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Preface

This book is an effort to put in one place and in accessible form the most recent work
on forecasting re-offending by individuals already in criminal justice custody. Much
of that work is my own and comes from over two decades of close collaborations
with a number of criminal justice agencies. After many requests to provide in one
place an account of the procedures I have used, I agreed to write this book. What
I hope distinguishes the material from what has come before is the use of machine
learning statistical procedures coupled with very large datasets, an explicit intro-
duction of the relative costs of forecasting errors as the forecasts are constructed,
and an exclusive statistical focus on maximizing forecasting accuracy. Whether the
forecasts that result are “good enough,” I leave to the reader.

The audience for the book is graduate students and researchers in the social sci-
ences, and data analysts in criminal justice agencies. Formal mathematics is used
only as necessary or in concert with more intuitive explanations. A working knowl-
edge of the generalized linear model is assumed. All of the empirical examples
were constructed using the programming language R, in part because most of the
key tools are not readily available in the usual social science point-and-click statis-
tical packages. R runs on a wide variety of platforms and is available at no cost. It
can be downloaded from www.r-project.org/.

A very large number of individuals have helped me as my criminal justice fore-
casting activities have evolved. On technical matters, I owe a special debt to David
Freedman who put up with my questions over 10 years of collaboration. More re-
cently, I have benefited enormously working the colleagues in Penn’s Department
of Statistics, especially Larry Brown, Andreas Buja, Ed George, Mikhail Traskin
and Linda Zhao. On policy matters my mentor Peter Rossi provided a foundation
on which I still draw. My hands-on education has come from a number of criminal
justice officials starting with several talented individuals working for the California
Department of Corrections in the 1990s: George Lehman, Penny O’Daniel and Mau-
reen Tristan. More recently, Ellen Kurtz of Philadelphia’s Adult Department of Pro-
bation and Parole was an early supporter and adopter modern forecasting methods
from whom I learned a lot. Catherine McVey, chairman of the Pennsylvania Board
of Probation and Parole played a key role in educating me about the parole decision
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vi Preface

process and the real politik in which parole decisions are made. Jim Alibirio, as a
key IT and data analyst person working for the parole board, was a true data maven
and wonderful colleague as we together developed the required forecasting proce-
dures. Other practitioners to whom I am especially indebted are Mark Bergstrom
Executive Director of the Pennsylvania Sentencing Commission, and Sarah Hart, a
Deputy Prosecutor (and much more) in the Philadelphia district attorney’s office. A
sincere thanks to one and all.

All of the analyses reported in the book would have been impossible without the
data on which they are based. Collecting those data required hard work by a num-
ber of individuals from several criminal justice agencies at state and local levels.
An important subset of the work was supported by a grant to the State of Penn-
sylvania from the National Institute of Justice — “Projecting Violent Re-Offending
in a Parole Population: Developing A Real-Time Forecasting Procedure to Inform
Parole Decision-Making” (# 2009-IJ-CX-0044). My most sincere thanks to NIJ for
the funding and to Patrick Clark, who is a knowledgeable and constructive grant
monitor with a great sense of humor.

Finally, I am a notoriously bad proof reader and can always use help with the
quality of my arguments and prose. Justin Bleich and Anna Kegler carefully read an
earlier draft of this manuscript and provided all manner of assistance. However, the
responsibility for any remaining typos or unclear prose is surely mine.
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Chapter 1

Getting Started

Abstract This chapter provides a general introduction to forecasting criminal be-
havior in criminal justice settings. Criminal justice forecasting is a tool that has been
used by decision-makers since at least the 1920s. Over time, statistical methods have
replaced clinical methods, leading to improvements in forecasting accuracy. The
gains were at best gradual until recently, when the increasing availability of very
large datasets, powerful computers, and new statistical procedures began to produce
dramatic improvements. It is important to note that criminal justice forecasting is
inextricably linked to stakeholder decision-making. As such, there are always po-
litical considerations, ethical complexities, and judgement calls for which there can
be no technical fix.

1.1 Setting the Stage

All forecasts use information on hand to help anticipate outcomes not yet observed.
Ideally, it is a three-step process. In the first step, relationships between predictive
information and one or more outcomes are documented or assumed. In the second
step, forecasting accuracy is evaluated. If the accuracy is sufficient, there is a third
step: when subsequently there is predictive information, but the outcomes are un-
known, the relationships established earlier permit projections to what the unknown
outcome might be.

This is a book about forecasting whether an individual already in the custody
of the criminal justice system will subsequently re-offend. Perhaps the most fa-
miliar example is forecasts used by parole boards to inform release decisions. An
especially controversial illustration is forecasts used by prison officials to determine
which inmates are good risks for unsupervised early release. Other applications in-
clude bail recommendations or charging determinations by prosecutors, sentencing
decisions by judges, and the nature of supervision provided for individuals on pa-
role.

1R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
in Computer Science, DOI 10.1007/978-1-4614-3085-8_1, © The Author 2012
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2 1 Getting Started

The pages ahead consider statistical tools to such ends. There have been a number
of very recent and important developments well beyond state-of-the-art even five
years ago. But context is also considered. The statistical tools will not properly
respond to decision-makers’ needs if the setting and the consequences of forecasting
errors are ignored. Yet in much past practice, they have been.

Criminal justice forecasting has a rich and lively history. In particular, parole
decisions in the United States commonly have been informed by forecasts since
the 1920s. (Burgess, 1928; Borden, 1928). Over the years, varying mixes of clin-
ical judgements and actuarial methods have been used (Monahan, 1981). Of late,
the greater accuracy and transparency of the actuarial methods (Hastie and Dawes,
2001: 58-70) has favored statistical approaches. But often, parole boards are re-
quired to use their discretion. As a result, clinical judgments can still play an impor-
tant role.

Despite their pervasiveness, the accuracy of parole forecasts is difficult to deter-
mine. Even less is known about the accuracy of similar forecasts at other criminal
justice decision points (Olin and Duncan, 1949; Glaser, 1955; Dean and Dugan,
1968; Wilkins, 1980; Farrington and Tarling, 1985; Gottfredson and Moriarty,
2006; Berk, 2008a; Skeem and Monahan, 2011). The most apparent roadblock is
that far too few forecasting procedures have been properly evaluated. Many are not
evaluated at all despite claims of “instrument validity.” Although many are said to be
“valid,” the methods used and subsequent results are never revealed in meaningful
detail, especially when the instrument is “proprietary” (Berk et al., 2005).

Even when serious evaluations are reported, the evaluations are often poorly
done. It is common, for example, to use the same data to build and test a fore-
casting procedure. It has been long recognized that this “double-dipping” will make
forecasting accuracy appear to be more accurate than it really is (Ohlin and Dun-
can, 1949; Reiss, 1951; Ohlin and Lawrence, 1952). That is just to the beginning.
A charitable assessment is that, to date, the accuracy of criminal justice forecasts is
mixed at best.

At the same time, the bar is being raised. Recent advances in statistics and com-
puter science are at least in principle setting new standards for forecasting accuracy
(Berk, 2008a). Aspirations are further bolstered when these tools are combined with
the increasing availability of very large datasets containing hundreds of potential
predictors. Whatever the past performance of parole forecasts, it may now be possi-
ble to do substantially better. It is this promising future that will be emphasized in
the pages ahead.

Now may be an unusually good time to capitalize on recent technical develop-
ments. There seems to be a growing acceptance of modern actuarial methods for
criminal justice decisions that were in the past made by informal assessments of
“future dangerousness.” Included are bail recommendations and charging, diver-
sion from prison and incarceration sentences, determinations of the security level in
which inmates are placed, and the intensity of parole and probation supervision.1

1 There are also a number of related applications such using forecasts of wrongdoing to target
inspections of industrial polluters, forecasts of child abuse to inform oversight of children in foster



1.1 Setting the Stage 3

For example, a recent statute in Pennsylvania authorizes the Pennsylvania Com-
mission on sentencing to develop a risk forecasting instrument to help inform sen-
tencing decisions under the state sentencing guidelines. There is an interesting his-
tory and many complicated issues (Hyatt et al., 2011), but for our purposes the key
section reads as follows:

42 Pa.C.S.A.§2154.7. Adoption of risk assessment instrument.

(a) General rule. – The commission shall adopt a sentence risk assessment instrument for
the sentencing court to use to help determine the appropriate sentence within the limits es-
tablished by law for defendants who plead guilty or nolo contendere to, or who were found
guilty of, felonies and misdemeanors. The risk assessment instrument may be used as an
aide in evaluating the relative risk that an offender will reoffend and be a threat to public
safety.
(b) Sentencing guidelines. – The risk assessment instrument may be incorporated into the
sentencing guidelines under section 2154 (relating to adoption of guidelines for sentenc-
ing).
(c) Pre-sentencing investigation report. – Subject to the provisions of the Pennsylvania
Rules of Criminal Procedure, the sentencing court may use the risk assessment instrument
to determine whether a more thorough assessment is necessary and to order a pre-sentence
investigation report.
(d) Alternative sentencing. – Subject to the eligibility requirements of each program, the
risk assessment instrument may be an aide to help determine appropriate candidates for
alternative sentencing, including the recidivism risk reduction incentive, State and county
intermediate punishment programs and State motivational boot camps.
(e) Definition. – As used in this section, the term risk assessment instrument means an
empirically based worksheet which uses factors that are relevant in predicting recidivism.

The content of this legislation would come as no surprise to individuals and or-
ganizations following developments in criminal justice forecasts of risk. For exam-
ple, the Pew Foundation’s Public Safety Performance Project recently released a
report advocating procedures that “when developed and used correctly ... can help
criminal justice officials appropriately classify offenders and target interventions to
reduce recidivism, improve public safety, and cut costs” (Pew, 2011: 1). A report
from the National Center for State Courts (Casey et al., 2011) provides more detail.
Both reports, however, could have made an even stronger case had they properly
summarized current state-of-the-art.

One must not forget, however, that the manner in which such forecasts are re-
ceived by stakeholders is often part of a highly-charged political process, especially
in these times when budget reductions have put enormous pressure on criminal jus-
tice agencies to do more with less. For example, a recent OP-ED article in the Los
Angeles times, written by the chairman of the state’s Senate Labor and Industrial
Relations Committee, claimed that forecasts used to determine prison releases were
compromising public safety (Lieu, 2011).

Beginning in 2011, the California Department of Corrections and Rehabilita-
tion (CDCR) was required under Senate Bill X3 18 to release a “limited number
of nonviolent, nonserious and nonsex offenders with no parole conditions and no

care, and forecasts of violence to help shape the manner in which fugitives are apprehended by
Federal Marshals.
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parole supervision.” These offenders were selected by CDCR’s “computerized risk-
assessment model.” According to a report from the state’s Office of the Inspector
General, about 25% of those released were actually “at a high risk for violence.”
CDCR blames the forecasting errors on missing information on prior record in the
forecasting database. But there is no report on how accurate the forecasts were for
individuals with complete data.

Forecasting the risk of re-offending raises a number of important and contentious
issues. Although this book focuses especially on recent developments in statistics
and computer science that promise better forecasts, some legal and ethical matters
will be introduced when directly germane.

1.1.1 A Brief Motivating Example

To help motivate the material ahead, consider the following brief example. The data
come from a large East Coast city. The relevant population is individuals on proba-
tion in that city. The goal of the supervising agency was, in this instance, homicide
prevention. Reductions in perpetration and/or victimization among those it super-
vised was the aim.

A forecasting procedure was developed to predict whether an individual under
supervision would “fail” while under supervision. The “failure” to be forecasted
was whether an individual under supervision was arrested for (1) homicide or (2)
attempted homicide, or (3) was a victim of a homicide or (4) the victim of an at-
tempted homicide. An attempted homicide had the same failure status as a com-
pleted homicide. All other probation outcomes were treated as “successes.” The
follow-up period was 18 months.

Predictors were drawn from the usual sorts of administrative records to which
such agencies have access. Among the predictors were age, prior record, gender,
the most recent conviction offense, and the age at which an individual first appeared
in adult court. There are certainly no surprises. In addition, all possible interaction
effects were included up to the equivalent of about 6-way product variables. These
can identify unanticipated structure in the data that would be missed by conventional
approaches and can dramatically improve forecasting accuracy. In effect, there was
well over 300 predictors, most of which were not identified in advance, and if they
were, would have had no clear substantive interpretations.2

Because the outcome to be forecasted was binary, a machine learning classifier
was used to construct the forecasting algorithm. The relative costs of forecasting
errors build into the algorithm were asymmetric. A failure to correctly identify a
high-risk probationer (i.e., a false negative) was viewed as far more costly than
incorrectly identifying a probationer as high risk (i.e. a false positive), and the cost
ratio of false negatives to false positives was set at 20 to 1. False negatives were

2 This is a lot like much recent work in bioinformatics where there is a lot of data but not that much
theory to go with it (Baldi and Brunak, 2001). Microarrays and gene expression is a good example.
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treated as 20 times more costly. The agency was, in this instance, very concerned
about homicides that could have been prevented.

Forecasted Not Fail Forecasted Fail Accuracy
Not Fail 9972 987 .91

Fail 45 153 .77

Table 1.1 Confusion Table for Forecasts of Perpetrators and Victims. True negatives are identified
with 91% accuracy. True positives are identified with 77% accuracy. (Fail = perpetrator or victim.
No Fail = not a perpetrator or victim.)

For these data, about 2% fail within 18 months. From a statistical perspective,
the base rate is very low. It was challenging, therefore, to gain much forecasting
leverage from the predictors. If one always forecasted that there would be no fail-
ures, the forecast would be correct nearly 98% of the time. It is difficult to imagine
a forecasting procedure using predictors that could do better.

But forecasting solely from the base rate would mean that all true positives would
automatically be false negatives. Because of the very high costs of false negatives
relative to false positives, this was an unsatisfactory approach. It was important that
predictors be used to differentiate between those more likely to fail and those less
likely to fail. In other words, overall accuracy could be somewhat compromised if in
trade a substantial number of high risk individuals were correctly identified as such.

Table 1.1 shows some results in a “Confusion Table” assembled as the forecasting
procedure was being developed. The table is nothing more than a cross-tabulation
of actual outcomes and forecasted outcomes. The forecasts are real in the sense that
the table was built from data not used as the forecasting procedure was formulated.
That is, a proper confusion table is assembled from a “hold-out” sample containing
predictors and the outcome to be forecasted. The table is an honest rendering of
forecasting accuracy.

There are 198 “failures” overall. The forecasting algorithm correctly identified
153 of the 198 failures, for an accuracy rate of 77%. There are 10,959 “successes”
overall. The forecasting algorithm correctly identified 9972 of the 10,959 for an
accuracy rate of 91%. These figures represent how well the algorithm was able to
correctly identify which offenders failed and which did not using information con-
tained in the predictors. By exploiting that information, the algorithm ideally can
find a group composed largely of individuals who succeeded and another group
composed largely of individuals who failed. When this happens, the procedure has
promise as a forecasting tool.

Given the high rate of accuracy despite the very low base rate, decision-makers
felt that the forecasting algorithm had potential. Refinements to the algorithm im-
proved its performance, and it was later installed on an agency server to inform
supervisory decisions. That software is now routinely used to inform probation su-
pervisory decisions.

There is certainly a lot more going on in Table 1.1. For example, how many false
positives are there for every true positive — how many individuals are incorrectly
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identified as high risk for every individual correctly identified? For the moment,
there are two general points to be made.

First, accurate forecasts are often very easy to construct. When one of a pair of
outcomes is rare, forecasting the more common outcome can lead to very accurate
predictions. Usually, however, we seek more nuanced results that respond to the
costs of forecasting errors. With large databases and modern forecasting machinery,
one can still do quite well.

Second, although statistical concerns and policy concerns can be conceptually
distinct, they should inform one another in practice. Indeed, there is really no such
thing as a “pure” forecast. Even when researchers think they are proceeding in a
value-free manner, they are implicitly making value-influenced choices that can
have important effects on the forecasts. These choices cannot be avoided, and need
to be explicitly aired.



Chapter 2

Some Important Background Material

Abstract Statistical forecasts of criminal behavior are far more than a technical
challenge. They inform real decisions by criminal justice officials and other stake-
holders. As a result, a wide range of issues can arise. Although for expositional pur-
poses they must be examined one at a time, in practice each should be considered as
part of a whole; decisions about one necessarily affect decisions about another. We
begin with some rather broad concerns and gradually narrow the discussion.

2.1 Policy Considerations

Criminal justice forecasts are meant to inform real decisions. As such, they are em-
bedded in a variety of political and administrative considerations. These consid-
erations are a useful place to start because they are so central to the forecasting
enterprise.

2.1.1 Criminal Justice Forecasting Goals

Forecasts of re-offending are used in settings where several masters must be served.
The most salient and widely-stated consideration is public safety. Individuals who
pose a significant risk to the public must be accurately identified so that their future
crimes can be prevented. Prevention failures, especially when the crimes are unusu-
ally heinous, are tragedies for victims and their families, but also have significant
costs for the criminal justice decision-makers responsible. One important result is
that these decision-makers are often especially sensitive to risk when it comes to
crimes of violence. This has important implications for how forecasts are made and
used, as we will see later.

In recent years, a second concern has become increasingly important: resource
allocation. Forecasts can be used to allocate criminal justice resources more effi-

7R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
in Computer Science, DOI 10.1007/978-1-4614-3085-8_2, © The Author 2012
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ciently. For example, probation supervision can vary in content and intensity. Cost
varies accordingly. Ideally, forecasts of future dangerousness can be used to allocate
scarce resources to those most in need (Berk et al., 2009). Similar issues can arise in
the allocation of prison beds at different security levels (Berk et al., 2006). Beds in
high security facilities are very costly and should only be assigned to inmates who
pose a significant threat to themselves, other inmates, and/or prison staff.

A third matter is transparency. Decision-makers should be able to understand
how forecasts are constructed, as well as their strengths and weaknesses. Stakehold-
ers should be able to understand how the forecast-informed decisions are made. One
of the advantages of actuarial methods is that, in principle, they are replicable and
therefore transparent. However, transparency is not only a matter of the actuarial
methods employed. It is also a matter of what is disclosed and the form in which the
information is conveyed. Providing overwhelming amounts of information without
adequate structure or documentation is not transparency.

Linked to the goal of transparency is the goal of fairness. The issues are com-
plicated. For example, if race is a powerful predictor of violent crime, and if per-
petrators tend to commit those crimes against people like themselves, should race
be used as a predictor (Berk, 2009)? What about possible surrogates for race such
as neighborhood characteristics? And if race is suspect, what about age and gen-
der? Determining in this context what is fair can require balancing of difficult trade-
offs. For example, young African-American men disproportionately kill other young
African-American men. By not including age, gender, and race as forecasting pre-
dictors, one may be sparing some young African-American men substantial time in
prison, but at the cost of the deaths of other young African-American men.

Then, there is the critical matter of practicality. Criminal justice forecasting pro-
cedures that cannot be implemented in a timely and effective manner serve no policy
purpose. Stated a bit differently, if forecasts aim to assist criminal justice decision-
makers, they must be sufficiently accurate and simple to obtain in real time. Fortu-
nately, actuarial methods can be easily implemented on commonly-available com-
puters. The primary hurdle is getting the requisite data to those computers in a timely
fashion. But, that rarely poses a significant problem because many criminal justice
agencies have IT staff that can readily assemble the data when needed.

Finally, some forecasting instruments used in criminal justice settings make
“needs assessment” the primary goal. This commonly means that the deficits of
individuals in custody are to be identified so that appropriate interventions can be
introduced. The process is less about forecasting and more about treatment. A key
implication is that the instrument used is supposed to be able to determine the causes
of an an offender’s anti-social behavior. Behind the scene is typically a causal model
of offending. Sometimes the causal model is statistical and based on causal mod-
eling traditions in the social sciences. Other times the causal model is intuitive, or
based on social science theory and/or craft lore.

There is nothing wrong in principle with combining forecasts of offending with
determinations of offender needs. But in practice, it is usually better to separate
the two activities. Then, statistical tools can be optimized to best serve their stated
purposes. For instance, forecasts can be tuned to maximize forecasting accuracy
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using at least some variables that have no causal role. To take an example that is
not as silly as it first sounds, if an offender’s shoe size is a useful predictor, it can
be productively included. Yet, it is hard to imagine what a causal connection to
re-offending would be, let alone what an appropriate intervention would entail. In
this book, therefore, we concentrate on forecasting tuned to maximize forecasting
accuracy alone. Any insights about offender needs are a bonus. In contrast, causal
models of offending used in assessments of need should make causal explanation
primary. Then, meaningful forecasting accuracy is a bonus.

2.1.2 Decisions to be Informed by the Forecasts

There is a range of decisions that criminal justice forecasts can inform. Among the
decisions are:

• bail recommendations;
• charging by prosecutors;
• sentencing, including probation;
• placing an individual in an appropriate prison security level;
• whether to release an individual on parole; and
• the kinds of supervision and services to be provided for individuals on probation

or parole.

It is likely that with different decisions, there will be different datasets avail-
able. This implies the need for different forecasting procedures and forecasts tuned
to different priorities. Unfortunately, one finds too often that very different crimi-
nal justice decisions are based on the same forecasting instrument. For example, a
given kind of threat assessment instrument may be used in sentencing and in pa-
role decisions despite the obvious fact that the populations, legal and administrative
requirements, available data, and outcomes to be forecasted can be dramatically
different. There is no reason to believe that even if a threat assessment instrument
works well for sentencing, for instance, it will work well for parole decisions. It is
also possible that forecasts will be suboptimal for both because they were tuned to
neither.

In addition to the kind of decision, when in the process the decision is made mat-
ters. For example, one may want to arrange parole supervision regimes differently
depending on the information one has at intake compared to the information one has
a year later. Presumably, the amount and quality of information improves as time
goes by. The options available for interventions can change as well. Perhaps a drug
treatment program that was fully subscribed at intake has openings six months later.
The point is that, once again, one size does not fit all. The forecasting procedures
used should be designed specifically for the kind of decision and its timing.
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2.1.3 Outcomes To be Forecast

Although criminal behavior is usually the outcome that criminal justice officials
want to forecast, the behavior in question can be defined in many ways. Historically,
the most common outcome is whether or not there was any arrest for a new crime
and/or a significant violation of parole or probation rules. Of late, there is increasing
interest in forecasting different kinds of crime and/or violations, such as crimes of
violence or sex crimes. But that necessarily raises the question of “compared to
what?” For example, if committing a murder is defined as the “failure” of concern,
a “success” might range from a brutal armed robbery or aggravated assault, to no
crimes whatsoever.

Among the outcome possibilities to forecast are:

• An arrest for murder or attempted murder compared to all other possible out-
comes — two outcome categories;

• An arrest for a violent crime compared to all other possible outcomes — two
outcome categories;

• An arrest for a violent crime, versus an arrest for a crime that is not violent,
versus no arrests at all — three outcome categories;

• All FBI Part I arrests, versus all FBI Part II arrests, versus no arrests at all —
three outcome categories;

• An arrest for sex crimes compared to all other outcomes — two outcome cate-
gories;

• An arrest for perpetration of a homicide or an attempted homicide as well as
victimization by a homicide or an attempted homicide compared to everything
else — two outcome categories; and

• Person crimes, versus property crimes, versus “victimless” crimes, versus no
crimes — four outcome categories.

A range of other options can be defined if “arrest” is replaced by “conviction,”
and if violations of parole or probation conditions, or a failure to appear in court,
are relevant. Usually, the choice of what to forecast is a blend of legal, political,
and technical concerns. For example, we have already mentioned the low base rate
problem that follows when the outcome to be forecasted is rare. But a relatively
infrequent crime, if seen as a major threat to public safety, may be the major fore-
casting target. Another common issue is resource constraints. If the outcome to be
forecasted is not especially rare and an allocation of significant resources for that
forecasted outcome is planned, an outcome definition that includes too many cases
can outstrip agency capacity.
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2.2 Data Considerations

Forecasts of re-offending depend on having appropriate data. It is useless to advo-
cate for greater use of criminal justice forecasting unless such data are available.
But what qualifies as “appropriate” is multidimensional and complicated.

Criminal justice forecasts always have at least implicitly a target population for
which forecasts are to be made. For example, the target population may be individ-
uals in a particular jurisdiction over a particular period of time for whom bail rec-
ommendations are required. Data from that population should be used in developing
the forecasting procedures and to evaluate how those procedures perform. And then,
individuals for whom forecasts are desired should be from that population as well.
So much for textbook pronouncements. Real applications can get messy in a hurry.

2.2.1 Stability Over Time

All forecasting requires that the future to be forecast is like the past from which
the forecasting procedure is built. Broadly understood, the point is obvious. But
the future is never exactly like the past, and change can come in many forms, at
different speeds, and with different consequences for forecasting accuracy. As in so
many things, the devil is in the details. We need to go there — at least a bit.

Decision-makers must operate within a formal structure of statutes and adminis-
trative regulations. For example, sentencing guidelines can be introduced, revised,
or abolished. Certain kinds of crimes, such as sexual offenses, can be singled out for
special treatment. The formal structure can also affect how re-offending occurs and
how it is defined. Certain crimes can be changed from misdemeanors to felonies.
The implications of a failed drug test can be altered. All such changes in the formal
structure make the future different from the past. The question, therefore, is how
much forecasting accuracy is affected, not whether it is affected at all.

The identities of decision-makers also matter a great deal. Parole board person-
nel turn over. The mix of probation or parole officers on the street is continually
changing. Sitting judges lose elections to newcomers or retire. All such processes
can affect forecasting accuracy. Again, it is a matter of degree.

Factors that can encourage or discourage crime also vary. The job market is
thought to be important. So are schools. The same applies to rivalries or turf battles
between gangs. There are also changing crime opportunities. Markets for different
kinds of drugs is a common illustration. The resources and effectiveness of criminal
justice agencies matter as well. Examples include the number and deployment of
police officers and the size of the incarcerated population. There is hope that vari-
ous kinds of diversion and rehabilitation programs will help, although demonstrable
successes can be hard to find.

Finally, there is the changing demographics of law enforcement jurisdictions.
Although young males from low income households do not have a monopoly on
violent crime, they surely dominate the statistics. It follows that when there are more
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of them in an area, the risk of serious crime increases. Among the many processes
that can affect these numbers is the kinds of households that are moving in and out.
For instance, gentrification can reduce crime in a jurisdiction.

There is no way that changes in all of the factors just mentioned can be fully
tracked; their impacts on forecasting accuracy are difficult to anticipate in any case.
However, major changes in the statutory or administrative setting are easy to iden-
tify and will often mean that forecasting procedures tuned before the changes will
need to be revised. There may also be important public relations and political rea-
sons to update the procedures. It is easy to imagine the difficulties if a forecasting
procedure built under one set of sentencing guidelines were being used to make
forecasts under another. The forecasts and underlying procedures become almost an
irresistible target.

For the other factors, it may be best to just track the accuracy of forecasts over
time. If accuracy is degrading, there is evidence that the values of one or more
factors are drifting or that the causal processes have evolved. When the reductions
in accuracy become large enough to matter, it is time for a revision. What little
experience there is with the kinds of forecasting discussed later suggests that the
forecasting procedures usually degrade slowly and not enough to matter for 3 to
5 years, perhaps longer. But there can be important exceptions when the formal
structure of decision making (e.g., key statutes) are substantially altered.

In short, although the future will never be exactly like the past, a major consider-
ation when forecasting procedures are constructed is whether forecasting accuracy
is acceptable. This will usually mean that in a head-to-head contest of forecasting
accuracy, the new methods perform better than the old. Less clear is when to revise
the current forecasting methods. Important changes in statutory or administrative
structure will usually require an update. In the end, however, substantial reductions
in forecasting accuracy are probably the most direct indicator.

Finally, there is no universal way to determine when reductions in forecasting
accuracy are “substantial.” It depends on the consequences of forecasting errors and
how many there are. Is failure to predict, say, 10 homicides worse than failure to pre-
dict 100 burglaries? What about 10 homicides compared to 1000 burglaries? These
kinds of relative valuations should be derived from the preferences of stakeholders
whose views can vary widely. We will consider such issues in depth later, but suffice
it to say that the relative costs of different kinds of forecasting errors are critical to
the proper construction of forecasts, to how those forecasts are used, and to when
they need to be revised.

2.2.2 Training Data and Test Data

An essential component of building a good forecasting procedure is to work with
two datasets: (1) a random sample of training data from the relevant population, with
which to develop the procedure; and (2) a random sample of test data from the same
population, with which to evaluate the procedure. Both datasets should include the
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same predictor variables and response variables whose values one ultimately wants
to forecast.

One of the frustrating errors in past criminal justice forecasting was to rely on
procedures constructed and “validated” with the same data. Most forecasting meth-
ods are tuned to the data on which they are developed. Many formally maximize
some measure of fit between what the forecasting method predicts and what the
data show. Logistic regression is a ubiquitous example. Model construction en-
hancements such as stepwise logistic regression can make the tuning more effective.
However, tuning responds not just to systematic features of the data that can help
forecasting accuracy, but to idiosyncratic features of the data having no predictive
information. One result is that the model “overfits,” and stakeholders can be vic-
timized by unrealistic expectations. When called upon to forecast from new data,
accuracy may be very disappointing.

It is important, therefore, to have a second dataset. This should ideally be a ran-
dom sample from the same population, with which true forecasts can be made. That
is, the forecasting methods developed with the training data are evaluated with the
test data. For example, a forecasting algorithm constructed with the training data is
moved to the test data. There, the values of the predictors are inserted to construct
forecasts of the response variable. Like the training data, the test data contain the
observed outcome for each case. This allows the forecasted values to be compared to
the observed values of the response variable. Then, an honest evaluation of forecast-
ing accuracy can be undertaken in conventional ways. Commonly, some function of
the forecasting errors is used.

2.2.3 Representative Data

Having training and test data that are random samples from the population for which
forecasts are to be made is not by itself sufficient. One must consider carefully the
nature of that population. For example, training and test data from a population of
individuals released on parole is not likely to be appropriate for forecasts inform-
ing bail release recommendations. Parolees have typically served substantial time
behind bars. Bail recommendations are made well before guilt for a felony crime
has been officially determined. Parolees, therefore, will likely differ in their expo-
sure to incarceration and whatever impact prison programs might have. They are on
the average likely to be older and have longer prior records, as well as convictions
for more serious crimes. A forecasting procedure tuned to parolees may provide se-
riously misleading forecasts if applied to bail recommendations. Similar problems
can arise if a forecasting procedure tuned to individuals released on bail is used to
inform sentencing decisions. The relevant populations differ.

One must distinguish, however, between the values of predictors that can on av-
erage vary over populations, and the manner in which those predictors forecast. To
take a simple example, age may have much the same impact in a sample of parolees
and a sample of probationers. That is, the relationship between age and reoffending



14 2 Some Important Background Material

is effectively the same. In both populations, older individuals are less likely to reof-
fend, other things equal. One might find that, perhaps, for each 5 years of age, the
probability of reoffending declines by 4%. But because parolees tend to be older,
they will on average have a lower risk for reoffending, other things equal. In short,
the forecasting procedure is performing as it should.

In contrast, it may be that for parolees, the probability of reoffending declines
by 7% with every 5 years of age, whereas for probationers the reoffending declines
by 2% with every 5 years of age. Then, the same forecasting procedure should not
be used for both populations because the algorithms are not the same. If in the data
one can determine which individuals are parolees and which are probationers, there
is no problem, at least in principle, to construct forecasting procedures for each
separately.1

There is also the matter of unobserved outcomes for the relevant population.
Suppose a forecasting procedure is being designed to inform bail release decisions.
A population of individuals with earlier bail decisions is found for which there are
predictors from routine administrative records and rap sheets with which to measure
new crimes before trial. One could draw two random samples from this population:
one for use as training data and one for use as test data. With these data in hand, it
would be possible to examine factors associated with new arrests of various kinds for
those individuals released. The goal would be to determine what sorts of individuals
should not have been released.

However, there is a complementary goal: what sorts of individuals were not re-
leased but would have been good risks? There is no way with these data to directly
address that question because for individuals not released, there was no opportunity
to see how well they might have done. The outcome data are “censored” for individ-
uals who remain in jail. Censored outcomes for particular classes of individuals are
a general problem in criminal justice forecasting when there is, for whatever reason,
no way to observe an outcome of interest. The usual “solution” is to try to find data
that are not censored for individuals like those whose data are censored. But in prac-
tice, this is very difficult to do. Often, there are no data that can pass a sniff test. In
the rare instances when promising data are found, there will be observed differences
of unknown importance (e.g., military service) and unobserved differences about
which one can only speculate.

2.2.4 Large Samples

Substantive understanding can have different empirical foundations from forecast-
ing. When the intent of an empirical study is to explain how predictors are related
to a response, samples of modest size will often suffice. Interest typically centers
on the relatively few important predictors of particular substantive interest. Predic-

1 Additional complications can arise if the response function is nonlinear. For example, if the
forecasting procedures is build using data on parolees, there may be for young offenders seeking
bail release an insufficient number young parolees to determine how age is related to reoffending.
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tors having small and perhaps barely detectable relations with the response can be
discarded with little penalty in understanding. As long as parameter estimates are
obtained with sufficient precision, there is no need for a large sample. A few hundred
observations each in the training data and test data may well suffice.

When the intent of an empirical study is to forecast, the bigger the sample the
better, at least typically. There will often be a large number of predictors, each hav-
ing a very weak relationship to the response. But, as a group, they can noticeably
improve forecasting accuracy. There may be little or no substantive story in such
predictors —- predictor by predictor they hardly matter. Yet, they are systematically
associated with the outcome, and are numerous enough to make a difference in the
aggregate. Under such circumstances, it can make good sense to sever any connec-
tion between explanatory methods and forecasting methods. If the goal is accurate
forecasts, data collection and data analysis should be guided by that purpose.

The ways to capitalize on the information in very large samples will be consid-
ered in some detail later within the favored machine learning methods introduced.
Suffice it to say that one must have hardware and software that are not overwhelmed,
and a combination of predictors and statistical procedures that can find even small
pockets of systematic structure. Samples of well over 100,000 can then be produc-
tively exploited.

2.2.5 Data Continuity

The point of having training data and test data is to build the forecasting procedure.
However, use of the forecasting procedure depends on the data available for new
cases that are not part of the procedure building process. It stands to reason that for
these cases, data in the same form must continue to be available. The presence of
new predictors is not a problem. They can simply be ignored. Problems develop if
earlier predictors are no longer available or are measured in new ways. Changes in
data format or documentation can lead to at least temporary difficulties.

It is unlikely that the data available will be completely stable for long periods of
time. Therefore, documentation of the data must be revised as the data change so
that where possible, misunderstandings are avoided. For example, for the racial cat-
egory “white,” hispanics may at some point be represented in the data as a separate
ethnic/racial category. The meaning of “white” is no longer the same. Eventually,
there will likely be so many changes that is necessary to reconstruct the forecasting
procedure using the most current data available. This is not necessarily bad. The
newer data may have more potential predictors and better measured predictors.

Much as for the complications introduced by lack of stability in the relevant
populations, there will usually be no definitive way to determine when to revise
the forecasting procedures. Occasionally, a few key predictors will no longer be
available or are measured in new ways. Employment history is a common example.
But more often, degradation of the predictors with which a forecasting procedure
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was built will cause a decline in forecasting accuracy. At some point, forecasting
accuracy will become unacceptable.

2.2.6 Missing Data

Sometimes variables used to develop forecasting procedures have missing data.
When for a given variable all of the data are missing, there is nothing to be done
unless the missing data can be obtained. There is no statistical fix. For example, if
the field for prior arrests is totally empty, the choice is between not including that
variable in the analysis or obtaining that information from other sources.

Very commonly, however, missing data are scattered around in the data. There
are fields for some cases and some variables that have no information other than
a missing data code. Missing data may be represented by a “blank” or some affir-
mative code such as NA or -99. Sometimes, there is a bit more information such as
whether a missing value results from a justified exclusion, an explicit regulation that
precludes obtaining the information, an oversight, or some other cause. A missing
data code of -99 might mean one thing, and a missing data code of -98 might mean
something else.

An example of a justified exclusion would be measures of performance in a
prison job training program when the individual had no opportunity to enroll. How-
ever, if one knew more about the reasons why there was no opportunity to enroll,
there could be some predictive information (e.g., the inmate was often insubordi-
nate). An example of an explicit regulation that precludes obtaining certain infor-
mation would the sealing of juvenile records. An oversight might mean that the
requisite information was never obtained or that there was some subsequent error in
how the information was recorded and processed.

When the missing data are scattered around, there are at least five possible re-
sponses that can vary by practicality and consequences. First, one can revisit the
primary documents from which the data were constructed to see if the missing val-
ues can be determined. Sometimes, missing data results from an honest mistake or
oversight easily corrected from source materials. This solution is ideal.

Second, one can discard entire cases when for those cases there are any missing
values for any variables. This is sometimes called “listwise” deletion. If such cases
are few, nothing of a real importance is likely to be lost. If such cases are many and
such cases can differ systematically from the cases with complete data, a lot can be
lost. For example, inmates serving shorter sentences may be less likely to have full
“work-ups” or opportunities to participate in prison programs. If these case cases
are dropped, forecasts are being constructed for offenders convicted of more serious
crimes. At the very least, such limitations must be explained to stakeholders. There
could be implications for the generalizability of the forecasts.

Third, variables (not cases) with missing data can be dropped. Continuing with
the inmate example, predictors associated with prison jobs can be discarded when
the time comes to construct the forecasting procedures. If such variables have lit-
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tle predictive value, there is effectively no cost. If such variables have substantial
predictive power, one must decide whether the forecasts are sufficiently accurate
nevertheless. It may also be possible to revisit the data and find predictors without
missing values that can serve as useful surrogates. For example, employment his-
tory prior to incarceration may be a good surrogate for performance in prison job
training programs.

Fourth, there are a number of imputation procedures that can be employed. These
are beyond the scope of this book and for machine learning approaches may well
be unnecessary. Imputation is usually undertaken by extracting information from
variables for which missing data is not a problem. To take an obvious example,
a conviction requires that there was an arrest. Consequently, one can infer that if
there is a prior conviction, there is prior arrest even if no arrest is recorded. But if
prior convictions are included as predictors, one already is using the information
convictions contains. In machine learning, moreover, one can include a very large
number of predictors in a fashion that allows for high order interactions and highly
nonlinear relationships with the response. There will likely be little information not
already exploited for forecasting that could have been used for imputation.

Finally, sometimes there are ways to code variables so that missing data problems
are averted. For example, there may be for many observations no information on
juvenile arrests. A reasonable inference for such cases may be that there were no
juvenile arrests. A count of such arrests would be coded as zero. Predictors that are
factors provide other kinds of useful options. In particular, one can define a new
factor category for “missing” and analyze the factors just as one ordinarily would. If
the missing data has a systematic explanation, the missing data category can contain
predictive information. For example, military service could have four categories:
currently serving, served in the past, never served, and missing. Perhaps those with
no information on military service are low (or high) risk? “Missing” then becomes
a legitimate category for military service.

In summary, the best situation is to have very little missing data to begin with.
Experience with the sorts of records used to forecast future dangerousness suggests
that this is often the case. Because such records are used for administrative purposes,
there can be a concerted effort to make those records accurate and complete. But if
there are substantial amounts of missing data that cannot be obtained from source
documents, probably the best strategy whenever possible is to recode the problem
away. A reasonable second choice is to drop the offending predictors. It is important
to keep in mind that forecasting, not explanation, is the primary goal.

2.3 Statistical Considerations

It is important to start with a broad view of the statistical tools used to generate fore-
casts. Although we will focus later on machine learning, one can think of machine
learning in a forecasting context as a special case of actuarial methods. We have
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already mentioned actuarial methods in passing. It is now time to consider actuarial
methods in somewhat more depth.

2.3.1 Actuarial Methods

Actuarial methods are statistical and mathematical procedures commonly used in
public health, banking, insurance, and finance to assess risk. By “risk” one means
the prospect of some undesirable outcome and as such, combines the chances of that
undesirable outcome with its unwelcome consequences. An event certain to occur
but with no untoward consequences has no risk. An event that cannot occur does
not entail risk no matter how dire the possible consequences. In this book, actuarial
methods are the focus.

Much like such insurance companies, banks or investment firms, criminal justice
agencies are in part risk management enterprises. Desirable and undesirable out-
comes must be effectively anticipated. Broadly speaking, determining the chances
that an individual with a particular profile will commit a serious crime is not very
different from determining the chances that an individual with a particular profile
will be involved in a fatal automobile accident, contract a chronic disease at an early
age, or will own property damaged by a hurricane. Likewise, it is not very different
from determining the expected returns from a loan to a small business, a mortgage
to a new home buyer, or an investment in an initial public offering. It is all about
anticipating the future with a useful level of accuracy. There must be sufficient fore-
casting “skill.”

Insurance companies, for instance, make such forecasts to help determine what
premiums to charge customers. Different kinds of customers come with different
risk probabilities, and these risks come with different amounts of loss. Risks with
higher probabilities and/or associated with more costly losses can justify higher
premiums. Consequently, insurance companies must integrate their forecasts with
the costs of particular kinds of events. Forecasts alone, even very accurate forecasts,
will not suffice. The same lesson applies to criminal justice applications. Even very
accurate forecasts are by themselves insufficient. The consequences of the behavior
being forecasted must be introduced if risk is to be properly addressed.

The list of relevant statistical and mathematical tools used as actuarial methods
is long. It can include simple cross-tabulations to complex models and modern data
mining. In most settings, for example, a cross-tabulation of gender by whether a
parolee is arrested for a crime of violence within two years of release from prison
will show that men are substantially more likely to fail. This can be useful to know
and very easy to ascertain. At the other extreme of complexity can be data mining
procedures that link various parole outcomes to complex parolee profiles by search-
ing for patterns in a very sophisticated manner over hundreds of thousands of cases.

Actuarial methods can also differ in the degree to which they try to represent
mechanisms driving the outcome. The relevant causal models popular in the social
sciences are typically statistical theories of criminal behavior. If a causal model is a
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good one, it will forecast well — or at least that is the common assumption. But one
can productively separate forecasting an outcome from explaining why that outcome
occurs.

Because data mining leads to forecasts that do not depend on causal explanations
of the outcome, some use the term “algorithmic” for the data mining approach to
forecasting. A forecast is generated by statistical machinery whose sole purpose is
to maximize some function of forecasting accuracy. There is no model in the usual
social science sense and no necessary account of why the criminal behavior did or
did not occur. In the pages ahead, machine learning, a particular kind of data mining,
will be the favored approach.

The outcomes to be forecasted will be categorical. They usually will be some
form of criminal activity or a violation of rules imposed as a condition of the inter-
vention applied (e.g., failing to report to a probation officer). For categorical out-
comes, actuarial methods are sometimes called “classifiers.” Their goal is to assign
cases to classes. For example, should a parolee who is a 25-year-old male with 3
prior felony convictions and an affiliation with a street gang be assigned to the class
of individuals likely to commit a violent crime while under supervision? Machine
learning methods used with categorical outcomes are almost always called classi-
fiers.

Whatever the actuarial methods preferred, it is at present hard to find what one
needs off-the-shelf. Or put more positively, the forecasting results are likely to be
better if the off-the-shelf methods are a starting point for more refined procedures
hand-tailored to the circumstances in which the methods will actually be used. In
this book, therefore, we will talk about forecasting approaches that must be devel-
oped on a case-by-case basis, honestly tested in the settings where they will be used,
implemented so that they can be employed when needed, and integrated into actual
criminal justice decisions. Actuarial methods are an essential part of the mix, but
hardly all there is.

2.3.2 Building in the Relative Costs of Forecasting Errors

Decision-makers readily understand that different kinds of forecasting errors can
have different consequences and that their costs can vary enormously. A forecast
that fails to identify a prospective murderer is likely to be far more costly than
a forecast that fails to identify a prospective burglar. Such information should be
an important decision-making factor. Likewise, decision-makers readily understand
that some behavioral outcomes are far more likely that others. This information
should be an important decision-making factor as well. Both kinds of information
are used in proper assessments of risk.

Thus, risk has two components: the probability of a given outcome and the ex-
pected costs of that outcome. Consider first the costs. The chances of a new crime
may be the same for two individuals, but for one that new crime could be a crime
of violence whereas for the other that new crime could be a property crime with no
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violence. When, as usual, the former is seen as more costly, the individual projected
to be violent will likely experience an intervention that is has stronger incapacita-
tive content. Broadly speaking this can make good sense. The costs of the crime are
higher.

Now consider the chances of a new crime. The costs of a given crime may be
the same for two individuals, but one may be much more likely to commit that new
crime. That individual will likely experience an intervention with stronger incapac-
itative content. Broadly speaking, this too can make good sense. The chances that
the crime will be committed are greater.

As a formal matter, the risk associated with a given outcome is defined as the
product of the probability of that outcome times its expected costs. For criminal jus-
tice decision making, it is important that the probability be estimated as accurately
as possible. This goes directly to the statistical material included in later chapters.

In practice, decision-making can often proceed with only relative costs being es-
timated. For example, one outcome is five times more costly than another outcome.
Moreover, one can often be satisfied with a decision-maker’s beliefs about the rel-
ative costs when better information is not available. For instance, how would one
put a dollar value on the political consequences of releasing an individual on parole
who then commits an especially heinous crime? How would one put a dollar value
on the psychic costs for the crime victim’s family?

If risk is to be an important factor in decision-making, the next issue is when that
information should be used. Usually, it is introduced far too late in the decision-
making process. A critical point follows: the costs of forecasting errors need to
be introduced at the very beginning when the forecasting procedures are being de-
veloped. Then, those costs can be built into the forecasts themselves. The actual
forecasts need to change in response to relative costs.

Recall that conventional statistical methods in principle take a useful step toward
this goal. For example, a statistical model for forecasting may be the product of
a least squares or a maximum likelihood estimator. There is a loss function to be
minimized. The model builds a form of cost minimization. So, what’s the problem?

One problem is that costs are not explicitly linked to forecasting errors, although
under certain assumptions they can be. A more serious problem is that loss functions
for all of the popular statistical methods applied to criminal justice forecasting use
symmetric loss although for most most decision-makers and stakeholders, the costs
are asymmetric.

Consider a forecast of murder. One error is failing to identify a prospective mur-
derer. The term “false negative” is often applied. Another error is to falsely iden-
tify an individual as a prospective murderer. The term “false positive” is often ap-
plied. For a false negative, there is a homicide that might well have been prevented
along with obvious costs to the victim and the victim’s family. The credibility of the
decision-makers and their organizations can also be compromised. For a false posi-
tive, a long prison term might be imposed unnecessarily. There are obvious costs to
the individual and to the individual’s family. There are also the thousands of wasted
dollars spent on incarceration. Clearly, both kinds of forecasting errors have costs.
But it is unlikely that the costs will be identical, or even similar.
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Some false negatives and false positives are virtually inevitable in practice, and it
seems that for criminal justice decision-makers and the public, the cost of homicides
that might have been averted is especially dear. It follows that the greater the costs of
false negatives relative to false positives, the weaker the forecast of murder can be.
That is, more uncertainty can be tolerated. Any hint in a forecast that an individual
will commit a violent crime can be sufficient evidence for a lengthy incarceration. It
can also justify very intrusive and intense supervision on probation or parole. And
it can justify a recommendation to deny bail.

The reverse is also possible, even if unlikely. If the costs of a false positive are far
greater than the costs of a false negative, one would want a very convincing forecast
of murder before applying strong counter-measures. One would want to be almost
certain.

The reasoning just introduced implies that the loss function associated with any
forecasting procedures should usually be asymmetric. And if this is done, the fore-
casts made should take that asymmetry into account. The forecasts will (and should)
differ depending on how the relative costs of false negatives and false positives are
handled. There are several principled ways in which this can be done, but some are
better than others. We will later return to these issues in a far more formal manner
and in considerable depth.

There can also be important constraints on the overall forecasting results that
should be introduced when the forecasting procedure is being developed. For exam-
ple, there may be some politically-acceptable upper bound to the fraction of indi-
viduals predicted to commit violent crimes after release on parole. A procedure that
identifies, say, 50% of all individuals considered for parole as a significant threat
to public safety may strike some important stakeholders as absurd on its face or a
symptom of a broad failure of incarceration to either deter or rehabilitate (whether
or not that is true).

There can also be resource constraints. An agency in charge of probation super-
vision may wish to place all individuals forecasted to be dangerous under probation
officers with much smaller case loads and with access to a rich mix of support ser-
vices. But more intensive supervision is more costly, so there is likely to be some
limit on the number of such probationers the agency can handle. Forecasts need to
be altered to capture this reality. Such constraints needs to be taken into account
when the forecasting procedure is built, not at the end when supervisory decisions
are made.

The sorts of political and resource constraints just mentioned can be formulated
as factors that affect the costs of forecasting errors. For example, if too many false
positives imply too many forecasted failures, there can be serious blowback from
key stakeholders. There is, therefore, some threshold in the number of false positives
above which the costs of false positives sharply increase.

The basic point is this: when, as is typically the case that the costs of false neg-
atives and false positives are not the same, the entire forecasting approach needs
to take asymmetric costs into account. The alternative — introducing asymmetric
costs after a forecast is made to affect how that forecast is used — risks unprin-
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cipled and suboptimal decisions. It also means that most of the supporting output
from the forecasting procedure is tuned to the wrong policy preferences.

2.3.3 Effective Forecasting Algorithms

The requirements and constraints just discussed have important implications for the
kinds of actuarial methods employed. The method chosen must have forecasting ac-
curacy that is among the best, and forecasting accuracy can vary dramatically across
different procedures. But, for real-world applications, there are other important cri-
teria. We turn to those now.

There must be a principled way to introduce asymmetric costs that can help shape
the forecasts and all other output of interest. Some procedures do not permit the in-
troduction of asymmetric costs. Some allow asymmetric costs to affect the forecasts
but not other output of interest. A few allow asymmetric costs to influence the fore-
casts and all other output.

The procedure must produce replicable results. For a given dataset, the forecasts
generated by one analyst can be reproduced by another. Because most actuarial
methods depend in part on judgment calls, “replication” means that once the judg-
ment calls of one analyst are conveyed to another, the results are effectively the
same.

The procedure must be able to properly take advantage of the kinds of training
and test data available. These days, effective forecasting procedures need to be able
to exploit very large datasets with tens of thousands of cases (or more) and hundreds
of potential predictors. For much of the statistical work in the social sciences, there
can be diminishing returns from large data bases. A sample of several thousand
cases may well be sufficient when the goal is causal modeling. Explanation and
understanding usually depend on finding dominant patterns in the data. Forecasting
is different, especially when the outcome is statistically rare. A very large number
of observations can really help. If the problem is to find a needle in a haystack, you
first need a haystack.

Beyond the forecasts themselves, supporting output is useful to help diagnose
problems in the forecasts produced, suggest how the forecasts could be improved,
and justify the forecasts to stakeholders. For example, it is important to learn which
predictors are driving the forecasts, not because a causal account must be provided,
but because strongly counterintuitive results can signal problems with the forecast-
ing algorithm and undermine the use of forecasts that are otherwise quite accurate.
To take a simple example, age should be related to recidivism within the usual pop-
ulation of parolees. Older individuals usually pose fewer risks. If age is not related
to risk, it could be important to revisit the training data and the actuarial methods
applied.2

2 Some might argue that these kinds of claims provide a role for social science theory. However,
that depends on what one means by theory. With respect to the role of age, how many geriatric
offenders are found in crime movies since the 1930s? In popular culture at least, serious crime is
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Figure 2.1 is an example of useful output showing the forecasting importance
of predictors, which for present purposes can be described very briefly. The training
and test data are samples of individuals released from prison on parole. The response
variable is three categories of performance on parole measured over 2 years: being
arrested for a violent crime, being arrested for a crime but not a violent one, and not
being arrested at all. Most of the predictors are the sort commonly used and for now
do not need to be explained except that “Charge Record Count,” “Recent Report
Count,” and “Recent Category 1 Count” refer to misconduct in prison.

Forecasting Importance of Each Predictor for Violent Crime (Level 2)

Increase in Forecasting Error

IQ Score

Number of Prior Convictions

Prison Programming Compliance

LSIR Score

Number of Prior Arrests

Nominal Sentence Length

Age at First Arrest

Violence Indicator

Prison Work Performance

High Crime Neighborhood

Recent Category 1 Count

Male

Recent Reports Count

Age

Charge Record Count

0.00 0.01 0.02 0.03

Fig. 2.1 Predictor importance measured by proportional reductions in forecasting accuracy for
violent crimes committed within 2 years of release.

Figure 2.1 shows the results when an arrest for a violent crime (called here a
“Level 2” crime) is being forecasted. Associated with each predictor is the reduc-
tion in forecasting accuracy when that predictor is not allowed to contribute. For

largely for the young. Is that theory? Likewise, anyone who had analyzed data on the biographical
factors related to violent crime has likely found the same thing. Is that theory? And even when
criminology theory is reviewed specifically for the role of age, the mechanisms by which individ-
uals “age out” of crime are unclear. Everything from changing concentrations of certain steroidal
hormones to marriage has been proposed. Is that theory? There is no doubt that as an empirical
matter, age is related to crime. A forecasting procedure finding otherwise surely needs to be very
carefully scrutinized. If there really is theory to help, all the better. The point is that far too often
claims said to be based on subject-matter theory are really not.
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example, when the number of prison misconduct charges is excluded, forecasting
accuracy drops about 4 percentage points (e.g., from 60% accurate to 56% accu-
rate). It is the most potent predictor of the group. Because the predictors are often
substantially related to one another, there is also overlapping forecasting power that
cannot be unpacked. Still, it is clear that many of the usual predictors surface, with
perhaps a few surprises. The role of behavior in prison is far more important than
prior record, and the popular LSIR score contributes little beyond what the other
predictors bring.

Output describing how predictors are related to the response is also important.
For example, the use of race as a predictor is quite properly a sensitive matter and
often ruled out a priori. But then, one should know the manner in which potential
race surrogates such as neighborhood of residence are related to re-offending. How
predictors are related to the response can also affect the ways in which the fore-
casts are used in practice. There will be, for instance, circumstances in which the
forecasts will be made with simple pencil-and-paper check lists. How these instru-
ments are constructed will depend on information beyond a predictor’s forecasting
importance.
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Fig. 2.2 How inmate IQ is related to whether a violent crime is committed while on parole. The
relationship is negative for below average IQ scores and flat thereafter.

To illustrate, Figure 2.2 is a plot of how IQ is related to commission of a violent
crime while on parole. Ignoring the units on the vertical axis for now — a larger
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value means greater risk — it is apparent that IQ as measured in prison is related
to the risk of being arrested for a violent crime. A strong, negative relationship
holds for IQ scores between about 50 and 100. For higher IQ scores, there is no
relationship. IQ has some predictive value only for inmates with below average
scores. It matters if an inmate has an IQ of 70 compared to an IQ of 90. It does not
matter if an inmate has an IQ of 110 compared to an IQ of 130.

If the point is inform decision-makers in real time, the forecasting procedure
must be capable of performing properly in the real-world settings in which those
decisions are made. Good forecasting procedures can easily be ported to agency
servers or even laptop computers so that data input, data processing, and data output
require little more than a few keystrokes. There can also be circumstances when
computer-based forecasts are impractical. For example, forecasts can be used to
help inform police decisions in the field. As just noted, a simple check list of risk
factors may then be appropriate (Berk et al., 2005). A good forecasting procedure
must provide an effective way to arrive at an adequate paper-and-pencil format.

All forecasts come with uncertainty. If decision-makers are to make the best use
of criminal justice forecasts, that uncertainty should be quantitatively represented
in a form that is easy to understand. Forecasting error bands are an illustration.
However, forecasting uncertainty can come from many different sources: random
sampling of the data, measurement error, modeling errors, the forecasting procedure
itself, and others. As a technical matter, it is very difficult to properly take all of the
sources of uncertainty into account. Still, first approximations of uncertainty can be
terribly important and for some forecasting procedures, relatively easy to obtain.

Finally, some will claim that the forecasting procedures should capitalize on so-
cial science theory. This is certainly a good idea when that theory can be helpful.
For example, recent work by Blumstein and Nakamura (2009) has documented the
important role of “redemption.” An important predictor of reoffending on probation
can be the elapsed time between the present and most recent past arrest. The longer
that interval, the less the risk of re-offending. If the elapsed time is long (e.g., a
decade) the risk of committing a serious crime can be as low, or even lower, than
the risk in the general population. But social science theory can also be an unnec-
essary straightjacket. On one hand, good theory can help determine which kinds of
predictors could be useful. On the other hand, there is the danger of overlooking
predictors that social science theory has not recognized. Of late, this has become
a serious issue because data mining approaches have been uncovering useful pre-
dictors and relationship previously overlooked, or at least not taken seriously. For
example, an armed robbery committed at age 16 can be powerful predictor of fu-
ture violent crimes. The same armed robbery committed at age 35 will likely have
little predictive value. Age and prior record individually can be less predictive than
when used in combination. In short, it is helpful to have a forecasting procedure
that can inductively arrive at an effective set of predictors from a very large pool
of candidates and not be constrained by prevailing social science theory. Known
risk factors will likely be rediscovered and new risk factors can be unearthed — a
win-win situation.



Chapter 3

A Conceptual Introduction to Classification and

Forecasting

Abstract Because the criminal justice outcomes to be forecast are usually cate-
gorical (e.g., fail or not), this chapter considers crime forecasting as a classification
problem. The goal is to assign classes to cases. There may be two classes or more
than two. Machine learning is broadly considered before turning to random forests
as the preferred forecasting tool. The approach is conceptual rather than formal.
Some readers may find the material challenging, but the stage is being set for de-
manding material in chapters to come.

3.1 Populations and Samples

In this chapter, the emphasis is on characterizing patterns in a given dataset. How-
ever, the underlying premise, more central to later discussions, is that the dataset is
a sample from a population of policy interest. Forecasting essentially requires this
perspective because as already discussed, cases for which forecasts are needed are
properly assumed to come from that same population. A key implication is that in-
ferences are necessarily being drawn from the dataset to the population, or at least
certain elements of the population defined by the values of predictors. This, in turn,
raises the key question of how the data were generated. We leave that discussion for
the next chapter. For now, it will suffice to assume that the dataset is effectively, if
not literally, a simple random sample from an appropriate population.

3.2 Classification and Forecasting Using Decision Boundaries

Classification is a process of assigning classes to objects. Here, that means assigning
particular crime categories to individuals. The individuals are people who have run
afoul of the criminal justice system and have been at minimum arrested. Many are
then processed by the courts, prisons, and parole/probation departments. At each

27R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
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step, criminal justice personnel make decisions about how best to proceed. These
decisions are often informed by the risk to public safety an individual presents. The
assessment of such risks depends on assigning a crime class, which can serve as
a forecast, to each individual. An individual who is classified as a “bad guy” is
subsequently treated as a “bad guy.” An individual who is classified as a “good guy”
is subsequently treated as a “good guy.”

Two steps are required. First, an actuarial method is used to characterize how var-
ious properties of individuals and their immediate crimes (e.g., the crime for which
they were just arrested) are associated with different kinds of subsequent outcomes
(e.g., an arrest). Second, with those relationships established, the associations can be
used to place new individuals into a crime class when the crimes they may commit
are unknown. To take a simple example, if men under the age of 21, who are gang
members, who have several past arrests for serious crimes, and who first appeared in
court before the age of 14 commonly fail on probation through crimes of violence,
all individuals with that profile can be classified as threats to public safety before
they have an opportunity to reoffend.

Classification Using A Decision Boundary 

Age

Priors

Many

None

Younger Older

Red = Violent Crime
Green = No Crime

Fig. 3.1 Classification by two crime outcomes using the number of priors and years of age. Linear
boundaries are used.

Behind such reasoning are several important issues, some of which can be subtle.
Figure 3.1 provides a visual aide. The colored circles represent individuals. The
color indicates the observed outcome: red for an arrest for violent crime and green
for all other outcomes. The outcome is binary, and that is the key point. Any other
two-category outcome would do for now.

There are two predictors: age and the number of prior arrests. Age ranges from
younger (e.g., 18 years old) to older (e.g., 60 years old). The number of priors ranges
from none (i.e., 0) to many (e.g., 50). The variables are just meant to be illustrative.
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Figure 3.1 can be interpreted as a 3-dimensional scatter plot. Thus, the red circle
in the upper left hand corner is an individual arrested for violent crime, who has
many priors and is young. The green circle in the lower right hand corner is an
individual not arrested for a violent crime, who has very few priors and who is
older. All of the other circles have analogous interpretations, and generalizations to
datasets with more than three predictors employ similar reasoning.

The goal of classification is to subset the data by predictor values so that the clas-
sifications are as accurate as possible. Consider for now just the straight solid line,
called a “linear decision boundary.” This linear decision boundary could be con-
structed from least squares regression with the outcome coded as “1” for a violent
crime and “0” for all other outcomes. Predictors would be priors and age. The line
would be drawn for fitted values of .50. All observations above the decision bound-
ary would have fitted values greater than .50. All observations below the decision
boundary would have fitted values equal to or less than .50. Individuals above the
decision boundary would tend to be younger and have a greater number of priors.
Individuals on or below the decision boundary would tend be older and have fewer
priors. The term “decision boundary” is used because, in effect, the location of the
boundary determines how cases are to be classified.

The fitted values can be interpreted as conditional proportions. For each con-
figuration of age and prior record, the fitted value is, according to the regression
model, the proportion who commit violent crime. If the data are seen as a realiza-
tion of a stochastic process represented by the regression model, such proportions
can be interpreted as probabilities. Probability interpretations are common, although
too often unjustified. The connection between the regression model and assumed
stochastic process is obscure.

How accurate is the classification? The subset to the upper left of the decision
boundary contains 6 individuals who committed a violent crime and 3 who did not.
One might label this subset as “violent” using a majority vote criterion. There are
6 votes for violent crime and 3 votes for other outcomes. Individuals in this data
subset are twice as likely to commit a violent crime compared to all other outcomes.
One might classify all individual who fell in this region as “violent.” Then, there
would be 3 classification errors.

The subset to the lower right of the decision boundary contains 14 individuals
who did not commit a violent crime and 5 individuals who did. By the same sort of
majority vote reasoning, one might classify any individuals who fell in this region
as nonviolent. There would then be 5 classification errors.

There are 3 classification errors in the class of violent offenders and 5 classifi-
cation errors in other class, for a total of 8. In principle, the number of forecasting
errors could be reduced if the decision boundary were allowed to be nonlinear. Such
a boundary could be more responsive to patterns in the data. The dashed line is an
example that could result for including quadratic and cubic functions of the two pre-
dictors in the regression. If the dashed line instead of the solid line is used as the
decision boundary, the number of classification errors is reduced to 6.

There can also be decision boundaries defining regions that are not contiguous.
The dashed line and the dotted line define two such subsets of the data. This might
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be the result of including product variable for age and priors in the regression. By
majority vote, individuals in either region would be classified as violent. There are
now 4 classification errors.

But what use is the class assigned to a region of the scatter plot? The outcomes
are already known. We can simply classify each individual by the observed outcome
with no need of predictors whatsoever. Classification would then be perfect. There
would be no errors.

The class labels are essential for forecasting. Any subsequent cases not in the
training data and for which the outcome is unknown can be subject to a forecast
that would depend on which side of a decision boundary they fall. In the linear
case, falling above the boundary forecasts a violent crime. Falling on or below the
boundary forecasts an absence of violent crime. In short, the point of assigning
classes to subsets of the data is to use those classes for forecasting.

In Figure 3.1, classification is undertaken with least squares regression and a
binary 1/0 coded response variable. For a variety of reasons, this is not an ideal
approach. One can have, for instance, fitted values less than 0 and/or greater than
1.0 suggesting some fundamental error in the regression model. Simple and better
alternatives could be logistic regression or its close cousin, linear discriminant func-
tion analysis. There are also powerful machine learning approaches such as support
vector machines, boosting and Bayesian trees that can be used for classification. Ac-
cessible and far more complete textbook discussions can be found elsewhere (Berk,
2008b; Hastie et al., 2009). For reasons that will soon be clear, we favor another
method to arrive at decision boundaries.

One other preliminary point needs to be made. Thus far, we have classified by
majority vote, giving each observation the same voting weight. Likewise, when we
evaluated classification accuracy, we treated all classification errors the same. A
“red” classified as a “green” counted the same as a “green” classified as a “red.”
But, as discussed previously, perhaps when an individual who committed a violent
crime is classified as being violence-free, a potentially serious error has been made.
This error may be more serious than classifying a person who was violence-free as
committing a violent crime. As emphasized earlier, not all forecasting errors are the
same. We address this issue in more depth below

3.3 Classification by Data Partitions

One of the key features of the statistical tools emphasized here is the ability to induc-
tively find unexpected and often highly nonlinear relationships between predictors
and an outcome to be forecasted. An important device to this end is breaking up
quantitative predictors into sets of indicator variables. Figure 3.2 provides a simple
illustration for a single predictor.

Figure 3.2 plots the proportion of parolees who fail while under supervision
against their ages. The proportions are shown with the gray circles. The propor-
tion who fail decreases rapidly from about age 18 to 21, more slowly from 22 to 30,
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Discretizing A Quantitative Predictor
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Fig. 3.2 Plotting the proportion who fail by age, breaking up age into a set of indicator variables.
Each age gets its own indicator variable. The nonlinear relationship is apparent and empirically
ascertained.

increase until the middle 40s, and decline slowly up to age 50. We will see patterns
rather like this later when real data are examined.

It is unlikely that a nonlinear relationship between failing on parole and age
would have been anticipated with any real precision, and even more unlikely that
an appropriate functional form would have been specified a priori. But if each value
of age were represented by an indicator variable, one could let the data empirically
approximate the requisite functional form.

Indicator variables, also called “dummy variables,” are constructed in the same
fashion. An indicator variable is generally coded equal to “1” if some condition is
met (e.g., age = 21) and equal to “0” otherwise (e.g., age �= 21). Regressing whether
or not an individual failed on the age indicator variables would have produced a
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graph of the fitted values much like Figure 3.2.1 The relationship between failing
and age would then be visually apparent.

If instead of constructing an indicator variable for each value of age, there were
an indicator for each of a set of age ranges (e.g., 18-21, 22-25, etc.), there would
have been fewer fitted values and a less detailed rendering would have resulted.
But in trade, each indicator variable would be constructed from a larger number
of observations. This could, in turn, increase the stability of the estimates. We will
revisit this issue later. The general point for now is that by discretizing quantitative
predictors, one can often empirically characterize previously unknown and highly
nonlinear associations.

We now return to a 3-dimensional scatter plot. In Figure 3.3, the predictors are
the same as before, but there are now three crime outcomes: red for violent crime,
yellow for nonviolent crime, and green for no crime. Two crime classes could have
been used; however, with three some new issues are arise that are especially impor-
tant for the applications to be discussed later.

Classification by Linear Partitioning 
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Fig. 3.3 Partitioning three crime outcomes by the number of priors and years of age. Linear bound-
aries are used

1 An indicator variable implies that the relationship with the response variable is a step function.
The regression function, therefore, is a linear combination of step functions. If an intercept is, as
usual, included in the regression, one of the indicators would need to be dropped. Otherwise, the
regressor cross-product matrix would be singular, and there would be no unique solution from
which to obtain estimates of the regression coefficients.
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As before, there are decision boundaries defining partitions of the data. In for-
mal language, they are called hyper-rectangles. There are now five such partitions
defined by straight lines that are parallel to one of the two axes: “axis-parallel lin-
ear splits” (Ho, 1998: 833). As before, each partition has its location determined
by the age and prior record of individuals in the partition. Individuals in the upper
left partition, for instance, are once again younger and have longer prior records.
Individuals in the lower right partition are once again older and have shorter prior
records. The other partitions can be characterized in a similar fashion.

Each partition can be represented by an indicator variable defined by partition
boundaries. Suppose that for the upper left partition, the horizontal boundary fell
at a priors value of 3, and the vertical boundary fell at an age value of 20. Then
the upper left partition could be represented by an indicator variable coded “1” for
cases with 3 priors or more and with ages less than 20, and “0” otherwise. Indicator
variables could be defined in a similar fashion for all other partitions. This is just a
generalization of the earlier discussion of discretizing quantitative predictors. Each
indicator variable is a function of two predictors rather than one. Again, the goal is
to let the data determine the ways in which the predictors are related to the response
variable. If there are substantial nonlinearities, they are likely to be found. That
depends on how the decision boundaries are established, which we consider soon.

It should be clear that younger individuals with longer prior records are more
likely to be in partitions where the most common outcome is violent crime. Like-
wise, older individuals with shorter prior records are more likely to be in partitions
where the most common outcome is no crime. And individuals who are in the mid-
dle ranges of age and prior record are more likely to be in partitions where the most
common outcome is nonviolent crime. But no particular functions of the age and
prior record are imposed. There is nothing like the usual slopes assumed by linear
regression.

3.4 Forecasting by Data Partitions

How can such information be used for forecasting when the outcome has not yet
been observed? We proceed in the same spirit as earlier. Consider the partition at
the upper left. Four of the five individuals have committed a violent crime. One of
the five committed a crime but not a violent one. If one wanted to assign a crime
class to the partition as a whole, what would that crime class be? Because four of
the five individuals in the partition committed a violent crime, one might reasonably
decide to attach the violent crime label.

The same reasoning can be applied to each of the partitions shown. Each partition
can be labeled according to the largest fraction of individuals with a given outcome.
The outcome with the most “votes” determines each partition’s label. For example,
the large middle partition would be assigned a nonviolent crime label because seven
of the ten individuals in that partition committed a nonviolent crime, one of the ten
committed a violent crime, and two of the ten committed no crime.
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As before, forecasting capitalizes on the labels. New individuals for whom the
outcome is unknown are assigned to the partition corresponding to their ages and
prior record. Once assigned to a partition, the crime label attached to that partition
is applied. Thus, all individuals assigned to the upper left partition are projected
as violent crime risks. All individuals in the large middle partition are projected as
nonviolent crime risks. Each partition would be used in a similar fashion.

3.5 Finding Good Data Partitions

So far, the locations of the partitions have been taken as given. In practice they
are not. How best to place the partition boundaries is the main task of any method
used to arrive at a forecasting procedure. Ideally, the boundaries should segment
the scatter plot so that once the class assigned to each partition is determined, the
number of misclassifications, or some function of them, is as small as possible. In
Figure 3.3, the upper left partition, for instance, has one classification error. The
large middle partition has three classification errors. Over all partitions, there seven
classification errors. One could in principle do better or worse.

There is, of course, a trivial and useless solution in which each partition contains
only one individual. It is useless because there is no role for any predictors. Each
individual is treated as unique, and there is no principled way to construct forecasts
for new individuals for whom the outcome is unknown. For the moment, therefore,
assume the number of partitions has been determined and as a result, there is a
substantial number of individuals in each. Also for the moment assume that the
boundaries are straight lines. How then are the partition locations determined?

There is alway a brute force solution. One can try all possible sets of, say, 5
partitions and pick the set for which the number of classification errors, or some
function thereof, is as small as possible. A key advantage of this approach is that
one can proceed in a highly inductive manner that can be extremely effective when
how best to partition the data is not known a priori. The data analyst goes wherever
the data lead. Then, with the best set of partitions in hand, one can assign a class
to each partition by counting votes, and classifying all individuals in a partition
accordingly.

In most real situations, a brute force approach is not practical. The most apparent
obstacle is the very large number of possible partitionings of the data. Even with a
powerful computer, the time constraint may be binding for even a moderately sized
training sample. There are several options. Perhaps the most common approach, and
the one on which we will build, is to proceed sequentially.

This is the basic idea. Another way of thinking about the data partitions is that
ideally, the observations within each partition should be as homogeneous as possi-
ble with respect to the outcome variable. The best result would be a set of partitions
in which each contained individuals with the the same outcome: all committed a
violent crime, all committed a nonviolent crime, or all committed no crime. In Fig-
ure 3.3, each partition would contain circles of a single color. Such within-partition
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homogeneity is ideal because the classification is then perfectly accurate. There are
no classification errors.

The worst result would be a set of partitions in which all three crime outcomes
were equally represented. A third of the circles would be red, a third would be yel-
low, and a third would be green. Within-partition heterogeneity would be as large as
possible. No outcome was more common than any other. Then, a one-observation-
one vote cannot be used to determine the class assigned, and classification would be
as inaccurate as possible no matter which class were attached.

The partitioning goal, therefore, is to get as close to perfect homogeneity as pos-
sible. Starting with no partitions, a single boundary is selected that reduces hetero-
geneity the most. That is, the two partitions that result should produce the most
homogeneity possible for any two partitions of the data. The same approach is then
applied separately to the two partitions. Now there are four partitions, and each
of the four is separately split as before. The process continues until the predeter-
mined number of partitions is reached or a partition contains the minimum number
of observations allowed. A more formal and complete discussion of the process is
provided later.

The sequential approach is sometimes called “recursive partitioning.” Recursive
partitioning is often characterized as “greedy” because at each step the best outcome
is selected, which is not then subject to revision in later steps. Recursive partitioning
usually does not lead to the most accurate classification possible, but generally does
quite well and can be very fast. Other kinds of “greedy” approaches are popular for
similar reasons.

3.6 Enter Asymmetric Costs

In our discussion so far, classes have been assigned to subsets of the data by vote. For
a given subset, the class with the most votes is the class assigned. All observations
not of that class are then classification errors. One happy result is that the number
of classification errors is minimized. Assigning any other class would produce more
classification errors.

But this rationale rests on a very important assumption: the vote of each observa-
tion counts the same and therefore, all classification errors are equal. In practice, the
one-observation-one-vote requirement can be a substantial problem. Consider again
Figure 3.3. The partition in the upper right corner is assigned the class of no crime
by a vote of 2 to 1. There is then a single classification error. An individual who was
arrested for a nonviolent crime is classified as if no crime were committed.

Had the class of a nonviolent crime been assigned to the partition, two individuals
who committed no crime would be classified as if they had each committed a non-
violent crime. Is that really worse? It depends on how one weights the classification
errors and that depends on how those classifications are used.

As before, suppose classification is used in forecasting. If the values of the two
predictors place an individual in the upper right data partition, the partition class
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becomes a forecast. The forecasts are meant to inform decisions. For a forecast of
no crime, the individual is released on parole. For a forecast of a nonviolent crime,
the individual is denied parole.

Both decisions can be wrong. The individual released may be arrested for, say,
burglary. The individual held in prison might have been crime free if released. A
variety of costs can be associated with both forecasting errors.

Suppose the person incorrectly released on parole is arrested for drug trafficking.
The costs should include, at least, the costs to law enforcement for apprehension
and processing as well as any consequences for the neighborhoods in which the
drug trafficking was undertaken: violent disputes over turf, crimes committed to
obtain money with which to buy drugs, health implications for local drug users, the
drain on drug treatment programs, and fear of crime for law-abiding residents.

The costs associated with holding an individual who would have been crime free
include the negative emotional experience of additional time in prison, damage to
the individual’s human capital and later adjustment potential after release, the cost
in tax payer dollars of prison housing and supervision, and any destructive impact
on the individual’s family and larger neighborhood.

Because some forecasting errors are more costly than others, it makes sense that
these costs should somehow figure in to the forecasting enterprise. For example,
if the costs for failing to incapacitate are more than twice as large as the costs of
unnecessary incapacitation, the class assigned to the upper left partition should be
nonviolent crime, not the absence of crime. The total costs of the forecasting errors
would be less than had the original class been used.

Consider a very simple illustration. Suppose the current class of no crime were
assigned. There is a single classification error. It has some cost, say, C. Now suppose
that the nonviolent crime class were assigned. There are two classification errors,
each with a cost that is, say, one-third the size: 1/3×C. One should assign the class
having the lower costs for classification errors.

If nonviolent crime is the assigned class, the cost of forecasting errors is 2×
(1/3×C) = 2

3C. If no crime is the assigned class, the cost is C. By this reasoning, the
class of nonviolent crime should be assigned, not the class of no crime. The proper
forecast changes: now, all individuals falling in that partition would be classified as
committing nonviolent crimes, and any forecasts would be for nonviolent crimes as
well.

When the costs of all forecasting errors as assumed to be the same, one is said to
be working with “symmetric” costs. Under symmetric costs, a simple vote properly
determines the class assigned to a data partition. When the costs forecasting errors
are assumed to be different, one is said to be working with “asymmetric” costs. In
this case, the votes need to be weighted by their relative costs. In effect, a different
“winning” threshold is being imposed (Monahan and Solver, 2003)

In summary, forecasts of criminal behavior commonly ignore the relative costs
of different kinds of forecasting errors. When the costs of forecasting errors are not
the same, forecasting errors must be weighted accordingly. These weights can then
cascade through the actuarial methods with a range of consequences for the output.
Perhaps most importantly, the forecasts will be affected, often substantially. When
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asymmetric costs are ignored, the forecasts are not likely to be responsive to the
needs of decision makers, who can be badly misled.

3.7 Recursive Partitioning Classification Trees

When data partitioning is done in a recursive manner, the results are often shown as
a classification tree.2 Figure 3.4 is a classification tree for a recursive partitioning of
Figure 3.3. The sequence of splits is in this instance illustrative. The observations
shown are too few to do a meaningful analysis.

A Classification Tree 

 Less Than 
25

 25 or 
Older

 Full Sample

 Less Than 3 
Priors

 3 or More 
Priors

 Less Than 
30

 30 or 
Older

 Less Than 5 
Priors

 5 or More 
Priors

2,1,0 4,1,0 1,6,2

0,1,5 0,1,2

Fig. 3.4 A classification tree with two predictors and three outcome categories. Below each termi-
nal node is a count of the number of cases falling in each class (Red = violent, yellow = nonviolent,
green = no crime). The terminal nodes are color-coded to show the class assigned by plurality vote
under symmetric costs.

2 Classification trees is a special case of classification and regression trees (CART). A regression
tree uses recursive partitioning with a quantitative response variable. A classification tree uses
recursive partitioning with a categorical response variable.
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Each rectangle represents a subset of the data (except the one at the top which
represents all of the data), and is called a “node.” The arrows show which cases go
where. For example, under the first split of the data, all individuals with ages less
than 25 are placed in the left partition. The nodes at the bottom are called “terminal
nodes.” It is these nodes to which crime labels are assigned. A simple plurality
vote is applied here. If the costs of forecasting errors are asymmetric, the votes can
properly be weighted by relative costs. Such weighting is certainly a good start but
by itself insufficient. The weighting should be introduced in a fashion that affects
the way the splits are determined as well. The result can then be trees with different
structures. For example, the first break might be for prior record at a value of 2 or
greater, which changes the composition of all subsequent nodes. We return to this
matter in the next chapter.

The votes are shown in the ellipses below each terminal node, and the class as-
signed to each terminal node is also color-coded. When used for forecasting, each
case is paced in a terminal node based on the values of its predictors (e.g., 18 years
old with 4 priors) and assigned the projected outcome class represented here by the
color of the terminal node.

Classification by Nonlinear Partitioning 

Age

Priors

Many

None

Younger Older

Red = Violent Crime
Yellow = Nonviolent Crime

Green = No Crime

Fig. 3.5 Partitioning three crime outcomes by the number of priors and years of age. nonlinear
boundaries are now considered, and classification accuracy improves.

In practice, one would start with the full training sample. The tree-construction
goal is to partition the data so that the partitions are as homogeneous as possible
— a formal treatment will follow soon. Suppose the first boundary is constructed
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from age. Those under 25 years of age are sent down the left path and those 25 and
older are sent down the right path. This corresponds to the segments on either side
of the left most vertical line in Figure 3.3. Next, suppose the left-most partition is
subdivided by the number of priors: less than 3, and 3 or more. The initial right age
partition might be next segmented by age again: below 30, and 30 years of age or
more. Finally, the oldest age group could be segmented by the number of priors: less
than 5, and 5 or more. The last set of partitions corresponds to the terminal nodes.

One does not have to be limited to straight line boundaries. nonlinear boundaries
are far more flexible than linear boundaries and in principle, can be used to build
partitions of the data that have fewer classification errors. Figure 3.5 is the same as
Figure 3.3 except that the two blue linear boundaries on the left can be replaced by
a single nonlinear boundary shown with the dashed line. Two classification errors
have been eliminated so that the resulting partition on the far left contains only
individuals who committed violent crimes. The other partitions could be improved
as well with nonlinear boundaries. But it will often turn out that linear boundaries
are easier to implement and perform surprisingly well.

3.7.1 How Many Terminal Nodes?

More needs to be said about an appropriate number of terminal nodes. For a fixed
number of observations, a greater number of terminal nodes means that on average,
each node will contain fewer observations. A key implication is that if there is a
desire to undertake statistical inference from training data, the class assigned to
each partition is determined by a smaller sample size. And recall, that inferences
beyond the data on hand are implied by all forecasting.

Returning to an earlier example, suppose a terminal node includes only men
under the age of 21, who are gang members, have several past arrests for serious
crimes, and first appeared in court before the age of 14. Suppose also that there
are only 5 such individuals in the training data and that there are 3 votes for a vio-
lent crime and 2 votes for a nonviolent crime. The proportion committing a violent
crime is .60. Consequently, the violent crime category is attached to all subsequent
individuals who have the same profile, and serves as a forecast.

The intention to use the assigned class for forecasting implies that there are in-
dividuals who are not included in the training data or test data, who will be treated
as members of the same population from which the training data and test data were
taken. That is, the data used to build the forecasting procedure are but one of many
possible realizations (or samples) from a population. Therefore, the proportion of
.60 is really an estimate of a population parameter, and needs to be treated as such.
Estimation bias and sampling error should be considered.

In this example, the number of observations is very small. With so small a sample,
the sampling error in the computed proportion of .60 is likely be substantial. In
another random realization of the data, the proportion could easily turn out quite
differently and another class might be assigned. In short, with a smaller number of
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observations in a terminal node (and hence, data partition), there is more sampling
error; the class assigned and any forecasts based on that class will be more unstable.
The variance in the vote proportion and class assigned will be greater.

But that is not all bad. For a fixed number of observations, when on average there
are a smaller number of observations in each terminal node, there are more terminal
nodes. This allows for more specialized data partitions. For example, one might
be able to usefully distinguish between individuals with a 10th grade education and
individuals with a 12th grade education when all other predictor values are otherwise
the same. Put another way, if small differences in offender profiles really matter
systematically when behavior on parole is forecasted, having more terminal nodes
is good. Forecasting bias is reduced.3

Clearly, there is a tradeoff between the variance and the bias in terminal node
forecasts. For a given number of training observations, a larger number of terminal
nodes will tend to reduce the bias and increase the variance. A smaller number of
terminal nodes will tend to increase the bias and reduce the variance. This is an
example of the bias-variance tradeoff about which we will have a lot more to say
later. Ideally, it is possible for any given training data to find an appropriate balance
between the bias and the variance so that on the average the class forecasted is
correct as often as possible.

3.7.2 Classification Tree Instability

The bias-variance tradeoff can apply to the entire tree, not just the classes assigned
to the terminal nodes. But because greedy algorithms can lead to unstable results, the
more pressing problem is usually the variance, not the bias. Any subsetting decision
made earlier in the process affects all later partitions. If the location of an initial
partition is unstable, so are all of the other partitions.

Instability can result if there is more than one partition of the data with nearly the
same improvements in partition homogeneity. Over realizations of the data, different
initial partitions can be selected by chance alone, because small differences in the
composition of each sample translate into different initial partitions. In Figure 3.4,
for instance, the first partition might be based on the number of priors rather than
age. Subsequent partitions would then likely differ as well. The same reasoning
applies to any other partition before the terminal nodes.

However, the instability matters a lot more for some applications than others. The
sequence of partitions can make a very important difference in any interpretations
of the relationships between the predictors and the response. For example, from
Figure 3.4 one might want to claim that individuals under 25 years of age present
especially grave threats to public safety. 25 years of age was the initial split that
reduced within-partition heterogeneity most. Some might even claim that age should

3 In this instance, “bias” refer to a systematic tendency to underestimate or overestimate the termi-
nal node proportions in the population responsible for the data. A more formal treatment follows
in later chapters.



3.7 Recursive Partitioning Classification Trees 41

be seen as the most important factor in violent crime. But in another sample, the first
partition might single out individuals with more than 3 prior arrests. Some might
then say that prior record is more important than age.

Instability can be less problematic for forecasting. What matters are the terminal
nodes. The path by which one arrives at the terminal nodes does not matter. So, if
a terminal node is defined by young individuals with long prior records, it does not
matter whether age or prior record was chosen first to subset the data. The fore-
casts are the same. As a result, instability has less impact; however, it should not be
ignored.

There are several good ways to address instability. Some attack the problem di-
rectly. Perhaps the earliest and best known example is “bagging” (Breiman, 1996).
The basic idea is to draw a substantial number of random samples from the training
data. Each sample usually has the same number of observations as the training data.
By sampling rows of the data with replacement, each sample will almost certainly
differ from one another and from the training data. Recursive partitioning is then
applied each sample. At the very least, it is then possible see how the tree diagrams
can vary from random sampling alone. More stable classification and forecasts are
then obtained by averaging over samples. An individual is classified or forecasted
by plurality of votes over trees. If there are, say, 150 trees, an individual can be
classified or forecasted up to 150 times. Whichever class gets the most votes is the
chosen class. The average class is likely to be far more stable than the class assigned
from a single tree. Averaging cancels out much of the instability. But there is a price.
There is no longer a single tree structure to interpret and no apparent way to usefully
define, let alone construct, an “average tree.”

There are other approaches. For example, “Boosting” (Friedman, 2002) ap-
plied to classification trees also makes many passes through the data and classifies
each case each time. But there need be no sampling. With each pass, the data are
reweighted so that cases that are more difficult to classify correctly are given more
weight. The final class for each case is again determined by a plurality of votes,
but votes from passes that classified more accurately are counted more heavily. The
intent of the weighting is to extract more information from the available predictors,
but as a byproduct, stability can be improved.

In this book, we favor random forests, which can be seen as an extension of
bagging. A large number of trees is constructed from samples of the training data
drawn with replacement. In addition, when any split for any tree is considered, only
a random sample of predictors is evaluated to arrive at the best partitions. As with
bagging, classes are assigned by a vote over trees. Random forests has several other
important features and will be discussed in depth in the next chapter.



Chapter 4

A More Formal Treatment of Classification and

Forecasting

Abstract This chapter covers much of the foundational material from the last chap-
ter but more formally and in more detail. The chapter opens with a discussion of the
model used to characterize how the data were generated. That model is very differ-
ent from the one used in conventional regression. Then, classification is considered
followed by the estimation issues it raises. The bias-variance tradeoff is front and
center. Some material in this chapter may require careful reading.

4.1 Introduction

The last chapter informally raised a number of major conceptual issues. We return
now to those issues, and introduce others, but in a far more formal framework. The
formality is necessary for clear exposition and because some matters can only be
properly considered in that manner. The formality will also establish links to the-
oretical statistics and to a range of related concerns. This is not academic fluff. If
one intends to usefully inform criminal justice decisions, there must be coherent and
internally consistent reasoning linking the statistical methods used to the forecasts
produced.

Much of what follows derives from a “thought experiment” by which the data
on hand, and future data, are generated. There needs to be an account of how the
data came to be that gives meaning to the mathematics employed. Without the struc-
ture an appropriate thought experiment provides, the mathematics is nothing more
than manipulating symbols. One must keep the thought experiment in mind for the
abstractions in the next few pages to make sense.

43R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
in Computer Science, DOI 10.1007/978-1-4614-3085-8_4, © The Author 2012

, SpringerBriefs
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4.2 Data Generation Models

We begin with the thought experiment. Imagine that the N observations in the train-
ing data are N random realizations from a joint probability distribution, represented
by Pr(G,X). G denotes the response variable, and X denotes the predictors. Both are
random variables. Consequently, all of the data for each case (e.g., arrested while on
probation, age, gender, number of prior convictions, etc.) are a realization from that
joint distribution, and there can be in principle a limitless number of independent
realizations for each observational unit.1

There is really nothing novel in the joint probability distribution formulation
from a statistical point of view. One can find it discussed in any number of statistics
textbooks (e.g., Rice, 2006).2 It is also a common framework for machine learning
of the sort considered in this book (Hastie et al., 2009: 18).

Some features of Pr(G,X) are not of direct interest but can nevertheless matter
in principle. For example, it can be important for the distribution around the condi-
tional exectation for each case to have the same variance. Note that this is a feature
of the joint distribution, not the realized dataset. But for the machine learning ap-
plications considered here, such features can usually be ignored. We will not be
considering the kinds of statistical inference for which they are likely to be impor-
tant.

No other assumptions are made about how the data are generated. There is, for
example, there is no causal machinery and no concern about cause and effect. There
are no disturbances, which figure so centrally in causal models, and no such thing
as omitted variables. Some important predictors may not be in the training and test
data, but that only means that information that might be useful for forecasting is
unavailable.

Some readers may be uncomfortable treating the data in hand as a realization
from a joint distribution. But as a conceptual matter, forecasting only makes sense if
the current observations and all future observations for which forecasts are needed
can be seen as realizations of the same data generation mechanisms. Consequently,
a data-generation model of some sort is required. Conventional causal models are
very demanding in ways that are unnecessary for forecasting. The joint probability
model of data generation provides a forecasting framework that justifies the formal
mathematics with very little excess baggage. If one chooses to adopt neither a causal
model nor a joint probability model, some other model must be provided.

In summary, for forecasting to make sense, the data must come from some appro-
priate population. This requirement was addressed at length earlier. We are adding

1 One can be a bit more concrete by imagining that “nature” samples cases at random for a limitless
population whose joint distribution is Pr(G,X). This is much like how one thinks about survey
sampling for certain kinds of political polls, although then the population of, say, registered voters
is finite, and a survey researcher does the sampling.
2 For ease of exposition, we are at this point assuming the equivalent of simple random sampling by
nature — each population unit has the same probability of selection and sampling proceeds without
replacement. If appropriate for a particular application, more complicated sampling designs (e.g.,
stratified sampling) can be used instead.
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at this point is that the data must be a random realization from that population. This
is a very important foundation for much of what follows.

4.3 Notation

We use capital letters for the names of variables or sets of variables. They are not
used when mathematical manipulations are required because then, more specificity
is needed. For those operations, we use bold capital letter. Thus, G is N × 1; there
are N rows and one column of data. The p predictors will be collected in an N × p
design matrix denoted by X; there are N rows and p columns.

G is categorical with K categories, also called classes. As before, for example,
K might be three with classes: committed a violent crime, committed a nonviolent
crime, and committed no crime. The collection of possible classes is represented
by C. One goal is to estimate G with Ĝ using information in the predictors, and
for this we write Ĝ(X). These are the N estimated classes, one for each observation.
Another goal is to then use the estimated classes as forecasts for new cases when the
response is not yet known. One would proceed in essentially the same manner when
the response is quantitative, but the analogous estimates would be of conditional
means, not conditional proportions.

4.4 Classification

If we intend to classify as accurately as we can, we need a way to think about classi-
fication error. To begin, there is a K ×K loss matrix L that has zeros along the main
diagonal and nonnegative values everywhere else. The off-diagonal elements con-
tain the losses from observations having a true class of Ck classified incorrectly as
class Cl . An example is classifying an individual as committing no crime when that
individual actually committed a violent crime. The off-diagonal cells will often con-
tain the sum of such errors. Then, 1-0 loss is being applied. Each misclassification
has a cost of one, and correct classifications have no cost. Other loss functions can
be applied when the costs are not symmetric, and that is where we are going. But at
the moment, 1-0 costs simplify the discussion with no important loss in generality.

Because the data are considered a random realization for which both the out-
come and the predictors are random variables, we use as a performance measure the
expected prediction error. Denoted by EPE, it takes the following form.

EPE = E[L(G, Ĝ(X))]. (4.1)

The two arguments in the loss function L are the actual responses and the predicted
responses, the latter a function of X . The expectation is over realization of the joint
distribution Pr(G,X). EPE is, in effect, the average loss as a function of the fitted
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classes and the actual classes, over realizations of the data. The expectation operator
is worth emphasizing in a forecasting context. There will be random realizations of
predictor values for which a response will need to be predicted. The goals is to be
as accurate as possible on the average.

Equation 4.1 can be usefully unpacked as

EPE = Ex

K

∑
k=1

[L(Ck, Ĝ(X)]Pr(Ck|X). (4.2)

To make this more concrete, suppose there are two parole outcome categories: fail
or not. K is two, with C1, say, as fail and C2 as not fail. Suppose there are two pre-
dictors, age and gender, represented by X . The term on the far right, Pr(Ck|X), is
the conditional probability of a given outcome (e.g., fail) for a particular configura-
tion of predictor values (e.g., 28 year old males). The term just to the left in square
brackets, [L(Ck, Ĝ(X)], is the associated loss that depends on the assigned class,
Ĝ(X) and the actual class, Ck. Whatever that loss, it is multiplied by the conditional
probability of the given parole outcome given the values of X . Outcomes that are
more common for given predictor values, are weighted more heavily when the loss
is computed. One imagines these operations for each configuration of predictor val-
ues and for each, summing over both parole outcomes. However, X is random and
we are interested the expected loss. Consequently, the expectation of the loss over
X is required. We wind up with an “average” loss over the joint distribution of the
predictors. Nothing is being said yet about how the estimated Ĝ(X) is produced.

We seek to minimize Equation 4.2, and can proceed conditioning on X as fol-
lows.3

Ĝ(x) = argminc∈C

K

∑
k=1

L(Ck,c)Pr(Ck|X = x), (4.3)

where the job is to choose the class c from the options provided by C to minimize
the EPE, and in that manner arrive at our estimates of the outcome Ĝ(x). With a 1-0
loss, Equation 4.3 simplifies to

Ĝ = max
c∈C

Pr(c|X = x). (4.4)

3 Even though we begin with the joint distribution Pr(G,X), it is sufficient to condition on X . This
is why it is sometimes called a “point-by-point” approach.
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Equation 4.4 defines the Bayes classifier.4 We simply classify by the most probable
class. We are basically back to the voting rule used in the last chapter. But now, we
have a formal justification. We are minimizing expected prediction error. Moreover,
as we saw in the last chapter, we can have a weighted voting procedure with the
weights a function of costs that are not 1-0 or even symmetric. Perhaps the key
take-away is that we want to assign classes so that on the average we do as well as
we can. In practice, that is the very best we can hope for.

4.5 Estimation in the Real World

Our discussion of the Bayes classifier took the distribution of true classes, condi-
tional on the predictors, as known. In practice, the distribution is unknown. There-
fore, we need a good way to estimate that distribution, and that depends on having
adequate actuarial tools. But, those tools will not perform as advertised if the data
the tools require are not sufficiently complete.

There is no statistical solution for not having a reasonably complete set of pre-
dictors or at least all of the important ones. For criminal justice applications of sort
we consider, the set of predictors will usually be substantially incomplete. We need,
therefore, to abandon the goal of getting the assigned classes right on the average.
That is, we are not drawing from the joint distribution Pr(G,X) responsible for the
data, but from another joint distribution Pr(G,X∗) characterized by a subset of the
predictors in X . This would be an omitted variable problem were we doing con-
ventional causal modeling. In this setting, there formally is no such such thing, but
we may systematically overestimate or underestimate, say, the parole risk for those
convicted of murder randomly realized from the “true” joint distribution Pr(G,X).5

This is a game-changer. We no longer aspire to get the “right” classes for
Pr(G,X). We aspire to do as well as we can by the criterion of expected predic-
tion error while limited to data from Pr(G,X∗). These issues are a bit tricky. Let’s
tackle first bias in estimates of the conditional probabilities.

4 The term “Bayes classifier” can be used because of formal connections to decision theory in
statistics (Rice, 2006: Section 15.2). In an overstuffed nutshell, there is a decision to be made.
In this application, the decision is what class to assign to a case. There is an uncertain state of
nature. In this application, that uncertain state of nature is the true class. It is uncertain because
the true class depends on predictors, which are random variables. There is a cost associated with
the decision that is a function of the true class and the class assigned. We want a decision rule that
will on average minimize that cost. The average is taken over the distribution of the predictors on
which the true classes depend. It follows that Equation 4.1 is “Bayes risk” for classification. The
reference to “Bayes” comes about because the true classes have some probability distribution, that
here happens to depend on predictors. The true classes not fixed. Equation 4.4 minimizes Bayes
risk and consequently can be called a “Bayes rule.”
5 Recall that there is no regression model and therefore, no disturbances that might include the
impact of variables not in the model.
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4.5.1 Estimation Bias

Consider Figure 4.1. The figure is not a conventional scatter plot. It is a way to vi-
sualize some important features of the requisite statistical theory. On the horizontal
axis is a single predictor. We use one predictor to simplify the discussion, but the
conclusions generalize to the multivariate case. Age is used because it is familiar
and well known to be related to recidivism. On the vertical axis are the probabilities
of failure on parole, given age. Failure is binary: fail or not. The blue circles are the
conditional probabilities of failure for different ages. For example, for 21-year-olds,
the probability of failure is about .50. The blue circles show the “true” probabilities
in the sense that they represent the conditional probabilities derived from the joint
distribution Pr(G,X).

Classification Bias
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A Conditional Probability

Expectations of a Linear Fit
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Fig. 4.1 A demonstration of the role of bias for expected predictor error. The blue circles are
the “true” conditional probabilities. Overlaid is the “true” decision boundary (the dotted line), the
expectations of the fitted values for a linear fit (the sold line), and the expectations of a nonlinear
fit (the dashed line). There is ample evidence of bias, but classification accuracy is quite good.

The intent is to work through some of the implications of Equation 4.4. Suppose
the true conditional probabilities are known. The dotted line is then the “true” con-
ventional decision boundary located at a conditional probability of .50. Above that
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boundary, the class of failure is assigned. At or below that boundary, the class of
success is assigned. This follows from the requirement of choosing the most prob-
able class. For example, the three blue circles on the far left all imply that the class
of failure is assigned. All of the other blue circles, save two near the right boundary,
imply that the class of success is assigned.6

In what sense is this Bayes classifier optimal? For any blue circle, the assigned
class will be correct for some individuals but not others. For example, the far right
circle represents a conditional probability of about .40 so that the class assigned
is success. But that means that 40% of the time there will be a misclassification for
those who fail. For the blue circle immediately to the left, the conditional probability
is about .55, so that the class of failure is assigned. But that means that about 45%
of the time there is be a classification error for those who succeed.

Under 1-0 loss, one can sum the misclassifications associated with each condi-
tional probability, each weighted by that conditional probability. For the Bayes clas-
sifier, the weighted sum will be the smallest sum possible for any set of (nonzero)
probabilities weights. Put another way, one arrives at the smallest sum of the losses
weighted by the probabilities of misclassification.

In practice, the true conditional probabilities are unknown. We are trying esti-
mates of them. One obstacle is that we are unlikely to have all the important predic-
tors in our dataset. Another obstacle is that we usually do not know the functional
forms through which the predictors are related to the response.

A somewhat dated approach is least squares regression applied to the data on
hand. Least squares regression is linear in the sense that the predictors are combined
as a linear combination to arrive at the fitted values. The functions by which each
predictor is related to the response do not have to be linear. But for simplicity and
with no important loss of generality, we assume a linear function for the moment.
By the same reasoning, we are not considering logistic regression, although with
binary outcomes, it is preferable.

The straight heavy line in Figure 4.1 represents the expected values of a least
squares fit using the response coded as 1 or 0. The fitted values can serve as an
idealized version of a decision boundary from a least squares regression. In this
instance, the linear fit captures the true negative relationship. On the average, the
probability of failure on parole declines with age.

However, for all but a single conditional probability, the expectations of the fit-
ted values do not overlay the blue circles. For the corresponding ages, estimates of
the conditional probabilities are biased. This could result from the linear function
being inappropriate and/or the impact of predictors not included. For sixteen of the
seventeen ages, estimates of the true conditional probabilities will be systematically
too high or too low. If one is trying to understand how age may be related to failure
on parole, a great deal of information is lost. For example, the increasing risk after

6 The true decision boundary when there are more than two classes is the region where a given
outcome has a higher probability than any of the others.
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age 30 is completely missed.7 Clearly, the goals of explanation and understanding
are compromised.

How do the biases affect classification accuracy? In fact, expectations of the fit-
ted values do pretty well. Eleven of the seventeen conditional probabilities fall on
the same side of both the true decision boundary (i.e., the dotted line) and the corre-
sponding expectations of the fitted values. The ones that do not are shown within the
two red ellipses. For example, the two values on the right side are properly assigned
the class of parole failure but the regression results would lead to an assigned class
of parole success. About 64% of the time, both boundaries classify the same way.8

Considering the pervasive bias in the least squares results, the classification accu-
racy may be surprising. The point is that although the actuarial methods used for
explanation and for forecasting can rest on the same statistical foundations, the en-
terprises are quite different. Sometimes, one can be effectively carried out although
the other can not.

It is often possible to reduce bias by exploiting nonlinear relationships between
the response variable and the predictors. One such relationship is shown by the
dashed line in Figure 4.1. On the average, bias is reduced. Using age 30 as an ex-
ample, the bias associated with the linear fit is the sum of the lengths of the red and
green two-headed arrows. The bias associated with the nonlinear fit is the length of
the red red arrow alone. One result is that more substantive understanding is gained
about how age and recidivism are related. Note that the increase in risk after age 30
is now apparent. There is also an improvement in forecasting accuracy: a little more
than 82% of the classifications agree. Another functional form could do even better,
and having additional predictors might also help.

4.5.2 Estimation Variance

Expected prediction error involves more than just the impact of bias. There is also
the impact of the variance in the fitted values. For a given configuration of predictor
values, x0, the following decomposition can be can be written.

EPE(x0) = Var(y0|x0)+VarT (ŷ0)+Bias2(ŷ0) (4.5)

There is a lot to unpack. Continuing with the parole failure outcome coded as “1”
for fail and “0” for not fail, a 1 or a 0 is the observed value of the response Y . For a
given value of age, say, 23 years old, the goal is to estimate the value of the response.
Let y0 be the observed binary response and its corresponding age value be x0.

Equation 4.5 shows that the expected prediction error is composed of three parts.
The first term on the right hand side is the variance of the 1’s and 0’s around the

7 These might be for individuals disproportionately engaged in domestic violence where the risk
at ages beyond 30 can be substantial.
8 One must be clear that the expectations of the fitted values are being use here. So, the 64%
represents an average accuracy.
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true conditional probability. 23-year-olds may have, according to Pr(G,X), a “true”
probability of .30 of failing on parole. For 30% of the data realizations for 23-
year-olds (or a even a single 23-year-old), a 1 will be observed, and for 70% of
the realizations a 0 will be observed. There is variance around the true probability,
sometimes called the “irreducible variation” because you are stuck with it.

The second term is the variance in the estimated fitted values over realizations of
the training data denoted here by T . This is just the usual variance associated with
estimates with one important complication. Under the joint distribution formulation,
both the response and the predictors are random variables. One consequence is that
the variance in the fitted values tends to be larger than when the predictors are fixed.
Another is that when combined with the prospect of nonlinear response functions,
the properties of the fitted values are more complicated to address, as we will soon
see.

The third term is the square of the bias in the estimate. As such, it is the system-
atic disparity between the ideal target of estimation and the expected value of the
estimate. Researcher often worry most about bias, but in practice either of the other
terms in the expression could be substantially larger and, therefore, more worrisome.

4.5.3 The Bias-Variance Tradeoff

The irreducible variance depends on the value of the true probability of failure. That
variance shrinks as the probability approaches 1 or 0. The variance of the estimated
fitted value depends on properties of the data, the sample size, and the statistical
methods employed. For example, in linear regression when predictors have more
variability, the sampling variance in the fitted values will be smaller, other things
equal. As we saw in Figure 4.1, the square of the bias depends on the “truth,” the
statistical methods, and the quality of the data.

An important point in practice is that there are ways a researcher can affect the
variance and the bias, even for the data already on hand. Consider Figure 4.2, which
begins as a reproduction of Figure 3.2. We are back to a scatterplot.

Starting from the left, the three age values that were previously represented by
three different indicator variables are now represented by a single indicator variable.
For example, if the age of an individual is 16, 17, or 18, the coded value is ”1”. For
all other ages, the coded value is “0”. The result is the value of the gray dotted
line that is a weighted average of the three gray conditional proportions.9 The same
operations are applied to all subsequent groups of three ages from left to right.

When each age had its own indicator variable, all of the conditional probabilities
were estimated in an unbiased fashion for the joint distribution that generated the
data. In practice, that distribution will be Pr(G,X∗) not Pr(G,X). That is, one can ob-
tain unbiased estimates of the “wrong” conditional probabilities in the sense that the

9 The weights are a function the number of observations for each age.
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Collapsing A Quantitative Predictor
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Fig. 4.2 Plotting the proportion who fail by age, collapsing indicator variables. There is more bias
but less variance.

data are not a realization from Pr(G,X). One simply uses the conditional proportions
from the data to estimate the conditional probabilities of failure for Pr(G,X∗).10

However, unless all three ages in any of the 3-year age intervals have the same the
true proportion who fail, there will be bias associated with each of the collapsed age
estimates. At the same time, because each of the dashed line estimates are based on
more observations, the estimates will have less sampling variance. They are more
stable. Consequently, the expected prediction error could be larger or smaller de-
pending on whether the increase in bias is offset or not by the reduction in the vari-
ance. It is entirely possible on the average to have estimates that are closer to their
estimation targets when bias is larger, as long as a smaller variance compensates
sufficiently. In short, unbiased estimates have no special cachet.

The two ways in which we have constructed indicator variables illustrates the
bias-variance tradeoff implicit in Equation 4.5. For a given training dataset, the man-

10 To fix this idea, consider conventional survey sampling. With a simple random sample from a
real and finite population, the proportion of 23-year-olds in the sample who failed is an unbiased
estimate of the proportion of 23-year-olds in the population who failed. For a finite population, the
estimation target is the population conditional proportions. For a joint probability distribution, the
estimation target is the conditional probabilities. For the former, the data are called a sample. For
the latter, the data are called a realization. But the inferential reasoning is much the same.
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ner in which one constructs estimates will often allow one to balance the bias against
the variance to reduce the expected prediction error. For example, think back to the
earlier discussion of classification trees. With a larger number of terminal nodes,
bias can be reduced. But with a larger number of terminal nodes, the observations
will be spread more thinly. Many nodes will have far fewer observations. The sam-
pling variance in the vote proportions, and subsequent classes assigned, will be
greater. The bias-variance tradeoff figures substantially in forecasting procedures,
and more generally can be an important issue in all estimation.

4.5.4 Uncertainty

Equation 4.5 underscores, that as an empirical matter, classification and the fore-
casts that can follow will vary from realization to realization. In the language of sur-
vey sampling, there will be random sampling error. This variation comes from two
sources: variance in the estimates, and the irreducible variance. Proper forecasting
should include their impact, ideally as forecasting confidence intervals. Decision-
makers need to know the “margin of error” in any forecasts they hope to use.

As already noted, the reliance on Pr(G,X∗) rather Pr(G,X) requires some recon-
sideration of what is to be forecasted. The target is no longer the “true” response but
an openly-acknowledged approximation. So far, so good.

The overriding problem is that the statistical procedures we will be using com-
promise conventional forecasting intervals. The bias-variance tradeoff means that
bias is likely to be built into any estimates even if the relevant distribution was for
G and X . The bias will mean that the usual confidence intervals will not have their
stated coverage. The interval will be systematically shifted up or down. A 95% con-
fidence interval, for instance, may cover only 75% of the time.

In addition, we will commonly use the data to help arrive at fitted values that
perform well. In effect, we will be engaged in model selection. Model selection
can have deleterious effects on statistical inference with often no easy way to make
proper adjustments (Leeb and Pötscher, 2005; 2006, Berk et al, 2010).

For these and other reasons, one can employ a form of resampling to represent
uncertainty. Here is the basic idea:

1. Just as for the nonparametric bootstrap (Efron and Tibshirani, 1993), draw with
replacement a large number of random samples of size N from the training data.

2. Apply a classifier to each, and save the results.
3. When forecasting, insert the predictor values for each case to be forecasted into

each classifier.
4. Count the number of times each case to be forecasted is assigned each class.
5. Forecast the class with the most votes.
6. Report the votes as a way to represent uncertainty (e.g., 52% of the time the class

of “fail” was assigned).
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These steps simulate what could happen over a large number of realizations of
the data. Suppose the outcomes are “fail” or “not” on parole. For one individual, the
forecasted class is “fail,” assigned 98% of the time over realizations of the data. For
another individual, the forecasted class is also “fail,” but only 52% of the time over
realizations of the data. There is substantially more uncertainty in the forecast for
the second individual. The chances of forecasting correctly are only a little better
than 50-50. Uncertainty represented in this manner is likely to be understood by
decision-makers.

But there is an additional subtlety. The resampling procedure selects entire cases,
so that both X and G are random variables. It can be shown that with random X ,
another source of bias is introduced. It can also be shown that under certain as-
sumptions, the estimates based on Pr(G,X∗) can be asymptotically unbiased for
important features of that distribution, but those assumptions are not likely to apply
to categorical outcomes.

What one has, therefore, is a way of representing the uncertainty of a procedure.
The procedure is the classifier. Put another way, we are capturing instability in fore-
casts resulting from how the data were generated. We are bypassing the matter of
bias altogether and focusing exclusively on the variance. Is that acceptable? Once
Pr(G,X) is abandoned, there would seem to be no choice.

In practice, uncertainty could be addressed in two steps. First, when the actuarial
methods are being developed, one could use training data to compare how those
methods perform when the outcome is known. What is the probability of assigning
the correct class? Such information goes to the quality of the method in general.
Second, the procedures just outlined can be used to provide information about un-
certainty for particular instances when forecasts are needed. Then, the uncertainty
can be important information for decision-makers.

4.6 A Bit More on the Joint Probability Model

The centrality Pr(G,X) and Pr(G,X∗) may seem somewhat fanciful. But this ap-
proach rests on far fewer untestable assumptions than causal models popular in
criminal justice research. Moreover, a forecasting enterprise is difficult to formally
justify without it. If the intent is to build a forecasting procedure to be applied to sub-
sequent observations, it stands to reason that both the training data and data used in
forecasting must be realizations from the same distribution. How can a forecasting
procedure built for one distribution be properly used to make forecasts for another
distribution?

In practice, things are more complicated. Whether the population from which
the training data were drawn is the same as the population for which forecasts are
desired is a matter of degree. Recall the earlier discussion about how a variety of fac-
tors affecting criminal justice decision-making and outcomes can change over time.
Moreover, some parameters of a population subject to change are more important
than others.
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The parameters for the univariate statistics usually do not matter much. For exam-
ple, the mean and variance of parolees’ ages can differ in the two joint distributions,
and the forecasts for the same configurations of predictor values will not differ. But
if the associations between the predictors and the response and/or between the pre-
dictors change, the forecasts can differ, sometimes dramatically.

There is no way to definitively determine when the distribution responsible for
the training data and the distribution responsible for the forecasting data differ in
important ways. They are not going to be identical, because with the passage of
time, the are inevitable changes in the criminal justice system, as well as variability
in the factors that shape criminal behavior. But as discussed in Chapter 2, one can
apply some empirical leverage so that quite often, reasonable judgments can be
made about whether the two distributions are similar enough for the forecasting
task at hand.

A more subtle issue is whether the manner in which the data are realized con-
forms to the requirement that each observation has a fixed probability of selection.
Again, however, there is information that can be brought to bear. For example, a bru-
tal murder committed by an individual on parole may change the way a parole board
weighs the risk of releasing individuals on parole. One can think of this as a new
population or as new way in which the data are realized. The empirical question,
once again, is how much it matters. As before, the primary issue is the relationships
among the variables, not their univariate statistics.

The realization process can also be adversely affected when the realizations
are no longer independent. For example, perhaps overcrowded prisons push parole
boards to become more lenient. With each new denial of parole, the threshold for re-
lease is relaxed. This will gradually change the mix of parolees. A more complicated
matter is what it does to the formal properties the forecasts. The procedures just de-
scribed to address uncertainty assume that every case is realized independently of
every other case. If the decision made on one parole case alters the probability that
the next case will be granted parole, independence is compromised. The way in
which uncertainty is characterized is compromised as well.

Unless the dependence is well-understood and built into the bootstrap sampling,
there is no good solution. In practice, whatever dependence exists will likely be diffi-
cult to document, let alone build into the sampling code. Fortunately, there will often
be situations in which one can rule out on substantive grounds important sources of
dependence. For example, the statutes and regulations governing parole decisions
will often require that decisions be made on a case-by-case basis with public safety
the primary concern. The parole board is supposed to judge each case on its merits;
it is not supposed to be in the business of regulating the size of prison populations.
There should be at least indirect evidence on whether this is effectively true. Sitting
in on meetings when parole decisions are made might be a good start. More sys-
tematically, one could examine temporal trends in parole decisions from the usual
administrative records to help determine if earlier decisions are directly related to
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later decisions.11 For what it may be worth, it seems unlikely that such dependence
would be substantial.

4.7 Summary

The goal of forecasting requires that one think about the training data, the test data,
and the forecasting data as random realizations from the same joint probability dis-
tribution. There is no causal model in the usual social science sense, and causality
plays no role in the data generation process. One imagines that there can be a lim-
itless number of random realizations of the data and within that framework, estima-
tion, forecasting, and statistical inference can play through.

Practice is far more messy. The training data, test data, and forecasting data may
arguably be realizations from the same joint distribution, but key features of that dis-
tribution are usually not available to the researcher. The result is that there will likely
be bias with respect to the “true” joint probability distribution for any classification
or forecasting.

A helpful fallback position is to think about the training data, test data, and fore-
casting data as realizations from a joint probability distribution whose features are
available to the researcher. This is not some sleight of hand. Analogies to estimation
from survey samples should provide the intuitions needed. For a finite population,
a random sample of individuals with different ages can be used to obtain unbiased
estimates of, say, median income for each age group, even though income is surely
related to more than age.

Yet, there are more complications. Expected prediction error leads naturally to
Bayes classifiers, but the estimated conditional probabilities depend on the statisti-
cal methods used and the unknown functions linking the response to the predictors.
In practice, one must settle for empirically-derived approximations of those condi-
tional probabilities. That too sounds worse than it is because in the end, what one
should care most about is the accuracy of the forecasts. That can be directly ad-
dressed using test data. As a practical matter, either the forecasts pass muster or
they don’t.

Properly representing uncertainty raises a number of additional difficulties. One
problem is the bias that is virtually inevitable and can even be desirable if a proper
balance with the variance is achieved. Another problem is that there does not seem to
be any closed form route to proper standard errors. However, resampling procedures
have promise and provide at least some protection against reading too much into
point estimates.

Figure 4.3 provides a visual summary of the joint probability distribution frame-
work. There is a limitless population having some joint probability distribution
Pr(G,X∗), and a function G = F(X∗) associating a response to an available set of

11 For example, one could construct a monthly time series of the proportion of individuals granted
parole and examine the autocorrelation in the time series at different lags.
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Fig. 4.3 Key elements of joint probability formulation: a limitless population, a random realization
of training data and test data, and new predictor values for which a forecast is needed

predictors X∗. The function is “wrong.” It is not a representation of some “true” re-
lationship, nor an expression for how the data were generated. It is just a convenient
way to approximate the response variable’s conditional probabilities.

One can think of the population as what in principle nature could produce. The
data are a random realization (shown with the solid arrow) from that population.
The data have a multivariate scatterplot corresponding to the joint probability distri-
bution in the population. From the data, one can construct an estimate Ĝ = F̂(X∗)
of how in the population the response is related to the available set predictors. The
estimation target is various features of the “wrong” model. Inferences from the re-
alization to the population are represented by the broken arrow. Finally, when some
new realization of the predictors is provided, having no known value for the re-
sponse, the predictor values can be inserted into the estimated function to arrive at
a forecast. This is shown on the far right.

In contrast to the usual regression approach in criminal justice forecasting, there
is no causal model and no need for one. Consequently there are no disturbances
perturbing the response, and no need to obsess over their properties. Uncertainty
stems solely from the process by which the response and the predictors are jointly
realized from the limitless population.



Chapter 5

Tree-Based Forecasting Methods

Abstract The past two chapters have provided the necessary technical background
for a consideration of statistical procedures that can be especially effective in crim-
inal justice forecasting. The joint probability distribution model, data partitioning,
and asymmetric costs should now be familiar. These features combine to make tree-
based methods the fundamental building blocks for the machine learning proce-
dures discussed. The main focus is random forests. Stochastic gradient boosting
and Bayesian trees are discussed briefly as worth competitors to random forests

5.1 Introduction

We will be emphasizing forecasting methods that are “tree-based.” This means that
classification trees are a key component of the procedures. Classification trees have
a long history (Breiman et al., 1984), and over the years have proven very effective
in identifying complicated associations between a response variable and a set of pre-
dictors. However, used by themselves, classification trees can be very unstable, and
are usually not a good stand-alone method. Moreover, the recursive nature of the
partitioning and implicit reliance on step functions can badly misrepresent additive,
smooth relationships such as those commonly assumed with convention linear re-
gression. Still, if the inherent responsiveness of classification trees can be exploited
with far greater stability and with a means to better summarize simple smooth func-
tions, one may approach the best of all possible worlds: low bias, low variance, and
sensible approximations of key relationships.

59R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
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5.2 Splitting the Data

We have already discussed recursive partitioning, decision boundaries, and classifi-
cation trees in a nontechnical manner. It is now time to add some formal details. To
begin, how does the procedure decide which partitions to construct?

A good place to start is with the need to subset the data into two groups using the
available predictors. The goal is to identify good break points. For a single quan-
titative predictor with m values, there are m− 1 splits that leave the order of the
values unchanged. Therefore, m−1 splits on that variable need to be evaluated. For
example, if there are 50 distinct ages, there are 49 possible splits that maintain the
existing order. The same logic holds for a single ordinal predictor. For a categorical
predictor, order does not matter. Consequently, a categorical variable with K cate-
gories has (2k−1 −1) possible splits. For example, if there are 5 countries of origin,
there are 15 possible splits.

Recursive partitioning begins with all of the training data in the “root node.” All
possible splits for all available predictors are examined, and the “best” single split
over all available predictors is selected. The chosen split is better than the best split
of any other predictor, and the data are partitioned accordingly. The same procedure
is applied to all subsequent partitions until all observations have been placed in
a terminal node. A predictor can be chosen more than once as the partitions are
determined. Because the final partitions do not overlap, each case can only be in
one terminal node.

What is meant by “best”? The goal is to have as little heterogeneity within a node
as possible. The best split, therefore, is the one that reduces heterogeneity the most.
Getting to a formal definition requires a few steps.

Using the reasoning in Hastie et al., (2009:Section 9.2.3), for any node m, defin-
ing partition Pm, having Nm observations, one can estimate

p̂mk =
1

Nm
∑

i∈Pm

I(yi = k), (5.1)

which is the proportion of observations in class k in node m, and I denotes an indi-
cator variable equal to “1” when yi = k and “0” otherwise. One can then classify, as
before, by the largest proportion.

But there are a very large number possible partitions implying different propor-
tions for each class. What now? The proportion of observations in class k becomes
the argument in a function to characterize the heterogeneity of a node. There are
three popular options for this function.

Misclassification Error :
1

Nm
∑

i∈Pm

I(yi �= k) (5.2)

Gini Index : ∑
k �=k′

p̂mk p̂mk′ (5.3)
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Cross Entropy or Deviance : −
K

∑
k=1

p̂mklog p̂mk (5.4)

Misclassification error is simply the proportion of cases incorrectly classified.
Despite its intuitive appeal, it can be insensitive to changes in the terminal propor-
tions because a proportion needs to pass some plurality threshold before the as-
signed class changes. In the two class case, for instance, a change from .00 to .49 in
the proportion who “fail” does not alter the class assigned. It is still “not fail.”

The Gini Index or the Cross-Entropy are most commonly used because they are
more sensitive to the node proportions. Both take advantage of the arithmetic fact
that when the proportions over classes are more alike, their product is larger (e.g.,
[.5× .5] > [.7× .3]). Intuitively, when the proportions are more alike, there is more
heterogeneity. Not surprisingly, the results are usually much the same.

Once all possible splits across all possible variables are evaluated, a decision is
made about which split to use. The impact of a split is not just a function of the
heterogeneity of a node, however. The importance of each node must also be taken
into account. A node in which few cases are likely to fall should be less important
than a node in which many cases are likely to fall.

We will define, therefore, the improvement resulting from a split as the hetero-
geneity of the parent node minus the weighted heterogeneities of two offspring
nodes. That is, one can write the benefits of the split, s, for node m as

ΔH(s,m) = H(m)−Pr(mle f t)H(mle f t)−Pr(mright)H(mright), (5.5)

where H(m) is the value of the parent heterogeneity for node m; Pr(mright) is the
probability of a case falling in the right offspring node; Pr(mle f t) is the probability
of a case falling in the left offspring node; and offspring node heterogeneities are
denoted by subscripts le f t and right. The numerical value of Equation 5.5 depends
on which measure of heterogeneity is used, but for a given measure of heterogeneity,
we want ΔH(s,m) to be large.

In short, before each partitioning of the data, the value of ΔH(s,m) is computed
for each possible split of each possible predictor. The split and predictor with the
largest value are chosen to define the partition. The procedure is applied to the
root nodes and all subsequent nodes until there are no other partitions for which
ΔH(s,m) is large enough to matter or until ΔH(s,m) can no longer be computed
because all of the terminal nodes each have only one observation.

If we intended to use classification trees as our classification and forecasting tool,
there are additional details to consider. For example, how would terminal nodes with
very few observations be handled? One might “prune” such nodes. But classification
trees are just the beginning; There are many other issues to consider.



62 5 Tree-Based Forecasting Methods

5.3 Building the Costs of Classification Errors

Recall that some classification errors are more costly than others, and that it can
be critical to build in the relative costs of such errors at the very beginning when
a forecasting procedure is being developed. This is easy to do to in many popular
implementations of classifications trees.

We begin by defining in more detail a K×K loss matrix W.1 Suppose for the mo-
ment that K = 2. The responses outcomes are “fail” or “not”. When the forecasting
procedure misses a failure, one has a false negative. When the forecasting procedure
incorrectly flags a failure, one has a false positive. Then W is

[
0 R f n
R f p 0

]

where the entries along the main diagonal zero, and the off-diagonal elements con-
tain costs for false positives (i.e., R f p) and false negatives (i.e., R f n). The units do
not matter. What matters is the ratio of the two. For example, R f n could be 10, and
R f p could be 1. False negatives are 10 times more costly than false positives. Put
another way, 10 false positives have the same cost as 1 false negative.

Such reasoning can be easily extended when there are more than two classes.
But all two-way comparisons need to be addressed. Below is the case when K = 3.
Numerical subscripts for rows and columns are used because it is no longer clear
what a false positive or false negative is. There would need to be a numerical value
for each off-diagonal element so that the ratio between any pair of relative costs is
represented. For example, R23 could be 2 and R21 could be 3 for a cost ratio of 3 to
2. ⎡

⎣ 0 R12 R13
R21 0 R23
R31 R32 0

⎤
⎦

There are several ways in which the information in a loss matrix can be intro-
duced. The easiest way is to use the off-diagonal elements in W to weight the prob-
abilities of the Bayes classifier. However, that only can affect the classes assigned
and not the full tree-building process. Interpretations of the tree structure would
likely be based on the wrong tree. It is better to build in the relative losses at the
very beginning.

There are two such approaches that in practice can lead to the same results. One
is to weight the data by the relative costs. The other is to alter directly the prior
distribution of the response to reflect those costs. For example, suppose 30% of the
cases in the training data “fail” and 75% do not. But when time comes for the anal-
ysis, the 30-70 prior could be changed to 45-55 so that failures are made relatively
more numerous. Altering the prior implies reweighting. For both approaches, conse-

1 In some treatments (Hastie, et al, 2009: 310-311), the matrix is denoted by L despite the same
symbol being used for the loss function in discussions of expected prediction error.



5.4 Classification Tables 63

quently, observations with more costly classification errors are made relatively more
important. Which method one uses will often depend on how the classification tree
software is structured.

Because in our treatment, a single classification tree by itself is not the basis for
classification and forecasting, we will move on. Suffice it to say that there is a third
approach, discussed later, better suited for the perspective we will take. The basic
idea is to sample the data so that the prior distribution of the response is changed.

5.4 Classification Tables

For our purposes, the most important output from a classification tree compares the
classes assigned to the actual classes. There are the two settings. For the training
data, there can be classes assigned and classes observed. For forecasting data, there
can be classes forecasted and then, at some later time, classes observed. We will
emphasize the latter.

A cross-tabulation of the forecasted class and the subsequently-observed class
can be usefully presented as a contingency table, sometimes called a classification
table or a confusion table. Table 5.1 is an illustration for a binary response variable.
The two response classes are “success” and “failure.” The letters a through d are
counts of the number of cases. For example, a is the number of cases for which a
failure was forecasted and a failure was observed.

Forecasted Failure Forecasted Success Model Error
Observed Failure a b b/(a+b)
Observed Success c d c/(c+d)
Use Error c/(a+ c) b/(b+d) Overall Error = (b+c)

(a+b+c+d)

Table 5.1 A classification table for a binary response variable. The letters represent counts of the
number of observations. There are two outcomes: “success” and “failure.”

In the bottom right cell is the proportion of cases for which the forecasted class
and the observed class is not the same. This is the overall forecasting error. It treats
all forecasting errors the same. Typically they are not. Hence, there is usually more
interest among decision-makers in the calculations along the margins of the table.

Under “Model Error” are the conditional proportions for the actual failures and
actual successes, respectively, whose forecasted class is not the same as the observed
class. Given an observed failure, what fraction of the time does the forecasting pro-
cedure forecast a success? Given an observed success, what fraction of the time does
the forecasting procedure forecast a failure? Both are measures of the performance
of the forecasting procedure given the truth, and both proportions should be small.
Ideally, the forecasting procedure should be able to identify groups with high con-
centrations of either success or failures respectively. Model error is often the focus
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when a forecasting procedure is being “validated,” although “evaluated” is a far less
loaded term.

Under “Use Error,” one conditions on the forecast, not the truth. Given a forecast
of failure, what fraction of the time does the procedure get it wrong? Given a forecast
of success, what fraction of the time does the procedure get it wrong? These error
rates help inform decision-makers about how the forecasting procedure will perform
in practice. How credible is a forecast of success? How credible is a forecast of
failure? Use Error is commonly the focus in the field.

Why is it necessary to unpack overall forecasting error in these ways? Overall
forecasting error equates the costs of false positives with the costs of false negatives.
Typically they are not the same, which means that one should condition on the actual
outcome and/or the forecasted outcome when calculating an error rate. For example,
forecasts of success may be wrong 10% of the time, while forecasts of failure may
be wrong 25% of the time. Likewise, the procedure may fail to correctly identify
failures 45% of the time, and fail to correctly identify success 15% of the time. We
will later see how such figures play out in some real world examples.

5.5 Ensembles of Trees: Random Forests

Recall two important limitations of classification trees: instability, and reliance on
step functions when the more appropriate functions are smooth. Both can be usefully
addressed with a large number of classification trees. We consider the instability
first.

Resampling from training data was mentioned earlier as a useful tool. For random
forests, a large number of samples, with the same number of observations as the
training sample, are drawn with replacement. The samples are nearly independent.
On the average, about a third of the observations are not selected each time. A
classification tree is grown from each sample and then the class assigned to each
observation is determined by a vote taken over the trees. By working with a vote
over a large number of trees, random sampling errors tend to cancel out. The process
of averaging some summary statistic over a large number of random samples of the
training data is called “bagging” (Breiman, 1996).

Figure 5.1 addresses the difficulties that can be caused by step functions. The
response is failure on probation. The predictor is age. The dashed line is some S-
shaped function that we wish to approximate. Suppose a classification tree splits the
data at age 37. The green lines shows, with a bit of artistic license, the step function.
(The horizontal segment below 0 should fall right on top of the graph’s horizontal
axis. But then it would not be visible.) One can see that the step function is a poor
approximation of the S-shaped function.

The figure shows, in different colors, three other step functions from three other
random samples. The break points happen to differ. The same artistic license is
used. The four step functions as a group do a much better job than any single step
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Step Function Approximation

0.0

0.75

0.25

0.50

1.0

Age
403530252015 5045

Proportion
Who 
Fail

Fig. 5.1 Using four step functions to approximation a nonlinear response to age. The approxima-
tion will generally improve as the number of step functions increases.

function approximating the S-shaped function. A 100 steps functions would do still
better. And that’s the point.

But there are a lot more going on. Here is a synopsis of random forest algorithm.

1. There is a training dataset with N observations. A random sample of size N is
drawn with replacement from the training data. The selected observations are
used to grow a classification tree. Observations not selected are saved as the
“out-of-bag” (OOB) data. These can be used as test data for that tree and will on
the average be about a third the size of the original training data.

2. A random sample of predictors is drawn. The sample is often very small (e.g., 3
predictors).

3. The first partition of a classification tree is grown, selecting the best split from
one of the random subset of predictors. The result is the two subsets of the data
that maximize the reduction in the Gini index.

4. Steps 2 and 3 are repeated for all subsequent partitions until further partitions do
not improve the model’s fit.

5. The Bayes classifier is used with each terminal node to assign a class.
6. The OOB data are “dropped” down the tree, and each observation is assigned

the class associated with the terminal node in which that observation lands. The
result is the predicted class for each observation in the OOB data for a given tree.

7. Steps 1 through 6 are repeated a large number of times to produce a large number
of classification trees.
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8. For each observation, classification is by vote over all trees when that observation
is OOB. The class with the most votes is chosen.

By building a forest from a large number of classification trees, many of the assets
of recursive partitioning carry over. For example, strongly nonlinear functions and
high order interaction effects can be examined with no need to specify either in
advance.

But new virtues are also introduced. The large number of trees derived from a
large number of random samples provides opportunities for otherwise overlooked
relationships to be found. Associations that might appear to be weak in a given
sample because of random sampling error may surface more importantly in other
samples. Each sample provides another, and somewhat different, look at features of
the population.

By sampling predictors at each split, random forests allows a wide variety of
trees to be grown (Ho, 1998). Stronger predictors do not necessarily mask weak
predictors because for a substantial number of splits, the stronger variables are not
among those randomly selected. This can make for more flexible model building
especially when the training samples have a large number of observations.

Random forests allows the relative costs of forecasting errors to be built directly
into the algorithm in one of several ways. Craft lore suggests that the best way is by
using a stratified sampling approach each time the training data are sampled with
replacement. By over-sampling some response classes and under-sampling others,
one can alter the prior distribution of the response and reweight the data. More detail
will be provided later through some examples.

As the number of trees increases without limit, random forests does not overfit
(Breiman, 2001a: 7). One key reason is the OOB data. For any given tree, the data
used to grow the tree are not “resubstituted” for purposes of classification. Classifi-
cation is undertaken with observations precluded at random from the tree growing
process.

Finally, the OOB data can also be a very good approximation of true test data.
Consequently, classification/confusion tables from random forecasts show a good
approximation of the performance with real forecasts, not how well the procedure
reproduces the training data. The result is a more honest assessment that will be
especially useful when conventional test data are unavailable.

5.5.1 Variable Importance

Especially when used for forecasting, the most important output from classifiers
is the classes assigned to different observations. But for criminal justice decision
makers, the forecasts alone may not be sufficient. Because of legal and administra-
tive concerns, knowing the importance for forecasting of each predictor can be very
instructive. How important, for instance, is gender? What about age or prior record?

A useful operationalization of a predictor’s importance is its contribution to fore-
casting accuracy. For random forecasts, this is addressed in a clever manner. Fore-
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casting accuracy is first computed using all of the available predictors. Then, one
at a time each predictor is doctored so that it cannot contribute to foresting accu-
racy. The resulting drop in forecasting accuracy for each predictor is a measure of
importance. Here is the algorithm.

1. For a given tree, compute as usual the assigned class for each case in the OOB
data.

2. Compute the proportions of cases misclassified for each response class. These
proportions serve as a forecasting accuracy baseline when the full set of the pre-
dictors are used to grow the tree and contribute to forecasting accuracy.

3. Randomly permute the values of a given predictor over all observations. This will
on the average make that predictor unrelated to the response variable.

4. Making no other changes in the tree, compute again the assigned class for each
case in the OOB data. Many of the classes assigned will likely differ from the
baseline assignments because the shuffled predictor no longer can help determine
the terminal nodes in which observations fall.

5. Compute the proportions of cases misclassified for each response class. These
proportions serve as measures of forecasting accuracy when the given predictor
is randomly shuffled.

6. Compute the increase in the proportion misclassified compared to when all pre-
dictors are used as a measure of that variable’s importance for each response
class.

7. Repeat from Step 3 for each predictor.
8. Repeat from Step 1 for each tree in the random forest.
9. For each predictor, compute average decline in forecasting accuracy over trees.2

Output from the importance calculations can provided in several different for-
mats. First, the output can be displayed separately for each response class. This has
the significant advantage of not mixing outcomes when they can differ substantially
in forecasting-error costs. In Chapter 2, Figure 2.1 was such as display. Predictors
were ranked by the reduction in forecasting accuracy for the response class of “vio-
lent crime” when each predictor was in turn randomly shuffled. Recall that the sum
of the reductions was less than the total contribution of the full set of predictors
because when predictors are correlated, there is shared forecasting accuracy that
cannot be attached uniquely to any single predictor. Note also that the ensemble of
trees did not change with the shuffling. Only the predictor values provided to the
existing ensemble changed.3

2 In R, the code for a variable importance plot would take on something like the following form:
varImpPlot(rf1, type=1, class=“Fail”, scale=F, main=“Importance Plot for Violent Outcome”),
where rf1 is the name of the saved output object from random forests, type=1 calls for the mean
decrease in accuracy, class=“Fail” is the outcome class “Fail” for which the importance measures
are being requested, Scale=F requests no standardizations, and main=“Importance Plot for Violent
Outcome” is the plot’s heading.
3 It is sometimes desirable in regression analysis to drop one or more regressors from a model
to see how a smaller model performs compared to the larger model. When this is done, both the
set of predictors and the model itself change. The impact of the predictors and the model are
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Second, some researchers prefer to work with a standardized version of variable
importance. The tree-by-tree reductions in accuracy used in the Step 9 averaging
can also be used to compute the standard deviation of the tree-by-tree reductions.
Dividing the accuracy reductions by this standard deviation leads to a standardized
average reduction.

Without standardization, predictors with a larger number of distinct values tend
to be evaluated as more important. One can argue whether this matters in practice.
If the intent is to represent the forecasting importance of different predictors for the
data on hand, standardization seems misleading. If the intent is to make more gen-
eral claims about the forecasting importance of different predictors, standardization
seems appropriate. Because the applications emphasized here are dataset-specific,
the non-standardized formulation is probably preferable.

Third, one can obtain in standardized or non standardized form the reduction
in forecasting accuracy averaged over the full set of response classes (e.g., violent
crime, nonviolent crime, no crime). Outcomes with potentially very different costs
for incorrect forecasts are combined as if the costs were the same. Consequently,
this option is typically undesirable.

Fourth, one may decide that instead of defining importance by the contribution
to forecasting accuracy, contribution to fit should be used. The output then can be in
units of the Gini Index. One can learn how much the Gini Index increases when in
turn each predictor is shuffled. If the goal of a random forests analysis is forecasting,
this option seems to be wide of the mark.

5.5.2 Response Functions

A second supplemental output from random forests is how each predictor in turn
is related to the response, all other predictors held constant. In effect, the relevant
algorithm manipulates the value of each predictor in turn, but nothing else, and
records what happens to the average response. Here are the steps.

1. For a given predictor with M values, construct M special datasets, setting the
predictor values to each value m in turn and fixing the other predictors at their
existing values. For example, if the predictor is years of age, M might be 25,
and there would be 25 datasets, one for each year of the 25 age values. In each
dataset, age would be set to one of the 25 age values for all observations (e.g., 18
years old), whether that age were true or not. The rest of the predictors would be
fixed at their existing values.

2. Using a constructed dataset with a given m (e.g., 22 years of age), and the random
forest output, compute the assigned class for each observation.

3. Compute the proportion pk, which is the proportion of observations in class k,
for each of the K classes.

confounded. When in random forests predictors are shuffled before being dropped down a fixed
ensemble of trees, there is no such confounding.
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4. Compute

fk(m) = log pk(m)− 1
K

K

∑
l=1

log pl(m), (5.6)

where the function in log units is the difference between the proportion computed
for value m of a given predictor and the average proportion over the K classes for
that predictor (Hastie et al., 2009: 370). There will be one such function for each
response class k, each in logits centered on the average logit.4 This is analogous
to how in analysis of variance the effects of different levels of a treatment are
defined; their effects sum to zero. It is sometimes helpful to solve for pk for
different values of m to see how the probability itself changes. The change in
the probability is a valid measure, but because of the centering, the value of the
probability is not.

5. Repeat Steps 2 through 4 for each of the M values.
6. For each response class k, plot the logits from Step 4 for each m against the M

values of the predictor.
7. Repeat Steps 1 through 6 for each predictor.

Figure 2.2 in Chapter 2 was an example for the predictor IQ. Recall that the
response function was substantially nonlinear — negative up to IQ values of around
100 and flat thereafter. The shape of the function was not anticipated by existing
subject-matter theory and may been a surprise to some readers.5

5.5.3 Forecasting

With a random forest in hand, forecasting is relatively straightforward. There is a
set of observations one might call forecasting data. Predictor values from the fore-
casting data are provided to each tree in the forest. Every observation is placed in
a terminal node according to its predictor values and assigned the class of the ter-
minal node previously determined when the tree was grown. The class forecasted is
determined by a vote over trees.

For example, if there are 500 trees, a given observation will be placed in 500
terminal nodes and assigned the class of each. The class forecasted is determined
by a vote over all the trees. The class with the most votes is the class forecasted.
Output can include not just the forecasted class, but the votes over the 500 trees for
each class. The votes provide information on forecasting uncertainty, to which we
now turn.

4 This avoids the problem of having to choose a reference category.
5 In R, the code would look something like this: partialPlot(rf1, pred.data=temp2, x.var=Age,
which.class=“Fail”, main=“Dependence Plot for Age”), where rf1 is the name of the saved
random forests output object, pred.data=temp2 calls the input dataset, usually the training data
(here, temp2), x.var=Age indicates that the plot is being requested for the predictor called “Age”,
which.class=“Fail” specifies the outcome class, here, “Fail”, for which the plot is being requested,
and main=“Dependence Plot for Age” is the heading of the plot.
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5.5.4 Procedure Uncertainty

Broadly viewed, the forecasting being discussed is subject to two forms of uncer-
tainty. The first is procedure uncertainty, which plays a key role as the forecasting
procedure is being developed. What are the chances that the procedure will cor-
rectly identify a given outcome class, such as committing a violent crime? In addi-
tion, what are the chances that when a forecast is made, it is correct? For example,
if certain individuals are forecasted to be crime-free, what are the chances that the
forecast is correct? Both kinds of assessments require that the outcome being fore-
casted is known. Test data or OOB data are essential.

When a random forest is grown, the confusion table provides information on
procedure uncertainty. The table is constructed from the OOB data, so the counts
can represent real forecasting. Because for the OOB data the outcomes are known,
procedure uncertainty can be directly ascertained. One might learn, for instance, that
individuals who commit violent crime are correctly identified 60% of the time; that
individuals who commit nonviolent crimes are correctly identified 75% of the time;
and individuals who commit no crime are correctly identified 85% of the time. But
how good is that?

A baseline for purposes of comparison is the marginal distribution of the re-
sponse. For example, suppose 10% of the outcomes are violent crimes. Violent
crimes are quite rare and individuals who commit those crimes are probably hard to
identify a priori. (If they were easy to identify in advance, there would be no need
to develop a forecasting procedure.) If random forests can find such individuals with
60% accuracy, that may be impressive.

There will be some applications where the performance is not impressive. But
predictors are chosen in part because they are thought to be related to the outcome;
there are likely to be gains relative to a baseline. Performance is most likely to be
striking for the outcomes given more weight in the analysis. At the same time, there
will sometimes be instances in which excellent performance for the outcomes given
more weight is coupled with modest performance for outcomes given less weight,
especially if the former are rare relative to the latter.

The comparisons just examined only address how the model performs when the
outcome is known. How likely is it that the forecasting procedure will correctly
identify a case with a particular outcome? Decision-makers also want to know how
well the forecasting procedure actually forecasts. That is, when a particular outcome
is forecasted, how likely is that forecast to be correct?

For example, one might find that when a violent crime is forecasted, the forecast
is correct 50% of the time. When a nonviolent crime is forecasted, the forecast is
correct 60% of the time. When no crime is forecasted, the forecast is correct 80% of
the time. These percentages are computed by conditioning on the forecast, not the
outcome.

The marginal distribution can again be used, but in a somewhat different fashion
to provide baselines. If, ignoring the predictors, a forecast of violent crime is made,
it will be right, say, about 10% of the time. If, ignoring the predictors, a forecast
of nonviolent crime is made, it will be right, say, 40% of the time. If, ignoring the
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predictors, a forecast of no crime is made, it will be right, say, 50% of the time. In
this hypothetical, the forecasts from random forests are much more accurate than
these baseline forecasts — 50% correct, 60% correct, and 80% correct respectively.
The improvement for forecasts of violence is especially impressive.

In short, there are two different questions that are sometimes confused. The first
question asks how well the forecasting procedure reproduces the known outcomes.
The second question is how accurate the forecasts turn out to be. The first can pro-
vide useful information as the forecasting model is being developed. The second can
provide useful information about how the forecasting model will performs in use.

5.5.5 Forecast Uncertainty

The second form of uncertainty is forecast uncertainty; there is uncertainty when
the forecasts for given cases are used to inform decisions about those cases. The
forecasting procedures should have already been deemed sufficiently accurate. Nev-
ertheless, any forecast could be wrong. It is important, therefore, to have some indi-
cation of the likelihood of forecasting error as each forecast is made. There are no
test data because the outcome is not known. Yet, random forests provides important
information on this matter.

Recall that we envision the training data as a random realization from a joint dis-
tribution of G and X∗. When the training data are randomly sampled by the random
forests algorithm, one has a simulated version of this realization process. There is
an instructive correspondence between the underlying thought experiment and the
machine learning algorithm.

With each simulated realization of the training data, the tree constructed will
almost certainly differ, at least a bit. There is then the prospect of the assigned
classes differing as well. For one classification tree, males 30 years of age might
be classified as violent, whereas another classification tree might classify them as
nonviolent. It follows that vote, over trees, to finally determine the assigned classes,
incorporates this chance variability.

Additional uncertainty in forecasts is introduced when the random forest algo-
rithm randomly samples predictors. For any given sample of the training data, the
tree that is grown can vary with the predictors randomly available as each data par-
tition is determined. Frankly, there is no apparent correspondence between random
samples of predictors and the underlying throught experiment usually applied to
data realizations. Nevertheless, because such sampling is built into the algorithm, it
should be taken into account.

There are no expressions from which one can compute proper standard errors for
random forests forecasts and no way, therefore, to directly construct conventional
error bands for the forecasts. But the resampling of training data and predictors can
provide the basis for an instructive alternative.

Consider the forecast for a single individual. Suppose that 95% of the votes over
trees are for a single class. One can infer that only 5% of the time will the random
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forests trees forecast another class. Suppose 60% of the votes over the trees are for
that class. Now, 40% of the time the random forests trees will forecast a different
class. There is substantially more uncertainty. Suppose that 10% of the votes over
trees are for that class. Then, one can infer that 90% of the time random forests will
forecast a different class, and one would do considerably better forecasting some
other class.

It follows that the votes provide information on the variability of a forecast that
results from the random forests procedure. Uncertainty comes from random real-
izations of the data and from random realization of the predictors included. It can
be useful, therefore, to construct a table or histogram of the vote percentages over
cases to get an broard sense of how credible the forecasted classes are likely to be.
We will examine some examples later, but highly-skewed distributions are common.
It can be difficult to get lopsided votes in favor of uncommon classes (e.g., arrested
for homicide).

Probably more directly relevant for decision-makers is the vote for given cases.
If each outcome class gets the same proportion of votes over trees, the uncertainty
is as large as it can be, and there is no guidance on which class to forecast. Only
if one class receives a substantial plurality is random forecasts providing useful
information for decisions about a given case; uncertainty is low. Put yet another
way, unless one class receives a substantial plurality, the forecast obtained could
easily have been different.

One must be clear that estimation bias plays no role, and there are no conven-
tional error bands nor talk about coverage for the “true” forecast. This is not a mat-
ter of getting the forecast right. The votes provide information on the stability of the
forecasts over trees for a given case. Again, it is a statement about how the random
forests procedure performs for given forecasts.

In practice, forecasts of future behavior will be one of several factors taken into
account when decisions are made. There will typically be no formal way to weight
the factors. This is where forecast stability can helpful. For example, a sentencing
judge may wish take very seriously a defendant’s cooperation with police as a miti-
gator for the sentence given. But, how should that be balanced against a forecast of
future dangerousness? If the forecast could easily have been different in the sense
just discussed, the relative importance of the cooperation should be increased sub-
stantially. If the forecast is effectively the only forecast made by a very large number
of trees, the relative importance of the forecast should be increased substantially.

For a defendant’s cooperation with the police, the issue is sentence mitigation.
There is no intent revise the forecast of future dangerousness. If the intent is to revise
the actuarial forecast, the revised forecast should be based on information that is
not already incorporated into the forecasts or not already discarded as unimportant
by the actuarial methods. As noted earlier, even very simple statistical procedures
will on average forecast more accurately than informal, even clinical, procedures.
It is, therefore, counterproductive to alter actuarial results unless there is new and
compelling information not considered when the actuarial forecasts were made. A
show of genuine contrition may be an illustration. In short, one should not second
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guess the forecasts unless there is very important information that was not taken into
account when the forecast was made.

5.6 Tree-Based Alternatives to Random Forests

There is an ongoing debate about which classifiers are the most accurate. Truth be
told, it is hard to tell. Compelling theoretical results one way or another do not exist,
and in classification/forecasting competitions, performace is heavily dependent on
particular features of the datasets used. Winners in one competition can be losers in
the next. And in the end, performance differences among the better procedures are
usually small in practical terms (e.g., Culp et al., 2007).

Random forests is a powerful classifier, relatively easy to use, whose require-
ments, capabilities and output connect especially well with needs of criminal justice
decision-makers. That is why random forests is the machine learning method-of-
choice here. The ability to easily accommodate asymmetric costs is one key exam-
ple.

But there are other very attractive classifiers within machine learning traditions.
Some compete well against random forests and have many of the same capabilities.
With future development, one or more of these could become the criminal justice
method-of-choice. Anticipating this possibility, we turn briefly to two of the most
promising tree-based competitors. Other competitors that do not build on tree en-
sembles are not discussed. Space constraints preclude an accessible exposition, and
there are excellent treatments elsewhere (Hastie et al., 2009).

5.6.1 Stochastic Gradient Boosting

Random forests strives to construct its many classification trees independently of
one another, and for all practical purposes succeeds. Then, classes are assigned to
cases by a simple vote over trees. All trees are implicitly given the same weight in
the voting; one tree, one vote.

A powerful alternative, called “boosting,” combines trees linked in a sequential
fashion. The links are provided by each tree’s residuals — the differences between
a tree’s fitted values and the observed responses. Trees are grown one after another
such that the residuals from one tree become the “working response” for the next.

Larger residuals imply a less satisfactory fit. For any given tree, therefore, cases
that are more difficult to accurately classify are given more weight. Then, the fitted
values from each tree are used to revise the previous set of fitted values. In the
end, the fitted values are a linear combination of the sequence of fitted values with
weights to maximize classification accuracy. Fitted values that improve performance
more are given more weight.
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There are many different kinds of boosting, even within the subset that works
with ensembles of trees. They can vary in a variety ways, implying complicated
tradeoffs that are likely to be highly data dependent. We will use stochastic gradi-
ent boosting (Friedman, 2002) to represent these methods because on balance, it is
worthy competitor to random forests. There is also several good software choices
available even within R, although here too there can be important tradeoffs.6

Consider a training dataset with N observations and p variables, including the
response Y and the predictors X∗. The response is binary. Suppose “fail” is coded
as “1” and “succeed” is coded as “0.” Here is an outline of the procedure.

1. Initialize the procedure with sensible fitted values before the analysis begins. One
option is to use the overall proportion of cases that fail as the initial fitted value
for each case.

2. Randomly select without replacement n cases from the dataset, where n is less
than the total number of observations N. Note that this is a simple random sample
(i.e., sampling without replacement), not a sample with replacement. Often about
half of the observations are selected.7

3. Compute the negative gradient, also called “pseudo residuals,” by subtracting
each fitted value from its corresponding observed value of 1 or 0. The residual
will be quantitive not categorical.

4. Using the randomly-selected observations, fit a regression tree to the pseudo
residuals.

5. Use the mean in each terminal node who fail as an estimate of the probability of
failure.

6. Still using the sampled data, update the fitted values as the sum of the existing
fitted values and the new fitted value with the latter weighted to get the best fit.

7. Repeat the process steps 2 through 6 until the fitted values no longer improve a
meaningful amount.

8. Use the fitted probability estimates as is, or apply the Bayes classifier to get the
assigned class.

Unlike conventional iterative procedures in statistics, stochastic gradient boost-
ing does not converge. But there are empirical ways to determine when additional
passes through the data are not likely to improve the fit. As an empirical matter,
the lack of convergence does not seem to be a problem, but misleading results can
follow if a substantial number of additional trees are grown despite no demonstrable
improvement in performance (Mease et al., 2007).

Stochastic gradient boosting for categorical responses is a powerful machine
learning procedure that has many interesting properties. At the moment, however,
there does not seem to be easily accessible implementations that allow for more
than two response categories and/or principled ways to introduce asymmetric costs

6 The name “boosting” comes from ability of the procedure to “boost” the performance of other-
wise “weak learners” in the process by which they are aggregated.
7 This serves much the same purpose as the sampling with replacement used in random forests. A
smaller sample is adequate because when sampling without replacement no case is selected more
than once; there are no “duplicates.”
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(although this could change at any time). Both are requirements for the kinds of
criminal justice forecasts emphasized here. For example, ada, gbm and mboot are
excellent boosting procedures available in R, but currently are not fully suitable for
our purposes (Culp et al., 2006; Ridgeway, 2007; Hothorn et al., 2011).

5.6.2 Bayesian Trees

Random forests clearly falls within frequentist statistical traditions. The data are
random realizations composed of random variables, and the parameters of the joint
distribution Pr(G,X∗) are treated as fixed. There is uncertainty in the forecasts solely
because the realized data could have been different by chance.

Consistent with Bayesian traditions, Bayesian trees turns this on its head. The
data on hand are treated as fixed. They are not realizations from anything and
whether they could have been different is irrelevant. What you see is what you get.
It is the parameters of Pr(G,X∗) that are random and, therefore, the source of un-
certainty. Why they are random is beyond to scope of this brief discussion, but as
rough approximation they are random because each parameter is seen not as a hav-
ing a single value, but a distribution of values. One account makes each distribution
a representation of a researcher’s beliefs about the probabilities of different possible
parameter values.

As with random forests, a large number of classification trees are grown. But
the trees differ not because the training data are sampled, but because chance is
introduced into the tree-growing process in several ways. The issues can be quite
technical and are beyond the scope of our discussion (Chipman et al., 1998; 2010).
But here is the general idea.

Consider a single classification tree as discussed above. Beginning with all of
the observations in the “root node,” an initial decision is whether to partition the
data into two subsets. If the data are partitioned, the same decision needs to be
made for the two offspring nodes. If either of those is partitioned, a new splitting
decision needs to be made. Such decisions are made until all of the terminal nodes
are determined.

With the Bayesian approach, whether to partition the data in any node is decided,
in effect, by a flip of a special kind of coin whose probability of coming up “split”
declines as the tree grows larger. The intent is to make larger trees less likely than
smaller trees. Smaller trees will usually have more bias but less variance, which
given the substantial instability of classification trees, is usually a sensible tradeoff.

Once a decision has been made to partition the data in a node, the nature of that
split must be determined. In the spirit of random forests, one predictor is chosen at
random as well as the value at which the split will be made. For example, if age
is the predictor chosen, the partitioning might be at a value of 30. Cases with ages
less than 30 might be placed in one partition, and ages 30 or older might be placed
in the other. If the predictor chosen is race/ethnicity, Blacks might be placed in one
partition, and Anglos, Hispanics, and Asians might be placed in the other.
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The probability that a particular split will be made can take into account the
number of distinct values for each possible predictor. Predictors with more distinct
values can be assigned lower probabilities so that all possible splits across all pre-
dictors are equally likely. That is, unless this weighting is undertaken, predictors
with a greater number of values are more likely to be chosen as the splitting vari-
able. Other factors can be taken into account, such as the desire to keep the number
of predictors used by a given tree small.

Of key interest is the response variable proportion computed within each terminal
node. For our purposes, these are the conditional probabilities for one of the two
outcomes, such as failure on parole. A probability distribution is also imposed here,
often a beta distribution. An alternative is a uniform distribution. For each terminal
node, the response variable proportion is drawn from one such distribution.

With both the probability of a split, and the probability of a particular split, one
can in principle generate all possible trees. In practice, computational constraints
intervene so that a very large, but not exhaustive, number of trees is generated via
simulation. This permits estimates of the probability that any given tree will be
selected. These estimates can be used to construct a prior distribution of possible
trees with some trees more likely than others. Then, the prior helps to prevent rare
and hence, unimportant trees from substantially affecting the overall results.

In short, uncertainty is introduced in four ways: (1) through the probability of any
split, (2) through the probability of a particular split, (3) through the probability of
a particular proportion in each terminal node, and (4) through the prior probability
for each possible tree. The four probabilities are then used to construct an ensemble
of trees — a Bayesian forest.

There is little that can be directly learned from the Bayesian forests. Just as in
random forests, the information provided by each tree needs to be compiled in an
accessible form. One could once again employ some kind of voting procedure. Vot-
ing can be seen as an additive process in which for each case, the votes over trees
for each possible class are summed. Bayesian trees employs an addition process but
instead of combining votes, combines the proportions in the terminal nodes. For ex-
ample, if the proportion of “failures” in a terminal node is .65, the value of .65 is
used directly rather than as a single vote in favor of the response class of “failure.”
The additive procedure is called “backfitting.” Here in very broad terms is what is
done.

It all begins with the construction of a new and special dataset. Suppose there
are 500 observations in the training data, and 50 Bayesian trees are grown. For each
of the 50 trees, there are 500 estimates of the binary response variable proportion
depending on the terminal node in which the observational falls. One can think of
the set of 500 fitted values for a given tree as a new kind predictor variable. Over
the 50 trees, there are 50 such predictor variables. These can be assembled as a
new predictor matrix Z with 500 rows and 50 columns. The response variable is, as
before, the observed binary outcome G over the 500 observations.

One can then, in effect, regress the binary outcome on the 50 predictors with, for
instance, a probit link. Backfitting is used rather than more conventional numerical
methods because the functional forms by which the predictors are each related to
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the response are determined empirically; they are not specified in advance as in
parametric regression.

The backfitting algorithm cycles through each predictor one at a time employ-
ing a bivariate smoother until further iterations no longer improve the fit. For each
smoother application, the response is very much like the pseudo residuals used in
boosting. They are what is “left over” in the response after systematic relationships
from earlier estimates are subtracted off. In this example, there might be 225 it-
erations before convergence. All predictors might cycle through 4 times, and 25
predictors might cycle through 5 times. A function of the fitted values, such as the
fitted proportions, is the basis of any forecasts.8

Bayesian forests can be grown with existing software in R (i.e., with bart, which
stands for Bayesian Additive Regression Trees). It runs well, and for binary out-
comes performs at about the same level of accuracy as random forests and stochastic
gradient boosting. One of its major strengths is that the Bayesian framework leads
directly and naturally to conventional Bayesian statistical inference. Statistical in-
ference can be a problem for random forests and stochastic gradient boosting. At
this point, the major drawback of Bayesian forests are no allowance is made for
asymmetric costs or for more than two response categories.9

5.7 Why Do Ensembles of Classification Trees Work So Well?

In a wide variety of social science applications, the existing subject matter theory
is not well developed. Criminology is no exception. Many of the key variables have
been identified, but how they are related to one another is either unknown or known
only up to the sign of the relationship. When functions are specified, they are as-
sumed to be relatively simple. Linear functions and log functions are common. If

8 Following Hastie et al. (2009:298), suppose there are t = 1, . . . ,T trees and i = 1, . . . ,N observa-
tions (e.g., 50 trees and 500 observations). We are seeking the set of f̂t functions linking each of,
say, 50 predictor vectors to the response.

1. Initialize: α̂ = prop(yi), ft = f 0, t = 1, . . . ,T . The value of α is the response variable proportion
over all observations. This does not change. The functions for each predicator are initially set
to zero.

2. Cycle: t = 1, . . . ,T,1, . . . ,T, . . .

f̂t ← St(yi − α̂ −∑r �=t f̂t(xit)),

f̂t ← f̂t − 1
N ∑N

i=1 f̂t(xit),

where St is a smoother. Continue #2 until the individual functions do not change. The cycling
depends on constructing a long sequence of pseudo residuals and fitting those with a smoother
such as smoothing splines or lowess.

9 Work is underway on theory that might be used for multinomial outcomes. In principle, the prior
tree distribution could be altered to allow for asymmetric costs.
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the research goal is to broadly characterize the most important relationships in an
easily-understood manner, rough approximations can be useful.

But when forecasting accuracy is the goal, simplicity can have a very high price.
Important associations will sometimes be highly nonlinear. In addition, even when
the most important variables have been identified, there may be a large number of
other variables, often with marginal substantive roles, that nevertheless each carry
useful predictive information for small subsets of cases. In other words, there can be
a large number of small associations of little explanatory interest, that in the aggre-
gate can improve forecasting accuracy. Finally, these small relationships do not have
to be represented by interpretable measures. Surrogates, often distant surrogates,
will suffice for forecasting even though they cannot be anticipated by subject-matter
experts and would likely be of little interest in any case.

Ensembles of classification trees are well suited for this setting for the following
reasons:

1. There is no need for a model of the data generation process beyond random
realizations from a joint distribution of the response and the predictors. Many of
the most common concerns in social science models are irrelevant. For example,
uncertainty is produced by the theoretical equivalent of probability sampling.
There is no disturbance term whose properties are so critical in conventional
regression models.

2. There is no need for cause and effect, and there is no reliance on causal models.
This is good because machine learning procedures are not causal models. Their
primary purpose here is forecasting for which cause and effect can be irrelevant.

3. By using discretized variables with each tree, unanticipated and highly nonlinear
functions can be empirically approximated in a manner that can be very effective
in reducing bias in fitted values. There is no need to specify functional forms in
advance.

4. The stagewise approach used in classification trees, in which earlier partitions
are maintained, can easily lead to unanticipated interaction effects inductively
derived that can reduce bias. Many of these interactions may be of a very high
order that researchers rarely consider. Often these will be effective surrogates for
predictors not directly measured. For example, a high-order interaction effect be-
tween gender, age, and zipcode may be a good proxy for gang membership. Gang
membership does not have to be explicitly included among the set of predictors.

5. Generating a large number of different trees from many passes through the data
helps distinguish features of the data that are systematic from features of the data
that are happenstance. For example, relationships found very rarely are likely to
be treated as noise.

6. The training data can be explored from many different vantage points using many
different variants of the exploration tools. A relationship that may seem unim-
portant in the training data as a whole, may turn out to be very important when
situated in a different sample and characterized by a different collection of pre-
dictors.
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7. Aggregating over trees can smooth the step functions produced by each tree when
that is appropriate. In criminal justice applications at least, quantitative predictors
are rarely associated with the response as step functions.

8. Aggregating the results from a large number of classification trees will introduce
stability not obtained from a single tree. Forecasting variance will be reduced.

9. There will often be very instructive output beyond measures of procedure and
forecasting performance: measures of forecasting importance for each predictor
and graphs of how each predictor is related to the response.

In summary, when subject-matter theory is well-developed and the key predic-
tors are included in the training data, conventional parametric regression methods
can forecast well. There is probably no need for the sorts of procedures emphasized
here. However, when the subject-matter theory is under-developed and important
predictors are not available, tree ensembles (and other forms of machine learning)
can can offer forecasting skill well beyond that of conventional social science ap-
proaches.10

Perhaps the key asset of tree ensembles is that they take very seriously the goal
of searching for structure. The sample space defined by Pr(G,X∗) can be explored
from many different vantage points, using many different variants of the fitting pro-
cedures. In random forests, the random samples of data provide different views of
the sample space, and the samples of predictors provide different fitting opportu-
nities. Stochastic gradient boosting gets much the same job done by sampling the
training data and reweighing the sample with each pass. Bayesian trees relies on
samples of parameter values so that a heterogenous mix of trees is applied to the
data. In the end, all three approaches combine the output across trees so that a use-
ful balance between the bias and the variance may be achieved.

10 Another very good machine learning candidate is support vector machines. There is no ensemble
of trees. Other means are employed to explore the sample space effectively. Hastie et al., (2009:
417-436) provide an excellent overview. What experience there is comparing support vectors ma-
chines to the tree-based methods emphasized here is that usually they all perform about the same.
When they do not, the differences are typically too small to matter much in practice or are related
to unusual features of the data or simulation.



Chapter 6

Examples

Abstract In order to help illustrate the ideas from previous chapters, this chapter
provides detailed examples of criminal justice forecasting. These are real applica-
tions that led to procedures adopted by criminal justice agencies. As such, they
combine a number of technical matters with the practical realities of criminal jus-
tice decisions-making. For the reasons already addressed, random forests will be the
machine learning method of choice.

6.1 A Simplified Example

We now turn to some examples of real forecasting with real data. The goal is to help
fix the key ideas from the previous chapters. We begin with an example that is sim-
plified for didactic purposes. In particular, only five predictors from a much larger
set are used. A much more complicated forecasting enterprise will be considered
later.

The forecasting task in this example was to predict which individuals on pa-
role or probation (largely probation) in an East Coast city “failed” by committing
a homicide or attempted homicide or by being the victim of a homicide during an
18 month period beginning at intake. Any other outcomes, including commission
of other crimes, were not failures. The forecasts were to be used in a homicide-
prevention program designed to reduce homicides in which the individuals under
supervision were involved, either as perpetrators or victims.

It might seems strange from criminological point of view to combine in one
outcome homicide perpetration and homicide victimization. But local craft lore and
an initial analysis of the data indicated that homicide perpetrators and homicide
victims were, in this setting, largely the same kinds of individuals. Commonly, they
were men under 25 with arrests for very serious crimes beginning in their early
teens, who also had easy access to handguns. One “disrespect” too many could

81R. Berk, Criminal Justice Forecasts of Risk: A Machine Learning Approach
in Computer Science, DOI 10.1007/978-1-4614-3085-8_6, © The Author 2012
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rapidly lead to violence in which a single individual might as easily be the shooter
as the person shot.1

Predictors were drawn from the usual sorts of administrative records routinely
available in electronic form and projected to be available in real time when subse-
quently actual forecasts would need to be made. Predictors included prior record,
age, the instant crime of conviction, gender, age, the age of an offender’s first arrest,
and many others. There were certainly no surprises.

Several different cost ratios of false negatives to false positives were applied,
all capturing the far greater relative cost of false negatives. False negatives were
defined as perpetrators of a homicide or attempted homicide or victims of homicide
who were not forecasted as such. False positives were defined as individuals who
were incorrectly forecasted to fail as perpetrators or victims.

Table 6.1 below shows the forecasting results when the cost ratio was set at 15 to
1 for the cost of false negatives to the cost of false positives.2 For the random forests
program in R (randomForest), this was done using its stratified sampling procedure.
There were two strata, one for those who failed and one for those who did not. Each
time a random sample of observations was chosen, 200 of the former and 500 of the
latter were chosen (i.e. sampsize = c(500,200).3 This led to a ratio in the table of
1535 false positives to 99 false negatives, or about 15.5.

There is no way to directly impose a given cost ratio on the confusion table.
Good practice seems to begin by using a sample of about two-thirds for the category
with the smaller number of cases, and then adjusting the sample size for the other
category until the desired cost ratio in the table is approximated. Starting with the
two-thirds sample for the less common outcome, leaves a sufficient number of out-
of-bag (OOB) cases for test data, and that is the main point. One could work with
50% or 75% sample, if that is required to arrive at the target cost ratio. Settling on
a satisfactory cost ratio in a confusion table involves some trial and error, but the
process is useful to get a sense of how different cost ratios affect performance. In
this instance, the correspondence between the target of 15 to 1 and the empirical
results is high. From the two off-diagnonal cells, 1536/99 = 15.5. The forecasting
results were similar with cost ratios as small as 10 to 1 and as large as 20 to 1.

1 This pattern is common. In Philadelphia, for example, “Last year, 85 percent of the city’s homi-
cides were African American, almost all of them male. Four of five killers were African American
males, demographically indistinguishable from their victims.” ... Quoting Mayor Michael Nutter:
“The No. 1 issue for homicide in Philadelphia is generally classified as an ‘argument.’ ” (Heller,
2012).
2 For this analysis, the code in the random forests program in R (randomForest) was
written as: r f 3 ← randomForest(more f ail ∼ iassault + igun + priors + intage + sex,data =
temp1, importance = T,sampsize = c(500,200)). The output was saved under the name of rf3.
The variable morefail was the response. There were 6 predictors starting with iassault and ending
with sex. The input data were temp1, predictor importance plots are requested with importance=T
and sampsize = c(500,200) determined the sampling strategy for each tree. The assignment symbol
← is produced in R by a < followed immediately by a −.
3 The order in c(500,200) is numerically (low to high) or alphabetically depending on how the two
outcome categories are coded.
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Forecasted Not Fail Forecast Fail Model Accuracy
Not Fail 12674 1536 .89

Fail 99 153 .61
Forecasting Accuracy .99 .10

Table 6.1 Confusion table for forecasts of homicide or attempted homicide perpetrators and homi-
cide victims for a 15 to 1 cost ratio. True negatives are identified with 89% accuracy. True positives
are identified with 61% accuracy. Non-failures are forecasted with 99% accuracy, and failures are
forecasted with 10% accuracy. (Fail = perpetrator or victim. Not Fail = not a perpetrator or victim.)

The main purpose of confusion tables is to determine forecasting skill. Because
a proper confusion table is constructed with OOB data, true forecasts are made. But
forecasting skill can be examined in several different ways.

One might think that the overall proportion of cases correctly classified (i.e.,
the sum of the counts in the two main-diagonal cells divided by the total number of
observations) is the primary measure of forecasting accuracy. But it is not. Recall the
earlier discussion of uncertainty. The overall proportion correctly classified weights
false negatives and false positives equally. The weights should represent relative
costs and here at least, they are explicitly not equal. Moreover, the overall proportion
is insensitive to how the forecasts might actually be used. The overall proportion
conditions on neither the actual outcome or the forecasted outcome.

A better option is to consider how well the procedure performs when the truth
is known. Given a known outcome (e.g., homicide perpetrator or victim), what pro-
portion of the time does the procedure identify cases correctly? Substantial accuracy
can indicate that the forecasting procedure is able find what it was designed to find.
This is an encouraging start. The procedure has promise. But, it does not directly
address forecasting accuracy.

For forecasting accuracy, one should condition on the forecast. Given a forecast
(i.e., a forecast of homicide perpetration or victimization), what proportion of the
time is it correct? By conditioning on the forecast, there are close parallels to how
a forecasting procedure will be applied in practice when criminal justice decision
makers try to anticipate possible threats to public safety. Substantial accuracy indi-
cates that in actual use, the forecasting procedure could be helpful.

However, forecasting performance measures are necessarily matters of degree.
It can be very important, therefore, to have baselines from which to make compar-
isons. A good baseline is the proportion of times a forecast would be correct if none
of the information in the predictors were used. Let’s play this through.

In this example, about 2% of the individuals fail. So, if non-failure is forecasted,
it would be correct approximately 98% of the time. If failure is forecasted, it would
be correct approximately 2% of the time. So why not ignore the predictors and
always forecast non-failure? It is difficult to imagine a forecasting procedure that in
this setting could have better than 98% accuracy. The answer is that the 2% of cases
that become false negatives are very costly. Given the 15 to 1 cost ratio, decision-
makers are prepared to accept a substantial increase in the number of false positives
if the number of false negatives can be meaningfully reduced. They prefer to have
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less accurate forecasting overall if it means avoiding especially costly forecasting
errors. This underscores why costs must be built into forecasts if those forecasts are
to be responsive to real policy considerations.4

How does all this work out here? Consider first the rows in Table 6.1. The row
proportions show how good the forecasts are when the actual outcomes in the test
data are known.5 Of those known not to fail, random forests gets it right about 89%
of at the time. Of those known to fail, random forests gets it right about 61% of the
time; a substantial majority of rare events are being correctly identified.6

Consider now the columns from which one can compute how often the forecasts
are correct. That accuracy depends in part on the false-negative to false-positive cost
ratio. In this instance, decision-makers are prepared to accept a large number of false
positives, which implies that a substantial number of forecasting errors will be made
when failure is the forecast. This is not a weakness in the forecasting approach. It is
a strength. The risk preferences of decision-makers are explicit and taken seriously.

When no failure is forecasted, that forecast is correct 99% of the time. This is
a slight improvement over the baseline of about 98%. When failure is forecasted,
that forecast is correct 10% of the time. On its face, this may be disappointing, but
it results substantially from the large number of false positives that decision-makers
are prepared to tolerate. There are about 10 false positives for every true positive.
Moreover, the 10% figure is five times larger than the base rate of 2%. In short, using
random forecasts with only five predictors is in this example at least encouraging.

Another important part of the random forests output is a plot of predictor impor-
tance when the response outcome is known. The focus is on the rows of a confusion
table. From Figure 6.1 one can see that gender is the most important predictor for
finding high risk cases. If its values are shuffled, forecasting accuracy for a failure
drops by over 30 percentage points. The 61% accuracy is now less than 30%. Similar
calculations can be made for the other predictors and because the outcome is binary,
the importance plot for the “successes” would convey the same information.7

The forecasting importance of gender can be used to illustrate the tension be-
tween finding subgroups with high concentrations of high risk individuals and legal
constraints. On the one hand, gender can be a “suspect” class in civil litigation over
discrimination. More broadly, one could wonder about the justice of treating “sim-
ilarly situated” men and women differently. On the other hand, dropping gender
from the set of predictors could mean that half of the potential perpetrators and vic-
tims who would be correctly identified in advance, might not be unless one could
find an acceptable surrogate predictor for gender. Given the large number of pro-

4 In effect, the false negative 2% might be considered a false negative 30% (2% × 15) when relative
costs are factored in.
5 For ease of discussion, the proportions on the right and bottom margins represent the proportion
correct, not proportion incorrect. We proceed in this manner in all subsequent confusion tables as
well, despite the more common practice of reporting the proportion incorrect.
6 Using a larger number of predictors, random forests correctly identifies failures about 80% of the
time.
7 An “immediate” crime is the crime of the most recent conviction after which the probation or the
parole decision was made.
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                                Forecasting Importance of Each Predictor

Increase in Forecasting Error

Immediate Crime Assault

Immediate Crime Gun Related

Number of Prior Arrests

Age at Intake

Male

0.0 0.1 0.2 0.3

Fig. 6.1 Predictor importance measured by proportional reductions in forecasting accuracy for
perpetration of or victimization from homicide while under supervision.

bation/parole cases in this city, the decline in forecasting accuracy translates into
roughly 100 homicides or attempted homicides. A decision about whether to in-
clude gender as a predictor can have real consequences.8

There is also for each predictor a plot of the response functions. We consider two
such plots as illustrative. Figure 6.2 shows the partial response plot for age. One
can see that the risk of failure declines sharply with age until around age 40. There
is then a modest increase until about age 60. After that, there are too few observa-
tions to reveal a pattern. The decline from the teenage years to early middle age is
consistent with decades of research, although too often the decline is represented
very crudely (e.g., under 30 versus over 30). Then, information that can be impor-
tant for forecasting is lost. The increase after age 50 is a surprise and may represent
domestic violence incidents.

Each value on the vertical axis is a centered logit value of log[p/(1− p)]. One
can solve for p for different logit values on the vertical axis. In a probability metric,
the affect of age is dramatic. The probability of failure drops by about .50 when an
18-year-old is compared to a 40-year-old.

What about gender? Figure 6.3 shows the partial response plot. Not surprisingly,
men are more likely to fail. Their probability is larger by about .06. Despite the

8 There may well be no such thing even in principle as an acceptable surrogate, unless the primary
concern is public relations. Consequently, one is again faced with difficult tradeoffs. What price in
units of potential victimizations can one tolerate for using predictors that are less troubling?
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Fig. 6.2 Partial response plot for “failure” against for age. The vertical axis is in centered logits.
The relationship is highly nonlinear.
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Fig. 6.3 Partial response plot “failure” against gender. The vertical axis is centered logits. Men are
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dominant role of gender for predictor accuracy, the difference between men and
women in the probability of failure might seem relatively modest. But there is really
no tension between the two. The partial response does not directly take into account
the variability in the predictor unrelated to other predictors. Forecasting accuracy
does. So a modest partial response can be coupled with relatively large forecasting
importance if the predictor has a relatively large residual variance after adjustments
are made for its relationships with other predictors. 9

In short, a partial response plot and forecasting importance address different
questions. Only a bit too simply, a partial response shows on the average how much
the outcome changes depending on the values of the predictor. Forecasting impor-
tance translates the partial response into forecasting accuracy that depends on the
heterogeneity in those values.
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Fig. 6.4 A histogram of the proportions (over trees) of votes for failure. There is one proportion for
each case. Cases with proportions near .50 are the cases for which the forecasts have the greatest
uncertainty.

Finally, there is the matter of forecasting uncertainty. One useful approach is to
examine the distribution of votes over trees for each forecasted class. For insight

9 This reasoning is much like the reasoning that applies to the difference between a partial regres-
sion coefficient and the “explained” variance uniquely attributable to a predictor.
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about forecasting uncertainty in the procedure overall, a histogram of the votes can
be instructive.

Figure 6.4 is a histogram of the votes for a failure over all of the trees in the
random forecast based on the OOB data for 14,462 observations. The horizontal
axis shows the proportion of votes in favor of predicting a failure. The vertical axis
shows the number of cases. The skew to the right is dramatic. Most of the forecasts
are for no failure, often with strong majorities.

All of the bins to the right of .50 include cases for which a failure is forecast.
About half of the vote proportions greater than .5 are less than .60 (i.e., 786). There
is usually no obvious threshold for an unacceptable amount of uncertainty, but when
the vote proportions are near .50, the forecasts are not much more reliable than a coin
flip. Here, that might be cases with votes in the .50 to .60 range.

One might consider simply throwing out all cases for which the vote is too close
to .5, and then recompute the confusion table. The table would show forecasting
accuracy for those cases that were forecasted in a sufficiently reliable manner. Some
might feel that this is a more instructive way to represent model performance.

However, by raising the threshold (e.g., to .60), one is, in effect, shrinking the
relative costs of false negatives to false positives. The intent is to be “more sure”
before a forecast of failure is made. In trade, the number of false positives will
decrease as the number of false negatives increases. If that is really how decision-
makers want to proceed, they should recompute the forecasts from the beginning
using a new cost ratio. If that is not done, all of the subsequent random forests (e.g.,
predictor importance plots) output will still reflect the original costs ratio when that
is no longer appropriate. Very misleading conclusions could be drawn.

A second approach can be useful when the forecasting procedure has become
operational. As the outcome for each new case is forecasted, the vote over trees can
be reported. When the vote is too close to .5, other information not already used
when the random forest was grown can be introduced. For example, an inmate may
have a job waiting outside prison. As discussed earlier, it is generally a bad idea
to override a forecast using information already contained in the forecasts. Human
judgement is typically second best.

6.2 A More Complex Example

Consider now a more elaborate application. For an agency that supervised individ-
uals on probation and parole, the policy question was how best to allocate supervi-
sory resources. Given tight budget constraints, the goal was to make the intensity
and content of supervision cost-effective. Without sacrificing public safety, more
expensive supervision would be provided only to offenders most in need.

Three classes of offenders were proposed: (1) individuals committing a serious
crime, (2) individuals committing a crime but not a serious crime, and (3) individu-
als not committing any crime. “Serious” crimes were essentially Part I crimes, and
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crimes that were not serious were essentially other than Part I crimes.10 The distinc-
tion between crimes that were serious and those that were not was partly a matter of
practicality and political sensitivities. Serious crimes could not be defined so broadly
that agency resources would be rapidly exhausted. At the same time, certain crimes
that stoked public anxieties and that got the attention of local public officials had to
be included.

There were also statistical considerations in how the outcomes were defined. In
general, the more heterogenous an outcome class, the more difficult it can be to ar-
rive at accurate forecasts. When the goal is to forecast different kinds of criminal
behavior, one needs to think hard about crime etiology — insofar as credible in-
formation exist — because both the predictors and how they function can differ by
crime type. To the degree that offenders “age-out” of different kinds of criminal ac-
tivity at different ages, for instance, having many different kinds of crime in a given
outcome category will tend to dilute the impact of age and reduce the accuracy of
any forecasts that depend on age-related effects.

It follows that there can be tensions between forecasting accuracy and the “real
politik” of supervisory decisions. For example, should rape have been put in the
serious-crime outcome category along with armed robbery? In this instance, polit-
ical considerations trumped statistical considerations, and it was. For several other
less salient kinds of crime, statistical considerations won the day.

The vast majority of offender types were included in the forecasting exercise.
But, individuals identified from their prior record or current conviction as “sex of-
fenders” were, by and large, assigned automatically to special supervisory services.
No forecasting was undertaken. There were analogous procedures for offenders with
significant histories of drug use or major psychological problems. Finally, a rel-
atively small number offenders were diverted to experimental, community-based,
programs without the use of any forecasts. In short, allowance was made for a vari-
ety of placement practices, many of which were not informed by forecasts. Indeed,
policy considerations sometimes precluded using forecasts to inform placement de-
cisions. Whether forecasts might have been helpful for other purposes was not con-
sidered. For example, higher risk drug offenders might have been subject to more
frequent testing.

Commission of a crime was operationalized as an arrest within two years of
intake. Training data included over 119,000 cases from a three-year intake window.
That is, all new cases during those three years were included. For those data, 9.6%
failed with an arrest for a serious crime, 30.9% failed with an arrest for a crime
that was not defined as serious, and 59.3% did not fail. Predictors were taken from
administrative records routinely available in electronic form. Random forests was
applied.11 Table 6.2 shows the resulting confusion table.

10 Serious crimes included murder, attempted murder, aggravated assault, robbery or a sexual
crime.
11 out put ← randomForest(threeway ∼ iseriouscount +Asexpriors+ J f irstage+ seriousyears+
Aviol priors + jail priors + A f irstviolage + age + A f irstage + jaildaypriors + Aall priors +
Zip f ac,data = w2, importance = T,sampsize = c(10000,10000,10000)).
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Forecast Serious Crime Forecast No Crime Forecast Not Serious Model Accuracy
Serious Crime 7112 2220 2248 .62

No Crime 7147 49187 14867 .69
Not Serious 4553 9601 23000 .62

Forecasting Accuracy .37 .80 .57

Table 6.2 Confusion table for forecasts of parole or probation performance: arrest for a serious
crime, arrest for a crime that is not serious, and no arrests. Arrests for serious crimes are identified
with 62% accuracy, arrests for crimes that are not serious are identified with 69% accuracy, no
arrests are identified with 62% accuracy.

Before digging into the full confusion table, we need to revisit the matter asym-
metric costs. With three outcomes introducing asymmetric costs can get tricky. Ta-
bles 6.3 though 6.5 are 2× 2 subtables from Table 6.2, constructed for ease of ex-
position.

Forecasted Serious Crime Forecast No Crime
Serious Crime 7112 2220

No Crime 7147 49187

Table 6.3 Confusion table for forecasts of parole or probation performance: arrest for a serious
crime and no arrests. The cost ratio is about 3.2 to 1 for false negatives to false positives, where
serious crime is a positive and no crime is a negative.

Forecasted Serious Crime Forecast Not serious
Serious Crime 7112 2248

Not Serious 4553 23000

Table 6.4 Confusion table for forecasts of parole or probation performance: arrest for a serious
crime and an arrest for a crime that is not serious. The cost ratio is about 2.0 to 1 for false negatives
to false positives, where serious crime is a positive and crime that is not serious is a negative.

Forecasted No Crime Forecast Not Serious
No Crime 49187 14867

Not Serious 9601 23000

Table 6.5 Confusion table for forecasts of parole or probation performance: arrest for a crime that
is not serious and no arrests. The cost ratio is about 1.5 to 1 for false negatives to false positives,
where a crime that is not serious is a positive and no crime is a negative.
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Table 6.3 is the confusion table for arrests for serious crimes and no arrests at
all. Serious crime is taken as a positive, and no crime is taken as a negative. The
intent was to make false negatives about 10 times more costly than false positives.
In reality, the ratio is about 3.2 to 1 (7147/2220).

Table 6.4 shows the confusion table for arrests for serious crime and for crimes
that were not serious. Serious crime is taken as a positive, and crime that is not
serious is taken as a negative. The intent was to make false negatives 5 times more
costly than false positives. In fact, the ratio is about 2 to 1 (4553/2248).

Table 6.5 shows the confusion table for no arrests and arrest for crimes that were
not serious. Non-serious crime is taken as a positive and the absence if crime are
taken as a negative. The intent was to make false negatives 5 times more costly than
false positives. In fact, the ratio is about 1.5 to 1 (14867/9601).

By fine-tuning the stratified sampling turning parameters, it would have been
possible to arrive cost ratios quite close to their targets. But decision-makers im-
posed two constraints on the forecasts that had important implications for costs and
forecasting accuracy. First, the fraction of cases forecasted to be arrest-free but then
arrested for a serious crime — the worst kind of forecasting error — had to be well
under 10%. There was nothing special about the 10% figure. It was an approxima-
tion of what decision-makers thought would be acceptable to key stakeholders and
the public.

Second, the fraction of individuals forecasted to have a serious arrest could not
exceed about 17%. Individuals identified as a serious threat to public safety were
to be assigned to intensive supervision. Intensive supervision is very expensive, and
as a fiscal matter, there was an upper bound to the number of very high risk cases
that could be intensively supervised. Like so many public agencies, these decision-
makers were being asked to do more with less.

Further complicating matters was that one could reduce the first percentage only
by increasing the second. For example, in order to reduce the number of worst-case
forecasting errors, one could accept a lower standard of evidence for an individual
forecasted to be arrested for a serious crime. But that would increase the number of
false positives and the overall number of those forecasted to commit a serious crime.
The 17% upper bound might then be exceeded.

Responding sensibly to these constraints meant significant compromises in the
initial cost ratios. As a matter of arithmetic, the desired costs ratios were incom-
patible with the imposed constraints. Something had to give. In this case, decision
makers had to settle for smaller cost ratios than they initially preferred.

Ideally, one would want to rethink the cost ratios trying to incorporate each
constraint’s cost implications. For example, the costs of false positives for serious
crimes increase substantially as the upper bound of 17% is approached. Unfortu-
nately, we could not arrive at a practical way to formally build in cost ratios that
changed depending on the forecasting outcomes. It was the classic chicken and egg
problem.

Nevertheless, the relative costs of different kinds of forecasting errors were nec-
essarily a key driver that could be manipulated. One could reduce the number of
individuals forecasted to be crime free, but who actually were arrested for a seri-
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ous crime, by increasing the relative costs of such false negatives. One could reduce
the number of individuals forecasted to commit serious crimes by decreasing the
relative costs of both kinds of false negatives (i.e., with respect to forecasts of no
crime and forecasts of crimes that were not serious). In short, there were things that
could be done, and the goal was to stay within the two constraints while producing
sufficiently accurate forecasts.

As before, we manipulated the number of cases sampled within each of the out-
come classes. About two-thirds of the violent crime cases were sampled. The num-
ber of cases sampled for the other two outcome classes was determined by trial
and error. Eventually, sampling 10,000 of each outcome class led to an acceptable
result.12

In the end, 3.6% of the individuals forecasted to not be arrested for any crime
were arrested for violent crimes. That percentage was well below the target of 10%.
The percentage could have been substantially smaller were it not for the second
requirement (i.e. that no more than 17% could be forecasted to be commit a serious
crime). We settled on a total of 15.5% projected to be arrested for a serious crime.
In short, the targets for both constraints were met. One might even argue that the
cost ratios in Table 6.2, which are very different from their initial targets, better
reflect the relative costs of different forecast errors because they incorporate the two
outcome constraints.

Consider now some key details of Table 6.2. With three outcome classes, there
are 9 cells with counts. The numbers of correct forecasts are shown along the main
diagonal. As before, model accuracy is reported on the right margin of the table, and
foresting accuracy is shown on the bottom margin of the table.

Model accuracy was acceptable to decision-makers. Around two-thirds of indi-
viduals for each of the three outcomes are correctly identified. One of the two-thirds
figures was for some especially impressive. For the full set of cases, about 6% are
arrested for serious crime. Serious crimes were relatively rare. Yet, within the sub-
set of individuals who actually are arrested for a serious crime, 62% are correctly
identified by random forests.

Forecasting accuracy looks good as well. When no crime is forecasted, the fore-
cast is correct 80% of the time. As just noted, the worse-case forecasting error occurs
only 3.6% of the time. A strong argument might be made for employing a form of
less intensive supervisory if an individual is forecasted to be crime-free.

When an arrest for a crime that is not serious is forecasted, the forecast is cor-
rect 57% of the time. The vast majority of the forecasting errors are for individuals
who were crime-free. Only 13% of those incorrectly forecasted were arrested for a
serious crime.

When a serious crime is forecasted, the forecast is correct 37% of the time. About
40% of the forecasting errors are for those arrested for a crime that was not serious
and about 60% are for those who were crime-free. The 40% figure has some positive
implications because these individuals were engaged in criminal behavior even if the
arrest was not for a serious crime. The 60% figure is more troubling. But it is also

12 Recall that the sample sizes alter the prior distribution of the response for each tree, which in
turn alters to loss associated with each kind of forecasting error.
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likely that at least some of these individuals were false negatives in another sense:
they were not being caught for the crimes they were committing. In any case, all of
these numbers could have been rather different, and arguably better, were it not for
the two constraints. But as required, the total does not exceed the 17% upper bound.

Forecasting Importance For Highest Risk Class
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Fig. 6.5 Reductions in forecasting accuracy for each predictor after shuffling with respect to arrests
for a violent crime. Predictors are ranked by forecasting importance.

Measures of forecasting importance are also more complicated when there are
more than two response categories. The key question is: forecasting importance of
what? There are two common options. One can evaluate the forecasting importance
of predictors for a given outcome class, or one can evaluate the average forecasting
importance across all outcome classes. Both can be useful.

Figure 6.5 shows the forecasting importance plot for a single outcome class:
an arrest for a serious crime. One can see, for example, that if the age variable is
shuffled, forecasting accuracy for serious crimes declines by about 12 percentage
points. Almost as important are the zip code of residence, the earliest adult age for
an arrest, and the number of years since the most recent serious charge. It does not
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matter much if a person has a sex offense prior or has a large number of counts for
their current crime of conviction.13

Average Forecasting Importance Over the Three Classes
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Fig. 6.6 Average reductions in forecasting accuracy for each predictor after shuffling with respect
to all three outcomes. Predictors are ranked by forecasting importance.

Figure 6.6 shows average forecasting importance for all three outcome classes at
once. That is, the forecast importance for each class is summed and then divided by
number of classes. The number of prior jail terms now rises to the top followed by
the four most important predictors from Figure 6.5.

Average forecasting importance is smaller than forecasting importance for seri-
ous crimes because for some outcome categories, it is more difficult to have large
forecasting contributions. In particular, it is more difficult to have substantial fore-
casting importance for outcome categories that contain a larger number of cases. For
example, suppose that for two different outcome categories, each has a forecasting
accuracy of 50%. And in both cases, suppose shuffling a given variable increases
the number of forecasting errors by 25. If there are 100 cases in one of the outcome
categories, 50% accuracy drops to 25%. If there are 500 cases in the other outcome

13 Having a prior for a sex offense does not necessarily mean that the individual is labeled a sex
offender. The sexual offense may be minor, in the distant past, and unrelated to current criminal
behavior.
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category, accuracy drops to 45%. In this application, there are many more obser-
vations in the non-serious crime and no-crime categories than in the serious crime
category. So, forecasting importance tends to be substantially smaller predictor-by-
predictor for the two happier outcomes. This leads to smaller predictor importance
averaged over the three outcomes. One implication is that the forecasting impor-
tance for violence crime tends to dominate average importance, which helps explain
why the most important predictors in the Table 6.5 and Table 6.6 are similar.

Forecasting importance has no direct implications for forecasting accuracy. It
comes into play primarily as decision-makers try to understand what the forecasts
mean and/or convince others that the forecasts have real benefits. The most impor-
tant predictors should “make sense.” They typically do if drawn intelligently from
existing administrative records. The surprises can usually be “explained” with a lit-
tle post hoc reasoning. More problematic are predictors thought to be important for
forecasting, but turn out not to be. Such findings can challenge long-accepted craft
lore, past research in peer reviewed journals, and well-respected professional repu-
tations. Perhaps the best response is to emphasize that the task at hand is forecasting,
not explanation, and that because many popular predictors can be highly correlated,
some may mask the performance of others. There is also forecasting skill that cannot
be attributed to any single predictor, but that may be responsible for “null effects.”14

Forecasting importance can also play a key role when decisions are made to
exclude certain predictors on legal or ethical grounds. For example, if race has lit-
tle forecasting importance when included with other predictors, it can be dropped
from the training data should there be even a hint of concern. However, if race has
substantial forecasting importance when included with other predictors, significant
tradeoffs can arise. How much forecasting accuracy are decision-makers prepared
to forego if race is no longer included? That, in turn, requires that decision-makers
think through the consequences of different forecasting errors.

Suppose, for instance, that excluding race as a predictor will plausibly lead to 5
more homicides. Because, as noted above, people tend to kill people like themselves,
there could be 5 more homicides of individuals with the same general background as
the individuals whose behavior is being forecasted. Perhaps 40 young males from
certain neighborhoods will not have to live with intensive oversight, but the price
could be 5 young male murder victims from those same neighborhoods.

In addition to knowing the forecasting importance of each predictor, it can be
useful to learn how each predictor is related to the response. There is no such thing
as an average response function over response categories. Response functions are
constructed separately for each predictor and each response category. But just like
with forecasting importance, the response function should “make sense.”

Recall how the response is represented. It is the difference between the log of the
odds for the outcome in question and the log of the odds averaged over all outcome

14 That said, it often seems that when machine learning is applied in criminal justice forecasting,
the stronger predictors tend to be behavioral, not attitudinal. Various features of anti-social behavior
in the past can be excellent predictors of anti-social behavior in the future. Psychological profiles
or inferences about states of mind typically add little to forecasting accuracy once the behavioral
measures are included.
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Fig. 6.7 Response of an arrest for a violent crime to the number of years since the most recent
serious crime. A value of 100 is used for individuals with no serious prior arrests. There is little
data beyond a value of about 50.

classes. In other words, it is measure of disparity between the response for a given
outcome class and the average response over all outcome classes. With our three
crime-related outcomes, it is the difference between the response in log-odds units
for, say, violent crime and the average response in log-odds units over all three
crime-related categories.

When there are only two response classes, partial response plots are relatively
easy to interpret. The response plot for one response class is just the mirror image
of the response plot for the other response class. One of the two is redundant.

When there are more than two response classes, as in this example, response
plots are more challenging. There is information in the partial response plot for
each response class. If there are, say, three classes, there is a need for three response
plots. There is far more output to digest because no single plot is redundant.

Figure 6.7 shows the partial response plot for the serious crime outcome and the
predictor years since the most recent serious crime. One should anticipate a negative
relationship but after that, the criminology literature provides little guidance. In fact,
the relationship is steeply negative until a value of about 20 years is reached. It levels
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off. Broadly, the response function makes sense. Consider how credible the overall
results would be if the relationship was strongly positive.15

As noted earlier, the centered logits can be transformed into probabilities. When
that is done here, the relationship is non-trivial. If one compares the probability of
being arrested for a serious crime for someone whose past serious crimes were a
year old or less to the probability of being arrested for a serious crime for someone
whose past serious crimes were 4 decades earlier, probability of failure declines by
about .13.
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Fig. 6.8 Response plot of an arrest for a violent crime against years of age. The relationship is
strongly negative until around age 50.

This effect is adjusted for the role of age — clearly, younger individuals are less
likely to have committed crimes long ago, and age too is related to crime, as we will
now see. Figure 6.8 shows the partial response plot for an arrest for a serious crime
against age. The expected negative relationship materializes until around 50 years of

15 There is no real data beyond a value of 50, but individuals with no prior serious offenses were
coded as having a value of 100. A value of 100 is sufficiently long ago that the crime might as well
never have occurred. This has no effect on the response function for values less than 50 because
the fitted values are highly local. Researchers unfamiliar with local fitting methods, may find this
surprising.
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age, when the relationship becomes flat. In addition, it may be important in practice
to notice that the decline does not begin until around age 22. Individuals between 17
and 22 are about at the same high level of risk, other things equal. Once again, the
effect is large in a probability metric. Comparing an 18-year-old to a 50-year-old,
the probability of failure is about .22 less for the latter.
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Fig. 6.9 A histogram of votes for no arrests over trees. The majority of those assigned to the no
arrests class are assigned by a substantial plurality. Overall uncertainty is relatively low.

The uncertainty issues are much the same as before. Random forests provides
vote tallies for each outcome class and for each observation. Ideally, the class as-
signed to an observation has a decisive percentage of the vote. The worst case is for
all of the percentages to be identical or nearly so. With three classes, for example,
three percentages of about 33% suggest a great deal of uncertainty in the assigned
outcome class. A 15%-35%-50% distribution, on the other hand, implies far less
uncertainty. But there is no line in the sand. Decision-makers should decide how de-
cisive a vote needs to be for it to be decisive enough. As before, when the vote for a
given observation is not sufficiently decisive, it can be useful to exploit information
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not available when the forecast was made to assist in decision-making. However,
it is usually a mistake to use the same information to override a forecast, because
forecasting accuracy is likely to be compromised.

Figure 6.9 shows the vote distribution for the response outcome of no arrests.
One can see that a substantial number of those forecasted into the no arrests class
received reasonably decisive vote. Those cases are forecasted with enough certainty
so that decision-makers might well choose to proceed with no other information
about likely post-release behavior. However, from the histogram alone it is difficult
to get a very precise fix on how many such cases there are.

Here’s why. A vote of 50%-25%-25$ is perhaps quite decisive. But what about a
vote of 50%-48%-2%? The winning plurality is the same for both, but is the second
really decisive? One probably needs to focus on the difference between the two
highest vote percentages and decide that, say, a gap of at least 15 percentage points
defines a sufficiently decisive vote. This can be easily done with the output from
random forests but would require writing several lines of code.

When there are three response classes, there are graphical tools than can help.
Figure 6.10 is a ternary plot showing for 50 cases the three vote proportions. In
practice, forecasts to inform decisions will be made for a relatively small number of
cases at a time and then, graphical displays can be very instructive. If the number of
forecasts is large, “over-plotting” can make interpretation difficult.16

For Figure 6.10, the three response classes being forecasted are shown at the
corners of the equilateral triangle. The plotting grid takes some getting used to, but
is actually straightforward. Consider the single case closest to the lower corner of
the triangle. For that individual, about 10% of the votes were for a violent crime,
about 10% of the votes were for a nonviolent crime, and about 80% of the votes are
for no crime at all. The vote is overwhelmingly for no arrests. The key to reading
such plots is to recognize that the locations of any point are with respect to the
vertical distance from a given side to the opposite triangle corner. For example, the
vote proportions for no crime are represented by the vertical distance from the upper
righthand side of the triangle to the corner labeled “none” on lower left side of the
triangle. The proportions increase from 0.0 to 1.0 as one moves from the triangle
side to the triangle corner. In short, ternary plots can be used to examine voting
patterns on a case-by-case basis as decisions are being made.

Figure 6.10 can also be used to examine the patterns of votes for a set of forecasts
as a whole. Ideally, there will be three clusters of points, each located close to one of
the triangle corners. But a lot depends on how common an outcome class happens
to be. If an outcome class is very rare, there can be no cluster. In this illustration,
arrests for violent crimes are a distinct minority. With only 50 forecasts, one would
not expect to find a large violent crimes cluster and in fact, there is at best a cluster
of three a bit above .60. In contrast, there is a no-crimes cluster of nine cases with
votes over 60% or better toward the lower left of the graph.

16 The plot was constructed using the R procedure ternaryplot in the library TeachingDemos.
Here’s the code: ternaryplot(votes, dimnames = c(V = “NonViolent”,O = “None”, V = “Violent”),
main = “Ternary Plot for Class Votes”,col = “blue”, cex = .5, coordinates = T). The meaning each
argument is well explained in the help documentation.
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Fig. 6.10 A ternary plot of the distribution of votes for each of the three response classes. The
proportions sum to 1.0.

In summary, Figure 6.10 indicates that for the 50 forecasts plotted, votes in favor
of no arrests are more likely to be decisive than votes in favor of an arrest for a vio-
lent crime, and especially votes in favor of a nonviolent crime. There seems to be the
most uncertainty about arrests for nonviolent crimes, which suggests that the class
may be inherently ambiguous and the mix of crime etiologies more heterogeneous.



Chapter 7

Implementation

Abstract All of the material to this point would be at best academic if the key
empirical results were unable to inform practice. This chapter turns briefly to porting
new forecasting procedures to the settings in which they will be used. There are
technical issues, but often the major obstacles are interpersonal and organizational.

7.1 Making it Real

We come finally to the matter of implementation. We now assume there exists an
acceptable forecasting procedure that has been developed and evaluated. It is now
time to port the forecasting procedure to the setting in which it can be used to inform
real decisions.

Even more than during the developmental phase, implementation will require
the talents and cooperation of many people. The range of expertise needed is much
broader. The number of organizations likely to be involved is much larger. This
is also the time when stakeholders will begin to fully appreciate the nature and
consequences of the forecasts. As a result, they will engage more aggressively, and
when they do, the media will not be far behind. It can all get quite lively.

7.2 Demonstration Phase

Starting with a demonstration phase is usually essential. Ideally, forecasting data
of the sort that will be used later are tested. The goal is not to evaluate forecasting
accuracy because that has already been done. Rather, the goal is to shake down
the steps by which the forecasting data will be obtained and “dropped down” the
random forests forecasting algorithm. For example, there needs to be information in
the data carried along when forecasts are made than can link a given forecast to a
given individual. This can mean that some official criminal justice ID is maintained
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throughout the process. Alternatively, if a new, unique ID is defined for each case,
there is a way to go from the new ID to whatever unique identifiers are used in the
official data bases.

Another issue can be whether the form the forecasts will take is easily under-
stood by decisions makers. If the forecasts are to be provided in, for instance, a
spread sheet format, accurate and easily understood labels for the rows and columns
are essential. In some instances, all that decision-makers want is a color-coded fore-
casted category (e.g., red for serious crime, yellow for crime that is not serious, and
green for no crime).

Any problems that surface during the demonstration phase are usually fixed quite
easily. One should then repeat the demonstration because sometimes solutions to
one problem create another problem. Only when all goes well should the actual
implementation process begin.

7.3 Hardware and Software

The move to the physical environment in which the forecasting will be done raises
hardware and software issues. Requirements include:

1. a computer running R, although in the near future other software may suffice;
2. an R object installed on that computer, containing random forests output con-

structed from the training data;
3. for that computer, direct access in real time to input data for forecasting, contain-

ing the values of predictors; and
4. an interactive user interface allowing users to specify the IDs of particular indi-

viduals and providing a convenient display of their forecasts.

No special computer is needed. Most personal computers have the processing
power required. R is free and runs on a wide variety of platforms and under Win-
dows, Mac OS, and Linux. If one assigns the output of random forests to some out-
put name, and then saves that R object, that object will contain all that is required.
It can be sent to another computer and saved there if that is desirable.

But problems can still occur. Perhaps most commonly, R output produced on
one platform may not run properly on another platform. For example, it is very
convenient in principle to port data, forecasts, and computer code in text format.
Unfortunately, text file conventions for the Mac OS can be a little different from
the text file conventions Windows. Likewise, data files created in an SPSS Windows
format may create problems if read using Mac OS software. For example, dates can
be scrambled. In short, there will likely be a few annoying details to be worked
through.
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7.4 Data Preparation for Forecasting

The data used for forecasting are usually treated as another random realization from
the same joint distribution responsible for the training data. But working with new
predictor values can be a little tricky. R is expecting that the predictors in the fore-
casting data have the exact same names as the predictors in the training data. For
predictors that are factors, R is also expecting the same names for each level. For
example, if in the training data the factor gender has male coded as “M” and female
coded as “F”, “m” and “f” in the forecasting data will not do. R is case sensitive. Nor
will “male” and “female.” One also has to plan ahead for working with codes for
missing data (e.g., -99), blanks, and typos. For example, blanks can be represented
by one space or many different numbers of spaces even in the same dataset.

It will likely be very difficult to anticipate every possible problem. So code must
be written that will run nevertheless. Suppose there is a factor used as a predictor
(a categorical variable) with the name X. Suppose in the training data X has three
levels (i.e., categories): A, B, C. When random forests is applied, those three levels
are automatically stored as an attribute of X. Random forests expects to see an A,
B, or C whenever it processes X in the future.

Now suppose there is a set of new cases for which forecasts are needed. The
predictor values for these cases constitute the forecasting data. Random forest output
constructed for the training data provides the forecasting structure. The forecasting
data are “dropped down” this structure so that forecasts can be obtained.

Suppose the predictor X is in both the training data and the forecasting data, but
in the forecasting data the levels are A, C, and blank. This implies that no forecast
can be made for all cases coded blank. The random forests forecasting object has no
information on what to do with such cases. This would be true for any level found in
the forecasting data but not in the training data (e.g., z, D, green, 17.5).1 When there
are any levels in the forecasting data not found in the training data, R will generate
an error message saying as much.

There will also be no forecast for the level B because no cases in the forecasting
data happen to have that level. There will be no error message, but one cannot expect
to find any forecasts for cases that have a level B for variable X. This may well be
disappointing, but it is not treated as an error by R. For example, perhaps the training
data includes men and women, but the much smaller forecasting dataset happens to
have only men. That is just the way it is.

In short, R allows for levels in the training data that are not in the forecasting
data, but not for levels in the forecasting data that are not in the training data. The
best solution for the latter is to “pre-process” the forecasting data so that the vari-
able names and factor levels correspond to those in the training data. Unfortunately,
errors can occur nevertheless because some data problems may slip through.

There needs to be a more reliable approach. When in R a factor is stored, attached
is information on the variable’s name, and that factor’s legitimate levels. One must
target the list of legitimate levels not the actual levels found in the data. The idea

1 One cannot interpolate or extrapolate factors.
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is to force the recognized levels for all factors in the forecasting data, whatever
those levels actually are, to be the same as the recognized levels for the same factors
in the training data. The code in R to make this happen can look something like
this: levels(ForecastingData$V3) ← levels(TrainingData$V3). This code forces the
levels for variable V3 in the forecasting data to be the same as the levels for variable
V3 in the training data. No information is lost because a level for V3 that is not in
the training data can have no empirical role in the forecasts.2

For quantitative variables, the data partitioning undertaken for each tree has no
“holes”; there are no levels to wrestle with. For example, if a partition is defined for
all individuals younger that 30, all ages under 30 are included even if not represented
the training data. If there are no 26-year-olds in the training data, it does not matter.
If there are no individuals under 19 in the training data, it does not matter. In short,
quantitative variables are often easier to work with than qualitative variables.3

In summary, porting the forecasting R object to another platform should go rel-
atively smoothly. Most of the effort will then go to getting routine access to the
requisite predictors in real time and making sure that those data are pre-processed
to be consistent with the training data. There may also be a need to write some
computer code in case the pre-processing stumbles.

7.5 Personnel

The forecasting described in this book implies that even for technical matters, a
team of individuals will be needed. There are just too many different skills required.
It is probably unreasonable to expect that whoever is responsible for developing
the forecasting procedures in R will also know the details of the various data bases
required. Likewise, expertise with a particular agency’s data processing platforms
will depend on yet another kind of background. For this team to function, all of the
key personnel need to buy into the project and be able play well with others. It is
also essential that they be open with one another.

There are at least three major obstacles to assembling a good team. The first is a
lack of expertise. Beyond usual problems finding a sufficient number of talented and
motivated individuals, information technology is changing very rapidly. IT expertise
should be date-stamped just like perishables in the grocery store. What worked last
year may not work this year, and an advanced degree is no guarantee that the exper-
tise is current.

2 The function factor() can also be used to assign levels to a factor.
3 The absence in the training data of certain values for a given predictor does not matter com-
putationally for subsequent observations needing forecasts. But especially if the response func-
tion is highly nonlinear, the absence of certain values may mean that the function is not well-
approximated. For example, should the shape of the function change dramatically for individuals
under 19, and there are no such individuals in the training data, that change will not be captured.
Then, when individuals under 19 are found in the forecasting data, their forecasts may be well of
the mark.
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The second is institutional rivalries. For example, a department of corrections
may have longstanding tensions with a department of probation and parole. Yet,
data may well be needed from both. It is rare to find explicit refusals to cooperate
or outright sabotage. The most likely response is perfunctory agreement to coop-
erate followed by inactivity and silence. Often the only solution is a forceful kick-
in-the-pants from one or more individuals sitting much higher up in the table of
organizations.

The third is proprietary software owned by a for-profit organization. Proprietary
software may be purchased easily enough, but important details may be inade-
quately disclosed, and performance claims may turn out to be unsubstantiated; there
is usually no equivalent of peer review. It can also be difficult to alter the software,
or require that changes be made by the purveyor, once the project has begun.

There is no recipe for how to overcome these obstacles. Perhaps the best advice
is collect lots of information on the individuals and organizations who will likely be
involved before deciding whether to proceed. If a decision is made to go forward,
that information can also be used to help prevent problems before they occur. For
example, if one is working with high level state agencies, getting in advance a sign-
off on the project from the governor’s office can help reinforce good behavior from
all involved.

7.6 Public Relations

There can be at least three important public relations matters that are worth brief
mention. First, it is very important from the start of the enterprise, well before im-
plementation, that any statements about the forecasting should be careful, cautious,
and tentative. Careful statements will convey no more than necessary and will be as
accurate as the current understandings permit. Cautious statements will help prevent
promising too much by, in part, communicating the key uncertainties of the project.
Tentative statements allow for subsequent revisions, which will almost certainly be
necessary.

Second, there needs to be a sensible division of labor. It can be helpful to have
a single individual serve as the overall project spokesperson, with one additional,
“specialized” spokesperson for each of the key components. For example, if requests
are made for lots of details, there will need to be someone who can explain the
forecasting procedures and someone who can explain how the forecasts will be used.

Third, there needs to be clear sign-off protocols for all written statements or re-
ports. It is likely that any organizations with skin in the game will want to review all
documents circulated to outsiders, and require that nothing be released without at
least their knowledge and often, not without their permission as well. These require-
ments may need to be tailored for academic publications so that whenever possible,
concerns about academic freedom do not arise.



Chapter 8

Some Concluding Observations About Actuarial

Justice and More

Abstract This chapter offers some brief thoughts about what the future may hold for
the procedures that figure centrally in the book, and discusses implications beyond
the nuts-and-bolts problem of forecasting criminal behavior. A key topic is actuarial
justice and several associated trends. There are also some brief observations about
“black-box” forecasting tools, the future of criminal justice research, and something
one might call “dark structure.”

8.1 Current Trends in Actuarial Justice

To rephrase slightly a old aphorism, “information is power.” As a matter of expe-
diency and effectiveness, the information used in behavioral forecasting is increas-
ingly quantitative — information is power and quantitative information can be espe-
cially powerful. Thus, investment strategies now depend heavily on “quants,” which
despite recent setbacks, represents an approach likely to accelerate. Mass market-
ing by the likes of Google, Amazon, and NetFlicks is relying more on enormous
databases and less on Madison Avenue craft lore. Our national politics might grind
to a halt were it not for the nearly-continual polling of prospective voters to project
election outcomes. Political advisors now sound like survey analysts.

Similar trends are underway in criminal justice decision-making. In many juris-
dictions, police deployments are informed by data systems like COMPSTAT (Henry,
2003), with more complete datasets coming on line regularly. One result is the
growth of “predictive policing” in which traditional experience-based judgements
can be either shored up or challenged by hard data. The routine use of data-driven
forecasts to inform parole decisions has been spreading to sentencing, charging and
bail recommendations. As with police, professional judgement can be reinforced or
strongly challenged, and here too, vastly better data are becoming available. Data-
intensive forecasting procedures are being built to inform decisions about juveniles,
both as perpetrators and victims of violent crime.
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Some warn that these trends contribute to the growth of “actuarial justice.” Ac-
tuarial justice was perhaps first characterized over three decades ago in a essay re-
viewing a National Academy of Sciences Report on career criminals (Messenger
and Berk, 1987). The essay addressed the use of forecasts to help identify indi-
viduals likely to have long and active criminal careers. A controversial option was
to “incapacitate” with longer prison terms individuals projected to be “habitual of-
fenders.” The forecasts were based on offender profiles constructed from statistical
models popular in that era. After considering a range of substantive and technical
matters, the essay’s authors offered several cautions.

Current practice is far more sophisticated and nuanced, but one can still reason-
ably ask whether actuarial justice is a good thing (Feeley and Simon, 1994; Bu-
ruma, 2004; Robert , 2005; Monahan, 2006; Harcourt, 2007). There is no doubt
that actuarial methods can produce usefully accurate forecasts and improve cost-
effectiveness across a wide variety of criminal justice agencies. But there are also
legitimate concerns.

One concern is that cost-effectiveness is being allowed to shoulder aside other
important criminal justice ideals. For instance, under “just deserts,” sanction sever-
ity is supposed to be proportional to offense seriousness (von Hirsh, 1995). Future
dangerousness has nothing to do with it. What about general deterrence in which
sanctions applied to one individual are meant to dissuade others from committing
crimes (Farrell, 2003)? Of necessity, one is drawn into the long-standing debate
about the purposes of punishment (Boonin, 2008).

Another concern is that cost-effectiveness is, at least in practice, far too nar-
rowly defined. Important “externalities” are neglected. Commonly mentioned, for
example, are the consequences of incarceration for an offender’s family. But, no
conception of costs and benefits will cover every eventuality, and what can be cred-
ibly measured will always be a further subset. Perhaps the key question is whether a
proposed collection of measurable benefits and costs is both feasible and a demon-
strable improvement over current practice.

Yet another concern is actuarial reasoning itself. Hoping to make good decisions
on the average is misguided. Rather, one should try to make the good decisions
on a case-by-case basis. But criminal justice decision-makers usually make many
decisions, some of which are surely better than others. A one-off framework seems
to misrepresent the process, both in theory and practice. Should there not be some
reasoned approach to good decisions in the aggregate?

Finally, there is the ongoing concern about the role of predictors, such race, eth-
nicity, and gender, that can be used for profiling. Here too, definitive answers are
hard to come by. For example, David Boonin (2011: Chapter 10 ) makes an im-
portant distinction between “rational” profiling furthering some legitimate crime
reduction goal and “irrational” profiling, which has no such impact. Under some
circumstances, the former may be morally acceptable. There are also difficult tech-
nical matters. Among them is how the legal term “similarly situated” corresponds
to statistical adjustments that “hold constant” a subset of covariates (Berk, 2009).1

1 For example, when conventional regression analysis is used to empirically isolate the role of a
suspect predictor such as race, covariance adjustments are required for all possible confounders.
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Lying just behind each of these concerns is a fundamental policy matter: “Com-
pared to what?” Actuarial justice has it problems, but so too do each of the alter-
natives. For example, why should one believe that discretionary decisions made by
a parole board unguided by actuarial results will be more accurate, transparent and
race-neutral? Or, if sentences are to be based on just deserts, how does one get from
a broad, retributive right to punish to dose-like sentences that can range in length
for several days to life (or death)? There may be a loose rank ordering of crime
seriousness, but one requires far more than an ordinal scale (Rossi and Berk, 1997).

This is not the venue to examine these matters, and they are not be easily resolved
in any case. But readers should be sensitive to the controversies that surround actu-
arial methods in criminal justice. Moreover, if an agency’s use of actuarial methods
is challenged from one or more critical perspectives, it is helpful to know that these
perspectives can also be legitimately criticized. Some might say that currently, no
one point of view holds the intellectual high ground.2

8.2 Larger Issues

Forecasts of human behavior are made all the time. Interpersonal interactions could
not proceed without them. Major institutions are just as active. Admissions to law
schools depend on projections of academic success, marketing strategies are guided
by forecasts of how consumers will respond to a particular pitch, hiring choices
anticipate how a new employee will work out, “best practices” recommended by
various professional organizations are based expected results if those practices are
adopted, and on and on. Criminal justice agencies are just one of many entities that
routinely make and use forecasts. As such, they are part of several broad trends.

8.2.1 Forecasts Despite Individual Uniqueness

No two people are exactly alike. If taken at face value, forecasts of individual be-
havior are effectively impossible. One cannot learn anything from training data that
can be usefully applied to the forecasting data.3

This is an impossible standard to meet. In practice, researchers will settle for all of the “important”
confounders. How close to the impossible standard does one have to be in order to claim that cases
are similarly situated? And how would one know? In addition, as a mathematical matter, the racial
parameter whose value is being estimated differs depending on the confounders taken into account;
there is not one potential race effect, but many. The issues can be subtle.
2 If it is any consolation, similar issues come up in discussions of heath care, environmental pro-
tection, and national defense.
3 A given individual is not identical from moment to moment. Even within-person forecasts might
seem problematic. But there is no need to go there for now.
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But, there is ample evidence that useful forecasts are being made all the time in
a wide variety of settings. In practice, there are likely to be a least several individ-
uals in training and forecasting data who are sufficiently alike to make forecasting
possible. With very large data bases, “several” can become “many.” At that point,
the statistical tools discussed earlier can be introduced. A set of similarly situated
individuals becomes a profile. In short, there is no necessary contradiction between
each individual’s uniqueness and useful forecasts of individual behavior.

8.2.2 Risk and Forecasting

The current discussions about health care and the role of government more generally
have raised in a very visible fashion the need to consider risk. One evaluates whether
the dollars spend to manage some undesirable outcome are worth the money. As
part of that discussion, risk is properly unpacked so that the probability of an event
and the consequences of that event can be addressed separately. This is just as it
should be if decisions are to be better informed. Closely related considerations are
now quite common across a wide variety of criminal justice decisions, and may
soon be nearly universal. Perhaps the key take-home message is that with a growing
appreciation of risk comes a growing appreciation of forecasting. Risk is, after all,
about the future.

8.2.3 Black-Box Methods

Actuarial methods are changing rapidly. Forecasts increasingly exploit enormous
datasets that are routinely available in real time. Google, for instance, builds cus-
tomer profiles on hundreds of thousands of clicks. Major supermarket chains build
customer profiles from millions of in-store transactions. Criminal justice forecasting
is moving in a similar fashion to very large datasets. Administrative datasets with
over 100,000 observations are common. All of these applications share a common
insight: there is substantial predictive structure to be found in very small subsets
of observations, which ordinarily would be ignored, but in the aggregate can im-
prove forecasting enormously. It takes very large datasets to exploit such structure.
As observed earlier, if you are looking for a needle in a haystack, you first need a
haystack.

To capitalize on information in very large datasets, especially if that information
can be spread over many small partitions of the data, one must apply appropriate
statistical procedures. Often this means machine learning, since conventional re-
gression approaches are likely to stumble. But there can be important tradeoffs.

One salient feature of machine learning is that it makes black box methods a
virtue (Breiman, 2001b). The goal is to link “inputs” to “outputs” so that the outputs
correspond as closely as possible to the observed outcomes. Forecasting then fol-



8.3 Dark Structure and New Science 111

lows naturally. But how inputs are related to outputs is a secondary concern. Indeed,
in some circumstances, the predictors can be viewed primarily as providing a vehi-
cle for undertaking an effective and efficient search of the data. Their meaning is far
less important than their Sherpa-like capacity to guide a machine learning algorithm
through a high-dimensional predictor space. One result is that forecasting becomes
a distinct activity that differs from explanation or conventional “risk assessment.”
What matters most is forecasting accuracy. Combining explanation with forecasting
can compromise both.

A related result is that the underlying statistical formalization will be very dif-
ferent from statistical models popular in the social sciences. There is no causal in-
ference because there is no causal model. In exchange, the data generation model is
typically far less demanding of subject matter knowledge, and one is free to proceed
in a highly inductive manner.

Finally, good forecasting practice should incorporate information on how the
forecasts will be used as well as the consequences of forecasting errors. This fits
well within machine learning perspectives, but also forces a marriage of policy and
statistics. Practitioners of either will perhaps squirm, at least a bit. Some stakehold-
ers will argue that this is a good thing.

8.3 Dark Structure and New Science

At the risk of some hyperbole, the machine learning approach to very large datasets
has the prospect of creating new science. As we saw earlier, there can be forecasting
skill beyond that usually obtained from conventional regression. A natural question
is how this can be; by and large, the predictors used in a machine learning approach
are the same as those used in conventional regression. Somehow, more predictive
information is being extracted.

One reason is that the inductive approach is effectively nonparametric. No func-
tional forms need to be imposed a priori. Recall that highly nonlinear relation-
ships and high-order interactions can be unearthed. In criminal justice applications
at least, many such relationships have been found that are effectively unforeseen
by criminology theory and the usual parametric regressions. Both will have some
catching up to do.

Another reason is that the nonlinear relationships and high-order interactions
can provide, as explained earlier, surrogates for predictors that are not explicitly
included. These may go well beyond the usual suspects. Determining what these
predictors might be will take some careful detective work, but there is promise.
What are the sources of associations that go beyond a list of well-known predictors?

A final reason is that when very large datasets are coupled with machine learning,
one can find many small regions of the predictor space where a few observations are
related to an outcome in a systematic fashion. Such structure is ordinarily ignored
because any effects are too small to be important. But as now said several times,
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there is important predictive information when one considers many such regions at
once.

These three sources of predictive information imply that there is substantial struc-
ture in criminal behavior that current thinking in criminal justice circles does not
consider. One might use the term “dark structure” because so little is known about
its characteristics. We know it is real because it improves prediction. But it remains
somewhat mysterious. For the next generation of criminal justice researchers, this
is surely good news.

8.4 A Closing Sermonette

Forecasts of criminal behavior will often get it wrong. There are just too many
factors involved within a highly nonlinear system. The proper benchmark, therefore
should not be perfection. The proper benchmark is current practice. And in that
context, accuracy is not the only goal. Also important are fairness and transparency.
Although some may bristle at the idea, criminal justice agencies are substantially
engaged in risk management. Better forecasts surely can help.
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