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Abstract

In this thesis we model a response-adaptive clinical trial as a Markov
decision problem. Patients are treated sequentially and allocation
of a study participant to a treatment is allowed to depend on the
previous outcomes. To do so we present the main solution techniques
for Markov decision problems with finite and infinite time horizon and
give some examples. Then we discuss how a model for a clinical trial
can be constructed. Our goal is to detect the superior treatment and
keep the number of patients receiving the inferior treatment small.
Finally, we carry out some simulations and compare the technique
with an equal randomization strategy.

In the first chapter we give an introduction to Markov decision
problems and consider a few examples to get familiar with some basic
concepts.
The second chapter presents the basic solution theory for finite

horizon Markov decision problems under the total reward criteria. We
define the Bellman equations which are an optimality condition for
Markov decision problems and have a look at the Backward Induction
Algorithm. Finally, we solve the examples introduced at the beginning.

In the third chapter we take a look at the infinite horizon case. We
work through the relationship between the solution of the Bellman
equations for the infinite horizon case and an optimal policy. Then we
consider the two most important procedures solving infinite horizon
Markov decision problems: Value Iteration and Policy Iteration. We
prove the convergence of both algorithms.

Chapters 1, 2 and 3 mainly follow the book [Put94].
The fourth chapter connects Markov decision problems with clinical

trials and is based on [Pre09] and [BE95] where bandit models for
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clinical trials are introduced. We assume that the trial members are
treated sequentially and the response is observed immediately. The
main idea in these articles is that allocation to one of the treatments
is based on what is learned so far so that

1. the superior treatment is detected in the end and

2. there are only few patient losses due to learning effects.

We investigate the applicability of the solution techniques discussed
in the previous chapters and provide some numerical results. These
techniques are particularly suitable for rare diseases since the patients
are often in a live-threatening situation and clinicians do not have the
possibility to rely on big clinical trials. Furthermore we compare the
outcomes to an equal randomization strategy.



Zusammenfassung

In dieser Arbeit modellieren wir klinische Studien als Markov-Ent-
scheidungsprobleme. Patienten werden sequentiell behandelt und die
Zuordnung eines Patienten zu einem Medikament darf von den be-
reits erlernten Behandlungsergebnissen der vorherigen Studienteil-
nehmer abhängen. Dazu erarbeiten wir zunächst die grundlegenden
Lösungsmethoden für Markov-Entscheidungsprobleme mit endlichem
und unendlichem Zeithorizont und besprechen einige Beispiele. Dann
beschreiben wir, wie ein Modell für eine klinische Studie konstruiert
werden kann. Das Ziel ist dabei, das bessere Medikament zu erken-
nen und gleichzeitig die Anzahl der Studienteilnehmer, welche das
schlechtere Medikament bekommen, gering zu halten. Schlussendlich
führen wir einige numerische Simulationen durch und vergleichen die
Ergebnisse mit einer Randomisierungsstrategie.

Im ersten Kapitel geben wir zunächst eine Einführung in Markov-
Entscheidungsprobleme. Danach besprechen wir einige Beispiele, um
mit den Grundkonzepten dieser Entscheidungsprobleme vertraut zu
werden.

Im zweiten Kapitel erarbeiten wir die zugrunde liegende Lösungs-
theorie für Markov-Entscheidungsprobleme mit endlichem Zeithori-
zont unter dem Gesamtgewinn-Kriterium. Dazu definieren wir die
Bellman-Gleichungen, welche als Optimalitätskriterium für Markov-
Entscheidungsprobleme aufgefasst werden können, und beschreiben
den Rückwärts-Induktionsalgorithmus. Schließlich lösen wir mit seiner
Hilfe die anfangs beschriebenen Beispiele.

Im dritten Kapitel betrachten wir den Fall des unendlichen Zeitho-
rizontes. Wir erarbeiten den Zusammenhang zwischen den Bellman–
Gleichungen für den Fall des unendlichen Zeithorizontes und einer
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optimalen Entscheidungsregel. Danach beschreiben wir die zwei wich-
tigsten Lösungsverfahren: Die Werte-Iteration und die Entscheidungs-
regel-Iteration. Wir beweisen die Konvergenz beider Algorithmen.

Kapitel 1, 2 und 3 basieren in großen Teilen auf dem Buch [Put94].
Das vierte Kapitel verbindet Markov-Entscheidungsprobleme und

klinische Studien und basiert auf den Arbeiten [Pre09] und [BE95],
wo Banditen-Modelle für klinische Studien vorgestellt werden. Wir
nehmen an, dass die Teilnehmer der Studie nacheinander behandelt
werden und die Auswirkung der Behandlung unmittelbar danach
messbar ist. Die Idee der oben genannten Arbeiten ist, dass die weitere
Zuordnung von Patienten zu Behandlungen auf dem bereits Gelernten
basiert und zwar so, dass

1. die bessere Behandlung gefunden wird, und

2. nur wenige Patienten, um einen Lerneffekt zu erzielen, die
schlechtere Behandlung bekommen.

Wir untersuchen die Anwendbarkeit der in den vorigen Kapiteln vorge-
stellten Lösungsmethoden und führen einige numerische Simulationen
durch. Die präsentierten Techniken sind vor allem für seltene Krankhei-
ten interessant, da sich die Patienten oft in einer lebensbedrohlichen
Situation befinden und Kliniker nicht auf große klinische Studien
zurückgreifen können. Weiters vergleichen wir die Ergebnisse mit einer
Randomisierungsstrategie.
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1 Introduction to Markov
Decision Problems

We take a look at the basic ingredients of Markov decision problems
and introduce some basic notion. Then we construct the underly-
ing stochastic model, which provides an appropriate framework for
comparing the value of two policies. Finally, to get familiar with the
matter, we give some examples of Markov decision problems: we ana-
lyse one period Markov decision problems, discuss a card game, and
we explain how a single product stochastic inventory control problem
can be modelled within the presented framework. This chapter is
based on the book [Put94].

1.1 Basic Notions

Consider a controller who has the ability to influence a stochastic
system by choosing actions at specified time points, called decision
epochs. With T we denote the set of all decision epochs, here T is
assumed to be finite or countably infinite. In the first case the decision
problem is called a finite horizon problem, in the latter case its called
an infinite horizon problem. At every decision epoch t ∈ T the system
attends a state s ∈ S, where S denotes the set of all possible states.
Here S is assumed to be a countable set. Then the controller performs
an action a ∈ As where As is the set of all actions allowed when the
system is in state s. With A we abbreviate the set of all possible
actions, A =

⋃
s∈S As. By choosing an action the controller can

influence the behaviour of the stochastic system. Depending on the
current state s and the action a performed at time t the controller
gains a reward rt(s, a) and the system attends a new state σ, based

T. Ondra, Optimized Response-Adaptive Clinical Trials, BestMasters,
DOI 10.1007/978-3-658-08344-1_1, © Springer Fachmedien Wiesbaden 2015



2 1 Introduction to Markov Decision Problems

on a probability distribution pt(·|s, a) which is called the transition
probability function. So pt(σ|s, a) is the probability that the next
state equals σ ∈ S given the controller chooses action a and the state
at time t equals s.

Often the reward does not only depend on the current state s and
the action a but also on the next state σ. We do not know σ in
advance since it is random, so we calculate the expected reward

rt(s, a) :=
∑
σ∈S

pt(σ|s, a)rt(s, a, σ),

where rt(s, a, σ) is the reward gained when the systems current state
is s, the controller chooses action a and σ ∈ S is the unknown next
state.
When we deal with a finite horizon problem we do not have to

choose an action at time point N , so the final reward rN (s) is only
dependent on the last state. Now we can define a Markov decision
process.

Definition 1.1 (Markov decision process). The quintuple

(T, S,As, pt(·|s, a), rt(s, a))
defines a Markov decision process. Here T is the set of decision epochs,
S is the set of all possible states, As is the set of actions allowed when
the system is in state s, pt(·|s, a) are transition probabilities and rt(s, a)
are the expected reward functions for all t ∈ T .

Remark 1.2. We use the term “Markov” since the reward functions
and the transition probabilities only depend on the past through the
current state and the current action.

A decision rule specifies the choice of an action. In the easiest
case we deal with a deterministic Markovian decision rule, this is a
function dt : S → As which determines the action to be taken at time
point t when the system is in state s.
Then there are deterministic history dependent decision rules. A

deterministic history dependent decision rule is a function depending
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not only on the current state but also on all states occurred, and on
all actions chosen so far. We define s1:t as the vector of all states until
decision epoch t. With a1:t−1 we denote the vector of all actions taken
until decision epoch t. Now we call ht := (s1:t, a1:t−1) the history
until t. In the deterministic history dependent case the action at is
specified by a function dt : Ht → As where Ht is the set of all possible
histories and s is the state in decision epoch t.

Remark 1.3. Sometimes it is convenient to rearrange states and actions
in the history ht according to ht = (s1, a1, s2, . . . , aN−1, sN ). Then Ht

satisfies the recursion Ht+1 = Ht × S × A. Especially in Chapter 2
we will use this notation.

In addition to the deterministic case we deal with randomized
decision rules. With P(As) we denote the set of all probability
measures on As. A randomized Markovian decision rule selects an
element q(·) ∈ P(As), so a randomized Markovian decision rule is an
operator dt : S → P(As) where s is the state of the system at decision
epoch t.

Then we have randomized history dependent decision rules. This is
an operator dt : Ht → P(As) where s is again the current state of the
system.

Remark 1.4. If we want to stress that we work with a randomized
Markovian decision we use qdt(s) with s ∈ S, whereas we use qdt(h)
with h ∈ Ht to emphasize that we are working with a randomized
history dependent decision rule. Whenever this is not necessary we
simply write qt.

Randomized decision rules are a generalization of deterministic
decision rules since we can identify a deterministic decision rule with a
degenerate probability distribution, that is qdt(s)(a) = 1 for an a ∈ As

in the Markovian and qdt(h)(a) = 1 for an a ∈ As in the history
dependent case.
We define the set of decision rules available at time t with DK

t ,
where K stands for one of the discussed decision rules,

K ∈ {DM,DH,RM,RH}.
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Here DM stands for deterministic Markovian, DH for deterministic
history dependent, RM for randomized Markovian and RH for ran-
domized history depended.
By choosing dt ∈ DDM

t transition probabilities and reward func-
tions become functions only depending on the states, pt(·|s, dt(s))
and rt(s, dt(s)). If we choose dt ∈ DRM we calculate the transition
probabilities and the rewards by

pt(σ|s, dt(s)) =
∑
a∈A

pt(σ|s, a)qdt(s)(a),

rt(s, dt(s)) =
∑
a∈A

r(s, a)qdt(s)(a).

Hence we simply weight the transition probabilities and the rewards
with the selected probability measure qdt(s).

Choosing a history dependent decision rule means that the transition
probabilities and the rewards depend on the history Ht. If dt ∈ DDH

t

we denote the rewards by rt(s, dt(h)) and the transition probabilities
by pt(·|s, dt(h)). If dt ∈ DRH

t transition probabilities and rewards are
calculated by

pt(σ|s, dt(s)) =
∑
a∈A

pt(σ|s, a)qdt(h)(a), (1.1a)

rt(s, dt(h)) =
∑
a∈A

r(s, a)qdt(h)(a). (1.1b)

A policy π is a sequence of decision rules, π = (dt)
N−1
t=1 in the finite

horizon case and π = (dt)
∞
t=1 in the infinite horizon case. The index

t only reaches from one to N − 1 in the finite horizon case since by
definition we do not choose an action in the last decision epoch N .
A policy is a complete description for the controller what to do

in every single decision epoch t ∈ T . With DK we denote the set of
all possible policies, DK :=

∏∞
t=1D

K
t in the infinite horizon case and

DK :=
∏N−1

t=1 DK
t in the finite horizon case . Here K stands again

for any kind of decision rule, K ∈ {DM,DH,RM,RH}. We have
DDM ⊂ DDH ⊂ DRH and DDM ⊂ DRM ⊂ DRH . So DRH contains
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State st Action at and Probability pt(·|st, at) State st+1

Reward rt(st, at)

t ← t+ 1

Figure 1.1: Overview of the components of a Markov decision process: Given
the current state s = st the controller chooses an action a = at

and receives an (expected) reward of rt(st, at). Then the state
changes according to pt(·|st, at) to the succeeding state σ = st+1.

the most general and DDM contains the most specific policies. In
Figure 1.1 we see an overview of the components of a Markov decision
process.

1.2 Probabilities and Induced Stochastic
Processes

Now we construct a stochastic model for Markov decision problems.
Lets first assume a finite horizon. Lets define ΩN := HN = SN×AN−1.
A typical ω ∈ Ω now looks like

ω = (s1:N , a1:N−1),

that carries the information which states have been attained and which
actions have been played. Specifying a σ-algebra A(Ω) is easy: we
simply take the power set of Ω. Let now P1(·) be the initial probability
distribution of the first state. In applications a first state is often
predetermined, in this case we can think of P1(·) as a degenerated
probability distribution.
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Now let π = (dt)
N−1
t=1 ∈ DRH be a randomized history depend-

ent policy. A Markov decision process and the policy1 π define a
probability measure P π

N on (Ω,A(Ω)) through

P π
N (ω) = P π

N (s1:N , a1:N−1) = P1(s1)

N−1∏
t=1

qt(at)pt(st+1|st, at). (1.2)

For any deterministic policy (1.2) simplifies to

P π
N (ω) ={

P1(s1)
∏N−1

t=1 pt(st+1|st, at) if dt(st) = at ∀t = 1, . . . , N − 1

0 otherwise.

(1.3)

Remark 1.5. Indeed P π
N in (1.2) defines a probability measure: Con-

sider two discrete probability measures (Ω1, P1) and (Ω2, P2). Then
we can define a probability measure P on Ω1 × Ω2 where P (ω) =
P (ω1, ω2) := P1(ω1)P2(ω2). We have 0 ≤ P (ω) ≤ 1 since 0 ≤ P1(ω) ≤
1 and 0 ≤ P2(ω) ≤ 1. Furthermore we see∑

(ω1,ω2)∈Ω1×Ω2

P (ω) =
∑

ω1∈Ω1

∑
ω2∈Ω2

P1(ω1)P2(ω2)

=
∑

ω1∈Ω1

P1(ω1)
∑

ω2∈Ω2

P2(ω2)

= 1.

Since pt(·|st, at), qt(·), and P1(·) are by definition probability measures
consecutively applying this fact proves the claim.

Now we define the random variables Xt : Ω → S, Yt : Ω → A
and Zt : Ω → Ht by Xt(ω) := st, Yt(ω) := at and Zt(ω) := ht =
(s1:t, a1:t−1). We have

P π
N (X1 = s) = P1(s) (1.4a)

1Since randomized history dependent policies are the most general ones any policy
discussed previously clearly defines such a probability measure.
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P π
N (Yt = a|Zt = ht) = qdt(ht)(a) (1.4b)

P π
N (Xt+1 = σ|Zt = ht, Yt = at) = pt(σ|st, at) (1.4c)

For example the first equality can be verified as follows:

P π
N (X1 = s) = P ({(s1, a1, . . . , sN ) ∈ Ω : s1 = s})

=
∑

a1,...,sN

P ({(s, a1, . . . , sN )})

= P1(s)
∑

a1,...,sN

N−1∏
t=1

qt(at)pt(st+1|st, at)

= P1(s).

The last equality follows because the product inside the sum defines
a probability measure on Ω̃ := {(a1, s2, . . . , sN ) : ai ∈ A, si ∈ S}. We
sum the probabilities over the entire space Ω̃ which has to be equal
to one and hence (1.4a) follows. Equations (1.4b) and (1.4c) follow
in a similar way.

Definition 1.6 (Markov chain). Let (Ω, P ) be a discrete probability
space and Xt : Ω → S with t ∈ N a family of random variables where
S is any countable set. We say that (Xt)t∈N is a Markov chain if

P (Xt+1 = s|Xt = st, Xt−1 = st−1, . . . , X1 = s1)

= P (Xt+1 = s|Xt = st)
(1.5)

for all t ∈ N.

Now for any Markovian decision rule π, deterministic or history
dependent, the family Xt defines a Markov chain on (Ω,A, P π

N ). As we
see in (1.4c) the next state is only dependent on the current state and
the current action played. The current action itself in the Markovian
policy case only depends on the current state because equation (1.4b)
simplifies in that case to P π

N (Yt = a|Zt = ht) = qdt(st)(a). This
justifies the name Markov decision process. For history dependent
policies the action depends on the history as we see in (1.4b). This
destroys the Markov chain feature.
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Now let W be an arbitrary real valued random variable on the
probability space (Ω,A, P π

N ). The expected value of W is defined by

Eπ(W ) :=
∑
ω∈Ω

P π
N (ω)W (ω) =

∑
w∈R

wP π
N (ω : W (ω) = w).

Often we will have W =
∑N−1

t=1 rt(Xt, Yt) + rN (XN ), the sum of
the expected rewards at every decision epoch and the expected final
reward.

1.2.1 Conditional Probabilities and Conditional
Expectations

Let ht = (s1, a1, . . . , st) be a history up to time t. We define the set
of all sample paths with the history ht, Ω(ht) := {(s1, a1, . . . , sN ) ∈
Ω : s1 = s1, . . . , st = st}. Furthermore, we define the conditional
probability (conditioned on the history ht) by

P π
N (at, st+1, . . . , sN |ht) :=

{
Pπ
N (s1,a1,...,sN )

Pπ
N (Ω(ht))

if P π
N (Ω(ht)) �= 0

0 otherwise.

Finally we define the expectation conditioned on the history ht of a
random variable W : Ω → R through

Eπ
ht
(W ) :=

∑
ω∈Ω(ht)

P π
N (at, st+1, . . . , sN |ht)W (ω).

Now we have a suitable framework for the finite horizon case.
Lets consider the infinite horizon case. We define the sample space

by
Ω := {ω = (s1, a1, s2, a2, s3, . . .) : sj ∈ S, aj ∈ Asj}.

In such a situation there exists a standard construction for a suitable
σ-algebra:

Definition 1.7. Let Ω be a set and let M be any subset of the power
set of Ω. We define

σ(M) :=
⋂

A:M⊆A
A
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as the intersection of all σ-algebras A over Ω containing M .

It is easy to verify that σ(M) is indeed a σ-Algebra over Ω. Now
consider the event

FN
s1:N ,a1:N−1

:=

{ω ∈ Ω : ω1 = s1, ω2 = a1, ω3 = s1, . . . , ω2N = an−1, ω2N−1 = sN}
and define

M =
⋃
N∈N

⋃
s1:N∈SN

⋃
a1:N−1∈As1×···×AsN−1

FN
s1:N ,a1:N−1

.

Now we use the σ-algebra A := σ(M). Again any history dependent
randomized policy π defines a probability measure P π : A → Ω
through

P π(FN
s1:N ,a1:N−1

) := P π
N (s1, a1, . . . , sN ),

where the right hand side is defined in (1.2).

1.3 Examples

We will start with analysing one period Markov decision problems to
get familiar with some basic concepts. Then we will have a look at
examples to see how to construct finite Markov decision problems.

One Period Markov Decision Problems

Let A and S be finite sets and T = {1, 2}. Here we have Ω =
S × A × S and Ω 	 ω = (s1, a1, s2). We assume that the system
is in a predetermined initial state s1. Then we have to choose an
action a1 ∈ A to receive an immediate reward of r1(s1, a1). Then the
system changes to state s2 depending on p1(·|s1, a1). In a one-period
Markov decision process this is already our final state and we receive
a final reward of r2(s2). Our goal is now to choose the best possible
action a1. Therefore, we have to find a suitable optimality criterion
which reflects our idea of a1 being a good choice. A Markov decision
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process together with such an optimality criterion is called a Markov
decision problem. We want to find an a1 which maximizes the sum of
the immediate reward r1(s1, a2) and the expected final reward r2(s2).
Therefore any

a∗ ∈ argmax
a∈As1

r1(s1, a) +
∑
σ∈S

p1(σ|s1, a)r2(σ) (1.6)

is optimal. If we want to find an optimal policy π ∈ DDM we have
to do the maximization step in (1.6) for every possible starting state
s1 ∈ S to find the optimal decision rule d1 : S → A. Then, since
it is only a one-period Markov decision process, we already found
the optimal policy π = d1. We cannot illustrate history dependent
decision rules because the history until our first and only decision a1
is h1 = s1, therefore there is nothing new.

Randomized policies π ∈ DRM do not lead to a better reward. Here
we have to solve

max
q∈P(As1 )

∑
a1∈A

q(a1)

(
r1(s1, a1) +

∑
σ∈S

p(σ|s1, a1)r2(σ)
)
,

where we maximize over all probability measures on As1 . Since
0 ≤ q(·) ≤ 1 we have

max
q∈P(As1 )

∑
a1∈A

q1(a1)

(
r1(s1, a1) +

∑
σ∈S

p(σ|s1, a1)r2(σ)
)

= max
a1∈A

r1(s1, a1) +
∑
σ∈S

p(σ|s1, a1)r2(σ).
(1.7)

So we cannot do better with randomized strategies. Of course a∗ in
(1.6) does not need to be unique. Any randomized strategy which sets
a positive weight only to actions fulfilling (1.6) are optimal as well.

The (k, n) Card Game

Let us consider the following easy Black Jack like card game. Alto-
gether we have k cards, numbered from 1 to k. The cards are upside
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down and the player has to randomly choose one card. The number
x1 ∈ {1, . . . , k} of the first card is written down. Then the chosen card
is laid back and the player has to choose a second card. The number
x2 of the new card is added to the first card number, s = x1 + x2.
This procedure is iterated and the card values are summed up. The
goal is to play in such a way that the total sum s is smaller than and
as close as possible to a predefined number n > k. After the player
decides to stop he receives a reward

R =

{
s if s ≤ n

0 otherwise.

We want to solve the game using a suitable finite Markov decision
problem. We take N = n, because the smallest card number is one
and after n rounds the player definitely does not want to play on
because either he was lucky and s = n or, more likely, s > n. In the
first case he receives the maximal reward R = n in the second case he
gains nothing because then we have R = 0. Clearly we only have two
possible actions in every decision epoch, namely ap which stands for
“take another card” and an which stands for “take no further card”. We
define the current state s as the sum of the already chosen card values.
This leads to the set S of all possible states, S = {1, . . . , kn}. Taking
no card means that s′ = s since the sum does not change. Taking a
further card means that the state s′ will be between s+ 1 and s+ k.
We assume a predetermined initial state. This is the number of the
first card drawn. Then we choose the following transition probabilities

pt(σ|s, ap) =
{

1
k for σ = s+ j, 1 ≤ j ≤ k

0 otherwise,

and

pt(σ|s, an) =
{
1 for σ = s

0 otherwise.

Example 1.8. A short example illustrates how we define the probabil-
ities. Take n = 4 and k = 2. Then we can write down the values of
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pt(σ|s, ap) in a matrix P ∈ R
|S|×|S|, since the action is fixed and the

probabilities are time independent,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0
0.5 0.5 0 0 0 0 0 0
0 0.5 0.5 0 0 0 0 0
0 0 0.5 0.5 0 0 0 0
0 0 0 0.5 0.5 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0.5 0.5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here we have Pij := pt(i|j, ap), so Pij is the probability that the next
state is i if the current state is j and action ap (take another card) is
chosen.

Example 1.9. In Figure 1.2 we see all possible paths of the (2, 4) card
game with starting state s1 = 1. We distinguish between grey and
black arcs. Grey arcs are only drawn because the underlying MDP
in principal does not a priori exclude these paths although a clever
player would not choose them. Note that if s2 = 3 then of course if
the action ap is chosen the state s3 = 3 is not possible. Nevertheless,
we have an arc between ap and the state s3 = 3 for the case that the
state at time point two was equal to s2 = 2. Knowing the whole past
is not necessary for determining which states are possible at the next
time point. The only two things which are necessary to know is the
current action and the current state.

Now we have to specify the rewards. The player does not really
get a reward in the decision epochs t = 1, . . . , N − 1 so we choose
rt(s, ap) = rt(s, an) = 0. For the final rewards we choose rN (s) = s if
s ≤ n and rN (s) = 0 otherwise.

The most aggressive strategy would be to try to reach the maximal
reward R = n even if s = n−1 after some cards have been drawn. The
most conservative strategy would be to stop playing when s > n− k
for the first time. Somewhere in between there will be the strategy
which yields the best possible expected reward. Since the intermediate
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Figure 1.2: Overview of the (2, 4) card game with starting state s1 = 1.

rewards are all zero and we only have two possible actions we are
also able to solve the problem without using Markov decision problem
solving techniques. The fundamental question now is: Assume we are
in state s, should we take another card or should we stop playing?
To answer this question we define Es as the expected reward if the
current sum equals s and we decide to take another card. The second
possibility would be not to choose a card and be satisfied with the
assured reward s. Therefore it seems natural to solve

Es ≥ s.

Whenever this equation is fulfilled we better play on since we can
expect a better reward than the assured reward s. Assume that the
player already took cards such that s > n− k is fulfilled for the fist
time. We calculate

Es =
1

k
((s+ 1) + . . .+ n) =

1

k

(
n(n+ 1)− s(s+ 1)

2

)
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=
n2 + n− s2 − s

2k
.

So we have

n2 + n− s2 − s

2k
≥ s ⇔ s2 + s(1 + 2k) + (−n2 − n) ≤ 0.

Solving the equation s2 + (1 + 2k)s+ (−n2 − n) = 0 yields

s1,2 =
−(1 + 2k)±√

(1 + 2k)2 + 4(n2 + n)

2
.

Because n, k > 0 we always have two distinct solutions. Let s1 > s2.
Solving the inequality above now means to find s ∈ R which satisfy

(s ≤ s1 ∧ s ≥ s2).

Since we have s2 < 0 and we consider sums of positive integers. So we
get our solution set to L = {s ∈ R : 0 ≤ s ≤ s1 }. For these sums s
we have an expected advantage do good if we decide to take a further
card.

We now concretely use n = 20, k = 10 and assume that s = 12. Do
we want to play on? Let us take a look at the expected reward if we
decide to take another card, E12 =

1
10 (20 + 19 + . . .+ 13) = 13.2, so

we should take another card since 13.2 > 12. The situation changes
if s = 13. We have E13 = 1

10 (20 + 19 + . . .+ 14) = 11.9 < 13 and
therefore we’re doing better in deciding not to take a further card.
Indeed solving the equation Es ≥ s with n = 20, k = 10 yields the
solution set L = {s ∈ R : 0 ≤ s ≤ 12.53}. This means if s ≤ 12 we
should play on and if s ≥ 13 we should stop playing.

A short simulation affirms the results above. Every possible strategy
is tested at 10000 simulated games. Under a possible strategy we
understand a number α were we stop taking further cards if the sum
s fulfils s ≥ α. There are more policies than possible strategies, but
in the simulation we do not consider policies which stop playing and
suddenly start taking cards again. There is no reason why a policy
should not take the card right away. Looking at Figure 1.3 reveals that
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Figure 1.3: Simulated average rewards of the (10, 20) card game if strategy α
is used.

the simulation suggests the strategy α = 13 since then the average
outcome is maximal.
In the second chapter we will describe an algorithm for general

finite horizon Markov decision problems. We will see that the solution
suggested by MDP will also be α = 13.

Stochastic Inventory Control

Consider a warehouse of capacity M which only stores one product
type. Each month we are confronted with the task whether we want
to stock additional units. If we decide to buy we also want to know
how much we should purchase. Buying additional ware also means
that some storage costs arise. Clearly we choose the state s to be
the units currently stored in the warehouse. This leads to the state
space S := {0, . . . ,M}. We define the set of all possible actions
As := {0, . . .M − s}, where an action a ∈ As tells us how many units
should be bought in addition. With D we denote the random demand
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until we again have the chance to reorder some units. This leads to
the system equation

s′ = max{0, s′ + a−D}.
We do not allow backlogging. It is assumed that if the demand exceeds
our capacities the customer will buy as much as possible from our
warehouse. We further assume that costs and rewards do not vary
from decision epoch to decision epoch. Now we take a closer look at
some economic parameters. Let the cost of ordering u units be

b(u) :=

{
K + c(u) if u > 0

0 otherwise,

where c(u) is, e.g., a linear function in u. The cost of maintaining
u units is described by a non decreasing function h(u). Finally, we
receive a reward of f(j) if we have been able to sell j units, where we
assume that f(0) = 0. So altogether we have

rt(s
′, s, a) = f(s+ a− s′)− b(a)− h(s+ a).

Now we have to construct the expected rewards rt(s, a). Defining
pj := P (D = j) we have that if our inventory exceeds the demand j
we gain f(j) with a probability of pj at the end of the month. If the
demand exceeds the inventory and we currently have u units stored
we receive a reward of f(u) with probability qu :=

∑
i≥u pi. This leads

to the expected gain of

F (u) = quf(u) +

u−1∑
j=1

pjf(j).

Now we are able to define the expected rewards as

rt(s, a) := F (s+ a)− b(a)− h(s+ a)

for t = 1, . . . , N − 1 and rN (s) = g(s) for some function g(·) which
describes the value of the rest of the inventory in the last decision
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epoch. For example we could choose g(s) = 0 ∀s ∈ S if for some
reason after the last decision epoch it is impossible to sell further
products. This might be the case when we exactly know that from
some time point on there will be no further demand. Now we have to
define the transition probabilities,

pt(σ|s, a) :=

⎧⎪⎨⎪⎩
0 M ≥ σ > s+ a

ps+a−σ M ≥ s+ a ≥ σ > 0

qs+a M ≥ s+ a and σ = 0.

A short explanation follows. Note that pt(σ|s, a) describes the prob-
ability that we have σ units stored at time point t+ 1 if we currently
have s units stored and purchase a more units. Now we have to
distinguish some cases. If M ≥ σ > s+ a then pt(σ|s, a) = 0 since it
is not possible that the stock in the next period is greater than the
sum of the currently stored units and the additionally bought units.
We have pt(σ|s, a) = ps+a−σ if M ≥ s+ a ≥ σ > 0 since in the next
epoch we want to have σ units left which means that we have to sell
s+ a− σ units. The probability therefore equals ps+a−σ. Finally, we
have the case that the demand exceeds the inventory. The probability
that at least s+ a units are sold equals qs+a.
What about the time horizon? For example we could specify that

we reorder at the beginning of every month and plan over a time
horizon of ten months. This would give N = 10.
We defined the set of possible actions, the transition probabilities,

the rewards and the time horizon and hence have a complete Markov
decision problem formulation for a stochastic inventory control prob-
lem. At the end of Chapter 2 we will have a look at the optimal policy,
which describes the optimal reordering strategy.



2 Finite Horizon Markov Decision
Problems

In this chapter we solve finite horizon Markov decision problems. We
are describing a policy evaluation algorithm and the Bellman equations,
which are necessary and sufficient optimality conditions for Markov
decision problems. Then we are constructing optimal policies out of the
solution of the Bellman equations. We will see that the class of Markov
deterministic policies —that are easier to handle—contain, under
assumptions which are often satisfied in practise, optimal policies.
Finally, we describe how optimal policies can be calculated, based on
a backward induction algorithm. This chapter is based on [Put94],
[Whi93], and [Der70].

2.1 Optimal Policies and the Bellman Equations

In order to be able to speak about optimal policies we need a method
for comparing two policies. In the finite horizon case we can simply
choose the so called expected reward criterion. Let π be a history
dependent randomized policy and define

vπN (s) := Eπ
s

(
N−1∑
t=1

rt(Xt, Yt) + rN (XN )

)
,

where the right hand side is the conditional expectation of the sum
of the expected rewards rt(Xt, Yt) and the final reward rN (XN ) con-
ditioned on X1 = s. Since the last reward rN (XN ) only depends
on the last state and not on an action anymore, we have to write it
down separately. Recall that we defined Xt := st and Yt := at. To

T. Ondra, Optimized Response-Adaptive Clinical Trials, BestMasters,
DOI 10.1007/978-3-658-08344-1_2, © Springer Fachmedien Wiesbaden 2015
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be able to speak about expectations we need a suitable sample space
(Ω,A, P π

N ), which we defined for discrete A and S in Section 1.2. If
we have π ∈ DDM the action chosen at decision epoch t is determined
by dt(st), so in this case we have

vπN (s) = Eπ
s

(
N−1∑
t=1

rt(Xt, dt(Xt)) + rN (XN )

)
.

Definition 2.1 (Optimal policies and ε–optimal policies). A policy
π∗ is called optimal if for every starting state s ∈ S and all π ∈ DRH

vπ
∗

N (s) ≥ vπN (s).

Fix ε > 0. We say that the policy π∗
ε is ε–optimal if for every starting

state s ∈ S and all π ∈ DRH

v
π∗
ε

N (s) + ε > vπN (s).

Definition 2.2 (Value of a Markov decision problem). We define the
value of a Markov decision problem as

v∗N (s) := sup
π∈DRH

vπN (s).

If S and A are finite and the rewards are bounded then the su-
premum exists and can be replaced by the maximum of the right hand
side of the equation above. Clearly, in this case we have v∗N (s) = vπ

∗
N (s),

so the expected total reward equals the value of a Markov decision
problem if an optimal policy π∗ is used. If we use a ε–optimal policy
we have v

π∗
ε

N (s) + ε > v∗N (s).

2.1.1 Policy Evaluation

Now we want to find a method which allows us to calculate the
expected total reward vπN (s) for a given policy π. We want to do this
in a backward inductive way. We define functions uπt : Ht → R,

uπt (ht) := Eπ
ht

(
rN (XN ) +

N−1∑
n=t

rn(Xn, Yn)

)
, (2.1)
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the expected total reward from decision epoch t on given the history
ht up to time t. Furthermore we define uπN (hN ) := rN (sN ) where
hN = (hN−1, aN−1, sN ). Note that if h1 = s and t = 1 we have

uπ1 (s) = Eπ
s

(
rN (XN ) +

N−1∑
n=1

rn(Xn, Yn)

)
= vπN (s). (2.2)

So if we are able to calculate uπ1 (s) we know the value of the Markov
decision problem if an optimal policy is used. Algorithm 1 calculates
the functions uπt in a backward inductive way.

Algorithm 1 Finite Horizon Policy Evaluation Algorithm for π ∈
DRH

1: Set uπN (hN ) = rN (sN ) for each hN = (hN−1, aN−1, sN ) ∈ HN .
2: t ← N
3: for t �= 1 do
4: t ← t− 1
5: Compute

uπt (ht) =∑
a∈Ast

qdt(ht)(a)

(
rt(st, a) +

∑
σ∈S

pt(σ|st, a)uπt+1((ht, a, σ)

)

for each ht ∈ Ht.
6: end for

Of course we need to show that the uπt (ht) constructed by the
algorithm are the same as these defined in (2.1).

Theorem 2.3. Let π be a randomized history dependent policy and
uπt (ht) be constructed by Algorithm 1. Then these functions are equal
to the right hand side of (2.1) for all t ≤ N , particularly uπ1 (s) is the
value of the underlying Markov decision problem if an optimal policy
is used.
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Proof. We prove the claim with backward induction. Within this
proof uπt always denotes the functions generated by Algorithm 1.
We see that uπN (hN ) = rN (sN ) coincides with the definition in (2.1).

Assume that uπt (ht) = Eπ
ht

(
rN (XN ) +

∑N−1
k=t rk(Xk, Yk)

)
is true for

all t = n+ 1, . . . , N . Now we calculate for t = n

uπn(hn) =
∑

a∈Asn

qdn(hn)(a)rn(sn, a)

+
∑
σ∈S

∑
a∈Asn

qdn(hn)pn(σ|sn, a)uπn+1(hn, a, σ)

(1.1)
= rn(sn, dn(hn))

+
∑
σ∈S

pn(σ|sn, dn(hn))uπn+1(hn, dn(hn), σ)

= rn(sn, dn(hn)) + Eπ
hn

(
uπn+1(hn, dn(hn), Xn+1)

)
= rn(sn, dn(hn))

+ Eπ
hn

(
Eπ

hn+1

(
N−1∑

k=n+1

rk(Xk, Yk) + rN (XN )

))

= rn(sn, dn(hn)) + Eπ
hn

(
N−1∑

k=n+1

rk(Xk, Yk) + rN (XN )

)

= Eπ
hn

(
rn(Xn, Yn) +

N−1∑
k=n+1

rk(Xk, Yk) + rN (XN )

)

= Eπ
hn

(
N−1∑
k=n

rk(Xk, Yk) + rN (XN )

)
,

which finishes the main part of the proof. As we have seen in (2.2)
we also have uπ1 (s) = vπN (s), so if we have an optimal policy we know
the value of the underlying Markov decision problem.

We want to have a look at the complexity of the policy evalu-
ation algorithm. The crucial point is that in every decision epoch
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we have to evaluate uπt for every possible history ht. Let there be
α states and β actions and N decision epochs. Then there are al-
together αNβN−1 possible histories since histories are of the form
hN = (s1, a1, s2, a2, . . . , aN−1, sN ). Up to time t there are αtβt−1 pos-
sible histories. Now fix a policy π, a decision epoch t and a particular
history ht up to time t. To calculate uπt (ht) Algorithm 1 needs αβ mul-
tiplications, see line five. To construct uπt we need to evaluate uπt (ht)
for every ht ∈ Ht, so αβαtβt−1 = αt+1βt multiplications are needed.
Now we iterate over all decision epochs, so all together

∑N−1
t=1 αt+1βt

multiplications are needed to evaluate a single policy. Additionally
we have to store αNβN−1 numbers in the beginning of the algorithm
in order to construct uπN .

So this is quite a lot of work to do. Luckily we will see that we only
have to give attention to deterministic Markovian decision rules. In
the Markovian case uπt are actually functions from S to R since the
actions chosen only depend on the current state st and not on the
entire past ht. Under this assumption we have

uπt (ht) = Eπ
ht

(
N−1∑
n=t

rn(Xn, Yn) + rN (XN )

)

= Eπ
st

(
N−1∑
n=t

rn(Xn, Yn) + rN (XN )

)
.

Consequently we do not have to look at each history ht like we did in
Algorithm 1. We rewrite the policy evaluation algorithm for the case
π ∈ DDM . Now we have a look at line five of Algorithm 2. We need α
multiplications for a single fixed st, so constructing uπt needs only α2

multiplications. We again iterate over the entire time horizon which
leads to

∑N−1
t=1 α2 = (N − 1)α2 multiplications altogether. Addition-

ally we only have to store α numbers to construct uπN . Theorem 2.3
also includes the correctness of Algorithm 2 if deterministic Markovian
policies are interpreted as degenerated probability measures.
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Algorithm 2 Finite Horizon Policy Evaluation Algorithm for π ∈
DDM

1: for t = N set uπN (sN ) = rN (sN ) ∀sN ∈ S.
2: t ← N
3: for t �= 1 do
4: t ← t− 1
5: uπt (st) = rt(st, d(st)) +

∑
σ∈S pt(σ|st, dt(st))uπt+1(σ) for all st ∈

S
6: end for

2.1.2 The Bellman Equations

Now we can take a look at the Bellman equations. The solution of
the equations will help us to find optimal policies.

We define the functions

u∗t (ht) = sup
π∈DRH

uπt (ht) (2.3)

which are the best possible expected total rewards from decision epoch
t onwards if the history until t equals ht and the supremum is attained.
This is, e.g., the case if we deal with finite S and A.

The Bellman equations, often also called optimality equations, are
given by

ut(ht) = sup
a∈Ast

(
rt(st, a) +

∑
σ∈S

pt(σ|st, a)ut+1(ht, a, σ)

)
for 1 ≤ t ≤ N − 1, and

(2.4a)

uN (hN ) = rN (sN ). (2.4b)

The solution of the Bellman equations is a sequence of functions
ut : Ht → R fulfilling (2.4a) and (2.4b). We will prove that the
solution of the Bellman equations fulfil (2.3), so if we solve the Bellman
equations we obtain a finite sequence ut : Ht → R of functions that
tell us what the best possible expected reward from decision epoch t
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onwards is if the history up to time t equals ht. Before we do this we
need a small lemma.

Lemma 2.4. Let f be a real–valued function on a discrete set Ω and
let p(·) be a probability distribution on Ω. Then we have

sup
ω∈Ω

f(ω) ≥
∑
ω∈Ω

p(ω)f(ω).

Proof. Set ω∗ := supω∈Ω f(ω). We easily calculate

ω∗ = ω∗ ∑
ω∈Ω

p(ω) =
∑
ω∈Ω

p(ω)ω∗ ≥
∑
ω∈Ω

p(ω)f(ω).

Now we can state the main property of the solution of the Bellman
equations.

Theorem 2.5. Suppose the family ut, t = 1, . . . , N is a solution of
the Bellman equations. Then we have

ut(ht) = u∗t (ht)

for all ht ∈ Ht and t = 1, . . . , N . Moreover we have u1(s) = v∗N (s) for
all s ∈ S, i.e., u1 equals the value of the underlying Markov decision
problem.

Proof. Within this proof we denote the solution1 of the Bellman
equations (assuming it exists) by ut, t = 1, . . . , N . We are starting
with proving by backward induction that

ut(ht) ≥ u∗t (ht) ∀ht ∈ Ht, t = 1, . . . , N. (2.5)

Note that we have for an arbitrary policy π by definition uπN (hN ) =
EhN

(rN (XN )) = rN (sN ) since by conditioning on an arbitrary history

1If S and A are finite we only have to assume that rt(·, ·) and rN (·) are bounded,
then a unique solution always exists.
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hN ∈ HN the random variable XN is known. By (2.4b) we have
uN (hN ) = rN (sN ) = uπN (hN ) for all hN ∈ HN and an arbitrary π ∈
DRH . So consequently we have uN (hN ) = u∗N (hN ) for all hN ∈ HN

and of course therefore uN (hN ) ≥ u∗N (hN ) for all hN ∈ HN . Now
assume that

ut(ht) ≥ u∗t (ht) ∀ht ∈ Ht, t = n+ 1, . . . , N,

and let π̃ := (d̃1, . . . , d̃N ) be an arbitrary randomized history depend-
ent policy. For t = n we have

un(hn)
(2.4)
= sup

a∈Asn

(
rn(sn, a) +

∑
σ∈S

pn(σ|sn, a)un+1(hn, a, σ)

)
i.h.≥ sup

a∈Asn

(
rn(sn, a) +

∑
σ∈S

pn(σ|sn, a)u∗n+1(hn, a, σ)

)
(2.3)

≥ sup
a∈Asn

(
rn(sn, a) +

∑
σ∈S

pn(σ|sn, a)uπ̃n+1(hn, a, σ)

)
2.4≥
∑
a∈A

qd̃n(hn)
(a)(

rn(sn, a) +
∑
σ∈S

pn(σ|sn, a)uπ̃n+1(hn, a, σ)

)
(2.3)
= uπ̃n(hn).

Because π̃ was arbitrary we showed ut(ht) ≥ u∗t (ht) for all ht ∈
Ht, t = 1, . . . , N. So we have proved the claim (2.5). Now we want
to show that, for an arbitrary ε > 0, there exists a policy π for which
we have

uπt (ht) + (N − t)ε ≥ ut(ht) ∀ht ∈ Ht, t = 1, . . . , N. (2.6)
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To do so we choose any policy2 π = (d1, . . . , dN−1) which fulfills for
all t = 1, . . . , N

rt(st, dt(ht)) +
∑
σ∈S

pt(σ|st, dt(ht))ut+1(st, dt(ht), σ) + ε ≥ ut(ht).

We again proof the claim (2.6) by backward induction. We have
uπN (hN ) = uN (hN ) for an arbitrary policy π, so (2.6) clearly holds for
t = N . Now assume that (2.6) is valid for all t = n+ 1, . . . , N . Then
we have

uπn(hn) = rn(sn, dn(hn)) +
∑
σ∈S

pn(σ|sn, dn(hn))uπn+1(sn, dn(hn), σ)

≥ rn(sn, dn(hn))

+
∑
σ∈S

pn(σ|sn, dn(hn)) (un+1(hn, dn(hn), σ)− (N − n− 1)ε)

= −(N − n)ε+ rn(sn, dn(hn))

+
∑
σ∈S

pn(σ|sn, dn(hn))un+1(hn, dn(hn, σ)) + ε

≥ un(hn)− (N − n)ε.

This proves the claim (2.6). By definition we have u∗t (·) ≥ uπt (·) for
all possible policies. Therefore we have

u∗t (ht) + (N − t)ε ≥ uπt (ht) + (N − t)ε
(2.6)

≥ ut(ht)
(2.5)

≥ u∗t (ht).

Now let us set ε̃ := (N − t)ε. Then we have

u∗t (ht) + ε̃ ≥ ut(ht) ≥ u∗t (ht),

which means u∗t (ht) = ut(ht) since ε was arbitrary. Moreover because
of v∗N (s) = u∗1(s) we also have u1(s) = v∗N (s).

2Such a policy clearly exists. Note that without adding ε we would have equality
by definition if the image of ht under dt equals the best possible action.
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Now we show how to use the solution of the Bellman equations to
construct optimal policies. At first we take a look at the case when
the Bellman equations attain the suprema.

Theorem 2.6. Let u∗t , t = 1, . . . , N be a finite sequence of functions
which solve the Bellman equations (2.4a) and (2.4b) and assume that
the policy DDH 	 π∗ := (d∗1, . . . , d∗N−1) satisfies

d∗t (ht) ∈ argmax
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ). (2.7)

Then we have
uπ

∗
t (ht) = u∗t (ht), ht ∈ Ht.

Moreover π∗ is an optimal policy since we have vπ
∗

N (s) = v∗N (s).

Remark 2.7 (Randomized vs. deterministic policies). Note that The-
orem 2.6 is already stated for deterministic history dependent policies.
This is not a restriction if seen in the following way: Let us rewrite
(2.7) for randomized history dependent policies,

q∗dt(ht)
(·) ∈ argmax

qdt(ht)(·)P(Ast )
U(qdt(ht))

with

U(qdt) :=
∑

a∈Ast

qdt(a)

(
rt(st, a) +

∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ)

)
.

We maximize over all possible probability distributions, which are by
definition randomized policies, on Ast . Now let us assume that we
have found an optimal probability distribution q∗dt(ht)

. Then we can
guarantee the existence of a deterministic history dependent policy.
To construct it set fht(a) := rt(st, a) +

∑
σ∈S pt(σ|st, a)u∗t+1(ht, a, σ)

and p(a) := qdt(ht)(a) and use Lemma 2.4, which basically tells us that
we are also doing well with a degenerated probability distribution
q̃∗dt(ht)

. To construct q̃∗dt(ht)
fix any a∗ ∈ argmaxa∈Ast

fht(a) and define

q̃∗dt(ht)
(a) =

{
1 if a = a∗

0 otherwise.
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Using q̃∗ is as good as using q∗ according to Lemma 2.4. Note that
q̃∗ is actually a deterministic history dependent policy as it is a
degenerate probability measure on Ast . Now we have constructed a
deterministic history dependent policy which is as good as the original
randomized history dependent policy. So we can restrict our attention
to π ∈ DDH .

Now we are ready to prove the theorem above.

Proof. We again prove the claim by backward induction. Clearly we
have uπ

∗
N (hN ) = u∗N (hN ) since this by definition holds true for every

policy. Assume that

u∗t (ht) = uπ
∗

t (ht) ∀ht ∈ Ht

for all t = n + 1, . . . , N . Before we perform the induction step we
need an auxiliary consideration. Condition (2.7) can equivalently be
expressed by choosing the policy π∗ = (d∗1, . . . , d∗N−1) in such a way
that d∗t (ht) solves the optimization problem

max
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ).

Note that we have

u∗t (ht) = max
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ)

by definition (2.4a) as well as

uπ
∗

t (ht) = rt(st, d
∗
t (ht)) +

∑
σ∈S

pt(σ|st, d∗t (ht))uπ
∗

t+1(ht, d
∗
t (ht), σ)

by Theorem 2.3. So using the the induction hypothesis u∗t (ht) =
uπ

∗
t (ht) yields

rt(st, d
∗
t (ht)) +

∑
σ∈S

pt(σ|st, d∗t (ht))uπ
∗

t+1(ht, d
∗
t (ht), σ)

= max
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ)
(2.8)
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for all t = n+ 1, . . . , N − 1. Now for hn = (hn−1, d
∗
n−1(hn−1), sn) we

calculate

u∗n(hn) = max
a∈Asn

rn(sn, a) +
∑
σ∈S

pn(σ|sn, a)u∗n+1(hn, a, σ)

= rn(sn, d
∗
n(hn)) +

∑
σ∈S

pn(σ|sn, d∗n(hn))uπ
∗

n+1(hn, d
∗
n(hn), σ)

= uπ
∗

n (hn).

Indeed the constructed policy is optimal since vπ
∗

N (s) = uπ
∗

1 (s) =
u∗1(s) = v∗N (s) for all possible starting states s ∈ S.

Theorem 2.6 asserts that there exists a deterministic history depend-
ent policy which is optimal since it gives instruction how to construct
it whenever, as assumed in the theorem, the supremum is attained,
meaning there exists an a∗ ∈ Ast for which we have

rt(st, a
∗) +

∑
σ∈S

pt(σ|st, a∗)u∗t+1(ht, a
∗, σ)

= sup
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ). (2.9)

Remark 2.8. Criteria which establish (2.9):

1. If A is finite, then (2.9) is fulfilled.

2. If As is compact for every s ∈ S, rt(s, a) and pt(σ|s, a) are continu-
ous in a for every fixed s ∈ S and additionally rt(s, a) and the final
reward rN (s) are bounded functions then (2.9) is fulfilled as well.

If however (2.9) is not fulfilled then we only have ε–optimal policies.

Theorem 2.9. Fix ε > 0 and let the family u∗t , t = 1, . . . , N
be a solution of the Bellman equations. Furthermore choose π =
(d1, . . . , dN−1) ∈ DDH such that

rt(st, dt(ht)) +
∑
σ∈S

pt(σ|st, dt(ht))u∗t+1(ht, dt(ht), σ) +
ε

N − 1

≥ sup
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ)
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for t = 1, 2, . . . , N − 1. Then the following statements are true:

1. For every t = 1, . . . , N − 1

uπt (ht) + (N − t)
ε

N − 1
≥ u∗t (ht), ht ∈ Ht.

2. The policy π is ε–optimal, vπN (s) + ε ≥ v∗N (s) for all s ∈ S.

Proof. 1. We have uπN (hn) = rN (sN ) = u∗N (sN ) for all

hN = (hN−1, aN−1, sN ),

hence the inequality follows for t = N . Now assume that the
statement is correct for t = n+ 1, . . . , N . Then we have

uπn(hn) = rn(sn, dn(hn))

+
∑
σ∈S

pn(σ|sn, dn(hn))uπn+1(sn, dn(hn), σ)

≥ rn(sn, dn(hn))

+
∑
σ∈S

pn(σ|sn, dn(hn))u∗n+1(sn, dn(hn), σ)

− ε(N − t− 1)

N − 1

≥ sup
a∈Ast

rn(sn, a) +
∑
σ∈S

pn(σ|st, a)u∗n+1(ht, a, σ)

− (N − t)
ε

N − 1

= u∗n(hn)− (N − t)
ε

N − 1
.

2. Choose t = 1, then it follows from the first part that

vπN (s) + ε = uπ1 (s) + ε ≥ u∗1(s) = v∗N (s)

for all s ∈ S.
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We want to show now that it is actually enough to look at determ-
inistic Markovian policies.

Theorem 2.10. Let u∗t : Ht → R be a finite sequence of functions
solving the Bellman equations (2.4a) and (2.4b). Then we have

1. For each t = 1, . . . , N the function u∗t (ht) depends on the history
ht only through the current state st.

2. If condition (2.9) holds, i.e., the supremum is attained, there exists
an optimal policy which is deterministic and Markovian.

3. Fix ε > 0, then there exists an ε–optimal deterministic Markovian
policy.

Proof. 1. We again use backward induction. We have u∗N (hN ) =
u∗N (hN−1, aN−1, sN ) = rN (sN ) for all possible histories, so u∗N (hN ) =
u∗N (sN ) and therefore u∗N only depends on the past through the cur-
rent state. Now assume that u∗t (ht) = u∗t (st) for all t = n+1, . . . , N .
We have

u∗n(hn) = sup
a∈Asn

rt(sn, a) +
∑
σ∈S

pn(σ|sn, a)u∗n+1(hn, a, σ)

= sup
a∈Asn

rt(sn, a) +
∑
σ∈S

pn(σ|sn, a)u∗n+1(σ). (2.10)

Now note that the term (2.10) depends on the history only through
sn, which means u∗n(hn) = u∗n(sn) for all possible histories. This
finishes the proof of the first part.

2. Now we know by (2.6) that choosing

d∗t (ht) ∈ argmax
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(ht, a, σ)

yields an optimal policy. We are rewriting this condition using our
result (i), i.e., we replace u∗t+1(ht, a, σ) by u∗t+1(σ),

d∗t (ht) ∈ argmax
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(σ).
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Algorithm 3 Backward induction algorithm for finite Markov de-
cision problems

1: for t = N set u∗N (sN ) = rN (sN ) ∀sN ∈ S.
2: t ← N
3: while t �= 1 do
4: t ← t− 1
5: for st ∈ S do
6: Compute

u∗t (st) = max
a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(σ)

7: Set

A∗
st,t = argmax

a∈Ast

rt(st, a) +
∑
σ∈S

pt(σ|st, a)u∗t+1(σ)

8: end for
9: end while

As we see d∗t depends on the history only through the current state
st so we actually have d∗t (ht) = d∗t (st). The policy π∗ = (d∗1, . . . , d∗N )
constructed by (2.6) is actually a deterministic Markovian policy.

3. Use Theorem 2.9, the rest is analogous to (ii).

2.2 Backward Induction Algorithm

In this section we put everything together what we know about finite
Markov decision problems and construct an algorithm which calculates
an optimal deterministic Markovian policy. We again assume that
the suprema in (2.9) are attained. We summarize our results in the
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following Theorem.

Theorem 2.11. Let u∗t and A∗
st,t be constructed using Algorithm 3.

Then the following statements are true:

1. For t = 1, . . . , N and ht = (ht−1, at−1, st) we have

u∗t (st) = sup
π∈DRH

uπt (ht).

2. Let d∗t (st) ∈ A∗
st,t for all st ∈ S and t = 1, . . . , N − 1. Then

π∗ = (d∗1, . . . , d∗N−1) is an optimal deterministic Markovian policy

and satisfies vπ
∗

N (s) = supπ∈DRH vπN (s) for all s ∈ S.

Proof. We just need to summarize what we already know from previ-
ous theorems.

1. Looking at the algorithm reveals that u∗t constructed by Algorithm 3
solves the Bellman equations. We showed in (2.5) that a property of
the solution of the Bellman equations is u∗t (st) = supπ∈DRH uπt (ht)
which proves the first part.

2. Note that an a ∈ A∗
st,t fulfils the property of Theorem 2.6. Therefore

π∗ is an optimal deterministic Markovian policy. Moreover we have
by definition of the quantities, as already seen,

vπ
∗

N (s) = uπ
∗

1 (s) = u∗1(s) = sup
π∈DRH

uπ1 (s) = sup
π∈DRH

vπN (s).

Now we should make some complexity considerations. In Algorithm
3 we have two nested loops. The outer one iterates over the decision
epochs N − 1, . . . , 1 and the inner one iterates over all s ∈ S. In
every step we need to perform an optimization. This yields an effort
of O((N − 1)|S|M). Here M is the effort needed for solving the
maximization step in the algorithm. If A is finite then we have a
trivial worst case estimate for the optimization: We simply try out
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every a ∈ A and store the a for which the objective function is
maximal. Finding the maximum of a set of a values is linear and
function evaluation is O(S), so M = O(|S||A|) and the complexity of
Algorithm 3 is O((N − 1)|S|2|A|).

2.3 Examples

We now apply the solution techniques to the examples introduced in
Section 1.3.

The (k, n) Card Game

In Section 1.3 we described the (k, n) card game which we now want to
solve using the backward induction algorithm for the case k = 10 and
n = 20. We take T := n, that leads to 19 decision epochs. A := {p,n}
where p stands for play and take another card and n stand for stop
playing. We define the set of all states as S := {1, . . . , kn}. Rewards
and transition probabilities are defined as in Section 1.3. The optimal
policy is stored in a matrix Π ∈ {p,n}kn×T−1. If we want to know
what to do if we are in state i at time point j we have to look at Πij .
The vector (2.11) is a part (first 20 entries) of a column of the policy
as constructed by the backward induction algorithm. All the columns
of Π are equal: we have Π:,j1 = Π:,j2 for all j1, j2 ∈ {1, . . . , 19} since
transition probabilities are stationary and intermediate rewards are
all equal to zero. It is only important that we stop if s > 13. Time
information does not play a role here.

(p p p p p p p p p p p pnnnnnnnn) . (2.11)

We just need the first 20 entries because if we are in state s > 20
then action p as well as action n only leads to a reward of R = 0, so
they are equally bad. We see that we have twelve consecutive p. This
means that if the sum fulfils s ≤ 12 we should take another card. If
s ≥ 13 we should stop playing.
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Figure 2.1: Beta binomial distribution

Stochastic Inventory Control

We set up our model with S = {0, . . . , 10}, As = {0, . . . , 10− s} and
T = 10. Let the demand Dt be (10, 24, 80) beta binomial distributed
for all t ∈ {1, . . . , 9}. This distribution seems a plausible choice for the
demand Dt as can be seen in Figure 2.1. Based on the beta binomial
distribution we can set up the transition probabilities as described in
Section 1.3. We further choose f(j) = 50j, h(s+ a) = s+ a and

b(a) =

{
20 + 35a if a > 0

0 otherwise.

With this information we can set up our rewards r(s, a) = F (s+ a)−
b(a)− h(s+ a) where F (s+ a) is the expected revenue if s+ a units
are stored in the warehouse, b(a) are the costs for ordering a units
and h(s+ a) is the cost for maintaining s+ a units in the warehouse.
We define the terminal rewards r10(s) := 0 for all s ∈ S. The optimal
policy is then given by (2.12) where Πij contains the information what
action to choose at time point j when currently i units are stored in
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Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 10 10 10 8 7 5 3 0
9 9 9 9 7 6 4 0 0
0 0 0 8 6 5 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.12)

the warehouse. So Πij tells us how many additional units have to be
bought to act optimal.



3 Infinite Horizon Markov
Decision Problems

We consider infinite horizon Markov decision problems. We state
the Bellman equations which characterize optimal policies. They are
an important tool for proving the optimality of so called stationary
policies. Then we take a look at two important algorithms which
solve infinite Markov decision problems: Value Iteration and Policy
Iteration. In this chapter we follow the book of [Put94]. Furthermore
we use the books [Whi93] and [BR11].

In this chapter we take a look at the infinite horizon case. We
introduce a discount factor λ ∈ [0, 1) and define the expected total
discounted reward of policy π as

vπλ(s) := lim
N→∞

Eπ
s

(
N∑
t=1

λt−1r(Xt, Yt)

)
. (3.1)

If sups∈S,a∈A |r(s, a)| ≤ c ∈ R holds, the limit above exists, so we
want to assume bounded rewards. In contrast to the finite horizon
case we additionally assume time independent rewards and transition
probabilities. Discounting arises naturally in many applications since
a cash flow received later in time is often less worth than money
which is earned right away. In this chapter it is always assumed that
λ ∈ (0, 1], this will play a key role in analysing infinite horizon Markov
decision problems.

Definition 3.1. The quintuple

M = (S,A, p(s′|s, a), r(s, a), λ)

T. Ondra, Optimized Response-Adaptive Clinical Trials, BestMasters,
DOI 10.1007/978-3-658-08344-1_3, © Springer Fachmedien Wiesbaden 2015
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together with an optimality criterion is called an infinite horizon
Markov decision problem. Here we use the expected total discounted
reward criterion.

We again call a policy π∗ optimal if

vπ
∗
(s) ≥ vπ(s)

for all starting states s ∈ S and every policy π ∈ DRH . We define
the value of an MDP as v∗(s) = supπ∈DRH vπ(s). An optimal policy
exists whenever vπ

∗
(s) = v∗(s) for all s ∈ S.

Like in the finite horizon case we can actually restrict our attention
to a smaller class of policies.

Theorem 3.2. For any π ∈ DRH there exists for each s ∈ S a policy
π̃ ∈ DRM for which vπ̃λ(s) = vπλ(s).

Proof. We proof the claim by showing that for every π ∈ DRH and a
given s ∈ S there exists a policy π̃ ∈ DRM for which we have

P π̃(Xt = σ, Yt = a|X1 = s) = P π(Xt = σ, Yt = a|X1 = s). (3.2)

Observe furthermore that then

vπλ(s) =
∞∑
t=1

∑
σ∈S

∑
a∈Aσ

λt−1r(σ, a)P π(Xt = σ, Yt = a|X1 = s)

=
∞∑
t=1

∑
σ∈S

∑
a∈Aσ

λt−1r(σ, a)P π̃(Xt = σ, Yt = a|X1 = s)

= vπ̃λ(s),

what would prove the claim. To establish (3.2) fix s ∈ S and define
the randomized Markovian policy π̃ = (d̃1, d̃2, . . .) by

qd̃t(σ)(a) = P π(Yt = a|Xt = σ,X1 = s).

This leads to

P π̃(Yt = a|Xt = σ) = P π̃(Yt = a|Xt = σ,X1 = s)
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= P π(Yt = a|Xt = σ,X1 = s). (3.3)

Now for t = 1 (3.2) is satisfied since for s = σ

P π̃(X1 = s, Y1 = a|X1 = s) = P π̃(Y1 = a|X1 = s)

(3.3)
= P π(Y1 = a|X1 = s)

= P π(X1 = s, Y1 = a|X1 = s).

Now assume that (3.2) is true for t = 1, . . . , n− 1 then

P π(Xn = σ|X1 = s)

=
∑
k∈S

∑
a∈Ak

P π(Xn−1 = k, Yn−1 = a|X1 = s)p(σ|k, a)

=
∑
k∈S

∑
a∈Ak

P π̃(Xn−1 = k, Yn−1 = a|X1 = s)p(σ|k, a)

= P π̃(Xn = σ|x1 = s).

Finally, we calculate

P π̃(Xn = σ, Yn = a|X1 = s)

= P π̃(Yn = a|Xn = σ)P π̃(Xn = σ|X1 = s)

= P π(Yn = a|Xn = σ,X1 = s)P π(Xn = σ|X1 = s)

= P π(Xn = σ, Yn = a|X1 = s).

Now we are introducing some vector based notation, which we
use in the rest of the chapter. Let V be the set of bounded real
valued functions on S equipped with the supremum norm ‖v‖∞ =
sups∈S |v(s)|. Let A be a linear operator on V . The norm ‖ · ‖∞
induces an operator norm ‖A‖∞ = sup‖v‖∞≤1 ‖Av‖∞.
For finite S elements in V are vectors and linear operators are

matrices. In that case the induced matrix norm is given by

‖A‖ = sup
s∈S

∑
j∈S

|Asj |.
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We want to abbreviate our notation a little in order to derive a
more compact form of (3.1), therefore we define for any decision rule
d ∈ DDM

rd(s) := r(s, d(s)) and pd(j|s) := p(j|s, d(s))
and for d ∈ DRM

rd(s) :=
∑
a∈As

qd(s)(a)r(s, a) and pd(j|s) :=
∑
a∈As

qd(s)(a)p(j|s, a).

We call rd the reward vector (sequence if S is countable infinite) and
Pd the transition probability matrix (operator acting on sequences)
corresponding to the decision rule d where

(Pd)sj := pd(j|s). (3.4)

Lemma 3.3. Let v ∈ V be arbitrary, then it follows that rd +λPdv ∈
V .

Proof. Because we have assumed that the rewards are bounded we
have ‖rd‖ ≤ c for an arbitrary decision rule d. Furthermore we have
‖Pdv‖ ≤ ‖Pd‖‖v‖ = ‖v‖ because ‖Pd‖ = sup‖v‖∞≤1 ‖Pdv‖ = 1. So
altogether we have

‖rd + λPdv‖ ≤ ‖rd‖+ |λ|‖Pdv‖ ≤ ‖rd‖+ ‖v‖ = c̃.

Now fix a policy π = (d1, d2, . . .) ∈ DRM . We calculate the t-step
transition probability under the policy π,

ptπ(j|s) := P π(Xt+1 = j|X1 = s) = (Pdt · · ·Pd1)sj ,

where Pdi is defined in (3.4). Now we again build a matrix using the
t-step transition probabilities,

(P t
π)sj := ptπ(j|s). (3.5)
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Using this notation we have

vπλ(s) = lim
N→∞

Eπ
s

(
N∑
t=1

λt−1r(Xt, Yt)

)

= lim
N→∞

N∑
t=1

λt−1Eπ
s (r(Xt, Yt))

= lim
N→∞

N∑
t=1

λt−1
(
P t−1
π

)
s:
rdt

=

∞∑
t=1

λt−1
(
P t−1
π

)
s:
rdt ,

where we set P 0
π := idV to include the immediate first reward which

only depends on the initial state s1 and the first action a1. This leads
to a more compact representation of the expected discounted reward
which is our first formula for policy evaluation.

Lemma 3.4. Let π be an arbitrary Markovian randomized (which
includes the deterministic case) policy. Then the expected total dis-
counted reward fulfils

vπλ =

∞∑
t=1

λt−1P t−1
π rdt .

Proof. The calculation above proves the claim.

3.1 Bellman Equations and Existence of Optimal
Policies

We will start with an alternative formula for evaluating so called
stationary policies. A stationary policy uses the same decision rule in
every decision epoch, Δ = (d, d, . . .). We will see that these policies
play an important role in infinite horizon models.
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First of all we need some results from functional analysis. An
operator A : V → V is called bounded if ‖Av‖ ≤ c‖v‖ for all v ∈ V
and a fixed c ∈ R. We define the spectral radius of a bounded linear
operator L : V → V by ρ(L) := limn→∞ ‖Ln‖ 1

n .

Lemma 3.5. Let L : V → V be a bounded linear operator. Then we
have that

1. ρ(L) ≤ ‖L‖.
2. If ρ(L) < 1 then (idV − L)−1 exists.

An operator A : V → V is called a contraction mapping if there
exists a λ ∈ [0, 1) such that ‖Av −Au‖ ≤ λ‖v − u‖.
Theorem 3.6 (Banach’s Fixed-Point Theorem). Let V be a Banach
space and A : V → V be a contraction mapping. Then the following
holds true:

1. The equation Av = v has a unique solution v∗ ∈ V .

2. Let v0 ∈ V be arbitrary then the sequence (vn)n∈N defined by

vn+1 := Avn

converges to v∗.

Now we are ready to prove a first theoretically important result.
It will help us to identify so called stationary policies to be optimal.
A stationary policy is of the form Δ = (d, d, . . .), so it uses the same
decision rule in every decision epoch. In the following proof we will
already illustrate how the Banach fixed-point theorem is related to
infinite Markov decision problems although the next result can be
verified without using it. Later the Banach fixed-point theorem will
become very important.

Theorem 3.7. Let Δ be a stationary policy in DRM . Then the total
expected discounted reward vΔλ is the unique solution of v = rd + λPdv
in V . Furthermore, we have

vΔλ = (idV − λPd)
−1rd =

∞∑
t=1

λt−1P t−1
d rd.
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Proof. First we note that by Lemma 3.4 we have for an arbitrary
π = (d1, d2, . . .) ∈ DRM

vπλ =

∞∑
t=1

λt−1P t−1
π rdt

= rd1 + λPd1rd2 + λ2Pd1Pd2rd3 + · · ·
= rd1 + λPd1

(
rd2 + λPd2rd3 + λ2Pd2Pd3rd4 + · · · )

= rd1 + λPd1v
π̃
λ ,

where π̃ := (d2, d3, . . .). Now we apply the fact above to the stationary
decision rule Δ = (d, d, . . .) and obtain

vΔλ = rd + λPdv
Δ
λ , (3.6)

so vΔλ solves the equation v = rd + λPdv.
Next we have to show that vΔλ is unique and an element of V .

To do so define the linear transformation Ld : V → V given by
Ldv = rd + λPdv. Lemma 3.3 asserts that Ld indeed maps bounded
functions to bounded functions. Now we have Ldv

Δ
λ = vΔλ which

means vΔλ is a fixed point of Ld. Furthermore, Ld is a contraction
since it fulfils a Lipschitz condition

‖Ldv − Ldw‖ = ‖λPdv − λPdw‖ ≤ |λ|‖Pd‖‖v − w‖ = |λ|‖v − w‖,

where we assumed λ < 1. Because (V, ‖ · ‖∞) is complete vΔλ ∈ V
as well as uniqueness of the solution follow by Banach’s fixed point
theorem.
We furthermore know by rewriting (3.6) that (idV − λPd)v

Δ
λ = rd.

Now (idV − λPd)
−1 exists because of Lemma 3.5 since ‖λPd‖ ≤

|λ|‖Pd‖ = λ < 1. Therefore we have

(idV − λPd)
−1rd = vΔλ =

∞∑
t=1

λt−1P t−1
d rd,

where the last equality is satisfied because of Lemma 3.4.
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Definition 3.8 (Bellman equations, Optimality equations). The equa-
tions

v(s) = sup
a∈As

r(s, a) +
∑
σ∈S

λp(σ|s, a)v(σ)

are called Bellman equations or optimality equations. We can use our
vector based notation to rewrite these equations as

Bv = v,

where the operator B : V → V is defined by

Bv := sup
d∈DDM

rd + λPdv.

We further define Ld : V → V by

Ldv := rd + Pdv.

From the proof of Theorem 3.7 we already know that Ld is a
contraction mapping.

Remark 3.9. 1. Recall that d ∈ DDM is a function d : S → A. The
set S is assumed to be discrete, so d can be regarded as a vector in
the finite case or as a sequence in the infinite case. The supremum
above is computed with respect to the componentwise partial
ordering, v ≤ u :⇔ vi ≤ ui.

2. For all v ∈ V we have supd∈DRM rd+λPdv = supd∈DDM rd+λPdv.
Since DRM ⊇ DDM we have supd∈DRM rd+λPdv ≥ supd∈DDM rd+
λPdv. To establish the reverse inequality choose v ∈ V and d̃ ∈
DRM and use Lemma 2.4 for each s ∈ S with Ω = As, p = qd̃ and

f(·) = r(s, ·) +
∑
σ∈S

λp(σ|s, ·)v(σ)

to obtain

sup
a∈As

r(s, a) +
∑
σ∈S

λp(σ|s, a)v(σ)
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≥
∑
a∈As

qd̃(a)

(
r(s, a) +

∑
σ∈S

λp(σ|s, a)v(σ)
)
.

Hence we have

sup
d∈DMD

rd + λPdv ≥ rd̃ + λPd̃v.

Because d̃ ∈ DRM was arbitrary we have established the reverse
inequality and thus equality.

3. If the action set is finite the supremum is trivially attained.

4. Solutions of the Bellman equations are fixed points of B.
The following theorem states that the solution of the Bellman

equations, provided it exists, equals the value of the underlying infinite
Markov decision problem. Beforehand we need a small lemma.

Lemma 3.10. Let d ∈ DRM be an arbitrary randomized decision
rule.

1. If u, v ∈ V such that u ≥ v we have

(idV − λPd)
−1u ≥ (idV − λPd)

−1v.

2. If V 	 x ≥ 0 we have (idV −λPd)
−1x ≥ 0 and (idV −λPd)

−1x ≥ x.

Proof. We start by proving the second part. We again have ρ(λPd) < 1
so (idV − λPd)

−1 exists. Let x ≥ 0. We apply Theorem 3.7 with
rd = x and obtain

(idV − λPd)
−1x =

∞∑
t=1

λt−1P t−1
π x = x+

∞∑
t=2

λt−1P t−1
π x ≥ x ≥ 0

hence the second statement follows. For the first statement set x :=
u− v and use the inequality above,

(idV − λPd)
−1(u− v) ≥ 0.
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Now (idV − λPd)
−1 is linear, this is clear if S is finite, so the claim

follows. Nevertheless linearity also follows from the fact that (idV −
λPd)

−1(u−v) =
∑∞

t=1 λ
t−1P t−1

π (u−v) where the sum is absolutely con-
vergent. Therefore the order of summation can be interchanged and we
have

∑∞
t=1 λ

t−1P t−1
π (u− v) =

∑∞
t=1 λ

t−1P t−1
π u−∑∞

t=1 λ
t−1P t−1

π v =
(idV −λPd)

−1u− (idV −λPd)
−1v. Therefore, we can also include more

general cases, e.g., if S is countably infinite, so the claim especially
holds for any discrete set S.

Theorem 3.11. Assume that there exists an element v ∈ V with
Bv = v. Then we have v = v∗λ and the solution v is unique.

Proof. We will show the claim by establishing the following two
statements:

1. If Bv ≤ v then v∗λ ≤ v.

2. If Bv ≥ v then v∗λ ≥ v.

Consequently if there exists v ∈ V for which Bv = v is fulfilled both
statements above are true. That means v∗λ ≤ v as well as v∗λ ≥ v are
satisfied, so v = v∗λ.
We start with (i). Let π = (d1, d2, . . .) ∈ DRM be an arbitrary

policy. Assume we have v ∈ V with v ≥ Bv. This means that

v ≥ sup
d∈DDM

rd + λPdv = sup
d∈DRM

rd + λPdv, (3.7)

where the last equality is due to Remark 3.9. Therefore we have

v ≥ rd1 + λPd1v ≥ rd1 + λPd1(rd2 + λPd2v),

where we used (3.7) twice, the first time for decision rule d1 and the
second time for decision rule d2. Using the notation introduced in
(3.5) we simplify

rd1 + λPd1(rd2 + λPd2v) = rd1 + λPd1rd2 + λ2Pd1Pd2v

= P 0
πrd1 + λP 1

πrd2 + λ2P 2
πv.
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Iterating the above argument n times yields

v ≥
n−1∑
k=0

λkP k
π rdk+1

+ λnPn
π v.

Now we subtract vπλ =
∑∞

k=0 λ
kP k

π rdk+1
(Lemma 3.4) on both sides

of the inequality above leading to

v − vπλ ≥ λnPn
π v −

∞∑
k=n

λkP k
π rdk+1

. (3.8)

Next we will show that the right hand side gets arbitrary small if n is
chosen big enough. Let ε > 0 be arbitrary and define 1 := (1, . . . , 1)
or, if S is countable infinite 1 := (1, 1, . . .) respectively.
Since ‖λnPn

π v‖ ≤ λn‖v‖ and λ ∈ [0, 1) we have

−ε1 ≤ λnPn
π v ≤ ε1

if n is sufficiently large. Since rewards are assumed to be bounded,
r(s, a) ≤ c for all s ∈ S and a ∈ A as well as P k

π1 = 1, since P k
π is the

k-step transition matrix (operator if S is infinite), we have

∞∑
k=n

λkP k
π rdk+1

≤ c
∞∑
k=n

λk1 = cλn
∞∑
k=n

λk−n1

= cλn
∞∑
k=0

λk1

≤ cλn

1− λ
1

≤ ε1

for n big enough and hence −∑∞
k=n λ

kP k
π rdk+1

≥ ε1. Combining
these two estimates with (3.8) yields v − vπλ ≥ 2ε1 and therefore

v ≥ vπλ + 2ε1.
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Now since ε as well as policy π ∈ DRM have been arbitrary we have

v ≥ sup
π∈DRM

vπλ = sup
π∈DRH

vπλ = v∗λ,

where the first equality above is due to Theorem 3.2. Now we want to
prove (ii). So assume Bv ≥ v. Therefore we have v ≤ supd∈DDM rd +
λPdv. Now choose ε > 0 arbitrary. There clearly exists a d ∈ DDM for
which we have v ≤ rd + λPdv + ε1 and therefore rd + ε1 ≥ v − λPdv.
Now we are using Lemma 3.10 and obtain

(idV − λPd)
−1(rd + ε1) ≥ (idV − λPd)

−1(v − λPdv)

= (idV − λPd)
−1(idV − λPd)v

= v.

We evaluate the left hand side of the inequality above,

(idV − λPd)
−1(rd + ε1) = vΔλ +

∞∑
t=1

λt−1P t−1
d ε1

= vΔλ + ε

∞∑
t=1

λt−11

= vΔλ +
ε

1− λ
1,

where the first equality is due to Theorem 3.7 and Lemma 3.4. Now
we found a policy, namely the stationary policy Δ = (d, d, . . .) for
which we have

v ≤ vΔλ +
ε

1− λ
1.

Since ε was arbitrary we certainly have

v ≤ sup
π∈DRH

vπλ = v∗λ.
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Recall that the Bellman equations are of the form Bv = v. So we
are looking for a fixed point, therefore we want to apply Banach’s
fixed-point theorem. This would ensure the existence of a solution of
the Bellman equations. To do so we need to show that B : V → V is
a contraction mapping.

Lemma 3.12. The Operator B : V → V is a contraction mapping.

Proof. Let v ∈ V be arbitrary. ‖Bv‖ = ‖ supd∈DDM rd + λPdv‖ =
supd∈DDM ‖rd+λPdv‖ ≤ supd∈DDM ‖rd‖+λ‖Pd‖‖v‖ ≤ c+λ‖v‖ ≤ c̃,
hence B : V → V .
If u = v the inequality ‖Bv − Bu‖ ≤ K‖u− v‖ is fulfilled trivially

for every K ∈ R, so let u �= v. Now choose ε > 0 so that

√
ε < ‖v − u‖.

Observe that this yields ε <
√
ε‖v − u‖. We will use this fact later.

We want to show that

‖Bv − Bu‖ ≤ λ‖v − u‖
for 0 ≤ λ < 1. We are doing this componentwise by proving |B[v](s)−
B[u](s)|λ ≤ ‖v − u‖. Now fix s ∈ S and assume w.l.o.g. B[v](s) ≥
B[u](s). Then choose d∗(s) in such a way that

rd∗(s) + λPd∗ [v](s) + ε ≥ sup
d∈DDM

rd(s) + λPd[v](s). (3.9)

Now we clearly have B[u](s) = supd∈DDM rd + λPdu ≥ rd∗ + λPd∗u.
We calculate, using ‖Pd∗‖ = 1 that

|B[v](s)− B[u](s)| = B[v](s)− B[u](s)
≤ ε+ rd∗(s) + λPd∗ [v](s)− rd∗(s)− λPd∗ [u](s)

≤ ε+ λ|Pd∗ [v − u](s)|
≤ ε+ λ‖Pd∗(v − u)‖
≤ ε+ λ‖v − u‖
<

√
ε‖v − u‖+ λ‖v − u‖
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= (λ+
√
ε)‖v − u‖.

Now if B[v](s) < B[u](s) then we also know |B[v](s) − B[u](s)| =
B[u](s) − B[v](s) < (λ + ε)‖v − u‖ . To see the last inequality the
roles of v and u have to be interchanged in the argumentation above,
beginning from inequality (3.9). Since ε > 0 was arbitrary we have
|B[v](s)− B[u](s)| ≤ λ‖v − u‖ for all s ∈ S. Therefore ‖Bv − Bu‖ ≤
λ‖v − u‖ is satisfied for 0 ≤ λ < 1 by assumption, hence B : V → V
is a contraction mapping.

Now putting everything together what we have so far yields a central
result for infinite horizon Markov decision problems. Since it is a
main result we exactly recapitulate the assumptions we have made.

Theorem 3.13. Let M = (S,A, p(s′|s, a), r(s, a), λ) be an infinite
Markov decision problem where S is discrete, 0 ≤ λ < 1 and r(s, a) ≤ c
for all s ∈ S and a ∈ A . Then the value of M is v∗λ, the unique
solution of Bv = v.

Proof. Note that (V, ‖ · ‖∞) is a Banach space. Moreover B : V → V
is a contraction mapping according to Lemma 3.12. Hence we can use
Banach’s fixed-point theorem and obtain that Bv = v has a unique
solution. Now we know by Theorem 3.11 that the solution v∗ of
Bv = v fulfils v∗ = v∗λ.

Next we prove that the Bellman equations can indeed be interpreted
as optimality conditions for infinite Markov decision problems. We
only have to summarize what we already know.

Theorem 3.14. A policy π∗ ∈ DRH is optimal if and only if vπ
∗

λ is
a solution of Bv = v.

Proof. Suppose π∗ is optimal. By definition we have vπ
∗

λ = v∗λ, there-
fore by Theorem 3.13 we know that vπ

∗
λ solves Bv = v. Now assume

vπ
∗

λ solves the Bellman equations. Then by Theorem 3.11 we know
vπ

∗
λ = v∗λ hence π∗ is optimal.
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Now we want to convince ourselves that there exists an optimal
policy of the form Δ = (d, d, . . .), this kind of policy is called stationary.
It uses the same decision rule at every decision epoch. That there are
optimal policies which are stationary is also intuitively clear because
transition probabilities and rewards are independent of time.
We are introducing some common terminology. We will start by

assuming that the suprema in the Bellman equations are attained. In
that case we introduce so called improving and conserving decision
rules to show the existence of a stationary optimal policy.

Definition 3.15. We call the decision rule dv ∈ DDM v–improving
if

dv ∈ argmax
d∈DDM

rd + λPdv.

With Dv we denote the set of all v–improving decision rules.

This means a v–improving policy fulfils

rdv + λPdv = max
d∈DDM

rd + λPdv

or, using the operator Ld in Definition 3.8 and the Bellman Operator
we can rewrite this property as

Ldvv = Bv.
Definition 3.16. A decision rule d∗ ∈ DDM is called conserving if
it is v∗λ improving.

So conserving decision rules have the property that

sup
d∈DDM

rd + λPdv
∗
λ = rd∗ + λPd∗v

∗
λ.

Theorem 3.17. Let S be discrete and suppose the supremum

sup
d∈DDM

rd + λPdv

is attained for all v ∈ V . Then a policy of the form Δ := (d∗, d∗, . . .),
where d∗ ∈ DDM is a conserving decision rule, is optimal.
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Proof. We start by observing that a conserving decision rule exist.
Note that v∗λ ∈ V , hence sup rd + λPdv

∗
λ is attained by assumption.

Now choose d∗ ∈ argmax rd+λPdv
∗
λ then d∗ is conserving by definition.

By Theorem 3.13 and by the definition of conserving we have

v∗λ = Bv∗λ = sup
d∈DDM

rd + λPdv
∗
λ = rd∗ + λPd∗v

∗
λ = Ld∗v

∗
λ.

Now by Theorem 3.7 we have vΔλ = v∗λ, hence Δ is optimal.

So we finally have

sup
d∈DDM

vΔλ = sup
π∈DRH

vπλ ,

where Δ = (d, d, . . .) is a stationary policy consisting of conserving
decision rules. Now we have a look at another easy criteria ensuring
the existence of conserving decision rules: Whenever there is an
optimal policy there is also an optimal stationary policy.

Proposition 3.18. Suppose there exists an optimal policy π ∈ DRH .
Then there exists a deterministic stationary optimal policy Δ.

Proof. Let π∗ = (d∗, π̃) with1 d ∈ DRM be an optimal policy. Then
we have

vπ
∗

λ = rd∗ + λPd∗v
π̃
λ ≤ rd∗ + λPd∗v

π∗
λ

≤ sup
d∈DDM

rd + λPdv
π∗
λ

= Bvπ∗
λ = vπ

∗
λ ,

hence the inequalities are equalities and so d is a conserving decision
rule.

1π∗ is a randomized history dependent policy. Nevertheless d∗ is randomized
Markovian since the history up to decision epoch 1 equals the initial state. For
the same reason stationary policies are always Markovian policies.
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Note that in the proof of Theorem 3.17 the assumption that the
supremum is attained was only needed to ensure the existence of
a conserving decision rule. Now we have proved the existence of a
conserving decision rule through the existence of an optimal policy.
In the case where the suprema are not attained we will show that

there exists an ε–optimal stationary policy. We define them just like
in the finite horizon case:

Definition 3.19. Fix ε > 0. We call the policy π∗
ε ε–optimal if

v
π∗
ε

λ ≥ v∗λ − ε1.

Theorem 3.20. Suppose S is discrete. Then for all ε > 0 there exists
an ε–optimal deterministic stationary policy.

Proof. Recall that supd∈DDM rd + λPdv
∗
λ = Bv∗λ = v∗λ. Now choose

dε ∈ DDM so that

rdε + λPdεv
∗
λ ≥ sup

d∈DDM

rd + λPdv
∗
λ − (1− λ)ε1 = v∗λ − (1− λ)ε1.

This yields rdε ≥ v∗λ − λPdεv
∗
λε1− (1− λ)ε1. Since (idV − λPdε)

−1 is
order preserving (Lemma 3.10) we have

(idV − λPdε)
−1rdε

≥ (idV − λPdε)
−1(v∗λ − λPdεv

∗
λ)− (1− λ)(idV − λPdε)

−1ε1.

Due to Theorem 3.7 we know that vΔλ = (idV − λPdε)
−1rdε where

Δ = (dε, dε, . . .). We further have (idV − λPdε)
−1(v∗λ − λPdεv

∗
λ) =

(idV − λPdε)
−1(idV − λPdε)v

∗
λ = v∗λ as well as

(idV − λPdε)
−11 =

∞∑
t=1

λt−1P t−1
dε

1 =
1

1− λ
1.

So altogether we have vΔλ ≥ v∗λ − ε1, hence Δ = (dε, dε, . . .) is an
ε–optimal policy.
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Algorithm 4 Value Iteration Algoritm

Require: Infinite Markov Decision Problem M, starting vector v0,
ε.

Ensure: An ε–optimal stationary policy Δ = (dε, dε, . . .).
1: v′ ← v0.
2: repeat
3: v ← v′

4: for all s ∈ S do
5: v′(s) = maxa∈As r(s, a) + λ

∑
j∈S p(j|s, a)v(j).

6: end for
7: until ‖v′ − v‖ ≤ ε(1−λ)

2λ
8: for all s ∈ S do
9: dε ∈ argmaxa∈As

r(s, a) + λ
∑

j∈S p(j|s, a)v′(j)
10: end for

3.2 Value Iteration

Of course, our goal is to construct optimal policies. We will now take a
closer look at the case where the suprema in the Bellman equation are
attained and the state space S is finite. The Value Iteration algorithm
then finds a stationary ε–optimal policy.

Definition 3.21. Let xn ∈ V for all n ∈ N and (xn)n∈N → x∗ be a
convergent sequence. The sequence converges at order α > 0 if there
exists a constant K > 0 for which we have

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖α.
Let (xn)n∈N be a sequence converging at order α. The rate of conver-
gence is defined as the smallest K for which

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖α.
Theorem 3.22. Let (vn)n∈N be the sequence constructed by the Value
Iteration algorithm. Then we have
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1. vn → v∗λ for n → ∞.

2. Convergence is linear with rate λ.

3. The policy dε constructed by the algorithm is ε–optimal.

4. For all n ∈ N we have

‖vn − v∗λ‖ ≤ λn

1− λ
‖v1 − v0‖.

5. For any dn ∈ argmax rd + λPdvn we have

‖vΔλ − v∗λ‖ ≤ 2λn

1− λ
‖v1 − v0‖,

where Δ = (dn, dn, . . .).

6. After nε steps the stopping criterion is definitely fulfilled with

nε :=

⎡⎢⎢⎢
log

(
ε(1−λ)

2‖v1−v0‖
)

log λ

⎤⎥⎥⎥ .

If S and A are finite sets then the Value Iteration algorithm needs
O(nε|S|2|A|) effort.

Proof. 1. Observe that the value iteration algorithm is actually a
fixed point iteration. Line 5 might be expressed in vector notation
as

v′ = Bv.
Therefore Banach’s fixed–point theorem proves the claim.

2. We have Bvn = vn+1 and Bv∗λ = v∗λ, therefore ‖vn+1 − v∗λ‖ =
‖Bvn − Bv∗λ‖ ≤ λ‖vn − v∗λ‖ since B : V → V is a contraction
mapping and hence convergence is linear. Now choosing v0 := v∗λ+1
yields v1 = maxd∈DDM rd+λPdv0 = maxd∈DDM rd+λPd(v

∗
λ+1) =

v∗λ + λ1. Now we have v1 − v∗λ = λ1 = λ(v0 − v∗λ) hence the
convergence rate is λ.
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3. We have ‖vΔλ − v∗λ‖ ≤ ‖vΔλ − vn+1‖ + ‖vn+1 − v∗λ‖, where Δ =
(dε, dε, . . .). Observe that we further have Ldεv

Δ
λ = vΔλ as well as

Ldεvn+1 = Bvn+1. Now we calculate

‖vΔλ − vn+1‖ = ‖Ldεv
Δ
λ − vn+1‖

≤ ‖Ldεv
Δ
λ − Bvn+1‖+ ‖Bvn+1 − vn+1‖

= ‖Ldεv
Δ
λ − Ldεvn+1‖+ ‖Bvn+1 − Bvn‖

≤ λ‖vΔλ − vn+1‖+ λ‖vn+1 − vn‖.
This yields ‖vΔλ − vn+1‖ ≤ λ

1−λ‖vn+1 − vn‖ < ε
2 . Now we need a

similar argument to estimate

‖v∗λ − vn+1‖ = ‖Bv∗λ − vn+1‖
≤ ‖Bv∗λ − Bvn+1‖+ ‖Bvn+1 − vn+1‖
= ‖Bv∗λ − Bvn+1‖+ ‖Bvn+1 − Bvn‖
≤ λ‖v∗λ − vn+1‖+ λ‖vn+1 − vn‖.

Again we have ‖v∗λ − vn+1‖ ≤ λ
1−λ‖vn+1 − vn‖ < ε

2 . Therefore,

putting the two estimates together we have ‖vΔλ −v∗λ‖ ≤ 2λ
1−λ‖vn+1−

vn‖ < ε which yields v∗λ ≤ vΔλ +1ε, hence Δ is an ε–optimal policy.

4. Using (3) and the contraction property proves the claim:

(1− λ)‖vn − v∗λ‖ ≤ λ‖vn − vn−1‖ = λ‖Bvn−1 − Bvn−2‖
≤ λ2‖vn−1 − vn−2‖
≤ λn‖v1 − v0‖.

5. Again using (3) and the contraction property proves the claim:

‖vΔλ − v∗λ‖ ≤ 2λ

1− λ
‖vn − vn−1‖ ≤ · · · ≤ 2λn

1− λ
‖v1 − v0‖.

6. The statement in (5) yields a worst case estimate of how often the
repeat–until loop has to be executed to definitely fulfil the stopping
criterion. Solving the equation

2λn

1− λ
‖v1 − v0‖ ≤ ε
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for n gives the desired quantity nε. Now like in the finite case a
maximization has to be done. If A is finite we have a worst case
estimate: we simply try out every possible value a ∈ A for a fixed
s ∈ S. To be able to compare to other actions we need to perform a
function evaluation which itself is in O(|S|) due to the summation
over all s ∈ S. Hence we have a total effort of O(nε|S|2|A|).

3.3 Policy Iteration

The second important algorithm for infinite Markov decision problems
is called Policy Iteration. Here we start with an arbitrary policy and
in every iteration step this policy is improved.

Algorithm 5 Policy Iteration Algorithm

Require: Infinite Markov Decision Problem M, starting decision
rule d0 ∈ DDM .

Ensure: Optimal decision rule.
1: d′ ← d0.
2: repeat
3: d ← d′.
4: v = (IdV − λPd)

−1rd.
5: Choose d′ ∈ argmaxd∈DDM rd + λPdv
6: until d′ = d

To analyse policy iteration we introduce the operator P : V → V
where

Pv := max
d∈DDM

rd + (λPd − idV )v.

Note that we now have Pv = Bv − v, hence the Bellman equations
can be expressed by the equation Pv = 0.

Proposition 3.23. For u, v ∈ V and any v–improving decision rule
dv we have

Pu ≥ Pv + (λPdv − idV )(u− v). (3.10)
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Proof. Recall that dv is v−improving if dv ∈ argmaxd∈DDM rd +
λPdv = argmaxd∈DDM rd + (λPdv − idV )v. Now by definition we
have

Pu ≥ rdv + (λPdv − idV )u,

as well as
Pv = rdv + (λPdv − idV )v.

Now substracting the equality from the inequality gives Pu ≥ Pv +
(λPdv − idV )(u− v).

Now we take a closer look at the sequence (vn)n∈N constructed by
the Policy Iteration algorithm.

Proposition 3.24. Let vn be successively generated by Algorithm 5.
Then we have

1. vn+1 ≥ vn.

2. For any d ∈ Dvn we have

vn+1 = vn − (λPd − idV )
−1Pvn.

Proof. Let dn and vn be constructed by the Policy Iteration.

1. Observe that we have (idV − λPdn)vn = rdn which means vn =
λPdnvn + rdn . Then it follows that rdn+1 + λPdn+1vn ≥ rdn +
λPdnvn = vn, and hence

rdn+1 ≥ (idV − λPdn+1)vn.

Now we use Lemma 3.10 with u = rdn+1 and v = (idV − λPdn+1)vn
and obtain

vn+1 = (idV − λPdn+1)
−1rdn+1 ≥ vn.
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2. Note that d := dn+1 is a vn improving decision rule (we already
needed this fact for the very first estimate in the proof of (i)). We
have

vn+1 = (idV − λPdvn+1
)−1rdn+1 − vn + vn

= (idV − λPd)
−1 (rd − (idV − λPd)vn) + vn

= (idV − λPd)
−1 (rd + (λPd − idV )vn) + vn

= (idV − λPd)
−1Pvn + vn

= vn − (λPd − idV )
−1Pvn.

Now Proposition 3.24 gives us a direct formula for vn+1 in terms
of vn if we assume that we already know a vn–improving decision
rule d ∈ Dvn . This update formula can be seen as a generalization
of Newtons method xn+1 = xn − f ′(x)−1f(xn) for finding zeros of
a function f . If f is convex and has a zero x̂ as well as f(x0) > 0
then (xn)n∈N is a monotonically decreasing sequence with xn → x̂.
Now (3.10) somehow looks similar to f(x) ≥ f(y) + f ′(y)(x − y), a
property that characterizes convex functions if fulfilled for every x, y
in the domain of f . We are interested in solving Pv = 0 since this
equation is equivalent to the Bellman equation Bv = v. This analogy
gives rise to define N : V → V ,

N v := v + (idV − λPdv)
−1Pv.

We further define VP := {v ∈ V : Pv ≥ 0}. Note that if v ∈ VP we
have Pv = Bv − v ≥ 0 and by the proof of Theorem 3.11 v ≤ v∗λ. So
whenever v ∈ VP then v is a lower bound of v∗λ.

Before we are able to prove convergence of the policy iteration we
need the following lemma.

Lemma 3.25. Let v ∈ VP , choose dv ∈ Dv and assume v ≥ u. Then
we have

1. N v ≥ Bu.
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2. N v ∈ VP .

Proof. 1. First note that if v ≥ u there exists a vector ε ≥ 0 with
v = u + ε. Now Bv = B(u + ε) = supd∈DDM rd + Pdu + Pdε ≥
supd∈DDM rd + Pdu = Bu because Pdε ≥ 0. Since v ∈ VP we have
Pv ≥ 0 and therefore by Lemma 3.10, where we set x = Pv, we
see that

N v = v + (idV − λPd)
−1Pv ≥ v + Pv = Bv ≥ Bu.

2. We are using Proposition 3.23 with u = N (v) to obtain

P(N v) ≥ Pv + (λPdv − idV )(N v − v) = Pv − Pv = 0.

Now we are ready to provide a convergence result for the Policy
Iteration.

Theorem 3.26. The sequence (vn)n∈N generated by the Policy Itera-
tion algorithm converges monotonically to v∗λ.

Proof. We define uk := Bkv0. By Theorem 3.22 we already know that
‖uk − v∗λ‖ → 0 if k → ∞. We now show inductively, that

uk ≤ vk ≤ v∗λ and vk ∈ VP .

If this is satisfied ‖vk − v∗λ‖ → 0 which yields the claim.
Now let k = 0. We have Pv0 ≥ rd0 +(λPd0 − idV )v0 = rd0 +(λPd0 −

idV )(idV − λPd0)
−1rd0 = 0, hence v0 ∈ VP . This furthermore yields

Pv0 = Bv0 − v0 ≥ 0 and therefore Bv0 ≥ v0 which implies, using the
proof of Theorem 3.11, v0 ≤ v∗λ. Furthermore we have u0 = B0v0 = v0,
therefore u0 ≤ v0.
Now lets assume that the result holds for all k ≤ n. The iterates

of the Policy Iteration fulfil vn+1 = N v. By Lemma 3.25 and by
the induction hypothesis we have that vn+1 ∈ VP as well as vn+1 =
N vn ≥ Bun = un+1. Finally, we also have Pvn+1 = P(N (vn)) ≥ 0
and analogously to the induction basis we have Bvn+1 ≥ vn+1 and
therefore again vn+1 ≤ v∗λ.
Monotonicity of (vn)n∈N follows from Proposition 3.24.
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Now the problem is that we have no guarantee that the stopping
criterion in Algorithm 5 is fulfilled in finite time. Therefore, we again
have to be content with ε–optimal policies. To construct ε–optimal
policies we just use the stopping criterion of the Value Iteration
algorithm. So Algorithm 5 has to be slightly adapted. We now have
to store not only the current vn but also vn−1 to be able to compare
these two values.

Algorithm 6 ε–Optimal Policy Iteration Algorithm

Require: Infinite Markov Decision Problem M, starting decision
rule d0 ∈ DDM , ε.

Ensure: ε–optimal policy.
1: d′ ← d0
2: v′ = (IdV − λPd)

−1rd
3: repeat
4: v ← v′

5: v′ = (IdV − λPd)
−1rd

6: Choose d′ ∈ argmaxd∈DDM rd + λPdv
′

7: d ← d′

8: until ‖v′ − v‖ ≤ ε1−λ
2λ

The proof for ε–optimality is the same as we had in Theorem 3.22
since the stopping criterion is the same.
Now we want to take a closer look at the convergence rate of the

Policy Iteration algorithm. We already know that convergence is
at least linear since convergence of Value Iteration is linear and the
iterates produced by Value Iteration are always smaller or equal to
the iterates produced by Policy Iteration (and both Value and Policy
Iteration produce iterates bounded from above by v∗λ). Under certain
conditions we have quadratic convergence.

Theorem 3.27. Let (vn)n∈N be the sequence generated by the Policy
Iteration algorithm and dn ∈ Dvn. Suppose further that

‖Pdn − Pd∗‖ ≤ c‖vn − v∗λ‖,
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where 0 < c < ∞ and define Pd∗ := Pv∗λ.
Then we have

‖vn+1 − v∗λ‖ ≤ cλ

1− λ
‖vn − v∗λ‖2.

Proof. Using Proposition 3.23 we have

Pvn ≥ Pv∗λ + (λPd∗ − idV )(vn − v∗λ) ≥ (λPd∗ − idV )(vn − v∗λ).

Now this yields with Lemma 3.10

(idV − λPdn)
−1Pvn ≥ (idV − λPdn)

−1(λPd∗ − idV )(vn − v∗λ)

and hence

(λPdn − idV )
−1Pvn ≤ (λPdn − idV )

−1(λPd∗ − idV )(vn − v∗λ)

because −(λPdn − idV )
−1 = (idV − λPdn)

−1. Using this inequality we
can estimate

v∗λ − vn+1

= v∗λ −N vn

= v∗λ − vn + (λPdn − idV )
−1Pvn

≤ (λPdn − idV )
−1(λPdn − idV )(v

∗
λ − vn)

+ (λPdn − idV )
−1(λPd∗ − idV )(vn − v∗λ)

= (λPdn − idV )
−1 (λPdn − λPd∗) (v

∗
λ − vn).

Now this yields

‖v∗λ − vn+1‖ ≤ ‖(λPdn − idV )
−1‖‖λPdn − λPd∗‖‖v∗λ − vn‖

≤ 1

1− λ
λc‖v∗λ − vn‖2,

because λ‖Pdn − Pd∗‖ ≤ cλ‖v∗λ − vn‖ by assumption and

‖(λPdn − idV )
−1‖ = ‖(idV − λPdn)

−1‖



3.3 Policy Iteration 65

= sup
‖v‖≤1

‖(idV − λPdn)
−1v‖

= sup
‖v‖≤1

‖
∞∑
t=1

λt−1P t−1
dn

v‖

≤ ‖
∞∑
t=1

λt−1P t−1
dn

1‖

≤ ‖
∞∑
t=1

λt−11‖

=
1

1− λ
.



4 Markov Decision Problems and
Clinical Trials

In this chapter we want to investigate the applicability of the MDP-
theory to clinical trials. We want to do that in a response adaptive
way so that the future trial members already benefit from the previous
ones. The goal is to identify the better treatment and keep the number
of trial members treated with the inferior therapy small. In [BE95]
and [HS91] we find an approach using Bandit models which are similar
to Markov decision problems. In [Pre09] some ethical cost models are
introduced. In [Put94] and in [BR11] we find an overview how Bandit
models can be treated as Markov decision problems. Both suggest
that possible applications are clinical trials. In the following we give
a detailed description how a possible implementation of a Markov
decision problem for clinical trials looks like and provide numerical
results.
We want to compare two medical treatments T1 and T2 with two

unknown success probabilities p1 and p2. In the trial we have alto-
gether M patients and we want to sequentially allocate them to one
of the two treatments.

We assume dichotomous outcomes which can be observed immedi-
ately: after every allocation we observe either a success s or a fail f.
Allocation of the (n+ 1)-st person should be based on the knowledge
we gained so far. The knowledge kn at time point n is a four-tupel,

kn := (s1, f1, s2, f2),

where s1 is the number of patients allocated to treatment T1 and a
success s is observed whereas f1 is the number of patients allocated
to treatment T1 where a negative effect f could be measured. The

T. Ondra, Optimized Response-Adaptive Clinical Trials, BestMasters,
DOI 10.1007/978-3-658-08344-1_4, © Springer Fachmedien Wiesbaden 2015
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quantities s2 and f2 for treatment T2 are defined analogously. We
define the set of all possible knowledge

K 4
M := {(s1, f1, s2, f2) : si, fi ∈ N, s1 + f1 + s2 + f2 ≤ M}.

K 4
M is the integer valued four dimensional simplex with edge length

M . After we have allocated the (n + 1)-st person we update our
knowledge correspondingly, e.g., if we have allocated the person to
treatment T2 and a positive effect could be observed we have kn+1 =
(s1, f1, s2 + 1, f2) and if a negative effect could be observed we have
kn+1 = (s1, f1, s2, f2 + 1). We normally have a starting knowledge of
k0 = (0, 0, 0, 0).

The goal is to find a good allocation policy which takes into account
the following two things:

1. In the end the treatment with the higher efficacy should be identi-
fied.

2. We want to have as few patient losses as possible. This means that
the majority of trial members should receive the better of the two
treatments.

The first requirement is the one you expect from a clinical trial.
Randomized assignment of patients to treatments is the standard in
clinical practice. In the end of the trial some statistical hypothesis tests
at a high level of statistical significance are made for establishing the
effectiveness of medical treatments. Nevertheless, since allocation is
randomized there will always be many patients assigned to the inferior
treatment which leads to ethical problems. The second requirement
counteracts this issue and has the advantage that more volunteers are
willing to participate in a clinical trial since they know that they will
be treated – in some sense – to the best of one’s knowledge. Here in
some sense is determined by the ingredients of the underlying Markov
decision problem. It depends on the set of actions, the set of states,
the transition probabilities, and the rewards.
We start with a short overview of ethical cost models based on

[Pre09] where the allocation problem is treated with the help of Bandit
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models. Let c1 and c2 be the costs for treating a patient with T1 and
T2 respectively. They should only depend on the unknown success
probabilities p1 and p2 what leads to an ethical choice. Expected
failures assigns the costs for treating a patient in the following way:

c1(p1, p2) = 1− p1, c2(p1, p2) = 1− p2,

hence we have high costs if we choose a treatment with a small success
probability. Then there is a cost model called expected successes lost,
this assigns the difference of the success probabilities only if we choose
the worse of the two treatments according to

c1(p1, p2) =

{
0 if p1 ≥ p2

p2 − p1 if p1 < p2
,

c2(p1, p2) =

{
0 if p2 ≥ p1

p1 − p2 if p2 < p1.

Let D1 and D2 denote the costs of treatment T1 and T2. Including
the costs for a treatment leads to Dollar cost of failure,

c1(p1, p2) = (1− p1)D1, c2(p1, p2) = (1− p2)D1. (4.1)

This cost function is kind of problematic since it could in principle
be that the worse treatment still has lower costs due to the lower
treatment cost. Better is the following choice

c1(p1, p2) =

{
0 if p1 ≥ p2

(p2 − p1)D1 if p1 < p2
,

c2(p1, p2) =

{
0 if p2 ≥ p1

(p1 − p2)D2 if p2 < p1,

called expected cost of treatment of lost successes. This model only
assigns costs if the worse of the two treatments is used.
Markov decision problems somehow solve the “exploration versus

exploitation” dilemma. If you want to assign the next patient to
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a treatment and you know that, lets say T1, has a high success
probability then you can have a high immediate reward—you exploit
the information you already have. Sometimes it might be better if you
assign the treatment from which you do not have a clear impression
how good it is. Then you explore some information by assigning T2

hoping that it has an even higher success probability.
In the next section we want to describe how we choose the state

space, the set of actions, the transition probabilities, and the re-
wards.

4.1 Finite Horizon Markov Decision Problem
Formulation

We have two actions in every decision epoch, namely allocating the
current patient to one of the treatments, hence A := {T1, T2}. Fur-
thermore, we set the horizon length to T := M + 1, where M is
the number of participants in the trial. This is because we want to
allocate all of the M patients and at the last time point M + 1 by
definition we get a final reward but no action has to be chosen.

Finding an appropriate state space is more tricky. We will encode
our belief about the success probabilities in the state space. We
consider the unknown probabilities p1 and p2 themselves to be random
variables and express our knowledge about these success probabilities
through probability densities. Given two densities f1 and f2 for p1
and p2 the corresponding Bayesian estimators p̂1 and p̂2 are given by

p̂1 = Ef1(X) =

∫ 1

0
xf1(x) dx,

p̂2 = Ef2(X) =

∫ 1

0
xf2(x) dx.

With D we denote the set of all probability densities with support on
[0, 1] and define the state space S := D × D . Hence, an element of
the state space is a pair of probability densities, s = (f1, f2) reflecting
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our belief of the unknown success probabilities. After every allocation
of one patient to one treatment the state changes.
Now we want to define transition probabilities. The next state

s′ = (f ′
1, f

′
2) is allowed to depend on the current state s = (f1, f2) and

the chosen action a ∈ A = {T1, T2} which results in an observation,
namely if the treatment was successful or not. We assume that this
observation can be made immediately after we medicate the patient.
If we decide to use treatment T1 we certainly do not gain additional
information about the second treatment, hence s′ = (f ′

1, f2) so we do
not change our belief about the treatment which is currently not used.
If we choose treatment T2 the same is true, meaning that the density
for the first treatment T1 will stay the same, but the density for the
second treatment is allowed to change.

Two questions arise: How should the part of the state space which
is allowed to change be updated and what is the right probability
therefore.

Assume we have decided to use treatment T1. After this allocation
we observe either s or f. Based on this binary observation we want
to update f1. We define the binary random variable Y : Ω → {s, f}
where P (Y = s) := p̂1 and P (Y = f) = 1− p̂1 and define the formula
for the posterior density given a binary observation Y and a prior
density f1,

f1(p1 = x|Y = y) :=
P (Y = y|p1 = x)f1(x)

P (Y = y)

We derive the posterior densities according to the definition,

f ′
1(x) = f1(x|s) = xf1(x)

p̂1
,

if a success s is observed and

f ′
1(x) = f1(x|f) = (1− x)f1(x)

1− p̂1

if a fail f is observed.
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Remark 4.1. Indeed f ′
1 is a probability density on Ω = [0, 1]. Consider

for example∫ 1

0

(1− x)f1(x)

1− p̂1
dx =

1

1− p̂1

(∫ 1

0
f1(x) dx−

∫ 1

0
xf1(x) dx

)
=

1

1− p̂1
(1− p̂1) = 1,

because f1 is assumed to be a probability density on [0, 1]. One easily
calculates that also

∫ 1
0 f

′
1(x|s) dx = 1. Moreover f ′

1 ≥ 0 on [0, 1], so f ′
1

is a probability density. Analogously we have that f ′
2 is a probability

density.

Now, if we choose treatment T1, to a given state s = (f1, f2) we
have s′ = (f ′

1, f2) where we expect f ′
1 = f1(x|s) with probability p̂1

and f ′
1 = f2(x|f) with probability 1 − p̂1. So to a given density f1

we only allow two possible succeeding densities. Then the updated
density f ′

1 will also change the estimator for p1 since we then assume
a new density for it.

These considerations lead to the transition probabilities

p(s′ = (f ′
1, f

′
2)|s = (f1, f2), a = T1)

=

⎧⎪⎪⎨⎪⎪⎩
p̂1 if s′ =

(
xf1(x)
p̂1

, f2

)
1− p̂1 if s′ =

(
(1−x)f1(x)

1−p̂1
, f2

)
0 otherwise,

(4.2)

and analogously for treatment T2 we have

p(s′ = (f ′
1, f

′
2)|s = (f1, f2), a = T2)

=

⎧⎪⎪⎨⎪⎪⎩
p̂2 if s′ =

(
f1,

xf2(x)
p̂2

)
1− p̂2 if s′ =

(
f1,

(1−x)f2(x)
1−p̂2

)
0 otherwise.

(4.3)

Definition 4.2 (Beta function and beta distribution). The function

B(a, b) :=

∫ 1

0
xa−1(1− x)b−1 dx
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is called beta function.
The probability density function fa,b of the (a, b)–beta distribution

is given by

fa,b(x) :=

{
1

B(a,b)x
a−1(1− x)b−1 if 0 ≤ x ≤ 1

0 otherwise.

Lemma 4.3. Fix i ∈ {1, 2} and let fi be a density of the (a, b)–beta
distribution. Then we have that

1. fi(x|s) is a density of the (a+ 1, b)–beta distribution.

2. fi(x|f) is a density of the (a, b+ 1)–beta distribution.

3. If we observe s successes and f fails in s + f trials then the
corresponding (s+ f)–times updated density is the density of an
(a+ s, b+ f)–beta distribution.

4. If X is (a, b)–beta distributed we have E(X) = a
a+b .

Proof. 1. We have

fi(x|s) = xfi(x)

p̂i
=

xa(1− x)b−1

B(a, b)
∫ 1
0

x
B(a,b)x

a−1(1− x)b−1 dx

=
xa(1− x)b−1

B(a+ 1, b)

= fa+1,b(x).

2. First of all we have, by definition of B(a, b) that∫ 1

0

xa−1(1− x)b−1

B(a, b)
dx = 1,

and hence

1− p̂i =

∫ 1

0

xa+1(1− x)b−1

B(a, b)
dx−

∫ 1

0

x

B(a, b)
xa−1(1− x)b−1 dx
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=

∫ 1

0
(1− x)

xa−1(1− x)b−1

B(a, b)
dx

=
B(a, b+ 1)

B(a, b)
.

Finally we have

fTi(x|f) =
(1− x)fTi(x)

1− p̂i
=

(1− x)xa−1(1− x)b−1

B(a, b)(1− p̂i)

=
1

B(a, b+ 1)
xa−1(1− x)b

= fa,b+1(x).

3. Follows from (i) and (ii) if applied iteratively.

4. We have to use the identity

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

where Γ denotes the Gamma function, as well as the functional
equation Γ(a+ 1) = aΓ(a). Then we easily calculate

E(X) =
1

B(a, b)

∫ 1

0
xa(1− x)b−1 dx =

Γ(a+ 1)Γ(b)

B(a, b)Γ(a+ b+ 1)

=
aΓ(a)Γ(b)

(a+ b)B(a, b)Γ(a+ b)

=
a

a+ b
.

This now yields, from a computational perspective, to an important
simplification. If we start with a beta distributed prior, i.e., with a
density of a beta distribution all the further densities will also be
densities of beta distributions if updated according to (4.2) and (4.3).
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This means that we do not have to use S = D × D , which would be
computationally infeasible. Instead we use our knowledge space

S := K 4
M

defined at the beginning of this chapter. Given the initial parameters
(a1, b1) and (a2, b2), needed for the prior beta distributions, every
element of K 4

M now defines a pair of beta distributions through
ϕ : K 4

M → D × D given by

ϕ((s1, f1, s2, f2)) = (fa1+s1,b1+f1 , fa2+s2,b2+f2).

Conversely, if we start with a pair of (ai, bi)–beta distributions, where
i = {1, 2} every possible1 pair of probability densities defines an
element of K 4

M . Since we know by Lemma 4.3 that the possible prob-
ability density pairs are of the form (fai+l,bi+(n−l))i=1,2 the mapping ϕ
is invertible if D ×D is restricted to the possible probability densities.
Then we have

ϕ−1(fα,β , fγ,δ) = (α− a1, β − b1, γ − a2, δ − b2).

Now via this bijection we define the transition probabilities for S =
K 4

M ,

p((s′1, f
′
1, s

′
2, f

′
2)|(s1, f1, s2, f2), a)

:= p(ϕ(s′1, f
′
1, s

′
2, f

′
2)|ϕ(s1, f1, s2, f2), a),

what leads to

p((s′1, f
′
1, s

′
2, f

′
2)|(s1, f1, s2, f2), a = T1)

=

⎧⎪⎨⎪⎩
p̂1 if s′1 = s1 + 1 ∧ f ′

1 = f1 ∧ s′2 = s2 ∧ f ′
2 = f2

1− p̂1 if s′1 = s1 ∧ f ′
1 = f1 + 1 ∧ s′2 = s2 ∧ f ′

2 = f2

0 else

(4.4)

1Possible means here that the probability that a pair of densities occurs in a
state at an arbitrary time is not zero.
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and

p((s′1, f
′
1, s

′
2, f

′
2)|(s1, f1, s2, f2), a = T2)

=

⎧⎪⎨⎪⎩
p̂2 if s′1 = s1 ∧ f ′

1 = f1 ∧ s′2 = s2 + 1 ∧ f ′
2 = f2

1− p̂2 if s′1 = s1 ∧ f ′
1 = f1 ∧ s′2 = s2 ∧ f ′

2 = f2 + 1

0 else

(4.5)

If we don’t have a clue which of the treatments is better in advance,
what is usually the case, we can use the uninformative prior a1 =
b1 = a2 = b2 = 1, in that case ϕ(0, 0, 0, 0) = (f1,1, f1,1).

Example 4.4. We start with an uninformative prior. Assume we
have five patients in a clinical trial and we use the policy π =
(T1, T1, T2, T1, T2). In a clinical trial a policy is often called an al-
location sequence since it tells us how to allocate the trial members to
the treatments. Assume further the following observations sequence
O = (s, s, f, f, s). In Table 4.1 we see the corresponding knowledge
and pair of densities. Now assume that after we have observed O
Table 4.1: Knowledge and density update

time knowledge kn associated density pair p̂1 p̂2
k = 0 (0, 0, 0, 0) (f1,1, f1,1) 0,5 0,5
k = 1 (1, 0, 0, 0) (f2,1, f1,1) 0,66 0,5
k = 2 (2, 0, 0, 0) (f3,1, f1,1) 0,75 0,5
k = 3 (2, 0, 0, 1) (f3,1, f1,2) 0,75 0,33
k = 4 (2, 1, 0, 1) (f3,2, f1,2) 0,6 0,33
k = 5 (2, 1, 1, 1) (f3,2, f2,2) 0,6 0,5

there is one more trial member. If we choose treatment T1 we ex-
pect a success with probability 0, 6. In that case we would have
k6 = (3, 1, 1, 1) and the density pair (f4,2, f2,2). With probability
0, 4 we have k6 = (2, 2, 1, 1) and (f3,3, f2,2). If we decide to use
treatment T2 then we have k6 = (2, 1, 2, 1) and (f3,2, f3,2) as well as
k6 = (2, 1, 1, 2) and (f3,2, f2,3) both with equal probability 0, 5.
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4.1.1 Size and Enumeration of the Knowledge Space

First we want to calculate the size of the knowledge space K 4
M , i.e.,

the number of integer valued points in the four dimensional simplex
with edge length M . We can do this more generally for K n

M , the n
dimensional simplex with edge length M ,

K n
M := {(m1, . . . ,mn) : mi ∈ N,

n∑
i=1

mi ≤ M}.

We define Rn(M) as the cardinality of K n
M ,

Rn(M) := |K n
M | =

M∑
m1=0

M∑
m2=0

. . .

M∑
mn=0

χM (m1 . . . ,mn), (4.6)

where

χM (m1, . . . ,mn) :=

{
1 if

∑n
i=1mi ≤ M

0 otherwise.

It is clear that the second equality in (4.6) is satisfied by definition of
χM (m1, . . . ,mn). In the following we will find an expression for (4.6)
which is easier to handle. Before we go on we need a small lemma.

Lemma 4.5. The following equation is satisfied:

χM (m1, . . . ,mn) = χM−mn(m1, . . . ,mn−1).

Proof. Suppose

χM (m1, . . . ,mn) = 1

⇔
n∑

i=1

mi ≤ M

⇔
n−1∑
i=1

mi ≤ M −mn

⇔ χM−mn(m1, . . . ,mn−1) = 1.
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Since χM is either 0 or 1 we also have by contraposition

χM (m1, . . . ,mn) = 0 ⇔ χM−mn(m1, . . . ,mn−1) = 0.

Now we are able to calculate Rn(M) through a recurrence relation.

Theorem 4.6. The number of integer points in the n–dimensional
simplex with edge length M , Rn(M), satisfies the following recurrence:

R1(M) = M + 1 (4.7a)

Rn(M) =

M∑
i=0

Rn−1(i). (4.7b)

Proof. Clearly we have R1(M) =
∑M

m1=0 χM (m1) = M + 1. Now we
calculate

Rn(M) =
M∑

m1=0

M∑
m2=0

. . .
M∑

mn=0

χM (m1, . . . ,mn)

=

M∑
mn=0

M∑
m1=0

. . .
M∑

mn−1=0

χM−mn(m1, . . . ,mn−1)

=
M∑

mn=0

M−mn∑
m1=0

. . .

M−mn∑
mn−1=0

χM−mn(m1, . . . ,mn−1)

=

M∑
mn=0

Rn−1(M −mn)

=
M∑

mn=0

Rn−1(mn).

In the second step we changed the summation order and used Lemma
4.5. In the last step we again changed the summation order. Replacing
the summation index mn by the index i yields the result.
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Theorem 4.7. The function

Rn(M) =

(
M + n

M

)
satisfies the recurrence relations (4.7) and hence equals the number of
integer points in the n–dimensional simplex with edge length M .

Proof. We proof the claim by induction on n. Fix an M ∈ N and set
n = 1. Then we have R1(M) =

(
M+1
M

)
= (M+1)!

M ! = M + 1. Now recall
that (

x

y

)
=

(
x− 1

y − 1

)
+

(
x− 1

y

)
,

which is one of the fundamental properties for binomial coefficients.
In the following calculation we iteratively apply this formula,

Rn+1(M) =

(
M + n+ 1

M

)
=

(
n+ 1

0

)
+

(
n+ 1

1

)
+

(
n+ 2

2

)
+ . . .+

(
n+M

M

)
=

(
n

0

)
+

(
n+ 1

1

)
+

(
n+ 2

2

)
+ . . .+

(
n+M

M

)
=

M∑
i=0

Rn(i),

hence we have proved the claim by induction.

In our application n is small compared to M , so we better rewrite

Rn(M) =
1

n!
(M + 1)(M + 2) · · · (M + n).

This means we know now that we only can handle small clinical trails.
If we have a trial size of 100 patients we already have a state space of
size R4(100) ≈ 4.6 · 106. The small action space and the fact that, if
an action is fixed and a state is given, only two possible subsequent
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14 15
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17 18
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20

Figure 4.1: Enumeration of K 3
3 .

states have to be considered in the subsequent decision epoch still
make it possible to use backward induction for M = 100. We only
have two possible subsequent states because all the other states have
probability zero.

For implementation purposes we need an enumeration of the points
in K n

M , this is a bijective mapping ψn : K n
M → N. This is because the

program represents the state space through a set S̃ = {1, . . . , c} and
we want to switch between a number in S̃ and a state in K 4

M . We
already know that we have to set c :=

(
M+n
M

)
since this number equals

the size of the knowledge space. We illustrate the way of enumeration
with the help of an example.

Example 4.8. We want to enumerate the points in K 3
3 . We have

a look at Figure 4.1, where we can see four groups of points. The
leftmost group contains all points of the form (m1,m2, 0) ∈ K 3

3 . The
next group contains all points of the form (m1,m2, 1) ∈ K 3

3 , then we
have the points (m1,m2, 2) ∈ K 3

3 and finally we have all points of
the form (m1,m2, 3) ∈ K 3

3 . Since (m1,m2, 3) ∈ K 3
3 there is actually

only one point of this form, namely (0, 0, 3). The groups of points
(from left to right) represent the intersections of K 3

3 with the planes
z = 0, z = 1, z = 2 and z = 3 in R

3 where the point 1© in the figure
corresponds to (0, 0, 0) ∈ R

3.
Now, for example, consider the point p = (1, 0, 2). Comparing to

Figure 4.1 we have ψ(p) = 18. How can we calculate this number?
Well first we have to handle the z-component of the point p. This
means we have to count the number of points of the form (m1,m2, 0) ∈
K 3

3 and (m1,m2, 1) ∈ K 3
3 , which all lie below p. This sum equals
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R2(3) + R2(2). Then, in principal we would have to proceed with
the y-coordinate analogously. Since in this example the y–component
equals zero this part is dropped. Then we have to handle the x-
component, i.e. we have to add R1(1) to the sum. All together we
now have

ψ(p) = R2(3)+R2(2)+R1(1) =

(
3 + 2

2

)
+

(
2 + 2

2

)
+

(
1 + 1

1

)
= 18.

For an arbitrary point we have

ψ(m1,m2,m3) =

m3−1∑
i=0

R2(M − i) +

m2−1∑
i=0

R1(M − i−m3) +R1(m1).

This can be generalized to K n
M by

ψn(m1, . . . ,mn) :=

n−1∑
j=1

mj+1−1∑
i=0

Rj

(
M − i−

∑
k>j+1

mk

)
+R1(m1),

hence in the for our application important four-dimensional case:

ψ4(m1,m2,m3,m4) =

m4−1∑
i=0

R3(M − i) +

m3−1∑
i=0

R2(M − i−m4)

+

m2−1∑
i=0

R1(M − i−m4 −m3) +R1(m1).

Evaluating these sums is straight forward but lengthy. With the help
of Mathematica we can calculate a closed form of ψ4, which is a
lengthy polynomial in M,m1,m2,m3 and m4:

ψ4(m1,m2,m3,m4) = 1 +m1 +
3m2

2
− m2

2

2
+

11m3

6
−m2

3 +
m3

3

6

+
25m4

12
− 35m2

4

24
+

5m3
4

12
− m4

4

24
+m4M

+ 2m3M − m2
2M

2
+

35m4M

12
− 5m2

4M

4
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+
m3

4M

6
+

m3M
2

2
+

5m4M
2

4
− m2

4M
2

4

+
m4M

3

6
.

Nevertheless, we then have a quick way to switch from our knowledge
space to the internal representation of the state space S̃.

Getting from a number x ∈ S̃ back to an element of the knowledge
space, is done in the following way: Before we start the Backward
Induction algorithm we generate a matrix C ∈ N

|K 4
M |×4, where Cx,: :=

ψ−1(x). The construction of C is described in Algorithm 7.

Algorithm 7 Number to State

Require: A number x ∈ S̃.
Ensure: ψ−1(x), i.e. the corresponding state (m1,m2,m3,m4) ∈

K 4
M .

1: counter = 0
2: for m4 = 0 to M do
3: for m3 = 0 to M do
4: for m2 = 0 to M do
5: for m1 = 0 to M do
6: if m1 +m2 +m3 +m4 ≤ M then
7: counter ← counter+1
8: end if
9: if counter= x then

10: return (m1,m2,m3,m4)
11: end if
12: end for
13: end for
14: end for
15: end for

Now having access to a given row should be quick, so altogether we
have a quick possibility to change between the representations of the
state spaces.
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Finally we have to specify the rewards. Based on the cost functions
introduced in the beginning of the chapter we define the reward
functions expected successes

ri(p1, p2) = pi.

Then we have expected failures avoided,

r1(p1, p2) =

{
p1 − p2 if p1 ≥ p2

0 if p1 < p2
,

r2(p1, p2) =

{
p2 − p1 if p2 ≥ p1

0 if p2 < p1.

A way to use the cost models directly involving the costs of the
treatments is to introduce a positive strictly decreasing function ρ
and set

r1(p1, p2) = p1ρ(D1), r2(p1, p2) = p2ρ(D2).

Finally, the last cost model described in the beginning of this chapter
can be turned into a reward by

r1(p1, p2) =

{
(p1 − p2)ρ(D1) if p1 ≥ p2

0 if p1 < p2

r2(p1, p2) =

{
(p2 − p1)ρ(D2) if p2 ≥ p1

0 if p2 < p1
.

We do not know the real success probabilities p1 and p2, so we take
the estimators p̂1 and p̂2. With p̂1+ and p̂2+ we denote the updated
estimators, that is the success probabilities in the next round. Now we
can assign the rewards for the underlying Markov decision problem,

r(s, a = T1) := p̂1r1(p̂1+, p̂2) + (1− p̂1)r1(p̂1−, p̂2)
r(s, a = T2) := p̂2r2(p̂1, p̂2+) + (1− p̂1)r1(p̂1, p̂2−),

where

p̂1 =
s1 + 1

s1 + f1 + 2
, p̂2 =

s2 + 1

s2 + f2 + 2
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if we start with the non informative prior. Furthermore then

p̂1+ :=
s1 + 2

s1 + f1 + 3
, p̂1− :=

s1 + 1

s1 + f1 + 3
.

The quantities p̂2+ and p̂2− are defined analogously. Now we want to
define the final rewards. Assume we finished our clinical trial with
M trial members. The last observation, s or f leads to the final state.
Assume further we have an estimation μ of how many people outside
the trial will receive the treatment. Then we set the final reward
to r(s) := μmax(r1(p̂1, p̂2), r2(p̂1, p̂2)) where ri is one of the reward
models mentioned above.

Now we defined the horizon length, the state space, the transition
probabilities, and some reward models and hence have a complete
Markov decision problem formulation for the finite horizon case.

4.1.2 Implementation Considerations

We now want to have a quick look at the Backward Induction Al-
gorithm 3. As already mentioned we internally represent a state by a
number s ∈ S̃ = {1, . . . , (M+4

M

)}. How we switch between a knowledge
an an internal state is explained in the previous section. For a given
t ∈ {M, . . . , 1} and a given s ∈ S̃ we have to solve

max
a∈As

rt(s, a) +
∑
σ∈S

pt(σ|s, a)ut+1(σ). (4.8)

This can be done quickly since we only have two actions and the sum
has only two non-zero terms if a is also fixed because then a state
has only two possible successors. Then there is another important
simplification. Consider an arbitrary history

(s1, a1, s2, a2, . . . , sM , aM , sM+1).

We have ai ∈ {T1, T2} for all 1 ≤ i ≤ M . Now s1 = (0, 0, 0, 0), there
is no other state possible since we did not start the clinical trial. In
this section we denote the number of successful treatments with s1
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and s2 in order to avoid mixing it up with the state s1. The number
of fails are denoted by f1 and f2. Then s2 = (s1, f1, s2, f2) with
s1 + f1 + s2 + f2 = 1, hence after allocating the first person there are
only four states possible. Histories where s2 is a state not fulfilling
this properties have probability zero and hence do not have to be
considered.
If the Backward Induction is started at t = M , then the for–

loop in Algorithm 3 has only to be executed for states fulfilling
s1 + f1 + s2 + f2 = M − 1. Then t is set to M − 1 and at this
stage only states with s1 + f1 + s2 + f2 = M − 2 have to be taken
into account. Altogether this leads to an effort of O(|K 4

M |), hence
the effort is linear in the size of the state space. Whenever there is
more than one element in As maximizing (4.8) we assign T1 or T2

equiprobable.

4.1.3 Numerical Results

In this section we want to compare the Markov decision based policy
πMD together with the reward model expected successes with the
outcome of an equal randomization allocation strategy πER. Now
πMD is a

(
M+4
M

)×M matrix where M is the number of trial members.
(πMD)s,j contains the information what treatment has to be used next
if we are in state s ∈ S̃ at time point j. If s and j are state–time
combinations which do not fit together we set (πMD)i,j = 0. Such a
blown up framework is actually not needed but it conforms with the
description in the theory part.
Let Oπ ∈ {s, f}M be the vector containing the observed successes

and treatment failures. Observation (Oπ)i is a realization of a Bernoulli
random variable with parameter p1 if treatment T1 is chosen and
parameter p2 if treatment T2 is chosen for the i-th trial member. The
treatment chosen for patient i depends on the used policy π. With

alloc(Oπ) ∈ {T1, T2}M

we denote the allocation sequence given by the policy π. Now
(alloc(Oπ))i contains the information which treatment person i re-
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ceives. Note that (alloc(Oπ))i is dependent on the observation se-
quence only up to observation i − 1. These observations result in
a knowledge (s1, f1, s2, f2). This knowledge itself corresponds to an
internal state s, hence

(alloc(Oπ))i := πs,i.

Now we want to compare two policies. Therefore, we need a measure
how “good” an allocation is. Let us define p(Ti) := pi and

F(p̂1, p̂2) :=

{
p1 if p̂1 ≥ p̂2

p2 otherwise,

where p̂1 and p̂2 are the estimators of the success probabilities based
on the last knowledge in the trial, i.e., after the last trial member is
medicated. Similar to [BE95] we choose

L(Oπ) := (M+μ)max(p1, p2)−
(

M∑
i=1

p((alloc(Oπ))i) + μF(p̂1, p̂2)

)
.

We always have L(Oπ) ≥ 0. The smaller L(Oπ) is the better the
allocation was.

Suppose we would know in advance which treatment has the higher
success probability, then all patients could get the better one. This
leads to a reward of (M + μ)max(p1, p2) because M is the number of
trial members and μ is an estimator of the people outside the trial
who need to be treated. From that quantity we subtract the value of
the allocation induced by the policy π. Then after the trial we need
to decide how the other μ persons should be treated. This is done
based on the estimated success probabilities p̂1 and p̂2. We simply
choose the treatment which has the higher success probability. In
Figure 4.2 we choose M = 100 and μ = 1000. We furthermore fix
p1 = 0.8 and p2 varies from zero to one in 0, 05 steps. For every pair
of success probabilities and a given policy we simulate 100 clinical
trials leading to 100 realizations of L(Oπ). Boxplots are a possibility
to make the results visible. Every box corresponds to a pair of success
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probabilities and a data set of 100 loss values L(Oπ). On each box,
the central mark is the median. The edges of the box are the 25 and
75 percentiles. The whiskers extend to the most extreme data point
not considered as an outlier, i.e., observations which fulfill

q1 − 1, 5(q3 − q1) ≤ L(Oπ) ≤ q3 + 1, 5(q3 − q1),

where q1 and q3 are the 25 and 75 percentiles. Outliers are not drawn.

Looking at Figure 4.2 reveals that πMD works clearly better than
πER if δ := |p1 − p2| is not too small. If however δ is small we see
that the performance of both methods is equally good. If δ is less
than 0.05 then it is not really possible to tell, based on a study size
of M = 100 which treatment is superior. All in all we have a method
which fulfils requirement (ii), made at the beginning of this chapter,
if δ is not too small since L(OπMD) is small then. Figures A.4, A.5
and A.6 illustrate the situation for p1 ∈ {0.2, 0.4, 0.6}.
The method also fulfils requirement (i) comparable to πER as we

can see in Figure 4.3. If at the end of the trial p̂1 ≥ p̂2 and p1 < p2 or
p̂2 ≥ p̂1 and p2 < p1 we made a wrong decision because the μ persons
outside the trial receive the inferior treatment. The number of wrong
decisions can be seen in Figure 4.3. Again we fix p1 = 0.8 while p2
varies. Furthermore Figures A.1, A.2 and A.3 illustrate the situation
for p1 ∈ {0.2, 0.4, 0.6}.

4.2 Infinite Horizon Markov Decision Problem
Formulation

Now we want to take a look at an infinite horizon model for clinical
trials. Since in this case the knowledge space

K 4
∞ := {(s1, f1, s2, f2) : s1, f1, s2, f2 ∈ N}

is not finite it is impossible to use one of the presented algorithms.
One possible solution is to truncate the state space and introduce
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Figure 4.2: Here p1 = 0.8 is fixed and p2 varies from 0 to 1. For every p2
value we simulate 100 clinical trials and therefore have 100 realiza-
tions of L(OπMD ) and L(OπER), respectively. Based on this data
for every p2 a box-plot is performed.
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Figure 4.3: Here we see the number of wrong decisions (better treatment not
detected) produced from MDP Policy and Equal Randomization
out of 100 trials for fixed p1 = 0.8 and p2 varying from 0.5 up
to 1 in 0.025 steps. For each value of p2 we see one dark grey
(for πMD) and one light grey (for πER) bar. We see that there is
essentially no difference between the number of failures produced
by the two policies.

absorbing states. We again want to consider a clinical trial with M
trial members. A state is an absorbing state if s1 + f1 + s1 + f1 = M .
The transition probability for absorbing states is set to

p((s′1, f
′
1, s

′
2, f

′
2)|(s1, f1, s2, f2), ai)

=

{
1 if (s′1, f ′

1, s
′
2, f

′
2) = (s1, f1, s2, f2)

0 otherwise.
(4.9)

The other transition probabilities and the actions are the same as in
the finite horizon case. The rewards are in principle the same despite
the fact that we have to discount them with a discount factor λ.
In an infinite horizon setting we therefore do not need an explicit

estimate μ for the patients outside the trial. All patients outside the
trial, in this case infinitely many, will be allocated to the treatment
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with the higher estimated success probability since the process is
caught in an absorbing state.
Discounting is kind of problematic since then not all patients are

worth the same, but: Patients treated later have therefore the advant-
age that they might benefit from the knowledge already learned about
the two treatments.

We want to calculate an approximate solution for the infinite horizon
Markov decision problem with the Policy Iteration algorithm. Looking
at Algorithm 5 reveals that we have to handle two major steps in every
iteration. We have to update the vector v and the decision rule d.
Solving the maximization in every iteration is easy since there are only
two actions, A = {T1, T2}. Hence updating d is easy. Furthermore, to
update v we have to solve the system

(IdV − λPd)v = rd. (4.10)

Here Pd is the transition probability matrix induced by the decision
rule d,

(Pd)ij = p(j|i, d(i))
and rd is the induced reward,

(rd)i = r(i, d(i)).

Note that i, j ∈ {1, . . . , (M+4
M

)} are natural numbers but encode, via

ψ−1 :

{
1, . . . ,

(
M + 4

M

)}
→ K 4

M

a certain knowledge. Now each row of Pd contains either one or two
non–zero entries. Row i contains exactly one non–zero entry if ψ−1(i)
is an absorbing state. In the other case we have, given the decision
rule d, only two possible successor states and hence only two non–zero
entries. In fact we even have

Lemma 4.9. For a given d ∈ DDM the Matrix Pd is a sparse upper
triangular matrix.
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Proof. For a given knowledge s = (s1, f1, s2, f2) we have four possible
successor states, (s1+1, f1, s2, f2), (s1, f1+1, s2, f2), (s1, f1, s2+1, f2)
and (s1, f1, s2, f2 + 1). Now let s′ be an arbitrary successor state.
Then we have that ψ(s′) > ψ(s) what can be seen by comparison with
Algorithm 7, hence Pd is an upper triangular matrix. The rest follows
from the discussion above.

Hence, we can solve the system of linear equations by a simple
bottom–up process. Beforehand we introduce the following notation:
To a given decision rule d and an internal state i we denote with i+
and i− the two possible successor internal states, i+ corresponds to
the state if a success s is observed and i− corresponds to the state if a
failure f is observed. Let furthermore ψ−1(i) := (s1, f1, s2, f2). Then
we define

pd :=

{
s1+1

s1+f1+2 if d((s1, f1, s2, f2)) = 1
s2+1

s2+f2+2 otherwise.

Theorem 4.10. The vector v in Algorithm 5 is updated component-
wise via

vi =
(rd)i
1− λ

if ψ−1(i) is an absorbing state and

vi = (rd)i + λ (pdvi+ + (1− pd)vi−)

if ψ−1(i) = (s1, f1, s2, f2) is a non–absorbing state.

Proof. Comparison with (4.10).

So one iteration of the Policy Iteration algorithm needs an effort of
O(|K 4

M |). Again the easy structure of the underlying infinite Markov
decision problem makes it computationally feasible to look at cases
M ≈ 100 what yields roughly a state space size of 4, 6 · 106.

In Table 4.2 we find an overview for the iterates produced by Policy
Iteration with λ = 0.99. We define
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Table 4.2: Overview of Policy Iteration

Iterations ‖vn+1 − vn‖ Number of indices i with
(vn+1)i − (vn)i ≥ 0.0005

n = 1 96, 15 2888420
n = 2 8, 42 1212473
n = 3 2, 83 1082316
n = 6 0, 54 336533
n = 9 0, 26 33975

L(Oπ) :=
max(p1, p2)

1− λ
−
(

M∑
i=1

λi−1p((alloc(Oπ))i) +
λMF(p̂1, p̂2)

1− λ

)
.

When L(Oπ) is small the allocation was good. In fact this formula is
very similar to that in the finite horizon case, we just discounted the
rewards to deal with finite sums. The rest is analogue to the finite
horizon case. Note that we now do not need an explicit estimate μ
for the patients outside the trial but therefore a discount factor λ.
Looking at Figure 4.4 reveals that πMD is again better than πER.
Using the Equal Randomization strategy all data point simulated lie
inside the whiskers, so there are no outliers in this case. The policy
πMD used for the simulation is constructed by Policy Iteration with
10 iterations.

4.3 Conclusio

We described a Markov decision problem model for clinical trials based
on [BE95], [Pre09], and [Put94]. In a trial we compare two treatments
T1 and T2, respectively. The goal is to find the superior treatment.
The knowledge about the treatments is encoded in a pair—one for
each treatment—of prior distributions. We restricted our attention to
beta distributed priors and hence are able to encode all information
in a four tuple (s1, f1, s2, f2), the numbers of successes and fails for
treatments T1 and T2. The statistic is updated after every allocation.
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Figure 4.4: Here p1 = 0.8 is fixed and p2 varies from 0 to 1. For every p2
value we simulate 100 clinical trials and therefore have 100 realiza-
tions of L(OπMD ) and L(OπER), respectively. Based on this data
for every p2 a box-plot is performed.



94 4 Markov Decision Problems and Clinical Trials

The transition probabilities are based on the expected values of the
corresponding prior distributions, see 4.2 and 4.3. [Pre09] gives an
overview of possible reward models. In this thesis we took a closer
look at the so called “expected successes” reward model.
Based on the simulations we made we can say that the allocation

strategy based on the Markov decision problem model for clinical
trials is better than the Equal Randomisation strategy. First of all
the number of wrong decisions, this is the number of trials where the
better treatments was not detected is comparable with the number
of wrong decisions using Equal Randomization, see Figure 4.3 and
Figures A.1, A.2, and A.3 in the appendix. Additionally, the number
of study participants receiving the inferior treatment is much smaller
than in the Equal Randomization case, see Figure 4.2 and Figures
A.4, A.5, and A.6 in the appendix. However if the true unknown
success probabilities p1 and p2 are close together there is not a big
difference between the two methods.
In the finite horizon framework we assumed to have an estimate

μ for the patients outside the trial. If this is not the case one might
prefer the infinite horizon setting. Also in this case the Markov policy
is better than the Equal Randomization strategy, see Figure 4.4.
For a study size of M = 100, the optimal policy can be computed

in a few minutes, although we then already have a state space size of
roughly 4, 6 · 106. Moreover, the optimal policy only has to be calcu-
lated once and can then be used for every clinical trial. Therefore, the
solution techniques presented in Chapters 2 and 3 can be successfully
applied to clinical trails.

Further developments might include improving the infinite horizon
model. Moreover, the presented models might be extended to more
than two treatments. In this case one needs methods for reducing the
state space since then the problem becomes computationally more
and more difficult.
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Figure A.1: p1 is set to 0.6

T. Ondra, Optimized Response-Adaptive Clinical Trials, BestMasters,
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Figure A.2: p1 is set to 0.4
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Figure A.3: p1 is set to 0.2
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Figure A.4: Here p1 = 0.6 is fixed and p2 varies from 0 to 1.
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Figure A.5: Here p1 = 0.4 is fixed and p2 varies from 0 to 1.



Appendix 99

0
0.
05 0.

1
0.
15 0.

2
0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

0

20

40

60

p2

L(
O π

M
D
)

0
0.
05 0.

1
0.
15 0.

2
0.
25 0.

3
0.
35 0.

4
0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

0

20

40

60

p2

L(
O π

E
R
)

Figure A.6: Here p1 = 0.2 is fixed and p2 varies from 0 to 1.
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