should be forcibly struck,
even as I was, by the creativity and imagination of the authors as they tackle these uni-
versal themes. They have not found all the answers to the thorny question of describing
irregular shapes. However, they have laid a firm basis on which to build.

Finally, as one of those who made a small contribution at the beginning of this
research area, I would like to make a prediction regarding its future. Describing the
global shape of a functional surface is difficult. Describing how it changes, in the large,
over time is orders of magnitude more difficult, but often more important. From the
movement of offshore barrier islands to the spatial spread of an epidemic, it is the
nature of the change that must be described if we are to understand the forces causing
the change. It is here that surface networks, I believe, have their greatest potential.

The importance of graph-like descriptions such as surface networks have been largely
overlooked, I believe, because so much of the rich detail found in a typical functional
surface has been abstracted away. It is a bit like representing the human body with a
stick figure. Only very small children do that. But stick figures have been fundamental
in describing and analysing human movement. How does the knee joint move relative
to the hip when a child is skipping? How does the saddle of a sand bar rotate relative
to the peak in a north-east storm?

If my conjecture is correct, there is a wide-open field of inquiry that should be
explored. The wealth of insight offered by the contributions of this book should be
of great value in any such exploration. They will certainly be of interest to anyone
concerned with the representation of irregular shapes.

John L. Pfaltz
Charlottesville, VA





Preface

The idea of the book was born out of my long search for a starting point of references
on surface network that could put me in the right direction during the initial days of
the PhD. During the MSc (GIS) dissertation on surface network, I found a number
of interesting and novel challenges in the topic. My literature survey during the MSc
(GIS) dissertation was very limited. Thus before embarking on a brainstorming on the
unresolved issues I decided to do further literature review, somewhat hoping that I
would not find much material, thus strengthening the novelty of my doctoral research.
To my surprise, I started to find many research works mostly from computer science.
The discovery of the literature in computer science was exciting and also revealed
many duplicate researches and multiple terminologies for the same concept. In mid
2001, I realised that a book that presented all this diverse literature could be a good
idea for future researchers.

I do realise that this book has a relatively narrow focus. But, I think the diversity of
the applications of topological surface data structures and the related disciplines will
justify the efforts in putting this book together. The book is primarily about the topo-
logical data structure for continuous surfaces called surface network. However, two
other significant related data structures called Reeb graphs and contour trees are also
included to broaden the scope of the book. The book is divided into two parts. The first
part contains chapters that define the topological surface data structures and explain
the various automated methods for generating these data structures. The second part
demonstrates a number of applications of surface networks in diverse fields ranging
from sub-atomic particle collision visualisation to the study of population density pat-
terns. Most of the chapters in the book are based on previously established prominent
research works on surface networks. The age of the research works vary from the
1980s to 2003. The authors of the chapters are mostly from geographic information
science and computer science in which the most research on surface networks has
taken place.

Despite the broad background of the authors, I was very fortunate to get positive
responses from all the chapter authors. I would like to thank all chapter authors who
despite their hectic schedule agreed to spend their time in preparing the manuscripts
for the book within the prescribed timetable. I am also grateful to Paul Longley for his
generosity in approaching Wiley on my behalf and suggesting the idea of the book to
Wiley Publishers, John Pfaltz for writing the foreword for the book and supplying both
materials and intellectual support during the write-up of the work, Shigeo Takahashi
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for his excellent hospitality and Japanese pizza during my visit to his laboratory in
Tokyo, and Mike Batty and Jo Wood for their comments on the book proposal. Finally,
I want to thank Wiley Publishers Book Editors, Lyn Roberts and Keily Larkins, for
providing me the opportunity to put the book together and for their patience despite a
month’s delay in the submission of the manuscript.

Sanjay Rana
London
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Introduction

Sanjay Rana

1.1 EVERY THING HAS A SURFACE

A surface is the most fundamental shape of matter to us. Surfaces surround us in
various forms, ranging from the undulating ground we stand on to this flat page in
the book, so much so that the recognition of surfaces and their structure is crucial
to our daily life. In addition, a number of non-physical spatial phenomena such as
temperature and population density are also modelled as surfaces to aid visualisation
and analyses. Despite the wide variety, conceptually the description of even the most
complex surface forms is rather simple. Basic surface descriptors such as circle, box,
flat, convex, and others can be combined together to derive any arbitrary shape, thus
enabling the computer graphics animators in Hollywood to reconstruct dinosaurs.

It is fascinating to appreciate how different disciplines describe surfaces. It is also
worthwhile to highlight the issues in surface representation as it reveals the level of
abstraction when the increasingly massive surface datasets are stored in computers.
Mathematicians have modelled surfaces primarily with an aim to decompose the sur-
face into the basic descriptors or elements even if it meant oversimplification (e.g.
by using the primary surface elements mentioned above), leading to potential loss
of the structure. Such descriptions are generic (i.e. universal to all types of sur-
faces), formal, and robust, such as that required in computer-aided designing. The
aim of the mathematical description is to produce a constrained global model of
the surface. The other large group of surface researchers from the field of physical
geography use more compound descriptors (e.g. valleys, mounds, scarps, drainage
network) with more emphasis on the preservation of the structural information of
the surface. Although the compound descriptors are more natural, their relevance

Topological Data Structures for Surfaces – An Introduction to Geographical Information Science. Edited by Sanjay Rana
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85151-1



4 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

is subjective to each individual; hence it is often difficult to derive an objective
definition of surface features1. These researchers are more interested in the process
that resulted in the surface; hence the descriptors are also symbolic of the factors in
the process.

A relevant example of such fundamental dichotomy is the description of a terrain
by these two disciplines. In order to achieve a simple and tractable model of terrain, a
typical algebraic definition of terrain will be as follows:

A terrain is a smooth, doubly continuous function of the form z = f( x, y), where
z is the height associated with each point ( x, y).

Further,

The local maxima or peak of the terrain is a point with a zero slope and a
convex curvature.

Other terrain features are defined similarly using morphometric measures. Most phys-
ical geographers will, however, find these definitions very restrictive because (i) they
assume away the absence of some common terrain features such as lakes and overhangs
crucial to certain applications, for example, runoff modelling; and (ii) natural terrain
features cannot be localised to a point because a peak with zero local slope will really
be the exception rather than the rule in nature. In physical geography, the description
of the terrain surface and terrain features is more indicative than precise. Therefore, as
long as the shape of the terrain around an area could be classified into terrain feature
type, it is the responsibility of the geographer to locate the position of the peak on ter-
rain based on his/her expertise. Figure 1.1 shows the difference between an algebraic
topology (as a triangulated irregular network (TIN)) and physical geography (drainage
network) description of a terrain surface.

It therefore follows that a combination of these two ways of describing a surface
should provide a complete and robust approach for describing surfaces. In other words,
a data structure that could explicitly describe both the structure (e.g. hills and valleys)
and the form (e.g. xyz coordinates) of a surface will be an ideal digital representation of
the surface. A more general form of this requirement was stated by Wolf (1993). Wolf
regarded an efficient surface data structure to be one that contains both the geometrical
information (e.g. coordinates, line equations) and the topological information on the
geometrical data (e.g. neighbourhood relationships, adjacency relationships) of the sur-
face. But as you read the book, it will be clear that the construction of a topologically
consistent surface data structure is a non-trivial task because real surfaces seldom obey
the constraints required by topological rules. At this stage, I would like to propose a
difference between the terms surface data structure and surface data model. I think
the term surface data structure should merely imply a format for storing the geometric
and topological information (e.g. point heights and adjacency relationships) in a single
construction. On the other hand, surface data model should be an extended version of

1 Wolf (1993, p24) highlights the importance for exact definitions quoting Werner (1988) and Frank et al.
(1986).
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Mathematician’s model
• Piecewise model of terrain

surface as triangular patches.

• Representation simply
requires the storage of points
and their topological
relationships. 

Physical geographer’s model
• Drainage network model of

terrain surface as a network
of ridges and channels.

• Representation requires non-
trivial derivation of consistent
drainage network. 

Terrain surface

Figure 1.1 Representation of the terrain surface into two different models depending upon the desired
application

the surface data structure in which additional metadata information characterising the
surface (e.g. valleys, ridges, i.e. characteristic properties of surface) is also incorpo-
rated to produce a representation of the surface. In simple terms, a surface data model
is a value-added product of the surface data structure and it explicitly represents the
characteristics of the surface. Thus, all surface data models can be regarded as surface
data structures but the opposite is not necessarily true.

1.2 TOPOLOGICAL DATA STRUCTURES FOR SURFACES

It is fairly straightforward to produce data structures that store the geometrical infor-
mation about a surface. We simply need to collect certain points on the surface either
on a regular lattice/grid or irregular locations. In fact, for many surface applications,
only geometrical information is required for analyses. However, storing topological
information has the following significant advantages:

• If we assume certain homogeneity in surface shape (e.g. smooth and continuous),
using a topological data structure will reduce the number of points required to
construct a surface. For example, by storing only certain morphologically important
points (MIPs) (e.g. corners, inflexions) and their topological relationships, we could
reconstruct the surface by means of interpolating between MIPs. Thus, the amount
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of computer disk space required to store the surface will be reduced significantly.
Helman and Hesselink (1991) reported 90% reduction in size on storing volumetric
surface datasets in topological data structures.

• Topological relationships are a much more efficient way of accessing a spatial
database, for example, sophisticated spatial queries such as clustering would be
easily implemented on the basis of adjacency relationships.

• Topological data structures could provide a unified representation of the global struc-
ture of the surface. Thus, these data structures can be used for applications that
require a uniform and controlled response from the entire surface such as morphing
in computer graphics and erosion modelling in hydrology.

• Topological data structures will be useful for the visualisation of the structure of sur-
faces, particularly multi-dimensional surfaces. For example, Helman and Hesselink
(1991) and Bajaj and Schikore (1996) reported that rendering of volumes surface
datasets as skeleton-like topological data structures is more fast and comprehensible
compared to traditional volume rendering.

• Bajaj and Schikore (1996) propose that topological data structures will be a simple
mechanism for correlating and co-registering surfaces due to the embedded infor-
mation on the structure of surfaces.

While the above benefits of topological data structures are applicable to all types
of surfaces, it is uncertain which MIPs and topological relationships should constitute
a universal surface topological data structure. Clearly, each surface should be charac-
terised by MIPs suitable for a particular application. Many types of MIPs have been
proposed by researchers in different disciplines and have been referred to by differ-
ent names, for example, landform elements (Speight, 1976), critical points and lines
(Pfaltz, 1976), surface-specific features (Fowler and Little, 1979), symbolic surface fea-
tures (Palmer, 1984), surface patches (Feuchtwanger and Poiker, 1987) and specific
geomorphological elements (Tang, 1992). The common aim of these classifications
has been to provide a sufficient resemblance to the surface relevant to a particular
application.

This book is primarily on the topological surface data structure called surface network
(Pfaltz, 1976), which has been used in many disciplines because of its simple and
universally applicable design. The book also discusses two other closely related data
structures called the Reeb graph (Reeb, 1946) and the contour tree (Morse, 1968). I
suppose some readers might be surprised to see the rather old lineage of the surface
network. Surprisingly, however, these data structures have received little mention even
in otherwise well-referenced texts (e.g. Koenderink and Van Doorn, 1998, Wilson and
Gallant, 2000) despite a substantial, although I admit, irregular flow of research papers.
This was indeed the main motivation behind this book. During the initial days when I
was doing my Ph.D. on surface networks, I assumed that there was not much literature
on surface networks, but, gradually, I started finding many works from all across the
globe and from different disciplines, which was very encouraging. Hence, I decided
to propose the book with the aim of putting together some key works on surface
networks and the related data structures, so that future researchers could start from a
single source.

Since each chapter in this book has a good introduction to the individual data struc-
tures, I will not define them here in detail. In this chapter, I will present instead the
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interesting history related to the development of these data structures followed by an
overview of the chapters. In simple and general terms, the Reeb graph, contour tree,
and surface network are graph-based surface data structures whose vertices are the
local peaks, local pits, and local passes. The edges of the graph are the channels,
connecting pits to passes, and ridges, connecting passes to peaks. Peaks, passes, and
pits are together called the critical points of a surface, and ridges and channels are
together called the critical lines of a surface. In my opinion, all the above surface
data structures also qualify as surface data models because their construction is very
much based on surface elements. Theoretically, any n-dimensional, smooth and doubly
continuous surface can be represented as a surface network (Pfaltz, 1976); however,
the most common implementations are limited to two- and three-dimensional surfaces.

The primary origin of these data structures lies in the realisation of the critical points
and critical lines of the surface. Critical points can be defined as characteristic local
surface features that are common to all surfaces and contain sufficient information to
construct the whole surface, thus taking away the need to store each point on the sur-
face. Critical points have a local zero slope, that is, dz/dx = dz/dy = 0, and three such
critical points of the surface are local maxima (∂2z/∂x2 > 0, ∂2z/∂y2 > 0 (also called
peaks, summits), local minima (∂2z/∂x2 < 0, ∂2z/∂y2 < 0) (also called pits, immits),
and passes (∂2z/∂x2 > 0, ∂2z/∂y2 < 0 or vice versa) (also called knots, saddles, bars).
These critical points have been referred to in physical geography as the fundamental
topographic features. In physical geography, the derivation of these features has tradi-
tionally been based on the overall shape of contours (i.e. using a regional context) on
a topographic map rather than local morphometric properties. For example, a peak is
identified as the centre of a closed highest contour bounded by lower contours. At any
point on the surface, a line following the steepest gradient is called a slope line (also
called topographic curves and gradient paths). Critical lines are a special pair of slope
lines that originate and terminate at critical points. There are two types of critical lines,
namely ridge line and channel line. A ridge line originates from a peak and terminates
at a pass, and a channel line starts from a pass and terminates at a pit.

The concept of critical points of a surface and critical lines was proposed as early as
the mid-nineteenth century by the mathematicians (De Saint-Venant, 1852 reported by
Koenderink and van Doorn, 1998; Reech, 1858 reported by Mark, 1977). In physical
geography, Cayley (1859), on the basis of contour patterns, first proposed the subdi-
vision of the topographic surface into a framework of peaks, pits, saddles, ridge lines,
and channels. Maxwell (1870)2 extended Cayley’s model and proposed the following
relation between the peaks, pits, and passes:

peaks + pits − passes = 2 (1.1)

This relation was later proved by Morse (1925) using differential topology and is
also known as the mountaineer’s equation or the Euler–Poincaré formula (Griffiths,
1981 reported by Takahashi et al., 1995). Maxwell also described the partition of the

2 The anxiety with which Maxwell presented his paper is quite amusing. His note to the editor of the journal
reads “An exact knowledge of the first elements of physical geography, however, is so important, and loose
notions on the subject are so prevalent, that I have no hesitation in sending you what you, I hope, will have
no scruple in rejecting if you think it superfluous after what has been done by Professor Cayley”.
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topographic surface into hills (areas of terrain where all slope lines end at the same
summit) and dales (areas of terrain where all slope lines end at the same immit) on
the basis of the fundamental topographic features.

The earliest graph–theoretic representation of the topological relationships between
the critical points of a terrain is the Reeb graph (Reeb, 1946; reported by Takahashi
et al., 1995). Reeb graph basically represents the splitting and merging of equi-height
contours (i.e. a cross section) of a surface as a graph. The vertices of the graph are
the peaks, pits, and passes because the contours close at the pits and the peaks, and
split at the passes. Consequently, the edges of the Reeb graph turn out to be the ridges
and channels.

In a significant related development in mathematics, Morse (1925) derived the rela-
tionship between the numbers of critical points of sufficiently smooth functions (called
Morse functions under certain constraints), which is known as the Critical Point Theory
or Morse Theory. The generic nature and wide applicability of Morse Theory led to an
expansion in the interest in the critical points of surfaces amongst various disciplines.

Warntz (1966) revived the interest of geographers and social science researchers in
critical points and lines when he applied the Maxwell’s “hills and dales” concept for
socio-economic surfaces, referred to as the Warntz network (the term apparently coined
by Mark, 1977).

A data structure identical to Reeb graph is the contour tree (Morse, 1968), also called
the surface tree, by Wolf (1993). The contour tree represents the adjacency relations
of contour loops. The treelike hierarchical structure develops because of the fact that
each contour loop can enclose many other contour loops but it can itself be enclosed
by only one contour loop. As is evident, the contour tree is the same as the Reeb
graph except that it is separated by two decades. Kweon and Kanade (1994) proposed
another similar idea called the topographic change tree. As in the case of the Reeb
graph, the vertices of such a contour tree are the peaks, pits, and passes.

Pfaltz (1976) proposed a graph–theoretic representation of the Warntz network called
surface network (Mark, 1977 used the term Pfaltz’s graph). While the topology of the
Pfaltz’s graph was based on the Warntz network, Pfaltz added the constraint that the
surface will have to be a Morse function. Since Pfaltz was in the computer science
field, his work attracted the attention of researchers in three-dimensional surfaces such
as in medical imaging, crystallography (e.g. Johnson et al., 1999, Shinagawa et al.,
1991), and computer vision (e.g. Koenderink and Doorn, 1979). He also proposed a
homomorphic contraction of the surface network graph to reduce the number of redun-
dant and insignificant vertices. Along similar lines, Mark (1977) proposed a pruning of
the contour tree to remove the nodes (representing contour loops) that do not form the
critical points, i.e. the vertices of the contour tree, and called the resultant structure the
surface tree. This essentially reduces the contour tree to the purely topological state
of a Pfaltz’s graph. It is easy to realise that the Reeb graph, Pfaltz’s graph, and sur-
face tree are fundamentally similar and are actually inter-convertible (Takahashi et al.,
1995).

Wolf (1984) extended Pfaltz’s graph by introducing more topological constraints
in order that it be a consistent representation of the surface. He proposed assigning
weights to the critical points and lines to indicate their importance in the surface and
thus he proposed the name weighted surface network (WSN) for the Pfaltz’s graph. He
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demonstrated new weights-based criteria and methods for the contraction of the surface
networks. Later, Wolf suggested that in order to visualise the WSN for cartographic
purposes and to make it useful for spatial analyses, the vertices could be assigned
metric coordinates (Wolf, 1990). The resultant representation is termed metric surface
network (MSN).

Recent works have mostly focused on the automated extraction of surface networks
from raster (Wood and Rana, 2000, Schneider, 2003) and TIN (Takahashi et al., 1995),
which will be discussed in detail in the following chapters.

1.3 OBJECTIVES OF THE BOOK

As mentioned earlier, while there is an extensive literature on other topological surface
data structures (e.g. TIN and quadtrees by Samet, 1990a, b, van Kreveld et al., 1997),
the topics of surface network, contour tree, and Reeb graph, proposed more than three
decades ago, have only had irregular and scattered reports of the research on them. This
gap is the main motivation of this book. Despite the unique inter-disciplinary scope of
these data structures, there is generally a lack of awareness about their complete potential
amongst modern researchers. The book is also timely because publications demonstrating
all the promised potential of these data structures for practical applications such as
visualisation of large datasets (e.g. Takahashi et al., 1995, Bajaj and Schikore, 1996),
fast contour extraction (e.g. van Kreveld et al., 1997), generalisation and compression
of surfaces (e.g. Rana, 2000a,b, Kraus and Ertl, 2001), and spatial optimisation (e.g.
Rana, 2003a, Kim et al., 2003) have finally started coming out.

The objective of this book is to bring together some key earlier and modern researches
on these data structures to rejuvenate these topics and fuel ideas for future research.
Some of the important features of this book are as follows:

• Popular morphometric feature extraction algorithms, useful in drainage analysis,
computer vision, and information organisation, are described with practical examples
with links to the directions for future research.

• A comprehensive and condensed treatment of these data structures, unpublished
elsewhere, has been made available to the reader.

• This is a multidisciplinary area of research and this volume provides accessible
content to practitioners in a range of fields.

1.4 OVERVIEW OF THE BOOK

The book is divided into two main parts. The first part deals with concepts, automated
extraction, and issues related to the Reeb graph, contour tree, and surface network. The
second part of the book presents a number of applications of these topological surface
data structures.

The primary audience for this book are postgraduates and professionals. As can
be clearly seen from the diverse background of the authors, this book will appeal to
members of a number of disciplines such as Geographic Information Science, Com-
puter Science, and other sciences involved in the morphometric analysis of surfaces.
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Owing to the very practical nature of this book and its deliverables, I am tempted to
believe that the commercial organisations, particularly those involved in research and
development of solutions, would be keen to explore the ideas presented in this book. I
feel that many of the ideas are still in their early phase of development with promising
outputs, which could also provide topics for postgraduate and higher-level research.

All chapters contain a basic to intermediate discussion on the data structures; hence
each chapter is quite self-contained and could be read independently. The following
brief descriptions should give a general idea about each chapter so that the reader can
decide to follow the book at his/her own pace and order.

1.4.1 Part I – Concepts and implementation

Part I starts with a chapter by Gert Wolf (Chapter 2), who extended the work of Pfaltz
(1976). Wolf describes the construction of the surface network graph and how weights
could be assigned with edges and nodes to indicate their importance for both the macro-
and the micro-structure of the underlying surface in great and lucid detail. The graphs
thus obtained – termed weighted surface networks (WSNs) – represent a powerful tool
for characterising and generalising topographic surfaces. The technique of generalising
surface networks using two graph–theoretic contractions is explained. The chapter
then proposes an improvement of the purely topological WSNs, by attaching (xy)-
coordinates to the nodes resulting in an MSN. Finally, the generalisation process of a
real landscape taken from the Latschur region in Austria is shown.

Shigeo Takahashi (Chapter 3) describes algorithms for extracting surface network
and Reeb graphs. The fully automated algorithms extract these data structures from
an input TIN by simply generating a linear interpolation over the elevation sam-
ples instead of computationally expensive higher-order interpolations. Furthermore, the
extracted features are correct in the sense that they maintain topological integrity (e.g.
the Euler–Poincaré formula for critical points) inherited from the properties of smooth
surfaces. The present algorithms are robust enough to handle troublesome datasets such
as noisy or stepwise discrete samples, and such robustness is demonstrated with sev-
eral experiments on real terrain datasets. The resultant configuration of critical points
allows us to tackle other geographical information systems (GIS) related issues, which
is also discussed in this chapter.

Bernhard Schneider and Jo Wood (Chapter 4) describe two methods for the identi-
fication of MSNs from raster terrain data. This chapter includes a discussion of some
of the computational issues that have previously prevented automated construction of
MSNs, and presents two new automated methods that may be applied to raster terrain
data. The chapter first describes a simple and robust bilinear polynomial approximation
method followed by an advanced bi-quadratic polynomial method.

Marc Kreveld and others (Chapter 5) describe an efficient method to construct the
contour tree and to obtain seed sets that are provably small in size. The contour
algorithm can be used for regular and irregular meshes.

Silvia Biasotti and others (Chapter 6) introduce and describe the concept of extended
Reeb graph (ERG). First of all, a useful overview of the definition of critical points
and Morse complexes for smooth manifolds is given. It is followed by a description
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of some existing methods that extend these concepts to piecewise linear 2-manifolds,
focusing, in particular, on topological structures as surface networks and quasi-Morse
complexes, available for analysis and simplification of triangular meshes. To avoid
the dependency of such structures on the locality of the critical point definition, they
propose to consider critical areas and influence zones instead of usual ones, and give
their formal definition. They base the ERG representation on this characterization and
compare it with the surface network structure. Finally, they describe the ERG structure
and its construction process, also introducing several examples from a real terrain from
New Zealand.

1.4.2 Part II – Applications

This is perhaps the more interesting part of the book and has taken the most effort to
put together.

The analysis of urban population distributions has been one of the central sub-
jects of human geography since Clark’s pioneering study in the 1950s (Clark 1951,
1958). Following Clark, most initial studies dealt with population distributions in
terms of a population density with respect to the distance from the centre of a city
(i.e. one-dimensional distributions). These studies were extended to two-dimensional
distributions by use of the trend surface analysis. This analysis, however, has dif-
ficulty in interpreting the estimated coefficients. To overcome this difficulty, Okabe
and Masuda (1984) proposed a method for analysing population surfaces in terms
of surface networks. In the first chapter of this part, Atsuyuki Okabe and Atsushi
Masuyama (Chapter 7) propose a new method for measuring topological similarity
between activity surfaces in terms of modified counter trees. This method has an advan-
tage in measuring not only local similarity but also global similarity. They develop
an algorithm for implementing the proposed method and apply the method to urban
population surfaces in Japan and show topological similarity among Japanese urban
population surfaces.

In Chapter 8, Valerio Pascucci discusses a technique that reduces the user respon-
sibility to infer implicit information present in the data, by computing topological
features like maxima, minima, or saddle points and determining their relationships. He
first introduces the formal framework, based on Morse theory and homology groups,
necessary to analyse the critical points of a scalar field and to classify the shape of
its level sets. He discusses a set of algorithms that map this mathematical formalism
into an efficient pre-processing of the data. The chapter concludes with a discussion on
user interfaces that present intuitively the computed information and a demonstration
of examples from real scientific datasets such as subatomic particle collision.

Martin Kraus and Thomas Ertl (Chapter 9) show how to apply the concepts of scalar
topology to the volume visualisation of structured meshes. This chapter discusses
the role of topology-guided downsampling in direct and indirect volume visualisa-
tion. While most algorithms related to scalar topology work on unstructured meshes,
topology-guided downsampling is a recently published downsampling algorithm for
structured meshes, for example, Cartesian grids. The main goal of this technique is to
preserve as many critical points as possible, that is, to preserve as much as possible
of the topological structure of the original scalar field in the downsampled scalar field.
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After presenting this downsampling algorithm, they discuss its application in indi-
rect volume visualisation with isosurfaces and in direct volume rendering. Particular
emphasis is made on the interplay with recent developments in direct volume ren-
dering, namely the use of programmable per-pixel shading for pre-integrated volume
rendering. They also show how to employ topology-guided downsampling in the gen-
eration of hierarchical volume data that can be rendered with the help of programmable
per-pixel shading.

Jason Dykes and I (Chapter 10) present a surface networks–based features modelling
approach for the visualisation of dynamic maps. This chapter extends the proposals
of Valerio Pascucci (Chapter 8). Despite their aesthetic appeal and condensed nature,
dynamic maps are often criticised for the lack of an effective information delivery
and interactivity. We argue that the reasons for these observations could be due to
their information-laden quality, lack of spatial and temporal continuity in the original
map data, and a limited scope for a real-time interactivity. We demonstrate, with
the examples of a temporal and an attribute series of a terrain and a socio-economic
surface, respectively, how the re-expression of the maps as the surface network, spatial
generalisation, morphing, graphic lag, and the brushing technique can augment the
visualisation of dynamic maps.

Traditional surface texture parameters take a statistical approach to characterisation
using only the height and location information of the individual measured points. Many
applications, that is, lubrication, paintability of a surface, anodized extruded aluminium,
and so on, require the characterization of features such as peaks, pits, saddle points,
ridge lines, course lines, and so on, and the relationships between these features. That is
a pattern recognition approach. In Chapter 11, Paul Scott proposes a topological char-
acterisation of surface texture. This is based on the topological relationships between
critical points and critical lines on the metrological surface and incorporated into a
WSN. He then removes the predominant insignificant critical points, caused by mea-
surement noise, and Gert Wolf’s graph contractions (see Chapter 2), and then assesses
the relationships between the significant surface features.

In Chapter 12, Jeremy Morley and I propose the advantages of using the fundamental
topographic features forming the surface network of a terrain, namely the peaks, pits,
passes, ridges, and channels, as the observers or the targets in visibility computation. We
demonstrate that considerable time can be saved without any significant information
loss by using the fundamental topographic features as observers and targets in the
terrain. The optimisation is achieved because of a reduced number of observer–target
pair comparisons, which we call the Reduced Observers Strategy and Reduced Targets
Strategy. The method has been demonstrated for a gridded digital elevation model.
Owing to this selected sampling of observers in the terrain, there is an underestimation
of the viewshed of each point. Two simple methods for assessing this uncertainty have
been proposed.

In the conclusion of the book, I raise a number of unresolved issues related to the
data structure model, their automated generation, and generalisation.
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Topographic Surfaces and Surface
Networks

Gert W. Wolf

2.1 INTRODUCTION

Nowadays many GIS applications require the mapping and analysis of spatial data at
widely differing scales. On the one hand, the accumulation of such a great body of
information evidently demands sophisticated data structures in terms of spatial res-
olution and topology; on the other hand, it obviously requires intelligent, rule-based
software packages for applying generalisation procedures in order to satisfy user queries
and to provide adequate graphical output. Ideally, a single large-scale representation
of the spatial data could be stored, and, as a result, smaller-scale versions could easily
be derived from it. However, for the time being the automation of the necessary gen-
eralisation processes is not sufficiently well advanced and, as a consequence, multiple
representations at different scales have to be maintained (Jones, 1991).

This chapter concentrates on two minute but nevertheless important aspects refer-
ring to the previously addressed and hitherto inadequately solved problems, namely
the feature-based modelling and generalisation of topographic surfaces. While growing
attention concerning this area of research has been aroused in geography and cartog-
raphy by the rapid evolution of GIS, it is obvious that topographic surfaces are also
of special interest for a variety of other disciplines, such as mathematics, computer
graphics, meteorology, hydrology, and also for social sciences and economic sciences,
to mention only a few. For this reason, this chapter will at first focus on the clarification
of the term topographic surface in order to proceed with a formal discussion of some
of its fundamental properties.

Topological Data Structures for Surfaces – An Introduction to Geographical Information Science. Edited by Sanjay Rana
 2004 John Wiley & Sons, Ltd ISBN: 0-470-85151-1
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2.2 TOPOGRAPHIC SURFACES AND CRITICAL POINT THEORY

As Kweon and Kanade (1991, 1994) have pointed out, traditional natural language
definitions of topographic features are ambiguous as they suffer from the substantial
drawback that they either use terms that are not exactly defined but are assumed to
be generally understood or end up in circular definitions. In order to overcome this
deficiency and to give their work a sound mathematical justification, many researchers
have meanwhile decided to apply concepts of multi-dimensional calculus, differential
geometry, algebraic topology, and so on. Following this approach, the formal charac-
terisation of topographic surfaces centres on the question which types of functions may
be regarded as abstract models of real surfaces. From a geographical point of view, the
importance of giving a satisfactory answer to the previous question is derived above all
from the following four facts: Firstly, theoretical results obtained for functions describ-
ing topography also hold for functions describing such phenomena as population density,
accessibility, pollution, temperature, precipitation, and so on; secondly, topographic sur-
faces represent the underlying continuous model of DTMs whereby DTM may stand as
an abbreviation for digital terrain model or discrete terrain model respectively; thirdly,
a great many of the results derived for mappings from R

2 → R are also true for real-
valued mappings defined on curved surfaces – so-called differentiable manifolds1. This
point, however, especially deserves our special attention “(because) geographical data
(are) distributed over the curved surface of the earth, a fact which is often forgotten
. . . (and) we have few methods for analyzing data on the sphere or spheroid, and know
little about how to model processes on its curved surface” (Goodchild, 1990, pp. 5). The
final and perhaps the most important fact, however, why topographic surfaces should be
characterised in a formal way is that a precise description clearly reveals those concepts
that are commonly used in practice, but which are seldom or never explicitly stated.

As the formal characterisation of topographic surfaces requires some basic definitions
and theorems from multi-dimensional calculus, we will proceed by summarizing the
most important ones among them2.

Definition 1 Let f (x, y) be a function whose partial derivatives fxx , fxy , fyx , and fyy

exist. The matrix Hf =
(

fxx fxy

fyx fyy

)
is termed the Hessian matrix of f . The Hessian

matrix evaluated at a point (x0, y0) is defined by

(
fxx(x0, y0) fxy(x0, y0)

fyx(x0, y0) fyy(x0, y0)

)
and de-

noted by Hf |(x0,y0). The determinant det(Hf ) of the Hessian matrix Hf is called the Hes-
sian determinant; when evaluated at the point (x0, y0), it is denoted by det(Hf )|(x0,y0).

Definition 2 A function f (x, y) is termed k-fold continuously differentiable, or of class
Ck , if the partial derivatives up to order k exist and are continuous. A smooth function
is a function of class C∞.

1 A differentiable manifold can be imagined as something looking like R
n but being smoothly curved.

Examples of two-dimensional differentiable manifolds are the sphere or the torus in contrast to the cube or
the cylinder.
2 A discussion of other concepts being taken for granted within this chapter can be found in any standard
book on calculus as, for example, in (Apostol, 1969).
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In almost any geographic or cartographic application, topographic surfaces are
regarded as functions f (x, y), associating with each point (x, y) its respective alti-
tude and being at least twice continuously differentiable, a view that is also widely
employed when dealing with mappings describing socio-economic, physical, and other
phenomena. Evidently, this conception is just an ideal one because, for example, over-
hanging rocks imply that there is no definite correspondence between certain points and
their altitudes, or, for instance, break lines prevent f (x, y) from being differentiable. In
order to still apply the powerful tool of calculus, the original concept has to be modified
by assuming that the continuously differentiable functions are not terrain as such but
rather sufficiently close approximations of it. The remaining question, which seems to
be deceptively simple in appearance but which leads rather deeply into abstract math-
ematics, is whether the theoretical requirements of differentiability and continuity of
the derivatives suffice for functions to represent realizable topographic surfaces. It has
already been demonstrated (Wolf, 1991b) that this need not always be true, because
such mappings may nevertheless be endowed with a number of peculiarities that pre-
vent the functions from being suitable models for representing the topography of a
given area.

Another important concept closely related to topographic surfaces is critical point
theory. Critical points3 representing the peaks, pits, and passes of surfaces play a
major role not only in cartography but also in a variety of other scientific applications
where they represent either the extrema or the saddles of functions to be maximised or
minimised. The importance of the critical points results from the fact that they contain
significantly more information than any other point on the surface, because they provide
information not only about a specific location but also about its surroundings (Peucker,
1973, Pfaltz, 1976, 1978, Peucker et al., 1976, 1978). As a consequence, their appli-
cation not only facilitates the characterisation and visual analysis of the topography
of a given area but also results in considerable savings in data capture and data man-
agement when they are employed within digital terrain models. Before stating two
theorems that allow the classification of the critical points, their formal description
will be given.

Definition 3 A point (x0, y0) is a relative (local) maximum of f (x, y) if and only if
f (x, y) < f (x0, y0) for all (x, y) ∈ Uε(x0, y0).
A point (x0, y0) is a relative (local) minimum of f (x, y) if and only if f (x, y) >

f (x0, y0) for all (x, y) ∈ Uε(x0, y0).
A point (x0, y0) is a saddle of f (x, y) if and only if f (x, y) has a local maximum
along one line leading through (x0, y0) and a local minimum along another line leading
through (x0, y0).

According to the above definition, saddle points are only those points with exactly
two ridges (lines connecting passes with peaks) and exactly two courses (lines con-
necting passes with pits) emanating from them, thus excluding monkey saddles or the
like. The following theorem enables the computation as well as the classification of the

3 In accordance with Peucker (1973), who has introduced these ideas into geography and computer cartog-
raphy, the terms critical points and surface-specific points will be alternately used.
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critical points of a function f (x, y) by applying the concepts of the partial derivatives
and the Hessian determinant of f (x, y).

Theorem 1 (x0, y0) is a local maximum of a function f (x, y), which is twice continu-
ously differentiable in R

2, if and only if fx(x0, y0) = fy(x0, y0) = 0, det(Hf )|(x0,y0) > 0,
and fxx(x0, y0) < 0 (or equivalently fyy(x0, y0) < 0).
(x0, y0) is a local minimum of a function f (x, y), which is twice continuously
differentiable in R

2, if and only if fx(x0, y0) = fy(x0, y0) = 0, det(Hf )|(x0,y0) > 0, and
fxx(x0, y0) > 0 (or equivalently fyy(x0, y0) > 0).
(x0, y0) is a saddle point of a function f (x, y), which is twice continuously differentiable
in R

2, if and only if fx(x0, y0) = fy(x0, y0) = 0 and det(Hf )|(x0,y0) < 0.
(x0, y0) is a non-degenerate critical point of a function f (x, y), which is twice
continuously differentiable in R

2, if and only if fx(x0, y0) = fy(x0, y0) = 0 and
det(Hf )|(x0,y0) �= 0.

An equivalent characterisation of the critical points of a function f (x, y) can be
given by examining the eigenvalues of the corresponding Hessian matrix (Nackman,
1982, 1984).

Theorem 2 Let f (x, y) be twice continuously differentiable in R
2 and (x0, y0) ∈ R

2.
Further, let fx(x0, y0) = fy(x0, y0) = 0 and the determinant of the Hessian matrix Hf
evaluated at (x0, y0) be unequal to zero. Then there is
a local maximum at (x0, y0) if the number of negative eigenvalues of Hf |(x0,y0) is two,
a saddle at (x0, y0) if the number of negative eigenvalues of Hf |(x0,y0) is one,
and a local minimum at (x0, y0) if the number of negative eigenvalues of Hf |(x0,y0)

is zero.

The number of negative eigenvalues of Hf |(x0,y0) is also termed the index of (x0, y0);
thus, a local maximum is a critical point of index two, a saddle is a critical point of
index one, and a local minimum is a critical point of index zero. The so-defined index
of a critical point may also be interpreted as an “index of instability (because) a ball
displaced slightly from a relative minima will “roll back” to that minima. It is a point of
stable equilibrium; . . . A ball displaced from a saddle point may or may not return to that
point of equilibrium, depending on the direction of displacement; while a ball displaced
from a relative maxima is completely unstable” (Pfaltz, 1976, p. 79, Pfaltz, 1978).

After having characterised the critical points of a twice continuously differentiable
function f (x, y) in a formal way, we will direct our attention to those functions whose
surface-specific points are, without any exception, non-degenerate. Since practice has
shown that degenerate critical points are extremely unlikely to occur in real-world
applications, functions possessing exclusively non-degenerate critical points have been
studied extensively by numerous authors.

Definition 4 A smooth function is termed a Morse function if all of its critical points
are non-degenerate.

For Morse functions, the following theorems (whose importance will become obvious
in the next two sections) hold.
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Theorem 3 Each Morse function on a compact manifold has only a finite number of
critical points; in particular, all of them are distinct.

Theorem 4 The critical points of a Morse function are always isolated4.

Theorem 5 Let f be a Morse function, which is defined on a simply connected domain
bounded by a closed contour line, then the number of minima of f minus the number of
saddles of f plus the number of maxima of f equals two.

The concept of Morse functions – though not explicitly mentioned – has been used
in almost any practical application, because these mappings represent the prototype of
functions eligible to characterise topographic surfaces. One exception worth mention-
ing, however, is represented by the work of Pfaltz (1976, 1978), who has been the
first to explicitly apply results of Morse theory (which is the study of the relation-
ships between a function’s critical points and the topology of its domain) in order to
characterise the global topological structure of topographic surfaces in a formal way.
Contrary to CAD applications, the domain of primary interest in almost any geographic
and cartographic application is either a plane or the surface of a sphere, with the latter
seeming to be more appropriate and leading to somewhat cleaner results. As a con-
sequence, the remainder of this chapter will be confined to Morse functions defined
over a bounded region of the plane with all points outside the boundary identified as
a single pit or peak respectively, thus mapping the bounded region onto a sphere.

2.3 DATA STRUCTURES FOR THE TOPOLOGICAL
CHARACTERISATION OF TOPOGRAPHIC SURFACES

It has already been pointed out that the accumulation of information (which has been
enabled by recent trends in computer hardware) calls for sophisticated data structures
in terms of spatial resolution and topology. Nevertheless, contemporary CAD and GIS
systems still handle smooth object shapes by extending conventional polyhedral rep-
resentation. This approach, however, leads to the polyhedral decomposition of smooth
object shapes and thus has no relationship to the geometrical features of the smooth
surfaces; in fact, it rather causes a variety of different problems. In order to solve these
problems, it is essential to develop appropriate models that are based on shape features
intrinsic to the smoothness of the surfaces. Since the detailed description of even the
most important data structures currently employed within CAD and GIS systems is
far beyond the scope of this chapter, we will confine ourselves to the presentation of
four graph–theoretic approaches that provide us with a means of handling the critical
points in an abstract way and that are suitable for describing the global topology of
a surface.

The first of the four feature-based modelling methods for smooth surfaces to be dis-
cussed within this chapter are Reeb graphs (Shinagawa et al., 1991, Takahashi et al.,
1995, Fomenko and Kunii, 1997, Takahashi et al., 1997). Although primarily used

4 A critical point is called isolated if there is no other critical point sufficiently close to it.
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within CAD systems to design the topological skeleton of an object shape, some geo-
graphic applications of this data structure (which represents the splitting and merging
of contour lines of equal height) do still exist. Formally, a Reeb graph, whose definition
is based on the fact that when moving from the uppermost contour of a surface to the
lowermost one, a new contour appears at a peak, whereas an existing contour disap-
pears at a pit, and, in addition, a contour splits or two contours merge at a pass, is
characterised as follows.

Definition 5 Let f : M → R be a real-valued function on a compact manifold M . The
Reeb graph of f is the quotient space of M defined by the equivalence relation ∼ in
the following way: x1 ∼ x2 holds if and only if f (x1) = f (x2) and x1 and x2 are in the
same connected component of f −1(f (x1)).

According to the above definition, the Reeb graph is obtained from the respective
manifold as topological quotient space where all the points having the same value under
the Morse function and lying in the same connected component as the corresponding
cross section are identified. Thus, the connected components of the part of the manifold
situated strictly between two critical levels are represented by separate line segments,
namely the edges of the graph, whereas each critical point corresponds to a vertex of
the graph (see Chapter 6 for more information on Reeb graphs).

Departing from the fact that researchers in the fields of computer graphics and GIS
had already extensively studied methods for extracting terrain features from discrete
elevation data while their techniques did not guarantee the topological integrity of the
extracted features, however, Takahashi et al. (1995) developed a number of algorithms
to extract the critical points of a topographic surface and to construct two types of
graphs, with one of them being the Reeb graph, for characterising the global topological
structure of a topographic surface (see Chapter 3 for more details). The authors also
demonstrated that their algorithms maintained topological invariants of smooth surfaces
and they illustrated the efficiency of their approach by using data from a region situated
near Lake Ashinoko in Japan.

Other powerful structures for visualising the topological behaviour of topographic
surfaces are contour trees and surface trees respectively. These concepts, which were
originally developed in the early sixties and re-invented by Morse (1968, 1969) and
Mark (1977), represent special cases of the more general Reeb graph, as they are also
based upon adjacency relationships between contour lines.

Contour trees and surface trees differ in this respect that Morse’s formal approach
rests upon particular but arbitrarily chosen, closed contour lines (e.g. all lines with a
contour interval of 100 m), which represent the vertices of the so-called graph of the
contour map. Two of these contour loops are termed adjacent, with the corresponding
nodes being connected by an edge in the contour graph if no other selected contour loop
lies between them. It can easily be proved that because of this construction rule, cycles
may never occur, thus implying that these graphs will always be trees. Evidently,
the termination points of these contour trees always represent areas containing pits
or peaks, whereas the branching points always represent areas containing passes. In
addition, the contour tree may contain vertices of degree two that are induced by the
contour lines; these nodes, which generally represent areas without any critical point,
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carry information about absolute altitudes and relative altitudes. From the contour tree
one obtains the surface tree by decreasing the contour interval to zero and by removing
all vertices of degree two by homomorphic contractions. Whereas the vertex set of the
surface tree is identical with the set of the critical points, its edge set represents only
a subset of the set of all critical lines of the corresponding topographic surface.

The widespread use of contour maps in a variety of different disciplines has led
to an increased interest in contour trees as an efficient data structure for representing
spatial relationships between contour lines. As in almost any publication dealing with
contour trees a different algorithm for their construction is described, a great body
of today’s research work is concerned with the improvement of existing algorithms
with regard to their run-time behaviour (van Kreveld et al., 1997, Carr et al., 2003;
also see Chapter 5). In addition to this primarily theoretical work, numerous practi-
cal applications of contour trees are also reported. So, for instance, Mark (1977) used
them for the topological analysis of geomorphic surfaces, Roubal and Poiker (1985)
employed contour trees when developing a partially automated system for the extrac-
tion of contour lines, Kweon (1991) and Kweon and Kanade (1991, 1994) applied
contour trees for extracting topographic terrain features like pits, peaks, passes, ridges,
and ravines from contour maps, and Bajaj et al. (1997) employed them within a user
interface component as a tool for assisting the user when analysing complex scalar
fields interactively.

The next feature-based data structure for the characterisation of topographic sur-
faces to be discussed within the present chapter is the TIN data structure whereby TIN
is the abbreviation for triangulated irregular network. This structure was introduced
by Peucker (1973) and Peucker et al. (1976, 1978) as an alternative to existing digital
terrain models based on regular grids, with the following two considerations motivating
their work: firstly, the fact that with the changing roughness of terrain from one land-
form to another, a regular grid must be adjusted to the roughest terrain, thus containing
a lot of highly redundant information in smooth terrain; and secondly, the observation
that different uses of terrain models demand different representations, whereby these
representations should be suited to the phenomena under study and not be imposed by
a sampling rule. Contrary to grids, TINs allow the density of nodes to be varied later-
ally and be adapted to local detail with the result that the smoothly changing part of a
surface can be adequately represented by relatively few nodes, whereas high-frequency
undulations can be recorded by more frequent sampling.

Within the TIN data structure, as introduced by Peucker, a surface is modelled as a
set of contiguous non-overlapping triangles whose vertices are located on the respec-
tive topographic surface. Evidently, the tiling of the surface in these irregularly shaped
triangle facets can be represented by a planar graph. In addition, the topological struc-
ture of the surface can be taken into account by regarding the surface-specific points
and the surface-specific lines; within the model under discussion, these points and lines
form a subgraph of the graph describing the overall TIN data structure.

The ability of TINs to give suitable approximations of arbitrary topographic surfaces
by using only a restricted amount of data (a feature that is due to their irregular
structure and the application of the surface-specific points and the surface-specific
lines) induces that TINs are nowadays the most prominent data structure for terrain
representation and are widely employed in commercial packages. Today there exists a
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great amount of literature on TINs, concerned with theoretical developments as well
as interesting practical applications. However, as it is far beyond the scope of the
present chapter to discuss even the most important of these approaches, we will turn
our interest to another feature-based modelling method for smooth surfaces, namely
surface networks.

2.4 SURFACE NETWORKS

This data structure has been introduced by Pfaltz (1976, 1978) with his approach being
conducted by Mark (1977), Wolf (1988a,b, 1989, 1990, 1991a), Rana (2000b), Rana
and Wood (2000), and Rana and Morley (2002). Surface networks represent special
types of graphs with the vertex sets consisting of the critical points and the edge
sets consisting of the critical lines of a Morse function defined over a domain that
is simply connected and bounded by a closed contour line. The so-defined model-
structure can be further enhanced by associating real numbers greater than zero with
the edges and the nodes to indicate their importance for both the macro-structure
and the micro-structure of the underlying surface. The graphs thus obtained – termed
weighted surface networks5 – represent a powerful tool for both characterising and
generalising topographic surfaces. After their formal definition has been given, it will
be shown that the generalisation process can be characterised by two graph–theoretic
contractions that reduce the number of the graph’s edges and vertices but preserve its
topological structure, and, consequently, that of the underlying surface.

Figure 2.1 illustrates a surface containing pits, passes, and peaks together with the
corresponding ridges and courses. P0 denotes the set of all pits, P1 the set of all
passes, and P2 the set of all peaks, whereas xi (i = 1, . . . , m1) specifies an individual
pit, yj (j = 1, . . . , m2) specifies an individual pass, and zk (k = 1, . . . ,m3) specifies
an individual peak. As can be seen, in Figure 2.1 m1 = 1 (surrounding pit), m2 = 5,
and m3 = 6.

The substantial phenomena of any topographic surface now can be portrayed easily
by an edge-weighted directed graph6 with the vertices representing the pits, passes,
and peaks, the edges depicting the courses and ridges, and the edge weights specifying
differences in elevations (see Figure 2.2). It is easy to demonstrate, however, that not
all graphs whose vertex sets are composed of the critical points and whose edge sets are
composed of the critical lines can be regarded as abstract models of real topographic
surfaces; they rather have to satisfy the properties listed below.

5 Throughout the remainder of this chapter, the terms surface network and weighted surface network will
be used synonymously.
6 The basic graph–theoretic definitions can be found in (Bondy and Murty, 1978). Additionally, the fol-
lowing concepts from (Pfaltz, 1976) will be used in this chapter: A circuit is a closed walk. A graph is
connected, if given any node u, one can reach all other nodes v by a walk that follows a sequence of edges,
though not necessarily in the indicated direction. A graph is said to be tripartite if the vertex set can be
partitioned into three subsets V0, V1, and V2, so that every edge is incident with one node of Vi−1 and
one node of Vi for 1 ≤ i ≤ 2. The valency val(u, v) denotes the number of edges between vertex u and
vertex v. L(v) = {u|(u, v) ∈ E} denotes the set of all adjacent nodes of the vertex v lying to the “left” of
it; R(u) = {v|(u, v) ∈ E} specifies the set of all adjacent nodes of the vertex u lying to the “right” of it;
L(u) and R(v) reflect a “left-to-right” partial ordering of the graph.
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Figure 2.2 Graph representing the topological structure of the surface illustrated in Figure 2.1. Edge
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(h denotes the height of a specific data point). Edges with valency two are dotted twice
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Definition 6 A weighted, directed, tripartite graph W = (P0, P1, P2; E) is called a
weighted surface network (Pfaltz graph) if

P0. W is planar
P1. the subgraphs [P0, P1] and [P1, P2] are connected
P2. |P0| − |P1| + |P2| = 2
P3. for all y ∈ P1, id(y) = od(y) = 2
P4. val(x, yi) = val(yi, z) = 1 implies that there exists yj �= yi so that (x, yj ),

(yj , z) ∈ E

P5a. (x, y) is an edge of a circuit in the bipartite graph [P0, P1] if and only if val(y, z)

�= 2 for all z ∈ P2

P5b. (y, z) is an edge of a circuit in the bipartite graph [P1, P2] if and only if val(x, y)

�= 2 for all x ∈ P0

P6. w(ei) > 0 for all ei ∈ E

P7. for all x ∈ P0, yi, yj ∈ P1, z ∈ P2 and (x, yi), (x, yj ), (yi, z), (yj , z) ∈ E holds
w(x, yi) + w(yi, z) = w(x, yj ) + w(yj , z)

P8a. if val(x, y) = 2 with ei1 = (x, y) and ei2 = (x, y) then w(ei1) = w(ei2)

P8b. if val(y, z) = 2 with ei1 = (y, z) and ei2 = (y, z) then w(ei1) = w(ei2).

Planarity, which is required by P0, is one of the nine properties that any surface
network must exhibit, because an intersection of its edges would be equivalent to the
intersection of the ridges and courses of the topographic surface, thus implying the
impossibility of its realisation. P1 ensures that all pits and saddles are connected by
course lines, and all passes and peaks are connected by ridge lines. P2 and P3 are
direct consequences of the assumption that the respective surface is approximated by a
Morse function. P4 guarantees that if there exists a path from pit x via pass yi to peak
z, which consists only of edges with valency one, then there exists another path from
pit x to peak z via a distinct saddle yj . P5a and P5b exclude special configurations that
are non-realisable (Pfaltz, 1976, Wolf, 1988a,b, 1989, 1990, 1991a). P6 says that all
edge weights must be greater than zero and thus have to be defined as h(yj ) − h(xi)

and h(zk) − h(yj ) respectively, with h denoting the height of a specific data point.
P7 ensures that for all paths from pit x to peak z the difference in elevation is the
same, no matter which saddle point is passed. P8a guarantees that all course lines
from a pit to a pass will have the same difference in altitude. P8b states the analogy
for ridges.

The cartographic importance of Pfaltz graphs, however, does not only result from
their applicability for describing the topological structure of topographic surfaces
but rather also from the fact that these graphs can be condensed by two contrac-
tions that reduce the number of edges and vertices, but preserve the topological
structure of the corresponding topographic surface. These two contractions will be
discussed next.

Definition 7 Let W be a weighted surface network and let yo be a saddle point
with R(yo) = {zo, z} and w(yo, zo) ≤ w(yi, z

o) for i = 1, 2, . . . , n − 1. Let zo be a
peak of degree n with L(zo) = {yo, y1, y2, . . . , yn−1}. The (yo, zo)-w-contracted graph
W ′ is the graph with vertex set V (W ′) = V ′ = V − {yo, zo}, edge set E(W ′) = E′ =
E + {(y ′

1, z
′), (y ′

2, z
′), . . . , (y ′

n−1, z
′)}, and edge weights:
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(a) w(y ′
i , z

′) = w(yi, z
o) − w(yo, zo) + w(yo, z) for i = 1, 2, . . . , n − 1

(b) w(e′) = w(e) for all other edges e′ ∈ E(W ′).

The whole set of operations taking the original surface network onto the condensed
one is called (yo, zo)-w-contraction with the “w” indicating that a weighted surface
network is going to be contracted.

The so-defined (yo, zo)-w-contraction removes the peak zo and its highest adjacent
saddle yo together with all surface-specific lines incident with at least one of these
critical points. This elimination, however, causes the loss of two fundamental features
of the surface network, because (i) the condensed subgraph [P ′

1, P
′
2] is no longer con-

nected (violation of P1) and (ii) there exist passes y ′
i

7 with od(y ′
i ) = 1 (violation of

P3). In order to ensure that W ′ is a weighted surface network too, its edge set E(W ′)
must comprise the “old” set E(W) as well as “new” links connecting y ′

i with z′. Since
the inclusion of these edges into E(W ′) can be regarded as a substitution of the paths
〈[yi, z

o], [zo, yo], [yo, z]〉 by (y ′
i , z

′) for i = 1, 2, . . . , n − 1, it is reasonable to assign
the values w(yi, z

o) − w(yo, zo) + w(yo, z) to the new links (y ′
i , z

′). These weights
can be justified cartographically, as they represent nothing else but the differences in
elevations of paths starting at saddle yi , leading up to peak zo, leading down to pass
yo, and finally ending in z. Moreover, the selection of yo guarantees that all weights
are greater than zero, which is a prerequisite for the realisation of the corresponding
topographic surface.

It has been proved in a formal way (Wolf, 1988b) that a (yo, zo)-w-contraction
takes a weighted surface network onto another one and thus may be regarded as
an elementary step of a cartographic generalisation process. Since a similar contrac-
tion for pits – a so-called (xo, yo)-w-contraction – can also be defined, any surface
network can be condensed by repeated applications of (xo, yo)-w-contractions and
(yo, zo)-w-contractions respectively, until a so-called elementary surface network is
obtained (Wolf, 1988a,b, 1989, 1991a). Evidently, these surface networks whose ver-
tex sets consist either of one pit, one pass, and two peaks, or of two pits, one pass, and
one peak can always be obtained by a series of |P1| − 1 (xo, yo)-w-contractions and
(yo, zo)-w-contractions respectively, with |P1| denoting the number of saddle points of
the given Pfaltz graph. Elementary surface networks, though theoretically interesting
as they indicate the end of any generalisation process, are, however, “oversimplified”
for any practical application. In order to overcome this deficiency, different criteria can
be employed to terminate the contraction process at an earlier stage, thereby creating
a surface network with a specified degree of simplicity.

2.5 SURFACE NETWORKS AND CARTOGRAPHIC GENERALISATION

A further improvement of the model developed so far can be achieved by associating
weights also with the vertices of the surface network in order to indicate their impor-
tance for the macro-structure and the micro-structure of the corresponding topographic
surface. These weights termed importance I of the critical points cannot be defined

7 According to the above definition, yi are the vertices incident with zo but different from the node yo,
which is removed by the contraction.
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absolutely, however, but must always take into consideration the individual character
of the problem under discussion as well as the given topographic facts. Consequently,
there exist several ways for the calculation of I that are all based on differences in alti-
tudes between adjacent surface-specific points. A thorough discussion concerning the
pros and cons of different definitions of I , such as the maximum, the minimum, or the
sum of differences in elevation between a pit (peak) and all of its adjacent passes, and
of other user-defined contractions can be found in (Wolf, 1988b, Rana, 2000b, Rana
and Wood, 2000, Rana and Morley, 2002). As can be seen from Figure 2.2, defining
I as the maximum of differences in altitude between a peak (pit) and all of its adja-
cent saddles results in the following arrangement with the corresponding values of I

given in parentheses: z4 (450), x1 (550), z2 (850), z1 (950), z6 (950), z3 (1150), and
z5 (1250).

After having defined the importance I of the surface-specific points in a formal way,
it is possible to specify an algorithm for the generalisation of topographic surfaces,
which is based on the previously described (xo, yo)-w-contractions and (yo, zo)-w-
contractions, and the weights associated with the vertices of the Pfaltz graph cor-
responding to the respective surface. The procedure, whose main advantage is to
incorporate systematically the importance of the critical points into the generalisation
process, thus avoiding their lexical elimination, runs as follows:

Algorithm for the generalisation of topographic surfaces

(0) Specify the desired degree of simplicity.
(1) Calculate the importance I of pits xi and peaks zk and arrange them in ascend-

ing order.
(2) Select the pit xo or peak zo which lies within the boundary contour and whose

importance is minimal.
(3) Apply an appropriate (xo, yo)-w-contraction or a (yo, zo)-w-contraction respec-

tively.
(4) If the specified degree of simplicity is achieved, stop. Otherwise go to (1).

Evidently, the application of the above algorithm in combination with the definition
of I as the maximum of differences in elevation between a peak (pit) and all of
its adjacent saddles induces that, first of all, a (yo, zo)-w-contraction with yo = y3

and zo = z4 will be applied, thus taking the surface network of Figure 2.2 onto the
one depicted in Figure 2.3, with the corresponding ridge lines and course lines being
illustrated in Figure 2.4.

It is evident that, because of their definition, weighted surface networks are a purely
topological data structure. However, for a number of applications like the generalisation
of topographic surfaces or the characterisation of certain topographic features – such
as river junctions, bifurcations of ridges, and crests leading from peaks to river junc-
tions – the additional consideration of geometrical features is indispensable (Wolf,
1988a,b, 1989, 1990, 1991a). This consideration of geometrical properties can be eas-
ily achieved by embedding the weighted surface network into a metric space, that is,
by associating (x, y) coordinates with the critical points and the critical lines. The
resulting surface networks termed metric surface networks represent the starting point
of almost any practical application.
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Figure 2.4 Ridge lines and course lines associated with the Pfaltz graph illustrated in Figure 2.3

The previously described algorithm has already been used to generalise a real
topographic surface located in the Latschur Mountains in the southern part of Aus-
tria (Wolf, 1988a,b, 1989, Rana, 2000b, Rana and Wood, 2000, Rana and Morley,
2002). Figure 2.5 depicts the Pfaltz graph corresponding to the given topographic
surface. Figure 2.6 illustrates the condensed surface network after thirty (xo, yo)-w-
contractions and (yo, zo)-w-contractions respectively.
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Figure 2.5 Pfaltz graph corresponding to a topographic surface situated in the Latschur Mountains, Aus-
tria. Legend: circles – pits, triangles – peaks, squares – passes

Figure 2.6 Surface network of Figure 2.5 after thirty (xo, yo)-w-contractions and (yo, zo)-w-contractions
respectively. Legend: circles – pits, triangles – peaks, squares – passes

2.6 FUTURE DIRECTIONS

Although a great deal of theoretical as well as practical work still remains to be
done, Pfaltz graphs seem to be a promising data structure for both the character-
isation of the macro-structure and the micro-structure of a topographic surface as
well as for their generalisation. Theoretical problems still to be solved include, for
instance, the formal analysis of the connection between surface networks and other
feature-based data structures – such as Reeb graphs, contour trees, and so on (Mark,
1977, Wolf, 1993, Takahashi et al., 1995) – or the investigation of the relationships
between Pfaltz graphs and hydrologic concepts, such as Werner’s interlocking ridge
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and channel networks (Werner, 1988, Wolf, 1992). The practical problems to be tackled
are, for example, the automated generation of surface networks from digital eleva-
tion models (Wood, 1996a, 1998), the development of improved algorithms combining
topological and geometric features, or the inclusion of the developed procedures into
software packages handling spatial data structures.





3

Algorithms for Extracting Surface
Topology from Digital Elevation

Models

Shigeo Takahashi

3.1 INTRODUCTION

Contemporary geographical information systems (GISs) generally maintain terrain sur-
faces in the form of digital elevation models (DEMs) and visualise them by extracting
their topographical features as landmarks for understanding the surface shapes. Such
features include critical points such as peaks, passes, and pits, and feature lines such
as ridges and course lines traversing between them.

Since these features come from the theory of differential topology, they can enjoy
some topological formulas. The most important formula is the Euler–Poincaré for-
mula. As mentioned in Chapter 2, a terrain surface is supposed to be a bounded region
of a sphere where all the points outside can be identified with the virtual pit, which is
the bottom pit of the sphere. By taking into account this virtual pit, the extracted crit-
ical points must satisfy the Euler–Poincaré formula: #{peak} − #{pass} + #{pit} = 2,
where #{peak}, #{pass}, and #{pit} represent the numbers of peaks, passes, and pits,
respectively1. However, conventional methods do not maintain the Euler–Poincaré for-
mula that proves the correctness of the extracted critical points. Figure 3.1 shows such
an example in which the conventional eight-neighbour method (Peucker and Douglas,

1 By excluding the virtual pit, this formula becomes #{peak} − #{pass} + #{pit} = 1. This is called the
mountaineers’ equation (Griffiths, 1981)
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Figure 3.1 An example of (a) a DEM and (b) its projection: the eight-neighbour method fails to extract
correct critical points from this DEM

1975) fails to extract correct critical points. As described earlier, the extracted critical
points must satisfy #{peak} − #{pass} + #{pit} = 2 in this case. Nonetheless, the eight-
neighbour method extracts the point (1, 1) as a peak, (3, 2) and (3, 3) as passes, and
(2, 2) as a pit, and thus violates the Euler–Poincaré formula.

The correctness of the critical point extraction is vital for further analysis of terrain
surface topology when we try to capture the global configurations of the critical points
and feature lines. Such a global configuration is efficiently captured by a critical point
graph that represents critical points as its vertices and relationships between them as its
edges. While several critical point graphs (Reeb, 1946, Pfaltz, 1976, Nackman, 1984)
including surface networks (Pfaltz, 1976) (see Chapter 2) were formulated mathemat-
ically until the mid-1980s, their practical implementation has been established quite
recently. This is because the input data is different from an ideal smooth surface in that
it usually involves unexpected noise and degeneracy arising from discrete sampling and
quantization.

The main challenge of this chapter is to provide mathematical fundamentals for
identifying such critical points and feature lines, and noble implementation of the
associated algorithm (Takahashi et al., 1995). Here, the present algorithm is valid in the
sense that the extracted features definitely satisfy the Euler–Poincaré formula derived
from the studies in differential topology, and also robust in the sense that it can extract
correct features even when the input data involves unexpected noise and degeneracy.
The network of the ridge and course lines offers an excellent partition of the input
terrain surface, which is effectively captured by a critical point graph called the surface
network (Pfaltz, 1976). This chapter also presents an algorithm that converts the surface
network into a level-set graph2 called the Reeb graph (Reeb, 1946), which is also a
critical point graph that represents the splitting and merging of cross-sectional contours
with respect to the height value. Several examples and potential applications are also
included to demonstrate the feasibility of the present framework.

2 Here, the level set means a set of points of constant value for a given scalar function.
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The organisation of this chapter is as follows: Section 3.2 describes the mathematical
definition of critical points and an algorithm for extracting them from the input DEM
correctly. Section 3.3 formulates the ridge and course lines and the surface network, and
then explains how to extract these features from the given DEM. Section 3.4 provides
an excellent algorithm that converts the surface network to the Reeb graph by taking
into account the mathematical properties of smooth surfaces only. After presenting
several examples and potential applications in Section 3.5, Section 3.6 concludes this
chapter with references to related work.

3.2 EXTRACTING CRITICAL POINTS

We begin with the definition of a DEM, which is described as follows. The DEM is a
set of sample points {(xi, yi, f (xi, yi))|i = 1, 2, . . .} on a single-valued function

z = f (x, y) (3.1)

where z is the height in the Cartesian coordinate system spanned by the x-, y-, and z-
axes. This definition actually helps us extract topographical features and their associated
graph representations systematically.

3.2.1 Critical points

Tracking cross-section contours of the terrain surface according to the height value
will produce their topological changes such as appearance, merging, splitting, and
disappearance. A critical point is defined to be a point where such a topological
transition in cross-sectional contours takes place.

More mathematically, a critical point of a height function (Equation (3.1)) is defined
to be a point that satisfies

∂f

∂x
= ∂f

∂y
= 0 (3.2)

The Morse lemma (Milnor, 1963) claims that an infinitesimal neighbourhood around a
critical point of equation (3.1) has a local coordinate system where f has one of the
following quadratic forms:

f =



−x2 − y2 peak (index 2)
−x2 + y2 pass (index 1)

x2 + y2 pit (index 0)
(3.3)

Here, the index means the number of negative eigenvalues of the Hessian matrix at
the critical point, that is,

Hf =
(

fxx fxy

fyx fyy

)
=




∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂y

∂2f

∂y2


 (3.4)
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Figure 3.2 Critical points: (a) a peak, (b) a pass, and (c) a pit

As shown in equation (3.3), there are three types of critical points for the surface case:
a peak (index 2), a pass (index 1), and a pit (index 0).

Figure 3.2 depicts a topological transition at each type of critical point. At a peak, a
new contour appears (Figure 3.2(a)) when lowering the height value while an existing
contour disappears at a pit (Figure 3.2(c)). This implies that a peak is higher than all
other points in its neighbourhood, while a pit is lower. On the other hand, a pass splits
an existing contour into two, or merges two contours into one (Figure 3.2(b)). A critical
point usually allows one of the above topological transitions in its corresponding cross-
sectional contours. In this case, a critical point is said to be non-degenerate and the
corresponding Hessian matrix (Equation (3.4)) has full rank. Otherwise, a critical point is
degenerate. One simple example of the degenerate critical point is a point at which three
or more contours merge into one, or one contour splits into three or more simultaneously3.

If all the critical points are non-degenerate, they must satisfy the aforementioned
Euler–Poincaré formula:

#{peak} − #{pass} + #{pit} = 2 (3.5)

Note that the formula (3.5) holds if the given surface is topologically equivalent to a
sphere. In our framework, as described in Chapter 2, we put the given DEM on the
top of a sphere and take into account the bottom pit of the sphere when applying the
Euler–Poincaré formula. This is shown in Figure 3.3, where we call the bottom pit
of the sphere a virtual pit. Considering the DEM together with the virtual pit, we can
preserve the integrity of the extracted critical points by applying the Euler–Poincaré
formula (3.5).

3.2.2 Algorithm for extracting critical points

Recall that the conventional eight-neighbour method cannot extract critical points that
satisfy the Euler–Poincaré formula (3.5). This is because the DEM is a set of dis-
crete samples and lacks smooth interpolation over the domain of xy-coordinates. To
ensure that the extracted critical points satisfy the Euler–Poincaré formula, we have

3 A monkey saddle is a degenerate critical point.
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Figure 3.3 A terrain surface and a virtual pit on a sphere

to determine a unique surface interpolation from the given samples. For this purpose,
we use triangulation because it offers the most commonly used linear interpolation
and does not incur unwanted critical points that are likely to appear on higher-order
interpolating surfaces. Note that the contour transitions with respect to the height value
depend on the manner in which we triangulate the sample points. From this viewpoint,
a method similar to the Delaunay triangulation should be employed in our framework
because it can avoid thin triangles that are undesirable for sound linear interpolations.

For example, the grid samples in Figure 3.1 can be triangulated as shown in Figure 3.4.
This is accomplished by partitioning the grid like a checkerboard and then splitting each
square by either of the two triangles so that the new triangles form a smoother angle. Data-
dependent triangulations (Dyn et al., 1990, Brown, 1991) will be the other candidates
for this purpose.

The triangulation allows us to define the neighbours of each sample point and
then introduce the criteria for critical points. Suppose that all critical points are non-
degenerate at this stage. Here, the neighbours of the point P are defined to be points
that are adjacent to P in the triangulation. In our implementation, each point P has
a circular list of its neighbours in counter-clockwise (CCW) order with respect to the
xy-coordinates. Now we are ready to introduce the criteria for critical points as follows:

peak |�+| = 0, |�−| > 0, Nc = 0
pit |�−| = 0, |�+| > 0, Nc = 0
pass |�+| + |�−| > 0, Nc = 4

where the following notation are used.
n the number of the neighbors of P

�i the height difference between Pi(i = 1, 2, . . . , n) and P

�+ the sum of all positive �i(i = 1, 2, . . . , n)
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Figure 3.4 A triangulation of the DEM in Figure 3.1 and contours at the height 550

�− the sum of all negative �i(i = 1, 2, . . . , n)

Nc the number of sign changes in the sequence �1, �2, . . . ,�n, �1

Thanks to the above criteria, we can maintain the Euler–Poincaré formula (3.5) in the
case of Figure 3.1. As shown in Figure 3.4, we extract only one pass (3, 2) as well
as the peak (1, 1) and pit (2, 2). Note that Figure 3.4 also shows contour lines at the
height of the pass (3, 2) at which the contour lines intersect each other.

Another important issue is how to handle the boundary sample points associated
with the virtual pit. In our implementation, the virtual pit is assumed to be a point
of the height −∞. After triangulating the sample points, the virtual pit is inserted to
the circular list of the boundary points so that the virtual pit and two neighbouring
points on the boundary form a triangle as shown in Figure 3.3. In this process, the
virtual pit is considered as a point exterior to the sample domain with respect to the
(xy)-coordinates. Refer to Chapter 2 for more details.

3.2.3 Handling degenerate critical points

Now we can turn our attention to the degenerate critical points, which are classified
into two cases: level regions and duplicate passes.

A level region is defined to be a set of connected sample points that are at the same
height in the triangulation. This usually results from the discrete quantization, that is,
the limited precision of height values. One solution to this issue is to group a set of
level points together and regard the group as a single point. However, this is not a
good idea when the region surrounds other critical points such as pits and peaks in its
interior as illustrated in Figure 3.5(a).

The solution employed here is to introduce another ordering of the sample points
in addition to the height ordering. This means that we compare two points using the
second ordering if they are exactly at the same height. Actually, we have several
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Figure 3.5 A level region: (a) a level region surrounding a pit and (b) the effect of introducing the second
ordering

choices for the second ordering. The first and simplest choice is to use index numbers
that are assigned to the sample points because every sample point is supposed to
have a different index number. In our framework, however, we use the lexicographical
ordering with respect to the xy-coordinates as the second ordering. More specifically,
we compare the x-coordinates of the two points if two samples have the same height
values. If they still have the same x-coordinates, we then compare their y-coordinates.
Because the DEM is a set of samples on a single-valued function z = f (x, y), there
are no two samples that have identical xy-coordinates. Introducing this ordering is
equivalent to inclining the height axis slightly only for the level regions as illustrated
in Figure 3.5(b). This solution enables uniform data manipulation by converting the
degenerate critical points to non-degenerate ones.

The second case is a duplicate pass at which, when the height value reduces, three or
more cross-sectional contours merge into one contour, or one existing contour splits into
three or more contours. An example of a duplicate pass and its neighbours including
their height values is illustrated in Figure 3.6(a), where the shaded regions indicate
cross sections at the height of the pass. In this case, it is necessary to decompose the
duplicate pass into non-degenerate ones, because three contours are merged at the pass
simultaneously. We then count the number of the passes after the decomposition. The
criterion for passes is now modified as follows:

pass |�+| + |�−| > 0, Nc = 2 + 2m (m = 1, 2, . . .)

where m is the number of the decomposed passes.
In our framework, we simply count the number of non-degenerate passes for the

decomposition. Alternatively, we can actually split such a duplicate pass into several
non-degenerate ones by inserting new edges and faces to the existing triangulation over
the DEM. Such an example can be found in (Edelsbrunner et al., 2003b).

Consider how the algorithm handles the duplicate pass P shown in Figure 3.6(a).
First, the algorithm generates {P1, P2, P3, P4, P5, P6, P7} as the CCW neighbour list
of P . After calculating �+, �−, and Nc of P , the algorithm simplifies the neighbour
list as follows. While scanning the neighbour list, the algorithm defines a sequence of
neighbours higher than P as an upper sequence. In this example, the upper sequences
are {P1}, {P3, P4}, and {P6}. A lower sequence is defined in a similar manner. The
simplified list is then obtained by choosing the highest neighbour out of each upper
sequence and the lowest neighbour out of each lower sequence. In this example, the
neighbour list is reduced to the list {P2, P3, P5, P6, P7, P1} by removing P4, because P3

is higher than P4 in the upper sequence {P3, P4} (Figure 3.6(b)). Here, the simplified
list is supposed to begin with the lowest neighbour, so that the algorithm can assign four
alternating upper and lower neighbours to each decomposed (i.e. non-degenerate) pass.
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Figure 3.6 A neighbour list of a duplicate pass: the height values of the sample points are indicated and
the cross sections at the pass are shaded. (a) The original neighbour list, (b) the reduced neighbour list,
(c) four representative neighbours and the corresponding imaginary cross sections for the first decomposed
pass, and (d) for the second decomposed pass

Since three contours merge at P simultaneously, the number of non-degenerate
passes m is equal to 2. In order to decompose the duplicate pass, the algorithm first
selects the last four neighbours P5, P6, P7, and P1 as the representative neighbours for
the first decomposed pass. Figure 3.6(c) illustrates how the corresponding two contours
merge while the third contour will come to join later. The same procedure is then carried
out for the second decomposed pass after the last two elements P7 and P1 are eliminated
from the list. This time, the third contour has intersected with the existing one as
illustrated in Figure 3.6(d). In this way, the duplicate pass P is correctly resolved into
two non-degenerate passes as shown in Figures 3.6(c) and (d), where four alternating
upper and lower neighbours are appropriately assigned to each non-degenerate pass.
The algorithm stores these corresponding four representative neighbours for each pass,
for later use in tracing ridge and course lines (see Section 3.3).

3.3 CONSTRUCTING THE SURFACE NETWORK

This section describes the mathematical definitions of the ridge and course lines, fol-
lowed by the definition of the surface network. After these mathematical fundamentals,
an algorithm for constructing the surface network from the DEM together with the
extracted critical points will be explained.
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3.3.1 Ridge and course lines

The definitions of ridge and course lines are described as follows (Nackman, 1984).
Let us represent a curve on the terrain surface as follows:

C (t) = (Cx(t), Cy(t)) (3.6)

where t (∈ R) is a parameter. Suppose that the curve C (t) satisfies the following dif-
ferential equation:

dC
dt

(t) = −
(

∂Cx

∂t
(t),

∂Cy

∂t
(t)

)
and C (0) = C0 (3.7)

where C0 is a point contained in the neighbourhood of the pass P . The curve C (t)

is called a ridge segment if it converges to the pass P when t → ∞. Conversely,
consider the curve C (t) that satisfies the following differential equation:

dC
dt

(t) =
(

∂Cx

∂t
(t),

∂Cy

∂t
(t)

)
and C (0) = C0 (3.8)

where C0 is again a point near the pass P . The curve C (t) is called a course segment
if it converges to the pass P as t approaches ∞.

Actually, a ridge line is defined to be either a single ridge segment or a chain of
connected ridge segments, while a course line is either a single course segment or a
chain of connected course segments. These ridge and course lines cross every contour
at right angles, and follow the steepest ascent and descent paths on the terrain surface,
respectively.

It should be noted that the networks of ridge and course lines are dual of each other
on the terrain surface. See Plate 1(a) for an example. This is because each ridge cycle
contains only one pit in its inside while each course cycle contains only one peak.
Furthermore, these two networks only intersect at passes, where two ridge and two
coarse lines alternately appear when seen from the top. This systematic partition of
the terrain surface helps us seek further applications, one of which will be presented
in Section 3.5.2.

3.3.2 Surface network

Recall that a critical point graph is defined to be a graph such that it represents
critical points as its vertices and relationships between them as its edges. The surface
network (Pfaltz, 1976) is one of such critical point graphs, where its edge represents
either a ridge or course line. Note that a ridge line ascends from a pass to a peak in
the steepest direction on the terrain surface while a course line descends from a pass
to a pit. More properties of the surface network are described in detail in Chapter 2.
Figure 3.7 illustrates the surface network with cross-sectional contours. Here, a solid
line represents a ridge line and a broken line represents a course line. As shown in



40 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

Peak

Pit
Pass

Virtual
pit

Virtual
pit

Peak

Pass

Peak

Pass

Pit

Figure 3.7 The surface network and cross-sectional contour lines

this figure, the surface network captures the configuration of the ridge and course lines
successfully.

3.3.3 Algorithm for constructing the surface network

The algorithm for constructing the surface network is now presented as follows. What
is needed here is to trace ridge and course lines emanating from passes on the terrain
surface. As described in Section 3.2, the previous algorithm holds the corresponding
four representative neighbours for each pass. Actually, these four representative neigh-
bours serve as starting points for tracing such ridge and course lines in this algorithm,
where the two upper neighbours lead to peaks (a peak) while two lower neighbours
lead to pits (a pit). The surface network is then constructed by simply connecting every
pass with the peaks and pits reachable from the pass through the ridge and course lines.

A ridge (course) line is traced in the algorithm as follows: Suppose we are at
the starting point S. Since the ridge (course) line ascends (descends) in the steepest
direction on the surface, we move to the highest (lowest) neighbour of S. This step can
be carried out one by one until we reach a peak (pit). Note that if the two neighbouring
samples are at the same height, we compare these two using the second ordering (i.e.
the lexico-graphical ordering with respect to the xy-coordinates), which is introduced
in Section 3.2. This implies that the number of the tracing steps is finite because the
number of sample points on the DEM is also finite and we never visit the same point
twice in a single tracing step. In this way, the surface network is constructed.

3.4 CONVERTING THE SURFACE NETWORK TO THE REEB GRAPH

The surface network is originally introduced to capture the configuration of critical
points and their associated ridge and course lines on the terrain surface. Surprisingly,
however, it can also work as an intermediate representation for constructing a level-set
graph called the Reeb graph, which represents the splitting and merging of cross-
sectional contours with respect to the height. This section first provides the definition
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of the Reeb graph and then an algorithm for converting the surface network to the
Reeb graph. In addition, several mathematical statements are also proved to justify the
present algorithm.

3.4.1 Reeb graph

Along with the surface network, the Reeb graph (Reeb, 1946) is also one of the critical
point graphs. In addition, it represents the topological transitions in cross-sectional
contours as the corresponding height value changes. Let f be the height function of
the terrain surface, and let P and Q be points on the surface. The Reeb graph of the
height function f is obtained by identifying P and Q if the two points are contained
in the same connected component of the cross-sectional contour of the surface at the
height f (P )(= f (Q)). This means that a single connected component in a cross-
sectional contour corresponds to a point on the edge of the Reeb graph (Figure 3.8).
In particular, the vertex of the Reeb graph corresponds to the critical point of the
height function f because at the height there must be some topological transition in
the cross-sectional contour. Note that the definition of the Reeb graph is also presented
in Chapter 2.

Figure 3.8(a) shows a mountain shape and its critical points, and Figure 3.8(b) shows
the corresponding Reeb graph. In the remainder of this chapter, the critical points of the
Reeb graph are arranged from top to bottom according to their height values, and rep-
resented by the symbols as shown in Figure 3.8(b) according to the type of each critical
point. The Reeb graphs are also used for designing smooth surfaces (Shinagawa et al.,
1991, Shinagawa and Kunii, 1991, Ikeda et al., 1992, Takahashi et al., 1997, Lazarus
and Verroust, 1999) because they effectively represent the topological transitions of
cross-sectional contours with respect to the height value.
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Figure 3.8 (a) A mountain shape with its critical points and (b) the corresponding Reeb graph
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Figure 3.9 Components of the Reeb graph around (non-degenerate) critical points: components around (a)
a peak, (b) a pit, and (c) passes

The above definition of the Reeb graph leads us to the following two statements.

Statement 1 If all the critical points of the height function f are non-degenerate,
the vertices (i.e. critical points) of the Reeb graph of f have the following properties
(Figure 3.9):

(1) If the critical point is a peak, it has only one downward edge, that is, the opposite
end vertex is lower than the peak (Figure 3.9(a)).

(2) If the critical point is a pit, it has only one upward edge, that is, the opposite end
vertex is higher than the pit (Figure 3.9(b)).

(3) If the critical point is a pass, it has either (a) one upward edge and two downward
edges; or (b) one downward edge and two upward edges (Figure 3.9(c)).

The above statement directly follows from the contour transitions around the critical
points, which are illustrated in Figure 3.2.

Statement 2 Let z = f (x, y) be a height function of a smooth surface. If f is repre-
sented by a single-valued function, the Reeb graph of f with the virtual pit becomes a
tree, that is, the Reeb graph has no cycles.

Suppose that the Reeb graph has a cycle. This means that the corresponding surface
involves a torus according to the definition of the Reeb graph, which results in a
contradiction.

3.4.2 Relationships between the surface network and the Reeb graph

Before going into details, we consider the two statements below, which help us under-
stand relationships between the edges of the surface network and of the Reeb graph.

Statement 3 An edge of the surface network corresponds uniquely to a path4 in the
Reeb graph (Figure 3.10).

4 A path of a graph is defined to be an alternating sequence of vertices and edges, which begins and ends
with vertices, in which each edge is incident to the two vertices immediately preceeding and following it,
and in which all the vertices are distinct (Harary, 1971).
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Figure 3.10 Relationship between the edges of the surface network and the Reeb graph

Consider a ridge edge l of the surface network and its corresponding end pass Q and
peak P . Clearly, the corresponding Reeb graph has the identical pass Q and peak P

as its vertices. This is illustrated in Figure 3.10. Note that the edge QP of the surface
network represents a ridge line and thus a monotonous ascent path on the terrain
surface. This means that there exists a path in the Reeb graph that monotonously
ascends from the pass Q to the peak P . Here, the path is uniquely determined because
the Reeb graph has no cycles due to Statement 2. Consequently, the statement is proved
for the ridge edges of the surface network. The same can be applied to course edges,
which concludes the proof.

We call a path in the Reeb graph a monotonous ascent path (descent path) if it
corresponds to a ridge (course) line on the terrain surface (i.e. a ridge (course) edge in
the surface network).

Statement 4 For each edge incident to a pass in the Reeb graph, there exists either a
monotonous ascent path or a monotonous descent path that contains the edge.

Suppose that the pass has a “Y”-shaped branch in the Reeb graph, that is, the pass has
two upward edges and one downward edge. In this case, the pass becomes a contact
point between the two cross sections on the corresponding horizontal plane as shown in
Figure 3.11. Thus, our task here is to make sure that the two ridge lines emanating from
the pass definitely go into the two distinct cross sections respectively when they are
projected onto the horizontal plane. This can be verified because the starting point for
each ridge line is the representative neighbour in the upper sequence (see Section 3.2),
and hence it is involved in the corresponding cross section individually. Note that the
downward edge is obviously traced by the course lines because the pass has only one
downward edge. Similar arguments can be applied to the passes that have branches
upside down, which proves the correctness of the statement.

Ridge lines

x

y

z

Figure 3.11 Ridge lines emanating from a pass
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3.4.3 Algorithm for converting the surface network to the Reeb graph

Now we provide an algorithm for converting the surface network to the Reeb graph,
followed by the mathematical statements that justify the validity of the algorithm.
Here, it should be noted that the algorithm only depends on the mathematical prop-
erties of smooth surfaces, and does not depend on the discrete representations any
more. In other words, once we successfully construct the surface network, we can
obtain the Reeb graph only from its graph representation without referring to the
original DEM.

The basic idea of the algorithm is to convert the ridge and course edges of the
surface network to the edges of the Reeb graph by fixing the edges of the Reeb graph
from its ends to the centre. This is done by first determining the edges incident to
peaks and pits, and then changing passes into peaks or pits if each of the passes has
already fixed two of its three incident edges in the Reeb graph. Recall that a pass of
the Reeb graph has three incident edges, while a peak and a pit have only one edge
as described in Statement 1.

Figure 3.12 shows how the algorithm converts the surface network of Figure 3.7
into the Reeb graph of Figure 3.8(b). Here, the graphs on the left correspond to the
surface networks and the graphs on the right correspond to the Reeb graph, where the
critical points of the Reeb graph are arranged from top to bottom according to their
height values.

Figure 3.12(a) shows the initial states of the surface network and the Reeb graph.
The vertex 1 is the first peak to be handled in the algorithm where its sole edge in
the Reeb graph is determined. In this case, the algorithm adds the edge 13 to the
Reeb graph because the vertex 3 is the highest vertex adjacent to 1 in the surface
network. After having fixed the edge incident to 1 in the Reeb graph, the algorithm
changes the connectivity of the surface network by removing the edge 13 and chang-
ing the edge 14 to the edge 34 (Figure 3.12(b)). A similar conversion process is
applied to the peak vertex 2 (Figure 3.12(c)). Here, a new edge is not added to the
surface network if the surface network already has an identical edge. Similar con-
version processes are carried out for the pit vertices 5 and 6, where 6 represents
the virtual pit. After all the peaks and pits are processed, the algorithm tries to find
passes that have two fixed edges in the Reeb graph. At this stage, the passes 3 and
4 are the cases because two of the three incident edges have already been fixed for
each of the passes in the Reeb graph. Here, the algorithm changes a pass to a peak
if all the remaining incident edges are downward in the surface network, while it
changes a pass to a pit if all the edges are upward. In this example, the vertex
3 is changed to a peak and the vertex 4 is changed to a pit in the surface net-
work (Figure 3.12(d)). We repeat these conversion processes until all the edges of
the Reeb graph are determined. Figure 3.12(e) shows the final results of this conver-
sion process.

Note that if we cannot extract any passes from the terrain surface, we definitely
have only a peak and a pit and just connect them with an edge to construct the Reeb
graph.
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Figure 3.12 Steps of the conversion algorithm: the graphs on the left show the surface networks and the
graphs on the right show the Reeb graphs



46 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

3.4.4 Validity of the algorithm

The validity of the conversion algorithm is finally justified by the following statements.

Statement 5 The algorithm in Section 3.4.3 correctly converts the edges of the surface
network to those of the Reeb graph.

Let P be a peak and let P0, P1, . . . , Pn be its adjacent vertices in the surface network,
where P0 is the highest of all the adjacent vertices. From Statement 1, P has only one
downward edge in the Reeb graph. From Statements 3 and 4, the paths monotonously
ascending from P1, P2, . . . , Pn to P must pass through P0 in the Reeb graph. This
concludes that P0 is on the way of the monotonously ascending paths from any of the
vertices P1, P2, . . . , Pn to P . Hence, the edges of the surface network are correctly
converted to those of the Reeb graph in the algorithm. The same procedure can be
applied to the edges incident to pits.

Statement 6 The algorithm in Section 3.4.3 takes a finite number of steps to finish the
conversion.

Let us show that the number of fixed edges in the Reeb graph increases monotonously.
Recall that the Reeb graph is a tree, from Statement 2. In the algorithm in Section 3.4.3,
all the peaks and pits are processed first. This means that the Reeb graph is determined
from its end vertices and edges. After cutting off these end vertices and edges, the
remaining undetermined part of the Reeb graph is still a tree. Since a tree has at least
two end points (Harary, 1971), the algorithm changes two passes to peaks or pits at
least because they must have two already fixed edges in the Reeb graph. In this way,
the undetermined part of the Reeb graph shrinks step by step through the conversion
processes until all its edges are fixed. This proves that the number of fixed edges in
the Reeb graph increases monotonously.

3.4.5 Simplifying the Reeb graph

It is possible that the present algorithm extracts too many minor critical points because
they are sensitive to high-frequency noise arising from discrete sampling and quantiza-
tion. These minor critical points may hide the important surface topology of the terrain
surface, and thus should be eliminated by consulting the global structure of the surface.
This leads to the hierarchical representation of the surface topology that controls the
surface shape details from a topological viewpoint. One of the excellent frameworks
for this representation has been described in Chapter 2, in which a weighted surface
network is used to estimate the importance of critical points. This section, on the other
hand, describes a framework for estimating such importance by taking into account
the Reeb graph instead.

Actually, the surface topology can be simplified by removing edges of lesser impor-
tance from the Reeb graph. Figure 3.13 shows such edge patterns to be eliminated
through the simplification process. Here, each edge incident to either a peak or a pit is
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Figure 3.13 Edge patterns eliminated in the simplification of the Reeb graph: (a) an edge between a peak
and a pass and (b) an edge between a pit and a pass
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Figure 3.14 A simplification step in the Reeb graph

Figure 3.15 Smoothing operation that corresponds to the contraction step

examined to estimate its importance, and the edge of the least importance will be cut
off. This contraction step is repeated until all the edges of the Reeb graph have higher
importance values than the given threshold.

As an importance value for an edge, the difference in height between the two end
critical points can be used. Figure 3.14 shows such an example. In Figure 3.14(a), the
broken segment will be eliminated first because it has the smallest difference in height
compared to all the edges incident to peaks and pits. Figure 3.14(b) shows the Reeb
graph after the simplification step. Meanwhile, in the corresponding terrain surface,
this single simplification step amounts to smoothing out a small peak as shown in
Figure 3.15. It is also noted that the present framework estimates each local critical
point by always referring to the Reeb graph that represents the topological skeleton of
the surface. This means that the framework correctly finds the global surface topology
by cutting off the minor local features.
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3.4.6 Identifying contour embeddings on cross sections

Although the Reeb graph itself provides much information about the global structure
of terrain surface, it also helps us identify the planar configuration of cross-sectional
contours at any height value. According to Shinagawa et al. (1991), a pass has four
types of contour transitions, taking into account their planar relative arrangement on
the corresponding horizontal plane. These four types are indicated by the four vertical
arrows in Figure 3.16, where the transitions on the right have an inclusion relationship,
while the transitions on the left have no such nested structures. We use the term contour
embeddings to denote this kind of contour configurations here.

Suppose that we scan the topological transitions of cross-sectional contours when
lowering the corresponding height value. A solid contour is defined to be a contour
whose interior points on the terrain surface with respect to the xy-coordinates are
higher than its boundary points, while a hollow contour is defined to be a contour
whose interior points are lower. Since the DEM represents a single-valued function,
solid contours always expand when reducing the corresponding height value while
hollow contours always shrink.

This allows us to specify the type of contour transition at a pass by identifying each
of its incident edges as either solid or hollow, as shown in Figure 3.16. For example,
we can find the contour embeddings from the Reeb graph shown in Figure 3.8(b) as
follows: The first step is to start from the virtual pit 6. Since the DEM represents a
single-valued function, the edge incident to the virtual pit is easily identified as solid.
In this case, the edge 64 is identified as solid. Now we move from 6 to 4 by following
the solid edge, and then identify the type of the pass 4 by referring to the four types
of contour transitions in Figure 3.16. The figure suggests that the pass 4 corresponds
to the component shown in Figure 3.16(c) because we reach the pass through the solid
edge from the lower side. This lets us identify the edge 45 as hollow and the edge 43
as solid. Next, we continue to ascend through the Reeb graph up to the pass 3. At this
point, we learn that the pass has the component shown in Figure 3.16(b), and identify

Solid Solid

Solid
Hollow

Hollow

Hollow
(b)(a)

Solid Hollow

HollowHollow

Solid

Solid
(c) (d)

Figure 3.16 Embeddings of contour transitions at passes: (a) one hollow contour splits into two hollow
contours, (b) two solid contours merge into one solid contour, (c) one solid contour splits into one parent
solid contour and one child hollow contour, and (d) one parent hollow contour and one child solid contour
merge into one hollow contour
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the edges 13 and 23 both as solid. In this way, we can extract the contour embeddings
by carefully tracing the constructed Reeb graph.

3.5 EXAMPLES

This section first shows geographical features extracted using the present algorithms,
and then its application example.

3.5.1 Characterise terrain surfaces

The present algorithms are applied to the DEMs of the Hakone area, which is one of
the well-known tourist areas in Japan because of its scenic crater lake called Lake Ashi.
Plate 1(a) shows the ridge and course lines together with the critical points, which are
obtained using the present algorithms. Here, the red, green, and light blue points repre-
sent peaks, passes, and pits, and the yellow and purple lines trace ridge and course lines,
respectively. Note that the extracted critical points satisfy the Euler–Poincaré formula,
and the ridge and course networks are dual of each other on the semi-transparent terrain
surface. It can be seen in the figure that the present algorithms successfully trace the
outer rim of the crater as ridge lines. The side view of the resultant Reeb graph with
the semi-transparent terrain surface is shown in Plate 1(b), where the edge incident
to the virtual pit is omitted. These results demonstrate the feasibility of the present
algorithms.

3.5.2 Guide-map generation

Hand-drawn area guide maps often convey intuitive information about the configuration
of landmarks on the terrain surface. In order to generate such guide maps automatically
from the DEM, it is necessary to identify feature areas such as mountains and lakes
by taking into account the terrain surface topology. The network of ridge and course
lines offers an excellent partition of the terrain surface for this purpose, where each
peak is surrounded by a course cycle while each pit is surrounded by a ridge cycle.

Once we identify the feature areas, we can assign a vista point to each area to simulate
hand-drawn guide maps that deviate slightly from the exact perspective projections.
This sort of non-perspective projection is called surperspective projection (Takahashi
et al., 2002) in this chapter. Plate 1(c) presents such examples in which the areas
containing the mountain and lake are deformed in the projected images (Takahashi
et al., 2002). The upper left window shows an ordinary perspective image of the
Hakone area. Since the mountain hides the lake in this figure, we move the mountain
to this side to make the lake clearly visible as shown in the upper middle window.
On the other hand, the view direction of the lake should be changed so that we can
recognise the shoreline of the lake easily as shown in the upper right window. The
bottom window presents the final surperspective guide-map image obtained by applying
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the last two effects together. In this way, the present projection framework actually
provides a useful means of identifying the significant landmarks of the terrain surface.

3.6 CONCLUDING REMARKS

This chapter has presented mathematical fundamentals and its associated algorithms
for extracting surface topology from DEMs robustly. In the present framework, crit-
ical points such as peaks, passes, and pits are extracted so that they satisfy the
Euler–Poincaré formula. The surface network is constructed from the extracted criti-
cal points by tracing the ridge and course lines traversing between them. This chapter
also presented an algorithm for converting the surface network to the Reeb graph by
only taking into account the properties of smooth surfaces. Examples are shown to
demonstrate the feasibility of the present algorithms.

The concept of the surface network has inspired other algorithms that characterise
the terrain undulations. Wolf (Wolf, 1990, 1991a) developed the concept of a weighted
surface network that has a weight value for each of its edge. Wood et al. presented
an algorithm for calculating the surface network by fitting a bivariate quadratic sur-
face to the given DEM (Wood, 1998). Edelsbrunner et al. presented another interesting
algorithm that partitions a DEM into topological primitives called Morse–Smale com-
plexes (Edelsbrunner et al., 2002) by tracing ridge and course lines, and introduced
geometric measures (Edelsbrunner et al., 2002) to control their multi-resolution repre-
sentations.

Note that the definitions of ridge and course lines employed in this chapter are
orientation-dependent features, that is, they depend on the direction of the height axis.
There is another definition of such feature lines that is orientation-independent. In that
case, ridge points are defined to be local positive maxima on the curve of the maximal
principal curvature while course points are defined to be local negative minima on the
curve of the minimal principal curvature. This definition has close relationships with
shape curvatures and medical axis transforms that have been used as common tools in
characterising surface properties. Readers can refer to a textbook (Porteous, 1994) and
papers (Anoshkina et al., 1994a,b).

Calculating level sets of surfaces has been one of the significant topics in the
field of shape modelling. Primary level-set computation was studied for character-
ising DEMs (Kweon and Kanade, 1994, Takahashi et al., 1995), and then free-form
surfaces handled in contemporary computer-aided design (CAD) systems (Lazarus and
Verroust, 1999).

Extending these level-set-based frameworks to one-dimensional higher cases has
also become important. Examples include volume data, which can be considered as
a set of voxel samples on the single-valued function w = f (x, y, z). Actually, level
sets for volumes offer a crucial insight into its complicated inner structures. Bajaj
et al. developed a framework for exploring complicated surfaces and volumes, by
computing level-set graphs called contour trees (Bajaj et al., 1997) that are closely
related to the Reeb graphs. They used an algorithm that constructs the contour trees
with minimal computational complexity, which was successfully developed by van
Kreveld et al., 19975. The computational complexity was then improved by Tarasov

5 See Chapter 5 for details.
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and Vyalyi, 1998. Furthermore, as an extension of the algorithm, Carr et al., 2003
developed an excellent algorithm that computes contour trees from objects of any
dimension. While these algorithms are elegant from a computational point of view,
they only pursue the changes in the number of connected components and do not
track the change in topology (i.e. genera) of varying isosurfaces. Recently, Pascucci
and Cole-McLaughlin, 2002) formulated an algorithm for identifying the topology (i.e.
genus) of an isosurface at any point of the contour tree.

The framework described in this chapter has also been extended to volumes in
order to generate their comprehensive visualisation images (Takahashi et al., 2004). In
this framework, spatial configurations of isosurfaces are also analysed to emphasise
significant inclusion relationships of isosurfaces in the final visualisation results.
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4

Construction of Metric Surface
Networks from Raster-Based DEMs

Bernhard Schneider and Jo Wood

4.1 INTRODUCTION

Although the Surface Network has been recognised as a powerful tool for surface
analysis for several decades, remarkably few authors have actually presented algo-
rithms for the extraction of this topological network from digital elevation models
(DEMs). Among the methods to extract surface networks, either fully or partially,
from raster-based DEMs are the works of Fowler and Little (1979), Takahashi (pre-
sented in Chapter 3), Wood (1998), Wood and Rana (2000), and Schneider (2003).
This article discusses the latter two approaches.

Starting from a same data model and from a common comprehension of the prob-
lem at hand, Schneider (2003) and Wood (1998), Wood and Rana (2000) develop two
contrasting approaches yielding different results. Both authors work on raster-based
DEMs, and both extract the surface network elements from local surface patches spec-
ified from square windows of n × n cells. While Schneider relies on the mathematically
simple bilinear interpolation scheme, Wood uses the more complex and more adaptable
bi-quadratic interpolation. The method of Schneider is rigorous in terms of continuity,
and, thus, it is deterministic in the sense that the results are uniquely defined for each
given data set. Abandoning this determinacy, the method of Wood offers the user the
means to account for specific topographic properties (i.e. roughness and level of gen-
eralisation) and, most importantly, to specify the desired analysis scale. The method
starts from the (geo-)morphologic form of the network elements and, hence, utilises
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the semantics of surface forms, thereby introducing scale as an inherent component of
the extraction process.

The comparison of the two methods highlights the difficulties that impede the
construction of surface networks. Designing extraction algorithms involves setting pri-
orities and finding compromises when dealing with these difficulties. This chapter offers
an explanation and evaluation of the impact of these properties and compromises in
the network extraction process.

4.1.1 Continuity constraints and definitions

Fowler and Little (1979) propose deriving the network directly from raster data, with-
out prior specification of a continuous surface. Critical points (i.e. pits, peaks, and
passes) are detected with the method of Peucker and Douglas (1975) in which the
classification of a raster point depends on the relative elevations of the eight direct
neighbours. The approach has a number of weaknesses that are related to the absence
of a continuous surface:

• The locations of the critical points and of the vertices of the critical lines (i.e. valleys
and ridges) are limited to the given raster points.

• Horizontal areas are not taken into account. Thus, the detection of critical points
may be incomplete.

• The method detects too many passes, especially along crests and valley lines. As a
result, the Euler formula is not satisfied (Takahashi et al.,1995).

Takahashi et al. (1995) reason that it is not possible to extract critical points cor-
rectly and to derive a consistent surface network solely from a set of discrete data
points. Hence, a surface must be specified from the raster data prior to the surface
network extraction.

On surfaces expressed as bivariate functions z = f (x, y), pits, peaks, and passes are
defined as points where the first derivatives in x and y are 0. Second derivatives are
used to distinguish between the three types of critical points. For this reason, many
authors (e.g. Wolf, 1991b, Rana and Wood, 2000) request surfaces to be second-order
continuous for the definition of the surface network elements. Unfortunately, real sur-
faces often have breaks in slope at many points and along many lines. Furthermore,
their digital representations are not always continuously differentiable everywhere,
if, for instance, the surface is represented by linear triangle facets of a triangulated
irregular network (TIN). (Henceforth, k-order differentiability is referred to as Ck-
continuity.)

The following definitions of critical points and lines are valid for all globally C0-
continuous surfaces that are composed of piecewise C1-continuous surface patches (De
Floriani and Puppo, 1992). They are consistent with the definitions given by Wolf
(1991b) and are considered alternatives to (or generalisations of) the usual mathematical
definitions. The definitions require the prior definition of the term “region”:

• A region is the area of a C0-continuous surface enclosed by a closed boundary
without gaps or self-intersections. A region includes its boundary and does not
have holes.
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• A point P is contained by a region if it is inside the region but not on the boundary.
• A point P with elevation z on a C0-continuous surface is called pass if the boundaries

of all regions containing P but no other critical points of the surface intersect the
contour of elevation z at least four times.

• A point P with elevation z on a C0-continuous surface is called pit (peak ) if there
exists a region containing P where all elevations are higher (lower) than z.

• Valleys (or valley lines) are paths of steepest descent starting at passes. At each point
P of the path of steepest descent where the surface is continuously differentiable,
the tangent to the path of steepest descent coincides with the surface’s aspect at P .
If the surface is not continuously differentiable at P , P is at the border of two or
more continuously differentiable surface patches. In this case, the path of steepest
descent continues on the surface patch with the steepest slope at P . If all adjacent
surface patches are higher than P in the vicinity of P , the path continues along the
patch border with the steepest slope.

• Ridges (or ridge lines) are defined analogously to valley lines.

4.2 CONCEPTUAL MODEL

4.2.1 Basic conceptual model of the metric surface network

In the metric representation of the surface network (also called geometric or weighted),
all points and lines are stored with their coordinates. Passes, pits, and peaks together
with the valleys and ridges form the frame of the network (Figure 4.1). Furthermore,
a drainage area (or dale) bound by sequences of ridges, passes, and peaks can be
identified for each pit. This way, each pit is separated from its surrounding pits by
ridges. Likewise, there exists a mountain (or a hill ) for each peak, and there is always
a valley line between two neighbouring peaks.

4.2.2 Considering the edge of the area of interest

The edge of the area of interest impairs the completeness and consistency of the
constructed surface network, mainly because of two reasons:

• Valleys and ridges may not be found because the pass forming their starting point is
located outside the area of interest. Imagine a pit with a valley leading towards it.
If the start of this valley, that is, the corresponding pass is located outside the area
of interest, the valley cannot be extracted, causing incompleteness. As a result, the
separation between two peaks may be missing, adding inconsistency.

• Pits and peaks may be located outside the area of interest. Imagine a valley starting
at a pass and leaving the area of interest at some point at the area’s edge. The
tracing of the valley is prematurely terminated and the valley does not end in a pit,
preventing consistency of the surface network.

Three approaches have been suggested in the literature to cope with the problem:

• Analysis of surface networks started with the assumption that the area of inter-
est has constant elevation, that is, that the area of interest is bound by a single
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(a)

(b) (c)

Pass
Pit
Peak
Edge pit /universal pit
Edge peak
Edge valley pass
Edge ridge pass
Valley line
Ridge line
Edge valley line
Edge ridge line
Contour
Drainage area

Figure 4.1 Metric surface network of a hypothetical surface sketched with the help of contours. (a) A
selected drainage area is highlighted; (b) the network is complemented with a universal pit; (c) the network
is complemented with edge features

contour (Pfaltz, 1976). This supposition allows imbedding the topology of the sur-
face network consistently in the graph theory. Although the – usually rectangu-
lar – digital models of terrain do not conform to this assumption in general, one
can complement the terrain model with an infinite plane of constant elevation out-
side the model extent. For analytical convenience, this plane is either lower than
the terrain model’s minimum elevation (forming a universal pit, cf. Figure 4.1(b))
or higher than the model’s maximum elevation (forming a universal peak ). In the
former case, the universal pit can intuitively be interpreted as the ocean all rivers
eventually drain into. As a result, new critical points (i.e. pits or peaks) are inserted
at the model’s edge, and valleys or rivers are (topologically) extended over the
model’s edge to reach the universal pit or peak, respectively.

• Schneider (2003) argues that the information content of the surface network is
maximised if the exterior of the terrain model is considered void. As a result,
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pits and peaks may also occur at the model’s edge, for example, where a val-
ley leaves the area of interest. Furthermore, two new types of passes are introduced.
Imagine a valley entering the area of interest. At the entry point, the elevation
profile along the model’s edge has a local minimum. At this location, an edge val-
ley pass is identified as forming the start of the valley. Additionally, two ridges
start at this pass, both raising along the model’s edge to either side of the pass.
The ridges may deviate from the model’s edge if the direction of steepest ascent
(i.e. the negative aspect vector) points to the inside of the model at some location
along the edge. Analogously, edge ridge passes are the start of a ridge and two
valleys. This approach of dealing with the model’s edge adds four new types of
critical points to the conceptual model (Figure 4.1(c)) and makes virtual network
elements obsolete.

• A rectangular surface model may well contain complete “subgraphs” within its
bounds that are topologically consistent with the Euler formula. Analysis may be
performed on these complete subgraphs while excluding the incomplete graphs that
intersect with the model’s rectangular border. This is akin to the hydrological pro-
cessing of irregularly bounded drainage basins with a rectangular DEM.

4.2.3 Intersection of valley and ridge lines

Previous publications state that valleys and ridges must not intersect, unless meeting
a pass (Pfaltz, 1976, Wolf, 1984, 1990). While this rule is valid for Ck-continuous
surfaces, k > 0, it may be violated in specific configurations of real topographies.

Figure 4.2 depicts a pass located on a crest (left side) forming the start of a valley
line. This valley runs down a gulch that opens into an alluvial fan at some point P .
The steepest path of descent at that transition point (from concave gulch to convex fan)
is not necessarily straight onto the fan, but possibly to the left or right side of it. If, at
the same time, there exists a pass at the bottom of the alluvial fan (right in Figure 4.2),
a ridge raises over that fan towards the transition point P . Again, the continuation will
be the steepest path of ascent from that point and may be to the left or right of the
gulch. As a result, the two critical lines may intersect at P . Such intersections must
be explicitly addressed because they have fundamental implications for the topological
surface network graph. They can either be tolerated (thus failing to be consistent with
Euler’s formula), or they must be treated as special cases by, for example, inserting
extra passes or classifying their intersections separately.

Pass

Intersection

Valley line

Ridge line

Contour

Figure 4.2 Extended geometric surface network
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4.2.4 Horizontal areas

Horizontal areas are frequent features in real surfaces. (One may argue that, in topo-
graphic surfaces, exactly horizontal areas other than water surfaces are rare.) In digital
surface representations, they are even more frequent, because the z-values of data
points may be rounded to the whole number, or because all corner points of triangular
patches may lie on the same contour. Horizontal areas may be polygons, or they may
only consist of linear features such as horizontal crests.

If the immediate neighbourhood of a horizontal area is lower than the area itself,
the horizontal area represents a peak. Likewise, horizontal areas may represent pits or
passes. In any case, the definitions given in the introduction remain valid if “point” is
comprehended as morphometric feature represented by a point, a line, or an area.

4.3 EXTRACTION FROM BILINEAR SURFACE PATCHES

4.3.1 The bilinear interpolation scheme

As has been stated in the introduction, a surface must be specified from the data prior
to the surface network extraction. The bilinear interpolation is a straightforward and
suitable choice yielding a C0-continuous surface (Figure 4.3). For each raster cell, a
surface patch is specified with

z = axy + bx + cy + d (4.1)

where the coefficients a, b, c, and d are determined with the help the four corner
points. The resulting surface patch is deterministic, that is, it is specified from the data
directly, no intermediary data (e.g. vectors) need to be calculated with some comple-
mentary algorithms, and no parameters to be specified by the user are involved. The
global surface composed of the bilinear patches is, of course, characterised by apparent
artefacts caused by the regular pattern of break lines, that is, by the borders between
the cells along which the surface is not continuously differentiable. On the other hand,

Figure 4.3 Bilinear surface patch specified over a raster cell
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the bilinear interpolation scheme is conservative in the sense that the resulting surface
does not overshoot or exhibit other artefacts known from higher-degree polynomial
surfaces (Florinsky, 2002, Schneider, 2001). Furthermore, the bilinear scheme is com-
putationally efficient, and extraction of topographic features is straightforward.

The derivatives of equation (4.1) with respect to x and y are

z′
x = ay + b (4.2)

z′
x = ax + c (4.3)

Thus, slope does not change if one moves parallel to the x- or y-axis. Hence, the
profiles of the surface parallel to the coordinate axes are straight lines. This observation
facilitates the detection of critical points and the tracing of critical lines.

4.3.2 Extraction of critical points

Bilinear surfaces do not have local maxima or minima. (There is only one point where
the derivatives in x and y are both 0, and this point is a pass.) For this reason, the
extremes of quadrilateral bilinear surface patches with straight borders parallel to the
coordinate axes are at their corner points. Thus, only these corner points, that is, the
given DEM data points, need to be analysed to find pits and peaks.

According to the above definitions, a grid point T is, for instance, a peak if there
exists a region containing T in which the four adjacent bilinear surface patches are
lower than T (Figure 4.4). This is the case if the corresponding tangential planes at
T are lower than T . Such configurations can be identified by comparing the direct
neighbours of T because each tangential plane at T is determined by the according
straight lines from T to the direct neighbours. For example, if both Q and S are lower
than T , then the tangential plane – which is defined by the three points QST – is lower
than T within cell C1. Thus, it follows that T is a peak if the four direct neighbours
Q, S, U , and W are lower than T . Pits are detected analogously.

Passes may – in contrast to pits and peaks – occur not only at grid points but also
within grid cells. If a grid point T is a pass, then its direct neighbours must be alternately

TQ

P

R

U
X

W

V

S

Figure 4.4 Scheme of eight-point neighbourhood of raster point T and tangent plane at this point in
cell PQTS
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higher and lower (e.g. Q and W are higher than T ; S and U are lower than T ). If a
pass is located within a cell, then the corner points of this cell are alternately higher
and lower. For instance, if P is higher than S and Q, and T is higher than S and Q,
then there exists a pass within the bilinear surface patch (Figure 4.4). The surface at
the pass is horizontal, that is, the first derivatives in x and y are 0, which facilitates
the calculation of the pass’ exact coordinates.

4.3.3 Tracing critical lines

Critical lines are traced and constructed vertex by vertex. At each new vertex, the local
configuration of the raster points (i.e. of the adjacent surface patches) is examined, and
the next vertex calculated accordingly. A number of different situations can occur, all
of which are listed in Table 4.1. Figure 4.5 illustrates a typical situation.

The new vertex B of a valley line is found to be located on a cell edge (Case b in
Table 4.1). The elevations of the corner points of the two adjacent cells 1 and 3 are
examined, and the edge is found to be a ravine, that is, it is water-collecting (Case
ba). Furthermore, the edge drops towards the raster point with elevation 42. Hence,
the next vertex C is located on this raster point (Case baa). Vertex C becomes the
new vertex (Case a in Table 4.1), and again the elevations of all corner points of the
four adjacent cells are analysed. As in the previous situation, the cell edge towards
the raster point with elevation 40 is a ravine (Case aa). However, after one-third of
the edge, Cell 4 becomes lower than the cell edge. (The surface patch of Cell 4 is
horizontal along Profile p.) As a result, the edge stops to be water-collecting after one
third, and the path of steepest descent deviates from the edge to enter Cell 4. This
location on the edge is inserted as new vertex D (Case aab).

Table 4.1 Vertex locations, possible continuation of critical lines, and possible locations of next vertex

Vertex location Possible continuation Possible next vertex

aaa next raster point along edge
aa along cell edge

a raster point aab point on cell edge

ab through cell interior aba diagonal raster point

abb point on opposite cell edge

ba along cell edge baa next raster point

b point on cell edge bab point on cell edge

bba diagonal raster point
bb through cell interior

bbb point on opposite cell edge

caa raster point
c point inside cell ca any direction

cab point on cell edge
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Figure 4.5 Four steps of the tracing of a valley line

From D (Case b), the critical line continues through the cell (Case bb). Two pos-
sible methods to trace the path of steepest descent over the bilinear surface patch are
as follows:

• For each point of the surface patch, there exists an aspect vector. These vectors define
a vector field. The path through a vector field is called streamline and can be calcu-
lated. In the case of a bilinear surface, the resulting curve is a hyperbolic function.

• Instead of calculating the entire path through the cell at once, it is approximated with
small steps. At a point of the path, the aspect of the bilinear surface is calculated,
and a small step of predefined length (e.g. a specific fraction of the cell size) is
marked off along this direction. This process is repeated until the edge of the cell
is reached, yielding Vertex E in Figure 4.5 (Case bbb).

Critical lines are terminated at one end by ordinary passes, that is, at passes rep-
resented by point objects, two valley and two ridge lines intersection. (Non-ordinary
passes, i.e. passes represented by line and area objects, are discussed in the following
section below.)

• If the pass coincides with a grid point, the steepest paths will continue along the
cell edges (Case aa in Table 4.1). The paths may reach the next grid point along
the edge (Case aaa), or they may depart from the edge at some point between the
two grid points (Case aab), depending on the two adjacent bilinear surface patches.
(Edge passes are always located at grid points. Hence, the construction of valleys
and ridges starting at these passes is started with this procedure, although only three
critical lines need to be traced.)

• If the pass is inside a grid cell (Case c in Table 4.1), then the first segments of the
steepest paths are straight and parallel to the cell diagonals until they reach the cell’s
edges (Case cab) or corner points (Case caa). (It can be proven that the paths of
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steepest descent and ascent on a bilinear surface starting at the surface’s pass are
straight and form an angle of 45◦ with the coordinate axes.)

4.3.4 Dealing with horizontal areas

If two adjacent grid points have the same elevation, they constitute a horizontal edge.
Multiple horizontal edges may form horizontal edge groups that may include horizontal
cells (where all four corner points have the same elevation).

If a pass is represented by a horizontal edge group, it may be the start of more than
two valley lines and two ridge lines. The number of steepest paths is computed by
analysing all grid points directly neighbouring the horizontal edges. The exact location
of each steepest path’s start depends on the individual configurations of the transition
from the horizontal edge group to its neighbourhood, and on the way this transition
is morphologically interpreted. Likewise, a heuristic approach needs to be applied to
trace steepest paths through horizontal regions.

4.4 EXTRACTION BASED ON BI-QUADRATIC POLYNOMIAL SURFACE
APPROXIMATION

Like the method discussed above, the approach of Wood (1998) and Wood and Rana
(2000) is based on the specification of local surface patches from the DEM data.
However, while the former method is based on a purely mathematical comprehension of
the surface network elements, the approach of Wood (1998) and Wood and Rana (2000)
builds from a (geo-) morphometric analysis of the surface portrayed by the data. The
surface patches determine the morphometric feature–type of all raster points, which
forms the bases for identifying passes and, hence, for initiating the tracing of valleys
and ridges. This approach offers the possibility of assigning a thresholded weighting
to pass features, and thus, a control over the complexity of the derived network.

4.4.1 Morphometric feature–type classification

All points of the surface are assigned one of the morphometric classes pit, peak, pass,
valley, ridge, and plane (Peucker and Douglas, 1975). The classification is based on
slope and curvature measures at the surface points. More specifically, cross-sectional
curvature needs to be measured to differentiate between ridge, valley, and plane:

• At non-horizontal points, cross-sectional curvature is the curvature at the point of
interest of the line produced by the intersection of the surface and the plane defined
by surface normal and the aspect vector at that point.

At horizontal points (slope = 0), cross-sectional curvature is not defined.
Furthermore, maximum and minimum convexity values need to be derived from the

surface (Young, 1978). Table 4.2 lists the six morphometric types and the correspond-
ing slope and curvature values.
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Table 4.2 Feature-type classification rules

Feature
name

Slope Cross-sectional
curvature

Maximum
convexity

Minimum
convexity

Pit 0 – <0 <0
(concave) (concave)

Peak 0 – <0 >0
(convex) (convex)

Pass 0 – <0 <0
(convex) (concave)

0 – >0 >0
(concave) (convex)

Valley <0 <0 – –
0 (convex)
0 – <0 0

Ridge >0 >0 – –
0 (concave)
0 – >0 0

(concave)
Plane >0 0 – –

0
0 – 0 0

4.4.2 Slope and curvature tolerances

Only a small number of raster points, if any, have a slope value of exactly 0. Con-
sequently, the strict application of the above classification rules yields a very small
number of pits, peaks, and passes. To account for this problem, a slope tolerance is
introduced. All raster points with absolute slope values smaller than the slope tol-
erance are considered horizontal. This tolerance value can be used to control the
complexity of the derived network by determining the number of initial passes at
which ridges and channels are deemed to intersect. A workable method for determin-
ing a suitable tolerance in the selection of the region of interest in a conic section is
given below.

A similar problem occurs with the classification of plane cells that requires curva-
ture values to be 0. Strictly applying the above rules results in most (or all) raster
points – except the critical points – to be classified as either valleys or ridges. In order
to narrow the linear features and to increase the number of raster points classified as
planes, a curvature tolerance is introduced. Again, absolute curvature values smaller
than the tolerance are considered to be 0.

4.4.3 Bi-quadratic polynomial approximation

As has been stated above, the feature-type classification requires (local) surface to
be specified from the data. A suitable and sound choice is the bi-quadratic polyno-
mial (Evans, 1980)

z = ax2 + by2 + cxy + dx + ey + f (4.4)
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Evans (1980) presents a method to fit bi-quadratic polynomials to 3 × 3 windows
of raster-based DEMs with the method of least square differences (Figure 4.6). Wood
(1996a,b, 1998) extends this approach to fit the polynomial to a quadratic n × n window
of arbitrary size n (where n needs to be an odd number). In this way, scale dependency
is explicitly introduced to surface analysis: larger analysis window sizes (i.e. larger
n’s) correspond to the analysis on a smaller level of scale. The (theoretically) largest
possible analysis scale is given by the resolution of the raster DEM, the smallest scale
by the size of the model (i.e. by the smaller of columns and rows).

Bi-quadratic surfaces can be interpreted as defining conic sections (Figure 4.7).
Neglecting the case where a, b, and c of equation (4.1) are 0 (i.e. where the surface
is planar), three possible conic section types can be identified as follows (e.g. Kindle,
1950):

– If 4ab − c2 > 0, the conic section is elliptic.
– If 4ab − c2 = 0, the conic section is parabolic.
– If 4ab − c2 < 0, the conic section is hyperbolic.

Figure 4.6 Bi-quadratic surface patch fitted to a 3 × 3 window

Figure 4.7 Contours and semi-axes of bi-quadratic surfaces forming conic sections. From left to right:
(a) elliptic; (b) hyperbolic; and (c) parabolic conic sections
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The names of the conic section types indicate the form of the isolines of each of the
three surfaces. Furthermore, the conic section types correspond to the surface-specific
features identified by Fowler and Little (1979): elliptic surfaces represent pits or peaks,
hyperbolic surfaces are passes, and parabolic surfaces correspond to channels and
ridges. The second derivatives of the surface distinguish between the possible convex
and concave forms.

However, if a bi-quadratic surface defined over an n × n window is classified as
elliptic or hyperbolic, the centre point of the window is not necessarily a pit or a
peak. Only if the centre of the conic section is sufficiently close to the window
centre, this inference is justified. Otherwise, the DEM point is a valley, a ridge, or
a plane.

In order to decide whether the two centres are “sufficiently close”, first, a region of
interest around the centre of the n × n window is defined, and, second, the semi-axes
of the conic sections are calculated (Wood, 1998). The region of interest is a circle
around the centre of the window with radius r . By altering the radius r , the results of
the extraction process can be influenced by effectively controlling the slope tolerance
described above. It is useful to set r in accordance with the size n of the square
n × n DEM window (e.g. r = √

0.5n · c, where c is the DEM cell size). The semi-
axes of the conic section are calculated from the coefficients of equation (4.4) (Wood,
1998).

The number of intersections between the circular area of interest and the semi-axes
determines the feature type of the point analysed

– both semi-axes intersect the area of interest
– and the conic section is elliptic

→ the point is a pit or a peak
– and the conic section is hyperbolic

→ the point is a pass
– one semi-axis intersects the area of interest

→ the point is a valley or a ridge
– no semi-axis intersects the area of interest

→ the point is a plane.

As with the bilinear patches described previously, this method also allows sub-pixel
routing of linear features over the surface.

4.4.4 Deriving the network

The surface network is derived from a raster-based DEM in three sequential steps:

1. Identify pits, peaks, and passes with the method explained above.
2. Starting at the passes, trace two steepest paths of descent and two steepest paths of

ascent as follows:
– If no semi-axes intersects the region of interest, follow the aspect direction up or

down, respectively;
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– If one semi-axis intersects the region of interest, move parallel to the semi-axis;
– If two semi-axis intersect the region of interest, go to Step 3.

3. End the tracing when a pit or a peak is reached, or when the line hits the extent of
the surface model. In the latter case, and whenever the critical line does not end at
an existing critical point, insert a pit or a peak at this location.

4.4.5 Post-processing

Specific topographic configurations can lead to a small number of topological incon-
sistencies that need to be identified and corrected.

Topological consistency of the surface network is impaired by the finite extent of
the terrain model. As has been stated above, consistency is ensured if the analysed
terrain model is bound by a single contour. Therefore, the exterior of the model is
interpreted as being either lower or higher than the rest of the model. As a result, the
surface network is complemented by a universal pit or peak. In the case of a universal
pit, all pits that were inserted where a valley reached the model’s edge are marked as
(topologically) belonging to the universal pit.

Point features that are co-located within the same flat region (e.g. plateaux and
lakes) must be dealt with as a post-process. To restore topological consistency and,
notably, to increase correspondence of the extracted information with the real situation,
the separated pits and peaks are topologically merged. Matching pits, for instance,
are easily identified because they occupy the same closed topological region of the
network graph.

The method for extracting critical points explained above will only find pits, peaks,
and passes if they are expressed in the terrain model by a respective topographic form.
If, for instance, a pass is located in a large, nearly (or entirely) planar area, it will not
be identified because the curvature values are so small that the location is classified as
plane. In this particular case, two pits and two peaks are not connected (and separated)
by a pass and the set of corresponding critical lines. If such configurations can be
identified, the missing element can be inserted at a suitable location, and the topology
can be (locally) completed.

As has been discussed already, paths of steepest descent and ascent may intersect
in specific morphological configurations. It is justified to interpret such intersections
as passes. (Passes themselves may be comprehended as intersection of valleys and
ridges.) However, if a pass is inserted at the location of an intersection, the network
topology is impaired. Thus, a pit needs to be inserted into the lower part of the inter-
sected valley, and a peak inserted into the upper part of the ridge (Wood and Rana,
2000).

4.5 EXAMPLES

The presented methods have been applied to various synthetic and real surfaces of
different characteristics and scales. The results of the extraction method are visu-
ally inspected.
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The first of the two surfaces shown here is a synthetic surface generated by super-
imposing several sinus functions:
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Values z are calculated for the range 0 � x � 200, 0 � y � 200. The cell size is 1 in
both the x- and y-direction. Figure 4.8 shows a hill-shaded image of the surface and the
derived network. The symbology of Figure 4.1 is used to draw the network elements.

Both surface networks are consistent in the sense that they are connected (i.e. there
are no disconnected sub-networks), and that all connections of critical points through
critical lines are valid. All critical points are extracted, as far as visual inspection can
determine, and for each critical point, an according area object can be discerned. At
few locations, the bilinear approach produces short chains of passes and pits or passes
and peaks, respectively. Some of the critical lines generated by the bi-quadratic are
somewhat jagged because of discontinuities between adjacent surface patches.

The individual elements of the two surface networks correspond well to each other;
although the geometric locations may differ, for most elements of one surface network,
there exists a matching element in the other. There are a few exceptions, for example,
in the upper right part of the area of interest where a valley and a ridge line run very
close to each other. In the surface network generated by the bilinear approach, there
are two ridge lines to the left of one valley line, whereas in the bi-quadratic network,
there is only one ridge line running on the right of the valley line.

The bilinear approach produces a somewhat larger number of critical points, namely
of passes. This effect is caused, first, by the detection of passes along the model’s edge
that are not considered by the bi-quadratic approach, and second, by the detection of
spurious passes along crest and in valleys. As a result, the surface network extracted
by the bilinear approach is more dense and more complex.

Figure 4.8 Surface network derived from the synthetic surface of equation (4.4): (a) result of the bilinear
approach; and (b) result of the bi-quadratic approach
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(a) (b)

(c) (d)

Figure 4.9 Surface network derived from the Crater lake DEM for varying scales. (a) Result of the bilin-
ear approach (to preserve readability, critical points are not drawn.); (b) enlarged cut out of (a); (c) and
(d) results of the bi-quadratic approach with bi-quadratic surface patches specified from 5 × 5 and 9 × 9
windows, respectively

Figure 4.9 shows a DEM of the Crater Lake area (Oregon, USA) produced by the
USGS (URL #1, Gesch et al., 2002). For the presented study, the DEM has been re-
sampled to a cell size of 100 m. The DEM consists of 316 columns and 301 rows and
covers an extent of 31.5 × 30 km. The surface networks have been extracted from this
test data set in order to illustrate the possibility offered by the bi-quadratic approach
to restrict the analysis to a specific level of scale. The bi-quadratic surface patches
have been specified from square windows of 5 × 5 and 9 × 9 cells, respectively. As
expected, the number of features diminishes and only larger scale features persist.

However, close examination reveals that the surface network is not consistent every-
where. First, not all peaks are separated from each other through valleys. As mentioned
above, this indicates that such peak pairs belong to the same superior feature and can be
merged topologically. The analogous observation is made for pits. Second, the surface
network may consist of a number of disconnected sub-networks. Third, some spurious
features are extracted, although they are considerably less frequent than in the surface
network extracted with the bilinear approach.

4.6 COMPARISON AND CONCLUSIONS

There is no single best approach to extracting surface networks from DEM data.
Although the problem seems well defined in terms of differential algebra, it is clearly
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affected by the discrete nature of the data, that is, by the fact that only limited infor-
mation about the surface is available. Previous research (e.g. Takahashi et al., 1995)
has shown that the raster data alone are not sufficient for consistent surface network
construction. Naturally, there exist several methods for surface specification, but each
method has specific properties affecting the results of the surface network extraction
as well as the extraction process itself. Thus, the choice of an interpolation method
greatly affects the extracted surface network, as this article clearly illustrates.

The following list summarises the most relevant and apparent differences of the two
approaches discussed:

• The bi-quadratic approach needs a number of parameters to be set (scale and mor-
phometric tolerances), while the bilinear approach is deterministic (except for the
handling of horizontal areas).

• The bi-quadratic approach allows specifying the scale of analysis a priori, while the
bilinear approach is limited to the scale induced by the DEM resolution. Introducing
a hierarchical structure to the (topological) surface network introduces (an aspect
of) scale a posteriori.

• The bilinear approach allows and requires dealing with horizontal areas as such. The
horizontal areas need to be delineated, typified, interpreted, and accordingly dealt
with during network derivation. The bi-quadratic approach makes it unnecessary to
deal with horizontal areas. As a consequence, however, critical points belonging to
the same horizontal area, for example, to the same lake, need to be merged as part
of post-processing.

• Under the assumption that for all continuous surfaces, there exist topologically con-
sistent surface networks, the bilinear surface – being a continuous surface – grants
surface network consistency. It remains to be confirmed that the presented approach
is able to extract the network accordingly for all DEM data. The bi-quadratic
approach, on the other hand, does not start with the specification of a globally con-
tinuous surface. (Instead, it composes the global surface by means of discontinuous
bi-quadratic surface patches.) Without some post-processing, there is no guarantee
of a network consistent with Euler’s formula.

• The terrain surface composed of bilinear surface patches is characterised by numer-
ous spurious point features (pits, peaks, and passes). Since they are all extracted and
inserted into the surface network, carrying out a post-processing step is advised in
order to separate spurious from significant features. This can be achieved by build-
ing a hydrological hierarchy from the surface network features (Schneider, 2003).
Alternatively, different interpolation schemes (e.g. cubic interpolation over 4 × 4
windows) may yield globally continuous surfaces exhibiting significantly fewer spu-
rious features. Ongoing research investigates the two approaches.

• The bi-quadratic approach limits the location of critical points to the raster points.
This is a benefit if the surface network data is later integrated with other raster data.
In terms of expressiveness of the model, it may be considered a drawback. In the
bilinear case, the surface model inherently limits pits and peaks to raster points.
Passes, however, occur at raster points as well as within cells.

• With the bi-quadratic approach, all passes are 4-valent. This rule does not apply in
the bilinear approach. If a pass is represented by a horizontal area, it may be more



70 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

than 4-valent. If the pass is located at the edge of the area of interest, it is 3-valent.
This observation increases algorithm complexity to some degree.

• In the bi-quadratic approach, the critical points need to have a morphological expres-
sion, that is, their occurrence must be accompanied by a topographic form that can be
recognised by the extraction algorithm. In other words, creating the network based
only on morphometric information is not sufficient (Wood and Rana, 2000). The
bilinear approach finds all critical points independent of the surface morphology.

The authors claim that it is not possible to rank the methods presented. However,
different users with different applications will develop their own preferences on the
basis of the distinct properties of the presented approaches. This article may serve as
a guide to recognise the relevant and mandatory properties.
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Contour Trees and Small Seed Sets for
Isosurface Generation

Marc van Kreveld, René van Oostrum, Chandrajit Bajaj, Valerio Pascucci and
Dan Schikore

5.1 INTRODUCTION

One of the functionalities of a GIS is to display data by generating tables, charts, and
maps, either on paper or on a computer screen. Several kinds of maps are available for
displaying the different types of data. Choropleth maps are used to display categorial
data, such as different types of vegetation. Network maps, such as railroad maps, show
connections (railways) between geographic objects (stations); the regions on a network
map are meaningless. Finally, isoline maps are a very effective means of displaying
scalar data defined over the plane. Such data can be visualised after interpolation by
showing one or more contours: the sets of points having a specified value. For example,
scalar data over the plane is used to model elevation in the landscape, and a contour
is just an isoline of elevation. Contours can be used for visualising scalar data defined
over the three-dimensional space as well. In that case, the contours are two-dimensional
isosurfaces. For instance, in atmospheric pressure modelling, a contour is a surface in
the atmosphere where the air pressure is constant – an isobar. The use of isolines or
isosurfaces for displaying scalar data is not limited to the field of GIS. In medical
imaging, for example, isosurfaces are used to show reconstructed data from scans of
the brain or parts of the body. The scalar data can be seen as a sample of some real-
valued function, which is called a terrain or elevation model in GIS, and a scalar field
in imaging.
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 2004 John Wiley & Sons, Ltd ISBN: 0-470-85151-1
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A real-valued function over a two- or three-dimensional domain can be represented
using a two- or three-dimensional mesh, which can be regular (all cells have the
same size and shape) or irregular. A terrain (mountain landscape) in GIS is commonly
represented by a regular square grid or an irregular triangulation. The elements of
the grid, or vertices of the triangulation, have a scalar function value associated to
them. The function value of non-vertex points in the two-dimensional mesh can be
obtained by interpolation. An easy form of interpolation for irregular triangulations is
linear interpolation over each triangle. The resulting model is known as the TIN model
for terrains (Triangulated Irregular Network) in GIS. In computational geometry, it is
known as a polyhedral terrain. More on interpolation of spatial data and references to
the literature can be found in the book by Watson (1992).

One can expect that the combinatorial complexity of the contours with a single
function value in a mesh with n elements is roughly proportional to

√
n in the

two-dimensional case and to n2/3 in the three-dimensional case (Livnat et al., 1996).
Therefore, it is worthwhile to have a search structure to find the mesh elements through
which the contours pass. This will be more efficient than retrieving the contours of a
single function value by inspecting all mesh elements.

There are basically two approaches to find the contours more efficiently. Firstly,
one could store the two-dimensional or three-dimensional domain of the mesh in a
hierarchical structure and associate the minimum and maximum occurring scalar values
at the subdomains to prune the search. For example, octrees have been used this way
for regular three-dimensional meshes (Wilhelms and van Gelder, 1992).

The second approach is to store the scalar range, also called span, of each of the
mesh elements in a search structure. Kd-trees (Livnat et al., 1996), segment trees (Bajaj
et al., 1996), and interval trees (Cignoni et al., 1996, van Kreveld, 1996) have been
suggested as the search structure, leading to a contour retrieval time of O(

√
n + k) or

O(log n + k), where n is the number of mesh elements and k is the size of the output.
A problem with this approach is that the search structure can be a serious storage
overhead, even though an interval tree needs only linear storage. It is possible to reduce
the storage requirements of the search structures by observing that a whole contour
can be traced directly in the mesh if one mesh element through which the contour
passes is known. Such a starting element of the mesh is also called a seed. Instead of
storing the scalar range of all mesh elements, we need only store the scalar range of
the seeds as intervals in the tree, and a pointer into the mesh, or an index, if a (two-
or three-dimensional) array is used. Of course, the seed set must be such that every
possible contour of the function passes through at least one seed. Otherwise, contours
could be missed. There are a few papers that take this approach (Bajaj et al., 1996, Itoh
and Koyamada, 1995, van Kreveld, 1996). The tracing algorithms to extract a contour
from a given seed have been developed before, and they require time linear in the size
of the output (Artzy et al., 1981, Howie and Blake, 1994, Itoh and Koyamada, 1995).

The objective of this chapter is to present new methods for seed set computation.
To construct a seed set of small size, we use a variation of the contour tree, a tree
that captures the contour topology of the function represented by the mesh. It has been
used before in image processing and GIS research (Freeman and Morse, 1967, Gold
and Cormack, 1986, Kweon and Kanade, 1994, Sircar and Cerbrian, 1986, Takahashi
et al., 1995). Another name in use is the topographic change tree, and it is related
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to the Reeb graph used in Morse Theory (Reeb, 1946, Shinagawa and Kunii, 1991,
Shinagawa et al., 1991, Takahashi et al., 1995). It can be computed in O(n log n) time
for functions over a two-dimensional domain (de Berg and van Kreveld, 1997).

This chapter includes the following results:

We present a new, simple algorithm that constructs the contour tree. For two-
dimensional meshes with n elements, it runs in O(n log n) time like a previous
algorithm (de Berg and van Kreveld, 1997), but the new method is much sim-
pler and needs less additional storage. For meshes with n faces in d-dimensional
space, it runs in O(n2) time. In typical cases, less than linear temporary stor-
age is needed during the construction, which is important in practice. Also, the
higher-dimensional algorithm requires subquadratic time in typical cases.

We show that the contour tree is the appropriate structure to use when selecting seed
sets. We give an O(n2 log n) time algorithm for seed sets of minimum size by
using minimum cost flow in a directed acyclic graph (Ahuja et al., 1993).

In practice, one would like a close-to-linear-time algorithm when computing seed
sets. We sketch a simple algorithm that requires O(n log2 n) time and linear storage
after construction of the contour tree, and gives seed sets of small size. The
approximation algorithm has been implemented, and we supply test results of
various kinds.

Previous methods to find seed sets of small size did not give any guarantee on their
size (Bajaj et al., 1996, Itoh and Koyamada, 1995, van Kreveld, 1996). After the results
of this chapter were published (van Kreveld et al., 1997), Tarasov and Vyalyi (1998)
extended our contour tree construction algorithm and obtained an O(n log n) time
algorithm for the three-dimensional case. Their algorithm consists of a pre-processing
step with two sweeps, after which our algorithm is used. Later, Carr et al. (2003) gave
a contour tree algorithm that is efficient in all dimensions. Its implementation and
experiments were given by Kettner and Snoeyink (2001).

5.2 PRELIMINARIES ON SCALAR FUNCTIONS AND THE CONTOUR
TREE

In this section, we provide background and definitions of terms used in the following
sections. On a continuous function F from d-space to the reals, the criticalities can be
identified. These are the local maxima, the local minima, and the saddles (or passes).
If we consider all contours of a specified function value, we have a collection of
lower-dimensional regions in d-space called a level set (typically, (d − 1)-dimensional
surfaces of arbitrary topology). If we let the function value take on the values from +∞
to −∞, a number of things may happen to the contours. Contours deform continuously,
with changes in topology only when a criticality is met (i.e. its function value is passed).
A new contour starts to form whenever the function value is equivalent to a locally
maximal value of F. An existing contour disappears whenever the function value is
equivalent to a locally minimal value.

At saddle points, various different things can happen. It may be that two (or more)
contours adjoin, or one contour splits into two (or more) components, or that a contour
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gets a different topological structure (e.g. from a sphere to a torus in three dimensions).
The changes that can occur have been documented in texts on Morse theory and
differential topology (Hirsch, 1976, Milnor, 1963). They can be described by a structure
called the contour tree, which we describe below.

As an example, consider a function modelled by a two-dimensional triangular mesh
with linear interpolation and consider how the contour tree relates to such meshes (see
Figure 5.1). For simplicity, we assume that all vertices have a different function value.
If we draw the contours of all vertices of the mesh, then we get a subdivision of the
two-dimensional domain into regions. All saddle points, local minima, and maxima
must be vertices of the mesh in our setting. The contour through a local minimum or
maximum is simply the point itself. One can show that every region between contours
is bounded by exactly two contours (de Berg and van Kreveld, 1997).

We let every contour in this subdivision correspond to a node in a graph, and two
nodes are connected if there is a region bounded by their corresponding contours. This
graph is a tree and is called the contour tree (de Berg and van Kreveld, 1997, van
Kreveld, 1996). All nodes in the tree have degree 1 (corresponding to local extrema),
degree 2 (normal vertices), or at least degree 3 (saddles). In other words, every con-
tour of a saddle vertex splits the domain into at least three regions. For each vertex
in the triangulation, one can test locally whether it is a saddle. This is the case if
and only if it has neighbouring vertices around it that are higher, lower, higher, and
lower, in cyclic order around it. If one would take the approach outlined above to
construct the contour tree, �(n2) time may be necessary in the worst case, because
the total combinatorial complexity of all contours through saddles may be quadratic.
An O(n log n) time divide-and-conquer algorithm exists, however (de Berg and van
Kreveld, 1997).

In a general framework, we define the contour tree with only few assumptions on the
type of mesh, form of interpolation, and dimension of the space over which function
F is defined. The input data is assumed to be

a mesh M of size n embedded in IRd ;
a continuous real-valued function F defined over each cell of M .

A contour is defined to be a maximal connected piece of IRd where the function
value is the same. Usually, a contour is a (d − 1)-dimensional hypersurface, but it
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Figure 5.1 Two-dimensional triangular mesh with the contours of the saddles, and the contour tree
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can also be lower dimensional or d-dimensional. We define the contour tree T as
follows:

Take each contour that contains a criticality.
These contours correspond to the supernodes of T (the tree will be extended later

with additional nodes, hence we use the term supernodes here). Each supernode
is labelled with the function value of its contour.

For each region bounded by two contours, we add a superarc between the corre-
sponding supernodes in T.

The contour tree is well defined, because each region is bounded by two and only two
contours that correspond to supernodes. One can show that the contour tree is indeed a
tree: the proof for the two-dimensional case given by de Berg and van Kreveld (1997)
can easily be extended to d dimensions.

For two-dimensional meshes, all criticalities correspond to supernodes of degree 1,
or degree 3 or higher. For higher-dimensional meshes, there are also criticalities that
correspond to a supernode of degree 2. This occurs, for instance, in three dimensions
when the genus of a surface changes, for instance, when the surface of a ball changes
topologically to a torus. In d-dimensional space (for d > 2), a saddle point p is a point
such that for any sufficiently small hypersphere around p, the contour of p’s value
intersects the surface of the hypersphere in at least two separate connected components.

Superarcs are directed from higher scalar values to lower scalar values. Thus,
supernodes corresponding to the local maxima are the sources and the supernodes
corresponding to the local minima are the sinks.

To be able to compute the contour tree, we make the following assumptions on the
mesh M:

Inside any face of any dimension of M , all criticalities and their function values can
be determined.

Inside any face of any dimension of M , the range (min, max) of the function values
taken inside the face can be determined.

Inside any face of any dimension of M , the (piece of) contour of any value in that
face can be determined.

We assume that in facets and edges of two-dimensional meshes, the items listed above
can be computed in O(1) time. For vertices, we assume that the first item takes time
linear in its degree. Similarly, in three-dimensional meshes we assume that these items
take O(1) to compute in cells and on facets, and time linear in the degree on edges
and at vertices.

5.3 CONTOUR TREE ALGORITHMS

In this section, we assume, for ease of presentation, that the mesh M is a simplicial
decomposition with n cells, and that linear interpolation is used. As a consequence, all
critical points are vertices of the mesh M . Instead of computing the contour tree
as defined in the previous section, we compute an extension that includes nodes
for the contours of all vertices of M including the non-critical ones. So supernodes
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correspond to contours of critical vertices and regular nodes correspond to contours of
other vertices. Each superarc is now a sequence of arcs and nodes, starting and ending
at a supernode. The algorithm we will describe next can easily be adapted to determine
the contour tree with only the supernodes. But we will need this extended contour tree
for seed selection in the next section. From now on, we refer to the contour tree with
nodes for the contours of all vertices as the contour tree T.

The supernodes of T that have in-degree 1 and out-degree greater than 1 are called
bifurcations, and the supernodes with in-degree greater than 1 and out-degree 1 are
called junctions. All normal nodes have in-degree 1 and out-degree 1. We will assume
that all bifurcations and junctions have degree exactly 3, that is, out-degree 2 for
bifurcations and in-degree 2 for junctions. This assumption can be removed; one can
represent all supernodes with higher degrees as clusters of supernodes with degree 3.
For example, a supernode with in-degree 2 and out-degree 2 can be treated as a junc-
tion and a bifurcation, with a directed arc from the junction to the bifurcation. The
assumption that all junctions and bifurcations have degree 3 facilitates the following
descriptions considerably.

5.3.1 The general approach

To construct the contour tree T for a given mesh in d-space, we let the function value
take on the values from +∞ to −∞ and we keep track of the contours for these
values. In other words, we sweep the scalar value. For two-dimensional meshes, one
can image sweeping a polyhedral terrain embedded in a three-dimensional space and
moving downward a horizontal plane. The sweep stops at certain event points: the
vertices of the mesh. During the sweep, we keep track of the contours in the mesh
at the value of the sweep function, and the set of cells of the mesh that cross these
contours. The cells that contain a point with value equivalent to the present function
value are called active. The tree T under construction during the sweep will be growing
at the bottom at several places simultaneously (see Figure 5.2).

Each part of T that is still growing corresponds to a unique contour at the current
sweep value. We group the cells into contours by storing a pointer at each active cell in
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the mesh to the corresponding superarc in T. The contours can only change structurally
at the event points, and the possible changes are the following:

At a local maximum of the mesh (more precisely, of the function), a new contour
appears. This is reflected in T by creating a new supernode and a new arc incident
to it. This arc is also the start of a new superarc, which will be represented. Each
cell incident to the maximum becomes active, and we set their pointer to the new
superarc of T. At this stage of the algorithm, the new superarc has no lower node
attached to it yet.

At a local minimum of the mesh, a contour disappears; a new supernode of T is
created, and the arc corresponding to the disappearing contour at the current value
of the sweep is attached to the new supernode. It is also the end of a superarc.
The cells of the mesh incident to the local minimum will no longer be active.

At a non-critical vertex of the mesh, a new node of T is created, the arc corresponding
to the contour containing the vertex is made incident to the node, and a new arc
incident to the node is created. There is no new superarc. Some cells incident
to the vertex stop being active, while others become active. The pointers of the
latter cells are set to the current superarc of the contour. For the cells that remain
active, nothing changes: their pointer keeps pointing to the same superarc.

At a saddle of the mesh, there is some change in topology in the collection of
contours. It may be that two or more contours merge into one, one contour splits
into two or more, or one contour changes its topological structure. A combination
of these is also possible in general. The first thing to do is to determine what
type of saddle we are dealing with. This can be decided by traversing the whole
contour on which the saddle lies.

If two contours merge, a new supernode (junction) is created in T for the saddle,
and the superarcs corresponding to the two merging contours are made incident to
this supernode. Furthermore, a new arc and superarc are created for the contour
that results from the merge. The new arc is attached to the new supernode. All
cells that are active in the contour after the merge set their pointer to the new
superarc in T. If a contour splits, then similar actions are taken.

If the saddle is because of a change in topology of one single contour (i.e. an
increase or decrease of its genus by one), a new supernode is made for one
existing superarc, and a new arc and superarc are created in T. All active cells of
the contour set their pointers to the new superarc.

For the sweep algorithm, we need an event queue and a status structure. The event
queue is implemented with a standard heap structure, so insertions and extractions take
logarithmic time per operation. The status structure is implicitly present in the mesh
with the additional pointers from the cells to the superarcs in the contour tree.

Theorem 1 Let M be a mesh in d-space with n faces in total, representing a contin-
uous, piecewise linear function over the mesh elements. The contour tree of M can be
constructed in O(n2 ) time and O(n) storage.

Proof. The algorithm clearly takes time O(n log n) for all heap operations. If the mesh
is given in an adjacency structure, then the traversal of any contour takes time linear
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in the combinatorial complexity of the contour. Any saddle of the function is a vertex,
and any contour can pass through any mesh cell only once. Therefore, the total time
for all traversals is O(n2) in the worst case, and the same amount of time is needed
for setting the pointers of the active cells.

The quadratic running time shown above is somewhat pessimistic, since it applies
only when there is a linear number of saddles for which the contour through them has
linear complexity. We can also state that the running time is O(n log n + ∑m

i=1 |Ci |),
where the m saddles lie on contours C1, . . . , Cm with complexities |C1|, . . . , |Cm|.

We claimed that the additional storage of the algorithm could be made sublinear in
practice. With additional storage we mean the storage besides the mesh (input) and
the contour tree (output). We will show that O([no. maxima] + max1≤i≤m |Ci |) extra
storage suffices. We must reduce the storage requirements of both the event queue and
the status structure.

Regarding the event queue, we initialise it with the values of the local maxima only.
During the sweep, we will insert all vertices incident to active cells as soon as the cell
becomes active. This guarantees that the event queue uses no more additional storage
than claimed above. Considering the status structure, we cannot afford using additional
pointers with every cell of the mesh to superarcs any more. However, we need these
pointers only when the cell is active. We will make a copy of the active part of the
mesh, and with the cells in this copy, we may use additional pointers to superarcs in T
and to the corresponding cells in the original mesh. When a cell becomes inactive again,
we delete it from the copy. With these modifications, the additional storage required is
linear in the maximum number of active cells and the number of local maxima. This
can be linear in theory, but will be sublinear in typical cases. The asymptotic running
time of the algorithm is not influenced by these changes.

5.3.2 The two-dimensional case

In the two-dimensional case, the time bound can be improved to O(n log n) time in
the worst case by a few simple adaptations. First, we give a crucial observation: for
two-dimensional meshes representing continuous functions, all saddles correspond to
nodes of degree of at least 3 in T. Hence, at any saddle two or more contours merge, or
one contour splits into at least two contours, or both. This is different from the situation
in three dimensions, where a saddle can cause a change in genus of a contour, without
causing a change in connectedness. The main idea is to implement a merge in time
linear in the complexity of the smaller of the two contours, and similarly, to implement
a split in time linear in the complexity of the smaller resulting contour.

In the structure, each active cell has a pointer to a name of a contour, and the name
has a pointer to the corresponding superarc in T. We consider the active cells and names
as a union-find-like structure (Cormen et al., 1990) that allows the following operations:

Merge: given two contours about to merge, combine them into a single one by
renaming the active cells to have a common name.

Split: given one contour about to split, split it into two separate contours by renaming
the active cells for one of the contours to be created to a new name.

Find: given one active cell, report the name of the contour it is in.



Contour Trees and Small Seed Sets for Isosurface Generation 79

Like in the simplest union-find structure, a Find takes O(1) time since we have a
pointer to the name explicitly. A Merge is best implemented by changing the name
of the cells in the smaller contour to the name of the larger contour. Let us say that
contours Ci and Cj are about to merge. Determining which of them is the smallest
takes O(min(|Ci |, |Cj |)) time if we traverse both contours simultaneously. We alter-
natingly take one “step” in Ci and one “step” in Cj . After a number of steps, twice
the combinatorial complexity of the smaller contour, we have traversed the whole
smaller contour. This technique is sometimes called tandem search. To rename for a
Merge, we traverse this smaller contour again and rename the cells in it, again taking
O(min(|Ci |, |Cj |)) time.

The Split operation is analogous: if a contour Ck splits into Ci and Cj , the name
of Ck is preserved for the larger of Ci and Cj , and by tandem search starting at the
saddle in two opposite directions we find out which of Ci and Cj will be the smaller
one. This will take O(min(|Ci |, |Cj |)) time. Note that we cannot keep track of the size
in an integer for each contour instead of doing tandem search, because then a Split
cannot be supported efficiently.

Theorem 2 Let M be a two-dimensional mesh with n faces in total, representing a
continuous, piecewise linear scalar function. The contour tree of this function can be
computed in O(n log n) time and linear storage.

Proof. We can distinguish the following operations and their costs involved:

Determining for each vertex what type it is (min, max, saddle, normal) takes O(n)

in total.
The operations on the event queue take O(n log n) in total.
Creating the nodes and arcs of T, and setting the incidence relationships takes O(n)

time in total.
When a cell becomes active, the name of the contour it belongs to is stored with

it; this can be done in O(1) time, and since there are O(n) such events, it takes
O(n) time in total.

At the saddles of the mesh, contours merge or split. Updating the names of the
contours stored with the cells takes O(min(|Ci |, |Cj |)) time, where Ci and Cj are
the contours merging into one, or resulting from a split, respectively. It remains to
show that summing these costs over all saddles yields a total of O(n log n) time.

We prove the bound on the summed cost for renaming by transforming T in two
steps into another tree T ′ for which the construction is at least as time-expensive as
for T, and showing that the cost at the saddles in T ′ are O(n log n) in total.

Consider the cells of the mesh to correspond to additional segments in T as follows.
Any cell becomes active when the sweep plane reaches its highest vertex, and stops
being active when the sweep plane reaches its lowest vertex. These vertices correspond
to nodes in T, and the cell is represented by a segment connecting these nodes. Note
that any segment connects two nodes, one of which is an ancestor of the other. A
segment can be seen as a shortcut of a directed path in T, where it may pass over
several nodes and supernodes.

The number of cells involved in a merge or split at a saddle is equivalent to the
number of segments that pass over the corresponding supernode v in T, plus the number
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of segments that start or end at v. The set of segments passing v can be subdivided
into two subsets as follows: segments corresponding to cells that are intersected by the
same contour before the merge or after the split at the saddle corresponding to v are
in same subset. The size of the smallest subset of segments passing v determines the
costs for processing the saddle since we do tandem search.

The first transformation step is to stretch all segments (see Figure 5.3); we simply
assume that a segment starts at some source node that is an ancestor of the original
start node, and ends at a sink that is a descendant of the original end node. It is easy to
see that the number of segments passing any saddle can only increase by the stretch.

The second transformation step is to repeatedly swap superarcs, until no supernode
arising from a split (bifurcation) is an ancestor of a supernode arising from a merge
(junction). Swapping a superarc s from a bifurcation v to a junction u is defined as
follows (see Figure 5.4): let s ′ �= s be the superarc that has u as its lower supernode,
and let s ′′ �= s be the superarc that has v as its upper supernode. The number of
segments passing the superarcs s ′, s, and s ′′ is denoted by a, b, and c, respectively, as
is illustrated in Figure 5.4.

These numbers are well defined, since after stretching, any segment passes a superarc
either completely or not at all. Now shift s ′ upward along s, such that v becomes its
new lower supernode, and shift s ′′ downward along s, such that u becomes its new
upper supernode. Note that all edges passing s ′ and all edges passing s ′′ before the
swap now also pass s.

Before the swap, the time spent in the merge at u and the split at v, is O(min(a, b) +
min(b, c)) where a, b, c denote the number of segments passing these superarcs. After
the swap, this becomes O(min(a, b + c) + min(a + b, c)), which is at least as much.
No segment ends, because all of them were stretched.

It can easily be verified that a tree T ′, with no bifurcation as an ancestor of a
junction, can be derived from any tree T by swaps of this type only. Any segment in

Figure 5.3 Stretching two segments (dotted) in T
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T ′ first passes a sequence of at most O(n) junctions, and then a sequence of at most
O(n) bifurcations.

We charge the costs of the merge and split operations to the segments that are in the
smallest set just before a merge and just after a split. Now, every segment can pass
O(n) junctions and bifurcations, but no segment can be more than O(log n) times in
the smaller set. Each time it is in the smaller set at a junction, it will be in a set of at
least twice the size just after the junction. Similarly, each time it is in the smallest set
just after a bifurcation, it has come from a set of at least twice the size just before the
bifurcation. It follows that any segment is charged at most O(log n) times. Summing
over the O(n) segments, this results in a total of O(n log n) time for all renamings
of cells. This argument is standard in the analysis of union-find structures, see, for
instance, Cormen et al. (1990).

The O(n log n) time bounds for the contour tree construction are tight. An �(n log n)

lower bound construction can be found in (van Oostrum, 1999). The construction uses
�(n) critical points, which is not typical for real-world data. Carr et al. (2003) provide
a theoretically and practically better algorithm for all dimensions.

5.4 SEED SET SELECTION

A seed set is a subset of the cells of the mesh and serves as a collection of starting
points from which contours can be traced, for instance, for visualisation. A seed set
is complete if every possible contour passes through at least one seed. From now on,
we understand seed sets to be complete. Since we assume linear interpolation over
the cells, the function values occurring in one cell form exactly the range between the
lowest and the highest-valued vertices. Any cell is represented as a segment between
two nodes of the contour tree T, as in the proof of Theorem 2. Segments can only
connect two nodes of which one is an ancestor of the other. Like the arcs of T, the
segments are directed from the higher to the lower value. So, each segment is in fact a
shortcut of a directed path in T. We say that the segment passes, or covers, these arcs of
T. Let G denote the directed acyclic graph consisting of the contour tree extended with
the segments of all mesh elements. The small seed set problem now is the following
graph problem: find a small subset of the segments such that every arc of T is passed
by some segment of the subset. Since the contour tree and the graph G have the same
form regardless of the dimension of the mesh, the algorithms of this section give seed
sets in any dimension.

In this section, we give two methods to obtain complete and small seed sets. The first
gives a seed set of minimum size, but it requires O(n2 log n) time for its computations.
The second method requires O(n log2 n) time and linear storage (given the contour tree
and the segments), and gives a seed set that can be expected to be small, which is
evidenced by test results.

5.4.1 Seed sets of minimum size in polynomial time

We can find a seed set of minimum size in polynomial time by reducing the seed set
selection problem to a minimum cost flow problem. The flow network G′ derived from
G is defined as follows: we augment G with two additional nodes, a source σ and a sink
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Figure 5.5 Flow network G′ derived from G, and shorthand for G′

σ ′. The source σ is connected to all maxima and bifurcations by additional segments,
and the sink is connected to all minima and junctions with additional segments. This
is illustrated in Figure 5.5, left. In the same figure (right) a shorthand for the same
flow network has been drawn: for readability, σ and σ ′ have been omitted, and the
additional segments incident to σ and σ ′ have been replaced by “+” and “−” signs
respectively. From now on, we will use this shorthand notation in the figures.

Costs and capacities for the segments and arcs are assigned as follows: nodes in
G are ordered by the height of the corresponding vertices in the mesh, and segments
and arcs are considered to be directed: segments (dotted) go downward from higher
to lower nodes, arcs (solid) go upward from lower to higher nodes. The source σ is
considered to be the highest node, and σ ′ the lowest. Segments in G have capacity 1
and cost 1, and arcs have capacity ∞ and cost 0. The additional segments in G′ incident
to σ and σ ′ have capacity 1 and cost 0.

From graph theory we have the following lemma:

Lemma 1 For any tree, the number of maxima plus the number of bifurcations equals
the number of minima plus the number of junctions.

Hence, the number of pluses in G balances the number of minuses. Let this number
be f .

Consider the following two related problems, the flow problem (given the network G′
as defined above and a value f , find a flow of size f from σ to σ ′), and the minimum
cost flow problem (find such a flow f with minimum cost). For both the problems, a
solution consists of an assignment of flow for each segment and arc in G′. For such a
solution, let the corresponding segment set S be the set of segments in G that have a
non-zero flow assigned to them (the additional segments in G′ from σ to the maxima
and bifurcations and from the minima and junctions to σ ′ are not in S). Hence, the
cost of an integral solution, where all flow values are integers, equals the number of
segments in S. It follows from the lemmas below that for any integral solution to the
minimum cost flow problem on G′, the corresponding segment set S is a minimum size
seed set for G. The proof is given by van Oostrum (1999).

Lemma 2 For any integral solution to the flow problem on G′, the corresponding seg-
ment set S is a seed set for G.
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A seed set is minimal if the removal of any segment yields a set that is not a seed
set. A minimum seed set is a seed set of smallest size.

Lemma 3 For any minimal seed set S for G, there is a solution to the flow problem on
G′ such that the corresponding segment set S for that solution equals S.

The proof of the lemma above can also be found in (van Oostrum, 1999). Combining
Lemmas 2 and 3 gives the following result:

Theorem 3 The minimum seed set selection problem for G can be solved by applying
a minimum cost flow algorithm to G′ that gives an integral solution. Such a solution is
guaranteed to exist, and the corresponding segment set for that solution is an optimal
seed set for G.

The minimum cost flow problem can be solved with a successive shortest path
algorithm (Ahuja et al., 1993). Starting with a zero flow, this algorithm determines at
every step the shortest path π from σ to σ ′, where the length of an arc or segment is
derived from its cost. The arc or segment with the lowest capacity c on this shortest
path π determines the flow that is sent from σ to σ ′ along π . Then the residual network
is calculated (costs and capacities along π are updated), and the algorithm iterates until
the desired flow from σ to σ ′ is reached, or no additional flow can be sent from σ to
σ ′ along any path.

In our case, c is always 1 and the algorithm terminates after f iterations. If we use
Dijkstra’s algorithm to find the shortest path in each iteration, the minimum cost flow
algorithm runs in O(n2 log n) time on our graph G′, and uses O(n) memory.

Theorem 4 An optimal seed set for G can be found in O(n2 log n) time, using O(n)

memory.

5.4.2 Efficient computation of small seed sets

The roughly quadratic time requirements for computing optimal seed sets makes it
rather time consuming in practical applications. We therefore developed an algorithm
to compute a seed set that, after constructing the contour tree T, uses linear storage
and O(n log2 n) time in any dimension. The seed sets resulting from this algorithm
can be expected to be small, which is supported by test results. We will only sketch
the algorithm here; details are given by van Oostrum (1999).

As before, we will describe the algorithm in the simplified situation that each critical
vertex of the mesh is a minimum, a maximum, a junction, or a bifurcation. In the case of
a junction or bifurcation, we assume that the degree is exactly three. These simplifying
assumptions make it easier to explain the algorithm, but they can be removed as before.

Our algorithm is a simple greedy method that operates quite similar to the contour
tree construction algorithm. We first construct the contour tree T as before. We store
with each node of T two integers that will help determine fast whether any two nodes
of T have an ancestor/descendant relation. The two integers are assigned as follows.
Give T some fixed, left-to-right order of the children and parents of each supernode.
Then perform a left-to-right topological sort to number all nodes once. Then perform a
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Figure 5.6 The numbering of T

right-to-left topological sort to give each node a second number. The numbers are such
that one node u is an ancestor of another node v if and only if the first number and the
second number of u are smaller than the corresponding numbers of v (see Figure 5.6).

The pre-processing of the contour tree takes O(n) time, and afterwards, we can
determine in O(1) time for any two nodes whether one is a descendant or ancestor of
the other.

Next we add the segments, one for each cell of the mesh, to the contour tree T to
form the graph G. Then we sweep again, in the mesh and in the graph G simultaneously.
During this sweep, the seeds are selected. At each event point of the sweep algorithm
(the nodes of G), we test whether the arc incident to and below the current node is
covered by at least one of the already-selected seeds. If this is not the case, we select a
new seed. The new seed will always be the greedy choice, that is, the segment (or cell)
for which the function value of the lower end point is minimal. Using the numbering
of T and some additional data structures during the sweep, we can decide efficiently
whether an arc is covered and what would be the greedy choice if we need to select
another seed. Details are given by van Oostrum (1999).

5.5 TEST RESULTS

In this section, we present empirical results for generation of seed sets using the method
of Section 5.4.2 (the method of Section 5.4.1 has not been implemented). In Table 5.1,
results are given for seven data sets from various domains, both two-dimensional and
three-dimensional. The data used for testing include the following:

Heart: a two-dimensional regular grid of MRI data from a human chest;
Function: a smooth synthetic function sampled over a two-dimensional domain;
Bullet: a three-dimensional regular grid from a structural dynamics simulation;
HIPIP: a three-dimensional regular grid of the wave function for the high potential

iron protein;
LAMP: a three-dimensional regular grid of pressure from a climate simulation;
LAMP 2d: a two-dimensional slice of the three-dimensional data, which has been

coarsened by an adaptive triangulation method;
Terrain: a two-dimensional triangle mesh of a height field.

The tests were performed on a Silicon Graphics Indigo2 IMPACT with 128 Mb
memory and a single 250 MHz R4400 processor. Presented are the total number of
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Table 5.1 Test results and comparison with previous techniques

Data Total
cells

# Seeds Storage Time (s) # Seeds
of (Bajaj’96)

Storage
of (Bajaj’96)

Time (s)

Structured data sets

Heart 256 × 256 5631 30651 32.68 12214 255 0.87
Function 64 × 64 80 664 1.23 230 63 0.15
Bullet 21 × 21 × 51 8 964 2.74 47 1000 0.30
HIPIP 64 × 64 × 64 529 8729 121.58 2212 3969 3.24
LAMP 3d 35 × 40 × 15 172 9267 6.82 576 1360 0.33

Simplicial data sets

LAMP 2d 2720 73 473 0.69 – – –
Terrain 95911 188 2078 13.67 – – –

cells in the mesh, in addition to seed extraction statistics and comparisons to a previ-
ously known efficient seed set generation method. The method presented in Section 4.2
represents an improvement of two to six times over the method of Bajaj et al. (1996).
The presented storage statistics account only for the number of items, and not the size
of each storage item (a constant).

5.6 CONCLUSIONS AND FURTHER RESEARCH

This chapter presented the first method to obtain seed sets for contour retrieval that
are provably small in size. We gave an O(n2 log n) time algorithm to determine the
smallest seed set, and we also gave an algorithm that yields small seed sets and takes
O(n log2 n) time for functions over a two-dimensional domain and O(n2) time for
functions over higher-dimensional domains. The latter time bound can be improved
using more recent results on constructing contour trees (Carr et al., 2003).

Test results indicate that seed sets resulting from the methods described here improve
on previous methods by a significant factor. Storage requirements in the seed set
computation remain sublinear, as follows from the test results.
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Surface Shape Understanding Based on
Extended Reeb Graphs

Silvia Biasotti, Bianca Falcidieno and Michela Spagnuolo

6.1 INTRODUCTION

Knowledge about the global properties of a shape and its main features is very useful for
the comprehension and intelligent analysis of large data sets: the main features and their
configuration are important to devise a surface understanding mechanism that discards
irrelevant details without loosing the overall surface structure. As far as terrain surfaces
are concerned, it is also important that a description captures important topographic
elements, such as peaks, pits, and passes, which have a relevant semantic content and, at
the same time, are formally well defined. Critical points and their configuration, indeed,
and the related theory of differential topology give a suitable framework for formalising
and solving several problems related to shape understanding. Computational topology
techniques provide several tools and measures for surface analysis and coding (Dey
et al., 1999): Euler’s equation, Morse theory, surface networks or Reeb graphs, for
example, provide highly abstract shape descriptions, with several applications to the
understanding, simplification, and minimal rendering of large data sets.

Obviously, the best shape descriptor does not exist, and each gives a specific view
of a shape. For example, surface networks give a region-oriented description of a
terrain, which can be seen as decomposed in patches having their vertices at crit-
ical points; Reeb graphs, conversely, give a volume-oriented description in which
hills and dales are represented explicitly together with their elevation-based adjacency
relationships.

Topological Data Structures for Surfaces – An Introduction to Geographical Information Science. Edited by Sanjay Rana
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To use topological approaches in a computational context and for discrete surfaces,
it is necessary to adapt to discrete surface model concepts developed for smooth man-
ifolds, such as piecewise linear approximations. In this chapter, the notion of extended
Reeb graph (ERG) is introduced; it is based on a characterisation strategy, which
defines critical points and areas by analysing the evolution of the contour levels on
a shape, including the so-called degenerate configurations also. An algorithm for the
construction of the ERG extraction is also proposed.

The remainder of this chapter is organised as follows: first, an overview of the
definition of critical points and Morse complexes for smooth manifolds is given; then,
topological structures used for the analysis and simplification of triangular meshes are
described, focusing on surface networks and Reeb graphs; the characterisation, based on
a surface slicing approach, and the ERG representation are presented in Section 6.3;
finally, in Section 6.4, an algorithm for implementing the characterisation and the
ERG extraction from triangular meshes is presented together with several examples;
discussions and conclusions end the chapter.

6.2 BACKGROUND: DIFFERENTIAL TOPOLOGY FOR SURFACE
CHARACTERISATION

Theoretical approaches based on differential topology and geometry give complete
answers to the problem of understanding and coding the shape of scalar fields. In
general, the configuration of the critical points gives sufficient information to fully
characterise the surface shape with diverse formal codings, which highlight slightly
different properties of the surface. The best example is the Morse theory, which sets
the background for surface networks and Reeb graphs, both being effective tools for
coding the surface shape. In this section, some topological techniques for surface shape
descriptions are introduced, which propose different organisation and coding of the rela-
tionships among the surface features, focusing on the Reeb graph representation (Reeb,
1946, Shinagawa et al., 1991).

6.2.1 Morse theory

Morse theory is a powerful tool for capturing the topological structure of a shape. In
fact, Morse theory states that it is possible to construct topological spaces equivalent to
a given differential manifold describing the surface as a decomposition into primitive
topological cells, through a limited amount of information (Guillemin and Pollack,
1974, Milnor, 1963).

Formally, let M be a smooth manifold, that is, a space for which each point has a
neighbourhood locally homeomorphic to the open unit ball Bn in �n, and let f : M → �
be a real smooth function defined on the manifold M , whose critical points are those
where the gradient is zero. Then, the following definition is given:

Definition 1 (Morse function) The function f is called a Morse function if all of its crit-
ical points are non-degenerate, where a critical point is non-degenerate if the Hessian
matrix H of the second derivatives of f is non-singular at that point.
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It follows that a Morse function has to be at least C2. Non-degenerate critical points
are isolated, and, in a neighbourhood of each critical point P , the function f can be
expressed in a local coordinate system as f = f (P ) − (y1)

2 − · · · − (yλ)
2 + (yλ+1)

2 +
· · · + (yn)

2, where λ is called the index of f in P and it represents the number of
negative eigenvalues of the Hessian matrix in P . Additional details can be found
in (Griffiths, 1976, Guillemin and Pollack, 1974, and Milnor, 1963).

In the case of terrain surfaces, which are modelled by single-valued functions, the
reference manifold M is a two-manifold with boundary, where all points, except those
along the boundary, have a neighbourhood homeomorphic to a sphere of dimension 2,
that is, to a disk. Points on the boundary have a neighbourhood homeomorphic to a
half-disk.

Isolevels, that is, subsets of M having the same value of f , can also be used to
describe the surface shape. Isolevels are also called contours or level sets. The topo-
logical changes in the isolevel configuration, that is, contour splitting or merging, only
occur in correspondence of critical points of f . In Figure 6.1, examples of critical
points are shown together with the projection of the surface isolevels in their neigh-
bourhood. This property can be easily extended to degenerate critical points such as the
monkey saddles and, in a broader sense, to flat regions; in particular, Figure 6.1(c) and
Figure 6.1(d) highlight two degenerate situations, a monkey saddle and a volcano rim
respectively. In Section 6.3, we will see how the evolution of isolevels on a manifold
M is used to define the Reeb graph of the manifold.

Critical points are classified as maxima, minima, and saddles, according to the
behaviour of the function f around them: all the outgoing directions from a maximum
(resp. minimum) point are descending (resp. ascending), while a saddle alternates at
least two ascending and two descending directions.

In addition, given a Morse function f , a smooth manifold without boundary satisfies
the so-called Euler formula, which states that the number of non-degenerate maxi-
mum (M), saddle (p), and minimum (m) points verifies the relation M − p + m =
2(1 − g) = χ , where g represents the genus of the surface and χ is called the Euler
characteristics of the surface. However, considering the right contribution of each crit-
ical point, this relation can be extended to the degenerate ones, as shown in (Attene
et al., 2003, and Biasotti et al., 2002).

Among all the possible Morse functions, the height function, which associates to
each surface point its elevation, may be effectively used to study the surface shape in
the Euclidean space. In particular, the level sets of a height function associated to a
surface are the intersections of the surface with planes orthogonal to a given direction.

(a) (b) (c) (d)

Figure 6.1 The behaviour of the contour levels around (a) a maximum; (b) a saddle; (c) a monkey saddle;
and (d) a volcano rim
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In (Banchoff, 1970), Banchoff presented a full framework that may be regarded as
the discrete counterpart of the Morse theory, where critical points and their relationships
are formally defined for triangle meshes. A basic assumption of this approach and its
derived applications (Bajaj and Schikore, 1998), concerns the behaviour of the scalar
field at the vertices of the triangle mesh, since adjacent vertices, that is, vertices joined
by an edge, are required to have different field values. This hypothesis is needed to
avoid the typical problem represented by degenerate critical points, that is, non-isolated
critical points such as plateaux and flat areas of the surface. Methods proposed in the
literature usually do not consider the problem, delegating the solution of problematic
cases to local adjustments or perturbations. This strategy, however, while solving the
problem theoretically, can lead to a wrong interpretation of the shape by introducing
artefacts, which do not correspond to any shape feature. Also, many of the proposed
computational approaches suffer from numerical instability since a lot of degeneracies
occur in real situations.

6.2.2 Surface networks

As Maxwell already guessed, critical points play a fundamental role for fully under-
standing the global topology of a shape. Topological networks, which code the rela-
tionships among the critical points, have been extensively studied; in particular, surface
networks have been proposed by Pfaltz (Pfaltz, 1976) for the analysis of geographical
surfaces. Such structures code in a graph the relation among the critical points of a
surface, which are joined in the structure if there is an integral curve connecting them,
that is, a curve everywhere tangent to the gradient vector field. Integral curves originate
from a critical point and flow to another critical point, or boundary component, and
follow the maximum increasing growth of the height function; hence, they cannot be
closed (nor infinite) and do not intersect each other except at the critical points. In
practice, integral curves originate from each minimum in every direction and converge
either to a saddle or a maximum, while only a finite number of integral curves can
start from a saddle point.

Nackman in (Nackman, 1984) introduced the idea of critical point configuration
graph. Under this hypothesis, the height function is Morse. He demonstrated that a
surface network can assume only a finite number of configurations on the surface,
which induce a surface subdivision into zones of constant first derivative behaviour,
the so-called slope districts. In particular, the slope districts are classified into four
classes only. Then, the surface networks can be represented through a limited number
of primitives, whose nodes are the critical points and whose arcs are detected through
the steepest ascending directions on the surface.

For applications of the surface network framework to the GIS context, see this book,
Part II.

6.2.3 The Reeb graph

In this chapter, we are focusing on the approach proposed by Reeb to code the evolution
and the arrangement of isolevel curves (Reeb, 1946). In the general case, the Reeb
graph of a manifold M under a mapping function f is defined as follows:
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Definition 2 (Reeb graph) Let f : M → R be a real-valued function on a compact
manifold M . The Reeb graph of M with respect to f is the quotient space of M × R

defined by the equivalence relation ‘∼’ given by

(X1, f (X1)) ∼ (X2, f (X2)) ⇔ f (X1) = f (X2) and X1

and X2 are in the same connected component off −1(f (X1)).

Therefore, the Reeb graph of M collapses into one element all points having the same
value under the real function f and being in the same connected component. Moreover,
since the topological changes of the level sets occur only in correspondence to critical
points, the Reeb quotient space can be effectively represented as a graph structure: a
node is defined for each critical level of f , which corresponds to the creation, merging,
split, or deletion of a contour, that is, to topological changes affecting the number of
connected components in the counter-image of f ; at each node, a number of arcs is
defined corresponding to the number of connected components of the counter-image
of f , each joining two successive critical levels in their own component. If an arc
joins two nodes n1 and n2, then the topology of isolevels on M between the height
levels n1 and n2 does not change along the connected component of M joining the
corresponding critical points.

Therefore, the Reeb graph of M under the height function f can be defined as
RGf (M) = (Pf (M), Af (M)), where the node set is defined by Pf (M) = {Pi ∈ M, Pi

is a critical point of f (M)} and the arc set Af (M) is defined as stated before.
The arcs of RGf (M) can be oriented according to the increasing value of the height

function f , that is, if a = (n1, n2) is an arc of the graph, then f (n1) < f (n2). Since
the arcs of RGf (M) are oriented, no oriented path of RGf (M) can start and end at
the same node; hence the Reeb graph is acyclic. Moreover, if f is Morse, the nodes
have at most degree three.

With regard to terrain surfaces, these are mathematically modelled as scalar fields
h: D ⊆ R

2 → R such that h: (x, y) → z = height (x, y). In this case, the manifold is
defined by the points in M = {P ∈ R

3/P = (x, y, h(x, y))} and the height function f

is naturally defined over M as f (P ): M → R such that f (P ) = f ((x, y, h(x, y)) =
h(x, y). Terrain surfaces are therefore represented by scalar fields with boundary, but
the Reeb graph can be always defined by adding a minimum to the set of critical
points, which virtually closes the surface and makes it homeomorphic to a sphere,
as shown in (Biasotti et al., 2000, Takahashi et al., 1995, and Wood and Rana, 2000).
Reeb graphs of terrain surfaces can be always represented as trees, where the root is
given by this virtual closure of the surface.

The Reeb graph of a terrain surface M , under its natural height function, codes the
shape of M in terms of the critical points of f , which are associated to meaningful
topographic features, that is, peaks, pits, or passes, structured into a topologically
consistent framework.

In Figure 6.2(a), the points drawn on the manifold represent the equivalence classes
of an elementary terrain surface with respect to the height function. In Figure 6.2(b),
the Reeb’s quotient space is represented as a traditional graph where the equivalence
classes are grouped into arcs.
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Figure 6.2 (a) Reeb equivalence classes (dotted lines) and (b) Reeb graph of a simple surface. The intro-
duction of a virtual minimum makes the surface topologically equivalent to a sphere. The dark regions in
(c) are critical areas, the white are the “regular” ones. In (d), the regions R1, R2, and R3 and their boundary
components are highlighted; the capital labels indicate the contour lines and the small ones are portions of
the surface boundary

Since the choice of the height function depends on the surface embedding, a manifold
admits different Reeb graphs; however, this is not a problem for terrain surfaces, which
have a natural privileged direction.

Since the Reeb graph is not limited to scalar fields but is really useful for analysing
surfaces of arbitrary topology, it might also be extended to represent more general
terrain surfaces that also have vertical walls or cavities.

6.3 GENERALISED SURFACE CHARACTERISATION

As shown in Section 6.2, knowledge about critical points is crucial for understanding
and organising the topological structure of a surface. Unfortunately, the hypothesis
that a surface is only continuous does not guarantee that the associated height function
is Morse, or derivable. Moreover, it would be desirable to distinguish between small
details and relevant features of the surface, especially when dealing with rough surfaces
as terrains. Many of the existing approaches to the characterisation of discrete surfaces
use local point-wise criteria to detect and classify critical points: for example, triangle
meshes are analysed in (Banchoff, 1970, De Floriani et al., 2002, and Takahashi et al.,
1995) by checking the height difference between a vertex and the adjacent ones in
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its star-neighbourhood, and by producing a topological coding, which is an adaptation
of the surface network structure to piecewise linear surfaces. Two drawbacks can be
identified: first, these methods rely on the hypothesis that all edge-adjacent vertices
have different heights; second, the number of the detected critical points is usually
very high and pruning or simplification steps are necessary to make the resulting
structures understandable.

Our aim is to faithfully represent the surface topology and shape, without any height
shift at surface vertices, by using an extended characterisation, which can handle degen-
erate as well as non-simple critical points and can be tuned to filter small features.
Our approach is based on the use of contours for characterising the surface shape and
constructing a topological structure, the ERG, which represents the configuration of
the critical areas of the surface. This extended characterisation is a generalisation of
our previous work (see Biasotti et al., 2000, 2002), in terms of both characterisation
definition and algorithm for the extraction of the Reeb graph. Our approach is also
similar to the method proposed in (Jun et al., 2001) for supporting the computation of
intersections between parametric surfaces.

6.3.1 Definition of critical areas

A terrain surface M is characterised by sweeping slicing planes along the height direc-
tion and analysing the configuration and topological changes of the resulting isolevels,
or contours. These contours decompose M into a set of regions whose boundaries
contain complete information for detecting critical areas and for classifying them as
maximum, minimum, and saddle areas. For example, if a contour does not contain any
other contours and its elevation is higher than the successive one, then it identifies a
maximum area. Our generalised characterisation corresponds to the localisation of these
critical areas on M , aimed at region-oriented rather than point-oriented classification
of the behaviour of M . All subsets of M defined by counter-images of critical values
of f will be considered critical areas of M and they can be points, lines, and regions.

Since terrain surfaces are surfaces with one boundary, it is also necessary to give
a unique interpretation of the critical points on the boundary. This is achieved by the
insertion of a global virtual minimum point, so that the outgoing directions from the
surface boundary are only descending and M is virtually closed.

As shown in Section 6.2, there is a close correspondence between the existence of
critical points, or areas, and the evolution of the height contours on the surface. The
use of height contours has also an inherent and efficient filtering effect, which is related
to the frequency or distribution of the slicing planes.

While the filtering effect will be discussed later in this section, we will assume for
now that the variation interval [fmin, fmax] of the height function is uniformly sliced
with np planes, at a distance dp between them. The relationship between np and dp is:
np = (fmax − fmin)/dp, and the first plane is located at the height value fmin + dp/2.
Moreover, we will consider that all contours are non-degenerate, that is, the slicing
planes are never tangent to M . Details on the implementation aspects are given in
Section 6.4. Let C(M) be the set of the resulting contour levels of the surface M ,
without any specific ordering. Each contour is either a simple closed line or an open
line with the end points on the surface boundary BM .
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The contours in C(M) fully decompose the surface M into sub-regions, which
correspond either to critical or regular areas. Let BM(R) be the boundary of a region
R and bb the number of its connected components; in general, a connected component
of BM(R) may be either a closed contour, or it may be composed by a connected
and closed sequence of open contour lines and BM parts. Note that in this latter case,
if this type of component exists, then it is only one corresponding to the external
boundary component of the region R. Therefore, the boundary of a region R on M is
defined by BM(R) = B1 ∪ B2 ∪ · · · ∪ Bn ∪ b1 ∪ · · · ∪ bk where Bi ∈ C(M) and each
bj is a portion of the surface boundary, BM . Obviously, the boundary components
b1 ∪ b2 ∪ · · · ∪ bk are missing when the region does not intersect BM , that is, the
sub-region R is fully contained within the surface domain.

According to the definition of contours, if an element of C(M) intersects a region
R, then it has to be completely part of its boundary BR(M). If the region R inter-
sects the surface boundary BM , then the external component of BR(M) is a closed
sequence of open contours connected among them through bj components, as shown
in Figure 6.2(d). With reference to Figure 6.2(d), the boundary components of R2 are
made of the ordered sequence union b2, B4, b4, B3, b3, B2 and the boundary component
B6; in this case, bb is equal to two. In particular, with reference to the region R2, the
Bi components correspond to B2, B3, B4, and B6, while the bj components are given
by b2, b3, and b4.

A generic region R of M is classified according to the number and behaviour of
its boundary components. Since the interior of any region R is well defined, it is
possible to associate the so-called outgoing directions to each component of BR(M),
which are needed to classify the region type. In particular, to all closed components of
BR(M), only one outgoing direction is associated, while to the component intersecting
BM , if any, one outgoing direction is associated to each composing part. Each outgoing
direction is classified as ascending or descending according to the behaviour of f across
the corresponding boundary component. If the f value decreases (increases) walking
from the inside towards the outside of the region through the boundary component Bi ,
then the associated outgoing direction is descending (ascending). The existence of the
virtual minimum, indeed, does not alter the surface characterisation but implies that
during the classification process, each boundary component bj has to be considered as
a descending direction.

Given a region R and its boundary BR(M), the following classification scheme
is adopted:

– R is a maximum area iff all the outgoing directions from BR(M) are descending
(see Figure 6.3);

– R is a minimum area iff all the outgoing directions from BR(M) are ascending
and BR(M) does not intersect the surface boundary, that is, k = 0 (see Figure
6.3(c));

– R is a saddle area iff either k = 0, bb > 2 and there are both ascending and descend-
ing outgoing directions from BR(M), or k > 0 and BR(M) verifies at least one of
the following conditions (see Figure 6.3(a, b)):
(a) bb = 1 and there are at least two ascending outgoing directions;
(b) bb > 1 and at least one of the open boundary components Bi ∈ BR(M) has an

outgoing ascending direction;
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(a) (b) (c)

Figure 6.3 Maximum and saddle characterisation for regions (a) non-intersecting and (b) intersecting the
surface boundary. In (c) a minimum and a non-simply connected maximum are presented

– finally, R is called regular iff it does not belong to the previous categories, (see
Figure 6.2(c)).

With reference to Figure 6.2(c), the dark regions represent three critical areas, while
the white ones correspond to regular areas. In addition to the previous classification
scheme, a further distinction between simple and multi-connected minimum and max-
imum areas is done: simple critical areas are minima (maxima) that correspond to a
simply connected region and complex critical areas are minima (maxima) that corre-
spond to multi-connected regions. Moreover, due to the assumption that all the outgoing
directions across the surface boundary BM are descending, minima cannot be adjacent
to BM and in this sense, the classification of minima and maxima is not fully sym-
metrical. In particular, the dark regions of the image in Figure 6.3(a) represent critical
areas that do not belong to the boundary surface, while the regions in Figure 6.3(b) do.

Let us now discuss the relation between the distribution of slicing planes and the
size of the features detected. First of all, for terrain surfaces, the notion of size can
be associated only to maximum and minimum areas, either simple or complex, and it
corresponds to the height difference between the critical level and the closest adjacent
saddle level. The adopted uniform slicing guarantees that all features having size greater
than dp are detected. Features whose size is less than dp are discarded, except those
that extend across a slicing plane. To make the filtering effect homogeneous, the contour
behaviour is re-computed at a distance dp from the point q in the critical area, which
has the maximum height variation within the region. In Figure 6.4, an example is
given: the size of the feature h is smaller than dp and the maximum q disappears
when the contour level c1 is replaced by c2. In this way, all the features having size
greater than dp are recognised and the smaller ones are discarded.

6.3.2 From critical areas to the extended Reeb graph

The generalised characterisation just described can be coded as an ERG by simply
extending the equivalence relation used in the Reeb graph. Let f : M∗ → R be the
height function defined on the virtual closing M∗ of the surface M , and let [fmin, fmax]
be an interval containing the variation interval of f on the surface M , and fmin <
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dp
q

h

c2

c1

Figure 6.4 The feature in the middle has size h, which is less than the slicing step dp, hence it is discarded
during the characterisation process

f1 < · · · < fh < fmax the height distribution of the contour levels C(M), which are
supposed to be all non-degenerate contours. We observe that the relations fmin < f1 and
fh < fmax holds, because if fmin = f1 and fh = fmax, the horizontal planes would be
somewhere tangent to M and some contours would be degenerate. In addition, let I =
{(fmin, f1), (fi, fi+1), i = 1 . . . h − 1, and (fh, fmax)} ∪ {fmin, f1, . . . , fh, fmax} be the
partition of the interval [fmin, fmax] provided by the set of the h + 1 interior parts of
[fmin, f1, . . . , fh, fmax] and the height values of the contour levels.

Definition 3 An extended Reeb equivalence between two points P , Q ∈ M∗ is given by
the following conditions:

– f (P ), f (Q) belong to the same element of t ∈ I ;
– f −1(f (Q)) and f −1(f (Q)) belong to the same connected component of

f −1(f (t)), t ∈ I .

Therefore, by applying the notion of the quotient relation in Definition 3, it fol-
lows that all the points belonging to a region R are Reeb-equivalent in the extended
sense and they may therefore collapse into the same point of the quotient space. The
quotient space obtained from such a relation is called extended Reeb (ER) quotient
space. Moreover, the ER quotient space, which is an abstract sub-space of M∗ and is
independent from the geometry, may be represented as a traditional graph, which is
called the extended Reeb graph (ERG).

To represent the ER quotient space as a graph, the classes that are defined by points
on contours are represented by connecting points, while all other classes are represented
by normal points, simply called points. Connecting points are representative of contours
and normal points are representative of regions. A point p representing a region R is
adjacent through a connecting point to another point q representing another region R

′
in the quotient space, and a normal point is adjacent to as many connecting points as
the number of connected components of the boundary of the associated region. From
this point of view, the image of a regular region of M∗ in the ER quotient space
is adjacent only to two connecting points. Therefore, the connectivity changes of the
graph representation are concentrated in the image of the critical areas, and they are
equivalent to the standard Reeb graph representation that can be easily derived by
merging the intermediate nodes representing regular areas into a single arc. After this
merging step, the ERG simply consists of nodes representing critical areas and the
associated connecting arcs.
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Finally, in the Reeb representation, complex areas are distinguished from simple
ones by labelling the graph nodes macro-nodes in the former case, and nodes in the
latter one; that is, the macro-nodes are those particular leaf nodes with only ingoing
or, respectively, outgoing arcs and whose degree is at least two.

Starting from the surface characterisation previously defined and considering the
introduction of the global virtual minimum, VM , the relationship among the critical
points expressed in the Euler formula may be recovered also for the critical areas,
as shown in (Attene et al., 2003, and Biasotti et al., 2000). The generalised Euler
formula has to take into account the number of simple as well as complex critical
areas. For each complex critical area, ca, we consider the number mca = ib − 1, where
ib represents the number of inner boundary components of ca. Then, if Pmc is the sum
of all the contributions of the complex areas, the Euler formula in Section 6.2 becomes
M − p + m − Pmc + VM = χ . The contribution of the ith critical area is provided by
2 − bbi , where bbi is the number of its boundary components and the Euler relation:
VM + �(2 − bbi ) = χ . Because the number of boundary components of such a critical
area corresponds to the degree of the node in the Reeb graph G, the previous relation
can be re-written as �(2 − δi) = χ − VM , where δi is the degree of the ith node of
G. Considering that the sum of all the node degrees is twice the number of arcs E of
G (as each arc is computed in the sum for two nodes) and the contribution of VM is
one, the previous relation can be further expressed by: 2(N − E) = χ − 1, where N

represents the number of critical areas of M .

6.4 ERG EXTRACTION

As shown in Section 6.3, the quotient space defined by the ER equivalence relation
can be represented in terms of a graph. Through the extended definition of critical
areas proposed in Section 6.3.1, the application domain can be extended to generic
continuous surfaces, without any artefacts (Biasotti et al., 2000). Then, the approach
proposed in this chapter is actually not an extension of the Reeb graph itself, but rather
a full application of its definition in the discrete domain, which does not require the
height function to be Morse.

In this section, a short description of the algorithm for characterising a triangle mesh
is given. The extraction and classification of critical areas is done first by computing
and inserting a suitable number of contours into the triangle mesh, and second, by
reconstructing and classifying the boundaries of the regions delimited by the inserted
contours, according to the scheme proposed in Section 6.3.1.

The computation and the insertion of the contours into the mesh is done in a single
step. The contour levels C(M) inserted into the mesh model are used as constraints
for the region-detection process, which uses a region-growing strategy. The insertion
of a contour C into M is computed as follows: given a slicing plane π , a seed point
p ∈ C is computed by selecting an edge e, which properly intersects π , that is, e does
not belong to π nor does it intersect π in a vertex. C is extracted by starting from
p and moving horizontally by adjacency on the mesh until either p or the surface
boundary is reached. If the surface boundary has been reached, C is an open contour
and the algorithm restarts from p in the opposite direction until the surface boundary
is reached again. If the points of C are not vertices of the mesh, they are inserted into
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the mesh. The mesh is locally re-triangulated in order to obtain a valid mesh, and the
contours are inserted into the mesh as constrained edges. This process stops when all
the planes have been considered. This procedure guarantees that degenerated contours
such as points, lines, and so on are not taken into account. Then, the intersections
of the model with the slicing planes are computed and stored as a set of connected
components, which can also be open, in correspondence with the surface boundary
intersection.

The insertion of C(M) decomposes the triangle mesh into a set of regions, each
bounded by C(M) elements and mesh boundary edges. These regions are detected by
labelling all triangles in the mesh with a region-growing process that propagates the
label from a triangle to its adjacent ones without crossing any constraint. At the end
of this labelling phase, all triangles having the same label identify a region. Then,
the boundary of each region is detected and the associated outgoing directions are
classified. Starting from any edge of the region boundary, the associated connected
component is fully traced using edge–vertex adjacency. If the component is closed,
then there is only one outgoing direction, which can be easily classified by checking the
elevation of any vertex inside the adjacent region. If the traced component is open, then
the tracing has to continue along the mesh boundary as well, and the whole component
will consist of a sequence of open contours and boundary parts. The tracing can be
done since all triangles are labelled with the region label. In this case, each part of the
boundary component defines an outgoing direction that has to be classified. Finally,
the number of boundary components bb and their classification allow distinguishing
between simple and complex critical areas.

According to the graph representation of the ER’s quotient space, each node of the
graph corresponds to a critical area; in particular, when the critical region recognised as
a maximum/minimum area is complex, a macro-node is defined with as many arcs as
the inner components of the critical region. Since each arc corresponds to a connected
component of the manifold between two critical areas, the Reeb graph extraction is
based on tracking the evolution of contour lines.

When the critical areas have been recognised, the ERG is initialised by creating the
node corresponding to the virtual minimum, VM . The VM is connected to the saddle
having the minimum elevation and external to each macro-node. If such a saddle does
not exist, the VM is connected to the nearest (in terms of geodesic distance) complex
maximum area; otherwise, if there are not complex maxima, the ERG is a trivial graph
connecting the VM to the only simple maximum existing and the surface is topologically
equivalent to a sphere (Milnor, 1963).

Our algorithm for the extraction of the ERG runs in two steps: first, the arcs between
minima (maxima) and saddles are inserted; then the other arcs are detected. In the
following, a construction algorithm is described using a C pseudo-code:

/*The ERG is defined by the set of nodes, N, and of arcs,
A*/

ERG Construction(N,A) {
/* Identify critical areas and initialise the virtual
minimum */

N=CriticalAreasRecognition(tin, contours);
/* Order the Critical Areas by elevation */
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OrderAreas(N);
/*Create a virtual minimum and connect it to the node the
most appropriate */

ConnectVirtualMinimum(N);
/*Leaf arc extraction */
ExpandMaxima&Minima(N,A);
for (each node in N) {
if (IsGrowingArea(node)) {
for ( each non visited growing direction node) {
while ((not(findBoundarySurface)) or

(not(findOtherCriticalArea)))
ExpandToUpperLevel(node);
if (R=OtherAreaReached)

ConnectWithArc(node, R);
} /* end for */

} /* end if */
} /* end for */

The function ExpandMaxima&Minima(N) connects all the maxima and minima to
their nearest (in terms of region expansion) critical area and extracts a subset of Reeb
arcs, while the function IsGrowingArea(node) returns a Boolean value, which
is TRUE if the critical area has at least one growing direction that has not been vis-
ited yet. In Figure 6.5, the main steps of the ERG extraction process are depicted;
Figure 6.5(a) represents how the maxima (minima) are expanded until other criti-
cal areas are reached and the corresponding graph representation, while Figure 6.5(b)
shows how the algorithm works for completing the area expansion process.

Some results of our ERG extraction for real terrains are provided in Plate 2. The
nodes of the ERG representation are coloured according to the meaning of the corre-
sponding critical areas in the models. In particular, the maxima are depicted in red, the
minima in blue, and the saddles in green, while the virtual minimum is represented in
yellow. Moreover, we show the simplified models obtained considering only the mesh
vertices, which form the boundary of all the critical areas of the models. The original
models of Plate 2(a) and 2(c) have 160,000 and 129,600 vertices, respectively while
the simplified ones in Figure 6.6 have 19,200 and 26,200 vertices respectively; it is
important to point out that the simplification provided by the ERG mainly depends
on the topological complexity of the models rather than on the number of the origi-
nal vertices.

(a) (b)

Figure 6.5 Two steps in the pipeline of the ERG extraction
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(a) (b)

Figure 6.6 Examples of simplification obtained by considering only the boundaries of critical areas: in
(a) the simplified model of the terrain given in Plate 2(a), and in (b) that of Plate 2(c)

6.4.1 Computational complexity

The computational cost of the whole algorithm for the ERG extraction is given by the
sum of the cost of its single subparts, that is, the insertion of contour levels into the
mesh, the extraction of the critical areas, and the final expansion process. Given the
surface mesh, the insertion of the contour levels C(M) depends on both the number
of vertices of the original triangulation, n, and the number m of the vertices of C(M).
Because the number of edges and triangles has the same order as the number of vertices,
checking the edge-to-plane intersection requires O(max(m, n log(n))) operations. In
fact, the edges of the mesh are sorted in O(n log(n)) operations, while O(max(m, n))

is the number of intersection tests. Finally, the insertion of the whole set of constraints
requires O(m) edge splits.

With regard to the computational complexity of the characterisation process, if the
recognition of critical areas is linear in the number of mesh triangles, then it requires
O(n + m) operations, because the number of triangles in the constrained mesh has
the same order as the sum of original vertices and the constrained ones. Also during
the arc completion step, the triangles are processed once and the complexity still is
O(n + m), so that the total computational cost of the ERG extraction mainly depends
on the insertion of contours into the mesh. Therefore, the whole process, starting
from a generic triangulation, requires O(max(m + n, n log(n))) operations. Finally,
we observe that, if we consider a generic triangle mesh, the average size of m is
O(n log(n)), even if in the worst case, m is O(n2).

6.5 DISCUSSION AND FINAL REMARKS

The generalised characterisation and the ERG coding provide a compact representa-
tion of the main features of a terrain surface, which is effectively represented as a
configuration of hills and dales.

With regard to the feature extraction step, the mesh characterisation based on the
classical height comparison at mesh vertices, as classically proposed in (Banchoff,
1970, De Floriani et al., 2002, and Takahashi et al., 1995), can be recovered also
through our method. It is sufficient, indeed, to slice the mesh in correspondence to
the midpoint of each edge; in this way, all the original mesh vertices would lie in a
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separate region and the characterisation obtained through the mesh contouring would
be equivalent to considering the star region of each vertex.

Finding the best compromise between the effectiveness of feature extraction and the
number of slicing planes is the most critical point of the method. The first solution
is to characterise the mesh as proposed in (De Floriani et al., 2002 and by slicing
the mesh with planes placed at optimal positions: one plane directly below (above)
maxima (minima), and two planes for saddles, one above and one below. In this case,
the number of slicing planes considerably decreases but the number of features does
not, and the results would still be sensitive to small variations of the vertex elevation.

Using the uniform slicing, the surface shape is described by the topological coding of
its features at a fixed resolution dp. In many cases, however, a description at different
scales could be more effective. This could be achieved by adopting a multi-resolution
slicing process of the mesh as proposed in (Hilaga et al., 2001): a sequence of Reeb
graphs can be extracted by halving the distance interval between the slicing planes until
a threshold defined by the user is reached. At each step, new nodes and arcs might
be inserted into the graph as shown in Figure 6.7, but there is a hierarchical relation
between the nodes of the current graph and the previous one (Attene et al., 2003).

In our setting, a multi-resolution ERG extraction can be implemented by iteratively
halving the height interval [fmin, fmax]; for example, the graphs proposed in Plate 2
have been obtained with 32 subdivisions of the interval [fmin, fmax]. The power of this
approach is clear: the surface shape can be processed at different levels of detail and
the estimation of its features is automatically provided.

In addition, we notice that by adopting the mesh characterisation approach based
on the neighbours of each vertex, the Reeb graph is equivalent to that provided by
the contour tree, as proposed in (Carr et al., 2003, and van Kreveld et al., 1997). In
fact, both structures have a common root in Maxwell’s paper and pursue the aim
of organising the contour levels of a two-dimensional surface in a systematic and
topologically correct way. However, the contour trees have been proposed only for
scalar fields, while the Reeb graphs have been studied for the generic two-manifold
and successfully applied to arbitrary complex surfaces; as an example, our approach
also works on terrain surfaces with vertical walls and cavities.

Considering simple Morse functions, that is, functions whose critical points are non-
degenerate and not at the same level, Reeb graphs and surface networks may be easily
compared: the Reeb graph is a subgraph of the surface network, at least for the arcs not
involving the boundary. An algorithm for the extraction of Reeb graphs from surface
networks has been, for example, proposed in (Takahashi et al., 1995). Both graphs
code the topological structure of a surface, with surface networks giving a surface-
oriented view, while Reeb graphs give a skeleton-like and volume-oriented description.

(a) (b)

Figure 6.7 Reeb graph variation when halving the distance among the sections
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Figure 6.8 (a) The surface network structure and (b) the Reeb graph of the same terrain model

In Figure 6.8, the surface network of a terrain represented by contours is compared
with the corresponding Reeb graph; all the arcs of the surface network coming from the
outside of the surface boundary originate from a virtual minimum, which is depicted
for the Reeb graph structure.

In the generalised version presented in this chapter, surface networks and ERG
cannot be directly compared. Surface networks obviously fail if degenerate critical
points exist, and, to our knowledge, there is no way to automatically filter the resulting
features during the network delineation process. Conversely, the ERG construction
process is stable and provides a simplified configuration of the terrain features, which
easily and efficiently supports the minimal rendering of large terrain data.
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A Method for Measuring Structural
Similarity among Activity Surfaces and

its Application to the Analysis of
Urban Population Surfaces in Japan

Atsuyuki Okabe and Atsushi Masuyama

7.1 INTRODUCTION

In urban and regional studies, we often study the differences in regional characteris-
tics in comparison with the distributions of a common attribute value (say, population
density) of different regions. When the distribution is continuous in each city, we rep-
resent it by a surface in three-dimensional space, for example, the surface representing
a population density as in Plate 3. Since such representation is commonly employed
in urban and regional studies, we consider it important to develop a method for mea-
suring similarity or dissimilarity among the surfaces. In particular, we are interested
in “qualitative” or structural similarity rather than “quantitative” or detailed similarity.
This is because in the humanities and the social sciences, the quality of geographical
data is often poor owing to spatial aggregation, and measuring quantitative difference
in a very precise manner (as in natural sciences) is not always meaningful. In this
chapter, we attempt to formulate a general method for measuring structural or skele-
tal similarity by use of surface networks, and we apply the method to a comparative
study on urban population densities in Japan. Although this application is specific, the
method itself is so general that it may be applied to the analysis of a broad class of
two-dimensional continuous distributions treated in humanities and social sciences.
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In urban studies, much effort has been devoted to the analysis of urban population
densities since the 1950s. A pioneering work was done by Clark (1951), who shows
that the population density, z = f (x), in a city tends to decrease negative-exponentially
as the distance, x, from the centre of the city increases, that is,

f (x) = a exp(−bx). (7.1)

This finding, called the Clark law, has been examined by many researchers, for
example, Berry et al. (1963), Brush (1968), Casetti (1967, 1969), Clark (1958, 1967),
Duncan et al. (1961–1962), Kramer (1958), Latham and Yeats (1970), Mills (1972),
Muth (1965, 1969), Newling (1969), Ohtomo (1979), and Sherratt (1960). In their
studies, comparative analysis is achieved by comparing coefficients a and b estimated
by data in each city. This comparison is possible because the implications of the coef-
ficients a and b are common to any city (i.e. the coefficient a implies the population
density at the centre and the coefficient b implies the degree of decrease in population
density with respect to distance).

A problem with these studies, as is noticed from the form of z = f (x), is that
they assume one-dimensional space. Obviously, the actual geographical space is two-
dimensional, z = f (x, y). To take this fact into account, the trend surface analysis
developed in geology (e.g. Krumbein, 1956) was found to be useful in urban studies.
This analysis treats a surface in terms of a polynomial function, that is,

f (x, y) = a1x
n + a2y

n + a3x
n−1y + · · · + am−2x + am−1y + am. (7.2)

As is seen in (Johnson and Vance, 1967, Norcliffe, 1969, Watson, 1972, Bassett,
1972, and Whitten 1974), this method is useful for analysis of one city, but it is
not appropriate for the comparative analysis of many cities. A reason for this is that
the estimated values of coefficients a1, . . . , am vary according to the location of x − y

axes, and so the coefficients in different regions are not comparable. To overcome
this difficulty, a few methods are proposed in the literature. For example, Haggett
and Bassett (1970) proposed a measure of similarity that was invariant with respect
to the location of the x − y axes. The meaning of their measure, however, is not
straightforward.

A few methods that are different from the trend surface analysis are proposed in the
literature. Okabe and Sadahiro (1994) use the Kullback–Leibler information index to
examine the relationship between a population distribution and a retail potential dis-
tribution in a region. Although this index works well in statistical contexts, sometimes
it does not work well in geographical contexts. King (1969) proposes a method that
extends spectrum analysis of time (one dimension) to that of two-dimensional space.
His method assumes that the data units are squares in a rectangular area, but this
assumption is not always satisfied in practice.

All the methods mentioned above examine quantitative similarity but, as mentioned
above, it is often more important in the humanities and social sciences to examine
structural or skeletal similarity rather than quantitative or detailed similarity. To deal
with skeletal similarity, the surface network method proposed by Pfaltz (1976) and the
activity contour method proposed by Fujii (1978) are useful. In fact, applying a similar
method to the analysis of urban population densities in Japan, Okabe and Masuda
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(1984) clearly show skeletal difference among population densities in Japanese cities.
A similar method was also employed by Sadahiro (2001), who showed a structure in
the distribution of retail stores in Tokyo. Their methods, however, have ambiguity in
choosing a parameter value, which causes some arbitrariness. This chapter proposes a
method to overcome this shortcoming.

7.2 INTRODUCTION TO SURFACE NETWORKS

To understand the key concept of this chapter on surface networks, readers need to
be familiar with what surface networks are. We feel, however, that concepts related to
surface networks are not always well known to the humanities and social scientists.
This book is useful for learning these concepts, but chapters in this book may seem
to be slightly too technical for researchers in the humanities and social sciences who
are not familiar with surface networks. Since we expect our method to be applied to
the analysis of phenomena studied in the humanities and social sciences, this chapter
first presents an intuitively understandable introduction to surface networks. If readers
are familiar with surface networks, they can skip this section and go to Section 7.3. If
readers wish to understand the theories and computational methods of surface networks
in depth, they should consult the chapters in this book.

We consider a distribution of an attribute value (say, population density) over a
region S. Mathematically, this distribution is represented by a function, z = f (x, y),
where z is an attribute value at (x, y) in S. If we indicate the value of z with the
height at (x, y), the function is depicted in the three-dimensional space as in Plate 3,
which looks like the surface of a mountain. We call this surface an activity surface (in
the case when the attribute value is population, it is called a population surface). We
denote an activity surface in S by T . The activity surface T (Plate 3) can alternatively
be represented by contour lines as in Figure 7.1(a). This representation is often used
in topographical maps.

An actual mountain surface may have cliffs and overhangs, but to gain analyti-
cal tractability, we assume that the activity surface T is very smooth (mathemati-
cally, second-order differentiable), and proper (mathematically, non-degenerate). We
also assume that f (x, y) ≥ 0 in S and f (x, y) = 0 on the boundary of S. The for-
mer assumption does not lose generality, because if f (x, y) ≥ −a (a > 0), we use
f (x, y) + a ≥ 0, and this modification does not affect the derivations in Section 7.3.
The latter assumption is satisfied with the following modification. We spread a dummy
downward surface around the periphery of S in such a way that the surface smoothly
joins the edge of the surface T , and the bottom edge of the surface touches the ground
(z = 0) (this modification is easily made if we use software for generating contour
lines). This modification does not affect the derivations in Section 7.3. We make these
assumptions only for gaining analytical tractability.

Under the above assumptions, we consider part of an activity surface T in a suffi-
ciently small area around a point in S, and call it the local (activity) surface at that
point. Local surfaces have various forms at points in S, but they are classified into
four categories: peaks, bottoms, cols, and slopes (see Figure 7.2). Peaks, bottoms, and
cols are subsumed under critical points. The common property of the critical points
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(a)

Peak

Bottom

Col

(b)

Figure 7.1 (a) The population surface in Plate 3 represented by contour lines, its surface network (the
broken lines) and (b) its surface graph

Peak Bottom Col Slope

Figure 7.2 A peak, a bottom, a col, and a slope

is that the gradient at these points is flat. In Figure 7.1, peaks, bottoms and, cols are
indicated by white circles, black circles, and white squares respectively. Since almost
all local surfaces at points in S are slopes, critical points are very distinctive points. In
the context of a mountain surface, we may regard the critical points as landmarks of
mountain landscape. The configuration of these landmarks characterises the structure
of the landscape.

To represent the configuration of critical points explicitly, we introduce a “surface
network”. To give an intuitive image of the “surface network”, we use the analogy of
water drops that flow on a mountain surface T . Suppose that infinitely many water
drops fall at peaks of the surface T in S. The water drops flow in all directions from
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the peaks and their trajectories cover the surface T . The trajectories of water drops
have the following properties.

(i) The direction of the trajectory at a point is the steepest one among all possible
directions at that point (this property corresponds to the fact that a water drop
flows in the steepest direction).

(ii) The direction of the trajectory at a point is perpendicular to the contour line
passing through the point (except at critical points).

(iii) At every col, exactly two trajectories go in and go out (Figure 7.2).

Among many trajectories on the surface T , we consider a set of trajectories each of
which goes through a col and a critical point on T (the broken lines in Figure 7.1)
except for trajectories each of which goes through a col and a point on the boundary
of S. We call this set the surface network of T , and denote it by N(T ). As is noticed
from Figure 7.1, the surface network N(T ) looks like a skeleton of the surface T .
Actually, as will be discussed in the subsequent section, it is a skeleton or structure of
the surface T .

The method that we propose in the next section uses surface networks extensively and
so construction of surface networks is important in practice. Fortunately, nowadays,
efficient computational methods have been developed and they are easily available.
These methods are reviewed in Chapters 3 and 4 of this book.

7.3 STRUCTURAL SIMILARITY

To introduce the concept of structural or skeletal similarity, let us imagine a miniature
model of a mountain surface T that is made of elastic materials (such as clay) placed on
a rubber sheet S. We deform the surface T by stretching and shrinking the rubber sheet
S without breaking it (mathematically, a homotopic deformation). Then the surface T

in Figure 7.3(a) may be deformed into the surface T ′ in Figure 7.3(b). As a result, the
surface network N(T ) of T (the broken lines in Figure 7.3(a)) changes to N(T ′) (the
broken lines in Figure 7.3(b)). Comparing these two surface networks, we feel that
they are “structurally” similar, although they are different in details.

Furthermore, we deform the surface T ′, and then it may become the surface T ′′ in
Figure 7.3(c). As a result, the surface network N(T ′) (the broken lines in Figure 7.3(b))
changes to N(T ′′) (the broken lines in Figure 7.3(c)). Comparing these two surface
network, we feel that they are no more “structurally” similar.

To state the “structural” similarity (dissimilarity) explicitly, we introduce the concept
of the “surface graph”. Roughly speaking, a surface graph treats adjacency relations
between critical points in a surface network. To be precise, consider a set, P , of
nodes given by the critical points of an activity surface T , and a set, L, of links
that correspond to line segments in the surface network N(T ) that directly joins two
critical points. We call the paired sets, {L, P }, with their adjacency relations the surface
graph of T , and denote it by G(T ). The surface graph of the activity surface T in
Figure 7.1(a) is shown in Figure 7.1(b). The surface network N(T ) in Figure 7.1(a)
can also be regarded as the surface graph of T . As is seen in these two examples, links
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(a)

N(T )

N(T ′ )

(b)

N(T″ )

(c)

Figure 7.3 Deformation of a surface

in a surface graph are symbolic in the sense that they only show adjacency relations.
Formally, two surface graphs,{L1, P1} and {L2, P2}, of activity surfaces T1 and T2 are
the same or isomorphic if, and only if, there is one-to-one correspondence between L1

and L2; between P1 and P2; and between adjacency relations of {L1, P1} and those of
{L2, P2}.

In terms of surface graphs, we can now define structural similarity explicitly. We say
that two activity surfaces T and T ′ are structurally similar if, and only if, their surface
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graphs G(T ) and G(T ′) are isomorphic (the same); and the surfaces are structurally
dissimilar if, and only if, their surface graphs are not isomorphic. For example, con-
sider activity surfaces T , T ′ and T ′′ in Figure 7.3. Their surface graphs are shown in
Figures 7.4(a), (b) and (c), respectively. As is noticed from these figures, the activity
surfaces T and T ′ are structurally similar, but the activity surface T ′′ is structurally
dissimilar to the activity surfaces T and T ′.

The definition of structural similarity given above becomes contentious when we
compare the activity surfaces shown in Figure 7.5. By definition, the activity surface
T1 is structurally dissimilar to the activity surface T2. However, a peak in T1 is so
small that we may neglect it. Then the activity surface T1 becomes structurally similar
to the activity surface T2.

To take this argument into account, we consider the relative height of a peak, pi . A
peak pi is always adjacent to cols, ci1, ci2, . . . via links. Let h(pi) and h(cij ) be the
height of a peak pi and that of a col cij , respectively. We define the relative height,
r(pi), of a peak pi by the minimum difference in height between the peak and the

G(T )

G(T )′

G(T ″ )

(b)

(a)

(c)

Figure 7.4 The surface graphs of the activity surfaces T , T ′, T ′′in Figure 7.3
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T1
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1000
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A small peak

Figure 7.5 Activity surfaces that are not exactly structurally similar but almost structurally similar
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adjacent cols, that is,
r(pi) = min

j=1,2,...
{h(pi) − h(cij )}. (7.3)

For example, in Figure 7.6(a), the relative height of the peak p2 is obtained from

r(p2) = min{h(p2) − h(c1), h(p2) − h(c2), h(p2) − h(c3), h(p2) − h(c4)}
= min{6337 − 1002, 6337 − 1609, 6337 − 680, 6337 − 355}
= 4728.

Similarly, we define the depth (or height) of a bottom bi by the minimum difference
in height between the bottom and the adjacent cols, that is,

r(bi) = min
j=1,2,...

{h(cij ) − h(bi)}. (7.4)

For example, in Figure 7.6(a), the relative depth (height) of the bottom b1 is obtained
from

r(b1) = min{h(c3) − h(b1), h(c4) − h(b1)}
= min{680 − 327, 355 − 327}
= 28.

Let c∗
i be the chosen adjacent col, which we call a base col. For example, in

Figure 7.6(a), the base col for the peak p2 is c2, and the base col for the bottom
b1 is c4. As mentioned in Section 7.2, exactly four trajectories go through a base col
in a surface network, and so at least two links but at most four links are incident to the
base col (recall that a trajectory going to a point on the boundary of S is omitted in a
surface graph; see the definition below properties (i) to (iii)). There are five possible
combinations of critical points adjacent to a base col with respect to a critical point
(a peak or a bottom) that is deleted. These combinations are shown in the left-hand
side in Figure 7.7. Note that in Figure 7.7, a broken line may indicate one link or
more than one link; and that two peaks adjacent to a base col may be the same. If we
delete a peak or a bottom, the base col and links incident to the base col disappear and
the adjacency relation changes. This change depends on the configuration of critical
points. The results are shown in the right-hand side of Figure 7.7.

With the deletion rules shown in Figure 7.7, we delete peaks and bottoms whose
relative heights are negligibly small in the following manner. As a first step, peaks and
bottoms are sorted from the lowest relative height to the highest relative height, and
the lowest peak (or bottom) is chosen. In the case of Toyama shown in Figure 7.7(a),

h(b1) = 28 < h(p1) = 43 < h(p3) = 170 < h(p4) = 1784 < h(p2) = 4728.

Let h1 be the lowest relative height (h1 = 28 in Figure 7.6(a)). We delete the lowest
peak (or bottom) with the rule in Figure 7.7 (in the case of Figure 7.6(a), the lowest
relative height is the height (depth) of the bottom b1, and the bottom is deleted with
the rule in Figure 7.7(d)). As a result, we obtain a new surface graph and denote it by
G(T |h1) (see Figure 7.6(b)).



A Method for Measuring Structural Similarity 113

(a)

p4 2464

327

b1

1045

p1

1779

G(T)

p3

6337

p2

1002

c1

1609

c2

c3
680

c4
355

G(Th1)
p4 2464

c3 680

1045

p1

1779

p3

6337

p2

1002

c1

1609

c2(b)

G(Th2)

2464

p4

1779

p3p2

680

c3

16096337

c2(c)

G(Th3)

c3

2464

p4

6337680

p2(d)

G(Th4)
p2

6337

(e)

Figure 7.6 Deleting peaks (bottoms) from the relatively lowest one, the second relatively lowest one and
so forth

In the second step, for the surface graph G(T |h1), peaks and bottoms are sorted
from the lowest relative height to the highest relative height, and choose the lowest
peak (bottom). In the example of Figure 7.6(b),

h(p1) = 43 < h(p3) = 170 < h(p4) = 1784 < h(p2) = 4728.
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(a)

(b)

(c)

(d)
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Figure 7.7 Five types of adjacency relations at a base col and a critical point to be deleted (the left-hand
side) and adjacency relations after the critical point is deleted (the right-hand side)

Let h2 be the lowest relative height (h2 = 43 in Figure 7.6(b)). We delete the relatively
lowest peak (or bottom) with the rule in Figure 7.7 (in the case of Figure 7.6(b), the
lowest relative height is the height of the peak p1, and the peak is deleted with the rule
in Figure 7.7(a)). As a result, we obtain the surface graph G(T |h2) (Figure 7.6(c)).

In the third step, for the surface graph G(T |h2), we do the same tasks as in the
first and second steps, and so forth. As this procedure continues, the number of peaks
and bottoms decreases, and eventually there is only one peak left (Figure 7.6(e)).
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Obviously, if we choose h, which is higher than the height of the last remaining peak,
we have no peak.

We now regard the values h1, h2, . . . , hm as specific values of a parameter h, and
define G(T |h) as

G(T |h) = G(T |hi) for hi ≤ h < hi+1 i = 0, 1, . . . m − 1. (7.5)

Note that h0 = 0, and G(T |0) = G(T ). For two activity surfaces T1 and T2, we say
that these surfaces are structurally similar at level h if and only if G(T1|h) is iso-
morphic to G(T2|h). Suppose that peaks and bottoms whose height is less than h∗
are negligible. Then we examine structural similarity among activity surfaces at level
h∗. In the example of Figure 7.5, two activity surfaces are structurally similar at level
h∗ = 100.

Note that the equivalence relation “Ti is structurally similar to Tj at h” can be used
for classifying activity surfaces into a set of categorical groups, Gh

1, . . . ,G
h
n(h), where

any two activity surfaces in Gh
i are structurally similar at level h, and an activity

surface in Gh
i and an activity surface in Gh

j (i �= j ) are structurally dissimilar at level
h. An actual example will be shown in Section 7.5.

7.4 OVERALL STRUCTURAL SIMILARITY INDEX

Although we can avoid trifling peaks and bottoms using structural similarity at level
h∗, choice of level h∗ is arbitrary. To avoid this arbitrariness, we propose the following
index. Let

J (T1, T2|h) =
{

1 if G(T1|h) is isomoprhic to G(T2|h),

0 otherwise.
(7.6)

This means that J (T1, T2|h) becomes 1 if the activity surfaces T1 and T2 are struc-
turally similar at level h; otherwise, it becomes 0. An actual example is shown in
Figure 7.8 (Hiratsuka and Kawagoe), where the values of 1 and 0 are indicated by
heavy-line segments and hairline segments, respectively, in the range of 0 ≤ h ≤ h∗.
Obviously, if the length of the heavy-line segments is long, the two activity surfaces
are structurally similar.

In terms of J (T1, T2|h), we define an index I as

I = 1

hmax

∫ hmax

0
J (T1, T2|h)dh. (7.7)

This index refers to the standardised length of the interval of h where two activity
surfaces T1 and T2 are structurally similar. When two activity surfaces T1 and T2 are
structurally similar at any level of h, then I = 1; when two activity surfaces T1 and
T2 are not structurally similar at any level at all, then I = 0. We call this index the
overall structural similarity index.



116 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

J (T1, T2h)

h

0

0

1

1

0

1

0

1

Hiratsuka (T1) Kawagoe (T2)

43

63
57

87

106

127

622

727

986

1479

2000

Figure 7.8 The function J (T1, T2|h) for the case of Hiratsuka (T1) and Kawagoe (T2)
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7.5 COMPARATIVE STUDY ON URBAN POPULATION DISTRIBUTIONS
IN JAPAN

Having established the method for structural comparison of activity surfaces in the
preceding sections, we now apply it to a comparative study of population densities in
Japan. We choose 20 Japanese cities whose population sizes are in between 200,000
and 400,000. The data set used for this analysis is the 1-km by 1-km “mesh-data”
(grid-data) published from the Japanese Census Bureau in 1998.

First, using the algorithms proposed by Takahashi et al. (1995) (also see Chapter 3
in this book), we construct surface networks N(T1), . . . , N(T20). Second, we obtain
surface graphs G(T1|0), . . . ,G(T20|0) from these surface networks. The results are
depicted in the second column of the table in Figure 7.9. Third, following the rules in
Figure 7.7, we delete peaks (or bottoms) from the lowest relative height to the highest
relative height and obtain G(T1|h), . . . , G(T20|h) for 0 ≤ h ≤ 2000/ km2. A part of the
results is shown in Figure 7.9.

Suppose that we delete the peaks and bottoms whose relative height is less than
500/ km2. Then from Figure 7.9, the 20 cities are classified in four categorical groups:

G500
1 = {Aomori, Akita, Fukushima, Hakodate, Maebashi, Morioka, Tokorozawa}

G500
2 = {Kashiwa, Kasugai, Koshigaya, Miyazaki, Takamatsu, Takasaki, Toyama}

G500
3 = {Hiratsuka, Kawagoe, Kohchi, Odawara, Yokkaichi}

G500
4 = {Fujisawa}

We notice from this result that all cities have a tree structure (no loops), and that the
number of cities is the largest for one or two peaks but it decreases as the number of
peaks increases.

Fourth, using the functions G(T1|h), . . . , G(T20|h) for 0 ≤ h ≤ 2000/ km2, we calcu-
late the overall structural similarity indexes between every pair of the twenty Japanese
cities. The indexes are tabulated in Table 7.1.

To grasp the overall structural similarity among the 20 cities visually, we apply the
(MDS) multi-dimensional scaling method to the distance matrix made from 1 minus
the index value in each element in Table 7.1. The result is shown in Figure 7.10 (the
square marks indicate cities).

In Figure 7.10, the 11 square marks that are close together around (1, 0) are remark-
ably eye-catching. The common feature of the population distribution structures of
these cities is identified from Figure 7.9. The surface graphs of the 11 cities have up
to two peaks at level 500/ km2; the surface graphs of the cities except for that of
Odawara have one peak at level 750/ km2; and the surface graphs of all the cities have
one peak at level 1000/ km2. In short, the trifle critical points, except for one peak, on
the surface graphs of these cities are eliminated at relatively low levels.

Focusing on the left side of Figure 7.10, we notice that the square marks for Fujisawa,
Kasugai, Kashiwa, and Toyama take low horizontal coordinate values compared with
the other square marks. From Figure 7.9, we can identify the feature of the surface
graphs of these four cities. Their surface graphs commonly have two peaks at the
level 1750/ km2. As for the surface graphs of Fujisawa, Kasugai, and Kashiwa, they
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Figure 7.9 The surface graphs G(Ti |h) of 20 cities in Japan with respect to h = 0, 250, . . . , 2000

have two peaks even at the highest level (2000/ km2). This is quite different from the
feature of the surface graphs of the aforementioned 11 cities. This difference creates
the large differences in the locations of the square marks between these four cities and
the aforementioned 11 cities.

Among the four cities, or rather the 20 cities, Fujisawa is a distinctive city in the
sense that the square mark for this city takes an extremely high vertical coordinate
value. As can be seen in Figure 7.9, the number of peaks on the surface graph of
Fujisawa is larger than those of the other cities at any levels between 500/ km2 and
1250/ km2. The differences between the location of the square mark for Fujisawa
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Table 7.1 Overall structural similarity indexes between every pair of the 20 Japanese cities

Aomori Akita Fujisawa Fukushima Hakodate Hiratsuka Kashiwa Kasugai Kawagoe Koshigaya

Aomori 1 – – – – – – – – –
Akita 0.7575 1 – – – – – – – –
Fujisawa 0 0 1 – – – – – – –
Fukushima 0.7635 0.8525 0 1 – – – – – –
Hakodate 0.728 0.953 0 0.8525 1 – – – – –
Hiratsuka 0.507 0.507 0 0.537 0.507 1 – – – –
Kashiwa 0.055 0 0.2575 0.0455 0 0.1615 1 – – –
Kasugai 0.2485 0.0245 0.2575 0.0455 0.0075 0.1295 0.773 1 – –
Kawagoe 0.2605 0.2605 0 0.2905 0.2605 0.6375 0.4605 0.4285 1 –
Koshigaya 0.5825 0.4975 0 0.526 0.4975 0.778 0.3275 0.322 0.5755 1
Kohchi 0.5075 0.4925 0 0.4925 0.4925 0.856 0.127 0.095 0.586 0.699
Maebashi 0.827 0.7675 0 0.818 0.7675 0.555 0.0055 0.109 0.3085 0.576
Miyazaki 0.877 0.74 0 0.8015 0.7475 0.578 0.0385 0.155 0.3075 0.603
Morioka 0.7715 0.7915 0.009 0.7915 0.7915 0.535 0 0.0535 0.2885 0.537
Odawara 0.837 0.885 0 0.8905 0.851 0.845 0 0.1305 0.2605 0.4975
Takamatsu 0.8055 0.6805 0.0255 0.6805 0.6805 0.549 0.0925 0.1625 0.311 0.67
Takasaki 0.9535 0.774 0 0.785 0.7495 0.507 0.0335 0.219 0.2605 0.561
Tokorozawa 0.718 0.9445 0 0.9075 0.92 0.507 0 0.0535 0.2605 0.4975
Toyama 0.1715 0.109 0.1495 0.1535 0.109 0.2645 0.665 0.9275 0.553 0.425
Yokkaichi 0.494 0.4635 0.2125 0.4635 0.4635 0.6075 0.285 0.285 0.5055 0.7145

Kohchi Maebashi Miyazaki Morioka Odawara Takamatsu Takasaki Tokorozawa Toyama Yokkaichi

Aomori – – – – – – – – – –
Akita – – – – – – – – – –
Fujisawa – – – – – – – – – –
Fukushima – – – – – – – – – –
Hakodate – – – – – – – – – –
Hiratsuka – – – – – – – – – –
Kashiwa – – – – – – – – – –
Kasugai – – – – – – – – – –
Kawagoe – – – – – – – – – –
Koshigaya – – – – – – – – – –
Kohchi 1 – – – – – – – – –
Maebashi 0.5355 1 – – – – – – – –
Miyazaki 0.5225 0.8785 1 – – – – – – –
Morioka 0.5205 0.821 0.788 1 – – – – – –
Odawara 0.4925 0.799 0.779 0.8195 1 – – – – –
Takamatsu 0.5345 0.7645 0.789 0.7085 0.6805 1 – – – –
Takasaki 0.4925 0.8485 0.8895 0.793 0.862 0.784 1 – – –
Tokorozawa 0.4925 0.7675 0.7345 0.7915 0.899 0.6805 0.8235 1 – –
Toyama 0.2075 0.2265 0.263 0.1615 0.1925 0.2705 0.2835 0.113 1 –
Yokkaichi 0.5585 0.4635 0.4775 0.4635 0.4635 0.5315 0.4725 0.4635 0.393 1

and those for other cities are due to this specific feature of the surface graph of
Fujisawa.

On the basis of these results, we can further investigate why these cities are struc-
turally similar or dissimilar. An answer to this question will be given by examining
the relationship between the distribution of population and the distributions of other
attribute values of these cities. This examination, however, is beyond the scope of this
chapter. An example is shown in (Okabe and Masuda, 1984).



120 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

21−1−2−3

3

2

1

0

−1

−2

Morioka

Tokorozawa

Hakodate

Akita
Odawara

Fukushima
Maebashi

Miyazaki

Takamatsu

Takasaki
Aomori

KohchiHiratsuka
Koshigaya

Yokkaichi

Toyama

Kashiwa

Kasugai

Kawagoe

Fujisawa

Figure 7.10 The multi-dimensional scaling for the 20 cities in Japan

7.6 CONCLUDING REMARKS

Summing up, we proposed in this chapter a new method for studying structural sim-
ilarity among activity surfaces. First, we represented an activity surface by a surface
network and defined structural similarity between two activity surfaces in terms of
isomorphism between their surface graphs. Second, we defined structural similarity
with respect to relative height (depth), and measured the overall structural similar-
ity in terms of the index I defined by equation (7.7). As shown in Section 7.5, the
proposed methods are useful for a comparative analysis of activity surfaces. In partic-
ular, the proposed method clearly reveals structural similarities and differences among
activity surfaces.

Last, we note that although this chapter focused on population surfaces, the pro-
posed method is so general that they may be applied to activity surfaces treated in the
humanities and social sciences. We look forward to such applications.
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Topology Diagrams of Scalar Fields
in Scientific Visualisation

Valerio Pascucci

8.1 INTRODUCTION

The purpose of visualisation is to aid the user in understanding the structure of the
data (Tufte, 1983). Common scientific visualisation methods can be grouped into two
broad classes. First are those methods whose aim is to detect structures and to present
their display to the user. Critical to these methods is the definition of “structure”,
and how well such a definition matches the user’s need. Second are those methods
attempting to display the entire scalar field simultaneously, leaving to the user the
interpretation of the rendered images. The combined use of these two types of methods
helps to reinforce the information provided by their visualisation. We discuss in detail
the computation of one method in the first class that computes and presents simple
diagrams of the topology of a scalar field. Practical results are shown for a combination
of topology and colour mapping in 2D and topology and isocontouring in 3D.

Fundamental work in scientific visualisation has dealt with determining good colour
maps that effectively display the structures present in the data. Bergman et al. define
rules on the basis of perception, user goals, and data characteristics to automatically
select a colour map that will meet the user’s requirements (Bergman et al., 1995).
Histogram equalisation is a technique that spreads the data evenly over the range of
colours, using the available colour space to its fullest (Rosenfeld and Kak, 1982).

This work was performed under the auspices of the US Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-JC-139277”
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The result is that each colour in the colour map is used an equal number of times.
Gershon (Gershon, 1992) uses Generalised Animation to display an otherwise static
scalar data in a dynamic way. Taking advantage of the ability of the visual system
to detect dynamic changes, the animation draws attention to fuzzy details in the data,
which may not be detected in a static representation.

Computation and display of level sets (Lorensen and Cline, 1987) is another fun-
damental technique used in the visualisation of scalar field. A large number of papers
have been published to resolve several issues ranging form the computation of surfaces
with correct topology (Lopes and Brodlie, 2003) to the computation of isosurface with
optimal performance (Bajaj et al., 1996) and minimum storage overhead (van Kreveld
et al., 1997). A good review of the subject can be found in (Bajaj et al., 1999).

Topological techniques are gaining importance in geometric modelling and visuali-
sation (Fomenko and Kunii, 1997). Helman and Hesselink detect vector field topology
by classifying the zeros of a vector field and performing particle tracing from saddle
points (Helman and Hesselink, 1991). The resulting partitioning consists of regions with
uniform flow. Globus et al. describe a software system for 3D vector topology and note
that the techniques used can also be applied to the gradient flow of a scalar field (Globus
et al., 1991). Bader et al. (1979) and Collard and Hall (1977) examine the gradient field
of the charge density in a molecular system. The topology of this scalar field repre-
sents the bonds linking together the atoms of the molecule. Bader goes on to show how
higher-level structures in the topology represent chains, rings, and cages in the molecule.
Bader’s example is a defining motivation for developing the automatic extraction and
visualisation of topology from a scalar field, since it is one of many situations in which
topology provides an intuitive and physically meaningful visualisation.

The contour tree (Pascucci and Cole-McLaughlin, 2002) is a related, non-embedded
diagram that is becoming popular as a user-interface component for a better under-
standing of the structure and topology of the level sets in a scalar field. The embedded
topology diagrams discussed in this chapter have been introduced in (Bajaj et al., 1998)
for the smooth case. Recent advances (Edelsbrunner et al., 2003a) allow performing a
more comprehensive analysis of a piecewise linear scalar field by building the Morse
Complex of a scalar field, which consistently partitions the data in regions with flow
lines having equal endpoints. More work is needed before this approach will be ready
for practical use with large scientific datasets. In particular, one major aspect that needs
further investigation is the development of a full multi-resolution topological model
similar to the one proposed in (Bremer et al., 2003) for the 2D case. For this reason,
we treat the 3D case with approximations that maintain the efficiency and simplicity
of the 2D approach without losing its visual effectiveness in the 3D embedding.

8.2 DEFINITIONS

8.2.1 PL scalar fields

We consider the case of n-dimensional spaces R
n, with n = 2, 3. A point p is a

sequence of n real numbers p = (x1, . . . , xn). A point p is said to be an affine combi-
nation of the k points {p1, . . . , pk}, if there is a set of k real numbers {a1, . . . , ak} such
that p = a1p1 + · · · + akak and a1 + · · · + ak = 1. If, additionally, all the ai are non-
negative, the point p is said to be a convex combination of {p1, . . . , pk}. A d-simplex
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σ , with 0 ≤ d ≤ n, is the set of points obtained by convex combination of d + 1 inde-
pendent points (v0, . . . , vd), called vertices of σ . A simplex σi is a face of σj – denoted
σi ≺ σj – if all the vertices of σi are also vertices of σj . Vertices are 0-simplices, edges
are 1-simplices, triangles are 2-simplices, and tetrahedra are 3-simplices. A simplicial
complex K is a collection of h distinct simplices {σ1, . . . , σh} such that the following
two conditions are satisfied: (i) for any simplex σj ∈ K , all the faces σi ≺ σj are also
in K and (ii) for any two simplices σi, σj ∈ K , their intersection σ = σi ∩ σj is either
empty or a face of both: σ = σi ∩ σj �= ∅ ⇒ σ ≺ σi, σ ≺ σj . The support space |K|
is the point set union of the simplices in K .

Consider a real-valued function f , defined for all the points of a domain D. A scalar
field F is the pair (f , D). We assume that D is the support space of a complex K , and
that f is defined explicitly only at the vertices of K . In the interior of a d-simplex, the
function f is defined by linear interpolation of its values at the vertices. Specifically,
the value of the field at p is f (p) = a0f (v0) + · · · + adf (vd), where (v0, . . . , vd) are
the vertices of the simplex containing p, and the positive real numbers (a0, . . . , ad)

are such that p = a0v0 + · · · + advd and a1 + · · · + ad = 1. Note that any point p ∈ D

is either a vertex or is contained in the interior of a simplex in K . Therefore, f is a
continuous function defined in all D.

We assume that the function values at the vertices of K are all distinct, that is
i �= k ⇒ f (vi) �= f (vj ). Enforcing this notion is crucial to providing sound mathe-
matical definitions and robust algorithms. To enforce this assumption of simplicity
(Edelsbrunner and Mücke, 1990), we define inequality tests that break ties by com-
paring the indices of the vertices. Whenever f (vi) = f (vj ), the test f (vi) < f (vj ) is
replaced by i < j and the test f (vi) > f (vj ) is replaced by i > j .

8.2.2 Critical points

We use Morse theory (Milnor, 1963) to characterise the scalar field F in terms of
its gradient flow ∇f = [∂f/∂x1, . . . , ∂f/∂xn]T. For a smooth function f , a point is
called critical if ∇f = 0. A critical point is simple if the Hessian ∇2f = (∂2f/∂xi∂xj )

is non-singular. Figure 8.1(a) shows a simple critical point, which must be isolated.
Figures 8.1(b) and (c) show degenerate critical points with multiplicity two and three
respectively. Figure 8.1(d) shows a set of degenerate critical points forming a sub-
manifold of the domain D. The index of a non-degenerate critical point is defined as
the number of negative eigenvalues of its Hessian.

The notions defined in Morse theory for smooth functions are extended to a piecewise
linear field F defined on the support of a simplicial complex K . The link of vertex
v ∈ K , denoted lk(v), is the set of simplices not containing v that are faces of a
simplex containing v. The upper link lk(v) is the set of simplices in lk(v) with field
value entirely greater than f (v). The lower link lk(v) is the set of simplices in lk(v)

with field value entirely smaller than f (v).
In general, we assume that the domain D is an n-manifold with boundary, decom-

posed into strata as described in (Goresky and MacPherson, 1988). The interior D of
the domain contains all the n-dimensional critical points, while the boundary contains
only (n − 1)-dimensional critical points. In 1D, a critical point can only be a maximum
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Figure 8.1 Four functions defined in R
2. The top row show their analytic representation z = f (x, y). The

bottom row shows their 3D plot together with contour lines projected on the (x, y) plane. The first three
functions have a critical point of coordinates (0, 0). (a) A simple critical point; (b) a double critical point,
also known as “monkey saddle”; (c) a triple critical point; and (d) set of critical points forming a 1-manifold
(circle of radius

√
3/2)

or a minimum. Figure 8.2 shows the classification of a critical point in 2D and in 3D
based on the connectivity of its lower/upper link as follows:

1. a minimum has empty lower link;
2. a maximum has empty upper link;
3. a regular point has both lower and upper link made of one connected component;
4. any other point is a saddle.

In 2D, the number of components of the lower link is equal to the multiplicity
of the saddle plus one. In 3D, the characterisation of multi-saddles is more com-
plex. Intuitively, each independent annulus (loop) in the lower link corresponds to a
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Figure 8.2 The link of a point p in the interior of D is represented by a circle in R
2 and by a sphere in

R
3. A simple critical point, a degenerate multi-saddle, and a regular point can be classified on the basis of

the connectivity of their lower link (black portion of the link in 2D and opaque portion of the link in 3D)

2-saddle and each connected component (except one) corresponds to a 1-saddle. An
elegant characterisation of 3D multi-saddles based on reduced Betti numbers is pro-
vided in (Edelsbrunner et al., 2003a), together with a procedure for their decomposition
into simple saddles. For visualisation purposes, we only differentiate among regular
points, maxima, minima, saddles and therefore, classify them simply by counting the
connected components of their lower and upper links as described above. This scheme
applies directly to a piecewise linear (PL) field since it does require the function to
be smooth.

8.3 TOPOLOGY DIAGRAMS

We compute the steepest descending/ascending lines starting from the saddle points
and draw the resulting embedded graph to provide the user with intuitive information
correlating the critical points in the data. It is also possible to visualise this informa-
tion at different levels of resolution using cancellation of critical points in their order
of importance.

8.3.1 2D steepest descending/ascending paths

Given a saddle point p in a 2D scalar field, we compute one steepest descending path
in each connected component of its lower link. Consider the triangulated component
of the lower link in Figure 8.3(a). For each candidate edge (p, vi), with f (vi) <

f (p), we compute the magnitude of its gradient flow |∇f | = |p − vi |/(f (p) − f (vi)).
Similarly, for a candidate triangle (p, vi , vj ), with f (vi), f (vj ) < f (p), we compute
the magnitude of its gradient flow |∇f |, where the gradient is given by

∇f =
[

vi − p

vj − p

]−1 [
f (vi) − f (p)

f (vj ) − f (p)

]
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Figure 8.3 One step of steepest descending path for a 2D scalar field. (a) Starting configuration at a saddle
point. In the triangulated component of the lower link, there are three candidate gradient directions: the edge
(p, v3) and the gradient lines (p, q1) and (p, q2). The one with highest slope is chosen to start the descending
path from p. Note that this is also the configuration for a regular vertex; (b–c) steepest descending path
extended from a point p in the middle of an edge; (d) network of steepest descending and ascending paths
for a simple test function

The gradient directions are depicted with dashed arrows. Locally, there are three seg-
ments of steepest descent: (p, v3), (p, q1), and (p, q2). Comparing their three gradient
magnitudes one determines the actual steepest descent, which forms the first portion
of the descending path from p. The path is then extended repeatedly until a local
minimum is reached. During this iterative procedure, the path can be extended from a
saddle, from a regular vertex, or from a point in the middle of an edge. The same rule
of the saddles applies to the case of a regular vertex. If the current end point of the
path lies on an edge of the mesh, one needs to check the slope of the gradient along
the edge and within the next adjacent triangle. Different configurations of this is case
are shown in Figure 8.3(b–c).

In the PL case, as against the smooth case, descending gradient lines can merge.
Once the current descending path merges with a previous descending path, they will
not split because of the consistency of the local choice. After all the descending paths
are computed, we construct the ascending paths with the same procedure applied to
the field −F . In this case, we run into another difference compared with the smooth
case since the PL ascending paths can intersect the descending paths. To avoid this
problem and guarantee consistency in the construction, we make an exception to the
iterative procedure above. We follow the line of a previously computed descending
path (in the opposite direction) if the local choice of steepest ascending path leads to
an intersection.

Figure 8.3(d) shows the topology diagram computed for a simple test function. The
ascending and descending paths are drawn on top of the 2D field depicted with a
grayscale colour map. Plate 4 demonstrates the use of the topology diagram to com-
plement classical pseudo-colouring visualisation for a density field in an off-axis pion
collision simulation (data courtesy of Lawrence Livermore National Laboratory). The
visualisation in the top row uses a simple grayscale colour map. In this case, it is clear
that much of the area of interest in the field is washed out. The visualisation in the
second row uses a hue-based colour map varying from blue (low) to red (high), reveal-
ing more of the structure in the data. The visualisation in the third row is augmented
with the topology diagram. This addition clearly brings out the detailed structure of
the density field.
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8.3.2 Persistence

While small-scale features are important in many scientific applications, in some cir-
cumstances, the visualisation user is interested only in the large-scale structure. For this
situation, we apply a simple filter that is based on the concept of persistence. The basic
idea is to remove pairs of critical points via topological cancellations. For example,
in a 1D field, a local maximum can be cancelled with an adjacent local minimum.
Figure 8.4(a–b) shows this type of cancellation, where the persistence associated with
the pair of critical points (p, q) is ranked by the persistence defined as |f (p) − f (q)|.
Figure 8.4(c–d) shows the cancellation of the maximum p with the saddle q. For a 2D
field, all the cancellations involve a saddle and an extremum. This type of simplification
can be used to generate a complete multi-resolution representation and re-meshing of
the data. Discussion of this topic is beyond the scope of this chapter, and the interested
reader is referred to (Bremer et al., 2003) for further details.

The bottom row of Plate 4 shows the use of this technique in the case of the pion
topology. The large-scale structures in the data are preserved while the fine grain
topological noise is filtered out. Simplification by persistence is a fundamental tool
for the practical use of topological visualisation. In fact, in many cases the amount of
topological noise can be so large that its direct display would cover the entire image
and make the whole approach useless.

8.3.3 3D extension

A complete generalisation of the 2D scheme to the volumetric case is very challenging
and computationally expensive. One main problem is the resolution of multi-saddles.
To resolve multi-saddles in 2D, one needs only to count the number of components of
the lower link. In 3D, one should instead determine the full Betti numbers of the lower
and upper link. More importantly, in 2D, the choice of descending paths is easily made
consistent by simply avoiding intersections. In 3D, the inability to compute the Hessian
at a saddle becomes a major obstacle to the computation of consistent monotonic
paths since they should start along the direction of its eigenvectors. There are paths
connecting 1-saddles to 2-saddles that, at the current state of the art, can be determined

p
Persistence

q

(a) (b) (c)

p q

(d)

Figure 8.4 Simplification of the topology of a scalar field by cancellation of pairs (p, q) of critical points.
The persistence of each pair is the difference of their field value. (a) Two critical points of a 1D field with
low persistence; (b) simplified version of the same 1D field; (c) topology diagram of a 2D scalar field in
the neighbourhood of two critical points with low persistence. The arrows show descending directions and
(d) topology diagram of the same field after cancellation of the two critical points
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Figure 8.5 Topology diagram of the 3D wave function computed for a high-potential iron protein. (a) Topo-
logy diagram and (b–h) combined visualisation of the topology diagram together with a sequence of level
sets with increasing isovalue

only from the computation of the full Morse Complex (Edelsbrunner et al., 2003a). In
this context, we choose a simplified approach in which no distinction is drawn among
the saddles of different index. Since in each loop of the lower/upper link one should
choose two steepest descending paths, we trace paths from all the local maxima of
the gradient direction and remove duplicates that lead to the same extremum. Noise
removal is also achieved by generic extremum-saddle cancellations, even if formally a
minimum should be paired only with a 1-saddle, a maximum should be paired only with
a 2-saddle, and additionally one should also allow (1-saddle, 2-saddle) pairs. Figure 8.5
shows the visualisation of a 3D wave function computed for a high-potential iron
protein (data courtesy of the Visualization lab, SUNY – Stony Brook). Figure 8.5(a)
is the filtered topology diagram, which highlights the main topological features in
the data. Figure 8.5(b–h) shows the same diagram together with a sequence of levels
sets (isosurfaces) of increasing isovalue. These combined visualisations allow a better
determination of the relationship among the different level sets and extrapolation of
the possible shape of the level sets not being displayed. Fewer views into the data
are needed to achieve the same confidence and accuracy in the understanding of the
structure of the field.

8.4 CONCLUSIONS

Traditional techniques for scientific visualisation lack the ability to explicitly present
the structure of a scalar field to the user. We have presented a definition of topology
diagram for PL fields and a straightforward algorithm for its computation and rendering.
For 2D fields, the approach follows rigorous Morse theoretical definitions. In the 3D
case, we have introduced some approximations to maintain the efficiency and simplicity
of the computation.
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The resulting topology visualisation serves both to provide information, which is
not available in commonly used scalar visualisation techniques, as well as to reinforce
or to enhance the information provided by standard visualisation techniques. In other
words, the efficiency of a visualisation tool is improved not by reducing the image
rendering time but by providing guidance to the user in the data exploration process.
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Topology-Guided Downsampling
and Volume Visualisation

Martin Kraus and Thomas Ertl

9.1 INTRODUCTION

Interactive rendering of volumetric data is one of the great challenges in computer graph-
ics, with applications in scientific visualisation, virtual reality, computer games, and so
on. In analogy to the success of texture mapping techniques over two-dimensional geo-
metric representations of fine details, researchers have expected a similar success of
volume graphics compared to polygonal graphics. However, this breakthrough in vol-
ume graphics has never happened – among other reasons, because the third dimension
of volumetric data requires volumetric representations to grow faster than the size of the
frame buffer, while two-dimensional texture maps may grow at exactly the same speed
as the frame buffer without loss of image quality.

Nonetheless, volume rendering has found its niches and is slowly gaining relevance
in interactive rendering techniques. While there are no alternatives for some applica-
tions, for example, in three-dimensional medical imaging, the volumetric representation
of extremely fine structures, for example, for furs or garments, offers additional realism
that is hard to achieve with pure geometric representations.

There are numerous approaches to direct volume rendering; however, only a few
achieve interactive frame rates for any but rather small meshes. With respect to
hardware-accelerated volume rendering, implementations of texture-based volume ren-
dering (see, for example, Engel et al., 2001) offer impressive performances but require
the volume data to fit into the texture memory of graphics adapters. Software-based
approaches avoid this restriction and benefit from several optimisations that are hard to
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implement in hardware-based approaches, in particular, before the development of pro-
grammable graphics hardware. Probably, the most efficient software-based algorithm
for volume rendering is the shear-warp algorithm (see for example, Schulze et al.,
2003). Remarkably, texture-based volume rendering and the shear-warp algorithm are
both based on uniform volumetric grids.

The reason for this predominance of uniform grids is at least twofold: Firstly, their
implementation is well supported by means of texture mapping in graphics hardware
and they can be processed efficiently in a fixed, linear order in software. Secondly,
more general – in particular, unstructured – meshes propose many additional difficul-
ties because of their geometry, for example, a non-convex boundary and a non-trivial
visibility ordering of cells, to name just two characteristic features of unstructured
meshes. Therefore, the predominance of uniform grids in interactive volume rendering
is likely to continue in the future.

As mentioned, the fast growth of memory requirements for volume graphics is the
most important reason for their limited popularity. Therefore, simplification methods for
volume data are even more important than the corresponding decimation techniques for
polygonal meshes. Downsampling is of particular interest in this context as it converts
uniform grids into coarser but still uniform grids, which is an important advantage
considering the exceptional role of uniform grids for interactive volume rendering.

Traditional downsampling methods include sub-sampling, that is, successively delet-
ing vertices, and replacing groups of vertices (for uniform volumetric grids usually
2 × 2 × 2) by one vertex with the average data value as suggested for two-dimensional
mip maps by Williams in (Williams, 1983) and for three-dimensional mip maps by
Levoy and Whitaker in (Levoy and Whitaker, 1990). One generalisation of this method
is to filter a mesh before sampling it at a lower resolution; for a recent application
see (He et al., 1996). Many algorithms for volume visualisation have been accelerated
by employing downsampled meshes, for example, ray casting (Danskin and Hanra-
han, 1992, Levoy and Whitaker, 1990), splatting (Laur and Hanrahan, 1991), and
isosurface extraction (He et al., 1996, Shekhar et al., 1996, Ohlberger and Rumpf,
1997, Westermann et al., 1999). For all these techniques, downsampling is an essential
pre-processing step.

However, traditional downsampling methods ignore and, therefore, destroy the topol-
ogy of the original scalar field. As the topology of a scalar field is based on its critical
points, topology preservation of a scalar field is often defined as the preservation of
all critical points (see, for example, Bajaj and Schikore, 1998, Gerstner and Pajarola,
2000). The theoretical framework for this definition is provided by Morse theory (see
Milnor, 1963).

While the topology of a scalar field is not uniquely defined, the topology of sur-
faces – and isosurfaces in particular – is well defined. In fact, the topology of iso-
surfaces is strongly related to the critical points of the corresponding scalar field.
Thus, the topology of isosurfaces extracted from downsampled meshes will usually
deviate strongly from the topology of the original isosurfaces, that is, the number of
disconnected components, tunnels, and holes will strongly differ.

Unfortunately, the topology of an isosurface is, in many cases, its most important
feature as it allows the user to navigate in a volume, to identify noise in a data set, or
to estimate the quality and plausibility of extracted shapes or structures. Therefore, it
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is often useful to use topology-preserving simplification techniques in order to extract
isosurfaces with the correct topology even from coarse meshes. Examples of such
techniques have been published in (Bajaj and Schikore, 1998, Gerstner and Pajarola,
2000). However, these approaches are limited to simplicial meshes and are, therefore,
not very well suited for volume rendering algorithms for uniform grids.

Topology-guided downsampling, a method first published by us in (Kraus and Ertl,
2001), fills this gap by providing a simple algorithm for downsampling uniform grids
without blindly destroying the topology of the scalar field. This is achieved by calcu-
lating critical points and determining the data values of the downsampled mesh from
this classification. The method is named topology-guided downsampling as topology-
preserving downsampling is impossible, in general. However, even an approximate
preservation of topology is highly desirable if isosurfaces are extracted from the
downsampled grid, for example, for interactive previewing, because many topological
features of the isosurfaces are preserved. After describing topology-guided downsam-
pling in Section 9.2, the generation of simplified isosurfaces with this downsampling
method is presented in Section 9.3. In Section 9.4, we discuss some recent develop-
ments in direct volume rendering and applications of topology-guided downsampling
in this context.

9.2 TOPOLOGY-GUIDED DOWNSAMPLING

In order to show how to use topology-related concepts for structured meshes, this
section presents a downsampling method for uniform volume meshes that preserves
much more of the topology of a scalar field than existing downsampling methods, by
preferably selecting scalar values of critical points. In particular, many critical points
that are lost by traditional downsampling methods can be preserved.

As topology-guided downsampling works as well in two dimensions as in three
dimensions, the algorithm will be illustrated with the help of the two-dimensional scalar
field f (x, y) depicted in Figure 9.1(a), which is defined by a bilinear interpolation
between scalar values at the vertices of a two-dimensional uniform grid. Isolines are
extracted from this mesh by decomposition into triangular cells and slicing the resultant
height field with a horizontal plane as depicted in Figure 9.1(b).

(b)

f (x, y)

(a)

y

x

Figure 9.1 (a) A two-dimensional scalar (height) field; and (b) piecewise linear approximation to an isoline
in the scalar field of (a)
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In order to (approximately) preserve the topology of this scalar field, its critical
points have to be preserved. The first step is therefore to identify critical points in two-
and three-dimensional structured meshes.

9.2.1 Critical points in two dimensions

Critical points are local maxima, local minima, and saddle points. They indicate points
where an isoline or isosurface changes its number of components or its genus. It is an
important advantage of simplicial meshes, that is, triangular meshes in two dimensions
and tetrahedral meshes in three dimensions, that all critical points are located at vertex
positions. Therefore, two-dimensional structured meshes are usually decomposed into
simplicial meshes as illustrated in Figures 9.1(b) and 9.2(a). It should be noted that
this decomposition is only virtual, that is, it is not stored in any data structures but
performed on the fly whenever it is required.

In order to handle vertices at the boundary of the mesh, the missing neighbours are
(virtually) generated by mirroring neighbouring vertices across the boundary (see Gerst-
ner and Pajarola, 2000). With this in mind, the decomposition into triangles employed in
Figure 9.2(a) generates only two kinds of vertex neighbourhoods: one with four neigh-
bours, as depicted in Figure 9.3(a), and another with eight neighbours, as depicted in
Figure 9.3(b).

In analogy to (Gerstner and Pajarola, 2000), the corresponding surrounding polygon
of a vertex is defined as the boundary of the adjacent triangles. The surrounding
polygon defines an edge graph, which will be used in order to classify the surrounded
vertex as a regular point, local maximum, local minimum, or saddle point.

This classification is achieved by marking each node of the edge graph, that is,
each vertex neighbour of the surrounding polygon of a vertex. A neighbour is marked
with 1 if its data value is greater than the value at the surrounded vertex, and a 0
otherwise. Then all edges between a 1 node and a 0 node are deleted, and the number
of the remaining connected components of the edge graph is counted. The point is an
extremum if this number is one. If it is two, then the point is regular; otherwise the
point is a saddle point. The results of this classification for each vertex of the mesh
of Figure 9.1(a) is visualised in Figure 9.2(a). Note that this classification ignores
any degeneracies. This is legitimate as we are concerned only with an approximate
preservation of critical points.

(a) (b)

Figure 9.2 (a) The critical points of the field of Figure 9.1(a). Maxima are marked with dotted circles,
minima with disks, and saddle points with empty circles; and (b) the partitioning of the same mesh employed
for downsampling



Topology-Guided Downsampling and Volume Visualisation 135

(a) (b)

Figure 9.3 The surrounding polygon (thick line) of a vertex with (a) four neighbours; and (b) eight neigh-
bours

9.2.2 Critical points in three dimensions

The first problem of a generalisation to three dimensions is to find a suitable tetrahedral-
isation of a structured hexahedral mesh. In (Carr et al., 2003) various decomposition
schemes for three-dimensional structured meshes are discussed and a subdivision of
each hexahedral cell into six square pyramids with their apices in the cell center is
chosen, although this requires that new data points are interpolated. Topology-guided
downsampling avoids new data points and therefore each hexahedron is subdivided
into five tetrahedra. As mentioned in (Carr et al., 2003), this decomposition is not
symmetrical as it generates two kinds of vertex neighbourhoods. Also note that the
decomposition is only virtual, that is, it is performed on the fly.

In analogy to the two-dimensional case, the corresponding surrounding polyhedron
of a vertex is defined by the boundary of the adjacent tetrahedra (see Gerstner and
Pajarola, 2000). In the case of the decomposition of hexahedral cells into five tetrahedra,
there are two different kinds of surrounding polyhedra: an octahedron and a triangulated
cubeoctahedron (see Figures 9.4(a) and (b)). However, the approximative nature of the
presented algorithm allows us to relax the need for a correct simplicial decomposition
and employ the triangulated cubeoctahedron for all vertices.

The classification of vertices as regular points, local maxima, local minima, and
saddle points is performed in a similar way to the two-dimensional case. In particular,
nodes of the edge graphs defined by the surrounding polyhedra are marked in the same
way: Nodes with a data value greater than the data value at the surrounded vertex with
a 1, otherwise with a 0.

9.2.3 Preservation of critical points

One of the results of Morse theory is that all critical points of a scalar field have to
be preserved in order to preserve the topology of all its isosurfaces. However, it is not
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(a) (b)

Figure 9.4 Surrounding polyhedra of a vertex: (a) six neighbours define an octahedron; and (b) 18 neigh-
bours define a triangulated cubeoctahedron

necessary to preserve the exact geometric position of the critical points. Nonetheless,
the scalar values at all critical points have to be preserved exactly. Otherwise the
topology of isosurfaces for isovalues in the interval between the old and the new scalar
value at a critical point is changed. For example, if a local maximum is preserved but
its scalar value vmax is decreased to v′

max < vmax, all isosurfaces for isovalues in the
interval [v′

max, vmax] will be modified topologically. This is what usually happens to
local extrema with the traditional combination of filtering and downsampling.

An example is given in Figures 9.1, 9.2(b), and 9.5. The scalar field of Figure 9.1(a)
is downsampled by averaging the scalar values (i.e. heights) over groups of four (or
less) vertices as indicated in Figure 9.2(b) (for now the marks of the critical vertices
should be ignored). Each group of vertices corresponds to one new vertex of the
downsampled mesh depicted in Figure 9.5(a). Because of the averaging, the height
of both maxima is decreased in the new field. Therefore, the isolines for the same

(a) (b)

Figure 9.5 (a) The scalar field obtained by averaging downsampling of the mesh of Figure 9.1(a); and
(b) piecewise linear approximation to an isoline in the field of (a) for the same isovalue as in Figure 9.1(b)
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(a) (b)

Figure 9.6 (a) Same as Figure 9.5(a) but for topology-guided downsampling; and (b) same as Figure 9.5(b)
for the field in (a)

isovalue are topologically different for the original field and its downsampled version
as illustrated by Figures 9.1(b) and 9.5(b).

The goal of the presented method is to avoid these changes whenever possible;
therefore, linear filtering has to be avoided. Thus, an appropriate downsampling prin-
ciple is to select and thereby preserve the scalar values of critical points. Although this
selection does not guarantee the preservation of critical points, the preservation of the
selected scalar values is a necessary condition for the preservation of critical points.

The selection is illustrated in Figure 9.2(b), where all critical points are marked.
In this example, each group of vertices contains exactly one critical point. The scalar
value of each critical point is then used for downsampling instead of the average height
of the group of vertices. The resultant downsampled mesh is depicted in Figure 9.6(a).
Figure 9.6(b) demonstrates that the topology of the isoline of Figure 9.1(b) is preserved
with this downsampling technique. The following section describes topology-guided
downsampling for three-dimensional meshes in more detail.

9.2.4 Steps of the algorithm

Topology-guided downsampling reduces the number of vertices of a volumetric struc-
tured mesh with even dimensions by a factor of eight by replacing groups of 2 × 2 ×
2 = 8 vertices by one vertex. For each disjoint group of 8 vertices, the following steps
are performed in order to determine the scalar value of the new vertex. (If not given
implicitly, the position of the new vertex is determined by the average position of the
8 vertices.)

1. For each vertex of the group, compute whether it is a regular point, a saddle point,
or an extremum. Also, compute the average scalar value of these vertices.

2. If there is no critical point, the average scalar value is the result.
3. If there is only one critical point, its scalar value is the result.
4. If there are multiple saddle points but no extremum, the scalar value of the saddle

point with the largest absolute distance to the average scalar value is the result.
5. If there are (multiple) saddle points but only one extremum, the scalar value of the

extremum is the result.
6. Otherwise, the scalar value of the extremum with the largest absolute distance to

the average scalar value is the result.



138 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

Steps 1 to 3 are motivated by the considerations described above. Steps 4 to 6 reflect
an interest in the most “important” critical points, since many saddle points would not
exist without a neighbouring extremum and distant critical points are likely to have
more influence on the topology of isosurfaces than critical points close to the average
scalar value.

This downsampling procedure can be applied repeatedly – each time reducing the
number of vertices by a factor of 8. However, in comparison to averaging downsam-
pling methods, much more of the topological information is preserved by this algorithm,
as is demonstrated in the next section.

9.3 EXTRACTING ISOSURFACES FROM DOWNSAMPLED GRIDS

Topology preservation has seldom played an important role for the simplification of
volumetric grids. This is partly due to the fact that a complete preservation of the topol-
ogy of a scalar field is impossible with downsampling techniques. More importantly,
the shape and topology of isosurfaces was considered less important for volume ren-
dering as long as isosurfaces could not be rendered with the help of volume rendering
techniques but had to be approximated by polygonal meshes. Since these polygonal
meshes can be simplified without affecting their topology, the simplification of the vol-
ume data was of less interest. Moreover, isosurface extraction was often accelerated
by hierarchical space partitioning, which was successfully combined with topology
preservation (see Gerstner and Pajarola, 2000).

However, the simplification of volumetric meshes offers considerable advantages
as it reduces the amount of data and, therefore, accelerates any visualisation method,
including the extraction of isosurfaces. Furthermore, the simplification of a volumetric
mesh is independent of any visualisation parameter, including isovalues; thus, the sim-
plification does not have to be repeated when the user modifies these parameters. In
contrast to this early simplification, any decimation of a polygonal approximation to an
isosurface has to be re-computed for each new isovalue. Thus, topology-guided down-
sampling combines the advantages of an early mesh simplification with an approximate
preservation of the topology of isosurfaces.

Our first example is a CTA (computer tomography angiography) volume data set
showing blood vessels around an aneurysm. It is well suited for the demonstration
of topology-guided downsampling as it contains noise and structures of very different
sizes. The resolution of this data set is 128 × 128 × 60 voxels and 8 data bits per voxel.
In order to visualise it, an isosurface for a fixed isovalue is extracted with a simple
marching tetrahedral algorithm after decomposing the uniform mesh into tetrahedra as
explained in the previous section. Figure 9.7(a) depicts the resultant isosurface of the
original data set. All isosurfaces are rendered using flat shading with surface normals
calculated directly from each triangle in order to emphasise the underlying grid structure
even for very fine meshes. Of course, pre-integrated volume rendering for uniform grids
(see Section 9.4) could also be used to render these images.

The downsampling results of the presented algorithm will be compared to a simple
averaging downsampling that replaces eight vertices by one vertex with the average
data value as employed in (Williams, 1983, Levoy and Whitaker, 1990, Danskin and
Hanrahan, 1992). More general filtering and downsampling methods, for example, (He
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(a) (b)

(c)

Figure 9.7 (a) An isosurface extracted from a 128 × 128 × 60 CTA volume data set; (b) same isosur-
face extracted from a mesh downsampled to dimensions 32 × 32 × 15 with averaging downsampling; and
(c) same as (b) with topology-guided downsampling

et al., 1996), suffer essentially from the same problems for a comparable downsam-
pling rate.

Figure 9.7(b) depicts the isosurface for the same isovalue as in Figure 9.7(a) but
extracted from a downsampled volume of dimensions 32 × 32 × 15 using traditional
averaging downsampling. In contrast, Figure 9.7(c) depicts the result for the same set-
tings but uses topology-guided downsampling as described in the previous section with
the cubeoctahedron being the surrounding polyhedron of all vertices. The compression
rate is (1/8)2 ≈ 1.6% in both cases. Note that none of the two downsampling methods
depends on a particular isovalue, that is, the user may choose an isovalue after the
downsampling, which is only a pre-processing step.

Obviously, the noise manifesting itself in small disconnected parts of the original
isosurface in Figure 9.7(a) is partially preserved with topology-guided downsampling in
Figure 9.7(c) but is almost completely lost with averaging downsampling in Figure 9.7(b).
More importantly, several crucial connections of blood vessels visible in Figure 9.7(a)
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become disconnected in Figures 9.7(b) and (c). However, topology-guided downsam-
pling preserves at least parts of the vessels while averaging downsampling results in
larger gaps, or even the complete vanishing of parts of vessels, for example, at the top of
Figure 9.7(b).

Our second example is a CT scan of a bonsai, which features a sharp but very com-
plex border between air and the plant with many fine details. Figure 9.8(a) depicts the
whole isosurface. The grid’s resolution of 256 × 256 × 128 vertices is high enough
to reconstruct single leaves. This way of representing a tree is related to shape mod-
elling techniques based on voxelised scenes (see He et al., 1996). Again, we will show
that topology-guided downsampling preserves more details of the shape for higher
downsampling rates, which is crucial for this kind of applications.

(a)
(b)

(c)

Figure 9.8 (a) An isosurface extracted from a CT scan of a bonsai; (b) same isosurface but extracted from
a grid of dimensions 32 × 32 × 16 with averaging downsampling; and (c) same as (b) with topology-guided
downsampling
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Figures 9.8(b) and (c) show the same isosurface after three downsampling steps. While
the shape is no longer recognisable after averaging downsampling in Figure 9.8(b),
topology-guided downsampling preserves a coarse representation of the original shape,
as shown in Figure 9.8(c). (The isosurface in Figure 9.8(c) was clipped at the borders of
the volume; this resulted in two dark holes.)

This example suggests that topology-guided downsampling is not only useful for
scientific volume visualisation but also for shape modelling based on volume graphics,
in particular, if models have to be represented with different levels of detail.

9.4 DOWNSAMPLING FOR DIRECT VOLUME RENDERING

There has been considerable progress in recent years with respect to the rendering
of isosurfaces with the help of hardware-accelerated volume rendering techniques.
Westermann and Ertl (1998) were one of the first to propose a method based on
texture-based volume rendering for isosurfaces. In (Westermann et al., 2000), Wester-
mann et al. extended this technique to multiple isosurfaces. Rezk-Salama et al. (2000)
employed programmable colour computations of modern graphics adapters in order to
implement advanced shading computations for isosurfaces generated by texture-based
volume rendering. Further progress was initiated by Engel et al. (2001), who applied
the concept of pre-integration to texture-based volume rendering, and thus achieved a
high image quality at interactive frame rates without the need for an extreme rasterisa-
tion performance. Moreover, pre-integrated volume rendering allows us to render any
number of shaded isosurfaces of any shape. On the basis of this idea, Meissner et al.
(2002) discussed shading of multiple isosurfaces. Furthermore, pre-integration was also
combined with the shear-warp algorithm by Schulze et al. in (Schulze et al., 2003).

Unfortunately, the high frame rates offered by pre-integrated, texture-based volume
rendering (as proposed in Engel et al., 2001) are only possible if the mesh data fit into
the local texture memory of the graphics adapter, otherwise bandwidth limitations will
reduce the frame rates dramatically. Therefore, it is essential to reduce the texture mem-
ory requirements accordingly, that is, to simplify the corresponding uniform grids such
that the textures fit into the available texture memory. As mentioned, pre-integrated
volume rendering allows for the rendering of isosurfaces; thus, the preservation of the
scalar field’s topology can become just as important for volume rendering as it is for
the extraction of isosurfaces. Therefore, topology-guided downsampling is one of the
few simplification techniques that is appropriate for this purpose.

Programmable graphics hardware has also been employed for the implementation
of advanced data structures. One important disadvantage of uniform meshes is their
lack of adaptivity, that is, the fixed resolution and the box-shaped boundary. In order
to compensate for this non-adaptivity, uniform meshes usually need to have a higher
resolution and a larger domain than unstructured meshes for the same problem. This,
however, results in large mesh sizes, which are inappropriate for texture-based volume
rendering algorithms because of the usually quite limited texture memory of graphics
hardware. Thus, the main advantage of uniform meshes, that is, the support by texturing
hardware, is often severely diminished.

In order to overcome this dilemma, we proposed the concept of adaptive volume
textures in (Kraus and Ertl, 2002). Independently, McCool (2000) proposed even more
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advanced concepts in (URL #2); in particular, the “sparse blocked texture storage” is a
very similar technique. Adaptive texture maps offer at least a limited form of adaptivity
in the twofold sense of a locally adaptive resolution and an arbitrary boundary of the
mesh. They are based on a two-level representation of mesh data that is appropriate for
hardware-accelerated on-the-fly decoding with programmable texturing hardware. This
kind of texture compression is particularly well suited for the texture-based volume
rendering algorithms mentioned above.

The generation of adaptive volume textures requires the generation of a hierarchy of
downsampled grids. If the choice of the downsampling level is based on an approxi-
mation error between the original and the downsampled data, a downsampling method
based on simple averaging or linear filtering is often appropriate. However, the choice
of the downsampling level may also be based on topological features of the data, for
example, because the topology of extracted isosurfaces is more important for a partic-
ular application than any overall approximation error. Moreover, even if the choice is
based on an approximation error, a large approximation error might be acceptable and
a preservation of topological features can be desirable at the same time. In these cases,
topology-guided downsampling is the appropriate downsampling algorithm. Similarly,
it is useful for the generation of many other hierarchical data representations.

9.5 SUMMARY

In this chapter, we have reviewed the basic algorithm of topology-guided downsam-
pling; in particular, the role of critical points and, more specifically, the importance of
preserving the data values at critical points was discussed. Although the basic steps
of the algorithm were explained in two dimensions, our focus in this chapter was
on applications of topology-guided downsampling to three-dimensional scalar fields.
Therefore, we illustrated the algorithm with volumetric data from medical imaging. Of
course, topology-guided downsampling may also be applied to many other problems
in volume graphics, for example, visualisation of flow data or geophysical data, or
rendering of natural phenomena such as smoke, clouds, fire, or semi-transparent fluids.

We have discussed techniques of indirect volume visualisation, that is, the extrac-
tion and rendering of isosurfaces, and direct volume rendering, namely, pre-integrated,
and texture-based volume rendering. As mentioned, the possibilities offered by pro-
grammable graphics hardware with respect to the rendering of isosurfaces and the
handling of advanced data structures have led to a strong need for topology-preserving
algorithms for the simplification of uniform grids because hardware-accelerated texture
mapping usually relies on uniform grids. Since a complete preservation is not possible
for these meshes in general, the approximate topology preservation of topology-guided
downsampling appears to be the most appropriate downsampling method.

As volume rendering becomes more popular and, at the same time, more demand-
ing because of the ever-growing sizes of data sets, innovative solutions are strongly
required for many of the basic problems in volume graphics. In this chapter, we have
shown that topology-related concepts can lead to successful solutions for problems
in volume rendering not only of unstructured but also of uniform volumetric meshes.
Moreover, we are convinced that there are many more applications of topology-related
approaches in volume graphics that are still to be discovered.
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Application of Surface Networks
for Augmenting the Visualisation
of Dynamic Geographic Surfaces

Sanjay Rana and Jason Dykes

10.1 INTRODUCTION

The animation of geographic surfaces as a temporal series (e.g. an evolving part of
sea coast) and attribute series (e.g. a sequence of population density surfaces) is
done widely in geovisualization. These animations are popular because they reveal
the spatial variations in a single frame, thus eliminating the effort to memorise and
match differences. The techniques for animating surfaces have evolved from simple
paper cartoons (McCloud, 1993) to sophisticated hardware–software driven solutions
of modern times (Ware, 2000). Geovisualization researchers in collaboration with com-
puter graphics researchers have tried to change the static nature of geospatial datasets’
visualisation with ever-advancing and aesthetically appealing geovisualization inter-
faces. As a consequence, surface animation function is often a standard component
of many current geographic information systems (GIS). However, despite the vast
improvements in technology, a question posed in early 1960s by Bertin (Bertin, 1967),
“whether animation helps in a better understanding”, is still thrown back and forth
between geovisualization researchers. There have been a number of attempts to char-
acterise the issues in animated geovisualization (Emmer, 2001, Ogao and Blok, 2001,
Ogao and Kraak, 2001, Koussoulakou, 1990, Dibiase et al., 1992, Peterson, 1993,
MacEachren, 1995a,b, Ware, 2000, Slocum et al., 1990). Please refer to Ware (2000)
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for a comprehensive comparison between advantages and disadvantages of animated
visualisation and identifications of suitable research directions.

Bertin’s main argument against animated maps is that the presence of motion dis-
tracts a user’s attention from the visual properties (e.g. colours, shape etc.) of symbols,
thereby resulting in a limited interpretation. Unlike static maps, an animated map
requires continuous attention to the stream of information. Bertin’s criticism is further
strengthened by Miller’s (1956) observation that humans could only follow about 7 ± 2
visual cues simultaneously. In other words, it cannot be guaranteed that animation will
be useful for interpretation due to the free flow of information. Although Dibiase et al.
(1992) and MacEachren (1995a,b) proposed methods to control the transient symbol-
ogy in animation, formal and generic guidelines for the use of these visual variables
do not exist. Therefore, whilst their effectiveness is largely unknown, Bertins’ (Bertin,
1967) objections are not fully satisfied. Please see (Gershon, 1992, and Acevedo and
Masuoka, 1997), for studies on the implications of dynamic visual variables, such as
frequency, frame rate, and others, on time-series animations.

We believe that in most cases this limitation of animated geovisualization has arisen
from mainly two sources-namely, the conceptual (e.g. design-related issues) and imple-
mentation (e.g. software, hardware) limitations. In the not so distant past, limited
hardware capabilities and non-graphics oriented languages restricted the scope of ani-
mation. Certainly, the hardware and software available to generate animations has
improved significantly (Earnshaw and Watson, 1993, Gahegan, 1999) but a desktop
solution for our often massive surface datasets still seems some years away. On the
contrary, conceptual limitations are less well defined but at least they do not require
an in-depth understanding of modern sophisticated computer hardware and software.
The above limiting factors start to take effect from the start of the geovisualization
process, that is, preparation of spatial datasets (e.g. lack of spatio-temporal continuity
in spatial datasets) and then eventually lead to interpretation stage as information over-
load. In our view, visualisations available as part of the AIDS Data animation project
(URL #3) is one such example of poor design and implementation, in which because
of the high and sudden variations in successive frames, the inter-frame variations in
spatial patterns appear as movements to the viewer. MacEachren (1995a,b) offers a
perceptual and cognitive treatment for such misleading interpretations. The combined
effects of these factors are distraction, poor retention, and lack of clear expression of
the information (Morrison et al., 2000, Gahegan, 1999, Openshaw et al., 1994).

In this chapter, we offer an approach that will address both the design and
implementation-related limitations in geovisualization. Our approach is based on an
extension of the proposals by Pascucci (see Chapter 8) on using the surface network for
scientific visualisation to represent dynamic geographic surfaces. We will demonstrate
how the surface network representation offers both intuitive design insights and also
improvements in implementation. A much detailed implementation of our approach
can be found in an earlier version of this work in (Rana and Dykes, 2003). In this
chapter, we present the parts of our approach related to the role of surface networks
in geovisualization and steps leading to it.

Our approach takes advantage of techniques from computer graphics and geogra-
phy. It must be stressed at this stage that the exact implementation of any of our
approaches should inevitably vary according to the context of the visualisation (data,
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user, use, etc.). We want to emphasise that the approach proposed here is not in any
way the “optimal” or the “most effective” method to use. At the same time, our aim
is to provide sufficient explanation in the following sections to demonstrate the pro-
posed approach and use examples to illustrate ways in which it may be applied in a
flexible manner.

10.2 PROPOSAL

Like in previous chapters, in order to realise a surface network, we assume that the
geographic surface is a doubly continuous function of the form z = f (x, y), where z

is the property (e.g. elevation, population density etc.) being mapped and associated
with a point (x, y). Although this topological integrity of surface is required to ensure
mathematic tractability, it is not crucial for visualisation. Therefore, the visualisation
of any surface that contains surface network features, namely, the peaks, pits, passes,
ridges, and channels, could equally benefit from our approach even though it might
not be based on a consistent surface network. This is because we believe that sur-
face network in any form highlights the information of the surface (data) where the
definition of information is based on Shanon’s Information Theory (Salomon, 1998)
that information is only the useful part of the data. We will supplement this argument
with more reasons in Section 10.2.2.

10.2.1 Step 1: Ensuring high or increased spatio-temporal continuity

Commonly available, digital surface datasets (e.g. rasters) that model continuous geo-
graphic phenomena often have coarse spatial and temporal solutions. The most common
reason for poor spatio-temporal resolutions in socio-economic geographic surfaces is
deliberate aggregation of high-resolution point dataset into large cells in order to pro-
tect the privacy of the population. For example, the UK population density surfaces
available from Census Dissemination Unit, UK (URL #4) have a spatial resolution
of 200 m (Figure 10.1) although the original dataset is collected at household levels.
In some cases, poor spatio-temporal resolution could also be a result of commer-
cial/strategic interests and/or the lack of resources to collect data at higher resolutions.

5–15 years 16–59 years 60+ years

Maximum

Figure 10.1 Population density surfaces of the different age cohorts in an area in NE Leicester, UK
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?

February 1997 September 1997

Figure 10.2 Digital elevation models of a sand spit at Scolt Head Island, North Norfolk, UK. Two situations
are shown representing the results of survey of the feature in 1997

For example, Figure 10.2 shows the digital elevation model of sand spit under active
denudation at Norfolk coast, England, generated from height data collected only twice
a year (Source: Jonathan Raper, City University, UK). Clearly, the end user, that
is, the visualiser/animator of these spatial datasets, is unaware of the information
related to lost details. The lost details are, however, indispensable since they only
can create the impression of a smooth continuity, fundamental to animation. In the
absence of the vital information about the surface, the cartographic principle of intro-
ducing arbitrary details can be applied to generate aesthetically pleasing surfaces. In
other words, a “cartographic lie” will have to be incorporated in the visualisation
process. We propose the following two methods for increasing the spatio-temporal
continuity.

10.2.1.1 Increase spatial and attribute resolution

There are many types of spatial interpolation possible for generating a smooth surface
from the coarse-resolution surfaces. Openshaw et al. (1994) suggested the use of den-
sity estimation methods, such as those proposed by Gatrell (1994) and Bracken (1994),
for creating a smooth map display of socio-economic data. More recently, Paddenburg
and Wachowicz (2001) studied the use of spatial generalisation to reduce noise in raster
surfaces and concluded that this pre-processing reveals the true information otherwise
suppressed by noise. Simpler methods such as fitting a bivariate quadratic polynomial
function (Wood, 1998) through the surface to derive the smooth interpolated forms
of the surface are equally effective. Spatial resolution could be done in the following
two ways:

(i) Increasing attribute (thematic) resolution by interpolation to the current spatial res-
olution. The interpolation of the attribute values of the surface (e.g. elevation) using
a quadratic polynomial function also results in an increase in the attribute resolution
as the abrupt differences between adjoining attribute values are reduced. This can
be considered “attribute smoothing”.

(ii) Increasing the spatial resolution by interpolation to a higher spatial resolution. This
process involves the generation of additional data and the visual effect is one of
spatial smoothing. In cartographic terms, this process could be considered as an
“exaggeration”.
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10.2.1.2 Increase inter-frame continuity

As shown in Figure 10.2, because of practical limitations, ordered sequences of ter-
rain surfaces could not be sampled frequently enough to create a continuous temporal
series; yet, the feature changes constantly in the dynamic coastal environment in which
it is subject to denudation and deposition (Raper, 2000). The temporal gaps lead to
abrupt changes in the animation of dynamic surfaces (Shepherd, 1995). In the case of
the socio-economic surface animation (Figure 10.1), the variations between the differ-
ent age cohorts will also be unnoticeable because of the sudden and subtle changes.
Attempts to reduce the abrupt jumps between successive situations depicted in an ani-
mation so as to increase inter-frame continuity include adjustment of the “duration”
dynamic visual variable, either by slowing the sequence or through direct user control.
Alternatively, additional situations can be derived from the data to smooth transitions.
This step is also an “exaggeration” effect with the aim to include “microsteps between
larger steps”, as these are found to be beneficial to the viewer (Morrison et al., 2000).

A number of techniques exist for generation of animations in this way. One of the
simplest methods is blending, through which a smooth transition of intermediate sit-
uations or “microsteps” can be achieved. Blending is used widely in the computer
graphics field for transforming one particular shape or object into another (Gomes
et al., 1998). It is also available in commercial graphics software such as 3D Studio
Max (URL #5), which provide tools for applying the technique to both raster and vec-
tor spatial datasets. A basic implementation of blending involves a linear interpolation
between the two consecutive situations (frames); however, a more sophisticated non-
linear interpolant could also be used to visualise punctuated phenomena. The MapTime
software (Slocum et al., 2001) makes use of the first of these options for generating
intermediate frames between two situations1.

10.2.2 Highlight the information in surface

As mentioned in the introduction, human visual processing has limited capabilities for
interpreting the parallel information streams that characterise dynamic processes (Ware,
2000). Human cognition processes, especially the working memory can follow at most
7 ± 2 simultaneous cues (Miller, 1956, Ware, 2000). Therefore, highlighting the infor-
mation is a key cartographic objective when scenes are complex. Morrison et al. (2000)
indicated that a clear apprehension and expression of the conceptual message is essen-
tial in animated graphics. Tobler (1970) proposed reducing complex processes into
component parts or simplified representations. Dransch (2000) identifies a number of
factors that may enhance the cognition process in multimedia systems, including the
need to “increase the important information”. This can be achieved through careful
and meaningful simplification.

The two key types of information in dynamic geographic surfaces are the structure
of the surface and the local importance of points (locations). However, in the common
representations of surfaces such as the colourmap (equivalent cartographic representa-
tion is a hypsometric tint) and contour map (or coloured isopleth), the transfer of the

1 Situations are termed key frames in the context of the MapTime software.
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structural information is dependent upon the contour interval, and spatial and thematic
resolutions (Bajaj and Schikore, 1996; See also Chapter 8). Therefore, a representation
of surface is required, which would provide an objective and yet natural representation
of the surface morphology and structure.

Fowler and Little (1979) proposed that the fundamental topographic features of a
surface, namely, the peaks, passes, pits, ridges, and channels, are sufficient to describe
the significant information about a surface. These topographic features constitute the
surface network, therefore, an application of surface network in computer graphics
has been the visualisation of the structure of surfaces. For example, Helman and
Hesselink (1991), and Bajaj and Schikore (1996) demonstrated that the surface net-
work representation could enhance the graphic representation of vector and scalar
surfaces significantly as compared to the use of colourmaps and contour maps. The
surface is also broken down to five main information streams (3 point types and 2
line types), which would make the changes easily observable. Helman and Hesselink
(1991) reported that the surface network representation helped in both visualisation and
reduction in storage space. Therefore, it can be argued that the derivation of surface
networks from dynamic surfaces has the potential to highlight the information when
animating sequences of surfaces for visualisation, thus reducing the load on the viewer
and potentially aiding interpretation.

In terms of Dransch’s proposals (2000), extracting surface networks will correspond
to a step aimed at increasing the important information, reducing the information
overload, and helping in the creation of a mental model of the dynamic processes. For
example, Figure 10.3 shows a comparison between the surface network representation,
contours, and colourmaps of the Norfolk coast sand spit based on their ability to
describe the structural information of the surface.

In summary, a surface network representation is useful for the visualisation of
dynamic surfaces animation because of the following reasons:

(i) The consistent definition of surface network means that it can be used to quantify
and isolate changes. The surface network provides a frame of reference that could
be used to track changes in the surface, for example, the rate of the displacement
of the ridge lines through an animation could indicate the behaviour of the surface
under changing conditions.

Basic raster surface Basic raster surface
with contours

Basic raster surface
with surface network

Structural information

Figure 10.3 Increase in the structural information delivery with the addition contours and surface net-
work overlays
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(ii) The use of point and line symbols to represent surfaces enables the viewer to
take advantage of their natural propensity to interpret attribute change between
successive scenes as motion and reduces the possibility of minor variations in visual
variables being interpreted as such. The surface network is thus conceptually similar
to the ideas of topological rendering of volume data sets proposed by Upson and
Kerlick (1989), and Kerlick (1990).

10.2.2.1 Generation of the surface network

As shown in Chapters 3 and 4, there are various methods for the generation of surface
networks, for example, depending upon the digital elevation model, that is, whether
raster, triangulated irregular network or contours. It is beyond the scope of this chapter
to discuss the methods in detail as they have already been dealt in detail in Chapters 3
and 4. However, we will highlight an important issue regarding the generation of
feature networks, especially related to raster geographic surface. Automated raster
processing suffers from the limitation that the results of the analysis are subject to the
size of the local neighbourhood, that is, the window or kernel, centred at the study
point, used to perform the processing. In terms of feature extraction, this results in
scale dependencies as topographic features exist across a range of scales and will be
detected by kernels of different sizes (Wood, 1996a,b). For example, the triangulation-
based feature extraction method has the limitation that it only triangulates over the
local neighbourhood of a point; therefore, larger scale features may remain undetected.
Similarly, the bivariate quadratic surface fitting also has the limitation that kernel size
is fixed for each iteration of feature extraction but unlike the previous approach the
kernel size can be increased/decreased iteratively until a visually acceptable level of
simplification has been achieved. While it is clear that the extraction of the features at
all the scales cannot be guaranteed, surface networks offer a form of representation of
the surface that may be suitable for visualisation that takes advantage of animation. It
is likely to lead to insight into the nature of both the simplification and the simplified
surface. Later in Section 10.3.3, an example of the idea of scale series using animation
will be discussed to investigate the effects of scale dependency and interesting insights
provided by them.

10.3 IMPLEMENTATION

Our study data were the population density surfaces and digital elevation models shown
in Figures 10.1 and 10.2. The implementation revealed some promise and highlighted
a number of issues. Various controls to support animated, sequential, and conditional
interaction (Krygier et al., 1997) were implemented in an application surface network
visualiser (SNV) for animating surface networks such as those derived here, in order
to support visualisation. SNV allows an animation of an ordered sequence of sur-
face networks and a range of levels of sophistication of visualisation tasks (such as
query, interactions) as identified by Crampton (2002). SNV also allows a graphic lag
whereby a user-defined rate of change in the lightness of symbols representing the
surface network features is used to fade in and fade out between successive situations.
In its approach, graphic lag essentially implements a type of epichronic symbolism
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(Shepherd, 1995), similar to the ideas of Levy et al. (1970) and Openshaw et al. (1994),
for controlling the brightness and luminosity of symbol colours, respectively.

We used a curvature-based feature extraction to derive the surface network (see
Chapter 4 for more information). This feature extraction is available in the software
LandSerf written by Jo Wood (URL #6).

10.3.1 Animation of temporal series

Figure 10.4 shows the inter-frame continuity achieved by blending (using linear inter-
polation) the terrain of the sand spit recorded in February 1997 into that recorded in
September 1997. While we can clearly observe the variations in relief of the surface,
it is not possible to assess the changes in the structure, as the structural changes are
not obvious from the field view. Figure 10.5 shows a part of the same sequence of the
blending with an overlay of the surface network, in which the changes in the structure
can be identified. Note the detection of the changes in topographic features that are
significant at this scale of measurement at the top right of the spit in Figure 10.5. The
animation can be accessed online and assessed (URL #7).

10.3.2 Animation of attribute series

The interpolation of the population density surfaces to 200-m (same as original spatial
resolution) spatial resolution (Figure 10.6) improves the spatial continuity from that

1 2 3 4 5

6 7 8 9 10 11

12 13 14 16 17

18 19 20 21 22

Situation 1

Situation 2

15

Figure 10.4 22 Intermediate surfaces (microsteps) generated by blending the February, 1997 surface (Sit-
uation 1) into the September, 1997 surface (Situation 2)
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Time

Figure 10.5 Use of the surface network representation to visualise the changes in the morphology of the
sand spit. The box indicates an area of interest. Note that the surface network variations highlight changes
that are not evident from the representation that uses colour to show variation in elevation

Smoothing
to higher
spatial

resolution

5–15 years

Smoothing
to original

spatial
resolution

60+ years16–59 years

Figure 10.6 Smoothing population density surfaces by interpolating to the original (i.e. 200 m) and higher
(i.e. 50 m) resolution. (See Figure 10.1 for the original data)

shown in Figure 10.1 but the cell edges were still visible. Further smoothing by inter-
polating to 50-m cell resolution resulted in a less noisy distribution that is more suitable
for animation and topographic feature extraction (Figure 10.6). The surfaces interpo-
lated to a spatial resolution of 50 m were thus used in this instance to derive the surface
networks. The surface networks of the population density surfaces (Figure 10.7) reveal
the following characteristic spatial patterns of the different age groups:

• The surface networks of the 5 to 15 years and 60+ years age group are generally
sparser than the 15 to 59 years age group.

• Some of the local population density peaks suppressed in the colourmaps (Figure 10.6)
are revealed by the surface network representation. For example, see the cluster of
points in the NW quadrant with some of the highest deviation from the average
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5–15 years 16–59 years 60+ years

Figure 10.7 Use of surface network representation to compare the population density distribution of three
age cohorts in NE Leicester. The surface network was extracted from the 50-m grid resolution surfaces in
Figure 10.6 using a filter window size 9. Note how the variations in the density of surface network highlights
the inhomogeneous age distribution in some parts (e.g. south-east) of the study area

population density. Interactive techniques for extracting/suppressing information in
SNV allow the user to focus in on particular areas of interest such as this.

• The stability of population centres in areas of high population through succes-
sive age cohorts until the older generation is assessed, which displays significant
variation.

10.3.3 Scale series

Because of the multi-scaled nature of the properties characterising most surfaces, there
are multiple valid surface-network representation of the surfaces (Figure 10.8). The
scale dependency can provide interesting insights into the structural organisation of
the mapped property. For instance, Figure 10.8 reveals the gradual aggregation of the
topographic features around the major urban centres with an increase in the feature
extraction window size. However, it remains difficult to arrive at a particular extraction
window size suitable for representing a surface. The choice is likely to be governed
by the scale of the area of interest. A window size that could identify most topo-
graphic features in the surface should be the first choice. For instance, in the case of
Figure 10.8, if one is interested in identifying minor variations in the surface, then
window size 5 is useful and similarly window size 19 will be the most capable one
for detecting larger variations. Animation can however be used to address these issues.
An ordered sequence of feature networks generated across a range of scales can be a
useful tool for visualisation. Using the animation techniques presented here may help
us gain insight into the scale dependence of morphometric feature networks. Indeed,
animation is likely to be a useful tool to sequence through any number of alterna-
tive graphical representations of the data set derived from the flexible application of
the framework.
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5 9

15 19

Figure 10.8 Scale dependency of the surface network in the case of the 16 to 59 years age group popula-
tion density surface. Note how the varying extraction window size (number on the top-right) influences the
detection of features of varying geographic extent. In this case, therefore, the surface network representation
provides an objective method for the identification of age group distribution structure

10.4 CONCLUSIONS, DIRECTIONS, AND PROPOSALS

There is no denying the fact that geovisualization is an inexact science. Some researchers
will in fact argue in favour of keeping geovisualization as informal and open-ended in
order to preserve the exploratory spirit. We believe that while graphical methods for
visualisation should draw on appropriate theoretical literature and exhibit graphic logic,
the degree of success with which the process of visualisation is aided by graphic tools
lies in the “eye of the beholder”. This uncertainty could be the cause of nightmares
to visualisation software developers trying to develop the most effective visualisation
system. These efforts are questionable when experimental and theoretical evidences in
the literature have suggested that human visual processing system does not have the
propensity to interpret complex animated sequences particularly successfully. This is
because of our limited cognitive capabilities for processing parallel streams of more than



154 Topological Data Structures for Surfaces – An Introduction to Geographical Information Science

7 ± 2 information (Miller, 1956). In the words of Morrison et al. (2000), “The draw-
back of animation may not be the cognitive correspondences between the conceptual
material and the visual situation but rather perceptual and cognitive limitations in pro-
cessing a changing visual situation”. Here we have endeavoured to demonstrate that the
combination of methods employed in various related disciplines to support visualisation
offers some opportunity for solutions to this situation. A generic approach is introduced
through which various data transformations are applied in a manner that corresponds with
established cartographic practice. Techniques have been demonstrated using examples
depicting ordered variations in time, attribute, and scale. The aim of these techniques is
to draw parallels between existing cartographic practice and opportunities for informa-
tion visualisation that address identified limitations in processing animated sequences of
surfaces for prompting thought and insight. The proposal can be summarised as follows:

(i) Increasing the inter-frame spatial and attribute continuity by removing small-scale
variations and focusing on broader trends. A clear parallel exists between this
process and that of smoothing in static cartography.

(ii) Highlight the information content by way of a surface network representation. The
aim is to make the significant information about the surface explicit, an important
objective under the identified limitations of animated cartography.

We also hope that we have highlighted the opportunity for a more generic application
of cartographic techniques to the complex graphics that we generate in our efforts
to gain insight into dynamic and multifaceted phenomena. We have achieved this
by drawing analogies between the techniques developed in cartography to highlight
information in maps and our own efforts to generate tools and techniques that make
animations suitable for visualisation.

We have developed a working software to demonstrate our ideas. It can be accessed
by the reader in order to assess the ideas presented and their implementation (URL #8).
The software is available for an online informal evaluation similar to the way recom-
mended by Blok and others (URL #9). We anticipate extending the software further in
response to formative evaluation. We plan to add functionalities that include increasing
the levels of interactivity in SNV by adding a graphic lag to the coloured symbols and
intelligent zooming that relates to particular features. One of our long-term objectives is
to integrate the different techniques into single software so that various decisions could
be implemented and visualised in real time. The current version of SNV is “loosely
coupled” according to Rhyne’s (1997) model of levels of integration software for GI
processing and visualisation, a typical situation when developing rapid prototypes and
experimenting with ideas.

Finally, we believe that the suitability of the visualisation (tools and representations)
should be evaluated in relation to their qualities for particular applications. There are no
established universal guidelines for interactive environments and theories of interactive
geovisualization; therefore, any formal evaluation of prototype implementation requires
a sympathetic appreciation of the deliverables of such prototype, at the same time
maintaining a sceptical outlook to assess the claims of a visualisation framework.
In any event, the success of any human–computer interaction (e.g. geovisualization)
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depends not only on the capabilities of the software systems but also on the willingness
of the human to adapt to the computing environment (Dunne, 1999).
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An Application of Surface Networks in
Surface Texture

Paul J. Scott

11.1 INTRODUCTION

In practice, all engineered surfaces depart to some extent from being atomically flat.
They contain surface features such as peaks, valleys, ridges, course lines, and so on,
which may vary in both height and spacing. The predominate surface patterns are pri-
marily determined by the surface creation processes such as grinding, milling, etching,
turning, and so on. The scale of the surface texture also depends on the surface creation
process. Typical values for peak-to-valley height differences for precision-engineered
surfaces are of the order of a micrometre. Typical surface wavelengths for surface tex-
ture are of the order of a micrometre to the order of a millimetre. In essence, surface
texture is just like a natural landscape but at a much smaller scale.

Until recently, surface texture of engineered surfaces was analysed by measuring pro-
files across the surface and characterising the features contained within these profiles.
Recent developments in surface texture instrumentation make it possible to measure
small areal patches from the surface, in order to analyse the surface texture. Typically,
these patches are of the order of a millimetre square and contain from 256 by 256 to
4,096 by 4,096 height values in a square lattice. Figure 11.1 shows a pseudo-photograph
(computer generated photograph) of the surface of a grinding wheel reconstructed
from 512 by 512 measured height values from a 1 mm × 1 mm patch. This example is
extremely rough, with a peak-to-valley height difference of 263 µm.

The rest of this chapter is organised into the following structure: Section 11.2 gives
a brief introduction to the reasons why surface texture is characterised. Section 11.3

Topological Data Structures for Surfaces – An Introduction to Geographical Information Science. Edited by Sanjay Rana
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Figure 11.1 Grit on a worn grinding wheel 1 mm × 1 mm

discusses the pattern analysis approach to surface texture characterisation and intro-
duces surface networks, used in segmentation of the surface, in preparation for pattern
analysis. The two main problems associated with segmenting surface texture data,
namely, edge effects and over-segmentation, are discussed and solutions offered. Seg-
ment combination is discussed in some detail and is seen as a two-stage process,
namely, identification of the peaks and pits to be kept (significant peaks/pits) and
pruning out the other peaks and pits (insignificant peaks/pits). Section 11.4 gives a
generic overview of the necessary and sufficient properties that classification of a set
of events into significant and insignificant must satisfy in order to give unique and sta-
ble results. Section 11.5 discusses different approaches to pruning a change tree. Two
examples of the described approach used to solve practical problems are described
in Section 11.6. Finally, in Section 11.7, concluding remarks and acknowledgements
are offered.

11.2 SURFACE TEXTURE CHARACTERISATION

There are two main uses for surface texture analysis:

• Control of the manufacturing process, which can be further subdivided into the
following:
– Process monitoring: used to ensure that a manufacturing process is within accept-

able limits.
– Process diagnostics: used when setting up a manufacturing process or when

things go wrong and the cause of process problems are required to be diagnosed.
• Control of the functional performance of the component, which can also be further

subdivided into the following:
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– Functional prediction: simulations using the measured data can be used to pre-
dict the functional performance of a component.

– Functional diagnostics: mainly used when a component fails to perform its
desired function and the cause of failure is required to be diagnosed.

Traditional surface texture characterisation, as defined in ISO 4287 (1997), uses sur-
face texture parameters based on statistical attributes, such as peak-to-valley height,
root-mean-square and so on, to characterise the cloud of measured height values. These
surface texture parameters are termed field parameters. Field parameters were pri-
marily developed for monitoring the production process, and achieve this aim very
successfully.

Unfortunately, when process or functional diagnostics are required, field parameters
are very blunt instruments. A medical analogy is useful to illustrate this point. Many
field parameters such as peak-to-valley height are analogous to taking a patient’s tem-
perature – a high temperature indicates that something is wrong but it could be anything
from a cold to cancer. Field parameters are not very diagnostic.

The approach adopted here for surface texture diagnostics is based on pattern anal-
ysis. Pattern analysis is used to assess and characterise the patterns contained in the
surface texture. First, segmenting the surface texture into “features” using surface
networks, and then statistically characterising attributes of these features and/or the
relationships between them achieve this. Parameters that characterise surface features
and their relationships are termed feature parameters. Continuing the medical analogy,
characterising features of the patient (sore throat, running nose, chest pains, shadow
on a chest X-ray etc.) is diagnostic.

In summary, field parameters (statistical characterisation of a cloud of points) are
very good for process monitoring but they are not as diagnostic as feature parameters
(characterisation of surface features and their relationships).

11.3 PATTERN ANALYSIS OF SURFACE TEXTURE

In order to use pattern analysis for surface texture we need to define the texture prim-
itives, segmentation, and structural relationships. The approach we adopt is based on
using critical points, lines, and areas as the texture primitives (Schalkoff, 1992).

11.3.1 Texture primitives and segmentation

More than a hundred years ago, Maxwell (1870) proposed dividing a landscape into
regions consisting of hills and regions consisting of dales. A Maxwellian hill is an area
from which the maximum uphill paths lead to one particular peak, and a Maxwellian
dale is an area from which the maximum downhill paths lead to one particular pit. By
definition, the boundaries between hills are course lines (watercourses), and the bound-
aries between dales are ridge lines (watershed lines). Maxwell was able to demonstrate
that ridge and course lines are the maximum uphill and downhill paths emanating
from saddle points and terminating at peaks and pits. Recently, the Maxwellian dale
(watershed lines) has emerged as the primary tool of mathematical morphology of
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Figure 11.2 (a) Primitives – critical points, lines, and areas; (b) associated change tree. Key: P = peak,
V = pit , S = saddle point; ridgelines connect peaks to saddle points; courselines connect pits to saddle
points

image segmentation, as preparation for pattern analysis. It can easily be seen that the
segments are the hills and dales. Figure 11.2(a) gives a schematic diagram of critical
points and lines defining hills and dales on artificial data.

Unfortunately, segmenting surface texture data or image into Maxwellian dales/hills
is often disappointing, as the surface/image is over-segmented into a large number
of insignificant tiny, shallow dales/hills rather than a few significant large dales/hills.
This is not a result of any algorithm used but is the nature of the surface texture
data itself. What is required is to merge the insignificant dales/hills into larger signifi-
cant dales/hills.

It is proposed to extend Maxwell’s definitions and to define a dale as consisting of
a single dominant pit surrounded by a ring of ridge lines connecting peaks and saddle
points, and to define a hill as consisting of a single dominant peak surrounded by
a ring of course lines connecting pits and saddle points. Within a dale or hill there
may be other pits/peaks but they will all be insignificant compared to the dominant
pit/peak.

It is also important to consider edge effects. We require the combined segments near
the edge to have the same or similar attributes to those near the centre. Ockham’s Razor
(non sunt multiplicanda entia praeter necessitatem–entities are not to be multiplied
beyond necessity) is used to extend contour lines outside the area of interest in such a
way that a minimum number of new critical points are created. Ockham’s Razor leads
to two possible solutions called the virtual pit and the virtual peak, each being the dual
of the other. In this chapter, the concept of the virtual pit is adopted (see Takahashi,
et al., 1995 for more details). A virtual pit is assumed to be a point of infinite depth to
which all the boundary points are connected. (A virtual peak is assumed to be a point
of infinite height to which all the boundary points are connected.) The adoption of the



An Application of Surface Networks in Surface Texture 161

virtual pit greatly simplifies the resulting discussion and also allows the network to
satisfy the Euler–Poincaré formula:

#(peaks) + #(pits) = #(saddles) + 2 (11.1)

11.3.2 Structural relationships

A useful way to organise the relationships between critical points in hills and dales and
still retain relevant information, is that of a change tree. Kweon and Kanade (1994)
introduced the concept of a topographic change tree to describe the connectability of
a surface. The change tree represents the relationships between contour lines from a
surface and is one example of a more general topological object called a Reeb Graph
(Takahashi et al., 1995). The vertical direction on the change tree represents height. At
a given height, all individual contour lines are represented by a point that is part of a
line representing that contour line continuously varying with height. Saddle points are
represented by the merging of two or more of these lines into one, peaks and pits are
represented by the termination of a line (see Figure 11.2(b)).

Consider filling a dale gradually with water. The point where the water first flows
out of the dale is a saddle point. The pit in the dale is connected to this saddle point in
the change tree. Continuing to fill the new lake, the next point where the water flows
out of the lake is also a saddle point. Again, the line on the change tree, representing
the contour of the lake shoreline, will be connected to this saddle point in the change
tree. This process can be continued and establishes the connection between the pits,
saddle points, and the change tree. By inverting the landscape, peaks become pits, and
so on, and a similar process will establish the connection between peaks, saddle points,
and the change tree.

11.3.3 Areal combination

In practice, change trees can be dominated by very short contour lines, due to noise
and so on, which hinders interpretation (over-segmentation of the surface/image by
Maxwellian hills and dales). A mechanism is required to simplify the change tree, which
reduces the noise, but retains relevant information. Areal segment combination is such a
mechanism, leaving the change tree simplified but still containing relevant information.
Areal segment combination is seen as a two-stage process, namely, identification of
the peaks and pits to be kept (significant peaks/pits) and pruning out the other peaks
and pits (insignificant peaks/pits).

The following is an outline of the areal segment combination algorithm. The simpli-
fied algorithm presented here assumes that the virtual pit condition has been applied.
An algorithm without the virtual pit condition was presented in (Scott, 1998).

Step 1 Assuming the virtual pit condition, find all Maxwellian hills and dales and their
associated peaks and pits and generate the full change tree.

Step 2 Classify all peaks and pits as significant or insignificant according to the func-
tion of the surface.
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Step 3 Prune out the insignificant peaks and pits from the change tree. That is to say,
combine the peaks and pits with the adjacent saddle point they are connected
to in the change tree.

The resulting change tree will indicate the significant peaks, pits, edge peaks and
pits, and the relationships between them. Hence, the change tree has been pruned,
reducing the noise, but retaining relevant information.

Not all attributes from a hill or a dale can be used to determine significant or insignif-
icant peaks and pits. The process of determining which peaks/pits are significant or
insignificant must satisfy certain mathematical properties to give unique stable results.
This is discussed at a very generic level in the next section. Here the set of “events”
can be the set of peaks or the set of pits with the motif function labelling each peak/pit
as either significant or insignificant.

11.4 WHICH SEGMENTS/MOTIFS TO COMBINE

A motif function consists of splitting a set of “events” into two distinct sets called the
significant events and the insignificant events. For the motif function to give unique
and stable results the motif function must satisfy the following three properties (Scott,
1992):

P1 Each event is allocated to one and only one of these two sets (i.e. the set of
significant events and the set of insignificant events).

P2 If a significant event is removed from the set of events, then the remaining signif-
icant events are contained in the new set of significant events.

P3 If an insignificant event is removed from the set of events, then the same set of
significant events are obtained.

It can be shown (Scott, 2004) that all motif functions that satisfy these three prop-
erties can be mapped one to one onto a certain subset of morphological closing filters.
Morphological closing filters are widely used in image analysis. They are set functions
with the following three defining properties (Serra and Vincent, 1992):

1. All sets are subsets of their own closings.
2. A closing of a closing of a set is the closing of the original set.
3. A closing of a subset is a subset of the closing of the original set.

The particular subset of the closing filters that the motif functions map onto are the
closings with the following properties (Scott, 2004):

If two sets of events give the same closing, then their intersection also gives the
same closing.

For any closing that satisfies this property we can map it one to one onto a particular
motif function as follows.

For any set of events, consider the smallest subset of this set that gives the same closing
as the original set of events. It can be shown that this particular subset is unique and
well defined and corresponds to the set of significant events and its complement, with
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respect to the set of events, corresponds to the set of insignificant events. The inverse
mapping is also well defined. Proofs of these results can be found in (Scott, 2004).

This is a powerful result since it allows one to construct all possible motif com-
bination functions from the morphological closing filters whose properties, including
how to generate all possible finite closing filters, are very well known (see Serra and
Vincent, 1992).

The classification of peaks and pits as significant or non-significant must be a motif
function that satisfies the above three properties to give stable results.

11.5 CHANGE TREE PRUNING

In the literature, there are now several publicised references to methods that are analogous
to pruning a change tree (Wolf, 1991a, Bleau and Leon, 2000, Barré and Lopez, 2000).

Wolf (1991a) presents a method to prune a Pfaltz graph. A Pfaltz graph is another
topological object that can be used in the efficient calculation of a change tree (Takahashi,
1995). Hence, pruning a Pfaltz graph is equivalent to pruning a change tree.

Very recently, methods to merge watersheds (Maxwellian dales) have appeared in
the literature (Bleau and Leon, 2000, Barré and Lopez, 2000). Watershed merging is
equivalent to change tree pruning only if the triangulation of the lattice is assumed to
be a continuous surface (i.e. triangular facets).

11.5.1 Wolf pruning

One first calculates for each peak and pit the height difference between the peak or
pit, and the adjacent saddle point they are connected to on the change tree. Wolf’s
pruning method consists of finding the peak or pit with the smallest height difference
and combining it with the adjacent saddle point on the change tree. The other peak or
pit also connected to this saddle point is now connected to another saddle and so its
height difference is adjusted to reflect this. The process is then repeated with that peak
or pit with the smallest height difference compared to its adjacent saddle point on the
change tree being eliminated until some threshold is reached. This threshold could be
when all remaining height differences are above a fixed value or alternatively when a
fixed number of peaks or pits are left. It is easily proved that both criteria lead to a
motif function that satisfies the three required properties given in Section 11.4. Using
the change tree given in Figure 11.3, P6 to S7, P2 to S2, and V1 to S3 all take the
value of the smallest height difference of 0.5. Pruning these leads to the change tree
given in Figure 11.3.

Using Wolf pruning until five peaks and five pits are left on a surface gives a stable
definition of the ten-point height parameter defined as the average height difference
between the five “highest peaks” and the five “deepest valleys”. These peaks/pits may
not be the highest/lowest but they will be the tallest. Note that Mount Everest may be
the highest mountain on the Earth but it is not the tallest (base to peak); Mauna Kea
in Hawaii is the tallest.

This example illustrates that attributes of a hill or dale can be used to create a
functional motif function that can be used for pruning the change tree as long as they
satisfy the three properties given in Section 11.4.
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11.5.2 Watershed merging (merging Maxwellian dales)

Automatic watershed merging has recently been investigated in response to over-
segmentation of the Maxwellian dales in images, as preparation for pattern recognition.
The basic idea is to replicate the process of watershed merging that takes place when
rain falls over a real landscape: smaller watersheds fill progressively until an overflow
occurs. The water then flows to a nearby larger or deeper watershed, in which the
watersheds that overflow are merged.

Algorithmically, the Maxwellian dales are found using an algorithm based on immer-
sion simulations (Vincent and Soille, 1991). The insignificant dales are detected and
filled in up to their lowest overflow height and the Maxwellian dales are again found
from the filled-in surface. This procedure is repeated until no insignificant dales are left.

In practice, the pixels belonging to a filled-in insignificant dale are often dis-
tributed between two or more significant dales and so is not equivalent to a change
tree pruning operation. The distribution of pixels from insignificant dales is entirely
due to the discrete nature of the data and the current way the insignificant dales are
filled. At a non-filled-in pixel that neighbours the filled-in region, the local slope
alters. This can lead to the merging of insignificant dales with two or more signifi-
cant dales.

On continuous data filled-in insignificant dales are always merged with one and only
one other dale (assuming all saddle points have unique heights) and so are equivalent
to a change tree pruning operation. A modification of the current filling-in algorithm
that does not lead to local slope changes at non-filled-in pixels is required to simulate
continuous data.
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11.6 EXAMPLES

11.6.1 Example 1 – grinding wheel (identifying active grains)

The cutting edges on a grinding wheel are geometrically undefined in location and
shape. In order to ascertain the qualitative measurement of cutting edges, it is necessary
to develop techniques to identify the individual cutting edges from topographic data.

Blunt and Ebdon (1996) describe an approach based on using local peaks to count
the number of cutting edges. Unfortunately, using the number of local peaks produces
an overestimate (409 peaks in Plate 6(a)). Blunt and Ebdon (1996) recognised this
counting problem and suggested sub-sampling the measured data to achieve the “correct
count”. The optimal sub-sampling corresponds to approximately one peak on each
grinding wheel grain.

Hence, changing the grain size changes the distance of the optimal sub-sampling.
Owing to the non-uniform packing and grain shapes, this may vary considerably within
a given grinding wheel. Wolf pruning at different thresholds, Plate 6(b–d), produces
different counts of the number of significant hills. By comparing these counts to manual
count, it was determined that Wolf pruning at 5% (i.e. 5% of the peak-to-valley of the
data) produces the correct count for all grain sizes. For Plate 6(c) this produces 60
peaks. Wolf pruning has the added advantage that the significant peak in each segment
is given, allowing further analysis. For example, a height analysis can distinguish which
of these peaks could be active, that is, come into contact with the workpiece. Thus
Wolf pruning can help in the characterisation of grinding wheels.

11.6.2 Example 2 – anodised-extruded aluminium

Plate 7(a) shows 0.5 × 0.5 mm portion of the surface of anodised-extruded aluminium.
The texture consists of three types of features: extrusion marks, crystal boundaries of
the anodising and isolated deep pits. The extrusion marks are easily seen running across
the surface, as are the connected crystal boundaries of the anodising. The anodising is
porous and results in deep isolated pits within each crystal. The manufacturers of this
surface require a separate characterisation of these three types of features in order to
control the manufacturing process, especially between the deep isolated pores and the
connected valleys at the crystal boundary.

In order to control the production process, a sample of the anodised extruded alu-
minium is measured and inspected. Currently, this inspection is carried out by eye.
Wolf pruning at 15% (Plate 7(b)) discriminates between the connected crystal bound-
aries and the deep isolated pits. Thus, Wolf pruning allows the inspection process to
be automated.

11.7 CONCLUDING REMARK

In this chapter, an application of surface networks in surface texture has been pre-
sented. The pattern analysis approach to surface texture characterisation is outlined
and surface networks, used in segmentation of the surface, in preparation for pattern
analysis is introduced. The two main problems associated with segmenting surface
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texture data, namely, edge effects and over-segmentation, are discussed and solutions
offered. Segment combination is discussed in some detail and is seen as a two-stage
process, namely, identification of the peaks and pits to be kept (significant peaks/pits)
and pruning out the other peaks and pits (insignificant peaks/pits). A generic overview
of the necessary and sufficient properties that classification of a set of events into sig-
nificant and insignificant must satisfy in order to give unique and stable results is also
given. The different approaches to pruning a change tree are also discussed. Finally,
two examples of the described approach used to solve practical problems are presented.
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Application of Surface Networks for
Fast Approximation of Visibility

Dominance in Mountainous Terrains

Sanjay Rana and Jeremy Morley

12.1 INTRODUCTION

Visibility analysis of terrain is now an integral part of many disciplines (Rana, 2003b).
Some typical applications include the military plans (e.g. watch towers, troop move-
ments, flight paths – Franklin et al., 1994), communication/facilities allocation (e.g.
TV/Radio transmitters – Lee, 1991, De Floriani et al., 1994, Kim et al., 2002), land-
scape analysis (e.g. visibility graphs – O’Sullivan and Turner, 2001) and environmental
modelling (e.g. terrain irradiation – Wang et al., 2000a).

Most existing research has focused on broadly two main aspects of terrain visibility
analysis, namely, visibility index1 computation time and accuracy of the viewshed
(area covered by the visible terrain). While formal methods for modelling viewshed
uncertainty were established early in the last decade (e.g. Fisher, 1991, 1992, 1993),
the search for algorithms to optimise visibility computation continues to remain an
attractive topic for considerable research (e.g. Izraelevitz, 2003, Rana, 2003a) and is
also the motivation for this work.

Without any risk of generality, if we ignore the algorithmic and implementation-
related (e.g. hardware) factors that influence the computation, the computation time of
visibility index is directly proportional to O(ot), where o is the number of observers

1 Visibility index is generally expressed in terms of the number of visible points or the visible ground area.
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(viewpoints) and t is the number of targets on the terrain. In a so-called Golden Case, all
the points, n, on terrain are used as observers and targets, that is, the visibility indices of
all points on terrain is computed by drawing lines of sights (LOSs) to all other points on
the terrain. Thus, the computation time in a Golden Case is O(n2) because o = t = n,
which is clearly exhaustive and time consuming. On the other hand, optimised visibility
index computation methods are based on strategies to reduce the observer–target pair
comparisons, for example, by choosing a polyhedral terrain model (e.g. Triangulated
Irregular Network or TIN – De Floriani and Magillo, 1994) instead of a grid and by
using algorithmic heuristics (Franklin et al., 1994, Franklin, 2000, Wang et al., 2000b).
Accordingly, there are two main types of optimisation strategies, namely the Reduced
Observers Strategy and Reduced Targets Strategy. As the names suggest, Reduced
Observers Strategy and Reduced Targets Strategy reduce the observers (e.g. random
sampling of observers) and targets (e.g. limiting the maximum visibility distance as
in horizon culling) parts of the computational load respectively. The visibility indices
derived in a Golden Case and either of the optimisation strategies are respectively
referred to as the Absolute Visibility Indices (AVI) and Estimated Visibility Indices
(EVI) of terrain points.

In many applications, however, finding out the location of visibly dominant (i.e.
visibility dominance) observers has more practical use than exact visibility indices
of observers (Franklin, 2000). In addition, as seen above, visibility indices can be
biased by the number of targets. Therefore, the aim of most visibility analyses is to
identify visibly dominant locations in the terrain. There are potentially many ways for
calculating visibility dominance. In this work, visibility dominance is calculated by
normalising the visibility index as follows:

di = vi − vmin

vmax − vmin
(12.1)

where vi and di are respectively the values of visibility index and visibility dominance
at an observer i. vmin and vmax are respectively the minimum and maximum visibility
indices on the terrain.

In this chapter, we propose methodologies, with examples, which employ the surface
network data structure (see Part I for a background) both in the Reduced Observers
Strategy and Reduced Targets Strategy for a fast approximation of visibility dominance.
Our proposal is based on the findings of Lee (1992), who reported that fundamental
topographic features, namely, peaks, pits, passes, ridges, and channels dominate the
visibility of other ground locations and therefore could be good viewpoint sites. In a
previous article (Rana, 2003a), we demonstrated that fundamental topographic features,
due to the exhaustive and characteristic spatial coverage (especially in mountainous
uplands), are the ideal set of targets to reduce the targets part of the visibility index
computation load. In essence, we employed the Reduced Targets Strategy to reduce the
visibility index computation time by drawing the LOS from observers to only the fun-
damental topographic features. For brevity, we will use the term topographic features
in place of the fundamental topographic features in the following part of the chapter. In
this chapter, we present another implementation of the Reduced Targets Strategy using
topographic features and evaluate whether it is possible to use topographic features as
part of the Reduced Observers Strategy for reliable visibility dominance pattern.
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As mentioned earlier, because of the selective sampling of observers and targets,
optimised algorithms will either underestimate or overestimate the visibility domi-
nance of non-topographic feature points on terrain. This uncertainty, arising because
of the level of sampling (abstraction), is closely similar to the uncertainties referred
as Object Generalisation (Weibel and Dutton, 1999). To our knowledge, no proposals
existed for assessing such uncertainty in visibility analysis literature until the methods
discussed in this chapter were first presented in our earlier work (Rana, 2003a). Our
aim was to evaluate whether the overall visibility dominance pattern was realistic,
albeit approximated. The following section proposes two simple methods based on an
iterative comparison between the AVI and EVI for assessing this uncertainty.

12.2 PROPOSAL

A target is considered visible if a LOS from an observer can be drawn to it without
an obstruction by an intermediate point (an exception is provided by (Wang, 2000b),
who used reference planes to establish the visible areas). The most common approach
in previous Reduced Targets Strategy based methods (e.g. Franklin et al., 1994) has
been to draw the LOS from an observer to an arbitrary small number of randomly
located targets on the terrain. In the earlier work (Rana, 2003a) based on small study
areas, we demonstrated that the computation time can be reduced substantially with-
out any significant loss of visibility information if the LOSs are drawn only to the
topographic features. Of course, the underlying assumption of this proposal is that
the terrain is not devoid of topographic features. This is true for mountainous terrain
except in upland plateaus, although in this case the visibility indices will be similar
everywhere.

The methodology for the computation of visibility indices using topographic feature
as targets consisted of three steps: (a) extract the topographic features; (b) compute
the visibility dominance of each point using the topographic features as targets; and
(c) assess the uncertainty in the visibility dominance.

As a Reduced Observers Strategy to reduce computation time, we evaluated whether
the visibility dominance of non-topographic feature points could be derived by interpo-
lating the visibility dominance of topographic feature points. In other words, we assume
a spatial autocorrelation of the visibility dominance, that is, points near visually dom-
inant points will tend to have a higher visibility dominance. The Reduced Observers
Strategy also consists of four steps: (i) extract the topographic features; (ii) compute
the visibility dominance of only the topographic features by drawing the LOS to all the
points in terrain; (iii) interpolate/extrapolate the visibility dominance of other points;
and (iv) assess the uncertainty in the visibility index.

12.2.1 Methodology

12.2.1.1 Extraction of topographic features

A number of approaches have been proposed for the automated extraction of surface
networks from DEMs and TINs (e.g. see Takahashi et al, 1995, Wood, 1998). Refer
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to Chapters 3 and 4 for more information on feature extraction. We decided to use the
feature extraction method of Wood (1998; see also Chapter 4), partly on the basis of
the advantages he outlined against the other methods and partly because of its easy
availability in the user-friendly freeware LandSerf (Wood, 1998).

It is clear that the success of our strategies depends upon the accuracy of the
non-trivial topographic feature classification. It is well known that most automated
topographic feature extraction methods are vulnerable to the noise in the DEM (Jenson
and Domingue, 1988) and, most importantly, have scale dependency limitation (Wood,
1999). While smoothing the DEM before extracting the features can eliminate the first
limitation, the latter seems to remain a difficult conceptual problem yet to be completely
solved. Because of scale dependency, the automated feature extraction identifies fea-
tures only at a certain scale (e.g. features of a fixed geographic extent), while features
at other scales remain undetected. Therefore, the assessment of an appropriate scale
for the particular DEM requires iterating through a number of feature extraction scales
(e.g. in LandSerf, one could achieve this by iterating with a different window or kernel
size for the feature extraction with visual verification).

Lastly, although the fundamental topographic features are a significantly reduced
number of targets, there may still be too many for certain terrains, for example large
desiccated DEMs, and thus still lead to long visibility index computation time. Two
simple ways (amongst perhaps many others) of reducing the number of topographic
features are – (i) resample the topographic features along ridges and channels by a skip
interval, and (ii) limit the topographic features to certain scales. Rana (2003a) provides
examples of using such sampling for various purposes in visibility analyses.

12.2.1.2 Visibility analysis

The study area for the current work is a 100-m resolution raster DEM (5548 cells)
of the Cairngorms in Scotland (Figure 12.1(a)). Note that our proposal is generic and
could be applied to an irregular terrain model such as TIN. Visibility analysis was
carried out in ESRI’s ArcView GIS and all the parameters were the defaults of the

(a) (b)

Figure 12.1 (a) Hill-Shaded DEM of SE Cairngorm Mountains, Scotland. Minimum elevation = 395 m and
maximum elevation = 1054 m and (b) 910 topographic feature targets, overlaid on DEM contours
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Visibility Request in ArcView. In the experiment, the observer eye level is at 1 m
above the local ground level and the targets are at local ground level. The observer is
capable of seeing from the ground zero until infinity (i.e. no horizon culling), across
the full range of azimuths and from the zenith to nadir. The experiments were done on
a 1-GHz Intel-Pentium III processor based–personal computer, with 512-MB RAM.
We recorded the CPU time taken by ArcView for each visibility computation.

12.2.1.3 Interpolation of visibility dominance

As part of the Reduced Observers Strategy, Natural Neighbours Interpolation (NNI)
(Sibson, 1981) was used to derive the visibility dominance at non-topographic feature
points. NNI is a simple, robust, and objective (no requirements for search radius,
neighbourhood type) method for interpolation in two dimensions. NNI produces a
surface everywhere in the convex hull of the point set that is continuous in slope
except at the points. NNI available in ArcView was used to derive surface at the same
spatial resolution as DEM, that is, 100 m.

12.2.1.4 Uncertainty assessment

Geospatial uncertainty modelling generally involves the derivation of deviations
between the measured and estimated values with the eventual aim of generating
models that could predict the behaviour of causes of uncertainty (e.g. systematic or
random) and the process under observation. For example, Fisher (1991, 1992, 1993)
suggested methods based on Monte Carlo analysis for assessing the effect of noise
in a DEM and the robustness of algorithms for computing visibility indices. In our
case, the uncertainty is essentially the deviation between the absolute and estimated
visibility dominance values arising because of the selective sampling of targets and
observers. The only previous example known to us, which dealt with the estimation
of uncertainty in a Reduced Targets Strategy is that of Franklin et al. (1994). They
compared the visibility indices of an arbitrary number of spatially distributed locations
on the terrain, computed from their exhaustive R2-visibility algorithm (similar to our
Golden Case), with their optimised methods. Though the results are encouraging, their
sampling methods (i.e. the selection of the test points) could not be regarded as formal
and objective for two important reasons. Firstly, since there is no prior knowledge
about the statistical distribution of the visibility pattern, it is not possible to estimate
the number of random points required to fully capture the sensitivity of the visibility
dominance distribution of a terrain. However, the choice of the number of random
points is critical, as it will dictate the computation time. Secondly, since viewshed
at a location is generally anisotropic, that is, the visual spread varies according to
directions, the random locations could therefore bias the uncertainty estimation. One
of the conclusions of this work is that the visibility pattern is highly dependent upon
the spatial distribution and the number of the random points. It should be noted that
the aim of uncertainty assessment in this work was only to quantify the deviations and
did not involve any form of predictive modelling based on deviations.

We used the following two methods for the uncertainty assessment based on a slight
modification of the Franklin et al. (1994) method:
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Method 1: Spatial correlation between absolute and estimated visibility
dominance

This method compares the similarity between the overall visibility pattern shown by
absolute and estimated visibility dominance values. The comparison can be based on
either the deviations at the topographic feature locations or random locations as follows:

Type 1: Absolute versus estimated visibility dominance at topographic
feature locations:

(i) Calculate the absolute visibility dominance of the topographic feature locations by
drawing the LOS to all the terrain points.

(ii) Calculate the correlation coefficient between two sets of absolute and estimated
visibility dominance values. The correlation coefficient should suggest the similar-
ity between the two visibility patterns. This method is similar to that of Franklin
et al. (1994) except that the definition of our sample locations is objective and
more natural. However, statistically it remains only an approximate test, espe-
cially when using exceptional terrains (e.g. mountains next to a plain), where the
topographic features are not distributed uniformly across the terrain.

Type 2: Absolute versus estimated visibility dominance at random locations:
Unlike the Type 1 method, this method is relatively more exhaustive but time consum-
ing. It is an abridged form of the Monte Carlo method of uncertainty modelling and
involves an iterative comparison between the absolute and estimated visibility domi-
nance at sets of random locations but with the important exception that no subsequent
model parameter estimation is done in this method. The steps are as follows:

(i) Generate random sample locations: As mentioned before, since there is no prior
knowledge about the visibility dominance distribution it is non-trivial to determine
the optimum number of random sample locations sufficient to capture the visibility
pattern. We propose, without formal proof, that randomly placed locations equal
in number to the number of unique EVI would be sufficient if we assume that no
part of the study area is completely hidden from the set of topographic features.
Thus, a frequency histogram of the EVI (computed using topographic features)
represents unique viewsheds. In other words, we assume that each viewshed will
be assigned to at least one sample location.

(ii) Compute the absolute visibility dominance values at the random locations by
drawing the LOS to all the points on the terrain.

(iii) Calculate the correlation coefficient between the absolute and estimated visibility
dominance values.

(iv) Repeat steps (i) – (iii) a number of times. Again, due to the lack of any prior
information about the statistical distribution of the visibility dominance, statisti-
cally it is difficult to decide a specific number of iterations. In a practical exercise,
it would ultimately depend upon the amount of time available to the researcher
for the experiment.

(v) Choose the lowest and the highest correlation coefficient as indicators for the
worst- and the best-case approximation. Other statistical measures such as mean and
standard deviation of correlation coefficient will indicate the overall approximation.



Application of Surface Networks for Fast Approximation of Visibility Dominance 173

Method 2: Error in the visibility dominance

In the previous methods, the correlation coefficients only give an indication of the
reliability of estimated visibility dominance. However, these do not reveal the level of
approximation in the estimated visibility dominance. A simple method for measuring
the uncertainty in the estimated visibility dominance is as follows:

Average Error (%) = ±
∑n

i=1

|d ′
i − di |
di

n
× 100 (12.2)

Where d ′
i = estimated visibility dominance, di = absolute visibility dominance and

n = number of observers (targets).

12.3 RESULTS

12.3.1 Automated extraction of the topographic features

After iterating with various window (kernel) sizes followed by visual inspection, we
found that a 5 × 5 (500 × 500 m) window was suitable to extract most linear (ridge,
channel) and point (peak, pit, pass) topographic features, present in the Cairngorm DEM
(Figure 12.1(a)), where 910 topographic features have been extracted as the optimum
targets and observers (Figure 12.1(b)). The automated extraction of the topographic
features took less than five seconds.

12.3.2 Visibility analysis and uncertainty assessment

Since our study area was small, we calculated the Golden Case visibility patterns of
our study areas (Figure 12.2(a)). These visibility dominance patterns were thus the
ideal standards, that is, the absolute visibility dominance. It took 537 s to compute the
golden case.

12.3.2.1 Reduced targets strategy

It took only 91 s to compute an estimated visibility dominance of the study area based
on topographic features. Figure 12.2(b) shows the pattern of the estimated visibility
dominance and it is clear from the figures that the overall pattern of the visibility
indices is similar to the Golden Case. In fact, as indicated by the correlation coefficient
and R2 values, there is statistically very little difference between the measured and
estimated visibility dominance from pixel to pixel (Figure 12.3(a)). The ridges and
peaks have high visibility indices compared to the pits, passes, and channels. The
average error in the estimated visibility dominance values is ±17% and the residuals
are uniform (Figure 12.3(b)), which together prove that we have successfully optimised
the computation without losing significant amount of visibility information.

On the basis of Method 1 for uncertainty estimation, Figure 12.4(a) shows the rela-
tion between the absolute visibility dominance and estimated visibility dominance at
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(a) (b)

Figure 12.2 Comparison between the (a) Golden Case–based visibility dominance and (b) topographic
features–based estimated visibility dominance. Darker coloured areas have more visual dominance than
lighter coloured areas
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Figure 12.3 Uncertainty assessment based on the entire DEM. (a) Absolute versus estimated visibility dom-
inance of all locations, and (b) residuals based on the linear regression between absolute and estimated
visibility dominance values of all locations

the locations of topographic features. The strong correlation coefficient of 0.98 sug-
gests that the optimisation successfully represents the overall visibility pattern. As part
of method 2 of uncertainty assessment to perform a more exhaustive calculation, we
collected 19 sets of randomly located points on the terrain. Each set comprised 418
points (unique number of estimated visibility dominance values). We then calculated
the correlation coefficient and error between the measured visibility dominance and
estimated visibility dominance for each of these sets of random points. Figure 12.4(b)
shows the wide variation in the quality of the estimated visibility pattern at various
points on the terrain thus supporting the exercise to validate the quality of the estimated
visibility by repeated random sampling. There seems to be no correlation between the
error and correlation coefficient, which suggests that these measures qualify different
aspects of the visibility dominance pattern.
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Figure 12.4 Uncertainty assessment based on selective sampling. (a) Absolute versus estimated visibil-
ity dominance of the topographic features and (b) correlation coefficient versus errors at a set of ran-
dom locations
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Figure 12.5 Comparison between the absolute visibility dominance and estimated visibility dominance
values based on the reduced observers strategy

12.3.2.2 Reduced observers strategy

ArcView took only few seconds to interpolate the measure visibility dominance values
across the study area. Since NNI is an exact interpolation, method 1 for uncertainty
assessment, that is, a comparison between the absolute and estimated visibility domi-
nance values only at topographic features was not appropriate because the deviations
would have been zero or negligible. Instead, we performed a single comparison for the
entire terrain involving all the measured and the estimated visibility dominance val-
ues. Figure 12.5 shows a considerable increase in the error (±55%) but the correlation
coefficient (0.85) and R2 (0.72) values suggest a reasonably strong similarity between
the measured and estimated dominance patterns.
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12.3.3 Optimisation of computation time

It is clear that we have been able to reduce the computation time substantially by
at least five times in our experiments. The optimisation is linear as time saved was
merely due to a linear reduction in the number of comparisons unlike other approaches
such as by Izraelevitz (2003) in which previous computations are recycled to reduce
computation time. The CPU usage could be further optimised by combining the current
approaches with further Reduced Targets Strategies such as horizon culling.

12.4 CONCLUSION AND FUTURE WORK

In general, there is a compromise between performance and accuracy in any practical
visibility computation (Franklin et al., 1994). In this work, we have shown that the
use of the fundamental topographic features as optimum targets and observers can be
used to decrease the visibility computation time substantially without any significant
visibility information loss. This approach is especially useful for a fast approximation
of visibility dominance in mountainous terrain. The reduced sampling of the targets on
the terrain, however, introduces an uncertainty in the visibility indices of the observers
on the terrain.

In the current work, the use of the correlation coefficient and the simple statistical
measures such as correlation coefficients and R2 values as measures of a visibility
pattern quality and uncertainty provide only a global pattern matching, but visibility
is a directional property. We anticipate developing ways in which we could estimate
the visual integrity in our optimised approach. Although our observation that at certain
numbers, both topographic-feature targets and random targets would produce similar
quality of visibility estimation is based on thorough experimentation of the current
study areas, experiments with other DEM will be useful to fully validate this empirical
observation.

We believe it is more important to realise that visibility, as a property of terrain
location, could not be modelled since it is derived only after a LOS test with other
locations. Therefore, it is invariant of the local properties (e.g. elevation, slope, aspect)
and global properties (e.g. geographic setting i.e. fault etc.) of a location. Thus based
on the current study, we believe that the regression between measured and estimated
visibility dominance only provides the information about the similarity or the amount
of approximation.

Finally, an interesting intellectual challenge still remains in understanding of the
effect of the topographic feature extraction scale on the computed visibility pattern.
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Issues and Future Directions

Sanjay Rana

By now, the role of topological surface data structures in a wide variety of morpho-
metric analysis should hopefully be clear to the reader. The work also highlighted a
number of issues in the existing approaches to model and generate topological surface
data structures. In this chapter, I will first highlight those shortcomings of the topolog-
ical surface data structures, principally surface network, which in a way also indicate
the potential directions for future work.

13.1 SHORTCOMINGS OF SURFACE NETWORK MODEL

Although the surface network model provides a natural and sophisticated represen-
tation of surfaces, it has been considered merely as an interesting proposal by many
researchers. Pfaltz (1976) himself was aware of the several flaws and commented about
the topological properties of the surface network graph that “it is unknown whether
these properties are sufficient to guarantee the realizability”. It is therefore no sur-
prise that surface network has received little recognition amongst most textbooks as
a data structure. I think the surface network model suffers from the following three
main drawbacks:

1. Non-representation of all surfaces and surface features.

• Not all surfaces can be realised as surface networks. As discussed in Chapter 4, the
fundamental restrictive condition with the surface network model is the assumption
that surfaces are C2 continuous everywhere, so that features such as overhangs (e.g.
glaciated terrains, dunes, plateaus), holes (e.g. karstic terrains, cracks), break in slope
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(e.g. alluvial fans, scarps, corners) are absent, and the critical points and lines are
clearly defined on surface. This condition is clearly an exception than a rule for
many surfaces especially for terrains, which are used to generate surface networks.
Commonly available digital surface datasets are often full of sensor and interpolation
noise (von Minusio, 2002). Therefore, it is clearly not possible to realise the surface
networks for all types of surfaces, especially for those that do not have the entire
set of critical points and lines required for the surface networks. In this respect, the
non-constrained nature of contour trees makes them more suitable to represent the
topology of any surface.

• Problems in representing well-behaved surfaces. As described in the last point,
it is an oversimplification to assume that naturally occurring surfaces are Morse
functions, indicating a sense of equilibrium in nature1. However, it would also be
unrealistic to suppose that it is impossible to derive surface networks, although
maybe even in small regions (as discussed in Chapter 5). These exceptional surface
patches could be regarded as well-behaved surfaces. Different kinds of limitations
exist in representing well-behaved surfaces.

A common concern amongst geomorphologists regarding surface network is that
it does not represent many important hydrological features, for example, junctions
and bifurcations because the ridges and channels could only meet at the critical points.
Although, Wolf (Chapter 2) suggested that the channel junctions and ridge bifurcations
could be represented as an infinitesimally closely located artificial pair of pit–pass and
pass–peak respectively, Wolf does not prove how to derive the topological connec-
tions for the new pass, added at the junction and bifurcation, in order to satisfy Rule P4
(see Section 2.4). The explanation used by Wolf, (1990) to indicate the new topolog-
ical links at junctions and bifurcations remains to be proven in practice. Similarly,
the gullies (small channels) on hill faces connecting to the main channel, a feature
common to any mountainous terrain, is not included. These gullies, called the inner
leafs of the channel network in the interlocking ridge and channel network model
by Werner (1988), are a prominent terrain feature and relevant in hydrological mod-
elling for catchment analyses. Again, the problem here is that these gullies start from
a point on the hill face (called source nodes; Werner 1988), which is not a critical
point.

2. Scaling
Surface features are organised in a hierarchy, expressed as a variation in their spatial

extents. For example, in the case of terrain surface, a gully on a slope face has small
spatial extent compared to the channel it drains into. The position of the feature in
hierarchical arrangement can be regarded as the scale of the feature. Wood (1999)
demonstrated that a location on terrain could be a part of the features of different
scale and feature types. Griffin and Colchester (1995) presented an example of such
hierarchy in the multi-scaled nature of medical image surfaces. Therefore, all surfaces
are inherently composed of multi-scaled features. It therefore implies that a surface
would have multiple surface networks representing the feature scales of a terrain. To
my knowledge, the existing surface network model (or for that matter Morse Theory)

1 Morse (1925) and Pfaltz (1976) suggest that points in inequilibrium, for example, degenerate points could
be decomposed into non-degenerate points but it has not been demonstrated in practice widely.
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does not address how such individual surface networks could be unified into a single
surface network model of a terrain.

3. Uncertainty
While there is no denying the fact that the abstraction of a surface as a surface

network could significantly reduce the disk space requirements of a terrain, it still
remains an approximation of surface based entirely on a minimal set of points and
lines. As mentioned earlier, surface network would inevitably fail to capture all the
variations present in the surface, which could lead to a considerable amount of uncer-
tainty in the surface. In general, the uncertainty will depend upon the deviation of
the surface from an ideal Morse function and would vary spatially across the surface.
At present, there are no proposals for ascertaining the uncertainty associated with a
surface network.

13.2 LIMITATIONS OF THE METHOD FOR GENERATING SURFACE
NETWORKS

As can be seen in Chapters 3 to 6, there are various ways for generating surface
networks, however, none of them appear to be consistent. The only topologically con-
sistent surface network known to me was created by Gert Wolf because he derived
it manually by digitising critical points and lines from a map. I think other meth-
ods for the automated generation of surface are not always successful due to the
following reasons:

1. Scale dependency
As mentioned in the previous section, surfaces have a multi-scaled arrangement

of critical points and lines. But many feature extraction methods are scale-dependent
because they only explore a fixed area around a point to classify the point into a
feature type. Therefore, critical points and lines, features that could fit within the search
space, are extracted resulting into a scale-dependent extraction of surface networks. The
surface network generation methods described in Chapters 3, 4, and 6 suffer from scale
dependency in different ways.

• Scale dependency of TIN-based surface network generation method (Chapters 3 and 6)
Triangulation-based surface network generation methods use only the adjacent neigh-
bours of a TIN vertex for the classification of the critical points and thus have a fixed
scale of observation. In a later work, Takahashi, et al., (1995) suggested referring
to the scale-space theory (Witkin, 1983, Lindeberg, 1994) prior to the extraction of
surface network. However, it is uncertain how the current method of triangulation
can be “extended” to detect larger features.

• Scale dependency of raster surfaces based surface network generation (Chapter 4)
Although the method by Schnedier and Wood (Chapter 4) allows a multi-scale
extraction of the surface network, but since only the cell at the centre of the filter
windows could be classified, the number of cells that could be classified reduces as
the filter window grows in size.
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2. Delineation of topological links

• Broken surface networks In all the automated methods for the generation of sur-
face networks, the surface network is built incrementally by tracing the ridges and
channels from the passes. It is assumed that tracing the steepest (shallowest) gradient
or the ridge (channel) axes starting from the pass will ultimately lead to either a
peak(pit) or to the edge of the surface (external pit or peak). However, as discussed
above, real surfaces are seldom sufficiently smooth enough for a successful delin-
eation of the ridges (channels). As a result, ridges and channels do not necessarily
terminate at peaks and pits respectively.

• Junctions, bifurcations are not extracted None of the surface network extraction
methods extract junctions and bifurcations in the way suggested by Wolf (Chapter 2).

13.3 LIMITATIONS OF THE METHODS FOR GENERALISATION OF
SURFACE NETWORK

Despite the simplicity and robustness of the method for the surface network contraction
proposed by Pfaltz (1976) and Wolf (1989), it has three main limitations that restrict
its use as a practical terrain generalisation method:

1. Limitations of weight measures
According to Weibel and Dutton (1999) the first step in the generalisation of spatial

datasets is the cartometric evaluation of the dataset, which involves an assessment of
the dataset in order to select the portions suitable for generalisation. For example, in
the case of surface network, cartometric evaluation involves the assignment of weights
(based on elevation differences) and using it to rank (by using the selection criteria)
the peaks and pits for contraction. Mark (1977) and Wolf (1988) have argued that
all weights and selection criteria must be based on elevation. However, it is simple
to prove that elevation and elevation differences alone will provide little information
about the importance of a point. For example, two peaks could have ridges with
equal elevation differences but of different extent. Pfaltz (1976, p. 92) first raised the
potential arbitrariness in assigning weights and selecting points for contraction. Most
crucially, the existing weight measures could be extended to take into account the
area-based morphometric measures and weights such as slope, and so on. In addition,
it is unclear how critical points with equal weights should be ordered for contraction,
as a method based on lexico-graphical ordering (Chapter 3) produces quite contrasting
results depending upon the order (Rana, 2000a,b).

2. Sequential generalisation of surface network graph
Pfaltz (1976), Mark (1977) and Wolf (1988) proposed an iterative and sequential

(based on rank) generalisation of surface network until a surface with a desired simplic-
ity has been reached. However, it is sometimes desirable to influence the generalisation
sequence for the sake of structural integrity (Pfaltz 1976, p. 92; Wolf 1988) or when
the sequence could be anomalous (e.g. two points with equal weights). Currently, there
are no proposals to achieve an arbitrary generalisation sequence.
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3. Purely topological nature of generalisation
Existing generalisation method of surface network is only able to achieve surface

simplification at a topological level, that is, while there is a surface corresponding
to the original surface network, simplifications in surface networks do not have a
morphologic expression. For example, if after a generalisation three new ridge edges
are created there are no corresponding ridges produced in the surface. This is perhaps
the most critical limitation of existing generalisation methods and prevents it from
being used as a practical terrain generalisation method. Wolf (1988) did not consider
the construction of the generalised morphology based on changes in the topological
links and merely triangulated the critical points left after generalisation. Pascucci and
others (see Chapter 8) have proposed an approach for regenerating a terrain surface
after contraction; however, they do not provide any justification in terms of the validity
of the resultant terrain, such as done in terrain evolution modelling (Burrough, 1998).

13.4 FUTURE DIRECTIONS

In addition to tackling the problems raised above, I believe that a huge potential of
the surface network, Reeb graphs, and contour trees exist in applications related to
visualisation of multi-dimensional datasets and spatial analyses (e.g. spatial queries).
Although I think the book contains majority of the prominent works in this topic, there
were many others research works that could have increased the strength of the book.
Some interesting works on surface networks missing from the book include Carroll
Johnson’s work on Crystallographic Topology (URL #7), James Helman and Lamertus
Hesselink’s work on vector flow topology visualisation, and Warrick Dawes work on
modelling hydrology under constraints of surface topology (Dawes and Short, 1994),
just to mention a few. In this book, most examples were based on two-dimensional
surfaces, however, like John Pfaltz (see Foreword) I also believe that the real benefit
of surface networks is in the representation and storage of multi-dimensional surfaces.
Another interesting field, which I hope to dwell on in the future, is the application
of surface networks to model complex surfaces associated with dynamical systems,
although I am sure it would be non-trivial to extend the surface network model to
non-Morse functions. It will be an interesting challenge to come up with a set of
inequalities for dynamical systems, like the one given by Morse Theory for smooth
functions, and develop a simple model to understand the behaviour of the complex
surfaces using those inequalities.
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Plate 1 Hakone area: (a) ridge and course lines (Reproduced from Takahashi, S., Ikeda, T., Shinagawa, Y.,
Kunii, T.L., and Ueda, M., (1995). Algorithms for extracting correct critical points and constructing topo-
logical graphs from discrete geographical elevation data, Computer Graphics Forum, 143, 181– –192,
Blackwell publishers, by permission of Blackwell publishers (b) the Reeb graph (Source: Takahashi, S.,
Ikeda, T., Shinagawa, Y., Kunii, T.L., and Ueda, M., (1995). Algorithms for extracting correct critical points
and constructing topological graphs from discrete geographical elevation data, Computer Graphics Forum,
143, 181– –192. Blackwell publishers), and (c) a surperspective guide-map image (Source: Takahashi, S.,

Ohta, N., Nakamura, H., Takeshima, Y., and Fujishiro, I., (2002). Modeling surperspective projection of land-
scapes for geographical guide-map generation, Computer Grpahics Forum, 213, 259– –268. Blackwell
publishers)

Plate 2 Two terrain models (a) and (c) and their Reeb graph representations (b) and (d). The models in
(a) and (c) are freely available at http://www.geographx.co.nz/

Plate 3 The population surface in Toyama-shi

Plate 4 Visualisation of a pion collision simulation. (top row) Grayscale colour map of the density field.
(second row) Same field rendered with a hue-based colour map, which improves the visualisation of the
data. (third row) Further enhancement of the visualisation with overlapping topology diagram. (bottom row)
Reduced topology diagram highlighting the important structures of the data

Plate 5 SNV: surface network visualiser. The software application to visualise and interact with a sequence
of surface networks

Plate 6 Grit from a grinding wheel 1.0 × 1.0 mm (a) initial critical points; (b) hill segmentation after 3%
Wolf pruning; (c) after 5% Wolf pruning; and (d) 10% Wolf pruning

Plate 7 Anodised extruded aluminium 0.5 × 0.5 mm (a) initial critical points and (b) hill segmentation after
Wolf pruning
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